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Abstract

The task of predicting structured objects, e.g. graphs or sequences, is more demanding
than the standard supervised regression or classification problems, where the outputs
are usually low-dimensional vectors. It has recently attracted a lot of attention in vari-
ous fields, such as computational biology and chemistry. Such structured spaces are
usually high-dimensional, discrete, large, and lack of linear structure, which makes
it difficult to design a versatile model, i.e. a model able to deal with various output
types within a unified framework, together with strong theoretical foundations.

In this thesis, we focus on surrogate kernel methods, and in particular Input Out-
put Kernel Regression, a versatile and theoretically-funded structured prediction ap-
proach leveraging the kernel trick in both the input and output spaces. However,
in practice, this method exhibits some flaws. As with other kernel-based methods,
IOKR suffers from computational burdens at both the training and inference phases.
Moreover, it benefits from a closed-form solution when combined with the squared
loss, and it is challenging to employ a wider variety of losses. Finally, it is not efficient
in handling complex inputs such as images or texts. Our goal is then to design an OKR
model that is: scalable to large datasets, theoretically sound (i.e. for which excess risk
bounds can be derived), compatible with a wider variety of losses, and able to learn
representations from complex inputs.

In the first part of this thesis, we focus on the input kernel, and introduce a new
sub-Gaussian sketching distribution, called the p-sparsified sketches, in order to scale-
up matrix-valued decomposable kernel machines with generic Lipschitz-continuous
losses. Sketching consists in manipulating random linear projections to reduce com-
putational complexity while maintaining good statistical performance. We addition-
ally provide an excess risk bound of the estimator induced by this approach.

In the second part, we introduce Sketched Input Sketched Output Kernel Regression, an
IOKR-based method that leverages sketching on both the input and output kernels
to induce a reduced-rank structured estimator. We derive its excess risk bound with
sub-Gaussian or sub-sampling input/output sketches and show that it attains close-
to-optimal learning rates. Besides, we demonstrate the strong empirical performance
of SISOKR on datasets on which IOKR is intractable.

In the last part, we apply sketching on the output kernel and introduce a deep neural
architecture able to predict within the possibly infinite-dimensional output kernel’s
feature space. Indeed, we compute the basis induced by the eigenfunctions of the
sketched output empirical covariance operator, and Deep Sketched Output Kernel Re-
gression’s neural network then computes an expansion within this basis and learns
its coordinates during training. This unlocks the use of gradient-based methods for
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any loss which is the composition of the square loss with a sub-differentiable func-
tion, such as standard robust losses, and any neural architectures, such as trans-
formers. Empirical validations of the approach are provided, in particular on a text-
to-molecule dataset.



Résumé

La prédiction d’objets structurés, tels que les graphes ou les séquences par exemple,
est plus exigeante que les problèmes standards de régressions ou de classification su-
pervisés, dans lesquels les sorties sont généralement des vecteurs de petite dimension.
Cette tâche fait l’objet de beaucoup d’attention dans différents domaines, comme la
biologie ou la chimie informatique. Les espaces structurés sont en général de grande
dimension, discrets, et non-linéaires, ce qui complique la conceptualisation d’unmod-
èle polyvalent, autrement dit un modèle capable de gérer différents types de sorties
dans un cadre unifié, tout en bénéficiant de solides fondations théoriques.

Dans cette thèse, nous nous concentrons sur les méthodes à noyaux de substitution,
et en particulier à la méthode Input Output Kernel Regression (IOKR), une approche
de prédiction structurée polyvalente et théoriquement fondée utilisant l’astuce du
noyau sur les espaces d’entrée et de sortie. Toutefois, cette méthode présente plusieurs
limites. En premier lieu, elle souffre de lourds coûts de calcul pendant les phases
d’apprentissage et de prédiction. De plus, il n’est pas évident d’utiliser d’autres fonc-
tions de perte que la quadratique (qui lui permet de bénéficier d’une solution expli-
cite). Enfin, elle est confrontée à l’incapacité des noyaux à apprendre des représent-
ations à partir de données d’entrée complexes comme des images ou du texte, con-
trairement aux réseaux de neurones profonds. Notre objectif est donc de concevoir
un modèle utilisant un noyau de sortie passant à l’échelle de grandes bases de don-
nées, avec une borne sur son excès de risque, compatible avec une plus grande variété
de fonctions de perte et capable d’apprendre des représentations à partir de données
d’entrée complexes grâce à l’utilisation de réseaux de neurones profonds.

Tout d’abord, nous travaillons sur le noyau d’entrée, et introduisons une nouvelle dis-
tribution de projections aléatoires sous-gaussienne, les p-sparsified sketches, afin de
passer à l’échelle les machines à noyau matriciel décomposable utilisant des fonc-
tions de perte lipschitziennes. Ces projections aléatoires sont linéaires et vont au-
delà du sous-échantillonnage, largement étudié au sein de la littérature des méthodes
à noyaux. L’objectif de cette distribution est d’atteindre un équilibre optimal entre
l’efficacité calculatoire du sous-échantillonnage et les bonnes performances statistiques
des projections gaussiennes. De plus, nous fournissons une borne d’excès de risque de
l’estimateur induit par cette approche dans le cadre de la régression à sorties mul-
tiples, tout en considérant des fonctions de perte lipschitziennes.

En outre, nous introduisons Sketched Input Sketched Output Kernel Regression (SIS-
OKR), une méthode basée sur IOKR et tirant profit des projections aléatoires sur les
noyaux d’entrée et de sortie pour obtenir un estimateur structuré de rang faible. Étant
donné la dimension potentiellement infinie de l’espace de représentation de sortie
et la fonction de perte quadratique, les projections aléatoires nous permettent ici de
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construire des opérateurs de projection orthogonale vers des sous-espaces de dimen-
sions réduites des espaces de représentation d’entrée et de sortie. Nous prouvons
une borne d’excès de risque de cet estimateur utilisant des projections aléatoires en-
trée/sortie sous-gaussiennes ou de sous-échantillonnage et montrons qu’il atteint une
vitesse d’apprentissage proche de l’optimal. En particulier, la conclusion de cette
étude théorique est cohérente : si nous faisons face à un problème sous-jacent de
rang faible (forte décroissance des valeurs propres des opérateurs de covariance en-
trée/sortie), nous pouvons utiliser un estimateur de rang faible grâce aux projections
aléatoires et avoir de très bonnes performances statistiques. En outre, nous démon-
trons de solides performances empiriques de SISOKR sur des ensembles de données
où les calculs requis par IOKR excèdent les capacités de la plupart des ordinateurs.

Enfin, nous proposons une architecture neuronale profonde capable de prédire dans
l’espace caractéristique potentiellement de dimension infinie du noyau de sortie grâce
à l’utilisation de projections aléatoires sur ce dernier. À cette fin, nous calculons la
base formée par les fonctions propres de l’opérateur de covariance empirique de sortie
projeté aléatoirement, et le réseau de neurones de Deep Sketched Output Kernel Regres-
sion (DSOKR) calcule par la suite une combinaison linéaire au sein de cette base et ap-
prend ses coordonnées pendant l’entraînement. Ceci permet l’utilisation de méthodes
d’optimisation à base de gradient pour n’importe quelle fonction de perte consist-
ant en une composition de la perte quadratique et d’une fonction sous-différentiable,
comme les fonctions de perte robustes standards par exemple. Ceci est également
compatible avec toute sorte d’architecture neuronale, comme les transformeurs, ainsi
que le confirment les expériences menées sur un problème de prédiction de molécules
dont les données d’entrée sont des descriptions textuelles de ces dernières.



Notations

≔ Equal by definition

N
∗ Strictly positive integers

R Real numbers

⟦n⟧ Set of integers from 1 to n ({1, · · · ,n})
a ≲ b ∃ c > 0 such that a ≤ cb
F (X ,Y ) Set of functions from a space X to a Hilbert

space Y
L(H,K), L(H) Bounded linear operators between Hilbert

spaces H and K, shortened when H =K
⟨·, ·⟩H, ∥ · ∥H Scalar product and norm in Hilbert space

H
∥ · ∥op Operator norm

∥ · ∥HS Hilbert-Schmidt norm

A# Adjoint of operator A

IH Identity operator on space H
A⊤ Transpose of matrix A

A† Moore-Penrose inverse of matrix A

A:i , Aj : i-th column of matrix A, j-th row of matrix
A

Id Identity matrix of dimension d

⊗ Kronecker product of matrices, tensor
product of Hilbert spaces or their elements

X Input space

Y Output space

Z Generic notation for at least a Polish space,
denotes either X or Y

kZ : Z ×Z → R Positive definite kernel

HZ Reproducing Kernel Hilbert Space associ-
ated with kZ

ψZ : z ∈ Z 7→ kZ(·, z) ∈ HZ Canonical feature map



10 notation

ρ Joint probability distribution of the in-
put/output pairs

n Number of training samples

ρZ Marginal probability distribution of the i.
i. d. training samples {z1, . . . , zn}

CZ = Ez∼ρZ [ψZ(z)⊗ψZ ] Covariance operator

SZ : f ∈ HZ 7→ 1√
n
(f (z1), . . . , f (zn))⊤ ∈ Rn Sampling operator

SZ
# : α ∈ Rn 7→ 1√

n

∑n
i=1αi ψZ(zi ) ∈ HZ Adjoint of the sampling operator

ĈZ = 1
n

∑n
i=1ψZ(zi )⊗ψZ(zi ) = SZ

#SZ Empirical covariance operator

KZ = (kZ(zi , zj ))1≤I ,j≤n = nSZSZ# Kernel Gram matrix

kzZ = (kZ(z,z1), . . . ,kZ(z,zn))⊤ ∈ Rn Vector of kernel evaluations over an entry z
and the training entries

mZ Sketching size

RZ ∈ RmZ ×n Sketching matrix

K̃Z = RZKZRZ⊤ Sketched kernel Gram matrix

C̃Z = SZ
#RZ⊤RZ SZ Sketched empirical covariance operator

P̃Z Orthogonal projection operator induced by
RZ

σi(A) i-th eigenvalue of the operator/matrix A

diag(v) Diagonal matrix induced by the vector v

Tr Trace of operator or matrix

Im Range of operator or matrix

Ker Null space of operator or matrix

rank Rank of operator or matrix

dim Dimension of space

span Linear space spanned by a set of vectors

| · |+ Positive part: |a|+ =max(a,0)

⌊ · ⌋ Floor integer part: ⌊a⌋ =m⇔m ≤ a < m+1,
m ∈N



Abbreviation

RKHS Reproducing kernel Hilbert space

OVK Operator-valued kernel

vv-RKHS Vector-valued RKHS

ERM Empirical Risk Minimisation

RFF Random Fourier feature

KRR Kernel ridge regression

KDE Kernel Dependency Estimation

OKR Output Kernel Regression

(S)I(S)OKR (Sketched) Input (Sketched) Output Kernel Regression

DSOKR Deep Sketched Output Kernel Regression

KPCA Kernel Principal Component Analysis

SVD Singular Value Decomposition

p. d. positive definite

r. k. reproducing kernel

i. i. d. independent identically distributed

r. v. random variable

w. r. t. with respect to
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Structured prediction enlarges the scope of classical regression or classification prob-
lems to the prediction of complex outputs. Namely, it encompasses the prediction
of objects of various natures, such as molecular identification (Brouard et al., 2016a),
multi-label classification (Belanger and McCallum, 2016), label ranking (Korba et al.,
2018), handwriting recognition (Cortes et al., 2007), sequence labeling (Tu and Gim-
pel, 2018), image reconstruction (Weston et al., 2003), image denoising (Belanger
et al., 2017), semantic segmentation (Kirillov et al., 2023), protein 3D structure pre-
diction (Jumper et al., 2021). Moreover, structured prediction approaches can be ex-
tended to tackle various kinds of problems, such as manifold valued regression (Rudi
et al., 2018b) or conditional meta-learning (Wang et al., 2020).

Due to the wide variety of output types, it is challenging to design a unified theor-
etically grounded framework able to tackle indifferently graph prediction and label
ranking for instance. Moreover, the usual non-linearity and high dimensionality of
structured spaces induce difficulties in efficiently tackling such problems, both from
computational and statistical perspectives. Finally, another challenge stems from learn-
ing relevant features from complex inputs as well, such as texts or images, while solv-
ing the prediction task.

In this thesis, we try to address these challenges thanks to surrogate methods. We
stick within the supervised learning setting and first propose to focus on the scalab-
ility to large datasets of kernel methods. We then propose a scalable surrogate kernel
method for structured prediction, together with an excess risk bound of the obtained
estimator. We finally propose to extend this framework to neural networks. All these
contributions are supported by synthetic and real-world experiments. We detail all
the work conducted during this thesis in the following section.

1.1 Motivations and Contributions

In this section, we present the research questions that motivated this thesis and an
overview of the contributions.

Themetabolite identification problem. Themetabolite identification problem (Cheng
and Schenkman, 1983; Gentile et al., 1996; Zhang et al., 2000) is an emblematic ex-
ample of structured prediction, and in particular of the surrogate kernel methods.
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Figure 1.2: Illustration of the surrogate methods.

the outputs within a linear feature space, a relevant loss function is a function that
takes into account the geometry of this feature space, i.e. that is a function of the
inner product within this space, and the squared distance then appears as an intuit-
ive choice. Second, from a practical viewpoint, since we focus on OKR, in the case
where the embedding ψY is implicit, we cannot directly compute ψY (y) but the inner
product between evaluations of this embedding, i.e. evaluations of the output kernel.

Hypothesis space for the surrogate problem. To handle the high or even infinite
dimension of the output features, a classical choice in the literature is to use the ker-
nel trick in the input space as well, and in particular, the generalisation of scalar
Reproducing Kernel Hilbert Spaces to the Hilbertian case, namely the vector-valued
RKHSs. This yields the so-called Input Output Kernel Regression model (Brouard
et al., 2016b). Furthermore, combined with the squared loss, this choice benefits from
the closed-form solution provided by the Kernel Ridge Regression.

Now, we are ready to present the four challenges we try to address in this thesis.

Scalability to large datasets. It is well-known that kernel methods do not scale up
easily to very large datasets. In particular, kernels are here used both in the input and
output spaces, which induces a heavy computational cost during both the learning
and the inference phases.

Challenge 1: Can we scale surrogate kernel methods up at both the training and
inference phases, especially since they employ not only an input but also an output

kernel?

Excess risk bounds. Beyond their versatility, the other main advantage of surrog-
ate kernel methods is their strong theoretical grounding. Building upon the theory
of Operator-Valued Kernels and the Fisher consistency provided by kernel-induced
losses and surrogate methods, it is possible to prove learning rates for the final struc-
tured estimator f = d ◦ h. However, it is challenging to keep such guarantees while
going beyond the scope of non-approximated KRR, in particular in the context of
structured prediction.

Challenge 2: Can we derive an excess risk bound for a scalable
Output-Kernel-Regression-based estimator?
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Table 1.1: Summary of the contributions.

Challenge Chapter 3 Chapter 4 Chapter 5

1. Scalability ✓ ✓ ✓

2. Excess risk bound ✓ ✓

3. Various losses ✓ ✓

4. Complex inputs ✓

a warm-up to the use of sketching on both the input and output kernels to scale IOKR
up.

Chapter 4: Sketched Input Sketched Output Kernel Regression. While sketching
has been previously leveraged as a way to reduce the number of parameters to learn
during optimisation stage, we now exploit another interpretation, namely the ability
to obtain random orthogonal projectors within a subspace of the feature space. Such a
projector is obtained by computing the Singular Value Decomposition of the sketched
empirical covariance operator C̃Z, it is basically the linear orthogonal projector onto
its eigenbasis. In doing so, we introduce both input and output random projectors
to scale surrogate kernel methods up at both the training and inference phase and
note that input projectors mainly accelerate the training phase while output project-
ors mainly accelerate the inference phase. Besides, we extend the theoretical results
from Rudi et al. (2015) on scalar Nyström KRR and Ciliberto et al. (2020) on non-
approximated surrogate methods to the scalable version with sub-Gaussian sketches,
including p-sparsified sketches. Our results prove close-to-optimal learning rates of
the structured estimator based on the eigendecays of the input and output covari-
ance operators: the faster the eigenvalues decrease, the better the rates, and we ob-
tain optimal rates for finite-rank input/output covariances. The implementations are
provided on GitHub. This work, presented in Chapter 4, tackles challenges 1 and 2
and offers the main tool to deploy kernel-induced losses to neural networks, i.e. the
eigendecomposition of C̃Y.

Chapter 5: Deep Sketched Output Kernel Regression. Equipped with the eigen-
basis of C̃Y, we introduce a new deep neural architecture that predicts in any generic
Hilbert output feature space. More precisely, the last layer of such a neural network
is a linear combination of the eigenfunctions of C̃Y. Then, benefiting from the finite
dimension of such a basis and the kernel trick, we cope with the possible infinite di-
mension or implicitness of the output embedding ψY and unlock the use of gradient-
based methods and back-propagation to learn the previous neural network’s layers,
regardless of the neural architecture at hand, and consequently the input data at hand.
Moreover, thanks to this approach, one can consider any loss c(∥ψY (·) −ψY (·)∥2HY ) as
previously stated, if c is differentiable or at least sub-differentiable. The implementa-
tions are provided on GitHub. This work, presented in Chapter 5, tackles challenges
1, 3, and 4.

1.2 Publications

These contributions have resulted in the following peer-reviewed publications and
preprints (⋆ indicates equal contribution):



18 CHAPTER 1. INTRODUCTION

• (El Ahmad et al., 2023) TamimEl Ahmad, Pierre Laforgue, and Florence d’Alché-
Buc. Fast Kernel Methods for Generic Lipschitz Losses via p-Sparsified Sketches.
In Transactions on Machine Learning Research, 2023. Reproduced in Chapter 3.

• (El Ahmad et al., 2024) Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue,
and Florence d’Alché-Buc. Sketch In, Sketch Out: Accelerating both Learning
and Inference for Structured Prediction with Kernels. In International Conference
on Artificial Intelligence and Statistics, 2024. Reproduced in Chapter 4.

• (El Ahmad et al., 2024) Tamim El Ahmad⋆ , Junjie Yang⋆ , Pierre Laforgue, and
Florence d’Alché-Buc. Deep Sketched Output Kernel Regression for Structured
Prediction. To appear in European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases, 2024. Reproduced in Chapter 5.
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In this chapter, we present the notions upon which we build in this thesis. We first
provide some reminders about kernel methods and structured prediction. Then, we
present some previous works that deal with the above mentioned challenges.

2.1 Kernel Methods

In this section, we give some reminders about scalar-valued and operator-valued ker-
nels. We refer the reader to Shawe-Taylor and Cristianini (2000, 2004); Steinwart and
Christmann (2008b); Scholkopf and Smola (2018) for more details.

2.1.1 Kernel Methods for scalar-valued outputs

In machine learning, kernels are used to define a hypothesis space for a learning prob-
lem, namely the Reproducing Kernel Hilbert Space, which is a linear Hilbert space,
based on a positive definite kernel. We first give the definition of a p. d. kernel.
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Definition 2.1 (positive-definite kernel). A positive definite kernel kX : X ×X → R is an
application such that

• ∀x,x′ ∈ X , kX (x,x′) = kX (x′ ,x) (symmetry);

• ∀(αi )ni=1 ∈ Rn, (xi )ni=1 ∈ X n,
∑n
i=1

∑n
j=1αiαj kX (xi ,xj ) ≥ 0 (positive-definiteness).

Positive-definite kernels can be seen as a way to define similarity measures between
objects. Their advantage is that one can define such a similarity measure on various
types of objects, and then on various spaces X . We give classical kernel examples over
different object types.

Example 2.2 (Vector kernels). Let X = R
d , for d ∈N∗. For all x,x′ ∈ Rd ,

• Linear kernel: kX (x,x′) = x⊤x′;

• Polynomial kernel: kX (x,x′) = (1 + x⊤x′)p with p ∈N∗;

• Gaussian kernel: kX (x,x′) = exp(−γ∥x − x′∥22) with γ > 0.

Example 2.3 (String kernel). Let X be the set of strings, i.e. the set of sequences of char-
acters from an alphabet Σ. For strings u and x, |u| denotes the number of characters in u
and |x|u denotes the number of occurrences of u in x. Then, for x,x′ ∈ X , the n-gram kernel
(Lodhi et al., 2002) is defined by

kX (x,x
′) =

∑

|u|=n
|x|u |x′ |u , (2.1)

with n ∈N∗.

Example 2.4 (Graph kernel). Let X be the set of node-labeled graphs, i.e. the set of graphs
G = (V ,E) where V denotes its set of vertices and E its set of edges. Let L = {1, . . . ,d}
be the set of labels, and ℓ : v ∈ V 7→ ℓ(v) ∈ L be the function that assigns a label for
each vertex. Then, the vertex label histogram of G is a vector f = (f1, . . . , fd )⊤, such that
fi = |{v ∈ V : ℓ(v) = i}| for each i ∈ L. Let f , f ′ be the vertex label histograms of G,G′,
respectively. Then, the vertex histogram kernel (Sugiyama and Borgwardt, 2015) is then
defined as the linear kernel between f and f ′, that is

kX (G,G
′) = f ⊤f ′ . (2.2)

You can find more graph kernel examples in Appendix C.2.

More generally, for any space Hilbert HX endowed with an inner product ⟨·, ·⟩HX and
embedding ψX : X →HX , the kernel kX (·, ·) = ⟨ψX (·),ψX (·)⟩HX is a p. d. one. Interest-
ingly, it is shown that any p. d. kernel is uniquely associated with such a space HX
called the Reproducing Kernel Hilbert Space (Aronszajn, 1950).

Reproducing Kernel Hilbert Space. We first describe how the RKHSs are construc-
ted. Given a p. d. kernel kX , we first consider the set of linear combinations of the
functions kX (·,x), i.e.

H0
X ≔ span(kX (·,x) | x ∈ X ) . (2.3)
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Besides, for all n,n′ ∈ N∗, (αi )ni=1 ∈ Rn, (α′i )n
′
i=1 ∈ Rn

′
, (xi )

n
i=1 ∈ X n and (x′i )

n′
i=1 ∈ X n

′
, it

can be shown that the following application is an inner product over H0
X

〈 n∑

i=1

αi kX (·,xi ),
n′∑

j=1

α′j kX (·,x′j )
〉

H0
X

=
n∑

i=1

n′∑

j=1

αiα
′
j kX (xi ,x

′
j ) . (2.4)

As a consequence,H0
X is an inner product space, and one can easily show thanks to the

Cauchy-Schwarz inequality that any Cauchy sequence in H0
X has a limit according to

the norm associated to ⟨·, ·⟩H0
X
. Then, taking the completion, we obtain the following

Hilbert space
HX ≔ span(kX (·,x) | x ∈ X ) , (2.5)

called the Reproducing Kernel Hilbert Space, and kX is called its reproducing kernel.

We then give a proper definition of a Reproducing Kernel Hilbert Space and a repro-
ducing kernel.

Definition 2.5 (Reproducing Kernel Hilbert Space). LetHX ⊂ R
X be a class of functions

forming a Hilbert space with inner product ⟨·, ·⟩HX . The function kX : X ×X → R is called
a reproducing kernel of HX if

• ∀x ∈ X , kX (·,x) ∈ HX ;
• ∀x ∈ X ,h ∈ HX , h(x) = ⟨h,kX (·,x)⟩HX (reproducing property).

If a r. k. exists, then HX is called a Reproducing Kernel Hilbert Space.

Equipped with Definitions 2.1 and 2.5, we state the following interesting properties
of kernels.

Proposition 2.6. A r. k. is uniquely associated to a RKHS HX , we can then talk of “the”
kernel of a RKHS, or “the” RKHS of a kernel. Moreover, a function kX : X ×X → R is p. d.
if and only if it is a r. k.

The latter can be easily shown thanks to the construction of RKHSs described above
from one hand, and by taking the p. d. kernel ⟨kX (·,x),kX (·,x′⟩HX from the other hand.
To sum up, a p. d. is then associated to the Hilbert spaceHX called the RKHS, and the
embedding ψX ≔ kX (·,x) called the canonical feature map. Besides, the reproducing
property assesses that any function in HX is a linear function.

Learning with scalar-valued kernels. Let us consider the supervised settings where
Y ⊆ R, i.e. scalar regression or binary classification. We then have access to the i. i.
d. training pairs (xi , yi )

n
i=1 ∈ (X ×R)n drawn from the unknown joint distribution ρ.

As previously stated, p. d. kernels provide hypothesis spaces which are their RKHSs.
Hence, equipped with a p. d. kernel kX together with its RKHSHX and a loss function
ℓ : R ×R→ R, the goal is to estimate

f ∗ = arginf
f ∈HX

E(x,y)∼ρ[ℓ(f (x), y)] , (2.6)

which we call the minimisation of the expected risk. The choice ofHX as a hypothesis
space can be in many cases relevant. Indeed, this choice mainly relies on prior know-
ledge of the problem at hand and the underlying true target that maps x to y for any
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(x,y) ∼ ρ. As stated earlier, p. d. kernels can be considered as similarity measures
over various data types or inferred from similarity measures, hence if a characteristic
of the input data appears discriminative according to the problem at hand, a p. d.
kernel that measures similarity based on this characteristic seems relevant. Since ρ
is unknown and the expected risk is then intractable, we rather consider its empir-
ical estimator, i.e. the mean over the evaluations of the loss over the training samples.
Moreover, to avoid overfitting the training data, we add a regularisation term that con-
trols the norm of the obtained estimator. Thus, let λ > 0 (adding a hyper-parameter),
we solve the Empirical Risk Minimisation problem, i.e.

f̂ = argmin
f ∈HX

1
n

n∑

i=1

ℓ(f (xi ), yi ) +λ∥f ∥2HX . (2.7)

Such a problem has been widely considered for various convex losses. The most fam-
ous example is the square loss, yielding the Kernel Ridge Regression, which has the
specificity to have a closed-form solution. Moreover, the hinge loss yields the well-
known Support Vector Machines (Cortes and Vapnik, 1995) for the binary classifica-
tion and the ϵ-insensitive ℓ1 loss yields the Support Vector Regression (Drucker et al.,
1997).

Nonetheless, it does not appear straightforward how to solve eq. (2.7). Here comes
another powerful tool inherent to kernel methods that relies on the reproducing prop-
erty and simple orthogonality argument: the representer theorem (Kimeldorf andWahba,
1971).

Theorem 2.7 (Representer theorem). Let kX be a kernel on X and letHX be its associated
RKHS. Consider a set of points (xi )

n
i=1 ∈ X n. Let V : Rn+1 → R be a function which is

strictly increasing with respect to its last argument. Then any solution f̂ to the problem

min
f ∈HX

V
(
f (x1), . . . , f (xn),∥f ∥HX

)
, (2.8)

can be written in the form

f̂ =
n∑

i=1

αi kX (.,xi ) (2.9)

for some (αi )
n
i=1 ∈ Rn.

Noting that eq. (2.7) is a particular case of eq. (2.8), we have that f̂ =
∑n
i=1 α̂i kX (·,xi )

where α̂ = (α̂1, . . . , α̂n)⊤ ∈ Rn is the solution to

min
α∈Rn

1
n

n∑

i=1

ℓ([KXα]i , yi ) +λα
⊤KXα , (2.10)

where KX = (kX (xi ,xj )1≤I ,j≤n. As a consequence, we obtain an optimisation problem
whose goal is to learn the n parameters αis and can be solved thanks to classical
gradient-based methods. A particular instance of such a problem is, as stated pre-
viously, KRR.

Example 2.8 (Kernel Ridge Regression). Setting ℓ : (y,y′) 7→ (y − y′)2, we obtain as an
optimisation problem on α

min
α∈Rn

1
n
∥KXα −Y∥22 +λα⊤KXα . (2.11)
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Table 2.1: Comparison between scalar (kX ) and operator-valued kernels (K).

scalar-valued kernel operator-valued kernel

kernel kX : X ×X → R K : X ×X →L(Y )
symmetry kX (x,x′) = kX (x′ ,x) K(x,x′) =K(x′ ,x)#
positive-definiteness

∑n
i=1

∑n
j=1αiαj kX (xi ,xj ) ≥ 0

∑n
i=1

∑n
j=1⟨yi ,K(xi ,xj )yj⟩Y ≥ 0

reproducing property h(x) = ⟨h,kX (·,x)⟩HX h(x) =K(·,x)#h

where Y = (y1, . . . , yn)⊤ ∈ R
n. By setting the gradient of the above quantity to zero, we

obtain the solution

α̂ = (KX+nλIn)
−1Y . (2.12)

Although admitting a closed-form solution is an advantage of KRR, it is obvious to note
that the inversion of the n2-matrix KX+nλIn implies a O(n3) time complexity, as well as a
O(n2) space complexity to store it in memory.

Scalar-valued p. d. kernels offer then a principled to solve scalar regression tasks.
We now introduce Operator-Valued Kernels that extend scalar-valued kernels to the
regression onto a generic Hilbert space.

2.1.2 Kernel Methods for vector-valued outputs

The extension of RKHSs to the general case of outputs in a Hilbert space Y is the
vector-valued RKHSs. As for scalar-valued RKHSs, we will first give a definition of
Operator-Valued Kernels and then how to build vv-RKHSs. An overview of the main
differences between scalar-valued kernels and OVKs is given in table 2.1. For more
thorough details about OVKs, we refer the reader to Senkene and Tempel’man (1973);
Micchelli and Pontil (2005); Caponnetto and De Vito (2007); Carmeli et al. (2010);
Álvarez et al. (2012).

Definition 2.9 (Operator-Valued Kernel). AnOpereator-Valued KernelK : X ×X →L(Y )
is an application such that

• ∀x,x′ ∈ X , K(x,x′) =K(x′ ,x)# (symmetry);

• ∀(yi )ni=1 ∈ Yn, (xi )ni=1 ∈ X n,
∑n
i=1

∑n
j=1⟨yi ,K(yi , yj )yj⟩Y ≥ 0 (positive-definiteness).

First, note that if Y = R
d for d ∈ N

∗, L(Y ) = R
d×d . In this specific case, we call the

OVKs the matrix-valued kernels (Álvarez et al., 2012). We give the definition of the
decomposable kernel, a particular and widely studied instance of OVKs.

Definition 2.10 (Decomposable Kernel). Let kX be a scalar-valued p. d. kernel and
M ∈ L(Y ), for all x,x′ ∈ X , a decomposable kernel K is then defined such that

K(x,x′) = kX (x,x
′)M . (2.13)

Such a kernel is popular because it separates its effects on the input and output data.
One can then encode the prior knowledge about the inputs in kX and about the out-
puts inM . We give some examples aboutM .
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Example 2.11 (Identity decomposable kernel). The simplest OVK is obtained by setting
M = IY . This means that we encode no prior knowledge inM and then no restriction in the
output space since Im(IY ) = Y .

Matrix-valued decomposable kernels have also been used to tackle multi-task regres-
sion (Evgeniou et al., 2005; Sheldon, 2008) or joint quantile regression (Sangnier et al.,
2016), as in chapter 3 of this thesis. We give two examples of such kernels.

Example 2.12 (Decomposable kernel for multi-task regression). It is possible to encode
prior knowledge about the task relationships inM . Such relationships can be represented by
a graph where each task is a node, and two assumed related tasks and connected by an edge.
Then, if L denotes the Laplacian of this graph, Evgeniou et al. (2005) and Sheldon (2008)
considered M = (µL + (1 − µ)Id )−1, with µ ∈ [0,1]. As limiting cases, if µ = 0, M = Id and
all tasks are assumed independent, and if µ = 1, we rely on the prior knowledge encoded by
L.

Example 2.13 (Decomposable kernel for joint quantile regression). The goal is to pre-
dict d quantile levels (τi )i≤d ∈ (0,1) of an output y given the input x. Sangnier et al. (2016)
proposedMij = exp(−γ(τi − τj )2), as it enforces the proximity of predictions between close
quantiles levels and also limits the crossing phenomenon for the predicted quantiles.

OVKs then generalise scalar-valued kernels to the generic Hilbert output space case
and decomposable kernels give an intuitive instance of such kernels. We now show
how to build vv-RKHSs, similarly to the scalar case.

Vector-valuedReproducingKernelHilbert Space. As for the scalar case, a vv-RKHS
is obtained via the completion of a linear space, however not only the inputs but also
the outputs are used to construct this set. Let K be an OVK, its vv-RKHS H is

H≔ span(K(·,x)y | x ∈ X , y ∈ Y ) =H0 , (2.14)

where the completion is based on the norm induced by the following inner product

〈 n∑

i=1

αiK(·,xi )yi ,
n′∑

j=1

α′jK(·,x′j )y′j
〉

H0

=
n∑

i=1

n′∑

j=1

αiα
′
j

〈
yi ,K(xi ,x′j )y′j

〉

Y
. (2.15)

Similarly to the scalar case, an OVK is uniquely associated with a vv-RKHS H.
Theorem 2.14 (vector-valued RKHS). Let K be an OVK. There is a unique Hilbert space
H of functions from X to Y , the vv-RKHS of K, such that for all x ∈ X , y ∈ Y and h ∈ H

• (x′ 7→ K
(
x,x′

)
y) ∈ H;

• ⟨h,K
(
·,x

)
y⟩H =

〈
h(x), y

〉
Y (reproducing property).

Learning with operator-valued kernels. Equipped with n i. i. d. training pairs
(xi , yi )

n
i=1 ∈ (X×Y )n, an OVKK together with its vv-RKHSH, a loss function ℓ : Y×Y →

R and a regularisation coefficient λ > 0, we aim at solving the following ERM problem

f̂ = argmin
f ∈H

1
n

n∑

i=1

ℓ(f (xi ), yi ) +λ∥f ∥2H . (2.16)
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Many machine learning tasks fall into the scope of the previous problem. First, as
in chapter 3, multi-output regression corresponds to Y = R

d for some d ∈ N
∗, and

matrix-valued kernels proved to be well-suited to deal with such a problem (Mic-
chelli and Pontil, 2005; Álvarez et al., 2012; Baldassarre et al., 2012; Brouard et al.,
2016b; Sangnier et al., 2016, 2017). Functional Output Regression aims at predicting
functions, the output space is then a space of functions, usually of square-integrable
real-valued functions. Vv-RKHS have successfully been leveraged to tackle such prob-
lems, see e.g. Lian (2007); Kadri et al. (2010, 2016); Bouche et al. (2021); Lambert et al.
(2022). Finally, and it is of particular interest in this thesis, surrogate kernel meth-
ods (Brouard et al., 2011; Kadri et al., 2013b; Brouard et al., 2016a,b; Ciliberto et al.,
2016, 2020; Laforgue et al., 2020; Brogat-Motte et al., 2022b) are a particular instance
of such a problem since the output space of the surrogate problem is the RKHS of a
scalar-valued output kernel as illustrated in Figure 1.2.

Similarly to the scalar case, a representer theorem (Micchelli and Pontil, 2005) shows
that f̂ is a linear combination of the input features.

Theorem 2.15 (Micchelli and Pontil 2005, Theorem 4.2). Let V : Yn × R → R be a
function such that for any y ∈ Yn, the partial function t 7→ V (y, t) is strictly increasing.
Then any solution f̂ to the problem

min
f ∈H

V
(
(f (x1), . . . , f (xn)),∥f ∥H

)
, (2.17)

can be written in the form

f̂ =
n∑

i=1

K(·,xi )αi , (2.18)

for some (αi )
n
i=1 ∈ Yn.

As a consequence, f̂ =
∑n
i=1K(·,xi )α̂i where α̂ = (α̂1, . . . , α̂n)⊤ ∈ Yn is the solution to

min
α∈Yn

1
n

n∑

i=1

ℓ(
n∑

i=1

K(x,xi )αi , yi ) +λ
n∑

i=1

n∑

j=1

〈
αi ,K(xi ,xj )αj

〉

Y
. (2.19)

Hence, assuming that Y = R
d for d ∈N∗, α̂ ∈ Rnd and we then obtain an optimisation

problem on n×d parameters, which is usually a very large number but does not tech-
nically prevent from using classical gradient-based methods. However, in the case
where Y is infinite-dimensional, such as Functional Output Regression or surrogate
kernel methods, solving eq. (2.19) appears very difficult. When using the square loss
ℓ(y,y′) = ∥y−y′∥2Y , Micchelli and Pontil (2005) shows that the α̂is satisfy the equations

n∑

i=1

(K(xj ,xi ) +nλδij )α̂i = yj , (2.20)

where δ is the Kronecker symbol, i.e. δii = 1 and ∀i , j , δij = 0. In the case of an
identity decomposable kernel, we recover a familiar closed-form solution

Example 2.16 (Vector-valued Kernel Ridge Regression). Setting ℓ : (y,y′) 7→ ∥y − y′∥2Y
and K = kX IY for a scalar-valued p. d. kernel kX , we obtain as a solution to eq. (2.19),
f̂ (·) =∑n

i=1 α̂i(·)yi with, for all x ∈ X ,
α̂(x) = (KX+nλIn)

−1kxX , (2.21)

where kxX = (kX (x,x1), . . . ,kX (x,xn))⊤ ∈ Rn.
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Moreover, exploiting duality properties, Brouard et al. (2016b) shows that it is pos-
sible to obtain a parametrized dual problem of eq. (2.19) in the maximum margin re-
gression case, i.e. ℓ(y,y′) = max(0,1−⟨y,y′⟩Y ), which constitutes a generalisation of the
scalar Support Vector Machines. Finally, Laforgue et al. (2020) shows that under some
assumptions on the Fenchel-Legendre transform of the loss function and the stability
of the kernel, i.e. for all (x,x′) ∈ X and for all y ∈ span((yi )ni=1), K(x,x′)y ∈ span((yi )ni=1),
the solution to eq. (2.19) writes as f̂ (·) =∑n

i=1K(·,xi )ω̂ijyj where Ω̂ = (ωij )1≤i,j≤n ∈ Rn×n
is a solution to the parametrized dual problem of eq. (2.19).

To sum up, kernels constitute a principled way to solve many machine learning prob-
lems with scalar outputs, by defining the RKHS, a hypothesis space enjoying many
interesting properties, and in particular the representer theorem in order to solve
ERM problems. Furthermore, we will see in section 2.4 that kernels offer solid theor-
etical foundations. Nevertheless, as pointed out by the KRR example, they suffer from
a heavy dependency on the number of training samples n in terms of both space and
time complexity. In the scalar case, looking at eq. (2.10), computing KX implies stor-
ing n2 values in memory, and learning n parameters implies heavy gradient or prox-
imal operator computations. In the generic Hilbertian case, the resulting optimisation
problems usually contain even more parameters to learn. Decreasing this complexity
while keeping good statistical accuracy is one of the main challenges of this thesis,
and we present some of the classical approximation techniques in section 2.3.

2.2 Structured Prediction

We here present the structured prediction problem in the supervised settings. We first
give some examples of such a task and the main challenges that arise from it. Then,
we introduce Output Kernel Regression, a surrogate method based on p. d. kernels
defined on the output space. Finally, we give an overview of other different families
of methods, namely the Conditional Random Fields (CRF) (Lafferty et al., 2001), the
Structured Support Vector Machines (SSVM) (Tsochantaridis et al., 2004, 2005; Taskar
et al., 2005), Max-margin Markov (M3) networks (Taskar et al., 2003), and Structured
Prediction Energy Networks (SPEN) (Belanger and McCallum, 2016).

Settings and challenges of structured prediction. The most studied settings in su-
pervised regression are regression and classification, where the output space’s dimen-
sion is low, e.g. space of real-valued vectors for regression or zeros/ones vectors for
classification. Regarding the input data, many problems deal with high-dimensional
objects such as images or molecules, e.g. molecular property prediction. In structured
prediction, the challenge is to deal with high-dimensional outputs. Many examples of
such outputs exist, e.g. graphs, binary vectors, permutations, or sequences of charac-
ters, and define many problems in various fields:

• computational biology: 2Dmolecular prediction (Brouard et al., 2016a), 3Dmo-
lecular prediction (Jumper et al., 2021);

• natural language processing: handwriting recognition (Cortes et al., 2007), lan-
guage translation (Bahdanau et al., 2015);

• computer vision: image reconstruction (Weston et al., 2003), image denoising
(Belanger et al., 2017), facial landmark detection (Belharbi et al., 2017), semantic
segmentation (Kirillov et al., 2023)



28 CHAPTER 2. BACKGROUND

• recommendation systems: label ranking (Korba et al., 2018), information re-
trieval (Lindgren et al., 2021).

Due to the high dimension of the output space, solving structured prediction in a
multi-task fashion without taking account of the structure of the output space, i.e. by
predicting each component of the outputs independently, is difficult and can lead to
poor statistical performance. In addition to their high dimension, structured spaces
are usually very large. Let us consider rather simple structured tasks, namely multi-
label prediction and label ranking, their corresponding output space sizes are |Y | = 2d

and |Y | = d! respectively, for some d ∈ N∗, which grows exponentially in d. Further-
more, another challenge is the lack of linear structure in such spaces, making linear
interpolation obsolete for instance. From an algorithmic viewpoint, many structured
prediction tasks imply discrete spaces, such as graph prediction, making the use of
gradient-based algorithms not straightforward. Finally, the complexity of such objects
make it difficult to design a general structured prediction algorithm, that will be able
to tackle graph prediction, label ranking and sequence prediction within the same
framework for example. Hence, many works rather focus on a specific task, whether
it is semantic segmentation (Kirillov et al., 2023) or 3D protein structure prediction
(Jumper et al., 2021).

Energy function. In order to account for the relationships between the components
of the output objects, as well as between the inputs and outputs, one can encode them
into an energy function (x,y) 7→ E(x,y). The estimator f : X → Y is then obtained by
maximizing the energy function over Y , i.e. for all x ∈ X

f (x)≔ argmax
y∈Y

E(x,y) . (2.22)

The goal is then to properly define a relevant energy function E and to learn it based
on the training data at hand. However, such a task seems very challenging. First,
as previously mentioned, there is a wide variety of structured outputs, then it is not
straightforward to design a versatile energy function that applies to any structured
spaces according to an appropriate hyper-parameter choice. Concerning the learning
part, let us consider the most standard paradigm in supervised learning, namely the
minimization of the risk given a loss function ∆ : Y × Y → R, we then obtain the
following problem,

min
E:X×Y→R

E(x,y)∼ρ[∆(argmax
y′∈Y

E(x,y′), y)] . (2.23)

Hence, learning E through the loss function and the pre-image problem seems rather
difficult, and would need differentiable approximations (Long et al., 2015; Niculae
et al., 2018; Berthet et al., 2020; Niculae and Martins, 2020).

In the following, we present different families of structured prediction models that fit
into this generic energy-based framework but with their own specifications. We first
start with Output Kernel Regression, which is the framework upon which we build in
chapters 4 and 5.

2.2.1 Output Kernel Regression

Kernel-induced loss. To cope with the lack of linear structure of the output space,
Output Kernel Regression (Weston et al., 2003; Geurts et al., 2006; Cortes et al., 2005,
2007; Kadri et al., 2013a; Brouard et al., 2011, 2016a,b; Ciliberto et al., 2016, 2020)
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endowes Y with an embedding ψY onto a linear feature spaceHY which is the canon-
ical feature map of a p. d. output kernel kY : Y ×Y → R. As explained in section 2.1,
two main advantages of p. d. kernels are their versatility to various object types, i.e.
it is possible to define a p. d. kernel on many different spaces, and their ability to
define similarity measures between objects, see e.g. Brouard et al. (2016a) for various
choices of kernels for tandem mass spectra based on various criteria. As such prop-
erties have been mainly used on the input data, OKR leverages them on the output
data. It is then possible to define a loss that takes into account the structure of the
output objects based on this relevant similarity measure, and to compute it thanks to
the kernel trick,

∆ : (y,y′) ∈ Y2 7→ ∥ψY (y)−ψY (y′)∥2HY = kY (y,y) + kY (y
′ , y′)− 2kY (y,y′) , (2.24)

and if kY is normalized, i.e. such that for all y ∈ Y , kY (y,y) = 1, then ∆(y,y′) =
2 − 2kY (y,y′). In the following, we assume without loss of generality that kY is nor-
malized. Note that, based on the choice of kY , such a loss defines a large panel of
losses, not only across various output types but also among a given one. For ex-
ample, in multi-label classification, choosing the linear kernel defines the Hamming
loss, when the Tanimoto kernel (Tanimoto, 1958) defines the F1-loss. In label ranking,
the Kemeny and Hamming embeddings define respectively Kendall’s τ distance and
the Hamming loss, see Korba et al. (2018) for more details. The goal is then to estimate
f ∗ : X →Y such that

f ∗ = arginf
f :X→Y

R(f ) = arginf
f :X→Y

E(x,y)∼ρ[∥ψY (f (x))−ψY (y)∥2HY ] , (2.25)

based on i. i. d. input/output training pairs {(x1, yn), . . . , (xn, yn)}. It is not straightfor-
ward how to solve problem (2.25), since according to kY , ∆ is not necessarily lower
semi-continuous, convex, or differentiable, see Blondel et al. (2020) for an in-depth
study of a generic way to construct a convex loss function for structured prediction
problems.

Surrogate method. Hence, one rather solves such a problem by following a two-step
approach as illustrated in Figure 1.2:

1. training step: one solves the surrogate regression problem obtained by replacing
the outputs yis by their embedded counterparts ψY (yi )s, and then find ĥ : X →
HY by ERM which estimates

h∗ = argmin
h:X→Y

E(x,y)∼ρ[∥h(x)−ψY (y)∥2HY ] ; (2.26)

2. inference step: retrieve the solution by solving a pre-image problem, then f̂ =
d ◦ ĥ such that for all x ∈ X ,

f̂ (x) = d(ĥ(x)) = argmin
y∈Y

∥ĥ(x)−ψY (y)∥2HY = argmax
y∈Y

⟨ĥ(x),ψY (y)⟩HY . (2.27)

We then relegate the difficult handling of structured objects through ψY to the infer-
ence step. Moreover, from a theoretical perspective, Ciliberto et al. (2016, 2020) prove
the Fisher consistency of such a model.
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Figure 2.1: Illustration of Input Output Kernel Regression (Brouard et al., 2016b) with
an identity decomposable input kernel, also corresponding to Kernel Dependency Es-
timation (Cortes et al., 2005).

Lemma 2.17 (Ciliberto et al. 2020, Lemma 1). Let Y be compact, kY : Y × Y → R be
a normalized p. d. kernel and ψY : y 7→ kY (·, y) its canonical feature map. Then, for f ∗

defined as in eq. (2.25) and h∗ defined as in eq. (2.26), then

h∗(x) = Ey[ψY (y)|x] , (2.28)

and

f ∗(x) = argmin
y∈Y

∥h∗(x)−ψY (y)∥2HY , (2.29)

almost surely with respect to ρX .

Moreover, they prove the comparison inequality, namely the fact that the excess risk of
f̂ is bounded by the excess risk of ĥ, we will give more details later.

Remark 2.18 (Implicit Loss Embeddings). Actually, Ciliberto et al. (2020) goes beyond
the scope of OKR and gives such results for any loss ∆ that admits what they call an Im-
plicit Loss Embedding. Let Y be the structured output space and Y ′ the label space (such
distinction comes from tasks such as label ranking, where Y denotes the set of permutations
and Y ′ the set of scalar scores representing the relevance of the elements to rank based on
an input x ∈ X ), a continuous map ∆ : Y ×Y ′→ R admits an ILE if there exists a separable
Hilbert spaceH and two measurable bounded maps ψY : Y →H and ϕ : Y ′→H, such that
for any y ∈ Y and y′ ∈ Y ′ we have

∆(y,y′) = ⟨ψY (y),ϕ(y′)⟩H , (2.30)

and ∥ϕ(y′)∥H ≤ 1. See Ciliberto et al. (2020, Theorem 8) for the proof that any kernel-
induced loss defined as in eq. (2.24) with a normalized kernel kY admits admits an ILE,
where H =HY and c∆ = supy∈Y ∥ψY (y)∥HY = 6.

Then, this surrogate model is well-conditioned and offers strong theoretical ground-
ings. Finally, we see that we fall into the scope of energy-based models based on the
inference step, where the energy function E is given by E : (x,y) 7→ ⟨ĥ(x),ψY (y)⟩HY .
The question that now raises is: how can we learn ĥ? In particular, how can we handle
the fact that HY may be infinite-dimensional and ψY implicit?
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Training step. While Weston et al. (2003) first proposed to compute the output
Kernel Principal Component Analysis and to predict each component of the out-
put features in a multi-task fashion via scalar KRR, we rather focus on leveraging
Operator-Valued Kernels to manage the high dimension of HY . In particular, we
present the most simple instance of Input Output Kernel Regression (Brouard et al.,
2016b) that uses an identity decomposable input kernel, and that corresponds to the
Kernel Dependency Estimation in Cortes et al. (2005), illustrated in Figure 2.1. Let
kX : X ×X → R be a p. d. kernel associated to the RKHS HX and K = kX IHY be the
identity decomposable OVK associated to the vv-RKHS H, and let λ > 0 be a regular-
isation parameter, we estimate ĥ by solving the following regularized ERM problem,

min
h∈H

1
n

n∑

i=1

∥h(xi )−ψY (yi )∥2HY +λ∥h∥
2
H . (2.31)

Then, the represented theorem (Micchelli and Pontil, 2005) together with the square
loss give a closed-form solution of the above problem, for all x ∈ X ,

ĥ(x) =
∑

i=1

α̂i(x)ψY (yi ) with α̂(x) = (KX+nλIn)
−1kxX , (2.32)

where kxX = (kX (x,x1), . . . ,kX (x,xn))⊤ ∈ Rn. We recover the classical matrix operation
(KX+nλIn)−1 induced by KRR. Moreover, ĥ admits an operator expression ĥ : x 7→
Ĥ ψX (x) for Ĥ : HX → HY , which is very useful to derive theoretical guarantees, see
section 2.4 for more details.

Inference step. Equipped with the above ĥ, we then obtain as structured estimator

f̂ : x 7→ argmax
y∈Y

kxX
⊤(KX+nλIn)

−1kyY , (2.33)

where kyY = (kY (y,y1), . . . ,kY (y,yn))⊤ ∈ Rn. In practice, predictions are performed in a
discrete fashion by searching in a candidate set Yc ⊆ Y of size nc. Hence, performing
predictions on a test set Xte of size nte mainly implies computing

S ≔ KX
te,tr

︸ ︷︷ ︸
nte×n

(KX+nλIn)
−1

︸          ︷︷          ︸
n×n

KY
tr,c

︸︷︷︸
n×nc

, (2.34)

where KX
te,tr =

(
kX (xtei ,xj )

)

1≤i≤nte,1≤j≤n
∈ Rnte×n, and KY

tr,c =
(
kY (yi , ycj )

)

1≤i≤n,1≤j≤nc
∈

R
n×nc . Then, for each 1 ≤ i ≤ nte,

f̂ (xtei ) = y
c
j where j = argmax

1≤j≤nc
Sij . (2.35)

We now discuss the four challenges presented in chapter 1.

1. Scalability to large datasets. At the training phase, (KX+nλIn)−1 induces O(n3)
time and O(n2) space complexities, which is standard for KRR. Moreover, at the infer-
ence phase, computing S induces O(nntenc+n2min(nte,nc)) time and O(n2+nnte+nnc)
space complexities. IOKR then scales very poorly to large n, i.e. large datasets, both
at the training and inference phases. We give more details about existing methods to



32 CHAPTER 2. BACKGROUND

scale kernel methods up in section 2.3, but most of them focus on scalar regression,
i.e. Y = R. In chapter 4, we provide Sketched Input Sketched Output Kernel Regres-
sion: a scalable IOKR-based method that leverages sketching in both the input and
output feature spaces to reduce both training and inference complexities while still
maintaining good statistical accuracy.

2. Excess risk bounds. In addition to its versatility, another main advantage of IOKR
is its theoretical foundations. In particular, Ciliberto et al. (2016, 2020) show the
comparison inequality, stating than the excess risk of f̂ is bounded by the excess risk of
ĥ.

Theorem 2.19 (Ciliberto et al. 2020, Theorem 3). Let Y be a compact set, kY : Y×Y → R

be a normalized p. d. kernel and ψY : y 7→ kY (·, y) its canonical feature map. Let h : X →
HY be measurable and f : X →Y such that, for any x ∈ X ,

f (x) = argmin
y∈Y

∥h(x)−ψY (y)∥2HY . (2.36)

Then,

R(f )−R(f ∗) ≤ 12
√
E(h)−E(h∗) , (2.37)

where E(h) = E(x,y)∼ρ[∥h(x)−ψY (y)∥2HY ].

In section 2.4.2, we give the sketch of proof to derive the excess risk bound of ĥ, and
then of f̂ tanks to the above comparison inequality. However, incorporating sketching
approximation makes it obsolete. We derive an excess risk for the scalable SISOKR
estimator in chapter 4.

3. Various losses. The closed-form formula for ĥ is obtained thanks to the input
identity decomposable kernel and the square loss. However, in the case where one
would use other losses, such as robust losses in the case of output outliers, it seems
very difficult to learn ĥ in general since HY may be infinite-dimensional. Laforgue
et al. (2020) shows that under some assumptions on the loss and the input kernel, ĥ
admits a parameterized expression whose parameters can be learned through a dual
problem which is solvable by a projected gradient descent problem. In particular,
they derive such dual problems for the ϵ-insensitive ℓ1 and ℓ2 losses, as well as for
the Huber loss, see section 2.5 for more details. In chapter 4, we show that we can
obtain a small orthonormal basis span((ei )

p
i=1) of a subspace of HY for some p ∈ N∗,

which is formed by the eigenfunctions of the sketched output empirical covariance
operator. Then, in chapter 5, and building upon this result, we show that we can
learn ĥ for any loss ∆ : (y,y′) = c(∥ψY (y) − ψY (y′)∥2HY ) with a differentiable or sub-

differentiable c : R→ R ĥ, by setting ĥ : x 7→∑p
i=1 ĝ(x)iei where ĝ : X → R

p is either a
linear function, a function induced by a matrix-valued kernel or a neural network. In
fact, for such choices, it is possible to learn ĝ by solving the surrogate ERM problem
by gradient-based algorithms. Note that the ϵ-insensitive ℓ2 and Huber loss write as
c(∥ψY (y) −ψY (y′)∥2HY ) with differentiable functions c, while for the ϵ-insensitive ℓ1, c
is sub-differentiable.
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4. Handle complex input data. IOKR strongly relies on an input kernel, however
kernels show poor results on complex input data such as images or texts. Such in-
puts need more expressive models that have the ability to learn representations from
them without prior knowledge, see section 2.6 for more details. As explained above,
we introduce in chapter 5 Deep Sketched Output Kernel Regression, a deep archi-
tecture that exploits the basis obtained by the SVD of the sketched output empirical
covariance operator.

2.2.2 Overview of Other Methods

We here give a brief background on some existing methods for structured prediction.
We refer the reader to Bakir et al. (2007), Nowozin and Lampert (2011) and Deshwal
et al. (2019) for deeper details, and to Nowak-Vila et al. (2019) and Nowak et al. (2020)
for the theoretical analysis of CRF, SSVM, and M3 networks.

Conditional Random Fields

CRF (Lafferty et al., 2001) generalizes logistic regression classifiers to structured pre-
diction.

The idea is to compute the conditional probability p(y | x) to obtain the prediction
via Maximum A Posteriori (MAP), i.e. by maximizing the conditional probability over
Y for a given input x ∈ X , hence CRF falls into the scope of energy-based models
with E : (x,y) 7→ p(y | x). This conditional probability is modeled by a parameterized
graphical model, i.e. such that, for all x ∈ X , y ∈ Y ,

pω(y | x) =
1

Z(x,ω)
exp(−gω(x,y)) , (2.38)

where ω ∈ Rd for d ∈N∗ is the parameter to learn, Z(x,ω) is the normalisation factor
ensuring that

∑
y∈Y pω(y | x) = 1, and gω encodes the input/output dependency through

ω. A standard choice is gω : (x,y) = ω⊤Ψ(x,y) with a joint feature map.

To learn ω, the goal is to make pω(y | x) close to the true conditional distribution by
maximizing the regularized conditional log-likelihood, then by solving, for λ > 0,

min
ω∈Rd

n∑

i)1

ω⊤Ψ(xi , yi ) +
n∑

i=1

Z(xi ,ω) +λ∥ω∥22 . (2.39)

This convex optimisation problem can then be easily solved through a gradient des-
cent algorithm.

The main limitation comes from the normalisation term Z obtained via a sum over
Y whose size is usually very large for structured outputs. However, one can consider
computationally efficient approximations based on the graphical model’s structure,
e.g. by the belief propagation algorithm (Nowozin and Lampert, 2011).

Structured support vector machines

SSVM (Tsochantaridis et al., 2004, 2005; Taskar et al., 2005) generalizes SVM to struc-
tured prediction, see section 2.5 for more details.
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It uses joint feature maps Ψ : X × Y → H as well and computes an inference for an
input x ∈ X by maximizing the inner product between a vector ω ∈ H to learn and the
joint feature map evaluation over the output space,

f (x) = argmax
y∈Y

E(x,y) = argmax
y∈Y

⟨ω,Ψ(x,y)⟩H . (2.40)

Then, similarly to SVM, the idea is to learn ω via the following soft-margin problem,

min
ω∈H,ξ∈Rn

1
2
∥ω∥22 +C

n∑

i=1

ξi

such that ξi ≥ 0,⟨ω,Ψ(xi , yi )−Ψ(xi , y)⟩H ≥ 1− ξi ,∀i ∈ ⟦n⟧,∀y ∈ Y \ {yi} .
As for standard SVM, such a problem benefits from a parameterized dual problem
and KKT condition to learn ω. Note also that such a problem corresponds to solving
the primal classical ERM problem on f defined as in eq. (2.40) with the following loss
evaluations, for i ∈ ⟦n⟧,

∆(f (xi ), yi ) = max(1+ f (xi )− ⟨ω,Ψ(xi , yi )⟩H,0) , (2.41)

and we will see that other methods exploit such losses (Belanger and McCallum,
2016).

Akin to CRF, the inference problem over the whole output space Y creates a computa-
tional burden, but various algorithms have been proposed to cope with this problem,
e.g. the cutting plane algorithm (Nowozin and Lampert, 2011).

Max-margin Markov networks

Max-Margin Markov networks can be considered as a combination of CRF and SSVM.
In fact, to have more efficient learning algorithms for the energy function E, it is then
defined as a graphical model but trained via a max margin-based optimisation prob-
lem.

Structured Prediction Energy Networks

We here present SPEN and some deep-learning-based methods inspired or derived
from it. For some reminders about deep learning, we refer the reader to section 2.6.2.

SPEN focuses on the case where the output space can be encoded via L-sized binary
vectors, for L ∈N∗, and then uses the continuous relaxation Ȳ = [0,1]L of Y = {0,1}L.
Moreover, it uses deep neural networks to encode an energy function E. This energy
function E is the sum of two energy functions. First, the local energy network Elocal

encodes the relationships between the inputs and outputs, i.e.

Elocal : (x, ȳ) ∈ X × Ȳ 7→
L∑

i=1

ȳib
⊤
i F(x) , (2.42)

where F : x 7→ g(A2g(A1x)) ∈ R
f , for f ∈ N

∗, is a 2-layer feature networks, with g
being activation functions and A1, A2 and (bi )

L
i=1 being the neural nets’ weights to

learn. Second, the global energy network Elabel encodes the relationships between the
outputs’ components, and is then independent from the inputs, i.e.

Elabel : ȳ ∈ Ȳ 7→ c⊤2 g(C1ȳ) , (2.43)
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where g is an activation function as well, and C1 and c2 weights to learn. Then, given
ℓ : Y2

RR an error function such as the Binary Cross Entropy and E = Elocal + Elabel,
SPEN learns its eights by minimizing an SSVM loss function type,

n∑

i=1

max
y

max(ℓ(yi , y)−E(xi , y) +E(xi , yi ),0) , (2.44)

thanks to mini-batch stochastic gradient descent and back-propagation. The inference
is obtained via projected gradient descent thanks to the continuous relaxation of Y by
solving

f : x ∈ X 7→ argmin
y∈Y

E(x,y) . (2.45)

One of the limitations of SPEN is its two-step process: one has to first learn the en-
ergy network via gradient descent to then performs an inference via another gradient
descent. To build an end-to-endmodel, Belanger et al. (2017) uses a direct risk minim-
isation technique, stating that a prediction ŷ induced by a gradient descent algorithm
with an initialisation y0, T epochs and learning rates (ηt)

T
t=1 is given by

ŷT = y0 −
T∑

t=1

ηt
d

dy
E(x,yt) . (2.46)

However, while the authors propose to choose y0 by pre-training the feature network,
it does not appear straightforward how to a priori choose T and (ηt)

T
t=1. Another

solution proposed by Tu and Gimpel (2018) is to learn an inference network f via
an approximated structured argmax inference. The energy and inference networks
are then jointly trained in a GAN (Goodfellow et al., 2014) inspired fashion, which
however can lead to heavy computations.

Deep Value Networks (Gygli et al., 2017) is also another gradient-based approach us-
ing the same architecture and relaxation as SPEN. The main difference comes from
the training phase, when DVN explores other possibilities than generating outputs
via gradient-based inference, such as adversarial tuples or random samples.

Finally, the other main limitation of SPENs relies on the considered continuous relax-
ation, narrowing SPENs’ scope to structured tasks that can be formulated as multi-
label classification. Graber et al. (2018) then proposes to formulate inference via a
Lagrangian, instead of using a continuous relaxation of the output space.

In chapter 5, we show how to introduce kernel-induced losses to neural networks,
or equivalently, neural networks to OKR, and then provide a versatile deep-learning-
based structured prediction model in terms of the output types.

2.3 Scalability of Kernel Methods

We here present some approximation methods to tackle large-scale learning with ker-
nels. We first introduce Random Fourier Features. Then, we present Sketching, start-
ing with its particular most famous instance Nyström approximation
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2.3.1 Random Fourier Features

The idea behind random features is to approximate the canonical feature map ψX of
a scalar-valued p. d. kernel kX by a randomly generated feature map ψ̃X : X → R

mX

where mX ≪ n, i.e. for all x,x′ ∈ X ,

kX (x,x
′) = ⟨ψX (x),ψX (x′)⟩HX ≈ ψ̃X (x)⊤ψ̃X (x′) . (2.47)

Equipped with this approximation, we can then set as the hypothesis space to solve an
ERM problem, the set of linear functions f (·) = γ⊤ψ̃X (·) where γ ∈ RmX is the solution
to

min
γ∈RmX

1
n

n∑

i=1

ℓ(γ⊤ψ̃X (xi ), yi ) +λ∥γ∥22 . (2.48)

We then obtain an optimisation problem over mX parameters rather than the initial
n parameters of eq. (2.10). A good example of the complexity reduction induced by
such an approximation is the KRR.

Example 2.20 (Random features KRR). Let ℓ : (y,y′) 7→ (y − y′)2, eq. (2.48) rewrites

min
γ∈RmX

1
n
∥ψ̃X (X)γ −Y∥22 +λ∥γ∥22 , (2.49)

where ψ̃X (X) = (ψ̃X (x1), . . . , ψ̃X (xn))⊤ ∈ R
n×mX . Thus, setting the gradient to zero, we

obtain as a solution to the above problem

γ = (ψ̃X (X)
⊤ψ̃X (X) +nλImX︸                        ︷︷                        ︸
mX ×mX

)−1ψ̃X (X)
⊤Y . (2.50)

It is clear that inverting an mX 2-matrix rather than the initial n2-matrix induces a huge
complexity reduction for mX ≪ n.

The question now is: how can we build such random features such that they ensure a
good approximation of the initial kernel?

The most popular approach is Random Fourier Features (Rahimi and Recht, 2007).
RFF takes its roots into Bochner’s theorem, stating that a continuous function defined
on R

d for d ∈ N∗ is p. d. if and only if it is the Fourier transform of a non-negative
measure. As a consequence, one can approximate any continuous shift-invariant ker-
nel thanks to Monte-Carlo sampling.

We detail this approach. First, we restrict the input space space X ⊆ R
d for d ∈ N∗.

Let us define shift-invariant kernels.

Definition 2.21 (shift-invariant kernel). Let kX : Rd ×Rd → R be a p. d. kernel. We
say that kX is shift-invariant if there exists a function kX

0 on X such that for all x,x′ ∈ X ,
kX (x,x′) = kX

0(x − x′).

We now state the Bochner’s theorem.

Theorem 2.22 (Bochner). A continuous function kX
0 : Rd → R is positive definite if and

only if it is the Fourier transform of a finite non-negative Borel measure µ on R
d .

kX
0(x) =

∫

Rd

eiω
⊤x
dµ(ω) =

∫

Rd

cos(ω⊤x)dµ(ω). (2.51)
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The second equality is true since kX
0 is real-valued and µ is defined on R

d , therefore
we can ignore the imaginary part. By the Bochner’s theorem, we then obtain that, for
all x,x′ ∈ Rd ,

kX (x,x
′) =

∫

Rd

cos(ω⊤(x − x′))dµ(ω) (2.52)

=
∫

Rd

(cos(ω⊤x)cos(ω⊤x′) + sin(ω⊤x)sin(ω⊤x′))dµ(ω) . (2.53)

As a consequence, this integral can be approximated by Monte Carlo. Let (ωi )
mX /2
i=1 be

i. i. d. draws from the probability measure µ, the approximate kernel is given by

k̃X (x,x
′) =

2
mX

mX /2∑

i=1

cos(ω⊤i x)cos(ω
⊤
i x
′) + sin(ω⊤i x)sin(ω

⊤
i x
′) = ψ̃X (x)

⊤ψ̃X (x
′) , (2.54)

where

ψ̃X : x 7→
√

2
mX

(cos(ω⊤1 x), . . . ,cos(ω
⊤
mX /2

x),sin(ω⊤1 x), . . . ,sin(ω
⊤
mX /2

x))⊤ . (2.55)

By noting that, for all b ∈ R, 2cos(ω⊤x+b)cos(ω⊤x′+b) = cos(ω⊤(x+x′)+2b)+cos(ω⊤(x−
x′)) and

∫ 2π
0 cos(ω⊤(x+x′)+2b) = 0, we recover the expression provided in Rahimi and

Recht (2007), i.e.

kX (x,x
′) =

∫

Rd

∫ 2π

0

1
π
cos(ω⊤x + b)cos(ω⊤x′ + b)dµ(ω)db , (2.56)

and then, by Monte Carlo as well, we obtain by sampling mX i. i. d. realisations ωis
from µ and bis uniformly from [0,2π]

ψ̃X : x 7→ 1√
πmX

(cos(ω⊤1 x + b1), . . . ,cos(ω
⊤
mX x + bmX ))

⊤ . (2.57)

The most famous example of shift-invariant kernel is undoubtedly the Gaussian ker-
nel.

Example 2.23 (Gaussian kernel). Let kX : x × x′ 7→ exp(− 1
2σ2 ∥x − x′∥22) be a Gaussian

kernel for σ > 0. Its inverse Fourier transform is a Gaussian as well, more precisely, it
admits an RFF where the ωis are randomly drawn fromN (0,1/σ2).

More generally, as pointed out by Rudi and Rosasco (2017) that gives some examples,
it is possible to use RFF as long as a kernel admits an integral representation,

kX (x,x
′) =

∫

Ω

ψ̃X (x,ω)ψ̃X (x
′ ,ω)dµ(ω) , (2.58)

for all x,x′ ∈ X and where (Ω,µ) is a probability space and ψ̃X : X ×Ω → R. Sriper-
umbudur and Szabó (2015) provides a thorough analysis of approximation’s quality
inferred by RFF in terms of the supremum norm of the difference between k̃X and
kX for any compact set included in R

d . Brault et al. (2016) generalizes RFF to shift-
invariant OVKs, unlocking large-scale learning with RFF in the context of regression
within a generic Hilbert space.

RFF is then a kernel approximation technique relying on random features. Note that
these random features are independent of the training data and their expression only
depends on the kernel and its integral representation. We will see in what follows that
another popular technique provides random features, but these random features now
depend on the training samples.
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2.3.2 Nyström Approximation

The Nyström approximation is originally a low-rank approximation technique, where
a positive semi-definite matrix is approximated by a low-rank matrix based on a sub-
matrix of the original one. It then appears intuitive that most of the works about the
scalability of kernels focus on Nyström, as sub-sampling from the training data re-
duces not only the time but also the space complexity induced by the n2 Grammatrix.
Many interpretations of scalar Nyström kernels come from its rich literature, namely
the low-rank approximation of the Gram matrix (Drineas et al., 2005; Bach, 2013),
the data-dependent random features (Williams and Seeger, 2001; Yang et al., 2012),
the reduction of the hypothesis space (Rudi et al., 2015), or the orthogonal projection
operator in the feature space (Rudi et al., 2015). We will present all of them and the
links between them.

Low-rank approximation and data-dependent random features. Let kX be scalar
p. d. kernel and {(xi )ni=1} be a training sample. Let mX ≪ n and {(x̃i )mXi=1} sampled from
the training outputs, K̃X = (kX (x̃i , x̃j ))1≤i,j≤mX and KXnmX = (kX (xi , x̃j ))1≤i≤n,1≤j≤mX be
the mX 2 and n×mX sub-matrices, respectively, the Nyström low-rank approximation
of the kernel Gram matrix KX is then

KXnmX K̃X
†
KX
⊤
nmX . (2.59)

Drineas et al. (2005) shows that the randomized approximation in eq. (2.59) gets very
close with high probability and in expectation to the best rank mX approximation to
KX. Interestingly, Williams and Seeger (2001) first introduced such an approximation
to obtain data-dependent random features. Indeed, let {(σi(K̃X), ũi ), i ∈ [mX ]} be the
eigenpairs of K̃X in descending order, pX = rank(K̃X) ≤ mX , D̃pX

= diag(σ1(K̃X), . . . ,
σpX

(K̃X)) ∈ RpX×pX , and ŨpX
= (ũ1, . . . , ũpX

) ∈ RmX ×pX , we have that

KXnmX K̃X
†
KX
⊤
nmX = KXnmX ŨpX

D̃−1/2pX
D̃−1/2pX

Ũ⊤pX
KX
⊤
nmX = ψ̃X (X)

⊤ ψ̃X (X) , (2.60)

where ψ̃X (X) = (ψ̃X (x1), . . . , ψ̃X (xn))⊤ ∈ Rn×pX with

ψ̃X : x 7→ D̃−1/2pX
Ũ⊤pX

kx
X̃
, (2.61)

where kx
X̃
= (kX (x, x̃1), . . . ,kX (x, x̃mX ))

⊤ ∈ RmX .

Remark 2.24 (Rank of K̃X). In general, a Grammatrix is invertible if all the entries used to
compute it are unique. Hence, if all the training inputs are unique and the x̃is are sampled
without replacement, pX =mX .

As a consequence, Nyström can be used to compute random features whose dimen-
sion is smaller than n as RFF, however, their computations depend on the training
data sampled. Moreover, another notable difference is that such an operation can be
done for all kernels, even the ones not admitting an integral representation. Finally,
Yang et al. (2012) compared Nyström random features with RFF, and their excess risk
bounds highlighted that, when there is a large gap in the eigenspectrum of the ker-
nel matrix, approaches based on the Nyström method can achieve better results than
Random Features based approach.
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Reduction of the hypothesis space. We saw that, thanks to the represented theorem,
any solution of the penalized ERM problem in eq. (2.7) lies in span((kX (·,xi )ni=1). A
natural idea is then to restrict the hypothesis space to span((kX (·, x̃i )mXi=1). Then, the
Nyström estimator f̃ =

∑mX
i=1 γ̂i kX (·,xi ) where γ̃ = (γ̃1, . . . , γ̃mX )

⊤ ∈ RmX is the solution
to

min
γ∈RmX

1
n

n∑

i=1

ℓ([KXnmX γ]i , yi ) +λγ
⊤ K̃Xγ . (2.62)

We then obtain an optimisation problem with mX parameters to learn rather than n.
The connection between this interpretation and the Nyström features is not straight-
forward. Let us define the linear problem induced by the random features,

min
γ∈RpX

1
n

n∑

i=1

ℓ(γ⊤ψ̃X (xi ), yi ) +λ∥γ∥22 . (2.63)

As we show in the proof of Proposition 3.17 in chapter 3 for any sketching distribu-
tion, including Nyström approximation, problems (2.62) and (2.63) admit the same
following dual problem

min
ζ∈Rn

n∑

i=1

ℓ⋆i
(
−ζi

)
+

1
λn
ζ⊤KXnmX K̃X

†
KX
⊤
nmX ζ . (2.64)

where ℓ⋆i denotes the Fenchel-Legendre transform of ℓi : y ∈ R 7→ ℓ(y,y) for any i ≤ n.
Hence, in the case where strong duality holds, problems (2.62) and (2.63) admit the
sameminimal values, and their solutions can be linked thanks to Karush-Kuhn-Tucker
conditions. Moreover, note that we recover the low-rank Nyström approximationmat-
rix in the regularisation of the dual problem.

Orthogonal projection operator. Last but not least, Rudi et al. (2015) provides an
excess risk bound of the Nyström KRR estimator obtained by solving eq. (2.62) thanks
to an analysis based on the induced orthogonal projector onto span((kX (·, x̃i )mXi=1). First,
let SX̃ : f ∈ HX 7→ (1/

√
mX )(f (x̃1), . . . , f (x̃mX ))

⊤ ∈ R
mX be the sub-sampling operator

and C̃X = (1/mX )
∑mX
i=1ψX (x̃i )⊗ψX (x̃i ) be the Nyström approximation of the empirical

covariance operator ĈX. Yang et al. (2012) shows that the non-zero eigenfunctions of
C̃X are

ẽi =
√

n

σi(K̃X)
S#
X̃
ũi , (2.65)

associated to the eigenvalues σi(K̃X)/n, for 1 ≤ i ≤ pX.

Remark 2.25 (Link with random features). As pointed out by Yang et al. (2012), note
that the random features ψ̃X are simply the vector formed by the evaluations of the ẽis, i.e.

ψ̃X : x 7→ (ẽ1(x), . . . , ẽpX
(x))⊤ . (2.66)

Since Im(C̃X) = span((kX (·, x̃i )mXi=1), span((ẽi )
pX
i=1) is an orthonormal basis of span((kX (·,

x̃i )
mX
i=1), we can then compute the expression of the orthogonal projector P̃X onto the

latter

P̃X =
pX∑

i=1

⟨·, ẽi⟩HX ẽi = S#X̃
(
SX̃S

#
X̃

)†
SX̃ . (2.67)
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We prove the above equation in chapter 4 for any sketching distribution. This is a
powerful tool since it gives the understanding of the effects of Nyström approximation
in the RKHS. It allowed us, generalized to any sketching distributions, to use sketch-
ing in the case of surrogate kernel methods where the output space is an RKHS, i.e.
a possibly infinite-dimensional Hilbert space, unlike most of the works on sketched
kernels that focus on scalar regression. We did it by using such projectors on the out-
put kernel as well, see chapters 4 and 5, which is very convenient. Recently, Meanti
et al. (2023) used such projectors on both the input and output feature spaces as well
to learn large-scale dynamical systems.

Computationally, Nyström is very efficient since it prevents computing the whole n2

Gram matrix and then having matrix multiplications whose time complexity is O(n2),
implying rather a O(nmX ) space complexity because of KXnmX and a time complexity
linear in n.

Another crucial point about Nyström approximation is the sub-sampling strategy. The
very first idea is obviously to uniformly sample {(x̃i )mXi=1} from the initial {(xi )ni=1}. This
is very efficient but it can lead to poor results. For instance, assume that the inputs
are sampled such that x = bx1 + (1− b)x2, where b is a Bernoulli random variable with
parameter p ∈ (0,1) and x1 ∼ ρX 1, x2 ∼ ρX 2 with ρX 1,ρX 2 two probability distributions
over X . If the sub-sampling is unbalanced between entries following ρX 1 and ρX 2,
then the resulting estimator will be biased. Moreover, assume that p is close to 1 and
ρX 2 is an outlier distribution, then sampling too many entries x ∼ ρX 2 is not desirable.
To cope with such limitations, many works have explored more elaborated and data-
dependent sub-sampling strategies. First, giving more importance to entries based on
their impacts on the eigendecomposition of KX, namely the leverage scores, has at-
tracted a lot of attention, but computing the SVD of KX is computationally expensive.
Hence, many works explored ways to compute relevant approximate leverage scores
(Alaoui and Mahoney, 2015; Rudi et al., 2015; Musco and Musco, 2017; Rudi et al.,
2018a; Cherfaoui et al., 2022). Kumar et al. (2012) also explores adaptive strategies.
Finally, combined with other techniques, Nyström attains impressive performance.
Rudi et al. (2017) first combines it with an efficient preconditioning and a stochastic
gradient solver before Meanti et al. (2020) that adds a GPU-adapted implementation,
enabling kernel methods to datasets with billions of samples.

2.3.3 Sketching

In addition to data-dependent sampling, and since Nyström approximation corres-
ponds to a specific sketching distribution, i.e. the sub-sampling sketching, another
solution is to consider other more statistically accurate sketching distributions. Be-
fore diving into deeper details about Nyström and sub-sampling sketching, let us
introduce sketching.

Sketching (Mahoney et al., 2011; Woodruff, 2014) is a dimension reduction technique
based on linear random projections. It has been leveraged in many machine learn-
ing fields, such as low-rank approximation (Gittens and Mahoney, 2016; Tropp et al.,
2017) or optimisation (Pilanci and Wainwright, 2016; Gower et al., 2021). These lin-
ear random projections can then be encoded in a random matrix, and many matrix
distributions exist with various computational and statistical properties. We will
start with the sub-sampling sketching in order to show how to generalize Nyström
approximation to any sketching distribution, and then we will present the Johnson-
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Lindenstrauss lemma (Johnson and Lindenstrauss, 1984), a key foundation of sketch-
ing, and present some distributions that fit into this framework.

Sub-sampling sketching is Nyström approximation. In the following, for mX ≪ n,
RX ∈ RmX ×n denotes the sketching matrix. We give the definition of a sub-sampling
sketching matrix.

Definition 2.26 (Sub-sampling sketching). Let (pi )
n
i=1 ∈ [0,1]n such that

∑n
i=1 pi = 1.

Let {i1, . . . , imX } be mX indices drawn from {1, . . . ,n} according to the probabilities pis, with
or without replacement. Then a sub-sampling sketching matrix RX is composed with rows
RX j :s such that, for all 1 ≤ j ≤mX ,

RX j : =
1

√
mX pij

Iij : , (2.68)

where Iij : is the ij-th row of the n2 identity matrix In.

Remark 2.27 (Rows coefficients). Note that the rows coefficients 1/
√
mX pij are important

to ensure that ERX [RX
⊤RX ] = In, which is a desirable property of sketching matrices as

we will see with the Johnson-Lindenstrauss lemma. However, for the sake of simplicity
and to facilitate the comparison with Nyström approximation, we will not consider these
coefficients in the following, i.e. for all 1 ≤ j ≤mX ,

RX j : = Iij : , (2.69)

unless for the orthogonal projection part where such coefficients are needed.

It is called sub-sampling because the multiplication RX ·A of such a matrix with an-
other matrix A results in a sub-matrix of A, where its rows at indices {i1, . . . , imX } are
sampled. This means that for a Gram matrix KX, RX ·KX = KX

⊤
nmX according to the

notations introduced in the Nyström’s section. Let us give a quick example.

Example 2.28. Let n = 5, mX = 2, pi = 1/5 ∀1 ≤ i ≤ 5 and i1 = 1, i2 = 4. Then RX =

1 0 0 0 0
0 0 0 1 0


,

KX
⊤
nmX =



kX (x1,x1) kX (x1,x2) kX (x1,x3) kX (x1,x4) kX (x1,x5)
kX (x4,x1) kX (x4,x2) kX (x4,x3) kX (x4,x4) kX (x4,x5)


 = RX KX , (2.70)

and

K̃X =



kX (x1,x1) kX (x1,x4)
kX (x4,x1) kX (x4,x4)


 = RX KXRX

⊤ . (2.71)

This means that we can reformulate all the above interpretations of Nyström in terms
of the sketching matrix RX . First, the low-rank approximated Gram matrix is

KXRX
⊤(RX KXRX

⊤)†RX KX . (2.72)

Then, by defining K̃X = RX KXRX⊤, we obtain the following random features expres-
sion

ψ̃X : x 7→ D̃−1/2pX
Ũ⊤pX

RX k
x
X . (2.73)
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Table 2.2: Summary of the different interpretations of sketching applied to kernel
methods. Recall that Nyström approximation corresponds to using a sub-sampling
sketching matrix RX .

low-rank matrix KXRX⊤(RX KXRX⊤)†RX KX

random feature ψ̃X : x 7→ D̃−1/2pX
Ũ⊤pX

RX kxX
hypothesis space span((

∑n
j=1RXij kX (·,xj ))

mX
i=1)

orthogonal projector P̃X = (RX SX)#
(
RX SX(RX SX)#

)†
RX SX

Furthermore, by noting that for all 1 ≤ j ≤mX , kX (·, x̃j ) = kX (·,xij ) =
∑n
i=1RXji kX (·,xi ),

we obtain that span((kX (·, x̃i )mXi=1) = span((
∑n
j=1RXij kX (·,xj ))

mX
i=1). Problem (2.62) can

then admits a sketching reformulation for the sketched estimator f̃ =
∑n
i=1[RX

⊤ γ̃]i ·
kX (·,xi ) where γ̃ = (γ̃1, . . . , γ̃mX )

⊤ ∈ RmX is the solution to

min
γ∈RmX

1
n

n∑

i=1

ℓ([KXRX
⊤γ]i , yi ) +λγ

⊤ K̃Xγ . (2.74)

Finally, note that for all f ∈ HX , SX̃f = 1√
mX

(f (x̃1), . . . , f (x̃mX ))
⊤ = 1√

mX
RX (f (x1), . . . ,

f (xn))⊤ = RX SX and C̃X = 1
mX

∑mX
i=1ψX (x̃i ) ⊗ ψX (x̃i ) = S#

X̃
SX̃ , we then have that the

sketched sampling operator is RX SX and the corresponding sketched empirical co-
variance is given by C̃X = (RX SX )#RX SX . As a consequence, its eigenfunctions are
ẽi =

√
n

σi (K̃X)
S#X RX

⊤ ũi for all i ∈ ⟦mX ⟧, and then the sketched orthogonal projection

operator is

P̃X = (RX SX)
#
(
RX SX(RX SX)

#
)†
RX SX . (2.75)

Thanks to the Nyström approximation and its equivalence with sub-sampling sketch-
ing, many ways to leverage any sketching distribution for kernel methods are now
unlocked, summarized in table 2.2. We now present the Johnson-Lindenstrauss to
show the interest of considering other sketching distributions than sub-sampling.

Johnson-Lindenstrauss lemma. The J-L lemma is a well-known result of dimension
reduction or compression. It states that a set of points in a high-dimensional space
can be embedded into a space of much lower dimension in such a way that distances
between the points are nearly preserved.

Lemma 2.29 (Johnson and Lindenstrauss (1984)). Given 0 < ε < 1, a set S of n points in
R
D , and an integer d > 8(logn)/ε2, there is a linear map h : RD → R

d such that

(1− ε)∥u − v∥2 ≤
∥∥∥h(u)− h(v)

∥∥∥2 ≤ (1 + ε)∥u − v∥2 , (2.76)

for all u,v ∈ S .

Proof [Sketch of proof.] The classical proof relies on random projection. Let R =
(1/
√
d)(Rij )1≤i≤d,1≤j≤D such that the Rijs are i. i. d. standard normal r. v., i.e. Rij ∼

N (0,1). Using the fact that, for all u ∈ RD ,

ER[∥Ru∥22] = u⊤ER[R⊤R]u = u⊤IDu = ∥u∥22 , (2.77)
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and the Markov inequality, one can show that eq. (2.76) is true with high probability.
Boucheron et al. (2013) even shows that it is sufficient to consider sub-Gaussian Rij to
show such a result thanks to the Bernstein inequality, but with a higher lower bound
on d.

Sketching distributions able to prove the J-L lemma are then of particular interest
since it means that they ensure good statistical properties. We give two classical
examples: the sub-Gaussian sketches, as considered in Boucheron et al. (2013), and
the CountSketch (Clarkson andWoodruff, 2017), a well-known sketching distribution
that defines sparse matrices.

Definition 2.30 (Sub-Gaussian sketching). A sub-Gaussian sketch RX ∈ RmX ×n is com-

posed of i.i.d. entries such thatE
[
RXij

]
= 0,E

[
RXij

2
]
= 1/mX andRXij is

νX 2

mX
-sub-Gaussian,

for all 1 ≤ i ≤mX and 1 ≤ j ≤ n, where νX ≥ 1.

Example 2.31 (Sub-Gaussian sketching distributions). • A matrix composed with i.
i. d. Gaussian r. v. such that RXij ∼N (0,1/mX ) is sub-Gaussian with νX = 1.

• By Hoeffding’s lemma, any matrix composed with i. i. d. r. v. taking values in a
bounded interval [a,b] is (b − a)2/4-sub-Gaussian.

• The p-sparsified sketches introduced in chapter 3 are also sub-Gaussian with νX 2 =
1/p.

Definition 2.32 (CountSketch). Let {i1, . . . , in} be n indices uniformly drawn from {1, . . . ,
mX }. Then a CountSketch matrix RX is composed with columns RX :js such that, for all
1 ≤ j ≤ n,

RX :j = rj I:ij , (2.78)

where the rjs are i. i. d. Rademacher variables, i.e. such that P(rj = 1) = P(rj = −1) = 1/2,
and I:ij is the ij-th column of the mX 2 identity matrix ImX .

Hence, to cope with the statistical limitations of uniform sub-sampling, one can con-
sider data-independent sketching distributions compatible with the J-L lemma, which
constitutes another solution than the data-dependent sub-sampling strategies. How-
ever, it comes with higher computational costs. For instance, with Gaussian, it is man-
datory to compute the whole Gram matrix KX, causing O(n2) space complexity, and
computing RX ·KX causes O(n2mX ) time complexity. Concerning CountSketch, its ad-
vantage is that for anymatrixA, RX ·A’s time complexity isO(nnz(A)), nnz(A) denoting
the number of non-zero elements. It is then of particular interest to use CountSketch
on sparse matrices, but it is not the case for usually dense Gram matrices, both time
and space complexities then remain linear in n2. Chen and Yang (2021a) introduce
Accumulation sketching, a distribution adapted to kernel methods. It is the sum of
m sub-sampling sketchings where each row is multiplied with i. i. d. Rademacher
variables and the idea is that when m → ∞, Accumulation sketching tends to sub-
Gaussian sketching, there exists then an interesting tradeoff between computational
and statistical performance controlled by m.
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Definition 2.33 (Accumulation sketching). Let m ∈ N
∗ and (pi )

n
i=1 ∈ [0,1]n such that∑n

i=1 pi = 1. An Accumulation sketching matrix RX is such that

RX =
m∑

i=1

RX
i , (2.79)

where the RX is are composed with rows RX ij :s such that, for all 1 ≤ j ≤mX ,

RX
i
j : =

r ij√
mmX pl ij

Ilj : , (2.80)

where the r ij s are i. i. d. Rademacher variables, {l i1, . . . , l imX } are mX indices drawn from

{1, . . . ,n} according to the probabilities pis with replacement and Ilj : is the lj-th row of the

n2 identity matrix In.

We also introduce p-sparsified sketches in chapter 3, a sketching distribution adap-
ted to kernels and aiming at the best possible tradeoff between computational and
statistical performance as well, and compare it with Accumulation sketching.

Finally, it is worth noticing the contribution of Kpotufe and Sriperumbudur (2020)
which aims at building an embedding Φ̃ : HX → R

mX based on Gaussian sketching
andMonte Carlo sampling that satisfies a property close to the Jonhson-Lindenstrauss
lemma up to a bias caused by the covariance operator. More precisely, by noting
CX = Ex∼ρX [ψX (x) ⊗ ψX (x)] the covariance operator, the authors show with a high
probability that, for any f ,g ∈ HX ,

|Φ̃(f )⊤Φ̃(g)− ⟨g,CX 3 f ⟩HX |
∥f ∥HX ∥g∥HX

≤ ε , (2.81)

for some ε non-increasing with respect to n and mX .

To sum up, in order to alleviate the computational burden of kernel methods, two
main methods exist, namely RFF and sketching, with Nyström its particular instance.
Concerning theory, many works prove the excess risk bounds of the estimators in-
duced by such techniques, such as Rudi and Rosasco (2017); Li et al. (2021) for RFF,
Yang et al. (2012); Rudi et al. (2015) for Nyström and Yang et al. (2017); Chen and
Yang (2021a); Lacotte and Pilanci (2022) for sketching. We give more details in the
next section

In this thesis, we focus on sketching to first scale scalar-valued and matrix-valued ker-
nel machines in chapter 3, mainly considering the hypothesis space interpretation.
We also provide the ERM problem to solve for scalar regression based on sketched
random features. Concerning surrogate kernel methods, we focus on the orthogonal
projection perspective for both input and output kernels to design the SISOKR al-
gorithm in chapter 4. Finally, applied to the output kernel, this angle also allows
us to consider kernel-induced losses with neural networks in the DSOKR model, see
chapter 5.
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2.4 Theoretical Guarantees of Kernel Methods

In this section, we present two main sketches of proof to obtain statistical learning
guarantees for kernel methods. We first define the meaning of statistical learning
guarantees in this thesis.

In the supervised learning settings, we have training pairs (xi , yi ) ∈ (X ×Y )n assumed
to be i. i. d. realisations of an unknown joint distribution ρ. Our goal is then to
estimate the mapping f : X → Y such that for any (x,y) ∼ ρ, f (x) = y. To do so, we
first equip ourselves with a discrepancy measure over the output objects ℓ : Y ×Y → R

known to be relevant for the task at hand, and aimed at estimating the mapping f ∗

minimizing the associated expected risk, i.e.

f ∗ = arginf
f :X→Y

E[ℓf ] = arginf
f :X→Y

E[ℓ(f (x), y)] . (2.82)

As stated in the previous section, two main problems then arise: (i) solving such a
problem within the whole space of functions YX is intractable and (ii) it is impossible
to compute the expected risk since ρ is unknown. Then, we consider a hypothesis
space H ⊆ YX which is the RKHS or vv-RKHS of an input kernel kX or K respectively
in this section, and we rather minimize the empirical risk, i.e.

f̂ = arginf
f ∈H

En[ℓf ] = arginf
f ∈H

1
n

n∑

i=1

ℓ(f (xi ), yi ) , (2.83)

and in the case of kernel methods, we usually add a regularisation penalty to avoid
overfitting the training data.

We are now ready to introduce the concept of excess risk. Solving the ERM problem
ensures having an estimator f̂ inducing small errors on the training set, however, the
initial goal is to build an estimator able to predict the correct output associated with
any input drawn from its marginal distribution ρX . The excess risk E[ℓf̂ ] −E[ℓf ∗] of
f̂ characterizes such a property. In particular, controlling such a term indicates if
f̂ converges to f ∗, and at each rate in terms of the number of training data n. The
objective is then to choose the hypothesis space H such that we are able to derive an
excess risk bound, i.e. for δ ∈ (0,1), with probability at least 1− δ

E[ℓf̂ ]−E[ℓf ∗] ≤ S (n,δ) , (2.84)

where S(n,δ) : R2 → R is a non-increasing function with respect to δ and a non-
increasing function with respect to n such that S(n) →

n→∞ 0. The faster S tends to 0,

the better f̂ .

Remark 2.34. In the sketching literature, some works rather focus on the error between
the approximated estimator f̃ obtained via sketching and the standard one f̂ based on the
RKHS norm, i.e. ∥f̃ − f̂ ∥H, see e.g. Lacotte et al. (2019); Lacotte and Pilanci (2022) for
Y = R. In this thesis, we choose to focus on the excess risk induced by the expected risk.

Nevertheless, computing such a bound against f ∗ without further knowledge is im-
possible. We then state the attainability assumption, a very standard assumption in
the kernel literature (Caponnetto and De Vito, 2007; Rudi et al., 2015; Rudi and Ros-
asco, 2017; Li et al., 2021), assessing that there exists a minimizer of the expected risk
over the hypothesis space H.
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Assumption 2.35 (Attainability). There exists an fH ∈ H such that

E[ℓfH] = min
f ∈H

E[ℓf ] . (2.85)

It is more now realistic to derive a bound on the excess risk against fH rather than f ∗.
Actually, by looking at the excess risk against f ∗, we have the following decomposition

E[ℓf̂ ]−E[ℓf ∗] = E[ℓf̂ ]−E[ℓfH] +E[ℓfH]−E[ℓf ∗] , (2.86)

which implies that, if we have a bound on E[ℓfH]−E[ℓf ∗], controlling E[ℓf̂ ]−E[ℓfH] al-
lows to control E[ℓf̂ ]−E[ℓf ∗]. The bias term E[ℓfH]−E[ℓf ∗] comes from the hypothesis
space H considered and the fact that it does not necessarily include the true underly-
ing target f ∗. This is why it is crucial to use the maximum of prior knowledge about
the problem to choose the best possibleH. In particular, even if f ∗ <H, it is impossible
to control the bias term without any information on it. One of the reasons why kernel
methods are a popular family of machine learning algorithms is because they define
hypothesis spaces with strong theoretical properties for a wide variety of input data.
Furthermore, for a given supervised learning task, if an expert finds features of the
input data that are discriminative in terms of their associated output, it is possible to
design a p. d. kernel from a similarity measure based on such features and then ob-
tain a hypothesis space that would contain the target f ∗. See Brouard et al. (2016a) for
the example of metabolite identification, where various input kernels defining various
similarity measures on tandem mass spectra were used.

We now present two main ways to derive excess risk bounds for kernel methods that
we use in this thesis. The first one, used in 3 and based on Rademacher complexities,
can derive excess risk bounds for scalar-valued and matrix-valued kernel machines.
The second one, specific to KRR and benefitting from the closed-form solution of f̂
and its operator expression, can derive excess risk bounds to operator-valued kernels
and is leveraged in chapter 4.

2.4.1 Rademacher Complexity

In this section, we focus on Y = R
d for d ∈N∗ and the excess risk against fH. We first

introduce what we call the generalisation/approximation decomposition of the excess
risk

E[ℓf̂ ]−E[ℓfH] = E[ℓf̂ ]−En[ℓf̂ ]
︸           ︷︷           ︸
generalisation error

+En[ℓf̂ ]−En[ℓfH]
︸              ︷︷              ︸
approximation error

+En[ℓfH]−E[ℓfH]︸              ︷︷              ︸
generalisation error

. (2.87)

By noting that f̂ = argminf ∈H En[ℓf ], we have that En[ℓf̂ ]−En[ℓfH] ≤ 0, and then

E[ℓf̂ ]−E[ℓfH] ≤ 2sup
f ∈H

∣∣∣∣E[ℓf ]−En[ℓf ]
∣∣∣∣ . (2.88)

A powerful tool to control generalisation errors and very well adapted to kernels is
the Rademacher complexities, introduced by Bartlett and Mendelson (2003). For a class
of functions H ⊆ R

X , the empirical Rademacher complexity is defined as

R̂n(H) = Eϵ



sup
f ∈H

∣∣∣∣∣∣∣∣
2
n

n∑

i=1

ϵif (xi )

∣∣∣∣∣∣∣∣
| x1, . . . ,xn



, (2.89)
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where ϵ = (ϵi )
n
i=1 are independent Rademacher random variables such thatP

{
ϵi = 1

}
=

P

{
ϵi = −1

}
= 1/2. The generalisation to the finite-dimensional vector-valued case, i.e.

Y ⊆ R
d for d ∈N∗, is given by

En(H) = Eϵ



sup
f ∈H

∣∣∣∣∣∣∣∣∣

2
n

n∑

i=1

d∑

j=1

ϵij f (xi )j

∣∣∣∣∣∣∣∣∣
| x1, . . . ,xn




(2.90)

= E(ϵi )
n
i=1



sup
f ∈H

∣∣∣∣∣∣∣∣
2
n

n∑

i=1

〈
ϵi , f (xi )

〉
Rd

∣∣∣∣∣∣∣∣
| x1, . . . ,xn



, (2.91)

where ϵ = (ϵ11, . . . , ϵnp) are nd independent Rademacher variables, and for all 1 ≤ i ≤ n,
ϵi =

(
ϵi1, . . . , ϵid

)⊤
. The corresponding Rademacher complexity is then defined as the

expectation of the empirical Rademacher complexity

Rn(H) = E(xi )
n
i=1

[
R̂n(H)

]
. (2.92)

We now state the theorem that uses the Rademacher complexity ofH to derive a bound
of the generalisation error.

Theorem 2.36. (Bartlett and Mendelson, 2003, Theorem 8) Let
{
xi , yi

}n
i=1

be i.i.d samples

from ρ and let H be the space of functions mapping from X to R. Denote a loss function

with ℓ : Y ×Y → [0,1] and recall the learning risk function for all f ∈ H is E
[
ℓf

]
, together

with the corresponding empirical risk function En

[
ℓf

]
= (1/n)

∑n
i=1 ℓ

(
yi , f

(
xi
))
. Then, for

a sample of size n, for all f ∈ H and δ ∈ (0,1), with probability 1− δ/2, we have that

E

[
ℓf

]
≤ En

[
ℓf

]
+Rn(ℓ ◦H) +

√
8log(4/δ)

n
(2.93)

where ℓ ◦H = {(x,y)→ l(y, f (x))− ℓ(y,0) | f ∈ H}.

The proof mainly relies on McDiarmid’s inequality (McDiarmid et al., 1989). Thanks
to the above theorem, if we have a bound of the Rademacher complexity Rn(ℓ ◦H), we
are then able to derive a bound of the generalisation error.

First, a very classical assumption on the loss function is the Lipschitz-continuity.

Assumption 2.37 (Lipschitz loss). For all y ∈ Y , z 7→ ℓ(z,y) is L-Lipschitz, for L > 0.

This is a standard assumption satisfied by many loss functions such as the maximum-
margin, robust or pinball losses considered in section 2.5. Moreover, by assuming
bounded outputs, the square loss also satisfies the above assumption. Then, using
Corollary 1 from Maurer (2016), we have that:

Rn(ℓ ◦H) ≤
√
2LEn(H) . (2.94)



48 CHAPTER 2. BACKGROUND

The goal is now to derive a bound of En(H). Following Maurer (2016), there are two
main steps to do so. First, we use the reproducing property of the RKHS H and the
Cauchy-Schwarz inequality to obtain

sup
f ∈H

∣∣∣∣∣∣∣∣

n∑

i=1

〈
ϵi , f (xi )

〉
Rd

∣∣∣∣∣∣∣∣
≤ sup
f ∈H

∥∥∥f
∥∥∥H

∥∥∥∥∥∥∥∥

n∑

i=1

Kxiϵi

∥∥∥∥∥∥∥∥H
. (2.95)

However, considering the whole space H, supf ∈H
∥∥∥f

∥∥∥H = ∞. Then, we restrict the
hypothesis space to the unit ball of H, i.e. B(H)≔ {f ∈ H : ∥f ∥H ≤ 1}.

Assumption 2.38 (Unit ball). The hypothesis set considered is B
(
Hk

)
.

As stated in Rudi and Rosasco (2017, Remark 2), Assumption 2.35 implies that fH has
a bounded norm. Moreover, we can further assume as in Li et al. (2021) that any estim-
ator obtained via ERM has a bounded norm, especially since a regularisation penalty
controlling the norm is typically considered in kernel methods, and the regularisa-
tion parameter λ > 0 is usually validated on the training data. Hence, by considering
R > 0 such that all these estimators lie in the ball of radius R, we then obtain that
sup∥f ∥H≤R

∥∥∥f
∥∥∥H = R, and this result holds uniformly for any radius R. Hence, without

loss of generality and up to a normalisation ofH, we can restrict the hypothesis space
to the unit ball. Finally, we use the Jensen inequality and this final assumption on the
input kernel K to conclude the proof.

Assumption 2.39 (Trace-class kernel). There exists κ > 0 such that, for all x ∈ X ,

Tr(K(x,x)) ≤ κ . (2.96)

This is a very standard assumption in the kernel literature. For scalar-valued kernels,
it simply means that for all x ∈ X , kX (x,x) is bounded, which is the case for the radial
kernels such as the Gaussian one for instance. In the case of OVK, Caponnetto and
De Vito (2007) considers this assumption.

Remark 2.40 (Decomposable kernels). For decomposable kernels K = kXM , one can
simply assume that there exists κX > 0 such that for all x ∈ X , kX (x,x) ≤ κX . In fact,
Tr(K(x,x)) = kX (x,x)Tr(M) ≤ κX Tr(M) in this case, and forM = Id , Tr(K(x,x)) ≤ d κX .

We can now give the bound of the Rademacher complexity of H’s unit ball,

Rn(B(H)) = 2

√
κ

n
, (2.97)

and then for δ ∈ (0,1), with probability 1− δ/2,

sup
f ∈B(H)

∣∣∣∣E[ℓf ]−En[ℓf ]
∣∣∣∣ ≲

√
log(4/δ)/n . (2.98)

However, note that in kernel methods, f̂ is usually the minimizer of the penalized
ERm problem for a regularisation parameter λ > 0, then f̂ , argminf ∈H En[ℓf ]. To
cope with this, Yang et al. (2012) includes the regularisation term in its excess risk
and then studies E[ℓf̂ ] +

λ
2 ∥f̂ ∥2H −E[ℓfH]− λ2 ∥fH∥2H. Other works aim at controlling the
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approximation error term as well. However, while doing so for the square loss appears
feasible thanks to the closed-form solution, it is challenging for a generic loss ℓ. Li
et al. (2021) first focuses on the RFF KRR case, and then uses this result to generalize
it to any Lipschitz loss thanks to the Jensen inequality, but obtaining then a degraded
rate compared with the KRR with a square root function applied to the KRR learning
rate. We adopt the same strategy for the sketched scalar-valued and matrix-valued
kernel machines, using the KRR approximation error’s bound obtained by Yang et al.
(2017), and generalizing it to the decomposable matrix-valued case.

Finally, note that Bartlett et al. (2005) introduce local Rademacher complexities that
focus on the subspace of the low-variance estimators f , i.e. such that

Ex

[
f (x)− fH(x)

]2 ≤ BE
[
ℓf − ℓfH

]
, (2.99)

for B > 0. The authors compute their Rademacher complexity called the local Radema-
cher complexity for any RKHS thanks to a sub-root function. This allows to derive
refined faster learning rates compared with the previous ones, and it is worth men-
tioning that Li et al. (2021) uses such results to derive refined rates for RFF as well.

2.4.2 Statistical analysis of Kernel Ridge Regression

In this section, we consider the general case where Y is a possibly infinite-dimensional
Hilbert space and focus on the KRR, i.e. ℓ : (y,y′) 7→ ∥y − y′∥2Y , with the input identity
decomposable kernel K = kX IY as in chapter 4 (where the output space is the RKHS
of an output kernel). We will summarize results from Caponnetto and De Vito (2007),
Ciliberto et al. (2016) and Ciliberto et al. (2020) to obtain an excess risk bound for f̂ .
Note that Caponnetto and De Vito (2007) assumes the input kernel to be trace-class,
which is rather restrictive in the case where dim(Y ) =∞ since the identity decompos-
able kernel is consequently not trace-class. Ciliberto et al. (2016) extended the results
from Caponnetto and De Vito (2007) to this case.

We remind that the KRR estimator for K = kX IY is f̂ (·) =∑
i=1 α̂i(·)yi where

α̂ : x ∈ X 7→ (KX+nλIn)
−1kxX , (2.100)

and kxX = (kX (x,xi ))ni=1 ∈ Rn. Hence, we aim at deriving an upper bound for its excess
risk

E[ℓf̂ ]−E[ℓf ∗] = E(x,y)∼ρ[∥f̂ (x)− y∥2Y ]−E(x,y)∼ρ[∥f ∗(x)− y∥2Y ] = E(f̂ )−E(f ∗) , (2.101)

where f ∗ = argminf :X→Y E(f ). One can show that f ∗ is given by

f ∗ : x 7→ Ey[y | x] , (2.102)

and that
E(f̂ )−E(f ∗) = Ex[∥f̂ (x)− f ∗(x)∥2Y ] , (2.103)

see e.g. Ciliberto et al. (2020, Lemma A.2) for a proof.

Operator expression. Wefirst derive the operator expression of f̂ , i.e. the expression
of F̂ :HX →Y such that ∥F̂∥HS <∞ and

f̂ (·) = F̂ ψX (·) . (2.104)
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Besides, we define the input/output sampling operators (Smale and Zhou, 2007),

SX : h ∈ HX 7→
1√
n
(⟨h,ψX (xi )⟩HX )ni=1 ∈ Rn , SY : y ∈ Y 7→ 1√

n
(⟨y,yi⟩Y )ni=1 ∈ Rn ,

(2.105)
as well as the empirical covariances

V̂ =
1
n

n∑

i=1

yi ⊗ψX (xi ) , ĈX =
1
n

n∑

i=1

ψX (xi )⊗ψX (xi ) , (2.106)

and finally note that

V̂ = SY
#SX , ĈX = SX

#SX , KX = nSXSX
# . (2.107)

Hence, going from the above expression of f̂ , for all x ∈ X ,

f̂ (x) =
√
nSY

# α̂(x) (2.108)

=
√
nSY

#(nSXSX
#+nλIn)

−1√nSXψX (x) (2.109)

= SY
#SX︸ ︷︷ ︸
=V̂

(SX
#SX︸ ︷︷ ︸

=ĈX

+λIHX )
−1ψX (x) , (2.110)

where the last equality comes from a standard Woodbury formula. We are now ready
for the analysis of the excess risk.

Attainaility assumption. It is possible to either consider the weaker above assump-
tion stating that there exists fH ∈ H that minimizes the expected risk and use it as a
target, which would leave the analysis of the induced bias term E(fH)−E(f ∗) out, or the
stronger assumption that f ∗ ∈ H. We choose the latter to be consistent with chapter 4.

Assumption 2.41 (Attainability). f ∗ ∈ H, then there exists F :HX →Y such that {F∥HS <
∞ and

f ∗(·) = FψX (·) . (2.111)

Then, by Ciliberto et al. (2020, Lemma B.9), and with

V = Ex,y[y ⊗ψX (x)] , CX = Ex[ψX (x)⊗ψX (x)] , (2.112)

we have that
F = V CX

† , (2.113)

where CX † denotes the Moore-Penrose inverse of CX †. As a consequence, the excess
risk rewrites as the Hilbert-Schmidt norm of the difference between F̂ and F against
the covariance CX ,

Ex[∥f̂ (x)− f ∗(x)∥2Y ] = ∥(F̂ −F)CX 1/2 ∥2HS . (2.114)

The analysis of the excess risk now boils down to liner algebra and concentration
inequalities.
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Bias-variance decomposition. Let f ∗λ be the following regularized optimal estim-
ator,

f ∗λ (·) = FλψX (·) with Fλ = FCX (CX +λIHx)
−1 , (2.115)

the excess risk then admits the following bias-variance decomposition

E(f̂ )−E(f ∗) ≤ Ex[∥f̂ (x)− f ∗λ (x)∥2Y ] +Ex[∥f ∗λ (x)− f ∗(x)∥2Y ] (2.116)

= ∥(F̂ −Fλ)CX 1/2 ∥2HS︸                 ︷︷                 ︸
variance

+∥(Fλ −F)CX 1/2 ∥2HS︸                 ︷︷                 ︸
bias

, (2.117)

where the last equality is obtained via similar derivations than in eq. (2.114).

Variance bound. From the proof of Ciliberto et al. (2016, Lemma 18), one can prove
that

∥(F̂ −Fλ)CX 1/2 ∥2HS ≲ ∥(CX +λIHX )−1/2CX 1/2 ∥2HSn
−1 . (2.118)

Controlling ∥(CX +λIHX )−1/2CX 1/2 ∥2HS then gives rise of the capacity condition, a clas-
sical assumption in KRR literature (Caponnetto and De Vito, 2007; Ciliberto et al.,
2020).

Assumption 2.42 (Capacity condition). For all λ > 0, there exists γ ∈ [0,1] such that

∥(CX +λIHX )−1/2CX 1/2 ∥2HS ≲ λ
−γ . (2.119)

First, as in Ciliberto et al. (2020), note that if there exists κX > 0 such that for all
x ∈ X , kX (x,x) ≤ κX , then the above assumption is true for γ = 1. Moreover, note
that this assumption is actually an assumption over the eigendecay of CX , the faster
it is, the lower γ . As a limiting case, if CX is finite-rank, then γ = 0. If for all j ∈N∗,
σj (CX ) ≲ j−β for β > 1, then γ = 1/β. Finally, the eigendecay is characterized by the
kernel kX and the marginal distribution ρX , see Ciliberto et al. (2020) for further
details and an example of kernel and marginal distribution satisfying the capacity
condition.

Remark 2.43 (Effective dimension). In some works, as in Ciliberto et al. (2020) for in-
stance, the above quantity ∥(CX +λIHX )−1/2CX 1/2 ∥2HS is called the effective dimension,

∥(CX +λIHX )−1/2CX 1/2 ∥2HS = Tr(CX (CX +λIHX )
−1) = dXeff(λ) . (2.120)

Bias bound. Some quick derivations and using the fact that IHX = (CX +λIHX )(CX
+λIHX )

−1, we obtain that

∥(Fλ −F)CX 1/2 ∥2HS = ∥(FCX (CX +λIHx)−1 −F)CX 1/2 ∥2HS (2.121)

= λ2∥F(CX +λIHX )−1CX 1/2 ∥2HS (2.122)

Controlling ∥F(CX +λIHX )−1CX 1/2 ∥2HS then gives rise of the source condition, another
standard assumption in KRR literature (Caponnetto and De Vito, 2007; Ciliberto
et al., 2020).

Assumption 2.44 (Source condition). There exists µ ∈ [0,1] such that, for all λ > 0,

∥F(CX +λIHX )−1CX 1/2 ∥2HS ≲ λ
−µ . (2.123)

This assumption is always verified for µ = 1 because ∥F∥HS < ∞. The more the right
eigenvectors of F are aligned with the eigenvectors of CX the smaller µ, and the less
increasing λ will cause a significant bias.
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Learning rate. Then equipped with the above results, we are able to derive the learn-

ing rate of the KKR estimator f̂ . With λ = n−
1

2(1−µ+γ , corresponding to the best bias-
variance trade-off, and for δ ∈ (0,1), then with probability 1− δ,

E(f̂ )−E(f ∗) ≲ log(4/δ)n−
1−µ

2(1−µ+γ . (2.124)

The stronger the capacity and the source condition, the faster the learning rate, from
n−1/4 to n−1/2. Concerning the tightness of this bound, Caponnetto and De Vito (2007)
provides minimax rates for many settings of KRR estimators.

Rudi and Rosasco (2017) and Rudi et al. (2015) use such techniques of proof for large-
scale learning with RFF and Nyström approximation respectively, but in the case of
scalar regression, i.e. Y = R. In particular, in Rudi et al. (2015), the authors show that
the effect of the Nyström approximation boils down to controlling the following term

∥(P̃X−IHX )CX 1/2 ∥op , (2.125)

which is the operator norm of the projected covariance operator. They use a Bern-
stein’s inequality for the sum of random operators to derive a bound of this quantity.
In chapter 4 we build upon all these works to derive an error decomposition where we
recover the classical KRR error and the term in eq. (2.125) for both the input and out-
put kernels, called the sketching reconstruction error. Finally, we use a concentration
inequality of Koltchinskii and Lounici (2017) for sum of sub-Gaussian random vari-
ables in a separable Hilbert space to derive a bound of the sketching reconstruction
error and conclude the proof.

2.5 Beyond the Square Loss for Kernel Methods

We here present standard kernel-based models relying on losses different than the
square one. We start with the Support Vector Machines (Cortes and Vapnik, 1995) and
then present robust losses such as the ϵ-insensitive losses (Steinwart and Christmann,
2008a) and the Huber loss (Huber, 1964). Finally, we present quantile regression that
uses the pinball loss (Koenker, 2005), which is one of the problems we consider in
chapter 3. For each task, we first focus on the scalar case and then present some works
extending them to the vector-valued case.

2.5.1 Support Vector Machines

Originally, SVM are designed to solve binary classification, i.e. Y = {−1,1}. We first
consider X = R

d for d ∈ N
∗ and we will later explain why kernels are well-suited

to SVM. The idea behind SVM is that the data are linearly separable: we can find a
hyperplane that separates the −1 and +1 data, as illustrated in 2.2. A hyperplane H is
characterized by a normal vector ω ∈ Rd and its offset b ∈ R. Any point x ∈ H is such
that h(x) = ω⊤x + b = 0 and the sign sgn(h(x)) of h(x) determines from each side of the
hyperplane x is. The estimator is then f : x ∈ Rd 7→ sgn(ω⊤x + b) ∈ {−1,1}. The goal is
to find the best possible (ω,b) ∈ Rd+1 such that

1. for all training pairs (xi , yi ), xi is well-classified, i.e. yi(ω⊤xi + b) ≥ 0;

2. the distance between the hyperplane and its closest point is maximized, i.e.
max(ω,b)∈Rd+1 min1≤i≤n

yi (ω⊤xi+b)
∥w∥2 since the distance of a point x to H is given

by |ω⊤x + b|/∥w∥2.
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Figure 2.4: Illustration of Support Vector Regression.

Support Vector Regression (Drucker et al., 1997) adapts the SVM to the regression case
and is a very good example of a robust regression model. As illustrated in Figure 2.4,
the idea is now to find the optimal hyperplane H induced by (ω,b) such that the data
points lie in an ε-tube around it, for ε > 0, i.e. |yi − ⟨ω,ψX (xi )⟩HX − b| ≤ ε, yielding the
following constraints, for all i ∈ ⟦n⟧,

0 ≤ yi − ⟨ω,ψX (xi )⟩HX − b ≤ ε ,
0 ≤ ⟨ω,ψX (xi )⟩HX + b − yi ≤ ε .

Then similarly to SVM, we can introduce the slack variables ξi ,ξ ′i and the primal
problem is then

min
ω,b,ξ,ξ ′

1
2
∥ω∥2HX +C

n∑

i=1

(ξiξ
′
i )

such that yi − ⟨ω,ψX (xi )⟩HX − b ≤ ε + ξi ,
⟨ω,ψX (xi )⟩HX + b − yi ≤ ε + ξ ′i ,
ξi ,ξ

′
i ≥ 0, i ∈ ⟦n⟧ .

Finally, by duality and KKT conditions, the final estimator f̂ =
∑n
i=1(α̂i−α̂′i )kX (·,xi )+b̂

where α̂ and α̂′ are solutions to the dual problem

min
α,α′

1
2

n∑

i,j=1

(αi −α′i )(αj −α′j )kX (xi ,xj ) + ε
n∑

i=1

(αi +α
′
i )−

n∑

i=1

yi(αi −α′i )

such that
n∑

i=1

αi −α′i = 0

0 ≤ αi ,α′i ≤ C,i ∈ ⟦n⟧ .

As for SVM, this corresponds to solving the ERM problem with the ε-insensitive ℓ1
loss, i.e. ℓ : (y,y′) 7→max(|y − y′ | − ε,0).
The ε-insensitive ℓ1 loss can be generalized for Y being a generic Hilbert case and in
this case, ℓ : (y,y′) 7→ max(∥y − y′∥Y − ε,0). The same applies for the ε-insensitive ℓ2
loss, ℓ : (y,y′) 7→max(∥y−y′∥Y −ε,0)2, as well as the Huber loss (Huber, 1964), defined,
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for κ > 0, by

∀y,y′ ∈ Y , ℓ(y,y′) =



1
2∥y − y′∥2Y if ∥y − y′∥Y ≤ κ

κ
(
∥y − y′∥Y − κ2

)
otherwise

. (2.127)

Sangnier et al. (2017) considers Y = R
d for d ∈N∗ and designs a primal-dual coordin-

ate descent algorithm to obtain the estimator induced by solving the ERM problem
with such losses. Laforgue et al. (2020) goes further and consider Y to be a generic
Hilbert space. Thanks to some assumptions on the loss function and the input OVK
K, in particular

1. ∀i ⩽ n,∀
(
αY,α⊥

)
∈ span((yi )ni=1) × span((yi )ni=1)⊥, it holds ℓ⋆i

(
αY

)
⩽ ℓ⋆i

(
αY +α⊥

)
,

where where ℓ⋆i denotes the Fenchel-Legendre transform of ℓi : y ∈ R 7→ ℓ(y,y)
for any i ≤ n;

2. ∀i, j ⩽ n, span((yi )ni=1) is invariant by K
(
xi ,xj

)
, i.e. if y ∈ span((yi )

n
i=1), then

K(xi ,xj )y ∈ span((yi )ni=1);

the authors show that the solution f̂ to the standard ERM problem over the vv-RKHS
of K writes as f̂ =

∑n
i,j=1K(·,xi )ω̂ijyj where Ω̂ = (ω̂)1≤i,j≤n is the solution to a paramet-

erized dual problem, see Laforgue et al. (2020)[Theorem 4]. In particular, they show
the following result for the above-mentioned robust losses.

Theorem 2.45 (Laforgue et al. 2020, Theorem 6). If K = kX IY , Ω̂ = ŴV −1 where Ŵ is
the solution to the ε-Ridge regression, κ-Huber regression, and ε-SVR dual problems

min
W∈Rn×n

1
2
∥AW −B∥2Fro + ε∥W ∥2,1 (D1)

min
W∈Rn×n

1
2
∥AW −B∥2Fro

s.t. ∥W ∥2,∞ ⩽ κ
(D2)

min
W∈Rn×n

1
2
∥AW −B∥2Fro + ε∥W ∥2,1,

s.t. ∥W ∥2,∞ ⩽ 1
(D3)

with V ,A,B such that: VV⊤ = (⟨yi , yj⟩Y )1≤i,j≤n, A⊤A = KX
Λn + In (or A⊤A = KX /(Λn) for

the ε-SVR), and A⊤B = V .

In chapter 3, we consider the κ-Huber and ε-SVR with Y = R
d for some d ∈ N∗ and

show how to leverage sketching on matrix-valued kernels to reduce time and space
complexities. However, we choose to solve the primal problem rather than the dual
one as in Sangnier et al. (2017) or Laforgue et al. (2020) as it is more adapted to
sketching, as discussed in section 3.2.3.
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2.5.3 Pinball Loss

Conditional quantile regression (Koenker and Bassett Jr, 1978; Koenker, 2005; Takeu-
chi and Furuhashi, 2004) aims at estimating quantile levels of the output conditional
distribution ρY|X , which is very helpful in many applications such as medicine, eco-
nomics, social sciences or ecology. To this end, Koenker and Bassett Jr (1978) intro-
duced the pinball loss. Let d ∈N∗, (τi )i≤d ∈ (0,1) the quantile levels to predict, ✶d =
(1, . . . ,1)⊤ ∈ Rd , for an input/output pair (x,y) ∈ X ×R and an estimator f : X → R

d ,
the pinball loss is given by

ℓ(f (x), y✶d ) =
d∑

i=1

ℓτi (f (x)i , y) =
d∑

i=1

τi |f (x)i −yi |✶{f (x)i−yi≥0}+(1−τi )|f (x)i −yi |✶{f (x)i−yi≤0} ,

(2.128)
where ✶{·} denotes the indicator function. They prove that, for z ∼ ρZ a real-valued r.
v., F its cumulative distribution function and τ ∈ (0,1), if

µ̂ ∈ argmin
µ∈R

Ez∼ρZ [ℓτ(z,µ)] , (2.129)

then
µ̂ = F−1(τ) = inf{z ∈ R : F(z) ≥ τ} (2.130)

is the τ-quantile of the distribution F.

Hence, joint quantile regression boils down to solving the classical ERM problem
with an input matrix-valued kernel K and the pinball loss. As proposed by Sangnier
et al. (2016) and explained in example 2.13, the decomposable kernel K = kXM with
Mij = exp(−γ(τi − τj )2) is well-suited for such a task since it enforces the proximity of
predictions between close quantiles levels and also limits the crossing phenomenon
for the predicted quantiles. Sangnier et al. (2016) and Sangnier et al. (2017) propose
primal-dual coordinate descent algorithm to solve this task. In Brault et al. (2019), the
authors propose to predict an infinite number of quantile levels by leveraging OVK
and a parameterized expression of the solution.

In chapter 3, we conduct experiments on joint quantile regression, using the above
matrix-valued kernel and our proposed sketched estimator.

2.6 Representation Learning from Complex Data

In this section, we present some techniques to learn representations from complex
data. First, we present kernel learning as a way to add expressiveness to kernel meth-
ods, since we build upon IOKR in this thesis. Then, we introduce deep learning.

2.6.1 Kernel Learning

There exist different kernel learning techniques. In this thesis, we briefly present
Multiple Kernel Learning (MKL), Decomposable Kernel Learning (DKL) and Deep
Kernel Learning (DKL).

Multiple Kernel Learning. The idea behind MKL is to consider as a hypothesis
space, the feature space induced by a weighted sum of M p. d. kernels. In fact,
the sum of p. d. kernels is a p. d. kernel, and the product of a non-negative real
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number with a p. d. kernel is also a p.d. kernel. Then, let M ∈ N
∗, ΣM = {η =

(η1, . . . ,ηM )⊤ ∈ R
M : ηi ≥ 0∀i ∈ ⟦M⟧,∑M

i=1ηi = 1}, η ∈ ΣM and kX 1, . . . ,kXM be M p.
d. kernels associated to the RKHSs HX 1, . . . ,HXM . The function kX =

∑M
i=1ηi kX i is a

p. d. kernel, its canonical feature map is the concatenation of the weighted canon-
ical feature maps of the kX is, and its induced feature space HX is the direct sum of
RKHSs, i.e. HX =HX 1

⊕
. . .

⊕
HXM . The goal is then to learn the estimator induced

by such a hypothesis, which implies finding the best function within each RKHS and
the best weights (Lanckriet et al., 2004; Bach et al., 2004; Rakotomamonjy et al., 2008;
Koltchinskii and Yuan, 2010; Gönen and Alpaydin, 2011). In particular, for a loss
ℓ : Y ×Y → R, it is possible to show that the solution f̂ to

min
η∈ΣM

min
f ∈HX

1
n

n∑

i=1

ℓ(f (xi ), yi ) +λ∥f ∥2HX , (2.131)

is f̂ =
∑M
i=1 f̂i , where (f̂1, . . . , f̂M ) ∈ HX 1× . . .×HXM is the solution to

min
f1∈HX 1,...,fM∈HXM

1
n

n∑

i=1

ℓ(
M∑

j=1

fj (xi ), yi ) +λ(
M∑

j=1

∥fj∥HX j )
2 . (2.132)

Several works have used such a result to tackle SVM via MKL (Lanckriet et al., 2004;
Bach et al., 2004; Rakotomamonjy et al., 2008; Gönen and Alpaydin, 2011), and Rako-
tomamonjy et al. (2008) proposed SimpleMKL, an algorithm to solve problem (2.132)
using a reduced gradient algorithm and duality gap stopping criterion. Moreover,
such an approach can be extended to OVK (Kadri et al., 2012). In particular, Brou-
ard et al. (2016a) leverages MKL in the IOKR framework for metabolite identification
to learn from various input kernels, thanks to the ALIGNF approach (Cortes et al.,
2012). Such an approach learns the weights ηis by maximizing the centered kernel
alignment between the combined kernel matrix and an ideal target kernel matrix.

Decomposable Kernel Learning. Another approach consists in learning decompos-
able kernels (Dinuzzo et al., 2011; Lim et al., 2015). We remind that a decomposable
OVK K is such that K = kXM , where kX is a p. d. scalar-valued kernel andM : Y →Y
is a self-adjoint positive semidefinite operator. WhileM is usually chosen and fixed a
priori, the idea of DKL is to learn it during training. Then, let d ∈N∗ and Y = R

d , let
K as above and H its vv-RKHS, and let p ∈ N∗ and Sd,p+ bet the set of positive semi-
definite matrices in R

d×d whose rank is less than or equal to p, Dinuzzo et al. (2011)
focus on solving

min
M∈Sd,p+

min
f ∈H

n∑

i=1

∥f (xi )− yi∥22
2λ

+
∥f ∥2H
2

+
Tr(M)

2
, (2.133)

with λ > 0. The authors show that problem (2.133) can be rewritten as

min
M∈Sd,p+

min
A∈Rn×d

∥Y −KXAM∥2F
2λ

+
Tr(A⊤KXAM)

2
+
Tr(M)

2
, (2.134)

and they consequently propose a block coordinate descent strategy to solve problem
(2.134). Such an approach is also relevant in the context of autoregressive models
(Lim et al., 2015), i.e. problems where X = Y = R

d which appears in geostatistics
problems, such as meteorology, for example.
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However, even if MKL or DKL bring more expressiveness to kernel methods, they
still fail at dealing with very complex input data such as texts. Indeed, string ker-
nels provide good representations when the sequences of characters are not very long,
and in particular when the alphabet contains a few characters, as in DNA or RNA
sequences where it contains only four characters. To learn representations from sen-
tences, it is crucial to turn towardsmore expressive models, typically neural networks.

Deep Kernel Learning. We first briefly present a kernel learning technique using
neural networks before properly introducing deep learning. DKL (Wilson et al., 2016)
consists in using neural networks to obtain parameterized deep kernels. Let X ′ be a
latent space, kX ′ : X ′ × X ′ → R be a p. d. kernel associated to the RKHS HK′ and
φθ : X → X ′ be a neural network with weights θ ∈ Θ, then one obtains the deep
kernel kX θ = kX ′ (φθ(·),φθ(·)). As a consequence, in the case of supervised learning for
instance, and given a loss function ℓ and a regularisation parameter λ > 0, one solves

min
θ∈Θ

min
f ∈HK′

1
n

n∑

i=1

ℓ(f (φθ(xi )), yi ) +λ∥f ∥2HK′ . (2.135)

The represented theorem then gives that the solution of the inner problem writes as
x′ ∈ X ′ 7→ ∑n

i=1αikX ′ (x
′ ,φθ(xi )) for some αis, and then one can learn f̂ : x ∈ X 7→∑n

i=1 α̂ikX ′ (x
′ ,φθ(xi )) by solving the optimisation problem over α and θ. Such an ap-

proach has been used to learn Deep Gaussian Processes (Damianou and Lawrence,
2013), estimate Exponential Family Densities (Wenliang et al., 2019), Two-Sample
Tests (Liu et al., 2020) or learn a kernel family for a variety of tasks in few-shot re-
gression settings (Tossou et al., 2019). However, it induces difficulties in learning the
neural network’s weights by back-propagation since the objective function is then a
function of compositions between the kernel function and the neural network, in ad-
dition to causing heavy computations because of the kernel. Note that here, the kernel
is applied to the neural net which is first applied to the inputs, Dührkop (2022) ex-
plores the other way around, by first applying a kernel on tandem mass spectra, and
then applying a neural net to the random features obtained via Nyström approxima-
tion, as explained in section 2.3.2.

2.6.2 Deep Learning

We here introduce deep learning. We refer the reader to Goodfellow et al. (2016) for
more thorough details.

Neural Networks architectures. Deep learning provides a principled way to learn
from non-linear parameterized functions, namely Neural Networks. The very first
and most simple example of NN architecture is the Feedforward NN.

Definition 2.46 (Feedforward Neural Network). Let d0 ∈ N∗, X = R
d0 and L ∈ N∗, a

L-layer neural networks f is the composition of L layers fl : Rdl−1 → R
dl of sizes d1, . . . ,dL ∈

N
∗,

fW,b(x) = fL ◦ . . . ◦ f1(x) , (2.136)

where each layer fl is the composition of an affine map and a non-linear activate function
φ : R→ R applied element-wise on the output of each layer, i.e. for all l ∈ ⟦L⟧, i ∈ ⟦d⟧l and
x ∈ Rd0 ,

[fl(x)]i = φ([Wlfl−1(x) + bl ]i ) , (2.137)
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withWl ∈ Rdl×dl−1 and bl ∈ Rdl .

The depth of a NN refers to its number of layers, and a L-layer NN is said to have L−1
hidden layers. FNNs deal with input vectors, however, such an architecture based on
the composition of parameterized functions can be extended to other data types, based
on theWis used. For instance, Convolutional NNs (LeCun et al., 1995) extract features
from images, i.e. 3D tensors, by applying filters on them. In this case, theWis encode
convolutional operations, and if the task at hand is classification with C classes, then
the last layers will be fully connected outputting a vector, which corresponds to the
FNN architecture. We give some examples of deep architectures:

• Feedforward NNS;

• Convolution NNs (LeCun et al., 1995) deal with pattern recognition (e.g. from
images, speeches, time-series);

• Recurrent NNs (Sak et al., 2014) or Transformers (Vaswani et al., 2017) deal with
sequential data (e.g. texts, biological sequences, videos);

• Graph NNs (Scarselli et al., 2009) deal with graphs (e.g. molecules, social net-
works);

• Generative NNs such as GANs (Goodfellow et al., 2014) or VAEs (Kingma and
Welling, 2013), deal with sample generation from an unknown distribution.

In chapter 5, we conduct experiments on two molecular identification datasets where
the input data are either the Simplified Molecular Input Line-Entry Systems - strings
describing the chemical structure - or texts (more than 20 words) from the Chem-
ical Entities of Biological Interest database describing the corresponding output mo-
lecules. Hence, we give some more details about the considered transformers to deal
with such tasks, namely Bidirectional Encoder Representations from Transformers
(Devlin et al., 2019) and SciBERT (Beltagy et al., 2019). BERT is a language rep-
resentation model parameterized by a multi-layer bidirectional Transformer encoder
(Vaswani et al., 2017), which is pre-trained from unlabeled text on two unsupervised
tasks, called Masked Language Model and Next Sentence Prediction. The obtained
representations can be then used for a supervised downstream task with the paramet-
ers of BERT fine-tuned at the same time. SCIBERT is a variant of BERT on a random
sample of 1.14M papers pre-trained from Semantic Scholar (Ammar et al., 2018). See
(Qiu et al., 2020) for more details about language representations with pre-trained
models.

Training NNs. Given a NN fW,b defined as in Definition 2.46 and a loss function ℓ,
the goal is then to estimate the weights (Ŵ , b̂) solution to the ERM problem

min
W,b

1
n

n∑

i=1

ℓ((fW,b(xi )), yi ) . (2.138)

Doing so is challenging for several reasons. First, the above objective function is non-
convex w. r. t. to the weights (W,b), hence it contains local minima, saddle points, and
wide flat regions. Moreover, from a computational viewpoint, computing its gradi-
ent is not straightforward and costly. As a NN is a composition of several layers, its
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gradient computation is very well-adapted to the use of the so-called chain rule, and
then the back-propagation of each layer’s gradient from the last to the first layer is al-
ways used to do so (Rumelhart et al., 2013). Finally, to reduce the cost of computing
the gradient of 1

n

∑n
i=1 ℓ((fW,b(xi )), yi ), Stochastic Gradient Descent (Robbins and Monro,

1951) proposes to rather use random estimations of it based on randomly drawn train-
ing samples at each gradient descent step. Moreover, SGD combines very well with
techniques relying on moments of the stochastic gradient (Kingma and Ba, 2015) or
second-order methods (Liu and Nocedal, 1989) to fine-tune the learning rates of the
gradient descent. Finally, the rise of Graphics processing units democratizes NNs and
makes them very well-suited to large-scale learning.

Deep learning theory. Unlike kernel methods, one of the biggest challenges for deep
learning is to understand it in theory. From an optimisation viewpoint first, as said
earlier, the non-convexity of the objective function inherent to the NNs’ architectures
makes it difficult to derive convergence guarantees. However, some works investigate
to what extent the SGD provides very good generalisation properties to NNs either
through learning rate decays (Li et al., 2019) or wide and flat local minima (He et al.,
2019). Furthermore, other lines of research emerge in deep learning theory. An initial
focus is on examining how over-parameterized NN behaves in terms of generalization.
This is achieved by analyzing infinite-width neural networks (i.e. shallow NNs with a
large number of neurons), revealing that at this extreme, a NN model can be likened
to a RKHS model with a specific kernel known as the Neural Tangent Kernel (Jacot
et al., 2018). This insight enables the application of generalization principles from
kernel methods. Moreover, some works tackle the stability (Bousquet and Elisseeff,
2002) and generalisation error of NNs through the stability and generalisation error
of GD and SGD algorithms (Charles and Papailiopoulos, 2018; Richards and Kuzbor-
skij, 2021). Finally, Schmidt-Hieber (2017) provides excess risk bounds of NNs using
ReLU activation functions in the non-parametric regression settings and exhibits the
dependency of such bounds w. r. t. to many NN’s parameters, such as its number of
layers.

Connections with kernel methods. In addition to Neural Tangent Kernels, which
are obtained via the Taylor expansion of the NN and are the inner products of two
evaluations of the NN’s gradient descent w. r. t. its weights, many works explore the
existing links between deep learning and kernel methods. Mairal et al. (2014) intro-
duces Convolutional Kernel Networks, a CNN architecture that does not learn either to
represent data or to solve a classification task but learns to approximate the kernel
feature map on training data to learn invariant image representations. Many works
build upon CKN: Chen et al. (2019) extends it to Recurrent Kernel Networks, dealing
with sequential data and Chen et al. (2020) extends it to Graph Convolutional Kernel
Networks, dealing with graph-structured data. Giffon et al. (2019) uses an adaptive
variant of the Nyströmmethod for kernel approximation as a drop-in replacement for
dense layers in CNNs. In order to extend the Autoencoder scheme to learn representa-
tions of structured input x lying in a Hilbert space X , Laforgue et al. (2019) introduces
Kernel AutoEncoders, an autoencoder whose each layer is a function defined within a
vv-RKHS. Inspired by KAEs and building upon the Reproducing Kernel Hilbert C∗-
Modules, a generalisation of RKHSs by means of C∗-algebra, Hashimoto et al. (2024)
introduces deep RKHM, a deep architecture which is the composition of functions
within RKHMs thanks to the Perron–Frobenius operator.
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In this thesis, deep learning is used in chapter 5 to solve structured prediction prob-
lems with complex inputs such as images or texts. In particular, we show how to
leverage kernel-induced losses with neural networks, or equivalently how to lever-
age neural networks within Output Kernel Regression, and conduct experiments on
molecular identification with input text data.





3
Fast Kernel Methods for Generic Lipschitz

Losses via p-Sparsified Sketches

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Sketching Kernels Machines with Lipschitz-Continuous Losses . . . 65

3.2.1 Scalar Kernel Machines . . . . . . . . . . . . . . . . . . . . . 65

3.2.2 Matrix-valued Kernel Machines . . . . . . . . . . . . . . . . 69

3.2.3 Algorithmic details . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 p-Sparsified Sketches . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.1 Scalar regression . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.2 Vector-valued regression . . . . . . . . . . . . . . . . . . . . 78

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1 Introduction

In this chapter, we first focus on the input kernel and study how to use sketching to
scale scalar-valued and matrix-valued kernel machines up. Sketching, which consists
of looking for solutions among a subspace of reduced dimension, is a well-studied
approach to alleviate these computational burdens. However, statistically accurate
sketches, such as the Gaussian one, usually contain few null entries, such that their
application to kernel methods and their non-sparse Gram matrices remains slow in
practice. Here, we show that sparsified Gaussian (and Rademacher) sketches still pro-
duce theoretically valid approximations while allowing for important time and space
savings thanks to an efficient decomposition trick. To support our method, we derive
excess risk bounds for both single and multiple output kernel problems, with generic
Lipschitz losses, hereby providing new guarantees for a wide range of applications,
from robust regression to multiple quantile regression. Our theoretical results are
complemented with experiments showing the empirical superiority of our approach
over state-of-the-art sketching methods.

Contributions. Our goal is to provide a framework to speed up both scalar and
matrix-valued kernel methods which is as general as possible while maintaining good
theoretical guarantees. For that purpose, we present three contributions, which may
be of independent interest.
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• We derive excess risk bounds for sketched kernel machines with generic Lipschitz-
continuous losses, both in the scalar and multiple output cases. We hereby solve
an open problem from Yang et al. (2017), and provide a first analysis to the
sketching of vector-valued kernel methods.

• We show that sparsified Gaussian and Rademacher sketches provide valid ap-
proximations when applied to kernel methods. They maintain theoretical guar-
antees while inducing important space and computation savings, as opposed to
plain sketches.

• We discuss how to learn these new sketched kernel machines, through an ap-
proximated feature map. We finally present experiments using Lipschitz losses,
such as robust and quantile regression, on both synthetic and real-world data-
sets, supporting the relevance of our approach.

• A Python implementation of our approach is publicly available on GitHub.

3.2 Sketching Kernels Machines with Lipschitz-Continuous
Losses

In this section, we derive excess risk bounds for sketched kernel machines with gen-
eric Lipschitz losses, for both scalar and multiple output regression.

3.2.1 Scalar Kernel Machines

We consider a general regression framework, from an input space X to some scalar
output space Y ⊆ R. Given a loss function ℓ : Y × Y → R such that z 7→ ℓ(z,y) is
proper, lower semi-continuous and convex for every y, our goal is to estimate f ∗ =

arginff ∈HE(X,Y )∼ρ
[
ℓ
(
f (X),Y

)]
, where H ⊂ YX is a hypothesis set, and ρ is a joint

distribution over X ×Y . Since ρ is usually unknown, we assume that we have access to
a training dataset {(xi , yi )}ni=1 composed of i.i.d. realisations drawn from ρ. We recall
the definitions of a scalar-valued kernel and its RKHS (Aronszajn, 1950).

Definition 3.1 (Scalar-valued kernel). A scalar-valued kernel is a symmetric function

kX : X × X → R such that for all n ∈ N, and any
(
xi
)n
i=1
∈ X n,

(
αi

)n
i=1
∈ R

n, we have
∑n
i,j=1αi kX

(
xi ,xj

)
αj ≥ 0.

Theorem 3.2 (RKHS). Let kX be a kernel on X . Then, there exists a unique Hilbert space

of functions HX ⊂ R
X such that kX

(
·,x

)
∈ HX for all x ∈ X , and such that we have h (x) =

⟨h,kX
(
·,x

)
⟩HX for any

(
h,x

)
∈ HX ×X .

A kernel machine computes a proxy for f ∗ by solving

min
f ∈HX

1
n

n∑

i=1

ℓ(f (xi ), yi ) +
λn
2
∥f ∥2HX , (3.1)
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where λn > 0 is a regularization parameter. By the representer theorem (Kimeldorf
and Wahba, 1971; Schölkopf et al., 2001), the solution to Problem (3.1) is given by
f̂ =

∑n
i=1 α̂i kX (·,xi ), with α̂ ∈ Rn the solution to

min
α∈Rn

1
n

n∑

i=1

ℓ([KXα]i , yi ) +
λn
2
α⊤KXα , (3.2)

where KX ∈ Rn×n is the kernel Gram matrix such that KXij = kX (xi ,xj ).

Definition 3.3 (Regularized Kernel-based Sketched Estimator). Given a matrix RX ∈
R
mX ×n, with mX ≪ n, sketching consists in imposing the substitution α = RX⊤γ in the

empirical risk minimization problem stated in eq. (3.2). We then obtain an optimisation
problem of reduced size on γ , that yields the sketched estimator f̃ =

∑n
i=1[RX

⊤ γ̃]i kX (·,xi ),
where γ̃ ∈ RmX is a solution to

min
γ∈RmX

1
n

n∑

i=1

ℓ([KXRX
⊤γ]i , yi ) +

λn
2
γ⊤RX KXRX

⊤γ . (3.3)

In practice, one usually obtains the matrix RX by sampling it from a random distri-
bution. The literature is rich in examples of distributions that can be used to generate
the sketching matrix RX . For instance, the sub-sampling matrices, where each line
of RX is sampled from In, have been widely studied in the context of kernel meth-
ods. They are computationally efficient from both time and space perspectives and
yield the so-called Nyström approach (Williams and Seeger, 2001; Rudi et al., 2015).
More complex distributions, such as Randomized Orthogonal System (ROS) sketch-
ing or Gaussian sketch matrices, have also been considered (Yang et al., 2017). In this
work, we first give a general theoretical analysis of regularized kernel-based sketched
estimators for any KX-satisfiable sketch matrix (Definition 3.4). Then, we introduce
the p-sparsified sketches and prove their KX-satisfiablity, as well as their relevance for
kernel methods in terms of statistical and computational trade-off.

Works about sketched kernel machines usually assess the performance of f̃ by up-
per bounding its squared L2(PN ) error, i.e., (1/n)

∑n
i=1(f̃ (xi ) − fHX (xi ))2, where fHX is

the minimizer of the true risk over HX , supposed to be attained (Yang et al., 2017,
Equation 2), or through its (relative) recovery error ∥f̃ − f̂ ∥HX /∥f̂ ∥HX , see Theorem 3 in
Lacotte and Pilanci (2022). In contrast, we focus on the excess risk of f̃ , the original
quantity of interest. As revealed by the proof of Theorem 3.10, the approximation
error of the excess risk can be controlled in terms of the L2(PN ) error, and we actu-
ally recover the results from Yang et al. (2017) when we particularize to the square
loss with bounded outputs (second bound in Theorem 3.10). Furthermore, studying
the excess risk allows to better position the performances of f̃ among the known off-
the-shelf kernel-based estimators available for the targeted problem. To achieve this
study, we rely on the key notion of KX-satisfiability for a sketch matrix (Yang et al.,
2017; Liu et al., 2019; Chen and Yang, 2021a).

Let KX /n = UDU⊤ be the eigendecomposition of the Gram matrix, where D = (1/n) ·
diag(σ1(KX), . . . ,σn(KX)) stores the eigenvalues of KX /n in decreasing order. Let δ2n be
the critical radius of KX /n, i.e., the lowest value such that ψ(δn) = (1n

∑n
i=1min(δ2n,

σi(KX)/n))1/2 ≤ δ2n. The existence and uniqueness of δ2n is guaranteed for any RKHS
associated with a positive definite kernel (Bartlett et al., 2006; Yang et al., 2017). Note
that δ2n is similar to the parameter ε̃2 used in Yang et al. (2012) to analyze Nyström
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approximation for kernel methods. We define the statistical dimension of KX as dn =
min

{
j ∈ {1, . . . ,n} : σj (KX)/n ≤ δ2n

}
, with dn = n if no such index j exists.

Definition 3.4 (KX-satisfiability, Yang et al. 2017). Let c > 0 be independent of n, U1 ∈
R
n×dn and U2 ∈ Rn×(n−dn) be the left and right blocks of the matrix U previously defined,

and D2 = (1/n)diag
(
σdn+1(KX), . . . ,σn(KX)

)
. A matrix RX is said to be KX-satisfiable for c

if we have

∥∥∥∥∥
(
RX U1

)⊤
RX U1 − Idn

∥∥∥∥∥
op
≤ 1/2 , and

∥∥∥∥RX U2D
1/2
2

∥∥∥∥
op
≤ cδn . (3.4)

Roughly speaking, a matrix is KX-satisfiable if it defines an isometry on the largest
eigenvectors of KX, and has a small operator norm on the smallest eigenvectors. For
random sketching matrices, it is common to show KX-satisfiability with high probab-
ility under some condition on the sketch size mX , see e.g., Yang et al. (2017, Lemma 5)
for Gaussian sketches, Chen and Yang (2021a, Theorem 8) for Accumulation sketches.
In Section 3.3, we show similar results for p-sparsified sketches.

To derive our excess risk bounds, we place ourselves in the framework of Li et al.
(2021), see Sections 2.1 and 3 therein. Namely, we assume that the true risk is minim-

ized over HX at fHX ≔ argminf ∈HX E

[
ℓ
(
f
(
X
)
,Y

)]
. The existence of fHX is standard

in the literature (Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017; Yang et al.,
2017), and implies that fHX has bounded norm, see e.g., Rudi and Rosasco (2017, Re-
mark 2). Similarly to Li et al. (2021), we also assume that estimators returned by
Empirical Risk Minimization have bounded norms. Hence, all estimators considered
in the present paper belong to some ball of finite radius R. However, we highlight
that our results do not require prior knowledge on R, and hold uniformly for all finite
R. As a consequence, we consider without loss of generality as hypothesis set the unit
ball B

(
HX

)
in HX , up to an a posteriori rescaling of the bounds by R to recover the

general case.

Assumption 3.5. The true risk is minimized at fHX .

Assumption 3.6. The hypothesis set considered is B
(
HX

)
.

Assumption 3.7. For all y ∈ Y , z 7→ ℓ(z,y) is L-Lipschitz, for L > 0.

Assumption 3.8. For all x ∈ X , we have k(x,x) ≤ κX .

Assumption 3.9. The sketch RX is KX-satisfiable with constant c > 0.

Note that we discuss some directions to relax Assumption 3.6 in Appendix A.2. Many
loss functions satisfy Assumption 3.7, such as the hinge loss (L = 1), used in SVMs
(Cortes and Vapnik, 1995), the ϵ-insensitive ℓ1 (Drucker et al., 1997), the κ-Huber
loss, known for robust regression (Huber, 1964), the pinball loss, used in quantile re-
gression (Steinwart and Christmann, 2011), or the square loss with bounded outputs.
Assumption 3.8 is standard (e.g., κX = 1 for the Gaussian kernel). Under Assump-
tions 3.5 to 3.9 we have the following result.
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Theorem 3.10. Let f̃ as in Definition 3.3, suppose that Assumptions 3.5 to 3.9 hold, and
let C = 1 +

√
6c, with c the constant from Assumption 3.9. Then, for any δ ∈ (0,1) with

probability at least 1− δ we have

E

[
ℓf̃

]
≤ E

[
ℓfHX

]
+LC

√
λn + δ

2
n +

λn
2

+8L

√
κX
n

+2

√
8log

(
4/δ

)

n
, (3.5)

where E
[
ℓf

]
= E(X,Y )∼ρ

[
ℓ(f (X),Y )

]
. Furthermore, if ℓ

(
z,y

)
=

(
z − y

)2
/2 and Y ⊂ [0,1],

with probability at least 1− δ we have

E

[
ℓf̃

]
≤ E

[
ℓfHX

]
+
(
C2 +

1
2

)
λn +C

2δ2n +8
κX +
√
κX√
n

+2

√
8log

(
4/δ

)

n
. (3.6)

Proof [Proof sketch] The proof relies on the decomposition of the excess risk into two
generalization error terms and an approximation error term, i.e.,

E[ℓf̃ ]−E[ℓfHX ] = E[ℓf̃ ]−En[ℓf̃ ] +En[ℓf̃ ]−En[ℓfHX ] +En[ℓfHX ]−E[ℓfHX ] , (3.7)

where En[ℓf ] = (1/n)
∑n
i=1 ℓ(f (xi ), yi ). The two generalization errors (of f̃ and fHX ) can

be bounded using Bartlett and Mendelson (2003, Theorem 8) together with Assump-
tions 3.5 to 3.8. For the last term, we can use Jensen’s inequality and the Lipschitz
continuity of the loss to upper bound this approximation error by the square root of
the sum of the square residuals of the Kernel Ridge Regression with targets the fHX (xi ).
The latter can in turn be upper bounded using Assumptions 3.5 and 3.9 and Lemma 2
from Yang et al. (2017). When considering the square loss, Jensen’s inequality is not
necessary anymore, leading to the improved second term in the right-hand side of the
last inequality in theorem 3.10.

Recall that the rates in Theorem 3.10 are incomparable as is to that of Yang et al. (2017,
Theorem 2), since we focus on the excess risk while the authors study the squared
L2(PN ) error. Precisely, we recover their results as a particular case with the square
loss and bounded outputs, up to the generalization errors. Instead, note that we do
recover the rates of Li et al. (2021, Theorem 1), based on a similar framework. Our
bounds feature two different terms: a quantity related to the generalization errors,
and a quantity governed by δn, deriving from the KX-satisfiability analysis. The beha-
viour of the critical radius δn crucially depends on the choice of the kernel. In Yang
et al. (2017), the authors compute its decay rate for different kernels. For instance, we
have δ2n = O(

√
log(n)/n) for the Gaussian kernel, δ2n = O

(
1/n

)
for polynomial kernels,

or δ2n = O(n−2/3) for first-order Sobolev kernels. Note finally that by setting λn ∝ 1/
√
n

we attain a rate of O
(
1/
√
n
)
, that is minimax for the kernel ridge regression, see Ca-

ponnetto and De Vito (2007).

Remark 3.11. Note that a standard additional assumption on the second order moments
of the functions in HX (Bartlett et al., 2005) allows to derive refined learning rates for the
generalization errors. These refined rates are expressed in terms of r̂⋆HX , the fixed point of

a new sub-root function ψ̂n. In order to make the approximation error of the same order,

it is then necessary to prove the KX-satisfiability of RX with respect to r̂⋆
2

HX instead of δ2n.
Whether it is possible to prove such a KX-satisfiability for standard sketches is however a
nontrivial question, left as future work.
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3.2.2 Matrix-valued Kernel Machines

In this section, we extend our results to multiple output regression, tackled in vector-
valued RKHSs. Note that the output space Y is now a subset of Rd , with d ≥ 2. We
start by recalling important notions about Matrix-Valued Kernels (MVKs) and vector-
valued RKHSs (vv-RKHSs).

Definition 3.12 (Matrix-valued kernel). A MVK is an application K : X ×X → L(Rd ),
where L(Rd ) is the set of bounded linear operators on R

d , such that K
(
x,x′

)
= K

(
x′ ,x

)⊤

for all (x,x′) ∈ X 2, and such that for all n ∈ N and any
(
xi , yi

)n
i=1
∈ (X × Y )n we have

∑n
i,j=1 y

⊤
i K

(
xi ,xj

)
yj ⩾ 0.

Theorem 3.13 (Vector-valued RKHS). Let K be a MVK. There is a unique Hilbert space
H ⊂ F (X ,Rd ), the vv-RKHS of K, such that for all x ∈ X , y ∈ R

d and f ∈ H we have

x′ 7→ K
(
x,x′

)
y ∈ H, and ⟨f ,K

(
·,x

)
y⟩H = f (x)⊤y.

Note that we focus in this paper on the finite-dimensional case, i.e., Y ⊂ R
d , such

that for all x,x′ ∈ X , we have K(x,x′) ∈ R
d×d . For a training sample {x1, . . . ,xn}, we

define the Gram matrix as K =
(
K(xi ,xj )

)

1≤i,j≤n
∈ R

nd×nd . A common assumption

consists in considering decomposable kernels: we assume that there exists a scalar
kernel kX and a positive semi-definite matrix M ∈ Rd×d such that for all x,x′ ∈ X we
have K(x,x′) = kX (x,x′)M . The Gram matrix can then be written K = KX⊗M , where
KX ∈ Rn×n is the scalar Gram matrix, and ⊗ denotes the Kronecker product. Decom-
posable kernels are widely spread in the literature as they provide a good compromise
between computational simplicity and expressivity —note that in particular, they en-
capsulate independent learning, achieved withM = Id . We now discuss two examples
of relevant output matrices.

Example 3.14. In joint quantile regression, one is interested in predicting d different con-
ditional quantiles of an output y given the input x. If (τi )i≤d ∈ (0,1) denote the d dif-
ferent quantile levels, it has been shown in Sangnier et al. (2016) that choosing Mij =
exp(−γ(τi − τj )2) favors close predictions for close quantile levels, while limiting crossing
effects.

Example 3.15. In multiple output regression, it is possible to leverage prior knowledge
of the task relationships to design a relevant output matrix M . For instance, let P be the
d × d adjacency matrix of a graph in which the vertices are the tasks and an edge exists
between two tasks if and only if they are (thought to be) related. Denoting by LP the graph
Laplacian associated to P, Evgeniou et al. (2005) and Sheldon (2008) have proposed to use

M =
(
µLP + (1−µ)Id

)−1
, with µ ∈ [0,1]. When µ = 0, we have M = Id and all tasks are

considered independent. When µ = 1, we only rely on the prior knowledge encoded in P.

Given a sample
(
xi , yi

)n
i=1
∈
(
X ,Rd

)n
and a decomposable kernel K = kXM (its associ-

ated vv-RKHS is H), the penalized empirical risk minimisation problem is

min
f ∈H

1
n

n∑

i=1

ℓ(f (xi ), yi ) +
λn
2
∥f ∥2H , (3.8)
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where ℓ : Rd ×Rd → R is a loss such that z 7→ ℓ(z,y) is proper, lower semi-continuous
and convex for all y ∈ Rd . By the vector-valued representer theorem (Micchelli and
Pontil, 2005), we have that the solution to Problem (3.8) writes f̂ =

∑n
j=1K(·,xj )α̂j =∑n

j=1kX (·,xj )Mα̂j , where Â =
(
α̂1, . . . , α̂n

)⊤ ∈ Rn×d is the solution to the problem

min
A∈Rn×d

1
n

n∑

i=1

ℓ
([
KXAM

]⊤
i:
, yi

)
+
λn
2

Tr
(
KXAMA

⊤) .

In this context, sketching consists in making the substitution A = RX⊤Γ, where RX ∈
R
mX ×n is a sketch matrix and Γ ∈ RmX ×d is the parameter of reduced dimension to be

learned. The solution to the sketched problem is then f̃ =
∑n
j=1kX (·,xj )M

[
RX⊤ Γ̃

]
j :
,

with Γ̃ ∈ RmX ×d minimizing

1
n

n∑

i=1

ℓ
([
KXRX

⊤
ΓM

]
i:
, yi

)
+
λn
2

Tr
(
RX KXRX

⊤
ΓMΓ

⊤) .

Theorem 3.16. Suppose that Assumptions 3.5 to 3.9 hold, that K = kXM is a decompos-
able kernel with M invertible, and let C as in Theorem 3.10. Then for any δ ∈ (0,1) with
probability at least 1− δ we have

E

[
ℓf̃

]
≤ E

[
ℓfH

]
+LC

√
λn + ∥M∥op δ2n +

λn
2

+8L

√
κX Tr

(
M

)

n
+2

√
8log

(
4/δ

)

n
. (3.9)

Furthermore, if ℓ
(
z,y

)
=

∥∥∥z − y
∥∥∥2
2
/2 and Y ⊂ B

(
R
d
)
, with probability at least 1−δ we have

that

E

[
ℓf̃

]
≤ E

[
ℓfH

]
+
(
C2 +

1
2

)
λn +C

2∥M∥op δ2n

+8Tr
(
M

)1/2 κX
∥∥∥M

∥∥∥1/2
op

+κX 1/2

√
n

+2

√
8log

(
4/δ

)

n
. (3.10)

Proof [Proof sketch.] The proof follows that of Theorem 3.10. The main challenge is
to adapt Yang et al. (2017, Lemma 2) to the multiple output setting. To do so, we lever-
age that K is decomposable, such that the KX-satisfiability of RX is sufficient, where
KX the scalar Gram matrix.

Note that for M = Id (independent prior), the third term of the right-hand side of
both inequalities becomes of order

√
d/n, that is typical of multiple output problems.

If moreover we instantiate the bound for d = 1, we recover exactly Theorem 3.10.
Finally, similarly to the scalar case in theorem 3.10, looking at the least square case
(eq. (3.10)), by setting λn ∝ 1/

√
n, we attain the minimax rate of O(1/√n), as stated

in Caponnetto and De Vito (2007) and Ciliberto et al. (2020, Theorem 5). To the best
of our knowledge, Theorem 3.16 is the first theoretical result about sketched vector-
valued kernel machines. We highlight that it applies to generic Lipschitz losses and
provides a bound directly on the excess risk.
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3.2.3 Algorithmic details

We now discuss how to solve single and multiple output optimization problems. Let
{(σi(K̃X), ũi ), i ∈ [mX ]} be the eigenpairs of K̃X = RX KXRX⊤ in descending order, Ũ =
[Ũij ]mX ×mX =

(
ũ1, . . . , ũmX

)
, pX = rank(K̃X), D̃pX

= diag(σ1(K̃X), . . . ,σpX
(K̃X)), and ŨpX

=
(ũ1, . . . , ũpX

).

Proposition 3.17. Solving Problem (3.3) is equivalent to solving

min
ω∈RpX

1
n

n∑

i=1

ℓ
(
ω⊤ ψ̃X

(
xi
)
, yi

)
+
λn
2
∥ω∥22 , (3.11)

where ψ̃X (x) = D̃
−1/2
pX

Ũ⊤pX
RX

(
kX

(
x,x1

)
, . . . ,kX

(
x,xn

))⊤
∈ RpX .

The proof is available in Appendix A.1. Problem (3.11) thus writes as a linear prob-
lem with respect to the feature maps induced by the sketch, generalizing the results
established in Yang et al. (2012) for sub-sampling sketches. When considering mul-
tiple outputs, it is also possible to derive a linear feature map version when the kernel
is decomposable. These feature maps are of the form ψ̃X ⊗M1/2, yielding matrices of
size nd ×pX d that are prohibitive in terms of space. Note that an alternative way is to
see sketching as a projection of the kX (·,xi ) into R

pX (Chatalic et al., 2022). Instead,
we directly learn Γ. For both single and multiple output problems, we consider losses
not differentiable everywhere in section 3.4 and apply ADAM Stochastic Subgradient
Descent (Kingma and Ba, 2015) for its ability to handle large datasets.

Discussion with dual implementation. In the previous sections, sketching is al-
ways leveraged in primal problems. However, for some of the loss functions we con-
sider, dual problems are usually more attractive (Cortes and Vapnik, 1995; Laforgue
et al., 2020). This naturally raises the question of investigating the interplay between
sketching and duality on the algorithmic level.

The first idea consists in computing the dual problem to the sketched problem (3.3).
It writes

min
ζ∈Rn

n∑

i=1

ℓ⋆i
(
−ζi

)
+

1
2λnn

ζ⊤KXRX
⊤(RX KXRX

⊤)†RX KXζ , (3.12)

where ℓi = ℓ(·, yi ), and f ⋆ denotes the Fenchel-Legendre transform of f , such that
f ⋆(θ) = supx⟨θ,x⟩ − f (x), see Appendix A.1 for the proof. First note that sketching
with a subsampling matrix in the primal is thus equivalent to using a Nyström ap-
proximation in the dual. This remark generalizes for any loss function the observation
made in Yang et al. (2017) for the kernel Ridge regression. However, although the ℓ⋆i
might be easier to optimize, solving (3.12) seems not a meaningful option, as dual-
ity brought us back to optimizing over Rn, what we initially intended to avoid. The
natural alternative thus appears to use duality first and then sketching. The resulting
problem writes

min
θ∈RmX

n∑

i=1

ℓ⋆i
(
−[RX⊤θ]i

)
+

1
2λnn

θ⊤RX KXRX
⊤θ . (3.13)

It is interesting to note that (3.13) is also the sketched version of Problem (3.12), which
we recall is itself the dual to the sketched primal problem. Hence, sketching in the
dual can be seen as a double approximation. As a consequence, the objective value
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reached by minimizing (3.13) is always larger than that achieved by minimizing (3.3),
and theoretical guarantees for such an approach are likely to be harder to obtain.
Another limitation of (3.13) regards the ℓ⋆i (−[RX⊤θ]i ). Indeed, these terms gener-
ally contain the non-differentiable part of the objective function (for the ϵ-insensitive
Ridge regression we have

∑
i ℓ
⋆
i (θi ) =

1
2∥θ∥22 + ⟨θ,y⟩+ ϵ∥θ∥1 for instance), and are usu-

ally minimized by proximal gradient descent. However, using a similar approach for
(3.13) is impossible since the proximal operator of ℓ⋆i (RX

⊤ ·) is only computable if
RX⊤RX = In, which is never the case. Instead, one may use a primal-dual algorithm
(Chambolle et al., 2018; Vu, 2011; Condat, 2013), which solves the saddle-point op-
timization problem of the Lagrangian, but maintains a dual variable in R

n. Coordin-
ate descent versions of such algorithms (Fercoq and Bianchi, 2019; Alacaoglu et al.,
2020) may also be considered, as they leverage the possible sparsity of S to reduce the
per-iteration cost. In order to converge, these algorithms however require a number
of iterations that are of the order of n, making them hardly relevant in the large-scale
setting we consider.

For all the reasons listed above, we thus believe that minimizing (3.12) or (3.13) is
not theoretically relevant nor computationally attractive and that running stochastic
(sub-)gradient descent on the primal problem, as detailed at the beginning of the sec-
tion, is the best way to proceed algorithmically despite the possibly more elegant dual
formulations. Finally, we highlight that although the condition RX⊤RX = In is almost
surely not verified (we have RX ∈ RmX ×n with mX < n), we still have E[RX⊤RX ] = In
for most sketching matrices. An interesting research direction could thus consist of
running a proximal gradient descent assuming that RX⊤RX = In, and controlling the
error incurred by such an approximation.

3.3 p-Sparsified Sketches

We now introduce the p-sparsified sketches, and establish their KX-satisfiability. The
p-sparsified sketching matrices are composed of i.i.d. Rademacher or centered Gaus-
sian entries, multiplied by independent Bernoulli variables of parameter p (the non-
zero entries are scaled to ensure that RX defines an isometry in expectation). The
sketch sparsity is controlled by p, and when the latter becomes small enough, RX con-
tains many columns full of zeros. It is then possible to rewrite RX as the product of
a sub-Gaussian and a sub-sampling sketch of reduced size, which greatly accelerates
the computations.

Definition 3.18. Let mX < n, and p ∈ (0,1]. A p-Sparsified Rademacher (p-SR) sketching
matrix is a random matrix RX ∈ RmX ×n whose entries RX ij are independent and identically
distributed (i.i.d.) as follows

RX ij =



1√
mX p

with probability
p
2

0 with probability 1− p
−1√
mX p

with probability
p
2

(3.14)

A p-Sparsified Gaussian (p-SG) sketching matrix is a random matrix RX ∈ RmX ×n whose
entries RX ij are i.i.d. as follows

RX ij =



1√
mX p

Gij with probability p

0 with probability 1− p
(3.15)
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where the Gij are i.i.d. standard normal random variables. Note that standard Gaussian
sketches are a special case of p-SG sketches, corresponding to p = 1.

Several works partially addressed p-SR sketches in the past literature. For instance,
Baraniuk et al. (2008) establish that p-SR sketches satisfy the Restricted Isometry
Property (based on concentration results from Achlioptas (2001)), but only for p = 1
and p = 1/3. In Li et al. (2006), the authors consider generic p-SR sketches but do
not provide any theoretical result outside of a moment analysis. The i.i.d. sparse em-
bedding matrices from Cohen (2016) are basically m/mX -SR sketches, where m ≥ 1,
leading each column to have exactlym nonzero elements in expectation. However, we
were not able to reproduce the proof of the Johnson-Linderstrauss property proposed
by the author for his sketch (Theorem 4.2 in the paper, equivalent to the first claim
of KX-satisfiability, left-hand side of (3.4)). More precisely, we think that the assump-
tions considering “each entry is independently nonzero with probability m/mX ” and
“each column has a fixed number of nonzero entries” (m here) are conflicting. As far
as we know, this is the first time p-SG sketches are introduced in the literature. Note
that both (3.14) and (3.15) can be rewritten as RX ij = (1/

√
mX p)BijRij , where the Bij

are i.i.d. Bernouilli random variables of parameter p, and the Rij are i.i.d. random
variables, independent from the Bij , such that E[Rij ] = 0 and E[RijRi ′j ′ ] = 1 if i = i ′

and j = j ′, and 0 otherwise. Namely, for p-SG sketches Rij = Gij is a standard Gaussian
variable while for p-SR sketches it is a Rademacher random variable. It is then easy
to check that p-SR and p-SG sketches define isometries in expectation. In the next
theorem, we show that p-sparsified sketches are KX-satisfiable with high probability.

Theorem 3.19. Let RX be a p-sparsified sketching matrix. Then, there are some uni-
versal constants C0,C1 > 0 and a constant c(p), increasing with p, such that for mX ≥
max

(
C0dn/p

2,δ2nn
)
and with a probability at least 1 − C1e

−mX c(p), the sketch RX is KX-

satisfiable for c = 2√
p

(
1+

√
log

(
5
))
+1.

Proof [Proof sketch.] To prove the left-hand side of (3.4), we use Boucheron et al.
(2013, Theorem 2.13), which shows that any i.i.d. sub-Gaussian sketch matrix satisfies
the Johnson-Lindenstrauss lemma with high probability. To prove the right-hand side
of (3.4), we work conditionally on a realization of the Bij , and use concentration res-
ults of Lipschitz functions of Rademacher or Gaussian random variables (Tao, 2012).
We highlight that such concentration results do not hold for sub-Gaussian random
variables in general, preventing from showing KX-satisfiability of generic sparsified
sub-Gaussian sketches. Note that having RX ij ∝ BijRij is key, and that sub-sampling
uniformly at random non-zero entries instead of using i.i.d. Bernoulli variables would
make the proof significantly more complex. We highlight that Theorem 3.19 strictly
generalizes Yang et al. (2017, Lemma 5), recovered for p = 1, and extends the results
to Rademacher sketches.

Hence, by combining theorem 3.19 with either theorem 3.10 or theorem 3.16, we are
able to provide the learning rate of the sketched estimator f̃ for classical kernel ex-
amples. We summarize in Table 3.1 the different behaviours of δ2n and dn in the differ-
ent spectrum regimes considered, in order to explicit the exact condition on s in each
case. More specifically, for a Dth-order polynomial kernel for instance, dn, for any n
is at most D + 1, leading to mX of order D + 1 to be sufficient. Finally, we can derive



74
CHAPTER 3. FAST KERNEL METHODS FOR GENERIC LIPSCHITZ LOSSES VIA

p-SPARSIFIED SKETCHES

Table 3.1: Statistical dimension, lower bound obtained on s, and learning rate ob-
tained for excess risk with p-sparsified sketches for different kernels.

Kernel δ2n dn mX Learning rate

Gaussian O


√
log(n)
n


 ∝

√
log(n) Ω

(√
log(n)/p2

)
O




(
log(n)

)1/4

n1/2




Polynomial O
(
1
n

)
∝ 1 Ω

(
1
p2

)
O

(
1√
n

)

Sobolev O
(

1
n2/3

)
∝ n1/3 Ω

(
n1/3/p2

)
O

(
1
n1/3

)

the learning rate obtained as well as the exact condition on mX for each scenario, see
Table 3.1. Compared with Random Fourier Features (Li et al., 2021), we see that we
obtain slightly degraded learning rates for Gaussian and first-order Sobolev kernels,
in comparison with the O

(
1/
√
n
)
rate the authors obtain. Our rates remain however

very close.

Computational property of p-sparsified sketches. In addition to be statistically ac-
curate, p-sparsified sketches are computationally efficient. Indeed, recall that the
main quantity one has to compute when sketching a kernel machine is the matrix
K̃X = RX KXRX⊤. With standard Gaussian sketches, that are known to be theoret-
ically accurate, this computation takes O(mX n2) operations. Sub-sampling sketches
are notoriously less precise, but since they act as masks over the Gram matrix KX,
computing K̃X can be done in O(mX 2) operations only, without having to store the
entire Gram matrix upfront. Now, let RX ∈ R

mX ×n be a p-sparsified sketch, and
mX ′ =

∑n
j=1 I{RX :j , 0mX } be the number of columns of RX with at least one nonzero

element. The crucial observation that makes RX computationally efficient is that we
have

RX = RX SG RX SS , (3.16)

where RX SG ∈ RmX ×mX ′ is obtained by deleting the null columns from RX , and RX SS ∈
R
mX ′ ×n is a sub-Sampling sketch whose sampling indices correspond to the indices

of the columns in RX with at least one non-zero entry1. We refer to (3.16) as the de-
composition trick. This decomposition is key, as we can apply first a fast sub-sampling
sketch, and then a sub-Gaussian sketch on the sub-sampled Gram matrix of reduced
size. Note that mX ′ is a random variable. By independence of the entries, each column
is null with probability

(
1− p

)mX . Then, by the independence of the columns we have

that mX ′ follows a Binomial distribution with parameters n and 1 −
(
1− p

)mX , such
that E

[
mX ′

]
= n(1 −

(
1− p

)mX ). See Algorithm 3.1 for the detailed process of gener-
ating a p-sparsified sketch and decomposing it as a product of a sub-Gaussian sketch
RX SG and a sub-Sampling sketch RX SS.

Hence, the sparsity of the p-sparsified sketches, controlled by parameter p, is an in-
teresting degree of freedom to add: it preserves statistical guarantees (Theorem 3.19)
while speeding-up calculations (3.16). Of course, there is no free lunch and one loses

1Precisely, RX SS is the identity matrix ImX ′ , augmented with n −mX ′ null columns inserted at the
indices of the null columns of RX .
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Algorithm 3.1 Generation of a p-sparsified sketch
input: mX , n and p

Generate a mX ×n matrix B whose entries are i.i.d. Bernouilli random variables of
parameter p.

indices←− indices of non-null columns of B.

B′←− B where all null columns have been deleted.

Generate a matrixMSG of the same size as B′ whose entries are either i.i.d. Gaussian
or Rademacher random variables.

RX SG←−MSG ◦B′, where ◦ denotes the component-wise Hadamard matrix product.

return RX SG and indices

on one side what is gained on the other: when p decreases (sparser sketches), the lower
bound to get guarantees mX ≳ dn/p2 increases, but the expected number of non-null
columns mX ′ decreases, thus accelerating computations (note that for p = 1 we exactly
recover the lower bound and number of non-null columns for Gaussian sketches).

Corollary 3.20. Let RX ∈ RmX ×n be a p-sparsified sketching matrix, and C0, C1 and c(p)
as in theorem 3.19. Then, setting p ≈ 0.7 and s = C0dn/(0.72), RX is KX-satisfiable for
c = 9, with a probability at least 1 − C1e

−mX c(0.7). These values of p and mX minimize
computations while maintaining the guarantees.

Proof By substituting mX = C0dn/p
2 into E[mX ′], one can show that it is optimal to

set p ≈ 0.7, independently from C0 and dn.

corollary 3.20 gives the optimal values of p and mX that ensure KX-satisfiability of
a p-sparsified sketching matrix while having some complexity reduction. However,
the lower bound in Theorem 3.19 is a sufficient condition, that might be conservative.
Looking at the problem of setting mX and p from the practitioner’s point of view, we
also provide more aggressive empirical guidelines. Indeed, although this regime is
not covered by Theorem 3.19, experiments show that setting mX as for the Gaussian
sketch and p smaller than 1/mX yield very interesting results, see Figure 3.1c. Over-
all, p-sparsified sketches (i) generalize Gaussian sketches by introducing sparsity as
a new degree of freedom, (ii) enjoy a regime in which theoretical guarantees are pre-
served and computations (slightly) accelerated, (iii) empirically yield competitive res-
ults also in aggressive regimes not covered by theory, thus achieving a wide range of
interesting accuracy/computations tradeoffs.

Complexity Comparison. We first recall the time and space complexities for ele-
mentary matrix products. The main advantage of using Sub-Sampling matrices is
that computing RX KX is equivalent to sampling mX training inputs and construct a
mX ×n Gram matrix, hence we gain huge time complexity since we do not compute
a matrix multiplication, as well as space complexity since we do not compute a n × n
Gram matrix. As a consequence, the main advantage of our p-sparsified sketches is
their ability to be decomposed as RX = RX SGRX SS, where RX SG ∈ RmX ×mX ′ is a sparse
sub-Gaussian sketch and RX SS ∈ R

mX ′ ×n is a sub-Sampling sketch. This decomposi-
tion trick is particularly interesting when p is small, and since mX ′ follows a Binomial
distribution of parameters n and 1 −

(
1− p

)mX and we assume in our settings that n
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is large, hence we have that mX ′ ≈ E

[
mX ′

]
∼
p→0

nmX p. In the following, we take

mX ′ = nmX p. We recall that Accumulation matrices from Chen and Yang (2021a)
write as RX =

∑m
i=1RX (i), where the RX (i)s are sub-sampling matrices whose each row

is multiplied by independent Rademacher variables. Hence, both p-sparsified and
Accumulation sketches are interesting since they completely benefit from the com-
putational efficiency of sub-sampling matrices. See table 3.2 for complexity analysis
of matrix multiplications. Going into the complexity of the learning algorithms, the
main difference between single and multiple output settings is the computation of
feature maps, relying on the construction of RX KXRX⊤ and the computation of the
square root of its pseudo-inverse for the single output setting which is not present in
the multiple output settings. We assume in our framework that d and even d2 are
typically very small in comparison with n. Hence, we have that the complexity in
the single output case is dominated by the complexity of the operation RX KXRX⊤,
whereas in the multiple output case, it is dominated by the complexity of the oper-
ation RX KX. We see that from a time complexity perspective, p-sparsified sketches
outperform Accumulation sketches in single output settings as long as p ≤ m/n√mX ,
and in multiple output settings as long as p ≤ m/nmX . From a space complexity per-
spective, Accumulation is always better as nmX p is typically greater than mX , other-
wise it shows poor performance. However, p is usually chosen such that nmX p is not
very large compared with mX .

Table 3.2: Complexity of matrix operations for each sketching type.

Sketching type Complexity type RX KX RX KXRX⊤

Gaussian
time O

(
n2mX

)
O

(
n2mX

)

space O
(
n2

)
O

(
n2

)

p-sparsified
time O

(
n2mX 2 p

)
O

(
n2mX 3 p2

)

space O
(
n2mX p

)
O

(
n2mX 2 p2

)

Accumulation
time O

(
nmX m

)
O

(
mX 2m2

)

space O
(
nmX

)
O

(
mX 2

)

CountSketh
time O

(
n2

)
O

(
n2

)

space O
(
n2

)
O

(
n2

)

Sub-Sampling
time O

(
nmX

)
O

(
mX 2

)

space O
(
nmX

)
O

(
mX 2

)

Relatedworks. Sparse sketches have beenwidely studied in the literature, see Clark-
son and Woodruff (2017); Nelson and Nguyên (2013); Derezinski et al. (2021). How-
ever, these sketches are well-suited when applied to sparse matrices (e.g., matrices
induced by graphs). In fact, given a matrix A, computing RX A with these types of
sketching has a time complexity of the order of nnz

(
A
)
, the number of nonzero ele-

ments of A. Besides, these sketches usually are constructed such that each column
has at least one nonzero element (e.g. CountSketch, OSNAP), hence no decomposition
trick is possible. Regarding kernel methods, since a Gram matrix is typically dense
(e.g., with the Gaussian kernel, nnz

(
KX

)
= n2), and since no decomposition trick can

be applied, one has to compute the whole matrix KX and store it, such that time and
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space complexity implied by such sketches are of the order of n2. In practice, we
show that we can set p small enough to computationally outperform classical sparse
sketches and still obtain similar statistical performance. Note that an important line
of research is devoted to improving the statistical performance of Nyström’s approx-
imation, either by adaptive sampling (Kumar et al., 2012; Wang and Zhang, 2013;
Gittens and Mahoney, 2013), or leverage scores (Alaoui and Mahoney, 2015; Musco
and Musco, 2017; Rudi et al., 2018a; Chen and Yang, 2021b). We took the oppos-
ite route, as p-SG sketches are accelerated but statistically degraded versions of the
Gaussian sketch.

3.4 Experiments

We now empirically compare the performance of p-sparsified sketches against state-
of-he-art approaches, namely Nyström approximation (Williams and Seeger, 2001),
Gaussian sketch (Yang et al., 2017), Accumulation sketch (Chen and Yang, 2021a),
CountSketch (Clarkson and Woodruff, 2017) and Random Fourier Features (Rahimi
and Recht, 2007). We chose not to benchmark ROS sketches as CountSketch has equi-
valent statistical accuracy while being faster to compute. Results reported are aver-
aged over 30 replicates.

3.4.1 Scalar regression

Robust regression. We generate a dataset composed of n = 10,000 training data-

points: 9,900 input points drawn i.i.d. from U
([
010,✶10

])
and 100 other drawn i.i.d.

fromN
(
1.5✶10,0.25I10

)
. The outputs are generated as y = f ⋆(x)+ϵ, where ϵ ∼N

(
0,1

)

and

f ⋆(x) = 0.1e4x1 +
4

1+ e−20(x2−0.5)
+ 3x3 +2x4 + x5 ,

as introduced in Friedman (1991). We generate a test set of nte = 10,000 points in the
same way. We use the Gaussian kernel and select its bandwidth —as well as para-
meters λn and κ (and ϵ for ϵ-SVR)— via 5-folds cross-validation. We solve this 1D
regression problem using the κ-Huber loss, described in Section 2.5.2. We learn the
sketched kernel machines for different values of mX (from 40 to 140) and several val-
ues of p, the probability of being non-null in a p-SR sketch. Figure 3.1a presents the
test error as a function of the sketch size mX . Figure 3.1b shows the correspond-
ing computational training time. All methods reduce their test error, measured in
terms of the relative Mean Squared Error (MSE) when mX increases. Note that in-
creasing p increases both the precision and the training time, as expected. This be-
haviour recalls the Accumulation sketches, since we observe a form of interpolation
between the Nyström and Gaussian approximations. The behaviour of all the differ-
ent sketched kernel machines is shown in Figure 3.1c, where each of them appears
as a point (training time, test MSE). We observe that p-SR sketches attain the smal-
lest possible error (MSE ≤ 0.05) at the lowest training time budget (mostly around
5.6 < time < 6.6). Moreover, p-SR sketches obtain a similar precision range as the Ac-
cumulation sketches, but for smaller training times (both approaches improve upon
Gaussian sketch in that respect). Nyström sketching, which similarly to our approach
does not need computing the entire Gram matrix, is fast to compute. The method is
however known to be sensitive to the non-homogeneity of the marginal distribution
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Joint quantile regression. We choose the quantile levels as follows τ = (0.1,0.3,0.5,
0.7,0.9). We apply a subgradient algorithm to minimize the pinball loss described
in Section 2.5.3 with ridge regularization and a kernel K = kXM with M discussed
in Example 3.14, and kX a Gaussian kernel. We select regularisation parameter λn
and bandwidth of kernel σ2 via a 5-fold cross-validation. We showcase the behaviour
of the proposed algorithm for Joint Sketched Quantile Regression on two datasets:
the Boston Housing dataset (Harrison Jr and Rubinfeld, 1978), composed of 506 data
points devoted to house price prediction, and the Fish Otoliths dataset (Moen et al.,
2018; Ordoñez et al., 2020), dedicated to fish age prediction from images of otoliths
(calcium carbonate structures), composed of a train and test sets of size 3780 and
165 respectively. The results are averages over 10 random 70%− 30% train-test splits
for Boston dataset. For the Otoliths dataset we kept the initial given train-test split.
The results are reported in Table 3.3. Sketching allows for a massive reduction of
the training times while preserving the statistical performances. As a comparison,
according to the results of Sangnier et al. (2016), the best benchmark result for the
Boston dataset in terms of test pinball loss is 47.4, while best test crossing loss is
0.48, which shows that our implementation does not compete in terms of quantile
prediction but preserves the non-crossing property.

Table 3.4: ARRMSE and training times (in sec) with square loss and mX = 100 when
using Sketching.

Dataset Metrics w/o Sketch 20/ntr -SR 20/ntr -SG Acc. m = 20 CountSketch

rf1
ARRMSE ↓ 0.575 0.584± 0.003 0.583± 0.003 0.592± 0.001 0.575± 0.0005

Training time ↓ 1.73 0.22± 0.025 0.25± 0.005 0.60± 0.0004 0.66± 0.013

rf2
ARRMSE ↓ 0.578 0.671± 0.009 0.656± 0.006 0.796± 0.006 0.715± 0.011

Training time ↓ 1.77 0.28± 0.003 0.27± 0.003 0.82± 0.003 0.62± 0.001

scm1d
ARRMSE ↓ 0.418 0.422± 0.002 0.423± 0.001 0.423± 0.001 0.420± 0.001

Training time ↓ 9.36 0.45± 0.022 0.45± 0.019 0.86± 0.006 2.49± 0.035

scm20d
ARRMSE ↓ 0.755 0.754± 0.003 0.754± 0.003 0.753± 0.001 0.754± 0.002

Training time ↓ 6.16 0.38± 0.016 0.38± 0.017 0.70± 0.032 1.91± 0.047

Multi-output regression. We finally conducted experiments on multi-output ker-
nel ridge regression. We used decomposable kernels and took the largest datasets2

introduced in Spyromitros-Xioufis et al. (2016). They consist of four datasets, divided
into two groups: River Flow (rf1 and rf2) both composed of 4108 training data, and
Supply Chain Management (scm1d and scm20d) composed of 8145 and 7463 training
data respectively (more details and additional results can be found in Appendix A.3).
We compare our non-sketched decomposable matrix-valued kernel machine with the
sketched version. For the sake of conciseness, we only report here the Average Rel-
ative Root Mean Squared Error (ARRMSE), see Table 3.4 and Appendix A.3. For all
datasets, sketching shows strong computational improvements while maintaining the
accuracy of non-sketched approaches.

Note that for both joint quantile regression and multi-output regression the results
obtained after sketching (no matter the sketch chosen) are almost the same as those
attained without sketching. It might be explained by two factors. First, the datasets
studied have relatively small training sizes (from 354 training data for Boston to 8145
for scm1d). Second, predicting jointlymultiple outputs is a complex task, so it appears

2available at http://mulan.sourceforge.net/datasets-mtr.html.
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more natural to obtain fewer differences and variances using various types of sketches
(or no sketch). However, in all cases sketching induces a huge time saver.

3.5 Conclusion

We proposed excess-risk bounds for sketched kernel machines in the context of Lip-
schitz losses, with results valid for both scalar and matrix-valued kernels. We intro-
duced a novel sketching scheme that leverages the good empirical statistical guar-
antees of Gaussian Sketching while combining them with the low cost of Nyström
sketching. Numerical experiments show that this novel scheme opens the door to
many applications beyond the squared loss. Improvements in multi-output regression
can certainly be obtained by applying low-rank considerations in the output space as
well.
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4.1 Introduction

Equipped with p-sparsified sketches and the knowledge on sketching the input ker-
nel, we tackle in this chapter the scalability of surrogate kernel methods, and in par-
ticular Input Output Kernel Regression. Leveraging the kernel trick in both the input
and output spaces, surrogate kernel methods are a flexible and theoretically grounded
solution to structured output prediction. If they provide state-of-the-art performance
on complex data sets of moderate size (e.g., in chemoinformatics), these approaches
however fail to scale. We propose to equip surrogate kernel methods with sketching-
based approximations, applied to both the input and output feature maps. We prove
excess risk bounds on the original structured prediction problem, showing how to
attain close-to-optimal rates with a reduced sketch size that depends on the eigende-
cay of the input/output covariance operators. From a computational perspective, we
show that the two approximations have distinct but complementary impacts: sketch-
ing the input kernel mostly reduces training time, while sketching the output kernel
decreases the inference time. Empirically, our approach is shown to scale, achieving
state-of-the-art performance on benchmark data sets where non-sketched methods
are intractable. Motivated by surrogate structured prediction, we make the following
contributions:

• We apply sketching to the vector-valued kernel regression problem solved in
structured prediction, both on inputs and outputs, which accelerates respect-
ively learning and inference.

• We derive excess risk bounds controlled by the properties of the sketched pro-
jection operators.

• We prove that sub-Gaussian sketches provide close-to-optimal rates with small
sketch sizes.
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• We empirically show that our algorithms maintain good accuracy on moderate-
size data sets while enabling kernel surrogate methods on large datasets where
the standard approach is simply intractable.

• A Python implementation of our approach is publicly available on GitHub.

Notations. We introduce now generic notations for the input (output) space and ker-
nel. If Z denotes a generic Polish space, kZ is a positive definite kernel over Z and
ψZ(z)≔ kZ(·, z) is the canonical feature map of kZ . HZ denotes the Reproducing Ker-
nel Hilbert Space (RKHS) associated to kZ . SZ : f ∈ HZ 7→ (1/

√
n)(f (z1), . . . , f (zn))⊤ is

the sampling operator over HZ (Smale and Zhou, 2007). For any operator A, we de-
note A# its adjoint. The adjoint of SZ is defined as SZ

# : α ∈ Rn 7→ (1/
√
n)

∑n
i=1αi ψZ(zi ).

If z is a r.v. distributed according to ρZ , its covariance operator over HZ is CZ =
Ez[ψZ(z) ⊗ ψZ(z)], and its empirical counterpart ĈZ = (1/n)

∑n
i=1ψZ(zi ) ⊗ ψZ(zi ) =

SZ
#SZ, where {(zi )ni=1} is i.i.d. drawn from ρZ . The Moore-Penrose inverse of M is

denotedM†.

4.2 Background

We now recall the structured prediction setting based on a kernel-induced loss, and
a state-of-the-art surrogate approach to solve it. We also provide reminders about
sketching as a way to scale kernel methods up.

Structured prediction with surrogate kernel methods. Let X be the input space
and Y a structured output space. In general, Y is finite and extremely large. Define
a positive definite kernel kY : Y × Y → R, that measures how close two objects from
Y are. We consider the loss function induced by kY , defined as ℓ : (y,y′)→ ∥ψY (y) −
ψY (y′)∥2HY . Note that it can be computed using the kernel trick. Given an unknown
joint probability distribution ρ defined on X ×Y , the goal of structured prediction is
to approximate

f ∗ = argmin
f :X→Y

R(f ) , (4.1)

where R(f ) = E(x,y)∼ρ
[
∥ψY (y)−ψY (f (x))∥2HY

]
, using only an i.i.d. sample {(x1, y1), . . . ,

(xn, yn)} drawn from ρ. Estimating directly f ∗ is not tractable, such that many works
(Cortes et al., 2005; Geurts et al., 2006; Brouard et al., 2011; Ciliberto et al., 2016)
have proposed instead the following two-step approach:

1. Surrogate Regression: Find an estimator ĥ of the surrogate target h∗ : x 7→ Ey[ψY (y)
|x] such that

h∗ = argmin
h

E(x,y)




∥∥∥∥∥h (x)−ψY
(
y
)∥∥∥∥∥

2

HY


 .

2. Pre-image: Define f̂ by decoding ĥ, i.e.,

f̂ (x) = d(ĥ(x))≔ argmin
y∈Y

∥∥∥∥ĥ(x)−ψY (y)
∥∥∥∥
2

HY
.

The surrogate regression in Step 1 is much easier to handle than the initial structured
prediction problem: it avoids learning f through the composition with the implicit
feature map ψY , and relegates the difficulty of handling structured objects to Step 2,
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i.e. at inference. In addition, vector-valued regression into infinite-dimensional spaces
is a well-studied problem, that can be solved by using the kernel trick in the output
space. This two-step approach belongs to the general framework of SELF (Ciliberto
et al., 2016) and ILE (Ciliberto et al., 2020) and enjoys valuable theoretical guarantees.
It is Fisher consistent, i.e., h∗ yields f ∗ after decoding, and the excess risk of f̂ is
controlled by that of ĥ.

Input Output ridge Kernel Regression. A common choice to tackle in practice the
surrogate regression problem consists in solving a kernel ridge regression problem, lever-
aging kernels in both input and output spaces. The hypothesis space is chosen as
a vector-valued Reproducing Kernel Hilbert Space (vv-RKHS) (Senkene and Tem-
pel’man, 1973; Micchelli and Pontil, 2005; Carmeli et al., 2006, 2010). In a nut-
shell, if F denotes a Hilbert space, a mapping K : X × X → L(F ), where L(F ) is
the set of bounded linear operators on F , is an operator-valued kernel (OVK) if it

satisfies the following properties: K
(
x,x′

)
= K

(
x′ ,x

)#
for all (x,x′) ∈ X 2 (symmetry),

and
∑n
i,j=1

〈
ϕi ,K

(
xi ,xj

)
ϕj )

〉

F
⩾ 0 for all n ∈ N and

(
xi ,ϕi )

)n
i=1
∈ (X × F )n (positive-

definiteness). Similarly to the scalar case, given an OVK K, one can define a unique
Hilbert space H of functions from X to F that enjoys the reproducing kernel prop-
erty, i.e., such that for all x ∈ X , ϕ ∈ F and f ∈ H we have x′ 7→ K

(
x,x′

)
ϕ ∈ F , and

⟨f ,K
(
·,x

)
ϕ⟩H =

〈
f (x),ϕ

〉
F .

In what follows, we opt for the identity decomposable OVK K : X × X → L(HY ),
defined as: K

(
x,x′

)
= kX

(
x,x′

)
IHY , where kX : X × X → R is a p.d. scalar-valued

kernel on X . In Input Output Kernel Ridge Regression (IOKR for short, Brouard et al.
2011; Kadri et al. 2013b; Brouard et al. 2016b; Ciliberto et al. 2020, also introduced as
Kernel Dependency Estimation by Weston et al. (2003)), the estimator of the surrog-
ate regression is obtained by solving the following Ridge regression problem within
H, given a regularisation penalty λ > 0,

ĥ = argmin
h∈H

1
n

n∑

i=1

∥∥∥∥ψY (yi )− h(xi )
∥∥∥∥
2

HY
+λ∥h∥2H . (4.2)

Interestingly, the unique solution to the above problem can be expressed in different
ways. On one hand, we can derive from the representer theorem in vv-RKHSs (Mic-
chelli and Pontil, 2005) the following expression:

ĥ(x) =
n∑

i=1

α̂i(x)ψY (yi ), (4.3)

with α̂(x) = (KX+nλIn)−1kxX ≔ Ω̂ kxX, where KX =
(
kX (xi ,xj )

)n
i,j=1

and kxX =
(
kX (x,x1), . . . ,

kX (x,xn)
)
. On the other hand, using an operator view one obtains

ĥ(x) = Ĥ ψX (x) , (4.4)

where Ĥ = SY
#SX

(
ĈX+λI

)−1
. The latter expression can be seen as a re-writing of

the first (Ciliberto et al., 2016), echoing the KDE equations with finite-dimensional
feature maps (Cortes et al., 2005). It can also be related to the conditional kernel
empirical mean embedding (Grünewälder et al., 2012).
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(a) IOKR. (b) SISOKR.

Figure 4.1: IOKR (left) and SISOKR (right) in the KDE setting. Note that SISOKR
consists in IOKR when kernels kZ are replaced with their projected versions k̃Z(·, ·) =
⟨ψZ(·), P̃ZψZ(·)⟩HZ . However, this new output kernel changes the pre-image problem,
and consequently the estimator f̃ . In the paper, we modify H̃ (and not the kernels)
in order to use the comparison inequality from Ciliberto et al. (2020), see the proof of
corollary 4.12.

The final estimator f̂ is computed using the expression in (4.3), in order to benefit
from the kernel trick:

f̂ (x) = argmin
y∈Y

kY (y,y)− 2kxXT Ω̂kyY , (4.5)

where kyY =
(
kY

(
y,y1

)
, . . . ,kY

(
y,yn

))⊤
. The training phase thus involves the inversion

of a n × n matrix, whose cost without any approximation is O(n3). Besides, it implies
storing n2 values in memory, which induces a heavy space complexity as well. In
practice, decoding is performed by searching in a candidate set Yc ⊆ Y of size nc.
Hence, performing predictions on a test set Xte of size nte mainly implies computing

KX
te,tr

︸ ︷︷ ︸
nte×n

Ω̂︸︷︷︸
n×n

KY
tr,c

︸︷︷︸
n×nc

, (4.6)

where KX
te,tr =

(
kX (xtei ,xj )

)

1≤i≤nte,1≤j≤n
∈ Rnte×n, and KY

tr,c =
(
kY (yi , ycj )

)

1≤i≤n,1≤j≤nc
∈

R
n×nc . The complexity of the decoding part is O

(
ntennc

)
, considering nte < n ≤ nc.

IOKR thus suffers from both heavy time and space computational costs. To cope with
this limitation, we develop a general sketching approach that applies to both input
and output feature spaces, accelerating both training and decoding.

Sketching for kernel methods. Applied to kernel methods to reduce their depend-
ency in n, sketching can be seen as linear projections induced by a random matrix R
(the sketching matrix) drawn from a probability distribution overRm×n, wherem≪ n.
Classic examples include Nyström’s approximation, where each row of R is randomly
drawn from the rows of the identitymatrix In, andGaussian sketches, where all entries
of R are i.i.d. Gaussian random variables. Nyström’s approximation acts as a ran-
dom training data sub-sampler, but it can be interpreted in many ways. In Drineas
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et al. (2005); Bach (2013), it is shown to generate a low-rank approximation of the
Gram matrix, while in Williams and Seeger (2001); Yang et al. (2012), it is seen as a
way to construct data-dependent finite-dimensional random features. In Rudi et al.
(2015), instead, it is presented as a projection onto a small subspace of the RKHS. For
other sketching schemes such as Gaussian or Randomized Orthogonal Systems, most
of the works adopt an optimization viewpoint, where a variable substitution is op-
erated after the application of a Representer theorem (Yang et al., 2017; Lacotte and
Pilanci, 2022). An interesting view provided in Kpotufe and Sriperumbudur (2020)
explores the construction of random features based on Gaussian sketching. All these
works are however limited to sketching the input kernel, in scalar regression prob-
lems. In this work: (1) we generalize input sketching to vector-valued problems, (2)
we sketch the outputs, which is critical to scale-up surrogate methods with kernelized
outputs.

4.3 Sketched Input Sketched Output Kernel Regression

The goal of this section is to construct a low-rank estimator of ĥ by using sketching on
both the input and output kernels. Note that sketching the feature maps is not desir-
able here: if we replace the output features ψY (yi ) ∈ HY with some sketch-dependent
approximations ψ̃Y (yi ) ∈ Rm we become unable to compare the resulting h̃ to the tar-
get h∗. Indeed, h̃ is an approximation of x 7→ Ey[ψ̃Y (y)|x], which is a biased version of
h∗ due to the sketch realization. Instead, as we show below, seeing sketching as ortho-
gonal projections provides a natural way to solve our problem. Ultimately, this gives
rise to an estimator f̃ for structured prediction which is versatile, easy-to-implement,
theoretically-based and scalable to large data sets.

Low-rank estimator. Given two orthogonal projection operators P̃X and P̃Y, we start
from (4.4) and replace the sampling operators on both sides, SX and SY, by their pro-
jected counterparts, SX P̃X and SY P̃Y, so as to encode dimension reduction. The pro-
posed low-rank estimator is expressed as follows:

h̃(x) = P̃YSY
#SX P̃X

(
P̃X ĈX P̃X+λIHX

)−1
ψX (x) . (4.7)

We now show how to design the projection operators using sketching and then derive
the novel expression of the low-rank estimator in terms of a weighted combination
of the training outputs: h̃(x) =

∑n
i=1 α̃i ψY (yi ), yielding a reduced computational cost.

IOKR and SISOKR approaches are illustrated on Figure 4.1.

Sketching. In this work, we chose to leverage sketching to obtain random projectors
within the input and output feature spaces. Indeed, sketching consists of approx-
imating a feature map ψZ : Z → HZ by projecting it thanks to a random projection
operator P̃Z defined as follows. Given a random matrix RZ ∈ RmZ ×n, n data (zi )

n
i=1 ∈ Z

and mZ ≪ n, the linear subspace defining P̃Z is constructed as the linear subspace
generated by the span of the following mZ random vectors

n∑

j=1

(RZ )ij ψZ(zj ) ∈ HZ , i = 1, . . . ,mZ .
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Let us dive into deeper details and give the expression of P̃Z. Let
{(
σi(K̃Z), ũ

Z
i

)
, i ∈ [mZ ]

}

be the eigenpairs of K̃Z ranked in descending order of eigenvalues, pZ = rank
(
K̃Z

)
,

and for all 1 ≤ i ≤ pZ, ẽ
Z
i =

√
n

σi (K̃Z)
SZ

#RZ⊤ ũZi . The following result then holds, see

Appendix B.2 for the proof.

Proposition 4.1 (Expression of the orthogonal projector). The ẽZi s are the eigenfunc-

tions, associated to the eigenvalues σi(K̃Z)/n of C̃Z. Furthermore, let H̃Z = span
(
ẽz1, . . . , ẽ

z
pZ

)
,

the orthogonal projector P̃Z onto H̃Z writes as

P̃Z = (RZ SZ)
#
(
RZ SZ(RZ SZ)

#
)†
RZ SZ . (4.8)

Table 4.1: Time and space complexities at training and inference for the IOKR and
SISOKR algorithms with sub-sampling, p-sparsified (p ∈ (0,1]) or Gaussian sketching,
for a test set of size nte and a candidate set of size nc, such that nte ≤mX ,mY < n ≤ nc.
For the sake of simplicity, we omit the O(·) in the following.

Training Inference
Method Time Space Time Space

IOKR n3 n2 ntennc nnc
SISOKR (sub-sampling) max(mX ,mY )n max(mX ,mY )n ntemY nc mY nc
SISOKR (p-sparsified) max(mX ,mY )2pn max(mX ,mY )pn max(nte ,nmY p)mY nc npmY nc
SISOKR (Gaussian) max(mX ,mY )n2 n2 nmY nc nnc

Sketched Input Sketched Output Kernel Regression (SISOKR). The SISOKR es-
timator is the low-rank estimator h̃, where both P̃X and P̃Y have been chosen as (4.8),
for some random sketches RX and RY . It also admits the following expression based
on a linear combination of the ψY (yi ). The proof of the following proposition is given
in Appendix B.2.

Proposition 4.2 (Expression of SISOKR). ∀x ∈ X ,

h̃ (x) =
n∑

i=1

α̃i (x)ψY
(
yi
)
, (4.9)

where α̃ (x) = RY⊤ Ω̃RX kxX and

Ω̃ = K̃Y
†
RY KYKXRX

⊤(RX KX
2RX

⊤+nλ K̃X)
† , (4.10)

with K̃X = RX KXRX⊤ and K̃Y = RY KYRY⊤.

Note that the matrix quantity that we recover above, KXRX⊤
(
RX KX

2RX⊤+nλ K̃X

)† ·
RX kxX, is typical to sketched kernel Ridge regression (Rudi et al., 2015; Yang et al.,
2017). It allows the reduction of the size of the matrix to invert, which is now an
mX ×mX matrix. This is the main reason for the reduction of the learning step’s com-
plexity and is due to the input sketching. Nonetheless, we still need to performmatrix
multiplication RX KX, whose efficiency depends on the sketch used). Note that output
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sketching also requires additional operations, but the overall cost of computing α̃ re-
mains negligible compared to O(n3), see “training time” column in table 4.1. As an
example, with input/output Gaussian sketching which is the less efficient one, the
time complexity is of order max(mX ,mY )n2, where mX ,mY ≪ n. We obtain the cor-
responding structured prediction estimator f̃ by decoding h̃, i.e., by replacing Ω̂ by
Ω̃ in (4.5). In fact, the main quantity we have to compute for prediction is now

KX
te,trRX

⊤
︸       ︷︷       ︸

nte×mX

Ω̃︸︷︷︸
mX ×mY

RY KY
tr,c

︸    ︷︷    ︸
mY ×nc

. (4.11)

The time complexity of this operation is O(ntemYnc) if nte ≤ mX ,mY < n ≤ nc, which
is a significant complexity reduction (the dependence in n vanishes), governed by the
output sketch size mY , see table 4.1 for more details.

4.4 Theoretical Analysis

In this section, we present a statistical analysis of the proposed estimators h̃ and f̃ .
After introducing the assumptions on the learning task, we upper bound the excess
risk of the sketched kernel ridge estimator, highlighting the approximation errors due
to sketching. We then provide bounds for these approximation error terms. Finally,
we study under which setting the proposed estimators h̃ and f̃ obtain substantial com-
putational gains, while still benefiting from close-to-optimal learning rates. We con-
sider the following set of common assumptions in the kernel literature (Bauer et al.,
2007; Steinwart et al., 2009; Rudi et al., 2015; Pillaud-Vivien et al., 2018; Fischer and
Steinwart, 2020; Ciliberto et al., 2020; Brogat-Motte et al., 2022b).

Assumption 4.3 (Attainability). We assume that h∗ ∈ H, i.e., that there is a linear operator
H :HX →HY , with

∥∥∥H
∥∥∥
HS
< +∞, s.t. h∗(x) =HψX (x), ∀x ∈ X .

This is a standard assumption in the context of least-squares regression (Caponnetto
and De Vito, 2007), making the target h∗ belong to the hypothesis space. Note that
relaxing this assumption is possible, although it would add a bias term that still re-
quires some knowledge about h∗ to be bounded. For instance, if h∗ is supposed to be
square-integrable, one usually chooses a RKHS associated with a universal operator-
valued kernel, which is dense in the space of the square-integrable functions (Carmeli
et al., 2010, Section 4). We now describe a set of generic assumptions that have to be
satisfied by both input and output kernels kX and kY .

Assumption 4.4 (Bounded kernel). There exists κZ > 0 such that kZ(z,z) ≤ κZ2, ∀z ∈ Z.
We note κX ,κY > 0 for the input and output kernels kX and kY respectively.

Assumption 4.5 (Capacity condition). There exists γZ ∈ [0,1] such thatQZ := Tr(CZγZ ) <
+∞.

Note that Assumption 4.5 is always verified for γZ = 1, as Tr(CZ ) = E[∥ψZ(z)∥2HZ ] < +∞
from Assumption 4.4, and that the smaller γZ the faster the eigendecay of CZ , with
γZ = 0 when CZ is of finite rank. More generally, this assumption is for instance veri-
fied for a Sobolev kernel and a marginal distribution whose density is upper-bounded
(Ciliberto et al., 2020, Assumption 2).
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Assumption 4.6 (Embedding property). There exist bZ > 0 and µZ ∈ [0,1] such that
ψZ(z)⊗ψZ(z) ⪯ bZCZ1−µZ almost surely.

Note that Assumption 4.6 is always verified for µZ = 1, as ψZ(z)⊗ψZ(z) ⪯ κZ2 IHZ by
Assumption 4.4, and that the smaller µZ , the stronger the assumption, with µZ =
0 when CZ is of finite. It allows to control the regularity of the functions in HZ
with respect to the L∞-norm, as it implies ∥h∥L∞ ≤ bZ

1/2 ∥h∥µHZ E[h(z)
2](1−µ)/2 (Pillaud-

Vivien et al., 2018). For instance, an absolutely continuous distribution whose density
is lower-bounded almost everywhere and a Matérn kernel verifies Assumption 4.6
(Pillaud-Vivien et al., 2018, Example 2).

SISOKR Excess-Risk. We can now provide a bound on the excess risk of SISOKR.

Theorem4.7 (SISOKR excess risk bound). Let δ ∈ (0,1], n ∈N such that λ = n−1/(1+γX ) ≥
9κX 2

n log(nδ ). Under Assumptions 4.3 to 4.6, with probability 1− δ we have

Ex

[
∥h̃(x)− h∗(x)∥2HY

] 1
2

≤ S(n,δ) + c2AψXρX (P̃X ) +A
ψY
ρY (P̃Y ) , (4.12)

where S(n,δ) = c1 log(4/δ)n
− 1

2(1+γX ) and

A
ψZ
ρZ (P̃Z ) = Ez

[
∥(P̃Z−IHZ )ψZ(z)∥2HZ

] 1
2

, (4.13)

with c1, c2 > 0 constants independent of n and δ.

Proof [Proof sketch.] The proof relies on a decomposition of the operator H̃ such that
h̃(x) = H̃ψX (x), see (271). The first term in (4.12) corresponds to the non-sketched
kernel Ridge regression error, and the second term to the input sketching error. The
latter extends both the results of Ciliberto et al. (2020) to sketched estimators and that
of Rudi et al. (2015) to the vector vector-valued case. The third term, i.e., the output
sketching error is specific to our framework and derives from the expression of h∗ and
Jensen’s inequality.

The learning rate of the first term, i.e., the non-sketched kernel Ridge regression er-
ror, has been shown to be optimal under our set of assumptions in a minimax sense
(Caponnetto and De Vito, 2007). The second and the third terms are approximation
errors due to the sketching of the input and the output kernels, respectively. In par-
ticular, they write as reconstruction errors (Blanchard et al., 2007) associated to the
random projection P̃X and P̃Y of the feature maps ψX and ψY through the input and
output marginal distributions.

Sketching Reconstruction Error. In theorem 4.9, we give bounds on the sketching
reconstruction error for the family of sub-Gaussian sketches, enlarging the scope of
sketching distributions whose reconstruction error’s bound is known —it was pre-
viously limited to uniform and approximate leverage scores sub-sampling sketches
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(Rudi et al., 2015). More generally, note that are admissible in our theoretical frame-
work all sketching distributions for which concentration bounds on the induced em-
pirical covariance operators can be derived since quantity A

ψZ
ρZ (P̃Z ) is then easily con-

trolled. We now recall the definition of sub-Gaussian sketches and show how to bound
their reconstruction error.

Definition 4.8. A sub-Gaussian sketch RZ ∈ R
mZ ×n is composed of i.i.d. entries such

that E
[
RZij

]
= 0, E

[
RZij

2
]
= 1/mZ and RZij

is νZ2

mZ
-sub-Gaussian, for all 1 ≤ i ≤ mZ and

1 ≤ j ≤ n, where νZ ≥ 1.

Recall that a standard normal r.v. is 1-sub-Gaussian. Moreover, by Hoeffding’s lemma,
any r.v. taking values in a bounded interval [a,b] is (b−a)2/4-sub-Gaussian. Hence, any
sketch matrix composed of i.i.d. Gaussian or bounded r.v. is a sub-Gaussian sketch.
Finally, note that p-sparsified sketches (El Ahmad et al., 2023) are sub-Gaussian with
νZ2 = 1/p, with p ∈]0,1].

Theorem 4.9 (sub-Gaussian sketching reconstruction error). For δ ∈
(
0,1/e

]
, n ∈ N

sufficiently large such that 9
n log(n/δ) ≤ n

− 1
1+γZ ≤ ∥CZ ∥op/2, then if

mZ ≥ c4max
(
ν2Z n

γZ +µZ
1+γZ ,ν4Z log

(
1/δ

))
, (4.14)

with probability 1− δ we have

Ez

[
∥(P̃Z−IHZ )ψZ(z)∥2HZ

]
≤ c3n−

1−γZ
1+γZ , (4.15)

where c3, c4 > 0 are constants independents of n,mZ ,δ.

Proof [Proof sketch] The proof essentially consists of bounding the difference between
the empirical covariance operator and its sketched counterpart in operator norm, see
(320). The latter rewrites as a sum of sub-Gaussian random variables in a separable
Hilbert space, and we invoke Koltchinskii and Lounici (2017, Theorem 9).

Hence, depending on the regularity of the distribution (defined through our set of
assumptions), one can obtain a small reconstruction error even with a small sketching
size. For instance, if µZ = γZ = 1/3, one obtains a reconstruction error of order n−1/2

by using a sketching size of order n1/2≪ n. As a limiting case, when µZ = γZ = 0, one
obtains a reconstruction error of order n−1 when using a constant sketching size.

Remark 4.10 (Comparison to Nyström’s approximation). Note that the rate in the-
orem 4.9 is the same as that obtained with Nyström’s approximation. However, our lower
bound on the sketching size is slightly better. Recall that for uniform Nyström it is of order

max
(
n
γZ +µZ
1+γZ ,1

)(
log(n) + log

(
4κZ2 /δ

))
.

Remark 4.11 (Relaxation of Assumption 4.6). Assumption 4.6 allows to derive an upper

bound of N∞Z (t), with t = n
− 1

1+γZ , that appears in the lower bound of the sketching size
mZ , see lemma .26 in Appendix B.6 and the proof of theorem 4.9 in Appendix B.4. How-

ever, we also have that N∞Z (t) ≤ t−1, hence, if µZ +γZ ≥ 1 + log(bZQZ )(1+γZ )
log(n) , we can relax
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Assumption 4.6 and rather obtain

mZ ≥ c4max
(
ν2Z n

1
1+γZ ,ν4Z log

(
1/δ

))
, (4.16)

as a lower bound.

Learning rates for SISOKR with sub-Gaussian sketches. For the sake of presenta-
tion, we use ≲ to keep only the dependencies in n,δ,ν,γ,µ. We note a∨ b≔max(a,b).

Corollary 4.12 (SISOKR learning rates). Consider the Assumptions of Theorems 4.7

and 4.9, that ∥ψY (y)∥HY = κY for all y ∈ Y , and n ∈ N such that 9
n log(n/δ) ≤ n

− 1
1+γZ ≤

∥CZ∥op/2 for Z ∈ {X ,Y}. Set

mZ ≳max
(
ν2Z n

γZ +µZ
1+γZ ,ν4Z log

(
1/δ

))
(4.17)

for Z ∈ {X ,Y}. Then with probability 1− δ

R(f̃ )−R(f ∗) ≲ log
(
4/δ

)
n
− 1−γX ∨γY

2(1+γX ∨γY ) . (4.18)

Proof Using Theorems 4.7 and 4.9 to bound A
ψX
ρX (P̃X ) and A

ψY
ρY (P̃Y ) gives that with

probability 1− δ it holds

Ex

[
∥h̃(x)− h∗(x)∥2HY

] 1
2
≲ log

(
4/δ

)
n
− 1−γX ∨γY

2(1+γX ∨γY ) . (4.19)

We then apply the comparison inequality (Ciliberto et al., 2020) to the loss ∆(y,y′) =
∥ψY (y)−ψY (y′)∥2HY .

This corollary shows that under strong enough regularity assumptions, the proposed
estimators benefit from a close-to-optimal learning rate, even with small input and
output sketching sizes. For instance, if µX = µY = γX = γY = 1/3, one obtains a learn-
ing rate of O(n−1/4), instead of the optimal rate of O(n−3/8) under the same assump-
tions, but only requiring sketching sizes mX ,mY of order n1/2≪ n. As a limiting case,
when µX = µY = γX = γY = 0, one attains the optimal O(n−1/2) learning rate using
constant sketching sizes.

Remark 4.13 (Other Sketches). Although we focused on sub-Gaussian sketches, any sketch-
ing distribution admitting concentration bounds for operators on separable Hilbert spaces

allows bounding the quantity A
ψZ
ρZ (P̃Z ) and is then admissible for our theoretical framework.

For instance, as shown in Rudi et al. (2015), uniform and approximate leverage scores sub-
sampling schemes fit into the presented theory.

Remark 4.14 (Application to Least Squares Regression). This model and theoretical
framework applies to any least squares regression problem with identity separable input
kernel and separable Hilbert output space Y . It corresponds to having the linear output
kernel kY (·, ·) = ⟨·, ·⟩Y , and then ψY = IY .
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Table 4.2: F1 scores on tag prediction from text data.

Method Bibtex Bookmarks Mediamill
LR 37.2 30.7 NA

SPEN 42.2 34.4 NA
PRLR 44.2 34.9 NA
DVN 44.7 37.1 NA

SISOKR 44.1± 0.07 39.3± 0.61 57.26± 0.04
ISOKR 44.8± 0.01 NA 58.02± 0.01
SIOKR 44.7± 0.09 39.1± 0.04 57.33± 0.04
IOKR 44.9 NA 58.17

we start from small mX and mY , which we progressively increase to maximize accur-
acy while respecting the budget. For the p-SR/SG sketches, we always set p = 20/n.

Synthetic Least Squares Regression. We generate a synthetic data set of least squa-
res regression, with n = 10000 training data points, X = Y = R

d , d = 300, and use
input and output linear kernels, hence HX = HY = R

d . We construct covariance
matrices CX and E by drawing randomly their eigenvectors such that their eigenval-
ues are σi(CX ) = i−3/2 and σi(E) = 0.2 i−1/10. We draw H0 ∈ Rd×d with i.i.d. coefficients
from the standard normal distribution and set H = CX H0. For i ≤ n, we generate
inputs xi ∼ N (0,CX ), noise ϵi ∼ N (0,E) and outputs yi = Hxi + ϵi . We generate val-
idation and test sets of nval = nte = 1000 points in the same way. Such choices for CX
(with a polynomial eigenvalue decay), E (with very low eigenvalues and eigenvalue
decay), and H = CX H0 enforce a high eigenvalue decay for CY (since it will have a
similar eigendecay as CX ) while being a favorable setting to deploy sketching, as the
true regression function H is low rank. We select the regularisation penalty λ via 1-
fold cross-validation. We learn the SISOKR model for different values of mX and mY
(from 10 to 295) and (2 · 10−3)-SR input and output sketches. Note that for such a
problem where Y = HY , no decoding step is needed for inference. We still perform
an artificial pre-image problem to illustrate the computational benefit of sketching
during this phase.

Figure 4.2 (left and center) presents computational training (solid lines) and infer-
ence (dotted lines) time (as a percentage of IOKR’s training/inference time) w.r.t. mX
(resp. mY ) for two values of mY (resp. mX ). First, since mX ,mY ≤ 295≪ n = 10000,
note that SISOKR’s training and inference times are significantly smaller than IOKR’s
(between 2 and 6% of IOKR’s training time and 8 and 12% IOKR’s inference time).
On Figure 4.2 (left) the slopes of the training time’s lines are higher than the inference
time’s ones, while the opposite happens on Figure 4.2 (center). This confirms that
training complexity is more sensitive to mX , while inference complexity is governed
by mY . Figure 4.2 (right) presents the difference with IOKR’s test errors, in terms of
Mean Squared Error (MSE), for some choices of mX and mY , as a function of the sum
of the training and inference times. The MSE decreases as the sketch sizes increase
and at a faster rate with respect to mX . This might be due to the fact that we directly
control the eigendecay of CX , whereas CY = CX H0CX H

⊤
0 CX +E, such that its range is

not totally controlled by CX . SISOKR obtains better MSE performance than IOKR for
mX ≥ 116 and mY = 295, which is consistent with the results obtained when applying
sketching to the input (resp. output) kernel only, see Appendix B.7.
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Table 4.3: Training/inference times (in seconds).

Method Bibtex Bookmarks Mediamill

SISOKR 1.41± 0.03 / 0.46± 0.01 118± 1.5 / 20± 0.2 66± 0.1 / 4± 0.01
ISOKR 2.51± 0.06 / 0.58± 0.01 NA 636± 3.7 9± 0.2
SIOKR 1.99± 0.07 / 1.22± 0.03 354± 2.1 / 297± 2.1 199± 0.1 / 121± 0.02
IOKR 2.54 / 1.18 NA 621 / 204

Multi-Label Classification. We compare our models to state-of-the-art multi-label
and structured prediction methods, namely IOKR (Brouard et al., 2016b), logistic
regression (LR) trained independently for each label (Lin et al., 2014), the multi-
label approach Posterior-Regularized Low-Rank (PRLR) (Lin et al., 2014), the energy-
based model Structured Prediction Energy Networks (SPEN) (Belanger and McCal-
lum, 2016) and Deep Value Networks (DVN) (Gygli et al., 2017). Results are taken
from the cited articles. Data sets Bibtex and Bookmarks are tag recommendation
problems, in which the objective is to propose a relevant set of tags (e.g., url, de-
scription, journal volume) to users when they add a new Bookmark or Bibtex entry
to the social bookmarking system Bibsonomy. The MediaMill Challenge (Snoek et al.,
2006) is a multi-label classification problem, where the goal is to detect the presence
of semantic concepts in a video. They contain respectively n = 4880, n = 60000 and
n = 30993 training points, see Appendix B.7 for details. We use the train-test splits
available at https://mulan.sourceforge.net/datasets-mlc.html.

For all multi-label experiments, we use Gaussian input and output kernels with widths
σ2
in and σ2

out. We use p-SG input (resp. output) sketches for SIOKR (resp. ISOKR),
uniform sub-sampling input sketches, and p-SG output sketches for SISOKR. For
Bibtex experiments, we choose mX = 2250 and mY = 200, for Bookmarks experi-
ments, mX = 13000 and mY = 750, and for Mediamill experiments, mX = 8000 and
mY = 500. All the training data are used as candidate sets. The performance is meas-
ured by example-based F1 score, and hyper-parameters are selected on logarithmic
grids by 5-fold cross-validation. The results in table 4.2 show that surrogate meth-
ods (last four columns) compete with SOTA methods, including deep-learning-based
methods such as SPEN or DVN. On Bibtex, sketched models preserve good perform-
ance compared to IOKR (which performs best) while being faster to train (SIOKR and
SISOKR) and significantly faster for inference (ISOKR and SISOKR), see table 4.3.
Since the Bookmarks data set is too large, storing the whole n2-Gram matrix KX ex-
ceeds CPU’s space limitations, which highlights the necessity of efficient sketching ap-
proximations such that sub-sampling or p-SR/SG sketches for kernel methods. Hence,
we can only test SIOKR and SISOKRmodels on this data set, which outperforms other
methods. SISOKR’s inference phase is notably faster than SIOKR’s (20 seconds vs.
5 minutes). Similarly, on the Mediamill problem, our approximated approaches are
shown to be significantly faster to run while suffering a minimal reduction in F1 score.
Note that, with the same sketch matrix RX , SIOKR’s training is faster than SISOKR’s
as there is no additional computation on Gram matrix KY. In table 4.3, SISOKR is
faster to train as it uses a more efficient input sketching (sub-sampling vs. p-SG).

Metabolite Identification. Metabolite identification consists of predicting small mo-
lecules, called metabolites, from their tandem mass spectrum. The metabolite struc-
ture is represented as a binary vector of length d = 7593, called a fingerprint. Each
entry of the fingerprint encodes the presence or absence of a molecular property.
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Table 4.4: Standard errors for the metabolite identification problem and computation
times (in seconds).

Method kernel loss ↓ Top-1 | 5 | 10 accuracies ↑ training ↓ inference ↓
SPEN 0.537± 0.008 25.9% | 54.1% | 64.3% NA NA

SISOKR 0.566± 0.007 25.1% | 54.2% | 64.7% 4.05± 0.05 1112± 29
ISOKR 0.509± 0.009 28.0% | 58.9% | 68.9% 6.25± 50.31 1133± 32
SIOKR 0.492± 0.008 29.5% | 61.3% | 70.9% 1.25± 0.02 1179± 37
IOKR 0.486± 0.008 29.6% | 61.6% | 71.4% 3.54± 0.15 1191± 38

IOKR is the SOTA method for this problem (Brouard et al., 2016a). The data set con-
sists of n = 6974 training labeled mass spectra, the median size of the candidate sets is
292 and the largest candidate set contains 36918 fingerprints. This metabolite iden-
tification problem thus involves high-dimensional complex outputs, for which the
choice of the output kernel is crucial, and a large number of candidates, making the
inference step long.

Our experimental protocol is similar to that of Brouard et al. (2016a) (5-CV Outer
/ 4-CV Inner loops). We use probability product input kernel for mass spectra and
Gaussian-Tanimoto output kernel (Ralaivola et al., 2005) – with width σ2 – for the mo-
lecular fingerprints. We select hyper-parameters λ and σ2 in logarithmic grids based
on MSE inHY (hence no decoding is needed during selection). For the sketched mod-
els, we use p-SR input (resp. output) sketches for SIOKR (resp. ISOKR), and uniform
sub-sampling input sketches and p-SR output sketches for SISOKR, with mX = 1500,
and mY = 800.

We compare our sketched models with IOKR and SPEN, see table 4.4. Results for
SPEN are taken from Brogat-Motte et al. (2022b). SIOKR obtains results similar to
IOKR while being slightly faster in both the training and inference phases. ISOKR
is slightly less accurate, but outperforms (S)IOKR in terms of inference time, while
SISOKR has the fastest inference phase and still competes with SPEN statistically. We
observe here that it is difficult to reduce significantly the inference time while keeping
a good accuracy and to reduce both the training and inference time. This is due to the
particular setting of the metabolite data set. Indeed, each molecule is associated with
a specific candidate set, so when performing predictions one has to run through each
element one by one to pick its candidate set. When performing predictions, one has to
compute the matrix multiplication (4.11), which has a smaller complexity than (4.6),
given that RY KY

tr,c is already known. However, in the case of metabolite identifica-
tion, one has to perform it for each test data, which takes most of the inference for
both ISOKR and SISOKR models. As an example, for the 1133 (resp. 1112) seconds-
long ISOKR’s (resp. SISOKR) inference phase, computing RY KY

tr,c takes 940 (resp.
917) seconds. Since we have access to all candidate sets for each molecule, one could
pre-process these data beforehand and perform these matrix multiplications during
training, leading to a high training time, but a very small inference time, which could
be of interest according to the practitioner’s wish. When candidate sets are known
and fixed (e.g., in multi-label prediction), sketching the output kernel is of particular
interest as no additional operation is needed for each prediction.
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4.6 Conclusion

In this chapter, we scale up surrogate methods for structured prediction based on
kernel Ridge regression by using random projections for both inputs and outputs.
An interesting avenue for future work is the study of non-parametric estimators with
kernelized outputs that do not benefit from the Ridge regression closed-form. The
approach proposed in the next chapter continues on this path and allows to handle
the losses (y,y′) 7→ c(∥ψY (y) −ψY (y′)∥2HY ), where c : R → R is a differentiable or sub-
differentiable function, such as the robust losses introduced in section 2.5 and tackled
in Laforgue et al. (2020).
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5.1 Introduction

In this chapter, we show how to introduce kernel-induced losses to deep neural net-
works thanks to the sketching applied to the output kernel, as previously explored. By
leveraging the kernel trick in the output space, kernel-induced losses provide a prin-
cipled way to define structured output prediction tasks for a wide variety of output
modalities. In particular, they have been successfully used in the context of surrogate
non-parametric regression, where the kernel trick is typically exploited in the input
space as well. However, when inputs are images or texts, more expressive models
such as deep neural networks seem more suited than non-parametric methods. We
here tackle the question of how to train neural networks to solve structured output
prediction tasks, while still benefiting from the versatility and relevance of kernel-
induced losses. We design a novel family of deep neural architectures, whose last layer
predicts in a data-dependent finite-dimensional subspace of the infinite-dimensional
output feature space deriving from the kernel-induced loss. This subspace is chosen
as the span of the eigenfunctions of a randomly-approximated version of the empir-
ical kernel covariance operator. Interestingly, this approach unlocks the use of gradi-
ent descent algorithms (and consequently of any neural architecture) for structured
prediction. Experiments on synthetic tasks as well as real-world supervised graph
prediction problems show the relevance of our method.

In our proposition to solve structured prediction from complex input data, we make
the following contributions:
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• We introduce Deep Sketched Output Kernel Regression, a family of deep neural
architectures whose last layer predicts a data-dependent finite-dimensional rep-
resentation of the outputs, that lies in the infinite-dimensional feature space de-
riving from the kernel-induced loss.

• This last layer is computed beforehand, and is the eigenbasis of the sketched
empirical covariance operator, unlocking the use of gradient-based techniques
to learn the weights of the previous layers for any neural architecture.

• We empirically show the relevance of our approach on a synthetic least squares
regression problem, and provide a strategy to select the sketching size.

• We show that DSOKR performs well on two text-to-molecule datasets.

• A Python implementation of our approach is publicly available on GitHub.

We emphasize again that this chapter is based on the following article to appear in
European Conference on Machine Learning and Principles and Practice of Knowledge Dis-
covery in Databases, 2024 (⋆ indicates equal contribution): Tamim El Ahmad⋆ , Junjie
Yang⋆ , Pierre Laforgue, and Florence d’Alché-Buc. Deep Sketched Output Kernel Re-
gression for Structured Prediction.

5.2 Deep Sketched Output Kernel Regression

In this section, we set up the problem of structured prediction. Specifically, we con-
sider surrogate regression approaches for kernel-induced losses. By introducing a last
layer able to make predictions in a Reproducing Kernel Hilbert Space (RKHS), we
unlock the use of deep neural networks as hypothesis space.

Consider the general regression task from an input domain X to a structured output
domain Y (e.g., the set of labeled graphs of arbitrary size). Learning a mapping from
X to Y naturally requires taking into account the structure of the output space. One
way to do so is the Output Kernel Regression (OKR) framework (Weston et al., 2003;
Cortes et al., 2005; Geurts et al., 2006; Brouard et al., 2011, 2016b), also known as
surrogate regression methods.

Output Kernel Regression. A positive definite (p.d.) kernel kY : Y × Y → R is a
symmetric function such that for all n ≥ 1, and any

(
yi
)n
i=1
∈ Yn,

(
αi

)n
i=1
∈ Rn, we have

∑n
i,j=1αi kY

(
yi , yj

)
αj ≥ 0. Such a kernel is associated with a canonical feature map

ψY : y ∈ Y 7→ kY (·, y), which is uniquely associated with a Hilbert space of functions
H ⊂ R

Y , the RKHS, such that ψY (y) ∈ HY for all y ∈ Y , and h
(
y
)
= ⟨h,ψY (y)⟩HY for

any
(
h,y

)
∈ HY ×Y . Given a p.d. kernel kY , ψY its canonical feature map and HY its

RKHS, the OKR approach that we consider in this work exploits the kernel-induced
squared loss:

∆(y,y′)≔ ∥ψY (y)−ψY (y′)∥2HY = kY (y,y)− 2kY (y,y′) + kY (y
′ , y′) . (5.1)

The versatility of loss (5.1) stems from the large variety of kernels that have been de-
signed to compare structured objects (Gärtner, 2008; Korba et al., 2018; Borgwardt
et al., 2020). In multi-label classification, for instance, choosing the linear kernel
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Figure 5.1: Illustration of DSOKR model.

or the Tanimoto kernel induces respectively the Hamming and the F1-loss (Tanimoto,
1958). In label ranking, Kemeny andHamming embeddings define respectively Kend-
all’s τ distance and the Hamming loss (Korba et al., 2018; Nowak et al., 2020). For se-
quence prediction tasks, n-gram kernels have been proven useful (Cortes et al., 2007;
Kadri et al., 2013a; Nowak et al., 2020), while an abundant collection of kernels has
been designed for graphs, based either on bags of structures or information propaga-
tion, see Appendix C.2 and Borgwardt et al. (2020) for examples.

If kernel-induced losses can be computed easily thanks to the kernel trick, note that
most of them are however non-differentiable. In particular, this largely comprom-
ises their use within deep neural architectures, which are however key to achieving
state-of-the-art performances in many applications. In this work, we close this gap
and propose an approach that benefits from both the expressivity of neural networks
for input image/textual data, as well as the relevance of kernel-induced losses for
structured outputs. Formally, let ρ be a joint probability distribution on X ×Y . Our
goal is to design a family (fθ)θ∈Θ ⊂ YX of neural networks with outputs in Y that can
minimize the kernel-induced loss, i.e., that can solve

min
θ∈Θ

E(x,y)∼ρ

[∥∥∥∥∥ψY (y)−ψY
(
fθ(x)

)∥∥∥∥∥
2

HY

]
. (5.2)

To do so, we assume that we can access a training sample {(x1, y1), . . . , (xn, yn)} drawn
i.i.d. from ρ. Since learning fθ through ψY is difficult, we employ a two-step method.
First, we solve the surrogate empirical problem

θ̂ ∈ argmin
θ∈Θ

L(θ) = argmin
θ∈Θ

1
n

n∑

i=1

∥hθ(xi )−ψY (yi )∥2HY , (5.3)

where (hθ)θ∈Θ ⊂HX is a family of neural networks with outputs inH. We then retrieve
the solution by solving for any prediction the pre-image problem

fθ̂(x) = argmin
y∈Y

∥hθ̂(x)−ψY (y)∥2HY . (5.4)

This approach nonetheless raises a major challenge. Indeed, the dimension of the
canonical feature space HY may be infinite, making the training very difficult. The
question we have to answer now is: how can we design a neural architecture that is able
to learn infinite-dimensional output kernel features?
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Neural networks with infinite-dimensional outputs. We propose a novel architec-
ture of neural networks to compute the function hθ with values in HY . Let p ≥ 1,
our architecture is the composition of two networks: an input neural network, de-
noted gW : X → R

p, with generic parameterW , and a last layer composed of a unique
functional neuron, denoted gE : Rp →HY , that predicts in HY . The latter depends on
the kernel kY used in the loss definition, and on a finite basis E = ((ej )

p
j=1) ∈ HY p of

elements in HY . We let θ = (W,E), and for any x ∈ X , we have

hθ(x)≔ gE ◦ gW (x) , (5.5)

where gW typically implements a L−1 neural architecture encompassing, multilayered
perceptrons, convolutional neural networks, or transformers. Instead, gE computes a
linear combination of some basis functions E = (ej )

p
j=1 ∈ HY p

gE : z ∈ Rp 7→
p∑

j=1

zjej ∈ HY . (5.6)

With this architecture, computations remain finite, and the input neural network out-
puts the coefficients of the basis expansion, generating predictions in HY .

Remark 5.1 (Input Neural net’s last layers). Since the neural network gW learns the
coordinates of the surrogate estimator in the basis, its last layers are always mere fully
connected ones, regardless of the nature of the output data at hand.

5.2.1 Learning neural networks with infinite-dimensional outputs

Learning the surrogate regression model hθ now boils down to computing θ = (W,E).
We propose to solve this problem in two steps. First, we learn a suitable E using only
the output training data (ψY (yi ))ni=1 in an unsupervised fashion. Then, we use stand-
ard gradient-based algorithms to learn W through the frozen last layer, minimizing
the loss on the whole supervised training sample (xi ,ψY (yi ))ni=1.

Estimating the functional last unit gE. A very first idea is to choose E as the non-
orthogonal dictionary ψY (yj )nj=1. But this choice induces a very large output dimen-
sion (namely, p = n) for large training datasets.

An alternative consists in using Kernel Principal Component Analysis (Schölkopf
et al., 1997). Given a marginal probability distribution over Y , let CY = Ey[ψY (y) ⊗
ψY (y)] be the covariance operator associated with kY , and ĈY = (1/n)

∑n
i=1ψY (yi ) ⊗

ψY (yi ) its empirical counterpart. Let SY be the sampling operator that transforms a
function f ∈ HY into the vector (1/

√
n)(f (x1), . . . , f (xn))⊤ in R

n, and denote by SY
# its

adjoint. We have SY
# : α ∈ Rn 7→ (1/

√
n)

∑n
i=1αi ψY (yi ) ∈ HY , and ĈY = SY

#SY. KPCA
provides the eigenbasis of ĈY by computing the SVD of the output Gram matrix, for
a prohibitive computational cost of O(n3). In practice, though, it is often the case that
the so-called capacity condition holds (Ciliberto et al., 2020; El Ahmad et al., 2024),
i.e., that the spectrum of the empirical covariance operator enjoys a large eigendecay.
It is then possible to efficiently approximate the eigenbasis of ĈY using random pro-
jections techniques (Mahoney et al., 2011; Woodruff, 2014), also known as sketching,
solving this way the computational and memory issues.
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Sketching for kernel methods. Sketching Mahoney et al. (2011); Woodruff (2014)
is a dimension reduction technique based on random linear projections. Since the
goal is to reduce the dependency on the number of training samples n in kernel meth-
ods, such linear projections can be encoded by a randomly drawn matrix RY ∈ RmY ×n,
where mY ≪ n. Standard examples include Nyström approximation (Meanti et al.,
2020), where each row of RY is randomly drawn from the rows of the identity matrix
In, also called sub-sampling sketches, and Gaussian sketches (Yang et al., 2017), where
all entries of RY are i.i.d. Gaussian random variables. As they act as a random train-
ing data sub-sampler and then largely reduce both the time and space complexities
induced by kernel methods, sub-sampling sketches are the most popular sketching
type applied to kernels, while Gaussian sketches are less computationally efficient
but offer better statistical properties. Hence, given a sketching matrix RY ∈ R

mY ×n,
one can defines H̃Y = span((

∑n
j=1RYijψY (yj ))

mY
i=1) which is a low-dimensional linear

subspace of HY of dimension at most mY . One can even compute the basis Ẽ of H̃Y ,
providing the last layer gẼ .

Sketching to estimate gE . We here show how to compute the basis Ẽ of H̃Y . Let
mY < n, and RY ∈ RmY ×n be a sketching matrix. Let K̃Y = RY KYRY⊤ ∈ RmY ×mY be the
sketched Gram matrix, and

{
(σi(K̃Y), ũi ), i ∈ [mY ]

}
its eigenpairs, in descending order.

We set pY = rank
(
K̃Y

)
. Note that p ≤ mY , and that p = mY for classical examples,

e.g. full-rank KY and sub-sample without replacement or Gaussian RY . We remind
and rephrase Proposition 4.1 from chapter 4 that provides the eigenfunctions of the
sketched empirical covariance operator.

Proposition 5.2. (El Ahmad et al., 2024, Proposition 2) The eigenfunctions of the sketched

empirical covariance operator C̃Y = SY
#RY⊤RY SY are the ẽj =

√
n

σj (K̃Y)
SY

#RY⊤ ũj ∈ HY ,
for j ≤ pY.

Hence, computing the eigenfunctions of C̃Y provides a basis of HY of dimension pY.
Note that in sketched KPCA, which has been explored via Nyström approximation in
(Sterge et al., 2020; Sterge and Sriperumbudur, 2022), one solves for i = 1, . . . ,mY

fi = argmax
f ∈HY

{
⟨f , ĈY f ⟩HY : f ∈ H̃Y ,

∥∥∥f
∥∥∥HY = 1, f ⊥ {f1, . . . , fi−1}

}
(5.7)

where H̃Y = span((
∑n
j=1RYijψY (yj ))

mY
i=1). Let P̃Y be the orthogonal projector onto the

basis (ẽ1, . . . , ẽpY
), solving eq. (5.7) is equivalent to compute the eigenfunctions of the

projected empirical covariance operator P̃Y ĈY P̃Y, i.e., to compute the KPCA of the
projected kernel ⟨P̃YψY (·), P̃YψY (·)⟩HY . Besides, as for the SVD of C̃Y, sketched KPCA

needs the SVD of K̃Y to obtain its square root, but also requires the additional K̃1/2
Y RY ·

KY
2RY⊤ K̃

1/2
Y SVD computation.

Remark 5.3 (Special case of Nyström approximation). The Nyström approximation is a
well-known example of the sketching framework. In that case, the approximation by Nys-
tröm subsampling of ĈY reads C̃Y = (1/mY )

∑mY
i=1ψY (ỹi )⊗ψY (ỹi ), whose eigenfunctions can

be computed thanks to the SVD of the approximated Grammatrix K̃Y = (kY (ỹi , ỹj ))1≤i,j≤mY ,
where {(ỹi )

mY
i=1} are sampled from the training outputs, see Yang et al. (2012); Rudi et al.

(2015). This approximation has been leveraged to produce estimators of scalar-valued func-
tions like kernel ridge regression for instance.
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Remark 5.4 (Random Fourier Features). Another popular kernel approximation is the
Random Fourier Features (Rahimi and Recht, 2007; Rudi and Rosasco, 2017; Li et al.,
2021). They approximate a kernel function as the inner product of small random features
using Monte-Carlo sampling when the kernel writes as the Fourier transform of a probabil-
ity distribution. Such an approach, however, defines a new randomly approximated kernel,
then a new randomly approximated loss, which can induce learning difficulties due to the
bias and variance inherent to the approximation. Unlike RFF, sketching is not limited to
kernels writing as the Fourier transform of a probability distribution and to defining an
approximated loss, it allows the building of a low-dimensional basis within the original
feature space of interest.

Learning the input neural network gW . Equipped with the basis Ẽ = (ẽj )j≤pY
, we

can compute a novel expression of the loss L(θ) = L(Ẽ,W ).

Proposition 5.5. Given the pre-trained basis Ẽ = (ẽj )j≤pY
, L(Ẽ,W ) expresses as

L(Ẽ,W ) =
1
n

n∑

i=1

∥∥∥∥gW (xi )− ψ̃Y (yi )
∥∥∥∥
2

2
, (5.8)

where ψ̃Y (y) = (ẽ1(y), . . . , ẽpY
(y))⊤ = D̃−1/2pY

Ũ⊤pY
RY k

y
Y ∈ R

pY , ŨpY
= (ũ1, . . . , ũpY

), D̃pY
=

diag(σ1(K̃Y), . . . ,σpY
(K̃Y)), and kyY = (kY (y,y1), . . . ,kY (y,yn)).

Proof For any pair (x,y) ∈ X ×Y , the loss function is given by

∥∥∥∥hθ(x)−ψY (y)
∥∥∥∥
2

HY
=

∥∥∥∥∥∥∥∥

pY∑

i=1

gW (x)j ẽj −ψY (y)

∥∥∥∥∥∥∥∥

2

HY

(5.9)

=
pY∑

i,j=1

gW (x)igW (x)j⟨ẽi , ẽj⟩HY − 2
pY∑

j=1

gW (x)j⟨ẽj ,ψY (y)⟩HY +kY (y,y) (5.10)

=
∥∥∥gW (x)

∥∥∥2
2
− 2gW (x)⊤ ψ̃Y (y) + kY (y,y) , (5.11)

since Ẽ is an orthonormal basis, and ⟨ẽj ,ψY (y)⟩HY = ẽj (y) = ψ̃Y (y)j by the reproducing
property. Noting that

∥∥∥∥gW (x)− ψ̃Y (y)
∥∥∥∥
2

2
=

∥∥∥gW (x)
∥∥∥2
2
− 2gW (x)⊤ ψ̃Y (y) +

∥∥∥∥ψ̃Y (y)
∥∥∥∥
2

2
, (5.12)

and that both kY (y,y) and
∥∥∥∥ψ̃Y (y)

∥∥∥∥
2

2
are independent ofW concludes the proof.

Finally, given Ẽ and Prop. 5.5, learning the full network hθ boils down to learning the
input neural network gW and thus finding a solution Ŵ to

min
W∈W

1
n

n∑

i=1

∥∥∥∥gW (xi )− ψ̃Y (yi )
∥∥∥∥
2

2
. (5.13)

A classical stochastic gradient descent algorithm can then be applied to learn W .
Compared to the initial loss (5.3), the relevance of (5.13) is governed by the quality of
the approximation of ĈY by C̃Y. If our approach regularises the solution (the range
of the surrogate estimator hθ is restricted from HY to E), this restriction may not be
limiting if we set mY ≥ pY high enough to capture all the information contained in
ĈY. We discuss strategies to correctly set mY at the beginning of section 5.3.
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Beyond the square loss. Thanks to this basis approach and the output kernel trick,
an evaluation of the loss is given by eq. (5.11), on which one can easily perform a back-
propagation gradient descent to train the neural network’s weights W . Moreover,
one can easily consider any loss c(∥z − z′∥2HY ), for z,z

′ ∈ HY , where c : R → R is a
differentiable or sub-differentiable function. In fact, for all u ∈ R, let c′(u) denotes
its derivative or one of its sub-derivative at u, and, for all (x,y) ∈ X × Y , l(W ;x,y) =
∥gE ◦ gW (x)−ψY (y)∥2HY , then we have that

∂

∂W
c(l(W ;x,y)) = c′

(
l(W ;x,y)

)
∂

∂W
∥gW (x)∥22 − 2

∂

∂W
ψ̃Y (y)

⊤gW (x)


 . (5.14)

The robust losses considered in Laforgue et al. (2020) typically writes as above. Fur-
thermore, going back to the shallow architecture with an input kernel, an alternative
to the double represented theorem of Laforgue et al. (2020) presented in section 2.5.2
would be to use this basis approach and solve the primal ERM problem. Indeed, let
kX : X ×X → R be an input p. d. kernel, K = kX IpY

be an input identity decomposable
kernel associated to a vv-RKHS H, and λ > 0, one could obtain an IOKR surrogate
estimator ĥ = gE ◦ ĝ by solving

min
g∈H

1
n

n∑

i=1

c
(
∥gE ◦ g(xi )−ψY (yi )∥2HY

)
+λ∥g∥2H . (5.15)

Thanks to the representer theorem (Micchelli and Pontil, 2005), gŴ : x 7→ Ŵ⊤kxX
where kxX = (kX (x,xi )ni=1) and Ŵ ∈ Rn×pY is the solution to

min
W∈Rn×pY

1
n

n∑

i=1

c
(
k
xi
X
⊤
WW⊤kxiX − 2k

xi
X
⊤
W ψ̃Y (y) + kY (y,y)

)
+λTr(KXWW⊤) , (5.16)

with KX = (kX (xi ,xj ))1≤i,j≤n the input Grammatrix. We refer the reader to Appendix C.1
for further details, in particular with the ε-insensitive ℓ1, ℓ2 and Huber losses.

5.2.2 The pre-image problem at inference time

We focus now on the decoding part, i.e., on computing

d ◦ hθ̂(x) = argmin
y∈Y

kY (y,y)− 2gŴ (x)⊤ ψ̃Y (y) = argmax
y∈Y

gŴ (x)⊤ ψ̃Y (y) (5.17)

if we assume kY to be normalized, i.e. kY (y,y′) = 1,∀y,y′ ∈ Y . For a test set Xte =
(xte1 , . . . ,x

te
nte
) ∈ X nte and a candidate set Y c = (yc1, . . . , y

c
nc
) ∈ Ync , for all 1 ≤ i ≤ nte, the

prediction is given by

fθ̂(x
te
i ) = y

c
j where j = argmax

1≤j≤nc
gŴ (xtei )

⊤ψ̃(ycj ) . (5.18)

Hence, the decoding is particularly suited to problems for which we have some know-
ledge of the possible outcomes, such as molecular identification problems (Brouard
et al., 2016a). More generally, when the range of the outputs’ marginal distribution
lies within a small subspace of the output space, such an approach is relevant. In
other settings, this induces a limitation of the method. To cope with it, some solutions
can be explored. When the output kernel is differentiable, it may also be solved using
standard gradient-based methods. Finally, some ad-hoc ways to solve the pre-image
problem exist for specific kernels, see e.g., Cortes et al. (2007) for the sequence predic-
tion via n-gram kernels, or Korba et al. (2018) for label ranking via Kemeny, Hamming
or Lehmer embeddings. The DSOKR framework is summarized in Algorithm 5.1.
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Algorithm 5.1 Deep Sketched Output Kernel Regression (DSOKR)

input: training {(xi , yi )}ni=1, validation {(xvali , yvali )}nvali=1 pairs, test inputs {xtei }
nte
i=1, candid-

ate outputs test inputs {yci }
nc
i=1, normalized output kernel kY , sketching matrix

RY ∈ RmY ×n, neural network gW

init : K̃Y = RY KYRY⊤ ∈ RmY ×mY where KY = (kY (yi , yj ))1≤i,j≤n ∈ Rn×n

// 1. a. Training of gE: computations for the basis Ẽ

• Construct D̃pY
∈ RpY×pY , ŨpY

∈ RmY ×pY such that ŨpY
D̃pY

Ũ⊤pY
= K̃Y (SVD of K̃Y)

• Ω̃ = D̃−1/2pY
Ũ⊤pY
∈ RpY×mY

// 1. b. Training of gW : solving the surrogate problem

• ψ̃Y (yi ) = Ω̃RY k
yi
Y ∈ RpY ,∀ 1 ≤ i ≤ n, ψ̃Y (yvali ) = Ω̃RY k

yvali
Y ∈ RpY ,∀ 1 ≤ i ≤ nval

• Ŵ = argmin
W∈W

1
n

∑n
i=1

∥∥∥∥gW (xi )− ψ̃Y (yi )
∥∥∥∥
2

2
(training of gW with training {(xi , ψ̃Y (yi ))}ni=1

and validation {(xvali , ψ̃Y (yvali ))}nvali=1 pairs and Mean Squared Error loss)

// 2. Inference

• ψ̃Y (yci ) = Ω̃RY k
yci
Y ∈ RpY ,∀ 1 ≤ i ≤ nc

• fθ̂(xtei ) = ycj where j = argmax
1≤j≤nc

gŴ (xtei )
⊤ψ̃(ycj ), ∀ 1 ≤ i ≤ nte

return fθ̂(x
te
i ),∀ 1 ≤ i ≤ nte

Ensemble strategy. Another interesting feature of DSOKR is the fact that the com-
putation of DSOKR’s last layer gE depends on a draw of the sketching matrix RY ,
which means that DSOKR is particularly well-suited to the aggregation via multiple
draws of the sketching matrix and the training of the corresponding neural networks.
For instance, we can easily consider two ways of aggregating multiple DSOKRmodels
at the pre-image stage, either by averaging or maximizing these models’ scores. Let
T ∈ N∗, and for t ∈ ⟦T ⟧, hθ̂t = gẼt ◦ gŴt

denotes the trained DSOKR neural network
based on the sketching matrix RY t , for any input xte and candidate yc, the score to
maximize during the pre-image problem is given by

smean(xte, yc) =
T∑

t=1

ωt gŴt
(xte)⊤ ψ̃Y t(y

c) or smax(xte, yc) = argmax
1≤t≤T

gŴt
(xte)⊤ ψ̃Y t(y

c) ,

(5.19)
where ωt ≥ 0 for all t ∈ ⟦T ⟧ and ∑T

t=1ωt . Such an approach reduces the bias induced
by a single draw of the sketching matrix and leads to better results, as pointed out by
the experiments led on the ChEBI-20 dataset, see section 5.3.3.

5.3 Experiments

In this section, we first present a range of strategies to select the sketching size and
an analysis of our proposed DSOKR on a synthetic dataset. Besides, we show the
effectiveness of DSOKR through its application to two real-world Supervised Graph
Prediction (SGP) tasks: SMILES to Molecule and Text to Molecule. The code to repro-
duce our results is available at: https://github.com/tamim-el/dsokr.
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Experimental settings. We first compute the ALS as described above. We take as
regularisation penalty λ = 10−4, sampling parameter nS =

√
n and probability vec-

tor (pi = 1/n)ni=1 (uniform sampling). Then, we perform the sketching size selection
strategy Perfect h. Note that using a linear output kernel, ψY : y ∈ R1,000 7→ y, then

ẽi = (1/
√
σi(K̃Y))ũ

⊤
i RY Y , where Y = (y1, . . . , yn)⊤ ∈ Rn×1,000, and

hθ̂(x) = Y
⊤RY

⊤ ŨpY
D̃−1/2pY

gŴ (x) . (5.22)

Finally, we perform our DSOKR model whose neural network gW is a Single-Layer
Perceptron, i.e. with no hidden layer, and compare it with an SLP whose output size
is 1,000, and trained with a Mean Squared Error loss, that we call “NN”. We select the
optimal number of epochs thanks to the validation set and evaluate the performance
via the MSE. We use the ADAM (Kingma and Ba, 2015) optimizer. For the Perfect h
and DSOKR models and any sketching size mY ∈ [2,400], we average the results over
five replicates of the models. We use uniform sub-sampling without replacement and
Gaussian sketching distributions.

Experimental results. Figure 5.2 (left) presents the sorted 400 highest leverage sco-
res. This gives a rough estimate of the optimal sketching size since the leverage scores
converge to a minimal value starting from 200 approximately, which is an upper
bound of the true basis dimension d = 50. Figure 5.2 (center) shows that Perfect h
is a relevant strategy to fine-tune mY since the obtained optimal value is mY = 75,
which is very close to d = 50. This small difference comes from the added noise εi .
Moreover, this value corresponds to the optimal value based on the DSOKR test MSE.
In fact, Figure 5.2 (right) presents the performance DSOKR for many mY values com-
pared with NN. DSOKR performance converges to the NN’s performance for mY = 75
as well. Hence, we show that DSOKR attains optimal performance if its sketching size
is set as the dimension of the output marginal distribution’s range, which can be es-
timated thanks to the ALS and the Perfect h strategies. There is no difference between
sub-sample and Gaussian sketching since the dataset is rather simple. Moreover, note
that the neural network of the DSOKR model for mY = 75 contains 150,075 paramet-
ers, whereas the NN model contains 2,001,000 parameters. Then, our sketched basis
strategy, even in the context of multi-output regression, allows to reduce the size of
the last layer, simplifying the regression problem and reducing the number of weights
to learn.

5.3.2 SMILES to Molecule: SMI2Mol

Dataset. We use the QM9 molecule dataset (Ruddigkeit et al., 2012; Ramakrishnan
et al., 2014), containing around 130,000 small organic molecules. These molecules
have been processed using RDKit1, with aromatic rings converted to their Kekule form
and hydrogen atoms removed. We also remove molecules containing only one atom.
Each molecule contains up to 9 atoms of Carbon, Nitrogen, Oxygen, or Fluorine, along
with three types of bonds: single, double, and triple. As input features, we use the
SimplifiedMolecular Input Line-Entry System (SMILES), which are strings describing
their chemical structure. We refer to the resulting dataset as SMI2Mol.

1RDKit: Open-source cheminformatics. https://www.rdkit.org
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Table 5.2: Performance of different methods on ChEBI-20 test set. All the methods
based on NNs use SciBERT as input text encoder for fair comparison. The number in
the ensemble setting indicates the number of single models used.

Hits@1 ↑ Hits@10 ↑ MRR ↑
SISOKR 0.4% 2.8% 0.015
SciBERT Regression 16.8% 56.9% 0.298
CMAM - MLP 34.9% 84.2% 0.513
CMAM - GCN 33.2% 82.5% 0.495
CMAM - Ensemble (MLP×3) 39.8% 87.6% 0.562
CMAM - Ensemble (GCN×3) 39.0% 87.0% 0.551
CMAM - Ensemble (MLP×3 + GCN×3) 44.2% 88.7% 0.597

DSOKR - SubSample Sketch 48.2% 87.4% 0.624
DSOKR - Gaussian Sketch 49.0% 87.5% 0.630
DSOKR - Ensemble (SubSample×3) 51.0% 88.2% 0.642
DSOKR - Ensemble (Gaussian×3) 50.5% 87.9% 0.642
DSOKR - Ensemble (SubSample×3 + Gaussian×3) 50.0% 88.3% 0.640

5.3.3 Text to Molecule: ChEBI-20

Dataset. The ChEBI-20 (Edwards et al., 2021) dataset contains 33,010 pairs of com-
pounds and descriptions. The compounds come from PubChem (Kim et al., 2016,
2019), and their descriptions (more than 20 words) from the Chemical Entities of Bio-
logical Interest (ChEBI) database (Hastings et al., 2016). The dataset is divided as
follows: 80% for training, 10% for validation, and 10% for testing. The candidate set
contains all compounds. The mean and median number of atoms per molecule is 32
and 25 respectively, and the mean and median number of words per description is 55
and 51 respectively.

Experimental set-up. For our method DSOKR, we use SciBERT (Beltagy et al., 2019)
with an additional linear layer to parameterize gW . The maximum length of the in-
put tokens is set to 256. Mol2vec (Jaeger et al., 2018) is used as the output molecule
representation, which is a vector of dimension 300. Based on the Mol2vec repres-
entation, we conduct cross-validation using the following kernels: Cosine kernel and
Gaussian kernel with gamma chosen from {10−9,10−6,10−3,1}, along with the follow-
ing three sketches: sub-sampling (Rudi et al., 2015), Gaussian (Yang et al., 2017), and
p-sparsified (El Ahmad et al., 2023). The sketching size for all combinations of the
output kernels and sketches is determined using the Perfect h strategy. As for the
baselines, we consider SciBERT Regression, Cross-Modal Attention Model (CMAM)
(Edwards et al., 2021), and SISOKR. In the case of SciBERT Regression, we address the
regression problem using Mean Squared Error loss, where the output space is the em-
bedding space of Mol2vec, within a function space parameterized by SciBERT. CMAM
aims to enhance the cosine similarity between the text embedding and the correspond-
ing molecule in true pairs by employing a contrastive loss function. Specifically, the
former is derived from SciBERT, while the latter is generated using either amulti-layer
perceptron (MLP) or a graph convolutional network (GCN) atop the Mol2vec repres-
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entation. We reproduce the results of CMAM with the codes2 released by Edwards
et al. (2021). In SISOKR, we use SciBERT embeddings as input features, leveraging
the cosine kernel atop them. We maintain the identical output kernel sketching setup
as in DSOKR. For all methods, we train the model using the best hyper-parameters
with three random seeds and report the one with the best validation performance The
performance is evaluated with mean reciprocal rank (MRR), Hits@1 and Hits@10. We
could not benchmark AMAN (Zhao et al., 2024), as no implementation is publicly
available.

Ensemble. In Edwards et al. (2021), the authors propose an ensemble strategy to
enhance the results by aggregating the ranks obtained by different training of their
models. If for each 1 ≤ t ≤ T , Rt denotes the ranking returned by the model t, the new
score is computed as follows

s(yi ) =
T∑

t=1

wtRt(yi ) s.t.
T∑

i=1

ωt = 1 (5.23)

for each yi in the candidate set. As discussed in section 5.2.2, DSOKR is particularly
amenable to ensemble strategies based on multiple draws of the sketching matrix,
such as the averaging or maximizing strategies described in eq. (5.19). We explore
the ensemble method proposed by Edwards et al. (2021) as well as the two methods
we propose for DSOKR models and subsequently select the optimal one based on its
validation performance.

Experimental results. Figure 5.5 illustrates the validationMRR scores with Perfect h,
for manym values, and either Cosine or Gaussian output kernels. It is evident that for
both the Cosine kernel and Gaussian kernel (with γ = 10−6) employing various sketch-
ing methods, the MRR score stabilizes as the sketching size exceeds 100, and that Co-
sine outperforms Gaussian. This observation allows us to choose mY = 100, smaller
than the original Mol2vec dimension, which is 300. Table 5.2 presents a comprehens-
ive comparison of DSOKR with various baseline models. Firstly, comparing DSOKR
with SISOKR reveals the critical importance of employing deep neural networks when
dealing with complex structured inputs and DSOKR makes it possible in the case of
functional output space. Secondly, the notable improvement over SciBERT Regression
underscores the value of employing kernel sketching to derive more compact and bet-
ter output features, thereby facilitating regression problem-solving. Lastly, DSOKR
outperforms the sota CMAP for both single and ensemble models. See Appendix C.3
for more details.

5.4 Conclusion

We designed a new architecture of neural networks able to minimize kernel-induced
losses for structured prediction and achieve state-of-the-art performance on molecu-
lar identification. Moreover, we exploited the amenability of sketching to ensemble
strategies by proposing two methods of aggregating multiple DSOKR models corres-
ponding to multiple draws of the sketching matrix at the inference stage. This reduces
the bias induced by a single draw of the sketching matrix and enhances the empirical

2https://github.com/cnedwards/text2mol
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performance of the model, as highlighted in the experiments on the ChEBI-20 data-
set. An interesting avenue for future work is to derive excess risk for this estimator by
combining deep learning theory and surrogate regression bounds.
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6.1 Summary of the Contributions

In this thesis, we addressed structured prediction in the supervised learning setting,
going beyond the standard problems of regression or classification where the output
data to predict are usually low-dimensional vectors. In structured prediction, outputs
are instead complex objects (e.g. graphs, permutations, or sequences), and we had to
face new challenges due to the high-dimension, the lack of linear structure, and the
large size of such discrete structured spaces.

We chose to build upon surrogate kernel methods, and in particular Input Output
Kernel Regression, due to their versatility to handle various output objects within
a unified framework, as well as their strong theoretical foundations, which are not
common characteristics in structured prediction. However, such approaches suffer
from three main limitations:

• they fail to scale to large datasets, both for training and inference phases because
of the inherent computational costs induced by kernel methods;

• they strongly rely on the closed-form solution induced by the square loss, and
fail to extend to other losses, such as robust losses in the case of output outliers;

• they fail to learn representations from complex input data such as images or
texts.

Our goal was then to design a structured predictionmodel incorporating the following
four characteristics:

1. scalability to large datasets;

2. excess risk bound for the built estimator;

3. ability to use a wider variety of losses;

4. ability to learn representations from complex inputs.
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In Chapter 3, we first focused on the input kernel in the simpler settings of multi-
output regression with matrix-valued decomposable kernels, to provide a new sketch-
ing distribution - the p-sparsified sketches - and scale kernel machines in such settings,
using Lipschitz-continuous losses. We also proved excess risk bounds for the resulting
estimator and conducted experiments on synthetic and real-world joint quantile and
multi-output regression. The Python implementation is available on GitHub.

Equipped with this sketching distribution, we proposed, in Chapter 4, Sketched In-
put Sketched Output Kernel Regression, a version of IOKR using sketching matrices
on both the input and output kernels to accelerate it during both training and infer-
ence phases respectively. We provided an excess risk bound for any SISOKR estim-
ator leveraging sub-Gaussian or sub-sampling sketching distributions, demonstrating
close-to-optimal learning rates. Real-world experiments show that SISOKR reaches
good statistical performance on a dataset intractable for IOKR. The code to reproduce
the results is available on GitHub as well.

Finally, in Chapter 5, we introduced Deep Sketched Output Kernel Regression, a neural
architecture compatible with kernel-induced losses thanks to sketching applied to the
output kernel. Inspired by SISOKR, we are able to compute a small-dimensional basis
within the output feature space and the DSOKR estimator then consists of a deep ex-
pansion within this basis. This allows us to use standard gradient-based methods to
train any neural architecture for a wider variety of losses than the sole square one.
Experiments on real-world molecular identification from text input datasets show the
relevance of DSOKR and highlight the importance of incorporating deep neural net-
works to Output Kernel Regression, or equivalently to unlock kernel-induced losses
to deep neural networks. The Python implementation is available on GitHub.

6.2 Perspectives

The work carried out in this thesis opens upmany perspectives, that we discuss below.

• SketchedDecomposable Kernel Learning. The sketchedmatrix-valued decom-
posable kernel machines approach in Chapter 3 could be extended to the De-
composable Kernel Learning framework (Dinuzzo et al., 2011; Lim et al., 2015)
by introducing another sketching matrix RY ∈ RmY ×d , with mY < d, applied to
the matrixM ∈ Rd×d . This would be of high interest for rather high dimensional
output spaces, i.e. high d, and would bridge the gap between Chapter 3, focused
on the input kernel, and Chapter 4, where the sketching of the output kernel is
introduced.

• Differentially private learning thanks to the p-sparsified sketches. A major
concern about machine learning nowadays is differential privacy (Dwork and
Roth, 2014). Since the distribution of the p-sparsified sketches from El Ahmad
et al. (2023) is independent of the data, it could be possible to make sketched
kernel machines private by adding less noise than what would be needed to
make a standard non-sketched kernel machine private, as in Jain and Thakurta
(2013). Such an approach could be extended to structured prediction thanks to
SISOKR. However, even if the p-sparsified sketches’ distribution is independent
of the data, note that sketching is a data-dependent kernel approximation and
a line of research about differentially private kernel machines lies in the use
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of data-independent random features such as Random Fourier Features, see for
instance Harder et al. (2021) that focuses on kernel mean embeddings.

• Relaxation of the attainability assumption for SISOKR. Inspired by Ciliberto
et al. (2020), an interesting theoretical line of research for SISOKR would be to
relax Assumption 4.3, i.e. the attainability assumption, and to assume the target
function h∗ to be square-integrable. Dropping the existence assumption of an
operator H : HX → HY such that h∗ = HψX (·) and ∥H∥HS < ∞ would lead to a
slightly different error decomposition as in Ciliberto et al. (2020, Lemma B.2).

• Theoretical analysis of the regularisation effect of sketching. In the theor-
etical analysis of the SISOKR estimator, we concluded that it attains close-to-
optimal learning rates in comparison to the non-sketched classical KRR estim-
ator. This is due to the error decomposition we considered that writes as the sum
of this standard error and the errors induced by sketching both the input and
output kernels. By considering another decomposition, it would be possible to
analyze to which extent and in which conditions sketching can lead to statistical
improvements, as in Rudi et al. (2015) that focuses on the Nyström approxim-
ated scalar-valued kernel machines, or Brogat-Motte et al. (2022b) that focuses
on a learned, and not randomly obtained, reduced-rank vector-valued estimator.

• Even more scalable version of SISOKR. Besides a batch approach, SISOKR
could be combined with other large-scale techniques, such as preconditioning
and a GPU-optimized implementation as inMeanti et al. (2020), to finally obtain
a structured prediction approach scaling to datasets with billions of samples.

• Batch version of SISOKR and DSOKR. In Chapters 4 and 5, we showed that
SISOKR scales to datasets with 60000 training data such as Bookmarsk, and
131382 training data such as QM9. To attain datasets with millions of samples,
for instance, we could combine it with a batch approach. The aggregation of
each ĥi obtained by solving the surrogate regression problems over each batch
can merely be their uniform average ĥ = (1/B)

∑B
i=1 ĥi , where B is the number

of batches. In this case, inspired from Zhang et al. (2015), we could obtain its
excess risk bound. Otherwise, the aggregation can be done at the inference step
as in Section 5.3.3, or by maximizing the average of maximum scores obtained
by each ĥi . Such an approach could also be leveraged for DSOKR.

• Extend SISOKR and DSOKR to any Implicit Loss Embeddings. In this thesis,
we focused onOutput Kernel Regression. Thus, SISOKR andDSOKR approaches
could be extended to generic structured prediction surrogate methods in the ILE
framework (Ciliberto et al., 2020).

• Excess risk bound for DSOKR. With DSOKR, we finally obtained a structured
prediction model that fulfills three of the four criteria initially defined at the
beginning of this thesis. The only objective left is to derive an excess risk bound
of the DSOKR estimator, which is challenging due to the presence of the input
neural network. Thanks to the comparison inequality, it boils down to studying
the surrogate excess risk. To do so, we could build upon the SISOKR excess
risk bound’s proof, and in particular, the effect induced by output sketching,
together with the excess risk bound of deep NN with ReLU activation functions
in the non-parametric regression settings (Schmidt-Hieber, 2017).
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• End-to-end version of DSOKR. DSOKR is a two-step approach where a pre-
image problem is solved at the inference step within output candidates. While
it is a strength of the method for problems where we have knowledge about
the possible outcomes, as in molecular identification, it is a limitation for other
problems. Building then an end-to-end DSOKR model either thanks to a direct
risk minimization technique as in Belanger et al. (2017) when the output kernel
is differentiable, or with a differentiable approximation (Berthet et al., 2020;
Niculae andMartins, 2020) of it when it is not the case, or thanks to an inference
neural network dθ :HY →Y as in Tu and Gimpel (2018) would be of particular
interest. In the latter case, DSOKR would boil down to an autoencoder whose
latent space is HY .

• Extension to the unsupervised settings. DSOKR, and in particular its basis ap-
proach, could be extended to the autoencoder architecture, and consequently the
unsupervised settings. In fact, assuming that the input data are structured ob-
jects, we could consider a relevant input kernel and compute the eigenfunctions
of its sketched empirical covariance operator and have the first and last layer of
the autoencoder computing expansions within this basis, as DSOKR’s last layer
does. Unlike the Kernel AutoEncoder from Laforgue et al. (2019) where all lay-
ers are functions lying in vector-valued Reproducing Kernel Hilbert Spaces, only
the first and last layers would be functions taking values in a generic Hilbert
space.

• Extension of sketching the output kernel for other OKR approaches. The
sketched output kernel approach could be extended, either thanks to the in-
duced orthogonal projector operator or small-dimensional basis within HY , to
other OKR approaches, such as trees (Geurts et al., 2006). We started invest-
igating the empirical benefits of sketching the output kernel in the context of
kernelized trees in collaboration with Wen Yang. From theoretical perspectives,
by combining the analysis of the error induced by sketching the output kernel
together with the theoretical analysis of random forest (Scornet et al., 2015; Scor-
net, 2016), we could obtain an excess risk bound of sketched kernelized trees for
instance.

• A Python package for structured prediction. We currently work in collabora-
tion with HI! PARIS to integrate SISOKR and DSOKR models in a unified open
source Python library for structured prediction.
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A Appendices for Chapter 3

A.1 Technical Proofs

In this section are gathered all the technical proofs of the results stated in chapter 3.

Notation. We recall that we assume that training data (xi , yi )
n
i=1 are i.i.d. realisations

sampled from a joint probability density ρ. We define

En[ℓf ] =
1
n

n∑

i=1

ℓ(f (xi ), yi ),

E[ℓf ] = Eρ[ℓ(f (X),Y ].

For a class of functions F, the empirical Rademacher complexity (Bartlett andMendel-
son, 2003) is defined as

R̂n(F) = E



sup
f ∈F

∣∣∣∣∣∣∣∣
2
n

n∑

i=1

ϵif (xi )

∣∣∣∣∣∣∣∣
|x1, . . . ,xn



,

where ϵ1, . . . , ϵn are independent Rademacher random variables such that P
{
ϵi = 1

}
=

P

{
ϵi = −1

}
= 1/2. The corresponding Rademacher complexity is then defined as the

expectation of the empirical Rademacher complexity

Rn(F) = E

[
R̂n(F)

]
.

Proof of Theorem 3.10

We first prove the first inequality in theorem 3.10 for generic Lipschitz losses.

Theorem 3.10. Let f̃ as in Definition 3.3, suppose that Assumptions 3.5 to 3.9 hold, and
let C = 1 +

√
6c, with c the constant from Assumption 3.9. Then, for any δ ∈ (0,1) with

probability at least 1− δ we have

E

[
ℓf̃

]
≤ E

[
ℓfHX

]
+LC

√
λn + δ

2
n +

λn
2

+8L

√
κX
n

+2

√
8log

(
4/δ

)

n
, (3.5)

where E
[
ℓf

]
= E(X,Y )∼ρ

[
ℓ(f (X),Y )

]
. Furthermore, if ℓ

(
z,y

)
=

(
z − y

)2
/2 and Y ⊂ [0,1],

with probability at least 1− δ we have

E

[
ℓf̃

]
≤ E

[
ℓfHX

]
+
(
C2 +

1
2

)
λn +C

2δ2n +8
κX +
√
κX√
n

+2

√
8log

(
4/δ

)

n
. (3.6)

Proof The proof follows that of Li et al. (2021, Theorem 3). We decompose the expec-
ted learning risk as

E[ℓf̃ ]−E[ℓfHX ] = E[ℓf̃ ]−En[ℓf̃ ] +En[ℓf̃ ]−En[ℓfHX ] +En[ℓfHX ]−E[ℓfHX ]. (3.7)

We then use Bartlett and Mendelson (2003, Theorem 8) to bound E[ℓf̃ ] −En[ℓf̃ ] and
En[ℓfHX ]−E[ℓfHX ].
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Lemma .1. (Bartlett and Mendelson, 2003, Theorem 8) Let
{
xi , yi

}n
i=1

be i.i.d samples from

ρ and let H be the space of functions mapping from X to R. Denote a loss function with

l : Y × R → [0,1] and recall the learning risk function for all f ∈ H is E

[
lf

]
, together

with the corresponding empirical risk function En

[
lf

]
= (1/n)

∑n
i=1 l

(
yi , f

(
xi
))
. Then, for

a sample of size n, for all f ∈ H and δ ∈ (0,1), with probability 1− δ/2, we have that

E

[
lf

]
≤ En

[
lf

]
+Rn(l ◦H) +

√
8log(4/δ)

n
(1)

where l ◦H = {(x,y)→ l(y, f (x))− l(y,0) | f ∈ H}.

Thus, since f̃ lies in the unit ball B
(
HX

)
of HX by Assumption 3.6, we obtain thanks

to the above lemma, with a probability at least 1− δ

E

[
ℓf̃

]
−En

[
ℓf̃

]
≤ Rn

(
ℓ ◦B

(
HX

))
+

√
8log(2/δ)

n
. (2)

Then, by the Lipschitz continuity of ℓ (Assumption 3.7) and point 4 of Theorem 12
from Bartlett and Mendelson (2003), we have that

Rn

(
ℓ ◦B

(
HX

))
≤ 2LRn

(
B
(
HX

))
.

Finally, Assumption 3.8 combinedwith Lemma 22 fromBartlett andMendelson (2003)
then yields

Rn

(
B
(
HX

))
≤ 2
n

√√
n∑

i=1

kX
(
xi ,xi

)
≤ 2

√
κX
n
. (3)

As a consequence, we obtain

E

[
ℓf̃

]
−En

[
ℓf̃

]
≤ 4L

√
κX√
n

+

√
8log(4/δ)

n
, (4)

and the exact same result applies to En[ℓfHX ] − E[ℓfHX ], by Assumption 3.6 and the
opposite side of Lemma .1.
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Wenow focus on the last quantity to bound. LetHRX =
{
f =

∑n
i=1

[
RX⊤γ

]
i
kX

(
·,xi

)
| γ ∈

R
mX

}
. By Assumptions 3.6 and 3.7 and Jensen’s inequality we have

En

[
ℓf̃

]
−En

[
ℓfHX

]
=
1
n

n∑

i=1

ℓ
(
f̃ (xi ), yi

)
− 1
n

n∑

i=1

ℓ
(
fHX (xi ), yi

)
(5)

≤ 1
n

n∑

i=1

ℓ
(
f̃ (xi ), yi

)
+
λn
2

∥∥∥∥f̃
∥∥∥∥
2

HX
− 1
n

n∑

i=1

ℓ
(
fHX (xi ), yi

)
(6)

= inf
f ∈HRX
∥f ∥HX ≤1

1
n

n∑

i=1

ℓ
(
f (xi ), yi

)
− 1
n

n∑

i=1

ℓ
(
fHX (xi ), yi

)
+
λn
2

∥∥∥f
∥∥∥2HX (7)

≤ inf
f ∈HRX
∥f ∥HX ≤1

L

n

n∑

i=1

∣∣∣∣∣f
(
xi
)
− fHX

(
xi
)∣∣∣∣∣+

λn
2

(8)

≤ L inf
f ∈HRX
∥f ∥HX ≤1

√√
1
n

n∑

i=1

∣∣∣∣∣f
(
xi
)
− fHX

(
xi
)∣∣∣∣∣
2
+
λn
2

(9)

= L

√√√√√√ inf
f ∈HRX
∥f ∥HX ≤1

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
+
λn
2
, (10)

where, for any f ∈ HX , f X =
(
f (x1), . . . , f (xn)

)
∈ Rn. Let f̃ R =

∑n
i=1

[
RX⊤ γ̃R

]
i
kX

(
·,xi

)
,

where γ̃R is a solution to

inf
γ∈RmX

1
n

∥∥∥∥KXRX
⊤γ − f XHX

∥∥∥∥
2

2
+λnγ

⊤RX KXRX
⊤γ . (11)

It is easy to check that f̃ R is also a solution to

inf
f ∈HRX

∥f ∥HX ≤
∥∥∥∥∥f̃ R

∥∥∥∥∥HX

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
. (12)

Since we have ∥f̃ R∥HX ≤ 1 by Assumption 3.6, it holds

inf
f ∈HRX
∥f ∥HX ≤1

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
≤ inf

f ∈HRX
∥f ∥HX ≤

∥∥∥∥∥f̃ R
∥∥∥∥∥HX

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
(13)

= inf
γ∈RmX

1
n

∥∥∥∥KXRX
⊤γ − f XHX

∥∥∥∥
2

2
+λnγ

⊤RX KXRX
⊤γ . (14)

As a consequence,

En

[
ℓf̃

]
−En

[
ℓfHX

]
≤ L

√

inf
γ∈RmX

1
n

∥∥∥∥KX
⊤γ − f XHX

∥∥∥∥
2

2
+λnγ⊤RX KXRX⊤γ +

λn
2
. (15)
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Finally, since RX is a KX-satisfiable sketch matrix, using Lemma 2 from Yang et al.
(2017),

En

[
ℓf̃

]
−En

[
ℓfHX

]
≤ LC

√
λn + δ

2
n +

λn
2
, (16)

where C = 1+
√
6c and c is a universal constant coming from KX-satisfiable property.

The desired bound is obtained by combining Equations (3.7), (4) and (16).

Refined analysis in the scalar case

As said in Remark 3.11, and similarly to Li et al. (2021), we can conduct a refined
analysis, leading to faster convergence rates for the generalization errors, with the
following additional assumption.

Assumption .2. There is a constant B such that, for all f ∈ Hk we have

E

[
f − fHX

]2 ≤ BE
[
ℓf − ℓfHX

]
. (17)

It has been shown that many loss functions satisfy this assumption such as Hinge
loss (Steinwart and Christmann, 2008b; Bartlett et al., 2006), truncated quadratic or
sigmoid loss (Bartlett et al., 2006). Under Assumptions 3.5 to 3.9 and .2, the following
result holds:

Theorem .3. We define, for δ ∈ (0,1), the following sub-root function ψ̂n

ψ̂n(r) = 2LC1



2
n

n∑

i=1

min
{
b2r,µi

}



1/2

+
C2

n
log

1
δ
, (18)

and let r̂⋆HX be the fixed point of ψ̂n, i.e., ψ̂n

(
r̂⋆HX

)
= r̂⋆HX . Then, we have for all D > 1 and

δ ∈ (0,1) with probability greater than 1− δ,

E

[
ℓf̃

]
≤ E

[
ℓfHX

]
+

D

D − 1


LC

√
λn + δ

2
n +

λn
2


+

12D
B

r̂⋆HX +
2C3

n
log

1
δ
, (19)

where C is as in Theorem 3.10 and C1, C2, C3 and b2 are some constants and r̂⋆HX can be
upper bounded by

r̂⋆HX ≤ min
0≤h≤n



b0
h

n
+

√
1
n

∑

i>h

µi



, (20)

where B and b0 are some constants.

Hence, we see that, in order to obtain faster learning rates than theorem 3.10 as Li
et al. (2021), we need to replace δ2n by r̂

⋆2

HX . However, according to the expression of ψ̂n
and its dependencies to non-explicit constants, it appears very difficult to prove that(
1
n

∑n
i=1min(r̂⋆

2

HX ,µi )
)1/2
≤ r̂⋆2HX , which is a necessary condition to prove that a sketch

matrix RX is KX-satisfiable. We still prove the above result following the proof of
Theorem 4 in Li et al. (2021), and leave it as an open problem to find faster rates than
δn.
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Proof of Theorem 3.16

We first recall theorem 3.16.

Theorem 3.16. Suppose that Assumptions 3.5 to 3.9 hold, that K = kXM is a decompos-
able kernel with M invertible, and let C as in Theorem 3.10. Then for any δ ∈ (0,1) with
probability at least 1− δ we have

E

[
ℓf̃

]
≤ E

[
ℓfH

]
+LC

√
λn + ∥M∥op δ2n +

λn
2

+8L

√
κX Tr

(
M

)

n
+2

√
8log

(
4/δ

)

n
. (3.9)

Furthermore, if ℓ
(
z,y

)
=

∥∥∥z − y
∥∥∥2
2
/2 and Y ⊂ B

(
R
d
)
, with probability at least 1−δ we have

that

E

[
ℓf̃

]
≤ E

[
ℓfH

]
+
(
C2 +

1
2

)
λn +C

2∥M∥op δ2n

+8Tr
(
M

)1/2 κX
∥∥∥M

∥∥∥1/2
op

+κX 1/2

√
n

+2

√
8log

(
4/δ

)

n
. (3.10)

Here, the proof uses the same decomposition of the excess risk (eq. (3.7)) as in single
output settings. Since some works (Maurer, 2016) exist to easily extend generalisation
bounds of functions in scalar-valued RKHS to functions in vector-valued RKHS, the
main challenge here is to derive an approximation error for the multiple output set-
tings. Hence, let us first state the needed intermediate results that we will prove later.

Lemma .4. For all f ∈ H, such that ∥f ∥H ≤ 1, we have z
⊤ (

KX
−1⊗M−1

)
z ≤ 1, where

z =
(
f (x1)⊤, . . . , f (xn)⊤

)⊤ ∈ Rnd .

We are now equipped to state the main result that generalises Lemma 2 from Yang
et al. (2017).

Lemma .5. Let Z⋆ =
(
f ⋆(x1), . . . , f ⋆(xn)

)⊤ ∈ Rn×d for any f ⋆ ∈ H such that
∥∥∥∥f ⋆

∥∥∥∥H ≤ 1,

where K = kXM , and RX ∈ RmX ×n a KX- satisfiable matrix. Then we have

inf
Γ∈RmX ×d

1
n
∥KXRX

⊤
ΓM −Z⋆∥2F +λnTr

(
KXRX

⊤
ΓMΓ

⊤RX
)
≤ C2

(
∥M∥opδ2n +λn

)
, (21)

where C = 1+
√
6c and c is the universal constant from Definition 3.4.

Proof We adapt the proof of Lemma 2 from Yang et al. (2017) to the multidimensional
case. If we are able to find a Γ ∈ RmX ×d such that

1
n
∥KXRX

⊤
ΓM −Z⋆∥2F +λnTr

(
KXRX

⊤
ΓMΓ

⊤RX
)
≤ C2

(
∥M∥opδ2n +λn

)
, (22)

then in particular it also holds true for the minimizer. We recall the eigendecomposi-
tions 1

nK = Knorm =UDU⊤ andM = V∆V⊤. Then the above problem rewrites as

∥DR̃⊤X ΓV∆−Θ⋆∥2F +λnTr
(
R̃XDR̃

⊤
X ΓMΓ

)
≤ C2

(
∥M∥opδ2n +λn

)
, (23)
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where R̃X = RX U andΘ⋆ = 1
n1/2

U⊤Z⋆V . We can rewrite θ⋆ = (Θ⋆
1:, . . . ,Θ

⋆
n:)
⊤ = 1

n1/2
(U⊤⊗

V⊤)z⋆ , hence ∥
(
D−1/2 ⊗∆−1/2

)
θ⋆∥22 = z⋆

⊤ (
KX
−1⊗M−1

)
z⋆ , with z⋆ = (Z⋆1:, . . . ,Z

⋆
n:)
⊤ =

(f ⋆(x1)⊤, . . . , f ⋆(xn)⊤)⊤. By lemma .4, we have that ∥
(
D−1/2 ⊗∆−1/2

)
θ⋆∥2 ≤ 1, and using

the notation γ =
(
Γ1:, . . . ,Γs:

)⊤ ∈ RmX d , we can rewrite the above problem as finding a
γ such that

∥θ⋆ −
(
DR̃⊤X ⊗∆V⊤

)
γ∥22 +λnγ⊤

(
R̃XDR̃

⊤
X ⊗M

)
γ ≤ C2

(
∥M∥opδ2n +λn

)
. (24)

As in (Yang et al., 2017), we partition vector θ⋆ ∈ Rnd into two sub-vectors, namely
θ⋆1 ∈ Rdnd and θ⋆2 ∈ R(n−dn)d , the diagonal matrix D into two blocks D1 ∈ Rdn×dn and
D2 ∈ R

(n−dn)×(n−dn) and finally, under the condition mX > dn, we let R̃X1 ∈ R
mX ×dn

and R̃X2 ∈ RmX ×(n−dn) denote the left and right block of R̃X respectively. By the KX-
satisfiablility of RX we have

∥R̃⊤X1R̃X1 − Idn∥op ≤
1
2

and ∥R̃X2D1/2
2 ∥op ≤ cδ2n . (25)

By the first inequality, we have that R̃⊤X1R̃X1 is invertible. In fact, assuming that there

exists x ∈ Rdn such that ∥x∥2 = 1 and R̃⊤X1R̃X1X = 0, then
∥∥∥∥(R̃⊤X1R̃X1 − Idn)x

∥∥∥∥ = 1 > 1
2 .

Then, we can define

γ̂ =
(
R̃X1

(
R̃⊤X1R̃X1

)−1
D−11 ⊗V∆

−1
)
θ⋆1 . (26)

Hence,

∥∥∥∥θ⋆ − (DR̃⊤X ⊗∆V⊤)γ̂
∥∥∥∥
2

2
=

∥∥∥∥θ⋆1 − (D1R̃
⊤
X1 ⊗∆V⊤)γ̂

∥∥∥∥
2

2
+
∥∥∥∥θ⋆2 − (D2R̃

⊤
X2 ⊗∆V⊤)γ̂

∥∥∥∥
2

2
, (27)

and we have

∥∥∥∥θ⋆1 − (D1R̃
⊤
X1 ⊗∆V⊤)γ̂

∥∥∥∥
2

2
=

∥∥∥∥θ⋆1 −
(
D1R̃

⊤
X1 ⊗∆V⊤

)(
R̃X1(R̃

⊤
X1R̃X1)

−1D−11 ⊗V∆
−1)θ⋆1

∥∥∥∥
2

2

(28)

=
∥∥∥∥θ⋆1 −

(
D1R̃

⊤
X1R̃X1(R̃

⊤
X1R̃X1)

−1D−11 ⊗∆V⊤V∆
−1

)
θ⋆1

∥∥∥∥
2

2
(29)

= ∥θ⋆1 −θ⋆1∥22 (30)

= 0 , (31)
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and
∥∥∥∥∥θ

⋆
2 −

(
D2R̃

⊤
X2 ⊗∆V⊤

)
γ̂

∥∥∥∥∥
2

(32)

=

∥∥∥∥∥∥∥
θ⋆2 −

(
D2R̃

⊤
X2R̃X1

(
R̃⊤X1R̃X1

)−1
D−11 ⊗ Ip

)
θ⋆1

∥∥∥∥∥∥∥
2

(33)

≤
∥∥∥∥θ⋆2

∥∥∥∥
2
+

∥∥∥∥∥∥∥

(
D2R̃

⊤
X2R̃X1

(
R̃⊤X1R̃X1

)−1
D−1/21 D−1/21 ⊗∆1/2

∆
−1/2

)
θ⋆1

∥∥∥∥∥∥∥
2

(34)

=
∥∥∥∥θ⋆2

∥∥∥∥
2
+

∥∥∥∥∥∥∥

(
D2R̃

⊤
X2R̃X1

(
R̃⊤X1R̃X1

)−1
D−1/21 ⊗∆1/2

)(
D−1/21 ⊗∆−1/2

)
θ⋆1

∥∥∥∥∥∥∥
2

(35)

≤
∥∥∥∥θ⋆2

∥∥∥∥
2
+

∥∥∥∥∥∥∥

(
D2R̃

⊤
X2R̃X1

(
R̃⊤X1R̃X1

)−1
D−1/21 ⊗∆1/2

)∥∥∥∥∥∥∥
op

∥∥∥∥∥∥

(
D−1/21 ⊗∆−1/2

)
θ⋆1

∥∥∥∥∥∥
2

(36)

=
∥∥∥∥θ⋆2

∥∥∥∥
2
+
∥∥∥∥∥D2R̃

⊤
X2R̃X1

(
R̃⊤X1R̃X1

)−1
D−1/21

∥∥∥∥∥
op

∥∥∥∥∆1/2
∥∥∥∥
op

∥∥∥∥∥∥

(
D−1/21 ⊗∆−1/2

)
θ⋆1

∥∥∥∥∥∥
2

(37)

≤
∥∥∥∥θ⋆2

∥∥∥∥
2
+
(∥∥∥∥D1/2

2

∥∥∥∥
op

∥∥∥∥R̃X2D1/2
2

∥∥∥∥
op

∥∥∥∥R̃X1
∥∥∥∥
op

∥∥∥∥∥
(
R̃⊤X1R̃X1

)−1∥∥∥∥∥
op

(38)

·
∥∥∥∥D−1/21

∥∥∥∥
op

∥∥∥∥∆1/2
∥∥∥∥
op

∥∥∥∥∥∥

(
D−1/21 ⊗∆−1/2

)
θ⋆1

∥∥∥∥∥∥
2

)
. (39)

We now bound all terms involved in (38) and (39). Since ∥
(
D−1/2 ⊗∆−1/2

)
θ⋆∥2 ≤ 1,

then ∥
(
D−1/21 ⊗∆−1/2

)
θ⋆1∥2 ≤ 1 and,

∥θ⋆2∥22 =
d∑

i=1

n∑

j=dn+1

(
θ⋆2ji

)2
(40)

≤ δ2n∥M∥op
d∑

i=1

1
∆ii

n∑

j=dn+1

n
(
θ⋆2ji

)2

σj (KX)
(41)

≤ δ2n∥M∥op
d∑

i=1

n∑

j=1

n
(
θ⋆2ji

)2

σj (KX)∆ii
(42)

= δ2n∥M∥op
∥∥∥∥∥∥

(
D−1/2 ⊗∆−1/2

)
θ⋆

∥∥∥∥∥∥

2

2

(43)

≤ δ2n∥M∥op, (44)

since σj (KX)/n ≤ δ2n, for all j ≥ dn +1 and ∆ii ≤ ∥M∥op for all 1 ≤ i ≤ d. Moreover, since

∥R̃⊤X1R̃X1 − Idn∥op ≤ 1
2 , ∥R̃⊤X1R̃X1∥op ≤ 3

2 , then ∥R̃X1∥op ≤
√

3
2 . Besides, for all x ∈ R

dn

such that ∥x∥2 = 1, we have

|∥R̃⊤X1R̃X1x∥2 − 1| = |∥R̃⊤X1R̃X1x∥2 − ∥x∥2| ≤
∥∥∥∥∥
(
R̃⊤X1R̃X1 − Idn

)
x

∥∥∥∥∥
2
≤ 1

2
, (45)
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Then, we obtain that ∥R̃⊤X1R̃X1x∥2 − 1 ≥ −12 and then ∥R̃⊤X1R̃X1x∥2 ≥ 1
2 , taking x the

eigenvector of R̃⊤X1R̃X1 corresponding to its smallest eigenvalue, we obtain that ∥(R̃⊤X1 ·
R̃X1)−1∥−1op ≥ 1

2 , and finally ∥
(
R̃⊤X1R̃X1

)−1 ∥op ≤ 2. Moreover we have

∥D−1/21 ∥op ≤
1
δn
, (46)

∥D1/2
2 ∥op ≤ δn, (47)

∥R̃X2D1/2
2 ∥op ≤ cδn. (48)

Thus,

∥∥∥∥∥θ
⋆
2 −

(
D2R̃

⊤
X2 ⊗∆V⊤

)
γ̂

∥∥∥∥∥
2
≤

(
δ2n∥M∥op

)1/2
+ δncδn

(
3
2

)1/2
2
1
δn
∥M∥1/2op (49)

=
(
δ2n∥M∥op

)1/2 (
1+ c
√
6
)

(50)

Finally, ∥∥∥∥∥θ
⋆ −

(
DR̃⊤X ⊗∆V⊤

)
γ̂

∥∥∥∥∥
2

2
≤ δ2n∥M∥op

(
1+ c
√
6
)2
. (51)

Furthermore, looking into the second term,

γ̂⊤
(
R̃XDR̃

⊤
X ⊗M

)
γ̂ = ∥

(
D1/2R̃⊤X ⊗∆1/2V⊤

)
γ̂∥22 (52)

= ∥
(
D1/2
1 R̃⊤X1 ⊗∆1/2V⊤

)
γ̂∥22 + ∥

(
D1/2
2 R̃⊤X2 ⊗∆1/2V⊤

)
γ̂∥22 (53)

= ∥
(
D−1/21 ⊗∆−1/2

)
θ⋆1∥22 (54)

+ ∥
(
D1/2
2 R̃⊤X2R̃X1

(
R̃⊤X1R̃X1

)−1
D−11 ⊗∆−1/2

)
θ⋆1∥22 (55)

≤ 1+
(
∥R̃X2D1/2

2 ∥2op∥R̃X1∥2op∥
(
R̃⊤X1R̃X1

)−1 ∥2op (56)

· ∥D−1/21 ∥2op∥
(
D−1/21 ⊗∆−1/2

)
θ⋆1∥22

)
(57)

≤ 1+ c2δ2n
3
2
4
1

δ2n
(58)

= 1+6c2 (59)

=
(
1+
√
6c

)2
− 2
√
6c (60)

≤
(
1+
√
6c

)2
. (61)

Finally, we obtain that

∥∥∥∥∥θ
⋆ −

(
DR̃⊤X ⊗∆V⊤

)
γ̂

∥∥∥∥∥
2

2
+λnγ̂

⊤ (
R̃XDR̃

⊤
X ⊗M

)
γ̂ ≤

(
1+
√
6c

)2 (
∥M∥opδ2n +λn

)
, (62)

and as a conclusion

inf
Γ∈RmX ×d

1
n
∥KXRX

⊤
ΓM −Z⋆∥2F +λnTr

(
KXRX

⊤
ΓMΓ

⊤RX
)
≤ C2

(
∥M∥opδ2n +λn

)
, (63)
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where C = 1+
√
6c.

Now, as for the proof of theorem 3.10, let us prove equation first inequality in the-
orem 3.16.

Proof For any function in B
(
H

)
= {f ∈ H : ∥f ∥H ≤ 1}, lemma .1 still holds, then

E

[
ℓf

]
≤ En

[
ℓf

]
+Rn(l ◦B

(
H

)
) +

√
8log(2/δ)

n
. (64)

Then, using Corollary 1 from Maurer (2016), we have that:

Rn(ℓ ◦B
(
H

)
) ≤
√
2LRn(B

(
H

)
), (65)

where

Rn(F) = E



sup
f ∈F

∣∣∣∣∣∣∣∣∣

2
n

n∑

i=1

d∑

j=1

ϵij f (xi )j

∣∣∣∣∣∣∣∣∣
| x1, . . . ,xn




(66)

= E



sup
f ∈F

∣∣∣∣∣∣∣∣
2
n

n∑

i=1

〈
ϵi , f (xi )

〉
Rd

∣∣∣∣∣∣∣∣
| x1, . . . ,xn



, (67)
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where ϵ11, . . . , ϵnp are nd independent Rademacher variables, and for all 1 ≤ i ≤ n,
ϵi =

(
ϵi1, . . . , ϵid

)⊤
. Hence

Rn(B
(
H

)
) = E



sup
∥f ∥H≤1

∣∣∣∣∣∣∣∣
2
n

n∑

i=1

〈
ϵi , f (xi )

〉
Rd

∣∣∣∣∣∣∣∣
| x1, . . . ,xn




(68)

= E



sup
∥f ∥H≤1

∣∣∣∣∣∣∣∣∣

〈
2
n

n∑

i=1

Kxiϵi , f
〉

H

∣∣∣∣∣∣∣∣∣
| x1, . . . ,xn




(69)

≤ 2
n
E




∥∥∥∥∥∥∥∥

n∑

i=1

Kxiϵi

∥∥∥∥∥∥∥∥

2

H

| x1, . . . ,xn




1/2

(70)

=
2
n
E




n∑

i,j=1

〈
ϵi ,K(xi ,xj )ϵj

〉

Rd
| x1, . . . ,xn




1/2

(71)

=
2
n
E




n∑

i,j=1

kX (xi ,xj )
〈
ϵi ,Mϵj

〉

Rd
|x1, . . . ,xn




1/2

(72)

=
2
n




n∑

i,j=1

kX (xi ,xj )
d∑

i ′ ,j ′=1

E

[
Mi ′j ′ϵii ′ϵjj ′ |x1, . . . ,xn

]



1/2

(73)

=
2
n




n∑

i=1

kX (xi ,xi )
d∑

i ′=1

Mi ′i ′




1/2

(74)

=
2
n

(
Tr

(
KX⊗M

))1/2
(75)

Rn(B
(
H

)
) ≤ 2

n1/2
κX

1/2Tr
(
M

)1/2
. (76)

Finally, for any function f ∈ B
(
H

)
, for all δ ∈ (0,1), we have for a probability at least

1− δ,

∣∣∣∣∣∣E
[
ℓf

]
−En

[
ℓf

]∣∣∣∣∣∣ ≤ 4L

√
2κX
n

Tr
(
M

)
+2

√
8log(2/δ)

n
. (77)
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Now, for the approximation error term, we proceed as in the proof of Theorem 3.10.

Let HRX =
{
f =

∑n
i=1kX (·,xi )M

[
RX⊤ Γ̃

]

i
| γ ∈ RmX ×d

}
. By Assumptions 3.6 and 3.7

and Jensen’s inequality,

En

[
ℓf̃

]
−En

[
ℓfH

]
=
1
n

n∑

i=1

ℓ
(
f̃ (xi ), yi

)
− 1
n

n∑

i=1

ℓ
(
fH(xi ), yi

)
(78)

≤ 1
n

n∑

i=1

ℓ
(
f̃ (xi ), yi

)
+
λn
2

∥∥∥∥f̃
∥∥∥∥
2

H
− 1
n

n∑

i=1

ℓ
(
fH(xi ), yi

)
(79)

= inf
f ∈HRX
∥f ∥H≤1

1
n

n∑

i=1

ℓ
(
f (xi ), yi

)
− 1
n

n∑

i=1

ℓ
(
fH(xi ), yi

)
+
λn
2

∥∥∥f
∥∥∥2H (80)

≤ inf
f ∈HRX
∥f ∥H≤1

L

n

n∑

i=1

∥∥∥∥∥f
(
xi
)
− fH

(
xi
)∥∥∥∥∥

2
+
λn
2

(81)

≤ L inf
f ∈HRX
∥f ∥H≤1

√√
1
n

n∑

i=1

∥∥∥∥∥f
(
xi
)
− fH

(
xi
)∥∥∥∥∥

2

2
+
λn
2

(82)

= L

√√√√√
inf

f ∈HRX
∥f ∥H≤1

1
n

∥∥∥∥f X − f XH
∥∥∥∥
2

F
+
λn
2
, (83)

where, for any f ∈ H, f X =
(
f (x1), . . . , f (xn)

)⊤ ∈ Rn×d . Let f̃ R =
∑n
i=1kX (·,xi )M

[
RX⊤ Γ̃R

]

i
,

where Γ̃R is a solution to

inf
Γ∈RmX ×d

1
n

∥∥∥∥KXRX
⊤
ΓM − f XH

∥∥∥∥
2

F
+λnTr

(
KXRX

⊤
ΓMΓ

⊤RX
)
. (84)

It is easy to check that f̃ R is also a solution to

inf
f ∈HRX
∥f ∥H≤

∥∥∥∥∥f̃ R
∥∥∥∥∥H

1
n

∥∥∥∥f X − f XH
∥∥∥∥
2

F
. (85)

Since we have ∥f̃ R∥H ≤ 1 by Assumption 3.6, it holds

inf
f ∈HRX
∥f ∥H≤1

1
n

∥∥∥∥f X − f XH
∥∥∥∥
2

F
≤ inf

f ∈HRX
∥f ∥H≤

∥∥∥∥∥f̃ R
∥∥∥∥∥H

1
n

∥∥∥∥f X − f XH
∥∥∥∥
2

F
(86)

= inf
Γ∈RmX ×d

1
n

∥∥∥∥KXRX
⊤
ΓM − f XH

∥∥∥∥
2

F
+λnTr

(
KXRX

⊤
ΓMΓ

⊤RX
)
. (87)

As a consequence, we have

En[ℓf̃ ]−En[ℓfH] ≤ L
√

inf
Γ∈RmX ×d

1
n
∥KXRX⊤ΓM − f XH ∥2F +λnTr

(
KXRX⊤ΓMΓ⊤RX

)
+
λn
2
.

(88)
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Finally, by lemma .5 and eq. (77), we obtain the result stated.

Furthermore, we give the proof of the second claim, i.e. the excess risk bound for
kernel ridge multi-output regression.

Proof We now assume that the outputs are bounded, hence, without loss of general-

ity, Y ⊂ B
(
R
d
)
. First, we prove Lipschitz-continuity of the square loss under Assump-

tions 3.6 and 3.8. Let g : z ∈ H
(
X
)
7→ 1

2

∥∥∥z − y
∥∥∥2
2
. We have that ∇g(z) = z − y, and hence∥∥∥∇g(z)

∥∥∥
2
≤

∥∥∥f (x)
∥∥∥
2
+ 1, for some f ∈ H and x ∈ X . By Assumptions 3.6 and 3.8 and

Cauchy-Schwartz inequality, it is easy to check that

∥∥∥f (x)
∥∥∥2
2
≤

(
κX

∥∥∥M
∥∥∥
op

∥∥∥f (x)
∥∥∥2
2

)1/2
, (89)

which gives us that
∥∥∥f (x)

∥∥∥
2
≤ κX 1/2

∥∥∥M
∥∥∥1/2
op

and then
∥∥∥∇g(z)

∥∥∥
2
≤ κX 1/2

∥∥∥M
∥∥∥1/2
op

+ 1. We
finally obtain that

∣∣∣∣∣∣ℓ
(
f (x) , y

)
− ℓ

(
f ′

(
x′
)
, y

)∣∣∣∣∣∣ ≤
(
κX

1/2
∥∥∥M

∥∥∥1/2
op

+1
) ∣∣∣∣∣|f (x)− f

′ (x′
)∥∥∥∥∥

2
. (90)

We can then obtain the same generalisation bounds as above. Finally, looking at the
approximation term,

En

[
lf̃

]
−En

[
lfH

]
=

1
2n

∥∥∥∥f̃ X −Y
∥∥∥∥
2

2
− 1
2n

∥∥∥∥f XH −Y
∥∥∥∥
2

2
(91)

≤ 1
2n

∥∥∥∥f̃ X − f XH
∥∥∥∥
2

2
(92)

≤ inf
f ∈HRX
∥f ∥H≤1

1
2n

∥∥∥∥f X − f XH
∥∥∥∥
2

2
+
λn
2

(93)

≤ inf
γ∈RmX

1
n

∥∥∥∥KXRX
⊤γ − f XH

∥∥∥∥
2

2
+λnγ

⊤RX KXRX
⊤γ +

λn
2

(94)

≤
(
C2 +

1
2

)
λn +C

2δ2n . (95)

Here again, as in second claim of theorem 3.10, we can directly use bound (21) and
then, in combination with (77), we obtain the stated second claim in theorem 3.16.

Finally, we here prove Lemma .4.

Proof Let f ∈ H such that ∥f ∥H ≤ 1 and z =
(
f (x1)⊤, . . . , f (xn)⊤

)⊤ ∈ Rnd . We define the

linear operator SX,K :H→ R
nd such that SX,K(f ) =

(
f (x1)⊤, . . . , f (xn)⊤

)⊤
for all f ∈ H.

Then for all f ∈ H and z =
(
z⊤1 , . . . , z

⊤
n

)⊤ ∈ Rnd we have

〈
SX,K(f ), z

〉
Rnd

=
n∑

i=1

〈
f (xi ), zi

〉
Rd

=
n∑

i=1

〈
f ,Kxi zi

〉
H =

〈
f ,

n∑

i=1

Kxi zi
〉

H
=

〈
f ,S#X,K(z)

〉

H
.

(96)
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Hence

z⊤
(
KX
−1⊗M−1

)
z =

〈(
KX⊗M

)−1
SX,K(f ),SX,K(f )

〉

Rnd

(97)

=
〈
S#X,K

((
KX⊗M

)−1
SX,K(f )

)
, f

〉

H
. (98)

We recall the eigendecompositions of KX andM

KX =U
(
nD

)
U⊤ =

n∑

i=1

σi(KX)uiu
⊤
i (99)

M = V∆V⊤ =
d∑

j=1

σj (M)vjv
⊤
j . (100)

Then,

KX⊗M =




n∑

i=1

σi(KX)uiu
⊤
i


⊗




d∑

j=1

σj (M)vjv
⊤
j




(101)

=
n∑

i=1

d∑

j=1

σi(KX)σj (M)
(
uiu
⊤
i

)
⊗
(
vjv
⊤
j

)
(102)

=
n∑

i=1

d∑

j=1

σi(KX)σj (M)
(
ui

)
⊗
(
vj

)(
u⊤i

)
⊗
(
v⊤j

)
(103)

=
n∑

i=1

d∑

j=1

σi(KX)σj (M)
(
ui

)
⊗
(
vj

)((
ui

)
⊗
(
vj

))⊤
, (104)

and for all 1 ≤ i, i ′ ≤ n and 1 ≤ j, j ′ ≤ d, if
(
i, i ′

)
,
(
j, j ′

)
, then

(
ui

)
⊗
(
vj

)⊤ ((
ui ′

)
⊗
(
vj ′

))
=

0 and otherwise
(
ui

)
⊗
(
vj

)⊤ ((
ui ′

)
⊗
(
vj ′

))
= 1. Then, this allows to show that the oper-

ator norm of a Kronecker product is the product of the operator norms and that

(
KX⊗M

)−1
=

n∑

i=1

d∑

j=1

(
σi(KX)σj (M)

)−1 (
ui

)
⊗
(
vj

)((
ui

)
⊗
(
vj

))⊤
. (105)

We define, for all 1 ≤ i ≤ n and 1 ≤ j ≤ d,

ϕij =
1√

σi(KX)σj (M)

n∑

l=1

uilKxlvj . (106)
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Let Hn = span



(
Kxivj

)

1≤i≤n,1≤j≤d


 and Φn = span



(
ϕij

)

1≤i≤n,1≤j≤d


. By definition,

Φn ⊆Hn and we show that the ϕijs are orthonormal,

〈
ϕij ,ϕi ′j ′

〉

H
=

〈
1√

σi(KX)σj (M)

n∑

l=1

uilKxlvj ,
1√

σi ′ (KX)σj ′ (M)

n∑

l ′=1

ui ′
l′
Kxl′ vj ′

〉

HK

(107)

=
1√

σi(KX)σj (M)

1√
σi ′ (KX)σj ′ (M)

n∑

l,l ′
uilui ′l′

〈
Kxlvj ,Kxl′ vj ′

〉

HK
(108)

=
1√

σi(KX)σj (M)

1√
σi ′ (KX)σj ′ (M)

n∑

l,l ′
uilui ′l′

〈
vj ,Kxl ,xl′ vj ′

〉

Rd
(109)

=
1√

σi(KX)σj (M)

1√
σi ′ (KX)σj ′ (M)

n∑

l,l ′
uilui ′l′ kX (xl ,xl ′ )

〈
vj ,Mvj ′

〉

Rd
(110)

=
1√

σi(KX)σj (M)

1√
σi ′ (KX)σj ′ (M)

n∑

l,l ′
uilui ′l′ kX (xl ,xl ′ )σj ′ (M)

〈
vj , vj ′

〉

Rd

(111)

= 0 if j , j ′ . (112)

Otherwise, if j = j ′,

〈
ϕij ,ϕi ′j

〉

H
=

1√
σi(KX)

1√
σi ′ (KX)

n∑

l,l ′
uilui ′l′ kX (xl ,xl ′ ) (113)

=
1√

σi(KX)

1√
σi ′ (KX)

〈
KXui ,ui ′

〉
Rn

(114)

=
1√

σi(KX)

1√
σi ′ (KX)

nσi(KX)
〈
ui ,ui ′

〉
Rn

(115)

= 0 if i , i ′ . (116)

Hence,
〈
ϕij ,ϕi ′j ′

〉

H
= 0 if

(
i, i ′

)
,
(
j, j ′

)
and if

(
i, i ′

)
=

(
j, j ′

)
,

〈
ϕij ,ϕij

〉

H
= 1. (117)
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Finally, Φn ⊆ Hn and dim
(
Φn

)
= nd = dim

(
Hn

)
, hence

(
ϕij

)

1≤i≤n,1≤j≤d
yields an or-

thonormal basis of Hn. As a consequence, all f ∈ H can be decomposed as f = f1 + f2,
with f1 ∈ Hn and f2 ∈ H⊥n . Thus, for all y ∈ Rd , y can be written as y =

∑d
j=1 yjvj and

〈
SX,K(f ), z

〉
Rnd

=
n∑

i=1

〈
f (xi ), zi

〉
Rd

(118)

=
n∑

i=1

d∑

j=1

zij

〈
f (xi ), vj

〉

Rd
(119)

=
n∑

i=1

d∑

j=1

zij

〈
f ,Kxivj

〉

H
(120)

=
n∑

i=1

d∑

j=1

zij

〈
f1,Kxivj

〉

H
+

n∑

i=1

d∑

j=1

zij

〈
f2,Kxivj

〉

H
(121)

=
n∑

i=1

d∑

j=1

zij

〈
f1,Kxivj

〉

H
(122)

=
〈
SX,K(f1), z

〉
Rnd

. (123)

Hence, let f ∈ H such that ∥f ∥H ≤ 1, written as f =
∑n
i=1

∑d
j=1 fijϕij + f

⊥, with fij ∈ R
for all 1 ≤ i ≤ n and 1 ≤ j ≤ d and such that

∑n
i=1

∑d
j=1 f

2
ij ≤ 1 and f ⊥ ∈ H⊥n such that

∥f ⊥∥H ≤ 1 (since ∥f ∥H =
∑n
i=1

∑d
j=1 f

2
ij + ∥f ⊥∥H ≤ 1), we have that

SX,K(f ) =
n∑

i=1

d∑

j=1

fijSX,K
(
ϕij

)
, (124)

and, for all 1 ≤ l ≤ n,

ϕij (xl ) =
1√

σi(KX)σj (M)

n∑

l ′=1

uil′ kX (xl ′ ,xl )Mvj (125)

=

√
σj (M)

σi(KX)
KX
⊤
l: uivj , (126)

and then

SX,K
(
ϕij

)
=

√
σj (M)

σi(KX)

(
KXui

)
⊗ vj =

√
σi(KX)σj (M)ui ⊗ vj . (127)

Finally,

SX,K(f ) =
n∑

i=1

d∑

j=1

fij

(
σi(KX)σj (M)

)1/2
ui ⊗ vj . (128)



A. APPENDICES FOR CHAPTER 3 135

Besides,

(
KX⊗M

)−1
SX,K(f ) =




n∑

i=1

d∑

j=1

(
σi(KX)σj (M)

)−1 (
ui

)
⊗
(
vj

)((
ui

)
⊗
(
vj

))⊤



(129)

×




n∑

i ′=1

d∑

j ′=1

fi ′j ′
(
σi ′ (KX)σj ′ (M)

)1/2
ui ′ ⊗ vj ′




(130)

=
n∑

i=1

d∑

j=1

fij

(
σi(KX)σj (M)

)−1/2
ui ⊗ vj . (131)

Then,

S#X,K

((
KX⊗M

)−1
SX,K(f )

)
=

n∑

i=1

d∑

j=1

fij

(
σi(KX)σj (M)

)−1/2
S#X,K

(
ui ⊗ vj

)
(132)

=
n∑

i=1

d∑

j=1

fij

(
σi(KX)σj (M)

)−1/2 n∑

i ′=1

Kxi (uii′ vj ), (133)

and finally,

〈
S#X,K

((
KX⊗M

)−1
SX,K(f )

)
, f

〉
H (134)

=
n∑

i,i ′=1

d∑

j,j ′=1

n∑

l=1

fij fi ′j ′
(
σi(KX)σj (M)

)−1/2
uil

〈
Kxlvj ,ϕi ′j ′

〉

H
(135)

=
n∑

i,i ′=1

d∑

j,j ′=1

fij fi ′j ′

〈(
σi(KX)σj (M)

)−1/2 n∑

l=1

uilKxlvj ,ϕi ′j ′
〉

H
(136)

=
n∑

i,i ′=1

d∑

j,j ′=1

fij fi ′j ′
〈
ϕij ,ϕi ′j ′

〉

HK
(137)

=
n∑

i=1

d∑

j=1

f 2ij (138)

≤ 1. (139)

Thus, we do have the ellipse constraint

∥
(
KX
−1/2⊗M−1/2

)
z∥2 ≤ 1. (140)

Proof of Theorem 3.19

We first recall theorem 3.19.
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Theorem 3.19. Let RX be a p-sparsified sketching matrix. Then, there are some uni-
versal constants C0,C1 > 0 and a constant c(p), increasing with p, such that for mX ≥
max

(
C0dn/p

2,δ2nn
)
and with a probability at least 1 − C1e

−mX c(p), the sketch RX is KX-

satisfiable for c = 2√
p

(
1+

√
log

(
5
))
+1.

First claim ofKX-satisfiability. Let us now prove the first claim (l.h.s. of eq. (3.4)) of
the KX-satisfiability for p-SR and p-SG sketches. It is articulated around the following
two lemmas.

Lemma .6. Let M ∈ Rd×d be a symmetric matrix, ε ∈ (0,1), and Cε be an ε-cover of Bd .
Then we have ∥∥∥M

∥∥∥
op
≤ 1

1− 2ε − ε2 sup
v∈Cε

∣∣∣∣⟨v,Mv⟩
∣∣∣∣ . (141)

Proof Let M , ε and Cε as in Lemma .6. Let u ∈ Bd . By definition, there exist v ∈ Cε
and w ∈ Bd such that u = v + εw. We thus have

⟨u,Mu⟩ = ⟨v,Mv⟩+2ε⟨v,Mw⟩+ ε2⟨w,Mw⟩ . (142)

Taking the supremum on both sides of (142) we obtain

sup
u∈Bd
|⟨u,Mu⟩| = sup

v∈Cε ,w∈Bd

(
|⟨v,Mv⟩|+2ε|⟨v,Mw⟩|+ ε2|⟨w,Mw⟩|

)
(143)

≤ sup
v∈Cε
|⟨v,Mv⟩|+2ε sup

v∈Cε ,w∈Bd
|⟨v,Mw⟩|+ ε2 sup

w∈Bd
|⟨w,Mw⟩| (144)

≤ sup
v∈Cε
|⟨v,Mv⟩|+2ε sup

v′∈Bd ,w∈Bd
|⟨v′ ,Mw⟩|+ ε2∥M∥op (145)

= sup
v∈Cε
|⟨v,Mv⟩|+

(
2ε + ε2

)
∥M∥op , (146)

or again

∥M∥op ≤
1

1− 2ε − ε2 sup
v∈Cε

∣∣∣∣⟨v,Mv⟩
∣∣∣∣ . (147)

Lemma .7. Let RX ∈ RmX ×n be a p-SR or a p-SG sketch. Let v ∈ Bn, then for every t > 0,
we have

P



∣∣∣∣∥RX v∥22 − ∥v∥22
∣∣∣∣ >

4
p

√
2t
mX

+
4t

mX p

 ≤ 2e−t . (148)

Proof The proof of Lemma .7 is largely adapted from the proof of Theorem 2.13 in
Boucheron et al. (2013). Let RX ∈ RmX ×n be a p-SR or a p-SG sketch, and v ∈ Bn. It is
easy to check that for all i ≤mX we have E

[[
RX v

]2
i

]
= 1

mX
∥v∥22, such that

∣∣∣∣∥RX v∥22 − ∥v∥22
∣∣∣∣ =

∣∣∣∣∣∣∣∣

mX∑

i=1



[
RX v

]2
i
− 1
mX
∥v∥22




∣∣∣∣∣∣∣∣
. (149)
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The proof then consists in applying Bernstein’s inequality (Boucheron et al., 2013,

Theorem 2.10) to the random variables
[
RX v

]2
i
. We now have to find some constants

ν and c such that
∑mX
i=1E

[[
RX v

]4
i

]
≤ ν and

s∑

i=1

E

[[
RX v

]2q
i

]
≤ q!

2
νcq−2 for all q ≥ 3 . (150)

From (3.14) and (3.15), it is easy to check that the RX ij are independent and 1/(mX p)
sub-Gaussian. Then, for all λ ∈ R, we have

E

[
exp

(
λ
[
RX v

]
i

) ]
= E



exp



λ

n∑

j=1

RX ij vj







(151)

=
n∏

j=1

E

[
exp

(
λRX ij vj

) ]
(152)

≤ exp




λ2

2mX p
∥v∥22


 (153)

≤ exp




λ2

2mX p


 . (154)

The random variable
[
RX v

]
i
is therefore 1/(mX p) sub-Gaussian, and Theorem 2.1

from Boucheron et al. (2013) yields that for every integer q ≥ 2 it holds

E

[[
RX v

]2q
i

]
≤ q!

2
4




2
mX p



q

≤ q!
2




4
mX p



q

. (155)

Choosing q = 2, we obtain

mX∑

i=1

E

[[
RX v

]4
i

]
≤

mX∑

i=1




4
mX p



2

=
16

mX p2
, (156)

such that we can choose ν = 16/(mX p2) and c = 4/(mX p). Applying Theorem 2.10
from Boucheron et al. (2013) to the random variables [RX v]2i finally gives that for any
t > 0 it holds

P



∣∣∣∣∥RX v∥22 − ∥v∥22
∣∣∣∣ >

4
p

√
2t
mX

+
4t

mX p

 ≤ 2e−t . (157)

Proof [Proof of the first claim of the KX-satisfiability.] Let KX ∈ R
n×n be a Gram

matrix, and RX ∈ RmX ×n be a p-SR or a p-SG sketch. Recall that we want to prove that
there exists c0 > 0 such that

P

{∥∥∥∥U⊤1 RX
⊤RX U1 − Idn

∥∥∥∥
op
>
1
2

}
≤ 2e−c0mX , (158)
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where KX /n = UDU⊤ is the SVD of KX, and U1 ∈ R
n×dn contains the left part of

U . Let ε ∈ (0,1), and Cε = {v1, . . . , vNε } be an ε-cover of Bdn . We know that such a

covering exists with cardinality Nε ≤
(
1+ 2

ε

)dn
, see e.g., Matoušek (2013). Let Q =

U⊤1 RX⊤RX U1 − Idn , applying Lemma .6, we have

P

{
∥Q∥op >

1
2

}
≤ P


sup
i≤Nε

∣∣∣∣⟨vi ,Qvi⟩
∣∣∣∣ >

1− 2ε − ε2
2


(159)

≤
∑

i≤Nε
P



∣∣∣∣⟨vi ,Qvi⟩
∣∣∣∣ >

1− 2ε − ε2
2

 (160)

=
∑

i≤Nε
P



∣∣∣∣∥RX wi∥22 − ∥wi∥22
∣∣∣∣ >

1− 2ε − ε2
2

 , (161)

where wi =U1v
i ∈ Bn. Now, by Lemma .7, for any w ∈ Bn, we have

P



∣∣∣∣∥RX w∥22 − ∥w∥22
∣∣∣∣ >

4
p

√
2t
mX

+
4t

mX p

 ≤ 2e−t . (162)

Let mX ≥ 32t/(α2p2), for some α ≤ 1. Then, we have 4
p

√
2t
mX

+ 4t
mX p
≤ α + α2p

8 ≤ 2α, and

therefore

P

{∣∣∣∣∥RX w∥22 − ∥w∥22
∣∣∣∣ > 2α

}
≤ 2e−t . (163)

If we take α = (1− 2ε − ε2)/4, we obtain

P



∣∣∣∣∥RX w∥22 − ∥w∥22
∣∣∣∣ >

1− 2ε − ε2
2

 ≤ 2e−t (164)

as long as mX ≥ 512t
p2(1−2ε−ε2)2 . Now, let t = p2(1−2ε−ε2)2

1024 mX +log(Nε), and mX ≥ 1024 ·
log(1+2/ε)
p2(1−2ε−ε2)2dn. We do have

512t
p2(1− 2ε − ε2)2 =

mX
2

+
512

p2(1− 2ε − ε2)2 log(Nε) ≤
mX
2

+
mX
2

= mX , (165)

such that

P



∣∣∣∣∥RX w∥22 − ∥w∥22
∣∣∣∣ >

1− 2ε − ε2
2

 ≤ 2e−t =
2e−c0mX

Nε
, (166)

where c0 = p2(1−2ε−ε2)
1024 . Plugging this result into (161), we get that as soon as mX ≥

1024 log(1+2/ε)
p2(1−2ε−ε2)2dn it holds

P

{
∥Q∥op >

1
2

}
≤ 2e−c0mX . (167)

Finally, we can tune ε to optimize the lower bound on mX . If we take ε = 0.1, we
obtain mX ≥ 5120dn/p2, and c0 ≥ p2/2560.
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Second claim of KX-satisfiability.

We now turn to the proof of the second claim (r.h.s. of eq. (3.4)) of the KX-satisfiability
for p-SR and p-SG sketches. It builds upon the following two intermediate results,
about the concentration of Lipschitz functions of Rademacher or Gaussian random
variables.

Lemma .8. Let K > 0, and let X1, . . . ,Xn be independent real random variables with
∣∣∣Xi

∣∣∣ ≤
K for all 1 ≤ i ≤ n. Let F : Rn → R be a L-Lipschitz convex function. Then, there exist
C,c > 0 such that for any λ one has

P{|F(X)−EF(X)| ≥ Kλ} ≤ C ′ exp
(
−c′λ2/L2

)
. (168)

Lemma .9. Let X1, . . . ,Xn be i.i.d. standard Gaussian random variables. Let F : Rn→ R be
a L-Lipschitz function. Then, there exist C,c > 0 such that for any λ one has

P{|F(X)−EF(X)| ≥ λ} ≤ C ′ exp
(
−c′λ2/L2

)
. (169)

The above two lemmas are taken from Tao (2012), see Theorems 2.1.12 and 2.1.13
therein, but are actually well-known results in the literature. In particular, Lemma .8
is adapted from Talagrand’s inequality (Talagrand, 1995), while Lemma .9 is stated as
Theorem 5.6 in Boucheron et al. (2013), with explicit constants. We however choose
the writing by Tao (2012) in order to be consistent with the Rademacher case.

Remark .10. Note that thanks to lemma .8, we are even able to prove KX-satisfiability
for any sketch matrix RX whose entries are i.i.d. centered and reduced bounded random
variables.

Proof [Proof of the second claim of the KX-satisfiability.] Let KX ∈ Rn×n be a Gram
matrix, and RX ∈ RmX ×n be a p-SR or a p-SG sketch. Recall that we want to prove that
there exist positive constants c, c1, c2 > 0 such that

P

{∥∥∥∥RX U2D
1/2
2

∥∥∥∥
op
> cδn

}
≤ c1e−c2mX , (170)

where KX /n =UDU⊤ is the SVD of KX, U2 ∈ Rn×(n−dn) is the right part of U , and D2 ∈
R
(n−dn)×(n−dn) is the right bottom part of D. Note that we have RX U2D

1/2
2 = RX UD̄1/2,

where D̄ = diag
(
0dn ,D2

)
∈ Rn×n. Following Yang et al. (2017), we have
∥∥∥∥RX UD̄1/2

∥∥∥∥
op

= sup
u∈BmX , v∈E

|⟨u,RX v⟩| , (171)

where E =
{
v ∈ Rn : ∃w ∈ Sn−1, v =UD̄1/2w

}
. Now, let u1, . . .uN be a 1/2-cover of BmX .

We know that such a covering exists with cardinalityN ≤ 5mX . We then have
∥∥∥∥RX UD̄1/2

∥∥∥∥
op

= sup
u∈BmX , v∈E

|⟨u,RX v⟩| (172)

≤max
i≤N

sup
v∈E

∣∣∣∣
〈
ui ,RX v

〉 ∣∣∣∣+
1
2

sup
u∈BmX , v∈E

|⟨u,RX v⟩| (173)

= max
i≤N

sup
v∈E

∣∣∣∣
〈
ui ,RX v

〉 ∣∣∣∣+
1
2

∥∥∥∥RX UD̄1/2
∥∥∥∥
op
, (174)



140 Appendix

and rearranging implies that

∥∥∥∥RX UD̄1/2
∥∥∥∥
op
≤ 2max

i≤N
sup
v∈E

∣∣∣∣
〈
ui ,RX v

〉 ∣∣∣∣ . (175)

Hence, for every c > 0 we have

P

(∥∥∥∥RX U2D
1/2
2

∥∥∥∥
op
> cδn

)
≤ P


max
i≤N

sup
v∈E

∣∣∣∣
〈
ui ,RX v

〉 ∣∣∣∣ >
c

2
δn


 (176)

≤
∑

i≤N
P

supv∈E

∣∣∣∣
〈
ui ,RX v

〉 ∣∣∣∣ >
c

2
δn

 . (177)

Now, recall that

RX =
1√
mX p

B ◦R, (178)

where B ∈ R
mX ×n is filled with i.i.d. Bernoulli random variables with parameter p,

R ∈ RmX ×n is filled with i.i.d. Rademacher or Gaussian random variables for p-SR and
p-SG sketches respectively, and ◦ denotes the Hadamard (termwise) matrix product.
The next step of the proof consists of controlling the right-hand side of eq. (177) by
showing that, conditionally on B, we have Lipschitz functions of Rademacher or Gaus-
sian random variables, whose deviations can be bounded using Lemmas .8 and .9.
Therefore, from now on we assume B to be fixed, and only consider the randomness
with respect to R. Let u ∈ BmX , and define F : RmX ×n→ R as

F(R) =
1√
mX p

sup
v∈E

∣∣∣∣
〈
u, (B ◦R)v

〉 ∣∣∣∣ . (179)

It is direct to check that F is a convex function. Moreover, we have

√
mX pF(R) = sup

v∈E
|⟨u, (B ◦R)v⟩| (180)

= sup
v∈Sn−1

|⟨u, (B ◦R)UD̄1/2v⟩| (181)

= sup
v∈Sn−1

|⟨D̄1/2U⊤(B ◦R)⊤u,v⟩| (182)

=
∥∥∥∥D̄1/2U⊤(B ◦R)⊤u

∥∥∥∥
2
. (183)

Thus, for any R,R′ we have

√
mX p

∣∣∣∣F
(
R
)
−F

(
R′

) ∣∣∣∣ =
∣∣∣∣∣
∥∥∥∥D̄1/2U⊤(B ◦R)⊤u

∥∥∥∥
2
−
∥∥∥∥D̄1/2U⊤(B ◦R′)⊤u

∥∥∥∥
2

∣∣∣∣∣ (184)

≤
∥∥∥∥∥D̄

1/2U⊤
(
B ◦ (R−R′)

)⊤
u

∥∥∥∥∥
2

(185)

≤
∥∥∥∥D̄1/2

∥∥∥∥
op

∥∥∥∥U⊤
∥∥∥∥
op

∥∥∥∥B ◦ (R−R′)
∥∥∥∥
op
∥u∥2 (186)

≤ δn
∥∥∥∥B ◦ (R−R′)

∥∥∥∥
F

(187)

≤ δn
∥∥∥∥R−R′

∥∥∥∥
F
, (188)
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such that F is
√
δ2n/(mX p)-Lipschitz. Moreover, we have

√
mX p E

[
F(R)

]
= E

[∥∥∥∥D1/2
2 U⊤2 (B ◦R)⊤u

∥∥∥∥
2

]
(189)

≤
√
E

[
u⊤(B ◦R)U2D2U

⊤
2 (B ◦R)⊤u

]
(190)

=

√√√ mX∑

k,k′=1

ukuk′ E
[ [
(B ◦R)U2D2U

⊤
2 (B ◦R)⊤

]
kk′

]
(191)

=

√√√ mX∑

k,k′=1

n∑

l,l ′=1

ukuk′ [U2D2U
⊤
2 ]ll ′ E

[
[B ◦R]kl [B ◦R]k′ l ′

]
(192)

=

√√mX∑

k=1

n∑

l=1

B2klu
2
k [U2D2U

⊤
2 ]ll (193)

≤
√
Tr(D2) , (194)

which implies

E

[
F(R)

]
≤

√
n

mX p

√∑n
j=dn+1

µj

n
≤

√
n

mX p

√√√
1
n

n∑

j=dn+1

min(µj ,δ
2
n) ≤

√
δ2n
p
, (195)

where we have used the definition of δ2n and the assumption mX ≥ δ2nn. Coming back
to eq. (177), we obtain

P

{∥∥∥∥RX U2D
1/2
2

∥∥∥∥
op
> cδn

}
≤ 5mX E



P

supv∈E

∣∣∣∣
〈
u,RX v

〉 ∣∣∣∣ >
c

2
δn

∣∣∣∣B





(196)

= 5mX E


P

{
F(R) >

c

2
δn

} (197)

≤ 5mX E



P


F(R)−E[F(R)] > δn



c

2
− 1√

p









(198)

≤ C 5mX exp



−c′



c

2
− 1√

p




2

δ2n
mX p
δ2n




(199)

≤ C exp



−c′






c

2
− 1√

p




2

p − log(5)



mX



, (200)

where eq. (198) comes from the upper bound on E[F(R)] we derived in eq. (195), and
eq. (199) derives from Lemmas .8 and .9 applied to the function F whose Lipschitz

constant has been established in eq. (188). Therefore, taking c = 2√
p

(
1+

√
log

(
5
))
+1,

we have

P

{∥∥∥∥RX U2D
1/2
2

∥∥∥∥
op
> cδn

}
≤ c1e−c2mX (201)
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with c1 = C ′ and c2 = c′
(√
p log

(
5
)
+ p

4

)
.

Proof of Proposition 3.17

We prove Proposition 3.17 thanks to duality properties.

Proposition 3.17. Solving Problem (3.3) is equivalent to solving

min
ω∈RpX

1
n

n∑

i=1

ℓ
(
ω⊤ ψ̃X

(
xi
)
, yi

)
+
λn
2
∥ω∥22 , (3.11)

where ψ̃X (x) = D̃
−1/2
pX

Ũ⊤pX
RX

(
kX

(
x,x1

)
, . . . ,kX

(
x,xn

))⊤
∈ RpX .

Proof Since problems (3.3) and (3.11) are convex problems under Slater’s constraints,
strong duality holds and we will show that they admit the same dual problem

min
ζ∈Rn

n∑

i=1

ℓ⋆i
(
−ζi

)
+

1
2λnn

ζ⊤KXRX
⊤(RX KXRX

⊤)†RX KXζ , (3.12)

where ℓ⋆i denotes the Fenchel-Legendre transform of ℓi : y ∈ R 7→ ℓ(y,y) for any i ≤ n.
First, we compute dual problem of (3.3), that can be rewritten

min
γ∈RmX ,u∈Rn

n∑

i=1

ℓi
(
ui

)
+
λnn

2
γ⊤RX KXRX

⊤γ (202)

s.t. u = KXRX
⊤γ. (203)

Therefore the Lagrangian writes

L(γ,u,ζ) =
n∑

i=1

ℓi
(
ui

)
+
λnn

2
γ⊤RX KXRX

⊤γ +
n∑

i=1

ζi(ui − [KXRX
⊤γ]i ) (204)

=
n∑

i=1

ℓi
(
ui

)
+
λnn

2
γ⊤RX KXRX

⊤γ +
n∑

i=1

ζiui − ζ⊤KXRX
⊤γ. (205)

Differentiating with respect to γ and using the definition of the Fenchel-Legendre
transform, one gets

g(ζ) = inf
γ∈RmX ,u∈Rn

L(γ,u,ζ) (206)

=
n∑

i=1

inf
ui∈R

{
ℓi

(
ui

)
+ ζiui

}
+ inf
γ∈RmX

{
λnn

2
γ⊤RX KXRX

⊤γ − ζ⊤KXRX
⊤γ

}
(207)

=
n∑

i=1

−ℓ⋆i
(
−ζi

)
− 1
2λnn

ζ⊤KXRX
⊤(RX KXRX

⊤)†RX KXζ (208)

together with the equality RX KXRX⊤ γ̃ = 1
λnn

RX KX ζ̃, implying γ̃ = 1
λnn

(RX KXRX⊤)† ·
RX KX ζ̃, where ζ̃ ∈ Rn is the solution of the following dual problem

min
ζ∈Rn

n∑

i=1

ℓ⋆i
(
−ζi

)
+

1
2λnn

ζ⊤KXRX
⊤(RX KXRX

⊤)†RX KXζ . (3.12)
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Then, we compute dual problem of (3.11), that can be rewritten

min
ω∈RpX ,u∈Rn

n∑

i=1

ℓ
(
ui , yi

)
+
λnn

2
∥ω∥22 (209)

s.t. u = KXRX
⊤ ŨpX

D̃−1/2pX
ω. (210)

Therefore the Lagrangian writes

L(ω,u,ζ) =
n∑

i=1

ℓi
(
ui

)
+
λnn

2
∥ω∥22 +

n∑

i=1

ζi(ui − [KXRX
⊤ ŨpX

D̃−1/2pX
ω]i ) (211)

=
n∑

i=1

ℓi
(
ui

)
+
λnn

2
∥ω∥22 +

n∑

i=1

ζ⊤i ui −ω⊤D̃−1/2pX
Ũ⊤pX

RX KXζ. (212)

Differentiating with respect to ω and using the definition of the Fenchel-Legendre
transform, one gets

g(ζ) = inf
ω∈RpX ,u∈Rn

L(ω,u,ζ) (213)

=
n∑

i=1

inf
ui∈R

{
ℓi

(
ui

)
+ ζiui

}
+ inf
ω∈RpX

{
λnn

2
∥ω∥22 −ω⊤D̃−1/2pX

Ũ⊤pX
RX KXζ

}
. (214)

We have that

∂

∂ω

(
∥ω∥22

)
= 2ω (215)

∂

∂ω

(
ω⊤D̃−1/2pX

Ũ⊤pX
RX KXζ

)
= D̃−1/2pX

Ũ⊤pX
RX KXζ, (216)

Then, setting the gradient to zero, we obtain

ω̃ =
1
λnn

D̃−1/2pX
Ũ⊤pX

RX KX ζ̃. (217)

Hence, putting it into the Lagrangian,

− 1
λnn

ζ⊤KXRX
⊤ ŨpX

D̃−1/2pX
D̃−1/2pX

Ũ⊤pX
RX KXζ = − 1

λnn
KXRX

⊤ (
RX KXRX

⊤)†RX KXζ,

(218)

and

1
2λnn

ζ⊤KXRX
⊤ ŨpX

D̃−1/2pX
D̃−1/2pX

Ũ⊤pX
RX KXζ =

1
2λnn

KXRX
⊤ (

RX KXRX
⊤)†RX KXζ.

(219)

Hence, ζ̃ ∈ Rn is the solution to the following dual problem

min
ζ∈Rn

n∑

i=1

ℓ⋆i
(
−ζi

)
+

1
2λnn

ζ⊤KXRX
⊤(RX KXRX

⊤)†RX KXζ . (3.12)
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Finally, since both problems are convex and strong duality holds, we obtain through
KKT conditions

ω̃ = D̃−1/2pX
Ũ⊤pX

(
RX KXRX

⊤) γ̃ (220)

= D̃−1/2pX
Ũ⊤pX

ŨD̃Ũ⊤γ̃ (221)

=
(
D̃1/2
pX

0pX×mX −pX

)

︸                ︷︷                ︸
pX×mX

Ũ⊤︸︷︷︸
mX ×mX

γ̃
︸︷︷︸
mX ×1

(222)

and

min
γ∈RmX

1
n

n∑

i=1

ℓ([KXRX
⊤γ]i , yi ) +

λn
2
γ⊤RX KXRX

⊤γ (223)

= min
ω∈RpX

n∑

i=1

ℓ
(
ω⊤ ψ̃X

(
xi
)
, yi

)
+
λn
2
∥ω∥22 . (224)

A.2 On relaxing Assumption 3.6

In this section, we detail the discussion about relaxing Assumption 3.6, i.e. the re-
striction of the hypothesis set to the unit ball of the RKHS. Assumption 3.6 is a clas-
sical assumption in kernel literature to apply generalisation bounds based on the
Rademacher complexity of a bounded ball of an RKHS. Moreover, it is also useful
in our case to derive an approximation error bound, describing how KX-satisfiability
of a sketch matrix allows to obtain a good approximation of the minimiser of the risk.
However, let us discuss the consequences of relaxing this assumption. Indeed, all we
need is a bound on the norm of the estimators f̃ – minimiser of the regularised ERM
sketched problem – and f̃ R – minimiser of the regularised ERM sketched denoised

KRR problem. By definition, noting HRX =
{
f =

∑n
i=1

[
RX⊤γ

]
i
kX

(
·,xi

)
| γ ∈ RmX

}
, we

have that

f̃ = argmin
f ∈HRX

1
n

n∑

i=1

ℓ(f (xi ), yi ) +
λn
2
∥f ∥2HX . (225)

Hence,
λn
2
∥f̃ ∥2HX ≤

1
n

n∑

i=1

ℓ(f̃ (xi ), yi ) +
λn
2
∥f̃ ∥2HX ≤

1
n

n∑

i=1

ℓ(0, yi ) ≤ 1 , (226)

if we assume that max1≤i≤n ℓ(0, yi ) ≤ 1 to simplify the derivations. As a consequence,
we obtain that

∥f̃ ∥HX ≤
√

2
λn
. (227)

Similarly, we have that

f̃ R = argmin
f ∈HRX

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
+
λn
2
∥f ∥2HX , (228)
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that gives

∥f̃ R∥HX ≤



1
λnn

∥∥∥∥fHX
∥∥∥∥
2

HX



1/2

. (229)

By Assumptions 3.6 and 3.8,

1
n

∥∥∥∥fHX
∥∥∥∥
2

HX
=
1
n

n∑

i=1

〈
fHX ,kX

(
·,xi

)〉

HX
(230)

≤ 1
n

n∑

i=1

∥∥∥∥fHX
∥∥∥∥
2

HX
kX

(
xi ,xi

)
(231)

≤ κX , (232)

and finally

∥f̃ R∥HX ≤
√
κX
λn

. (233)

Remark .11. Note that in the multiple output settings, we obtain

∥f̃ R∥H ≤
√
κX Tr(M)

λn
. (234)

We are now equipped to derive the generalisation error bound E

[
ℓf̃

]
−En

[
ℓf̃

]
and the

approximation error bound En

[
ℓf̃

]
− En

[
ℓfHX

]
. We first focus on the generalisation

bound, and following the proof given in Appendix A.1 and given the new norm upper

bound
√

2
λn
, for any δ ∈ (0,1), with probability 1− δ/2, we have that

E

[
ℓf̃

]
−En

[
ℓf̃

]
≤ 4L

√
2κX√
λnn

+

√
8log(4/δ)

n
. (235)

This dependence in 1/
√
λn shows that, as expected by a regularisation penalty, with

a fixed n, when λn increases, the generalisation bound decreases and then we obtain
a better generalisation performance. However, this behaviour does not reflect com-
pletely the role of λn, since there exists a tradeoff between overfitting and underfit-
ting, and then it should not be set too large. We now focus on the approximation error
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bound. As in Appendix A.1, we obtain that

En

[
ℓf̃

]
−En

[
ℓfHX

]
=
1
n

n∑

i=1

ℓ
(
f̃ (xi ), yi

)
− 1
n

n∑

i=1

ℓ
(
fHX (xi ), yi

)
(236)

= inf
f ∈HRX
∥f ∥HX ≤

∥∥∥∥∥f̃
∥∥∥∥∥HX

1
n

n∑

i=1

ℓ
(
f (xi ), yi

)
− 1
n

n∑

i=1

ℓ
(
fHX (xi ), yi

)
(237)

≤ inf
f ∈HRX
∥f ∥HX ≤

∥∥∥∥∥f̃
∥∥∥∥∥HX

L

n

n∑

i=1

∣∣∣∣∣f
(
xi
)
− fHX

(
xi
)∣∣∣∣∣ (238)

≤ L inf
f ∈HRX
∥f ∥HX ≤

∥∥∥∥∥f̃
∥∥∥∥∥HX

√√
1
n

n∑

i=1

∣∣∣∣∣f
(
xi
)
− fHX

(
xi
)∣∣∣∣∣
2

(239)

= L

√√√√√√√ inf
f ∈HRX
∥f ∥HX ≤

∥∥∥∥∥f̃
∥∥∥∥∥HX

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
, (240)

where, for any f ∈ HX , f X =
(
f (x1), . . . , f (xn)

)
∈ Rn. Let f̃ R =

∑n
i=1

[
RX⊤ γ̃R

]
i
kX

(
·,xi

)
,

where γ̃R is a solution to

inf
γ∈RmX

1
n

∥∥∥∥KXRX
⊤γ − f XHX

∥∥∥∥
2

2
+λnγ

⊤RX KXRX
⊤γ . (241)

It is easy to check that f̃ R is also a solution to

inf
f ∈HRX

∥f ∥HX ≤
∥∥∥∥∥f̃ R

∥∥∥∥∥HX

1
n

∥∥∥∥f X − f XHX
∥∥∥∥
2

2
. (242)

Now, comparing eq. (240) and eq. (242), as done in Appendix A.1, essentially boils

down to comparing
∥∥∥∥f̃

∥∥∥∥HX
and

∥∥∥∥f̃ R
∥∥∥∥HX

, which is a highly nontrivial question. In par-

ticular, the upper bounds (227) and (233) are not informative enough. Another solu-

tion could consist in adding λn
2

∥∥∥∥f̃
∥∥∥∥HX

to eq. (236). However, the upper bound (227)

then transforms this term into a constant bias. This can be explained as eq. (227) is

very crude. Instead, having
∥∥∥∥f̃

∥∥∥∥HX
bounded by λαn for α ≥ −1/2 would be enough to

exhibit a bias term that vanishes as λn goes to 0. Note that it would still degrade the
tradeoffwith the generalisation term. Hence, if generalisation errors can be dealt with
when removing Assumption 3.6, it is much more complex to control eq. (236).

A.3 Additional experiments and details

In this section, we bring some additional experiments and details.
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Table .2: Test RRMSE and ARRMSE for different methods on the MTR datasets. For
decomposable kernel-based models, loss here is square loss and s = 100 when per-
forming Sketching.

Dataset Targets w/o Sketch 20/ntr -SR 20/ntr -SG Acc. m = 20 CountSketch SOTA

rf1

Mean 0.575 0.584 ± 0.003 0.583 ± 0.003 0.592 ± 0.001 0.575 ± 0.0005 [0.091, 0.983]
chsi2 0.351 0.356 ± 0.005 0.357 ± 0.004 0.361 ± 0.002 0.350 ± 0.002 [0.033, 0.797]
nasi2 1.085 1.124 ± 0.003 1.124 ± 0.003 1.082 ± 0.0004 1.110 ± 0.0003 [0.376, 1.951]
eadm7 0.388 0.397 ± 0.004 0.398 ± 0.003 0.387 ± 0.001 0.387 ± 0.001 [0.039, 1.019]
sclm7 0.660 0.659 ± 0.008 0.661 ± 0.005 0.681 ± 0.002 0.648 ± 0.002 [0.047, 1.503]
clkm7 0.283 0.281 ± 0.001 0.282 ± 0.001 0.293 ± 0.0005 0.281 ± 0.0004 [0.031, 0.587]
vali2 0.614 0.633 ± 0.008 0.635 ± 0.010 0.656 ± 0.003 0.611 ± 0.003 [0.037, 0.571]
napm7 0.593 0.628 ± 0.020 0.614 ± 0.016 0.627 ± 0.003 0.601 ± 0.003 [0.038, 0.909]
dldi4 0.629 0.597 ± 0.004 0.597 ± 0.003 0.646 ± 0.001 0.614 ± 0.002 [0.029, 0.534]

rf2

Mean 0.578 0.671 ± 0.009 0.656 ± 0.006 0.796 ± 0.006 0.715 ± 0.011 [0.095, 1.103]
chsi2 0.318 0.382 ± 0.016 0.358 ± 0.010 0.478 ± 0.006 0.426 ± 0.013 [0.034, 0.737]
nasi2 1.099 1.084 ± 0.005 1.092 ± 0.006 1.018 ± 0.003 1.036 ± 0.002 [0.384, 3.143]
eadm7 0.342 0.390 ± 0.013 0.369 ± 0.007 0.456 ± 0.004 0.417 ± 0.010 [0.040, 0.737]
sclm7 0.610 0.719 ± 0.030 0.672 ± 0.021 0.948 ± 0.014 0.852 ± 0.030 [0.049, 0.970]
clkm7 0.311 0.328 ± 0.009 0.330 ± 0.009 0.614 ± 0.005 0.436 ± 0.006 [0.041, 0.891]
vali2 0.712 0.960 ± 0.044 0.894 ± 0.043 0.890 ± 0.017 0.939 ± 0.028 [0.047, 0.956]
napm7 0.589 0.812 ± 0.014 0.831 ± 0.017 1.110 ± 0.023 0.856 ± 0.032 [0.039, 0.617]
dldi4 0.646 0.696 ± 0.010 0.701 ± 0.011 0.855 ± 0.004 0.761 ± 0.007 [0.032, 0.770]

scm1d

Mean 0.418 0.422 ± 0.002 0.423 ± 0.001 0.423 ± 0.001 0.420 ± 0.001 [0.330, 0.457]
lbl 0.358 0.365 ± 0.003 0.364 ± 0.002 0.367 ± 0.001 0.363 ± 0.001 [0.294, 0.409]

mtlp2 0.352 0.360 ± 0.003 0.362 ± 0.003 0.362 ± 0.001 0.358 ± 0.001 [0.308, 0.436]
mtlp3 0.409 0.419 ± 0.003 0.416 ± 0.002 0.417 ± 0.001 0.416 ± 0.002 [0.315, 0.442]
mtlp4 0.417 0.427 ± 0.002 0.426 ± 0.003 0.426 ± 0.001 0.423 ± 0.002 [0.325, 0.461]
mtlp5 0.495 0.491 ± 0.006 0.492 ± 0.006 0.502 ± 0.002 0.492 ± 0.003 [0.349, 0.530]
mtlp6 0.534 0.524 ± 0.008 0.527 ± 0.006 0.537 ± 0.002 0.527 ± 0.002 [0.347, 0.540]
mtlp7 0.531 0.519 ± 0.008 0.523 ± 0.006 0.534 ± 0.002 0.523 ± 0.003 [0.338, 0.526]
mtlp8 0.542 0.536 ± 0.010 0.540 ± 0.008 0.547 ± 0.002 0.537 ± 0.003 [0.345, 0.504]
mtlp9 0.385 0.395 ± 0.003 0.395 ± 0.002 0.390 ± 0.001 0.390 ± 0.002 [0.323, 0.456]
mtlp10 0.389 0.398 ± 0.003 0.397 ± 0.003 0.394 ± 0.002 0.394 ± 0.001 [0.339, 0.456]
mtlp11 0.424 0.430 ± 0.003 0.429 ± 0.003 0.426 ± 0.001 0.426 ± 0.001 [0.327, 0.445]
mtlp12 0.420 0.422 ± 0.003 0.421 ± 0.004 0.423 ± 0.001 0.421 ± 0.002 [0.350, 0.466]
mtlp13 0.349 0.358 ± 0.004 0.354 ± 0.004 0.351 ± 0.001 0.351 ± 0.001 [0.322, 0.419]
mtlp14 0.347 0.364 ± 0.004 0.363 ± 0.003 0.350 ± 0.001 0.355 ± 0.002 [0.356, 0.472]
mtlp15 0.361 0.371 ± 0.004 0.370 ± 0.003 0.363 ± 0.001 0.364 ± 0.001 [0.314, 0.406]
mtlp16 0.376 0.382 ± 0.003 0.384 ± 0.003 0.376 ± 0.001 0.378 ± 0.001 [0.322, 0.407]

scm20d

Mean 0.755 0.754 ± 0.003 0.754 ± 0.003 0.753 ± 0.001 0.754 ± 0.002 [0.394, 0.763]
lbl 0.613 0.618 ± 0.002 0.618 ± 0.002 0.614 ± 0.001 0.613 ± 0.001 [0.356, 0.678]

mtlp2a 0.628 0.635 ± 0.002 0.634 ± 0.003 0.632 ± 0.001 0.631 ± 0.002 [0.352, 0.688]
mtlp3a 0.603 0.608 ± 0.002 0.608 ± 0.003 0.607 ± 0.001 0.605 ± 0.002 [0.363, 0.683]
mtlp4a 0.635 0.645 ± 0.002 0.645 ± 0.003 0.644 ± 0.001 0.638 ± 0.002 [0.374, 0.730]
mtlp5a 0.974 0.977 ± 0.008 0.977 ± 0.007 0.978 ± 0.003 0.975 ± 0.006 [0.413, 0.846]
mtlp6a 0.981 0.986 ± 0.009 0.992 ± 0.008 1.002 ± 0.004 0.989 ± 0.008 [0.424, 0.843]
mtlp7a 0.996 1.001 ± 0.008 1.004 ± 0.007 1.005 ± 0.006 1.000 ± 0.009 [0.404, 0.833]
mtlp8a 0.995 0.997 ± 0.010 0.997 ± 0.011 1.008 ± 0.005 0.994 ± 0.005 [0.407, 0.851]
mtlp9a 0.708 0.704 ± 0.003 0.702 ± 0.003 0.698 ± 0.001 0.705 ± 0.002 [0.382, 0.737]
mtlp10a 0.718 0.722 ± 0.004 0.722 ± 0.004 0.716 ± 0.001 0.723 ± 0.003 [0.413, 0.753]
mtlp11a 0.729 0.730 ± 0.003 0.729 ± 0.003 0.725 ± 0.001 0.728 ± 0.002 [0.402, 0.769]
mtlp12a 0.720 0.718 ± 0.004 0.717 ± 0.004 0.712 ± 0.002 0.716 ± 0.003 [0.429, 0.787]
mtlp13a 0.711 0.703 ± 0.005 0.699 ± 0.004 0.697 ± 0.001 0.705 ± 0.003 [0.400, 0.751]
mtlp14a 0.683 0.673 ± 0.004 0.670 ± 0.003 0.668 ± 0.001 0.675 ± 0.002 [0.411, 0.779]
mtlp15a 0.684 0.674 ± 0.004 0.671 ± 0.004 0.666 ± 0.001 0.678 ± 0.002 [0.384, 0.727]
mtlp16a 0.689 0.677 ± 0.005 0.676 ± 0.005 0.672 ± 0.001 0.682 ± 0.003 [0.386, 0.754]

We compare our non-sketched framework with the sketched one, and we furthermore
compare our p-sparsified sketches with Accumulation sketch from Chen and Yang
(2021a) and CountSketch from Clarkson and Woodruff (2017). Moreover, we report
the range of results obtained by SOTA methods available at Spyromitros-Xioufis et al.
(2016). All results in terms of Test RRMSE are reported in Table .2, we see that our
p-sparsified sketches allow to ally statistical and computational performance, since
we maintain an accuracy of the same order as without sketching, and these sketches
outperform Accumulation in terms of training times (see table 3.4). In comparison to
SOTA, our framework does not compete with the best results obtained in Spyromitros-
Xioufis et al. (2016), but almost always remains within the range of results obtained
with SOTA methods.
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B Appendices for Chapter 4

B.1 Notations And Definitions

In this section, we remind some important notations and definitions.

Setting. In the following, we consider X and Y to be Polish spaces. We denote by
ρ the unknown data distribution on X × Y . We denote by ρX and ρY the marginal
distributions of the inputs and outputs, respectively.

Linear algebra notation. For an operator A, A# is its adjoint, σmax(A) its largest
eigenvalue, and σk(A) its kth largest eigenvalue (if A admits an eigendecomposition).
Let B

(
E
)
be the space of bounded linear operators in a separable Hilbert space E, given

positive semi-definite operators A,B ∈ B
(
E
)
, A ⪯ B if B−A is positive semidefinite. For

any t > 0 and A : E → E, At = A + tIE . Let M be a matrix, Mi: denotes its ith row and
M:j its jth column, andM† denotes its Moore-Penrose inverse.

Notation for simplified bounds. To keep the dependencies of a bound only in the
parameters of interest, for a,b ∈ R we note a ≲ b as soon as there exists a constant c > 0
independents of the parameters of interest such that a ≤ c × b.

Least-squares notation. For any function h : X → HY , its least-squares expected
risk is given by

E
(
h
)
= Eρ




∥∥∥∥∥h (x)−ψY
(
y
)∥∥∥∥∥

2

HY


 . (243)

The measurable minimizer of E is given by h∗ (x) = Eρ
(
y|x

)
[
ψY

(
y
)]

(Ciliberto et al.,

2020, Lemma A.2).

RKHS notation. We denote by HX and HY the RKHSs associated to the input kX :
X×X → R and output kY : Y×Y → R kernels, respectively. We denote byψX : X →HX
and ψY : Y → HY the canonical feature maps ψX (x) = kX (x, .) and ψY (y) = kY (y, .),
respectively. We denote by H the vv-RKHS associated to the operator-valued kernel
K = kIHY . We denote ĥ ∈ H the KRR estimator trained with n couples (xi , yi )

n
i=1 i.i.d.

from ρ.

Kernel ridge operators. We define the following operators.

• S : f ∈ HX 7→ ⟨f ,ψX (·)⟩HX ∈ L2
(
X ,ρX

)

• T : f ∈ HY 7→ ⟨f ,h∗(·)⟩HY ∈ L2
(
X ,ρX

)

• CX = Ex

[
ψX (x)⊗ψX (x)

]
and CY = Ey

[
ψY (y)⊗ψY (y)

]
,

• ĈX = 1
n

∑n
i=1ψX (xi )⊗ψX (xi ) and ĈY = 1

n

∑n
i=1ψY (yi )⊗ψY (yi ),

• SX : f ∈ HX 7→ 1√
n

(
f
(
x1

)
, . . . , f

(
xn

))⊤
∈ Rn,
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• SX
# : α ∈ Rn 7→ 1√

n

∑n
i=1αi ψX (xi ) ∈ HX ,

• SY : f ∈ HY 7→ 1√
n

(
f
(
y1

)
, . . . , f

(
yn

))⊤
∈ Rn,

• SY
# : α ∈ Rn 7→ 1√

n

∑n
i=1αi ψY (yi ) ∈ HX ,

Sketching operators.

• We denote RX ∈ RmX ×n and RY ∈ RmY ×n the input and output sketch matrices
with mX < n and mY < n,

• C̃X = SX
#RX⊤RX SX and C̃Y = SY

#RY⊤RY SY,

• K̃X = RX KXRX⊤ and K̃Y = RY KYRY⊤.

B.2 Preliminary Results

In this section, we present useful preliminary results about kernel ridge operators and
sketching properties, as well as the proof Proposition 4.2 that gives the expressions of
the SISOKR estimator.

Useful kernel ridge operators properties. The following results hold true.

• ĈX = 1
n

∑n
i=1ψX (xi )⊗ψX (xi ) = SX

#SX and ĈY = 1
n

∑n
i=1ψY (yi )⊗ψY (yi ) = SY

#SY,

• KX = nSXSX
# and KY = nSYSY

#,

• Under the attainability assumption (Ciliberto et al., 2020, Lemma B.2, B.4, B.9)
show that:

■ For all x ∈ X , ĥ(x) = Ĥ ψX (x), where Ĥ = SY
#SX ĈXλ

−1
.

■ E[∥ĥ(x)− h∗(x)∥2]1/2 = ∥(Ĥ −H)S#∥HS.

Useful sketching properties. We remind some useful notations and provide the ex-
pression of P̃Z, leading to the expression of the SISOKR estimator.

Expression of P̃Z. Let
{(
σi(K̃Z), ũ

Z
i

)
, i ∈ [mZ ]

}
be the eigenpairs of K̃Z ranked in des-

cending order of eigenvalues, pZ = rank
(
K̃Z

)
, and for all ẽZi =

√
n

σi (K̃Z)
SZ

#RZ⊤ ũZi , for

all 1 ≤ i ≤ pZ.

Proposition 4.1 (Expression of the orthogonal projector). The ẽZi s are the eigenfunc-

tions, associated to the eigenvalues σi(K̃Z)/n of C̃Z. Furthermore, let H̃Z = span
(
ẽz1, . . . , ẽ

z
pZ

)
,

the orthogonal projector P̃Z onto H̃Z writes as

P̃Z = (RZ SZ)
#
(
RZ SZ(RZ SZ)

#
)†
RZ SZ . (4.8)
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Proof For 1 ≤ i ≤ pZ

C̃Z ẽ
Z
i = SZ

#RZ
⊤RZ SZ




√
n

σi(K̃Z)
SZ

#RZ
⊤ ũZi


 (244)

=
√

n

σi(K̃Z)
SZ

#RZ
⊤
(
1
n
K̃Z

)
ũZi (245)

=
1√

nσi(K̃Z)
SZ

#RZ
⊤σi(K̃Z)ũ

Z
i (246)

=
σi(K̃Z)
n

ẽZi . (247)

Moreover, we verify that span
(
ẽZ1 , . . . , ẽ

Z
pZ

)
forms an orthonormal basis. Let 1 ≤ i, j ≤

pZ,

〈
ẽZi , ẽ

Z
j

〉

HX
=

〈√
n

σi(K̃Z)
SZ

#RZ
⊤ ũZi ,

√
n

σj (K̃Z)
SZ

#RZ
⊤ ũZj

〉

HZ

(248)

=
n√

σi(K̃Z)σj (K̃Z)
ũZ

⊤
i RZ SZSZ

#RZ
⊤ ũZj (249)

=
n√

σi(K̃Z)σj (K̃Z)
ũZ

⊤
i

(
1
n
K̃Z

)
ũZj (250)

=
σj (K̃Z)√

σi(K̃Z)σj (K̃Z)
ũZ

⊤
i ũZj (251)

= δij , (252)

where δij = 0 if i , j , and 1 otherwise.

Finally, it is easy to check that the orthogonal projector onto span
(
ẽZ1 , . . . , ẽ

Z
pZ

)
, i.e.

P̃Z : f ∈ HZ 7→
∑pZ
i=1

〈
f , ẽZi

〉

HZ
ẽZi rewrites as

P̃Z = nSZ
#RZ

⊤ K̃Z
†
RZ SZ = (RZ SZ)

#
(
RZ SZ(RZ SZ)

#
)†
RZ SZ . (253)

Remark .12. WithRX a sub-sampling matrix, we recover the linear operator Lm introduced
in Yang et al. (2012) for the study of Nyström approximation and its eigendecomposition.
Moreover, we also recover the projection operator Pm from Rudi et al. (2015) and follow the
footsteps of the proposed extension “Nyström with sketching matrices”.

Algorithm. We here give the proof of Proposition 4.2 that provides an expression of
the SISOKR estimator h̃ as a linear combination of the ψY (yi )s.
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Proposition 4.2 (Expression of SISOKR). ∀x ∈ X ,

h̃ (x) =
n∑

i=1

α̃i (x)ψY
(
yi
)
, (4.9)

where α̃ (x) = RY⊤ Ω̃RX kxX and

Ω̃ = K̃Y
†
RY KYKXRX

⊤(RX KX
2RX

⊤+nλ K̃X)
† , (4.10)

with K̃X = RX KXRX⊤ and K̃Y = RY KYRY⊤.

Proof Recall that h̃(x) = P̃YSY
#SX P̃X(P̃XSX

#SX P̃X+λIHX )
−1ψX (x). By lemma .13 and

especially (257), we obtain that

h̃(x) =
√
n P̃YSY

#KXRX
⊤
(
RX KX

2RX
⊤+nλRX KXRX

⊤
)†
RX SXψX (x) . (254)

Finally, by lemma .14, we have that h̃ (x) =
∑n
i=1 α̃i (x)ψY

(
yi
)
where

α̃ (x) = RY
⊤ K̃Y

†
RY KYKXRX

⊤(RX KX
2RX

⊤+nλ K̃X)
†RX k

x
X . (255)

Before stating and proving lemmas .13 and .14, and similarly to Rudi et al. (2015),
let RX SX = UΣV # be the SVD of RX SX where U : RpX → R

mX , Σ : RpX → R
pX , V :

R
pX →HX , and Σ = diag(σ1(RX SX), . . . ,σpX

(RX SX)) with σ1(RX SX) ≥ . . . ≥ σpX
(RX SX) >

0, UU⊤ = IpX
and V #V = IpX

. We are now ready to prove the following lemma for the
expansion induced by input sketching.

Lemma .13. Let H̃ = P̃YSY
#SX P̃X(P̃XSX

#SX P̃X+λIHX )
−1. The following two expansions

hold true

H̃ = P̃YSY
#SX η̃(ĈX) , (256)

where η̃(ĈX) = V (V # ĈXV +λIHX )
−1V # and for algorithmic purposes

H̃ =
√
n P̃YSY

#KXRX
⊤
(
RX KX

2RX
⊤+nλRX KXRX

⊤
)†
RX SX . (257)

Proof Let us prove (256) first.

H̃ = P̃YSY
#SX P̃X(P̃XSX

#SX P̃X+λIHX )
−1 (258)

= P̃YSY
#SXVV

#(VV #SX
#SXVV

# +λIHX )
−1 (259)

= P̃YSY
#SXV (V #ĈXV +λIHX )

−1V # (260)

= P̃YSY
#SX η̃(ĈX) , (261)

using the so-called push-through identity (I +UV )−1U =U(I +VU )−1.

Now, we focus on proving (257). First, we have that

H̃ = P̃YSY
#SXV (V # ĈXλV )†V # . (262)
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Then, using the fact that U has orthonormal columns, U⊤ has orthonormal rows and
Σ is a full-rank matrix, together with the fact that UU⊤ = IpX

and V #V = IpX
, we have

that,

H̃ = P̃YSY
#SXVΣU⊤

(
UΣV # ĈXλVΣU⊤

)†
UΣV # . (263)

Then, since RX SX =UΣV #,

H̃ = P̃YSY
#SX(RX SX)

#
(
RX SX

(
ĈX+λIHX

)
(RX SX)

#
)†
RX SX . (264)

Finally, using the fact that ĈX = SX
#SX and KX = nSXSX

#, we obtain that

H̃ =
√
n P̃YSY

#KXRX
⊤
(
RX KX

2RX
⊤+nλRX KXRX

⊤
)†
RX SX . (265)

Now we state and prove the lemma for the expansion induced by output sketching.

Lemma .14. For all x ∈ X , for any h ∈ H that writes as h(x) =
√
n P̃YSY

#α(x) with α :

X → R
n, then h(x) =

∑n
i=1RY

⊤ K̃Y
†
RY KYα(x)ψY (yi ).

Proof

h(x) =
√
n P̃YSY

#α(x) (266)

=
√
nSY

#RY
⊤ K̃Y

†
RY

(
nSYSY

#
)
α(x) (267)

=
√
nSY

#RY
⊤ K̃Y

†
RY KYα(x) (268)

=
n∑

i=1

RY
⊤ K̃Y

†
RY KYα(x)ψY (yi ) . (269)

B.3 SISOKR Excess Risk Bound

In this section, we provide the proof of theorem 4.7 which gives a bound on the excess
risk of the proposed approximated regression estimator with both input and output
sketching (SISOKR).

Theorem4.7 (SISOKR excess risk bound). Let δ ∈ (0,1], n ∈N such that λ = n−1/(1+γX ) ≥
9κX 2

n log(nδ ). Under Assumptions 4.3 to 4.6, with probability 1− δ we have

Ex

[
∥h̃(x)− h∗(x)∥2HY

] 1
2

≤ S(n,δ) + c2AψXρX (P̃X ) +A
ψY
ρY (P̃Y ) , (4.12)

where S(n,δ) = c1 log(4/δ)n
− 1

2(1+γX ) and

A
ψZ
ρZ (P̃Z ) = Ez

[
∥(P̃Z−IHZ )ψZ(z)∥2HZ

] 1
2

, (4.13)

with c1, c2 > 0 constants independent of n and δ.
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Proof Our proofs consist of decompositions and then applications of the probabilistic
bounds given in Appendix B.5.

We have

E[∥h̃(x)− h∗(x)∥2]1/2 = ∥(H̃ −H)S#∥HS (270)

with H̃ = P̃Y SY
#SX η̃(ĈX).

Then, defining Hλ =HCX (CX +λI )−1, we decompose

H̃ −H = P̃Y
(
SY

#SX−Hλ ĈX

)
η̃(ĈX) + P̃YHλ

(
ĈX η̃(ĈX)− IHX

)
+
(
P̃YHλ −H

)
(271)

such that
∥(H̃ −H)S#∥HS ≤ (A) + (B) + (C) (272)

with

(A) =

∥∥∥∥∥∥

(
SY

#SX−Hλ ĈX

)
η̃(ĈX)CX

1/2

∥∥∥∥∥∥
HS

(273)

(B) =

∥∥∥∥∥∥Hλ
(
ĈX η̃(ĈX)− IHX

)
CX

1/2

∥∥∥∥∥∥
HS

(274)

(C) =
∥∥∥∥(P̃YHλ −H)CX

1/2
∥∥∥∥
HS

(275)

Then, from lemmas .15 to .17, we obtain

∥(H̃ −H)S#∥HS ≤ 2
√
3M log(4/δ)n−

1
2(1+γX ) +2

√
3∥H∥HS∥(I − P̃X )CX 1/2 ∥op (276)

+Ey




∥∥∥∥∥∥

(
P̃Y−IHY

)
ψY (y)

∥∥∥∥∥∥

2

HY




1/2

. (277)

Then, notice that
∥∥∥∥(I − P̃X )CX 1/2

∥∥∥∥
op
≤

∥∥∥∥(I − P̃X )CX 1/2
∥∥∥∥
HS

(278)

= Ex




∥∥∥∥∥∥

(
P̃X−IHX

)
ψX (x)

∥∥∥∥∥∥

2

HX




1/2

. (279)

We conclude by defining

c1 = 2
√
3M, (280)

c2 = 2
√
3∥H∥HS. (281)

Lemma .15 (Bound (A)). Let δ ∈ [0,1], n ∈N sufficiently large such that λ = n−1/(1+γ) ≥
9κX 2

n log(nx ) Under our set of assumptions, the following holds with probability at least 1−δ

(A) ≤ 2M log(4/δ)n−
1

2(1+γX ) . (282)

where the constantM depends on κY ,∥H∥HS,δ.
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Proof

We have

(A) ≤
∥∥∥∥∥∥

(
SY

#SX−Hλ ĈX

)
CXλ

−1/2
∥∥∥∥∥∥
HS︸                                ︷︷                                ︸

(A.1)

×∥CXλ1/2 η̃(ĈX)CX
1/2 ∥op

︸                         ︷︷                         ︸
(A.2)

(283)

Moreover, we have

(A.2) ≤ ∥ ĈXλ
1/2
η̃(ĈX) ĈXλ

1/2 ∥op∥ ĈXλ
−1/2

CXλ
1/2 ∥2op∥CXλ−1/2CX 1/2 ∥op (284)

≤ ∥ ĈXλ
1/2
η̃(ĈX) ĈXλ

1/2 ∥op∥ ĈXλ
−1/2

CXλ
1/2 ∥2op (285)

because ∥CXλ−1/2CX 1/2 ∥op ≤ 1.

Finally, by using the probabilistic bounds given in lemmas .20 and .21, and Lemma
.27, we obtain

(A) ≤ 2M log(4/δ)n−
1

2(1+γX ) . (286)

Lemma .16 (Bound (B)). If 9
n log

n
δ ≤ λ ≤ ∥CX ∥op, then with probability 1− δ

(B) ≤ 2
√
3∥H∥HS(λ

1/2 + ∥(I − P̃X )CX 1/2 ∥op) (287)

Proof

We do a similar decomposition than in Rudi et al. (2015, Theorem 2):

ĈX η̃(ĈX)− IHX = ĈXλ η̃(ĈX)−λη̃(ĈX)− IHX (288)

= (I − P̃X ) ĈXλ η̃(ĈX) + P̃X ĈXλ η̃(ĈX)−λη̃(ĈX)− IHX (289)

= (I − P̃X ) ĈXλ η̃(ĈX)−λη̃(ĈX)− (P̃X − IHX ) , (290)

as P̃X ĈXλ η̃(ĈX) = P̃X .

Then, we have

(B) ≤
∥∥∥Hλ

∥∥∥
HS

∥∥∥∥∥∥

(
ĈX η̃(ĈX)− IHX

)
CX

1/2

∥∥∥∥∥∥
op

(291)

≤
∥∥∥Hλ

∥∥∥
HS

(∥∥∥∥(I − P̃X ) ĈXλ η̃(ĈX)CX
1/2

∥∥∥∥
op

+λ
∥∥∥∥η̃(ĈX)CX

1/2
∥∥∥∥
op

+
∥∥∥∥(P̃X − IHX )CX 1/2

∥∥∥∥
op

)

(292)
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But,

∥∥∥Hλ
∥∥∥
HS
≤

∥∥∥∥∥∥H
(
CX CXλ

−1−IHX
)∥∥∥∥∥∥

HS

+
∥∥∥H

∥∥∥
HS

(293)

=
∥∥∥∥∥H

(
CX −CXλ

)
CXλ

−1
∥∥∥∥∥
HS

+
∥∥∥H

∥∥∥
HS

(294)

= λ
∥∥∥∥HCXλ

−1
∥∥∥∥
HS

+
∥∥∥H

∥∥∥
HS

(295)

≤ 2∥H∥HS. (296)

And,
∥∥∥∥(I − P̃X ) ĈXλ η̃(ĈX)CX

1/2
∥∥∥∥
op
≤

∥∥∥∥(I − P̃X ) ĈXλ
1/2

∥∥∥∥
op

∥∥∥∥ ĈXλ
1/2
η̃(ĈX) ĈXλ

1/2
∥∥∥∥
op

(297)

·
∥∥∥∥ ĈXλ

−1/2
CX

1/2
∥∥∥∥
op
. (298)

And,
∥∥∥∥(I − P̃X ) ĈXλ

1/2
∥∥∥∥
op
≤

∥∥∥∥(I − P̃X )C1/2
Xλ

∥∥∥∥
op

∥∥∥∥CXλ−1/2 ĈXλ
1/2

∥∥∥∥
op
. (299)

And,
∥∥∥∥(I − P̃X )CXλ1/2

∥∥∥∥
op
≤

∥∥∥∥(I − P̃X )CX 1/2
∥∥∥∥
op

+λ1/2. (300)

Moreover,
∥∥∥∥∥∥λη̃

(
ĈX

)
CX

1/2

∥∥∥∥∥∥
op

≤ λ
∥∥∥∥∥ĈXλ

−1/2
∥∥∥∥∥
op

∥∥∥∥∥∥ĈXλ
1/2
η̃
(
ĈX

)
ĈXλ

1/2
∥∥∥∥∥∥
op

(301)

·
∥∥∥∥∥ĈXλ

−1/2
CXλ

1/2
∥∥∥∥∥
op

∥∥∥∥CXλ−1/2CX 1/2
∥∥∥∥
op

(302)

≤ λ1/2
∥∥∥∥∥∥ĈXλ

1/2
η̃
(
ĈX

)
ĈXλ

1/2
∥∥∥∥∥∥
op

∥∥∥∥∥ĈXλ
−1/2

CXλ
1/2

∥∥∥∥∥
op
. (303)

Conclusion. Using the probabilistic bounds given in Lemmas .21, .22, and Lemma
.27, we obtain

(B) ≤ 4
√
3∥H∥HS

(
λ1/2 +

∥∥∥∥(I − P̃X )CX 1/2
∥∥∥∥
op

)
(304)

Lemma .17 (Bound (C)). We have

(C) ≤ Ey




∥∥∥∥∥∥

(
P̃Y−IHY

)
ψY (y)

∥∥∥∥∥∥

2

HY




1/2

+λ1/2
∥∥∥H

∥∥∥
HS
. (305)
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Proof We have

(C) =
∥∥∥∥(P̃YH(IHX −λCXλ−1)−H)CX

1/2
∥∥∥∥
HS

(306)

≤
∥∥∥∥(P̃Y − IHY )HCX

1/2
∥∥∥∥
HS

+λ1/2
∥∥∥H

∥∥∥
HS

(307)

= E[∥(P̃Y − IHY )h∗(x)∥2HY ]
1/2 +λ1/2

∥∥∥H
∥∥∥
HS
. (308)

We conclude the proof as follows. Using the fact that h∗ (x) = Eρ
(
y|x

)
[
ψY

(
y
)]
, the lin-

earity of P̃Y−IHY and the convexity of ∥·∥2HY , by the Jensen’s inequality we obtain that

Ex




∥∥∥∥∥∥

(
P̃Y−IHY

)
h∗ (x)

∥∥∥∥∥∥

2

HY



= Ex




∥∥∥∥∥∥

(
P̃Y−IHY

)
Eρ

(
y|x

)
[
ψY

(
y
)]∥∥∥∥∥∥

2

HY




(309)

= Ex




∥∥∥∥∥∥∥
Eρ

(
y|x

)
[(
P̃Y−IHY

)
ψY

(
y
)]
∥∥∥∥∥∥∥

2

HY




(310)

≤ Ex



Eρ

(
y|x

)




∥∥∥∥∥∥

(
P̃Y−IHY

)
ψY

(
y
)∥∥∥∥∥∥

2

HY







(311)

= Ey




∥∥∥∥∥∥

(
P̃Y−IHY

)
ψY (y)

∥∥∥∥∥∥

2

HY



. (312)

B.4 Sketching Reconstruction Error

We provide here a bound on the reconstruction error of a sketching approximation.

Theorem 4.9 (sub-Gaussian sketching reconstruction error). For δ ∈
(
0,1/e

]
, n ∈ N

sufficiently large such that 9
n log(n/δ) ≤ n

− 1
1+γZ ≤ ∥CZ ∥op/2, then if

mZ ≥ c4max
(
ν2Z n

γZ +µZ
1+γZ ,ν4Z log

(
1/δ

))
, (4.14)

with probability 1− δ we have

Ez

[
∥(P̃Z−IHZ )ψZ(z)∥2HZ

]
≤ c3n−

1−γZ
1+γZ , (4.15)

where c3, c4 > 0 are constants independents of n,mZ ,δ.
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Proof For t > 0, we have

Ez




∥∥∥∥∥∥

(
P̃Z−IHZ

)
ψZ(z)

∥∥∥∥∥∥

2

HZ



= Tr

((
P̃Z−IHZ

)
Ez

[
ψZ(z)⊗ψZ(z)

])
(313)

=

∥∥∥∥∥∥

(
P̃Z−IHZ

)
CZ

1/2

∥∥∥∥∥∥

2

HS

(314)

≤
∥∥∥∥∥∥

(
P̃Z−IHZ

)
ĈZt

1/2
∥∥∥∥∥∥

2

op

∥∥∥∥∥ĈZt
−1/2

CZt
1/2

∥∥∥∥∥
2

op

∥∥∥∥CZt−1/2CZ1/2
∥∥∥∥
2

HS
.

(315)

Lemma .21 gives that, for δ ∈
(
0,1

)
, if 9

n log
(
n
δ

)
≤ t ≤

∥∥∥CZ
∥∥∥
op
, then with probability

1− δ ∥∥∥∥∥ĈZt
−1/2

CZt
1/2

∥∥∥∥∥
2

op
≤ 2 . (316)

Moreover, since
∥∥∥∥CZt−1/2CZ1/2

∥∥∥∥
2

HS
= Tr

(
CZt−1CZ

)
= dZeff(t), lemma .25 gives that

∥∥∥∥CZt−1/2CZ1/2
∥∥∥∥
2

HS
≤QZ t

−γZ . (317)

Then, using the Lemma .18, and multiplying the bounds, gives

Ey




∥∥∥∥∥∥

(
P̃Z−IHY

)
ψZ(z)

∥∥∥∥∥∥

2

HZ



≤ 6QZ t

1−γZ . (318)

Finally, choosing t = n−
1

1+γZ , defining c3 = 6QZ and c4 = 576C2bZQZ , and noticing
N∞Z (t) ≤ bZQZ t−(γZ +µZ ) (from lemmas .25 and .26), allows to conclude the proof.

Lemma .18. LetN∞Z (t) be as in Definition .24. For all δ ∈
(
0,1/e

]
, 9n log

(
n
δ

)
≤ t ≤

∥∥∥CZ
∥∥∥
op
−

9
n log

(
n
δ

)
andmZ ≥max

(
432C2νZ2N∞Z (t),576C2νZ4 log

(
1/δ

))
, with probability at least

1− δ, ∥∥∥∥∥∥

(
P̃Z−IHZ

)
ĈZt

1/2
∥∥∥∥∥∥

2

op

≤ 3t . (319)

Proof Using Propositions 3 and 7 from Rudi et al. (2015), we have, for t > 0,
∥∥∥∥∥∥

(
P̃Z−IHZ

)
ĈZt

1/2
∥∥∥∥∥∥

2

op

≤ t

1− βZ(t)
, (320)

with βZ(t) = σmax

(
ĈZt
−1/2 (

ĈZ− C̃Z

)
ĈZt
−1/2

)
.

Now, applying lemma .19, with the condition

mZ ≥max
(
432C2νZ

2N∞Z (t),576C2νZ
4 log

(
1/δ

))
, (321)
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we obtain βZ(t) ≤ 2/3, which gives

∥∥∥∥∥∥

(
P̃Z−IHY

)
ĈZt

1/2
∥∥∥∥∥∥

2

op

≤ 3t . (322)

Lemma .19. Let RZ be as in Definition 4.8 and N∞Z (t) as in Definition .24. For all

δ ∈
(
0,1/e

]
, 9
n log

(
n
δ

)
≤ t ≤

∥∥∥CZ
∥∥∥
op
− 9
n log

(
n
δ

)
and mZ ≥ max

(
6N∞Z (t), log

(
1/δ

))
, with

probability at least 1− δ,

∥∥∥∥∥∥ĈZt
−1/2 (

ĈZ− C̃Z

)
ĈZt
−1/2

∥∥∥∥∥∥
op

≤C

2
√
2νZ

√
6N∞Z (t) + 8νZ2

√
log

(
1/δ

)

√
mZ

, (323)

where C is a universal constant independent ofN∞Z (t), δ and mZ .

Proof We define the following random variables

Wi =

√
mZ
n

n∑

j=1

(RZ )ij ĈZt
−1/2

ψZ(zj ) ∈ HZ for i = 1, . . .mZ . (324)

In order to use the concentration bound given in Theorem .23, we show that the Wis
are i.i.d. weakly square integrable centered random vectors with covariance operator
Σ, sub-Gaussian, and pre-Gaussian.

The Wis are weakly square integrable. Let u ∈ HZ and v = ĈZt
−1/2

u, we have

that ⟨Wi ,u⟩HZ =
√

mZ
n

∑n
j=1(RZ )ijv(zj ). Hence, using the definition of a sub-Gaussian

sketch, we have

∥∥∥∥⟨Wi ,u⟩HZ
∥∥∥∥
2

L2(P)
= ERZ

[
|⟨Wi ,u⟩HZ |2

]
(325)

=
1
n

n∑

j=1

v(zj )
2 (326)

< +∞ . (327)
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TheWis are sub-Gaussian. Let c ∈ R, using the independence and sub-Gaussianity
of the Rzij , we have

ERZ

[
exp

(
c⟨Wi ,u⟩HZ

)]
= ERZ



exp




n∑

j=1

c

√
mZ
n
Rzijv(zj )







(328)

=
n∏

j=1

ERZ



exp


c

√
mZ
n
Rzijv(zj )







(329)

≤
n∏

j=1

exp



c2mZ v(zj )2

2n
νZ2

mZ


 (330)

= exp



c2νZ2

2n

n∑

j=1

v(zj )
2




(331)

= exp



c2νZ2

2

∥∥∥∥⟨Wi ,u⟩HZ
∥∥∥∥
2

L2(P)


 . (332)

Hence, ⟨Wi ,u⟩HZ is a 1
2 νZ

2
∥∥∥∥⟨Wi ,u⟩HZ

∥∥∥∥
2

L2(P)
-sub-Gaussian random variable. Then, the

Orlicz condition of sub-Gaussian random variables gives

ERZ



exp




⟨Wi ,u⟩2HZ
8νZ2

∥∥∥∥⟨Wi ,u⟩HZ
∥∥∥∥
2

L2(P)



− 1



≤ 1 . (333)

We deduce that ∥∥∥∥⟨Wi ,u⟩HZ
∥∥∥∥
ϕ2

≤ 2
√
2νZ

∥∥∥∥⟨Wi ,u⟩HZ
∥∥∥∥
L2(P)

. (334)

We conclude that theWis are sub-Gaussian with B = 2
√
2νZ .

The Wis are pre-gaussian. We define Z =
√

mZ
n

∑n
j=1Gj ĈZt

−1/2
ψZ(zj ), with Gj

i.i.d.∼
N

(
0,1/mZ

)
. Z is a Gaussian random variable that admits the same covariance oper-

ator as theWis. So, theWi are pre-Gaussian.

Applying concentration bound. Because theWis are i.i.d. weakly square integrable
centered random variables, we can apply theorem .23, and by using also lemma .30,

and the condition mZ ≥max
(
6N∞Z (t), log

(
1/δ

))
, we obtain

∥∥∥∥∥∥ĈZt
−1/2 (

ĈZ− C̃Z

)
ĈZt
−1/2

∥∥∥∥∥∥
op

≤C

2
√
2νZ

√
6N∞Z (t) + 8νZ2

√
log

(
1/δ

)

√
mZ

. (335)
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B.5 Probabilistic Bounds

In this section, we provide all the probabilistic bounds used in our proofs. In partic-
ular, we restate bounds from other works for the sake of providing a self-contained
work. We order them in the same order of appearance in our proofs.

Lemma .20 (Bound (A.1) =

∥∥∥∥∥∥

(
SY

#SX−Hλ ĈX

)
CXλ−1/2

∥∥∥∥∥∥
HS

(Ciliberto et al., 2020, The-

orem B.10)). Let δ ∈ [0,1], n ∈N sufficiently large such that λ = n−1/(1+γX ) ≥ 9κX 2

n log(nx )
Under our set of assumptions, the following holds with probability at least 1− δ

(A.1) ≤M log(4/δ)n−
1

2(1+γX ) (336)

where the constantM depends on κY ,∥H∥HS,δ.

Proof This lemma can be obtained from Ciliberto et al. (2020, Theorem B.10), by
noticing that the bound of Theorem B.10 is obtained by upper bounding the sum of
(A.1) and a positive term, such that the bound of Ciliberto et al. (2020, Theorem B.10)
is an upper bound of (A.1).

Lemma .21 (Bound
∥∥∥∥ ĈZλ

−1/2
CZλ1/2

∥∥∥∥
op

(Rudi et al., 2013, Lemma 3.6)). If 9
n log

n
δ ≤

λ ≤ ∥CZ ∥op, then we have with probability 1− δ

∥ ĈZλ
−1/2

CZλ
1/2 ∥op ≤

√
2. (337)

Lemma .22 (Bound
∥∥∥∥CZλ−1/2 ĈZλ

1/2
∥∥∥∥
op
). If 9

n log
n
δ ≤ λ ≤ ∥CZ ∥op, then with probability

1− δ
∥∥∥∥CZλ−1/2 ĈZλ

1/2
∥∥∥∥
op
≤

√
3
2
. (338)

Proof We have

∥∥∥∥CZλ−1/2 ĈZλ
1/2

∥∥∥∥
op

=
∥∥∥∥CZλ−1/2 ĈZλCZλ

−1/2
∥∥∥∥
1/2

op
(339)

=
∥∥∥∥I +CZλ

−1/2(ĈZ−CZ )CZλ−1/2
∥∥∥∥
1/2

op
(340)

≤
(
1+

∥∥∥∥CZλ−1/2(ĈZ−CZ )CZλ−1/2
∥∥∥∥
op

)1/2
(341)

≤
√

3
2

(342)

with probability at least 1 − δ, where the last inequality is from Rudi et al. (2013,
Lemma 3.6).
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Theorem .23 (sub-Gaussian concentration bound (Koltchinskii and Lounici, 2017,
Theorem 9)). Let W,W1, . . . ,Wm be i.i.d. weakly square integrable centered random vec-
tors in a separable Hilbert spaceHZ with covariance operator Σ. IfW is sub-Gaussian and
pre-Gaussian, then there exists a constant C > 0 such that, for all τ ≥ 1, with probability at
least 1− e−τ ,

∥Σ̂−Σ∥ ≤C∥Σ∥


B

√
r(Σ)
m
∨ r(Σ)

m
∨B2

√
τ

m
∨B2 τ

m


 , (343)

where B > 0 is the constant such that
∥∥∥∥⟨W,u⟩HY

∥∥∥∥
ϕ2

≤ B
∥∥∥∥⟨W,u⟩HY

∥∥∥∥
L2(P)

for all u ∈ HZ .

B.6 Auxiliary Results And Definitions

Definition .24. For t > 0, we define the random variable

N (z, t) = ⟨ψZ(z),CZt−1ψZ(z)⟩HZ (344)

with z ∈ Z distributed according to ρZ and let

dZeff(t) = Ez

[
N (z, t)

]
= Tr

(
CZCZt

−1
)
, N∞Z (t) = sup

z∈Z
N (z, t) . (345)

We note N∞X ,dXeff(t),γX ,QY ,N∞Y ,d
Y
eff(t),γY ,QY for the input and output kernels kX , ky ,

respectively.

Lemma .25. When Assumption 4.5 holds then we have

dZeff(t) ≤QZ t
−γZ . (346)

Proof We have

dZeff(t) = Tr
(
CZCZt

−1
)

(347)

≤ Tr
(
CZ

γZ
)
∥CZ1−γZ CZt−1 ∥op (348)

≤QZ t
−γZ . (349)

Lemma .26. When Assumption 4.6 holds then we have

N∞Z (t) ≤ bZ d
Z
eff(t)t

−µZ . (350)

Proof We have
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N∞Z (t) = sup
z∈Z
⟨ψZ(z),CZt−1ψZ(z)⟩HZ (351)

≤ bZ Tr(CZt
−1CZ

1−µZ ) (352)

≤ bZ Tr(CZt
−1CZ )∥CZt−µZ ∥op (353)

≤ bZ d
Z
eff(t)t

−µZ . (354)

We recall the following deterministic bound.

Lemma .27 (Bound ∥ ĈXλ
1/2
η̃(ĈX) ĈXλ

1/2 ∥op (Rudi et al., 2015, Lemma 8)). For any
λ > 0,

∥ ĈXλ
1/2
η̃(ĈX) ĈXλ

1/2 ∥op ≤ 1. (355)

We introduce some notations and definitions from Koltchinskii and Lounici (2017).
Let W be a centered random variable in HZ , W is weakly square integrable if and

only if
∥∥∥∥⟨W,u⟩HZ

∥∥∥∥
2

L2(P)
:= E

[
|⟨W,u⟩HZ |2

]
< +∞, for any u ∈ HZ . Moreover, we define

the Orlicz norms. For a convex nondecreasing function ϕ : R+ → R+ with ϕ(0) = 0
and a random variable η on a probability space

(
Ω,A,P

)
, the ϕ-norm of η is defined

as ∥∥∥η
∥∥∥
ϕ
= inf

{
C > 0 : E

[
ϕ

(
|η |/C

)]
≤ 1

}
. (356)

The Orliczϕ1- andϕ2-norms coincide to the functionsϕ1(u) = eu−1,u ≥ 0 andϕ2(u) =
eu

2 − 1,u ≥ 0. Finally, Koltchinskii and Lounici (2017) introduces the definitions of
sub-Gaussian and pre-Gaussian random variables in a separable Banach space E. We
focus on the case where E =HZ .
Definition .28. A centered random variable X in HZ will be called sub-Gaussian iff, for
all u ∈ HZ , there exists B > 0 such that

∥∥∥∥⟨X,u⟩HZ
∥∥∥∥
ψX 2

≤ B
∥∥∥∥⟨X,u⟩HZ

∥∥∥∥
L2(P)

. (357)

Definition .29. Aweakly square integrable centered random variableX inHZ with covari-
ance operator Σ is called pre-Gaussian iff there exists a centered Gaussian random variable
Y in HZ with the same covariance operator Σ.

Lemma .30 (Expectancy, covariance, and intrinsic dimension of the Wis). Defining

Wi =
√

mZ
n

∑n
j=1(RZ )ij ĈZt

−1/2
ψZ(zj ) ∈ HZ for i = 1, . . .mZ where RZ is a sub-Gaussian

sketch, the following hold true

ERZ

[
Wi

]
= 0 (358)

Σ = ERZ

[
Wi ⊗Wi

]
= ĈZt

−1/2
ĈZ ĈZt

−1/2
(359)

Σ̂ =
1
mZ

mZ∑

i=1

⟨f ,Wi⟩HZWi = ĈZt
−1/2

C̃Z ĈZt
−1/2

(360)
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and for δ ∈
(
0,1

)
, if 9

n log
(
n
δ

)
≤ t ≤

∥∥∥CZ
∥∥∥
op
− 9
n log

(
n
δ

)
, then with probability 1− δ

r
(
Σ
)
=
ERZ

[∥∥∥Xi
∥∥∥HZ

]2

∥∥∥Σ
∥∥∥
op

≤ 6N∞Z (t) . (361)

Proof First, it is straightforward to check that

1
mZ

mZ∑

i=1

⟨f ,Wi⟩HZWi = ĈZt
−1/2

C̃Z ĈZt
−1/2

. (362)

Then, since ERZ

[
(RZ )i:

]
= 0,

ERZ

[
Wi

]
=

√
mZ
n

ĈZt
−1/2

SZ
#
ERZ

[
(RZ )i:

]
= 0 . (363)

Then,

(
Wi ⊗Wi

)
f = ⟨f ,Wi⟩HZWi (364)

= ⟨f ,√mZ ĈZt
−1/2

SZ
#(RZ )i:⟩HZ

√
mZ ĈZt

−1/2
SZ

#(RZ )i: (365)

= mZ

(
(RZ )

⊤
i: SZ ĈZt

−1/2
f

)
ĈZt
−1/2

SZ
#(RZ )i: (366)

= ĈZt
−1/2

SZ
#
(
mZ(RZ )i:(RZ )

⊤
i:

)
SZ ĈZt

−1/2
f , (367)

and since ERZ

[
mZ(RZ )i:(RZ )

⊤
i:

]
= In,

Σ = ERZ

[
Wi ⊗Wi

]
(368)

= ĈZt
−1/2

SZ
#
ERZ

[
mZ(RZ )i:(RZ )

⊤
i:

]
SZ ĈZt

−1/2
(369)

= ĈZt
−1/2

ĈZ ĈZt
−1/2

. (370)
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Then,

ERZ

[∥∥∥Xi
∥∥∥HZ

]2
≤ ERZ

[∥∥∥Xi
∥∥∥2HZ

]
(by Jensen’s inequality) (371)

= mZERZ

[
⟨ĈZt

−1/2
SZ

#(RZ )i:, ĈZt
−1/2

SZ
#(RZ )i:⟩HZ

]
(372)

=
mZ
n

ERZ



⟨
n∑

j=1

RZij
ψZ(zj ),

n∑

l=1

RZil
ĈZt
−1
ψZ(zl )⟩HZ




(373)

=
mZ
n

ERZ




n∑

j,l=1

RZij
RZil
⟨ψZ(zj ), ĈZt

−1
ψZ(zl )⟩HY




(374)

=
mZ
n

n∑

j=1

1
mZ
⟨ψZ(zj ), ĈZt

−1
ψZ(zj )⟩HZ (375)

= Tr
(
ĈZt
−1

ĈZ

)
(376)

=
∥∥∥∥∥ĈZt

−1/2
ĈZ

1/2
∥∥∥∥∥
2

HS
(377)

≤
∥∥∥∥∥ĈZt

−1/2
CZt

1/2
∥∥∥∥∥
2

op

∥∥∥∥∥CZt
−1/2 ĈZ

1/2
∥∥∥∥∥
2

HS
. (378)

But,

∥∥∥∥∥CZt
−1/2 ĈZ

1/2
∥∥∥∥∥
2

HS
= Tr

(
CZt

−1 ĈZ

)
(379)

= Tr



CZt

−1



1
n

n∑

i=1

ψZ(zi )⊗ψZ(zi )







(380)

=
1
n

n∑

i=1

Tr
(
CZt

−1 (ψZ(zi )⊗ψZ(zi )
))

(381)

=
1
n

n∑

i=1

〈
ψZ(zi ),CZt

−1ψZ(zi )
〉

HY
(382)

=
1
n

n∑

i=1

N (zi , t) (383)

≤N∞Z (t) . (384)

Then, from lemma .21, for δ ∈
(
0,1

)
, and 9

n log
(
n
δ

)
≤ t ≤

∥∥∥CZ
∥∥∥
op
, then with probability

1− δ,

ERZ

[∥∥∥Xi
∥∥∥HZ

]2
≤ 2N∞Z (t). (385)

Then,
∥∥∥Σ

∥∥∥
op

=
∥∥∥∥∥ĈZt

−1/2
ĈZ

1/2
∥∥∥∥∥
2

op
≥ 1/3 for t ≤ 2

∥∥∥∥ĈZ

∥∥∥∥
op
.
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C Appendices for Chapter 5

C.1 Gradient computations with Robust Losses

In this section, we give further details about gradient computations when using ε-
insensitive ℓ1 (ε-SVR), ℓ2 (ε-ridge regression) and Huber (κ-Huber regression) losses.
We remind that DSOKR denotes the model whose surrogate estimator is hθ = gE ◦ gW ,
where gθ is a deep neural network andW denotes its weights. For all (x,y) ∈ X ×Y , we
denote l(W ;x,y) = ∥gE ◦ gW (x)−ψY (y)∥2HY , and then, by eq. (5.11), its gradient is given
by

∂

∂W
l(W ;x,y) =

∂

∂W
∥gW (x)∥22 − 2

∂

∂W
ψ̃Y (y)

⊤gW (x) . (387)

In the following, IOKR denotes the model whose surrogate estimator is hθ = gE ◦ gW ,
where gW : x 7→W⊤kxX andW ∈ Rn×pY is the solution to

min
W∈Rn×pY

1
n

n∑

i=1

c
(
k
xi
X
⊤
WW⊤kxiX − 2k

xi
X
⊤
W ψ̃Y (y) + kY (y,y)

)
+λTr(KXWW⊤) . (5.16)

Moreover, we provide the following set of useful gradients:

∂

∂W
kxX
⊤WW⊤kxX = 2kxXk

x
X
⊤W , (388)

∂

∂W
− 2kxX⊤W ψ̃Y (y) = −2kxX ψ̃Y (y)⊤ , (389)

∂

∂W
Tr(KXWW⊤) = 2KXW . (390)

Hence, as for DSOKR, for all (x,y) ∈ X ×Y , we denote l(W ;x,y) = ∥gE◦gW (x)−ψY (y)∥2HY
and then, its gradient is given by

∂

∂W
l(W ;x,y) = 2kxXk

x
X
⊤W − 2kxX ψ̃Y (y)⊤ . (391)

ε-SVR

We recall that, for ε > 0, the ε-insensitive ℓ1 loss is given by

ℓ : (z,z′) ∈ HY 2 7→max(∥z − z′∥HY − ε,0) . (392)

Then, for all (x,y) ∈ X ×Y , the gradient is given by

∂

∂W
ℓ(gE ◦ gW (x),ψY (y)) =

1

2
√
l(W ;x,y)

∂

∂W
l(W ;x,y)✶{

√
l(W ;x,y)>ε} , (393)

where ✶{·} denotes the indicator function. One can then solve the primal ERM prob-
lem via a gradient-based method for DSOKR and IOKR models by using the expres-
sion of the gradient of l in eq. (387) and eq. (391) respectively, without forgetting the
gradient of the regularisation penalty in eq. (390) for IOKR. The same applies for the
ε-insensitive ℓ2 and Huber losses.
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ε-Ridge Regression

We recall that, for ε > 0, the ε-insensitive ℓ2 loss is given by

ℓ : (z,z′) ∈ HY 2 7→max(∥z − z′∥HY − ε,0)2 . (394)

Then, for all (x,y) ∈ X ×Y , the gradient is given by

∂

∂W
ℓ(gE ◦ gW (x),ψY (y)) =


1−

ε√
l(W ;x,y)



∂

∂W
l(W ;x,y)✶{

√
l(W ;x,y)>ε} . (395)

κ-Huber Regression

We recall that, for κ > 0, the κ-Huber loss is given by

ℓ : (z,z′) ∈ HY 2 7→



1
2∥z − z′∥2HY if ∥z − z′∥HY ≤ κ

κ
(
∥z − z′∥HY − κ2

)
otherwise

. (396)

Then, for all (x,y) ∈ X ×Y , the gradient is given by

∂

∂W
ℓ(gE ◦ gW (x),ψY (y)) =



1
2

∂
∂W

l(W ;x,y) if
√
l(W ;x,y) ≤ κ

κ

2
√
l(W ;x,y)

∂
∂W

l(W ;x,y) otherwise . (397)

As a conclusion, the basis approach offers a way to perform gradient descent al-
gorithms to solve the primal ERM problem with a wider variety of losses than only
the square one, such as the above robust losses. Moreover, by considering an input
kernel rather than a deep neural network, which finally corresponds to the shallow
IOKRmodel, it constitutes an interesting alternative to the dual approach of Laforgue
et al. (2020) presented in section 2.5.2 since leveraging sketching with duality is not
straightforward, as discusses in section 3.2.3.

C.2 Graph Prediction via Output Kernel Regression

In this section, we present kernel examples to tackle graph prediction via Output
Kernel Regression.

A graph G is defined by its sets of vertices V and edges E. Besides, it may contain
either node labels or attributes, or edge labels, attributes, or weights. Before giving
some examples of kernels dealing directly with graphs, we present examples of ker-
nels dealing with fingerprints.

Fingerprints. Indeed, when manipulating molecules, either for molecular property
prediction ormolecule identification, manyworks use fingerprints to represent graphs
(Ralaivola et al., 2005; Brouard et al., 2016a,b; Tripp et al., 2023). A fingerprint is a
binary vector of length d ≥ 1 and each entry of the fingerprint encodes the presence or
absence of a substructure within the graph based on a dictionary. Hence, when using
fingerprints, the problem of graph prediction becomes a high-dimensional multi-label
prediction problem. A very popular kernel to handle fingerprints is the Tanimoto ker-
nel (Tanimoto, 1958), which basically consists of an intercept over union measure
between two fingerprints.
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Graph kernels. In this work, we also manipulate raw graphs. Many kernels exist to
handle graphs, we present a few that we will use during the experiments. For more
details about these kernels and other graph kernel examples, see the documentation
of the GraKet library (Siglidis et al., 2020).

Definition .31 (Vertex Histogram kernel). Let G = (V ,E) and G′ = (V ′ ,E′) be two node-
labeled graphs. Let L = {1, . . . ,d} be the set of labels, and ℓ : v ∈ V 7→ ℓ(v) ∈ L be the
function that assigns a label for each vertex. Then, the vertex label histogram of G is a
vector f = (f1, . . . , fd )⊤, such that fi = |{v ∈ V : ℓ(v) = i}| for each i ∈ L. Let f , f ′ be the
vertex label histograms of G,G′, respectively. The vertex histogram kernel is then defined as
the linear kernel between f and f ′, that is

kY (G,G
′) = f ⊤f ′ . (398)

The VH kernel needs node-labeled graphs and simply compares two graphs based on
the number of nodes having each type of label. Its computation is very fast.

Definition .32 (Shortest-Path kernel (Borgwardt and Kriegel, 2005)). Let G = (V ,E)
and G′ = (V ′ ,E′) be two graphs, and S = (V ,ES ) and S ′ = (V ′ ,E′S ′ ) their corresponding
shortest-path graphs, i.e. the graphs where we only keep the edges contained in the shortest
path between every vertex, then ES ⊆ E and E′S ′ ⊆ E′. The shortest-path kernel is then
defined on G and G′ as

kY (G,G
′) = kY (S,S

′) =
∑

e∈E

∑

e′∈E′
k
(1)
walk(e, e

′) , (399)

where k
(1)
walk(e, e

′) is a positive definite kernel on edge walks of length 1.

The SP kernel can handle graphs either without node labels, with node labels, or with
node attributes. This information, as well as the shortest path lengths, are encoded

into k(1)walk whose classical choices are Dirac kernels or, more rarely, Brownian bridge
kernels. The computation of the SP kernel is very expensive since it takes O(nV ) time,
where nV denotes the number of nodes.

We present the Neighborhood Subgraph Pairwise Distance kernel (Costa and Grave,
2010). This kernel extracts pairs of subgraphs from each graph and then compares
these pairs.

Definition .33 (Neighborhood Subgraph Pairwise Distance kernel (Costa and Grave,
2010)). Let G = (V ,E) and G′ = (V ′ ,E′) be two node-labeled and egde-labeled graphs. For
u,v ∈ V , D(u,v) denotes the distance between u and v, i.e. the length of the shortest path
between them, for r ≥ 1, {u ∈ V : D(u,v) ≤ r} denotes the neighborhood of radius r of a
vertex v, i.e. the set of vertices at a distance less than or equal to r from v, for a subset of
vertices S ⊆ V , E(S) denotes the set of edges that have both end-points in S , and we can
define the subgraph with vertex set S and edge set E(S). N v

r denotes the subgraph induced
by {u ∈ V : D(u,v) ≤ r}. Let also Rr,d(Av ,Bu ,G) be a relation between two rooted graphs
Av , Bu and a graph G = (V ,E) that is true if and only if both Av and Bu are in {N v

r : v ∈
V }, where we require Av ,Bu to be isomorphic to some N v

r to verify the set inclusion, and
that D(u,v) = d. We denote with R−1(G) the inverse relation that yields all the pairs of
rooted graphs Av , Bu satisfying the above constraints. The neighborhood subgraph pairwise
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distance kernel is then based on the following kernel

kr,d(G,G
′) =

∑

Av ,Bu∈R−1r,d (G)

∑

A′
v′ ,B

′
u′∈R−1r,d (G′)

δ(Av ,A
′
v′ )δ(Bu ,B

′
u′ ) , (400)

where δ is 1 if its input subgraphs are isomorphic, and 0 otherwise. This counts the number
of identical pairs of neighboring subgraphs of radius r at distance d between two graphs.
The NSPD kernel is then defined on G and G′ as

kY (G,G
′) =

r∗∑

r=0

d∗∑

d=0

k̂r,d(G,G
′) , (401)

where k̂r,d is a normalized version of kr,d , and r
∗ and d∗ are hyper-parameters of the kernel.

The NSPD takes into account the edge labels, which can be of particular interest when
manipulating molecules. For small values of r∗ and d∗, its complexity is in practice
linear in the size of the graph.

We now introduce the Weisfeiler-Lehman (WL) framework, inspired by the WL test
of graph isomorphism (Weisfeiler and Leman, 1968), that operates on top of existing
graph kernels. The WL algorithm replaces the label of each vertex with a multiset
label consisting of the original label of the vertex and the sorted set of labels of its
neighbors. The resulting multiset is then compressed into a new, short label, and this
procedure is repeated for h iterations.

Definition .34 (Weisfeiler-Lehman kernel (Shervashidze et al., 2011)). Let G = (V ,E)
and G′ = (V ′ ,E′) be two node-labeled graphs, endowed with labeling functions ℓ = ℓ0 and
ℓ′ = ℓ′0, respectively. The WL graph of G at height i is a graph Gi endowed with a labeling
function ℓi which has emerged after i iterations of the relabeling procedure described pre-
viously. Let kY base be any kernel for graphs, called the base kernel. The WL kernel with h
iterations is then defined on G and G′ as

kY (G,G
′) = kY base(G0,G

′
0) + . . .+kY base(Gh,G

′
h) . (402)

A very popular choice is the WL subtree kernel, which corresponds to choosing the
VH kernel as the base kernel. Its time complexity is O(hnE), where nE denotes the
number of edges, which is efficient. We call it the WL-VH kernel.

We finally present the Core kernel framework that, similarly to the WL framework,
operates on top of existing graph kernels. It builds upon the notion of k-core decom-
position, first introduced to study the cohesion of social networks (Seidman, 1983).

Definition .35 (Core kernel (Nikolentzos et al., 2018)). Let G = (V ,E) and G′ = (V ′ ,E′)
be two graphs. Let Gsub(S,E(S)) be the subgraph induced by the subset of vertices S ⊆ V
and the set of edges E(S) that have both end-points in S . Let dGsub

(v) be the degree of a
vertex v ∈ S , i.e. the number of vertices that are adjacent to v in Gsub. The, Gsub is a k-core
of G, denoted by Ck , if it is a maximal subgraph of G in which all vertices have a degree at
least k. Let kY base be any kernel for graphs, called the base kernel. The core variant of this
kernel is then defined on G and G′ as

kY (G,G
′) = kY base(C0,C

′
0) + . . .+kY base(Cδ∗min

,C ′δ∗min
) , (403)
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where δ∗min is the minimum of the degeneracies of the two graphs, and for all 1 ≤ i ≤ δ∗min,
Ci and C

′
i are the i-core subgraphs of G and G′.

The time complexity of computing the k-core decomposition of a graph is O(nV +nE).
Moreover, the complexity of computing the core variant of a kernel depends on its
complexity, and in general, the complexity added by the core variant is not very high.

C.3 Additional experiments and details

In this section, we bring some additional experiments and details.

SMILES to Molecule

For DSOKR, we optimize the parameters of neural networks using Adamwith a learn-
ing rate of 10−3 over 50 epochs. We adopt early stopping based on the validation set’s
edit distance. The number of transformer layers is chosen from {3,6}, the model di-
mension is selected from {256,512}, the number of heads is set to 8, the feed-forward
network dimension is set to four times the model dimension, and the dropout prob-
ability is set to 0.2.

More examples of predictions can be found in Figure C.6.

Text to Molecule

For DSOKR, we conducted training on SciBERT for 50 epochs using the Adam optim-
izer with a learning rate of 3 × 10−5. Additionally, we implemented a learning rate
schedule that linearly decreases from the initial rate set by the optimizer to 0, follow-
ing a warm-up period of 1000 steps where it linearly increases from 0 to the initial
rate. We incorporated early stopping based on the MRR score on the validation set as
well.

Figure C.7 presents the validationMRRwith respect to mY obtained by Perfect hwith a
Gaussian output kernel and additional values of γ . The best γ is clearly 10−6 since all
sketching types attain the performance of the non-sketched Perfect h. Table .4 presents
all the results gathered on ChEBI-20 with the additional Mean Rank metric. DSOKR
under-performs in terms of mean rank compared with CMAM while outperforming
it in terms of hits@1, attaining around 50%, and being equivalent to the ensemble
CMAM methods in terms of hits@10, attaining around 88%, which means that most
of the time, the correct molecule is predicted in the top rankings and even at the
top position half of the time, but in the 12% left, the correct molecule falls to a high
predicted rank.
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Table .4: Performance of different methods on ChEBI-20 test set. All the methods
based on NNs use SciBERT as input text encoder for fair comparison.

Mean Rank ↓ MRR ↑ Hits@1 ↑ Hits@10 ↑
SISOKR 2230.48 0.015 0.4% 2.8%
SciBERT Regression 344.53 0.298 16.8% 56.9%
CMAM - MLP 23.74 0.513 34.9% 84.2%
CMAM - GCN 24.11 0.495 33.2% 82.5%
CMAM - Ensemble (MLP) 17.92 0.562 39.8% 87.6%
CMAM - Ensemble (GCN) 20.48 0.551 39.0% 87.0%
CMAM - Ensemble (MLP + GCN) 16.28 0.597 44.2% 88.7%

DSOKR - SubSample Sketch 82.92 0.624 48.2% 87.4%
DSOKR - Gaussian Sketch 91.19 0.630 49.0% 87.5%
DSOKR - Ensemble (SubSample Sketch) 76.43 0.642 51.0% 88.2%
DSOKR - Ensemble (Gaussian Sketch) 81.70 0.642 50.5% 87.9%
DSOKR - Ensemble (SubSample + Gaussian) 76.87 0.640 50.0% 88.3%
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