
HAL Id: tel-04657867
https://theses.hal.science/tel-04657867v2

Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safe Dynamic Reconfiguration of Applications with
Features

Salman Farhat

To cite this version:
Salman Farhat. Safe Dynamic Reconfiguration of Applications with Features. Software Engineering
[cs.SE]. Université de Lille, 2024. English. �NNT : 2024ULILB014�. �tel-04657867v2�

https://theses.hal.science/tel-04657867v2
https://hal.archives-ouvertes.fr

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

MADIS Doctoral School
Speciality : Computer Science

Salman Farhat
University of Lille & CRIStAL & Inria

Project-team Spirals

Safe Dynamic Reconfiguration
of Applications with Features

Thesis defended on July 11, 2024

Thesis Committee:

Mathieu Acher Professor at the University of Rennes Reviewer

Marius Bozga CNRS Research Engineer at VERIMAG Reviewer

Olga Kouchnarenko Professor at the University of Franche-Comté Examiner

Anne Etien Professor at the University of Lille Jury President /
Examiner

Laurence Duchien Professor at the University of Lille Supervisor

Simon Bliudze Inria Researcher at the Inria Center of the
University of Lille

Co-supervisor

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

École Doctorale MADIS
Spécialité : Informatique

Salman Farhat
Université de Lille & CRIStAL & Inria

Équipe-Projet Spirals

Reconfiguration dynamique sûre
des applications comportant des options

fonctionnelles

Thèse soutenue le 11 Juillet 2024

Jury:

Mathieu Acher Professeur à l’Université de Rennes Rapporteur

Marius Bozga Ingénieur de recherche CNRS au VERIMAG Rapporteur

Olga Kouchnarenko Professeure à l’Université de Franche-Comté Examinatrice

Anne Etien Professeure à l’Université de Lille Présidente du
jury /
Examinatrice

Laurence Duchien Professeure à l’Université de Lille Directeur

Simon Bliudze Chercheur Inria au Centre Inria de
l’Université de Lille

Co-directeur

Acknowledgements

First of all, I want to thank my supervisors, Laurence Duchien and Simon
Bliudze, for their guidance, support, and encouragement throughout my Ph.D.
journey. I am grateful for their expertise, feedback, and continuous guidance.
Thank you, Laurence, for the time you made available for me despite your
many other responsibilities. Your motivation and kindness have been a source
of inspiration for me. Simon, I appreciate your availability and the work
environment that was always open for discussions and new ideas. Thank you
for all the motivation you gave and for taking care of even the smallest details. I
am grateful for the opportunity to work with you. This work wouldn’t have been
possible without your help and support. I am also thankful for the opportunity
to work with Olga Kouchnarenko, who has been a great collaborator and
an additional source of inspiration. Thank you, Olga, for all the meetings,
discussions, and excellent work we’ve done together. Your availability, matching
that of my supervisors, is deeply appreciated.

I would also like to thank the Spirals team members. Thank you, Lionel
Seinturier, for being a great team leader. I’m grateful to Alexandre, Adrien,
Clément, Trình, Daniel, Rémy, Hugo, Brel, Pierre, Sihem, Belkis, Walter,
Jean-Luc, and all other Spirals members for our insightful discussions and for
all the best wishes you’ve extended to me. Thank you, Naif, for all the laughs
and good times we’ve shared. You’ve been a friend throughout this journey.

Next, I would like to thank my family, especially my father, Mortada
Farhat, my mother, Imane Farhat, and my siblings, Latifa, Abbas, Yousef,
Jaafar, Hasan, Salim, and Sarah, for their support. I appreciate every single
call that they’ve made to support me through all these days, and I appreciate
their presence in my life as they are the motivation. I am grateful for their
encouragement and understanding throughout my studies.

I am also thankful to my friends in Lille. Lea, Malak, Eyad, Miled, Mehdi,
Tamara, Ramy, Khaled, Raghda, Ali, Wassim, and Ramy: thank you for all
our outings, our discussions, and your support. I am grateful for the memories
we’ve made together. I would also like to thank my football friends, Hussein,

ii

Yorgo, Wassim, Marc, and all the others, for the good times we’ve shared. You
made Lille more enjoyable for me.

Finally, I would like to thank Diala for being more excited than me about
my success, for her patience, and for her support. I am grateful for her presence.

I acknowledge and appreciate the contributions of all those who have
supported me, both directly and indirectly, throughout this endeavor. Your
impact on my academic and personal life has been invaluable. The completion
of this PhD dissertation represents not only a personal milestone but also a
collective achievement. I express my sincere gratitude to everyone who played
a role in this journey, whether their contributions were visible or unseen.

Abstract

Cloud applications and cyber-physical systems require frequent reconfiguration
at run-time to adapt to changing needs and requirements, highlighting the im-
portance of dynamic reconfiguration capabilities. Additionally, the environment
platforms can extend and modify their services at run-time, which necessitates
a compositional approach to allow the modifications of the configurations. To
manage the variability of large systems’ architecture, feature models are widely
used at design-time with several operators defined to allow their composition.
Existing approaches compute new valid configurations either at design time, at
runtime, or both, leading to significant computational or validation overheads
for each reconfiguration step. In addition, building correct-by-construction for-
mal models to handle application reconfigurations is a complex and error-prone
task, and there is a need to make it automated as far as possible.

To address these challenges, we propose an approach that leverages feature
models to automatically generate, in a component-based formalism called
JavaBIP, component-based run-time variability models that respect the feature
model constraints. These component-based run-time variability models are
executable and can be used at runtime to enforce the variability constraints,
that is, to ensure the (partial) validity of all reachable configurations.

As complex systems’ architectures may evolve at run-time by acquiring
new features and functionalities while respecting new constraints, we define
composition operators for component-based run-time variability models that
not only encode these feature model composition operators, but also ensure
safe run-time reconfiguration. To prove the correctness and compositionality
properties, we propose a novel multi-step UP-bisimulation equivalence and use
it to show that the component-based run-time variability models preserve the
semantics of the composed feature models.

For the experimental evaluation, we demonstrated the applicability of our
approach in real-world scenarios by generating a run-time model based on the
feature model of the Heroku cloud platform using our approach. This model
is then used to deploy a real-world web application on the Heroku platform.
Furthermore, we measured the time and memory overheads induced by the

iv

generated run-time models on systems involving up to 300 features. The results
show that the overheads are negligible, demonstrating the practical interest of
our approach.

Résumé

Les applications en nuage et les systèmes cyber-physiques nécessitent une
reconfiguration fréquente en cours d’exécution pour s’adapter à l’évolution
des besoins et des exigences, ce qui souligne l’importance des capacités de
reconfiguration dynamique. En outre, les plateformes d’environnement peuvent
étendre et modifier leurs services en cours d’exécution, ce qui nécessite une
approche compositionnelle pour permettre la modification des configurations.
Pour gérer la variabilité de l’architecture des grands systèmes, les modèles
de caractéristiques sont largement utilisés au moment de la conception, avec
plusieurs opérateurs définis pour permettre leur composition. Les approches
existantes calculent de nouvelles configurations valides soit au moment de
la conception, soit au moment de l’exécution, soit les deux, ce qui entraîne
d’importants frais généraux de calcul ou de validation pour chaque étape
de reconfiguration. En outre, la construction de modèles formels corrects
par construction pour gérer les reconfigurations d’applications est une tâche
complexe et sujette aux erreurs, et il est nécessaire de l’automatiser autant que
possible.

Pour relever ces défis, nous proposons une approche qui s’appuie sur les
modèles de caractéristiques pour générer automatiquement, dans un formalisme
basé sur les composants appelé JavaBIP, des modèles de variabilité d’exécution
basés sur les composants qui respectent les contraintes du modèle de caractéris-
tiques. Ces modèles de variabilité d’exécution basés sur les composants sont
exécutables et peuvent être utilisés à l’exécution pour appliquer les contraintes
de variabilité, c’est-à-dire pour garantir la validité (partielle) de toutes les
configurations atteignables.

Comme les architectures des systèmes complexes peuvent évoluer à l’exécution
en acquérant de nouvelles caractéristiques et fonctionnalités tout en respectant
de nouvelles contraintes, nous définissons des opérateurs de composition pour les
modèles de variabilité à l’exécution basés sur des composants qui non seulement
encodent ces opérateurs de composition de modèles de caractéristiques, mais
garantissent également une reconfiguration sûre à l’exécution. Pour prouver
les propriétés de correction et de composition, nous proposons une nouvelle

vi

équivalence UP-bisimulation en plusieurs étapes et l’utilisons pour montrer
que les modèles de variabilité d’exécution basés sur les composants préservent
la sémantique des modèles de fonctionnalités composés.

Pour l’évaluation expérimentale, nous avons démontré l’applicabilité de
notre approche dans des scénarios réels en générant un modèle d’exécution
basé sur le modèle de caractéristiques de la plateforme cloud Heroku à l’aide
de notre approche. Ce modèle est ensuite utilisé pour déployer une application
web réelle sur la plateforme Heroku. En outre, nous avons mesuré les surcharges
de temps et de mémoire induites par les modèles d’exécution générés sur des
systèmes impliquant jusqu’à 300 fonctionnalités. Les résultats montrent que
les surcharges sont négligeables, ce qui démontre l’intérêt pratique de notre
approche.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Goals . 5
1.3 Contributions . 5
1.4 Tool Implementation . 7
1.5 Dissertation Outline . 7
1.6 List of Scientific Publications 9

2 Background and Concepts 11
2.1 Cloud Computing . 11

2.1.1 Cloud Computing Characteristics 12
2.1.2 Service Models . 13
2.1.3 Deployment Models . 14

2.2 Software Product Lines Engineering 15
2.2.1 Variability . 15
2.2.2 Software Product Line Engineering Process 16
2.2.3 Variability Model . 17
2.2.4 Feature Model . 17
2.2.5 Feature Diagram . 18
2.2.6 Feature Model Logical Formula 19
2.2.7 Configuration Validity and Extensions to Feature Modeling 20

2.3 Dynamic Software Product Line 21
2.4 The JavaBIP Framework . 22
2.5 Summary . 26

3 State of Art 27
3.1 Reconfiguration and Self-Adaptation 27

viii Table of contents

3.2 MAPE-K Loop . 28
3.3 Approaches for Reconfiguration and Self-Adaptation 29

3.3.1 DSPL-based Approaches 30
3.3.2 Formal Component-based Approaches 34

3.4 Compositionality and Composability 37
3.4.1 Introduction to Compositionality and Composability . . 37
3.4.2 Composition Approaches for Software Models 39

3.5 Conclusion . 40

4 Automatic Generation of Component-based Run-time Variabil-
ity Models 43
4.1 Background . 43

4.1.1 Feature Model Formalization 44
4.1.2 Feature Model Notation 44

4.2 Motivation . 45
4.2.1 Key Elements of the Heroku Cloud Platform 46

4.3 Feco4Reco: A Framework . 49
4.3.1 Stage 1: Heroku Cloud Feature Model 49
4.3.2 Stage 2: Transformation: Feature Model to Component-

based Run-time Variability Model 51
4.3.3 Stage 3: CBRTVM Integration 62

4.4 Preserving Feature Model Semantics in CBRTVM 62
4.5 Conclusion . 68

5 Composing Run-time Variability Models 69
5.1 Composition of Feature Models 70
5.2 Composition of CBRTVMs . 71

5.2.1 Macros for Composition 71
5.2.2 Composing Requires Macros 73
5.2.3 Saturation Process for Accepts Macros 74
5.2.4 Composition Operators on JavaBIP models 74

5.3 A Bisimulation for Correctness and Compositionality Results . . 75
5.3.1 Proof of Intersection Case 81
5.3.2 Proof of Strict Intersection Case 83
5.3.3 Proof of Union Case . 83
5.3.4 Congruence of the UP-bisimulation 85

5.4 Conclusion . 86

Table of contents ix

6 Practical and Experimental Validation 87
6.1 Implementation of FeCo4Reco Transformation Process 87
6.2 Heruko Deployer Overview . 89

6.2.1 Performance Evaluation 91
6.2.2 Safe Reconfiguraiton . 91

6.3 Composition Operators Experimental Validation 94
6.3.1 Running Example . 94
6.3.2 Experimental Setup and Evaluation 95

6.4 Conclusion . 97

7 Conclusion and Perspective 99
7.1 Summary of the Dissertation . 99
7.2 Perspectives . 100

7.2.1 Short-term Perspectives 101
7.2.2 Long-term Perspectives 101

Bibliography 103

List of figures

1.1 Stages of the FeCo4Reco process. 7

2.1 Domain and application engineering. 16
2.2 An example feature diagram. 18
2.3 A JavaBIP component-based model. 25

4.1 Part of the Heroku cloud feature model. 50
4.2 Valid product selection. 51
4.3 The generation of the component-based run-time variability

model involves a two-step transformation process. Steps 1 and 2
correspond to Subsections 4.3.2.1 and 4.3.2.2, respectively. . . . 51

4.4 Feature component FSM. 54
4.5 An example feature model. 56
4.6 Directed dependency graph generated from the feature model in

Fig. 4.5. 57
4.7 Extracted SCCs from GF M . 57
4.8 Part of the generated CBVM for the Heroku cloud FM: The

behaviour of all the components is the same as shown in Fig. 4.4.
For the sake of clarity, we shorten the names of the ports to the
first letter. 61

4.9 Part of the CBRTVM generated for the feature model presented
in Fig. 4.5. 66

5.1 Overview of Feature and JavaBIP models composition 70
5.2 Example of a dependency graph 73
5.3 . 76
5.4 . 76
5.5 Two feature models that have the same set of valid configurations. 76
5.6 . 77
5.7 . 77

6.1 Feature model metamodel. 88

xii List of figures

6.2 JavaBIP metamodel. 89
6.3 Integration of the JavaBIP CBRTVM with a Cloud Computing

System. 90
6.4 An interface for users to trigger requests. 90
6.5 Heroku deployer component. 91
6.6 The overview of Heroku Deployer integrated into CBRTVM. . . 92
6.7 Model overhead (average values for the generated FMs). 93
6.8 Using the generated CBRTVM to request the Guru301 add-on

to the us region knowing that Guru301 requires us: success. . . 93
6.9 Using the generated CBRTVM to request the Guru301 add-on

to the eu region knowing that Guru301 requires us: no add-ons. 93
6.10 Simplified Heroku Cloud feature model. 95
6.11 CloudWatch FM. 95
6.12 Observed configurations. 96

List of tables

3.1 MAPE-K loop table. A dash (–) in the table signifies that the
corresponding phase is supported manually by developers or
through tools made up at the design time. 38

4.1 Possible paths for performing reconfigurations. 48

6.1 Feature inclusion in configurations Φ1, Φ2, and Φ3 94

Chapter 1

Introduction

The software system engineering life cycle [110, 128] typically involves several
stages: analysis, design, development, testing, and finally deployment. In the
analysis stage, the requirements and constraints of the system are identified and
documented. During the design stage, the overall architecture and components
of the system are planned and specified. The development stage involves the
actual implementation of the system according to the design specifications.
Testing is the process of verifying that the developed system meets the specified
requirements and functions correctly. Finally, in the deployment stage, the
system is installed and made operational in its intended environment.

In the past, software systems were designed to be static, meaning their con-
figuration was fixed after deployment, and they were not expected to undergo
significant changes during their operational lifetime. However, the advent of
cloud computing and the increasing complexity of modern software environ-
ments have fundamentally altered this paradigm. Static systems face several
limitations in these dynamic environments. First, they lack the flexibility to ac-
commodate changes in requirements or operating conditions without significant
effort and downtime. Second, they are unable to optimize their resource usage
or scale their capacity in response to fluctuating demand, leading to inefficient
resource utilization and potential performance bottlenecks. Third, they are
susceptible to failures or degradation in the face of changing environmental
conditions or component failures, which can compromise their reliability and
availability [37].

1.1 Problem Statement
To address these limitations, systems deployed in dynamic environments are
expected to reconfigure at runtime to stay compliant with new user needs
and underlying platform constraints. For a system to reconfigure, it needs to

2 Introduction

transition from its current configuration to a new configuration that aligns with
the new requirements.

There are various possible events that may demand dynamic reconfiguration
of the system at runtime. One factor is changes in user needs. As user demands
may change, they may seek additional features that are not part of the current
configuration of the system. For example, take a cloud-based online retailer
where the system administrator has to add new monitoring and logging services.
Specifically, they want to add a centralized log aggregation service that gathers
and analyzes application logs, as well as a monitoring service that measures key
performance indicators and provides warnings based on predetermined criteria.
Where the monitoring service relies on the log aggregation service to obtain
the aggregated logs for analysis.

In this scenario, it is important that the reconfiguration process activates the
log aggregation service before the monitoring service. Attempting to activate
the monitoring service first would result in errors or incorrect behavior, as
it relies on the log aggregation service being already active and functioning
properly. Thus, there is a need to enforce the system to transition through a
safe reconfiguration path that respects the dependencies between services, so
that the system can transition safely to the desired new configuration, avoiding
inconsistencies or disruptions during the reconfiguration process.

This highlights the importance of an approach that allows reconfiguration
not only from a source configuration to a target configuration in a random
order but also enforces correct activation and deactivation ordering,
respecting dependencies between services, to maintain system integrity
and consistency throughout the reconfiguration process.

Configuration and Reconfiguration

In the context of distributed systems, such as component-based systems and mi-
croservices architectures deployed in the cloud, the system configuration refers
to the components of the system deployed on cloud resources and their inter-
connections that make up the system at a given point in time. Reconfiguration,
in this context, refers to the process of changing this system configuration by
transitioning components from an inactive state to an active state or vice versa,
effectively adding or removing them from the configuration. The activation
and deactivation processes must be guided by synchronized actions between
components to guarantee a safe reconfiguration.

The reconfiguration process can be executed either at runtime, which we call
dynamic reconfiguration, or at downtime, which we call static reconfiguration.

1.1 Problem Statement 3

The static reconfiguration process typically involves shutting down the
system, making the necessary changes, and then restarting the system with
the new configuration.

Dynamic reconfiguration allows the system to transition from one config-
uration to another target configuration at runtime. This capability is useful
when continuous operation and availability are important, such as in cloud
applications. By dynamically reconfiguring the system, components can be
added and removed while the system remains operational, enabling it to respond
to changing requirements without disrupting the whole system.

Systems are increasingly required to be able to function continuously under
tough circumstances, such as partial failures of subsystems or changing user
needs, while running without interruption and often unsupervised. Thus,
after an initial configuration, dynamic reconfigurations are needed to keep the
application compliant with the new needs and underlying platform constraints
at runtime [89, 141]. In this dissertation, only dynamic reconfiguration will
be taken into account.

Whatever the approach to developing complex systems that are able to
adapt to changing needs and demands–e.g., component-/agent-based systems,
autonomous computing, emergent bio-inspired systems, etc.–analyzing and
planning reconfigurations requires handling some metrics based on models
[144, 90], and rules/policies [40, 89].

When employing these approaches, computing valid system configurations
can be a computationally intensive task, especially for large-scale and highly
configurable systems. There are multiple strategies that can be adopted, each
with its own trade-offs. One approach is to compute all valid configurations
at design time, which offloads the computational burden from the runtime
environment, leading to better performance and responsiveness during operation.
However, this is infeasible for systems with a large number of features, since the
number of valid configurations can be exponential in the number of features,
making it infeasible to enumerate all configurations [56, 133]. On the other
hand, computing an appropriate configuration at run-time provides flexibility
and adaptability, but may incur performance penalties due to the computational
overhead involved.

Furthermore, formal approaches have been proposed to tackle reconfigu-
ration and guarantee the properties of the system while applying dynamic
reconfiguration. These approaches focus more on the safe execution of the
reconfiguration plan while leaving behind the analysis and planning of the
target configuration. Building these formal models correctly to guarantee
safe-by-construction behavior is a challenging task that requires significant

4 Introduction

effort and expertise. Constructing accurate formal models that capture all the
relevant system properties, constraints, and behavioral aspects is complex and
error-prone, especially for large-scale systems.

The problem we aim to tackle is enabling safe dynamic reconfiguration for
large-scale software systems with numerous configuration options and a vast
number of potential configurations. Ensuring safe reconfiguration is challenging,
whereby safe means the reconfiguration process transitions the system only
through (partial)-valid configurations. By partial-valid configuration, we refer
to a configuration of the system at any given point during the reconfiguration
process that adheres to domain constraints. Therefore, as the system transitions
through a reconfiguration path involving multiple intermediate states, there is
a need to ensure that the system transitions only through valid paths. Valid
paths refer to sequences of intermediate states where these intermediate states
are partial-valid configurations.

Furthermore, due to the high complexity of the systems and the numerous
configurations of a highly configurable system, it is important to have an ap-
proach that allows satisfying the objectives at low cost, avoiding computational
overhead in terms of memory and time.

Software Evolution
Software evolution [42, 97] is the continual development of system software to
extend or modify its own functionality over time by integrating new functional-
ities not originally modeled. Systems are expected to evolve over time, new
functionalities can be introduced to the system that expands the configuration
space that was previously modeled. Note that this goes beyond reconfiguration
which explores pre-defined configurations within the existing modeled domain.

To enable modeling a system as it evolves, there must be a means to
integrate sub-models that model new functionalities to the original model. To
support such an evolution, component models are expected to be composable
in such a way as to be able to merge two separate models into one that models
the modified configuration space.

For instance, consider a component-based model that represents the services
of the Heroku Cloud platform [1]. Cloud platforms are dynamic and evolve over
time [88], driven not only by enhancements from its core development team
but also through contributions from its user community. Clients of Heroku
cloud, for instance, can develop and introduce new services, such as advanced
monitoring tools or supplementary management features, and subsequently
offer these services on the Heroku marketplace. Then it becomes necessary to
integrate these newly modeled services with the existing Heroku cloud model, as
the new services modify the configuration space of what was originally modeled.

1.2 Research Goals 5

This integration ensures that the evolving Heroku cloud is effectively modeled
and adapted to accommodate the newly introduced services.

Therefore, as software systems evolve over time to meet changing require-
ments, there is a need for approaches that can be compositional so that new
functionalities can be integrated to change the configuration space to support
the evolution aspect.

1.2 Research Goals
In the above context, we aim to address three main research questions. The
first research question we aim to respond to is how to allow the reconfiguration
of software systems in a safe manner while avoiding additional overhead at
run-time. We define safe in the sense that only partial-valid configurations can
be reached as a result of any reconfigurations.

RQ1 How to enforce domain constraints during dynamic reconfiguration at
low cost?

For the compositionality aspect of our approach, we aim to address two
key research questions. The first question focuses on enabling compositionality
within the approach, which is essential for supporting the evolution of software
systems and meeting changing requirements. The second question addresses
ensuring the correctness and consistency of the compositional approach, specif-
ically in terms of enforcing domain constraints based on the semantics of the
composition.

RQ2: How can we enable compositionality in our approach?

RQ3: How can we ensure that the compositional approach consistently enforces
domain constraints based on the semantics of the composition?

1.3 Contributions
After presenting the goals and the research questions that this dissertation aims
to answer, we provide an overview of the key contributions presented in this
dissertation. The main contributions of our work are summarized as follows:

1. A component-based run-time variability model (CBRTVM) leverages
feature models and their underlying constraints for enforcing safe-by-
construction behavior of concurrent component-based systems.

We present an approach that leverages feature models to automatically
generate an executable formal model that enforces safe reconfigurations at

6 Introduction

runtime. To this end, we take advantage of feature models and component-
based run-time models to enforce safe-by-construction behavior of concurrent
component-based systems. Feature models, recognized for their efficacy in
capturing domain variability, enable compact representations of valid system
configurations. They are well-known and used to model the commonality and
variability of complex environments such as cloud platforms [116]. This enables
the creation of compact representations that encompass all valid configurations
a system can have within its domain. On the other hand, component-based run-
time models are generated automatically from feature models. The generated
model is called a component-based run-time variability model (CBRTVM).
This CBRTVM encodes reconfiguration operations while ensuring the safety
property, stating that only (partial-)valid configurations can be reached as a
result of any reconfigurations. The main properties related to reconfigurations
are described in Chapter 4.

2. Model transformation rules that are general enough for both feature
models and component-based models, enabling the automated genera-
tion of CBRTVMs using our FeCo4Reco (joining forces of features and
components for safe reconfigurations) approach.

The FeCo4Reco framework enables the application of reconfigurations with
minimal effort, without the overhead of computing or validating the new
configuration, while providing a CBRTVM. FeCo4Reco transformation process
consists of three stages, as illustrated in Figure 1.1. The initial stage involves
the creation of a variability model (Feature Model) from domain constraints,
such as a variability model of a cloud platform. In the second stage, this
feature model is automatically transformed into a CBRTVM. The final stage
involves the integration of this CBRTVM with the cloud platform, where all
reconfiguration requests are sent to the CBRTVM and managed in a safe
manner.

Furthermore, to facilitate compositionality of CBRTVMs, we present the
following contributions:

3. Novel JavaBIP composition operators corresponding to feature model
composition operators taken from the literature, rendering our approach
compositional while preserving the safety of dynamic reconfiguration.

4. The notion of a multi-step UP-bisimulation is defined, and the correctness
and compositionality of the encoding are proved.

1.4 Tool Implementation 7

Figure 1.1: Stages of the FeCo4Reco process.

Finally, the fifth contribution is a practical implementation of the proposed
approach, with experimental results using a non-trivial cloud example, showcas-
ing the interest and applicability of our theoretical contributions (1-4) through
validation and practical implementation.

1.4 Tool Implementation
We have implemented FeCo4Reco which enables the generation of CBRTVMs
from feature models, as well as the composition of multiple CBRTVMs. Leverag-
ing the ATLAS Transformation Language (ATL), our implementation provides
a model transformation process that takes feature models as input conforming to
feature model metamodel and produces CBRTVM conforming to the JavaBIP
metamodel. Moreover, we have implemented a Java-based macro composer
that facilitates the composition of CBRTVMs using union, intersection, and
strict intersection operators.

1.5 Dissertation Outline
The dissertation is divided into seven chapters. The second chapter covers
the Background and concepts that will be used throughout the dissertation.
The third chapter discusses the state of the art. The fourth and fifth chapters
present the theoretical contributions of this dissertation, the sixth chapter is
the validation of our proposal, and the last chapter includes the conclusions
and perspectives. Below, we present an overview of the individual chapters.

Chapter 2

Background and Concepts: This chapter provides the background information
and the concepts that have been used in our contributions presented later in
this dissertation. It includes an overview of fundamental principles in cloud
computing, software product line engineering, feature models, and the JavaBIP
framework.

8 Introduction

Chapter 3
State of Art: This chapter presents the State of the Art, where we review and
analyze current approaches in the literature that tackle self-adaptation and
reconfiguration. It provides a comprehensive survey of existing methodologies,
tools, and frameworks used for managing dynamic reconfiguration. Additionally,
it presents approaches that support software evolution through composition.

Chapter 4
Automatic Generation of Component-based Run-time Variability Models: This
chapter presents the first and second contributions of this dissertation, address-
ing RQ1. It introduces model transformation rules that are general enough
for both feature models and component-based models. These rules enable the
generation of the Component-based Run-time Variability Model from feature
models, allowing for the automated creation of CBRTVMs using the FeCo4Reco
approach.

Chapter 5
Composing Run-time Variability Models: This chapter presents the third and
fourth contributions, addressing RQ2 and RQ3. It introduces composition
operators for CBRTVMs, enabling the automated construction of component-
based systems in a modular fashion while providing reusability, flexibility, and
adaptability (third contribution). It defines three composition operators on
JavaBIP models and studies their properties. Additionally, the notion of a
multi-step UP-bisimulation is defined, and the correctness and compositionality
of the encoding are proved (fourth contribution).

Chapter 6
Practical and Experimental Validation: This chapter describes the practical
implementation of the proposed approach and reports on experimental results
using a non-trivial cloud example. It includes a discussion on the validity
of the approach, constituting the fifth practical contribution that showcases
the interest and applicability of our approach. This chapter also presents
the practical implementation and experimental validation of the composition
operators defined in Chapter 5.

Chapter 7
Conclusion and Perspective: The final chapter concludes the dissertation and
outlines future work directions.

1.6 List of Scientific Publications 9

1.6 List of Scientific Publications
Some of the presented material is based on the following publications:

[72] Farhat Salman, Bliudze Simon, Duchien Laurence, and Kouchnarenko
Olga. "Toward run-time coordination of reconfiguration requests
in cloud computing systems." International Conference on Coordi-
nation Languages and Models. Cham: Springer Nature Switzerland,
2023.

[70] Farhat Salman, Bliudze Simon, and Duchien Laurence. "Safe Dynamic
Reconfiguration of Concurrent Component-based Applications."
2022 IEEE 19th International Conference on Software Architecture Com-
panion (ICSA-C). IEEE, 2022.

[71] Farhat Salman, Bliudze Simon, Duchien Laurence, and Kouchnarenko
Olga. "Run-time coordination of reconfiguration requests in
cloud computing systems." Diss. Inria, 2023.

[119] Farhat Salman, Bliudze Simon, Duchien Laurence, and Kouchnarenko
Olga. "Composing Run-time Variability Models." The European
Conference on Software Architecture (ECSA 2024), 2024. Under review.

Chapter 2

Background and Concepts

In this chapter, we present the foundational concepts that form the basis for the
contributions introduced in the following chapters. We begin by defining the
key characteristics, service models, and deployment models of cloud computing.
Building upon this foundation, we then explore the principles and practices
of software product line engineering (SPLE). We define the core elements of
SPLE, such as variability and feature models, and describe the complementary
processes of domain engineering and application engineering. Furthermore, we
discuss the extension of traditional SPLE into the realm of dynamic software
product lines (DSPLs), which enable runtime adaptation and reconfiguration.
Finally, we introduce the JavaBIP model and formalize its operational semantics,
providing a formal foundation for coordinating the behavior of concurrent
software components.

The objective of this chapter is not to present an in-depth description of all
the existing approaches and technologies surrounding these concerns, but to
give a brief introduction to these concerns, used throughout the dissertation.
This introduction aims to provide a better understanding of the background
and context in which our work takes place, as well as the terminology and
concepts presented in the next chapters.

2.1 Cloud Computing
Cloud computing refers to the on-demand delivery of computing services over
the internet [138, 9]. Cloud computing is a concept that brings together
several technologies used to deliver services. It aims to encourage companies to
outsource the digital resources they store in their private data centers. These
resources are then made available by third-party companies and accessed via
the Internet.

12 Background and Concepts

The concept of cloud computing emerged at the beginning of the 2000s, and
the changes that have led to its growth are numerous. First the rise of SaaS
(Software as a Service), the product delivered by the cloud. Afterward, comes
the concept of virtualization, which enables servers to be shared, facilitating
production and increasing resource utilization. The concept of Cloud Computing
was implemented in 2002 by Amazon, establishing Amazon Web Service, to
web services to handle high traffic. Then, other companies such as Google and
Microsoft have been offering similar services.

Several definitions have been proposed for cloud computing [136]. These
definitions often highlight different aspects that are considered the main proper-
ties of cloud computing such as virtualization, pay-as-you-go, resource sharing,
etc.

National Institute of Standards and Technology (NIST) defines cloud
computing as a model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources. These
resources include networks, servers, storage, applications, and services
that can be rapidly provisioned and released with minimal management
effort or service provider interaction [49].

Amazon Web Services (AWS) defines cloud computing as the on-demand
delivery of compute power, database storage, applications, and other
IT resources through a cloud services platform via the internet with
pay-as-you-go pricing [142].

Google Cloud (GCP) defines cloud computing as the delivery of computing
services over the internet to offer faster innovation, flexible resources, and
economies of scale. Users typically only pay for the cloud services they
use, helping to lower operating costs, run infrastructure more efficiently,
and scale as business needs change [27].

2.1.1 Cloud Computing Characteristics
Building upon these foundational definitions, cloud computing is distinguished
by several key characteristics that define its value proposition and operational
model [100]:

• On-demand self-service resource provisioning: Cloud computing enables
users to provision and release computing resources, such as processing
power, storage, and networking, without requiring human interaction
with the cloud service provider [95].

2.1 Cloud Computing 13

• Broad network access: Cloud computing resources are accessible via
standard networking protocols and can be reached through the Internet,
allowing for widespread access [10, 87].

• Resource pooling: Cloud providers manage a shared pool of resources
from which they allocate resources to consumers. While consumers cannot
control the precise location of the resources, they may specify higher-
level constraints, such as the data center or availability zone where the
resources should be provisioned [117].

• Elasticity: Cloud computing allows for the rapid provisioning and release
of resources, enabling users to scale their systems up or down based on
demand [77, 8].

• Measured services: Resource usage is monitored, controlled, and recorded,
providing both providers and consumers with insights into resource uti-
lization. This information can be used to optimize resource allocation
strategies and to charge users based on their actual resource consump-
tion [60, 29].

2.1.2 Service Models
Computing resources of cloud computing are delivered as services, often referred
to as XaaS (Anything as a Service) [64]. There are several known models, such
as:

Infrastructure as a Service (IaaS): IaaS is the on-demand provision of
infrastructure resources, most of which are located remotely in data
centers. IaaS gives company administrators access to servers and their
configurations [93]. The cost is directly linked to the occupancy rate.
The advantage is that the customer has high flexibility, and total control
of systems, enabling installation of all types of business software.

Platform as a Service (PaaS): PaaS is the on-demand access to a platform
for developing, deploying, and managing applications without the complex-
ity of building and maintaining the underlying infrastructure [127]. PaaS
provides specialized development environments, including the necessary
languages, tools and modules. The advantage is that these environments
are hosted by a service provider based outside the company, which means
that no infrastructure or maintenance staff are required, and you can
focus on development.

14 Background and Concepts

Software as a Service (SaaS): provides access to fully developed and ready-
to-use software applications over the internet [127]. Users simply use the
software without needing to install, run and maintain applications locally.

There are more cloud service models, such as Storage as a Service [143],
Database as a Service [75], Network as a Service [52], Function as a Service [124],
and Security as a Service [137]. This versatility allows users to tailor their cloud
solutions to meet diverse computing needs. The on-demand self-service, broad
network access, resource pooling, rapid elasticity, and measured service that
define cloud computing deliver significant flexibility, efficiency, and reliability
benefits over traditional on-premises IT [95].

2.1.3 Deployment Models
There are four deployment models for accessing the services of a cloud computing
environment:

• Public cloud: a service provider offering computing services offered by
third-party vendors that the consumer can access and purchase the
resource from the public cloud via the public internet. These can be free
or on-demand, meaning that consumers pay for their CPU cycles, storage
or bandwidth peruse.

• Private cloud: a proprietary data center that provides hosted services for
a limited number of users.

• Community cloud: a cloud infrastructure provisioned for exclusive use
by a specific community of users from different organizations who share
common concerns, such as a collaborative mission, security requirements,
or policy. The community cloud may be owned, managed, and operated
by one or more organizations in the community, a third party, or a
combination of them.

• Hybrid cloud: an infrastructure that contains links between a private
cloud and a public cloud.

Now that we have introduced the cloud environment and its various services,
it is clear that cloud computing offers a wide and numerous range of services.
This implies that managing applications in the cloud can be a complex task,
highlighting the need for tools to manage the inherent variability of cloud
resources.

To address this requirement, the next subsection will introduce the concept
of Software Product Line (SPL) engineering. SPL tools are recognized for their

2.2 Software Product Lines Engineering 15

capacity to represent the commonalities and variabilities of cloud services [39,
116, 111]. SPL promotes the development of a family of related software systems
by identifying and exploiting the common aspects while encapsulating the
variable elements. In the context of a Cloud platform, SPL can be particularly
beneficial. Cloud environments are characterized by a multitude of services,
configurations, and deployment options representing significant variability.

2.2 Software Product Lines Engineering
Traditional approaches to generating software products, such as the waterfall
model [104], V-model [16], and incremental development [103], focus on con-
structing a single software system. These approaches employ multiple stages
for the construction—requirements analysis, planning, implementation, testing,
and deployment—each dedicated to distinct tasks and activities for constructing
one software product. Software Product Lines (SPL) engineering, which will be
discussed in more detail in this section and utilized later in our contributions,
particularly in Chapter 4.

Unlike these traditional approaches, which focus on individual products,
software product line engineering (SPLE) is a systematic approach for con-
structing a family of related software products [48, 98, 107, 132, 135, 145]. The
essence of SPLE lies in its strategic concentration on establishing a set of soft-
ware systems that share a managed set of features, seeking to fulfill the specific
requirements of a particular market segment. This is achieved through the
development of reusable core assets from which various products are generated
via selective customization. An asset refers to any reusable resource that can
be leveraged across different software products within a product line. These
assets include software code, documentation, architectures, components, testing
frameworks, etc [15, 48]. This enables the realization of a variety of distinct
yet related products, essentially allowing for mass customization.

2.2.1 Variability
The variability of a software product line is reflected via the different ways
in which the collection of reusable assets may be built to construct a soft-
ware product. At the core of software product line engineering is variability
management[109, 47, 14], which involves systematically modeling the common-
alities and variabilities across the products in a family. Variability is commonly
described through the concepts of variation points and variants. A variation
point identifies a property that can differ among various products within the
line, whereas a variant represents a specific option for that property at a given
variation point.

16 Background and Concepts

2.2.2 Software Product Line Engineering Process
Software product line engineering involves two complementary processes: Do-
main Engineering and Application Engineering [140, 107]. The domain engi-
neering process is responsible for creating reusable assets, while application
engineering is the process of reusing those assets to build individual but similar
software products.

These processes operate within two distinct spaces: the problem space and
the solution space, as depicted in Figure 2.1.

Figure 2.1: Domain and application engineering.

Domain Engineering

The domain engineering process is responsible for creating reusable assets
that can be leveraged across multiple products within the same domain. In
the problem space, it focuses on understanding and defining the variability
requirements of the product line through Domain Analysis. This step involves
identifying common and variable features, dependencies, and constraints across
products, aiding in scoping the product line and comprehending the variability
requirements. The solution space, on the other hand, is dedicated to realizing
product line assets that address the identified variability requirements through
Domain Realization, where reusable assets such as core components, libraries,
and frameworks are designed and implemented.

Application Engineering

Application Engineering revolves around reusing the assets created during
Domain Engineering to build individual but similar software products. This

2.2 Software Product Lines Engineering 17

process begins by identifying Application Requirements specific to each product
and mapping them to the variability models and reusable assets. Subsequently,
Application Realization involves configuring, composing, and assembling these
assets to create the final product.

2.2.3 Variability Model
In the context of software product line engineering, a variability model [121, 46]
serves as a systematic representation of the commonalities and variabilities
across a family of related products within the same product line. It captures
the aspects that remain consistent among different members of the product line
(commonalities) and those that can be customized or varied to meet specific
requirements (variabilities). The variability model provides a comprehensive
overview of the potential variations in features, functionalities, or configurations
that can be present in different instances of the software product line. It aids
in managing and understanding the flexibility inherent in the product line,
enabling efficient customization while maintaining a structured and organized
development process.

There are several types of variability models used in software product line
engineering. Feature models [82] represent variability using a tree-like structure
of features and their relationships. Decision models [15, 121] capture variabil-
ity as a set of decisions and their rationale. Orthogonal Variability Models
(OVMs)[107, 109, 108] separate variability modeling from system artifacts using
variation points and variants. Goal models [30, 11] represent variability in
terms of stakeholder goals and their dependencies. Constraint-based models [80]
express variability using logical constraints and rules. Each of these models has
its strengths and suitability for different types of product lines and domains,
and they may be combined to effectively capture and manage variability.

2.2.4 Feature Model
Feature models [82, 101, 134, 83] have become widely adopted for modeling
variability in software product lines. A feature model is a compact representa-
tion of all the products within the SPL. Feature models are used to represent
the commonality and variability of a domain in terms of features and their
dependencies [25] and are visually represented by means of feature diagrams.

A feature was first defined as "user-visible aspects or characteristics of a
domain" in [78]. Later, a feature is defined by [55] as a software artifact, such
as part of code, a system component, etc. Feature models enable the effective
management and organization of these features in a hierarchical structure.

Moreover, feature models can be transformed into propositional logic, al-
lowing automated analysis and reasoning about the potential configurations

18 Background and Concepts

Figure 2.2: An example feature diagram.

within a software product line. This logical form enhances the usability of
feature models. Specifically, the propositional logic evaluates to true when the
configuration is valid, offering a solid foundation for evaluating the consistency
of feature selections.

2.2.5 Feature Diagram
A feature diagram is a graphical representation of a feature model, visually
depicting the hierarchical organization of features and their relationships. It
provides an intuitive understandable view of the variability in a software
product line. Figure 2.2 illustrates an example of a feature diagram. In this
representation, features are graphically depicted as rectangles and arranged in
a tree-like hierarchy. To express the variability, feature models employ several
key concepts:

• Mandatory and Optional Features: Mandatory features are denoted
by a black circle at the end of the connecting line, indicating that they are
always included when their parent feature is selected. Optional features
are denoted by an unfilled circle, indicating that they may or may not
be included. In the example, Cloud, Buildpack, Region, and Dyno are
mandatory features, while Database is an optional feature.

• Feature groups: Feature models support the concept of feature groups,
which define the selection constraints among a set of sub-features. There
are two types of feature groups:

– XOR-group: In an XOR-group (also known as an alternative
group), exactly one feature must be selected from the group whenever

2.2 Software Product Lines Engineering 19

the parent feature is selected. In the example, the sub-features of
Dyno (P1, P2, and P3), Buildpack (Java and PHP), and Region
(US and EU) form an XOR-group, where exactly one of them must
be selected.

– OR-group: In an OR-group, one or more features can be selected
from the group whenever the parent feature is selected. In the
example, the sub-features of Databases (DB_X and MySQL) form an
OR-group, where either one or both features can be selected.

The combination of optional and mandatory sub-features can be seen
as an AND-group, where all mandatory sub-features and any number of
optional sub-features can be selected. For instance, under Cloud, Region
and Buildpack and Compute are mandatory sub-features and DataBase
is an optional feature, forming an AND-group.

• Cross-tree constraints: In addition to the main hierarchy, feature
models allow the specification of cross-tree constraints to describe de-
pendencies between arbitrary features. Two common types of cross-tree
constraints are:

– Require: If a feature A requires a feature B, the selection of feature
A implies the selection of feature B. In the example, the selection of
MySQL requires the selection of US.

– Exclude: If a feature A excludes a feature B, the selection of feature
A prohibits the selection of feature B, and vice versa. In the example,
the selection of MySQL excludes the selection of DB_X.

2.2.6 Feature Model Logical Formula
The logical representation of the feature model’s constraints is as follows:

Cloud ∧ Buildpack ∧ Region ∧ Dyno

∧ (JVM⊕ Gradle) ∧ (US⊕ EU) ∧ (P1⊕ P2⊕ P3)
∧ (Database ∨ ¬Database) ∧ ((DB_X ∨ MySQL)⇒ Databases)
∧ (DB_X⇒ US) ∧ (DB_X⇒ ¬MySQL)
∧ (MySQL⇒ ¬DB_X)

This logical formula captures the constraints and relationships defined in the
feature model, allowing for the calculation of valid configurations and ensuring
the consistency of feature selections.

20 Background and Concepts

2.2.7 Configuration Validity and Extensions to Feature
Modeling

The number of the potential configurations of the feature model represented
in Figure 2.2, before applying constraints, is computed as 2× 2× 3× 3 = 36,
accounting for choices in Compute, Buildpack, Database, and Region features.
However, the application of cross-tree constraints reduces the total number
of valid configurations to 30. This reduction emphasizes the utility of valid
configurations in software product line engineering:

• They guarantee that software products derived from the feature model
are consistent and adhere to specified constraints.

• They facilitate automated analysis and configuration management, ensur-
ing only feasible product variants are realized.

A valid configuration example is:

Φ = {Cloud, Buildpack, JVM, Region, US, Dyno, P1, Databases, MySQL}

This example adheres to all model constraints, illustrating the practical
application of the feature model in defining valid product configurations.

While traditional feature models provide a solid foundation for represent-
ing variability in software product lines, researchers have proposed various
extensions to enhance their expressiveness and capabilities [22]. Notable exten-
sions include cardinality-based feature models [96, 113] that allow specifying
cardinality constraints on feature groups for fine-grained control over feature
selection, and the integration of attributes and attribute constraints [57] for
representing quantitative and qualitative properties associated with features.
Further extensions have been proposed to incorporate feature interactions [58],
dependencies across multiple product lines (multi-product lines) [123], and
temporal constraints [130, 31] for modeling dynamic and evolving systems.
These extensions broaden the applicability of feature models across diverse
domains, addressing the limitations of traditional models and used in more
complex use cases.

The extensions to basic feature models offer significant potential for support-
ing dynamic adaptations and validations of software artifacts at run-time. For
instance, cardinality-based feature models facilitate the dynamic adjustment
of the active feature set based on cardinality constraints. This is useful in
scenarios where requirements fluctuate, such as handling varying workloads

2.3 Dynamic Software Product Line 21

or adapting to changing environmental conditions. Attributed feature models,
on the other hand, allow monitoring and validating attribute values of active
features to satisfy attribute constraints. For example, in a cloud application, re-
sources like CPU and memory can be dynamically allocated based on attribute
constraints defined in the feature model, maintaining the required performance
and quality of service levels. Nonetheless, in the context of this dissertation,
we employ a basic feature model without the aforementioned extensions to
represent variability.

2.3 Dynamic Software Product Line
A systematic approach to developing reconfigurable or adaptable systems,
based on principles from SPLE [79], is called Dynamic Software Product Lines
(DSPLs). DSPL approach leverages SPLE concepts to support the development
of such systems. Classical software product lines and dynamic software product
lines share some commonalities but differ in several key aspects [79].

In classical SPLs, variability management describes the different possible
systems or products that can be derived from the product line. Business scoping
identifies the common market or domain for the set of products. On the other
hand, in DSPLs, variability management describes the different adaptations or
runtime configurations that the system can take. Instead of business scoping,
adaptability scoping identifies the range of adaptation and variability that the
DSPL supports.

In addition, In dynamic software product line engineering, the development
process is split into two main phases: design-time and runtime. The design-time
phase is akin to the domain engineering phase in traditional software prod-
uct line engineering, where the adaptation scope and variability are explicitly
defined. During the runtime phase, which is analogous to the application
engineering phase in SPLE but with the added capability of dynamic recon-
figuration based on contextual variations, the system exploits the previously
defined variability to perform safe adaptations as the context changes.

DSPL for Self-adaptation
There is no unified approach for building self-adaptive systems using Dynamic
Software Product Lines (DSPLs). Different methodologies often concentrate
on distinct facets of adaptive systems and employ varying techniques to ad-
dress their respective challenges. DSPLs are often used to build systems with
bounded adaptivity[24], in which dynamic variations are foreseen at design
time. Nevertheless, there are works in the literature that support open adaptiv-
ity [24] by dynamically evolving the variability at runtime [32, 17]. Realizing

22 Background and Concepts

self-adaptation and dynamic reconfiguration capabilities in a DSPL requires
additional mechanisms and techniques beyond variability modeling. These
may include techniques such as goal-based reasoning [12], policy-based adapta-
tion [91], and the use of SAT/CSP solvers [96, 23] for reasoning about feature
models and constraints at runtime. Goal-based reasoning frameworks allow
the system to reason about high-level goals and select appropriate adaptations
to achieve those goals. Policy-based adaptation employs predefined rules or
policies to govern adaptation decisions based on monitored events or context
changes. Furthermore, SAT/CSP solvers are adopted for analyzing feature
models, feature model optimization, and ensuring that dynamic reconfigurations
satisfy the defined variability constraints.

In the next Chapter 3, various approaches that build upon the dynamic
software product line (DSPL) concepts to facilitate runtime reconfiguration
and self-adaptation in software systems will be explored.

Next, we will present the JavaBIP Framework [28]. JavaBIP Framework
allows developers to think on a higher level of abstraction and clearly separate
the functional and coordination aspects of the system behavior. It allows the
coordination of existing concurrent software components.

2.4 The JavaBIP Framework
JavaBIP [28] is a Java implementation of the BIP framework. Behavior-
Interaction-Priority (BIP) [18] is a component-based framework for the design
of correct-by-construction systems. By superimposing three layers: behavior,
interaction, and priority, it provides a simple yet effective framework for man-
aging concurrent components. In the simplified version, there is no Priority.
Hence, we denote it as BI(P). For the coordination of concurrent components,
we make use of JavaBIP [28]. Only Behaviour and Interaction layers defined in
BIP are relevant to our work. The macros defined in JavaBIP will be important
for our contributions in Chapters 4 and 5.

Component Behaviour

The first layer (Behavior) presents atomic components with fixed activities
considered ports, which are pairwise distinct. The components are modeled
as Finite State Machines (FSMs), which have a finite number of states and
a finite number of transitions between them, where transitions are labeled
with ports. Ports form the interface of a component and are used to define
its interactions with other components. A component is a software object
that encapsulates certain behaviors of a software element. The concept of
components is broad and may be used for component-based software systems,
microservices, service-oriented applications, and so on.

2.4 The JavaBIP Framework 23

JavaBIP allows three types of ports: enforceable, spontaneous, and internal.
Enforceable ports represent actions controlled by the JavaBIP engine. They can
be synchronised, i.e., executed together atomically. Spontaneous transitions are
used to take into account changes in the environment, and therefore, they are
not announced to the engine but rather executed after the detection of events in
the environment of the component. Finally, internal transitions allow behavior
specifications to update their state on the basis of internal information— when
enabled, they are executed immediately. Spontaneous and internal transitions
cannot be used for synchronization with other components [28].

Require and Accept Macros

The second layer defines component coordination by means of interaction
models, that is, sets of interactions. Interactions are sets of ports that define
allowed synchronizations between components. It is either one or several
enforceable ports, or exactly one spontaneous port.

To define allowed interactions, JavaBIP provides requires and accepts macros
associated with enforceable ports and representing causal and acceptance
constraints, respectively [28]. This allows JavaBIP to provide a coordination
layer that is powerful enough to model–naturally and compositionally—the
constraints expressed in the feature model.

Intuitively, the require macro specifies ports required for synchronization
with the given port. For example, "C1.p Requires C2.q, C3.r, C4.s"1 means
that port p of component C1 must be synchronized with the three ports: q, r,
and s of components C2, C3 and C4, respectively.

p Requires a, which formally means p⇒
∧
q∈a

q (2.1)

, where a is a set of ports, and P , is the set of all ports of all the JavaBIP
components in the system, such that a ⊆ P .

A port that has a “Requires true” can be executed as a singleton as
explained in Section 2.4.

If port x has a “Requires true”, it means x can be executed as a singleton.
On the other hand, if x has a “Requires true”, then x will never be executed.

The accept macro defines that if a port p participates in an interaction, it
must be accepted by all the participating ports in the considering interaction.

p Accept a, which formally means p⇒
∧

q∈P \a
q ̸=p

q (2.2)

1We use a notation that is slightly different from that in [28] without a change of meaning.

24 Background and Concepts

The accept macro lists all ports that are allowed to synchronize with the
given port, thus allowing optional ports.

For example, "C1.p Accepts C2.q, C3.r, C4.s, C5.t" means that in addition
to the ports listed by the requires macro, the port t of component C5 is also
allowed to synchronize with p despite not being required by it. Graphically,
allowed interactions are defined by connectors. The behaviour specification of
each component along with the set of requires and accepts macros are provided
to the JavaBIP engine. The engine orchestrates the overall execution of the
whole component-based system by deciding which component transitions must
be executed at each cycle.

Definition 2.4.1. (JavaBIP Model) Let CM = (C, ρ, α) be a JavaBIP model,
where:

• C is the set of components,

• ρ set of the requires macros, and

• α set of the accepts macros.

Definition 2.4.2. (JavaBIP Operational Semantics) Let JB = (C, ρ, α) be a
JavaBIP model. The operational semantics of JB is defined by the labelled
transition system (LTS) LJB = (Q,P,→), where:

• Q
def= ∏

B∈C QB is the Cartesian product of the sets of component states,

• P
def= ⋃

B∈C PB is the set of all the enforceable and spontaneous ports in
the system,

• → ⊆ Q× 2P ×Q is the set of transitions q a−→ q′, such that

– either a = {p} with p ∈ PB a spontaneous port of some component
B ∈ C, (qB, p, q

′
B) a transition in B and qB′ = q′

B′, for all B′ ̸= B,

– or all ports in a are enforceable and, for any component B ∈ C,
either (qB, a ∩ PB, q

′
B) is a transition in B, or a ∩ PB = ∅ and

qB = q′
B.

A state q′ is reachable from a state q if there exists a sequence of interactions
e1, e2, . . . , en such that (q, e1, q1), (q1, e2, q2), . . . , (qn−1, en, q

′) ∈ →.

Example 2.4.1. A JavaBIP model is illustrated in Figure 2.3 with three com-
ponents: Worker 1, Worker 2, and Lock. Graphically, enforceable transitions
are shown by solid black lines, and spontaneous transitions are shown by dashed

2.4 The JavaBIP Framework 25

Figure 2.3: A JavaBIP component-based model.

green lines. Ports are shown as grey boxes on the sides of the components, and
four connectors linking the ports define the possible interactions.

The green dashed transitions in the Worker components are spontaneous
transitions, and they are used to notify the components about environmental
changes, i.e., when the user wants to activate a worker, it will inform the
corresponding component, and the component will execute this spontaneous
transition if it is in a state where this spontaneous transition is enabled.

The model aims to ensure a safety property: preventing both workers from
being in the state Work simultaneously (mutual exclusion). To achieve this, the
connectors are constructed as follows: the port b1 of the Worker 1 component
can only be fired together with the port b12 of the Lock component. Thus, once
the Worker 1 component has received the spontaneous activation notification
from the state Sleep, it will move to the state Start. However, based on the
connector C1 that connects b1 with b12, the Worker 1 and Lock components
will move to the Work and Taken states, respectively. Now, assume Worker 2
has received a spontaneous event and moves from state Sleep to state Start;
it will not be possible to move from the Start state to the Work state, as
the Lock component is in the state Taken. This means that the port b12 is
not enabled from this state, and by the connector C4, the port b2 needs to
be fired in synchronization with the port b12, which is not possible when the
Lock component is in the Taken state. Thus, the mutual exclusion property is
enforced, preventing both workers from being in the Work state simultaneously.

Note that connectors in this example are binary, but connectors can define
interactions involving more than two ports.

In this dissertation, we leverage the JavaBIP framework to generate for-
mal component-based models, which are JavaBIP models that are correct-by-

26 Background and Concepts

construction to enforce domain constraints while executing the reconfiguration
requests.

2.5 Summary
In this chapter, we have briefly introduced the principles and basic concepts
that we will use throughout the dissertation. We began by explaining that
cloud computing environments provide a wide array of configurable resources
for applications, with both commonalities and variabilities present across these
resources. To manage this variability in the configuration of cloud resources, we
introduced feature models and explained their key role in the domain analysis
phase of software product line engineering. We also discussed the extension of
traditional software product lines into the realm of dynamic software product
lines, which enable runtime adaptation and reconfiguration. Additionally, we
presented the JavaBIP framework, detailing its key aspects

In the next chapter, we will present approaches proposed to address recon-
figuration and self-adaptation and discuss their advantages and limitations.

Chapter 3

State of Art

Reconfiguration and self-adaptation are essential characteristics of modern
software systems, particularly those deployed in dynamic contexts such as
cloud platforms. These systems must be able to adapt to changing conditions,
resource constraints, and evolving user requirements to keep compliant with
user expectations.

This chapter aims to provide a comprehensive overview of the state of the
art in self-adaptive systems and reconfiguration approaches proposed in the lit-
erature. We will explore various approaches, categorized into Dynamic Software
Product Lines (DSPL) and formal component-based models, highlighting their
key features and limitations. In addition, we survey approaches that tackle
compositionality and composability, two closely related but distinct concepts
in the context of system construction.

3.1 Reconfiguration and Self-Adaptation
Reconfiguration and self-adaptation of distributed software systems is a broad
and active research topic [89, 53, 92, 102]. Modern software systems, especially
those deployed in cloud environments, face the challenge of continuously adapt-
ing to changing requirements. This contrasts with traditional static systems
that remain largely unchanged after the initial deployment phase. Reconfigura-
tion and self-adaptation have emerged as two key, interrelated approaches for
enabling software systems to modify their configuration in response to changing
requirements.

Reconfiguration refers to the ability to modify the system configuration
after it has been deployed. This may involve actions such as adding or removing
components and altering the connections between components. Self-adaptation,
on the other hand, is the capability of a system to autonomously monitor its
own state and operating environment, detect changes, decide how to respond,

28 State of Art

and then execute the necessary reconfiguration actions. The main difference
between reconfiguration and self-adaptation lies in the autonomous triggering
of the reconfiguration process. Reconfiguration is often driven by external
actors, such as system administrators or DevOps developers. They actively
monitor the system and make strategic decisions about when and how to adjust
the system configuration. In this case, the reconfiguration process is started
and managed by human operators. In contrast, self-adaptation is an inherent
capability of the system itself. The system autonomously monitors its own state
and operating environment, and then decides on and executes the necessary
reconfiguration actions without direct human intervention.

Software systems deployed in dynamic environments such as cloud platforms
must reconfigure or self-adapt in response to evolving requirements and envi-
ronmental changes. Evolving requirements arise as user requirements evolve,
necessitating software systems to adapt by incorporating new features or remov-
ing existing ones. While reconfiguration and self-adaptation offer significant
benefits, they also introduce new challenges and complexities, such as ensuring
system consistency, managing dependencies between components, and verifying
the correctness and stability of reconfiguration actions.

After discussing the importance of reconfiguration and self-adaptation in
distributed software systems it is important to understand the underlying
principles and concepts that enable these capabilities. One widely adopted
conceptual model for self-adaptation is the MAPE-K loop, which provides a
systematic approach to achieving autonomic behavior in software systems.

3.2 MAPE-K Loop
The MAPE-K adaptation loop [118], also known as the control loop, is a
fundamental concept in the field of autonomic computing. It provides a
systematic approach to achieving adaptability in software systems. The MAPE-
K loop was originally proposed by researchers at IBM in a paper on the
architectural blueprint for autonomic computing [86]. The MAPE-K loop
consists of four main phases: Monitor, Analyze, Plan, and Execute. These
phases work together to enable a system to continuously monitor its own state
and operating environment, detect deviations from desired behaviors, and
trigger appropriate adaptation actions. The four phases can be described as
follows:

1. Monitor: The process for gathering, aggregating, and filtering obtained
data from a managed resource for tracking.

2. Analysis: The process to analyze and identify the current system state
based on the information collected by the monitor process. If the system

3.3 Approaches for Reconfiguration and Self-Adaptation 29

is not compliant with the expected requirements and specifications, then
an adaptation should occur.

3. Plan: The process of planning the target configuration. This involves
defining a desired configuration in which the system behaves as expected.

4. Execute: The process of executing the reconfiguration plan to transition
the system from its current configuration to the target configuration. At
this stage, the managed system carries out the reconfiguration plan.

The K represents the knowledge step which is the knowledge base used
by the system. This includes information about the system behaviour and
contextual information.

The MAPE-K loop operates as a continuous cycle, where the Knowledge
component is updated based on the results of the Execute phase, and the
updated knowledge is then used by the Monitor, Analyze, and Plan phases in
the next iteration of the loop. This closed-loop feedback mechanism enables
the system to continuously adapt and evolve in response to changes in its
environment and operational conditions.

3.3 Approaches for Reconfiguration and Self-
Adaptation

This section presents an overview of various approaches proposed in the lit-
erature that tackle reconfiguration and self-adaptation in software systems.
We survey the major approaches, categorized into Dynamic Software Product
Line (DSPL) approaches and formal component-based approaches. For each
category, we highlight the key features, strengths, and limitations of the respec-
tive approaches, providing a good understanding of the state of the art in this
domain.

We present a selection of representative works from the DSPL and formal
component-based approaches. The aim is to highlight the diversity of techniques
and methodologies that have been proposed in the literature to tackle the
challenges of runtime reconfiguration and self-adaptation.

For the DSPL-based approaches, we have selected works that illustrate the
different ways variability modeling and DSPL concepts are used to enable run-
time reconfiguration and self-adaptation. Some approaches employ variability
models at design-time, while others leverage them at run-time. The works also
showcase the use of different reasoning techniques, such as SAT/CSP solvers,
to derive valid configurations during adaptation. Overall, the chosen DSPL
approaches highlight the diversity in how the DSPL paradigm is extended and
applied to facilitate self-adaptation across various domains and contexts.

30 State of Art

The formal component-based approaches presented cover a diverse range
of techniques, such as flat and hierarchical component models that cater to
different architectural styles. Some approaches focus on only deployment and
others on both deployment and reconfiguration. The selected works also exhibit
varied execution semantics, including parallel execution of reconfiguration
actions. Importantly, the formal foundations underlying these approaches draw
from various mathematical domains, such as process algebras, architecture
description languages, and automata-based formalisms, providing different
reasoning capabilities for specifying, analyzing, and verifying self-adaptive and
reconfigurable behaviors.

3.3.1 DSPL-based Approaches
As mentioned in Sect 2.3, DSPL techniques make use of variability models
from SPLs to reflect the multiple run-time configurations a self-adaptive system
might adopt. These variability models operate as a formalized definition of
the system’s adaptation space - they describe the set of configurations that
are valid. By relying on such models during adaptation, DSPL procedures
guarantee the system only reconfigures itself into safe states when adjusting to
changes in its needs.

A fundamental feature of the DSPL paradigm is its separation between
variability modeling in the problem space and the implementation of system
artifacts in the solution space. As the adaptation needs change, the variability
model can be updated independently, and new artifacts can be assembled
together at run-time to realize the desired new system configuration. Due to
the characteristics of explicit variability management and effective separation
of concerns, DSPL-based techniques have been extensively investigated and
used in the area of self-adaptive and reconfigurable systems throughout the
last years.

Next, we present the DSPL approaches and compare them based on different
criteria. Firstly, the variability modeling approach is used to model domain
constraints and variability. Secondly, the reasoning and analysis techniques are
employed to reason about and determine valid configurations, including SAT
solvers and constraint solvers. Finally, adaptation execution and coordination,
evaluate how each approach handles the execution of the reconfiguration process,
such as parallel or linear execution, and what safety properties are tested during
the execution phase.

Sossa et al. [129, 130] propose extending variability models with temporal
constraints and reconfiguration operations to model the variability and adapta-
tion lifecycle of cloud computing systems. The extended static variability model

3.3 Approaches for Reconfiguration and Self-Adaptation 31

with the temporal constraints is then used to generate a transition system [41]
that takes into account the temporal constraints between the configurations
(e.g. a database service can be upgraded but cannot be downgraded). In this
system, states represent valid system configurations, and transitions signify
changes from one state to another. Key advantages of this approach include
explicitly modeling temporal adaptation constraints.

Morin et al.[99] introduce a DSPL approach for supporting dynamic adapta-
tion. This approach involves monitoring for system and environmental changes
to trigger the adaptation process. Goal-based reasoning evaluates these changes
against system objectives, employing feature models extended with goals for
decision-making. A Configuration Invariant Checker, employing Constraint
Satisfaction Problems (CSP), validates modifications against the goal-oriented
feature model, ensuring system requirements. A key advantage of this approach
is the explicit consideration of system goals during the reconfiguration process.
Furthermore, the use of CSP for configuration validation provides guarantees
regarding the validity of the target configurations.

Acher et al.[3] explore the application of feature models for reconfiguring
Dynamic Adaptive Systems (DAS), focusing on the dual variability of both the
software and its operating environment within a Dynamic Software Product
Line framework. The approach models the system and its environment as
two distinct but interconnected SPLs, where dependency constraints facilitate
adaptation in response to environmental changes. They support the analysis
which is conducted through the evaluation of possible configurations and
their impacts, using the information provided by the FMs. In addition, the
planning involves determining the appropriate target configuration, guided by
the dependency constraints between the system and environment FMs. This
model-driven approach, similar to prior work [73], uses feature models instead
of architecture/aspect models to capture variability, but still enables design-
time validation of adaptation rules/dependencies and using feature models at
run-time to reason about using SAT solvers and apply adaptations based on
environment changes. A key advantage of the approach is the explicit modeling
of the dual variability of both the software and its operating environment.

SALOON [112, 115, 116] Quinton et al. introduced SALOON, a software
product lines-based approach that streamlines the selection and configuration
of cloud environments for application deployment. By employing extended
feature models with cardinalities and attributes [114], SALOON automates the
identification of a suitable cloud environment that provides all the required func-
tionalities to satisfy the application requirements, as well as the cloud services
that meet those specific application requirements. This is achieved through a

32 State of Art

Cloud Knowledge Model, which abstractly represents the functionalities across
different cloud providers, enabling a high-level, requirement-driven selection
process. Once an optimal cloud environment is chosen, SALOON generates
executable configuration scripts, facilitating the automatic setup of the cloud
environment according to the defined requirements. The key advantages of
this approach are that it allows the automatic selection of a suitable cloud
environment and enables the selection of cloud services that conform to the
application requirements.

Pfannemüller et al. [105] proposed a Dynamic Software Product Line
approach that uses context feature models to represent system variability
incorporating context variability in the same model. The context feature model
allows specifying constraints between context and system features to model
how reconfigurations should occur based on different contexts. They transform
the feature model into Boolean formulas in Conjunctive Normal Form (CNF),
enabling SAT solvers to efficiently analyze and identify valid configurations at
runtime, supporting dynamic adaptation based on the current context. The key
advantage of this approach is that it provides a unified context feature model
that captures both system capabilities and context information and leverages
efficient SAT solvers on this unified model to reason on runtime reconfigurations,
taking into account constraints between both system and context.

Cordy et al. [50] introduce adaptive featured transition systems (A-FTS)
to model dynamically adaptive systems based on the feature model. This
approach represents the system as a set of static programs (configurations)
with transitions between them, indicating system adaptations in response to
environmental changes. Rules/Policies determine how the system should react
in different situations and how to adapt. The key advantage of the adaptive
featured transition systems (A-FTS) approach is that it provides a formal and
systematic way to model and reason about dynamically adaptive systems.

Cetina et al. [41] proposes a dynamic software product line approach
for developing autonomic systems by reusing variability models at run-time.
Variability models like feature models are used to capture the different con-
figurations a system can take at design-time. At run-time, the same feature
models are leveraged as the knowledge base driving autonomic capabilities like
self-configuration. The approach involves monitoring contextual changes and
translating those into activation/deactivation of features based on predefined
resolutions (rules/policies).

Conclusion and Discussion The DSPL approaches uses variability models
to model the variability of a domain such as feature models, but employ different

3.3 Approaches for Reconfiguration and Self-Adaptation 33

extensions to capture additional adaptation concerns. Sossa et al. [129, 130]
extend variability models with temporal constraints to model the temporal
dependencies between configurations. Acher et al.[3] model the dual variability
of both the software system and its operating environment. Morin et al.[99] uses
goal-based feature models. Pfannemüller et al. [105] propose context feature
models that unify system capabilities and context information in the same
model, allowing constraints between context and system features. SALOON
[112, 115, 116] uses extended feature models with cardinalities and attributes to
abstractly represent cloud environment functionalities. These extensions help
account for aspects like temporal adaptation paths, environmental contexts,
deployment contexts, and non-functional properties in the variability models.
Cordy et al. [50] and Cetina et al. [41] use the basic feature model as a variability
model.

Different techniques have been proposed for the sake of the analysis of
these models at runtime. Sossa et al.[129, 130] and Cordy et al.[50] generate
a transition system from the variability models and constraints to model the
system behavior. Morin et al.[99] and SALOON[112, 115, 116] use Constraint
Satisfaction Problems (CSP) over goal-oriented feature models. Acher et al.[3]
and Pfannemüller et al.[105] translate feature models to Boolean constraints
and leverage SAT solvers for reasoning. Finally, Cetina et al. [41] use rules and
policies-based reasoning that are made at design-time.

Most of these DSPL approaches primarily focus on the planning phase
of the MAPE-K adaptation loop, determining valid target configurations.
However, they generally lack support for the execution phase, i.e., realizing the
reconfiguration process to transition the system to the desired configuration.
Additionally, while some approaches like Sossa et al.[129, 130] and Cordy et
al.[50] transform feature models into transition systems, they don’t provide
support for the execution of the reconfiguration process as the transition models
only show the transition between possible valid configurations with no explicit
listing on the order of the execution of the reconfiguration process.

While the DSPL-based approaches offer strong mechanisms to manage
reconfiguration via variability modeling, they have limitations in modeling
how the reconfiguration process from the source configuration to the target
configuration can be performed and in which order. The DSPL-based ap-
proaches can determine the validity of target configurations but do not model
the coordination required during the reconfiguration process. To address this
limitation, formal component-based approaches offer complementary benefits.
Formal component-based models can capture the detailed deployment and
reconfiguration lifecycles of individual system components. These formal foun-

34 State of Art

dations enable rigorous reasoning about the reachability of target configurations,
ensuring the correctness of the overall system during adaptation.

3.3.2 Formal Component-based Approaches
Component-based approaches allow describing system architectures made up of
components that define the life-cycle of the system parts. Connectors control
the relationships between the components and establish interactions between
them.

To compare these formal component-based approaches, we consider three
main criteria. First, the component specification, including how components
and their behaviors are defined. Second, the support for deployment and
reconfiguration, such as modeling the deployment and the reconfiguration
process, and sequential and parallel execution of actions. Third, the formalism
and correctness guarantees, encompass well-defined formal semantics, support
for formal verification and analysis, and correctness guarantees for reachable
states.

Aeolus [62, 61] is a formal component model designed specifically for dis-
tributed, cloud-based software systems. It allows declaring components with
automata-based lifecycles, and dependencies. Aeolus components represent
deployable resources of the cloud, where each component represents a software
package, considered as a resource that provides and requires different function-
alities, and may be created or destroyed [63]. The model enables reasoning
about the achievability of target configurations and the automatic synthesis of
deployment plans. Aeolus uses tools such as a planning tool [90] or Zephyrus
tool [61]. Tools allow the user to compute a valid configuration satisfying
a high-level specification [61]. These tools can compute valid deployment
sequences that avoid conflicts and respect dependencies. The formal model
Aeolus ensures deployment correctness. The key advantages of the Aeolus
model are that it provides a formal yet expressive foundation for modeling
the complex requirements of distributed cloud systems, and it has many tools
integrated that use it as a model to reason about deployment plans.

Madeus [44] is a formal component-based deployment model designed for
distributed software systems. Madues focuses on modeling and coordinating the
deployment of distributed software systems. It was proposed as an extension of
the Aeolus model. Madeus represents each software component by an internal
Petri net-like structure to capture its detailed deployment lifecycle. Components
expose ports and connections between ports establish dependencies. The key
advantage of Madeus is the ability to express parallelism and coordination
during deployment, going beyond sequential actions. The internal nets allow

3.3 Approaches for Reconfiguration and Self-Adaptation 35

concurrency within components. Dependencies enable parallel deployment of
independent elements. This increases deployment speed and efficiency compared
to sequential models. The key advantage is the ability to express parallelism
and coordination during deployment, going beyond sequential actions.

Concerto [45, 43] is a formal model designed for efficient reconfiguration of
component-based distributed systems. It represents software components via
customizable state machines that declare lifecycle and behaviors. Components
expose ports that enable coordination. Concerto allows parallel execution of
reconfiguration actions both within and across components. Dependencies be-
tween ports synchronize component evolutions. The key advantage of Concerto
is the ability to maximize parallelism during reconfigurations through fine-
grained modeling. Concerto optimizes parallelism while ensuring correctness
through its formal semantics. Components in Concerto react asynchronously to
behavior change requests. The model coordinates component evolutions based
on port connections and usage. The key advantage is the ability to maximize
parallelism during reconfigurations on the internal behaviour of the components
and between components.

Fractal [34, 35, 126] is a hierarchical component model for constructing
configurable software systems. Fractal allows the construction of component
architectures where components can be recursively nested. Each Fractal com-
ponent has a membrane that contains controller objects that implement recon-
figuration capabilities through the use of its reflective API. This API allows
developers to programmatically manipulate the component architecture. For
example, to add a component, a developer might use the API to instantiate the
component, configure it, and then insert it into the component hierarchy. These
controllers can adapt a component’s sub-components, bindings and lifecycle,
enabling adaptation. The key advantage is the use of membranes with controller
objects that implement reconfiguration capabilities through a reflective API

TOSCA [26, 131, 20] (Topology and Orchestration Specification for Cloud
Applications) aims to make deploying and managing cloud-based applications
portable and automated. TOSCA allows describing multi-component applica-
tion architectures and their management procedures in a standardized format.
The core idea is to model an application as a topology graph of components
represented as nodes, connected by relationships. The TOSCA model is pack-
aged together with the artifact files needed to implement the application, such
as VM images, software packages, and scripts. A TOSCA runtime like Open-
TOSCA [26] processes this model and the artifacts bundle (called CSAR) to
deploy the modeled application topology and manage it. OpenTOSCA first
parses the model to create node and relationship instances, then invokes their

36 State of Art

operations and artifacts, such as running VM install scripts, assigning IPs, and
configuring ports. Pre-defined plans can further orchestrate these operations
to execute lifecycle stages like deploy, scale, or upgrade. The key advantage is
making deploying and managing cloud-based applications automated across
different cloud environments.

SOFA [36, 106] SOFA (SOFtware Appliances) is a formal component-based
model that provides a structured way to represent and manage software compo-
nents within a hierarchical architecture. Components are defined as templates
with well-defined interfaces, implementation artifacts, and associated man-
agement procedures, which can be nested to reflect the relationships and
dependencies between different parts of the software. Connections among
interfaces are represented by bindings, and physical interconnections are made
through connectors, which can bind more than two interfaces. Each component
has interfaces, controllers, and an internal architecture employing microcompo-
nents - objects with various functionality. Invocations on component interfaces
are passed through the appropriate microcomponent chains and then to the
component’s subcomponents. Components able to create other components
at run-time are marked as factories, and the produced components are de-
scribed as dynamic components. The key advantage is providing a structured
and systematic way to represent and manage software components within a
hierarchical architecture.

Dr-BIP [67, 68] El Ballouli et al. introduces the Dr-BIP (Dynamic Re-
configurable BIP) framework, which extends the BIP (Behavior, Interaction,
Priority) framework [18] for modeling self-configuring systems. This model-
based approach, combined with a component and connector architectural style,
provides a formal and structured way to describe dynamic changes within
a system. The use of architectural motifs in Dr-BIP serves as the basis for
structuring the system and coordinating its reconfiguration at run-time. These
motifs define sets of components that evolve according to specific interaction
and reconfiguration rules, allowing the system to adapt dynamically to changes.
The key advantage is using architectural motifs to provide a formal and struc-
tured way to describe dynamic changes and coordinate the reconfiguration of
self-configuring systems.

Conclusion and Discussion Component-based approaches employ different
formalisms to model component behaviors and interactions. Aeolus [62, 61]
and Dr-BIP [67, 68] use standard automata, TOSCA [26, 131, 20] represents
application architectures as topology graphs of nodes (components) connected
by relationships, Madeus [44] adopts Petri nets, Concerto [45, 43] employs a
modified form of Petri nets, Fractal [34, 35, 126] has hierarchical components

3.4 Compositionality and Composability 37

with membranes and controllers, and SOFA [36, 106] represents components as
hierarchical templates with interfaces and artifacts. Regarding deployment and
reconfiguration support, Madeus [44] solely enables deployment in a parallel
manner, Aeolus [62, 61] supports both reconfiguration and deployment but relies
on external tools for reconfiguration, Concerto [45, 43] tailors its formalism
for efficient parallel reconfiguration across and within components, Fractal [34,
35, 126] supports dynamic architectures through its API, TOSCA [26, 131,
20] provides standardized workflows for cloud application deployment and
management, and SOFA [36, 106] allows dynamic component creation through
factories. All these component models are manually constructed, an error-prone
and complex task, especially for complex systems. The manual effort required
to accurately define components, constraints, and dependencies can lead to
potential errors in the formal models, particularly for complex systems.

Formal component-based approaches offer rigorous semantics for specifying
component behaviors, enabling analysis and verification of reconfiguration
actions. These models facilitate the automated execution of reconfigurations,
ensuring correctness and consistency, if the formal model was constructed
correctly. The key advantages of these approaches are the ability to synthesize
deployment plans by construction, express parallelism and coordination during
deployment, enable parallel execution of reconfiguration actions, and provide
a structured way to represent and manage software components within a
hierarchical architecture. However, constructing a model relies on human
expertise to define the components and constraints, which can be an error-
prone task, especially for complex systems such as cloud applications.

3.4 Compositionality and Composability
The development of complex, component-based software systems and systems
of systems has become increasingly important in modern software engineering.
These systems are often composed of multiple subsystems that need to be
integrated and coordinated to achieve the desired functionality. In this context,
the concepts of compositionality and composability are important for ensuring
the correctness, flexibility, and adaptability of the overall system.

3.4.1 Introduction to Compositionality and Composabil-
ity

Compositionality and composability are two related but distinct concepts in the
context of component-based software engineering and system construction [125].

38 State of Art

Approach\keys Monitor Analysis Plan Execute
DSPL Approaches

Sossa [130] x
Morin et al. [99] - x x
Acher et al. [3] x x
SALOON [116] x x

Pfannemüller et al. [105] x x
Cordy et al. [50] - - x
Cetina et al. [41] - - x

Component-based Approaches
Fractal [33] - x
Aeolus [62] - x

Madues [44] x
Concerto [45] - x
TOSCA [26] - x
SOFA [36] - x

Dr-BIP [67, 68] - - x

Table 3.1: MAPE-K loop table. A dash (–) in the table signifies that the
corresponding phase is supported manually by developers or through tools
made up at the design time.

Compositionality is concerned with the preservation of component properties
when they are integrated into a larger system. If a system exhibits composi-
tionality, it means that the overall system behavior can be deduced from the
behaviors of its constituent components and their composition rules [125].

The reason why compositionality is an important notion in the context of
software development and model integration is that it permits modular reasoning
about system behavior. As software systems expand and new components
are added, compositionality guarantees that the properties of the current
components are kept, and the behavior of the entire system can be expected
based on the composition of its parts. This is essential to controlling the
complexity of growing systems and maintaining their validity when new features
are implemented.

On the other hand, composability is the ability to combine components in a
meaningful way, such that the resulting system exhibits the desired behavior and
properties [74, 125]. Composability is important for enabling the integration
of new functionalities into existing software systems, as it provides a way to
incorporate new components without disrupting the overall system behavior.
This is a key requirement for supporting the evolution of software systems over

3.4 Compositionality and Composability 39

time, as new features and capabilities need to be added while preserving the
existing functionality.

3.4.2 Composition Approaches for Software Models

In component-based software engineering, compositionality and composability
are important concepts because they allow complex systems to be built from
separate components while maintaining desired properties and behaviours. In
this context, various approaches have been proposed to support the composition
of software systems.

Composition of Feature Models

We will present the work upon which we build and extend, focusing on compo-
sitional aspects. Earlier work by Acher et al. [4, 6] and Carbonnel et al. [38]
proposed techniques for composing FMs using predefined operators such as
union and intersection. To respect the semantics of these operators, specific
rules for merging common features during composition were defined. Building
on this work, Acher et al. [5, 7] introduced more advanced techniques to enable
composing FMs under arbitrary user-defined operators. One approach encodes
input FMs as Boolean formulas [19, 59] and translates the composition operator
into a Boolean formula over encoded models to obtain the composed model
formula. The resulting feature model diagram can then be synthesized from
the Boolean formula. Another approach relates features through constraints
in a separate view model aggregated with inputs. In line with this research,
we contribute with equivalent composition operators designed for composing
run-time JavaBIP models.

In Featured Transitions Systems (FTS) [51], each transition is annotated
with a combination of features to determine the variants that can execute it. As
they were initially thought in the static setting where all the features and their
relationships could be specified in advance and not allowed to change, FTS do
not support run-time adaptation, e.g., of CPS or AI-intensive systems with new
features, constraints and functionalities. In [65] the composition of features
is tackled by both superimposition and parallel composition, which are the
most used in variability-intensive systems engineering. The authors introduce
compositional feature-oriented systems (CFOSs) as a unified formal way for
programs in a guarded command language. Unlike FTS-based verification and
validation, our compositional approach allows mixing design-time and run-time
techniques, and thus by some means they support operations over FTS such as
FTS merge.

40 State of Art

Composition of Aspect Models

An early description of the distinction between positive and negative variability
can be found in [139], where authors combine model-driven and aspect-oriented
software development to support both variability types. In [139] features are
separated in models and composed by aspect-oriented composition techniques
on model level. Positive variability refers to the ability to add new functionality
or features to a system, while negative variability refers to the ability to remove
or disable existing functionality. Aspect-oriented techniques enable the explicit
expression and modularization of variability on model, code, and template levels.
Differently from [139], our approach is only model-driven when supporting
composition and reconfiguration to allow both variability types.

Composition of Component-based Models

In the domain of component-based models, a recent survey [54] emphasizes
that a suitable methodology to ensure the correctness of reconfigurations
in component-based systems is still needed. We believe that the present
work contributes to this active research topic, at both the development and
management stages (cf. [54], Fig. 1).

Component-based models are compositional by their intrinsic nature. Nev-
ertheless, adding composition operators for building complex component-based
systems is of interest, both theoretical and practical, namely because of safety
properties to ensure or to preserve by construction. In this domain, Attie
et al. [13] propose a formal framework for the compositional construction of
software architectures by introducing an associative, commutative intersection
composition operator for architectures. If architectures A1 and A2 enforce safety
properties ϕ1 and ϕ2 respectively, [13] shows that their intersection composition
A1 ∩ A2 enforces the conjunction ϕ1 ∧ ϕ2. Our approach to CBRTVMs compo-
sition also aims to facilitate incremental system construction. However, in our
approach, the composition is directly performed on the syntactic representation
of coordination constraints rather than by encoding interaction models into
Boolean formulas. In addition, we introduce new composition operators beyond
intersection, including union, and strict intersection.

3.5 Conclusion
In this chapter, we provided an overview of the approaches proposed in the
literature to tackle reconfiguration and self-adaptation. These approaches
were categorized into dynamic software product lines approaches and formal
component-based approaches. As motivated by [41, 66], who emphasize the ne-
cessity of integrating different approaches to achieving effective reconfiguration,

3.5 Conclusion 41

our approach uses software product line tools and component-based models
together to achieve reconfiguration.

Dynamic software product line approaches, leveraging the principles of
software product line engineering, focus on managing variability at run-time to
support dynamic adaptation. These approaches are effective for efficiently man-
aging a large space of potential configurations. The dynamic software product
line approach presented either computes the set of all possible configurations
in advance at design time, or a new valid configuration at run-time. Indeed,
when all valid configurations are precomputed at design time, they must be
stored explicitly, e.g. for determining the appropriate choice at run-time. This
is problematic, since the set of configurations is exponential in the number of
features, but particularly so for distributed systems, where a copy of the list has
to be stored at every node. Alternatively, at run-time, the new configuration
must be computed and validated thus inducing a computational overhead.

Most dynamic software product line approaches presented in the related
work do not state their respective time overheads. However, results from
[129, 130, 21] show that reasoning on FM that only validates configuration
compliance with the FM takes around 103 ms (or more) for 300 features. In
terms of memory, storing all valid configurations for a feature model with n

features would require an amount of memory on the order of 2n−1 bytes. For
example, storing configurations for a feature model with 300 features would
require memory on the order of 1088 bytes, which is impractical. Storing all
valid configurations is only feasible for small feature models with a limited
number of features.

Furthermore, the dynamic software product line approaches, as illustrated
in Table 3.1, do not tackle the execution phase. This limitation is expected, as
these feature models are only employed at run-time to validate or extract a
valid target configuration, without specifying how to transition to that target
configuration. Therefore, there is a need to extend these approaches not only to
reasoning on the validity of the target configuration but also to the execution
path required to reach it.

The presented formal component-based approaches, offer rigorous semantics
for specifying component behaviors and interactions, enabling analysis and
verification of reconfiguration actions. These models facilitate the automated
execution of reconfigurations, ensuring correctness and consistency, if the
formal model was constructed correctly. However, constructing a model relies
on human expertise to define the components and constraints which is an
error-prone task, especially for complex systems such as cloud applications.

42 State of Art

In contrast to both approaches, we introduce an approach that lies in the
generation of a correct-by-construction Component-based Run-time Variability
Model (CBRTVM) that enforces domain constraints for dynamic reconfiguration
while leveraging software product line engineering tools to capture domain
variability. Unlike many works using software product line techniques and tools,
our approach goes beyond employing static variability models at run-time,
e.g., [69], and avoids the overhead of computing or validating new target
configurations explicitly.

To summarize, we propose an approach that leverages both software product
line engineering tools and formal component-based models to facilitate safe
dynamic reconfiguration. The use of software product line tools is to benefit from
the domain variability and automatically generate a component-based run-time
variability model. The generated CBRTVM in JavaBIP introduces monitoring
and controlling of the application behavior by dealing with reconfiguration
requests while ensuring the (partial) validity of all reachable configurations.

We also presented approaches that tackle compositionality and composability.
To our knowledge, the closest work done in this domain to compose two models
is by Attie et al. [13] in the context of component-based systems. We are not
aware of other approaches that perform composition in the same manner as
our proposed method.

Chapter 4

Automatic Generation of
Component-based Run-time
Variability Models

In this chapter, we propose Feco4Reco [72, 70] an approach for deriving exe-
cutable component-based run-time variability models (CBRTVM) from feature
models. The goal is to tackle the research question RQ1: How to enforce
domain constraints during dynamic reconfiguration at low cost?

Our approach leverages principles from software product lines (SPL) and
formal component-based models to enforce domain constraints during safe
dynamic reconfiguration. Specifically, we use feature models from SPL to com-
pactly represent the set of valid configurations by capturing domain constraints.
We then provide automated model transformation rules to derive executable
CBRTVMs from these feature models.

The generated CBRTVM encodes all the constraints and dependencies
specified in the feature model, enabling non-expert developers to safely apply
reconfigurations. Being run-time, this model encodes reconfiguration operations
while ensuring the safety property, saying that only partial-valid configurations
can be reached as a result of any reconfigurations. By leveraging the CBRTVM,
developers without expertise in the hosting context can perform reconfigurations
while adhering to the constraints and dependencies inherent to the platform,
as these are already enforced within the generated model.

4.1 Background
In this section, we introduce the formalization of the models that form the
foundation for our contributions. We introduce a formal notation for feature
models and their semantics in terms of valid configurations. To facilitate incre-

44 Automatic Generation of Component-based Run-time Variability Models

mental system design and development, we introduce the notion of saturated
partial-valid configurations, which ensure consistency and well-formedness of a
configuration at an intermediate step through reconfiguration.

4.1.1 Feature Model Formalization
Definition 4.1.1. (Feature Diagram) Let F be a set of features, and Node the
set of the nodes of a tree-like structure defined by the grammar of axiom Node:

Node ::= OR
(
Node1, . . . ,Nodek

)
| XOR

(
Node1, . . . ,Nodek

)
| AND

(
[mand]Node1, . . . , [mand]Nodek

)
| leaf

We denote by π ⊆ Node×Node the parent relation, i.e., a node n is a child of
n′ iff π(n) = n′. Let µ ⊆ Node×Node be the reflexive and transitive closure
of π−1, i.e., µ(n) is the set of all descendants of n ∈ Node, including itself.

Definition 4.1.2. (Feature Model) A feature model FM over a set of features
F is a tuple (root, ϕ, ρ, χ), where root ∈ Node, ϕ : µ(root)→ F is an injective
function associating features to nodes, and ρ, χ ⊆ F × F are the requires and
excludes relations, respectively, with χ being symmetric.1

4.1.2 Feature Model Notation
Given a feature f ∈ F that appears in the FM, we denote by nf the node
corresponding to f , i.e., such that µ(nf) = f . Abusing notation, we also write
π(f) = f ′ iff π(nf) = nf ′ . Given an AND-node n, for each child mandatory
node n′ of n, i.e., such that n = AND(. . . ,mand n′, . . .), we write mand(n′).

Definition 4.1.3. (Feature Model Dependency Graph) Given a feature model
(root, ϕ, ρ, χ) over F , its dependency graph is a directed graph G = (F,E),
where F is the set of features, and E ⊆ F × F is the set of directed edges
representing the parent, mandatory and requires relations:

E =
{
(f1, f2) | π(f1) = f2

}
∪

{
(f1, f2) | π(f2) = f1 ∧mand(f2)

}
∪ ρ .

The FM semantics is the set of its valid configurations [122].
The following definition allows for incremental design and development of

real-world systems by considering consistent and well-formed configurations,
even if they are not complete.

1In Fig. 4.1, we write f1 ⇒ f2 iff ρ(f1, f2) and f1 ⇒ ¬f2 (equivalently f2 ⇒ ¬f1) iff
χ(f1, f2).

4.2 Motivation 45

Definition 4.1.4. (Configuration Semantics) Let FM = (root, ϕ, ρ, χ) be a
feature model over a set of features F and let (F,E) be its dependency graph.
A configuration is a set of features Φ ⊆ F . We say that Φ is

1. free from internal conflict if, for any f1, f2 ∈ Φ, holds (f1, f2) ̸∈ χ;

2. saturated, which means that for any f ∈ Φ, it holds that E(f) ⊆ Φ;

3. valid if it is saturated, free from internal conflict and respects structural
constraints of XOR and OR nodes: exactly one (XOR) or at least one
(OR) child feature selected, respectively (saturation implies the respect of
AND-node constraints);

4. partial-valid if there exists a valid configuration Φ′ ⊇ Φ.

Saturated partial-valid configurations are more restrictive than partially
valid ones, as they require all the dependencies of the selected features to be
included as well. This means that when building complex systems incrementally,
we can ensure that each intermediate step includes the desired features with their
necessary dependencies, resulting in consistent and well-formed configurations.

Assumption 4.1.1. We assume that all considered feature models are such
that any configuration free from internal conflict is partial-valid.

4.2 Motivation
Cloud platforms like Heroku exemplify the key characteristics of cloud comput-
ing described in Chapter 2. Heroku enables developers to build, run, and scale
applications without managing the underlying infrastructure. Heroku relies on
the infrastructure provided by cloud service providers such as Amazon Web
Services (AWS) [142] and Google Cloud Platform (GCP) [27] to host and run
applications deployed on its platform. Applications on Heroku are hosted in
virtualized containers and virtual servers that are provisioned on top of the
infrastructure provided by these cloud providers.

Heroku provides a flexible cloud platform-as-a-service (PaaS) for deploying
and running applications. The platform comprises essential elements such as
Dynos (lightweight Linux containers), geographic regions for hosting applica-
tions closer to users, buildpacks for automating application setup, and a rich
ecosystem of add-on services that can be easily integrated with applications
[76, 85].

The deployment and reconfiguration of applications in the Heroku cloud
environment are governed by specific constraints and dependencies. For instance,

46 Automatic Generation of Component-based Run-time Variability Models

certain add-on services may be exclusive to specific regions, and Heroku only
permits hosting resources in a single region simultaneously. Additionally,
numerous other constraints and dependencies exist between services in the
cloud environment. Consequently, reconfiguration must be performed in a
manner that respects and adheres to these interdependencies.

To ensure a safe reconfiguration, a systematic approach is required to
identify and follow a valid reconfiguration path that respects the constraints
and dependencies.

4.2.1 Key Elements of the Heroku Cloud Platform
Heroku offers a range of API-controlled services, including dyno types, add-ons,
buildpack, and regions, which provide developers with the means to create
complex applications consisting of interacting pieces. For example, a typical
web application may have a web component that is responsible for handling
web traffic. It may also have a queue (typically represented by an add-on
on Heroku), and one or more workers that are responsible for taking some
elements off of the queue and for processing them. Heroku permits building
such architectures by allowing the user to configure the application using the
dynos, regions, buildpacks, and add-ons.

• Dynos: Heroku applications run on lightweight, isolated Linux containers
called Dynos. These containers provide a secure and scalable runtime
environment for applications. Dynos come in different sizes and configu-
rations, each with its own set of resources (CPU, memory, and storage).
Developers can choose from various Dyno types, such as Free, Hobby, and
Production tier, depending on their application requirements and budget.

• Regions: Heroku offers a global infrastructure with 16 geographic regions
spread across the world. This allows developers to deploy their appli-
cations in locations that are closest to their target clients, minimizing
latency and ensuring optimal performance.

• Buildpacks: Heroku uses buildpacks to automate the process of compiling
and configuring application source code into executable slugs that run on
Dynos. Buildpacks are pre-configured scripts that detect the programming
language and framework used by an application and set up the necessary
dependencies and runtime environment. Heroku supports a wide range
of buildpacks for popular languages such as Ruby, Node.js, Java, Python,
and Go.

• Add-ons: One of the key strengths of the Heroku platform is its extensive
ecosystem of add-ons. Heroku offers over 150 add-on services that can

4.2 Motivation 47

be easily integrated into applications to extend their functionality and
capabilities. These add-ons cover a wide range of categories, includ-
ing databases (e.g., PostgreSQL, MongoDB), monitoring and logging
(e.g., New Relic, Papertrail), application performance management (e.g.,
Scout, Librato), security (e.g., Okta, Sqreen), messaging (e.g., SendGrid,
Twilio), search (e.g., Algolia, Elasticsearch), and analytics (e.g., Mix-
panel, Segment). In addition to the pre-built add-ons available in the
Heroku marketplace, Customers can also create their own custom add-ons
and publish them in the Heroku Elements marketplace. This empowers
developers and businesses to build and share specialized services.

The deployment and reconfiguration of applications in the Heroku cloud
environment are subject to specific constraints. For example:

1. Dependency on Region Availability: Certain add-on services, such
as Guru301, are exclusively available in specific regions, e.g., the US
region. Thus, deallocating resources from the US region can disrupt
service dependencies and lead to failures.

2. Exclusive Hosting Region: Heroku allows hosting resources in only
one region at a time. When migrating an application from one region to
another, it is essential to consider that resources cannot be simultaneously
deployed in both regions. Initiating allocation of the EU region while
resources remain deployed in the US region, for instance, will result in a
failure.

4.2.1.1 Valid Reconfiguration Path

Suppose there is an application running on a Hobby dyno within the US region,
and it is utilizing the Guru301 add-on service, which is exclusive to US regions.
If there is a need to migrate this application to the EU region and detach
the Guru301 add-on from the application, a reconfiguration process becomes
necessary. For migration, there is a need to allocate resources in the EU region
and deallocate them from the US region, and simply detach the Guru301 from
the application. The desired new configuration Φ′ would be Φ′ = {Hobby, EU},
while the current configuration Φ is Φ = {Hobby, US,Guru301}.

To achieve a safe reconfiguration to the desired target configuration of
Hobby dyno in the EU region, three actions must be taken:

1. Allocate the resources in the EU region.

2. Deallocate the resources from the US region.

48 Automatic Generation of Component-based Run-time Variability Models

Table 4.1: Possible paths for performing reconfigurations.

Path Interaction 1 Interaction 2 Interaction 3 Validity
Path 1 Allocate EU Deallocate US Deactivate Guru301 Invalid

Path 2 Allocate EU Deactivate Guru301 Deactivate us Invalid

Path 3 Deactivate us Deactivate Guru301 Allocate EU Invalid

Path 4 Deactivate us Allocate EU Deactivate Guru301 Invalid

Path 5 Deactivate Guru301 Allocate EU Deallocate US Invalid

Path 6 Deactivate Guru301 Deallocate US Allocate EU Valid
Paths 1, 2 & 5 are invalid because the mutually exclusive us and eu regions are both
activated at some point. Paths 3 & 4 are invalid because Guru301 requires us but us is
deactivated first.

3. Deactivate the Guru301 add-on service.

There are six possible paths to reach this desired target configuration from
the current configuration Φ={Hobby, US, Guru301) as presented in Table 4.1.
Each of these paths involves a sequence of activation and deactivation steps,
and the choice of path may have implications for dependencies and constraints
between resources. A naive approach of simply deactivating the US region
first would result in an error. This is because Guru301 depends on US region
availability, so deallocation of the rescources from the US region would break
this dependency and cause Guru301 to fail. Similarly, attempting to allocate
the resources to the EU region while resources are still deployed in US would
also fail. Heroku only allows resources to be hosted in one region at a time, so
resources in the EU cannot be allocated simultaneously with US. Thus, not
all the paths can be taken to reach the target configuration.

The only valid reconfiguration path as presented in Table 4.1 is:

1. First, deactivate the Guru301 add-on while keeping the resources in
the US region. This removes the dependency on the US-only Guru301
service.

2. Next, the resources deployed in the US region can be safely deallocated,
as the Guru301 service is already deactivated and no other service is
reliant on it.

3. Finally, the resources can be allocated in the EU region to complete the
migration to the desired target configuration Φ = {Hobby, EU}

The proposed ordering adheres to the constraints and dependency manage-
ment requirements, ensuring that reconfiguration actions are executed without

4.3 Feco4Reco: A Framework 49

violating any constraints. Failure to comply with these constraints can lead to
disruptions in application continuity. Consequently, a systematic coordination
approach is necessary to facilitate seamless reconfiguration.

Although Path 6 is the only valid reconfiguration path in this specific
example, it is important to note that in other cases, there could be several
potential paths for reconfiguring from the source to the target configurations
while still adhering to the cloud constraints. This highlights the importance
of adopting an approach to the reconfiguration process, ensuring that the
path chosen for the reconfiguration of the system respects cloud constraints.
Furthermore, our proposed model does not restrict or invalidate any of these
valid paths. Instead, it allows for the execution of any valid reconfiguration
path.

4.3 Feco4Reco: A Framework
We propose Feco4Reco [72, 70] an approach to leverage variability models
for acquiring a compact representation of a set of valid configurations of a
system. It aims to automatically generate a formal executable model to safely
perform reconfigurations in a scalable manner. To this end, we take advantage
of feature models and component-based run-time models for enforcing safe-by-
construction behaviour of concurrent component-based systems as discussed in
Chapter 3.

The FeCo4Reco process, shown in Fig 1.1, consists of three stages:
1) domain constraints are specified as a feature model, 2) the feature model is
automatically transformed into a Component-based Run-time Variability Model
(CBRTVM) to make it run alongside the system, 3) the generated CBRTVM
is used by the deployers to set up initial configurations of the system, and
to automatically monitor reconfiguration requests from the environment and
safely execute them at runtime.

4.3.1 Stage 1: Heroku Cloud Feature Model
The Heroku cloud feature model captures the configurable service options and
dependencies in the Heroku platform. It includes the mandatory features Dyno,
Region, and Buildpack, representing core aspects of deploying applications.
The optional features Add_ons allow attaching additional services to extend
functionality, such as managed databases, monitoring, messaging, queuing, and
security services.

As shown in Fig. 4.1, the feature diagram has a tree-like structure with
Heroku_Application as the root feature, presenting the Heroku cloud with
services and constraints. In addition to mandatory features, optional features

50 Automatic Generation of Component-based Run-time Variability Models

Figure 4.1: Part of the Heroku cloud feature model.

like Heroku add-ons, maintained by third-party providers or Heroku, are
available and can be installed onto applications using the Heroku service
API interface. Other constraints to consider include regional availability of
services, inter-service dependencies, and architectural constraints. Consequently,
developers require expertise in Heroku to manage and control applications safely
while accounting for all constraints on the hosting context.

Example 4.3.1. Figure 4.2 presents a highlighted valid product configura-
tion Φ = {HerokuApplication, Free Dyno,EU Region, Java JVM} within
the Heroku cloud feature model. This configuration represents a specific se-
lection of Heroku platform features that can be used to deploy an application,
and it satisfies the criteria for a valid configuration as defined in Def 4.1.4.
The green rectangle encompasses the chosen features, which include the base
Heroku_Application feature, the Free Dyno, EU Region and Java JVM for
the buildpack of the application. This configuration indicates that the selected
Heroku cloud product will have a Free dyno type deployed in the EU region with
a Java JVM buildpack. The feature model visualization effectively captures the
valid combinations of features and constraints, allowing users or administrators
to explore and select desired configurations for their Heroku-based applications.

In our approach, the feature model is constructed at design time by experi-
enced developers familiar with the target cloud platform. This one-time effort
ensures that the feature model accurately captures the configurable service
options, dependencies, and constraints of the underlying cloud platform. The
feature model is realized based on the specific constraints and capabilities
of the cloud platform, and it will be transformed into a Component-Based
Run-Time Variability Model (CBRTVM) as detailed in Stage 2. While the
example presented uses the Heroku cloud feature model, our approach is not
limited to any particular cloud platform and can be applied to other cloud
environments as well.

4.3 Feco4Reco: A Framework 51

Figure 4.2: Valid product selection.

Figure 4.3: The generation of the component-based run-time variability model
involves a two-step transformation process. Steps 1 and 2 correspond to
Subsections 4.3.2.1 and 4.3.2.2, respectively.

4.3.2 Stage 2: Transformation: Feature Model to Component-
based Run-time Variability Model

This section describes a set of design rules for automatically generating a
component-based run-time variability model using a feature model as input.
Figure 4.3 presents the steps for the transformation of the encoding process. The
encoding of the feature model into a CBRTVM is achieved recursively. Initiated
by the root node of the feature model, each feature triggers the generation of a
corresponding component along with its associated behavior. Consequently, for
every feature in the model, a component is generated. Following the generation
of components, the coordination layer is constructed in accordance with the
constraints specified by the feature model.

52 Automatic Generation of Component-based Run-time Variability Models

4.3.2.1 Step 1: From Features to Components

To start, we initiate the process by establishing a mapping between features and
components. Building upon the concepts discussed in Sect. 4.1, we undertake
the transformation of a given feature into a corresponding component. Let f
∈ F and nf ∈ Node, s.t. f(nf) = f. To associate components with the nodes
of the tree-like structure of the root whose nodes correspond to features, we
define a function κ : Node→ 2Comp by:

κ(nf) =

{enc(nf)}, if nf = leaf
k⋃

i=1
κ(Nodei) ∪ enc(nf), if nf = OR(Node1, ..., Nodek)∨

nf = XOR(Node1, ..., Nodek)∨
nf = AND([opt]Node1, ..., [opt]Nodek)

(4.1)
This recursive algorithm (Algo 1), captured by the function κ(root), is

designed to guide the systematic process of generating components necessary
for the main root node and its descendant nodes within a hierarchical structure.
The algorithm initiates at the root node and then proceeds into a recursive
exploration through all subsequent sub-nodes until it ultimately reaches the
leaf nodes. The algorithm operates in two modes: leaf node handling and
compound feature handling. For leaf nodes containing a singular feature
like f, the algorithm employs the enc(nf) encoding operation to create a
corresponding component labeled f. When encountering compound features,
the same encoding operation generates a component labeled f. Additionally,
the algorithm invokes itself, κ, for all sub-nodes within the compound feature,
recursively generating components until leaf nodes are reached.

4.3 Feco4Reco: A Framework 53

Algorithm 1 Function κ(nf)
1: function κ(nf)

Require: nf : Node type
Ensure: Components generated for nf and its descendants

2: if nf is a leaf node then
3: return enc(nf)
4: end if
5: components ← []
6: if nf is a compound feature node then
7: subNodes ← extractSubNodes(nf)
8: for subNode ∈ subNodes do
9: components.addAll(κ(subNode))

10: end for
11: components.addAll(enc(nf))
12: end if
13: return components
14: end function

Component Behaviour Generation Upon establishing the set κ(root) of
components, their behaviors are defined through the automated generation
of finite state machines. Each finite state machine is composed of a finite
set S representing states and a subset T ⊆ S × S signifying transitions. The
transition set T is defined within the Cartesian product of states, specifically
S × S. In addition, a designated initial state init within S is specified. The
individual component, referred to as f, is visually illustrated in Figure 4.4. This
figure encapsulates the behavior of the component within its corresponding
finite state machine (FSM).

enc(nf) = FSM in Fig. 4.4 (4.2)

States. The generated Finite State Machine associated with component f , the
states are:

• Initial State (init): This state signifies the absence of both feature activa-
tion and feature request.

• Intermediate States:

– Start Feature State (S_f): a request for the activation of feature f
has been initiated; however, the actual activation has not yet been
carried out.

– Start Reset Feature State (SR_f): a request for the deactivation of
feature f has been initiated; however, the actual deactivation has
not yet been carried out.

54 Automatic Generation of Component-based Run-time Variability Models

Figure 4.4: Feature component FSM.

• State (f): This state represents the successful activation of feature f .

Transitions. The transitions within the FSM are categorized into two types
of ports:

• Spontaneous Transitions: These transitions are represented by green
dashed arrows and are used to receive notifications from the external
environment. Their purpose is to enable the component to automatically
react to external triggers, such as a user activating or deactivating a
feature. When the component receives a notification, if it is in a state
where the spontaneous transition can be triggered, it will execute the
transition, resulting in a state change.

• Enforceable Transitions: These transitions correspond to the execution
of API functions that mandate a component to perform specific actions.
Enforceable transitions represent actions controlled by the JavaBIP engine.
Enforceable transitions are used for coordination between components
to manage dependencies on when a feature can be activated safely and
when it can be deactivated.

Example 4.3.2. Figure 4.4 serves as a visual representation of the FSM corre-
sponding to the feature f . The FSM structure encompasses four distinct states,
explicitly denoted as init, S_f, SR_f, and f, highlighted in blue. Transitions
represented by dashed green arrows are spontaneous transitions (S_f and SR_f)
which are used to request the activation and the deactivation of feature f . For
example, when there is a need to activate feature f , a spontaneous call for f
activation can be made. Assume the component is initially in the init state.

4.3 Feco4Reco: A Framework 55

If the component receives a spontaneous event S_f (start feature f) from the
external environment (typically triggered by the system administrator), and the
component has a transition labeled S_f from the init state, then the component
will execute this spontaneous transition. This will cause the component to
transition from the init state to the S_f state.

The S_f state is an intermediate state (Start feature f) and is not the active
state where the activation API is called for activating feature f . From the
S_f state, an enforceable transition can be executed which is associated with
the activation API once executed to initiate the actual activation of feature
f . This enforceable transition, labeled activate_f, will trigger the API call
for the activation. The execution of this enforceable transition needs to be
coordinated with other components according to the coordination layer, which
will be discussed in the next subsection.

Similarly, when there is a request to deactivate feature f , a spontaneous
transition SR_f will be executed, taking the component from the f state to the
SR_f state (Start deactivation of feature f). From here, another enforceable
transition will be executed to finalize the deactivation of feature f .

4.3.2.2 Step 3: Coordination Layer Generation

Once the individual behaviour of the generated components is defined, a coor-
dination layer between components has to be fixed. Coordination is applied
through interactions, which are sets of ports that define allowed synchroniza-
tions between components. These interactions are graphically represented by
connectors.
Prerequisites for Coordination Layer Generation

To construct this coordination layer in our approach, two essential prerequisites
are needed:

1. Construction of the Feature Model Dependency Graph GF M :
The construction of the dependency graph GF M is carried out in accordance
with Def. 4.1.3. The dependency graph GF M represents the dependencies
between features in the feature model.

2. Computation of the Strongly Connected Components (SCCs):
The subsequent step involves computing the SCCs from the dependency graph
GF M . These SCCs constitute sets of features with interdependencies, embody-
ing features that are mutually reliant.

A key characteristic of Strongly Connected Components (SCCs) is their
ability to identify sets of features that have mutual, bidirectional dependencies.

Example 4.3.3. Consider the case where feature A requires feature B, and
feature B also requires feature A. In this scenario, features A and B would

56 Automatic Generation of Component-based Run-time Variability Models

form an SCC, as they have a mutual dependency on each other. This means
that if feature A is selected, feature B must also be selected, and vice versa.
There cannot be a valid configuration that includes only A or only B due to
their interdependency.

On the other hand, if there is a one-way dependency, such as feature A
requiring feature B, but not the other way around, then feature B could be
included in a configuration without feature A however feature A to be in the
configuration it requires feature B in the configuration. This is because the
dependency is unidirectional, rather than a mutual, interdependent relationship
captured by an SCC.

For this reason, and to capture the dependencies and interdependencies
between the features, we compute the SCCs that will be used to create the
coordination layer in our approach.

In the context of the feature model depicted in Figure 4.5, the subsequent
generation of the directed graph, is presented in Figure 4.6. For the illustration
purposes, in this graph representation:

• Blue arrows depict require constraints, where the selection of one feature
necessitates the inclusion of another feature due to a dependency.

• Green arrows indicate mandatory child features that must be included if
their respective parent feature is selected.

• Pink arrows represent parent-child hierarchical relationships among fea-
tures in the feature model.

Figure 4.5: An example feature model.

4.3 Feco4Reco: A Framework 57

Figure 4.6: Directed dependency graph generated from the feature model in
Fig. 4.5.

Subsequent to the graph generation, the computation of the SCCs from
the constructed directed graph GF M ensues, as depicted in Figure 4.7. For
example, consider SCC1, containing both the App and Region features. The
interdependence between these features mandates their simultaneous activation
and deactivation. Activating solely the App feature, without considering
the presence of Region, would not respect the underlying dependencies. In
addition, SCC4 encompasses the Guru301 feature, which relies on the App and
US features for its activation, which means that the Guru301 feature can be
activated after the activation of App and US features.

Figure 4.7: Extracted SCCs from GF M .

In the following subsections, we will present the require and accept macros
for the enforceable ports of the CBRTVM components. These macros specify
the coordination between the components.

58 Automatic Generation of Component-based Run-time Variability Models

Each component corresponding to a feature f has four enforceable ports:
selected, not_selected, activate, and deactivate as presented in Fig 4.4.
We will show how the require and accept macros are constructed for these ports.
For the activate ports, we will refer to the require and accept macros as the
activation macros. Similarly, the require and accept macros for the deactivate
ports will be called the deactivation macros’.

Activation Macros Generation

Before delving into the activation macros, it is important to mention that in our
work, we treat XOR-groups (also known as alternative groups) in feature models
as OR-groups with additional mutual exclusion constraints added between the
child features. Although an XOR-group allows only one of its child features to
be selected, it is semantically represented as an OR-group with the constraint
that the child features are mutually exclusive to each other. To enforce this
mutual exclusion, we extend the feature model by adding pairwise exclude
constraints between all the child features of the XOR-group.

The activation macros for feature f are formulated by considering its
relationships within the feature model structure. These macros are created
using three key components:

• Strongly Connected Component (SCC f): This represents a group
of interdependent features, including f . For the activate port of the
component corresponding to feature f , the require macro will include all
the activate ports of the features in SCC f \ f . This ensures that all the
features in the same strongly connected component are activated together
due to their interdependencies.

• Dependency Set (E(f)): This set encompasses the features that f
relies on for its proper functionality. The require macro for the activate
port of the component corresponding to f will include the selected
ports of all components that correspond to features in E(f)\SCC f . This
ensures that the activate port cannot be executed unless all the features
that f depends on are already active.

• Mutual Exclusion Set (χ(f)): This set consists of features that cannot
be active at the same time as f due to the exclude constraints. The
require macro for the activate port of the component corresponding
to f will include the not_selected ports of all the components that
correspond to features in χ(f). This ensures that the activate port cannot
be executed if any of the features that are mutually exclusive with f are
active.

4.3 Feco4Reco: A Framework 59

The activation macros are defined in equations 4.3 to 4.6.

Equation 4.3 states that firing port activatef requires firing three groups
of ports at the same time: 1) activate ports of features in SCC f except f , 2)
selected ports of features that f depends on outside SCC f , and 3) not_selected
ports of features that f excludes.

requires
(
enc(nf).activatef

)
def= {enc(nf ′).activatef ′ | f ′ ∈ SCCf \ {f}}

∪ {enc(nf ′).selectedf ′ | f ′ ∈ E(f) \ SCCf } ∪ {enc(nf ′).not_selectedf ′ | f ′ ∈ χ(f)} .
(4.3)

Equation 4.4 states that the required ports of port activatef are also the
accepted ones:

accepts
(
enc(nf).activatef

)
def= {enc(nf ′).activatef ′ | f ′ ∈ SCCf \ {f}}∪

{enc(nf ′).selectedf ′ | f ′ ∈ E(f) \ SCCf } ∪ {enc(nf ′).not_selectedf ′ | f ′ ∈ χ(f)} .
(4.4)

Similarly, for every feature f ′ ∈ E(f),

requires
(
enc(nf ′).selectedf ′

)
def= ∅

accepts
(
enc(nf ′).selectedf ′

)
def= {enc(nf ′′).activatef ′′ | f ′′ ∈ SCCf }∪

{enc(nf ′′).selectedf ′′ | f ′′ ∈ E(f) \ {SCCf , f
′}} ∪ {enc(nf ′′).not_selectedf ′′ | f ′′ ∈ χ(f)} .

(4.5)

For every feature f ′ ∈ χ(f),

requires
(
enc(nf ′).not_selectedf ′

)
def= ∅

accepts
(
enc(nf ′).not_selectedf ′

)
def= {enc(nf ′′).activatef ′′ | f ′′ ∈ SCCf }∪

{enc(nf ′′).selectedf ′′ | f ′′ ∈ E(f) \ SCCf } ∪ {enc(nf ′′).not_selectedf ′′ | f ′′ ∈ χ(f) \ {f ′}} .
(4.6)

The creation of these activation macros ensures that the dependencies,
exclusions, and interdependencies defined in the feature model are enforced
during the execution of the activate ports. Furthermore, in Section 4.4, we
present the theoretical results that show the composed CBRTVM models are
correct by construction and reconfigurations are carried out in a safe manner
such that only partial-valid configurations can be reached as a result of any
reconfiguration.

60 Automatic Generation of Component-based Run-time Variability Models

Deactivation Macros Generation

Given the construction of the macros for activation, the corresponding deacti-
vation connectors can be derived by reversing the activation. In other words,
the process of deactivating a feature f is symmetrical to the activation process,
where the reverse operation of activation is deactivation, and selected becomes
not_selected of E−1(f) set extracted from the transpose graph G−1

F M .

requires
(
enc(nf).deactivatef

)
def= {enc(nf ′).deactivatef ′ | f ′ ∈ SCCf \ {f}}

∪
{
enc(nf ′).not_selectedf ′ | f ′ ∈ E−1(f) \ SCCf

}
.

accepts
(
enc(nf).deactivatef

)
def= {enc(nf ′).deactivatef ′ | f ′ ∈ SCCf \ {f}}

∪
{
enc(nf ′).not_selectedf ′ | f ′ ∈ E−1(f) \ SCCf

}
.

(4.7)
For every feature f ′ ∈ E−1(f),

requires
(
enc(nf ′).not_selectedf ′

)
def= ∅

accepts
(
enc(nf ′).not_selectedf ′

)
def= {enc(nf ′′).deactivatef ′′ | f ′′ ∈ SCCf }

∪
{
enc(nf ′′).not_selectedf ′′ | f ′′ ∈ E−1(f) \ {SCCf , f

′}
}
.

(4.8)
Notice that the exclude constraints are not considered because they only

affect the activation of features, not their deactivation. The exclude constraints
ensure that certain features cannot be active at the same time. However, when
a feature is being deactivated, the exclude constraints do not play a role, as
the deactivation of a feature does not depend on the activation state of the
features it excludes.

Example 4.3.4. Based on the feature model presented in Fig. 4.8, the co-
ordination layer macros were generated. To illustrate this step, let us con-
sider Algolia_real_time_search feature, which forms a singleton strongly
connected component (SCC) in the dependency graph G generated from the
feature model presented in Fig. 4.8. The SCC has only one dependency:
Messaging_and_queuing is the parent of Algolia_real_time_search fea-
ture. Moreover, Algolia_real_time_search is not mutually exclusive with
any other features in the model. Using this information, the macro for the
activation of Algolia_real_time_search feature is created as discussed in
Sect.4.3.2.2, which is represented graphically by Connector C1. This connector
synchronises activatef port of Algolia_real_time_search component with
selectedf port of its parent Messaging_and_queuing component. Intuitively,

4.3 Feco4Reco: A Framework 61

C1 C2 C3

C5

Transformation

Algolia_real_time_search

 s
n

a
d

ACK_Foundry

 s
n

a
d

Guru301

 s
n

a
d

Pucher_channels

 s
n

a
d

Messaging_and_queueing

 s
n

a
d

C4

Figure 4.8: Part of the generated CBVM for the Heroku cloud FM: The
behaviour of all the components is the same as shown in Fig. 4.4. For the sake
of clarity, we shorten the names of the ports to the first letter.

this ensures that the configuration with Algolia_real_time_search can be
reached only when its dependencies are satisfied.

Similarly, consider the deactivation of Messaging_and_queuing feature,
which forms a singleton strongly connected component (SCC) in the G−1, and it
has four dependencies with its sub-features. Using this information, the macro
for the deactivation of Messaging_and_queuing feature is created as discussed
in Sect. 4.3.2.2 which is represented graphically by Connector C5. Connector
C5 synchronizes port deactivatef of component Messaging_and_queuing with
all ports not_selectedf of its sub-features. Intuitively, this ensures that the
parent can be deactivated only when all its sub-features are in inactive states.

Proposition 4.3.1. Given a CBRTVM, for each interaction e allowed by
Eqs. (4.3–4.8), exactly one of the sets {f ∈ F | enc(nf).activatef ∈ e} and
{f ∈ F | enc(nf).deactivatef ∈ e} is not empty. Furthermore, that set is an
SCC of the dependency graph.

62 Automatic Generation of Component-based Run-time Variability Models

In other words, given a CBRTVM, each interaction is either a feature activa-
tion or deactivation, which involves a strongly connected component in the
dependency graph.

Proof. Follows trivially from Eqs. (4.3–4.8).

4.3.3 Stage 3: CBRTVM Integration
Stage 3, encompassing the integration of the CBRTVM into real-world case
scenarios and its practical evaluation, will be covered in Chapter 6. In chapter 6
we will show how the generated CBRTVMs are integrated into practical appli-
cations and will discuss the results obtained from evaluating its performance in
real-case scenarios.

Until now, we have demonstrated the FeCo4Reco transformation process
for generating the CBRTVM from a feature model. In the next section, we will
prove the properties about the reachable states in the generated CBRTVM.

4.4 Preserving Feature Model Semantics in
CBRTVM

After having performed all the steps, the encoding process presented in Fig. 4.3
terminates. Indeed, at every step, the designed rules deal with finite sets of
features, constraints, nodes, components, and connectors. It is easy to establish
that the FM semantics in terms of feature configurations [122] is preserved from
the FM to the CBRTVM by applying the encoding process, as the dependency
graph issued from the feature model is used.

Since the CBRTVM is a JavaBIP model, it inherits the operational se-
mantics of JavaBIP [28]. Notice that all interactions among enforceable ports
correspond to either the activation of features (Eqs. (4.3–4.6)) or their deac-
tivation (Eqs. (4.7) and (4.8)). Requesting individual feature activation or
deactivation is done through notifications on spontaneous ports.

By construction, the operational semantics of the CBRTVM is represented
by an LTS, whose states are implicitly described configurations with selected
features, and whose transitions are labeled by interactions. Performing inter-
actions leads to a configuration change, i.e., reconfigurations, and this section
describes the properties of the reached states in the CBRTVM.

The reachable states in the CBRTVM correspond to configurations in the
feature model. To reason about the properties of these reachable states, we will
present a definition of the mapping function that links a state to a configuration,
as defined in Definition 4.4.1.

4.4 Preserving Feature Model Semantics in CBRTVM 63

Definition 4.4.1 (Mapping Function). Let L = (Q,Σ,→) be the LTS of a
JavaBIP model CM generated using from FM using the FeCo4Reco transfor-
mation process. Let ψ : Q 7→ 2F be the mapping from a state q = (sf1 , . . . , sfn)
in Q to a configuration Φ = {f1, . . . , fn} ⊆ F of FM defined by:

ψ(q) = {M(sf1), . . . ,M(sfn)}

where for every 0 ≤ i ≤ n, M(sfi
) is defined by:

M(sfi
) =

f̄i if sfi
= init or sfi

= S-f
fi otherwise

Intuitively, the M function encodes a component state sfi
into either the

presence or the absence of feature fi in configuration Φ. Specifically:

• if sfi
is the initial state (init) or the requested state (S-f), then feature

fi is marked as absent (f̄i);

• otherwise, M maps sfi
to fi being present in configuration Φ.

We abuse notation and say that a configuration Φ in the feature model is
reachable in the CBRTVM if ψ(Φ) is reachable in the LTS of the CBRTVM.

Proposition 4.4.1. Any state reachable in the CBRTVM corresponds to a
saturated partial-valid configuration.

Proof. We proceed by induction.
Base case: the empty configuration trivially respects all dependencies and,

by Assumption 4.1.1, can be completed to a valid configuration.
Induction hypothesis: if all configurations of size ≤ n reachable in the

CBRTVM are saturated partial-valid then that is also the case for configurations
of size n+ 1.

Induction step: Let Φ be a reachable configuration of size n+ 1. There
is a reachable configuration Φ′ ⊊ Φ and a transition Φ′ e−→ Φ with e and
interaction allowed by Eqs. (4.3–4.6). Clearly, |Φ′| ≤ n. Hence, by the
induction hypothesis, Φ′ is a saturated partial-valid configuration. Let C =
{f ∈ F | enc(nf).activatef ∈ e}. By Proposition 4.3.1 and the fact that Φ′ ⊊ Φ,
C is an SCC of the dependency graph. By Eqs. (4.3–4.6), the dependencies of all
features in C are satisfied. Hence Φ is saturated. Furthermore, also by Eqs. (4.3–
4.6), the activation of C cannot violate any exclusion constraints. Hence Φ is
free from internal conflict and, by Assumption 4.1.1, it is partial-valid.

64 Automatic Generation of Component-based Run-time Variability Models

Lemma 4.4.1. Let Φ ⊆ F be a saturated partial-valid configuration. Let C be
an SCC of the dependency graph. Then either C ⊆ Φ or C ⊆ F \ Φ.

Proof. Suppose that C ⊆ F is an SCC, such that both Φ ∩ C ̸= ∅ and
(F \ Φ) ∩ C ≠ ∅. Then there exists an edge (f, f ′) ∈ C, such that f ∈ Φ and
f ′ ̸∈ Φ, contradicting the assumption that Φ is saturated. Indeed, by Def. 4.1.4,
we have f ′ ∈ E(f) ⊆ Φ.

Proposition 4.4.2. Let Φ ⊂ Φ′ be two saturated partial-valid configurations.
Assume ψ(Φ) is the current state of the CBRTVM. Then the operation of
requesting the activation of all features in Φ′ \Φ is confluent and terminates in
the configuration Φ′.

Proof. Observe that requesting the activation of features is performed by
sending event notifications to spontaneous ports. Since components defined in
Section 4.3.2.1 do not have conflicts among transitions labelled by spontaneous
ports, such requests are fully independent.

Since Φ′ is saturated partial-valid, it respects all dependencies and is free
from internal conflict. By Lemma 4.4.1, there exist SCC C1, . . . , Ck, such that
Φ′ \ Φ = ⋃k

i=1 Ci. We continue the proof by induction on k.
Base case: k = 1, i.e., Φ′ \ Φ is an SCC. By Eqs. (4.3–4.6), the features in

Φ′ \ Φ can only be activated as one interaction. By observing the behaviour
of components defined in Section 4.3.2.1 it is clear that this interaction can
only be executed after the execution (in any order) of all spontaneous ports
corresponding to the requests of these features. Thus, there is only one execution
path possible and it leads to Φ′.

Induction hypothesis: If the statement of the proposition holds for all Φ
and Φ′ such that Φ′ \Φ is the union of k − 1 SCCs, then it also holds for those
with k SCCs.

Induction step: By Eqs. (4.3–4.6), the activation of SCCs must respect a
topological ordering of the DAG obtained by factoring the dependency graph
by its SCCs. W.l.g. assume that 1, . . . , k is a sub-sequence of one such ordering,
i.e., features from an SCC Ci depend only on those from SCCs Cj with j < i.
Then, for all l ∈ [1, k], the configuration Φ ∪ ⋃l

i=1 Cl is saturated partial-
valid. Applying the base case and the induction hypothesis to Φ ∪ C1 and Φ′

and noticing that we did not put any restrictions on the topological ordering
concludes the proof.

Corollary 4.4.1. For any reachable state in the CBRTVM, there exists a
reachable state that corresponds to a valid configuration.

4.4 Preserving Feature Model Semantics in CBRTVM 65

Proof. Let Φ be a reachable configuration. By Proposition 4.4.1, it is saturated
partial-valid. Hence, there exists a valid configuration Φ′ ⊇ Φ. Applying
Proposition 4.4.2 to Φ and Φ′ proves the corollary.

Corollary 4.4.2. Any saturated partial-valid configuration is reachable in the
CBRTVM.

Proof. Let Φ be a saturated partial-valid configuration. Applying Proposi-
tion 4.4.2 to ∅ and Φ shows that it is reachable.

Lemma 4.4.2. Any synchronized activation of a set of features can be reversed
by the corresponding synchronized deactivation of the same features.

Proof. The SCCs of GF M and its transpose are identical by definition. The
transposition of GF M is used because deactivating a feature requires all depen-
dent features to be inactive, which is the opposite of the activation process.
This symmetry enables the symmetric derivation of macros for deactivation
interactions, as shown in Eqs. 4.7–4.8 in Sect. 4.3.2.2.

Lemma 4.4.3. Let Φ and Φ′ be two saturated partial-valid configurations.
Then Φ ∩ Φ′ is a saturated partial-valid configuration.

Proof. Consider any feature f ∈ Φ ∩ Φ′. Since both Φ and Φ′ are saturated
partial-valid, we have E(f) ⊆ Φ and E(f) ⊆ ∩Φ′ by Def 4.1.4. Thus, E(f) ⊆
Φ∩Φ′, i.e., Φ∩Φ′ is saturated. Furthermore, since Φ and Φ′ do not violate any
exclusion constraints then Φ ∩ Φ′ does not violate any exclusion constraints.
Hence Φ ∩ Φ′ is free from internal conflict and, by Assumption 4.1.1, it is
partial-valid.

Proposition 4.4.3. Let Φ and Φ′ be two saturated partial-valid configurations.
Assume ψ(Φ) is the current state in the CBRTVM. Then the configuration
Φ′ can be reached by deactivating all and only those features in Φ \ Φ′, then
activating all and only those features in Φ′ \ Φ.

Proof. By Lemma 4.4.3, Φ∩Φ′ is a saturated partial-valid configuration. Hence,
by Prop. 4.4.2, Φ can be reached from Φ ∩ Φ′ by requesting the activation
of all features in Φ \ (Φ ∩ Φ′) = Φ \ Φ′. By Lemma 4.4.2, this implies that
Φ ∩ Φ′ can be reached from Φ by requesting the deactivation of all features in
Φ \ Φ′. Similarly to the above, Φ′ can be reached from Φ ∩ Φ′ by requesting
the activation of all features in Φ′ \ (Φ ∩ Φ′) = Φ′ \ Φ.

66 Automatic Generation of Component-based Run-time Variability Models

Figure 4.9: Part of the CBRTVM generated for the feature model presented in
Fig. 4.5.

Based on all the theoretical results, the CBRTVM ensures safe reconfigura-
tion management for software systems. The CBRTVM provides the capability
to perform reconfigurations without the need to compute a path. The coor-
dination layer, which is built based on the dependency graph of the feature
model by Def. 4.1.3, ensures that the activation or deactivation of a feature
occurs in the correct order and only if it is feasible to execute. Additionally, if
the interaction of activation or deactivation of a feature is not possible from
the current configuration, it will not be executed thus it will be on hold until it
can be executed.

Example 4.4.1. Building on Example 4.3.1, let us consider the scenario where
we need to move the system from configuration
α1 = {Heroku_Application, Process_type, Dyno, Free, Region, US, Add_ons,
Messaging_and_queuing, Guru301}
to
α2 = {Heroku_Application, Process_type, Dyno, Free, Region, EU}
by changing the region from US to EU and deactivating the Guru301 service.

Fig. 4.9 illustrates the three components Guru301, EU, and US. These com-
ponents are in the Guru301, init, and US states, respectively. Two con-
nectors, C1 and C2, are represented. Connector C1 indicates that the port
deactivate_f can be executed only in synchronization with the not_selected

4.4 Preserving Feature Model Semantics in CBRTVM 67

port of the Guru301 component. Connector C2 indicates that the activation
of the activate port of the EU component requires synchronization with the
not_selected port of the US component due to the mutual exclusion constraint
between the US and the EU components. As we provide part of the CBRTVM,
we ignore the other endpoints of the connectors, and this is represented by the
dashed lines on the connectors.

Assume the three spontaneous events are triggered by activation of the EU ,
deactivation of US and deactivation of Guru301 from the α1 state. There are
six possible reconfiguration paths, as shown in Table 4.1, that can be taken to
move the system from configuration α1 to α2. The CBRTVM can receive the
reconfiguration request in any order, however, not all reconfiguration paths are
valid, as certain interactions can only occur in specific states.

Assume a deactivation request for the US region is received while the system
is in configuration α1. In this case, the US component will receive the spon-
taneous request and transition to the SR_f state. However, the deactivation
port (deactivate_f) of the US region cannot be executed immediately because
the deactivation requires synchronization with the not_selected port of the
Guru301 component, which is still active and in the Guru301 state. In this
state, the not_selected port is not enabled. Consequently, the deactivation
of the US region cannot proceed from the current configuration α1, and the
US component will remain in the SR_f state until the Guru301 component is
deactivated.

The only interaction possible from configuration α1 is the deactivation of
Guru301 feature, as none of the other features depend on it. Once Guru301
feature is deactivated, the US region feature can be deactivated since it requires
synchronization with the not_selected port of Guru301 component, which
is already deactivated (component Guru301 is in the init state where port
not_selected is enabled). Therefore, the interaction for deallocating resources
from the US region can be executed in synchronization with the not_selected
of the component Guru301. Finally, the activation of the EU feature can only be
executed from the state where the US region is not active since the EU feature is
mutually exclusive with other regions, and its activation should be synchronized
with the "not_selected" ports of other regions. Hence, the interaction for
activating EU can be executed only from a state where the US region is not
active.

Therefore, the order of interactions enforced by the generated CBRTVM is to
first deactivate Guru301, then deactivate US, and finally activate EU. Any other
order can take the system through a not-saturated partial valid intermediate
configuration.

68 Automatic Generation of Component-based Run-time Variability Models

To conclude, notice that the CBRTVM is only generated once without
computing the set of valid configurations. In particular, this means that we
do not have to compute the reconfiguration plan. Furthermore, it drives the
reconfiguration process in a “lazy” manner, by postponing feature (de)activation
until it can be safely executed.

4.5 Conclusion
In this chapter, we presented an automated approach for enforcing by con-
struction the safe reconfiguration behaviour of software products through the
automatic derivation of executable, component-based run-time variability mod-
els (CBRTVMs) from feature models. The CBRTVMs, control the application
behaviour by handling reconfiguration requests and executing them so as to
ensure the saturated partial validity of all reachable configurations without
having to compute, nor validate them at runtime. Our approach ensures the
preservation of feature model semantics and constraint consistency in the gener-
ated models as established in Sect. 4.4. Thus, we answer the research question
RQ1: "How to enforce domain constraints during dynamic reconfiguration at
low cost?". Our approach generates CBRTVMs that enforce domain constraints
encoded in the feature model.

The term Component-Based Run-Time Variability Model (CBRTVM) high-
lights the following facts: 1) the model in question is executable and can be
used at run time to enforce the domain constraints, and 2) the set of valid
configurations is never computed explicitly but is derived from components
representing individual features.

The key threat to the validity of our work lies in Assumption 4.1.1. We
expect this assumption to hold for a large proportion of realistic feature
models. Efficiently verifying or enforcing this assumption in the general case is
challenging [84]. However, we can implement additional heuristics based on
the propagation of exclusion constraints to increase the proportion of feature
models that satisfy the assumption.

Chapter 5

Composing Run-time Variability
Models

Software evolution [42] is the continual development of system software to
extend its own functionality over time by integrating new functionalities not
originally modeled.

To enable modeling a system as it evolves, there must be a means to
integrate sub-models encapsulating new functionality into the original model.
To support such an evolution, component models are expected to be composable
in such a way as to be able to merge two separate models into one model that
encapsulates the modified configuration space.

In this chapter, we will delve into addressing research questions 2 and 3,
which we introduced in Chapter 1:

RQ2 How can we enable compositionality in our approach?

RQ3 How can we ensure that the compositional approach consistently enforces
domain constraints based on the semantics of the composition?

In Chapter 4, we presented an automated model transformation approach
called FeCo4Reco for enforcing safe reconfiguration of software products by
construction. The generated CBRTVMs are represented in the JavaBIP frame-
work [28]. We aim to tackle RQ2 and RQ3 by enabling compositionality in the
FeCo4Reco approach, allowing the composition of multiple CBRTVMs derived
from different feature models (FMs). The ability to compose CBRTVMs is
important, as it enables the construction of complex variability models from
smaller, reusable parts. However, to preserve the semantics and properties
of the original FMs during composition, it is important to use composition
operators with well-defined semantics. To this end, building upon the work
presented in Chapter 4, this chapter introduces a study of novel JavaBIP

70 Composing Run-time Variability Models

Figure 5.1: Overview of Feature and JavaBIP models composition

composition operators that enable our approach to be compositional while
preserving the safety of dynamic reconfiguration. These operators correspond
to the standard FM composition operators: union (∪), intersection (∩), and
strict intersection (∩̇).

By defining JavaBIP composition operators that mirror these FM operators,
we can compose the generated CBRTVMs based on the desired composition
semantics, be it union, intersection, or strict intersection. Figure 5.1 provides
an overview of our compositional approach. Our objective is to define, for each
FM composition operator ◦ ∈ {∪,∩, ∩̇}, a corresponding JavaBIP composition
operator ◦′, such that applying ◦′ to compose CM1 and CM2 yields a composed
model CM ′ whereof the behaviour is equivalent to that of CM .

5.1 Composition of Feature Models
In this chapter, we adopt a denotational logic-based methodology for the
composition of feature models, as outlined in [7]. This methodology encompasses
the following steps:

1. The input feature models FM1 and FM2 are encoded as propositional
formulae ϕF M1 and ϕF M2 respectively.

2. The composition operator is translated into a Boolean logic formula ϕc

representing the composed feature model FM .

3. The feature diagram is then synthesized from ϕc.

5.2 Composition of CBRTVMs 71

We focus on the three composition operators inspired by the ones in [7] and
defined by the following Boolean formulae:

Intersection (∩): ϕ = ϕF M1 ∧ ϕF M2

Strict Intersection (∩̇): ϕ =
(
ϕF M1 ∧ not(F2 \ F1)

)
∧

(
ϕF M2 ∧ not(F1 \ F2)

)
Union (∪): ϕ = ϕF M1 ∨ ϕF M2

where the set of features of the composed feature model is F = F1 ∪ F2, and,
for a given set of features F ′ ⊆ F , we define not(F ′) def= ∧

f∈F ′ ¬f .
Thus, a configuration Φ ⊂ F1 ∪F2 is valid in FM1 ∩FM2 iff Φ∩Fi is valid

in FMi for both i = 1, 2. It is valid in FM1 ∩̇FM2, iff Φ is valid in FM1 and
FM2. Finally, Φ is valid in FM1 ∪FM2 if the constraints for each feature in Φ
are satisfied in either FM1 or FM2. Notice that [[FM1]] ∪ [[FM2]] ⊆ [[FM]]
holds, but [[FM1]] ∪ [[FM2]] = [[FM]] does not necessarily hold.

When synthesizing feature diagrams from Boolean formulas, it is important
to note that a single Boolean formula corresponds to multiple possible feature
model structures. Despite potential differences in dependency graphs, these
varying structures encode the same set of valid configurations. In our work, we
do not restrict the structure of the diagram for a given Boolean formula. Any
algorithm can be used for synthesizing feature models, as long as the diagram
is equivalent to the original formula.

5.2 Composition of CBRTVMs
This section provides a detailed presentation of CBRTVMs and of their compo-
sition. Our approach is structural. Let CM1 and CM2 be two CBRTVMs. To
compose them into CM ′ based on a composition operator ◦′, we take the union
of their component sets, and compose the sets of their coordination macros. This
section first describes the modification of components and macros to enhance
flexibility in the activation and deactivation of features w.r.t. FeCo4Reco [72].
Then, it explains how these macros are composed for each of the composition
operators presented in Section 5.1.

5.2.1 Macros for Composition
In the context of the FeCo4Reco model transformation, for each feature f ,
a corresponding component is generated, denoted as enc(nf) (see Fig. 4.4).
In this Chapter, we slightly alter the transition names for conciseness: we
use af to denote activatef , df for deactivatef , sf for selectedf , and nsf for
not_selectedf . Each state of the generated components represents either the
presence or the absence of the corresponding feature in the configuration.

72 Composing Run-time Variability Models

In the CBRTVM generated, the coordination macros strictly encode de-
pendencies among features. Indeed, the transformation computes the strongly
connected components (SCCs) of the dependency graph and, for each feature
f , defines the corresponding require and accept macros by putting

af Requires af1 , . . . , afm , sf ′
1
, . . . , sf ′

n
, nsf ′′

1
, . . . , nsf ′′

p

af Accepts af1 , . . . , afm , sf ′
1
, . . . , sf ′

n
, nsf ′′

1
, . . . , nsf ′′

p

where, f1, . . . , fm ∈ SCCf \ {f}, f ′
1, . . . , f

′
n ∈ E(f) \ SCCf , and f ′′

1 , . . . , f
′′
p ∈

χ(f).
To introduce greater flexibility in the (de)activation of features within the

model, we modify the original macros while preserving essential properties
proven in Chapter 4. Specifically, any reachable state in the generated JavaBIP
model corresponds to a saturated partial-valid configuration of the feature
model. Conversely, if there exists a valid configuration in the feature model,
it is guaranteed to be reachable in the JavaBIP model. The statements and
proofs of these results follow the proofs of the results presented in Chapter 4.

Definition 5.2.1. (Macros for Composition) The macros for composition are
defined by:

af Requires (af1 ; sf1), . . . , (afm ; sfm), (sf ′
1
; af ′

1
), . . . , (sf ′

n
; af ′

n
), nsf ′′

1
, . . . , nsf ′′

p

af Accepts af1 , sf1 , . . . , afm , sfm , sf ′
1
, af ′

1
, . . . , sf ′

n
, af ′

n
, nsf ′′

1
, . . . , nsf ′′

p
, ...

where the semicolon in parentheses denotes disjunction (logical OR), whereas
the comma denotes conjunction (logical AND).

Note that the dots in the Accept macros represent ports added after the
saturation of the Accept macros, which is important since Accept macros
are used to specify the list of all ports that are allowed to synchronize with
the given port, as presented in Section 2.4. The need for saturation arises
from the fact that the Require macros are transitive. Without saturation of
the Accept macros, some transitively required ports in the Require macros
may be excluded from the Accepts macros, leading to the restriction of those
interactions. More details about the saturation process of the Accept macros,
will be presented later in Section 5.2.3.

Example 5.2.1. Consider the dependency graph in Fig. 5.2. In the con-
text of SCC2 depending on SCC1, the modified macros for the activation
ports of the components corresponding to features in SCC2 are of the form:
aC Requires (aA; sA), (aB; sB) and aC Accepts aA, sA, aB, sB. It states that

5.2 Composition of CBRTVMs 73

Figure 5.2: Example of a dependency graph

the ac port can be synchronized with both aA and aB ports (allowing SCC2 to
be activated together with SCC1), or with either sA or sB (allowing SCC2 to
be activated after SCC1).

Let GF M = (F,E) be the feature model dependency graph and let G′ =
(V ′, E ′) be the directed acyclic graph (DAG) obtained by factoring GF M by its
strongly connected components. The dependency relation ≺ on V ′ is defined
as s1 ≺ s2 if (s2, s1) ∈ E ′. We say that s2 depends on s1.

The above modifications of the macros allow (de)activation of SCCs within
the same transition as those they depend on. Definition 5.2.1 ensures that the
SCC activation still respects the dependency graph. Furthermore, the results
in Chapter 4 still hold.

5.2.2 Composing Requires Macros
As mentioned in the opening of Sect. 5.2, the composition of CBRTVMs is
structural: composition operators are defined on the sets of macros. Let us
consider two sets of Requires macros, denoted ρ1 and ρ2. A new set ρ of
Requires macros will be obtained in relation with operator ◦′ ∈ {∪,∩, ∩̇}.

Definition 5.2.2. (Composition Operators) Let ρ1 and ρ2 be two sets of
Requires macros. We define the following composition operators:

• Intersection (∩):

ρ1 ∩ ρ2
def= {x Requires L1 , L2 | (x Requires L1) ∈ ρ1 and (x Requires L2) ∈ ρ2} ∪
{(x Requires L) ∈ ρ1 |x ∈ P1 \ P2} ∪ {(x Requires L) ∈ ρ2 |x ∈ P2 \ P1}

• Strict Intersection (∩̇): ρ1 ∩̇ ρ2
def= ρ1 ∩ ρ2, where, for i ∈ 1, 2,

ρi
def= ρi ∪ {x Requires false |x ∈ P3−i \ Pi} .

74 Composing Run-time Variability Models

(A port that requires false will never be executed, as explained in Sec-
tion 2.4.)

• Union (∪):

ρ1 ∪ ρ2
def= {x Requires L1 ; L2 | (x Requires L1) ∈ ρ1 and (x Requires L2) ∈ ρ2} ∪
{x Requires true |x ∈ P1 \ P2} ∪ {x Requires true |x ∈ P2 \ P1}

(A port that has a “Requires true” can be executed as a singleton, as
explained in Section 2.4.)

5.2.3 Saturation Process for Accepts Macros
The composition of Accepts macros is independent of the composition operator
used. For two sets of macros α1 and α2, it is defined as the saturation of the
set:

{x Accepts L1 , L2 | (x Accepts L1) ∈ α1 and (x Accepts L2) ∈ α2}
∪ {x Accepts L1 |x ∈ P1 \ P2} ∪ {x Accepts L2 |x ∈ P2 \ P1} .

Notice that, without saturation, ports required for interaction may be
excluded from the Accepts macros. For instance, consider a scenario where
port x requires port y (i.e. x Requires y), and port y requires port z (i.e.
y Requires z). If the Accept macro for x only contains y (i.e. x Accepts y)
after composition, then port z will be excluded (cf. Sect 2.4). However, based
on the Requires macros, x transitively requires z since y Requires z. To
address this, saturation expands the right-hand side of each Accepts macro to
include all ports required for interaction. In the example, it would add z to
the Accepts macro for x, ensuring x accepts all necessary ports.

Let α = {a1, a2, ..., an} represent the set of Accepts macros, where each
macro is denoted as ai : xi Accepts Li. We perform a saturation on α, which
systematically iterates over each Accepts macro ai ∈ α, initializing the right-
hand side rhsi with Li. It then expands rhsi by conjoining additional ports
from other Accepts macros that can interact with ports currently in rhsi. This
iteration continues until rhsi stabilizes.

The resulting set α contains saturated Accepts macros, where the right-hand
side of each macro encompasses all ports across composed interactions. This
ensures the Accepts macros handle all relevant ports involved in potential
interactions.

5.2.4 Composition Operators on JavaBIP models

5.3 A Bisimulation for Correctness and Compositionality Results 75

Definition 5.2.3. (Composition) Let CM1 = (C1, ρ1, α1) and CM2 = (C2, ρ2, α2)
be JavaBIP models as defined in Sect. 2.4. Their composition by ◦′ ∈ {∪,∩, ∩̇}
is the JavaBIP model CM ′ = (C’, ρ′, α′) where:

• C’ = C1 ∪ C2 is the union of their components,

• ρ′ is the composed require macros, i.e. ρ′ = ρ1◦′ρ2 as defined in Sect 5.2.2,

• α′ is the saturated accept macros as defined in Sect 5.2.3.

Note that, when these composition operators are applied to CBRTVMs,
the resulting models can be optimised. In the process of synthesizing a feature
diagram from a Boolean formula in feature modelling [7], dead features can
be identified and removed as they cannot be part of any valid configuration
of FM . This goes beyond the scope of this chapter, it is worth noting that
the composed CBRTVM can be similarly optimised when a (sub)set of dead
features is known. When composing the JavaBIP models CM ′ = CM1 ◦′ CM2,
the component set is defined as the union C ′ = C1 ∪ C2 (see Sect. 5.2.4).
Consequently, C ′ may contain components corresponding to dead features that
may be excluded when synthesizing the composed feature model FM . To that
end, CM ′ can also be modified by removing all such components corresponding
to dead features. In addition, macros should be refined by removing ports
associated with components corresponding to dead features. Ports that are on
the left-hand side of a macro, e.g. pf Requires L1, should be removed. For
ports that appear on the right-hand side of a macro, e.g. pf ′ Requires L1 with
af ∈ L1, the list L1 can be replaced by false, since at least one of the ports
required to fire p′

f (the one corresponding to the dead feature) will never be
enabled. For accept macros, ports linked to dead features are simply removed.

5.3 A Bisimulation for Correctness and Com-
positionality Results

In the context of FMs, various structures can be synthesized from the same
Boolean formula, leading to differing saturated partial-valid configurations.
However, the set of valid configurations is the same. On their side, two
CBRTVMs generated from a FM have the same set of valid configurations
reachable from the initial configuration, but they may have different paths
and intermediate states to reach the valid configuration. To deal with such a
situation, we consider paths in the LTSs, rather than single transitions.

Bisimulation is a binary relation commonly used in Concurrency Theory (e.g.,
[120]) to establish the behavioural equivalence between two transition systems:
whenever one system can execute an action, the same action can be executed by

76 Composing Run-time Variability Models

the other from any equivalent state, and vice versa. Bisimilarity ensures that,
not only the states reachable within the two systems are equivalent but so are
the execution options at every moment. In this section, we propose the notion
of multi-step UP-bisimulation, which extends the concept of bisimulation by
allowing transitions to match over multiple steps.

The multi-step UP-bisimulation is then used to show that the composed
CBRTVMs preserve the semantics of the composed feature models (correct-
ness of the encoding), and the equivalence is the congruence for the defined
composition operators (compositionality of the encoding) on CBRTVMs.

Definition 5.3.1 (P-path). Let L = (Q,P,→), with → ⊆ Q× 2P ×Q, be an
LTS. Let P be a predicate on Q. A P-path in L is a sequence of transitions
q1

l1−→ q2
l2−→ . . .

lk−→ qk+1, such that both P(q1) and P(qk+1) hold. We write
q1

u=⇒
P

qk+1, with u = ⋃k
i=1 li.

Notice that Def. 5.3.1 does not exclude the possibility of P holding on the
intermediate states of a P-path.

Figure 5.3 Figure 5.4

Figure 5.5: Two feature models that have the same set of valid configurations.

Example 5.3.1. Consider the feature models shown in Figures 5.3 and 5.4.
These two feature models have the same set of valid configurations:

1. F1, F3

2. F1, F2, F3

However, they have different sets of saturated partial-valid configurations. This
is because the dependency graphs and the sets of strongly connected components
(SCCs) are not the same, as depicted in Figures 5.6 and 5.7. Trivially, in
Figure 5.7, F1 and F3 form an SCC, while in Figure 5.3, each feature forms an
SCC by itself. Even though the set of valid configurations is the same for the
two feature models, their different structures lead to different sets of saturated
partial-valid configurations.

5.3 A Bisimulation for Correctness and Compositionality Results 77

Figure 5.6 Figure 5.7

We now introduce the notion of the multi-step UP-bisimulation, which
allows us to compare behaviors of two LTSs (Labeled Transition Systems)
with respect to states that satisfy a given predicate. It tolerates violations
of interaction atomicity, meaning that a single transition in one LTS can be
matched by multiple transitions in the other LTS, as long as the resulting sets
of observable actions (those not part of the unobservable ports U) coincide.

Definition 5.3.2 (Multi-step UP-Bisimulation). Let Li = (Qi, Pi,→i), with
i = 1, 2 and →i ⊆ Qi × 2P ×Qi be two LTSs. Let P be a predicate on Q1 ∪Q2.
Let U ⊆ P1 ∪ P2 be a set of unobservable ports, such that P1 \ U = P2 \ U . A
relation R ⊆ Q1 ×Q2 is a multi-step UP-bisimulation if, for all (q1, q2) ∈ R,
hold the following two conditions:

• for any q1
u1=⇒
P

q′
1, there exists q2

u2=⇒
P

q′
2, such that (q′

1, q
′
2) ∈ R and

u1 \ U = u2 \ U ,

• and symmetrically for any q2
u2=⇒
P

q′
2 in L2.

Notice that, in the classical setting, when transition labels are singleton, i.e.
→ ⊆ Q ×

{
{p} | p ∈ P

}
× Q with P = P1 = P2, multi-step UP-bisimulation

reduces to the classical bisimulation by taking P = true and U = ∅.

Definition 5.3.3 (Multi-step UP-bisimilarity). Given two JavaBIP models
JB1 and JB2, a predicate P on their states and a set of unobservable ports U ,
we say that they are multi-step UP-bisimilar, denoted JB1 ≃UP JB2, if there
exists a multi-step UP-bisimilation relating the initial states of their semantic
LTSs.

Let FM1 and FM2 be two feature models, ◦ ∈ {∪,∩, ∩̇}, CM and CM ′ be
the CBRTVMs derived as in Fig. 5.1 with F and F ′ their respective sets of

78 Composing Run-time Variability Models

features. We are interested in comparing the configurations reached by the two
models. Thus, we want to observe what features are activated or deactivated
following given activation or deactivation requests.

Notice that, while F ⊆ F ′ = F1 ∪ F2 by construction, it is possible that
F ⊊ F ′, since dead features may be eliminated in FM1 ◦ FM2.

In this context, we define the set of unobservable ports to be (see Fig. 4.4)

U def= {selectedf , not_selectedf | f ∈ F ′} ∪ {S-f, SR-f | f ∈ F ′ \ F} .

Since the notion of a saturated partial-valid configuration is specific to any
given feature model, to establish equivalence of two CBRTVMs, we have to
limit our consideration to valid configurations only. Thus we take P to be
the predicate, such that P(q) evaluates to true exactly when ψ(q) is a valid
configuration of the composed feature model FM1 ◦ FM2 (c.f. Fig. 5.1).

To prove the correctness of the composition operators’ encodings, we have
to show that, for any FM1 and FM2, holds CM ≃UP CM ′.

The following lemmas and corollaries presented in this section are used
to prove the main results in this chapter, namely Proposition 5.3.1, for the
intersection, union, and strict intersection operators.

Lemma 5.3.1. Let ψ(q) be a configuration in FM and q u−→ q′ be a transition
in LCM corresponding to a spontaneous event, i.e. u = {S-f} or u = {SR-f}
for some feature f . Then ψ(q) = ψ(q′).

Proof. As detailed in the operational semantics of CM in Section 2.4, state q
in LCM contains a state from the enc(nf) component, denoted as sf , where
sf is the component’s current active state which can be init, S-f, SR-f, or f
as shown in Fig.4.4. By Def. 4.4.1, a spontaneous transition of label S-f in
component enc(nf) is from state init to state S-f . Both states init and S-f are
mapped to the absence of feature f , denoted as f̄ , in configuration ψ(q). The
same applies for transition SR-f . Therefore, a spontaneous transition does not
modify the feature configuration. Then ψ(q′) = ψ(q).

Lemma 5.3.2. Let FM be the composed feature model from FM1 and FM2

using intersection operator such that ϕfm = ϕF M1 ∧ϕF M2. A valid configuration
Φ ∈ [[FM]] iff Φ ∩ Fi ∈ [[FMi]] for i = 1,2.

Proof.

Φ |= ϕF M ⇒ Φ |= (ϕF M1 ∧ ϕF M2) (by definition of ϕF M)
⇒ Φ |= ϕF M1 ∧ Φ |= ϕF M2 (semantics of ∧)

5.3 A Bisimulation for Correctness and Compositionality Results 79

Applying the configuration to only the relevant features:

Φ ∩ F1 |= ϕF M1

Φ ∩ F2 |= ϕF M2

Similarly, the reverse direction can be shown using the semantics of the con-
junction operator.

Corollary 5.3.1. Let F1, F2 be the feature sets of FM1 and FM2 respectively.
Let FM be a feature model such that ϕF M = ϕF M1 ∧ ϕF M2. If Φ ∈ [[FM]]
then Φ1 = F1 ∩ Φ and Φ2 = F2 ∩ Φ are valid in respectively FM1 and FM2,
and Φ = Φ1 ∪ Φ2.

Proof. By Lemma 5.3.2, given that Φ is a valid configuration in FM , it follows
that Φ ∩ Fi is a valid configuration in FMi for i = 1, 2. Building on this, the
corollary comes from:

Φ1 ∪ Φ2 = (F1 ∩ Φ) ∪ (F2 ∩ Φ) = (F1 ∪ F2) ∩ Φ = Φ

Lemma 5.3.3. Let FM be the composed feature model from FM1 and FM2

using intersection operator (◦ = ∩). For any valid configuration Φ′ in FM and
any feature f ∈ Φ′, it holds that SCCGF M1

(f) ∪ SCCGF M2
(f) ⊆ Φ′.

Proof. Let f ∈ Φ′. By Lemma 5.3.2, since Φ′ ∈ [[FM]], it follows that Φ′∩F1 ∈
[[FM1]] and Φ′ ∩ F2 ∈ [[FM2]] where F1, F2 are the feature sets of FM1, FM2

respectively. In particular, SCCGF M1
(f) ⊆ Φ′ ∩F1 and SCCGF M2

(f) ⊆ Φ′ ∩F2.
It follows that SCCGF M1

(f) ⊆ Φ′ and SCCGF M2
(f) ⊆ Φ′. Taking the union on

both sides proves the claim that SCCGF M1
(f) ∪ SCCGF M2

(f) ⊆ Φ′.

Lemma 5.3.4. Let FM be the composed feature model from FM1 and FM2

using ◦ = ∩ operator. For any valid configuration Φ′ ∈ [[FM]] and a feature
f ∈ Φ′, it holds that E(f) ⊆ Φ′ where E(f) = EGF M1

(f) ∪ EGF M2
(f).

Proof. Given ϕF M = ϕF M1 ∧ϕF M2 . Since Φ′ |= ϕF M , Φ′ satisfies the constraints
in both FM1 and FM2. This means for any f ∈ Φ′, all dependency relations for
f hold in both models. As E(f) consolidates all such dependencies across the
models, any feature f ′ ∈ E(f) must satisfy the constraints as well. Therefore,
if f ∈ Φ′, then E(f) ⊆ Φ′.

Lemma 5.3.5. Let FM be the composed feature model from FM1 and FM2

using intersection (◦ = ∩) operator. For any valid configuration Φ′ in FM and
any feature f ∈ Φ′, it holds that χGF M1

(f) ∪ χGF M2
(f) ̸⊂ Φ′.

80 Composing Run-time Variability Models

Proof. By Lemma 5.3.2, Φ′ is valid in FM , then Φ′ ∩ Fi is valid in FMi for
i = 1, 2. Since Φ′ ∩ Fi is valid in FMi for i = 1, 2, then χF Mi

(f) ∩ Φ′ = ∅ for
i = 1, 2. Thus, χGF M1

(f) ∪ χGF M2
(f) ̸⊂ Φ′ concludes the proof.

Lemma 5.3.6. Let FM be the composed feature model from FM1 and FM2

using union operator such that ϕfm = ϕF M1 ∨ ϕF M2. A valid configuration
Φ ∈ [[FM]] if Φ ∩ F1 ∈ [[FM1]] or Φ ∩ F2 ∈ [[FM2]] or both.

Proof. Φ is valid configuration in [[FM]], then Φ |= ϕF M . By semantics of
disjunction, this implies Φ |= ϕF M1 or Φ |= ϕF M2 . Applying Φ only to the
relevant feature sets F1 and F2:

Φ ∩ F1 |= ϕF M1 or Φ ∩ F2 |= ϕF M2

Therefore, Φ ∩ Fi is valid in FMi for i = 1 or i = 2 or both.

Lemma 5.3.7. Let FM be the composed feature model from FM1 and FM2

using the union (◦ = ∪) operator. For any valid configuration Φ′ in FM and any
feature f ∈ Φ′, it holds that SCCGF M1

(f) ∪ EGF M1
(f) ⊆ Φ′ or SCCGF M2

(f) ∪
EGF M1

(f) ⊆ Φ′ or both.

Proof. Let f ∈ Φ′. By Lemma 5.3.6, since Φ′ ∈ [[FM]], it follows that
Φ′ ∩ F1 ∈ [[FM1]] or Φ′ ∩ F2 ∈ [[FM2]] where F1, F2 are the feature sets of
FM1, FM2 respectively. Without loss of generality, assume Φ′ ∩ F1 ∈ [[FM1]]].
In particular, this means SCCGF M1

(f) ⊆ Φ′ ∩ F1 and EGF M1
(f) ⊆ Φ′ ∩ F1.

Therefore, SCCGF M1
(f) ⊆ Φ′ and EGF M1

(f) ⊆ Φ′. By similar reasoning, if
Φ′ ∩ F2 ∈ [[FM2]], then SCCGF M2

(f) ⊆ Φ′ and EGF M2
(f) ⊆ Φ′. Thus, this

proves the claim that SCCGF M1
(f) ⊆ Φ′ or SCCGF M2

(f) ⊆ Φ′ or both.

Lemma 5.3.8. Let FM be the composed feature model from FM1 and FM2

using the union operator. For any valid configuration Φ′ in FM and any
feature f ∈ Φ′, it holds that χGF M1

(f) ̸⊂ Φ′ or χGF M2
(f) ̸⊂ Φ′, or χGF M1

(f) ∪
χGF M2

(f) ̸⊂ Φ′.

Proof. Let Φ′ be a valid configuration in FM and f ∈ Φ′. By Lemma 5.3.6,
either Φ′ ∩ F1 ∈ [[FM1]], in which case χGF M1

(f) ̸⊂ Φ′ since Φ′ ∩ F1 is valid
in FM1; or Φ′ ∩ F2 ∈ [[FM2]], in which case χGF M2

(f) ̸⊂ Φ′ since Φ′ ∩ F2 is
valid in FM2; or both, in which case χGF M1

(f) ∪ χGF M2
(f) ̸⊂ Φ′ since Φ′ ∩ F1

is valid in FM1 and Φ′ ∩ F2 is valid in FM2. Therefore, either χGF M1
(f) ̸⊂ Φ′,

χGF M2
(f) ̸⊂ Φ′, or χGF M1

(f) ∪ χGF M2
(f) ̸⊂ Φ′ holds.

Proposition 5.3.1. Let FM1 and FM2 be two feature models. Let L =
(Q,P,→) and L′ = (Q′, P ′,→) be, respectively, the semantic LTSs of the
CBRTVMs CM and CM ′ as shown in Figure 5.1. Then CM ≃UP CM ′ with
P and U be defined as above.

5.3 A Bisimulation for Correctness and Compositionality Results 81

5.3.1 Proof of Intersection Case

Proof. (Intersection Case) From LCM to L′
CM ′: Let q1

u=⇒ qn+1 be any multi-
step transition in LCM, with u = l1 . . . ln. Let q′

1 be the state in L′
CM ′ such

that (q1, q
′
1) ∈ R. Let Φ = ψ(q1) and Φ′ = ψ(qn+1). By Definition 5.3.1, Φ and

Φ′ ∈ [[FM]]. Without loss of generality, intermediate states are assumed to
correspond to non-valid configurations; indeed, otherwise, q1

u=⇒ qn+1 can be
divided into shorter parts respecting this assumption.

Consider the following cases:
Case 1: Spontaneous interaction. Let u be an interaction corresponding to
the execution of a spontaneous event received in LCM : u can be either {S-f}
or {SR-f} (cf. Fig. 4.4). State q1 is a tuple of component states including one
of enc(nf) component. Starting from q1 and according to u, enc(nf) performs
the transition from init to S-f when u = {S-f}, or from f to SR-f when
u = {SR-f}.

As (q1, q
′
1) ∈ R, the component states in q′

1 in L′
CM ′ mirror those in q1. Thus,

enc(nf) in q′
1 can execute the same interaction u, leading to q′

2. By Lemma 5.3.1,
both P(q2) and P(q′

2) hold, ensuring (q2, q
′
2) ∈ R satisfying conditions of a

multi-step UP-bisimulation.
Case 2: Interactions Involving Enforceable Ports. Consider u = l1 . . . ln
in the system LCM , where both l1 and ln correspond to an interaction involving
enforceable ports.

Let L′
CM ′ be over B that is the set of components that correspond to the

features in Φ′ \Φ. Based on the composed macros for the intersection operator
in Def. 5.2.2, firing the port af for any component b ∈ B requires firing:

af Requires (af ′
1
; sf ′

1
), . . . , (af ′

m
; sf ′

m
), | f ′

i ∈ SCCf = SCCGF M1
(f) ∪ SCCGF M2

(f) \ {f}
(5.1a)

(af ′′
1
; sf ′′

1
), . . . , (af ′′

n
; sf ′′

n
), | f ′′

i ∈ E(f) = EGF M1
(f) ∪ EGF M2

(f) \ SCCf

(5.1b)
nsf ′′′

1
, . . . , nsf ′′′

k
| f ′′′

i ∈ χ(f) = χF M1(f) ∪ χF M2(f)
(5.1c)

Since state qn is reached in LCM and u involves interactions with enforceable
ports, for any component b ∈ B the state becomes f . This implies that in LCM ,
port af is fired for every component b ∈ B. Consequently, af must first be
enabled, and to be enabled the component should either have already received
and executed a spontaneous activation event before the multi-step transition u,
or can be received and executed starting from q′

1, i.e., there is an interaction

82 Composing Run-time Variability Models

li among those of u, 1 < i < n, and li = {S-f} or li = {SR-f}. Thus, given
that the same components B are concerned in CM ′, it follows that CM ′ will
receive the same set of spontaneous events as in u.

W.l.g, let us assume that in L′
CM all spontaneous activation events are

received starting from q′
1. By Case 1, these spontaneous events can be executed

and:
q′

1
l1−→ q′

2 . . . q
′
m−1

lm−1−−−→ q′
m

Upon reaching state q′
m in L′

CM ′ , it is established that port af is enabled
for each component b in B. Now, we need to prove the existence of a transition
q′

m
lm−→ q′

m+1 in L′
CM , with lm = {af | f ∈ Φ′\Φ}. To substantiate this transition,

we must demonstrate two key aspects for every port af of a component b in
B: firstly, the right-hand side of the require macro for af , as specified in the
composed model CM ′, is enabled; and secondly, that the accept macro for af

accepts all the required ports.
Given that SCCGF M1

(f) ∪ SCCGF M2
(f) ⊆ Φ′ and E(f) = EGF M1

(f) ∪
EGF M2

(f) ⊆ Φ′, as supported by Lemma 5.3.3 and Lemma 5.3.4, we can
conclude that the ports a′

f for all components corresponding to features in
both SCCf and E(f) are enabled, thus satisfying conditions in Eq. 5.1a and
in Eq. 5.1b.

Furthermore, by Lemma 5.3.5, χGF M1
(f) ∪ χGF M2

(f) ̸⊂ Φ′, thus for all
components corresponding to features in χGF M1

(f) ∪ χGF M2
(f), port nsf ′ is

enabled, satisfying conditions in Eq. 5.1c.
Additionally, the saturation of accept macros guarantees that all ports

required by af are accepted for the interaction (cf. Sect. 5.2.3). Therefore,
this concludes the existence of a transition of label l′ = {af} ∪ {a′

f | f ′ ∈
SCCf∪E(f)}∪{nsf ′′′ | f ′′′ ∈ χ(f)}, where l′m = l′\{sf1 , . . . , sfn , nsf1 . . . , nsfn},
keeping only the observable ports. Consequently, we can assert that

q′
m

l′m−→ q′
m+1

Consequently, the existence of u′ = l′1 . . . l
′
m in L′

CM is established, where
n⋃

i=1
li in LCM is equal to

m⋃
i=1

l′i in L′
CM . Furthermore, the attainment of all

requested features in Φ′ within L′
CM and the equality

n⋃
i=1

li =
m⋃

i=1
l′i ensure that

P(qm+1) holds. This implies that the component states in qn+1 and qm+1 are
the same, thereby confirming that (qn+1, q

′
m+1) ∈ R.

The same reasoning can be applied to the deactivation. Indeed, any syn-
chronized activation of a set of features can be reversed by the corresponding
synchronized deactivation of the same features.

5.3 A Bisimulation for Correctness and Compositionality Results 83

From L′
CM to LCM : Let q1 be the state in LCM such that (q′

1, q1) ∈ R

and q′
1

u′
=⇒ q′

n be a multi-step transition in L′
CM ′ , where u′ = l′1 . . . l

′
n. Let

Φ′ = ψ(q′
n). Since P(q′

n) holds, then Φ′ ∈ [[FM]]. Therefore, given that LCM is
generated from FM through the FeCo4Reco transformation process, as outlined
in [72], by Lemma 4.4.3, we deduce that state qm+1, where Φ′ = ψ(qm+1), can
be reached within LCM . Hence, there exists a multi-step transition u from q1,
where u = u′, and (q′

n, qm+1) ∈ R, and we are done.

5.3.2 Proof of Strict Intersection Case

Proof sketch. (Strict Intersection Case) The reasoning for strict intersection
follows that of the intersection case, with the primary distinction being the
exclusion of unique features. However, this is tackled through the composition’s
encoding, wherein the macros of both models incorporate (p Requires false)
for every port p found exclusively in one of the models (p ∈ P1 \ P2 ∪ P2 \ P1).
Intuitively, this means that ports that are exclusive to a model will never
participate in any interaction.

5.3.3 Proof of Union Case

Proof. (Union Case) The proof is similar to the intersection case up until
the composition of the required macros. For the union composition operator,
the require macros are composed as disjunctions instead of conjunctions (cf.
Def. 5.2.2) and extended with "p Requires true" for p ∈ P1 \ P2 ∪ P2 \ P1.
Specifically, firing the port af for any component b ∈ B requires firing:

af Requires (af ′
1
; sf ′

1
), . . . , (af ′

m
; sf ′

m
), | f ′

i ∈ SCCf = SCCGF M1
(f) \ {f}

(5.2a)
(af ′′

1
; sf ′′

1
), . . . , (af ′′

n
; sf ′′

n
), | f ′′

i ∈ EGF M1
(f) \ SCCf

(5.2b)
nsf ′′′

1
, . . . , nsf ′′′

k
| f ′′′

i ∈ χF M1(f)
(5.2c)

84 Composing Run-time Variability Models

or requires firing:

af Requires (af ′
1
; sf ′

1
), . . . , (af ′

m
; sf ′

m
), | f ′

i ∈ SCCf = SCCGF M2
(f) \ {f}

(5.3a)
(af ′′

1
; sf ′′

1
), . . . , (af ′′

n
; sf ′′

n
), | f ′′

i ∈ EGF M2
(f) \ SCCf

(5.3b)
nsf ′′′

1
, . . . , nsf ′′′

k
| f ′′′

i ∈ χF M2(f)
(5.3c)

The same reasoning for the spontaneous events can also be applied, thus,
w.l.g, let us assume that in L′

CM all spontaneous activation events are received
starting from q′

1, then these spontaneous events can be executed and:

q′
1

l1−→ q′
2 . . . q

′
m−1

lm−1−−−→ q′
m

Upon reaching state q′
m in L′

CM ′ , it is established that port af is enabled for
each component b in B. Now, we need to prove the existence of a transition
q′

m
lm−→ q′

m+1 in L′
CM , with lm = {af | f ∈ Φ′ \ Φ}. To substantiate this

transition, we must prove two key aspects for every port af of a component
b in B: firstly, the right-hand side of the require macro for af , as specified in
the composed model CM ′, is enabled; and secondly, the accept macro for af

accepts all the required ports.
By Lemma 5.3.7, one has SCCGF M1

(f) ⊆ Φ′ and EGF M1
(f) ⊆ Φ′, or

SCCGF M2
(f) ⊆ Φ′ and EGF M2

(f) ⊆ Φ′, or both, it follows that the ports a′
f

for all components corresponding to features in SCCGF M1
(f) ∪ EGF M1

(f) ,
SCCGF M2

(f)∪EGF M2
(f), or both, are enabled. Consequently, this satisfies the

conditions in either Eq. 5.2a and 5.2b, Eq. 5.3a and 5.3b, or both. Then, by
Lemma 5.3.8, either χF M1(f) ̸⊂ Φ′, χF M2(f) ̸⊂ Φ′, or χF M1(f)∪ χF M2(f) ̸⊂ Φ′.
Consequently, for all components corresponding to features in χ(f), the port
nsf ′ is enabled. This ensures compliance with the conditions specified in either
Eq. 5.2c, Eq. 5.3c, or both. Therefore, at least one of Eq. 5.2 or Eq. 5.3 is
satisfied.

Additionally, the saturation of accept macros guarantees that all ports
required by af are accepted for the interaction (cf. Sect. 5.2.3). Therefore, this
concludes the existence of a transition of label l′ = {af}∪{a′

f | f ′ ∈ SCCf ∪
E(f)} ∪ {nsf ′′′ | f ′′′ ∈ χ(f)}, where l′m = l′ \ {sf1 , . . . , sfn , nsf1 . . . , nsfn},
keeping only the observable ports from state q′

m, such that:

q′
m

l′m−→ q′
m+1

5.3 A Bisimulation for Correctness and Compositionality Results 85

Consequently, the existence of u′ = l′1 . . . l
′
m in L′

CM is established, where
n⋃

i=1
li in LCM is equal to

m⋃
i=1

l′i in L′
CM . Furthermore, the attainment of all

requested features in Φ′ within L′
CM and the equality

n⋃
i=1

li =
m⋃

i=1
l′i ensure that

P(qm+1) holds. This implies that the component states in qn+1 and qm+1 are
the same, thereby confirming (qn+1, q

′
m+1) ∈ R.

The same reasoning can be applied to the deactivation. Indeed, any syn-
chronized activation of a set of features can be reversed by the corresponding
synchronized deactivation of the same features.

From L′
CM to LCM : The proof follows the same reasoning as in the

intersection case.

5.3.4 Congruence of the UP-bisimulation
Multi-step UP-bisimulation is not a congruence on JavaBIP models in general
since it allows the breaking of interaction atomicity. However, it is a congruence
on the sub-algebra of models generated from CBRTVMs by the composition
operators defined in Section 5.2.

Proposition 5.3.2. Let CM1, CM2, and CM3 be three models composed from
CBRTVMs. Let P be a predicate on the states of CM1 and CM2 and U a set of
unobservable ports, such that CM1 ≃UP CM2. For any operator ◦′ ∈ {∪,∩, ∩̇},
holds CM1 ◦′ CM3 ≃U ′P ′ CM2 ◦′ CM3, with

• P ′(q) = true iff P(q12) = true and ψ(q3) is a valid configuration in CM3,
with q12 and q3 the projections of q on the union of state spaces of CM1

and CM2, and on the state space of CM3, respectively,

• U ′ def= U ∪ {selectedf , not_selectedf | f ∈ F3}, where F3 is the set of
features in CM3.

Sketch of the proof. First of all, notice that any P-path can be extended to a
longer P-path in the semantic LTS of the same CBRTVM by firing unobservable
not_selected ports after the firing of the corresponding (de)activate ports.

Consider a P ′-path π in CM1 ◦′ CM3. Let π1 and π3 be its projections
onto CM1 and CM3, respectively. The path π1 is a P-path and, by multi-step
UP-bisimilarity has an equivalent P-path π2 in CM2. Assume that π2 cannot
be synchronised with an extension of π3 and consider the first state where this
happens. That means that the firing of some port p in π2 or π3 is blocked by
a require macro modified by the composition operator (see Defn. 5.2.2), i.e.
either p Requires false (strict intersection), or p Requires L1, L2.

86 Composing Run-time Variability Models

The first case (p Requires false) can only occur when p ∈ (P1\P2)∪(P2\P1),
meaning that p is an enforceable port corresponding to a dead feature. However,
such a port cannot be fired in the first place.

Thus, all possible cases lead to contradictions, proving the proposition.

These new results with the multi-step UP-bisimulation used guarantee that
for a given composition operator, a reachable state in the composed CBRTVM
corresponds to a saturated partial-valid configuration in the composed feature
model.

5.4 Conclusion
In this chapter, we introduced and studied composition operators for CBRTVMs,
enabling automated construction of component-based systems in a modular
fashion. It provides re-usability by allowing CBRTVM models to be reused
across systems and instances through composition, flexibility by enabling
composing models according to specific user needs through various operators,
and adaptability by facilitating the incremental addition of functionalities.

In a broader software engineering perspective, we have automatically related
the composition of feature models—well-established variability models—with
the composition of component-based models. We have also provided new com-
position operators for the CBRTVMs, that preserve the FM semantics. These
contributions push FM variability and their composition, which are available
at the design and development stages, into safe run-time reconfiguration.

With the proposed encoded composition operators, we have answered RQ2
by enabling compositionality through the introduction of novel CBRTVM
composition operators that correspond to the well-studied FM composition
operators as presented in Section 5.2. Furthermore, in Section 5.3, we have ad-
dressed RQ3 by ensuring that the composed CBRTVMs preserve the semantics
of the composed feature models, ensuring the correctness of the encoding.

Finally, to prove the correctness and compositionality of our approach,
we have introduced a novel multi-step UP-bisimulation relation. While it is
not a congruence on JavaBIP models in general, we have shown that it is a
congruence on the sub-algebra of JavaBIP models generated by CBRTVMs.

Chapter 6

Practical and Experimental
Validation

To demonstrate the practical applicability and effectiveness of our approach,
we conducted several experiments. First, we implemented the FeCo4Reco
transformation process using the ATLAS Transformation Language (ATL) and
integrated the generated JavaBIP runtime CBRTVM with a cloud computing
system. We measured the runtime overhead of the CBRTVM and showed that
it is negligible.

Next, we validated that the CBRTVM enforces safe reconfigurations by
deploying a simple web application on the Heroku cloud. We showed through
two scenarios that the CBRTVM prevents unsafe reconfigurations. Finally, we
evaluated the composition operators - union, intersection, and strict intersection
- implemented in the macro composer. Using the Heroku and CloudWatch
feature models, we composed their CBRTVMs and demonstrated through reach-
ability analysis that the composed CBRTVM behaves as expected theoretically
for the three operators.

6.1 Implementation of FeCo4Reco Transforma-
tion Process

We have implemented the model transformation process of FeCo4Reco using
the ATLAS Transformation Language (ATL) [81]. ATL allows specifying rules
for transforming a source model conforming to a source metamodel into a target
model conforming to a target metamodel.

In our implementation, the source models are feature models in XML format
conforming to the feature model metamodel [116] (Figure 6.1). The target
models are component-based models conforming to the JavaBIP metamodel [94]
(Figure 6.2).

88 Practical and Experimental Validation

The ATL transformation rules specify how entities in the feature model
(e.g., features, constraints) are mapped to components, ports, and coordination
macros in the JavaBIP model. The output of the ATL transformation is an
XML file representing the JavaBIP architectural model.

This XML file is then parsed using the DOM API in Java to generate the
JavaBIP runtime executable including:

• Java classes representing the BIP components and their ports

• Glue code implementing the coordination between components

The source code of our implementation is available on Zenodo [2] for
reproducibility.

Figure 6.1: Feature model metamodel.

Figure 6.3 shows the FeCo4Reco architecture that enables stages 3 (Sect.4.3).
The CBRTVM consists of BIP Specs and the coordination glue. Each BIP
Spec is run by a dedicated Executor (forming a JavaBIP module), which
implements the FSM semantics and notifies the JavaBIP Engine about the
enabled enforceable transitions. The engine uses the coordination glue to
decide which components should take which transitions and notifies them
accordingly. Component transitions that represent actual reconfiguration
actions issue the corresponding HTTP requests through the feature APIs.
Finally, reconfiguration requests are injected into the system in the form of

6.2 Heruko Deployer Overview 89

Figure 6.2: JavaBIP metamodel.

spontaneous event notifications (cf. Chapter 2, Sect. 2.4). This can be done by
different means depending on the requirements of the Cloud computing system.
For this work, we have designed a dashboard application with two buttons
(Activate and Deactivate) for each feature as shown in Fig. 6.4.

6.2 Heruko Deployer Overview
The Heroku cloud deployer project was Simon’s project that enables deployment
of Java servlet applications on the Heroku cloud platform. It utilizes the Heroku
CLI to provision resources and manage the deployment process. Heroku CLI is
a tool for interacting with the Heroku platform programmatically. It provides
a set of commands that enable developers to configure and manage Heroku
resources and deploy applications directly from the command line.

We have extended this project by integrating the HerokuDeployer compo-
nent, as illustrated in Figure 6.6, into the CBRTVM. This integration allows
for the automatic deployment of applications to the Heroku cloud, specifically
targeting the Java Virtual Machine (JVM) region in the US or EU with the
free dyno resource configuration. Furthermore, we have implemented a user
interface within the CBRTVM that facilitates the activation or deactivation
of Heroku add-ons to the deployed application. Through this interface, the
Guru301 add-on can be requested to be provisioned to the application.

The HerokuDeployer component as shown in Figure 6.5 initiates its op-
eration in the init state. Subsequent to this initial phase, the configuration

90 Practical and Experimental Validation

Figure 6.3: Integration of the JavaBIP CBRTVM with a Cloud Computing
System.

Figure 6.4: An interface for users to trigger requests.

is set to utilize a free dyno through the execution of the command heroku
dyno:type=free. Following this configuration, the container is designated
to the EU region by the command heroku config:set HEROKU_REGION=eu.
The final step in the configuration process involves the selection of the JVM
buildpack, accomplished with heroku buildpacks:set heroku/java. Each
of these transitions is facilitated by API calls specifically designed to allocate
the necessary resources.

Once the configuration of the resources is set up, the deployment of the
locally built WAR file to the Heroku container is achieved through the use of
the command:

heroku war:deploy /path/to/your/app.war --app your-app-name

This sequence of operations allows the deployment process within the Heroku
environment.

6.2 Heruko Deployer Overview 91

Figure 6.5: Heroku deployer component.

6.2.1 Performance Evaluation

On the overhead measures To evaluate the performance overhead introduced
by our approach, we conducted experiments by executing the generated JavaBIP
runtime and comparing it to direct reconfiguration for feature models of varying
sizes. The feature models were randomly generated with different numbers of
features: 100, 200, and 300 features.

For each feature model size, we generated 20 random feature models and
applied our FeCo4Reco transformation to produce the corresponding JavaBIP
runtime. We then measured the time and memory overhead incurred during
the reconfiguration process, which involves transitioning the system from one
valid configuration α1 to another valid configuration α2. These configurations
were selected randomly.

As depicted in Figure 6.7, the coordination logic introduced by our approach
incurs a small constant overhead in terms of both time (measured in milliseconds)
and memory (measured in megabytes). Notably, this overhead was observed to
be negligible compared to the typical resource requirements of cloud applications,
demonstrating the practical applicability of our approach in real-world scenarios.

6.2.2 Safe Reconfiguraiton

On safe reconfiguration To illustrate that the reconfigurations are performed
safely we deployed a simple web application onto the Heroku cloud with the
CBRTVM generated from the Heroku cloud FM (Fig. 4.1). The CBRTVM
is running on a local server using Tomcat 9. It intercepts (re)-configuration
requests via APIs using HTTP request methods. The CBRTVM acts on the
received requests to control migrating the system along a safe path to the
desired configuration. A simple configuration for the web application is dyno

92 Practical and Experimental Validation

Figure 6.6: The overview of Heroku Deployer integrated into CBRTVM.

free (free container), region (EU), and build-pack (Java jvm). Consider two
reconfiguration scenarios in relation to Example 4.3.1:

1. Adding add-on Guru301 service to the application hosted in the US region

2. Adding add-on Guru301 service to the application hosted in the EU region

Scenario 1: In this case, the Guru301 service is successfully added to the web
application. Indeed, the web application is hosted in the us region. Thus, the
CBRTVM transition for activating Guru301 is triggered synchronously with
the selection of the US region. The final configuration is shown in Fig. 6.8.
Scenario 2: In this case, the Guru301 service is not added to the web applica-
tion. Upon receiving the request, the CBRTVM postponed the activation of
Guru301 service until the application region becomes us. The final configuration
is shown in Fig. 6.9.

Furthermore, Figures 6.8 and 6.9 show the final configurations for two
scenarios described in Sect. 6 obtained with the generated CBRTVM.

6.2 Heruko Deployer Overview 93

Figure 6.7: Model overhead (average values for the generated FMs).

Figure 6.8: Using the generated
CBRTVM to request the Guru301 add-
on to the us region knowing that
Guru301 requires us: success.

Figure 6.9: Using the generated
CBRTVM to request the Guru301 add-
on to the eu region knowing that
Guru301 requires us: no add-ons.

This experiment demonstrates the effectiveness of the CBRTVM in ensuring
safe reconfigurations of cloud-based applications. By intercepting and coor-
dinating reconfiguration requests, the CBRTVM guarantees that the system
transitions along a safe path to the desired configuration, adhering to the
constraints specified in the feature model. The two scenarios illustrate the
CBRTVM’s ability to handle dependencies between components, such as the
requirement for the Guru301 add-on to be added to the application only when
the resources of the application are allocated in the US region.

94 Practical and Experimental Validation

Table 6.1: Feature inclusion in configurations Φ1, Φ2, and Φ3
C

on
fig

ur
at

io
n
\

Fe
at

ur
es

H
er

ok
u_

A
pp

lic
at

io
n

D
yn

o

Fr
ee

H
ob

by

P
ro

du
ct

io
n_

ti
er

A
dd

_
on

s

D
at

aB
as

es

P
os

tg
re

SQ
L

M
on

it
or

s

B
as

ic
M

on
it

or

C
lo

ud
W

at
ch

R
eg

io
n

E
U

U
S

B
ui

ld
P

ac
k

G
ra

dl
e

Ja
va

_
JV

M

In
te

rs
ec

ti
on

St
ri

ct
In

te
rs

ec
ti

on

U
ni

on

Φ1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Invalid Invalid Valid
Φ2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Valid Invalid Valid
Φ3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Valid Valid Valid

6.3 Composition Operators Experimental Val-
idation

In this section, we present an experimental evaluation of the composition
operators developed for enabling compositionality in the FeCo4Reco approach.
We use the Heroku Cloud platform and a new CloudWatch monitoring service to
illustrate and validate the three composition operators: union, intersection, and
strict intersection. The evaluation is carried out using the FeCo4Reco model
transformation to derive executable Component-Based Run-Time Variability
Models (CBRTVMs) from feature models.

6.3.1 Running Example

Heroku Cloud is a platform-as-a-service provider, that offers a range of API-
controlled services such as Dyno types, add-ons, and Regions [1]. Add-ons
are supplementary functionalities encompassing services such as databases,
monitoring, and messaging. We use a feature model representing a sub-set of
Heroku services shown in Fig. 6.10.

Suppose a new monitoring service, CloudWatch, is implemented and pro-
vided by Heroku. CloudWatch is an add-on service designed to monitor the
performance of the computing units within the system. Its key functionality in-
cludes conducting comprehensive metric analyses, specifically focusing on CPU
and memory usage metrics. This new service can be modelled in a separate
feature model as presented in Fig. 6.11.

To incorporate this service, the Heroku FM and the CloudWatch FM must
be composed into one model that includes these new functionalities.

6.3 Composition Operators Experimental Validation 95

Figure 6.10: Simplified Heroku Cloud feature model.

Figure 6.11: CloudWatch FM.

6.3.2 Experimental Setup and Evaluation

For evaluation purposes, we use the CloudWatch feature model as in Fig. 6.11,
extended with all mandatory features from the Heroku Cloud FM alongside
the first option within these mandatory features, excluding Dyno, to which
Production_tier is specifically appended. This setup allows us to better
illustrate and experimentally validate the three composition operators studied
in this Chapter 5. Using the FeCo4Reco model transformation [72], feature
models (FMs) are taken as input and transformed into CBRTVMs.

They are executable and can be used at run time to enforce the variability
constraints. As explained in Chapter 5, Section 5.2, the set of valid configura-
tions is never computed explicitly but is derived from components representing
individual features. Thus, CBRTVMs include JavaBIP component specifica-
tions along with synchronisation macros for coordination. We have developed a
Java-based composer dealing with the macros that support three composition
operators: union, intersection, and strict intersection. The component specifi-

96 Practical and Experimental Validation

cations sets of CBRTVMs to compose and a resulting macro file for a chosen
composition operator are then packaged to create a composed CBRTVM.

Table 6.1 shows the configurations Φ1, Φ2, and Φ3, and their validity
in the composed FM across three distinct operators. We carried out our
experiment by starting from an empty initial configuration and initiating
spontaneous activation requests to the composed CBRTVM for all the features
in configuration Φ1 in random order. We repeated this process 50 times to
observe the reached configurations for each case. Figure 6.12 sums up the
reachability outcomes across the operators used for the composition.

Figure 6.12: Observed configurations.

As anticipated, the CBRTVM model aligned with theoretical results across
all cases, transitioning to valid configurations while preventing invalid ones
from being reached. Specifically, in the intersection case depicted in Fig. 6.12,
Φ1 was never reached due to the exclusion constraint between CloudWatch

and BasicMonitor. On the contrary, both Φ2 or Φ3 are reached depending
on the activation sequence of BasicMonitor and CloudWatch, explaining the
outcomes in Fig. 6.12. In the strict intersection scenario, Φ3 was the only
valid configuration and was consistently reached, as Φ1 and Φ2 were never
attained since they are not valid (cf. Table 6.1). Finally, in the union case, all
configurations are reachable from the initial configuration, making Φ1 attainable
upon activating all features within it, as shown in Table 6.1. Φ2 and Φ3 in the
union case are valid configurations however they are never reached (zero on
the plot) since the activation of all features in Φ1 is requested, and one has

6.4 Conclusion 97

Φ2 ⊂ Φ1 and Φ3 ⊂ Φ1. However, if the activation of all features in only Φ2 or
Φ3 were requested instead, then those configurations would be reached.

This outcome serves as a practical validation of the behavior of the encoded
operators for the CBRTVMs.

6.4 Conclusion
The FeCo4Reco transformation process is implemented using the ATLAS Trans-
formation Language (ATL), enabling the generation of executable CBRTVM
from the input feature model. The performance evaluation results demonstrate
that the overhead introduced by the CBRTVM is negligible in terms of both
time and memory, making our approach viable for practical application in
real-world systems.

Regarding the enforcement of domain constraints during the reconfiguration
process, our theoretical and practical validation confirms that the generated
CBRTVMs effectively preserve the feature model constraints during system
reconfigurations. The CBRTVM ensures that the system transitions along safe
paths, adhering to the specified constraints and handling dependencies between
features correctly.

Furthermore, our approach exhibits compositional properties, as shown by
the practical evaluation of the composition operators implemented in the macros
composer. Reachability analysis on the composed CBRTVMs demonstrates
behavior that aligns with the theoretical results for each operator, allowing
valid configurations to be reached while preventing invalid ones.

Chapter 7

Conclusion and Perspective

In this chapter, we summarize our thesis dissertation by discussing the challenges
and goals addressed, and we outline our contributions. Then, we discuss our
short-term and long-term perspectives related to the work presented in this
dissertation.

7.1 Summary of the Dissertation
Modern software systems are increasingly distributed and controllable via APIs.
They leverage a variety of software services, particularly with the widespread
adoption of cloud computing. Cloud computing represents a promising paradigm
for realizing the vision of utility computing, where developers can access
services on-demand based on their requirements. These resources encompass
computational and memory resources, virtual machines, application servers,
databases, etc. System administrators thus take advantage of the flexibility of
this provisioning model and rely on cloud environments to host their applications.
However, managing reconfiguration is not a straightforward task, highlighting
the need to address our first research question (RQ1): How to enforce domain
constraints during dynamic reconfiguration at low cost? Approaches presented in
the state-of-the-art approaches focus either on generating a target configuration
without detailing the reconfiguration plan needed to reach it from the current
configuration or using formal models which are complex to build. Consequently,
system administrators require an approach to allow reconfiguration of the
application while only enforcing reconfiguration in safe transitions.

Furthermore, software systems often evolve over time with the addition of
new components or services. These new elements can expand the configuration
space of the system. Thus, there is a need for our approach to be compositional
to support system evolution and accommodate the integration of new services
and models into the existing CBRTVM. This aligns with the research questions

100 Conclusion and Perspective

we aimed to address, specifically RQ2: How can we enable compositionality
in our approach? and RQ3: How can we ensure that the compositional ap-
proach consistently enforces domain constraints based on the semantics of the
composition?

In this dissertation, we presented an automated approach for enforcing by
construction the safe reconfiguration behaviour of software products through
the automatic derivation of executable, component-based run-time variability
models from feature models. The component-based run-time variability models,
control the application behaviour by handling reconfiguration requests and
executing them in such a way as to ensure the saturated partial validity of
all reachable configurations without having to compute, nor validate them at
run-time. Our approach ensures the preservation of feature model semantics
and constraint consistency in the generated models as established in Chapter 4,
Sect. 4.4. Additionally, the feasibility and effectiveness of our approach are
demonstrated through an evaluation of the overhead induced by the CBRTVM
on applications containing up to 300 features. The experimental results show
the interest of our approach for handling reconfiguration requests with low
overhead over the application. Therefore, our approach provides a solution to
RQ1.

In addition, we introduce composition operators for CBRTVMs, enabling
automated construction of component-based systems. It provides reusability
by allowing CBRTVM models to be reused across systems and instances
through composition, flexibility by enabling models to be composed according
to specific user needs through various operators, and adaptability by facilitating
the incremental addition of functionalities. To prove the correctness and
compositionality properties, we propose a novel multi-step UP-bisimulation
equivalence and use it to show that the component-based run-time variability
models preserve the semantics of the composed feature models. By introducing
composition operators for CBRTVMs and establishing the multi-step UP-
bisimulation equivalence, we address the research questions RQ2 and RQ3.

7.2 Perspectives

Although the work presented in this dissertation covers the need for reconfigu-
ration and evolution of software systems deployed in complex environments,
there is still work that can be done to improve our research. In this section,
we thus discuss some short-term and long-term perspectives that should be
considered in the continuation of this work.

7.2 Perspectives 101

7.2.1 Short-term Perspectives
A key threat to the validity of our approach lies in Assumption 4.1.1, which
states that all considered feature models are such that any configuration free
from internal conflict is partial-valid. Although we expect this assumption to
hold for a large proportion of realistic feature models, efficiently verifying or
enforcing it in the general case is challenging [84]. To extend our approach’s
applicability to a broader range of feature models, we plan to develop stronger
heuristics for enforcing this assumption. One potential strategy involves upfront
propagation of exclude constraints in the feature model hierarchy before com-
ponent generation. This would prevent reaching intermediate configurations
that, although conflict-free, cannot be extended to valid configurations due to
exclude constraints at lower levels in the hierarchy. The propagation could be
achieved by traversing the feature model upwards, collecting exclude constraints
at each level, and adding these propagated constraints to the parent nodes. H

Moreover, we intend to generalize our approach to handle constraints among
features formulated as arbitrary Boolean formulas in addition to the feature
model, rather than being limited to require and exclude constraints. Han-
dling such additional constraints is challenging as it requires efficient encoding
and reasoning about their semantics alongside the feature model within the
CBRTVM formalism. One potential solution is to first represent the additional
constraints as a dual Horn formula. The dual Horn representation of these ad-
ditional constraints can then be encoded into the glue macros of the CBRTVM
formalism. This allows for efficient reasoning over the combined feature model
and additional Boolean constraints within our approach. Furthermore, we
aim to incorporate temporal constraints over features [130]. For instance, a
temporal constraint could specify that once a high-performance database plan
is selected, the system cannot transition to a lower-performance plan during
its lifetime. However, extending our approach to support temporal constraints
poses significant challenges. It requires capturing the temporal semantics within
the formalism used for feature modeling and encoding them into the CBRTVM.

Finally, we look forward to incorporating AI capabilities that enable dy-
namic, context-aware reconfigurations of the system based on detected changes
in the operating environment. By leveraging AI tools, the system could con-
tinuously monitor and interpret contextual factors, triggering autonomous
reconfigurations.

7.2.2 Long-term Perspectives
To further enhance the automation and applicability of our approach, we need
to investigate cloud ontologies and API integration. Currently, in the generated

102 Conclusion and Perspective

CBRTVMs, the API calls required for feature activation and deactivation are
manually added for each transition. Thus, one long-term perspective is to
explore ways to automatically associate API calls with features and integrate
them into the transformation process from feature models to CBRTVMs.
This would involve analyzing cloud ontologies and service descriptions to map
feature activations and deactivations to the corresponding API calls required
for provisioning or de-provisioning the associated cloud resources and services.

In addition, to streamline the user experience, we aim to provide intelligent
default value assignments for feature group selection by extending the feature
model with requirements specifications mapped to an ontology such as cloud
ontology. Leveraging this ontological knowledge representation, we can employ
engines to automatically derive suitable default feature values adhering to
specified constraints and preferences extracted from the requirements. While
constructing accurate ontologies from natural language and developing efficient
reasoning algorithms for potentially large ontologies introduces challenges, this
approach simplifies configuration through automated decision-making aligned
with requirements. This reduces manual user effort.

Furthermore, since the JavaBIP engine depends on binary decision diagrams
(BDDs) to inform components of its intended states each cycle, we also want
to conduct a rigorous analysis of the space complexity of the BDDs used in our
methodology. BDDs provide a compact representation of Boolean functions,
enabling efficient evaluation and manipulation of the feature constraints. How-
ever, while BDDs are more compact than truth tables, their size can still grow
exponentially in the number of Boolean variables for certain function repre-
sentations. Given that feature models can express constraints over hundreds
or thousands of features, the BDD representations used in our approach may
become a source of space complexity issues. A rigorous analysis of the space
complexity is important for understanding the scalability limits and identifying
potential optimizations or alternative representations.

Finally, we will explore a more generalized composition approach that
goes beyond the predefined operators currently presented. By allowing user-
defined composition, we intend to provide greater flexibility in constructing
CBRTVMs.

Bibliography

[1] Heroku: Cloud platform. https://www.heroku.com.

[2] Toward Run-time Coordination of Reconfiguration Requests in Cloud
Computing Systems. Zenodo, March 2023.

[3] Mathieu Acher, Philippe Collet, Franck Fleurey, Philippe Lahire, Sabine
Moisan, and Jean-Paul Rigault. Modeling context and dynamic adapta-
tions with feature models. In 4th International Workshop Models@ run.
time at Models 2009 (MRT’09), page 10, 2009.

[4] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France.
Composing feature models. In International Conference on Software
Language Engineering, pages 62–81. Springer, 2009.

[5] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France. Com-
paring approaches to implement feature model composition. In Modelling
Foundations and Applications: 6th European Conference, ECMFA 2010,
Paris, France, June 15-18, 2010. Proceedings 6, pages 3–19. Springer,
2010.

[6] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert France.
Managing variability in workflow with feature model composition opera-
tors. In Software Composition: 9th International Conference, SC 2010,
Malaga, Spain, July 1-2, 2010. Proceedings 9, pages 17–33. Springer,
2010.

[7] Mathieu Acher, Benoit Combemale, Philippe Collet, Olivier Barais,
Philippe Lahire, and Robert B France. Composing your compositions
of variability models. In Model-Driven Engineering Languages and Sys-
tems: 16th International Conference, MODELS 2013, Miami, FL, USA,
September 29–October 4, 2013. Proceedings 16, pages 352–369. Springer,
2013.

[8] Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle.
Elasticity in cloud computing: state of the art and research challenges.
IEEE Transactions on services computing, 11(2):430–447, 2017.

[9] Nick Antonopoulos and Lee Gillam. Cloud computing, volume 51. Springer,
2010.

104 Bibliography

[10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin,
Ion Stoica, et al. A view of cloud computing. Communications of the
ACM, 53(4):50–58, 2010.

[11] Mohsen Asadi, Ebrahim Bagheri, Dragan Gašević, Marek Hatala, and
Bardia Mohabbati. Goal-driven software product line engineering. In
Proceedings of the 2011 ACM Symposium on Applied Computing, pages
691–698, 2011.

[12] Mohsen Asadi, Gerd Gröner, Bardia Mohabbati, and Dragan Gašević.
Goal-oriented modeling and verification of feature-oriented product lines.
Software & Systems Modeling, 15:257–279, 2016.

[13] Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, and Joseph
Sifakis. A general framework for architecture composability. Formal
Aspects of Computing, 28(2):207–231, 2016.

[14] Muhammad Ali Babar, Lianping Chen, and Forrest Shull. Managing
variability in software product lines. IEEE software, 27(3):89–91, 2010.

[15] Felix Bachmann and Paul Clements. Variability in software product lines.
Carnegie Mellon University, Software Engineering Institute, 2005.

[16] Sundramoorthy Balaji and M Sundararajan Murugaiyan. Waterfall vs.
v-model vs. agile: A comparative study on sdlc. International Journal of
Information Technology and Business Management, 2(1):26–30, 2012.

[17] Luciano Baresi and Clément Quinton. Dynamically evolving the structural
variability of dynamic software product lines. In 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pages 57–63. IEEE, 2015.

[18] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz,
Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous
component-based system design using the BIP framework. IEEE software,
28(3):41–48, 2011.

[19] Don Batory. Feature models, grammars, and propositional formulas. In
Int. Conf. on Software Product Lines, pages 7–20. Springer, 2005.

[20] Julian Bellendorf and Zoltán Ádám Mann. Specification of cloud topolo-
gies and orchestration using tosca: a survey. Computing, 102(8):1793–
1815, 2020.

[21] David Benavides, Alexander Felfernig, José A Galindo, and Florian Rein-
frank. Automated analysis in feature modelling and product configuration.
In Safe and Secure Software Reuse: 13th International Conference on
Software Reuse, ICSR 2013, Pisa, June 18-20. Proceedings 13, pages
160–175. Springer, 2013.

Bibliography 105

[22] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
analysis of feature models 20 years later: A literature review. Information
systems, 35(6):615–636, 2010.

[23] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated
reasoning on feature models. In International Conference on Advanced
Information Systems Engineering, pages 491–503. Springer, 2005.

[24] Nelly Bencomo, Svein Hallsteinsen, and Eduardo Santana De Almeida.
A view of the dynamic software product line landscape. Computer,
45(10):36–41, 2012.

[25] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wąsowski. A survey of vari-
ability modeling in industrial practice. In Proc. of the 7th Int. Wshop on
Variability Modelling of Software-intensive Systems, pages 1–8, 2013.

[26] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Ley-
mann, Alexander Nowak, and Sebastian Wagner. Opentosca–a runtime
for tosca-based cloud applications. In Service-Oriented Computing: 11th
International Conference, ICSOC 2013, Berlin, Germany, December 2-5,
2013, Proceedings 11, pages 692–695. Springer, 2013.

[27] Ekaba Bisong and Ekaba Bisong. An overview of google cloud platform
services. Building Machine Learning and Deep Learning Models on Google
Cloud Platform: A Comprehensive Guide for Beginners, pages 7–10, 2019.

[28] Simon Bliudze, Anastasia Mavridou, Radoslaw Szymanek, and Alina
Zolotukhina. Exogenous coordination of concurrent software components
with JavaBIP. Software: Practice and Experience, 47(11):1801–1836,
2017.

[29] Mohammad Ubaidullah Bokhari, Qahtan Makki, and Yahya Kord Taman-
dani. A survey on cloud computing. In Big data analytics: proceedings
of CSI 2015, pages 149–164. Springer, 2018.

[30] Clarissa Borba and Carla Silva. A comparison of goal-oriented approaches
to model software product lines variability. In Advances in Conceptual
Modeling-Challenging Perspectives: ER 2009 Workshops CoMoL, EThe-
CoM, FP-UML, MOST-ONISW, QoIS, RIGiM, SeCoGIS, Gramado,
Brazil, November 9-12, 2009. Proceedings 28, pages 244–253. Springer,
2009.

[31] Paulo Borba, Leopoldo Teixeira, and Rohit Gheyi. A theory of software
product line refinement. Theoretical Computer Science, 455:2–30, 2012.

[32] Jan Bosch and Rafael Capilla. Dynamic variability in software-intensive
embedded system families. Computer, 45(10):28–35, 2012.

106 Bibliography

[33] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani.
The Fractal component model and its support in Java: Experiences
with auto-adaptive and reconfigurable systems. Softw. Pract. Exper.,
36(11-12):1257–1284, September 2006.

[34] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. An open component model and its support in java.
In International Symposium on Component-based Software Engineering,
pages 7–22. Springer, 2004.

[35] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and
Jean-Bernard Stefani. The fractal component model and its support in
java. Software: Practice and Experience, 36(11-12):1257–1284, 2006.

[36] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing
advanced features in a hierarchical component model. In Fourth Interna-
tional Conference on Software Engineering Research, Management and
Applications (SERA’06), pages 40–48. IEEE, 2006.

[37] Brendan Burns. Designing distributed systems: patterns and paradigms
for scalable, reliable services. " O’Reilly Media, Inc.", 2018.

[38] Jessie Carbonnel, Marianne Huchard, André Miralles, and Clémentine
Nebut. Feature model composition assisted by formal concept analysis. In
International Conference on Evaluation of Novel Approaches to Software
Engineering, volume 2, pages 27–37. SciTePress, 2017.

[39] Everton Cavalcante, André Almeida, Thais Batista, Nélio Cacho, Fred-
erico Lopes, Flavia C Delicato, Thiago Sena, and Paulo F Pires. Exploit-
ing software product lines to develop cloud computing applications. In
Proceedings of the 16th International Software Product Line Conference-
Volume 2, pages 179–187, 2012.

[40] Carlos Cetina, Joan Fons, and Vicente Pelechano. Applying software
product lines to build autonomic pervasive systems. In 2008 12th Int.
SPL Conf., pages 117–126. IEEE, 2008.

[41] Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano. Autonomic
computing through reuse of variability models at runtime: The case of
smart homes. Computer, 42(10):37–43, 2009.

[42] Ned Chapin, Joanne E Hale, Khaled Md Khan, Juan F Ramil, and
Wui-Gee Tan. Types of software evolution and software maintenance.
Journal of software maintenance and evolution: Research and Practice,
13(1):3–30, 2001.

[43] Maverick Chardet, Hélène Coullon, and Christian Pérez. Predictable
efficiency for reconfiguration of service-oriented systems with concerto.
In 2020 20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID), pages 340–349. IEEE, 2020.

Bibliography 107

[44] Maverick Chardet, Hélène Coullon, Dimitri Pertin, and Christian Pérez.
Madeus: A formal deployment model. In 2018 International Conference
on High Performance Computing & Simulation (HPCS), pages 724–731.
IEEE, 2018.

[45] Maverick Chardet, Hélène Coullon, and Simon Robillard. Toward safe and
efficient reconfiguration with concerto. Science of Computer Programming,
203:102582, 2021.

[46] Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability man-
agement in software product lines: a systematic review. In Proceedings
of the 13th International Software Product Line Conference, pages 81–90.
Citeseer, 2009.

[47] Lianping Chen and Muhammad Ali Babar. A systematic review of
evaluation of variability management approaches in software product
lines. Information and Software Technology, 53(4):344–362, 2011.

[48] Paul Clements and Linda Northrop. Software product lines. Addison-
Wesley Boston, 2002.

[49] H Cloud. The nist definition of cloud computing. National Institute of
Science and Technology, Special Publication, 800(2011):145, 2011.

[50] Maxime Cordy, Andreas Classen, Patrick Heymans, Axel Legay, and
Pierre-Yves Schobbens. Model checking adaptive software with featured
transition systems. Assurances for Self-Adaptive Systems: Principles,
Models, and Techniques, pages 1–29, 2013.

[51] Maxime Cordy, Xavier Devroey, Axel Legay, Gilles Perrouin, Andreas
Classen, Patrick Heymans, Pierre-Yves Schobbens, and Jean-François
Raskin. A decade of featured transition systems. In Maurice H. ter
Beek, Alessandro Fantechi, and Laura Semini, editors, From Software
Engineering to Formal Methods and Tools, and Back, volume 11865 of
LNCS, pages 285–312. Springer, 2019.

[52] Paolo Costa, Matteo Migliavacca, Peter Pietzuch, and Alexander L Wolf.
{NaaS}:{Network-as-a-Service} in the cloud. In 2nd USENIX Work-
shop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services (Hot-ICE 12), 2012.

[53] Hélène Coullon, Ludovic Henrio, Frédéric Loulergue, and Simon Robillard.
Component-based distributed software reconfiguration: a verification-
oriented survey. ACM Computing Surveys, 2023.

[54] Hélène Coullon, Ludovic Henrio, Frédéric Loulergue, and Simon Robillard.
Component-based distributed software reconfiguration: A verification-
oriented survey. ACM Comput. Surv., 56(1):2:1–2:37, 2024.

108 Bibliography

[55] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David Vandevo-
orde, and Todd Veldhuizen. Generative programming and active libraries.
In Generic Programming: International Seminar on Generic Program-
ming Dagstuhl Castle, Germany, April 27–May 1, 1998 Selected Papers,
pages 25–39. Springer, 2000.

[56] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged config-
uration using feature models. In Software Product Lines: Third Interna-
tional Conference, SPLC 2004, Boston, MA, USA, August 30-September
2, 2004. Proceedings 3, pages 266–283. Springer, 2004.

[57] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software process:
Improvement and practice, 10(1):7–29, 2005.

[58] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based
model templates against well-formedness ocl constraints. In Proceed-
ings of the 5th international conference on Generative programming and
component engineering, pages 211–220, 2006.

[59] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and logics:
There and back again. In 11th International Software Product Line
Conference (SPLC 2007), pages 23–34. IEEE, 2007.

[60] Mohit Dhingra, J Lakshmi, and SK Nandy. Resource usage monitoring
in clouds. In 2012 ACM/IEEE 13th International Conference on Grid
Computing, pages 184–191. IEEE, 2012.

[61] Roberto Di Cosmo, Michael Lienhardt, Ralf Treinen, Stefano Zacchiroli,
and Jakub Zwolakowski. Optimal provisioning in the cloud. Technical
Report, 2013.

[62] Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi
Zavattaro. Aeolus: A component model for the cloud. Information and
Computation, 239:100–121, 2014.

[63] Roberto Di Cosmo, Stefano Zacchiroli, and Gianluigi Zavattaro. Towards
a formal component model for the cloud. In International Conference
on Software Engineering and Formal Methods, pages 156–171. Springer,
2012.

[64] Yucong Duan, Guohua Fu, Nianjun Zhou, Xiaobing Sun, Nanjangud C
Narendra, and Bo Hu. Everything as a service (xaas) on the cloud: origins,
current and future trends. In 2015 IEEE 8th International Conference
on Cloud Computing, pages 621–628. IEEE, 2015.

[65] Clemens Dubslaff. Compositional feature-oriented systems. In Pe-
ter Csaba Ölveczky and Gwen Salaün, editors, Software Engineering
and Formal Methods - 17th Int. Conf. SEFM 2019, Proc., volume 11724
of LNCS, pages 162–180. Springer, 2019.

Bibliography 109

[66] Rim El Ballouli. Modeling self-configuration in Architecture-based self-
adaptive systems. PhD thesis, Université Grenoble Alpes, 2019.

[67] Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis.
Dr-bip-programming dynamic reconfigurable systems. Technical report,
Technical report TR-2018-3, Verimag Research Report, 2018.

[68] Rim El Ballouli, Saddek Bensalem, Marius Bozga, and Joseph Sifakis.
Programming dynamic reconfigurable systems. International Journal on
Software Tools for Technology Transfer, 23(5):701–719, 2021.

[69] Sina Entekhabi, Ahmet Serkan Karataş, and Halit Oğuztüzün. Dynamic
constraint satisfaction algorithm for online feature model reconfiguration.
In Int. Conf. on Control Engineering and Information Technology (CEIT),
pages 1–7, 2018.

[70] Salman Farhat, Simon Bliudze, and Laurence Duchien. Safe dynamic
reconfiguration of concurrent component-based applications. In 2022
IEEE 19th International Conference on Software Architecture Companion
(ICSA-C), pages 108–111, 2022.

[71] Salman Farhat, Simon Bliudze, Laurence Duchien, and Olga
Kouchnarenko. Run-time coordination of reconfiguration requests in
cloud computing systems. Research Report 9504, Inria, April 2023.

[72] Salman Farhat, Simon Bliudze, Laurence Duchien, and Olga
Kouchnarenko. Toward run-time coordination of reconfiguration requests
in cloud computing systems. In International Conference on Coordination
Languages and Models, pages 271–291. Springer, 2023.

[73] Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, and Jean-
Marc Jézéquel. Modeling and validating dynamic adaptation. In Models
in Software Engineering: Workshops and Symposia at MODELS 2008,
Toulouse, France, September 28-October 3, 2008. Reports and Revised
Selected Papers 11, pages 97–108. Springer, 2009.

[74] Gregor Gössler and Joseph Sifakis. Composition for component-based
modeling. Science of Computer Programming, 55(1-3):161–183, 2005.

[75] Hakan Hacigumus, Bala Iyer, and Sharad Mehrotra. Providing database
as a service. In Proceedings 18th International Conference on Data
Engineering, pages 29–38. IEEE, 2002.

[76] Anubhav Hanjura. Heroku cloud application development. Packt Publish-
ing Ltd, 2014.

[77] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in
cloud computing: What it is, and what it is not. In 10th international
conference on autonomic computing (ICAC 13), pages 23–27, 2013.

[78] James A Hess, E William, and A Novak. Feature-oriented domain analysis
(foda) feasibility study kyo c. kang, sholom g. cohen. 1990.

110 Bibliography

[79] Mike Hinchey, Sooyong Park, and Klaus Schmid. Building dynamic
software product lines. Computer, 45(10):22–26, 2012.

[80] Sven Jörges, Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and
Bernhard Steffen. A constraint-based variability modeling framework.
International Journal on Software Tools for Technology Transfer, 14:511–
530, 2012.

[81] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl:
A model transformation tool. Science of computer programming, 72(1-
2):31–39, 2008.

[82] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Technical report, Carnegie-Mellon Univ Pittsburgh, Pa, Software
Engineering Inst, 1990.

[83] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In Proceedings of the 30th international conference
on Software engineering, pages 311–320, 2008.

[84] Oliver Kautz. The complexities of the satisfiability checking problems
of feature diagram sublanguages. Software and Systems Modeling, pages
1–17, 2022.

[85] Chris Kemp and Brad Gyger. Professional Heroku Programming. John
Wiley & Sons, 2013.

[86] Jeffrey O Kephart and David M Chess. The vision of autonomic comput-
ing. Computer, 36(1):41–50, 2003.

[87] A Khalid. Cloud computing technology: services and opportunities.
Pakistan Journal of Science, 65(3), 2013.

[88] Nane Kratzke. A brief history of cloud application architectures. Applied
Sciences, 8(8):1368, 2018.

[89] Christian Krupitzer, Felix Maximilian Roth, Sebastian VanSyckel, Gregor
Schiele, and Christian Becker. A survey on engineering approaches for
self-adaptive systems. Pervasive and Mobile Computing, 17:184–206,
2015.

[90] Tudor A Lascu, Jacopo Mauro, and Gianluigi Zavattaro. A planning
tool supporting the deployment of cloud applications. In 2013 IEEE
25th International Conference on Tools with Artificial Intelligence, pages
213–220. IEEE, 2013.

[91] Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. An adaptive
policy-based framework for network services management. Journal of
Network and systems Management, 11:277–303, 2003.

Bibliography 111

[92] Frank D Macías-Escrivá, Rodolfo Haber, Raul Del Toro, and Vicente
Hernandez. Self-adaptive systems: A survey of current approaches,
research challenges and applications. Expert Systems with Applications,
40(18):7267–7279, 2013.

[93] Sunilkumar S Manvi and Gopal Krishna Shyam. Resource management
for infrastructure as a service (iaas) in cloud computing: A survey. Journal
of network and computer applications, 41:424–440, 2014.

[94] Anastasia Mavridou, Joseph Sifakis, and Janos Sztipanovits. DesignBIP:
A design studio for modeling and generating systems with BIP. arXiv
preprint arXiv:1805.09919, 2018.

[95] Peter Mell, Tim Grance, et al. The nist definition of cloud computing.
2011.

[96] Marcilio Mendonca, Andrzej Wąsowski, and Krzysztof Czarnecki. Sat-
based analysis of feature models is easy. In Proceedings of the 13th
International Software Product Line Conference, pages 231–240, 2009.

[97] Tom Mens, Michel Wermelinger, Stéphane Ducasse, Serge Demeyer,
Robert Hirschfeld, and Mehdi Jazayeri. Challenges in software evolution.
In Eighth International Workshop on Principles of Software Evolution
(IWPSE’05), pages 13–22. IEEE, 2005.

[98] Andreas Metzger and Klaus Pohl. Software product line engineering and
variability management: achievements and challenges. Future of software
engineering proceedings, pages 70–84, 2014.

[99] Brice Morin, Olivier Barais, Jean-Marc Jézéquel, Franck Fleurey, and
Arnor Solberg. Models@ run. time to support dynamic adaptation.
Computer, 42(10):44–51, 2009.

[100] Christopher Olive. Cloud computing characteristics are key. General
Physics Corporation, 2011.

[101] Carlos Parra, Anthony Cleve, Xavier Blanc, and Laurence Duchien.
Feature-based composition of software architectures. In Software Archi-
tecture: 4th European Conference, ECSA 2010, Copenhagen, Denmark,
August 23-26, 2010. Proceedings 4, pages 230–245. Springer, 2010.

[102] Tharindu Patikirikorala, Alan Colman, Jun Han, and Liuping Wang. A
systematic survey on the design of self-adaptive software systems using
control engineering approaches. In 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pages 33–42. IEEE, 2012.

[103] Kai Petersen and Claes Wohlin. A comparison of issues and advantages
in agile and incremental development between state of the art and an
industrial case. Journal of systems and software, 82(9):1479–1490, 2009.

112 Bibliography

[104] Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in large-
scale development. In Product-Focused Software Process Improvement:
10th International Conference, PROFES 2009, Oulu, Finland, June 15-17,
2009. Proceedings 10, pages 386–400. Springer, 2009.

[105] Martin Pfannemuller, Christian Krupitzer, Markus Weckesser, and Chris-
tian Becker. A dynamic software product line approach for adaptation
planning in autonomic computing systems. In 2017 IEEE International
Conference on Autonomic Computing (ICAC), pages 247–254. IEEE,
2017.

[106] Frantisek Plásil, Dusan Balek, and Radovan Janecek. Sofa/dcup: Archi-
tecture for component trading and dynamic updating. In Proceedings.
Fourth International Conference on Configurable Distributed Systems
(Cat. No. 98EX159), pages 43–51. IEEE, 1998.

[107] Klaus Pohl, Günter Böckle, and Frank Van Der Linden. Software prod-
uct line engineering: foundations, principles, and techniques, volume 1.
Springer, 2005.

[108] Klaus Pohl, Günter Böckle, Frank van Der Linden, Günter Böckle, Klaus
Pohl, and Frank van der Linden. A framework for software product line
engineering. Software Product Line Engineering: Foundations, Principles,
and Techniques, pages 19–38, 2005.

[109] Klaus Pohl and Andreas Metzger. Variability management in software
product line engineering. In Proceedings of the 28th international confer-
ence on Software engineering, pages 1049–1050, 2006.

[110] Roger S Pressman. Software engineering: a practitioner’s approach.
Palgrave macmillan, 2005.

[111] Clément Quinton. Cloud Environment Selection and Configuration: A
Software Product Lines-Based Approach. PhD thesis, Université Lille 1,
2014.

[112] Clément Quinton, Nicolas Haderer, Romain Rouvoy, and Laurence
Duchien. Towards multi-cloud configurations using feature models and on-
tologies. In Proceedings of the 2013 international workshop on Multi-cloud
applications and federated clouds, pages 21–26, 2013.

[113] Clément Quinton, Daniel Romero, and Laurence Duchien. Cardinality-
based feature models with constraints: a pragmatic approach. In Proceed-
ings of the 17th International Software Product Line Conference, SPLC
’13, page 162–166, New York, NY, USA, 2013. Association for Computing
Machinery.

[114] Clément Quinton, Daniel Romero, and Laurence Duchien. Cardinality-
based feature models with constraints: a pragmatic approach. In Proceed-
ings of the 17th International Software Product Line Conference, pages
162–166, 2013.

Bibliography 113

[115] Clément Quinton, Daniel Romero, and Laurence Duchien. Automated
selection and configuration of cloud environments using software product
lines principles. In 2014 IEEE 7th International Conference on Cloud
Computing, pages 144–151. IEEE, 2014.

[116] Clément Quinton, Daniel Romero, and Laurence Duchien. Saloon: a
platform for selecting and configuring cloud environments. Software:
Practice and Experience, 46(1):55–78, 2016.

[117] Aaqib Rashid and Amit Chaturvedi. A study on resource pooling, allo-
cation and virtualization tools used for cloud computing. International
Journal of Computer Applications, 975(8887):43, 2017.

[118] Eric Rutten, Nicolas Marchand, and Daniel Simon. Feedback control
as mape-k loop in autonomic computing. In Software Engineering for
Self-Adaptive Systems III. Assurances: International Seminar, Dagstuhl
Castle, Germany, December 15-19, 2013, Revised Selected and Invited
Papers, pages 349–373. Springer, 2017.

[119] Farhat Salman, Simon Bliudze, Laurence Duchien, and Olga
Kouchnarenko. Composing run-time variability models. In Proceed-
ings of The European Conference on Software Architecture (ECSA 2024),
2024. under review.

[120] Davide Sangiorgi. Introduction to bisimulation and coinduction. Cam-
bridge University Press, 2011.

[121] Klaus Schmid, Rick Rabiser, and Paul Grünbacher. A comparison of
decision modeling approaches in product lines. In Proceedings of the 5th
International Workshop on Variability Modeling of Software-Intensive
Systems, pages 119–126, 2011.

[122] Pierre-Yves Schobbens, Patrick Heymans, and Jean-Christophe Trigaux.
Feature diagrams: A survey and a formal semantics. In 14th IEEE Int.
Conf. RE’06, pages 136–145. IEEE Computer Society, 2006.

[123] Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad.
Automated merging of feature models using graph transformations. In
International Summer School on Generative and Transformational Tech-
niques in Software Engineering, pages 489–505. Springer, 2007.

[124] Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. Architec-
tural implications of function-as-a-service computing. In Proceedings of
the 52nd annual IEEE/ACM international symposium on microarchitec-
ture, pages 1063–1075, 2019.

[125] Joseph Sifakis. A framework for component-based construction. In Third
IEEE International Conference on Software Engineering and Formal
Methods (SEFM’05), pages 293–299. IEEE, 2005.

114 Bibliography

[126] Marianne Simonot and Virginia Aponte. A declarative formal approach to
dynamic reconfiguration. In Proceedings of the 1st international workshop
on Open component ecosystems, pages 1–10, 2009.

[127] Akanksha Singh, Smita Sharma, Shipra Ravi Kumar, and Suman Avdesh
Yadav. Overview of paas and saas and its application in cloud computing.
In 2016 International Conference on Innovation and Challenges in Cyber
Security (ICICCS-INBUSH), pages 172–176. IEEE, 2016.

[128] Ian Sommerville, Martin Fowler, Kent Beck, John Brant, William Opdyke,
and Don Roberts. Edition: Software engineering. Instructor, 2019.

[129] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. Extending
feature models with relative cardinalities. In Proceedings of the 20th
International Systems and Software Product Line Conference, pages 79–
88, 2016.

[130] Gustavo Sousa, Walter Rudametkin, and Laurence Duchien. Extending
dynamic software product lines with temporal constraints. In 2017
IEEE/ACM 12th Int. Symp. on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), pages 129–139. IEEE, 2017.

[131] OASIS Standard. Topology and orchestration specification for cloud
applications version 1.0, 2013.

[132] Vijayan Sugumaran, Sooyong Park, and Kyo C Kang. Software product
line engineering. Communications of the ACM, 49(12):28–32, 2006.

[133] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A classification and survey of analysis strategies for software
product lines. ACM Computing Surveys (CSUR), 47(1):1–45, 2014.

[134] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke,
Gunter Saake, and Thomas Leich. FeatureIDE: An extensible frame-
work for feature-oriented software development. Science of Computer
Programming, 79:70–85, 2014.

[135] Frank J Van der Linden, Klaus Schmid, and Eelco Rommes. Software
product lines in action: the best industrial practice in product line engi-
neering. Springer Science & Business Media, 2007.

[136] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lindner.
A break in the clouds: towards a cloud definition, 2008.

[137] Vijay Varadharajan and Udaya Tupakula. Security as a service model
for cloud environment. IEEE Transactions on network and Service
management, 11(1):60–75, 2014.

[138] Anthony T Velte Toby J Velte and Ph D Robert Elsenpeter. Cloud
computing. 2010.

Bibliography 115

[139] Markus Voelter and Iris Groher. Product line implementation using
aspect-oriented and model-driven software development. In 11th Int.
Conf. SPLC 2007, pages 233–242. IEEE Computer Society, 2007.

[140] David M Weiss and Chi Tau Robert Lai. Software product-line engineering:
a family-based software development process. Addison-Wesley Longman
Publishing Co., Inc., 1999.

[141] Danny Weyns. Software engineering of self-adaptive systems. In Sungdeok
Cha, Richard N. Taylor, and Kyo Chul Kang, editors, Handbook of
Software Engineering, pages 399–443. Springer, 2019.

[142] Andreas Wittig and Michael Wittig. Amazon Web Services in Action:
An in-depth guide to AWS. Simon and Schuster, 2023.

[143] Jiyi Wu, Lingdi Ping, Xiaoping Ge, Ya Wang, and Jianqing Fu. Cloud
storage as the infrastructure of cloud computing. In 2010 International
conference on intelligent computing and cognitive informatics, pages 380–
383. IEEE, 2010.

[144] Ji Zhang and Betty HC Cheng. Model-based development of dynamically
adaptive software. In Proc. of the 28th Int. Conf. on Software engineering,
pages 371–380, 2006.

[145] Tewfik Ziadi and Jean-Marc Jézéquel. Software product line engineering
with the uml: Deriving products. In Software Product Lines, pages
557–588. Springer, 2006.

	Title
	Abstract
	Résumé
	Table of contents
	List of figures
	List of tables
	Chapter 1 : Introduction
	1.1 Problem Statement
	1.2 Research Goals
	1.3 Contributions
	1.4 Tool Implementation
	1.5 Dissertation Outline
	1.6 List of Scientific Publications

	Chapter 2 : Background and Concepts
	2.1 Cloud Computing
	2.1.1 Cloud Computing Characteristics
	2.1.2 Service Models
	2.1.3 Deployment Models

	2.2 Software Product Lines Engineering
	2.2.1 Variability
	2.2.2 Software Product Line Engineering Process
	2.2.3 Variability Model
	2.2.4 Feature Model
	2.2.5 Feature Diagram
	2.2.6 Feature Model Logical Formula
	2.2.7 Configuration Validity and Extensions to Feature Modeling

	2.3 Dynamic Software Product Line
	2.4 The JavaBIP Framework
	2.5 Summary

	Chapter 3 : State of Art
	3.1 Reconfiguration and Self-Adaptation
	3.2 MAPE-K Loop
	3.3 Approaches for Reconfiguration and Self-Adaptation
	3.3.1 DSPL-based Approaches
	3.3.2 Formal Component-based Approaches

	3.4 Compositionality and Composability
	3.4.1 Introduction to Compositionality and Composability
	3.4.2 Composition Approaches for Software Models

	3.5 Conclusion

	Chapter 4 : Automatic Generation of Component-based Run-time Variability Models
	4.1 Background
	4.1.1 Feature Model Formalization
	4.1.2 Feature Model Notation

	4.2 Motivation
	4.2.1 Key Elements of the Heroku Cloud Platform

	4.3 Feco4Reco: A Framework
	4.3.1 Stage 1: Heroku Cloud Feature Model
	4.3.2 Stage 2: Transformation: Feature Model to Component-based Run-time Variability Model
	4.3.3 Stage 3: CBRTVM Integration

	4.4 Preserving Feature Model Semantics in CBRTVM
	4.5 Conclusion

	Chapter 5 : Composing Run-time Variability Models
	5.1 Composition of Feature Models
	5.2 Composition of CBRTVMs
	5.2.1 Macros for Composition
	5.2.2 Composing Requires Macros
	5.2.3 Saturation Process for Accepts Macros
	5.2.4 Composition Operators on JavaBIP models

	5.3 A Bisimulation for Correctness and Compositionality Results
	5.3.1 Proof of Intersection Case
	5.3.2 Proof of Strict Intersection Case
	5.3.3 Proof of Union Case
	5.3.4 Congruence of the UP-bisimulation

	5.4 Conclusion

	Chapter 6 : Practical and Experimental Validation
	6.1 Implementation of FeCo4Reco Transformation Process
	6.2 Heruko Deployer Overview
	6.2.1 Performance Evaluation
	6.2.2 Safe Reconfiguraiton

	6.3 Composition Operators Experimental Validation
	6.3.1 Running Example
	6.3.2 Experimental Setup and Evaluation

	6.4 Conclusion

	Chapter 7 : Conclusion and Perspective
	7.1 Summary of the Dissertation
	7.2 Perspectives
	7.2.1 Short-term Perspectives
	7.2.2 Long-term Perspectives

	Bibliography

