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Résumé
En complément des observations magnétiques, la dynamique des noyaux liquides des planètes peut
être explorée en mesurant leur rotation. Par exemple, à certaines échelles de temps, le couplage
entre le noyau liquide et le manteau terrestre peut être estimé par ces mesures. La dissipation
d’énergie associée aux nutations est contrainte par les mesures de rotation de la Terre, tandis que
le couple sur l’axe de rotation est fourni par la mesure de la durée du jour. Dans les deux cas,
les données ne concordent pas bien avec nos modèles actuels de couplages noyau-manteau. Pour
interpréter ces observations, ce travail vise à développer un nouveau modèle de couplage fluide-
solide.

Bien que les couplages mécaniques entre les domaines fluides et solides aient été largement
étudiés, leurs estimations restent difficiles pour les couches fluides planétaires de grande épaisseur
en présence d’effets topographiques, magnétiques, de rotation, et de stratification en densité. Les
résultats des études sur l’atmosphère et l’océan ne sont en effet pas directement transposables aux
couches épaisses telles que les océans de subsurface des lunes glacées ou les noyaux liquides des
planètes. En considérant une couche fluide en rotation et stratifiée, nous avons développé unmodèle
local semi-analytique pour étudier le couplage en pression provenant de la topographie de petite
échelle et le couplage électromagnétique.

Notre approche permet de lever plusieurs limites des modèles précédents de couplage. Elle
permet d’obtenir les différentes contraintes exercées par le fluide sur une paroi en trois dimensions
et conductrice (par exemple, le manteau inférieur). Ce modèle permet d’explorer une large gamme
de paramètres et de conditions aux limites pour des topographies arbitraires. Nous prenons égale-
ment en compte les effets de courbure planétaire en considérant une approximation de ”plan-V”
non traditionnelle adaptée aux couches fluides de grande épaisseur. En menant une étude détaillée
du mécanisme de traînée d’onde, nous montrons que les ondes de Rossby, absentes des modèles
asymptotiques récents, peuvent modifier significativement la contrainte sur le solide. Un tel effet
n’existe d’ailleurs que pour des topographies moins spécifiques qu’étudiées auparavant.

Notre méthode prend en compte la variation spatiale de l’inclinaison et de la norme du champ
magnétique et du vecteur rotation. Après intégration sur l’interface noyau-manteau, cela permet
d’estimer plus précisément le couple topographique. Par conséquent, nous délimitons mieux l’es-
pace de paramètres (hauteur de la topographie, intensité du champ magnétique, stratification) per-
mettant de rendre compte des observations. Notre méthode fournit un cadre unique pour étudier à
la fois les problèmes de la dissipation de la nutation annuelle ainsi que pour la variation de longueur
du jour.
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Abstract
One way to probe the dynamics of planetary liquid cores is by measuring planetary rotation. For in-
stance, the coupling between the liquid core and the Earth’s mantle is constrained by measurements
of the Earth’s rotation. Energy dissipation related to nutations is constrained by measurements of
the tilting of Earth’s rotation axis, whereas time series of the axial torque can be derived from
length of day observations. In both cases, the data do not agree well with our current models of
core-mantle boundary couplings. To better interpret these observations, this work aims to develop
a new coupling model.

While mechanical couplings between fluid and solid domains have been widely studied, their
estimation remains challenging for deep planetary fluid layers in the presence of topography, rota-
tion, magnetic field, and density stratification. Results from atmospheric or oceanic sciences are
unsuitable for thick layers, such as subsurface oceans of icy moons or liquid cores of planets. We
consider a rotating and stratified fluid layer. We have developed a semi-analytical local box model
to investigate small-scale topographic fluid-solid coupling due to pressure or magnetic stresses.

Our code unlocks several limitations of previous planetary coupling studies. By considering
three-dimensional bumps, it provides the various fluid stresses on an electrically conducting solid
(such as the Earth’s mantle lowermost layer). We explore a wide range of parameters and boundary
conditions for arbitrary topography shapes and account for planetary curvature effects by consider-
ing a ”non-traditional V-plane” approximation suited for deep fluid layers. Carrying out a detailed
study of the wave drag mechanism, we show that the Rossby waves, which are absent from recent
asymptotic models, can significantly modify the boundary stress. We also show that the results are
different if we consider three-dimensional topographies instead of ridges.

More precise geophysical applications are also provided by taking into account spatial varia-
tions of the magnetic field and rotation vector in both directions and magnitude. This provides the
global torque after integration on the core-mantle interface. Therefore, we better circumscribe the
parameter space (topography height, magnetic field intensity, stratification) that enables reproduc-
ing the observations. Our method provides a unique framework to investigate the dissipation of the
Earth’s nutations and the variations of the length of the day.
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Introduction

Contents
1.1 Observational constraints on the core-mantle coupling . . . . . . . . . . . . 8

1.1.1 Probing the Earth’s core dynamics from the surface . . . . . . . . . . 9

1.1.2 Coupling mechanisms between planetary layers . . . . . . . . . . . . . 12

1.1.3 Models of the Earth’s rotational response . . . . . . . . . . . . . . . . 14

1.2 Topographic effects in geophysical flows . . . . . . . . . . . . . . . . . . . . 20

1.2.1 Pressure coupling, insights from ocean and atmosphere studies . . . . . 20

1.2.2 Models of core-mantle coupling . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 Aim and structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 23

1.1 Observational constraints on the core-mantle coupling

Why are we studying the Earth’s core when it is out of reach, approximately 3000 km below our
feet? The core is not as unrelated to us as you might think. The core is a 2200 km deep ocean of
liquid iron, with a water-like kinematic viscosity, that has an influence at the surface of the Earth.
The most measurable effect of the core is the large-scale magnetic field of the Earth, generated by
turbulent motions within the conductive liquid core. This is the mechanism of the“geodynamo”.
The standard scenario is that the flow in the core is powered by thermo-solutal convection as a
result of the cooling of the Earth and the crystallisation of the inner core (Roberts & King, 2013).
This sustained magnetic field could have been crucial to the development of life on our planet by
protecting the atmosphere from erosion (Lundin et al., 2007; Gunell et al., 2018). Throughout
history, the magnetic field has been used for navigation, by humans (from the compass to modern
GPS systems), but also by other forms of life such as birds, lobsters (Wiltschko & Wiltschko,
2005) or even bacteria (Rismani Yazdi et al., 2018). Beyond the magnetic field, core dynamics
also affect the rotation of the Earth. The Earth is subjected to many external gravitational forces,
mainly from the luni-solar system, resulting in intricate motions. While celestial mechanics relates
these forcings to the motion of a rigid body (of the same mass and inertia tensor as the Earth),
calculating the response to these forcings for elastic and partially fluid bodies becomes challenging.
Combining accurate measurements of Earth’s rotation and dedicated models allows one to obtain
precious information on the core-mantle coupling.
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Chapter 1. Introduction 1.1. Observational constraints on the core-mantle coupling

1.1.1 Probing the Earth’s core dynamics from the surface

The Earth spins around an axis, orientated by its rotation vector 
0, completing its revolution in
approximately 23h56, which is the sidereal period. This axis is tilted with respect to the ecliptic
plane¹ at an angle of about 23◦26’, creating seasonal variations. The core-mantle boundary is not
completely spherical, but rather a spheroid with a flattening of approximately 1/374 (Koot et al.,
2010). Due to this equatorial bulge and the tilt of the rotation axis, the Sun and Moon generate a
torque on Earth. The angle relative to the ecliptic remains constant on average over time, but the
axis of rotation describes a regular cone over a period of 26000 years. This phenomenon is called
axial precession (blue in figure 1.1a). Small oscillations that deviate from this reference cone are
called nutations (red in figure 1.1a). Nutations correspond by convention to motions with a period
larger than 2 days. They can be divided between longitude nutations and obliquity nutations. The
nutation with the largest amplitude is Bradley’s nutation and has a period of 18.6 years². Finally,
the rotation rate of the Earth varies around its main axis (i.e. in magnitude), with variations of the
order of milliseconds. This is called variation in the length of the day (LOD). All these motions
can be measured with great precision using the very long baseline interferometry (VLBI) method
(Thompson et al., 2017). This consists of observation of very distant celestial bodies, such as
quasars, with a network of telescopes. This allows one to reconstruct a very precise positioning
of the Earth. The precision of the measurement of VLBI is on the order of tens of `as (that is,
approximately 1 mm at the Earth’s surface) and approximately 10 `s (Bizouard et al., 2019; Liu
et al., 2020). As said before, the nutation and precession motions are mainly driven by external
forcings. We can calculate the forces applied on Earth since we know the position of the celestial
bodies (ephemerides). Theoretical response series can be calculated for a rigid Earth (Bretagnon
et al., 1997). However, the elasticity and existence of fluid layers significantly change the response
of the Earth to external forcings. It is thought that LOD variations are primarily due to themotion of
fluid layers (which can be tidally driven), which accelerate or decelerate the solid Earth, conserving
angular momentum.

In addition to the well-known free normal (seismic) modes, the Earth also has free rotational
modes. One of these modes is the Chandler wobble³ with a period of ≈ 432 days in the terrestrial
frame (An & Ding, 2022). The fluid outer core has a mode, called “free core nutation” (FCN),
which is quasi-diurnal (with a frequency of 1.00232 cycles per day) in the terrestrial frame (Dehant
&Mathews, 2015). The term “nutation” describes oscillations of the Earth’s axis of rotation relative
to an inertial frame. The FCN is associated with a diurnal wobble in the terrestrial frame. This
mode is particularly of interest because it is excited by all quasi-diurnal forcings. In particular, it
is close to the solar tide frequency of 1.00273 cycle per sidereal day (Buffett, 2010), generating a
large amplitude motion in the core (see figure 1.2). There is also the inner core rotational free mode
(FICN) and its associated wobble. However, even if this wobble is present in the nutation models,

¹The plane containing the trajectory of the earth in orbit around the sun.
²As datasets do not last long enough, most studies have been carried out on annual (in celestial frame) nutation.
³The term wobble describes “any periodic or quasiperiodic motion of the Earth instantaneous rotation axis with

respect to the figure of the Earth” (Dehant & Mathews, 2015).
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1.1. Observational constraints on the core-mantle coupling Chapter 1. Introduction

(a) (b)

Figure 1.1: Sketch of Earth rotation mechanisms. (a) Sketch of the main motions of Earth. 
? is
the precession axis vector, 
0 is the mantle rotation vector that defines the geographical position of
the north and south poles. 8 5 is the rotation axis of the fluid. (b) Sketch of the (exaggerated) interior
geometry of the Earth. OI is the main inertia axis (not necessarily aligned with 
0).

it has not yet been observed in the rotation measurements (Rosat et al., 2017). In this work, we will
perform our calculations in the reference frame rotating at 
0, which is not aligned with the main
inertial axis OI (see figure 1.1b).

8 is an arbitrary fluid vector
when seen in a frame rotating at
0 and is related to
 by (Noir
& Cébron, 2013)

lG = ΩG cos (Ω0C) +ΩH sin (Ω0C), (1.1a)

lH = −ΩG sin (Ω0C) +ΩH cos (Ω0C), (1.1b)

lI = ΩI −Ω0, (1.1c)

When the fluid rotation vector
 is steady in the frame of precession rotating at
? (such as when
only precession forcing is present). Then, all coefficients ΩG,H,I are constant, and the motion is
then diurnal in the mantle frame. For nutation motions, the coefficientsΩG,H,I are time-dependent.
However, for periods in the inertial frame much longer than the day, these coefficients can be ap-
proximated as constant (in the mantle frame). This is referred to as quasi-diurnal forcing, as op-
posed to precession, which is exactly diurnal. The time variations ofΩI correspond to the variation
of the LOD.
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Chapter 1. Introduction 1.1. Observational constraints on the core-mantle coupling

Figure 1.2: Fourier amplitude spectrum of the VLBI FCN complex series for 11-year segment datasets
each advanced by �2.8 yr with 75% overlap consecutively (the respective timespan given on the right).
The bottom thick curve is that for the 23-year full dataset. The periods are indicated on the top axis.
The dotted red lines are the periods of the main external nutations forcings (Mathews et al., 2002).
Figure (without red lines) from Chao & Hsieh (2015).

In addition to rotation, the magnetic field measured at the surface of the Earth provides in-
formation on the core dynamics. Early measurements were made mainly using ground stations
scattered around the globe. Recent advances in satellite measurement (e.g. the Swarm mission of
the European Space Agency Friis-Christensen et al., 2008) have led to considerable improvements
in the temporal and spatial resolution of field measurements. One can reconstruct the magnetic
field from the surface to the CMB by making assumptions about the mantle conductivity. This
problem was first addressed with an insulating mantle using potential field theory (e.g. Whaler &
Gubbins, 1981). However, the mantle is expected to not be fully insulating and acts then as a filter
for the most rapid variations of the magnetic field in the core (Jault, 2015). Once we have a mag-
netic field model at the CMB, we can use inverse models to propose admissible core flows (Gillet
et al., 2015).

These velocity models at the surface of the core can be used to estimate the exchange of an-
gular momentum between the core and the mantle using different methods. Knowing the angular
momentum variation of each layer and assuming that the Earth is a closed system that conserves its
angular momentum, allows us to reconstruct the motion of the mantle. In particular, knowing the
velocity variation of the fluid at each point allows one to calculate its angular momentum variation.
To use this method for the outer core, it is necessary to use models that reconstruct the flow in the
interior. This method has been used for LOD calculations by Pais & Jault (2008) or Gillet et al.
(2022) from the inversion of core flows at the CMB using magnetic field measurements. The angu-
lar momentum is then calculated by extending the surface flows with invariance along the rotation
axis. This angular momentum ! is written (assuming uniform density) as a function of only two
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1.1. Observational constraints on the core-mantle coupling Chapter 1. Introduction

(a) (b)

Figure 1.3: Schematic of electromagnetic coupling in the core. (a) Between the outer core and the
mantle. (b) Between the inner core and the outer core. The differential rotation of the two layers
bends the magnetic field lines and generates a force. Figure from Rosat (2016).

toroidal components of the surface flow as

! = V; (C01 + 12/7C03), (1.2)

with C0= the zonal toroidal component of the flow of spherical harmonic degree =, V; is a constant
(Jault et al., 1988). The expression of the core angular momentum considering an adiabatic profile
of density (Jault & Finlay, 2015) shows an infinite number of terms but stays dominated by the
components of equation 1.2. Finally, Schwaiger et al. (2024) shows that the time-dependent part
of 1.2 accounts very well for the core angular momentum changes in dynamo simulations.

1.1.2 Coupling mechanisms between planetary layers

The transfer of angular momentum between the different layers of the Earth involves coupling
mechanisms. One can distinguish 4 types of coupling mechanisms (Roberts & Aurnou, 2012).

• Gravitational: These effects consist of a non-local force between anomalies of mass in the
inner core and the mantle. It has been proposed to explain the variations in the length of day
(Buffett, 1996; Davies et al., 2014). This theory is supported by the seismological inference
of large-scale deep regions at the bottom of the mantle. Tidal tomography indicates that
these regions are dense (Lau et al., 2017).

• Viscous: This is the force generated by a viscous flow on a solid as a result of shear in
the boundary layer. The outer core kinematic viscosity is estimated to be in the range of
3× 10−7 − 5× 10−6 m s−2 (Mineev & Funtikov, 2004). The laminar viscous torque does not
therefore seem to be able to explain the variations observed in Earth’s rotation. This coupling
can become non-negligible in the case of a turbulent flow permeated by a magnetic field, but
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remain lower than the required torque (Deleplace & Cardin, 2006; Buffett & Christensen,
2007).

• Electromagnetic: This coupling appears if the solid (inner core or mantle) is electrically
conducting. The flow inside the outer core bends the magnetic field lines that cross the
boundary, generating a restoring force (see figure 1.3). This force is often considered to
explain some of the variations in LOD (Holme, 1998). Although the torque amplitudes may
be of the right order of magnitude, problems arise when looking at the time series of the
LOD. Electromagnetic coupling has also been proposed to play a role in the dissipative part
of annual nutation (Buffett, 1992; Deleplace & Cardin, 2006; Buffett, 2010).

• Pressure: This coupling is caused by a flow that encounters a surface that deflects it (ocean
floor, mountains, etc.). In the core, it appears because of the deviations of the CMB from the
sphericity. This concerns not only the ellipsoidal shape of the CMB but also medium- and
short-wavelength bumps. This has been proposed as a mechanism by numerous studies (e.g.
Hide, 1969; Moffatt, 1977; Braginsky, 1998; Acheson, 1975; Jault &Mouël, 1989; Kuang &
Chao, 2001; Buffett, 2010; Glane & Buffett, 2018; Jault, 2020). The strength of this coupling
is strongly related to the stratification, the intensity of the magnetic field, and its orientation.

All these couplings are based on more or less uncertain parameters. We provide a brief review
of parameters that will be of interest in this work.

It has long been proposed that the upper part of the core has a stratified layer, but its thickness
and the strength of this stratification are debated. The most common explanation is the accumula-
tion of light elements at the CMB. Alternatively, Landeau et al. (2016) found that a thick stratified
layer at the top of the core may result from merging between the proto-Earth and projectile cores
following a giant impact, such as the moon forming event. Bouffard et al. (2020) concluded that
such a primordial layer would survive convective erosion. The thickness of this layer is estimated
to be 10 to 400 km. Insights on this subject are coming for seismic data (Helffrich & Kaneshima,
2010; Irving et al., 2018; Kaneshima, 2018), mineral physics, thermal evolution model, but also
magnetic field observations and dynamo simulations (Gastine et al., 2020). Buffett (2014) and
Buffett et al. (2016) predict a layer of 140 km thick with a buoyancy frequency close to the rotation
frequency from the fluctuation of the dipolar part of the magnetic field. Olson et al. (2018) predict
a thicker 400 km layer by comparing dynamo simulations and observed magnetic field structures.
For a review that covers these different aspects, see Hirose et al. (2013); Hardy & Wong (2019).

The magnetic field at the CMB can be obtained by extrapolating the magnetic field measured
at the surface and making assumptions about the mantle conductivity. The field measured as the
surface is more dipolar than the one at the CMB since the small scales decay geometrically far
from the sources, faster than the large scales (Lowes, 1974). The conductivity of the lower mantle
is estimated mostly from indirect sources. Some estimates are obtained by calculating the torque
necessary to explain the length of the day (Holme, 1998) or the nutation measurements (Buffett,
1992, 2010). The mantle is also not completely insulating and acts as a filter for short periods and
long spatial wavelengths (Mandea et al., 1999; Jault, 2015). This makes it difficult to reconstruct
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the magnetic field at the CMB. The conductivity of the lower mantle is estimated mostly from indi-
rect sources. Some estimates are obtained by calculating the torque necessary to explain the length
of the day (Holme, 1998) or the nutation measurements (Buffett, 1992, 2010). As the conducting
mantle acts as a low-pass filter for the magnetic field, Jault (2015) studies the filtering of the differ-
ent magnetic field frequencies to give an estimate of the conductance. Schaeffer & Jault (2016) also
proposed that the observed absorption of torsional waves at the equator by a conducting lowermost
mantle yields an estimate of the conductance next to the equator of the core. Conductivity values
are also obtained from mineralogy studies (e.g. Yoshino, 2010). Combining all of these results
yields a very wide range of possible conductivity (2 − 104 S m−1).

This research work focuses primarily on topographic coupling, raising an important initial
question: does the CMB display irregularities? The conclusions drawn by the seismologists in-
dicate that this is indeed very likely. Even if it remains largely unknown, the CMB topography is
expected to have an amplitude quite similar to that of the Earth’s surface, with a broad wavelength
spectrum. Therefore, we can expect significant effects from this. Figure 1.4 presents a review of the
expected typical topography. It includes a seismological calculation (for a detailed review on this
topic see Koelemeijer, 2021). Some insights are also provided by numerical simulation of mantle
convection (Coltice et al., 2019) or by crystallisation / dissolution models (Narteau et al., 2001),
which give some insight into the small wavelength (< 100 km) undetectable by seismology.

1.1.3 Models of the Earth’s rotational response

The Earth can be seen as a (nearly) spherical spinning top⁴ subject to external forces with several
layers that exchange moments by different coupling mechanisms. These complex mechanics can
be modelled using various methods to reproduce the behaviour of the Earth. Models of Earth’s
rotation often exploit the Earth’s axisymmetry (for the mass distribution) to separate the effects
of angular velocity variations on the axis of rotation (LOD) from the one on the equatorial axes
(precession, nutations). In fact, the fluid response of the core to these forcings is different for each
case. For nutation and precession forcings, the main response is a uniform vorticity flow, which is
close to a solid body rotation around an equatorial axis. For variation on the rotation axis, motions
on a period longer than one day⁵ are mainly constrained by the Taylor-Proudman theorem and take
the form of geostrophic columns.

⁴With fluid layers and deformable solid layers.
⁵For rapid motions on a time scale much shorter than one rotation period, rotation effects become weak.
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Figure 1.4: Typical topography height ℎ vs. wavelength _C , from the RMS of the observed power
spectrum at the Earth and Mars’ surface (solid green and purple, Rexer & Hirt, 2015), or from a
simulation (dashed green and red Coltice et al., 2019) of the Earth’s mantle convection with plate
tectonics (model 5 in Arnould et al., 2020, averaged on 300 − 450 Myr, courtesy of T. Frasson &
N. Coltice), where the vertical stress provides ℎ (equilibrium with gravity). The SBF2012-T model for
Earth’s CMB (Koelemeijer, 2021), based on seismic body waves, is shown, as well as the CMB flattening
departure (from the hydrostatic value) given by studies of Earth’s nutations (Dehant et al., 2022) or
length of day (Davies et al., 2014, based on the core-mantle gravitational coupling). For comparison,
the viscous Ekman layer thickness is 10−4 − 10−3 km at the CMB and ICB (light blue zone). Black
dashed lines: empirical laws ℎ ∝ _C at the surface (Vening Meinesz rule for the RMS height, Ermakov
et al., 2018), and ℎ ∝ _2

C proposed for the CMB (from the Kaula rule for gravity RMS spectrum, Puica
et al., 2023). This figure is consistent with figure 7 of Garcia & Souriau (2000), dividing their values
by 5 (ratio between their figures 6a & 6b). From D. Cébron’s HDR manuscript (submit.).
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Core flow response to precession and nutations forcings

In a frame rotating at a time-dependent rotation vector, the fluid experiences a volume force,
which is the Poincaré force (dC
) × r, with r the position. This forcing has the same spatial
dependence as the free spin-over mode, which will resonate in the presence of this excitation.
This mode is a solution of the inertial modes equation and takes the form

u = 
 × r + ∇k (1.3)

with k a potential ensuring the non-penetration condition at the boundary (associated with a
flow linear in Cartesian coordinates). In our case, where the CMB is close to a sphere, ∇k is
small. Nutation forcing forces the equatorial component of this uniform vorticity flow.

The earliest models of nutation use Euler’s equation on a rigid Earth to provide the response to
external forcings (Woolard, 1953). These models are then followed by the introduction of the elas-
ticity of the Earth, firstly with the models of Jeffreys & Vicente (1957) and Molodensky (1961).
These models split the equations between a static rheology equation and the well-known Liou-
ville equations (Liouville, 1858), which is the conservation of the angular momentum (i.e. Euler’s
equation) for non-rigid bodies. These equations are given for each layer by

dCN +
 × N = � (1.4)

with � the torques applied to the body, where N = [I] · 
 is the angular momentum [I] is
the (possibly time-dependent) inertia tensor which includes the effects of elasticity, and 
 is the
rotation vector of the frame in which we are standing. To model the Earth’s response to nutation,
two lines of research have been mainly followed.

First, an angular momentum description (AMD) can be used, integrating equation (1.4) for
each layer of the Earth. It was pioneered by Molodensky (1961) and reformulated by Sasao et al.
(1980), in the so-called SOS model. This approach allows semi-analytical expressions to be ob-
tained with a few free parameters (ellipticity, compliances) constrained with data. The model was
then improved, adding the dynamics of the inner core (Mathews et al., 1991; Dehant et al., 1993;
Legros et al., 1993). It was completed by the MHB2000 model (Mathews et al., 2002; Buffett
et al., 2002), which has been the International Astronomical Union (IAU) reference model (Fer-
rándiz et al., 2022) since 2000. The MHB model adds, in particular, the effect of the ocean, the
atmosphere, and the electromagnetic coupling between the core and the mantle. Koot et al. (2008)
later improves the inversionmethod of this model. More recent models also developed new features
(not necessarily combined with the other effects included above), such as the elastic deformations
associated with a tilted inner core (Dumberry, 2009), or the topographic coupling of a triaxial CMB
(Guo & Shen, 2020). Despite all these improvements, the accuracy of the measurements motivates
further discussions with the aim of improving the nutation models and defining a new reference
model (Ferrándiz et al., 2018, 2022).

The second approach is gravito-elastic models that rely on a linear momentum description
(LMD), as reviewed in Rochester & Crossley (2009). By solving these equations numerically, we
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can obtain displacements at any point on Earth. It is important to note that the AMD models can
be considered as an integrated version, on each Earth’s layer, of LMD the gravito-elastic ones. The
LMD models are derived from the first studies of Smith (1977) and Wahr (1981). The model of
Wahr (1981) was chosen in 1980 as the reference model of nutation (Seidelmann, 1982) by the
IAU ⁶. This model has been improved by adding mantle anelasticity (Dehant, 1987), atmosphere
and ocean (Huang et al., 2001), elastic deformation of the inner core (Rochester & Crossley, 2009)
and magnetic field effects (Huang et al., 2011).

These nutation models are important in the context of our study, since they provide estimates
of the coupling at the CMB. The coupling between the layers is not explicitly modelled, but is
introduced in a parameterised way. This parameterisation is introduced by a torque proportional to
the differential rotation with a proportionality constant at the inner core boundary ( ICB) and the
CMB ( CMB) written as (in the mantle frame)

Γ̃ICB = −iΩ2
0�B ICB(<̃B − <̃ 5 ). (1.5a)

Γ̃CMB = −iΩ2
0� 5 CMB<̃ 5 . (1.5b)

The notation ˜ corresponds to a complex combination of the equatorial component of a vector
(e.g. <̃ = <1 + i<2, Mathews et al., 2002). The torque is noted Γ̃, � 5 and �B are the principal
moments of inertia of the outer and inner core. <̃ 5 is the differential rotation between the outer
core and the mantle, where (<̃B − <̃ 5 ) is the differential rotation between the inner and outer core.
The  CMB and  ICB constants are complex, denoting an in-phase and out-of-phase response to
external forcing. For the FCN, for instance, the ratio of the imaginary parts of  ICB over  CMB is
typically found to be 60, which is of the order of � 5 /�B ≈ 155, while <̃B − <̃ 5 ≈ 0.4<̃ 5 (Koot,
2009), giving a ratio of 0.15 for the imaginary parts of Γ̃ICB over Γ̃CMB, and thus a ratio of 0.06
between the associated dissipation. Therefore, the FCN damping is a priori dominated by the CMB
coupling, but a large uncertainty remains on the value of  ICB. Note that this parameterisation of
the coupling is modelled through a force on the boundary proportional to the velocity (equation
1.5). This is debatable since this scaling is known in fluid mechanics experiments to vary as a
function of several parameters (e.g. the squared velocity for turbulent flows Shih et al., 2023).

Some problems regarding the nutation seem to have been solved already. The in-phase (real part
of the coupling constant) component of the annual nutation can be explained by an ellipticity higher
by 5% (Gwinn et al., 1986; Herring et al., 1986), compared to the hydrostatic shape of the CMB.
On the other hand, the dissipative part of the nutations remains difficult to explain. Precession
coupling with the core, which is only briefly addressed in this manuscript, has been studied in
the context of the Earth’s secular spin evolution, showing an overall negligible influence (Correia,
2006). For a quantitative comparison, the Earth’s precession drives a 2 mm/s flow at both its
CMB and ICB⁷ (Sikdar & Dumberry, 2023), while the (annual retrograde) nutation driven flows
are roughly 20 times smaller at the CMB (Buffett, 2010), leading to a boundary layer Reynolds

⁶Upgrading the AMD model of Woolard (1953), IAU chose in 1979 the Molodensky (1961)’s AMD model as the
reference, but, after an IUGG report, IAU finally retained in 1980 the Wahr (1981)’s LMD model (Seidelmann, 1982).

⁷leading to a boundary layer Reynolds number around 250 in both cases (Sikdar & Dumberry, 2023).
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(a) (b)

Figure 1.5: Observed length-of-day variations (black), variations caused by the modelled atmospheric
winds (red) and variations caused by the sum of the modelled atmospheric winds, surface pressure,
oceanic currents, and bottom pressure (blue). On seasonal (a) and (b) interannual timescale. On the
seasonal time scale, the observed data are explained by the atmosphere and ocean at 92.2% in the
period 1992− 2000, and at 87.9% at the interannual time scale in the period 1980− 2000 (Gross et al.,
2004). Figures from Gross et al. (2004).

number around 10. This corresponds to an associated nutation dissipation around 9 MW (Buffett,
2010), to be compared with the much larger precession-driven dissipation of 4.6 GW and 14.5 GW
respectively expected at the CMB and ICB when considering the same coupling constants as for
the annual retrograde nutation (Sikdar & Dumberry, 2023).

The variation in the length of the day is mainly due to the different exchanges of angular mo-
mentum between the solid Earth and the fluid layers. On short timescales (less than one year),
variations of the LOD are mainly due to the coupling with the atmosphere (see figures 1.5 and
1.6a). The modelled contribution of the atmosphere separated the effects of the wind and pressure,
with the addition of less significant ocean effects, providing a satisfactory explanation for the short
periods. For longer periods, atmospheric or oceanic motions cannot fully explain the observations.
Then a substantial part of the LOD variations is attributed to the core (Jault et al., 1988; Holme
& De Viron, 2013; Finlay et al., 2023). To study the contribution of the core, the effects of the
ocean and the atmosphere should be subtracted (Puica et al., 2023; Rosat & Gillet, 2023). Figure
1.6, from Pfeffer et al. (2023) and Finlay et al. (2023), illustrates the core contribution to LOD
data. Models of core-mantle coupling, which are required when modelling LOD variations, face
three principal problems. First, when considering only one torque that acts to reduce the differ-
ential rotation between the core and the mantle (which is the case for the electromagnetic torque
(Schwaiger et al., 2024)), we expect that any initial differential rotation vanishes on a sufficiently
long timescale. Therefore, a second torque is necessary to maintain a non-zero differential rotation
(which allows LOD variations). A good candidate is a gravitational (coupling) torque between the
mantle and the inner core Buffett (1996). The second problem is that the electromagnetic torque
at the core-mantle boundary is expected to mainly arises from the axial rotation component of the
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(a)

(b)

Figure 1.6: (a) Power spectrum density (PSD) of residual LOD variations corrected by the angular
momentum of the atmosphere (AAM). Confidence levels at 85, 90 and 95% are shown as orange,
yellow, and green hatched lines. The residual value is higher for long periods with peaks at 5.6, 8.3,
and 11.7 years. From Pfeffer et al. (2023). (b) Observed changes in LOD (red curve) and predicted
LOD change from a core flow model. Observed LOD data are derived from VLBI data, from the C04
series, with estimated contributions from solid tides and atmospheric angular momentum removed. The
blue envelope shows the spread in an ensemble of flow predictions. From Finlay et al. (2023)

core surface flow, as Γ�" = −U;C01 (as shown by Schwaiger et al., 2024, with dynamo simulations),
with U; a constant that depends only on the conductance of the mantle. We can then model LOD
series from the core flow and this expression of the coupling. However, these obtained LOD series
do not correspond to the LOD measurements. Finally, the torque is supposed to be proportional to
the time derivative of the angular momentum, whose calculation is given in the core by the equation
1.2. This would conflict with the expression of the electromagnetic torque, which does not contain
any component in C03 (as opposed to equation 1.2). As we do not know the flow dependence of other
kinds of torque, such as topographic coupling, we can hope that their expressions differ from the
one of the electromagnetic torque (possibly bringing solutions to these issues).
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1.2 Topographic effects in geophysical flows

1.2.1 Pressure coupling, insights from ocean and atmosphere studies

The flow over topography is a historical issue in the atmospheric and ocean sciences (Scorer, 1949).
In particular, waves that propagate downstream of a mountain range or a sea ridge are the subject
of extensive literature (e.g. Smith, 1979, 1989; Wurtele et al., 1996; Legg, 2021). These waves are
observable in the atmosphere since they are indicated by specific wave cloud formations (e.g. see
figure 1.7b). This is a major topic for which every good textbook dealing with the dynamics of the
atmosphere and ocean has a section dedicated to (Gill, 1982; Cushman-Roisin & Beckers, 2011;
Vallis, 2017). Baines (2022) even published a book dedicated to this topic.

These waves, called “lee” or “orographic” waves, are inertial-gravity waves forced by the
boundary shape. They are important because they carry the energy and momentum of the mean
flow higher up into the atmosphere, where it is deposited as the waves break up. These waves also
play a role in mixing the fluid layer Wurtele et al. (1996). Lee wave generation creates a pressure
drag on the boundary that is responsible for the transfer of angular momentum between the fluid
and the solid. Due to all these effects, lee waves are important but cannot be tracked by numer-
ical meteorological models and need to be parameterised (Palmer et al., 1986; Mayer & Fringer,
2020). There is much to learn from these works, which are more advanced than the equivalent for
the Earth’s core (disregarding magnetic and deep layer effects). Therefore, the method used in this
work can easily be related to the pioneering work of Bell (1975), which developed an analytical so-
lution for internal waves forced by a topography. Studies on the atmosphere have the advantage of
being supported by many in situ measurements and experiments. Numerical models benefit from
these observations (a numerical result of Nikurashin & Ferrari (2010b) is given as an example in
figure 1.7). This has allowed them to acquire a lot of knowledge about turbulent and supercritical
flow regimes.

Topographic coupling is also of interest to the planetology community. Severalmoons of Saturn
and Jupiter have oceans of liquid water under an ice shell (for review see Nimmo & Pappalardo,
2016). In these satellites, the lower boundary of the ice is a phase-change interface. The coupling
of the icy shell with the underground water through spatial variation of the heat flux, phase change,
or elasticity of the ice shell can generate a topography that will affect the dynamics of the fluid
below (e.g. see Kihoulou et al., 2023; Kvorka & Čadek, 2024, and references therein). Radar
measurements (Zebker et al., 2009) coupled with gravimetric data (Iess et al., 2010) have revealed
this type of ice-ocean interface topography (e.g. Nimmo & Bills, 2010, on Titan). We expect
that the aspherical boundary of these oceans has an impact on the rotation of these satellites. For
instance, topographic pressure coupling has been proposed to explain the variation of Titan LOD
(Van Hoolst et al., 2009).

The question of turbulence will not be addressed in this work but may be relevant to geophys-
ical fluids. Among turbulent flows over topography, two limit cases are usually distinguished: the
topography height is lower than the boundary layer, which is often called roughness, which has,
for instance, been studied theoretically Gérard-Varet (2003a); Gérard-Varet (2003b); Gérard-Varet
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(a)

(b)

Figure 1.7: (a) Snapshot of the zonal velocity of a flow over topography in a numerical simulation
of (top) Drake Passage and (bottom) the southeast Pacific. From Nikurashin & Ferrari (2010a). b
Photographs taken from the Skylab space station illustrate an atmospheric internal lee wave pattern
downstream of Bouvet Island. Credit: NASA (February 1974).

& Dormy (2006); Radko (2023a); Radko (2023b) or with numerical studies Chan & Chin (2023).
In the opposite case, the topography directly interacts with the bulk of the fluid, preventing, for in-
stance, any boundary layer parameterisation (e.g. through a logarithmic law of thewall). Numerical
studies at large Reynolds numbers can then be quite challenging , and laboratory experiments are
then particularly useful, notably to study non-linear and turbulent effects.

Gravity waves, internal gravity waves, and inertial gravity waves are crucial for geophysical
fluids and have, therefore, motivated fluid experiments. Experimental observations of topographic
inertial waves have been made for rapidly rotating fluids in a cylinder (Pedlosky & Greenspan,
1967; Pratte & Hart, 1991; Burmann & Noir, 2018) and a cylindrical annulus (Pfeffer et al., 1993;
Weeks et al., 1997; Tian et al., 2001), often with problems related to oceanic and atmospheric cir-
culation (especially with links to circumpolar currents, see e.g. Maxworthy, 1977). Many studies
aim to observe Rossby waves (Carnevale et al., 1991; Pratte & Hart, 1991; Lemasquerier, 2021).
Westerburg & Busse (2003) used an annulus with a top and bottom slope to reproduce planetary
cores. On the other hand, many studies of internal waves have been based on experiments with-
out rotation. These studies are often performed in canals (Long, 1955; Baines & Hoinka, 1985),
or with topography on a conveyor belt (Aguilar & Sutherland, 2006; Aguilar et al., 2006). For a
complete review of stratified flows over topography, the reader is referred to Baines (2022). Ro-
tating experiments with stratification and topography are less frequent. Some experiments have
been performed with isolated topography (Boyer, 1987; Boyer & Zhang, 1989; Boyer & Davies,
2000) or a single ridge (Boyer & Biolley, 1986). The topography modelled by tilted slopes has
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also been used in cylinders (Maxworthy & Browand, 1975; Baines et al., 2005). For a review of
experiments with topography, stratification, and rotation, see Boyer & Davies (2000). However,
experiments that integrate rapid rotation and stratification are still needed to study the forcing of
the drag of gravito-inertial lee waves on a (regular) topography (even more with parameters for
which the results could be applied to the core).

1.2.2 Models of core-mantle coupling

Faced with the problems of LOD and nutations related to the core-mantle coupling, it has been
necessary to develop dedicated models that incorporate the specific features of the core. The effect
of the magnetic field is a key ingredient of the liquid-metal dynamics and can also be combined
with topography, mantle conductivity, rotation, and stratification. The core is a thicker layer than
the ocean and atmosphere, which does not allow the use of some of the approximations commonly
used for surface fluids (e.g. shallow water). Although we know what value of the torque to expect,
the origin of this torque is still debated (Roberts & Aurnou, 2012), and developing models that
incorporate all of the above elements is not an easy task. Therefore, a large number of models have
been developed to study all of these effects.

The first category of models uses global spherical geometry to calculate the torque. These
models are used for gravity coupling since it is a non-local global force (Buffett, 1996). Global
models are also particularly suitable for electromagnetic coupling models and have been used for
the length of the day (Holme, 1998; Gillet et al., 2015; Pichon et al., 2016; Schwaiger et al., 2024)
and nutation applications (Buffett, 1992; Deleplace & Cardin, 2006). In any case, this coupling
alone seemed insufficient on its own to explain the rotation data. Global models were also used for
topographic coupling, recalculating the pressure field of the inverted core flow, and obtaining the
torque from a topography model (Hide, 1989; Jault & Le Mouël, 1990; Kuang & Bloxham, 1993).
The pressure field is calculated using the tangential geostrophy approximation, which is based on
the fact that rotation is the dominant effect on the flow. This allows the pressure to be calculated
using only the surface flow.

Another approach is to use local models. With this method, the flow (and the coupling) is cal-
culated from the momentum equation in a Cartesian frame. This framework allows for a large set
of mathematical methods, such as asymptotic methods, perturbation methods, or the use of plane
waves. All of these techniques make it possible to add a host of features to the calculation. This has
been widely used to estimate the topographic coupling at the CMB (Acheson, 1975; Moffatt, 1977;
Hassan & Eltayeb, 1982; Braginsky, 1998) even in very recent papers (Glane & Buffett, 2018;
Jault, 2020). Buffett (2010) also developed a model that mixes topographic and electromagnetic
coupling to explain the out-of-phase component of the annual nutations. Recognising the limi-
tations of the local model for long-wavelength topography, some studies have introduced global
geometry effects, via V-plane effects (Braginsky, 1998; Jault, 2020), widely used for surface geo-
physical fluids. However, these local calculations have been performed under multiple (sometimes
severe) assumptions, such as discarded induction and advection (Buffett, 2010), short topography
wavelength (Glane & Buffett, 2018), or strong fluid stratification (Jault, 2020).
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1.2.3 Aim and structure of the thesis

Building on recent works, our motivation aim here is to unlock previous limitations by develop-
ing an efficient local model of boundary coupling that can calculate the torque at values of the
dimensionless numbers appropriate to the Earth’s core. We also intend to take into account global
geometry by V effects and variations with latitude. This model will also provide a better under-
standing of the physics of topographic and electromagnetic coupling by studying the physics of
topographic waves, in particular. We also aim to bridge the gap between steady length of the day
variation studies and nutation ones

The manuscript is structured as follows. In chapter 2, we first introduce the dynamical equa-
tions, the geometry, and the calculation method. We detail the specificity of our model. In chapter
3, we present our results for steady flows and geophysical applications for the variation of length
of the day. We focus on the effects of global geometry through the V plane and Rossby waves, with
also a study of the effect of magnetic field and dissipation on topographic coupling. We study the
propagation ofMAC steady waves forced by topography. Chapter 4 is dedicated to oscillating flows
associated with nutation motion. The time periodicity will first allow us to compare our model with
direct numerical simulations. We then investigate the effects of the base-flow oscillation frequency
and introduce the effects of a conducting solid, to finish with geophysical applications. In the con-
cluding chapter 5, we first show some ongoing work and short-term perspectives. In particular
we use our method, which allows us to integrate over the surface of the CMB taking into account
the spatial variation of the rotation and the magnetic field, to obtain more accurate values of the
coupling. We then discuss the limitations of local periodic models. We conclude this study with
a final remark and long-term perspectives as new implementations in the code or the links with
laboratory experiments.
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Summary of the chapter
ó Using models, LOD and nutation measurements allow one to obtain accurate values of

the fluid-solid (coupling) torque at the CMB thanks to rotation measurements.

ó Dissipative coupling of nutations and length of day variations are difficult to explain
with only an electromagnetic coupling.

ó We aim at investigating the stress generated by a flow on a periodic topography.

ó Wewill use our new model to study the propagation of topographic waves in a rotating,
stratified, and electrically conducting fluid.

ó This model will allow us to study both nutation motions and length of the day variations
within the same framework.

Figure 1.8: Three dimensional representation of velocity streamlines calculated with our code.
The pyramidal topography is constructed from a polychromatic series of sinusoids.
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In this chapter, we describe the method used to obtain magneto-hydrodynamic flow over a
bumpy topography. The problem is tackled in a local Cartesian frame. Then, we describe the
transition from global to local problem, defining the geometry, the dynamical equations, and the
method which allows us to introduce the effects of global geometry into the local model. Then, we
present the boundary conditions on a bumpy boundary that can also be electrically conducting. We
show how the different couplings at the boundary can be calculated. We have developed an original
semi-analytical method to calculate the flow on the topography via a perturbation approach. The
mathematical framework is described, followed by the resolution method used in our code.

2.1 Geometry and dynamical equations

2.1.1 Description of the problem

In this work, we investigate the boundary coupling between a planetary fluid layer and a solid
domain (e.g. the solid inner core and/or the mantle). We focus on a spherical boundary with shape
perturbations that are of small amplitude compared to the typical radius '. This geometry is then
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(a) (b)

Figure 2.1: Perturbing the global geometry (a) by small wavelength topographies, a local Cartesian
box model can be used (b), imposing a basic flow [0 and a magnetic field H0 in a frame rotating at

0, with the gravity vector g0 = 601z .

approximated by its tangent plane using a local model, and the problem is tackled in a periodic
Cartesian frame. The spherical coordinate system [1r , 1) , 1�] (see figure 2.1a) is thus converted
into a local frame with 1x = 1�, 1y = −1) and 1z = 1r , with \ the colatitude A the radius andΦ the
longitude. To account for planetary rotation, we work in the reference frame rotating at 
0, and
the buoyancy effects are due to constant gravity g0 = −601z (figure 2.1b).

Assuming periodicity in the G and H directions, we first consider a semi-infinite fluid, which
we then extend to a fluid layer enclosed between two boundaries. In both cases, boundary shapes
can be three-dimensional (possibly time-dependent) polychromatic bumps (figure 2.3), which can
be described with Fourier series

ℎ(G, H, C) = I0 + nC
∑
9

<
[
A( 9 )ei(k ( 9)

�
·r−l ( 9) C )

]
, (2.1)

in dimensionless form. We note I0 the boundary position without topographic perturbation. We
note r the position vector, and for each topography component, A( 9 ) the amplitude, k ( 9 )

�
= :

( 9 )
G 1G+

:
( 9 )
H 1H the horizontal wave vectors in the G − H plane, and l ( 9 ) the angular frequencies (e.g., as

required for rigid topographies studied in moving fluid frames, or for dynamical topography, Ache-
son, 1975). The relevant topography length for the flow is the one seen by the fluid along its motion.
We choose the largest topography wavelength 1/:̃ in the direction of the base flow as the unit of
length. This defines the non-dimensional height nC = ℎ0 :̃ � 1 of the topography, with ℎ0 the di-
mensional topography height (amplitude of the total topography). The parameter nC is considered
small to handle the topography effects in a perturbative way.

We assume the presence of a basic flow[0 and magnetic field H0, of respective typical magni-
tudes *̃ and �̃. In the following, we use the time unit 1/(*̃ :̃) and themagnetic field unit *̃ (dA `)1/2,
using the fluid reference density dA as the density unit and noting the fluid magnetic permeability
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`. Buoyancy effects are included in our model under the Boussinesq approximation. Assuming a
linear equation of state for density changes, the dimensionless buoyancy 60d/(*̃2dA :̃) is written
as 00(I) + 0. The buoyancy anomaly 0 is then an unknown variable of the problem, and the di-
mensionless basic state 00(I) is characterised by the local (dimensional) Brunt-Väisälä frequency
# through #2 = *̃2 :̃mI00(I), where mI denotes the partial differentiation with respect to I.

Considering a Newtonian fluid in the rotating frame of reference, the dimensionless velocity
u, the magnetic field b, and the buoyancy anomaly 0 are thus governed by

mCu + (u · ∇)u = −2'>−1
 × u − ∇? + 01z + (∇ × b) × b + '4−1∇2u (2.2a)

mC0 + (u · ∇)0 = −DI�A−2 + %4−1∇20, (2.2b)

mC b = ∇ × (u × b) + '<−1∇2b, (2.2c)

with the solenoidal constraints∇·u = ∇·b = 0, and using the reduced pressure ? which includes the
centrifugal effect. Noting the fluid kinematic viscosity a, the fluid magnetic diffusivity [ = (`f)−1

with ` ≈ `0 the permeability of the medium and `0 the one of the free space. f is the electrical
conductivity of the medium, and U the buoyancy diffusivity, we have used non-dimensional control
parameters defined in Table 2.2. While the velocity and the density unknowns are only defined in
the fluid domain, the magnetic field also has to be obtained in the conducting or insulating solid¹.
Then, two cases are considered. When the solid is insulating, the magnetic field b can be obtained
from a scalar potential k using b = −∇k and ∇2k = 0. For an electrically conducting solid at rest,
of uniform magnetic diffusivity [B, b is governed by the diffusion equation

mC b = [̃'<−1∇2b, (2.3)

with [̃ = [B/[ the ratio of fluid and solid ([B) magnetic diffusivities.
In the following, we only consider the case of uniform stratification 00 ∝ I and �A is thus

constant, our method only allowing for linear or periodic base density field. We will also consider
the asymptotic limit '4−1 = %4−1 = 0. Taking this limit has the advantage of removing the
associated boundary layers. Their presence imposes indeed a severe upper bound on the maximum
topography height nC that can be considered in our code (the perturbation approach requires nC being
smaller than the viscous boundary layer thickness to ensure convergence of the series expansion,
see section 2.4). This limitation is removed by considering an inviscid fluid.

¹If pseudo-vacuum (b × n = 0) or perfectly conducting (b · n = 0) conditions are chosen, there is no need to know
the field in the solid.
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Parameters Expression :̃−1 = 5 km :̃−1 = 100 km Glane & Buffett (2018)

Rossby '> = *̃ :̃/Ω0 2.74 × 10−4 1.37 × 10−5 4.32 × 10−4

Froude �A = *̃ :̃/# 2.74 × 10−4 1.37 × 10−5 2.16 × 10−5 - 4.32 × 10−4

Magnetic Reynolds '< = *̃/([:̃) 6.25 × 10−1 12.5 9.92

Reynolds(0) '4 = *̃/(a:̃) 5 × 105 107 ∞

Peclet(0) %4 = *̃/(U:̃) 5 × 104 106 ∞

Alfvén(1) �; = *̃
√
dA `/�̃ 2.24 × 10−2 2.24 × 10−2 8.62 × 10−2

Global wavelength j = 1/:̃' 1.43 × 10−3 2.86 × 10−2 0

Conductivity ratio(0) [̃ = [B/[ 103 103 ∞

Lehnert !4 = '>/�; 1.22 × 10−2 6.12 × 10−4 5 × 10−3

Elsasser Λ = '>'</�;2 3.41 × 10−1 3.41 × 10−1 5.77 × 10−1

Interaction parameter '</�;2 1.24 × 103 2.49 × 104 1.33 × 103

(0) Values for the Earth’s core. But, unless specified, the calculations are for '4−1 = %4−1 = [̃−1 = 0.

(1) Alfvén number does not appear in equation 2.2 but only through the amplitude of the basic magnetic field (equation

2.21).

Table 2.2: Expression of non-dimensional parameters used in this study and their typical values for
Earth core-mantle boundary. We suppose #/Ω0 = 1 and that U is the thermal diffusivity. The value
of *̃ = 10−4ms−1 is the average zonal velocity at the CMB (Moffatt, 1977), and �̃ = 5 × 10−4T the
typical magnitude of the magnetic field at the pole. We also show parameters used by Glane & Buffett
(2018).

Figure 2.3: Typical topography handled by our code, from the simple 1D ridge shape (left) considered
in previous studies (Buffett, 2010; Glane & Buffett, 2018; Jault, 2020), to the more complex and
realistic 3D topographies considered in this work (middle: egg-box topography, right: pyramidal-egg-
box topography).
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2.1.2 Various V-plane approximations

The interaction between the sphericity of the Earth and its rotation introduces new physical effects,
notably giving rise to what are referred to as Rossby waves (Cushman-Roisin & Beckers, 2011).
In the case of local models, we have to capture these physics by adopting approximations that
allow us to take into account these curvature effects. More generally, the so-called V-effect corre-
sponds to the implications of Kelvin’s circulation theorem (Bjerknes’ theorem for rotating fluids)
for barotropic fluids and of the conservation of potential vorticity, in spherical geometry. These
theorems, detailed below, have a significant effect on the vorticity of the flow when subjected to
variations in rotation or fluid height.

The conservation of potential vorticity is derived from the conservation of mass and energy
(only true for adiabatic and diffusionless flows) and is helpful in understanding rotating flows (for
an extensive picture of potential vorticity and its implication see chap. 4 of Vallis, 2017). Potential
vorticity is a quantity proportional to the absolute vorticity 'a multiplied by a vertical constraint
on the fluid. In the case of a 2D flow, vertically bounded, as is the case for geostrophic flows and
shallow water approximations, the conservation of potential vorticity is written as

�C

(
Z0I

ℎ

)
= �C

(
(2'>−1
 + ∇ × u) · 1I

ℎ

)
= 0 (2.4)

with ℎ the height of the fluid column and �C the material derivative operator. This corresponds to
Rossby’s shallow layer potential vorticity (Rossby, 1939).

In the case of 3-dimensional and stratified flow, this equation is rather the conservation of the
Ertel’s potential vorticity (Ertel, 1942)

�C ('0 · ∇0) = �C

[(
2'>−1
 + ∇ × u

)
· ∇0

]
= 0 (2.5)

where the absolute vorticity is multiplied by the gradient of a materially conserved quantity, which
is the buoyancy 0. Looking at these equations, we can then separate V-effects into two families:
Topographic-V and V-plane effects (Pedlosky, 2013).

Geometrical constraint: topographic V-effect

For topographic V-effect, the height of the fluid column (or its equivalent induced by stratification)
is balanced with the vorticity to conserve the potential vorticity. For Earth applications, these
topographic effects can be divided into two families: shallow and deep layer effects, which separate
the ways of prescribing vertical variations of the flow.

For shallow topographic effects, the hydrostatic approximation imposes a I-invariance. The
V effects are then due to the variation of the fluid height, which typically comes from a uniform
bottom slope (e.g. the case of a coast with a varying bottom floor). This gives rise to the so-called
topographic Rossby waves (Pedlosky, 2013). These waves exist locally in our framework, due to
the topography, but better correspond in this case to the name inertial gravity waves, since these
effects come from the small-scale topography and not from a length scale larger than the local box.
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For deep topographic V-effect I-invariance comes from the Proudman-Taylor constraint in ro-
tating fluid layers, such as the core. Deep V-effects are included in quasi-geostrophic (QG) cal-
culations (Schaeffer & Cardin, 2005; Gillet & Jones, 2006; Gastine, 2019; Barrois et al., 2022).
When we directly derive equations from momentum conservation (following a method similar to
Dellar (2011)), the full equation of Labbé et al. (2015), which describes V effects, can be obtained.
Historically, QG models have used approximations of this equation. The height variation of the
geostrophic column then introduces a corrective term in the equations, proportional to the gradient
of the column height. At the equator, the slope becomes infinitely steep, invalidating this approach.
This is not the case for the Labbé et al. (2015) equation (also used by Bardsley, 2018; Gerick et al.,
2020).

V-plane with varying Ω

The second V-effect comes from the variation in angle between the rotation vector and gravity due
to the global shape. This is important for the flow either because of the hydrostatic assumption (for
a free surface) or because the fluid is stratified. For shallow layers (e.g. oceans and atmosphere),
the rotation vector
 is often simplified considering only its vertical component, which is the most
influential since the velocity field is mainly horizontal. This approach is often called the f-plane
approximation and is given by 
 = cos \1z . For large length scale (j = 1/( :̃') 6� 1), the local
model needs to include curvature effects from the spherical geometry. For such perturbations, 

is no longer considered constant within the box. The V-plane corresponds to the series expansion
of the f-plane for a small distance :̃−1H = \ − \′' from a given colatitude \. The dimensionless
rotation vector is then expressed as


 = (cos \ + jH sin \)1z , (2.6)

which is relevant for thin fluid layers (Rossby, 1939). In a more general case it can be relevant to
consider also the tangential component of the rotation vector, as


 = (cos \ + jH sin \)1z + sin \1y , (2.7)

For deep layers, the so-called non-traditional V-plane includes, in addition, a linear variation (sin \−
2jH cos \)1y for the tangential component (Grimshaw, 1975). It violates∇·
 = 0, necessary for the
material conservation of the potential vorticity (Dellar, 2011). To solve this problem, an additional
term 2jI cos \1z is then required, related to the vertical variation of the radial component of 
,
which gives


 =

[
0, sin \ − 2jH cos \, (1 + 2jI) cos \ + jH sin \

]>
, (2.8)

it corresponds to the equations 8.2 and 8.3 of Dellar (2011). The balance between the variation
of the rotation vector and the vorticity (and possibly the stratification) gives rise to the so-called
planetary Rossby waves (Longuet-Higgins, 1964). Note that planetary Rossby waves commonly
refer to the 2D barotropic shallow layer expression of these waves. In our framework, we will prefer
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to mention waves that involve V-plane, simply as Rossby waves. There is a direct analogy between
planetary and topographic Rossby waves, since the dynamical equations are equivalent, changing
the value of the prefactor of the term V (Cushman-Roisin & Beckers, 2011). This is useful for
experimental setups. Using a rotating tank with a tilted bottom boundary can substitute for V-plane
effects (for experiments of deep (QG) topographic V-effects see also Lemasquerier et al., 2021).

These approximations of 
 introduce linear dependencies in the equations. We take the curl
of the equation 2.2a (called vorticity equations), which removes the unknown pressure and reveals
the terms of V effect. Terms that still depend linearly on H and I are neglected, since the V-plane
approximation is derived near G = H = 0. We need to remove two excess equations due to the
solenoidal constraint on b and u. We remove one of the horizontal equations for each of the induc-
tion and vorticity equations, depending on the orientation of the horizontal wave vector. To respect
the symmetry of the problem, if :G ≠ 0 and :H = 0, we remove the equation along G and if :H ≠ 0
and :G = 0, we remove the one along H. If :G ≠ 0 and :H ≠ 0, we can choose any of them. In the
end, we find the pressure field by resolving the component of equations 2.2a aligned with the base
flow.

Polar and equatorial dynamics

Due to the spherical geometry, the effect of rotation is particular (and distinct) at both the pole and
the equator.

At the pole, the leading order of the V-plane vanishes. To account for the variation of the
rotation with latitude in polar regions, we are then required to consider the next higher-order term.
This so-called W (or X) plane term arises from the Taylor series of the rotation vector, reading in its
simpler form (Yang, 1987)

ΩI = cos \ + jH sin \︸   ︷︷   ︸
=0 at the poles

− (jH)2

2
cos \ + O(H3). (2.9)

Such a naive approach leads to a divergence of one component and has thus been later refined by
Harlander (2005), showing that an additional term is required.

At the equator, the projection of the rotation vector on the gravity vector vanishes. Despite the
numerous references to “equatorial V-planes” (e.g. Pedlosky, 2003; Boyd, 2018), these are nothing
different from equation 2.6, and only highlight the absence of the 0-order f-plane term at the equator.

The symmetrical nature of the equator gives rise to several equatorial waves. These waves have
the properties of being trapped at the equatorial latitude due to the V-plane effect. These include
the equatorial Rossby waves, which are planetary Rossby waves. This also gives rise to equato-
rial Kelvin waves² for which the equator behaves like a solid coastline (Pedlosky, 2003). Finally,
there are also Yanai waves, also known as mixed gravity-Rossby waves, that exist with the mixed
influence of gravity and V-plane (Delplace & Venaille, 2019). These waves continuously transition
between low-frequency Rossby waves and high-frequency Poincaré waves, whose restoring force
is gravity.

²Kelvin waves are gravity waves that emerge in the presence of a coastline.
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2.2 Boundary conditions

Boundary conditions complement the dynamical equations. When a semi-infinite geometry is con-
sidered, we impose the perturbations to vanish at infinity. In the following, we note with brackets
[ ] the difference in quantities between both sides of the boundary and evaluated at I = ℎ. We
denote normal and tangential components by subscripts = and C , respectively, which are calculated
in practice using the unit normal vector n = ∇�/|∇� |, with � (G, H, I, C) = I − ℎ(G, H, C) as the
boundary surface.

2.2.1 Kinematic conditions

On an arbitrary boundary, the normal kinematic boundary condition is DC� |I=ℎ = 0, which gives
u · ∇� |I=ℎ = −mC� |I=ℎ. This boundary condition can be rewritten more simply, as

D= − DB= = 0, (2.10)

with DB= is the normal velocity of the boundary. It reduces to u · n = D= = 0 for steady boundaries
and ensures that the fluid and the boundary move consistently and is sufficient to close the equations
for inviscid fluids.

More conditions for the tangential components of u are required in the general case of viscous
fluids, such as the no-slip condition

[uC ] = 0. (2.11)

We can also impose the continuity of the stress (called stress-free conditions if one medium is a
solid or an inviscid fluid)

[(2 · n)C ] = 0, (2.12)

with the dimensionless viscous stress tensor 2 = '4−1 (∇u + (∇u)>) /2.

2.2.2 Magnetic conditions

The magnetic field normal component is continuous across the boundary.

[1=] = 0. (2.13)

However, when the solid is considered to be perfectly conducting, surface electrical currents may
arise. Then, the tangential component can be discontinuous

[bC ] = −n × J, (2.14)

with J the surface current density. These magnetic field conditions are sufficient for insulating
solid domains, but in the general case they must be complemented by continuity conditions on the
tangential components of the electrical field K. When looking at a moving interface, the boundary
conditions on K are modified, and we must therefore pay close attention to the reference frame
(Thorne & Blandford, 2017). The electrical field is modified in a moving reference frame as K′ =
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K + u × b. Integrating the Faraday law ∇ × K = −mC b on a circuit moving with the boundary, we
obtain the following

[K′
C ] = [KC + (DB=n × b)C ] = 0. (2.15)

The condition is then modified by the boundary velocity only if b is discontinuous, that is, if there
is a surface current J. Note that the velocity in this expression is normal to the boundary, since K
is modified by the velocity of the reference frame we consider. Rekier et al. (2023) have recently
reconsidered the boundary condition on K, arguing that the correct one includes the sliding velocity
of the fluid on the interface. In the case of a tangential velocity discontinuity (stress-free), the
additional term of equation 2.15, which reads, in this case, (u × b)C , becomes thus non-zero³.
This is opposed to the common approach (Thorne & Blandford, 2017) and is not the one to adopt.
Indeed, the continuity equation results from the Stokes theorem applied to the Maxwell-Faraday
equation for the change in the electrical field. This transformation necessitates that the Maxwell-
Faraday equation is written in the same reference frame on either side of the boundary.

To implement these boundary conditions for our problem, we need to express it as a function
of the magnetic field b. We then use Ohm’s law in a local moving frame, j = '<(K + u × b) as
well as Ampere’s law ∇ × b = j. We obtain[

E∇ × b

'<
− (u × b) + (DB=n × b)

]
C

= 0, (2.16)

with E = 1 in the fluid and E = [̃ in the solid.

2.3 General expression of the boundary stress

Through the pressure, viscous, and electromagnetic forces, the flowgenerates stresses on the bound-
ary. The force L on the solid is written as

L =

∫
(

?n d( −
∫
(

'4−1 [
(∇u) + (∇u)>

]
n d( +

∫
+

(∇ × b) × b d+, (2.17)

with n the normal vector pointing inward of the solid, ( the fluid-solid boundary surface and + the
solid volume. The Lorentz force can also be obtained by integration on a closed surface (Roberts
& Aurnou, 2012), writing it as (∇ × b) × b = ∇ · 2S , with the Maxwell stress tensor f"

8, 9
≡

181 9 − (12/2)X8, 9 and the Kronecker symbol X8, 9 . Equation 2.17 is thus transformed into

〈L〉 =
1
(

(∫
(

?n d( −
∫
(

'4−1 [
(∇u) + (∇u)>

]
n d( +

∮
(2

(
(n · b)b − 1

2
12n

)
d(

)
, (2.18)

with (2 the closed surface of the volume + . The brackets 〈〉 indicate the horizontal spatial average
on G and H. In our model, the solid has a semi-infinite extent, where we need to satisfy our boundary
condition of vanishing perturbation at infinity. For a steady flow on a conducting solid, the basic
state has a linear vertical dependency, which does not satisfy our boundary condition (apart from
a null perturbation). This linear dependency also introduces a non-physical infinite force on the

³while it should only be non-zero in the case of a current sheet at the interface.
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solid. This problem can be solved by adding a second boundary, delimiting a conducting and layer
and a semi-infinite insulating solid.

For oscillating flows, an exponential boundary layer emerges, solving this issue (see chapter 4).
The decay length of the magnetic field perturbation, called the magnetic skin thickness X, depends
on the oscillation frequency l as X =

√
2[̃'<−1l−1 (Buffett, 2010). In the stationary case, X is

infinite. When b is periodic in the horizontal directions and vanishes at infinity, the integration on
(2 reduces to integration on the topography surface⁴ (, and the mean force 〈L〉 on the solid can
finally be obtained as

〈L〉 =
1
(

∫
(

(
?n − '4−1 [

(∇u) + (∇u)>
]
n + (n · b)b − b2

2
n

)
d(, (2.19)

To estimate the stress, the unit normal vector n = ∇�/|∇� | can be calculated exactly and used at
the exact location of the boundary (which is done in the code, e.g. to evaluate ?n at the boundary).
To illustrate the discussion in the following, we provide the leading order of the series expansion
of n,

n =

[
−nCmGℎ(G, H) + O(n3

C ),−nCmHℎ(G, H) + O(n3
C ), 1 + O(n2

C )
]
. (2.20)

Looking at this expression we see that the boundary horizontal stress 2.18 induced by the topogra-
phy perturbation is of the order n2

C , which requires a priori a challenging second-order calculation.
For the horizontal stress on the solid side, it appears in some cases that it can be obtained from sim-
pler first-order linear solutions. The form of the horizontal component of the normal vector 2.20
which has no zeroth order, allows us to obtain the second-order horizontal pressure stress from the
linear solution (Glane & Buffett, 2018; Jault, 2020). This can easily be extended to higher orders
(e.g. order 2 solutions provide the tangential pressure stress at order 3). Note that this is not the
case for viscous stress, which can only be calculated with a full second order.

Horizontal force on a stress-free boundary

Sometimes it is assumed that the stress-free boundary condition ensures zero drag on the
boundaries. This is true only in the absence of topography. In fact, this boundary condition
only ensures zero tangential stress. In the presence of topography, the sum of local normal
stresses can produce a net drag (in the flow direction). This was also stressed for stress-free
ellipsoids by Vidal & Cébron (2023).

2.4 Numerical method

2.4.1 Perturbative expansions

Starting from an imposed basic state for nC = 0 (flat boundary), our objective is to calculate the
perturbations due to topography. A direct integration of the dynamical equations is possible using a

⁴For a uniform b0 = 1G1G + 1I1I the local Maxwell stress (n · b)b = 1I1G1G is non-zero even for an insulating
solid if integrated on (. Therefore, the integration must be performed on the closed contour (2.
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(brute-force) numerical method (e.g. finite element method), but it would not allow us to cope with
planetary parameters or, more generally, to calculate flows with very small diffusivities. Instead,
we follow an alternative approach, linearising the equations with perturbative expansions of the
non-linear terms.

To express the perturbation caused by the topography, we write the variables as

u = u0 +
∑
<=1

n<C u<, b = �;−1b0 +
∑
<=1

n<C b<, 0 =
∑
<=1

n<C 0<, (2.21)

The series expansion in nC allows us to linearise the equations for weak topography slopes. This
approach is suitable if the basic states are steady and uniform (Jault, 2020) or if the non-linear terms
are fully discarded in the dynamical equations (Buffett, 2010).

Indeed, nonlinearities can arise from two sources: the boundary conditions and the non-linear
terms of dynamical equations. For the second one, a non-linear cascade arises if the basic state
is varying in space and/or time. By cascade we mean that in the non-linear term, the spatial or
temporal dependencies will multiply, creating a new term of shorter wavelength, which must be
added to the solution at the same order. This will iteratively create an infinite number of increasingly
small-scale terms within the same order⁵. To solve this issue, we then define a formalism that allows
us to linearise all non-linear terms. To do that, the (dimensionless) imposed basic flow u0 = [0/[̃
is written as u0 = uBD + nE ũ, where ũ is a departure from a uniform steady flow uBD, and nE is
the parameters to be used for the series expansion. This decomposition is required if we want the
basic field to be time or spatially dependent (and if we want to take into account weakly non-linear
effects): oscillating velocity, viscous boundary layers, or flow on conducting solid, etc.

Calculation of boundary layers (through series expansions)

In certain cases, we want to construct a basic field that is uniform and steady far from the
boundary, but that also satisfies the boundary conditions through an additional boundary layer
flow (that needs to be obtained). In these cases, ũ and uBD (and similarly b̃ and bBD) must be
of the same order nE . The uniform steady component uBD should be included in ũ

In this work, the imposed magnetic field �;−1b0 = H0/(*̃
√
dA `) will always be assumed

to be uniform and steady⁶. The perturbations from the basic state are obtained with the double-
perturbation expansion

u = u0 +
∑

<,==0
n<C n

=
E u<,=, b = �;−1b0 +

∑
<,==0

n<C n
=
E b<,=, 0 =

∑
<,==0

n<C n
=
E 0<,=, (2.22)

where u0,0 = b0,0 = 0 and 00,0 = 0.
Combining the expansions 2.22 with the dynamical equations, we get a hierarchy of linear

forced problems that can be solved iteratively. We use the same expansion for the pressure and

⁵For uniform and steady basic states, the non linear terms will only add new spatial and time dependences (of shorter
wavelength) to the higher orders (= ≥ 2), which remains tractable.

⁶Otherwise, similarly to u0, a new n1 variable can be used in series expansions of b0 (not needed if n1 is of the order
of nC or nE).
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calculation of the surface stress. Since we integrate on a curved boundary, the surface element
used in equation 2.19 d(, is written as

d( =

√
n2
C (mGℎ(G, H))2 + n2

C

(
mHℎ(G, H)

)2 + 1. (2.23)

For illustration, it can also be written as a series expansion,

d( = 1 + n2
C

(
(mGℎ(G, H))2

2
+

(
mHℎ(G, H)

)2

2

)
+$

(
n3
C

)
dGdH. (2.24)

We see that this introduces a correction on the stress for orders < > 2.
We write the unknown perturbations (u<,=, b<,=, 0<,=) as a sum of harmonic plane waves of

wave vector k ( 9 ) and pulsation l ( 9 ) . For the part of the flow forced by the non-linearities, l ( 9 )

and k ( 9 ) are given directly by the terms of previous orders. The second part of the flow arises from
the boundary conditions, which give the horizontal part kN

( 9 ) = : ( 9 )G 1G + : ( 9 )H 1H of k ( 9 ) . For each
kN

( 9 ) , the (homogeneous) dynamical equations provide : ( 9 )I .

Example of perturbed equations

The order n0
C n

0
E , n1

C n
0
E and n0

C n
1
E being straightforward to calculate, we show as an example the

equations at order n1
C n

1
E

mCu1,1 + (u0,1 · ∇)u1,0 + (u1,0 · ∇)u0,1 + (u0,0 · ∇)u1,1 = 2'>−1
 × u1,1 − ∇?1,1

+01,11z + �;−1 [
(∇ × b1,1) × b0,0

]
+ (∇ × b0,1) × b1,0 + (∇ × b1,0) × b0,1,

(2.25)

mC01,1 + (u0,1 · ∇)01,0 + (u1,0 · ∇)00,1 = −(u1,1 · 1I)�A−2 + %4−1∇201,1, (2.26)

mC b1,1 = �;−1∇ × (u1,1 × b0,0) + ∇ × (u0,0 × b1,1) + ∇ × (u1,0 × b0,1)
+ ∇ × (u0,1 × b1,0) + '<−1∇2b1,1, (2.27)

∇ · u1,1 = ∇ · b1,1 = 0 (2.28)

Note that some terms of this order are zero (e.g. (u1,1 · ∇)u0,0) as u0,0 and b0,0 are uniform.

2.4.2 Basic states

A relevant basic state for planetary studies is provided by the solid body rotation around 
0 in the
spherical geometry, leading to a uniform and steady basic flow u0 = sin \1x in the local model.
We can also consider an oscillating flow, which is appropriate for tidal flows or motions forced by
precession/nutation (Buffett, 2010, 2021). This kind of flow consists of an equatorial rotation and
leads to a more complex 2D oscillating flow in the local geometry, written as (Buffett, 2010, 2021)

u0 =

[
− cos \ cos (lC + q), sin (lC + q), 0

]
. (2.29)
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Nutation and precession forcings lead to an equatorial rotation of the flow. For the libration motion
(rotation along the rotation axis), performing local calculations in the fixed topography reference
frame requires one to include a time oscillating
. This can be introduced in the framework of our
code.

For simplicity, the basic magnetic field is considered to be uniform and steady in each local
box model, varying in angle and magnitude as a function of the position of the local model with
respect to the global geometry. Approximating the magnetic field as a dipole, we use

b0 =

[
0, sin \/2, − cos \

]
. (2.30)

.

A magnetic V-plane

Following the principle of the V-plane for the rotation vector, we investigated the imple-
mentation of a “magnetic V-plane” that would use the same first-order spatial variations.
Introducing linear variation in colatitude we obtain

b0 =

[
0, sin \/2 − jH cos \, − cos \ − jH sin \

]
. (2.31)

We note that this approximation break the solenoidal constraint ∇ · H = 0 (as is it the case
for 
). In the same way as Dellar (2011), we need to introduce a vertical variation on the
vertical component of H, as

b0 =

[
0, sin \/2 − jH cos \, (−1 + jI) cos \ − jH sin \

]
. (2.32)

This introduces difficulties since b0 is included in the boundary conditions. This means
that the perturbation must also allow for linear variations. This is not currently possible
with our code, but could be implemented in the future. In practice, we then only use the
uniform components of b0. Note that this can also be applied to the latitudinal variation of the
velocity field, which is a key element for Ekman’s pumping in spherical geometry. This initial
exploration should be pursued for future models by rigorously defining the mathematical
framework for this approximation and being cautious about its implementation.

2.4.3 Our semi-analytical code ToCCo

At each order, the perturbed unknowns (u<,=, b<,=, 0<,=) are searched as plane wave series forced
by the previous order (e.g. the basic state) and boundary conditions. In this study, our aim is to
go beyond the linear solution following previous approaches (Braginsky, 1998; Glane & Buffett,
2018; Jault, 2020). The double perturbative expansion 2.22 then has to be obtained at order < or =
larger than 2, yielding higher accuracy and enabling the investigation of weakly non-linear effects.
The orders are solved in an increasing way. For example, order n2

C nE requires having previously
calculated orders nE , nC , nCnE , and n2

C .
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The solution is expressed as the sum of exponentials of the form
∑

9 exp[i(: ( 9 )G G + : ( 9 )H H +
:
( 9 )
I I − l ( 9 ) C)]. Introducing this ansatz into equations 2.2, we obtain a linear system G^ = c,

which is non-homogeneous for orders < + = ≥ 2 (i.e. c ≠ 0, where c consists of the nonlinear
terms arising from previous orders). The homogeneous part of the solution is obtained by consid-
ering each horizontal harmonic separately. To ensure the existence of nonzero solutions, the zero
determinant constraint provides the required values of : ( 9 )I (since the solution is not unique, the set
of solutions is denoted : ( 9 ,: )I ). To find all the solutions, we express the determinant in the form of
a polynomial. We use the Berkowitz (1984) algorithm, which provides the determinant in the form
of a fraction-free polynomial. Note that the degree of this polynomial is equal to the number of
boundary conditions. For half-space, we only keep the modes for which the imaginary part of :I
yields a solution vanishing at infinity. Some polynomial determinants are therefore not analytically
solvable due to their high degree (e.g. if there are two boundaries, a non-zero viscosity, or a solid
conductor), which led us to use a numerical method. We numerically find each of the roots using
the polyroots function of mpmath, based on the Durand-Kerner algorithm (Kerner, 1966).

For each : ( 9 ,: )I , we calculate the associated nonzero solution(s) Q 9: , called null spaces or
kernel. Null spaces are found using the singular value decomposition of the matrix, which is based
on the Golub & Reinsch (1971) algorithm. We again use a numerical method since the analytical
calculation of matrix kernel is very expensive, except for simple cases that are tractable by symbolic
calculations. The eigenvalues : ( 9 ,: )I can be degenerate. In such a case, they yield several solutions
Q 9: . In the following, we consider that the list (: ( 9 ,: )I ) contains all :I , even identical ones, and
their associated solution Q 9: . The homogeneous solution vector is thus written as

∑
9

[
exp[i(: ( 9 )G G + : ( 9 )H H)]

∑
:

(
� 9:Q 9: exp(i: ( 9 ,: )I I)

)]
. (2.33)

For particular solutions, :I is obtained directly from the expression of non-linear terms. It
turns out that these :I are not eigenvalues of G, and consequently, we can solve the linear system
G^ = c. Finally, when the particular and homogeneous solutions are added, the constants � 9: are
obtained from the boundary conditions.
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Reference frames: non-zero base flow or moving boundary ?

Physics does not depend on the frame of reference. A steady, uniform base flow on a motion-
less boundary or the associated setup with a moving solid over fluid at rest is thus equivalent.
However, switching from one to the other is not easy. Since none of the medium is time-
dependent, one might think that a suitable plane-wave ansatz can be exp(i(:GG + :HH+ :II)).
This implies that the equations of motion are not identical because (uBD ·∇)u is zero at order 1
in the second case. The ansatz needs to be chosen according to the boundary conditions. For
a solid that moves horizontally, the fluid sees an oscillating boundary. For a boundary that
moves at DBD1G and a ridge-shaped topography, we have =G = mG (cos (:GG) cos (DBD:GC)).
This gives the ansatz exp(i(:GG + :II + DBD:GC)). We obtain

mCu = iDBD:Gu exp(i(:GG + :II + DBD:GC)), (2.34)

which is equivalent, in the solid frame, to

(uBD · ∇)u = DBDmGu = iDBD:Gu exp(i(:GG + :II)). (2.35)

While flows naturally differ between reference frames, we thus recover the same vertical
variations :I in both cases. When uBD oscillates, a similar situation occurs (with fictitious
forces related to the non-inertial oscillating frame).

The calculation involves a host of :I wavenumbers, which results in very large expressions. To
tackle this difficulty and the extreme values of the dimensionless parameters, we combine symbolic
and arbitrarily precise calculations and perform linear algebra automatically. In our code, written
in Python, symbolic calculations are achieved using the “Sympy” package (Meurer et al., 2017).
Extreme parameters can lead to badly conditionedmatrices. Handling thesematrices requires high-
precision calculations, which are performed with the arbitrary precision package “mpmath” (The
mpmath development team, 2023). The code is then fast enough to allow systematic exploration
of parameter ranges. Typically, calculation at order 4 requires about ten hours on one computing
core, for the simplest case of one harmonic topography, an inviscid fluid, and an insulating mantle.

2.4.4 Non-uniform basic states: example of Hartmann flow

For some configurations, notably for no-slip viscous flows and for a conducting solid, a uniform
flow does not respect all the boundary conditions on a flat boundary. This requires a basic state that
varies in space (1̃, D̃). The basic flow is then written as equation 2.22. As an illustrating example,
we present in this section the derivation of a Hartmann layer (Jackson & Fox, 1999; Davidson &
Belova, 2002; Dormy & Soward, 2007), which is a viscomagnetic boundary layer in the absence
of rotation and stratification. This flow can be calculated by the code (to which topographic effects
can then be added). Our code is able to handle weakly non-linear effects.

Here we consider a basic flow u0 = 1G and a basic magnetic field b0 = �;−11I between
two planes at I = � and I = −�. This flow does not respect the no-slip boundary condi-
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Figure 2.4: Illustrating case of Stokes-Ekman-Hartmann flow, considering a base flow oscillating as
u0 = nE cos(5 × 105C)1G at C = 0, in a rotating frame with 
 = 1z and '> = 2 × 10−5, with a magnetic
base field b0 = 1I, and calculated at the order n2

E . (a) Compares DG at order n2
E (black line) to

classical linear Ekman (dotted orange, u0 = nE1G , b0 = 0, '> = 2×10−5), Stokes (dashed-dotted green,
u0 = nE cos(5 × 105C)1G at C = 0, b0 = 0, '>−1 = 0) and Hartmann (dashed blue, u0 = nE1G , b0 = 1I,
'>−1 = 0) flows. (b) DG and DH as a function of depth (colour). Parameters: �; = 0.008, '< = 12.5,
�A = 0, '4 = 20, j = 0, nE = 0.5, [̃−1 = 0.

tions at the boundaries. We introduce a vertical variation exp(:II) and use the ansatz u = u0 +[
D′G , D

′
H , D

′
I

]
exp(:II), b = b0 +

[
1′G , 1

′
H , 1

′
I

]
exp(:II) and ? = ?0 + ?′ exp(:II). Since there is

no rotation for the Hartmann layer and the basic magnetic field is along the I axis, the problem is
2D and D′H = 1′H = 0. Due to solenoidal constraints D′I = 1′I = 0. Taking this into account, the I
component of the momentum equation is :I ?′ = 0, then ?′ = 0. The equations set is then

:2
ID

′
G'4

−1 + 1′G:I�;−1 = 0, (2.36a)

:2
I1

′
G'<

−1 + D′G:I�;−1 = 0. (2.36b)

The solution for the velocity-field perturbation is

DG = 1 + �1
√
'4'<−1 exp (I�0) + �2

√
'4'<−1 exp (−I�0), (2.37)

with�0 =
√
'4'<�;−1 the Hartmann number. Imposing the no-slip condition, u |I=� = u |I=−� =

0, we obtain
DG = 1 − cosh I�0

cosh��0

. (2.38)

This flow is shown in figure 2.4a (dashed blue). In the framework of our approach, we have checked
that standard solutions on flat boundaries are easily retrieved, such as the Ekman, Hartmann, and
Stokes boundary layer flows (equations of these flows are described in the Appendix A.1). The
coloured lines illustrate in figure 2.4a these classical flows. We verified that our calculations agree
perfectly with the theory.

Besides the simplest boundary layers, as an illustrative case, we consider a rotating and magne-
tised viscous fluid oscillating along 1G between two no-slip planes. This flow requires the integra-
tion of a polynomial of order 10, which prevents any explicit analytical expression of roots in the
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Figure 2.5: (a) Number of harmonics vs order < (at = = 0, see equation 2.22), for a steady basic flow
u0 = 1G and an inviscid semi-infinite fluid (blue) or a viscous fluid between two boundaries (red). The
topography is either a ridge (ℎ = cos(:GG), solid lines) or 3D (ℎ = cos(:GG) cos(:HH), dashed). The
basic magnetic field is either zero (squares) or not (circles, b0 = 1I). Horizontal lines: typical values
for previous works (Buffett, 2010; Glane & Buffett, 2018; Jault, 2020) based on linear perturbations
(dotted) and for one-day computations using our code on a laptop (dashed). (b) The normalised mean
residual for boundary condition u · n = 0 versus nC for three different orders of topography perturbation
< (at = = 0). Circles: typical cases of Glane & Buffett (2018) with # = 20Ω (blue) and # = Ω (red).
Vertical dashed lines: smallest length scale at < = 1. Grey shading: high residual or divergent series.
Parameters: see table 2.2.

general case. In figure 2.4a and 2.4b, we show the solution of this flow, which is 2-dimensional⁷ due
to rotation (see figure 2.4b). This solution also includes weak nonlinear effects of order 2 (which
would be the dominant leading-order effect in the Blasius boundary layers).

2.4.5 Beyond the linear order

Higher-order solutions are desired for their better accuracy, possibly allowing larger topography
heights, but also because they can quantify the validity limits of lower-order solutions. However,
the associated numerical cost can quickly become prohibitive. Figure 2.5a shows that the number
of harmonics involved in the calculation grows exponentially with the orders. Moreover, this figure
also shows that the number of harmonics can already be quite large at the lowest order< = 1 for the
height of the topography. Having optimised our implementation, our code is typically capable of
calculating order 3 hydromagnetic solutions with 3D topographies (requiring ∼ 1000 harmonics).
We can now use these higher-order solutions to quantify convergence with the order. For example,
looking at the residual error on the non-penetration boundary condition, figure 2.5b shows that
our perturbation-based method only converges below a certain value n2C of nC , and n2C being nearly
independent of<. But the error can already be quite large for n < n2C , the case # = 20Ω of Glane &

⁷There is no vertical component, as would be expected from Ekman pumping. This is because there is no pumping
for incompressible base flows without horizontal variations (with ∇ ·u = mIDI = 0, the no-slip condition yields DI = 0).
In our case, the pumping appears only because of the topography.
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Figure 2.6: Flow streamlines and ‖u ·n‖ (with an artificial = defined in the whole volume) field at order
1,2 and 4 (top to bottom). Parameters: �; = 0.022, '< = 12.5, '> = �A = 1.37 × 10−5, '4−1 = 0,
j = \ = 0, nC = 6 × 10−3 with an insulating solid ([̃−1 = 0) with 2D topography models I = nC cos(G),
u0 = 1G and b0 = 1I.

Buffett (2018) requires an order < = 3 to reduce the error around 10%. These convergence issues
are related to the smallest length scale of the problem (vertical dashed lines), either originating
from the geometry or from the values of : ( 9 ,: )I . In the case considered in figure 2.5b, this limit is
related to stratification through max(: ( 9 ,: )I ), which is proportional to �A−1 for strong stratification
(Jault, 2020). When n < n2C , figure 2.5b also confirms that higher orders allow the use of higher
topographies for the same accuracy (e.g. one order of magnitude larger between orders < = 1 and
< = 3). As allowed by our approach, considering such larger topography heights may be important
to account for geophysical observations (Jault, 2020). As an explicit illustration of the accuracy
gain provided by higher orders, figure 2.6 compares the flow at order 1, 2 and 4 for a typical
hydromagnetic calculation. The flow is notably modified near the boundary to ensure better the
non-penetration boundary condition.
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Summary of the chapter
ó In previous studies, CMB stresses were explicitly obtained by exploiting several as-

sumptions (Table 2.7). Following a similar approach, the code ToCCo unlocks these
limitations by combining numerical and symbolic computations.

ó Complex geometries (arbitrary topography, two boundaries) can now be tackled, which
will turn out to be crucial (e.g. compared to the ridge geometry). The large number of
terms imposes the use of symbolic computational algorithms.

ó Previous limitations on the accessible ranges of parameters (e.g. Glane, 2021) have
been released by using arbitrary precision calculations.

ó We have implemented the non-traditional V-plane devised by Dellar (2011) to improve
the modelling of V effects for thick layers.

ó Going beyond previous first-order solutions, our higher-order results increase the ac-
curacy or the acceptable topography height. They also allow for quantification of the
validity regime of lower-order solutions.

Braginsky (1998) Buffett (2010)
Glane & Buffett
(2018)

Jault (2020) This work

Lorentz force X × X X X

Advection × × X X X

3D bumps × X × ×(0) X

V-plane X (1) × × X (1) X

Any tilt of H and 
 × × × X (2) X

Weakly non-linear × × × × X

Two boundaries X (3) × × × X

Non-uniform*, �, d × × × × X

Asymptotic limits '< � �;2'>−1 �A � 1, '> � 1

'< � �;2�A−2

(0) Preliminary results (see Appendix C of Jault (2020))
(1) 
 is present only via its vertical component
(2) Only 2 orientations of H (vertical and horizontal)
(3) Flat second boundary; our code can consider one or two (possibly bumpy) boundaries

Table 2.7: Summary of the approximations used in previous studies

43

https://gitlab.com/monvilre/tocco


3
Steady flows - Length of the Day

Contents
3.1 Characterisation of the stress . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Steady topographic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Non-diffusive flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Inviscid hydrodynamic flows . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 Ideal MHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Duct geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Geophysical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Previous approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Scale dependence of the core-mantle topographic stress . . . . . . . . . 58

3.5.3 Which V-plane approximation for CMB stress estimation ? . . . . . . 60

Although simple, the limit of steady flows is relevant in many cases, as soon as their temporal
variations are much longer than those induced by topography (e.g. l � ‖D0‖:I). For example,
length-of-the-day (LOD) variations over periods, 5 to 100 years are caused by fluctuating flows
in the Earth’s core. For geophysically relevant parameters, we can thus consider steady flows to
model this problem.

In this chapter, we focus on steady flows over topography. We will characterise the boundary
stress and investigate its variation with parameters. In particular, we will highlight the differences
between the hydrodynamic andMHD calculations. Also, the importance of rotation and V plane ef-
fects. By considering the ideal MHD limit, we will also investigate diffusionless topographic wave
drag and dissipative stress. The interaction between the imposed velocity field and the topography
generates waves. We will study the properties of these waves as a function of the dimensionless
numbers of the problem. The parameter space is then divided into different regions where a partic-
ular type of wave is responsible for most of the forces on the boundary. We will follow by adding
a second solid boundary and study the effect of two very close surfaces. Finally, we consider geo-
physical cases, comparing our model with previous approaches. We investigate the stress on the
solid as a function of the wavelength and estimate the total stress on the Earth’s mantle from a
typical spectrum of the core-mantle topography.
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3.1 Characterisation of the stress

Due to the efficiency of our numerical model, we can systematically survey hydromagnetic to-
pographic stresses for different topography shapes and wavelengths. We choose to investigate the
rotation and magnetic field effects by calculating the average stress 〈�G〉 as a function of '> and the
interaction parameter¹ '</�;2 (figure 3.1), keeping the Lehnert number !4 = '>/�; constant (:̃ ,
Ω0, �̃, and dA constant in the figures)². We exhibit various regimes and sharp transitions between
these regimes. Considering the Earth’s core radius ' = 3486 km and the topography wavelengths
:̃−1 = 5 km, we first show (top figures) the stress for a ridge topography, with j = 0 (f-plane, figure
3.1a) and with traditional V-plane effects (figure 3.1b). Then we investigate 3D topography (bot-
tom figures), with traditional or non-traditional V-plane approximations (respectively, figures 3.1c
and 3.1d). In these figures, typical values for the Earth’s core and oceans (see Table 2.2) are also
indicated to illustrate the strong influence of the magnetic field on the stress (even with insulating
boundaries). For oceanic application (' = 6371 km), the topography wavelength is :̃−1 = 9 km,
since j is fixed.

Conducting solid and steady flow

At order < = 0 in topography, the non-zero conductivity of the solid generates a linear
magnetic field perturbation in I. This is in contrast to our boundary condition of vanishing
fields at infinity. This arises from our unbounded solid domain and is thus not physically
relevant. Therefore, we will not discuss the conductivity of the solid in this section. For
oscillating flows (section 4) the time dependency limits the spatial extent of the perturbation,
which has an exponential solution. The effect of the solid conductivity can then be studied
in a relevant regime.

The stress on the boundary is due to dissipative processes, but also to radiated waves, which ex-
ist for specific ranges of control parameters. Figures 3.1 show sharp changes in stress as a function
of '> and '</�;2. We delineate regions in the parameter space, each corresponding to the prop-
agation of different kinds of MHD waves. We have identified the waves that contribute the most to
total stress (see Section 3.2, A.3 and A.2³ of figure 3.1 and Appendix A.2 give the expression of
dispersion relation of classical MHD waves) and reported their names in figure 3.1. The parameter
space is divided into two, on either side of '</�;2 = 1 (black dashed line). We characterise these
regions by considering the asymptotic limits '</�;2 � 1 (negligible diffusion in the induction
equation, i.e. ideal MHD) and '</�;2 � 1 (negligible role of the magnetic field i.e. hydrody-
namic case). This helps us to find the limits of the major regions using the dispersion relation of
waves (see section 3.2). In the hydrodynamic limit, the limit⁴ of propagation of inertial-gravity

¹Interaction parameter or Stuart number is defined as the ratio of electromagnetic to inertial forces, it gives an estimate
of the importance of the magnetic field on the flow.

²Horizontal axis is ∝ '<2 ∝ �; ∝ '>.
³Section 3.2 detail the properties of waves present in figure 3.1, Appendix A.3 gives the derivation of line’s equations.
⁴Originating from the bounded range for the frequency of (free) inertial waves.
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Figure 3.1: Normalised stress (colours) as a function of interaction parameter '</�;2 and '> at
\ = c/4 for (top) a ridge ℎ = nC cos G, or 3D topography (bottom). Figure (a) is with 
 = cos \1I

(f-plane) and b0 = − cos \1I. In figures (b,c) 
 = (cos \ + j sin \)1I, and (d) is with a non-traditional
V-plane approximation. Figures (b, c, d) have a magnetic field b0 = sin (\)/21H − cos \1I (equation
2.8). The stress is estimated with j = 0.0014, i.e. :̃−1 = 5 km for the core and :̃−1 = 9 km for the
ocean. The stars represent the Earth’s core (purple) and the ocean (blue). The bounds for the internal
waves are the red dotted line (equation 3.1) and the dashed line (equation 3.2). The limits for Rossby
waves are the blue dotted line (equation 3.5) and the dashed blue ones (equation 3.6). The dashed-
dotted black line is Λ = 1. The orange dashed lines are '< = 1015 and '< = 0.625, for which figures
3.7a and 3.7b, respectively, have been obtained. Within each zone, the type of wave that contributes
the most to the total stress is written. Parameters: [̃−1 = 0, u0 = 1G , !4 = 0.0122 (see Table 2.2 for
other parameters at the corresponding wavelengths).
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(a) (b)

Figure 3.2: Normalised stress (colours) as a function of interaction parameter '</�;2 and '> at
\ = c/4 for (left) a ridge topography ℎ = nC cos G, b0 = − cos \1I and 
 = cos \1I (f-plane), and (right)
a 3D topography ℎ = nC cos G cos H, b0 = sin (\)/21H − cos \1I and non-traditional V-plane (equation
2.8). The stress is shown for j = 0.0287, that is, :̃−1 = 100 km for the core and :̃−1 = 183 km
for the ocean. The stars represent the Earth’s core (purple) and the ocean (blue). The lines are the
same as the ones in figure 3.1. Parameters: [̃−1 = 0, !4 = 6 × 10−4, u0 = 1G (see Table 2.2 for others
parameters at corresponding wavelengths).

waves (red dotted line) can be written for f-plane approximation as

'> > 2 cos \ (3.1)

in our limit �A � 1. We find significant stress in the presence of internal waves that are almost
independent of '>. The stress in this zone can be reduced to the simple expression of the inertial
gravity wave drag. In the opposite case '> < 2 cos \, the waves are evanescent (=(:I) � <(:I))
and the stress is then negligible.

In the MHD case '</�;2 � 1, the vertical dashed red line,

�; = 2:��A−1 cos \, (3.2)

corresponds to the transition between MAC (Magneto-Archimede-Coriolis) waves on the left and
internal waves, for �A � 1 and '> � 1. This gives the transition from Alfvén waves to internal
waves. For '> � 1, magnetic effects are important for the stress when the Elsasser number
Λ = '>'<�;−2 cos \, which compares the magnetic and Coriolis forces, is larger than 1 (dashed-
dotted line). In this domain, the stress increases as �;−1, a measure of the magnetic field strength.

A new family of waves, the Rossby waves, arises in the V-plane model (compare 3.1b to 3.1a).
In the hydrodynamic case, internal Rossby waves only exist between two values of '>, or below a

47



3.2. Steady topographic waves Chapter 3. Steady flows - Length of the Day

certain value of �A , that are all given by the roots of

(:2
� − �2�A2)'>2 + 2 sin \ (��A2 − 1)j'> + ��A2j2 = 0, (3.3)

where �, � and �, given in the appendix A.3.3, are only function of \. The bound in �A is then

�A2 <
('>:�)2 − 2j'> sin \

('>�)2 − 2j'>� sin \ − j2�
, (3.4)

which reduces to �A < :��−1 for j � 1, and further simplifies into �A < 1 for ridge geometries
(:� = 1, :H = 0). The two bounds in '> can also be obtained exactly, giving

8j�A2 cos \ cot \ < '> < 2j:−2
� sin \ (3.5)

for �A � 1. The lower bound, related to the j2 term ��A2j2 in Equation 3.3, does not exist when
considering Equation 2.7, and requires the more sophisticated approximation (2.8). This transition
occurs at '> ≈ 10−10 in the figure 3.1d, and is thus not visible.

This hydrodynamic regime now extends to Λ = 1. In this domain, the stress increases directly
with '>−1/2 and is independent of the magnetic field. A domain of evanescent inertial-gravity
waves remains between the regions where Rossby and internal waves propagate. For Λ > 1, the
Rossbywaves are significantlymodified by themagnetic field, hence named Rossby-MAC, yielding
weaker stress than in the f-plane case.

In the case of 3D topography, these Rossby-MAC waves only exist in a finite range of '>
(figures 3.1c and 3.1d). This extent of this domain is significantly shrunk for 
 given by equation
2.8 (compare figure 3.1c calculated with equation 2.6 for 
 and figure 3.1d). This domain is
bounded by

:2
�'> = j sin \

[
1 ±

√
1 − (�A:�)2 [s1(:H/j)2 +s2 cot2 \]

]
, (3.6)

for �A, '> � 1, where (s1, s2) are (1, 0), (9, 0) and (9, 16) when considering the three Coriolis
force approximations given by Equations 2.6, 2.7, and 2.8, respectively.

The derivation of these limits is detailed in Appendix A.3 and are found imposing a zero de-
terminant for the dynamical equations, using the calculated :I values. Equation 3.6 illustrates the
importance of 3D topographies (:H ≠ 0) and density stratification (�A ≠ 0) when considering
j ≠ 0.

We have also investigated in figure 3.2 a larger topography wavelength :̃−1 = 100 km for the
core (j = 0.0287, leading to :̃−1 = 183 km for the ocean). Figures 3.2a and 3.2b can be compared,
respectively, with figures 3.1a and 3.1d. Our results are mainly unchanged in the simplest case
(f-plane, ridge topography). The domain of MAC waves extends to a weaker magnetic field (larger
�;) with increasing topography wavelength. For 3D topography and non-traditional V-plane, the
domain of Rossby-MAC waves extends to a wider range of '>, in agreement with equation 3.6.

3.2 Steady topographic waves

To better understand the mechanism at play in establishing stress, we have carried out a more
detailed study of the waves arising in figure 3.1d. We show in figure 3.3 the vertical wave numbers
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(a) (b)

Figure 3.3: Normalised stress (blue solid line at the top of each figure) as a function of '> and
associated absolute value of the real (a) or imaginary (b) part of the vertical wavenumbers :I. The
results of our code are colour coded (yellow to orange) to show the relative contribution of each :I

to the total stress. Other lines show diffusion-less MHD wave dispersion relations (see appendix A.2
or Salhi et al., 2017). The red vertical dashed line is the equation 3.2, and the blue lines correspond
to the equation 3.6. The legend is shared with both figures. Parameters: same as figure 3.1d, with
'<�;−2 = 1010.

:I as a function of '> (or equivalently as a function of �;) for a fixed and large interaction parameter
('<�;−2 = 1010) and a fixed !4 = 0.0122 (same as in figure 3.1d) and compare them with the
solution of the theoretical dispersion relation in the diffusionless limit. We also show the relative
contribution of each wave to the total tangential stress. Because curvature effects related to the
V-plane are not easily visible in the real part of :I 3.3a, we show the imaginary part of :I in figure
3.3b. Our results superimpose almost exactly on the dispersion relation MAC and Rossby-MAC
waves. The remaining difference originates from diffusion.

In figure 3.3, the stress is driven mainly by the wave of highest <(:I), except for large �;, as
given by equation 3.2. This branch consists ofMACwaves since it involves magnetic field, rotation,
and stratification. Another branch is well described by the dispersion equation for Alfvén waves
(purple dashed curve). It has a small <(:I) and contributes negligibly to total stress. For large
�;, the waves with the smallest <(:I) are responsible for most of the stress. Their wavenumbers
obey the dispersion relation of the internal waves, and the stress depends only on �A. Stratification
turns out to be key in all stress mechanisms investigated here.

However, this does not explain the sudden drop in the stress that can be seen between the
blue dashed lines of equations 3.6. Looking at the imaginary part, we observe the emergence
of a domain where Rossby-MAC waves dispersion relation is distinct from MAC waves. In this
parameter range, the solution consists of a combination ofMAC and Rossby-MACwaves, theMAC
waves carry most of the stress but have a negligible amplitude compared to Rossby-MAC waves.

49



3.2. Steady topographic waves Chapter 3. Steady flows - Length of the Day

(a) (b)

Figure 3.4: Normalised stress (blue solid line at the top of each figure) as a function of '> and
associated absolute value of the real (a) or imaginary (b) part of the vertical wavenumbers :I. The
results of our code are colour coded (yellow to orange) to show the relative contribution of each :I to
the total stress. They are calculated in the hydrodynamic limit, with a non-traditional V-plane. Other
lines show diffusionless MHD wave dispersion relations (see appendix A.2 or Salhi et al., 2017) . The
vertical red dashed line is equation 3.1, and the blue line is equation 3.5. Parameters: same as figure
3.1d, with '<�;−2 = 10−10.

Rossby-MAC waves are indeed very inefficient at driving boundary stresses and are key for this
stress drop. By contrast, in the hydrodynamic limit, the Rossby waves at low '> are very efficient
in generating stress (figure 3.1d). We also provide :I and the relative contribution of each wave in
the hydrodynamic limit.

Figure 3.4 shows vertical wavenumbers :I , as in figure 3.3, in the hydrodynamic limit ('>�;−2 =

10−10). We see that the equation 3.1 (red dotted line) delimitate the propagation of internal waves
on the right side and evanescent Inertial-gravity waves on the left part. We observe that on the left
of the line given by equation 3.5 (blue dotted line), the wave numbers correspond to those of the
Rossby waves modified by stratification effects (Internal Rossby waves).

Finally, we focus on the large stress values that are obtained at the limits of Rossby and Rossby-
MAC wave domains (equations 3.5-3.6), which are too abrupt to be seen in figure 3.1d. This is
illustrated in figure 3.5a, which shows the normalised stress along the horizontal lines '<�;−2 =

1010 in the ideal MHD limit (orange) and '<�;−2 = 10−10 in the hydrodynamic limit (blue). At
the frontiers of Rossby wave domains, we observe sharp increases that suggest mode resonances.
Calculating the eigenmodes of our problem, we obtain free steady (MAC-) Rossby modes that
can be excited by the topography-forced waves, and which corresponds to 3.5-3.6. Looking at the
associated wavenumber (figure 3.5b), at resonances, the wavevector is found to be perpendicular to
the rotation vector in the hydrodynamic case (green dashed line) and perpendicular to the magnetic
field (pink dashed line) in the ideal MHD limit (this helped us to find equation 3.6).
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Figure 3.5: (a) Normalised stress vs '> for '<�;−2 = 1010 (ideal MHD, orange) and '<�;−2 = 10−10

(hydrodynamic limit, blue), (b) Real part of vertical wavenumber vs. '>. The vertical lines correspond
to the theoretical limits for Rossby waves (equation 3.5, dashed blue) and MAC-Rossby waves (equations
3.6, dashed orange). Horizontal lines are k · 
 = 0 (green dashed line) and k · b0 = 0 (purple dashed
line). Parameters: same as in figure 3.1d.

3.3 Non-diffusive flows

3.3.1 Inviscid hydrodynamic flows

In this section, we consider flows in the absence of magnetic fields and without any dissipative
processes. This is motivated by the interest in bridging the gap between our research and studies
conducted in atmospheric and oceanic sciences. Furthermore, opting for this approach is advanta-
geous, as it allows for analytically feasible calculations, leading to explicit results.

For stratified rotating fluids without V-plane effects, inertial-gravity waves are radiated. We
can calculate their vertical wave number for a steady flow u0 = 1G and f-plane approximation
(
 = cos \1I), and obtain

:2
I = :

2
�

�A−2 − 1
1 − '>−2

;

, (3.7)

with the local (scaled) Rossby number '>; = '>/(2 cos \). We then have propagating waves only
for �A < 1 < '>; or '>; < 1 < �A . In this thesis we exclusively focus on the first domain since
flows at �A > 1 are considered supercritical and are beyond the scope of our model.

The wave drag associated with inertial-gravity waves in a topography ℎ = nC cos(:GG + :HH) is

〈�G〉/n2
C =

�����Re
:G

2:�

√(
�A−2 − 1

) (
1 − '>−2

;

)����� . (3.9)

This equation give the stress for one ridge but can be summed (in the first linear approxima-
tion) to obtain the stress of a more complex topography. For an arbitrary (steady) topography
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Perfect fluid and stress: radiation condition

In the limit case of non-dissipative fluid (inviscid, ideal MHD) the waves that emerge from
topography do not vanish at infinity as we would like to meet our boundary condition. In
such a case, which is often considered for ocean and atmosphere flows, we need to use the
condition referred to as the radiation condition.
Solving the equations, we obtain a solution of the form

^ = G cos (G + :II) + H cos (G − :II) + I sin (G + :II) + J sin (G − :II) (3.8)

given for ridge topography and one positive :I for simplicity. G, H,I and J are positive.
A positive vertical wave number (indicated by the + sign in front of :II) corresponds to an
upward energy flux towards the boundary. This non-physical behaviour is prevented by the
radiation condition, which imposes that every Fourier component needs to propagate toward
infinity (for historical paper see Sommerfeld (1912) and for internal waves application see
Bell (1975)). This gives G = I = 0. We then evaluateH and J thanks to the non-penetration
boundary condition.
Note that for inertial-gravity wave drag (equation 3.9) coefficients �, �, �, � are of opposite
sign on each side of the wave propagation domains (�A < 1 < '>; and '>; < 1 < �A). This
leads to eliminating different Fourier coefficients for each case, which results in the absolute
value of equation 3.9.

ℎ = nC
∑

9 �
( 9 ) exp(k ( 9 )

�
· r) (equation 2.1), we have

〈�G〉/n2
C =

∑
9

�����Re
:
( 9 )
G

:
( 9 )
�

�( 9 )2
√(

�A−2 − 1
) (

1 − '>−2
;

)����� . (3.10)

For instance, the stress on an egg box topography ℎ = nC cos G cos H is 23/2 times lower than on a
simple ℎ = nC cos G ridge. Equation 3.10 is formally similar to equation 20 of Legg (2021), see also
Bell Jr. (1975) and Nikurashin & Ferrari (2010b). The limit '>−1

;
= 0 corresponds to the gravity

wave drag (e.g. Athanassiadou, 2003). This theoretical wave drag is important for estimating the
stress in laboratory experiments with fast rotation and no magnetic field.

In section 3.1 we have seen that Rossby waves play a major role in the drag. Adding V-plane
effects, we obtain a vertical wave number,

:2
I =

(�A−2 − 1) ('>2:2
�
− 2'>j sin \)

'>2 − 2'>j sin \ − 4 cos2 \
. (3.11)

This equation corresponds to the thermal Rossby waves of figure 3.4. We see that waves propagate

when �A > 1 and 2j sin \/:2
�
< '> <

√
j2 sin2 (\) + 4 cos2 (\) + j sin (\), or if �A < 1 and

'> < 2j sin \/:2
�

(equation 3.5) or '> >
√
j2 sin2 (\) + 4 cos2 (\) + j sin (\). This corresponds

to the “spectral gap” of (section 12.7 Gill, 1982). Calculating the associated horizontal stress, we
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(a) (b)

Figure 3.6: Horizontal stress calculated from equation 3.12. (a) Stress as a function of '> and �A.
The black dotted line is the bottom of figure 3.1c and the dashed line of figure 3.6b. Hatches correspond
to the absence of stress. (b) Theoretical stress (dashed black) as a function of '>. We compare with
results of figure 3.1d at '</�;2 = 10−10 (blue dots). The blue and red dotted lines are, respectively,
equations 3.5 and 3.1. The parameters are those of figure 3.1c.

obtain

〈�G〉/n2
C =

∑
9

�����Re : ( 9 )G �( 9 )2

√√ (
�A−2 − 1

) (
'>2 − 2'>j sin (\) − 4 cos2 \

)
'>2:

( 9 )2

�
− 2'>j sin (\)

����� . (3.12)

We observe non-zero stress when waves propagate, as can be seen in figure 3.6. The stress values
at low interaction parameters in figure 3.1 (dotted line of figure 3.6a and blue dots of figure 3.6b)
are well approximated by this formula (except for non-traditional V effects that are negligible in
this case).

3.3.2 Ideal MHD

In real MHD flows the Ohmic dissipation arising from the dissipative term '<−1∇2u in the induc-
tion equation plays an important role for the flows and the stress on the boundary. To disentangle
the effects originating from non-dissipative wave generation and Ohmic dissipation, we aim to
compare our calculation at moderate '< with the limit case of the ideal MHD, which corresponds
to the limit '< � 1, making the dissipation term negligible. This limit corresponds to a perfectly
conducting fluid when magnetic and kinetic energy can convert without loss. This has also the
effect of “freezing” the fluid in the magnetic field lines, forcing the field lines and the fluid to move
together. This effect is referred to as the frozen-flux theorem.

We compare in figures 3.7 the stress for almost ideal MHD (figures 3.7a and 3.7c) of weak
diffusion⁵ ('< = 1015) and for moderate '< = 0.625 (figures 3.7b and 3.7d), which is a resistive

⁵The diffusion cannot be zero otherwise the stress would be exactly zero since our code cannot handle radiation
boundary condition necessary in absence of diffusion.
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(a) (b)

(c) (d)

Figure 3.7: Normalised stress as a function of �; and '> (\ = c/4, [̃−1 = 0). The basic velocity is
u0 = 1G and b0 = sin (\)/21H − cos \1I, with a non-traditional V-plane, the other parameters are those
of table 2.2 for :̃−1 = 5 km (top) and :̃−1 = 100 km (bottom). (left panel) ideal MHD approximation,
'< = 1015, black solid line is !4 = 7.5 × 10−4, delimiting the hydrodynamic and MHD zones. (right
panel) Diffusive case, '< = 0.625, dashed-dotted line is Λ = 1. The hatches correspond to the region
where the stress is proportional to the dissipation (∝ '<−1). The black dashed line shows the Lehnert
number of table 2.2, for which figures 3.1 and 3.2 have been calculated. Vertical lines and symbols as
in figures 3.1 and 3.2.
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(a) (b)

Figure 3.8: Magnetic field norm ‖b‖, (a) for '< = 1020 (ideal MHD) and (b) '< = 12.5 (Earth’s
core). Parameters: nC = 10−3, others are those of table 2.2 for :̃G

−1
= 100 km.

MHD model. Figure 3.7 corresponds to the parameters of table 2.2 for 5 km (top) and 100 km
(bottom).

Therefore, we investigate a 2D section of the parameter space ('>, �;, '<) that is different
from the section explored in figures 3.1 and 3.2. At large '< (figures 3.7a and 3.7c), the limit
between the hydrodynamic and MHD cases corresponds to a constant Lehnert number instead of
Λ = 1 for '< = O(1) or lower (figures 3.1, 3.2, and 3.7b and 3.7d). In some parts of the space
('>,�;), the figures for the ideal and resistive MHD are identical, showing that the stress must be
attributed only to wave generation. In contrast, we find a parameter range for which the stress varies
as '<−1 (hatched zone), showing that it comes mainly from Ohmic dissipation. This corresponds
to the range of the Rossby number delimited by the equation 3.6, where the MAC-Rossby waves
propagate.

For any wavelength considered here, we observe that at the Earth’s core parameters, electrical
resistivity plays an important role. At high '< � 1 the stress scales directly as '<−1, while at the
parameters of the Earth’s core (around '< = 12.5), it scales approximately as '<−1/4.

In figure 3.8 we show the norm of the magnetic field corresponding to Earth’s parameters of
figures 3.7c and 3.7d, again in the ideal MHD limit (figure 3.8a) and for a resistive MHD model
3.8b). We observe a strong influence on the geometry of the magnetic field. In the ideal MHD
shape, the perturbation is localised close to the boundarywhile it propagates far away in the resistive
case, as well as being smaller in amplitude.

3.4 Duct geometry

Braginsky (1998) proposed a model of a stratified layer at the top of the core. He considered a
solid second boundary at this transition to mimic a sharp density jump between this layer and the
well-mixed convective bulk. Even if this does not model perfectly a two-fluids interface, this avoids
the problems that can be encountered in a semi-infinite domain, when the waves propagate further
than the fluid layer we want to model, or even over distances about the core radius. In addition,
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such a second boundary is relevant for laboratory experiments.

(a) (b)

(c) (d)

Figure 3.9: Illustrating flow between two boundaries. (a) Vertical velocity DI and velocity streamlines.
(b) vertical vorticity (∇ × u)I and vorticity streamlines. (c) Magnetic field amplitude ‖b‖. (d) Electric
current density amplitude ‖ j ‖. Parameters: nC = 10−3, top topography ℎ = −nC cos(G), bottom topog-
raphy ℎ = −nC cos(G + c/4) − 0.1, u0 = 1G , b0 = sin (\)/21H − cos \1I, with \ = c/4. Others are those
of table 2.2 for :̃G

−1
= 100 km.

Therefore, we have introduced a second solid boundary in our model. The second boundary
can also have an arbitrary topography, possibly different from the top boundary. In figure 3.9 we
show an illustrating flow between two out-of-phase ridge topography.

The distance between the two boundaries corresponds to 10% of :̃−1 (10 km) for Earth’s param-
eters. We see that perturbations generated by the upper topography, which previously vanished to
infinity, now encounter the perturbation coming from below. The interaction of these perturbations
creates a different flow that is likely to modify the torque on the boundaries. The magnetic field
(figure 3.9c) is also significantly modified. We notably observe that, in this case, the maximum
magnetic perturbation is localised at the midpoint between the two boundaries.

To quantify the effects of a second boundary on stress, we show in figure 3.10 the stress as a
function of the distance � between the two ridge boundaries. The stress is calculated for a flat
second boundary and also for a collection of phase shifts between the two topographies.

As expected, the second boundary does not affect the stress when � is large enough (here for a
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fluid layer thicker than 10 km). Conversely, the results are more complex for a thinner fluid layer.
Focusing on the limit � � 1, we can obtain from our calculations a general scaling of the stress
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Figure 3.10: Normalised stress as a function of the distance between the two boundaries �, for
different bottom boundary shapes. The basic velocity is u0 = 1G and b0 = sin (\)/21H − cos \1I. The
top boundary is ℎ = nC cos G, and the bottom boundary is ℎ2 = nC ℎ̃2 cos (G + qℎ)−�. When not specified
otherwise, ℎ̃2 = 1 and j = 0.0286. \ = c/4, [̃−1 = 0 and other parameters are the ones of Table 2.2 for
:̃−1 = 100 km.

as a function of �. For ℎ/nC = cos G and ℎ2/nC = ℎ̃2 cos (G + qℎ) − �, we have

〈�G〉/n2
C = 50�

−1 + 51� + 52�
2 + O(�3). (3.13)

Taylor expansion coefficients of equation 3.13 scale as 50 ∝ ℎ̃2 sin(qℎ)/(j− j2), 51 ∝ (1− ℎ̃2) and
52 ∝ j2j/(j − j2), with j2 the solution of equation 3.5. The stress on the top boundary vanishes
when the topographies are in phase, whereas it diverges otherwise (a second flat boundary being
seen as in phase).

Interestingly, the coefficients 50 and 52 can be positive or negative according to the value of j.
This corresponds to the presence or absence of MAC-Rossby waves. This differs from the semi-
infinite case, where the pressure on the fluid side is always opposed to the basic flow. When the two
boundaries are in phase (qℎ = 0), axially invariant geostrophic motions are part of the solution. In
another context, they have been shown to be ineffective in generating pressure stress (Gerick et al.,
2020).

3.5 Geophysical application

3.5.1 Previous approaches

To model the core-mantle coupling related to the length of the day variations, several works have
created models using different approaches, assumptions, and approximations (see table 2.7). This
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Figure 3.11: Stress as a function of '<−1 (vertical dashed line shows a realistic geophysical value
'< = 12.5). (a) Comparison of our model with those of Jault (2020) (dashed blue) and Braginsky
(1998) (green) which both include V-plane effects. (b) Comparison of 〈�G〉 calculated with (black
dashed) and without (j ≡ 0, solid red and orange) V terms. The limit �A � 1 (orange) recovers the
estimate obtained with the V term for '<−1 in 0.01−1. Parameters: '> = 1.37×10−5, �; = 2.24×10−2,
j = 2.86 × 10−2, u0 = 1G b0 = 1I, \ = c/4, [̃−1 = 0 and ℎ = nC sin G.

section aims to compare our code with the results previously obtained.
First, these previous studies helped us validate our code with a variety of benchmarks. For in-

stance, we have reproduced previous theoretical non-magnetic atmospheric (Athanassiadou, 2003)
and oceanic (Legg, 2021) results, as well as classical hydromagnetic wave dispersion relations (Fin-
lay, 2008; Salhi et al., 2017). Furthermore, we have successfully validated our topography-driven
MHD flows against Jault (2020), Glane & Buffett (2018) and Braginsky (1998) considering the
various assumptions summarised in Table 2.7.

We then examined whether our results differed from the previous ones, particularly for the
CMB parameters. Figure 3.11a compares our topographic stress results with studies that also use
V-plane approximations, (i.e. Jault, 2020; Braginsky, 1998). Here, we consider a quite large CMB
topography wavelength of ∼ 600 km. Because of the assumptions of these two previous works
('<−1 � '>�;−2 for Braginsky (1998), '<−1 � �;−2�A2 for Jault (2020)), these three models
differ in the limit of large '< but agree for small '< values, notably at Earth’s core parameters
(vertical dashed line).

For large topographywavelength, the V-terms are crucial, as illustrated in figure 3.11b (compare
dashed black and red curves). In a certain range of '<, the model built in the limit �A � 1 allows
one, however, to retrieve the correct boundary stress, even without the V-plane terms (compare
orange and dashed black curves).

3.5.2 Scale dependence of the core-mantle topographic stress

We have seen in figure 1.4 that the topography extends over a broad wavelength spectrum. Com-
bining V-plane and 3D topographic effects, we can span a wide range of length scales, from the
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Figure 3.12: (a) Model of CMB topography (green) used in figure b. Our fit is superimposed on the
values of figure 1.4 relevant for CMB (seismological data and mantle convection output). The black
dashed corresponds to the scale ;2. (b) Topographic (dimensional) mean stress 〈�̃G〉/ℎ̃2

0 = dA*̃
2〈�G〉/ℎ̃2

0
normalised by topography ℎ̃0 = nC/:̃G (blue), or for a CMB topography model (red) as a function of
topography wavelength ; = 2c:̃G

−1
= 2cj' for the Earth’s core parameters. The red dashed horizontal

line is the nominal stress value (2.4×10−3 Nm−2) to explain the variations in LOD (Roberts & Aurnou,
2012), the dashed dotted line is the value of 2.7 × 10−2 Nm−2 adopted by Glane & Buffett (2018).
Parameters: ℎ = nC cos G cos H, dA = 104 kg.m−3, *̃ = 10−4 m.s−1, � = 5 × 10−4 T, [ = 0.8 m2.s−1,
' = 3486 km, Ω0 = # = 7.29 × 10−5 rad.s−1, \ = c/4, [̃−1 = 0.

viscous boundary layer thickness to the Earth’s core radius. For a given height of the topography,
figure 3.12 shows that the topographic mean stress varies in a non-trivial way over several decades.
The sharp variation at 30 km corresponds to the transition between the Rossby-MAC and MAC
waves given by equation 3.6. The mean normalised stress 〈�̃G〉/ℎ̃2

0 maintains the same order of
magnitude from 10 m to 50 km and then starts to decrease. This shows that the smallest wave-
length (< 10 km) is more efficient in producing stress; however, this does not take into account
the topography height which increases the stress quadratically. Therefore, we need to know the
amplitude spectrum of the topography.

Our results can be combined with seismological estimates of Earth’s core topography from 1.4
to provide the global torque on the core. Figure 3.12b gives the tangential stress for an illustrative
but realistic example of core-mantle topography. We show in figure 3.12a the topography spec-
trum used. It fits the seismological data at large wavelengths available and is extended to smaller
wavelengths using results from numerical simulations.

We observe that the larger wavelengths are predominant in the generation of stress. The height
of large-scale topography more than compensates for the diminishing stress with increasing wave-
length. We can expect these results to be different in other planetary layers, each characterised by
distinct topographical shapes. This contrast is exemplified by the surface of Earth and Mars, where
the amplitude decreases less rapidly as the wavelength diminishes. In conclusion, we can state
that the most important topography components at the CMB are the largest ones (> 100 km). In
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(a) (b)

Figure 3.13: Topographic (dimensional) mean stress 〈�̃G〉/ℎ̃2
0 = dA*̃

2〈�G〉/ℎ̃2
0 normalised by the to-

pography as a function of topography wavelength ;, for different approximations of 
. (a) f-plane (solid
blue), traditional V-plane (dotted black), tilted and uniform (solid orange). (a,b) tilted with V-effects
on I-component (dashed-dotted green) and Dellar (2011) non-traditional V-plane (dashed red). In (a)
the grey part corresponds to �A > 1, the flow is then supercritical and beyond our framework. The pa-
rameters are the same as in figure 3.12 (Λ = 0.341). The blue and orange vertical lines are equation 3.14
for respectively s = 1 and s = 9. In (b) parameters correspond to a QG flow (Λ = 3.41 × 10−5 � 1),
with � = 5 × 10−5 T, [ = 8 m2.s−1, Ω0 = # = 7.29 × 10−5 rad.s−1 and �A−1 = 0. Other parameters are
the same as figure 3.12.

this situation, we can see the importance of accounting properly for the global geometry, notably
through the V-plane.

3.5.3 Which V-plane approximation for CMB stress estimation ?

All the previous sections have shown the importance of how the rotation vector is modelled locally
for calculating the stress at the CMB. However, there are several approximations for it, which are
more or less complex. The question here is to determine the most suitable approach to model the
CMB and to establish what degree of precision we want to use. In figure 3.13a we show, in the
same way as in figure 3.12b the dimensional normalised stress as a function of the topography
wavelength and for Earth’s core parameters. Stress is given for five different approximations of the
rotation vector 
, from the simplest f-plane to the non-traditional V-plane (equation 2.8). As we
can see, having a titled rotation vector has a major impact on the stress on the whole spectrum (see
differences between black/blue and red/orange/green curves). As expected, the V-effects play a
significant role, at large wavelengths, when it is larger than the limit of Rossby waves (resonance),
given by the dimensional form of equation 3.6

; = c

√√√
2'*̃

(
:2
�

Ω sin \
+
sΩ:2

H sin \
#2

)
(3.14)

It can be noted that the range of existence of Rossby waves is bounded here on one side only,
contrary to figure 3.1, and as suggested by equation 3.6. This is because varying ; maintains the
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same '>/�A ratio, which is not the case in Figure 3.1 since �A is constant. By varyingΩ or # (not
shown) we also find 2 limits for Rossby waves.

In figure 3.13a we see that the non-traditional beta plane has little effect, compared with the use
of tilted 
 with traditional V-plane. For the non-traditional V-plane to exert significant influence,
perturbations must propagate far vertically. This scenario is applicable, for instance, in Quasi-
Geostrophic flows (Λ � 1). However, in this case, stress is dominated by stratification effects,
so rotation effects can only be seen if �A−1 � 1. This configuration is illustrated in figure 3.13b
showing the comparison between the complete non-traditional approach and the tilted traditional
V-plane. We see that even in this case, variations are still low. In summary, non-traditional effects
appear to be negligible for the majority of CMB-relevant parameters, most of the physical effects
being carried in the tilted traditional approximation.
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Summary of the chapter
ó We reviewed and characterised the different stress regimes, from inviscid hydrodynamic

flows to MHD.

ó We described the wave propagation under subcritical laminar regimes (zone 1 and 4 of
figure 3.14 for insulating fluid).

ó Considering stress driven mainly by wave propagation, we describe the property of
MHD topographic waves, distinguishing their different contributions to stress.

ó We highlight the capital contribution of Rossby waves to surface stress, particularly for
the CMB coupling.

ó Therefore, we show that it is crucial to accurately model the variations of 
 for the
planetary layers employing the V-plane.

ó It can be noted that tilted
 and traditional V-plane explainmost of the physics, V-effects
on horizontal component of 
 inducing small effects

Figure 3.14: Regime diagram for oceanic lee waves, from Legg (2021). The upper part of the
diagram corresponds to the flows where the Froude number constructed with the topography
height is larger than one (supercritical flows). The right part of the diagram (�A;;1) is also
supercritical. Our model can only handle subcritical flows (1,1a, and 4), separated between two
regimes: geostrophic flow and lee waves.
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Earth’s motion of precession and nutation, whose equations are presented in the section 1.1.1,
has oscillation frequency in the rotation axis frame comparable with the spin rate of the Earth.
For this reason, contrary to the variation of the spin rate (LOD), we need to take these oscillations
into account in our calculation. In this chapter, we study the physics of flows that oscillate on a
topography and how they differ from steady flows. The emphasis will be on the imaginary part of
the coupling (which is what we are interested in for nutation measurements) and on the associated
energy dissipation. Unlike in chapter 3, the model is improved by adding electrical conductivity to
the solid.

In this section, we first compare our non-rotating hydrodynamic results with direct numerical
simulations. The oscillation of the fluid allows us to obtain a boundary layer in this configuration
(Stokes layer), which allows us to handle the problem both by direct numerical simulations (DNS)
and ToCCo. We will then study the effects arising from the electrical conductivity of the solid and
its influence on theOhmic dissipation, both on the fluid and solid sides. In section 4.3we investigate
the stress on the boundary for different frequencies and its link with dissipation processes. We then
conclude with some geophysical applications in section 4.4.

4.1 Benchmark with DNS

Calculating the three-dimensional MHD flow of a stratified fluid on a bumpy solid (insulating or
conducting) medium is difficult to achieve with DNS. To be able to benchmark our code, we place
ourselves here in the 2D case of a simple Stokes boundary layer for parameters that are simple to
achieve for the simulation. This setup can also be easily done with our code. The calculation can
be 2D because there is neither rotation nor magnetic field, but also because we are using a ridge
topography. The purpose here is to compare the DNS and our semi-analytical approach to validate
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(a) (b)

(c) (d)

Figure 4.1: Comparison of the vertical velocity field between our code at order < = 2, = = 1 (left)
and DNS calculations (right), with nE = 10−2 (top) and nE = 1 (bottom). Calculations are performed
without a magnetic field or rotation. The top boundary is stress-free and bumpy with a topography
ℎ = 0.05 sin G, and the second boundary at I = −� = −4 is flat and no-slip. The base flow is
u0 = nE sin (C)1G . Parameters: '>−1 = 0 �A = 0.1, '4 = %4 = 1, [̃−1 = 0.

our code in a viscous case on a bumpy boundary.

To do so, a finite element model with a bumpy boundary has been developed with the Comsol
Multiphysics ® software to perform direct numerical simulations. To control numerical diffusion
effects due to the mesh grid, this model uses finite diffusivities, and thus we consider in this section
a non-zero viscous term in the Navier-Stokes equation 2.2a as well as a diffusive term %4−1∇20

on the right-hand side of the density equation 2.2b (with the Peclet number %4). This provides
us with a simple benchmark. In figures 4.1 we show the vertical velocities for DNS and ToCCo
calculations and for different nE . As expected, the flows are in very good agreement for nE = 10−2

(figures 4.1a and 4.1b). Increasing nE (figures 4.1c and 4.1d), calculations tend to disagree. This
results from a bulk asymmetry of the flow DNS.

We then show, in figure 4.2a, the viscous and total stresses (viscous and pressure) on the top
boundary. These are in excellent agreement. Figure 4.2b corresponds to the absolute difference
between DNS and our code. As expected, the error is roughly of the order of n2

C (black dotted line).

For these calculations, we perform our calculations in order n2
C nE . The technique of using a
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Figure 4.2: (a) Comparison of average horizontal stresses on a bumpy, stress-free boundary obtained
with our code of order nCnE (dashed) and with finite element DNS calculations (solid). The blue line
represents the total stress, and the red line is the viscous one. (b) is the associated absolute difference.
The black dashed line is n2

C = 0.0025 The parameters are the same as in the figure 4.1.

solution at a given order to find the stress at the next order does not work for viscous stress (see
Section 2.3). Therefore, a second (or higher) order calculation must be performed¹. Unlike flat
boundaries, the viscous force along the basic flow direction is non-zero for a stress-free bumpy
boundary. The topography indeed allows normal viscous stress to generate a non-zero horizontal
viscous drag (see the box on page 34).

4.2 Electrically conducting (solid) boundaries

An electromagnetic coupling between the fluid core and the mantle has been proposed for a smooth
spherical CMB and a conducting layer at the base of the mantle, to explain the decadal variation
in the length of the day (Rochester, 1960; Roberts, 1972). Still, it appears to require a large con-
ductance (≈ 108 S, see Holme, 1998). It has also been suggested that this could also explain some
nutation observations (Buffett, 1992), leading to the same conductance value. Therefore, Buffett
(2010), which will also be referred to hereafter as BF10, suggested combining topographic and
electromagnetic coupling (in a local model) to explain the out-of-phase component of annual nu-
tation. He used a conductivity of fB = 103 S/m, which is at the high end of the range expected for
the lowermost mantle (which is between 2 S/m and 104 S/m, see Jault, 2015). He used total energy
dissipation in the fluid and solid to estimate the coupling strength.

In this section, we consider a conducting solid to model the Earth’s mantle and variations with
latitudes of 
 and b0. We consider oscillating flows, which localise magnetic perturbations close
to the CMB. For a flat boundary, the propagation length of the perturbation X 5 ,B = :

−1
I is given by

(see equation 20 of BF10)

XB =

√
2[̃
l'<

, X 5 =

√
2

l'<
, (4.1)

¹which is intractable by hand.
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B and 5 denoting the solid and fluid sides. The solid is modelled, in our case, by a semi-infinite
medium. The oscillation frequency and conductivity are then the only parameters that drive the
effective conductance of the solid. Therefore, this approximation is acceptable only for certain
parameters if we are interested in a conductive layer of limited thickness (such that XB is smaller
than this layer).

As in Buffett (2010), we investigate Ohmic dissipation, which corresponds to the phase shift of
stress (imaginary part) to forcing, in the absence of other sources of dissipation. In this section, we
use an illustrating simplified oscillating flow, uBD = sin \ cos (lC)1G , instead of using a geophys-
ically relevant (but more complex) flow. We calculate the magnetic dissipation i as the integral
of '<−1 [̃ 92 throughout the solid and '<−1 92 throughout the fluid. Here, the fluid and solid are
semi-infinite.

Taking first into account the order < = 0 corresponding to a flat boundary, we calculate the
dissipation due to electromagnetic coupling as a function of the conductivity ratio [̃ (figure 4.3a).
All curves are superimposed because the dissipation scales as l−1/2. In the flat case considered
here, our results agree in the whole range with the predictions obtained from equations 19 and
24 of BF10, which provide the mean dissipation in the solid (dashed orange), in the fluid (dashed
blue), and their sum (dashed black). These two dissipations can actually be obtained from a single
formula, which reads as follows in our notation.

iB, 5 =
'<XB, 5

16�;2
(
1 + 2[̃1/2 + [̃

) , (4.2)

Then, for [̃ � 1 (solid conductivity larger than the one of the fluid), the dissipation scales as [̃1/2 for
the solid and is i 5 =

√
2'</(16�;2

√
l) for the fluid (thus independent of [̃). The total dissipation

becomes then dominated by the dissipation on the fluid side. In the opposite limit [̃ � 1, it is [̃−1/2

for the solid and [̃−1 for the fluid, leading to a total dissipation located mainly on the solid side.
Considering now a bumpy boundary, the topographic coupling leads to additional dissipation

(figure 4.3b), which scales as n2
C . In the limit l � 1, the dissipation scales as O(l1/2), which is

the same scaling as for a flat boundary. It occurs mainly in the solid for [̃−1 > 1 and in the fluid
otherwise. The vertical wave numbers :I obtained vary as l1/2 for l � 1 (This can be seen in
the appendix in figure A.1). The stress scales as :I , which explains the observed scaling i ∝

√
l.

However, the dissipation cannot increase indefinitely with l and, in our model, it is limited by the
acceptable limit on nC < O(:−1

I ). Assuming :I for a flat boundary is a good approximation of
the magnetic skin thickness. For a value of [ = 0.8 m2 s−1 and a diurnal oscillation, we obtain a
magnetic skin length of ≈ 148 m. This is the skin length on the fluid side, which is the smallest in
the geophysically relevant limit [̃ > 1.

66



Chapter 4. Oscillating flows - Nutation 4.3. Waves stress and dissipation

(a) (b)

10−7 10−3 101

η̃−1

10−4

10−2

100

102

ϕ
√ ω

∝ η̃
−1/

2
∝ η̃

−1
∝
η̃ 1/2

10−7 10−3 101

η̃−1

10−3

10−1

101

103

105

107

ϕ
/
( ε2 t√

ω
) ∝ η̃

−1/
2

∝ η̃
−1

∝
η̃
−3
/2

100

102

104

106

ω

Figure 4.3: Normalised mean dissipation as a function of [̃−1, at order in topography < = 0, = = 2
(a), corresponding to a flat boundary, and the order < = 2, = = 2 alone (b). Other orders terms are
identically zero, and the full dissipation is the sum of both orders. Dissipation is calculated for a set of
l (colour), with uBD = sin \ cos (lC)1G . The vertical dotted line is [̃−1 = 1. The dashed lines are the
theoretical results for total (black), fluid (blue) and solid (orange) dissipation, after the results of BF10
in figure (a), and after our results at l = 106 in figure (b). Parameters : b0 = sin (\)/2 1H − cos \1I,

 is from equation 2.8 and \ = c/4. Other parameters are those in Table 2.2 for :̃−1 = 100 km.

4.3 Waves stress and dissipation

In this section, as done in section 3.1 for steady flows, our objective is to characterise the dissipation
due to an oscillating flow. We opted to maintain the same exploration of parameter space, inves-
tigating dissipation as a function of both the Rossby number ('>) and the interaction parameter
('</�;2). The Lehnert number is again kept constant. Since we already showed in previous chap-
ters the importance of V-plane, we choose here to concentrate only on calculations with a rotation
vector given by equation 2.7, which captures most of the V-effects (see section 3.5.3). Since the
precession and nutation motions that have the largest amplitude are diurnal in the mantle frame, we
consider l = 1/'> in figures 4.4a and 4.4b. We also explore in figures 4.4c and 4.4d the deviation
from this diurnal frequency. In 4.4, in the same way as in figure 3.2, the different dimensionless
parameters are evaluated in a way that keeps :̃ , Ω0, �̃, dA , and [B constant².

As seen before, we see that we can delimit two regimes: MHD regime when '</�;2 > 1 and
hydrodynamic regime when '</�;2 < 1. The core of the Earth and the ocean are, respectively,
in these two domains. In all the cases shown in figure 4.4 we observe a sharp transition at high
Rossby. This corresponds to a property of gravito-inertial waves. This limit can then be derived
from its dispersion relation. This effect then arises only on the fluid side. Finding the limit where
the imaginary part of :I becomes non-zero, we obtain the equation of this line, given by

'>2
(
−�A2'>2l4:2

� + 4�A2l2
(
:2
G cos 2\ + :2

H

)
+ '>2l2:2

� − 4:2
� cos 2\

)
= 0. (4.3)

²Horizontal axis is ∝ '<2 ∝ l−1 ∝ �; ∝ [̃ ∝ '>.
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(a) (b)

(c) (d)

Figure 4.4: Dissipation (colours) as a function of interaction parameter '</�;2 and '> at \ = c/4
for (a) an insulating solid and (b,c,d) an conducting solid at constant [̃ = 104 (corresponding to a
constant conductivity fB = 50 S/m). The topography has an eggbox shape with nC = 10−3, the base
magnetic field is dipolar, and the rotation vector is that of equation 2.7 (traditional tilted V-plane).
The base flow is equation 2.29 with l = 1/'> (diurnal oscillation) for (a) and (b), l = 10/'> for (c)
and l = 0.1/'> for (d). dissipation is shown for j = 0.0287, that is, :̃−1 = 100 km for the core and
:̃−1 = 183 km for the ocean. The stars represent the Earth’s core (purple) and the ocean (blue). The
red line is equation 4.3. Other parameters are those of table 2.2 at :̃−1 = 100 km.
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Noting l′ = l'>, as it is the case in our figure, this expression can be simplified as

'> = l′�A

√
1 −

4:H sin 2\

:2
�

(
l′2 − 4 cos 2\

) , (4.4)

which gives '> =
√

2�A for the parameters of figures 4.4a and 4.4b. In the MHD case, this sharp
transition is smoothed out by solid dissipation. This zone, on the right of the line of equation 4.3,
is where the influence of the conductivity of the mantle is most pronounced. Note that the Earth’s
core parameters are in this zone. In the appendix (figure A.2) we provide two analogous figures
from figure 4.4b, for fB = 0.1 S/m and fB = 103 S/m, confirming the strong influence of solid
conductivity.

For '</�;2 > 1, we can identify another regime change, which is particularly clear in figure
4.4c. We have not managed to obtain this limit analytically. However, it clearly corresponds to a
transition of the waves, from gravito-inertial waves on the left to Alfvén waves on the right side.

We focus now on the parameter range of interest for the Earth’s core (black dashed box in the
figure 4.4), located between the two limits discussed above. In cases where l'> ≥ 1, the waves
become dependent on l�A but independent of '> in figure 4.4a, which explains why the waves
(and thus the stress and dissipation) vary along the horizontal axis (l'> being kept constant).
Contrary to this insulating boundary case, the decreasing dissipation along the horizontal axis that
can be observed in the figures 4.4b and 4.4d is mainly due to the dissipation of order < = 0 (flat
boundary part) in the solid (see figure 4.3). We have checked that this decrease scales as expected
from equation 4.2 at the limit [̃ � 1 (see also figure 4.3). In figure 4.4c, the dissipation is constant,
which is not the case for other values of l'>. In fact, when l'> < 1 (figure 4.4c), the waves
behave mainly as inertial waves (which are independent of Fr). The value of l'> being kept
constant in this figure, the vertical wave number of the waves is constant (see the inertial wave
dispersion relation A.6), as well as the stress and dissipation.
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Figure 4.5: Trajectories of fluid particles at the CMB (numerically integrated), forced by nutation
motion. This corresponds to the base flow of equation 2.29 rescaled with *̃ = 8 × 10−5 ms−1 (see
Buffett, 2010). A factor 5×105 amplifies the trajectories to make them visible. The colour corresponds
to time (from yellow to blue), in a period 2c/l.

4.4 Application to dissipation of nutation

Precession and nutation wobbles that lie on the equatorial axis induce oscillating flows through the
pressure coupling as a result of the flattening of the Earth and the viscous coupling. These flows,
given in their general form by the equation 1.1c, can be projected into the local frame. The leading
order corresponds to the equation 2.29, given by BF10. We show in figure 4.5 the trajectories of
fluid particles given by equation 2.29. It corresponds to an oscillating flow in the y direction at
the equator, which progressively becomes a flow that gives circular trajectories toward the poles.
This circular motion spans all flows’ directions and shows us the importance of modelling the
topography by a 3-dimensional shape.

In the case of the well-measured quasiannual nutation motion at ≈ 366.3 sideral days (see
BF10), a phase lag is observed between response and forcing. This phase lag can be expressed as
an Ohmic dissipation for an inviscid fluid. Buffett (2010) shows that a dissipation of approximately
9 MW is necessary to explain this discrepancy. In figure 4.6 we show the topography height needed
as a function of the wavelength to obtain this value. As in BF10, the calculation is performed at
one latitude³ to obtain surface dissipation, then multiplied by the surface of the CMB (≈ 1.52 ×
1014 m2). We superpose our values obtained with the topography model of figure 3.12a. Figure
4.6a corresponds to the BF10 parameters (red square) for three colatitudes, 0, c/4, and c/2 rad
(BF10 is at \ = 0). We see that our results differ significantly between latitudes, especially for
low stratification and mantle conductivity, and particularly for large wavelengths. In any case,
with our CMB topography model (red dashed dotted line), it seems difficult to achieve this level

³Calculations are performed at the pole, we have done the same, but we also checked the robustness of this result by
considering \ = c/4 and \ = c/2.
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Precession flow

When projected in the local frame, the full expression of the precession flow is given by (Pais
& Le Mouel, 2001)

uBD = A [X3 sin \ − (X1 cos (lC +Φ) + X2 sin (lC +Φ)) cos \] 1G

− A [−X1 sin (lC +Φ) + X2 cos (lC +Φ)] 1H ,
(4.5)

X1,2,3 being the differential rotation coefficient corresponding to each component of the global
Cartesian frame, X3 referring to the rotation axis.
The azimuthal drift term X3 sin \ is small because X3 is of the order of 2 compared to X1,2

(see equations 15-16 of Pais & LeMouel, 2001). We chose to neglect it in this work. For low
polar flattening, we also have X1 ≈ −X2 (see again equation 16 of Pais & Le Mouel, 2001).
Assuming that, we obtain

uBD =
√

2X1A
[
(cos \ cos (lC +Φ)) 1G − sin (lC +Φ)1H

]
, (4.6)

which is equivalent to the equations 11-12 of Buffett (2021) with l̃ 5 =
√

2X1, and also to our
non-dimensional equation 2.29.

of dissipation without sufficient stratification and/or high mantle conductivity. This would require
them to be at least equal to or higher than those used here.

In appendix A.4 we also provide the same calculations for an insulating mantle. We observe
that the conductivity of the mantle has a secondary influence for dissipation in the case of strong
stratification (except for very large topography). In this case, we could say that mantle conductivity
is not necessary to explain dissipation. This has also been shown byBF10 (see figure 3.b). However,
non-zero mantle conductivity is essential for moderate stratification.

For every colatitude, we observe that we obtain results of the same order of magnitude as BF10
who only considered \ = 0. In this specific case, our calculations differ by a factor of ≈ 2.5. There
are several reasons for this. First, the approximations made (see table 2.7) inevitably cause our
calculations to differ. Second, in BF10 equation 9 provides the topography used, which corresponds
to a ridge topography orientated between the x and y axes. This does not correspond to figures 1
and 2 of his paper, which shows egg-box topography⁴. We chose to compare his results with our
results in the case of an egg-box topography (which seems more relevant than tilted ridges). Using
a ridge shape significantly reduces the gap between our calculations. The dissipations at order n2

E

are identical, since they correspond to a flat boundary. However, at order n2
En

2
C , the ridge topography

dissipation iridge and the egg-box one iegg are exactly related by iridge = 2iegg. Finally, we noticed
that the ansatz presented in equation 10 cannot solve the non-penetration condition as presented,
as some terms were missing. Although this does not invalidate the whole calculation, it can easily
explain a factor of 2.

In figure 4.6, we have followed the approach of Buffett (2010), calculating the dissipation with

⁴Equation 9 is equivalent to ℎ = nC sin(G + H), while figures 1 and 2 corresponds to ℎ = nC sin(G) sin(H).
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Figure 4.6: Topography height that is needed to explain the out-of-phase component of the annual
nutation (calculated via Ohmic dissipation 9 MW). Surface dissipation is calculated at \ = 0 (solid blue),
\ = c/4 (dashed orange), and \ = c/2 (dotted green). This surface dissipation is then multiplied by the
surface of the CMB. The red dashed-dotted line is the CMB topography model of figure 3.12a. The red
square is the result of Buffett (2010). The base flow is equation 2.29 and the magnetic field is dipolar.
The topography has an egg-box shape ℎ = nC cos G cos H. Parameters : �̃ = 5×10−4 T, d = 104 kg m−3,
Ω0 = l = 7.292 × 10−5 s−1, *̃ = 8 × 10−5 m s−1, [ = 1.592 m2 s−1 (f = 5 × 105 S m−1), [̃ = 500
(fB = 103 S m−1). In (a), #/Ω0 ≈ 1240 and which is a parameter of BF10, and in (b), #/Ω0 = 1
(Buffett, 2014).

a single latitude. While this should provide good orders of magnitude, we can expect the result to
be significantly modified when considering the proper dissipation at each latitude and integrating
the results on the whole sphere. Our method enables us to perform this calculation that will be
done and discussed in section 5.1.1.
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Summary of the chapter
ó Motivated by the CMB flow driven by Earth’s nutations, topographic effects with time-

dependent basic flows have been investigated.

ó Extending our semi-analytical code to viscous flows (with no-slip or stress-free topogra-
phies) and buoyancy diffusion, we successfully retrieve DNS results.

ó As new boundary conditions, we introduce the electrical conductivity of the solid and
observe its effect on stress. We have shown the important influence of the oscillation
frequency and have explored the asymptotic cases.

ó We ended up linking our dissipation calculations to nutation measurements and com-
paring with previous works.

ó Although not addressed, our method could be applied to subsurface oceans of librating
ice satellites (e.g. Kvorka et al., 2018; Van Hoolst et al., 2013).

Figure 4.7: Snapshots of the temperature field and surface topography (black lines) obtained from
numerical models. The red curve represents the long-wavelength component of the topographic
signal and the black dashed line is the reference flat topography. (Figure from Kihoulou et al.,
2023).
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In this concluding chapter, we return to the initial motivations for this work and discuss how
extrapolating our local model results toward global geometries or to Earth models. We discuss how
to better take into account the spatial variations of the CMB stress and how this complexity can be
considered in the estimate of the coupling. We then point out some of the limitations of the local
models that we have studied. We give some thoughts on how to fill the gaps in local models and
why studies mixing local and global are needed. We end with a conclusion and some long-term
perspective.

5.1 On-going work and short-term perspectives

We have begun to explore some paths that seem promising but could not be completed before the
end of this thesis. To make additional progress, more effort or cooperation with other researchers
would be necessary. I present here some preliminary work done as well as perspectives.

5.1.1 From local models to global geometries

Our model allows us to compute the average stress and dissipation per unit of surface at each
latitude, taking into account the variation in latitude of the rotation and the magnetic field effects.
Thereafter, we can integrate these results on the surface of the CMB. The overall value obtained
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in this way should be more reliable than the extrapolation of a value calculated at a single latitude.
Significant differences can exist when the angle between the magnetic field, the rotation vector, and
the topography vary. Moreover, the coupling parameters in the AMD nutation models (Mathews
et al., 2002; Koot et al., 2010), and the LOD models as well (Roberts & Aurnou, 2012) measure
the strength of torques, which are integrated values.

In figure 5.1 and 5.2 we show the topography height needed to explain LOD data (typical
torque of 1018 Nm, see Roberts & Aurnou, 2012; Jault, 2020) and nutation properties (typical
dissipation of 9 MW, see Buffett, 2010), respectively. We choose to use the dissipation approach
used by Buffett (2010) since the link between the stress provided by our code and the imaginary
part of  CMB remains to be addressed. We investigate this problem for an insulating mantle. In
both cases, we did not consider any variations in the longitude of the parameters and performed
the calculation only on the north hemisphere. This can be done because stress and dissipation are
symmetric on both sides of the equator despite the opposite values of 1I · b0 and 1I ·
. In figure
5.3a, we show the spatial variations of the stress used to integrate the torque. Here, we can see
variations in stress of several orders of magnitude between latitudes. We have checked that the
stress is indeed symmetrical. Figure 5.3b shows the stress as a function of latitude and its mirror
image relative to the equator. The residual of their subtraction is exactly zero. We can then integrate
the torque as follows

Γ̃I =

∫ 2c

0
2
∫ c/2

0
' sin \ ˜〈�〉 '2 sin \ d\dq = 4c'3

∫ c/2

0
˜〈�〉 sin2 \ d\ (5.1)

where ˜〈�〉 depends on the colatitude \.
For nutations calculations, the base flow is the one of equation 2.29. For LOD we consider as

a first approximation that the average flow at the CMB is at first order a solid body rotation around
the rotation axisΩ0. Locally, the base flow can be written as[0 = *̃ sin \1G , with *̃ = 10−4 m s−1

(for CMB velocity estimates, see Gillet et al., 2015).
In figure 5.1 we show the difference between a calculation made at mid-latitude with a torque

integrated with latitude for the LOD application. We observe only a small difference between the
two estimates since the mid-latitude calculation is close to the average value (contrary to the pole
or the equator, see figure 5.3). We also compared our CMB topography model with these results
and found that for large topography wavelengths, a weak stratification is sufficient (approximately
#/Ω0 = 0.1).

We then did the same work for the dissipation of annual nutation, comparing the dissipation at
the pole (figure 5.2a), as did Buffett (2010), with an integrated value. For this nutation problem,
the results are more different between the pole and the integrated value. We see that in both cases,
the stratification needed to explain the data with our topography model is high compared to what
we expect for the core. Also, it does not seem possible to find parameters that account for both
LOD and nutation. All this suggests that the pressure coupling is not sufficient on its own. Buffett
(2010) already showed that electromagnetic coupling can, in the presence of topography, lead to a
sufficient dissipation with weaker stratification.

We can perform calculations on a conducting boundary with rapidly oscillating flows. But
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(a) (b)

Figure 5.1: Topography height (colour) necessary to explain the LOD variations (1018 Nm, see Roberts
& Aurnou, 2012; Jault, 2020) as a function of the wavelength of the topography ; and the Brunt-
Väisälä frequency #. In (a) value is estimated from the mean local value of the stress (2.4×103 Nm2).
Calculations are made at the colatitude \ = c/4. In (b) the stress is calculated at 8 latitudes on one
hemisphere and by symmetry is integrated on the surface of the CMB to obtain the torque. The red line
is where the topography model of figure 3.12a corresponds to the estimate of ℎ. The blue dashed line
correspond to equation 3.14 The mantle is insulating. The base flow is u0 = sin \1G and the magnetic
field is dipolar. Parameters: l = Ω0 = 7.29 × 10−5 s−1, �̃ = 5 × 10−4 T, *̃ = 10−4 m s−1 and [̃−1 = 0.

(a) (b)

Figure 5.2: Topography height (colour) necessary to explain the dissipation of the annual nutation
(9 MW, see Buffett, 2010) as a function of the wavelength of the topography ; and the Brunt-Väisälä
frequency #. In (a) dissipation is calculated at the pole and multiplied by the surface of the CMB
(1.527 × 1014 m2). This is the approach of Buffett (2010). In (b) the dissipation is calculated at
8 latitudes on one hemisphere and by symmetry is integrated on the surface of the CMB. The red
line is where the topography model of figure 3.12a corresponds to the estimate of ℎ. The mantle
is insulating. The base flow is that of equation 2.29 and the magnetic field is dipolar. Parameters:
l = Ω0 = 7.29 × 10−5 s−1, �̃ = 5 × 10−4 T, *̃ = 8 × 10−5 m s−1 and f = 5 × 105 S m−1.
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(a) (b)

Figure 5.3: Stress as a function of latitude on both hemispheres for a solid body rotation flow. (a)
Stress model extrapolated from calculations on the north hemisphere, used to calculate the torque.
(b) Stress as a function of colatitude (solid line) and its mirror image relative to c/2. We see perfect
symmetry around the equator. The parameters are those of table 2.2 for :̃−1 = 100 km.

because we assume an infinite half-space conducting mantle, we cannot do this calculation for a
steady flow. A steady flow results in a linear solution of the magnetic field in the mantle. The
perturbation therefore does not decay at infinity, which is a problem for the boundary conditions at
infinity. This is also a problem for slowly oscillating flows, as it involves a very thick magnetic skin
layer (see equation 4.1), which does not correspond to the conductive mantle we want to model. We
then cannot compare our nutation results on the conducting boundary with their LOD equivalent,
while it could make it possible to find a common model for both problems. As a perspective, a
possible solution that could be implemented in our code is to separate the mantle into two layers,
a lowermost conducting and an insulating one. This would add an interface with its own boundary
conditions and a new domain in which to solve the induction equation. But this could be managed
using our approach, and this is part of our future project to improve ToCCo.

5.1.2 Fluxes at infinity: limitation of periodic models

In the frame of our periodic model, we have been able to calculate mean stresses that are not
balanced by the mean acceleration of the fluid. Similarly, we find that the mean magnetic stress on
the fluid side is non-zero, although the mantle is electrically insulating. We interpret these results
as a limitation of periodic box models.

We observe that the Coriolis and Lorentz mean forces in the fluid balance the mean pressure
force on the boundary. In a closed problem, the presence of mean Coriolis and Lorentz forces
would be non-physical. In our model, these forces arise, respectively, from the mean flux of mass
and electrical currents at infinity. The same effect occurs when we calculate a Hartmann layer (see

77

https://gitlab.com/monvilre/tocco


5.1. On-going work and short-term perspectives Chapter 5. Discussion and perspectives

Figure 5.4: Magnitude of Lorentz (blue/purple), Coriolis (black/green) and (u · ∇)u (orange/red)
forces as a function of '>, calculated at the surface (through the bumps, see equations 5.2, solid lines)
and in the fluid interior (dashed). The grey line is the boundary pressure stress. The solid vertical line
is Λ = 1, the dashed blue line is !4 = 1. The parameters are those of table 2.2 for :̃−1 = 100 km, \ = 0,
[̃−1 = 0. The calculations are for a ridge topography with 
 = b0 = 1I.

section 2.4.4), we obtain a steady flow and a mean stress corresponding to a pressure drop.

The linear solution induces a second-order volumetric flow rate and an electric current through
the bumps (Jault, 2020) as

U =

∬
(

DH (G, I), d( =

∫
ℎ(G)DH (G, 0) dG, J =

∬
(

9H (G, I) d( =

∫
ℎ(G) 9H (G, 0) dG,

(5.2)
where ( is a plane of constant H, and j the electrical current density ∇ × b. These fluxes yield
mean Coriolis 2'>−1ΩIU and Lorentz forces 10IJ . Since we calculate second-order solutions,
we are able to obtain the flux of mass and the current in the fluid interior and compare themwith the
fluxes through the bumps (figure 5.4, where \ = 0 and a ridge topography are considered following
Jault (2020)). First, the Lorentz, Coriolis, and inertial ((u · ∇)u) forces in the interior cancel out.
Second, the (u · ∇)u contribution at the surface exactly balances its contribution in the interior as
a consequence of the non-penetration boundary condition and incompressibility. Finally, we find
that for an Elsasser number Λ < 1 the Coriolis force is stronger than the Lorentz force and vice
versa forΛ > 1 (as already shown by Jault, 2020, in section 4.2). In both cases, the force calculated
through the bumps predominates. Our order two calculations are required to provide the correct
balance of these mean fluxes. The problem at infinity remains but could be solved by relaxing the
steadiness assumption (as discussed in long-term perspectives). Physically, these forces tend to
oppose the differential velocity between the fluid and the solid. Then, the force feedback on the
fluid and solid velocities is something that is missing from current models. Ultimately, we would
like to construct a velocity profile knowing the velocity far from the boundary. Similarly, there
will be feedback of the electrical field on the ambient magnetic field. The ways of avoiding these
limitations are discussed in section 5.3.2.
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5.1.3 Turbulence and flow detachment: towards experiments

If our intention was to investigate steep slopes or high Reynolds numbers, our model would not
be appropriate due to turbulence and flow separation phenomena that occur downstream of the
bumps. We can capture some of the non-linear effects by going to higher orders, but we are still
limited by the perturbative approach. Effects that require the perturbation to be of the same order
of magnitude as the base flow, such as recirculation, are untractable. DNS allow for this kind of
flow but are often far from the desired parameters (e.g. small diffusivities). Despite that there
are no experiments of magnetised fluid over a topography, laboratory experiments seem to be an
appropriate way of studying the non-linear effects of stratified rotating flows over bumps.

Analogue experiments are underway as part of the project funding this work. One of the aims
of these experiments is to use the theoretical results presented in this thesis to predict the surface
drag and also disentangle the non-linear effects from the wave drag predicted by the linear theory.
We have already started working on the theoretical aspect of turntable experiments, as shown in
figure 5.5, which schematically displays the different regimes to be expected in the experiments.
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(a) (b)

(c) (d)

Figure 5.5: (top) 3D models of turntable experiments (a) and bottom topography of the experiment
(b), both from Max Solazzo (private communication). (bottom) Schematic of flow behaviour in a
rotating cylindrical tank with the bottom covered with an egg box topography of 20 cm wavelength,
rotating differentially with the fluid. The blue and green domains correspond to supercritical flows, the
pink domain is a geostrophic flow, and the yellow domain corresponds to the propagation of inertial-
gravity waves. (c) Top view of the experiment, with the colour corresponding to the different regimes.
Figure (d) gives the Froude number based on the height of the topography #ℎ0/*̃ as a function of the
intrinsic frequency defined by the Doppler shift of the flow with topography *̃ :̃ (proportional to the
tank radius A). This provides the fluid regime. The vertical green line is *̃ :̃ = 2Ω0 and the red line is
*̃ :̃ = #. This figure is similar to figure 2 of Legg (2021) (reproduced her in figure 3.14). Parameters:
Ω0 = 1 rpm, *̃/A = 0.4 rpm, # = 0.5 s−1 and ℎ0 = 2 × 10−3 m.
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5.2 Conclusion

Questions remain about the coupling mechanisms between the core and the mantle that would
explain the rotation observations. Notably, the limitations of electromagnetic coupling have mo-
tivated the investigations of other coupling mechanisms, such as topographic coupling. Although
this topographic coupling has been studied for a long time, there were still some limitations at the
beginning of this work to properly model it. This thesis aimed to follow the most advanced theo-
retical perturbative calculations and adapt it to a semi-analytical method which would allow us to
remove many of the approximations made and also to explore weakly non-linear effects as well as
global geometry effects. We also wanted our method to be able to handle both hydrodynamics and
MHD. One of our initial aims was also to reconcile the topographic coupling models for variation
of length of the day and the ones for nutation, which was not the case before.

Thanks to our new method, we have been able to carry out a detailed study of the topographic
coupling mechanism, in particular wave drag. We have highlighted the contribution of different
types of fluid waves, and in particular Rossby waves, which were absent from previous models.
These Rossbywaves are relevant for the case of the core-mantle coupling in whichwe are interested,
as they significantly modify the torque. With our higher perturbation order, we have been able
to investigate the convergence of this type of local model and have estimated the upper bound
of the topography height that can be safely considered and that has sometimes been exceeded in
previous studies. Using our model and integrating in latitude, we have compared the results with
a CMB topography model. This allowed us to better constrain the parameters required to account
for rotation data.

The local models that we use allow for a detailed understanding of the physical processes at play
at the boundary. This work is the latest of a long series of models, each of which provides elements
of the answer. Our method tried to combine all of these advances and fill in the gaps between the
different studies. Today, the missing elements for modelling the CMB coupling correctly are to be
found, probably elsewhere than in the local perturbative models. As discussed, the global model
makes it possible to take into account the boundary feedback on the bulk flow and thus correctly
model the variations of the core angular momentum. Today, advances in local models, notably
the semi-analytical method that we developed, allow parameterisations and coupling with global
models. A second problem remains, even locally, that is, turbulence effects. The solution to this
problem can come from laboratory experiments or numerical simulations.

The topic of CMB coupling, like many geophysical problems, shows the importance of using
a variety of methods. However, our approach allowed us to address most of the research questions
asked at the beginning. Topographic wave dynamics took up a larger part of the work than ex-
pected. This implies that, on the other hand, work is still to be done in terms of comparison with
the data and geophysical applications. However, we have today a code ready to be employed, which
we plan to use for future studies.
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5.3 Long-term perspectives

In light of what we have learnt during this work, several new questions have been raised. The
method developed in this thesis potentially allows us to address questions that remain open at the
end of this work. Most of them require some extension of the code. In this concluding section, we
present some long-term prospective developments in this work.

5.3.1 Increasing the physical complexity of the lowermost mantle

We have already mentioned the 2-layer model in section 5.1.1, but we can also refine the physics
of the lowermost solid mantle. The electrical conductivity of the lower mantle may have lateral
heterogeneities (Tarits & Mandéa, 2010; Velímský & Knopp, 2021), and can significantly modify
the flow and electromagnetic torque at the CMB (Wicht & Jault, 2000; Dumberry & More, 2020),
depending on the conductivity distribution. Even if this effect does not seem to be effective for LOD
(Wicht & Jault, 2000), one can imagine other applications (e.g. nutation). This heterogeneity can
be implemented in our code for sinusoidal variations of conductivity in the local frame, which
requires slightly modifying the dynamical equations (magnetic diffusivities have to be included in
the divergence operator). We can also introduce these variations through the integration of our
CMB model with latitude and longitude.

Moreover, some studies proposed that the lowermost mantle is porous to the core flow. This
modifies the interaction between the core and the mantle. This mechanism has been proposed to
explain the conductivity of the lower mantle (with a potential application to the electromagnetic
torque and the LOD changes, Kanda & Stevenson, 2006). This would appear to be an interesting
extension of our work. This effect can be introduced into our code by adding a velocity field in the
solid driven by the Brinkman (1949) equations¹. This requires some work, but it can be done in
our framework.

5.3.2 Global models and time evolution

As it stands, our code can only consider harmonic time dependencies imposed by the bulk basic
flow. One perspective is to remove this limitation. One possible way is to consider the pulsation l
as an unknown of the problem. Letting l be complex allows us to study the damping of the flow or
possible instabilities. Initially, we can leave only the complex parts free and stay periodic, which
allows exponential instability. On the other hand, another method to release the constraints on time
dependency is to introduce time-stepping in the code. It allows us to integrate the equations over
time (with the limitation of having to reach an established regime) and to calculate time variations
of the flow.

As shown earlier in section 5.1.2, there are limitations of periodic box models. The pure nu-
merical model can deal with small-scale topography, but this is numerically expensive because of
the considerable difference between the large and small scales of the problem. Moreover, these

¹Brinkman equations are chosen instead of Darcy equations to ease the coupling between the porous solid and the
underlying fluid flow.
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calculations are almost intractable with magnetic fields, which is one of the main limitations for
us. Coupling our local model with numerical dynamo numerical simulations could be a promis-
ing solution. One possible approach to move forward consists of coupling a local estimation of
the instantaneous stresses at the boundary (knowing u0, b0 and 
0 as done in this study) with a
numerical model (possibly axially symmetric) in spherical geometry for the time evolution of u0

and b0 as a function of the surface stresses. This is possible but requires either directly coupling
the global and local models, or alternatively, an analytic stress parameterisation could be inferred
from the local model and used as a stress boundary condition in the DNS.

5.3.3 Thickness of the stratified layer

As stated in the introduction chapter 1, the thickness of the (possible) stratified layer at the top of
the core is expected to be of the order of (or less than) a few hundred kilometres. We can consider
that the CMB flows given by our local model are incorrect when the perturbations propagate further
than the stratified layer.

An analogy can be made with atmospheric studies, which may be relevant for the core stratified
layer. In the atmosphere, the change in density profile is a place where waves can break and deposit
their momentum. It also creates trapped lee waves, which are waves that remain guided in the
stratified part where they were born due to the change of stratification above the layer (Wurtele
et al., 1996). Theories have been developed for these waves in the atmosphere and have shown
their impact on ground topographic pressure stress (Teixeira, 2014). We propose to do the same
in our code by separating the fluid into a stratified layer and a homogeneous (or weakly stratified)
layer. Assuming that the perturbation generated by the topography will be of small amplitude at the
density change, we can consider at first approximation a non-moving interface with a continuity
of velocity and magnetic field. A true free surface condition would actually be more relevant but
implies a non-linear relationship between the boundary conditions and the dynamical equations,
which is more challenging to implement.
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A.1 Classical boundary layer flows

Here we give the analytical expression boundary layer flows between two flat boundaries that are
shown in figure 2.4b. These viscous flows are the Hartmann layer (magnetic field only), the Ekman
layer (rotation only), and the Stokes layer (oscillating flow).

For a base flow along the G axis between two horizontal no-slip plates located at I = −� and
I = � we can explicitly calculate the resulting boundary layer.

In a non-rotating frame, with a basic state u0 = 1G and b0 = �;−11I we obtain a Hartmann
layer.

u =

(
1 − cosh I�0

cosh��0

)
1G , (A.1)

with �0 =
√
'<'4/�; the Hartmann number.

In a frame rotating at 
 = 1I without magnetic field and a base flow u0 = 1G , we obtain an
Ekman layer
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©«1 −

cos
(
I (1+i)√

�

)
2 cos

(
� (1+i)√

�

) −
cosh

(
I (1+i)√

�

)
2 cosh

(
� (1+i)√

�

) ª®®¬ 1G

+ i
©«−

cos
(
I (1+i)√

�

)
2 cos

(
� (1+i)√

�

) +
cosh

(
I (1+i)√

�

)
2 cosh

(
� (1+i)√

�

) ª®®¬ 1H ,

(A.2)
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with the Ekman number � = '>/'4.
With an oscillating basic flow u0 = cos (lC)1G and no magnetic field nor rotation, we obtain a

Stokes layer

u = <
[(

1 − cosh(
√

i_I)
cosh (

√
i�_)

)
exp (ilC)

]
1G . (A.3)

with _ =
√
l'4 and

√
i = (1 + i)/

√
2.

A.2 Dispersion relation of MHD waves

Considering an ansatz exp(i(lC + :GG + :HH + :I)), we can write the dispersion relation of diffu-
sionless (and without V-plane), Alfvén, Gravity and Inertial waves (Salhi et al., 2017)

l" = (b0 · k)�;−1, (A.4)

l� = :� :
−1�A−1, (A.5)

l� = 2(
 · k)'>−1:−1, (A.6)

(A.7)

with k the wave vector and :� =

√
:2
G + :2

H the horizontal wave number.
We can then write the dispersion relation of Inertia-Gravity waves

l =

√
l2
�
+ l2

�
, (A.8)

Magneto Coriolis Waves (
l2 − l�l − l2

"

) (
l2 + l�l − l2

"

)
= 0, (A.9)

and MAC waves (
l2 − l2

"

) (
l2 − l2

" − l2
�

)
− l2l2

� = 0. (A.10)

A.3 Noteworthy limits of figure 3.1

We presented several equations of limits of figure 3.1. For the sake of clarity and repeatability, we
detail their derivations in the following.

A.3.1 Limit in '> of inertial gravity waves for '</�;2 � 1

To find the limit
'> > 2 cos \, (A.11)

we impose a zero determinant for the system of dynamical equations (without a magnetic field and
no beta plane), leading to

−'>:4
G + 4:2

G'>
−1 cos2 \:2

I − :6
G − :4

G:
2
H + �A−2(:4

G + :2
G:

2
H) = 0, (A.12)
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which gives the following solution for :I ,

:I = ±'>�A−1:�

√
1 − (�A:G)2

('>:G)2 − 4 cos2 \
, (A.13)

whose real part is searched to be non-zero. Assuming �A2:2
G < 1, this leads to

'>:G > 2 cos \, (A.14)

which does not depend on �A .

A.3.2 Limit in '> of inertial gravity waves for '</�;2 � 1

To find the equation 3.2
�; = 2:��A−1 cos \, (A.15)

which delimit the transition between MAC and internal waves, we consider the equations in the
limit '<−1 = 0 without V-plane. Imposing a zero determinant, and removing the smallest terms
(regarding their values in our diagram) we obtain

:2
G cos4 \

�;4
:6
I −

2:4
G cos2 \

�;2
:4
I +

�;2�A2:6
G + :4

G cos2 \ + :2
G:

2
H cos2 \

�;2�A2 :2
I −

:6
G + :4

G:
2
H

�A2 = 0 (A.16)

whose complex solutions for :I are given by

:I = ±
√

�;

2�A

√
�;�A:2

G ±
√
Δ

|cos \ | , (A.17)

with Δ = �;2�A2:4
G − 4:2

G cos2 \ − 4:2
H cos2 \. The limit is then obtained with Δ = 0.

A.3.3 Rossby waves limits

The two following equations (equations 3.5 and 3.6)

8j�A2 cos \ cot \ < '> < 2j:−2
� sin \, (A.18)

:2
�'> = j sin \

[
1 ±

√
1 − (�A:�)2 [s1(:H/j)2 +s2 cot2 \]

]
, (A.19)

are respectively derived in the hydrodynamic and ideal MHD limits. Imposing a zero determinant,
removing the smallest terms (regarding their values in our figure) and prescribing the :I values
from figure 3.5b (:I = −:H tan \ for the hydrodynamic and :I = :H tan \/2 for the ideal MHD
limits, respectively), we obtain

(:2
� − �2�A2)'>2 + 2 sin \ (��A2 − 1)j'> + ��A2j2 = 0, (A.20)

for the hydrodynamic limit, with

�2 = (:2
� − :2

H)2 +
(:� :H)2 − :4

H

cos2 \
, (A.21)

� = :2
� + 2:2

H +
:2
H

cos2 \
, (A.22)

� = 16 cos2 \. (A.23)
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Equation A.18 is obtained for �A � 1.
For the ideal MHD limit, we obtain the matrix

:G
(
−'>:H tan \+4i sin \

)
2'>

− 4j cos \+i:H sin \

'>
:2
G+

8:H sin \ tan \

'>
− 8:G

�A2 0 0 0
:G

(
'>:H+2i cos \

)
'>

−'>:2
G+2j sin \+2i:H cos \

'>

4j cos \−2i:H sin \

'>
0 0 0 0

8:G i:H
8:H tan \

2 0 0 0 0
0 0 −1 i:G 0 0 0
0 0 0 0 i:G i:H

8:H tan \

2
0 0 0 0 0 i:G 0
0 0 0 0 0 0 i:G


(A.24)

Equation A.19 can be obtained by cancelling the determinant in the limit �A, '> � 1. Note that
this matrix is given for non-traditional V-plane and is modified for other approximations.

A.4 Supplementary material for chapter 4

In this section we give some figures on which the assertions made in chapter 4 are based but which
had no place in the body of the text.

In section 4.2 we argue that the dissipation scales as l1/2 in figure 4.3 when l � 1 because
the vertical wave number :I has the same scaling. In figure A.1 we show the variation of :I with
the base flow oscillation frequency. The figure A.2 shows the equivalent of figure 4.4 at different

101 103 105

ω

10−5

10−2

101

104

<(
k
z
)

Figure A.1: Real part of the vertical wave numbers as a function of the oscillation frequency of the
base flow l. The dashed line indicates the

√
l scaling. The parameters are the same as in figure 4.3b.

solid conductivity (fB = 0.1 S m−1 and fB = 10 S m−1) for a diurnal oscillation. This confirms
the strong influence of solid conductivity. The figure A.3 shows the equivalent of figure 4.6 with
an insulating mantle. This shows the respective influence of stratification and mantle conductivity.
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(a) (b)

Figure A.2: Dissipation (colours) as a function of the interaction parameter '</�;2 and '> at \ = c/4
for a conducting solid at constant fB = 0.1 S/m (a) and fB = 10 S/m (b). The topography has an
eggbox shape with nC = 10−3, the base magnetic field is dipolar, and the rotation vector is that of
equation 2.7 (traditional tilted V-plane). The base flow is the equation 2.29 with l = 1/'> (diurnal
oscillation). Dissipation is shown for j = 0.0287, that is, :̃−1 = 100 km for the core and :̃−1 = 183 km
for the ocean. The stars represent the Earth’s core (purple) and the ocean (blue). The red line is
equation 4.3. Other parameters are those of table 2.2 at :̃−1 = 100 km.
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Figure A.3: Topography height that is needed to explain the out-of-phase component of the annual
nutation (calculated via Ohmic dissipation). Surface dissipation is calculated at \ = 0 (solid blue),
\ = c/4 (dashed orange), and \ = c/2 (dotted green). This surface dissipation is then multiplied by the
surface of the CMB. The red dashed-dotted line is the CMB topography model of figure 3.12a. The
solid is insulating and the other parameters are those of figure 4.6.
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