
HAL Id: tel-04661844
https://theses.hal.science/tel-04661844

Submitted on 25 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Misplaced trust in AI : the explanation paradox and the
human-centric path. A characterisation of the cognitive
challenges to appropriately trust algorithmic decisions

and applications in the financial sector
Astrid Bertrand

To cite this version:
Astrid Bertrand. Misplaced trust in AI : the explanation paradox and the human-centric path. A char-
acterisation of the cognitive challenges to appropriately trust algorithmic decisions and applications
in the financial sector. Artificial Intelligence [cs.AI]. Institut Polytechnique de Paris, 2024. English.
�NNT : 2024IPPAT012�. �tel-04661844�

https://theses.hal.science/tel-04661844
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
4I

P
PA

T0
12 Misplaced trust in AI: the explanation

paradox and the human-centric path. A
characterisation of the cognitive
challenges to appropriately trust

algorithmic decisions and applications in
the financial sector.
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Spécialité de doctorat : Informatique
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Abstract

Deep learning, the technology behind ChatGPT relies on a complex
and massive network of mathematical operations. Although we know
the math for each individual operation, we do not understand why the
network as a whole produces the results we see. For most of "artificial
intelligence" (AI) models1, it is unclear why they behave the way they 1 The term "artificial in-

telligence" (AI) encom-
passes these deep learn-
ing techniques as well
as less complex machine
learning models.

do, making it difficult to determine when they fail and if they have bi-
ases. This problem has led to a significant growth of research on explain-
ability in recent years, which focuses on understanding the behaviour
of machine learning models. However, there has been comparatively
little exploration of how current explainability methods align with the
requirements of highly regulated environments such as finance, taking
into account human factors. In such contexts, the warranted, i.e. well-
calibrated trust of customers and regulators in AI systems can be critical
for achieving regulatory compliance. This thesis explores the potential
of explainability to enable warranted trust in AI and help ensure compli-
ance of AI-enhanced systems in financial applications.

The first part explores the cognitive barriers related to the construc-
tion of explainable AI interfaces that promote appropriate levels of trust,
through two detailed scoping literature reviews. In the first analysis, we
present a heuristic map of the different cognitive biases to be taken into
account in the design of explainability through the review of 38 research
articles. We also detail the context in which these different biases were
found, in particular the method of explicitation used and the types of
users and tasks in which they appear. This study reveals an ‘explanation
paradox’, where explanations intended to inform users may ultimately
increase their confidence in untrustworthy AI models, which is undesir-
able. The second detailed scoping literature review of this thesis studies
a corpus of 48 articles and provides a taxonomy of the different ways of
interacting with explainability solutions. We identify three categories of
interaction according to their role in the cognitive process of explanation:
‘selective’, ‘mutable’ or ‘dialogic’. We also analyse the effects of these
types of interaction on users. We find that interactive explanations im-
prove the perceived usefulness and performance of the human+AI team,
but that they take longer. Finally, we describe some little-explored av-
enues, such as measuring curiosity or learning.

The second part deals with the needs and effects of explanations in fi-
nancial contexts. We conduct a controlled study with 256 participants in
the context of online life insurance distribution, where there are already
legal requirements for explanations, to compare the effect of several types
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of explanation representation on user trust. We show that feature-based
explanations did not significantly improve customers’ understanding of
the recommendation or their ability to perceive its inappropriateness, a
result that is the opposite of what the law hoped to achieve. In addi-
tion, explanations in the form of dialogue increased users’ trust in the
recommendations made by the robo-advisor, sometimes to the detriment
of the users themselves. This real-life scenario illustrates how explain-
ability can prove insufficient to remedy information asymmetry in com-
plex areas such as finance. Another study analyses supervisors’ require-
ments for explainability solutions in the fight against money launder-
ing and the financing of terrorism (AML-CFT). Through scenario-based
workshops with 13 supervisors and 6 banking industry professionals, we
describe the audit practices and the supervisor’s socio-technical context.
Combining observations from the workshops with an analysis of compli-
ance requirements, we identify AML-CFT obligations that conflict with
AI opacity. We then articulate supervisors’ needs for model justification.
We discuss the role of explanations as reliable evidence on which to base
justifications.

The conclusion discusses the potential of explanations to manipulate
user trust. We then review promising human-centered development paths
for developing explainable AI interfaces that enhance user autonomy.
These include personalising explanations, presenting a range of options
rather than a single recommendation/explanation, stimulating user scep-
ticism, and fostering user engagement, curiosity and learning. The role
of explainability in mitigating regulatory tensions caused by the use of
opaque AI models in AML-CFT is also examined.



Résumé

L’apprentissage profond, la technologie derrière ChatGPT, repose sur
un réseau complexe et massif d’opérations mathématiques. Bien que
nous connaissions les mathématiques de chacune de ces opérations, nous
ne comprenons pas pourquoi le réseau dans son ensemble produit les ré-
sultats que nous voyons. Pour la plupart des modèles d’« intelligence
artificielle » (IA), on ne sait pas pourquoi ils se comportent comme ils le
font, ce qui rend difficile de déterminer quand ils peuvent se tromper
et s’ils ont des biais. Ce problème a conduit à une croissance signi-
ficative de la recherche sur l’explicabilité au cours des dernières an-
nées, qui se concentre sur la compréhension du comportement des mod-
èles d’apprentissage automatique. Toutefois, la façon dont les méthodes
actuelles d’explicabilité s’alignent sur les exigences d’environnements
hautement réglementés tels que la finance, en tenant compte des facteurs
humains, a été relativement peu explorée. Dans de tels contextes, la con-
fiance justifiée, i.e. bien calibrée des clients et des régulateurs dans les
systèmes d’IA peut être critique pour atteindre la conformité réglemen-
taire. Cette thèse explore le potentiel de l’explicabilité pour permettre
une confiance justifiée dans l’IA et pour aider à assurer la conformité des
systèmes améliorés par l’IA dans les applications financières.

La première partie explore les obstacles cognitifs liés à la construc-
tion d’interfaces d’IA explicables et favorisant des niveaux de confiance
appropriés, grâce à deux examens détaillés de la littérature. Dans une
première analyse, nous présentons une carte heuristique des différents
biais cognitifs à prendre en compte dans la conception de l’explicabilité
grâce à l’examen de 38 articles de recherche. Nous détaillons aussi le
contexte dans lequel ces différents biais identifiés ont été trouvés, no-
tamment la méthode d’explicitation utilisée et les types d’utilisateurs et
de tâches dans lesquels ils apparaissent. Cette étude révèle un « para-
doxe de l’explication », où les explications destinées à informer les util-
isateurs peuvent finalement accroître leur confiance dans des modèles
d’IA non dignes de confiance, ce qui n’est pas souhaitable. La deux-
ième revue de littérature de cette thèse étudie un corpus de 48 articles
et fournit une taxonomie des différentes façons d’interagir avec les solu-
tions d’explicabilité. Nous déterminons trois catégories d’interaction en
fonction de leur rôle dans le processus cognitif d’explication : « sélectif
», « mutable » ou « dialogique ». Nous analysons également les effets
de ces types d’interaction sur les utilisateurs. Nous constatons que les
explications interactives améliorent l’utilité perçue et la performance de
l’équipe humaine+AI, mais qu’elles prennent plus de temps. Enfin, nous
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décrivons des pistes peu explorées, notamment la mesure de la curiosité
ou de l’apprentissage.

La deuxième partie traite des besoins et des effets des explications
dans les contextes financiers. Nous menons une étude contrôlée avec 256

participants dans le contexte de la distribution en ligne d’assurances-
vie, où il existe déjà des exigences légales en matière d’explications,
pour comparer l’effet sur la confiance des utilisateurs de plusieurs types
de représentation d’explications. Nous montrons que les explications
basées sur les caractéristiques n’amélioraient pas de manière significative
la compréhension de la recommandation par les clients ou leur capacité
à percevoir son caractère inapproprié, un résultat qui est à l’opposé de ce
que la loi espérait obtenir. En outre, les explications sous forme de dia-
logue augmentent la confiance des utilisateurs dans les recommandations
du robot-conseiller, parfois au détriment des utilisateurs. Ce scénario réel
illustre comment l’explicabilité peut se révéler insuffisante pour remédier
à l’asymétrie de l’information dans des domaines complexes tels que la
finance.

Une autre étude analyse les exigences des autorités de contrôle en
matière de solutions d’explicabilité dans le cadre de la lutte contre le
blanchiment d’argent et le financement du terrorisme (LCB-FT). Grâce à
des ateliers basés sur des scénarios avec 13 superviseurs et 6 profession-
nels du secteur bancaire, nous décrivons les pratiques d’audit et le con-
texte sociotechnique du superviseur. En combinant les observations des
ateliers avec une analyse des exigences de conformité, nous identifions
les obligations en matière de LCB-FT qui entrent en conflit avec l’opacité
de l’IA. Nous formulons ensuite les besoins des superviseurs en matière
de justification des modèles. Nous discutons du rôle des explications en
tant que preuves fiables sur lesquelles fonder les justifications.

La conclusion aborde le potentiel des explications pour manipuler la
confiance des utilisateurs. Nous passons ensuite en revue les pistes
de développement centrées sur l’humain qui sont prometteuses pour
développer des interfaces d’IA explicables qui améliorent l’autonomie
des utilisateurs. Ces pistes sont la personnalisation des explications, la
présentation d’un éventail d’options plutôt que d’une seule recomman-
dation/explication, la stimulation du scepticisme des utilisateurs, et la
favorisation de l’engagement, de la curiosité et de l’apprentissage des
utilisateurs. Le rôle de l’explicabilité dans l’atténuation des tensions ré-
glementaires causées par l’utilisation de modèles d’IA opaques dans la
LCB-FT est également examiné.
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Chapter 1

Introduction

“High-risk AI systems shall be designed and developed in such
a way to ensure that their operation is sufficiently transparent
to enable users to interpret the system’s output and use it
appropriately. An appropriate type and degree of transparency
shall be ensured, with a view to achieving compliance with the
relevant obligations of the user and of the provider.”

Proposal for the AI Act, April, 21st, 2021

AI is hype today. 2023 was Generative AI’s breakout year, with Chat-
GPT and Midjourney1 generating significant excitement around perfectly 1 Models like ChatGPT

or MidJourney, which
create text or images
from prompts, are called
“generative AI”. https:
//chat.openai.com/
Accessed January 2024.

credible presidential speeches produced in a few seconds or videos of
teddy bears skating. However, AI’s large scope of benefits, from per-
sonalized movie recommendations to the detection of cancerous lesions
in medical imaging, comes with risks. Public and expert opinions have
expressed concerns about AI taking over human jobs, people gradually
losing skills, or privacy and fundamental rights being violated by AI
decision systems [Cui, 2023, Zhang, 2021]. Notably, the use of AI in auto-
mated settings has fueled concerns about AI replacing humans, and the
need for keeping humans in control for important decisions. In a recent
survey, [Tyson and Kikuchi, 2023] highlighted that Americans’ concern
about AI in daily life outweighed excitement.

Many concerns arise from the complexity and opacity of some AI
models, and more specifically deep learning2. While we know the math- 2 Deep learning is a sub-

set of machine learn-
ing which involves neu-
ral networks with multi-
ple hidden layers.

ematical operations that occur in perceptrons, units of neural networks
inspired by brain neurons [Cox and Dean, 2014], we do not understand
why, when put together, they result in the behavior we observe [An-
thropic, 2023]. The scale of the data on which these models are trained,
and the massive number of parameters that compose them3 makes them 3 GPT-4, for example,

has 1.7 trillion parame-
ters.

unintelligible to humans. Like the human brain, we have a good under-
standing of its component units, such as synapses, and how they com-
municate with each other, but we cannot fully explain the results they
produce [Anthropic, 2023]. Sophisticated machine learning models, es-
pecially generative ones, are often considered as "black-boxes". They can



22 the explanation paradox and the human-centric path

provide very accurate predictions, but it is unclear how they arrive at
those conclusions.

The emergence of deep learning models in 2012 [Krizhevsky et al.,
2012, LeCun et al., 2015] and more recently, transformers [Vaswani et al.,
2017] and generative AI, has brought us in what Melanie Mitchell [2021]
describes as an "AI spring", a period of massive investment and opti-
mism in AI. This "race to AI" has led to a "race to regulation" [Smuha,
2021]. Regulatory efforts to prevent the harmful effects of AI systems
have multiplied in recent years, the results of which are only now start-
ing to emerge. In Europe, the proposal for the regulation of AI in the
European Union (the "AI Act") [European Commission, 2021], which sets
out requirements for AI applications considered as "high risk" will re-
quire thorough certification mechanisms for machine learning systems
considered as "high risk". China has also adopted a set of regulations fol-
lowing its "Next Generation AI Development Plan" [Zheng and Zhang,
2023] in 2017

4. In the United States, the most recent federal regulatory ef- 4 This plan includes
the 2022 "Adminis-
trative Provisions on
Algorithm Recommen-
dation" [Zheng and
Zhang, 2023] and the
world’s first Generative
AI Regulation published
in August 2023.

fort consists of the White House executive order on AI [The White House,
2023], laying down principles for responsible AI5. In parallel, questions

5 Additionally, ten states
have regulated the use
of AI, including hir-
ing and profiling al-
gorithms, as part of
broader consumer pri-
vacy laws [Katrina Zhu,
2023].

arise about the compliance of AI systems with existing regulatory frame-
works, particularly in highly regulated areas with well-established norms
[Mittelstadt et al., 2019].

A key objective of regulation is to protect end users and citizens from
various detrimental consequences such as being deceived, being dis-
criminated against, or suffering from algorithmic errors. As a result,
many of the AI policies detailed above present transparency as a cen-
tral theme. Some existing, sector-specific, regulatory frameworks already
impose obligations to explain an algorithmic prediction to the end user.
This is the case, for example, in the context of protecting customers of on-
line life insurance recommendation systems. In other situations, the use
of machine learning models in regulated environments requires explana-
tions addressed to regulators in charge of verifying the compliance of the
system. Shedding light on the complex inner workings of AI models has
been the subject of an entire field of research called explainability (XAI),
which has gained considerable interest over the last five years. In particu-
lar, the research and policy communities have become increasingly aware
of the importance of "human-centric" design of AI explanations. How-
ever, little attention has been paid so far to the human-centric design of
explanations in view of demonstrating compliance with applicable regu-
lation and ensure "lawful AI" [High-Level Expert Group on AI (HLEG),
2018].

In this thesis, we show through literature reviews and experiments
in the context of life-insurance online distribution that AI explanations
can have the paradoxical effect of increasing user trust, including un-
warranted trust. Instead of empowering them, explanations can make
non-expert users more vulnerable. This may undermine the regulatory
objectives to inform and "enlighten" customers about the AI-based de-
cisions being made about them. We also identify the different ways in
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which explanations can lead AI users to overtrust, distrust, or misun-
derstand the system. Additionally, we investigate the effects of more
interactive "human-like" explanations that could avoid the identified pit-
falls. We argue that better efforts can be made to create more effective AI
explanations through the human-centric approach, by supporting user
engagement, curiosity and learning.

We also discuss how explainability can contribute to building justifi-
able trust of AI stakeholders, including regulators, in the context of anti-
money laundering and countering terrorism financing (AML-CFT). The
success of explainability for regulators will depend on taking a human-
centred approach designed to avoid human biases and adapt to the socio-
technical features of this context. We highlight that current explainability
methods have severe limitations and may contribute to an unjustified
sense of certainty about AI systems’ behavior. However, human-centric
explainability can still help alleviate the tensions created by the use of
black-box AI systems in AML-CFT by contributing to justifiability and
accountability.
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1.1 Research scope

This section outlines some key terms and ideas necessary to under-
stand the scope and motivation of this dissertation. It then details the
research domains in which it falls.

1.1.1 Defining AI — not a walk in the park

Figure 1.1: John Mac-
Carthy plays chess
against a computer in
1967 at Stanford.

AI is a broad church [Boden, 1996]. There may exist as many defini-
tions as there are people who use it [Smuha, 2021]. One working, illustra-
tive definition was given by John McCarthy of MIT and Marvin Minsky
of Carnegie-Mellon in the context of the 1956 Dartmouth College. They
defined AI as:

Definition

Artificial Intelligence (McCarthy and Minsky, 1956). The construc-
tion of computer programs that engage in tasks that are currently more sat-
isfactorily performed by human beings because they require high-level mental
processes such as: perceptual learning, memory organization and critical rea-
soning" [Council of Europe, 2023].

For example, playing chess, driving a car, translating, are examples of
tasks that require complex acquisition and reasoning processes including
vision, spatial awareness, judgment [Surden, 2019], and which AI was
being programmed to achieve.

Figure 1.2: AI subdis-
ciplines and their rela-
tions from [High-Level
Expert Group on AI
(HLEG), 2018].

The decades between 1950 and 1990 were the years of fundamental
advances in neural networks6 and "symbolic artificial intelligence" which

6 Neural networks were
invented much earlier
than the AI boom of
2012. For example,
the idea of the ReLU
function was presented
in 1969 by Fukushima,
backpropagation was in-
vented in 1970 by Lin-
nainmaa, LSTM were in-
troducted in 1995 by
Hochreiter and Schmid-
huber, etc. [Hochreiter
and Schmidhuber, 1997,
Müller et al., 1995]

was based on knowledge and reasoning representation. Expert systems
built in the 1980s mirrored human logic in their "inference engine" and
marked the golden age of symbolic AI. In the 2010s, access to massive
amounts of data and the development of powerful processors made it
possible to fully exploit the ideas previously developed on neural net-
works [Council of Europe, 2023]. Instead of coding human-driven logical
rules in computers, the neural network or machine learning approach
relied on letting systems discover rules by themselves in the data.

It is generally considered that four types of machine learning exist: su-
pervised, semi-supervised, unsupervised, and reinforced learning. Fol-
lowing Ghahramani [2004]’s definitions, "in supervised learning the machine
is given a sequence of desired outputs y1, y2,..., and the goal of the machine is
to learn to produce the correct output given a new input.". In unsupervised
learning, however, "the machine simply receives inputs x1, x2,. . ., but [does
not] obtain supervised target outputs". For instance, clustering is a com-
mon unsupervised learning technique where the machine finds groups
of data that share similarities. In semi-supervised learning, the machine
generates its own targets y1, y2,... to "supervise itself". In reinforcement
learning the machine gets rewards whenever its forecast or behavior is
correct.

From this historical perspective, artificial intelligence encompasses all
systems designed to imitate, match or surpass problem solving skills
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of the human brain, from symbolic AI, to machine and deep learning
or robotic systems. While illustrative, this definition carries the risk of
mistaking AI for actually intelligent, thinking, or even sentient, machines
[Mitchell, 2021, Surden, 2019]. Surden [2019] argues that it is essential to
understand what AI is not, emphasising that the computational processes
it employs are nothing like human thinking: "AI systems are often able to
produce useful, intelligent results without intelligence".

AI must therefore be defined differently from the objective of matching
or surpassing human intelligence, which is either evasive, speculative or
even misleading. Recent attempts at aligning AI policy have provided
alternative definitions that offer a functional, rather than intentional de-
scription, based on the capabilities that AI systems demonstrate. In 2019,
the OECD proposed a definition for AI systems in the "Recommendation
of the Council on Artificial Intelligence", that was adopted by 38 coun-
tries. The definition was amended on November, 8

th, 2023:

Definition

AI system (OECD, 2023). A machine-based system that, for explicit or
implicit objectives, infers, from the input it receives, how to generate outputs
such as predictions, content, recommendations, or decisions that can influence
physical or virtual environments. Different AI systems vary in their levels of
autonomy and adaptiveness after deployment [OECD, 2019].

The AI Act [European Commission, 2021] considers a similar definition
of AI systems in Article 3 "Definitions"7. 7 It also draws on the

definition proposed by
the High-Level Expert
Group in 2018 [High-
Level Expert Group on
AI (HLEG), 2018].

However, defining AI in legal terms has proven difficult, giving rise
to wide-ranging political discussions and academic debates. Some schol-
ars have argued that agreeing on a single definition of AI was unfeasible
[Reed, 2018], or even undesirable [Schuett, 2023]. Schuett [2023] con-
tends that policy makers should not use the term AI, which does not
comply with common requirements for legal definitions. These require-
ments stem from general legal principles of democratic countries, such
as the principle of proportionality, effectiveness, legal certainty or the
vagueness doctrine. With regard to these principles, Schuett argues that
artificial intelligence is too vague, over-inclusive, unpractical, imprecise
and unintelligible of a term to be used as a legal definition.

Aware of all of these difficulties to delineate the scope of AI, this dis-
sertation nonetheless focuses on algorithmic systems that fit the second
definition provided above. In the first part of the dissertation, we will
be particularly interested in how these systems "influence" their envi-
ronment, and more specifically human operators, when used as decision
aids. In the second part, we will narrow our focus to AI systems used in
finance. The first use case is an expert system providing recommenda-
tions for life-insurance contracts. The second use case explores different
types of machine learning systems, supervised and unsupervised, to de-
tect money laundering and terrorism financing.
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1.1.2 Towards trustworthy AI — and humans

Against a backdrop of surging investments and competition in AI, re-
search has shown that AI could cause harms, intended or not8, such 8 AI harms studied

in such research are
mainly not human-
intended, however some
are direct consequences
of poor AI devel-
opment choices and
optimization objectives.

as discrimination, wrongful arrests, spreading of fake-news, defamatory
deep-fakes, among others [Acemoglu, 2021]. In response to AI-specific
risks, a multitude of ethical principles for AI have emerged. A notable
success in aligning different stakeholders at scale was achieved with
the OECD principles developed in 2019 and endorsed by 46 countries
[OECD, 2019]. The OECD proposed ten principles for AI, which repre-
sent a set of priorities to reflect democratic values in AI policies, such
as protecting human rights, equity, or establishing stakeholder account-
ability. A similar early attempt at characterizing desirable AI properties
comes from the 2019 Guidelines for Trustworthy AI by the HLEG [High-
Level Expert Group on AI (HLEG), 2019]. The guidelines propose seven
key requirements that AI systems should meet to be considered trust-
worthy: human agency and oversight, technical robustness and safety,
privacy and data governance, transparency, diversity, societal and envi-
ronmental well-being, and accountability. The guidelines were influen-
tial in the drafting of the AI Act [European Commission, 2021]. Other
initiatives include the trustworthiness framework for AI proposed by the
International Organization for Standardization (ISO) [International Or-
ganization for Standardization (ISO), 2022] or the National Institute of
Standards and Technology’s (NIST) Method for Evaluating User Trust in
AI system [NIST, 2023] developed in the U.S. The aforementioned efforts
are among the most influential ones, but many other frameworks, ethical
guidelines, principles for AI have been proposed by either international,
governmental, or private organizations [Kaur et al., 2022, Jobin et al.,
2019].

Overall, two umbrella terms have emerged, "Responsible" or "Trust-
worthy" AI, to embody the ethical and safe use of AI. The former was
used mainly by private organisations, and possibly comes from the Cor-
porate Social Responsibility (CSR) culture where the notion of responsi-
bility and accountability are predominant.

The term trustworthy AI has emerged as a comprehensive objective for
AI systems. It was promoted by the EU strategy for AI [European Com-
mission, 2023] in 2017, the OECD principles, the ISO and NIST frame-
works, among others, and places trustworthiness as a higher, ultimate
value. The High-Level Expert Group on AI give three conditions for AI
systems to be trustworthy: they should be lawful, ethical and robust (cf.
Figure 1.4) [High-Level Expert Group on AI (HLEG), 2019] . According
to Kaur et al. [2022]’s review:

Definition

Trustworthy AI. is a framework to ensure that a system is worthy of be-
ing trusted based on the evidence concerning its stated requirements. It makes
sure that the users’ and stakeholders’ expectations are met in a verifiable way
[Kaur et al., 2022].
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The HLEG’s decision to concentrate on the concept of trust is under-
standable. Trust is pillar of our society and lives. It determines our inter-
actions with people, institutions, organizations and machines. Many dis-
tinct conceptual visions of trust have been proposed through the lenses
of philosophers, economists or psychologists. In the context of trust in
AI, we retain one proposed by Danks [2019] for the remainder of this
dissertation, which focuses on the functional value of trust:

Definition

Trust. Condition in which "the user has a reasonable belief that the system
(whether human or machine) will behave approximately as intended" [Danks,
2019].

The definition is in line with the one given in [Jacovi et al., 2021]. Follow-
ing [Lee and See, 2004], Jacovi et al. [2021]’s model of trust also incorpo-
rates the dimension of vulnerability: "trust is an attempt to anticipate the
impact of behavior under risk". In the case of human-AI trust, the user is
vulnerable to the risk of the AI being wrong. Trust makes her believe that
the risk is low. This risk-taking element is present in other definitions of
trust in the literature [Mayer et al., 1995, Glikson and Woolley, 2020]9. 9 Mayer et al. [1995]

explain that trust im-
plies "taking a meaning-
ful risk while believing
in a high chance of posi-
tive outcome".

The core value of trust is to enable cooperation [Hardin, 2006]. Trust
makes social cooperation easier and even possible [Hardin, 2006]. It
also enables cooperation between people and technology [Jacovi et al.,
2021, Ferrario and Loi, 2022, Chatila et al., 2021], in part because we
often apply the same social norms of interaction with machines as we
do with humans [Miller, 2019]. Consequently, trustworthy AI ultimately
aims to enable and improve human-AI cooperation, or collaboration which
one objective of human-computer interaction research [Jacobs et al., 2021,
Khadpe et al., 2020]. This enriched collaboration between humans and
AI systems can also be framed as enhanced decision-making. In criti-
cal applications such as healthcare, finance, justice, Chatila et al. [2021]
contends that really useful AI systems make it possible for human deci-
sion makers to take decisions that are more informed, as free of bias as
possible and "ultimately better".

The concept of trustworthy AI is subject, however, to controversy. Crit-
ics mainly point to the fact that trustworthy AI and other expressions
such as responsible AI or accountable AI can obscure a necessary, active role
for humans, and pose the wrong questions. Joanna Joanna Bryson [2018]
argues that trust can only be deferred to peers (other human beings),
and not to machines [Joanna Bryson, 2018, Smuha, 2021]. As physical
and legal entities, humans are the ones who should be "responsible" and
"accountable" for AI systems, not AI. Marisa Tschopp [2020] advances
that tech companies should ask themselves "How can we be trustwor-
thy?" rather than "How can we we increase trust in AI?". Additionally,
some note that the idea of trust, in its philosophical meaning, involves
delegating control, in this case to the machine, without the need for su-
pervision [Smuha, 2021, Ferrario et al., 2020]. In fact, due to the opaque
nature of machine learning models, AI stakeholders are likely to have to
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trust an AI system without a complete understanding of its underlying
algorithms. Ferrario and Loi [2022] even propose an account of trust as
"anti-monitoring", as it goes against the idea of complete comprehensi-
bility and control. As Lee and See [2004] note:

"Trust guides reliance when complexity and unanticipated situations make a complete
understanding of the automation impractical".

[Lee and See, 2004], (p. 50).

However, in most situations, it is not desirable that people blindly trust
so-called "trustworthy" AI systems. Rather, the goal is to have responsible
users able to calibrate their trust by relying on tangible information about
the system, provided by measures such as transparency, explainability,
safety tests, uncertainty metrics [Kurz et al., 2022], etc. Hardin [2006]
states "I am likely to trust you when you have given some evidence of being
trustworthy". Jacovi et al. [2021] note that trustworthiness and trust are
two entirely disentangled concepts. Trust can exist for an untrustworthy
system and vice-versa.

Definition

Warranted trust. Trust is warranted when it is caused by trustworthi-
ness (to some contract, defined for example by the HLEG’s key requirements
for trutworthy AI). In the opposite case, it is unwarranted [Jacovi et al., 2021],
or misplaced.

Ferrario et al. [2020] define "paradigmatic trust" as the disposition of in-
dividuals to rely on an AI system without monitoring, but having formed
beliefs about the system’s trustworthiness, through evidence of its reli-
ability10. Ferrario and Loi [2022] present paradigmatic trust as justified

10 This model of trust
poses the reduced level
of monitoring as an im-
portant characteristic of
trust. However, we see
the reduced levels of
monitoring as a conse-
quence of trust and not
a defining characteristic
of the concept.

and warranted trust. We use hereinafter the terms warranted [Jacovi et al.,
2021], justified [Ferrario and Loi, 2022] or appropriate trust as synonyms
[Gunning and Aha, 2019].

In this dissertation, we focus on the impact of explanations of AI sys-
tems on users’ warranted trust. This amounts to studying the process of
calibrating trust.

Definition

Trust calibration. The process of assigning a level of trust to a system
based on its performance, capabilities and behaviour [Culley and Madhavan,
2013].

Inappropriate trust calibration may lead to overtrust, distrust, overre-
liance or underreliance, i.e. misplaced or inappropriate trust. We use here-
inafter the following definitions for these terms:

Definition

Overtrust and Distrust. As an excessive or insufficient level of sub-
jective trust. Subjective trust measures the participants’ subjective reports of
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trust in the (X)AI system (also called perceived trust) [Bagheri and Jamieson,
2004, Miller, 2022].

Definition

Overreliance or Underreliance. An excessive or insufficient level of
demonstrated trust. Demonstrated trust, or reliance, refers to the propen-
sity of participants to follow and accept the advice or prediction of an (X)AI
system [Miller, 2022].

1.1.3 HCI and legal perspectives collide in the human-centric
approach

A crucial element of this trust calibration process is human behaviour
in the context of receiving AI predictions. Developing trustworthy AI
requires understanding the factors and mechanisms in human-AI inter-
actions that contribute to building trust [Jacovi et al., 2021, Danks, 2019].
Work to advance in this direction must therefore adopt a human-centered
approach. This endeavour has been characterized as human-centric AI in
recent literature [Shneiderman, 2020, Maxwell and Dumas, 2023, Bryson
and Theodorou, 2019].

Definition

Human-centric AI. This approach places people and users at the centre
of the development of AI [European Commission, 2019]. It promotes the study
of AI users in context, to understand their needs. The approach also encom-
passes the understanding of the cognitive processes that underlie human-AI
interactions.

In recent years, the goal of human-centred AI has become sufficiently
clear and consensual for several disciplines to feel concerned, allowing
a holistic view of the problem. Specifically, Human-Computer Interac-
tion (HCI) and legal perspectives seem to collide in the human-centric
AI approach. HCI is obviously part of the mix of the disciplines in-
volved. Specifically, human-centric AI builds on HCI’s long history of
user-centred design [Abras et al., 2004]. However, policy and legal ex-
perts have also adopted a human-centric approach to AI, despite law his-
torically being a rather independent academic discipline [Barocas et al.,
2020]. For instance, the High-Level Expert Group (HLEG) has fully
embraced a human-centric approach [High-Level Expert Group on AI
(HLEG), 2019], which is also reflected in the new AI Act regulation11.

11 "Rules for AI available
in the Union market or
otherwise affecting people
in the Union should there-
fore be human centric, so
that people can trust that
the technology is used in a
way that is safe and com-
pliant with the law, includ-
ing the respect of funda-
mental rights" in Section
1.1 "Reasons for and objec-
tives of the proposal" [Eu-
ropean Commission, 2021]

The regulation also takes into account observations from psychology and
Human-Computer Interaction (HCI) literature regarding the impact of
human factors on trust, such as the severity of consequences12.

12 Recital 38a of the draft
proposal

This thesis falls within the human-centric AI approach. We focus on
the calibration of trust between humans and AI systems, through ex-
plainability, as a key enabler of meaningful human-AI collaboration. We
also complement the human-centric perspective with legal approaches in
the case studies presented in Part II.
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1.1.4 Explainability (may) contribute to warranted trust

Figure 1.3: A Geo-
graphical Perspective
on Explainability.
Comparison of key-
word searches for
"explainability" and
"interpretability" on
Google from 2004 to
present. Shows that
China only uses "inter-
pretability", while Israel
and Viet-Nam only use
"explainability".

Explainability serves as one of the levers to extract information about
the behaviour of AI systems [Markus et al., 2021, High-Level Expert
Group on AI (HLEG), 2019, Jacovi et al., 2021]. However, there exist
terminological nuances and controversies in the definition of explainabil-
ity [Markus et al., 2021]. Some argue that the term explainability and
the acronym XAI are reserved for the mathematical methods used to in-
terrogate AI systems and extract insightful information about their inner
workings [Herzog, 2022]. Another term, interpretablity is therefore used to
refer to the propensity of an AI system to be contextualized and human-
understandable [Broniatowski, 2021]. Additionally, interpretable AI usu-
ally refers to models that are designed in a way that is simple enough
for humans to fully understand them [Rudin, 2019]. As for the term
intelligibility, it refers to the propensity of an explanation to be human-
understandable [Weld and Bansal, 2018].

We can see that the variations between these different terms can be
subtle. Moreover, there is no consensus on their definitions in the cur-
rent literature. For example, some use explainability and interpretability
[Markus et al., 2021] interchangeably. Depending on their geographical
region, researchers may only use one term and not the other, as shown
in Figure 1.3. To clarify the meanings of explainability-related terms, we
retain the following definitions for the rest of this dissertation:

Definition

Explanation. Explanations of AI systems are transfers of knowledge about
the behavior AI systems [Henin and Le Métayer, 2022, Miller, 2019]. Henin
and Le Métayer [2022] state that explanations are "descriptive and intrinsic
in the sense that they only depend on the system itself".

Definition

Explainability. Explainability broadly refers to providing explanations
of AI systems to relevant stakeholders to scrutinize AI models in their de-
velopment, implementation, and deployment stages [Herzog, 2022]. It most
commonly involves demands for transparency and interpretability of AI sys-
tems [Herzog, 2022].

Definition

Explainable AI (XAI). Explainable AI (XAI) is the technical arm that
aims to provide explainability. Following Markus et al. [2021] and Gilpin
et al. [2018], an AI system is explainable if it is intrinsically interpretable,
or if it is complemented with an interpretable and faithful explanation. Inter-
pretability covers aspects related to the intelligible and understandable aspect
of explanations by humans. Fidelity captures the capacity of an explanation
to provide accurate and truthful accounts of an AI system.
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Definition

Interpretable AI. A subset of algorithms that are simple enough to be
completely understood by design. These include linear and logistic regres-
sions, decision trees and rules, Generative Linear Models and Generative Ad-
ditive Models [Molnar, 2019].

Expressions such as the ones we use in this section "explainability
contributes to trust", "explainability fosters trust in AI" are common in
the recent literature on human-AI collaboration [Ferrario and Loi, 2022].
However, the relationship between explainability and trust is not straight-
forward and needs to be challenged.

Ferrario and Loi [2022] argue that there exists a causal relationship
between the perceived reliability of an AI system, given by reliability in-
dicators, and the perceived trustworthiness of a system. According to the
authors, explainability therefore fosters trusts only if it is an indicator of
reliability of the AI system. In the context of medical AI, the authors do
not believe that explainability can meet this condition, as it does not di-
rectly depict how reliable and predictable an algorithm is. They consider
that explainability is neither sufficient, nor necessary, to form justified
beliefs about the trustworthiness of the AI system. They also note that
there is no link between the explainability of a system and the absence
of need to monitor it, which for them characterises trust [Ferrario and
Loi, 2022]. The authors, however, note that these claims have yet to be
demonstrated empirically.

On the contrary, Jacovi et al. [2021] note that explainability enables
warranted trust by making possible the observation of the intrinsic rea-
soning process of the AI system and external symptoms of the model be-
havior. In other words, explainability is unique in its ability to establish
‘intrinsic trust’, whereas other mechanisms for establishing calibrated
trust rely on ‘extrinsic’ trust mechanisms. As a result, explainability can
foster distrust in a non-trustworthy system and trust in a trustworthy
one.

In this dissertation, we aim to further clarify the challenges in enabling
warranted trust with explainable AI by reviewing existing practices in the
XAI field and conducting empirical studies in the financial sector.

1.1.5 Explainability (may) contribute to lawful AI

As AI enters highly regulated environments, and specific AI regula-
tion emerges, the issue of monitoring compliance of AI systems with
existing or new regulations arises. This thesis examines the role of ex-
plainability in enabling such controls, and enforcing "lawful"13 or com- 13 "Lawful AI" is one

of the three conditions
for trustworthy AI. It
is defined as "respecting
all existing applicable laws
and regulations" [High-
Level Expert Group on
AI (HLEG), 2018].

pliant AI. More specifically, we look at explanations’ role in justifying that
AI systems are compliant within some set of rules. We consider that, if
explainability can contribute to fostering warranted regulator trust and,
in specific cases, warranted consumer trust, it participates to making AI
"lawful". We examine the challenges in using explainability for demon-
strating compliance with specific financial regulations.
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Figure 1.4: Visual repre-
sentation of the core no-
tions used in this dis-
sertation. We focus on
one of the three pillars
defined by the HLEG
of trustworthy AI: law-
ful AI. Specifically, we
examine the role of ex-
planations to support jus-
tifications of AI systems
with respect to regula-
tions or regulatory ob-
jectives.

Central to the notion of regulation is the power to compel regulated
entities to conform to a set of standards. Julia Black proposed the follow-
ing seminal definition of regulation:

Definition

Regulation. "The intentional use of authority to affect behaviour of a
different party according to a set of standards, involving instruments of
information-gathering and behaviour modification" [Black, 2001].

The holders of this authority are regulators. Their role is twofold: to
create, and to enforce regulations. The financial sector typically distin-
guishes between these two functions through the use of two separate
terms: regulators and supervisors. Regulators are in charge of drafting
the rules, and supervisors of verifying that the rules are applied. In this
thesis, we consider the perspective of supervisors14 in the domains of 14 also called "regulatory

supervisors"customer protection in life-insurance and anti-money laundering.

Regulations are designed to meet specific objectives. The question of
whether it is the pursuit of social welfare that animates regulation has
been debated for decades in the economic sphere [Levine and Forrence,
1990, Levi-Faur, 2011]. However, scholars generally agree that regulation
can be presented as an instrument to promote the general interest, par-
ticularly in situations of market failure [Moss et al., 2009]. For example,
some regulations aim to protect customers against asymmetries of infor-
mation, preserve trade secrets or prevent fraud. In this thesis, we exam-
ine specific cases of the use of AI in the highly-regulated financial sector
[Hadjiemmanuil, 2015]. We focus on two narrow objectives of financial
regulation. We explore the case of protecting customers from the knowl-
edge asymmetry that arises between them and an online recommender
system of life-insurance. This is the "customer protection objective" of fi-
nancial regulation, as presented in [Hadjiemmanuil, 2015]. Additionally,
we analyse the issue of preventing money laundering using AI systems,
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in which the applicable regulation pursues the "reduction of financial
crime objective" [Hadjiemmanuil, 2015].

To enforce regulation, supervisors carry out controls of regulated en-
tities, also known as inspections [Hadjiemmanuil, 2015], in which they
verify that the rules are being properly applied15. Inspections are close 15 The finance industry

is known to impose
tight regulatory controls
on banks and other
financial intermediaries
[Hadjiemmanuil, 2015].

to the concept of an audit. However, audits are not necessarily on-site
nor carried out by regulators. They are usually conducted by other par-
ties external to the entity being monitored [Wright, 2017]. The literature
on algorithmic audits has grown in recent years. Audits of AI systems in
production in regulated industries have adapted historical approaches to
auditing from the social sciences [Vecchione et al., 2021, Sandvig et al.,
2014, Metaxa et al., 2021, Mökander et al., 2023].

Definition

Audit, auditability. In the context of a regulated environment, an al-
gorithmic audit is a governance mechanism in which auditors participate in a
field experiment to diagnose the compliance risks associated with AI systems
in relation to specific regulations [Sandvig et al., 2014, Metaxa et al., 2021,
Mökander et al., 2023]. The auditability of AI systems enables "the assess-
ment of algorithms, data and design processes" [High-Level Expert Group on
AI (HLEG), 2019] and permits auditors to conclude on the compliance of AI
systems [Toader, 2019, Raji et al., 2020].

The EU’s High Level Expert Group on AI highlighted the key role of
auditability for accountability [High-Level Expert Group on AI (HLEG),
2019]. Koshiyama et al. [2021] give four main verticals of algorithm audit-
ing: performance and robustness, bias and discrimination, explainability,
and privacy. Some of these verticals they argue, are "closely linked to the
principle of prevention of harm [High-Level Expert Group on AI (HLEG),
2019]." Audits aim to verify that systems do not adversely affect human
beings.

This regulatory enforcement process contributes to making regulated
firms accountable for their AI systems. Doshi-Velez and Kortz [2017] de-
fine accountability as:

Definition

Accountability. "The ability to determine whether a decision was made
in accordance with procedural and substantive standards and to hold someone
responsible if those standards are not met." [Doshi-Velez and Kortz, 2017]

According to Kroll et al. [2016], the accountability mechanisms that over-
see critical decisions, such as loan approvals, immigration procedures or
vote counting, are lagging behind technological advances. The authors
argue that new technological approaches are needed to verify that AI-
based decision-making processes are accountable and compliant with a
set of standards.

Additionally, an important element of accountability is the capacity to
demonstrate compliance. Felici et al. [2013] state: "Accountability involves
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[...] demonstrating ethical implementation to internal and external stakehold-
ers". We consider that this demonstration element is provided by the
concept of justification.

Justification is another central concept in the enforcement of regula-
tions. During inspections, regulated entities typically need to justify that
their current practices are consistent with applicable regulations and their
underlying objectives16. We adopt the following definition of justification 16 The regulators’ need

for justification is actu-
ally something we hy-
pothesize and document
in this thesis. To date,
very little work has been
done to understand the
socio-technical reality of
inspections.

provided by Henin and Le Métayer:

Definition

Justification. According to Henin and Le Métayer [2022], a justification,
or “justifiability”, is an argumentative process that refers to external norms
to argue that a decision (or a system) is “good” (or adequate). Justifications
are grounded in norms, such as legal requirements [Henin and Le Métayer,
2022, Hildebrandt, 2019].

This definition works in relation to the decisions of an AI system. Henin
and Le Métayer [2022] further defines the concept of legitimacy in regards
to when the AI system as a whole is "good" within some regulation, ob-
jectives or system of norms [Suchman, 1995, Henin and Le Métayer, 2022].
Hereinafter, we use the expression justifiability to refer to the adequacy
of both an AI decision or whole system with respect to applicable legal
requirements [Henin and Le Métayer, 2022], for the sake of simplicity.

To date, little work has addressed the role of explainability in the reg-
ulatory enforcement process, i.e. for accountability, auditing, or justifi-
ability. Doshi-Velez and Kortz [2017] argued that explanations have an
important role in enabling accountability of AI developers and users. The
practice of providing reasons for decisions has an important legitimacy
function in legal culture, promoting trust of decision-making, the rule
of law, and acceptance of outcomes [Schauer, 1995]. However, Henin
and Le Métayer [2022] highlighted the fundamental differences between
justifications and explanations. Contrary to explanations, which are de-
scriptive and contained to the AI system, justifications are normative and
extrinsic17. Hildebrandt [2019] also states that explanations are not suffi- 17 In Chapter 6, we ar-

gue that justifications
must also be grounded
in intrinsic and accu-
rate information about
AI systems implementa-
tion, such as explana-
tions.

cient to justify a decision and that a justification may require an explana-
tion, but not systematically. She adds that "we must not allow the discourse
of explainability to stand in the way of the question whether a decision is legally
justified, which requires a specific type of legal reasons" [Hildebrandt, 2019].
Nevertheless, explanations may be necessary to provide tangible infor-
mation about AI systems’ behavior on which to base legal arguments.

AI explanations, justifications, and audits provide pieces of evidence
about the trustworthiness of AI systems. However, the point of view of
regulators, who are responsible for auditing and requesting justifications,
has not been empirically investigated. This thesis addresses this issue
by studying how human-centric explainability can support justifications
for AI systems during regulatory inspections, taking the perspective of
financial supervisors.
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Additionally, explainablity may also have a role to play in certain trust
calibration mechanisms that are critical for compliance. We can distin-
guish several trust relations that influence the compliance of AI systems
with some regulation.

Figure 1.5: The con-
cept of warranted trust
and the trust relation-
ships explored in this
dissertation. We in-
vestigate whether ex-
planations can enhance
warranted trust between
an individual subject
to an AI decision and
the AI system, as well
as whether explanations
can contribute to the de-
velopment of justifica-
tions that support war-
ranted trust between a
regulator and the AI
system of a regulatee.

First, customer protection regulation may require that customers be
able to make informed choices by receiving meaningful explanations
about an AI-based recommendation for some product or service. If cus-
tomers appropriately trust and rely on the recommendations, it indicates
that the regulated entity provides users with the necessary means to cal-
ibrate their trust in the system, or that the system only provides appro-
priate recommendations. Either outcome is a sign of compliance.

Second, compliance is often guided by an appropriate level of trust
and a healthy dose of skepticism between the regulated entity and its
AI system, specifically in high-risk industries. For example, a human AI
operator who blindly escalates AI-generated financial crime alerts will be
guilty of overtrust, thereby breaching legal requirements about meaning-
ful human review of alerts.

Third, warranted regulator trust in AI systems of regulated entities en-
ables regulator to appropriately assess the legality of AI systems, thereby
contributing to "lawful AI". Justifications enable "justified" trust by artic-
ulating reasons to trust or distrust an AI system. Explanations and audits
are likely to play an important role in supporting such justifications with
factual evidence about an AI system’s behaviour.

Fourth, regulators’ trust in regulatees also influences compliance in a
complex and contradictory way [Six, 2013]. On the one hand, if regulators
fully trusted regulatees, there would be no need for inspections, and
public trust in regulators would be reduced [Six, 2013]. On the other
hand, some research has shown that if regulators act out of distrust in
regulated entities, the overall result is poorer compliance [Gunningham
and Sinclair, 2009]. It has also been shown that the more inspectors trust
regulated entities, the more likely they are to be compliant [Braithwaite
and Makkai, 1994].

In this thesis, we investigate the first and third trust relationships
through two case studies. We examine the challenges to warranted trust
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between customers and AI systems in life-insurance, and trust between
regulators and regulatees’ AI systems in anti-money laundering.

1.1.6 Research domains

Explainability is an interdisciplinary topic. XAI researchers have pri-
marily focused on developing statistical tools to gain insight into the
inner workings of "black boxes". For example, many techniques rely
on querying the AI system and looking at specific entry/outcome pairs.
Varying degrees—local or global—and types of explanations18 can be 18 For example, coun-

terfactual explanations
explain the minimal
changes to make for a
specific decision to be
flipped.

achieved. The technique for generating explanations is a critical research
stream where much progress has yet to come on the robustness, fidelity,
causality of explanations. However, other fields of research like human-
computer interaction (HCI), social sciences or law help us make sure we
keep this research aligned with why we want to generate explanations
and what kind of explanation is needed in specific situations, i.e. the
human and societal aspects of XAI [Longo et al., 2020]. For instance, a
new stream of research called "contestable AI" [Alfrink et al., 2023, Bal-
ayn et al., 2023, Lyons et al., 2021, Kaminski and Urban, 2021] aims to
design explanations for citizens to contest an algorithmic decision. In re-
cent years, an increasing body of research has been dedicated to studying
people’ needs for explanations, relying on qualitative user studies or on
cognitive science theories. It has also endeavoured to better understand
the effects of explanations on users to inform their design.

Figure 1.6: Domain
scope

The work presented in this dissertation falls within this line of re-
search. It is situated at the intersection of three primary research com-
munities, all focused on the subject of explainability: (1) the design of
interactive interfaces, rooted in HCI, (2) psychological theories of ex-
planations, (3) and the study of algorithmic fairness, accountability and
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transparency, an emerging multidisciplinary community that addresses
the societal aspects of AI. All three communities have been noted as influ-
ential and distinct research streams in Abdul et al. [2018]’s topic network
analysis of explainability literature.

The design of interfaces and human-computer interactivity are core
HCI topics. This discipline aims to expand the horizons of "communica-
tion between user and system" or "human-computer dialogue", as phrased by
Dix and Ellis [1998], Foley et al. [1996]. One could also make a parallel
between Infovis19 and XAI, or even view the design of XAI interfaces 19 A domain close to

HCI which focuses on
transforming informa-
tion into a visual form
to enable readers to
make sense of the data

as an InfoVis problem [Yi et al., 2007]. In the XAI field, questions also
arise about how to represent information about AI systems, and how to
manipulate and interpret that information.

Psychological theories of explanations provide hypotheses on the way
people explain things to each other, on the role of explanations, or on de-
sirable properties explanations, such as broadness and simplicity [Lom-
brozo, 2016]. This work has been put forward by Tim Miller’s review
"Insights from the social sciences" for XAI [Miller, 2019].

In his review of the trends and trajectories in Explainability, Abdul
et al. [2018] highlight the nascent "Fairness, Accountability and Trans-
parency" community. The research community is gathered around the
societal problems posed by AI, and is marked by topics related to soci-
etal justice, including research on algorithmic biases, or judicial and legal
work [Kroll et al., 2016, Doshi-Velez and Kortz, 2017, Nannini et al., 2023,
Green and Chen, 2019, Kaminski and Urban, 2021].

Figure 1.7: Topic net-
work of the FAT and
Interpretable ML com-
munity in [Abdul et al.,
2018].
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1.2 Problem statement

Explanations of AI systems are supposed to lift the veil of AI’s com-
plexity, enable meaningful human understanding, and solve the black-
box problem. However, their effects on warranted trust, and specifi-
cally the warranted trust of regulators and customers to enable compli-
ance, has not been not clearly established [Poursabzi-Sangdeh et al., 2019,
Wang et al., 2019a, Ghassemi et al., 2021, Kaur et al., 2020]. For example,
Ghassemi et al. [2021] argue that explainability is a "false hope" in health-
care to help inform patients and Kaur et al. [2020] showed that the data
scientists in their experiments relied too heavily on XAI tools overall, and
used them to rationalize suspicious observations. Additionally, it seems
clear that explanations are bound to fail if they are not "human-centric",
i.e. tailored to their human audience and purpose [Tomsett et al., 2018,
Ooge, 2023, Ooge et al., 2022, Maxwell, 2023]. Various groups, such as
medical doctors or AI practitioners (AI developers or expert users), have
received a certain amount of attention in the literature [Wang et al., 2019a,
Ghassemi et al., 2021, Panigutti et al., 2023a, Sun et al., 2022, Liao et al.,
2023]. However, there is a scarcity of research on the development of
human-centric explainability addressed to either customers or regulators
to verify compliance. The importance of this issue is likely to increase in
the future as more regulations are introduced.

The question we address in this dissertation is: To what extent can
human-centric explainable AI enable warranted trust and regulatory com-
pliance in financial applications? To answer this question, we break
down the problem into two parts:

Problem 1 How do AI explanations affect our trust calibration in AI
predictions and systems? As we presented in Section 1.1.4,
it is still unclear whether AI explanations are able to lead to
warranted trust. Specifically, some argue that explanations
can lead to various cognitive pitfalls, leading to inappropri-
ate trust and poor decision-making [Chromik and Butz, 2021,
Ghassemi et al., 2021, Kaur et al., 2020]. This research there-
fore begins with the identification of what cognitive patterns
might get in the way of appropriately using, interpreting
and trusting explainable AI decision systems. We first ask:
What are the cognitive challenges to fostering appropriate trust
in explainable AI?. We review the cognitive biases that inter-
vene in the trust calibration process, notably those that lead
to overtrust or distrust of AI decisions. We stress the need
for human-centric XAI design, that take into account human
cognitive constraints. Secondly, in response to a growing in-
terest for designing more interactive explanations [Weld and
Bansal, 2018, Cheng et al., 2019], we examine whether inter-
active explanations designed to fit the human cognitive ar-
chitecture are more effective in enabling warranted trust. We
ask: To what extent can "human-like" interactive explanations help
overcome trust calibration issues?
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Problem 2 To what extent can explainability support regulatory com-
pliance of AI in the financial sector? Although AI is increas-
ingly entering regulated industries and new AI regulation is
emerging [European Commission, 2021], very little research
has examined the role of explainability to ensure regulatory
compliance. In the second part of this dissertation, we exam-
ine how AI explainability can foster warranted trust by cus-
tomers, and warranted trust by regulators, and thereby meet
regulatory objectives in two applications of AI in finance. In
the first case study, customers’ warranted trust in an online
recommender system of life-insurance contracts is a desirable
objective of customer protection regulation. We therefore ask:
Does explainability enhance customer warranted trust and empow-
erment in life-insurance? We also ask: What is the impact of dif-
ferent explanation formats, including interactive ones, to meet this
regulatory objective? In the second case study, we examine the
role of explanations to enable the warranted trust by regula-
tors to evaluate compliance of AI systems in anti-money laun-
dering and countering terrorism (AML-CFT). Our research
question is as follows: What are the regulatory supervisors’ needs
for explainability to justify the decisions and characteristics of AI
systems in AML-CFT?

1.3 Thesis overview

This dissertation is divided into seven chapters, including this intro-
duction, and two research parts. Chapter 2: Background reviews the rel-
evant literature setting the stage for this research. In particular, it sheds
light on the different disciplinary approaches in the very active field of
explainability, which has grown impressively in recent years. To examine
the challenges of human-centric explainability in supporting warranted
trust and compliance, we then divide our analysis into two parts.

Part I: Calibrating trust in explainable AI: common pitfalls and the
promise of interactivity focuses on the cognitive challenges for war-
ranted trust in human-centric explainable AI, taking a cognitive ap-
proach. As the field of explainability has grown considerably in recent
years, with thousands of academic papers published each year, reviews
are much needed to distill important insights. This is why we decided
to begin this research with two reviews of the literature. Part I therefore
contains two chapters presenting two reviews.

Chapter 3: Trust, overtrust, distrust in explainable AI: a cognitive ap-
proach identifies the cognitive processes people use when calibrating
trust in XAI-assisted settings, highlighting common uses, misuses and
disuses of explanations. We also review the other ways in which cogni-
tive biases affect the design and evaluation of explainable AI.
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Chapter 4: Towards "human-like" explanations: the promise of interac-
tivity explores the potential of interactive XAI to limit biases by adopt-
ing a more "human-like" explanation process. We present a taxonomy of
the different ways in which explanations are interactive and summarise
the effects of explanations on trust, reliability or understanding.

Part II: Complying with regulation using human-centric explainable
AI: two case studies in finance explores two real-world contexts in fi-
nance where explanations may be necessary for compliance. Part II also
contains two chapters. The two case studies also provide information on
the entry of cross-sector AI regulation, such as the forthcoming AI Act,
into a highly regulated sector. The first AI application in life-insurance
distribution is considered as high-risk under the AI Act. It is sill uncer-
tain whether the second case in AML-CFT is considered high-risk under
the AI Act, as the final text of the AI Act has not yet been released, but
it is probable. In either case, the study documents how regulators are
adapting to AI in light of existing financial regulations.

Chapter 5: Empowering customers of robo-advisors with explainability
investigates the explanation needs of customers of life-insurance robo-
advisors20, and the explanation requirements from the perspective of 20 A robo-advisor is an

online platform for fi-
nancial investment ad-
vice.

customer protection supervisors in this context. We examine, in a con-
trolled study, the correspondence between the regulatory objectives of
explanations and their actual effects on users. Specifically, we focus
on explanations’ effect on appropriate trust and reliance by customers.
We test different forms of explanations, including interactive ones. We
highlight the challenges that arise to empower users while avoiding mis-
placed trust.

Chapter 6: Understanding the supervisors’ needs for explainable AI in
financial crime detection analyses the needs of regulatory supervisors
for explanations to audit AI decisions and systems using a qualitative
workshop-based method and a legal anlysis. This user-centric approach
allows us to delineate the challenges of using explainability for demon-
strating compliance in AML-CFT. We also describe the socio-techno-
legal context of supervisors and their auditing practices in this domain.

Chapter 7 concludes on the main findings of this thesis and discusses
open questions and avenues for future research.



introduction 41

1.4 Research approach

Human-computer interaction researchers are concerned with observ-
ing how people interact with tools that they build. Explainability re-
search also involves designing XAI artefacts and observing users inter-
acting with them in context. This dissertation applies a set of behavioural
research methods to collect information on user behaviour with XAI. The
studies conducted in this work follow typical methods used in explain-
ability and HCI research, such as reviews, and field experiments. We
also demonstrate the usefulness of bridging legal and HCI approaches.
Our argument is that a comprehensive understanding of the legal re-
quirements enforced by regulators is necessary to understand the needs
of this user group. Below is a brief description of the methodological
approaches we employed for observing and designing (in italics) human-
XAI interactions.

Figure 1.8: Overview of
the work presented in
this dissertation through
a modified version of
the triangulation frame-
work of Mackay and
Fayard [1997], inspired
from [Huron, 2014]

Mackay and Fayard [1997] described a triangulation framework which
explains how natural sciences, design and engineering sciences can be
integrated. We present an adapted triangulation framework in Figure 1.8
showing the contributions of our work.
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Reviews,
Collections

At the start of my PhD, a significant number of primary
studies on explainability had been freshly published but
there was little hindsight or analysis about them. Thus, it
seemed fitting to synthesize that work through literature
reviews. We used detailed scoping reviews in Chapter
3 and 4 to synthesize some observations made on XAI-
human interaction. Scoping reviews are an appropriate
survey type to examine how research is conducted on a
specific topic, give a summary of the focus of the field,
map key concepts, identify the types of evidence found in
a field, pave the way for future systematic reviews, and
identify gaps in the literature [Munn et al., 2018]. More-
over, reviews are also ways to get inspiration for the de-
sign of XAI artefacts [Herring et al., 2009]. This collection
process allows to identify state-of-the-art designs as well
as features that do not exist yet. In both of the reviews
presented in this paper, we followed the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyse) methodology, a systematic, standardised way of
collecting papers [Page et al., 2021, Tricco et al., 2018].

Co-design In the context of life-insurance (Chapter 5), we first re-
lied on a market-driven approach to understand the com-
plexities of the domain, and take inspiration from existing
online life insurance tools to make our experiment as re-
alistic as possible. We then supplemented our approach
with interviews with regulators and non-expert users to
enhance our understanding of the life insurance indus-
try and end-users needs, following a co-design methodol-
ogy [Panigutti et al., 2023a, Luria, 2023]. Co-design in the
context of human-computer interaction (HCI) refers to a
collaborative and participatory approach [Spinuzzi, 2005],
where both researchers and end-users engage in the de-
sign process. This approach recognizes the importance of
involving users to meet their needs, preferences, and ex-
pectations effectively.

Field experiment This method involves investigating the impacts of a phe-
nomenon with some controlled variables, but in a real-
world setting. Mcgrath [1995] describes it as "working
within an on-going natural system as unobtrusively as possible,
except for intruding on that system by manipulating one major
feature of that system." It offers the advantage of increased
generalisability, enabling testing with a larger number of
participants, while minimising invasiveness. Nevertheless,
it sacrifices a certain degree of control.
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In this Chapter 5, we wanted to study the effects of differ-
ent formats of explanations on regulatory objectives, in-
cluding user understanding. As the case study dealt with
robo-advisors, which are online platforms, we decided to
conduct an online field experiment using a crowdsourcing
platform to recruit potential users. This approach curtails
the invasive impact of the research.

Interviews In this work, we developed interview protocols several
times to better understand our case studies contexts and
stakeholders’ needs. Interview guides can be found in the
Appendix. Our first set of interviews were conducted in
life-insurance (Chapter 5), where we used semi-structured
interviews with a think aloud section in which participants
used our explanation prototype. We chose this approach
to better understand and compare the perspectives of dif-
ferent user groups and improve our explanation proto-
types. In Chapter 6, we conducted interviews again, in the
context of anti-money laundering. Our aim was to gain an
in-depth understanding of the regulators’ perspective. As
a result, we opted for focus groups [Morgan, 1996], using
a semi-structured interview protocol based on scenarios.
Each time, we took a grounded analysis approach, as de-
scribed in [Creswell, 2012], either using simple thematic
coding or by combining it with axial coding.

Compliance
assessment

In our AML-CFT case study (Chapter 6), we observed
that the interview participants, particularly the supervi-
sors, consistently referred to legal requirements or regula-
tory sanction cases when asked about the questions they
had about the AI systems and the explanations or justi-
fications they wished to see. This prompted us to find
out more about the AML-CFT laws that participants ref-
erenced. We also found that the literature was not clear
about how compliance in this domain could be affected by
AI’s opacity. We therefore supplemented our HCI, qual-
itative, interview-based approach with a qualitative com-
pliance assessment, i.e. a legal analysis. We begun with a
doctrinal research as described by McConville [2017]. We
highlight in this work the benefits of combining these HCI
and legal qualitative research approaches.
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1.5 Major findings

This section serves as an executive summary of the contributions of
this thesis, which are developed in Chapter 7 concluding the dissertation.

1. Explanations tend to increase trust, including overtrust, depending
mainly on users’ knowledge and skills, and explanations’ complete-
ness, framing and timing.

2. Interactive explanations of AI systems tend to increase trust, but not
necessarily overtrust.

3. Interactive explanations seem to be more useful for performing a task
than static ones, but they are less easy to use and take longer.

4. In the context of life insurance robo-advisors, explanations—even in-
teractive ones—were of little use in helping customers understand al-
gorithmic recommendations and trust them appropriately, thus failing
to meet their main regulatory objective.

5. Dialogic explanations provided in natural language (in the form of a
chat) increased unwarranted trust of customers in algorithmic recom-
mendations, in the context of life insurance.

6. In the context of anti-money laundering, regulatory supervisors re-
quire justifications in order to verify: (1) human alignment with AI
systems parametrization, (2) business expert understanding of the out-
puts, and (3) control of AI-specific risks.

7. Explanations have a role of "trial evidence" for justifications. Justifica-
tions should not only be extrinsic by referring to norms or regulations
[Henin and Le Métayer, 2022], but also intrinsic by depending on faith-
ful evidence of the system’s behavior, that explanations can provide.
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Chapter 2

Background

This chapter provides an overview of the explainability field focusing
on its origins, its interdisciplinarity, and its ongoing and future direc-
tions. In Section 2.1, we look at a historical perspective of explainability
to reveal the interdisciplinary and far-reaching roots of this emerging
field of research. Further, Sections 2.2, 2.3 and 2.5 develop the ongoing
work on explainability respectively from a computer science, social sci-
ences and legal angle. Finally, we explore the role of Human-Computer
Interaction, as a multidisciplinary field by essence, to advance research
in explainability in Section 2.4.

2.1 A historical perspective on explainability

Explainability is not a new subject. Before the research interest in
explainability errupted in the context of deep neural networks, a wide
range of work already existed on the epistemology of explanations and
early computational systems. However, Atakishiyev et al. [2020] and
Longo et al. [2020] noted the lack of a confirmed and resilient connection
between the historical origins of XAI and present-day AI applications.
Nevertheless, we can broadly trace back the origins of XAI to two histor-
ical avenues: on the one hand, the philosophical and social foundations
of explanations; on the other hand, the development of expert systems
and machine learning applications1. 1 Expert systems are

usually regarded as the
first implementation of
AI [Russell and Norvig,
2010].

The first historical root of XAI is work on formal theories of explana-
tions. This line of thought challenges us to think about what counts as
an explanation, particularly in science, and what purposes explanations
serve. Throughout the evolution of philosophical thought, scholars have
analysed the nature and types of explanations, their explanatory power,
functions, and reach [Bunge, 1998, Lombrozo, 2006, 2016, Hilton, 1988].
Aristotle already discussed the notion of explanation [Falcon, 2006], argu-
ing that "knowledge becomes scientific when it tries to find the causes of why"
[Longo et al., 2020]. This has been reiterated in more recent literature,
which emphasises the challenge of responding to "why-questions" that
entail counterfactual and abductive reasoning [Pople, 1973, Muggleton,
1991, Poole et al., 1987, Miller, 2019]. Counterfactual reasoning involves
testing whether an event E is the cause of a phenomenon of interest P



48 the explanation paradox and the human-centric path

by mentally undoing E and assessing how it affects P [Miller, 2019]. Ab-
ductive reasoning originates from the field of formal philosophy and in-
volves constructing an explanation that best fits a set of observed data
[Atakishiyev et al., 2020, Longo et al., 2020, Miller, 2019]. It is often
described as "inference to the best explanation" [Harman, 1965]. This
strand of work has also stressed the importance of causality in explana-
tion [Halpern and Pearl, 2005]. For example, Hilton [1988] established the
notion of "causal chain", i.e. successive causes that lead to the occurrence
of the phenomena of interest. Meanwhile, other work in social sciences
highlighted the structural and social aspects of explanation [Roth, 1989,
Malle, 2004, Graaf and Malle, 2017, Miller, 2019].

As Longo et al. [2020] highlighted, little connection has been made so
far to the formal history of XAI, i.e. theories of explanation or causation
[Holzinger et al., 2019]. Miller [2019]’s review stands out as a rare work
that links this knowledge in philosophy and social sciences to modern
applications of AI. This introductory paragraph on the study of explana-
tion in the fields of philosophy, sociology and psychology only scratches
the surface of the vast body of knowledge that has accumulated on the
subject over the centuries. We will develop the important findings from
these disciplines in Section 2.3.

The origins of explainability as a field of research can also be linked
to an early body of work on the explanation of socio-technical systems
dating back as far as the 1950s. As soon as computers became more so-
phisticated and "intelligent", thanks to the implementation of knowledge
and rule-based reasoning in expert systems, the question arose of how to
explain their decision-making procedures in a synthetic and comprehen-
sible way that is adapted to the explanation recipient. From this point of
view, explainability is nothing new. For example, the book by Winograd
and Flores published in 1987 "Understanding Computers and Cognition"
examines the underpinnings of understanding what computers do, in re-
lation to human language, thought, and action. A seminal, early work on
the design of explanations for expert systems can be found in medicine
[Confalonieri et al., 2021]. MYCIN was a famous expert system designed
to assist doctors in their diagnosis about infections. It was presented by
Buchanan and Shortliffe in the 1970s. The system was based on domain
and factual knowledge modeled as "production rules". It was able to
provide explanations as "lines of reasoning" of the system [Confalonieri
et al., 2021], that is to allow the user to explore the sequence of rules that
were used. Moreover, it included a question-answering module, allowing
the user to seek answers for some predefined questions.

Other expert systems, featured explanation as "stories", presenting
how a system considered a problem and some observations, then in-
ferred hypotheses, studied causal relations and eventually found a cause
for the problem [Confalonieri et al., 2021, Roth, 1989]. An example of
expert system presenting such reasoning is Rex [Wick and Thompson,
1992]. It used a story structure, a set of reasoning cues, problem and
solutions constraints to produce explanations.
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"I attempted to find the cause of an excessive load on a concrete dam. Based on the broken pipes in
the foundation, the sliding of the dam, the uplift pressures and the slow drainage, I was able to find
an initial hypothesis. In studying causal relations, I found that the erosion of the soil would cause
broken pipes, resulting in slow drainage [...]. This led me to conclude that erosion was the cause of
the excessive load."

Example of a line of explanation in the expert system Rex [Wick and Thompson, 1992].

Overall, early research into the explainability of expert systems was
already based on social science considerations. Specifically, it was con-
cerned with how people come to understand information, complement-
ing earlier work on how people explain. For example, in designing Rex,
Wick and Thompson [1992] observed that people tend to narrate causal
chains of events as stories that selectively summarise the most impor-
tant causes. Decision trees were among the first explanations of neural
networks [Craven and Shavlik, 1995]. Later, the emergence and popu-
larity of deep learning models in the 2010s led research attention over
explainability to skyrocket.

Figure 2.1: A Historical
Perspective on Explain-
ability. The bar plot
(in red) shows the evo-
lution of the number of
academic contributions
on XAI. The bubble
chart on top displays the
number of citations—
represented by size and
y-axis—of the most in-
fluential papers in XAI.

Today, thousands of academic papers are published every year on the
topic of explainability. Figure 2.1 shows—with the red bar plot—the
surge of interest in the topic starting from 2015. In 2022, over 6200 papers
were published on the topic of explainable or interpretable AI, 17 times
more than in 2015. These numbers were extracted by doing a keyword
search for papers with the terms "explainab*" or "interpretab*"2 and with

2 The wildcard * is used
in keyword searches to
allow for variations of a
word after the symbol.

a keyword related to AI (artificial intelligence, deep learning, machine
learning, neural network) in their titles, abstracts or authors keywords,
in the Scopus database.

The research interest on XAI was propelled by the computer science
field that focused on how to generate explanations, i.e. the mechanis-
tic aspects of explanations [Guidotti et al., 2018, Confalonieri et al., 2021].
Each bubble in Figure 2.1 represents one of the top-60 most cited paper to
date in the explainability field. The size and position of the bubble on the
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y-axis represent the number of citations of the article, and its colour indi-
cates its discipline. This graph was made by searching for many different
keywords related to explainable AI and intepretable AI3 on the Semantic 3 For example "inter-

pretable AI system",
explainable machine
learning, explanation
algorithm, trustworthy
AI, etc.

scholar database, which enables to sort results per citation count. The
top 60 was refined by plotting the citation graph for a few papers in Con-
nected Papers. We stopped collecting papers when we did not find any
new addition to the top 60 when we plotted different graphs or searched
for different XAI-related keywords.

We can see that the green bubbles, representing the computer science
field, are far more numerous and wider in this top 60. Popular papers—
with over 10000 citations—looked at interpretation of convolutional neu-
ral networks (image classifiers), like [Simonyan et al., 2014], which pre-
sented gradient-based saliency maps, or [Zeiler and Fergus, 2013] which
introduced a feature visualization in ConvNets. Other seminal work, like
[Lundberg and Lee, 2017] and [Ribeiro et al., 2016], presented techniques
to identify the most important features used by any kind of classifier.
Meanwhile, [Doshi-Velez and Kim, 2017], [Adebayo et al., 2020] and [Kim
et al., 2016] provided critical introspection into the emerging field of XAI,
but still focused on the computer science side.

Contributions in legal and social sciences are scarce in XAI, compar-
atively to computer science, as shown in Figure 2.2. However, interdis-
ciplinary work is gaining traction. For example, [Lipton, 2018], [Bur-
rell, 2016] or [Rudin, 2019], reflect on the discourse of interpretability,
on the problem of opacity, or on the use of inherently opaque models
vs. interpreable ones. For example, Lipton [2018] highlights that "Papers
provide diverse and sometimes non-overlapping motivations for interpretabil-
ity, and offer myriad notions of what attributes render models interpretable".
Kulesza et al. was a pioneer in studying explainability from an HCI lens
[Kulesza et al., 2013, 2015]. Starting from approximately 2018-2019, XAI
gained popularity among HCI researchers. They have focused on better
understanding users’ needs, designing user-centered XAI interfaces or
developing user-centered metrics for evaluating XAI [Wang et al., 2019a,
Hoffman et al., 2019].

Figure 2.2: Distribution
of contributions in ex-
plainable AI accross dis-
ciplines. This graph is
based on a corpus of
5756 articles published
from 2015 to present, ex-
tracted from searching
"explainab*" in the arti-
cle title in the Scopus
Database.

Given the exponential body of work in explainability, review papers
have been timely contributions in recent years to process important in-
sights and to navigate the myriad of XAI techniques, XAI design arte-
facts, evaluation metrics, or XAI goals and applications. Seminal review
work include [Adadi and Berrada, 2018, Barredo Arrieta et al., 2020, Ab-
dul et al., 2018, Carvalho et al., 2019, Miller, 2019, Guidotti et al., 2018].
This dissertation contributes to this need for review papers in the Chap-
ters 3 and 4.
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2.2 Explainability in Computer Science: the tool-
box

Explainability for modern AI applications has first been approached as
a purely technical problem. The aim was to find tools to meet computer
scientists’ growing interest in understanding what happens in neural net-
works [Atakishiyev et al., 2020]. As a result, a myriad of explainability
techniques have been proposed over the last ten years. We provide a
brief overview of these in Section 2.2.1. In Section 2.2.2, we review the
current technical challenges for generating and evaluating explanations
in machine learning.

2.2.1 The wide range of explainability methods

The array of explanation techniques provided by the computer science
community is extensive. This breadth arises from the wide scope of ma-
chine learning which encompasses diverse data types, such as images,
text, tables, audio, graphs, and time series, as well as a range of mod-
els, spanning from DNNs, Bayesian Networks, SVMs, to Tree Ensembles.
Moreover, there are varying approaches to the explainability problem.
For instance, explanations may pertain to specific data and model types or
be agnostic and applicable to any model or data. Another possibility is for
explanations to be local, focusing on individual forecasts, or global, offer-
ing a comprehensive explanation of the model throughout its definition
range. Further, explanations may arrive post-hoc, meaning that an expla-
nation is reconstructed given some inputs and predictions from a model.
This is also known as reverse engineering in the literature [Guidotti et al.,
2018]. However, explanations can also be built-in, meaning that the model
is trained in a way that is inherently interpretable (e.g. white box mod-
els, training with sparsity constraints or with supervised explanations).
Many surveys have proposed taxonomies to gain a clearer picture of the
different types and approaches of explanations [Barredo Arrieta et al.,
2020, Guidotti et al., 2018, Nauta et al., 2023, Burkart and Huber, 2021,
Carvalho et al., 2019, Das and Rad, 2020, Mohseni et al., 2021b, Molnar,
2019, Gilpin et al., 2018]. We drew on these to summarize main expla-
nation concepts, production mechanisms and representations, using our
synthetic categorization outlined in Figure 2.3.

Figure 2.3: Categoriza-
tion of explainable AI
methods along four di-
mensions inspired by
Nauta et al. [2023] and
Barredo Arrieta et al.
[2020].
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Explainability methods and production mechanisms

Let us begin with an overview of what are the explanations offered by
the computer science field. We present below six different explanatory
concepts that can help inform on the operation and behaviour of black-
box models.

• Feature-based. One of the most popular way to shed light on AI mod-
els’ inner workings is by determining the influence of input features
on the outcomes or intermediate representations of the model. We
include in this category feature importance, feature attribution, activa-
tion maximization [Nguyen et al., 2016] and saliency methods [Zeiler
and Fergus, 2013].

Feature importance consists in generating a vector with the weight and
magnitude of the inputs used by the black-box. It can be either local
or global. It is also sometimes referred to as feature attribution such as
in [Lundberg et al., 2019] for tree ensembles. There are various ap-
proaches to creating this vector, such as using game-theory inspired
computations [Lundberg and Lee, 2017] or using the coefficients of
a linear model that approximates the black-box in a region of inter-
est [Ribeiro et al., 2016]. Most of these methodologies are post-hoc
and rely on querying the black box using input records produced in
a controlled manner or through random perturbations of the original
training or testing data [Guidotti et al., 2018].

Figure 2.4: Illustrative
examples of feature-
based explanations for
different data types
(image, tabular and
text data) with input
saliency [Alammar,
2021, Unruh and
Robinson, 2020].Saliency methods consist in determining the inputs (either words in a

sentence or areas in an image) that are most “salient” from a model’s
perspective. They are broadly divided into three categories [Kinder-
mans et al., 2017]. Sensitivity methods show how a small change to the
input affects the prediction [Simonyan et al., 2014]. Signal methods, like
DeConvNet [Zeiler and Fergus, 2013] or Guided BackProp [Springen-
berg et al., 2015], look at the neuron activations [Carter et al., 2019]
in the model to attribute importance to input features. This type of
method is also know as activation maximization. Finally, attribution meth-
ods, like Integrated Gradients [Sundararajan et al., 2017] aim at com-
pletely specifying the attributions for all the input features so that they
sum up to the output. Saliency techniques usually rely on gradient-
based calculations. To gain a better understanding of gradients, let’s
consider a CNN that classifies cats and dog images. Figure 2.5 illus-
trates how changing individual pixels affects the model’s identification
of the picture as a "cat": the upward arrows represent changes that
make it more likely for the model to identify the image as a cat. Ad-
ditionally, the thickness of the arrow indicates the amount of gradient
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shift that occurs due to that pixel being altered. Pixels that alter the
image substantially are called "salient" and are usually represented in
white or warm colors in saliency maps.

Figure 2.5: Illustration
of the gradient-based
method to identify
"salient" pixels.
More at: https://pair
.withgoogle.com/expl
orables/saliency/

• Prototype-based methods consist in extracting representative exam-
ples or "prototypes" of the black-box outcomes. This approach is in-
spired by case-based reasoning, which allows users to reason based
on retrieved similar input patterns and their outcomes. However, Kim
et al. [2016] argued that "examples were not enough" and can lead
to over-generalization. They proposed to also to "criticize" the ex-
tracted prototypes by extracting "criticism" samples that are not well-
explained by the prototypes. These techniques are based on calculating
similarities or discrepancies between distributions. Other methods in-
clude finding prototypical parts in images pointing to aspects of one
class or another [Chen et al., 2019], finding the nearest neighbors of a
point of interest in the input data space, or finding prototypical con-
cepts that represent a class [Kim et al., 2018, Ghandeharioun et al.,
2022].

• Counterfactual explanations. Algorithms can also be explained by
considering how an outcome could be changed to another outcome,
for example more desirable [Stepin et al., 2021]. The problem of find-
ing a counterfactual explanation in ML is usually described as "the
smallest change to the feature values that changes the prediction to a
predefined output" [Molnar, 2019]. This is achieved by defining a no-
tion of distance between the point of interest and a hypothetical point
for which the outcome would be different. Counterfactual explana-
tions have received a growing attention in recent years because of their
potential to be actionable4, their alignment with people’s needs for ex-

4 Counterfactual expla-
nations help identify
features that, if changed
can lead to a different
result. These explana-
tions are actionable if
the identified features
can in fact be changed
easily. Age or ethnicity
for example, are not
actionable features that
someone can change
to get admitted into a
school. Getting good
grades, however, is an
actionable feature.

planations: people usually ask for explanations when the AI outcomes
violate their expectations [Kizilcec, 2016]. Other advantages include
that they do not require model disclosure or place no constraint on
model complexity. Barocas et al. [2020], however, warn against the
fact that defining a notion of distance to compute counterfactuals is
challenging, and implies somewhat arbitrary choices about the nor-
malization of features. Moreover, counterfactual explanations do not
examine the rationality or difficulty of recommended actions and may,
for example, suggest that an individual should make less money, or
stay longer at his current job [Barocas et al., 2020].

"One decision maker might scale the axes such that increasing income by $5,000 annually is
equivalent to an additional year on the job. A competing lender, using different training data, could
conclude that $10,000 of income corresponds to one year of work. These lenders might therefore
produce different explanations depending on the scaling of attributes."

Extract from [Barocas et al., 2020] on normalizing features for counterfactuals.

• Influence functions. Koh and Liang [2020] presented influence func-
tions to link model outcomes to influential training points. Also known
as training data attribution, influence methods suggest which training
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data points might be the cause of a model’s behavior for a given input
and output [Pruthi et al., 2020, Akyürek et al., 2022].

• Simplification. Another popular way to approach explainability is by
approximating black-box models by simpler, interpretable ones [Rudin,
2019]. It becomes a problem of "finding an interpretable model that
approximates the black-box model as much as possible, typically seek-
ing high fidelity" [Confalonieri et al., 2021]. Those simpler models are
called "surrogate models". These methods often leverage logical or/and
visual models such as decision trees, rules, generative additive mod-
els [Caruana et al., 2015], logistic and linear regressions or bayesian
models [Kim et al., 2015]. There also exist methods for reformulating
"connectionist" models as logical models [Barceló et al., 2020]. This is
considered as "built-in" interpretability, which involves setting inter-
pretability constraints like sparsity in the model training [Nauta et al.,
2023]. However, the concept of "explainability by design" lacks a fixed
set of rules, and the boundaries between an interpretable and a black-
box model remain unclear. For instance, it is arguable whether a ran-
dom forest is typically more explainable than a neural network.

• Uncertainty estimation. Current explainability methods have often
been criticised for their lack of consistency, stability, and for providing
little insight into their reliability [Bhatt et al., 2021, Slack et al., 2021,
Leavitt and Morcos, 2020, Kindermans et al., 2017]. Consequently,
some have proposed to represent the uncertainty of explanations. Slack
et al. [2021] proposed Bayesian versions of LIME and KernelSHAP to
provide confidence estimates of their quality. Others have considered
the uncertainty estimation of black box models as part of the explain-
ability scope [Thuy and Benoit, 2023], or as a necessary complement to
transparency [Zhang et al., 2022, Bhatt et al., 2021]. For example, Bhatt
et al. [2021] presents different ways, such as Bayesian and frequentist
methods, to present uncertainty to stakeholders, that are more accu-
rate than the classic Maximum Class probability method (MCP). Zhang
et al. [2022] include both model and explanation uncertainty in their
explainability framework.

Explanation representations

Explanations can alternatively be presented in natural language, as
it was the case for the expert system Rex [Wick and Thompson, 1992],
through plots, such as partial dependence plots (PDPs), accumulated lo-
cal effects (ALE) plots, and influence sensitivity plots (ISPs), "tornado
plots" that show the feature weights from most to least important, di-
mensionality reduction plots, through decision rules, tables or trees to
visually present the logic of the model on specific data ranges, by lever-
aging the initial data structure, such as for saliency maps or prototypes,
or by creating artificial visualizations of the concept used by, for exam-
ple, neurons or layers [Nauta et al., 2023]. Above, we have only hinted
at the wide range of explanation designs that have been tested. The HCI
literature has introduced wide range of explanation visualisations and
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interfaces, adapted to the task, context, user, and model at hand. We
summarize these efforts in Section 2.4.

2.2.2 The technical challenges in generating explanations

Rigorous and falsifiable research. Seminal papers like [Lipton, 2018],
[Doshi-Velez and Kim, 2017] or [Leavitt and Morcos, 2020] have warned
against a lack of rigor and consensus regarding explainability definition,
aims, and practices. In particular, Leavitt and Morcos [2020] noted the
growing shortcomings of the methodologies carried out in the XAI liter-
ature and endeavoured to analyze them. Specifically, they highlight the
lack of scrutiny, criticism and falsifiable hypotheses in explainability re-
search. For example, they point to the incapacity of saliency methods to
reflect meaningful properties of the data and network, despite their intu-
itiveness and appealing visualization [Sundararajan et al., 2017, Adebayo
et al., 2020]. More recently, Bilodeau et al. [2023] proved mathematically
that some complete and linear feature attribution methods like SHAP or
Integrated Gradients do not help more than random guessing for the task
of inferring model behavior. The authors point to other, simpler tech-
niques such as repeated model evaluations in order to perform precisely
defined interpretability tasks. This critical examination of state-of-the-art
research is important for the progress of explainability.

Causality and reasoning. Research in psychology emphasizes the im-
portance of causality in the explanation process [Halpern and Pearl, 2005].
Yet, most of the explanation strategies described above, specifically fea-
ture importance explanations, do not provide any measure of causality.
Causability is defined in [Holzinger et al., 2019] as "the extent to which
an explanation [...] achieves a specified level of causal understanding with ef-
fectiveness, efficiency and satisfaction in a specified context of use." It is not
because a feature is marked as important that it is necessarily a relevant
cause to the outcome. Instead, other confounding variables may be at
play. In their review, Confalonieri et al. [2021] noted: "causal explanations
are largely lacking in the machine learning literature, with only few exceptions."
Consequently, the literature in XAI has been increasingly interested in
causal models in search of technical means to address causality in ex-
planations. Explanations based on causal models, like counterfactual ex-
planations, can be action-guiding, i.e. explain the events resulting from
an action [Chattopadhyay et al., 2019, Beckers, 2022]. However, apply-
ing causal models to the machine learning field is challenging since it
is based on correlation rather than causation [Holzinger et al., 2020, Guo
et al., 2021, Peters et al., 2017]. Furthermore, Miller et al. [2017] highlights
that identifying causal attributions is not the same as providing a causal
explanation, as a complete causal chain is complex and high dimensional,
and therefore not comprehensible to a layperson.

Moreover, some have emphasized the shortcomings of XAI to produce
explanations based on reasoning and logic. Confalonieri et al. [2021] in-
dicate that "establishing a common ground of inherent logic from the ground
up appears reasonable", for example by integrating symbolic or knowledge-
based modules in non-symbolic machine learning models. Doran et al.
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[2017] also argue that "truly explainable AI should integrate reasoning".
Promising work to go in that direction include causal graphs and knowl-
edge graph mining for generating explanations [Holzinger et al., 2021,
Lecue, 2020]. These efforts seek either to integrate an external knowl-
edge base (as in [Holzinger et al., 2021]), or to model sets of causes and
effects (as in [Lecue, 2020]) in the form of graphs, which facilitates expla-
nation processes.

Evaluation. Additionally, many have highlighted the shortage of con-
trolled and harmonized evaluations of the methods [Longo et al., 2020,
Leavitt and Morcos, 2020, Doshi-Velez and Kim, 2017]. This stems from
the difficulty of identifying the qualities of an explanation that should
be evaluated. The issue at hand pertains to the qualities of a satisfactory
explanation, which cannot be resolved by computer science alone. Other-
wise, there may arise a risk that AI researchers design explainability for
themselves only, rather than for the intended users [Miller et al., 2017].
It has therefore been suggested that evaluations of explanatory agents
should incorporate the viewpoint of end-users or a human perspective
[Doshi-Velez and Kim, 2017, Miller et al., 2017]. Valuable insights can
be gained regarding the quality of explanations through analysis of the
social sciences, philosophy, and psychology.
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2.3 Explainability in the Social Sciences: the foun-
dations

We have already mentioned in this section that the social sciences have
played a central, historical role in XAI’s pursuit of human understanding.
Insights from the social sciences and the philosophy of science [Hedström
and Ylikoski, 2010] establish foundational theories regarding the process
by which people explain phenomena, or what people look for in expla-
nations. These insights help to bridge the gap between the explainability
technique seen in the previous section and the explanations needed to
promote human understanding. However, as stated in Section 2.1, con-
temporary XAI researchers, who have been working on explaining recent
forms of AI systems, have been slow to take full advantage of this line of
work. Miller et al. [2017]’s review has been a major boost to this endeav-
our.

Many different aspects of the concept of explanation have been studied
in epistemology, philosophy and cognitive sciences, including the reason-
ing involved in explanations [Lombrozo, 2006, Leake, 1995], the effects of
belief and preconditions on explanations [Paul Thagard, 1989], or how
people explain the behavior of others, i.e. social attribution [Malle, 2004].
All of these facets of explanations are explored in [Miller, 2019].

Below, we make a brief summary of this large array of work, focusing
on explanations’ role, their contrastive nature, the cognitive and social
processes by which we, as human, explain phenomena, and the cognitive
biases involved in explanations.

2.3.1 The role of explanations

Seeking explanations is part of our everyday life [Williams and Lom-
brozo, 2010]. Why is my train late this time?5 Why didn’t you tell your 5 Very often heard in

France. The SNCF,
France’s leading train
company, is often the
subject of complaints.
That being said French
people’s reputation for
grumbling is accurate.

friend? Why is the Earth round? Young children notoriously question
literally everything with endless "why?" questions [Williams and Lom-
brozo, 2010]. In fact, explanations are central to individual’s acquisition
of knowledge and ability to ascribe mental states to oneself and oth-
ers6[Amsterlaw and Wellman, 2006]. Reasons why people ask for ex-

6 This ability is known
as theory of mind in psy-
chology.

planations involve assessing the soundness of a claim, support learning,
but also satisfy one’s curiosity [Miller, 2019]. This study of the role of
explanations mainly falls within the domain of philosophy.

Lombrozo [2006] highlights three distinct functions that explanations
serve. These functions are 1) to enable the assessment of the likelihood
of a claim to be true, referred to as causal inference; 2) to allow for the
transfer of knowledge to novel cases, which is known as generalization;
and, 3) to assist in the acquisition of knowledge, i.e. for learning and
discovery. Lombrozo describes how explaining why a claim might be
true is an important process for evaluating the soundness of that claim.
This process of causal inference often favours mechanistic explanations,
i.e. explanations of the mechanisms involved in making the explanan-
dum7 happen. Further, Lombrozo uncovers how explanation supports 7 The subject of the ex-

planation, or event to
explain is called ex-
planandum in social sci-
ences.

generalization. Generalization enables to solve transfer problems and
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extend known properties to novel cases. In a controlled experiment, Re-
hder [2006] showed that participants who were given an explanation for a
problem that involved a relevant cause for that problem and another were
more able to extend that cause to the other problem than if they did not
receive explanations. In short, people could better generalize the cause
of one problem to another with relevant explanations. Rehder [2006] also
demonstrated that similarity and diversity are important factors in the
generalization process. People can generalize from one problem to an-
other specifically when they are similar. Furthermore, people are more
likely to generalise an explanation if it stands true in a diverse range of
contexts. Finally, Lombrozo argued that explaining novel information
to one-self is one of the best ways to learn. Self-explanations are more
powerful for learning than "thinking out loud, reading study materials twice
or merely receiving feedback". Specifically, self-explaining requires to relate
knowledge within prior beliefs [Lombrozo, 2016, Chi et al., 1994].

Similarly, Miller [2019] presented that explanations serve to find mean-
ing, i.e. to "reconcile the contradictions or inconsistencies between elements of
our knowledge structures". It has been shown, for example, that people ask
questions about events that they find unusual or abnormal [Hilton and
Slugoski, 1986]. Additionally, explanations enable us to construct social
meaning. Through explanations, we can persuade not only ourselves but
also others that a claim is true [Miller, 2019].

Furthermore, we learn more and better when driven by our own cu-
riosity and motivation to understand phenomena. [Shin and Kim, 2019].
Curiosity is driven by an individual’s realization that she has a gap in
knowledge, but it decreases if that gap is too large, that is, if the informa-
tion is unattainable, or if the gap is too narrow, meaning the knowledge
is not very useful. In summary, there is an optimal gap in knowledge
that maximizes curiosity. Therefore, arousing AI users’ curiosity through
explanations is more likely to have an impact.

"The most important factors in the generation of curiosity are an individual’s reference point of
knowledge and their awareness of the unknown which is raised by curiosity-evoking stimuli. This
information gap then creates a sense of deprivation, which naturally instills a desire to learn."

Extract from Shin and Kim [2019]

These findings offer valuable insights into people’s needs for expla-
nations. By understanding why we ask explanations and their role in
forging knowledge, we can design explanations that people perceive as
useful.

2.3.2 The explanation process

Understanding how individuals explain phenomena to one another is
valuable to designing explanations that align with the cognitive archi-
tecture of humans. In fact, the process of explaining is a defining aspect
of an explanation. Miller [2019] describes an explanation as being the
product resulting from answering a why-question, the cognitive process of
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inferring plausible hypotheses, probing, selecting and evaluating them,
and the social process of communicating the explanation to others.

The cognitive process of explaining is composed of several steps, in-
cluding causal connection and explanation selection [Miller, 2019]. Causal
connection involves identifying plausible causes for an explanandum ei-
ther through abductive reasoning and/or through simulation. Abductive
reasoning involves inferring the most probable causes of an observed
event by making hypotheses and testing these. Simulation consists in
undoing a likely cause in order to consider the effects of this mutation on
the observed event and evaluate the likelihood of the plausible cause ac-
tually causing the explanandum. Explanation selection involves selecting
a subset of the identified causes, i.e. the most "interesting" ones, based on
our cognitive biases to discount or regard certain observations. These bi-
ases include our attention to causes that are abnormal (unusual causes),
intentional (for example deliberate intent is usually seen as a stronger
cause for murder than the murder weapon), or functional (causes that
cite the function of an object or event). We also tend to select causes that
are necessary, sufficient and robust to change.

Explaining is also a social process that follows the conventional struc-
tures of a dialogue [Miller, 2019]. Explaining involves the explainee and
the explainer asking and answering questions in an iterative way, so
that follow-up questions are addressed until the explainee is satisfied.
Through this iterative process, conversational explanations are able to be
truly relevant by finding the explainee’s knowledge gap and taking into
account what she already knows. Conversations allow for contextual and
incremental explanations [Cawsey, 1993, Miller, 2019].

Social dialogues also have a number of conventions which, if followed,
increase the impact and effectiveness of the conversation. These include
Grice’s maxims of quality, quantity, relation, manner [Grice, 1975]. As
Miller [2019] presents it: "Coarsely, these respectively mean: only say
what you believe; only say as much as is necessary; only say what is
relevant; and say it in a nice way."

Furthermore, according to the theory of mind, which refers to people’s
ability to attribute mental states to others, individuals engaged in a social
explanation process keep track of what has already been explained. Thus,
this should also be true for computational XAI agents [Miller, 2019]. In
general, the social aspect of explanations calls for XAI agents to also be
"socially interactive".

These cognitive and social processes describe the mechanisms em-
ployed by an individual (an explainer) to explain an event to someone
else (an explainee). Explainability leverage these theories to build XAI
systems that adopt these processes.

Other useful insights for explainable AI include how people receive
explanations, as explainees. Miller [2019] details that explanations are
evaluated based on our "human" criteria of a "good" explanation. These
involve coherence or consistency with prior beliefs [Thagard, 1989, Atak-
ishiyev et al., 2020], simplicity, broadness (or generality) [Lombrozo, 2007],
truthfulness and probability. People also prefer explanations that are
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simple, i.e. which cite fewer causes, and broader explanations, i.e. which
explain more events [Thagard, 1989, Read and Marcus-Newhall, 1993,
Miller, 2019]. Kulesza et al. [2015] highlighted the contradiction of people
preferring both simple and complete explanations. However, they found
that over-simplification was often problematic for correct understanding
of the explained event and suggested to design complete explanations
"that do not overwhelm". They also found that completeness was more
important than soundness, as it helped participants form more accurate
mental models and increased perceived usefulness of explanations.

2.3.3 Explanations are contrastive

An important insight from social sciences for XAI put forward by
Miller [2019] is that we do not explain an event E, the explanandum, per
se, but rather explain why E happened instead of some other counterfac-
tual event P. In other terms, in every why-question such as "why did E
happen?", we ask in reality "why did E happen, and not F?" [Miller, 2019,
Hilton, 1988]. This is called the contrastive nature of explanations. Lip-
ton [1990] refers to E as the fact, and F as the foil. Miller [2019] presents
an illustrative example: if someone in a room asks "Why did Elizabeth
open the window?", she surely has a foil in mind that drove her question.
There can be many different possibilities for that foil, including "Why did
Elizabeth open the door, rather than leave it closed?", or "Why did Eliza-
beth open the door rather than the window?". Depending on what the foil
actually is, the questions call for different answers .

As [Miller, 2019] or [Stepin et al., 2021] specified, there is a difference
between contrastive explanations and counterfactual explanations. Con-
trastive explanations aim to explain why an output differs from a cer-
tain expected result [Miller, 2021], whereas counterfactual explanations
point out how to change one result to another. As illustrated in [McGill
and Klein, 1993], the former asks "What made the difference between the
employee who failed and the employees who did not fail?", whereas counter-
factual reasoning addresses "Would the employee have failed if she had not
been a woman?" [Stepin et al., 2021].



background 61

2.4 Explainability in HCI: user and context first

While a mathematical perspective is crucial for providing insights into
opaque machine learning systems, the social science viewpoint is equally
important for offering insights into the human black-box. In turn, the
Human-Computer Interaction (HCI) perspective serves as a link between
these technical and human aspects of XAI.

In this section, we present the diverse range of contributions that the
HCI community provides for the field of explainability.

2.4.1 The need for user-centered explainability

By 1986, Winograd and Flores [1987] had already implemented ex-
planations in early AI systems. They also promoted scientifically-based
design principles to replace informal notions of "user-friendly" and "self-
explanatory" interfaces. However, these developments have been slow
to be transposed to today’s AI [Abdul et al., 2018, Broniatowski, 2021].
In recent years, the "modern AI" community has finally begun to recog-
nise the importance of considering the human element of XAI [Longo
et al., 2020]. Several computer scientists have advocated for increased
human involvement in the process of explanation evaluation [Poursabzi-
Sangdeh et al., 2020, Doshi-Velez and Kim, 2017, Vaughan and Wallach,
2020]. These calls were primarily concerned with examining the impact
of explanations on users, and evaluating whether specific explanation
methods were successful in translating abstract information used by AI
systems into human concepts [Doshi-Velez and Kortz, 2017, Kim et al.,
2018].

Concerns have also been raised that AI explainability tools are only
aimed at computer scientists and are too technical for non-experts and
end users to understand, in practical cases of AI development [Miller
et al., 2017, Confalonieri et al., 2021, Bhatt et al., 2020]8 These discussions 8 As Confalonieri et al.

[2021] argues, "aspects of
understandability of expla-
nations for lay users has
for a long time been over-
looked".

encouraged XAI researchers to consider what information end-users ac-
tually want and how to present that information depending on the user’s
context, background, experience and other characteristics.

The methods, goals and experience of the HCI community in dealing
with behavioural research are perfectly suited to this purpose. In fact, the
issue of explainability is profoundly a matter of human-computer interac-
tion. By enabling users to make full use of machine learning predictions
and systems, explainability aligns with the founding goals of the HCI
discipline, which are to expand the range of possible human-computer
interactions and collaborations. The HCI community has been study-
ing for decades [Longo et al., 2020] how people interact with computers,
how to adapt to users’ experience and cognitive architecture, and how to
design usable, useful and empowering interfaces [Oulasvirta et al., 2022,
Amershi et al., 2019]. Specifically, HCI researchers have drawn heavily on
phenomenology and cognitive science to design computer systems and
interfaces tailored to the cognitive architecture of the human mind.

The explainability research line adopting an HCI perspective has been
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labelled as user-centered or human-centric explainability [Liao and Varsh-
ney, 2022]. This approach has made significant progress across various
fronts in order to make AI systems more understandable to end users
[Wang et al., 2019a, Kim et al., 2018, Liao et al., 2020, Liu et al., 2021,
Shin, 2021]. Below we outline 6 main research threads in HCI and XAI
research: 1) characterizing explainability user profiles, 2) understanding
users’ goals and mental states contextually to inform their precise needs
for XAI, 3) designing explainable interfaces through iterative cycles of
ideation-design-evaluation, 5) developing metrics for evaluating explain-
ability systems and 6) better understanding the factors that contribute
to appropriately trust (X)AI systems. The following sections provide an
overview of the research advances along these six dimensions.

2.4.2 Different audiences, different goals

The literature in explainability has identified various user profiles [Kirsch,
2017, Rosenfeld and Richardson, 2019, Tomsett et al., 2018, Mohseni et al.,
2021b, Langer et al., 2021, Ferreira and Monteiro, 2020]. This helped
to identify the gap between the technical explanations provided by the
computer science community and the diverse explanation needs of other,
real-world XAI users.

Some studies have placed emphasis on AI expertise and application
domain knowledge to classify users. As a result, three distinct user
groups have been put forward in the XAI literature: AI novices, also
known as non-experts or lay users, domain experts, and AI experts
[Mohseni et al., 2021b, Ribera and Lapedriza, 2019]. AI novices are in-
dividuals impacted by AI systems, but who have little knowledge in the
technicalities of AI. Examples are users of an online recommender sys-
tem, decision-subjects of a loan application, medical patients or citizens
interested in learning more about public AI systems. Domain experts are
people with significant knowledge in the field of application of the AI
system, such as doctors, or loan officers [Ooge, 2023]. AI experts are ma-
chine learning developers, engineers and researchers. This classification,
however, is coarse. for example, the lay user group is extremely diverse
specifically in terms of familiarity with AI [Liao and Varshney, 2022].

Figure 2.6: Figure 1

in [Tomsett et al., 2018]
identifies the different
stakeholders in a ma-
chine learning ecosys-
tem. "Direction of arrow
indicates direction of in-
teraction."

Other classifications distinguish user groups according to their role in
the machine learning ecosystem. For example, Tomsett et al. [2018] iden-
tified six roles that require different, if any, AI explanations, as shown
in Figure 2.6. Similarly Hind [2019] identified four explainability user
groups: AI system builders, who want to debug their models and test
them before deployment; end-user decision makers, who use the AI rec-
ommendations to make a decision; regulatory bodies, in charge of pro-
tecting citizens’ rights; and end consumers, who are directly impacted by
the decision of the AI system and may want to contest it. Maxwell [2023]
recognises roughly the same four audiences: machine learning engineer,
human operator of the system, person affected by the algorithmic de-
cision and judge, auditor or regulator.
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These user profiles ("whom to explain?") are associated with different
goals ("why explain?") [Leake, 1991], leading to different information
needs and different explanation designs. Some have listed the expla-
nation content ("what to explain?") and explanations methods ("how to
explain"?) corresponding to different user groups [Liao and Varshney,
2022, Liao et al., 2020, Ribera and Lapedriza, 2019, Mohseni et al., 2021b].
For example, Liao et al. [2020] provided a "question bank" of user ques-
tions related to explainability, including questions related to the general
model logic, "how?", to the changes that would get the alternative pre-
diction, "why not?", or to the feature(s) that if changed, could alter the
prediction in a direction, "how to be that?".

The amount of time each user is prepared to invest in the explanation
("how long to explain?") [Gajos and Mamykina, 2022, Stumpf et al., 2009]
also depends on the user’s profile, as does the time at which the explana-
tion is presented to the user ("when to explain?"). Nourani et al. [2021]
argue that the timing of the presentation of explanations, either before,
during or after the explainee has generated her own explanation, greatly
affects the user’s mental model and reliance on the AI. Maxwell [2023]
depict four different contexts in which user attend explanations. These
are testing the system, human-in-the-loop, human-on-the-loop or ex-post
investigation. Some work also posits different levels of explanability for
specific audiences and contexts taking into account legal, economic, so-
cial and technical considerations [Beaudouin et al., 2020, Dupont et al.,
2020, Langer et al., 2021].

Adadi and Berrada [2018] identified four main reasons why people
need explainability: explain to justify that an AI decision is good, for
example to regulators; explain to control and identify errors quickly, for
example to human operators of the AI system; explain to improve AI
models, which is what AI developers want; and explain to discover new
knowledge from powerful AI systems, such as how AlphaGo beats hu-
mans at chess. Suresh et al. [2021] and Mohseni et al. [2021b] present
explain to build trust as a distinct important user goal, specifically for
novice users. Suresh et al. [2021] also identified compliance with regula-
tions as a key objective of explainability users, that is tied to the overar-
ching goals of building trust and understanding AI models. More fine-
grained and contextual approaches are needed, however, to understand
the precise needs of users.

Figure 2.7: The four
reasons motivating the
need for explainable AI
presented in [Adadi and
Berrada, 2018].

2.4.3 Understanding user needs in context

A growing number of XAI systems have been developed for specific
users in specific contexts, with some examples provided in [Zhu et al.,
2018, Wang et al., 2019a, Panigutti et al., 2023a, Krause et al., 2016, Cop-
pers et al., 2018, Cheng et al., 2019, Ooge, 2023]. To provide relevant
explainability designs, these studies go through the endeavour of un-
derstanding the specific needs of users to support them in their context-
specific tasks and goals. HCI researchers have relied on cognitive theories
about how users explain [Miller, 2019, Wang et al., 2019a, Bertrand et al.,
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Who? Developers or AI researchers / Domain experts / Lay users [Ribera
and Lapedriza, 2019, Mohseni et al., 2021b]
AI Creator / Operator / Executor / Data-subjects / Decision-subject /
Auditors [Tomsett et al., 2018]
Machine Learning Engineer / Human operator / Person affected / Reg-
ulator or auditor [Maxwell, 2023, Hind, 2019].

Why? Explain to justify / to control / to improve / to discover [Adadi and
Berrada, 2018]
to build trust [Suresh et al., 2021, Mohseni et al., 2021b].

What? For example: What did the system do? / Why did the system do
P? / Why did the system not do X? / What would the system do if
Y happens? / How can I get the system to do Z, given the current
context?" [Ribera and Lapedriza, 2019].
See also [Liao et al., 2020]’s question bank.

When? Before / during / after the task [Nourani et al., 2021].
Depends on the context: human-in-the-loop / human-on-the-loop /
testing the system / ex-post investigation [Maxwell, 2023].

How long? How long will the user explore the explanation? [Gajos and
Mamykina, 2022, Stumpf et al., 2009].

Table 2.1: The differ-
ent classifications of au-
diences, goals, explana-
tion content, explana-
tion timing and contexts
presented in the XAI lit-
erature.

2022, Shin, 2021, Graaf and Malle, 2017, Lombrozo, 2006, Liao and Varsh-
ney, 2022, Danry et al., 2023], on interviews [Sun et al., 2022, Liao et al.,
2023, 2020, Ehsan et al., 2021, Maltbie et al., 2021, Tsai et al., 2021, Kim
et al., 2023] or participatory design [Panigutti et al., 2023a, Cheng et al.,
2022, Wang et al., 2019a] to learn about users’ contexts and needs. These
approaches form the starting point of the HCI disciplinary triangulation
between natural science theory, artefact design, and scientific observa-
tions to design empowering explainability systems [Mackay and Fayard,
1997].

Using interviews, articles such as [Sun et al., 2022, Liao et al., 2020,
Lim and Dey, 2009] give fine-grained accounts of users’ questions and
motivations regarding explainability. They inform on the actual user de-
mand for information about AI systems, in various contexts, for example
AI development and debugging [Zhu et al., 2018, Krause et al., 2016, Sun
et al., 2022, Kulesza et al., 2015]; ideation with AI for designers [Liao
et al., 2023]; doctor assistance in healthcare [Panigutti et al., 2023a, Wang
et al., 2019a, Caruana et al., 2015, Jin et al., 2020, Jacobs et al., 2021]; or
pretrial risk assessment [Yacoby et al., 2022]. For example, Ehsan et al.
[2021] interviewed 29 AI users and practitioners to learn about the socio-
organizational context of XAI-aided decision making, a perspective they
call "Social Transparency". Sun et al. [2022] conducted workshops with
43 software engineers to explore their explainability needs when using
generative AI for code. Maltbie et al. [2021] conducted stakeholder inter-
views to implement XAI in the public sector for sewer overflow predic-
tions.

Some studies have also summarized the wide range of questions that
users can have on AI systems [Liao et al., 2020, Lim and Dey, 2009]. Liao
et al. [2020] employed card-sorting exercises to encourage participants to
sort the most important questions they had.
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Scenario-based design [Carroll, 1997], in which participants are en-
gaged in a scenario to elicit their feedback, has often been used to un-
derstand explainability users in context [Cirqueira et al., 2020, Sun et al.,
2022, Wolf, 2019, Liao et al., 2023].

Another challenge that HCI researchers are tackling is the capture of
users’ mental states when they are interacting with AI systems. Work
in the social sciences has highlighted the importance of (1) identifying
the specific knowledge gap and the foil that the explainee is trying to
address, and (2) keeping track of what the explainee already knows, as
seen in Section 2.3. This allows for more relevant explanations. Some
efforts to capture dynamically users’ specific questions and mental rep-
resentations of AI systems and domains are starting to emerge in the
explainability literature. This what several currents known as conversa-
tional XAI [Ehsan et al., 2019, Grimes et al., 2021, Madumal et al., 2019,
Weitz et al., 2021, Hernandez-Bocanegra and Ziegler, 2021], interactive
XAI [Chromik et al., 2021, Ooge et al., 2022] and interactive ML [Teso
et al., 2023, Amershi et al., 2014, Guo et al., 2022] are working towards.
Early AI systems used human-like communication processes to provide
explanations in the form of dialogues and conversations in natural lan-
guage [Abdul et al., 2018]. In 1986, for example, Winograd and Flores
[1987] stressed the need for explanation systems to reflect the user’s men-
tal representation of the domain [Broniatowski, 2021].

2.4.4 Designing explainability systems

Design methods from user experience research such as card sorting,
participatory design or scenario-based design have sometimes been used
to ideate and conceive explainability interfaces.

Low-fidelity prototypes with conceptual artefacts as test explanations
have sometimes been proposed to to build and test ideas quickly. These
were often put in context, through scenario-based design [Cirqueira et al.,
2020, Sun et al., 2022, Wolf, 2019, Liao et al., 2023, Tsai et al., 2021].

Higher fidelity prototypes in which an explainable technique (XAI)
is programmed were used more frequently [Kulesza et al., 2015, Cheng
et al., 2019, Krause et al., 2016, Chromik and Butz, 2021, Panigutti et al.,
2023a, Wang et al., 2019a, Springer and Whittaker, 2019]. Kulesza et al.
[2015] drew on existing literature and design principles to develop their
prototype. Panigutti et al. [2023a] and Wang et al. [2019a] used co-design
methods to involve end-users in designing solutions [Rogers et al., 2023,
International Organization for Standardization (ISO)]. Wang et al. [2019a]
sketched initial visualisation prototypes, which they improved through
five iterations with clinician participants. Then, in 14 co-design sessions
with a clinician participant, they extracted key design implications for ex-
plainability interfaces in the medical domain, such as "supporting access
to source and situational data" or "supporting forward (data-driven) reason-
ing by showing feature values and attributions before class attribution to avoid
confirmation bias". Panigutti et al. [2023a] redesigned their explainability
interface based on users’ feedback on an initial prototype and then relied
on heuristic evaluation9 to test the usability of the new interface. The

9 Heuristic evaluation is
a method for identify-
ing problems in a user
interface (UI), which in-
volves a team of evalu-
ators judging it accord-
ing to a set of usabil-
ity guidelines [Nielsen,
1992].
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redesign of their explainable UI enabled notable improvement, including
enhanced user controls and aesthetics. By conducting two user studies,
Springer and Whittaker [2019] found that it is essential to gradually dis-
close information about machine learning models so as not to distract
users and undermine their proper understanding of the system.

Figure 2.8: Examples of
visual explanations for
different AI models a)
Hybrid visual and tex-
tual explanations for the
estimation of the read-
ing time of an article
[Szymanski et al., 2021],
b) Influence of features
on loan default risk
[Chromik et al., 2021],
c) Multiple explanations
for house price forecasts
[Hohman et al., 2019]),
d) Example-based ex-
planation for drawing
recognition [Cai et al.,
2019].

As a result of these design processes, many different visuals for ex-
planation user interfaces have been generated. Explainability researchers
have been focusing on ways to present information visually in the more
useful and effective manner [Ooge, 2023]. The research domains of infor-
mation visualisation and visual analytics specifically address this issue.
Information visualization (or Infovis) has been exploring ways to repre-
sent data so as to best assist users in their tasks. Visual analytics is a spe-
cialized subfield of Infovis that focuses on complex interfaces designed
for experts or analysts. Visual analytics interfaces typically consolidate
several visualisations on a single screen and provide users with an ex-
tensive selection of controls and interaction options [Ooge, 2023]. Several
interfaces of this type have been proposed in the explainability literature
[Ming et al., 2019, Cheng et al., 2021, Wang et al., 2019b, Zhao et al., 2019].

2.4.5 Evaluating explainability systems

In a seminal paper calling for rigorous approaches to interpretabilty,
Doshi-Velez and Kim [2017] cautioned against evaluating explanations
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in a "you’ll know it when you see it" fashion, as this is prone to confir-
mation bias and unscientific practices. They introduced three different
approaches to evaluate explanations. These approaches are functionally-
grounded, human-grounded and application-grounded, from less to more domain-
specific and costly. Functionally-grounded evaluation, also referred to
as algorithm-centered evaluation [Ooge, 2023], is a method that does not
involve human participation and relies on statistical metrics to quantify
the effectiveness of an explanation. Several common metrics used in
this approach include stability, robustness, consistency, sparsity, discrim-
inativeness, and computational efficiency [Afchar et al., 2022]. Human-
grounded evaluation requires human participants to rate explanations
along various criteria, or complete tasks such as simulating a model’s
prediction for a given input after seeing explanations of the model’s be-
havior. Human-centred evaluation does not involve real users in specific
applications. Instead, it usually involves artificial tasks that enable the
testing of explanations with a large panel of human participants. Lastly,
application-grounded evaluation consists in testing explanations in real-
world settings, with real users. Users are instructed to engage with ex-
planations and subsequently provide feedback on their subjective experi-
ence. For example, participants rate their level of satisfaction, subjective
trust or perceived utility of the explanations. They may also answer ques-
tions that allow researchers to determine the amount of knowledge they
gained or the extent to which they relied on the AI [Poursabzi-Sangdeh
et al., 2019].

Figure 2.9: The 12

Explanation quality
properties proposed by
[Nauta et al., 2023].

Hoffman et al. [2019] suggested that the three tests of satisfaction, un-
derstanding and performance are key to measuring the "goodness" of
explanation. The paper also presents an Explanation Satisfaction Scale
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and summarizes the different ways to elicit users’ understanding and the
different approaches to measure performance of the (X)AI + human team
at conducting the tasks for which the technology is designed. Addition-
ally, it provides a checklist to measure users’ curiosity and trust measure-
ment scales. Vereschak et al. [2021] conducted a thorough review of trust
measurement for explainable AI. Holzinger et al. [2020] proposed a Sys-
tem Causability Scale, similar to the System Usability Scale [Jordan et al.,
1996], to determine whether an explanation is suited to an intended pur-
pose. More recently, Nauta et al. [2023] reviewed explanation evaluation
strategies in XAI and presented a grid of twelve properties for assessing
explanations. Three of these properties require input from users: context,
coherence, and controllability. The other properties pertain to explana-
tion content and presentation, as shown in Figure 2.9.
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2.5 Explainability in Law: dreaming in color?

Law has long recognized the need to impose information disclosure on
certain, generally powerful, actors. Justice Louis Brandeis’s saying that
"Sunlight is the best disinfectant" has inspired transparency obligations
in a broad range of fields [Schauer, 2011, Lee, 2017]. Law and economics
scholars have traced the need for information disclosure to various mar-
ket failures, such as information asymmetries and monopoly [Daniels
et al., 2019, Wolfe, 2013]. It is no surprise therefore that information dis-
closure obligations have found their way into legislation on algorithmic
transparency and explainability.

2.5.1 Legal requirements for algorithmic explainability

In 2016, legal scholars started to analyze the legal foundations of ex-
plainability for machine learning models [Kroll et al., 2016, Selbst and
Barocas, 2018, Wachter et al., 2017]. Legal scholars pointed to preexisting
obligations to explain algorithmic decisions, which existed well before
the advent of deep learning models and before the term "explainable
AI" became fashionable. These obligations were found for example in
the 1995 European Data Protection Directive and in the US Fair Credit
Reporting Act of 1970.

Today explainability can be found, with different names, in numerous
EU legal texts that do not specifically target AI.

The GDPR (General Data Protection Regulation 2016/679, GDPR) [Eu-
ropean Parliament and Council, 2016], requires disclosure of "meaningful
information about the logic involved" (articles 13-15) in fully automated de-
cisions. The GDPR provisions apply "when the decisions (i) involve the
processing of personal data, (ii) are based solely on an automated pro-
cessing of data and (iii) produce legal or significant effects on the recipi-
ent of the decision" [Bibal et al., 2021]. According to Maxwell and Dumas
[2023], the GDPR requirements correspond to both local and global ex-
plainability.

Several explainability obligations concern platform regulation, which
aims at protecting consumers and business users of platforms. The Dig-
ital Services Act ("DSA") requires disclosure of "meaningful information
directly and easily accessible [...] about the main parameters" of recommender
systems (art. 26) and more generally of the "reasons for the relative im-
portance of those parameters" (art. 27) [European Parliament and Council,
2022]. As stated by Maxwell and Dumas [2023], the decision of whether
the given "reasons" should faithfully and logically represent the actual
system behavior will be left to regulators and the CJEU10. The Platform 10 Court of Justice of the

European Unionto Business (P2B) Regulation [European Parliament and Council, 2019]
mandates that business users of platforms have access to information on
algorithmic parameters to allow for an "adequate understanding" of the
ranking and recommendation algorithms used, and that the main pa-
rameters and their importance be justified. The Proposed platform work-
ers’ directive contains similar provisions to disclose the main parame-
ters used by algoritmic systems and their relative importance. Addition-
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ally, consumer protection law also has provisions regarding explanations
of recommender systems in online marketplaces. It notably imposes to
show "the main parameters determining ranking [...] of offers presented to the
consumer as result of the search query and the relative importance of those pa-
rameters as opposed to other parameters" (new art. 6(a) of Directive 2011/83

on Consumer Rights).

Bibal et al. [2021] also emphasize that explainability requirements are
stronger in the public sector. Any decision made by a public author-
ity, such as an administration or a judge, must always be justified and
reasons for the decision must be clarified and explained. When the ad-
ministrative decision-making process is automated, further explainability
requirements may be necessary. French administrative law is among the
most demanding frameworks, requiring that the person subject to the
decision be able to request the parameters used in the process and their
weighting (art. R. 311-3-1-2 of the French Code on the relationships be-
tween the public and the administration) [Maxwell and Dumas, 2023].

The above section does not provide a comprehensive list of all the pro-
visions for explainability in legal texts or decisions. Rather, it gives a brief
overview of the ways in which explainability may be provided in law.
Below we extend the discussion by focusing on two of the most cross-
sectorial legal foundations for explainability: the upcoming AI Act11 and 11 As this thesis was

written between
September 2023 and
January 2024, the final
text of the AI Act had
not been published yet.
We therefore relied on a
near final draft version
in the sections below.

human rights case law.

Explainability and the AI Act

In December 2023, the EU reached an agreement on the text of the AI
Act, which aims to harmonise regulation on AI systems and make the
EU the first region in the world to do so. The text promotes a regulatory
approach based on the level of risk that AI systems pose to fundamental
rights. It sets out different obligations depending on whether the AI
application falls into one of these four risk categories:

• Unacceptable risk: this includes systems that comprise manipulation,
exploitation, social scoring, or biometric identification of people. These
AI applications will be strictly prohibited, with very limited excep-
tions.

• High-risk: AI applications in critical sectors such as transport, educa-
tion, employment and health or law enforcement are among the ar-
eas concerned. For example, AI systems used to evaluate individuals’
creditworthiness are considered as high-risk. AI applications that fall
within products already regulated by EU law, such as an AI-based di-
agnostic tool used in healthcare, are considered high-risk. High-risk AI
system suppliers will have to carry out a prior conformity assessment
and satisfy other requirements to ensure the safety of their AI systems
before putting them into service in the EU. Suppliers are also bound
to transparency requirements to provide information on high-risk AI
systems for all stakeholders.

• Limited risk: Systems with low risk should meet basic transparency
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requirements, such as informing users that they are interacting with
an AI, allowing them to make informed decisions.

• General purpose and generative AI: The initial proposal of the Euro-
pean commission did not account for "general-purpose AI models" or
foundation models. The trilogue discussions in late 2023 have inte-
grated generative AI regulation in an entirely separate risk class. In-
side this class, generative AI models that are used for research and
development and not used in the EU market are exempt from obliga-
tions. Other generative AI models will have to comply to transparency
requirements such as disclosing that content was generated by an AI,
preventing the model to produce illegal content, and disclosing copy-
righted data used for training. In addition, models that may pose
systemic risk, such as the latest GPT-4, will have to undergo more
thorough risk evaluations. Classified in this category are models for
which the compute power exceeds 1025 FLOPS.

It should be noted that the rules are designed to be evolutionary: the
definition of AI or the quantitative criteria for considering a model to
represent systemic risk could easily change.

Classification of the AI applications studied in this dissertation.

In Chapter 5 and 6, we consider two applications of AI systems which
may be considered high-risk under the AI Act.

The first one involves using an AI system to provide an online rec-
ommendation for a life insurance plan that matches a user’s financial
situation. These systems are called "robo-advisors". It is clearly covered
by Annex III of the draft AI Act which lists high-risk AI applications: "AI
systems intended to be used for risk assessment and pricing in relation to natural
persons in the case of life and health insurance."12 12 Annex III, paragraph

6.The second application of AI we consider is the detection of money
laundering and terrorist financing. Anti-money laundering and counter-
terrorism financing (AML-CFT) systems are implemented by banks, which
are required to report suspicions of money laundering or terrorist financ-
ing in their customer base to financial intelligence units (FIUs). In turn,
FIUs investigate these suspicions in order to refer serious ones to law
enforcement authorities. It is unclear if AI systems used in AML-CFT
systems can be considered as "high risk" under the AI Act. Some schol-
ars have interpreted it could be the case [Pavlidis, 2023], considering a
former point in the Commission proposal, which has been removed in
the most recent AI Act draft. Nevertheless, Annex III, point 7(e) and
specifically 7(f) could be interpreted as applying to AI systems in AML-
CFT: "AI systems intended to be used by law enforcement authorities or on their
behalf or by Union institutions, agencies, offices or bodies in support of law en-
forcement authorities for profiling of natural persons as referred to in Article
3(4) of Directive (EU) 2016/680 in the course of detection, investigation or pros-
ecution of criminal offences." However, recital 37 foresees an exception for
"AI systems used for the purpose of detecting financial fraud". In light of these
provisions, it is more likely that AI systems used by banks to enhance
ML/TF detection would not be considered high risk. However, one could
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argue that money laundering, terrorism financing and financial fraud are
distinct concepts [Unger and Busuioc, 2007]. The systems put in place to
prevent money laundering target a larger scope of criminal offenses than
fraud, including, for example, human and drug trafficking.

The role of explainability in the AI Act.

Panigutti et al. [2023b] highlights that the AI Act does not mandate a
requirement for explainable AI, but rather aims to achieve trustworthy
AI through the pillars of transparency and human oversight. The au-
thors consider, however, that implementing such measures may be done
through use of explainable AI. As Maxwell and Dumas [2023] notes, hu-
mans in charge of oversight should be "able to correctly interpret the high-
risk AI system’s output, taking into account in particular the characteristics of
the system and the interpretation tools and methods available"13 For Maxwell 13 art. 14-4(c) of the

Commission’s proposal
for the AI Act.

and Dumas [2023], this indirectly suggests the need for local explana-
tions.

Explainability in human rights case law

Decisions of the Court of Justice of the European Union (CJEU)14 also 14 CJEU, 6 October
2020, La Quadrature
du Net, joined cases
C-511/18, C-512/18

and C-520/18; CJEU,
21 June 2022, Ligue
des droits humains v.
Council of Ministers,
Case C-817/19

inform us on the need for explainability with regard to fundamental
rights protected by the Charter [Maxwell and Dumas, 2023]. Maxwell and
Dumas [2023] unpack those explainability requirements. In the Ligue des
droits humains v. Council of Ministers case, the CJEU said that AI systems
which decisions can lead to serious consequences should rely on "pre-
determined models and criteria", therefore calling for global explainabil-
ity and excluding the use of machine learning. Furthermore, high-risk AI
systems, such as those used for terrorism detection, should provide ex-
plainability to enable human operators to evaluate the generated alerts.
The CJEU also considers that local explainability enables contestability,
which falls within an individual’s due process rights.

2.5.2 Legal objectives for explainability

The objectives of regulation are intertwined with economic goals to
correct market failures [Levine and Forrence, 1990] such as information
asymmetry, customer abuse, trade secrets, economic crime or distrust in
the economy and institutions. These regulatory ambitions are reflected in
the purposes of legal requirements for explainability, which are outlined
by Maxwell and Dumas [2023]. Further, the appeal towards explana-
tions in legal texts can be attributed to the notion of reason-giving in
law, as argued by Rozen et al. [2023], which pursues specific objectives.
Below, we summarize the explainability purposes of explainability and
reason-giving as presented by Rozen et al. [2023] and Maxwell and Du-
mas [2023]:

1. User empowerment. Requirements for global explanations enable indi-
vidual or business users to access minimal information to understand
algorithmic recommendations and preserve their agency. This reflects
a regulatory concern to correct information asymmetries and protect
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consumers. This objective corresponds to acknowledging the human
agency of the decision subject as described in [Lombrozo, 2012].

2. Evaluation and quality of individual decisions. [Maxwell and Dumas,
2023] contends that providing local explanations may be necessary to
allow for effective human oversight of individual decisions, which is a
fundamental right protected by the EU Charter. This aligns with the
primary purpose of reason-giving in law, which is to ensure fair and
just decisions [Rozen et al., 2023].

3. Contestability and due process. Provisions for local explainability aim
to enable individuals to challenge decisions. This stems from regu-
latory goals to protect individuals’ fundamental rights to quality de-
cisions concerning them and due process of administrative decisions.
For example, Margot Kaminski and Urban [2021] discusses what an
individual right to contest algorithmic decision should look like, build-
ing on the United States’ tradition of due process theory.

4. Control over system performance. Explanability is also needed to
check that systems used to pursue general interest objectives are suffi-
ciently efficient, such as AI-based anti-money laundering systems, for
example.

5. Accountability and legitimacy of decision makers. Additionally, legal
requirements for explainability may arise from the need to preserve
transparency in public administration [Maxwell and Dumas, 2023], in
order to preserve public trust in institutions. This is in line with Rozen
et al. [2023]’s view that reason-giving serve the purpose of promot-
ing compliance and legitimacy of deciding bodies. They quote Jerry
Mashaw who asserts that "the authority of all law relies on a set of com-
plex reasons for believing that it should be authoritative" [Mashaw, 2001].
In this context, explanations serve as accountability mechanisms in
socio-techno-legal contexts in which human deciders are concerned
with reputational risks, peers’ approval or other incentives to make
the "right" decision [Rozen et al., 2023].
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2.5.3 Is explainability the best disinfectant?

"Sunlight is said to be the best of disinfectants; electric light is the most efficient policeman"

Louis Brandeis, 1913

Explainability for decision-subjects empowerment and contestability.

Returning to Louis Brandeis’ famous saying, transparency can be seen
as a remedy to corruption and illegitimacy in politics and society. How-
ever, there are opposing views and nuances to consider. Here, the judge
takes "electric light" as a metaphor for a "technology of transparency" that
enables effective oversight and enforcement [Obar, 2020]. In explainabil-
ity, it amounts to giving access to explanations of algorithmic decisions to
decision-subjects and citizens, as a way to achieve greater accountability
and trustworthiness of AI systems. However, Wachter et al. [2017] state:
"the feasibility and practical requirements to offer explanations to data subjects
remain unclear." In fact, many legal scholars have criticised Brandeis’ vi-
sion as overly simplistic, advancing that it may represent an ideal, but
an unattainable one [Lippmann, 1993]. Jonathan Obar [2020] argues that
advocating transparency is one thing, but achieving "meaningful forms
of transparency" is more difficult. Taking the example of consent to per-
sonal data practices, the author observes that the self-governance fallacy
is deeply ingrained in the occidental democratic approach. Indeed, as
Pasquale [2015] puts it, "discovering problems in Big Data should not be a
burden we expect individuals to solve on their own". Obar [2020] therefore
asserts the need to recognise human limitations and to move the discus-
sion beyond on access to information, and rather towards what happens
afterwards, raising questions such as how do we effectively communicate
information to end-users and how do we support engagement with the
content of the message? and is that even realistic?

Therefore, focusing on explanation design, representation and com-
munication could provide some answers to the propensity of explain-
ability for lay users to meet legal objectives. In the context of GDPR
requirements, Wachter et al. [2017] defend that there should be more ef-
forts to "determine whether and how explanations can and should be offered
to data subjects (or proxies thereof) with differing levels of expertise and inter-
ests." We explore in Chapter 5 this tension between the capabilities and
needs of decision-subjects on the one hand, and the ideal of appropriate
trust calibration, on the other. Specifically, we explore this in the context
of AI-based recommendations for life-insurance plans, where non-expert
end-users should be given clear, concise and non-misleading information
in order to make an informed choice.

Explainability for decision quality, due process and accountability.

Even for audiences other than decision-subjects and citizens, there is
growing scepticism from law scholars about whether explainability can
achieve legal objectives. Rozen et al. [2023] are rather sceptical about
explainability’s propensity to contribute to the objectives of reason-giving
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in law.

First, for the authors, explainability cannot contribute to restraining
and slowing down human judgement for "a better and more just deci-
sion" because it is not humans but machines that are making decisions.
This objective for reason-giving in law relies on the human nature and
our capacity to "feel" accountable, which is not applicable to machines in
the XAI context.

Second, Rozen et al. [2023] emphasizes the problem of unreliable ex-
plainability methods and the difficulty it creates to meet due process re-
quirements. Wachter et al. [2017], also highlight that leveraging algorith-
mic audits is critical to "provide an evidence trail for providing explanations
of automated decisions." We study the role of explanations for AI auditing
in Chapter 6, where we describe the approaches and needs of regulatory
supervisors for auditing AI-based anti-money laundering systems.

Third, while explanations provide "clues" and approximations about
the model behavior, they require human deduction skills to be inter-
preted, and humans can potentially be manipulated in that process. This
makes it harder to challenge decisions and facilitate due process rights
relying solely on explanations. We explore this in detail in Chapter 3,
where we uncover the different human biases at play in explainability
interpretation.

Finally, Rozen et al. [2023] concede that explainability can play a role
in strengthening the accountability and authority of decision-makers. We
also explore this aspect in chapter 5 by considering the role of explain-
ability in strengthening the accountability of life insurance providers, and
in Chapter 6, where explanations are used as means to increase account-
ability and auditability of banks regarding their AI-based anti-money
laundering systems.





PART I

Calibrating trust in explainable
AI: common pitfalls and the
promise of interactivity
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Chapter 3: Trust, overtrust, distrust in explainable AI: a cognitive ap-
proach presents a review of the cognitive biases in explainable AI litera-
ture. This chapter builds on an article that was published as a conference
paper:

"How Cognitive Biases Affect XAI-Assisted Decision-Making: A Systematic Review", Astrid
Bertrand, Rafik Belloum, James R. Eagan, Winston Maxwell, Proceedings of the 2022

AAAI/ACM Conference on AI, Ethics, and Society (AIES ’22), Oxford, UK, 2022

https://doi.org/10.1145/3514094.3534164.

This thesis deepens the analysis presented in the conference paper. As
the first author, I delineated the motivation and research questions. I led
the review process and was helped by the second author to classify and
analyze the papers. I wrote most of the paper, specifically the findings
and discussion. The methods, results, and text were discussed with all
three co-authors.

Chapter 4: Towards "human-like" explanations: the promise of in-
teractivity presents a detailed scoping review on interactive explainable
AI. This chapter builds on an article that was published as a conference
paper:

"On Selective, Mutable and Dialogic XAI: A Review of What Users Say about Different Types
of Interactive Explanations", Astrid Bertrand, Tiphaine Viard, Rafik Belloum, James R.
Eagan, Winston Maxwell, Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems ( CHI ’23.), Hambourg, Germany, 2023 https://doi.org/10
.1145/3544548.3581314.

As the first author, I delineated the motivation and research questions.
I led the review process and was helped by the second and third authors
to classify and analyze the papers. I wrote most of the paper, specifi-
cally the findings and discussion. The methods, results, and text were
discussed with all co-authors.





Chapter 3

Trust, overtrust, distrust
in explainable AI:
a cognitive approach

"Automated decision aids are designed to reduce human error,
but actually can cause new errors in the operation of a system if
not designed with human cognitive limitations in mind".

Cummings [2004]

At the heart of human-computer interaction research is the search for
optimal collaboration between humans and machines. Trust plays a sig-
nificant role in this collaborative relationship, as it determines the extent
to which users will use the machine’s advice when faced with complex
or uncertain situations [Culley and Madhavan, 2013, Lee and See, 2004].
We therefore begin our research with a characterization of the cognitive
challenges to trust explainable AI systems. We review of the cognitive
ways in which people trust, but also overtrust, distrust or misuse expla-
nations by searching the literature in explainable AI. We highlight im-
portant individual and contextual factors in the trust calibration process.
This allows us to emphasise the relevance of human-centred approaches
to explainability design.

Section 3.1 presents the motivation and research questions for the sur-
vey presented in this Chapter. We build on HCI research regarding hu-
man biases when working with automation, as well as on work in so-
ciology and philosophy of science regarding cognitive aspects of expla-
nations. Section 3.2 describes this prior research. Section 3.3 develops
the methodology used for the review. Section 3.4 presents the results,
including the cognitive mechanisms explanations should adapt to, the
way explanations can be misused and disused through users’ cognitive
biases, or misevaluated in user studies. We also describe the bias mitiga-
tion strategies identified in the explainability literature. Finally, Section
3.5 discusses avenues in explainability research to take into account iden-
tified pitfalls.
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3.1 Motivation and research questions

Correctly calibrating trust in AI decisions and systems may be paved
with important cognitive challenges, including Automation-Induced Com-
placency (AIC) [Parasuraman et al., 1993], and possibly other biases.

While there are growing efforts from researchers [Green and Chen,
2019, Mittelstadt et al., 2019, Rastogi et al., 2020] to tie cognitive sci-
ence literature to a mostly technical explainability field, more research
is needed to identify what kind of cognitive biases and heuristics are
involved in the explanation process, and whether and how to leverage
people’s heuristics to improve XAI systems. Several studies exist that
shed light on cognitive mechanisms leading issues when interpreting ex-
planations of AI systems [Chromik and Butz, 2021, Wang et al., 2019a].
However, the literature lacks a comprehensive review of the efforts made
so far on this front in the explainable AI field. In this chapter, we fo-
cus on cognitive biases in order to pin down the cognitive challenges to
fostering appropriate trust in explainable AI.

To the best of our knowledge, there is not yet a comprehensive review
of how cognitive biases have been accounted for in the explainability lit-
erature. A analysis like the one we present appears necessary to summa-
rize findings on how cognitive biases interfere with explanations, how
to address them, and to highlight promising directions concerning the
integration of cognitive processes in XAI systems.

In this work, we consider cognitive biases not only in terms of “errors”
(e.g., automation bias that leads to inappropriate trust in AI modes) but
also as the cognitive constraints that are inherent in the human explana-
tion process.

We analyze how the field of XAI has been dealing with human cogni-
tive biases and constraints, and we discuss promising mitigation strate-
gies and research directions to support human critical thinking. To this
end, we conducted a scoping review of 38 papers, based on a systematic
search methodology, and guided by the following five research questions:

RQ1: What cognitive biases have been studied in the explainability literature?
RQ2: In which contexts (e.g., explainability method, human expertise, tasks

type) do these cognitive biases arise?
RQ3: How to adapt to human cognitive architecture to improve explainable AI

systems?
RQ4: What evaluation methods have been used to detect cognitive biases (spe-

cific to each bias)?
RQ5: What are the stated future research directions and challenges identified by

the scientific community?
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3.2 Background

3.2.1 Trust in automation

Decades of research at the intersection of psychology and HCI research
highlight important and pernicious challenges to appropriately calibrate
trust in automated intelligent decision support systems [Parasuraman
and Riley, 1997, Bailey and Scerbo, 2007, Lee and Moray, 1992, Wickens
et al., 2009, Gawronski, 2004, Cummings, 2004]. This literature emerged
from the study of complex systems in critical environments, specifically
the aeronautics in the 1990s. The analyses of plane crashes, such as the
1996 accident [National Transportation Safety Board, 2000], shed light on
difficulties for pilots in understanding system warnings, detecting au-
tomation errors or monitoring highly reliable systems, leading to catas-
trophic consequences [Billings, 1996].

Definition

Complacency. Parasuraman et al. [1993] described the phenomenon of
Automation-Induced Complacency (AIC), which is a state of "low suspicion"
by the human operator when the automation performs a task for them, also
defined as "self-satisfaction" resulting in non-vigilance".

The term "complacency" is necessary because it encompasses constructs
broader than vigilance failure, boredom, or workload issues. Compla-
cency represents a unique attitude, and complacency and boredom are
not connected [Parasuraman et al., 1993].

A related notion in the literature is automation bias. According to
Cummings [2004]:

Definition

Automation bias. Automation bias "occurs when a human decision
maker disregards or does not search for contradictory information in light
of a computer-generated solution which is accepted as correct" [Cummings,
2004].

Complacency and automation bias have often been discussed as sep-
arate concepts in the literature [Parasuraman and Manzey, 2010]. On
the one hand, complacency involves a lack of attention, predominantly
observed in conditions of multitasking, and high automation reliability.
On the other hand, automation bias is seen as a tendency to overtrust
decision-support systems. By noting these differences, we can see that
they are due to variances in the observation of these concepts. However,
ultimately both notions result in the same underlying problem. If we
take Ferrario et al. [2020]’s definition of trust which involves the lack of
monitoring, automation bias becomes very similar to complacency. In
fact, Parasuraman and Manzey [2010] argued that "automation-induced
complacency and automation bias represent closely linked theoretical
concepts that show considerable overlap with respect to the underlying
processes". Therefore, for simplicity, we will consider the two terms as
synonymous in the remainder of the dissertation.



84 the explanation paradox and the human-centric path

Additionally, we summarize below significant factors determining trust
in automation, building on Culley and Madhavan [2013]’s review. These
factors include: variability of system reliability, operator cognitive load
(e.g. multitasking), alarm threshold, severity of the consequences of fail-
ure or trust in the system designer.

Human operators are not well suited to monitoring infrequent and
unanticipated problems in complex systems, particularly when the sys-
tem is highly reliable and the operator is multitasking [Bailey and Scerbo,
2007, Parasuraman et al., 1993]. In general, system reliability and perfor-
mance have a great effect on operator trust [Bailey and Scerbo, 2007].
AIC occurs over time, after a period of familiarisation with automation
[Molloy and Parasuraman, 1996]. Varying system reliability eliminates
complacency effects [Parasuraman et al., 1993, Bailey and Scerbo, 2007]1. 1 During the 1990s, Air-

bus planes were the
most automated com-
mercial planes in op-
eration. To prevent
automation bias, pilots
were warned against be-
coming excessively de-
pendent during train-
ing. Following an Air-
bus plane crash in 1992,
French airlines imple-
mented a policy requir-
ing pilots to periodically
take manual control of
automated systems.

Wickens et al. [2009] investigated the "cry wolf effect", whereby low alarm
thresholds and a surplus of alarms result in an operator’s distrust and
disregard of the alarm system, potentially leading to the neglect of true
alerts.

When systems make mistakes, the loss of trust is proportional to the
severity of the consequences of the failure [Culley and Madhavan, 2013].
However, difficult or near misses can result in a lower loss of confidence
[Madhavan et al., 2006].

Parasuraman and Riley [1997] also emphasised the importance of trust
in the human designer of the system as a key factor in calibrating trust
in automation.

Finally, Lee and See [2004] introduced the notions of resolution and
specificity of trust. Resolution is the ability to adjust one’s confidence
in proportion to changes in the system’s capabilities. A person with a
low confidence resolution will only slightly change their confidence in a
system that has undergone major changes to its capabilities. Specificity
refers to the ability to calibrate one’s trust in all the different system’s
distinctive components.

3.2.2 Trust in automation by AI systems

Over 40 years after a first research wave on automation provided by
intelligent decision-support systems, with the difference that systems are
even more complex and opaque. Findings from early research on trust
in automation appear more topical today than ever [Zerilli et al., 2019,
Cummings, 2004].

Glikson and Woolley [2020] highlight the differences between the tra-
ditional automation that was the subject of early studies on complacency
and automation of decisions by modern AI systems. They define tra-
ditional automation as "systems that perform repetitive and monotonic tasks
that were previously performed by humans" [Parasuraman and Riley, 1997,
Glikson and Woolley, 2020]. These systems are deterministic and their
behavior is known and fully pre-programmed. On the contrary, machine
learning models execute tasks significantly differently from the human
approach, primarily because of their probabilistic nature and ability to
learn from large data.
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Glikson and Woolley [2020] then review studies on trust in AI and re-
veal six factors enabling cognitive and emotional trust. These are tangi-
bility, transparency, reliability, task characteristics, immediacy behaviors
and anthropomorphism. Tangibility refers to the different forms that AI
can embody, from physical presence as in the case of robots, to virtual
agents or bots or to AI embedded in computers. Humans tend to trust
more AI systems that are more tangible in this order: physical > virtual
> embedded. Transparency and explanations of AI systems tend to in-
crease trust. Low levels of reliability significantly reduce trust, and it
is difficult and time-consuming to regain it. For tasks that require data
analysis, AI is trusted more while for tasks that require social skills, AI
is trusted less than humans. Immediacy behaviors refer to personaliza-
tion, interactivity, adaptiveness and responsiveness, which are usually
associated with increasing trust.

Furthermore, Stanton and Jensen [2021] identify other factors that af-
fect human trust in AI, namely usability of AI systems (i.e. the user expe-
rience), and the technical characteristics identified by HLEG’s definition
of trustworthy AI (accuracy, reliability, security, explainability, privacy...)

Zerilli et al. [2019] also ties the research on complacency and trust in
automation by intelligent systems with the more recent trends in automa-
tion by machine learning and AI systems.

Zerilli et al. [2019] focus on the "control problem", which is broader
than the issue of trust in automation. Control here pertains to the ca-
pacity to diagnose and address faults or issues as they arise in real-time,
as well as to proactively address future issues. Zerilli et al. decompose
the control issue into three main sub-problems: the capacity, attentional
and attitudinal problems. The capacity problem refers to the lack of pro-
cessing power of human architecture compared to computer processing,
that make them inherently unable to monitor in real time a task they
cannot do themselves [Bainbridge, 1983]. Zerilli et al. [2019] argue how
this becomes particularly salient in the age of deep learning, where even
software engineers cannot fully understand the "multi-vector logic" of a
neural network. The attentional problem refers to humans’ limits in term
of attention over time. It refers to studies on "vigilance" that point to the
cognitive impossibility for humans to maintain effective visual attention
on an interface on which little happens [Bainbridge, 1983]. Finally, the
attitudinal problem refers to humans’ tendency to believe that the system
is reliable enough to be left alone. It therefore refers precisely to a trust
calibration issue, and to the observations in complacency and automation
bias studies.

Overall, research in psychology and HCI has shown that humans are
at a severe disadvantage to occupy monitoring functions of complex and
autonomous systems [Bainbridge, 1983]. Zerilli et al. [2019] claim that
there are no reason to believe that the human tendencies observed with
early automation, that result from million years of evolution, would not
manifest with machine learning systems. Does this mean that human
and AI collaboration is doomed? Zerilli et al. [2019] add nuance to that
view. First, some AI systems show impressive levels of performance that
exceed those of well-trained humans, making it inconsequential that hu-
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mans cannot monitor machine decisions. For example, there are AI sys-
tems which can detect Alzheimer’s disease with over 80% accuracy ten
years before the appearance of the first symptoms. Depriving ourselves
of the capabilities of this algorithm for reasons of human control would
be a major opportunity cost for healthcare. Second, Zerilli et al. [2019] ar-
gue that in acknowledging unavoidable human biases with automation,
we can work towards complementary and dynamic allocation of tasks
between humans and AIs.

In this context, explainability represents an additional way out of what
seems like a dead end for appropriate human oversight and trust cal-
ibration. It promises to remedy to the capacity problem by producing
human-intelligible explanations and potentially to the attitudinal prob-
lem by enabling correct trust calibration. However, Glikson and Wool-
ley [2020] and Stanton and Jensen [2021] point out studies that showed
that transparency overall reinforce trust. The effects of explainability for
human cognitive architectures and cognitive trust mechanisms are still
unclear.

This chapter focuses on the concept of cognitive bias to examine how
explanations can either bolster or undermine trust in AI.

3.2.3 Explanations are biased and (maybe) biasing

"In the context of explanation and revision, the strength of causal reasoning and the weakness of
diagnostic reasoning are manifest in the great ease with which people construct causal accounts for
outcomes which they could not predict".

[Kahneman et al., 1982]

In theory, explainability ought to serve as an aid for humans to regain
control of AI black-boxes, restore their autonomy in decision-making
with AI, and prevent their errors like complacency or automation bias.
Naturally, reality is not so simple. On the contrary, some results high-
light the harmful potential of explanations to amplify automation biases
in high-stakes settings [Jacovi et al., 2021, Eiband et al., 2021, Wang et al.,
2019a]. These findings are in line with previous research in the context
of intelligent decision support systems that show that automation deci-
sion aids could cause new errors instead of reducing them [Cummings,
2004, Madhavan et al., 2006]. In fact, human cognitive architecture is not
something that can be "fixed" [Lindström et al., 2022]. However, it is a
key element for technology designers to consider [Cummings, 2004].

In this section, we review the cognitive processes involved in expla-
nation and the way they are inherently biased, which is not necessarily
"bad" per se.

In the 1980s, Amos Tversky and Daniel Kahneman [Kahneman et al.,
1982] introduced the concept of cognitive bias as:
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Definition

Cognitive biases. “Systematic error in judgment and decision-making
common to all human beings which can be due to cognitive limitations, moti-
vational factors, and/or adaptations to natural environments.”

In 2011, Kahneman developed the dual-process theory [Kahneman, 2011],
in which he described two systems that illustrate the way we think. "Sys-
tem 1" reflects our fast, intuitive and emotional thinking which often
leads us to make errors. "System 2" is more deliberative, logical, but also
requires more effort to activate.

System 1, and cognitive biases do not necessarily have bad conse-
quences or results: they have been developed over the course of our
evolution to help us think faster, interact better with our peers or keep
us safe [Kahneman, 2011]. Kahneman also describes the extraordinary
abilities that result from our System 1. These biases should be seen as
constraints on the problem of explainability, as integral aspects of our
human nature.

As seen in Section 2.3, cognitive biases and social expectations are
present when people evaluate and generate explanations.

Specifically, people select causes in a biased way by paying more atten-
tion to causes that have specific characteristics [Miller, 2019]. Lombrozo
[2006] talks about "the frailties of induction". As for Pennington and
Hastie [1993], an explanation is a story that coherently puts all the pieces
of evidence together to give them causal sense. The produced story is
subjective, as it depends on the explainer’s world knowledge about sim-
ilar events, or even knowledge about story structures. Graaf and Malle
[2017] also argue that people have social expectations towards machines
because they attribute human traits to them. For example, we expect AI
explainers to use the framework of conversations, or tend to attribute in-
tents to them [Graaf and Malle, 2017, Dodd and Bradshaw, 1980]. We also
have cognitive biases in interpreting explanations. Although generalis-
ing from explanations is necessary and useful for learning and problem
solving, it can come at the cost of over-generalising. We have previously
discussed in Section 2.3.1 that generalisation is significantly linked to the
similarity and diversity of the properties involved [Rehder, 2006]. Lom-
brozo [2006] argues that these factors can lead people to over-generalize if
a novel case seems similar to the case that is explained or if the presented
explanation seems to hold true in a diverse range of contexts. Specifi-
cally, explanations reinforce that effect "by providing a more restrictive basis
for generalizing from known to novel cases".
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"Explanations can lead reasoners to override the influence of similarity. If told that herring and tuna
have a disease, naive participants are more likely to extend the property to wolffish, the more similar
item, than to dolphins [Shafto and Coley, 2003]. However, among fishing experts, who can generate
an explanation for why the property might hold (e.g. tuna contract the disease by eating infected
herring), similarity is less predictive of property extensions. Instead, properties are extended if the
explanation generalizes (e.g. to dolphins, who also eat herring)."

Extract from [Lombrozo, 2006].

Although many studies have shown that XAI methods can improve
users’ understanding of black-box models [Lakkaraju et al., 2017, Lucic
et al., 2020, Ribeiro et al., 2018], recent empirical studies have drawn
attention to obstacles resulting from a mismatch between people’s cogni-
tive constraints and current XAI techniques. Specifically, there have been
concerns that AI explanations can bias users and impair their decision-
making process [Ghassemi et al., 2021, Kaur et al., 2020, Nourani et al.,
2021]. At the root of the issue, Buchanan and Shortliffe [1985] argue, is
the choice between trusting an AI recommendation or engaging in an
effortful and time consuming cognitive analysis of its explanations (i.e.
engaging System 2). People thus develop biases "about whether and when
to follow the AI suggestions" [Buçinca et al., 2021], and AI explanations can
reinforce such biases.

For example, explanations can lead to unwarranted trust in AI recom-
mendations [Jacovi et al., 2021]. Eiband et al. [2019], show that placebic
explanations elicit a similar level of trust as real explanations. Other work
[Chromik et al., 2021, Fürnkranz et al., 2020, Nourani et al., 2021, Wang
et al., 2019a] shows that explanations can cause reasoning errors such
as backward reasoning and confirmation bias. Leveraging Kahneman’s
dual process theory, Kliegr et al. [2021] reviewed the effects of cognitive
biases on the interpretation of AI models and provide a rich analysis of
over 20 different biases. That work, however, focuses on rule-based ex-
planations. In turn, Wang et al. [2019a] propose operational pathways
between users’ reasoning needs and XAI methodologies. They describe
how people reason when explaining and review some common cognitive
biases and the ways in which they can be mitigated. However, this work
does not comprehensively cover the cognitive biases that may arise in the
presence of explainable AI.
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3.3 Methodology

In this section, we detail the method used for the scoping literature
review and how we selected the papers for inclusion.

3.3.1 Review type

Like a systematic review [Mulrow, 1994], a scoping review [Arksey and
O’Malley, 2005] includes many rigorous steps to survey the literature.
Scoping reviews do not require the pre-registration of the results nor the
assessment of the quality of the studies [Munn et al., 2018] as systematic
reviews do, but they include similar methodological steps: the definition
of research questions, a systematized search and selection process, and
an analysis and reporting the results [Arksey and O’Malley, 2005]. We
followed the standardized search and selection methods from the system-
atic review methodologies, as suggested in [Arksey and O’Malley, 2005]
for scoping reviews, to ensure the replicability and transparency of our
findings. In particular, we followed the steps of the Preferred Reporting
Items Systematic Reviews and Meta-Analyses (PRISMA) standard [Mo-
her et al., 2009]: paper identification, screening, eligibility evaluation and
analysis procedure. In doing so, it is possible to reproduce the processes
of searching, selecting, and analyzing the relevant literature. This allows
us to guarantee the quality of our search and selection process, as en-
couraged by the PRISMA Extension for Scoping Reviews PRISMA-ScR
[Tricco et al., 2018].

Scoping reviews are an appropriate survey type to examine how re-
search is conducted on a specific topic, give a summary of the focus of
the field, map key concepts, identify the types of evidence found in a
field, pave the way for future systematic reviews, and identify gaps in
the literature [Munn et al., 2018]. This corresponds to the objectives of
study: identify, map, report and discuss the available evidence on cogni-
tive biases in XAI.

3.3.2 Corpus creation

Our aim was to give a sense of how the XAI literature has addressed
the notion of cognitive biases so far. We therefore relied on a keyword-
based approach, which essentially has the advantage of ensuring trans-
parency, reproducibility and, also, leading to more comprehensive results
by sampling a wide range of work. However, it is possible that some XAI
articles have addressed the notion of cognitive biases in different terms,
referring to specific types of cognitive bias. However, we could not in-
clude all possible types of cognitive biases as keywords, since there are
over 200. We also did not want to focus the investigation on specific
types of bias in order to provide a more representative view of the differ-
ent cognitive biases discussed in explainability. In addition, because we
conducted our searches on ACM, IEEE, and Scopus, we may have missed
other relevant work from other sources. To address these limitations, we
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supplemented the keyword-search with selected papers addressing cog-
nitive biases in XAI drawn from two authors’ knowledge of the XAI field.
Section 3.6 discusses the limitation of the methodology in further detail.

Figure 3.1: PRISMA
flow diagram [Moher
et al., 2009] on how the
final corpus was curated
(n = 38).

Keyword Match. During the identification phase, we performed a
structured keyword search using the following sources: ACM, IEEE, and
Scopus. Since this survey focuses on cognitive biases related to XAI,
the search query was contextualized in three dimensions: AI systems,
Explainability, and Cognitive biases. Drawing on the authors’ back-
ground in XAI, we assigned keywords that describe each dimension. We
searched for keywords representing AI systems and Explainability di-
mensions in the Title, Abstract, and Author Keywords fields, because we
wanted to focus on papers whose main topic was XAI. For Cognitive bias
keywords, we searched in the Full text of papers. The search result was
filtered to include recent papers (2008 or after) since XAI is a young field
of study. The search query was as follows, adapted to each database ad-
vanced search specificities (the wildcard * indicates where we retrieved
plurals and different spellings):

AI systems: Abstract: (AI, artificial intelligence, machine learning, algo-
rithm*, intelligent system*, neural network*) AND

Explainability: Abstract: (explainab*, explanation*, intelligib*, interpretab*,
transparen*, XAI) AND

Cognitive biases: Full Text: (cognitive bias*, decision bias*, explanatory
bias*, explanation bias*, human bias*) AND

Date: 2008 and after.

Screening and Eligibility. We considered the following inclusion and
exclusion criteria. The logic followed is (IC1 OR IC2 OR IC3) AND EC.

IC1 Cognitive biases. The paper describes cognitive biases that are in-
volved in the field of XAI.

IC2 Mitigation techniques. The paper describes techniques to mitigate
cognitive biases involved in the XAI process.

IC3 Measurement techniques. The paper describes ways to measure cogni-
tive biases related to explanations.
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EC Papers that do not provide primary insights on cognitive bias in XAI
are excluded (e.g., a paper that does not provide enough detail on how
the heuristics manifest and in what context).

Additionally, only peer-reviewed papers written in English were in-
cluded. We excluded very few papers to which we did not have access.
The identification phase yielded a total of 273 results: 59 papers from
ACM, 64 from IEEE, 150 from Scopus, and 12 additional papers selected
from the references of relevant papers or based on the authors’ knowl-
edge. The authors’ names, article title, source title, and publication year
of the identified records were exported to an Excel spreadsheet. A to-
tal of 261 results were obtained after eliminating 24 duplicates. In the
screening stage, each paper’s title and abstract was reviewed by an au-
thor based on the inclusion and exclusion criteria, and a decision was
made as to whether the paper should be rejected or retained for the next
phase (eligibility). 176 papers were excluded because they did not discuss
cognitive biases involved in the field of XAI. A total of 85 papers were
advanced to the next phase. In the eligibility stage, two of the authors
read the remaining articles in full. Based on the inclusion and exclusion
criteria, a decision was then made as to whether the article should pro-
ceed to the final phase. 48 articles were finally excluded at this stage
because they did not sufficiently address the proposed research ques-
tions (cf. introduction). 38 articles were retained and advanced to the
final phase.

Coding book. In the inclusion stage, we started the coding of the pa-
pers by having two authors extract relevant information from the papers.
Except for the type of article (primary study or survey), this informa-
tion essentially relates to RQ2 (see introduction). To ensure coding qual-
ity, this information was brainstormed by the authors and the research
team and was drawn from related surveys of empirical studies of XAI
(e.g., [Lai et al., 2021]). As such, our code book included: Cognitive bias
type; Mitigation strategy; Explainability technique and format (local fea-
ture explanation, global explanation, etc.); Paper type (primary study or
review); Application/domain (high-risk or low risk); AI type (shallow,
deep or wizard of oz) and algorithm used (when specified); Human task
type (proxy or real and description); Human expertise (lay-user, domain
expert or ML expert). The full code description is presented in Table 3.1.

Corpus presentation. In the corpus of 38 papers we analyzed, 7 papers
are reviews of the literature, and 31 papers are primary studies. Figure
2 illustrates the distribution of our corpus across the disciplines, show-
ing the diversity of the subject areas. As we can see, over half of these
papers are Human Computer Interaction (HCI) works, published in lead-
ing conferences (e.g., CHI and IUI). The remaining papers have also been
published in leading conferences and journals directly or indirectly re-
lated to the explainability of AI systems, in the fields of AI, computer
science and psychology.
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Dimension Code with examples found in the corpus

AI types Deep learning models (deep reinforcement learning, RoBERTa, Re-
ID networks, BERT, CNN VGG-19, deep neural network based on
GoogleNet), Shallow models (LASSO regression, GAM / sLM, De-
cision trees, logistic regression, 1 to 2 layer neural network, Ran-
dom forest classifier, GAM and gradient boosted decision trees (Light-
GBM), SVM, linear regression, Multi-label gradient boosted tree, k-
nearest neighbor and bagged decision tree), Wizard of Oz

Explanation
types

Local feature importance (saliency maps, word highlighting,
LIME, SHAP, sensitivity analysis MOEA/D...), Rule-based,
Example-based (MMD-critic, nearest neighbours, manual induc-
tive explanation...), Counterfactual (LORE, other...), Textual (in
natural language: expert-generated or automatic), Uncertainty esti-
mation , Other Global (distribution of values, decision tree, output
visualisation)

User expertise Domain expert, Machine learning expert, Lay user, Researcher

Tasks and
domains

Artificial task (sentiment analysis of book and beer reviews, predic-
tion of fat content in a food image, prediction of traffic accidents in a
country...), Law and regulation (child welfare screening, identity
recognition, recidivism prediction), Business and finance (credit
scoring, house price estimate), Education, Leisure (chess, mu-
sic recommendations), Healthcare, Others (application to lose
weight, profession prediction, image recognition...)

Table 3.1: Coding book
used for the analysis of
the corpus.

Figure 3.2: The distribu-
tion of the corpus across
disciplines.

Identification of cognitive biases. To identify by name the cognitive
effects that were discussed in the papers we reviewed, we either took the
wording used in the papers, or relied on external taxonomies [Kahneman,
2011, Kahneman et al., 1982], surveys (e.g., [Kliegr et al., 2021]), and on
our own knowledge of cognitive biases, specifically when the bias was
not named explicitly. For a few cases we coined a phrase to be able
to refer to the effect under study (e.g. “pre-use algorithmic optimism”
[Springer and Whittaker, 2019]).

3.4 Results

This section presents the results of the analysis of the articles studied.
First, we give an overview of the biases identified (RQ1). We then exam-
ine the stated mitigation strategies as well as the research methods used
to identify them (RQ2, RQ3 and RQ4). For the sake of brevity, we do not
systematically provide the definitions of the biases we examine, but the
interested reader can refer to the lexicon provided in Appendix A1.

The first contribution of this work is to answer our RQ1 and identify
the cognitive biases encountered in our corpus, along with the context
in which they were found, namely the explainability technique that was
used, the domain, the task, and the user type. We identified a list of
cognitive biases in Appendix A1. The list presents all the expressions
and concepts found in the corpus, but we recognise that some concepts
may overlap and represent the same underlying cognitive mechanism.
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We then analyzed the way these biases were presented in the articles
reviewed, revealing four main ways cognitive biases affect or are affected
by the use of explainable AI systems for decision-making.

3.4.1 Overview

Figure 3.3 presents the different categories of explanation techniques
that were seen in our corpus (in the middle). Each link represents a con-
nection made in the literature between an explainability technique and
a cognitive bias or between a cognitive bias and a mitigation technique.
The legends in color underlined by arrows indicate how and in what di-
rection the links should be read (e.g. "XAI techniques should adapt to
explanatory heuristics"). The pale and wide links indicate that the bias
or constraint applies more generally to all XAI methods. We identified
more connections between biases and mitigation strategies but show only
the most supported ones for brevity.

Figure 3.3: Summary
of the cognitive con-
straints, biases and mit-
igation strategies dis-
cussed in the papers in-
cluded in our corpus
(n=38).

The first type are heuristics and characteristics of users that should
affect how explainable AI systems are designed. They are listed in
the yellow boxes in Figure 3.3 (top-left corner). They include all the
explanatory heuristics that people use when explaining or receiving an
explanation. These explanatory heuristics are well documented in psy-
chological works on the human explanation process [Lombrozo, 2007,
Miller, 2019]. Unlike the other types of cognitive biases discussed in our
survey, these explanatory heuristics are not considered to lead to errors.
On the contrary, they were simply presented as neither good nor bad but
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merely cognitive architecture constraints to be taken into account before
designing explainability techniques. We present them in Section 3.4.2.

The second type of cognitive biases are those caused or exacerbated
by explainability, and which can lead to erroneous decision-making.
They are presented in the red boxes on the right of the diagram in Figure
3.3. Among these, we find cognitive biases that lead either to overtrust,
distrust, or to misusing the explanation. We present these in Sections
3.4.3, 3.4.4 and 3.4.5.

The third category are cognitive biases that were successfully cor-
rected by explainable AI. They are presented in the orange box in Fig-
ure 3 (top-right corner). In Section 3.4.6, we review successful examples
of using an explainability technique to address a false belief that was
observed with non-explainable AI systems.

The fourth category we identified are cognitive biases which can dis-
tort how XAI techniques are evaluated in user studies. They are pre-
sented in the brown box in Figure 3.3 (middle left). Prompted by Doshi-
Velez and Kim [2017], recent attention has been focused on approaches to
evaluating explanations, with some researchers arguing for the need to
test explanations with users [Poursabzi-Sangdeh et al., 2019], and others
cautioning against doing so, concerned that cognitive biases could skew
evaluations and mislead the XAI field [Herman, 2019]. We take stock of
these cognitive biases in Section 3.4.7.

Finally, the bias mitigation strategies mentioned in the corpus are pre-
sented in the pale orange box (bottom-left of Figure 3.3). The identified
biases leading to overtrust, distrust and misuse of explanations of AI
systems are summarized in Table 3.4.3.

3.4.2 Cognitive mechanisms explanations should adapt to

Explanatory heuristics

In this section we summarize the cognitive (and biased) ways in which
people select causes, evaluate, and ultimately trust explanations. As the
term “bias” usually refers to errors in judgment and we do not consider
such cognitive mechanisms as errors, we use the term "explanatory heuris-
tics". Unlike the cognitive bias of the other categories in Figure 3.3, in this
class, the explanatory heuristics are inherent to the explanation process
and help humans select some events as being relevant causes out of a
potentially infinite causal chain of events [Hilton, 1988]. As presented in
Section 2.3 in Chapter 2, explanatory heuristics were mainly examined by
reviews such as [Miller et al., 2017], but also by primary studies focusing
on explainability desiderata such as simplicity and completeness.

Attentional heuristics. People pay attention to some causes more than
other to form explanations [Miller, 2019, Lombrozo, 2006, Malle, 2004].
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Specifically, people tend to focus on causes that are abnormal, inten-
tional, that point to the responsibility of individuals, that are necessary,
sufficient and robust. Further, the studies in our corpus show that people
select and assess causes according to confidence estimates [Bhatt et al.,
2021, Miller, 2019, Wang et al., 2019a], demographic features [Liu, 2021]
and inherent features [Bekele et al., 2018, Miller, 2019].

Bhatt et al. [2021] stress the importance of showing confidence esti-
mates of AI prediction. They argue that people need to assess uncertainty
to make decisions, relying on prospect theory [Kahneman and Tversky,
1979]. In social interactions, we are used to estimating the confidence
level of a person’s assertion based on their tone and other social cues.
These cues are not applicable in human-AI interactions, hence the need
to explicitly state AI’s confidence levels. However, Bussone et al. [2015]
nuanced that view by empirically demonstrating that "the amount of sys-
tem confidence had only a slight effect on trust and reliance".

Liu et al. [2021] report on people’s tendency to focus on demographic
features such as race or age in feature-based explanations. We can hy-
pothesize that may be due to the discriminatory potential of these fea-
tures and may be linked to either the severity of the consequences of
weighting in these variables or to the availability bias2. This is consis- 2 Human tendency to

rely on information that
comes readily to mind
(such as information
seen recently in the
press) when evaluating
a situation [Kahneman,
2011].

tent with earlier observations on trust in automation, that trust depends
on the severity of the consequences of failure, cf. Section 3.2.

Another interesting example of incorporating these attentional biases
into the design of XAI techniques is [Bekele et al., 2018], which used the
inherence bias—a human tendency to focus on inherent features instead
of extrinsic ones to explain a phenomenon—to select explanations for
person re-identification systems.

Preference for broad, simple, complete explanations. Additionally, ex-
isting work on explanation desiderata has evidenced that people look
for specific qualities in explanations (cf. Section 2.3). In our corpus, we
also observe such preferences for "broad" [Miller, 2019, Shimojo et al.,
2020, Woodcock et al., 2021], "simple" [Abdul et al., 2020, Miller, 2019,
Shimojo et al., 2020, Zytek et al., 2021] and "more complete" [Kulesza
et al., 2013] explanations. However, the preference for simple and com-
plete explanations raises several ambiguities. While it is unchallenged
that simpler explanations are more comprehensible and readable [Ab-
dul et al., 2020, Fürnkranz et al., 2020]—some researchers even show
that interpretability is inversely related to explanation length [Fürnkranz
et al., 2020]—they can also be received with skepticism by users [Bussone
et al., 2015, Fürnkranz et al., 2020, Kulesza et al., 2015].Similarly, Kulesza
et al. [2013] argue that more comprehensive explanations help to signif-
icantly improve participants’ mental models, but other work [Bussone
et al., 2015, Szymanski et al., 2021] found complete explanations can lead
to overreliance [Woodcock et al., 2021]. Shimojo et al. [2020], Woodcock
et al. [2021] contend that coherent and broad explanations are preferred,
with scope being even more important than simplicity, consistently with
Lombrozo’s point of view in cognitive science that broader and simpler
explanations are better [Lombrozo, 2007]. Based on these findings, it can
be challenging to gauge the right level of complexity in explanations.
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Some suggested general principles such as not providing explanations
that are too complex to be readable [Fürnkranz et al., 2020] or adjusting
to the level of “completeness” to each user and context [Woodcock et al.,
2021].

Social expectations. Furthermore, Weld and Bansal [2018] support
Miller’s view [Miller, 2019] that explanation is a social process and state
that adopting more "social" explanations would be highly beneficial to
provide more relevant explanations. Through the process of dialogue,
social explanations can be used to identify each user’s specific knowledge
gap that needs to be explained.

Woodcock et al. [2021] highlight the impact of considering the ex-
plainee’s prior knowledge and the foil in her question that needs to be ad-
dressed. They show that explaining a disease to a user of an AI-powered
chatbot who possesses prior knowledge of that disease has little impact
on her trust. Then, tailoring explanations to addresses specific users’
questions has an important impact on trust. For that reason, some re-
searchers have argued for more interactive explanations. However, there
is some concern in the articles of our corpus that interactive explanations
may lead to overtrust or overreliance [Liu et al., 2021].

Moreover, people tend to attribute human traits to machines, and
therefore tend to expect that AI systems use the same communication
framework as humans [Miller, 2019, Weld and Bansal, 2018]. This was
already highlighted in early research on trust in automation [Lee and
Moray, 1992, Glikson and Woolley, 2020]. In 1992, Lee and Moray ex-
plained that people tend to anthropomorphize machines and attach more
importance to system characteristics than to system behaviour, as they
would do when calibrating human-to-human trust. This is also known
as the correspondence bias, whereby we tend to explain behaviour in
terms of motives, traits and intentions, and underestimate the influence
of external factors [Gawronski, 2004].

User individual characteristics

Some studies showed that certain individual characteristics of users
impact the way explanations are received. Broniatowski [2021] stressed
the importance of considering individual differences to design meaning-
ful explanations.

Skills and expertise. The author considers the effect of skills such
as numeracy— mathematical ability—, having a computer science back-
ground, or reading skills—which enable users to better "extract the gist
from narratives with poorly defined causal structures" [Broniatowski, 2021].
The studies in our corpus also identified major differences in the way
explanations are received depending on traditional classifications of user
expertise. Experts have a greater ability to extract relevant information,
follow efficient and trained reasoning paths, and generally avoid over-
reliance and overtrust [Broniatowski, 2021, Kahneman and Klein, 2009,
Szymanski et al., 2021, Simkute et al., 2020]. Novices are more exposed
to overreliance [Simkute et al., 2020].
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Personality traits. Browniatowski also reviews the effect of certain
personality traits on explanation reception. One aspect to consider is
the Need for Cognition (NFC), which refers to an individual’s desire for
mental effort and can be quantified using the NFC scale [Broniatowski,
2021, Buçinca et al., 2021]. Additionally, Schaffer et al. [2019] discussed
how illusory superiority 3 makes people less likely to seek advice and 3 Refers to psychologi-

cal observations where
low-skilled people felt
a sense of superior-
ity which made them
less likely to rely on
advice [Schaffer et al.,
2019]. Also known as
the Dunning-Kruger ef-
fect.

may be linked to higher susceptibility to cognitive overload.
People also differ in the way they make decisions. Some tend to rely

on their gut feeling, while others prefer to think long and hard. This trait
can be measured through the Cognitive Reflection Test (CRT) [Bronia-
towski, 2021]. This echoes Coba et al. [2019]’s results. Coba et al. used a
Choice-Based Methodology [Louviere et al., 2010] and eye-tracking mea-
surements to reveal that people’s various decision making styles impact
how they perceive hotel ratings—shown as "collaborative explanations".
People of the "maximizer" type were more prone to insensitivity to sam-
ple variance and choice overload.

3.4.3 When explainable AI leads to overtrust

As studies in automation show, overtrust phenomenons such as au-
tomation bias and complacency may arise with automated and AI sys-
tems. These mechanisms can be exacerbated by explainable AI, as studies
in our corpus show. The interested reader can refer to the lexicon in the
Table A.1 of the Appendix of this thesis for definitions of the cognitive
mechanisms and biases in bold in the text.

According to the mere exposure effect [Kliegr et al., 2021], the sheer
presence of an explanation increases confidence in the machine’s predic-
tion. This effect was evidenced in [Eiband et al., 2021, Fürnkranz et al.,
2020, Lai and Tan, 2019], with lay users, rule-based and local feature
importance explanations, by demonstrating that random or placebic ex-
planations increase trust.

Several papers examined user’s bias for completeness [Bussone et al.,
2015, Fürnkranz et al., 2020, Kulesza et al., 2013, Lai and Tan, 2019, Szy-
manski et al., 2021]. For example, Fürnkranz et al. [2020] showed that
users found longer explanations more plausible than shorter ones. This
is consistent with [Bussone et al., 2015] which showed that giving a fuller
explanation in the context of a medical diagnosis led to overreliance is-
sues. Lai and Tan [2019] demonstrated that additional details including
irrelevant ones improved user’s trust in AI predictions. Szymanski et al.
[2021] contended that the additional details contained in visual explana-
tions compared to textual ones can increase users’ misattributed trust. Fi-
nally, Szymanski et al. [2021] showed that lay users were more exposed to
confirmation and completeness bias than machine learning experts when
faced with visual explanations of a reading time prediction algorithm.



98 the explanation paradox and the human-centric path

"Giving a fuller explanation of the facts used in making a diagnosis had a positive effect on trust but
also led to overreliance issues, whereas less detailed explanations made participants question the
system’s reliability and led to self-reliance problems."

[Bussone et al., 2015]

These articles provide several avenues for addressing the bias for com-
pleteness problem, including by combining the use of textual and visual
explanations [Szymanski et al., 2021] or by providing arguments against
the machine’s suggestion [Bussone et al., 2015].

Some mentioned the possibility that more complete explanations are
more likely to contain elements that the user recognizes, thus contribut-
ing to the persuasive effect through the recognition bias4 [Kliegr et al., 4 Recognizing informa-

tion makes the user
more likely to trust
the explanation [Kliegr
et al., 2021].

2021].
In a healthcare application, Wang et al. [2019a] also reported that doc-

tors who considered the AI prediction before making their own diagnosis
fell into confirmation bias and relied on backward reasoning.

Another bias studied in the corpus is the phenomenon called "illusion
of explanatory depth"5, coined by Koehler [1991] and evidenced in the 5 People think they have

a much deeper under-
standing of how com-
plex concepts work than
they actually do.

explainability literature by Chromik et al. [2021] using local feature im-
portance (SHAP [Lundberg and Lee, 2017]) explanations. They prompted
users to self-explain so that they would realize that they knew less about
the concept being explained than they had originally imagined. We can
also perceive this effect in [Kaur et al., 2020, Naiseh et al., 2021b] which
mentions "superficial" and "rush understanding".

Several articles in our corpus emphasized that experts were particu-
larly affected by narration or causal bias.6, including researchers who 6 Tendency to interpret

information as being
part of a larger story
and to assume causal
relations in the events of
that story [Betsch et al.,
2015].

attribute causal meaning to saliency maps [Atrey et al., 2020], data scien-
tists who make false narratives about how SHAP and GAM explanations
work [Kaur et al., 2020] or domain experts in the domain of child wel-
fare screening using counterfactuals [Zytek et al., 2021]. The authors
mainly called for incorporating knowledge-based narratives in explana-
tions. Atrey et al. [2020] encouraged researchers to use direct experimen-
tal evidence to back up their claims. In our corpus of articles, narration
bias was linked to overreliance on explanations, following the same logic
as confirmation bias and backward reasoning [Wang et al., 2019a]. Peo-
ple used narratives to make sense of the predictions of AI systems, which
reinforced their trust in them. In [Zytek et al., 2021], counterfactual ex-
planations lead users to mistake correlation for causation and develop
flawed causal narratives.

Other biases related to complacency. Several studies reported tendencies
from participants to over-rely on AI’s predictions [Bansal et al., 2021,
Bussone et al., 2015, Danry et al., 2023, Liu, 2021, Lai and Tan, 2019,
Naiseh et al., 2021b].

Using an AI aid for chess, Bayer et al. [2021]demonstrated that chess
players displayed a default bias7, that is, users tended to prefer the de- 7 Tendency to accept a

presented default option
(almost similar to status
quo bias).

fault option suggested by the AI. This behavior may overlap with the
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concept of automation bias demonstrated in early studies on automation.
This suggests that offering AI predictions as a default option is probably
a flawed strategy if we want users to actively critique and challenge AI
decisions.

In a task called the Diner’s Dilemma game, Schaffer et al. [2019] demon-
strated automation bias towards AI recommendations. The authors did
not find explanations to be an effective remedy.

Additionally, Danry et al. [2020] discussed the "cognitive dissonance"
effect8—as study participants called it—and ties it to cognitive overload 8 Having two opposing

and coexisting beliefs,
leading to cognitive con-
flict and psychological
stress.

in a fake news detection task. When given a suggestion by the AI, the
study participants were inclined to follow the AI’s suggestions, even
though they knew they might have opposing personal beliefs. Explana-
tions reinforced that effect. In this study, AI suggestions were explained
through arguments of why a claim is supported or not by evidence, in
plain language and spoken to participants through an earpiece.

3.4.4 When explainable AI leads to distrust

Our corpus also contains articles discussing under reliance issues, which
we refer to as "distrust". These were manifested through various aspects
of overconfidence in one’s abilities or choices, such as “the escalation of
commitment”9 evidenced with chess players receiving text-based expla- 9 The tendency to re-

main committed to
a choice made, even
though one understands
with newer informa-
tion that it leads to
undesirable results.

nations [Bayer et al., 2021], the "illusion of validity"10 evidenced with

10 Tendency to over-
estimate one’s ability
to accurately interpret
and predict results
when analysing a data
[Kahneman, 2011].

domain experts [Simkute et al., 2020] or "illusory superiority" [Schaffer
et al., 2019] for lay users with low levels of cognition.

Several works have highlighted the role of user expertise in distrust
problems. Domain experts have developed cognitive routes that enable
them to make quick and accurate decisions in environments that are "reg-
ular" enough to be predictable [Kahneman and Klein, 2009]. Their intu-
ition is therefore more sophisticated than a lay user’s "System 1" [Kah-
neman, 2011]. Simkute et al. [2020] highlight Klein [1988]’s findings that
experts make decisions intuitively, with little uncertainty, and rarely con-
sider more than one option. While useful heuristics, this reasoning also
make experts more prone to belief perseverance [Koehler, 1991] or al-
gorithm aversion11, especially when faced with contradictions from the 11 "People erroneously

avoid algorithms af-
ter seeing them err"
[Dietvorst et al., 2015].

machine’s predictions [Simkute et al., 2020]. In addition, user studies
involving domain experts often focus on decision-making contexts that
are high-stake, time-limited and stressful, as it is the case in the critical
industries such as healthcare. This may explain the reluctance of experts
to engage in explanations. Naiseh et al. [2021b] argue that experts in crit-
ical domains are in a serious state of mind, where they tend to perceive
additional information as "goal impediment".

Negativity bias12, was found to affect everyone including non-expert 12 A tendency to pay
more attention to nega-
tive features.

users. It can lead to significant trust loss when showing the weaknesses of
the system early through explanations [Nourani et al., 2021, Kliegr et al.,
2021, Shimojo et al., 2020, Zytek et al., 2021]. Nourani et al. [2021] suggest
controlling what types of predictions users see when first interacting with
the system.
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3.4.5 When explainable AI is misused

This section analyses other cognitive patterns present in AI-based decision-
making. These patterns are not consistently correlated with overtrust or
distrust, but instead display a misapplication or misunderstanding of the
explanation. This leads to a poor calibration of trust.

Related to the integration of probabilities. In their review of biases related
to rule-based explanations, Kliegr et al. [2021] described several cognitive
biases related to people’s difficulty to integrate probabilities such as base
rate neglect13 or conjunction fallacy14 [Kliegr et al., 2021]. Fürnkranz 13 "The tendency to un-

derweight evidence pro-
vided by base rates"
[Kliegr et al., 2021].
14 Estimating the con-
junction of two state-
ments to be more prob-
able than one of the two
statements.

et al. [2020] further evidenced that people (lay users in this case) tend to
ignore the statistical significance of a statement, a phenomenon called in-
sensitivity to sample size. Miller [2019] stressed that probabilities don’t
matter to people—a claim somewhat disputed by [Bhatt et al., 2021] if un-
certainty estimates are probabilities—and that explanations should focus
on causal relationships.

Related to memory. Wang et al. [2019a] discussed representativeness15 15 The similarity of
objects or events makes
people disregard the
probability of an out-
come [Kahneman,
2011].

and availability bias in the context of medical diagnosis, and proposed
showing prior probability and prototypes of outcomes to mitigate these.

Misunderstanding language elements. Biases leading to misusing the ex-
planations can also be due to misunderstanding some elements of the
language [Kliegr et al., 2021] that is commonly used in explanations such
as the logical operator "AND" in rules [Fürnkranz et al., 2020], Boolean
logic in counterfactuals [Zytek et al., 2021], or confidence scores when it
is ambiguous what they refer to [Bhatt et al., 2021].

Related to position and context. Nourani et al. [2021] discuss the primacy
effect16. They suggest controlling the type of predictions users observe 16 A tendency to form an

opinion based solely on
the first piece of infor-
mation received.

when first interacting with the system [Nourani et al., 2021, Kliegr et al.,
2021].

Additionally, Branley-Bell et al. [2020] explore user biases towards ex-
plainable AI system in a healthcare application. The research findings in-
dicated that users exhibited greater trust in the system’s accuracy when
a malignant diagnosis was provided and explained, as opposed to when
a benign diagnosis was given. Unlike the negative bias we examined in
Section 3.4.4, this occurrence of negative bias leads to poor trust cali-
bration rather than distrust. Here, trust is based on an irrelevant factor.
Similarly, Mohseni et al. [2021a] observed that "users pay less attention to
false positive explanation errors and in turn, are more critical for false nega-
tive explanation errors". This may be related to people’s tendency to see
false positives as less harmful than false negatives, and therefore relates
to people’s attention to the severity of the consequences of failure when
calibrating trust in automation [Culley and Madhavan, 2013].

3.4.6 When explainable AI corrects false beliefs

Other explainability researchers have examined the extent to which
explainable AI can successfully mitigate the cognitive biases that arise in
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decision-making with AI systems. As Liao et al. [2020] indicate, "users
also consider explanations of the AI’s decision as potential mitigation of their
own decision biases". The literature on explainability frequently discusses
broad notions of transparency as a potential tool to mitigate aversion bias,
see [Park et al., 2021] for example. However, we exclusively consider
research that focuses on explainable AI and substantiates claims about
explanation’s ability to mitigate bias.

[Wang et al., 2019a] observed that explainability users in healthcare fell
into confirmation bias, whereby they would pay more attention to infor-
mation confirming an existing hypothesis, instead of looking for evidence
of alternative possibilities. To mitigate this effect, they implemented an
explainable AI system in which input attributions (feature-based expla-
nations) are showed before the class attribution (AI’s hypothesis). Fur-
thermore, as [Bhatt et al., 2020], [Wang et al., 2019a] argue for showing
AI’s certainty estimates to mitigate overtrust effects.

Springer and Whittaker [2019] evidenced how users had positive ex-
pectations of the transparent system before using it. To be able to refer
to it later, we call this phenomenon "pre-use algorithmic optimism".
Springer and Whittaker conclude that showing explanations progres-
sively, in this case local feature importance, was important to prevent
users from overestimating the capabilities of the system. They suggest
presenting explanations gradually or only when requested, to prevent
users from losing trust when their expectations about the system are
contradicted.

Danry et al. [2020] designed an explainable AI prototype that was suc-
cessfully able to correct people’s tendency to believe persuasive claims
that are not supported by evidence. For each claim on a socially divisive
topic such as immigration or poverty, an explainable AI device classified
the claim as supported by evidence or not and provided an explanation
of that evidence, e.g. "a majority of Americans support a ban on flag-burning
because a poll conducted by CNN in June 2006 found that 56% of Americans
supported a flag desecration amendment.". People were better able to distrust
unsupported claims and trust supported claims, although this sometimes
caused cognitive dissonance problems. Additionally, people trusted less
evidence supported by anecdotal and expert evidence instead of study
evidence.

Further, Zytek et al. [2021] demonstrated through a user study the
usefulness of their "Case-Specific Details" interface for domain experts to
screen child welfare cases. The interface displays the local contribution
of the factors pre-selected by users, which proved useful in correcting
experts’ lack of trust in the model, and highlighting differences between
human and AI logic.

To prevent users from relying on how similar the current situation was
to a previously seen case (representativeness bias), Wang et al. [2019a]
also suggest to show prototypes of other cases, either sorted per a metric
of similarity, or accompanied with a dissimilarity metric. However, Zytek
et al. [2021] evidenced that case-based explanations of examples similar
to the current situation enhance people’s tendency to make decisions
based on similarity.
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Other studies suggested mitigation strategies to overcome systematic
errors with explainable AI systems, without testing them experimentally.

For example, [Wang et al., 2019a, Lai and Tan, 2019, Springer and Whit-
taker, 2019, Buçinca et al., 2020] suggest to delay showing the AI’s predic-
tion and/or explanations to enable users to form their own hypotheses.
[Naiseh et al., 2021b, Buçinca et al., 2020, Simkute et al., 2020] propose to
use cognitive forcing functions and friction to favor users’ active cognitive
engagement. [Simkute et al., 2020, Wang et al., 2019a] argue for enabling
exploration of raw data, and [Naiseh et al., 2021b, Bussone et al., 2015,
Kliegr et al., 2021] propose to educate users and clearly explain how to
use explanations. Lastly, [Bansal et al., 2021, Bussone et al., 2015, Wang
et al., 2019a] recommend to give arguments for non-predicted outcomes
to favor the consideration of alternative possibilities than the one sug-
gested by the AI.

3.4.7 When explanations are misevaluated

Users’ stated preferences are not indicative of performance. Buçinca
et al. [2021] warned against using proxy tasks to evaluate explanations
through user studies, i.e., tasks that consist in subjectively rating the ex-
planations. They noted that people’s subjective preferences for expla-
nations were not indicative of the performance they would exhibit in
making decisions with these explanations. Instead, researchers should
use real tasks. This observation was also evidenced in our corpus with
local feature importance, rule-based, example-based, and counterfactual
explanations [Buçinca et al., 2021, Liu, 2021, Szymanski et al., 2021].

More attention to false negatives than false positives. Focusing on
saliency maps for image recognition, Mohseni et al. [2021a] showed that
people pay less attention to explanations of false positives than explana-
tions of false negatives. They also showed that people rate differently
techniques that differ only in appearance. To address these biases, they
designed a human attention baseline to evaluate saliency explanations
without having to resort to user studies.

Furthermore, Sokol and Flach [2020] called for caution about the phe-
nomenon of change blindness in user studies, namely the “inability to
notice all of the changes in a presented medium", especially in an im-
age. To address it, any change should be highlighted or made salient.
Researchers should also be wary of selection bias when selecting partic-
ipants for user studies through Amazon Mechanical Turk, usually more
computer literate than the ‘normal’ population [Barbosa and Chen, 2019].

To circumvent the problems associated with user studies, Mohseni
et al. [2021a] presented a promising evaluation methodology. Leverag-
ing human annotators, they developed human attention masks which
can be used to evaluate model saliency explanations for image and text
domains.
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2020 COGAM: Measuring and Moderating Cognitive Load in Machine Learning Model ExplanationsAbdul et al. CHI x x
2022 Visual Analytics for Human-Centered Machine LearningAndrienko et al. IEEE CGA x
2019 Exploratory not explanatory: Counterfactual analysis of saliency maps for deep reinforcement learningAtrey et al. ICLR x x
2021 Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance Bansal et al. CHI x
2021 The role of domain expertise in trusting and following explainable AI decision support systemsBayer et al. Jo. of Decision Systems x x
2018 Implementing a Robust Explanatory Bias in a Person Re-identification NetworkBekele et al. IEEE CVPRW x
2021 Uncertainty as a Form of Transparency: Measuring, Communicating, and Using UncertaintyBhatt et al. AIES x x
2020 User trust and understanding of explainable ai: Exploring algorithm visualisations and user biasesBranley-Bell et al. HCCI x x
2021 Psychological Foundations of Explainability and Interpretability in Artificial IntelligenceBroniatowski NIST Report x
2020 Proxy Tasks and Subjective Measures Can Be Misleading in Evaluating Explainable AI SystemsBuçinca et al. IUI x
2021 To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-Assisted Decision-MakingBuçinca et al. ACM HCI Jo. x
2015 The Role of Explanations on Trust and Reliance in Clinical Decision Support Systems Bussone et al. 2015IEEE ICHI x x
2021 I Think I Get Your Point, AI! The Illusion of Explanatory Depth in Explainable AIChromik et al. IUI x
2019 Decision making strategies difer in the presence of collaborative explanations: Two conjoint studiesCoba et al. IUI x x
2020 Wearable Reasoner: Towards Enhanced Human Rationality Through A Wearable Device With An Explainable AI AssistantDanry et al. ACM Ahs x x
2019 The Impact of Placebic Explanations on Trust in Intelligent SystemsEiband et al. CHI x
2020 On cognitive preferences and the plausibility of rule-based modelsFürnkranz et al. ACM Machine LanguageB x x
2020 Interpreting Interpretability: Understanding Data Scientists’ Use of Interpretability Tools for Machine LearningKaur et al. CHI x
2020 The Effect of Message Framing and Timing on the Acceptance of Artificial Intelligence’s Suggestion Kim and Song CHI x x
2021 A review of possible effects of cognitive biases on interpretation of rule-based machine learning modelsKliegr et al. Artificial Intelligence x x x
2013 Too much, too little, or just right? Ways explanations impact end users' mental modelsKulesza  et al. IEEE VL/HCC x x x
2019 On human predictions with explanations and predictions of machine learning models: A case study on deception detectionLai and Tan FAccT x
2021 Understanding the Effect of Out-of-Distribution Examples and Interactive Explanations on Human-AI Decision MakingLiu et al. ACM HCI Jo. x x
2019 Explanation in artificial intelligence: Insights from the social sciencesMiller Jo. of AI x
2021 Quantitative Evaluation of Machine Learning Explanations: A Human-Grounded BenchmarkMohseni et al. IUI x x
2021 Explainable Recommendations and Calibrated Trust: Two Systematic User ErrorsNaiseh et al. Computer x x
2021 Nudging through Friction: An Approach for Calibrating Trust in Explainable AINaiseh et al. BESC x
2021 Anchoring Bias Affects Mental Model Formation and User Reliance in Explainable AI SystemsNourani et al. IUI x
2019 I can do better than your AI: Expertise and explanationsSchaffer et al. IUI
2020 How Does Explanatory Virtue Determine Probability Estimation?—Empirical Discussion on Effect of InstructionShimojo et al. Frontiers in Psychology x
2020 Experts in the Shadow of Algorithmic Systems: Exploring Intelligibility in a Decision-Making ContextSimkute et al. ACM DIS x
2020 Explainability Fact Sheets: A Framework for Systematic Assessment of Explainable ApproachesSokol and Flach FAccT x
2019 Progressive disclosure empirically motivated approaches to designing effective transparencySpringer and WhittakerIUI x
2021 Visual, Textual or Hybrid: The Effect of User Expertise on Different ExplanationsSzymanski et al. IUI x
2019 Designing Theory-Driven User-Centric Explainable AIWang et al. CHI x x x
2019 The Challenge of Crafting Intelligible IntelligenceWeld and Bansal Com. ACM x
2021 The impact of explanations on layperson trust in artificial intelligence-driven symptom checker apps: Experimental studyWoodcock et al. Jo. of Medical Internet Res.B x
2021 Sibyl: Understanding and Addressing the Usability Challenges of Machine Learning In High-Stakes Decision MakingZytek et al. IEEE TVCG x x

EXPLANATIONS… THE PAPER INFORMS ON…

Figure 3.4: The 38 pa-
pers in the corpus and
a rough indication of
whether the paper re-
ports on over- or dis-
trust effects of expla-
nations, on the mis-
use of explanations, or
on other explanation-
related phenomena.
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Cognitive biases Ex. of evidencing strategies Ex. of mitigating strategies

Leading to overtrust

Mere exposure effect, Com-
pleteness bias, recognition
bias, Confirmation bias, Il-
lusion of explanatory depth

Study the correlation between explana-
tion length and perceived plausibility
[Fürnkranz et al., 2020], Ask participants
to rate their own understanding before
and after self-explaining AI predictions
[Chromik and Butz, 2021], Study the ef-
fect of placebo or random explanations
[Eiband et al., 2021]

Give arguments for non-predicted outcomes
[Bussone et al., 2015, Wang et al., 2019a,
Weld and Bansal, 2018], Delay showing the
AI’s prediction and/or explanations [Buçinca
et al., 2021, Lai and Tan, 2019, Springer and
Whittaker, 2019, Wang et al., 2019a], Use cog-
nitive forcing functions and friction [Buçinca
et al., 2021, Naiseh et al., 2021a, Simkute et al.,
2020], Include uncertainty estimates [Bhatt
et al., 2020, Bussone et al., 2015, Wang et al.,
2019a]

Related to causality:
Narrative bias, Over-
generalization, Causation
vs. correlation, attention to
demographic features

Ask participants to describe explanations,
analyze free text answers and verbaliza-
tions [Kaur et al., 2020]

Incorporate human expertise into explana-
tions [Andrienko et al., 2022]

Related to complacency and in-
formation overload: Default
bias, Cognitive Dissonance,
Choice overload

Observe user’s degree of agreement with
the AI with vs. without explanations
[Danry et al., 2020], Measure the user’s
cognitive load using the NASA Task
Load Index (NASA-TLX) [Kaur et al.,
2020, Springer and Whittaker, 2019], Eye-
tracking measurements [Coba et al., 2019]

Do not use too many explainability types
[Zytek et al., 2021], Use user-centric ap-
proaches [Naiseh et al., 2021b]

Leading to distrust

Escalation of commitment,
Illusion of validity, Nega-
tivity bias, Familiarity bias,
Perceived goal impediment,
Redundancy aversion,
Weak evidence effect

Observe the relation between subjec-
tive confidence, subjective comprehen-
sion, and positive and negative AI out-
comes [Nourani et al., 2021], Ask partic-
ipants to think aloud while they make de-
cisions [Wang et al., 2019a]

Enable to actively explore the data [Simkute
et al., 2020, Wang et al., 2019a], Use gami-
fication and personalization [Simkute et al.,
2020], Keep track of what has already been
explained [Miller, 2019, Naiseh et al., 2021a],
Control the predictions users observe in the
training phase [Nourani et al., 2021]

Leading to misusing the explanation

Related to the integration of
probabilities: Averaging bias,
Base-rate neglect, Conjunc-
tion fallacy, Disjunction fal-
lacy, Insensitivity to sample
size, Unit bias

Measure the correlation between the
user’s confidence and supporting evi-
dence [Coba et al., 2019, Fürnkranz et al.,
2020]

Reminder of probability theory, Use frequen-
cies instead of percentages, Show support as
an absolute number [Kliegr et al., 2021]

Related to memory: Rep-
resentativeness, Availability
bias

Analyze reasoning process through free
text questions and think-aloud protocols
[Wang et al., 2019a, Zytek et al., 2021]

Show prior probabilities of outcome and ex-
amples of decision outcome [Wang et al.,
2019a]

Related to misunderstanding
of language: Misunderstand-
ing of the inverse, of ’and’,
Boolean logic, confidence
scores Analyze free text re-
sponses [Zytek et al., 2021]

Clarify the meaning of language ele-
ments to only one group of participants
[Fürnkranz et al., 2020]

Clearly communicate what the presented in-
formation means [Bussone et al., 2015], State
only true statements for the presentation of
Boolean elements, including by negating false
ones [Zytek et al., 2021]

Related to timing and context:
Framing bias, Primacy ef-
fect, Anchoring bias

Measure the perceived reasonableness
of explanations and the performance of
users at a task under different explanation
framing conditions [Kim and Song, 2020,
Nourani et al., 2021]

Describe the uncertainty of both positive and
negative outcomes [Bhatt et al., 2021], Control
the kind of predictions users observe in the
training phase [Nourani et al., 2021]

Table 3.2: Cognitive biases exacerbated by explainable AI and examples of evidencing and mitigating strategies.
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3.4.8 Explanations tend to increase unwarranted trust

Overall, the studies in our corpus show a general tendency for expla-
nations to increase trust, even when it is unwarranted, i.e. the AI is not
trustworthy. For example, Bansal et al. [2021] note that "explanations are
interpreted as a general sign of competence" and that "explanations increased
the chance that humans will accept the AI’s recommendation, regardless of its
correctness." Nourani et al. [2021] also find that "In all conditions, explana-
tions increased confidence in the user’s estimations".

As illustrated in Figure 3.4, our corpus analysis revealed that explana-
tions resulted in overtrust in 18 studies, while 6 studies reported distrust
effects of explanations. Additionally, 12 studies identified cognitive bi-
ases that led to miscalibrated trust (it is not clear in which direction,
overtrust or distrust). Although a broad range of cognitive biases have
been discussed in the literature on explainability, it is possible that these
biases may overlap and share common underlying trust mechanisms. For
example, anchoring bias and confirmation bias may be two sides of the
same coin when calibrating trust in explainable AI predictions. Central to
the cognitive issue is the timing of when the explanation is presented to
the user: whether it is before or after the user has formed her own opin-
ion. Similarly, earlier investigations into trust in automation first distin-
guished between automation bias and complacency, eventually finding
that these two phenomena largely overlap.

3.4.9 Important factors for appropriate trust: a Bayesian ap-
proach

Central to calibrating trust in explainable AI systems is how people
reconcile AI predictions and their explanations with their prior knowl-
edge [Chen et al., 2023, Shimojo et al., 2020]. This "belief reconciliation"
process is related to the process of evaluating explanations according
to coherence, or generality as described in [Miller, 2019]. The problem
has also been framed in a more rational way in terms of probabilities as
detailed in [Shimojo et al., 2020]. Shimojo et al. [2020] argue that "the
[explainability] problem is one of updating posterior probability". Ac-
cording to the authors, the Bayesian approach17 can be described as "the 17 Bayes’ rule [Phillips

and Edwards, 1966]:

P(C|E) = P(C)
P(E|C)

P(E)

update of the probability that a cause induced an event after taking into
consideration new information of the event." In other words, the explain-
ability problem in Bayesian terms consists in assessing the probability of
an explanation to be true knowing an AI prediction (P(C|E), the "pos-
terior"), using the probability of the AI prediction to be true (P(E), the
"marginalization"), the probability of the cause presented in the explana-
tion to be true (P(C), the "prior") and the probability of the AI prediction
to be true given that the explanation is true (P(E|C), the "likelihood").

However, the authors also note that in practice, humans tend to disre-
gard Bayes’ rule and estimate "subjective posterior probability" according
to cognitive biases [Kahneman and Tversky, 1979].

The studies in our corpus reveal what appear to be recurrent and sig-
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nificant trust factors involved in belief reconciliation, which ultimately
lead to trust calibration. Furthermore, individuals’ ability to reconcile
prior knowledge and critically examine the coherence of explanations
appear to be limited by three aspects: individuals’ prior knowledge, the
"probability" that a cause presented in an explanation is the cause of the
AI prediction, and human and individual cognitive and attentional ca-
pacities. We examine the important trust factors in our corpus in terms
of these three aspects of the belief reconciliation problem.

Prior knowledge. Several studies in our corpus highlighted the impor-
tance of user expertise, task expertise and task familiarity on the way
people calibrate trust in explainable AI systems [Bayer et al., 2021, Bus-
sone et al., 2015, Zytek et al., 2021]. For example, Bayer et al. [2021]
note that "experts use explanations to resolve their disagreements. In contrast,
novices lack expertise, which makes them reliant on the opinions of third parties,
and rather than question these opinions, they tend to use them to learn (Gre-
gor and Benbasat, 1999)." Following the Bayesian approach, this expertise
would enable users to assess the prior probability that a cause presented
in an explanation is true (P(C)), or that an AI prediction is true (P(E)).
For example, Bhatt et al. [2020] highlight the importance of showing es-
timations of the AI’s confidence.

Explanation likelihood. Similarly, the quality and persuasiveness of the
explanations providing information to update beliefs plays an important
role for people to infer the posterior probability that a given explanation
C is the cause of an AI prediction. Specifically, the papers we reviewed
shed light on the importance of explanation completeness [Kulesza et al.,
2013]. Out of 6 studies in our corpus that reported distrust effect, all
were related to either user expertise (experts trusted less AI systems) or
explanation’s lack of completeness (incomplete explanations decreased
trust in AI systems).

Cognitive and attention capacity. In addition, certain trust factors are
linked to cognitive overload and limitations of human attention, i.e. the
"capacity" and "attentional" problems described by Zerilli et al. [2019].
These factors include the timing and framing of explanations, users’
motivation and individual characteristics such as need for cognition
[Buçinca et al., 2021, Broniatowski, 2021] of decision-making preferences
under choice overload [Coba et al., 2019]. As presented by Kim and Song
[2020] and Nourani et al. [2021], timing and framing of explanation have
an important part to play in human’s ability to revise prior knowledge.
These conditions seem to be decisive in activating confirmation or a nar-
rative bias [Wang et al., 2019a, Bansal et al., 2021, Kim and Song, 2020].
Bansal et al. [2021] argue that "by presenting an answer and accompanying
justification upfront, and perhaps overlaid right onto the instance, our design
makes it almost impossible for the human to reason independently, ignoring the
AI’s opinion while considering the task."

All these factors at play in the belief reconciliation problem may be
related. For example, Schaffer et al. [2019] argued that lower cognitive
ability as demonstrated by "illusory superiority" could be predicted by
higher reported task familiarity.
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Although our goal here is to identify high-level trust factors in explain-
able AI, we acknowledge that these may depend on specific AI applica-
tions and tasks. Liu [2021] note: "Our work suggests that tasks may play an
important role, and it can be challenging to understand the generalisability of
results across tasks." In addition, it was not always clear in the studies we
reviewed what is the effect of explanations and what is the effect of AI
predictions in users’ trust calibration. For example, the illusory superior-
ity bias leads to a general aversion to advice, and it is not clear whether
explanations increase this bias compared to AI prediction alone [Schaffer
et al., 2019].

3.5 Discussion

We present below a discussion of research directions we believe should
be pursued in future work to address cognitive biases in XAI.

3.5.1 Take into account cognitive mechanisms and biases in
the design of explainable AI

One of our aims in this work is to highlight the importance of consider-
ing human cognitive architecture in XAI design [Cummings, 2004]. This
is common practice in the HCI field, but it may not have fully permeated
a historically technical explainability field.

This may be a complex endeavour, however. Bayer et al. [2021] high-
light the complexity of designing AI systems that takes into account op-
posing cognitive biases. On the one hand, they showed that users fell
into a default bias when AI suggestions were presented at the same time
as users were making decisions. On the other hand, participants fell
into escalation of commitment when the AI suggestion came after they
had made their choice. Kliegr et al. [2021] also mentioned the possibil-
ity that different cognitive biases could have opposing effects, such as
information bias (leading to overreliance) and ambiguity aversion (lead-
ing to under reliance), thus emphasizing the need to consider biases in
their context and to put them in relation to the user’s knowledge. We also
found contradictory results between Zytek et al. [2021], which found that
example-based explanations for child welfare screening led to represen-
tativeness bias and Wang et al. [2019a], which presented prototypes of
decision outcomes as a mitigation for the same bias. In addition, Lai and
Tan [2019] warned about the "backfire effect" according to which "correc-
tions of misperceptions may enhance people’s false beliefs" [Nyhan and Reifler,
2010].

Lastly, there has been a surge of interest in interactive explanations
recently, responding to the call to design explanations that fit the social
process of explanation [Weld and Bansal, 2018]. However, concerns were
expressed in [Liu et al., 2021] as interactive explanations were found to re-
inforce user’s over reliance on AI suggestions. A possibility is that inter-
active explanations were more complex to interpret in Liu et al. [2021]’s
study, leading to information overload.
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Overall, more work is needed on the effects of interactive explana-
tions, of bias mitigation measures and on identifying opposing biases
and backfire phenomena.

3.5.2 Clarify the normal vs. problematic biases with empiri-
cal and normative work

Which cognitive biases need to be mitigated? In this review, we identi-
fied some cognitive biases as being neutral heuristics, i.e. "normal" ones,
inherent to the process of explanations. Instead of mitigating those bi-
ases, some argue that they should be taken into account in the design
of explanations [Miller, 2019, Weld and Bansal, 2018], for example by
providing explanations as social processes or by adopting contrastive ex-
planations. However, there is a blurred line between biases XAI needs to
adapt to and those that need to be mitigated. It goes back to the impor-
tant question posed by Weld and Bansal: "Should an explanation system
exploit human limitations or seek to protect us from them?". Lakkaraju and
Bastani [2020] argue that by exploiting certain human cognitive biases,
such as preferences for relevant or familiar features, trust could be ma-
nipulated. Conversely, Miller [2019] explains that AI explanations should
be contrastive, simple and when applicable delivered in the form of a di-
alogue, i.e. interactive. Clarifying which biases are normal and which
are undesirable appears to be important for moving the XAI field for-
ward. To that end, more empirical work on the benefits and drawbacks
of incorporating cognitive constraints into explanation is needed.

Further, not only do we need more empirical research into user bi-
ases in explainable AI, but we also need more theoretical and normative
work to distinguish genuinely biased cognitive processes from those that
are normal. Such a distinction seems difficult to make without norma-
tive evaluations referring to the correctness of decisions and the inherent
quality of the decision process for the users, including his or her level of
participation. In fact, recent work has advocated for "functional" mod-
els of cognition, which differ from the "deficit" model of cognition such
as the dual system theory [Kahneman, 2011]. These more contemporary
models highlight that cognitive biases exist for good reasons, and often
produce "good" rather than "bad" decisions, and study how heuristics
help to make people better decision makers. Much of this research ques-
tions the conventional wisdom that intuition/heuristic thinking ("system
1 thinking") is "quick and dirty" while reasoning ("system 2 thinking")
is slow and good. For example, Gigerenzer [2023]’s work shows that
intuition is quick and error-prone, while reasoning is slow and just as
error-prone. Normative work to help researchers and XAI designers de-
cide whether, how and in which priority different biases need to be ad-
dressed should also keep in mind these more contemporary models of
cognition.
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3.5.3 Detail taxonomies of user groups with cognitive factors

Recent efforts to tailor explanations to the task at hand, the user’s
goals, knowledge [Coba et al., 2019, Szymanski et al., 2021, Woodcock
et al., 2021] and specific needs [Simkute et al., 2020, Wang et al., 2019a],
in order to meet the user’s understanding, would be improved by taking
into account the individual personality traits and specific skills we have
mentioned in Section 3.4.2. Future work could consider how the current
high-level groups of explainability users (currently categorized per AI
expertise or role in AI system) could be detailed with this cognitive in-
formation, [Mohseni et al., 2021b, Suresh et al., 2021, Tomsett et al., 2018]
highlighting cognitive biases each user group may be prone to. Bronia-
towski [2021] also suggested that the explainability field should strive to
identify the individual factors that influence explainability in each user
community.

3.5.4 Improve our perception of users’ reactions to XAI

Several authors have advocated that we need a better perception of
social and emotional behavior of users to be able to correct errors in
their reasoning and their mental models of the system [Akata et al., 2020,
Chromik et al., 2021, Woodcock et al., 2021]. As a first step towards this,
we highlighted some methods to evidence biases in Table 3.4.3. Notably,
what seems to be a good practice for controlling for the mere exposure ef-
fect is using placebic explanations or randomly generated explanations as
a baseline [Eiband et al., 2021, Nourani et al., 2021]. Then, cognitive load
can be measured through the means of the TLX workload assessment
method [Kaur et al., 2020, Springer and Whittaker, 2019], eye-tracking
measurements [Coba et al., 2019] or through the number of cognitive
chunks and a subjective measure encompassing the reading time, the self-
reported load and memory performance (how well the user remembers
the explanation) [Abdul et al., 2020]. In addition, we frequently encoun-
tered the use of qualitative analyses in our review, such as think-aloud
protocols [Naiseh et al., 2021b, Springer and Whittaker, 2019, Szymanski
et al., 2021, Wang et al., 2019a], useful as pre-studies but not general-
izable (they involved from 12 to 20 participants in our corpus), or the
analysis of free text comments, which can be implemented more easily
on a larger scale [Naiseh et al., 2021a, Szymanski et al., 2021, Zytek et al.,
2021]. Further, the ability of XAI systems to capture users’ mental states
could be complemented by a memory of these states and a memory of
what has already been explained [Miller, 2019, Naiseh et al., 2021b].

3.5.5 Focus on strategies beyond XAI: contextualization, train-
ing, timing, cognitive forcing...

Various work in our corpus mentioned the need to pay more atten-
tion to other interaction design choices [Buçinca et al., 2021, Zhang et al.,
2021] beyond the choice of an explanation method. These include contex-
tual information, training, timing, framing, and other specific strategies
to mitigate cognitive biases. For example, Simkute et al. [2020] suggested
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the use of gamification strategies in low-stakes environments to address
the lack of motivation of some users, and the use of feedback and controls
in high-stakes environments. Others stressed the need to clarify specific
elements in the explanations. Bussone et al. [2015] proposed present-
ing how the explanations were derived, which Dazeley et al. [2021] calls
"meta-explanations". Buçinca et al. [2021], Lai and Tan [2019], Wang et al.
[2019a] suggested to delay showing the AI’s prediction and/or explana-
tions to decrease overreliance issues. Nourani et al. [2021] recommended
to control the type of predictions that users observe when learning to use
the system, during the initial instructions and training phase. Finally,
Buçinca et al. [2021], Naiseh et al. [2021b] proposed cognitive forcing
functions and friction-based strategies to address users’ lack of curios-
ity. Cognitive forcing functions consisted in making users wait for the
explanations, updating them or asking for them. The friction function
designed by Naiseh et al. [2021a] consisted in asking the user to confirm
that they did not want to review the explanation. All these strategies
proved to be useful in decreasing user’s unjustified trust, though it de-
creased their satisfaction in the system.

3.5.6 Give arguments against the prediction

The idea of explaining not only the AI’s prediction but also alternative
possibilities appeared in several papers [Bussone et al., 2015, Wang et al.,
2019a, Weld and Bansal, 2018] as a way to counter automation bias. Wang
et al. [2019a] recommended to support "premortem of decision outcomes",
a reasoning consisting in trying to disprove a hypothesis. Bussone et al.
[2015] highlighted comments from participants saying they wanted to see
both positive and negative evidence for the suggested medical diagnosis.
Finally, Bansal et al. [2021] envisioned an AI that would play"a devil’s ad-
vocate role, explaining its doubts, even when it agrees with the human". They
proposed a prototype of such an explanation and found that while it was
effective in informing the human that the AI might be wrong, it was not
sufficient to reduce significantly errors related to overreliance. One of
the main challenges is getting users to come up with their own solution
when they are informed that the AI may be wrong. Additional work
is still needed to find the right kind of interaction that could help users
detect that the AI is wrong [Bansal et al., 2021], but the direction seems
promising, notably for two reasons. First, it reminds us of the adversarial
structure of a judicial system where two parties (a defense attorney and
a prosecutor) present opposing arguments. Implementing such “adver-
sarial explanations” could increase societal trust in the AI-aided decision
process. Second, a necessary condition for free will is the availability of
alternative possibilities, or the ability to "choose otherwise" [McKenna
and Coates, 2021]. Therefore, showing alternative explanations to the
decision-maker helps with sustaining her autonomy and accountability.
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3.6 Limitations

Since our goal was to provide insight into how the XAI field has con-
sidered cognitive biases to date, we used a systematic search methodol-
ogy. This allowed us to cover a broad sample of articles on XAI. However,
it is possible that some articles did not use our general search terms on
cognitive biases and focused on specific types of cognitive biases in XAI.
Our paper augmentation is limited by potential biases in the authors’
view of the XAI field. To continue this line of research on cognitive biases,
future review work could focus on specific biases, such as “automation
bias”. Evidently, our list of cognitive biases cannot be considered as the
finite list of biases affecting explainable AI systems, there are numerous
others in the cognitive science literature which may be worth studying in
the context of XAI. Moreover, it was quite difficult to assess the generaliz-
ability of the results presented in our corpus. To address this limitation,
we tried to preserve the context in which these results were obtained —
explainability technique, user type, and task type. However, it is possible
that these results depend on more granular details. Finally, we leave it for
future work to produce more interactive versions of a heuristic map such
as the one we present, in a similar fashion as Suresh et al. [2021]. This
could facilitate the tracking of cognitive biases that have been highlighted
in the explainability literature and the contexts in which they have been
highlighted.

3.7 Conclusion

In this chapter, we presented a scoping review of 38 papers — from a
corpus of 285 papers — to investigate what kind of cognitive biases were
identified in the presence of explainable AI systems. In addition, we
conducted a qualitative analysis of these papers, providing a map of the
different cognitive biases and revealing the context in which they occur,
specifically with which XAI technique, type of user, and AI-assisted task.

Furthermore, our mapping shows the different ways in which these
biases affect XAI-assisted decisions. We highlighted the ways in which
explainable AI can often lead to overtrust, or distrust, the latter occurring
either with expert users or with incomplete explanations. Explainable AI
has sometimes been misused by end users, who have been shown to mis-
understand some linguistic elements or probabilities, to rely on irrelevant
information from their prior experiences, or to be sensitive to the framing
and timing of the explanation. Cognitive biases can also affect the way
explanations are evaluated in user studies. However, explanations can
still contribute to correct cognitive biases such as confirmation bias, cor-
recting overly positive expectations of AI systems or believing persuasive
claims that are unsupported by evidence.

Overall, explanations tend to have a positive effect on trust. This
can lead to an "explanation paradox", where explanations may increase
users’ unwarranted trust and make them more vulnerable, rather than
empowering them with information about the AI’s prediction. Important
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factors in calibrating trust in explainable AI systems include user exper-
tise, task expertise and task familiarity, estimation of the AI’s confidence,
explanation completeness, timing of explanations and users’ motivation
and individual cognitive characteristics (need for cognition, rational or
intuitive decision-making style...). We provided several directions for fu-
ture work that pave the way for meeting users’ cognitive needs.

In the next chapter, we explore whether interactive explanations can
effectively address this search for human-centric and even ’human-like’
explanations.



Chapter 4

Towards "human-like" ex-
planations: the promise
of interactivity

"Explanations should be interactive, allowing the explainee to
revise and consolidate some previous background knowledge."

Confalonieri et al. [2021]

To address the trust calibration challenges posed by cognitive biases,
we have stressed the importance of the human-centric approach, and to
take into account the human cognitive explanation process. Both em-
pirical research surveyed in Chapter 3 and theories in psychology and
sociology support this view. Interactivity in explanations has been ad-
vanced by recent work on human-centered XAI as a promising way to
align with cognitive human architecture and support reconciliation with
prior beliefs [Chen et al., 2023, Wang et al., 2019a, Adadi and Berrada,
2018, Miller, 2019, Langer et al., 2021, Arya et al., 2019, Longo et al., 2020,
Atakishiyev et al., 2020, Confalonieri et al., 2021, Krause et al., 2016].
However, empirical research on interactive explanations is still emerging,
and it is still unclear whether they really live up to their promise. In par-
ticular, it remains uncertain whether they are able to correct the overtrust
and overreliance effects that "normal" explanations tend to produce, as
seen in Chapter 2, or whether, on the contrary, they exacerbate them.

In this chapter, we examine what are the different types of interactive
explanations and to what extend they align to the human explanation
process through a detailed scoping review. We also take stock of their
effect on user trust and reliance on AI systems and other user-based met-
rics. Section 4.1 outlines the motivation for the survey presented in this
chapter and research questions. Section 4.2 describes the relevant related
work and Section 4.5 lays down the survey methodology used. The re-
sults are a taxonomy of the interaction types for explainablity, and an
analysis of interactive explanations’ usage, evaluations and effects. They
are presented in Section 4.4. Finally, Section 4.5 discusses open challenges
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for interactive XAI.

4.1 Motivation and research Questions

Building on natural sciences theories is common practice in HCI. The
objective is to design artefacts that align with human cognitive processes.
Recent work in HCI has focused on aligning explanation design with
people’s cognitive explanation process, resulting in the advocacy of more
interactive explanations [Longo et al., 2020, Atakishiyev et al., 2020, Con-
falonieri et al., 2021, Arya et al., 2019, Krause et al., 2016]. Relevant results
in the social sciences for explanations are summarized succinctly in Fig-
ure 4.1.

Figure 4.1: Summary of
the role of explanations,
the process by which we
construct and present
explanations and the bi-
ases involved in expla-
nations.

For example, people expect explanations to be provided in a person-
alized request-response pattern [Graaf and Malle, 2017]. In addition, as
seen in Section 2.3 presenting explainability literature in the social sci-
ences, one does not ask "why P?" but rather "why P and not Q?" [Hesslow,
1988, Lipton, 1990, Millecamp et al., 2019]. That is to say, explanations are
contrastive. These explanation characteristics call for ways to enable user
interaction with explanations, and to make explanations more respon-
sive. Rohlfing et al. [2021] emphasises thath these considerations are still
largely unaddressed in the explainability literature and calls for a ’social
practice’ of explanation in which explainers and explainee co-construct
understanding.

Figure 4.2: Illustrative
example of interactive
explanation: "Conver-
sational XAI" enables
users to interact with
users through natural
language.

Furthermore, research in the field of education shows that interactivity
plays a fundamental role in learning [Sims, 1997, Barker, 1994]. Barker
[1994] describe interactivity as "a necessary and fundamental mechanism for
knowledge acquisition". Although the objectives of an explainable AI user
may not include long-term learning, they generally revolve around ac-
quiring knowledge about the AI system. We can therefore consider the
problem of explainability as a learning one, reinforcing our assumptions
about the important role of interactivity.

The term "interactive", however, can refer to many different kinds of
user interactions. According to Miller [2019], the ideal interaction model
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follows a human-like dialogue structure, where the AI agent is able to
answer a series of questions. Other types of user interaction have been
implemented by XAI researchers, such as simulating the black box with
new inputs [Cheng et al., 2019, Chromik et al., 2021, Morrison et al., 2018],
re-configuring the explanation space [Hohman et al., 2019], changing ex-
planations [Khurana et al., 2021, Spinner et al., 2020], etc. However, these
studies in XAI do not use a common vocabulary to designate different
interaction types, making it difficult to study and draw general conclu-
sions on the different forms of interactive XAI. The visualization (Infovis)
[Yi et al., 2007, Keim, 2002, Roth and Mattis, 1990, Wilkinson, 2005, Amar
et al., 2005] and other Human-Computer Interaction (HCI) [Sims, 1997,
Rhodes and Azbell, 1985] communities have done extensive work on the
classification of different modes of interaction. The explainability field is
less mature. We believe that the explainability field would benefit from
using a more precise and shared vocabulary to designate the different
types of interactivity, taking inspiration from other HCI sub-fields.

Due to the increasingly large number of articles on XAI, researchers
may be overlooking best practices and opportunities for interaction. To
illustrate the complexity of designing interactions, Sims [1997] referred to
it as "an art" requiring multiple considerations and a vast array of skills
on the part of designers. This work aims at helping XAI system builders
by centralizing examples of interactive explanations taken from various
contexts (user expertise, XAI method, domain...).

Over the past few years, a growing body of work has been testing
interactive XAI systems with real users, generating sometimes seemingly
contradictory observations. Cheng et al. [2019] find that the possibility
to simulate new predictions by changing input features improved user
understanding compared to static explanations. However, concerns were
expressed in Liu et al. [2021] because interactive explanations were found
to reinforce users’ overreliance on AI suggestions. One possibility is that
interactive explanations were more complex to interpret in [Liu et al.,
2021]’s study, leading to information overload. Another possibility is
that understanding a model may not help much when the model and
the user disagree. In short, explanations may not be so useful at helping
people determine whether to trust one’s own intuition or to trust the
model output. At this stage, review work is needed to summarise the
effects of interactive XAI from a user perspective, paving the way for
subsequent systematic reviews to formally disentangle these findings.

Figure 4.3: Illustrative
example of interactive,
rule-based explanation
where users can create
and modify rules.

In this work, we conduct a detailed scoping review on interactive and
user-evaluated explainability systems. We survey two popular digital
libraries for the HCI community: IEEE Xplore and ACM Digital Library.
We are guided by four research questions.

RQ1: What are the interactivity approaches that have been implemented so far
in the explainability field?

RQ2: In what context, with what content, and in what form were the interactive
explanations presented to users?

RQ3: What are the metrics used in user-based evaluations of interactive expla-
nations?
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RQ4: What are the effects of interactive explanations on users’ perception of
explanations?

To the best of our knowledge, we present the first review of the effects of
interactive explainable AI on user experience.

4.2 Background

Below, we highlight work in HCI, XAI, and education that is relevant
for our work. We also highlight, through these different strands of lit-
erature, reasons to believe that interactivity in explainability could help
users in building sense and knowledge about models.

4.2.1 Interactivity in HCI

Defining interactivity proves challenging, and multiple definitions have
been offered over time. Early work on interactivity defined it simply as
the extent to which a user can "activate" [Sims, 1997] or "exert an influ-
ence" [Sundar et al., 2010, Steuer, 1992] on the technology being used, its
form and its content. In 1997, Sims [1997] mentioned that "there appears
to be no consensus of what interactivity actually represents or involves".
Dix and Ellis [1998] and Foley et al. [1996] broadly define it using the key-
words "communication between user and system" and "human-computer
dialogue" [Yi et al., 2007]. In Infovis, Yi et al. [2007] view interaction tech-
niques as "the features that provide users with the ability to directly or
indirectly manipulate and interpret representations". The authors noted
that Infovis systems were designed to communicate information from
the computer to the user, but less so for the user to enter data, thus over-
looking an entire aspect of interaction in HCI. Therefore, differences arise
between HCI subdomains on how interactivity is defined. At first glance,
it seems that the vision adopted by the Infovis domain could correspond
to interactivity in XAI. In the explainability field as well, the user needs
to manipulate, interpret and discover information about the model from
explanations or raw data. In Section 4.4.1, we will examine how adapted
the Infovis’ view of interaction is to the XAI domain. Despite the lack
of a consensual definition, Janlert and Stolterman [2017] state that "there
seems to be a common sense understanding of interactivity as something
fairly simple" that HCI researchers see as "the control and action between
a human and an artifact or system."

However, defining the different types of interactions quickly compli-
cates the task. Some studies have addressed it by proposing taxonomies
of user-system interactions. Early ones attempted to provide holistic
views of the interaction space in HCI; they focused on interaction lev-
els, with the idea that "the higher the interaction level, the better the
product" [Sims, 1997]. For example, Rhodes and Azbell [Rhodes and
Azbell, 1985] introduced a three-level scale of interactivity, ranging from
reactive to proactive to coactive. Schwier and Misanchuk [Schwier and
Misanchuk, 1993] added two other dimensions to this taxonomy: func-
tions (confirmation, pacing, navigation, inquiry, elaboration) and trans-
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actions (keyboard, touch screen, mouse, voice). Sims’ taxonomy [Sims,
1997] extends the two previous ones by intertwining functions and lev-
els. It is presented as a scale from basic to complex with the following
levels of interactivity: object, linear, hierarchical, support, update, construct,
reflective, simulation, hyperlinked, nonimmersive contextual and immersive vir-
tual. In the Infovis domain, there is typically no hierarchy between in-
teraction types; however, taxonomies with finer granularity have been
designed. For example, Yi et al. [2007] observes a difference of approach
between system-centric taxonomies (including categories like "interactive
linking and brushing" [Keim, 2002] or "navigating", e.g. zooming, pan-
ning [Wilkinson, 2005]) and user-task-centric taxonomies (including cate-
gories like "compare within relations" [Roth and Mattis, 1990] or "retrieve
value" [Amar et al., 2005]). The taxonomy in [Yi et al., 2007] proposes to
"connect user objectives with the interaction techniques that help accom-
plish them." It includes seven categories: select, explore, reconfigure, encode,
abstract/elaborate, filter, connect. Yi et al.’s taxonomy has been extensively
used and referred to in Infovis in the last decade.

4.2.2 Interactivity in Explainability

The call for more interactive explanations in XAI finds roots in results
from the social sciences about how people communicate explanations
and in the growing number of studies focusing on human needs rather
than solely technical aspects. For example, Miller [2019] finds that "an ex-
planation is an interaction between two roles: explainer and explainee".
As such explanations should be thought as a social process, i.e. a con-
versation. The paper also mentions the rules that govern this interaction
such as Grice’s maxims [Grice, 1975] of quality (say only what is true),
quantity (say no more than you need to), relation (say what is relevant
to the conversation) and manner (say it in a nice way). Although it is
easier to imagine these exchanges taking place in natural language, Tim
Miller argues that this interaction can use other media such as images,
keywords, or logical rules, while still respecting Grice’s maxims. This
work envisions what "human-like" explanations may look like, noting
that users of XAI systems will expect explanations to be delivered in this
manner.

The line of research on interactive XAI has begun to investigate how
to tailor explanations to users. Work pertaining to the technical as-
pects of XAI also identifies the importance of such "user-centric" explana-
tions. [Sokol and Flach, 2020, Schneider and Handali, 2019]. Numerous
papers have emphasized the need for explanations that are tailored to
the context, audience and purpose of the explanation [Doshi-Velez and
Kim, 2017, Adadi and Berrada, 2018, Ras et al., 2018, Ferreira and Mon-
teiro, 2020, Došilović et al., 2018]. Schneider and Handali [2019] reviewed
XAI studies focusing on personalization. For each paper in their corpus,
they documented personalized explanation properties (complexity, con-
tent and presentation), personalization granularity (to each user or per
category of user) and personalization automation (manual or automatic).
Additionally, they observed that personalization of explanations can be
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either iterative or one-off, with user information being collected once
prior to showing explanations [Schneider and Handali, 2019, Sokol and
Flach, 2020]. While the personalization of explanations is particularly im-
portant given the role of explanations in filling one’s specific knowledge
gaps, we believe there is a greater granularity of interaction to explore
beyond the categories mentioned in [Schneider and Handali, 2019].

As seen in Section 2.4, more and more HCI researchers have been
investigating user’s needs for XAI using standard HCI methods [Kou
and Gui, 2020, Lim and Dey, 2009, Penney et al., 2018, Sun et al., 2022].
These efforts have resulted in numerous examples of sophisticated in-
teractive interfaces integrating sometimes complex XAI techniques. For
example, the strand of research called "conversational XAI" made sig-
nificant strides in providing explanations in natural language to a wide
range of user questions [Sokol and Flach, 2020, Hepenstal et al., 2021,
Hernandez-Bocanegra and Ziegler, 2021].

4.2.3 Interactivity for learning and sensemaking

Explainability is also deeply connected to results in educational re-
search. The parallel seems natural, as the field of explainability aims to
improve human understanding of algorithms, or for machines to teach
humans about their breakthroughs [Schneider and Handali, 2019]. Ac-
cording to Roussou [2004], many educational researchers agree that in-
teractivity plays an important role in learning, notably by supporting
"learning by doing". Amthor [1992] argues that "people retain about 20% of
what they hear; 40% of what they see and hear; and 75% of what they see, hear,
and do". This follows the constructivist approach, which emphasizes the
need for people to build knowledge by testing and simulating new situ-
ations that have meaning for them [Dewey, 1903, Roussou, 2004]. Kent
et al. [2016] demonstrates through quantitative user studies "the role of
interactivity as a process of knowledge construction" and further asserts that
interactivity patterns inform on the actual learning process of an indi-
vidual. Evans and Gibbons [2007] find that interactivity promotes deep
learning by stimulating users’ cognitive engagement in the learning pro-
cess. To tie more concretely these results to the explainability field, we
can draw a parallel between the processes of learning, knowledge con-
struction and that, closely related, of sensemaking. Cabrera et al. [2022]
studied the cognitive process of sensemaking of models, and highlighted
that "understanding of models is an iterative and ongoing process", motivat-
ing the need for their XAI system to be interactive. In this case, the
sensemaking—or knowledge construction—, comes from the ability to
iterate between the discovery of instances, the formation of hypotheses,
their evaluation, etc.
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4.3 Methodology

To review the role of interactivity in XAI, we conducted a scoping
review drawn from an initial extraction of 716 papers, narrowed down
to our final corpus comprising 48 articles. In this section we detail the
characteristics and different phases of the survey method.

4.3.1 Review type

This chapter presents a scoping review [Arksey and O’Malley, 2005],
as presented in Section 3.3.1. The scoping review methodology corre-
sponded to our objectives of identifying, mapping, reporting and dis-
cussing the available evidence on interactivity in XAI. As in the previous
chapter, we also rely on a standardized search and selection methods
from the systematic review methodologies [Page et al., 2021], as sug-
gested in [Arksey and O’Malley, 2005] for scoping reviews, to ensure
the replicability and transparency of our findings. We followed the pa-
per identification, screening, eligibility evaluation and analysis procedure
stages outlined in the PRISMA methodology [Page et al., 2021] to guar-
antee the quality of our search and selection process [Tricco et al., 2018].

Figure 4.4: PRISMA
flow diagram adapted
from Page et al. [2021]
giving an overview of
the PRISMA 2020 sur-
vey guidelines, used for
the search and selection
phases of our scoping
review.

However, our work goes beyond what is traditionally expected of a
scoping review in particular in Sections 4.4.5 and 4.4.4, where we ad-
vance a summary of the effects of interactivity through Figure 4.19. We
argue that this step enables us to better delimit gaps in the literature, and
provide qualitative grounds for a following systematic review on a more
restricted set of studies. This analysis is made possible through a minimal
quality control of the included studies that we enforced through the ex-
clusion of entries that were not published in a peer-reviewed conference
proceeding or journal. However, a more thorough quality assessment of
studies—which entails a restriction on the scope of the survey—should
be performed in order to extract quantitative evidence about the effects
of interactivity. Here, we aim at identifying the different types of re-
sults in the interactive explainability field and orientate further research.
Section 4.6 discusses the limitation of the methodology in further detail.

For all these reasons, we refer to our type of review as a detailed scop-
ing review.
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4.3.2 Corpus creation

Identification. We focused on the ACM Digital Library and IEEE
Xplore, two popular databases for the HCI community, which encom-
pass prominent publishing venues for the explainability field (ACM CHI,
ACM IUI, IEEE VIS, IEEE TVCG...). Consequently, we focused on XAI
work that mainly—though not exclusively—pertain to the HCI commu-
nity, rather than the computer science side of XAI. The main reason for
this is that our focus was on interactivity and user studies—two topics
finding roots in HCI. Moreover, the CS side of XAI has been historically
and predominantly occupied with technical advances in XAI [Doshi-
Velez and Kim, 2017], and has only very recently taken into considera-
tion the user’s perspective. While we acknowledge that more interactive
XAI systems have been emerging from the CS community recently, such
as [Slack et al., 2022], interaction design has been quite distant from theo-
retical domains in computer science, as mentioned in [Abdul et al., 2018].
This led us to focus on HCI databases and leave out works published in
purely AI conferences, such as NeurIPS, AAAI, or CVPR, among others.

Our aim was to review different types of interactive explanations, fo-
cusing on how they are perceived by end users. Therefore, we narrowed
our focus to work presenting an XAI interface and including a user-based
evaluation of the XAI system. Note that there also exist non user-based
evaluations of XAI methods. Doshi-Velez and Kim [2017] distinguish
three evaluation strategies: application-grounded—testing explanations
in real-word settings with domain experts—, human-grounded—testing
explanations with lay users—, and functionality-grounded—testing ex-
planations using metrics that do not require human feedback. The scope
of our survey is limited to empirical studies with human subjects, as we
are interested on the users’ perception of XAI systems. Providing insight
into how people interact with XAI can guide practitioners in making
more effective technical and design choices.

The keyword search was contextualized focusing on three dimensions:
AI Systems, Explainability and User studies. The term "interaction" is ubiq-
uitous in HCI 1, and as such we did not restrict our keyword search to this 1 for example the CSS

concepts section in
ACM papers often
include the term

dimension, choosing instead to select articles on interactive explanations
in the eligibility phase. Since we wanted to focus on articles whose main
topic was AI, we searched for keywords representing AI systems and
explainability dimensions in the Title, Abstract and Author Keywords
fields. For the user study dimension, we searched the full text of the ar-
ticles: we noticed that often, authors do not explicitly mention that they
conducted a user-based evaluation in their abstract. The search results
were limited to relatively recent articles (2015 or later), as XAI is a recent
field of study, found to be expanding around 2016-2017 [Barredo Arrieta
et al., 2020, Adadi and Berrada, 2018]. In addition, user-based evalua-
tions and interest from the HCI community in the domain are even more
recent [Doshi-Velez and Kim, 2017]. Using 2015 as a starting point, we
are sure to capture the uptake in number of contributions in XAI.

In addition, we used ACM DL and IEEE Xplore filtering tools to nar-
row our search to research articles only. In ACM DL, we used the fol-
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lowing filter: All Publications/Proceedings/Content type/Research arti-
cle AND All Publications/Journals/Content type/Research article, there-
fore excluding surveys, tutorials, introductions, editorials, newsletters,
books, magazines, reports, encyclopedias, short papers, extended ab-
stracts, posters, and other non-archival content. In IEEE Xplore, we used
the filters Conferences and Journals, leaving out early access articles,
magazines, books and standards. This step allowed us to make a first
sorting of the non-archived articles, and facilitate the following phase
of manual screening. For each record, the article title, authors, publica-
tion venue, and publication year were exported to an Excel spreadsheet.
Below is the search query used (the wildcards * denote where we have
retrieved the plurals and term variants):

AI systems => Abstract: (AI, artificial intelligence, machine learning, al-
gorithm*) AND

Explainability => Abstract: (explainab*, explanation*, intelligib*, inter-
pretab*, transparen*, XAI) AND

User studies => Abstract: (participant*, human-subject*, human evalua-
tion*, human experiment*, user-stud*) AND

Date => 2015 or after AND

Journal or conference article => Non-archival records pre-filtered out.

Screening. One author deleted 44 records that were either duplicates or
non-archival records that remained after the database filtering (primarily
workshop entries and student consortia). This step resulted in a total
corpus of 672 unique papers.

Eligibility evaluation. The remaining records were randomly assigned
to three of the authors, who performed a two-phase eligibility assess-
ment: a first one based on the title and abstract and a second, more in-
depth one based on the full text. The first phase was primarily concerned
with excluding recordings that were not focused on XAI (IC1, IC2), that
did not include a human-AI interaction (IC3), or that were a secondary
study (IC7). The second phase consisted of verifying IC4, IC5, and IC6,
since full-text viewing was required to assess these criteria. The inclusion
criteria were the following:

IC1 XAI focus. The paper’s contribution is in the explainability field;

IC2 XAI system. The paper shows an implementation of an XAI systems;

IC3 Human-AI interaction. The paper is in the field of human-AI interac-
tion (works in human-robot interactions are excluded);

IC4 User-based evaluation. The paper presents an evaluation of its explain-
ability approach using human-grounded evaluation [Doshi-Velez and
Kim, 2017];

IC5 Human-computer interface. The paper describes the interface that was
presented to the human users evaluating the XAI system;
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IC6 Interactivity. The explainability approach presented in the paper is
interactive, meaning the user can interact with the explanation (requiring
another interaction than that with the interface to perform a specific
task)2; 2 Some examples of pa-

pers excluded because
of IC6 are [Bansal et al.,
2021, Buçinca et al.,
2020, Dominguez et al.,
2019], which present
static explanations to
end-users, although the
user interface to per-
form a downstream task
may be interactive.

IC7 Primary study. The paper is not a review nor a position paper.

After the three reviewing authors had completed the eligibility phase, an
external reviewer was asked to apply the above criteria to a subset of 67

articles randomly selected from the base of 672 papers, representing 10%
of the papers. Inter-rater reliability was 92%, and the remaining disagree-
ments involved mostly cases in which the external reviewer included the
articles when the authors did not. However, we believe that the extra
step of reviewing the full text in detail is what justified the exclusion of
the items that the external reviewer included.

One of the articles included in our corpus [Gu et al., 2021] was an
analysis of an external primary study that did not match our keywords
because it did not mention explainability-related terms in the abstract,
but it met our inclusion criteria. We therefore replaced the secondary
study with the primary study [Yan et al., 2020].

Eventually, 48 papers met the inclusion criteria and were included in
the final corpus.

4.3.3 Analysis and coding book

Analysis process. The synthesis methodology we used in this review
is an emerging synthesis [Schick-Makaroff et al., 2016], more specifically
a narrative account of included studies, as is usually the case in scoping
reviews [Arksey and O’Malley, 2005]. To support this analysis, we use
a concept matrix and a charting approach to provide basic numerical
summaries of the extent, nature and distribution of the studies included
in the review.

Following Webster and Watson [2002], we created a concept matrix
for the analysis of the interactivity landscape in the explainability field.
The matrix is organized into four dimensions, whether the concepts re-
late to the context of the explanation, its content, its communication, or its
user-based evaluation. Three authors independently coded and classified
the articles included in the final corpus. For the dimensions context and
content, the categories used for coding were predefined. In the com-
munication dimension, only the concept of "representation" had a set of
predefined categories. With respect to the type of interactivity, the differ-
ent categories were intentionally not preset in advance and each of the
three coders created their own categories after encountering an interac-
tive explanation implementation. We did this because our goal was to
create new categories that matched the range of interactivity types pro-
vided by the corpus. The authors then reviewed the resulting categories
and discussed how to reconcile them into a taxonomy of interactivity
types adapted from well-known existing ones [Yi et al., 2007, Sims, 1997].
A similar approach was taken for the evaluation portion of the matrix.
As new types of evaluations were found, new categories were created.
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We grouped together concepts that were very similar (such as explanation
utility and explanation usefulness). Finally, evaluations that were used only
once in the corpus were regrouped in the "other" category of the matrix.
The authors of this work discussed and shared the definition of the no-
tions during several meetings. One author reviewed all the papers and
corresponding codings to check the consistency of the two other review-
ers’ coding with their own, and subsequently consolidated the matrix.
Below we detail the different concepts we have analyzed in each dimen-
sion.

Dimension Code Reference

Context
Domain Law and Civic, Healthcare, Business and Finance, Education, Leisure,

Artificial, Generic, Other.
[Lai et al., 2021]

Audience Domain experts, AI experts/Data scientists, Non-expert, Other. [Lai et al., 2021]
Data type Image, Video, Audio, Tabular, Natural language, Sequential data. NA

Content
XAI focus Raw Data, Output, Model Limitations, Model Confidence How?,

Why?, Why not?, How to?, What if?, What’s the difference with?,
Context.

[Lim and Dey,
2009, Liao et al.,
2020, Sun et al.,
2022]

XAI method Local Feature Contribution, Decision Rules, Sensitivity Analysis and
Partial Dependence Plot, Example-based, Saliency mask, Concept-
based, Surrogate model, Counterfactual, Wizard of Oz.

[Lai et al., 2021]

Communication
Interactivity Clarify, Arrange, Filter/focus, Reconfigure, Simulate, Compare,

Progress, Answer, Ask.
[Yi et al., 2007,
Sims, 1997]

Representation Chart, Table, Text, Rules, Directly on the data structure, Other. NA

Evaluation
Comparison No explanation, Static explanation, Other, No baseline. NA
Evaluation mea-
sure

Perceived usability, Perceived usefulness, Understanding, Perceived
explanation length/quantity, Time spent interacting with XAI system,
Trust, Cognitive load, Performance at task, Learning, Predicted ac-
curacy, Perceived control, Perceived fairness, Perceived transparency,
User skepticism, Other.

NA

Only for evaluations using static or no explanation as a baseline: Higher
than, Same as, Lower than [the baseline], Other.

Table 4.1: Codebook
used to retrieve infor-
mation from the corpus
with four dimensions:
[explanation] context,
content, communica-
tion and evaluation,
their corresponding
sub-dimension and
reference from which
codes were inspired
from.

Context. We retrieved the environment in which the explanations for
each item were designed: domain, audience, and data type. The domain
and audience categories are adapted from those found by [Lai et al., 2021]
in their survey of AI-assisted decision making tasks. This allows us to see
if the interactive explanations are well distributed across these contextual
concepts.

Content. To analyze the content of the explanation, we searched for
the explanation focus, which described the type of information that was
provided to the user, and the explainability method used to extract it. The
list of explanation focus points was adapted from Lim and Dey [2009],
Liao et al. [2020] and Sun et al. [2022]’s classifications of user questions
in XAI. The categories of the explainability method were adapted from
[Lai et al., 2021].
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Communication. Communication refers to the form in which the ex-
planation was provided to the user, including the type of interaction used
and the type of visual representation of the explanation. The categories
of interactivity are described in more detail in Section 4.4.1. The cate-
gories of representation were kept general as they were not the focus of
this study.

Evaluation. One of the main challenges in XAI is how to measure the
quality of an explanation [Colquitt and Rodell, 2015]. User-based meth-
ods have been an increasingly adopted approach following calls such as
Doshi-Velez’s [Doshi-Velez and Kim, 2017] to take user perspective into
account instead of just technical constraints. While "human-grounded"
evaluations may have drawbacks such as sampling bias or change blind-
ness [Sokol and Flach, 2020], they do inform how end users understand,
perceive, and use explanations. This approach also has the advantage
that standard questionnaires are shared by researchers to measure con-
cepts such as trust (using the McKnight framework), satisfaction, un-
derstanding, cognitive load (using NASA-TLX), etc. We also retrieved
the baselines (no evaluation, static evaluation, other explanation, etc.)
used to evaluate the presented explanation in each empirical study. This
makes it possible to compare the results of multiple studies and to get an
overview of assessments of interactive explanations. For each evaluation
in the corpus that used either static or no explanation as a baseline, we
reported the results according to four categories: higher than, same as,
lower than the baseline, or "other", which referred to more nuanced re-
sults dependent on other external factors, or to evaluations that did not
rely on a defined baseline.
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4.4 Results

4.4.1 Interactivity types in explainability: Select, Mutate,
Dialogue with

Let us now describe the categories of interactivity in XAI that we have
identified in our corpus. We took inspiration from other existing tax-
onomies of interactivity [Sims, 1997, Yi et al., 2007] to define these cate-
gories. This section addresses our RQ1 and RQ2.

Nine different categories of interactivity in XAI emerged from our
analysis. Following Yi et al. [2007] and Roth and Mattis [1990], we for-
mulated the categories so that they express interaction actions that corre-
spond to user intents. We adapted some categories from Sims [1997] and
Yi et al. [2007]. However, contrarily to Yi et al.’s taxonomy, the object of
the interaction are explanations instead of datapoints. Explanations are
larger constructs encompassing a visual representation, an input data
range, an AI model’s configuration (dataset, model type and parameters)
and an explainability technique.

In addition to the categorisation of interaction types, we organized
the taxonomy into three different groups corresponding to the type of
support they provide for the human cognitive process of explaining.

This higher-level categorization is based on Miller’s review of social
science findings on properties of human explanations. Miller points out
that explanations are selective, contrastive, and social. First, explana-
tions are selective as they involve only a few causes in a large chain of
causal events. Only a few causes address the explainee’s question and
are thus relevant. Then, explanations are contrastive as they are thought
in contrast to a specific foil. People’s questions are almost always "why"
questions implying a foil: "why did P happened and not Q?" To assess the
plausibility of a factor as a cause of an event, people then need to perform
mental mutations, i.e. to cancel a factor which might have led to P and
see if Q happens, or to consider situations where Q happened instead of
P. This mental process is called the mutability of events and allows the
formation of contrastive explanations. Finally, explanations are social be-
cause they are best understood in a conversation. The structure of the
dialogue allows people to get specific answers to their "why" questions
and corresponding foils, to ask follow-up questions and progressively fill
the gaps in their knowledge.

Our proposed interactivity groups reflect the degree to which the inter-
active features enable these explanatory properties—selective, mutable,
social. The three categories are: select (interactive features facilitate the
selection of causes and the formulation of hypotheses), mutate (interac-
tive features allow users to compare or simulate different configurations
of the AI’s inputs, outputs or parameters), and dialogue with (interactiv-
ity allows users to engage in a conversation with the XAI system). The
resulting interactivity taxonomy is outlined in Table 4.2.

Below we describe in detail the nine different categories of interactive
explanations, as well as three levels of interaction into which they fall.
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Function Category Definition

Clarify Give additional information/explanations on
demand

Select Arrange Choose and organize the explanation type(s),
parameters and visual representation(s).

Filter/focus Filter the explanation according to an in-
put/input metric.

Reconfigure Change the dataset, the AI model, AI model pa-
rameters and show me the corresponding pre-
diction and explanations.

Mutate Simulate Change the inputs, the output or the dataset dis-
tribution and show me the corresponding pre-
diction and explanations.

Compare Show me explanations of related or selected
data inputs or outputs.

Progress Guide user through an explanation sequence.

Dialogue
with

Answer Give feedback, edit explanation components.

Ask Ask iterative questions and receive answers fol-
lowing a dialogue structure.

Table 4.2: Two-level tax-
onomy of interactivity
techniques in XAI, in-
cluding a first level re-
flecting the type of sup-
port interaction tech-
niques provide to the
cognitive process of ex-
plaining, a second task-
oriented level, and cor-
responding definitions.

Select

The user may be able to select3 the information they wish to see by

3 A parallel can be
drawn here with the
"select" category from Yi
et al. for the Infovis do-
main, which is defined
as "marking something
as interesting". Assum-
ing we view this level
of interaction as "mark-
ing an explanation as
interesting", we found,
however, several sub-
categories of interaction
types that could be used
to support this. This
justifies why we refer to
it as a whole interaction
level instead of just one
category.

clicking on hyperlinks to display explanations on demand, by configur-
ing the explanation space, or by filtering the explanation conditionally on
an input metric. These interactions can help users formulate hypotheses
and actively search for factors that may lead to causal explanations. As
such, they enable explanations to be "selective".

Figure 4.5: Example
of the clarify interaction
taken from [Anik and
Bunt, 2021].

Clarify. This subset of interaction capabilities enables the user to make
on demand information appear, whether by clicking on or by brush-
ing explanation components. In this approach, the user actively seeks
answers to their questions, controlling what explanation to display and
when it should be displayed. This set of interaction techniques is close
to Yi et al. [2007]’s "elaborate" category. The analysis of our corpus re-
vealed three main ways for a user to get clarification on something. First,
users can navigate through a menu so as to choose the themes they want
to know more about. Sims [1997] refers to this interaction technique as
"hierarchical interactivity". Anik and Bunt [2021] is an example of this
interactivity type. Second, explanations can be displayed after a user
clicks on a link, following Sims [1997]’s "hyperlinked interactivity". One
example is Sovrano and Sovrano and Vitali [2021]’s explanation system
in which the user can click on a concept to get more information about
it. With each click, a new window with an explanation appears, itself
providing other hyperlinks about the notions used in the explanation.
Finally, tooltips are convenient interaction techniques to provide clarifi-
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cations and additional details on a visualisation in a non-overwhelming
way [Jin et al., 2020, Shi et al., 2019, Ahmad et al., 2019, Sevastjanova
et al., 2021].

Figure 4.6: Examples of
the arrange interaction
taken from [Hohman
et al., 2019] (top) and
[Cheng et al., 2021] (bot-
tom).

Clarify interactions also allow the explanation interface to be less over-
whelming at first glance by disclosing explanations progressively. In a
study on the progressive disclosure of explanations, Springer and Whit-
taker [Springer and Whittaker, 2019] note that "because transparency is
provided ‘on demand’ this removes confusions and inefficiencies arising
from spurious, unwanted explanations, and adjusts explanations to the
users’ requirements." They also observe that this on demand disclosure
approach is able to adapt to the different reactions and expectations of
each individual user.

Arrange. Arrange interaction techniques provide the user with the
ability to organize the explanation space as desired by hiding or collaps-
ing explanations and selecting the type of explanation to be displayed
[Kwon et al., 2019]. It is similar to the "rearrange" category in Yi et al.
[2007]. Instead of interacting for more information, (which corresponds
to the Clarify category), here the user’s goal is to configure the explana-
tion space following their preferences. For example, in Liu et al. [2021],
users can increase or decrease the number of highlighted words in the
saliency-based explanation. In Collaris and van Wijk [2020], the user can
chose the surrogate model used in the explanation along with the other
parameters for that model.

Filter/focus.

Figure 4.7: Examples
of the filter/focus in-
teraction taken from
[Hohman et al., 2019]
(top) and [Ming et al.,
2019] (bottom).

Inspired by Yi et al.’s "filter" category, the Filter/focus class regroups
controls that let the user zoom either on specific inputs of the AI model
or subgroups in the the training or testing dataset. The user can there-
fore focus their attention on the explanation built from a restricted input
space. The explanation interface presented in [Jacobs et al., 2021] is an ex-
ample of a Filter/focus interaction technique where users (doctors) can fil-
ter explanations based on the presence of a specific symptom. In [Cheng
et al., 2019], users can create and delete subgroups in the model’s input
data to see the corresponding explanations for each subgroup. VBridge
[Cheng et al., 2022] and ExplainExplore [Collaris and van Wijk, 2020]
provide the ability for users to select a subset of features to be used in an
explanation. We also put in the Filter/focus class sorting functions, such
as the one in Gamut [Hohman et al., 2019] which lets the user sort input
features according to several feature metrics.

Mutate

Figure 4.8: Examples of
the reconfigure interac-
tion taken from [Ming
et al., 2019] (top) and
[Collaris and van Wijk,
2020] (bottom).

Interactive explanations can allow the user to "mutate" causes, i.e. to
test their hypotheses by simulating or comparing different situations.
The resulting explanations are cumulatively selective and contrastive.

Reconfigure. This category includes a set of interactions that offer the
possibility to modify the parameters of the AI model such as the dataset,
the model type or the model parameters in order to observe changes on
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the explanation. Users may want to evaluate the impact of these factors
on the model’s prediction and corresponding explanation to make sense
of how the model works. This is especially true when explainability is
used to assess the fairness of the model such as in [Yan et al., 2020] or
[Lee et al., 2019]. The Silva explanation interface [Yan et al., 2020], simi-
larly to IBM’s AIF360 tool [Bellamy et al., 2019], allows the user to mod-
ify dataset attributes and sensitive inputs to see how it affects specified
fairness measures. Various explanation components, including causal
graphs and measures of feature importance, change based on the user’s
chosen dataset settings.

Figure 4.9: Examples of
the simulate interaction
taken from [Ross et al.,
2021] (top) and [Cheng
et al., 2019] (bottom).

Simulate (inputs). Interactive explanations can be useful for users to
test how changes in inputs affects local explanations and the outcome of
the model. Understanding of a model then comes not only from static
information about the AI algorithm, but also from the learning expe-
rience provided by repeated simulations of the model. Interactions in
the Simulate category refer to mutations of the inputs of the AI model.
Many articles in our corpus (18/47) have integrated this interactive fea-
ture, reflecting an appreciation of the XAI community for "learning by
doing" [Roussou, 2004]. The simulation functionality is usually activated
by sliders or drop-down lists and gives the user a local understanding of
the model’s behavior. Examples can be found in [Liu et al., 2021, Morri-
son et al., 2018, Ahn, Yongsu et al., 2022, Sevastjanova et al., 2021].

Compare.

Figure 4.10: Example of
the compare interaction
taken from [Hohman
et al., 2019].

This category gathers interaction techniques that are used to compare
either (1) explanations for different inputs or group of inputs or (2) ex-
planations for different predictions.

In the first case, the user can select the inputs or input groups to com-
pare so as to analyze differences in the explanation. Connections, simi-
larities and differences between the selected inputs or outcomes can be
highlighted in the comparative explanations. Compare interaction meth-
ods would often use parallel coordinates graphs to ease the compari-
son between explanations. Hohman et al. [2019] give an example of an
explanation view in which the user can see local explanations for two
inputs they selected for analysis. The second case occurs when the AI
model predicts several possible outcomes with varying levels of confi-
dence. The user then usually wants to compare the explanations for each
of the probable outcomes to assess their likelihood. Dodge et al. [2022]’s
and Jin et al. [2020]’s systems are examples of this type of outcome com-
parison. In [Dodge et al., 2022], the user can tap on a game board (rep-
resenting a game situation) to see its corresponding chance of winning
and how it compares to the chance of winning from other game boards.
In CarePre [Jin et al., 2020], doctors are users, and can explore in detail
the records of a patient, as well as compare it with similar patients; their
focus is on sequences of "events" (a patient enters the medical facility, a
scan is performed, etc.). This allows the user to detect similar paths, and
adapt treatment accordingly. This interaction class is inspired from Yi et
al.’s "connect" category.
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Dialogue with

Figure 4.11: Example
of the progress interac-
tion taken from [Mel-
sión et al., 2021].

Interactivity can support the user in engaging in a dialogue-like struc-
ture. Information about the AI model is then given progressively and/or
iteratively. The user could ask the system a question or give it feedback.
These "dialogic" explanations are in line with the properties expressed
by Miller for human-like explanations. However, there may be different
degrees in which explanations are truly social, depending on the range
of questions a system can actually answer.

Progress. The Progress interaction style is inspired by Sim’s "linear in-
teractivity" through which "the user is able to move forward or backward
in a pre-determined sequence of instruction materials". The explanation
is designed in several steps, and the user can click "next" or "previous"
to navigate through the explanation displays. It is generally progressive,
with basic information provided in the first few pages and more in-depth
information presented in subsequent sections. This style of interactivity
is reactive [Sims, 1997] and does not provide specific feedback to the user
but instead lets them walk through the explanation at their own pace.
The user can only control when the explanation is provided.

Figure 4.12: Examples
of the answer interac-
tion taken from [Mel-
sión et al., 2021] (top)
and [Guo et al., 2022]
(bottom).

The Progress interaction style can be seen as the lowest level of "dia-
logic" explanations. It does not enable the user to ask nor answer ques-
tions but it follows some of the rules of a conversation [Grice, 1975] by
providing sparse information progressively (maxim of quantity), and by
predefining user questions that need to appear in the explanation guide
(maxim of quality). The "next" and "previous" commands can be con-
sidered as the users’ options to punctuate the conversation (compared to
saying "ok tell me more" or "wait, what did you say").

Answer. While information flow in interactive XAI systems goes pri-
marily from the machine to the user, like in Infovis systems [Yi et al.,
2007], it can also be reversed, with users providing the system with feed-
back, corrections or information about the state of their mental models.
These interactions can serve to increase users cognitive engagement (and
activate their "System 2" [Kahneman and Tversky, 1979]) by challenging
users. For example, in [Melsión et al., 2021], users (in this case children)
are asked to click on the part of the image that they think had the most
impact on the algorithm’s prediction. This interaction type can also serve
to improve the AI system by building on human feedback. Examples are
[Jia et al., 2022, Shi et al., 2019] in which users are asked to improve the
semantic meaning of the concepts learned by the algorithms, [Guo et al.,
2022, Cheng et al., 2021] in which users can create or edit explanations—
such as adding a new rule or correcting one, [Virgolin et al., 2021] in
which users can indicate to the system their personal preferences about
model interpretability, or [Hepenstal et al., 2021, Ghazimatin et al., 2021,
Ghai et al., 2021, Spinner et al., 2020].

Figure 4.13: Example of
the ask interaction taken
from [Melsión et al.,
2021].

Ask. In [Miller, 2019], the ultimate level of interaction is a conversation
where the user can ask the AI system anything they want. We can there-
fore view the Ask interactivity as the higher end of the interactivity scale
for XAI. The conversational XAI research line has made some progress
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in achieving such interactivity. For instance, [Hernandez-Bocanegra and
Ziegler, 2021, Hepenstal et al., 2021] present logical dialogue maps to
deliver explanations that answer users’ questions. The challenge is to
cover as wide a range of questions as possible. Note that this "dialogic"
interaction between user and machine does not necessarily have to take
place through natural language. As Miller stated [Miller, 2019], we could
imagine an XAI system that answers the user’s questions with images
or other communication means. An illustration of this can be found in
[Khurana et al., 2021], where the user submits a query such as "create a
graph showing the predicted trend" and the XAI system responds with
the desired graph.

Figure 4.14: "Interactive
XAI helps users. . . "
Illustration of the taxon-
omy of interaction in ex-
plainability with screen-
shots from the corpus.

4.4.2 Context, content and form of interactive explanations

This section present a qualitative analysis based on our conceptual
matrix to address our RQ2.

Context. The work in our corpus is well distributed across the differ-
ent domain categories constituted by [Lai et al., 2021] (cf. Figures 4.16

and 4.17). Notably, the corpus reflects a large number of studies (32/48

papers) implemented in real-world applications rather than in artificial
or generic domains. Healthcare stands out as one of the most studied
domains in the corpus.

Some work [Bove et al., 2022, Cheng et al., 2019] expressed concern
that too few studies focused on making explanations understandable to
novices and that most current XAI techniques were only comprehensible
to AI-educated users. Cheng et al. [2019] also argues that the majority
of studies providing explanations to novices have been conducted in the
context of generic tasks [Lai et al., 2021], i.e. computer science problems,



towards "human-like" explanations: the promise of interactivity 131

and are therefore not generalizable to real-world applications. In con-
trast to the first concern, we found that the majority of articles included
in the corpus (27/48) were aimed at a general audience of non-expert
users. This at least reflects an awareness of the field to design explana-
tions with this user group in mind. In addition, 15/27 of these studies
are in real-world application areas, including areas that may be consid-
ered sensitive—4 in legal and civil, 2 in healthcare, and 3 in business
and finance. However, it is possible that the empirical studies included
in our corpus targeted non-expert users for practical reasons, such as to
solicit platform workers like those on Amazon MTurk [Guo et al., 2022,
Hernandez-Bocanegra and Ziegler, 2021, Ross et al., 2021, Ghai et al.,
2021, Cheng et al., 2019, Schaffer et al., 2015, Ribeiro et al., 2016, Wilkin-
son et al., 2021]. Nevertheless, some of these studies are primarily aimed
at making the XAI systems more transparent and more accessible to a
non-expert audience [Tsai et al., 2021, Springer and Whittaker, 2019, Yan
et al., 2020, Szymanski et al., 2021, Anik and Bunt, 2021].

Regarding the data type used in our corpus, tabular and text data are
predominant (79% of the studied papers). This points to an opportunity
for the explainability field to empirically study interactive explanations
using audio (only one paper discussed audio data [Anik and Bunt, 2021]),
images, and video data.

Content. The interactive explanations in the corpus focused heavily
on the "why?" user question recurring 37 times, and which can be an-
swered by local feature explanations, the most commonly used explana-
tion method in the corpus (26/48). We can see in Figure 4.15 (Right) how
some interaction techniques were favored for specific types of user ques-
tion. For example, quite logically, explanations addressing "what is the
difference with?" were implemented with Compare, but also frequently
with Filter/focus interactions. Context and raw data can be elaborated
through Clarify interaction. "How to?" and "What if?" were facilitated
through Simulate interactions. Model limitations were rarely presented
in the studies (only twice). But perhaps a bigger opportunity for inter-
active explanations is the small numbers of papers addressing "how to?"
questions. One example is [Ross et al., 2021] in which the user can change
input "concept features" to see the adjusted output in real time and better
understand the meaning of each "concept feature". However, we found
only two studies enabling direct interventions on the model output [Jin
et al., 2020, Dodge et al., 2022]. Such interventions (which would fall in
the Simulate category cf. Table 4.2) could help the user characterize what
kinds of contexts and situations are emblematic of a particular outcome,
thereby addressing "how to?" questions. In addition, concept-based ex-
planations, which are considered promising in the field for their human
comprehensibility, were rarely used in the corpus [Kim et al., 2018, Koh
et al., 2020].

Communication. The most used interaction techniques were Clarify
and Simulate. These were frequently combined with compare, Filter/focus
and Arrange as illustrated in Figure 4.15 (Left). The techniques Progress
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Figure 4.15: Left: Fre-
quency of the inter-
action categories used
in the corpus and fre-
quency of their combi-
nations ; Middle: Per-
centage of studies using
an explanation repre-
sentation per interaction
category; Right: Per-
centage of studies focus-
ing on a type of user
question per interaction
category/

and Ask were used in only three and four studies respectively, illustrating
a trend in the field of interactive XAI towards complex, Infovis-type XAI
interfaces rather than simpler step-by-step or dialog box interfaces. The
matrix in Figure 4.15 (Left)shows this clear cut between the "Select" and
"Mutate" interaction groups on the one hand, and the "Dialogue with"
group on the other. The interactions techniques in the first two groups
are frequently combined with each other, while the interaction styles in
the latter group are less frequently used. In addition, these more "so-
cial" interactions were rarely combined with other interactions from the
"Mutate" or "Select" levels. In particular, Progress was never used in com-
bination with other "Mutate" or "Select" interaction categories. It would
be interesting for future research to explore combining these as a way
to take advantage of the social nature of "progress" explanations while
giving greater control to the user with selections and mutations.

The representations used for the interactive explanations were primar-
ily charts and texts. As shown in Figure 4.15 (Middle), tables were use-
ful to support Filter/focus and Compare interactions. Textual explanations
often came with Clarify interactions. Rules, although not appearing fre-
quently in the corpus (5 times), where used to support Clarify and Answer
interactions. Indeed, rules are easy objects for users to modify, create or
delete, as exemplified in [Guo et al., 2022, Hepenstal et al., 2021, Ming
et al., 2019].
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2021 To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-Assisted Decision-MakingBuçinca et al. ACM HCI Jo. x x x x x x
2021 Explainable Active Learning (XAL): Toward AI Explanations as Interfaces for Machine TeachersGhai et al. ACM HCI Jo. x x x x x
2019 Procedural Justice in Algorithmic Fairness: Leveraging Transparency and Outcome Control for Fair Algorithmic MediationLee et al. ACM HCI Jo. x x x x x x x
2021 Understanding the Effect of Out-of-Distribution Examples and Interactive Explanations on Human-AI Decision MakingLiu et al. ACM HCI Jo. x x x x x x x x
2020 CarePre: An Intelligent Clinical Decision Assistance SystemJin et al. ACM HEALTH x x x x x x x x x
2021 Why or Why Not? The Effect of Justification Styles on Chatbot RecommendationsWilkinson et al. ACM T Inf. S. x x x x x x
2022 Tribe or Not? Critical Inspection of Group Differences Using TribalGramAhn et al. ACM TIIS x x x x x x x x x x x
2021 Developing Conversational Agents for Use in Criminal InvestigationsHepenstal et al. ACM TIIS x x x x x x x x x x
2021 Learn, Generate, Rank, Explain: A Case Study of Visual Explanation by Generative Machine LearningKim et al. ACM TIIS x x x x x x x x x
2018 Visualizing Ubiquitously Sensed Measures of Motor Ability in Multiple Sclerosis: Reflections on Communicating Machine Learning in PracticeMorrison et al. ACM TIIS x x x x x x x x x x
2021 QuestionComb: A Gamification Approach for the Visual Explanation of Linguistic Phenomena through Interactive LabelingSevastjanova et al.ACM TIIS x x x x x x x x x
2020 Progressive Disclosure: When, Why, and How Do Users Want Algorithmic Transparency Information?Springer and WhittakerACM TIIS x x x x x
2021 Nudging through Friction: An Approach for Calibrating Trust in Explainable AINaiseh et al. BESC x x x x x x x
2021 Data-Centric Explanations: Explaining Training Data of Machine Learning Systems to Promote TransparencyAnik and Bunt CHI x x x x x x x x x
2019 Explaining Decision-Making Algorithms through UI: Strategies to Help Non-Expert StakeholdersCheng et al. CHI x x x x x x
2019 Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning ModelsHohman et al. CHI x x x x x x x x x x
2021 Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical LensJacobs et al. CHI x x x x x x x x x x x
2021 Evaluating the Interpretability of Generative Models by Interactive ReconstructionRoss et al. CHI x x x x x x x
2021 Exploring and Promoting Diagnostic Transparency and Explainability in Online Symptom CheckersTsai et al. CHI x x x x x x x x x
2019 Designing Theory-Driven User-Centric Explainable AIWang et al. CHI x x x x x x x x x x
2020 Silva: Interactively Assessing Machine Learning Fairness Using CausalityYan et al. CHI x x x x x x x x x
2021 Conversational Review-Based Explanations for Recommender Systems: Exploring Users' Query BehaviorHernandez-Bocanegra and ZieglerCUI x x x x x x x x x
2021 Model Learning with Personalized Interpretability Estimation (ML-PIE)Virgolin et al. GECCO x x x x x
2020 SIMFIC: An Explainable Book Search CompanionPolley et al. ICHMS x x x x x x x x
2021 Using Explainability to Help Children Understand Gender Bias in AIMelsión et al. IDC x x x x x
2019 DeepClue: Visual Interpretation of Text-Based Deep Stock PredictionShi et al. IEEE T KDE x x x x x x x x
2021 DECE: Decision Explorer with Counterfactual Explanations for Machine Learning ModelsCheng et al. IEEE TVCG x x x x x x x x x x x x x x x
2022 VBridge: Connecting the Dots Between Features and Data to Explain Healthcare ModelsCheng et al. IEEE TVCG x x x x x x x x x x x x
2022 Towards Visual Explainable Active Learning for Zero-Shot ClassificationJia et al. IEEE TVCG x x x x x x x
2019 RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical RecordsKwon et al. IEEE TVCG x x x x x x x x x x x
2019 RuleMatrix: Visualizing and Understanding Classifiers with RulesMing et al. IEEE TVCG x x x x x x x x x x x x
2020 explAIner: A Visual Analytics Framework for Interactive and Explainable Machine LearningSpinner et al. IEEE TVCG x x x x x x x x x x
2022 Contextualization and Exploration of Local Feature Importance Explanations to Improve Understanding and Satisfaction of Non-Expert UsersBove et al. IUI x x x x x x x
2021 I Think I Get Your Point, AI! The Illusion of Explanatory Depth in Explainable AIChromik et al. IUI x x x x x x x
2022 How Do People Rank Multiple Mutant Agents?Dodge et al. IUI x x x x x x
2019 What Can AI Do for Me? Evaluating Machine Learning Interpretations in Cooperative PlayFeng et al. IUI x x x x x x x x
2022 Building Trust in Interactive Machine Learning via User Contributed Interpretable RulesGuo et al. IUI x x x x x
2021 Anchoring Bias Affects Mental Model Formation and User Reliance in Explainable AI SystemsNourani et al. IUI x x x x x x x
2021 XAlgo: A Design Probe of Explaining Algorithms' Internal States via Question-AnsweringRebanal et al. IUI x x x x x x x x x x x x x x
2015 Getting the Message? A Study of Explanation Interfaces for Microblog Data AnalysisSchaffer et al. IUI x x x x x x x
2021 From Philosophy to Interfaces: An Explanatory Method and a Tool Inspired by Achinstein's Theory of ExplanationSovrano and VitaliIUI x x x x x x x x
2022 Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model InputsSuresh et al. IUI x x x x x x x x
2021 Visual, Textual or Hybrid: The Effect of User Expertise on Different ExplanationsSzymanski et al. IUI x x x x x x x
2020 Bot-Detective: An Explainable Twitter Bot Detection Service with Crowdsourcing FunctionalitiesKouvela et al. MEDES x x x x x x x x
2020 ExplainExplore: Visual Exploration of Machine Learning ExplanationsCollaris et al. PacificVis x x x x x x x
2016 Why Should I Trust You?: Explaining the Predictions of Any ClassifierRibeiro et al. SIGKDD x x x x x x
2021 ChatrEx: Designing Explainable Chatbot Interfaces for Enhancing Usefulness, Transparency, and TrustKhurana et al. VL/HCC x x x x x
2021 ELIXIR: Learning from User Feedback on Explanations To Improve Recommender ModelsGhazimatin et al.WWW x x x x x

6 12 6 5 4 8 8 2 17 12 26 1 6 3 1 26 12 5 23 8 2 7 13 37 9 4 22 9 17 26 6 3 8 6 2 3 5 6 14

CONTEXT CONTENT

Figure 4.16: The first
part of the concept ma-
trix [Webster and Wat-
son, 2002], reporting the
explanation context and
content. The design of
this concept matrix was
inspired from [Bae et al.,
2022].
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2021 To Trust or to Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-Assisted Decision-MakingBuçinca et al. ACM HCI Jo. x x x x x x x x x
2021 Explainable Active Learning (XAL): Toward AI Explanations as Interfaces for Machine TeachersGhai et al. ACM HCI Jo. x x x x x x x x
2019 Procedural Justice in Algorithmic Fairness: Leveraging Transparency and Outcome Control for Fair Algorithmic MediationLee et al. ACM HCI Jo. x x x x x x
2021 Understanding the Effect of Out-of-Distribution Examples and Interactive Explanations on Human-AI Decision MakingLiu et al. ACM HCI Jo. x x x x x x x x x
2020 CarePre: An Intelligent Clinical Decision Assistance SystemJin et al. ACM HEALTH x x x x x x x x x
2021 Why or Why Not? The Effect of Justification Styles on Chatbot RecommendationsWilkinson et al. ACM T Inf. S. x x x x x x x x x
2022 Tribe or Not? Critical Inspection of Group Differences Using TribalGramAhn et al. ACM TIIS x x x x x x x x x
2021 Developing Conversational Agents for Use in Criminal InvestigationsHepenstal et al. ACM TIIS x x x x x x x x x x x
2021 Learn, Generate, Rank, Explain: A Case Study of Visual Explanation by Generative Machine LearningKim et al. ACM TIIS x x x x x x x x x x
2018 Visualizing Ubiquitously Sensed Measures of Motor Ability in Multiple Sclerosis: Reflections on Communicating Machine Learning in PracticeMorrison et al. ACM TIIS x x x x x x x x
2021 QuestionComb: A Gamification Approach for the Visual Explanation of Linguistic Phenomena through Interactive LabelingSevastjanova et al.ACM TIIS x x x x x x x x x x
2020 Progressive Disclosure: When, Why, and How Do Users Want Algorithmic Transparency Information?Springer and WhittakerACM TIIS x x x x x x x x x
2021 Nudging through Friction: An Approach for Calibrating Trust in Explainable AINaiseh et al. BESC x x x x x
2021 Data-Centric Explanations: Explaining Training Data of Machine Learning Systems to Promote TransparencyAnik and Bunt CHI x x x x x x x x
2019 Explaining Decision-Making Algorithms through UI: Strategies to Help Non-Expert StakeholdersCheng et al. CHI x x x x x x x
2019 Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning ModelsHohman et al. CHI x x x x x x x x x x x
2021 Designing AI for Trust and Collaboration in Time-Constrained Medical Decisions: A Sociotechnical LensJacobs et al. CHI x x x x x x
2021 Evaluating the Interpretability of Generative Models by Interactive ReconstructionRoss et al. CHI x x x x x x x
2021 Exploring and Promoting Diagnostic Transparency and Explainability in Online Symptom CheckersTsai et al. CHI x x x x x x x x x
2019 Designing Theory-Driven User-Centric Explainable AIWang et al. CHI x x x x x x
2020 Silva: Interactively Assessing Machine Learning Fairness Using CausalityYan et al. CHI x x x x x x x x x x
2021 Conversational Review-Based Explanations for Recommender Systems: Exploring Users' Query BehaviorHernandez-Bocanegra and ZieglerCUI x x x x x x x
2021 Model Learning with Personalized Interpretability Estimation (ML-PIE)Virgolin et al. GECCO x x x x
2020 SIMFIC: An Explainable Book Search CompanionPolley et al. ICHMS x x x x x
2021 Using Explainability to Help Children Understand Gender Bias in AIMelsión et al. IDC x x x x x x
2019 DeepClue: Visual Interpretation of Text-Based Deep Stock PredictionShi et al. IEEE T KDE x x x x x x x x
2021 DECE: Decision Explorer with Counterfactual Explanations for Machine Learning ModelsCheng et al. IEEE TVCG x x x x x x x x
2022 VBridge: Connecting the Dots Between Features and Data to Explain Healthcare ModelsCheng et al. IEEE TVCG x x x x x x x x
2022 Towards Visual Explainable Active Learning for Zero-Shot ClassificationJia et al. IEEE TVCG x x x x x x x
2019 RetainVis: Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical RecordsKwon et al. IEEE TVCG x x x x x x x x x x
2019 RuleMatrix: Visualizing and Understanding Classifiers with RulesMing et al. IEEE TVCG x x x x x x x x x x x
2020 explAIner: A Visual Analytics Framework for Interactive and Explainable Machine LearningSpinner et al. IEEE TVCG x x x x x x x x
2022 Contextualization and Exploration of Local Feature Importance Explanations to Improve Understanding and Satisfaction of Non-Expert UsersBove et al. IUI x x x x x x
2021 I Think I Get Your Point, AI! The Illusion of Explanatory Depth in Explainable AIChromik et al. IUI x x x x x x x
2022 How Do People Rank Multiple Mutant Agents?Dodge et al. IUI x x x x x x x
2019 What Can AI Do for Me? Evaluating Machine Learning Interpretations in Cooperative PlayFeng et al. IUI x x x x x
2022 Building Trust in Interactive Machine Learning via User Contributed Interpretable RulesGuo et al. IUI x x x x x x x
2021 Anchoring Bias Affects Mental Model Formation and User Reliance in Explainable AI SystemsNourani et al. IUI x x x x x x x x
2021 XAlgo: A Design Probe of Explaining Algorithms' Internal States via Question-AnsweringRebanal et al. IUI x x x x x x x x x
2015 Getting the Message? A Study of Explanation Interfaces for Microblog Data AnalysisSchaffer et al. IUI x x x x x x x
2021 From Philosophy to Interfaces: An Explanatory Method and a Tool Inspired by Achinstein's Theory of ExplanationSovrano and VitaliIUI x x x x x x
2022 Intuitively Assessing ML Model Reliability through Example-Based Explanations and Editing Model InputsSuresh et al. IUI x x x x x x x x
2021 Visual, Textual or Hybrid: The Effect of User Expertise on Different ExplanationsSzymanski et al. IUI x x x x x x x x
2020 Bot-Detective: An Explainable Twitter Bot Detection Service with Crowdsourcing FunctionalitiesKouvela et al. MEDES x x x x x
2020 ExplainExplore: Visual Exploration of Machine Learning ExplanationsCollaris et al. PacificVis x x x x x x x x x
2016 Why Should I Trust You?: Explaining the Predictions of Any ClassifierRibeiro et al. SIGKDD x x x x x x
2021 ChatrEx: Designing Explainable Chatbot Interfaces for Enhancing Usefulness, Transparency, and TrustKhurana et al. VL/HCC x x x x x x x
2021 ELIXIR: Learning from User Feedback on Explanations To Improve Recommender ModelsGhazimatin et al.WWW x x x x
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EVALUATIONCOMMUNICATION

Figure 4.17: The sec-
ond part of the con-
cept matrix, reporting
the explanation commu-
nication and evaluation.
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4.4.3 Evaluating interactive explanations

To address our RQ4, we report below how XAI researchers in our cor-
pus have been measuring explanations and explainable AI systems based
on human-grounded evaluations [Doshi-Velez and Kim, 2017]. Below we
provide brief descriptions of the measures and highlight trends and chal-
lenges in evaluating interactive explanations.

Few controlled experiments. Few empirical studies supported a cross-
sectional analysis of results on interactive XAI by using a static explana-
tion as a baseline. Most papers (20/48) did not use any control condition
(cf. Figure 4.17. Even if the measures in these articles are sometimes
quantitative as in [Hernandez-Bocanegra and Ziegler, 2021] where the
authors measured different constructs (system efficiency, transparency...)
on Likert scales from 1 to 5 points, these results are hard to interpret in
comparison with the rest of the XAI literature.

Nine of the 48 articles in our corpus compared interactive and static
explanations through between-subject experiments. These comparisons
were very informative for analyzing the added value of interactivity in
XAI. We provide in Section 4.4 a qualitative analysis of the added value of
interactive explanations based on this work. To a lesser extent, compar-
isons between interactive explanations and no explanation (13/48 items)
are also useful for understanding the benefit of interactive explanations.
We also leveraged this body of work in Section 4.4. Other context-specific
comparisons were made between an interactive explanation and other ex-
planation types [Schaffer et al., 2015, Guo et al., 2022, Suresh et al., 2022,
Wilkinson et al., 2021], other interactive systems [Polley et al., 2020, Yan
et al., 2020], other AI models [Ross et al., 2021], other interactivity types
[Ghai et al., 2021] or random baselines [Jia et al., 2022], among others.
Some of these user-based evaluations were within-subject experiments
[Dodge et al., 2022, Springer and Whittaker, 2019, Feng and Boyd-Graber,
2019].

Much of the work that did not use a baseline provided valuable qual-
itative assessments instead. This research often employs usage scenario
(or "use cases") to study users’ reactions to XAI systems in realistic set-
tings [Kwon et al., 2019, Ming et al., 2019, Jia et al., 2022, Cheng et al.,
2022]. These qualitative insights often focused on capturing the user’s
perceived ease of use and/or usefulness of the XAI system (16/20 pa-
pers).

A wide toolbox. We identified 19 different metrics to evaluate XAI
systems with users from our corpus. Fourteen of them were used twice
or more: perceived usability, perceived usefulness, understanding, per-
ceived explanation length/quantity, time, trust, cognitive load, perfor-
mance at task, learning, predicted accuracy, perceived control, perceived
fairness, perceived transparency and reliance (cf. Figures 4.16 and 4.17).
Other measures were used such as perceived feedback quality and diffi-
culty [Guo et al., 2022], explanation persuasiveness and sufficiency [Hernandez-
Bocanegra and Ziegler, 2021], number of interactions (clicks, etc.) with
the explanations [Naiseh et al., 2021a] and naturalness and humanness
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of the explanations [Rebanal et al., 2021]. Table 4.4.3 provides the defini-
tions used for each of these metrics.

We recognized four of the five user-based measures for evaluating XAI
systems outlined in [Hoffman et al., 2019]: user satisfaction, understand-
ing, trust (and reliance) and human-XAI performance. Indeed, none of
the papers in our corpus measured participants’ curiosity, highlighting
a gap in the literature for making XAI systems more engaging through
users’ feedback. However, we actually found more than five types of
human-based metrics. Measures of the propensity of XAI systems to
enhance learning, perceived transparency and fairness, humanness and
naturalness of explanations, or cognitive workload, provide additional
nuances to the XAI researchers’ toolbox.

The many shades of user satisfaction. User satisfaction was the most
frequently used measure in the corpus. However, we found many nu-
ances of this concept. Some assessed whether users liked the systems
[Kim, Chris et al., 2021, Jia et al., 2022], and/or found them useful [Jin
et al., 2020, Khurana et al., 2021, Sovrano and Vitali, 2021], helpful [Yan
et al., 2020, Jacobs et al., 2021], effective [Hernandez-Bocanegra and Ziegler,
2021] and/or easy to use [Szymanski et al., 2021, Kwon et al., 2019], or
preferred the explanation or explanation system over another. In order
to capture some of these nuances while keeping the papers coding man-
ageable, we divided user satisfaction into two main clusters: ease of use
(i.e., perceived usability) and perceived usefulness of the XAI system.

Some articles already made distinctions between these two constructs
[Jin et al., 2020, Szymanski et al., 2021], but others did not, especially
when using questionnaires such as the Explanation Satisfaction Scale
[Hoffman et al., 2019], which incorporates both usability and usefulness
concepts [Bove et al., 2022, Guo et al., 2022]. When this was the case, we
reported the measure under both "usability" and "usefulness".

Definition

Perceived usability. A user-reported measure of how easy and likeable
something is to use.

Under the "perceived usability" construct, we included measures of us-
ability, ease of use, likeability, i.e. whether users expressed that they liked
the interactive explanation (or the XAI system)—typically through a one-
item questionnaire [Guo et al., 2022] or through a qualitative think-aloud
study [Jin et al., 2020],—and user preference, i.e. whether users preferred
the system to a given baseline. Questionnaires such as the Post-Scenario
Questionnaire [Lewis, 1991] or the User Engagement Scale [O’Brien et al.,
2018] were often used to measure usability.

Definition

Perceived usefulness. A user-reported measure of how useful something
is to achieve the users’ goals.

In the concept of usefulness, we reported the accounts of "usefulnes"
and "perceived effectiveness", the latter being assessed through Tintarev’s
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questionnaire [Tsai et al., 2021, Hernandez-Bocanegra and Ziegler, 2021,
Tintarev, 2007].

Joint use of subjective and objective measures. Many self-reported
measures have an objective equivalent, and the papers in our corpus have
taken advantage of this. This was the case for understanding, trust and
cognitive load.

Understanding was most often measured subjectively by asking par-
ticipants if they understood the system [Bove et al., 2022, Chromik et al.,
2021]. However, some also assessed understanding objectively by ask-
ing carefully designed, often context-specific questions [Bove et al., 2022,
Cheng et al., 2019, Ming et al., 2019, Rebanal et al., 2021]. Predicted ac-
curacy, referring to the ability of users to predict what the system will
output given certain entries, has been measured in [Nourani et al., 2021,
Chromik et al., 2021, Springer and Whittaker, 2019] and could be consid-
ered, as some argue [Chromik et al., 2021], as an objective understanding
of the system.

Participants’ trust in the system or explanations was mostly assessed
subjectively, by asking people to report their confidence in the XAI tool.
McKnight’s framework was used in three studies [Ghai et al., 2021, Wilkin-
son et al., 2021, Hernandez-Bocanegra and Ziegler, 2021]. Other pa-
pers referred to Tintarev’s [Tintarev, 2007] measures of trust [Hernandez-
Bocanegra and Ziegler, 2021, Wilkinson et al., 2021, Tsai et al., 2021].
[Hernandez-Bocanegra and Ziegler, 2021] also used items from Kouki
et al. [2019] to measure trust related to explanations rather than to the
system. However, trust was also measured objectively, by observing
users’ ability to reject an incorrect AI suggestion [Ribeiro et al., 2016,
Liu et al., 2021, Buçinca et al., 2021, Kim, Chris et al., 2021]. We referred
to this measure as "reliance", but [Kim, Chris et al., 2021] framed it more
positively as "user skepticism", while others have called it "human-AI
agreement" [Liu et al., 2021].

Users’ cognitive workload when interacting with XAI systems was re-
ported in five studies. It was measured by the NASA-TLX workload
index, or a subset of its items. Closely related to cognitive load are es-
timates of the time spent on the XAI system or explanation, and the
perceived length and/or complexity of the explanation. The former is an
objective, quantitative estimate, while the latter is a self-reported mea-
sure [Kouvela et al., 2020, Buçinca et al., 2021, Szymanski et al., 2021].

The quality of self-reported measures can sometimes fall short of re-
searchers’ expectations, as some [Dodge et al., 2022, Naiseh et al., 2021a,
Wang et al., 2019a] argue. Objective measures of understanding, trust
and cognitive load may offer more reliable observations, even though at
present, their measures are less standardized and more context-specific,
making results more difficult to compare across different studies. Dodge
et al. [2022] notably proposed "the ranking task" as an alternative to self-
reported measures.

Task performance as the new benchmark. Some work [Buçinca et al.,
2020, Bansal et al., 2021] advance that subjective measures could be mis-
leading to properly assess the added value of explanations. Buçinca
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et al. [2020] found that an increase in user satisfaction did not necessar-
ily lead to improved performance, if not the opposite. Instead, Buçinca
argues, measuring task performance should be the standard benchmark
as it comes down to directly evaluating XAI systems against what they
were designed for: increasing humans’ autonomy and complementarity
with AI. While XAI may serve other purposes, such as increasing user
confidence and understanding, measuring task performance has the ad-
vantage of being a metric that is both objective and easily quantifiable. In
fact, many empirical studies in the corpus have adopted it (21/48). Some
articles also measured other constructs related to the task at hand, such
as task complexity or time spent performing the task [Ross et al., 2021].

Less frequent goal-specific metrics. Evaluation measures are chosen in
relation to the purpose that explanation serve. For example, Lee et al.
[2019] and Anik and Bunt [2021] aimed at increasing public transparency
and perceived fairness of an AI system. Therefore, Anik et al. used the
questionnaire from [Binns et al., 2018] to assess users’ perception of the
fairness of the system and Lee et al. relied on their own quantitative met-
rics by asking participants to indicate on a Likert scale their agreement
with the sentences "My assignment is fair", "This participant’s assign-
ment is fair", or "The overall group outcome was fair". Similarly, learning
was a few times measured as a separate concept from the understanding
of the AI model. Measures of "learning" focused on how well XAI ex-
planations and systems helped users learn about a topic such as gender
bias ([Melsión et al., 2021]) or self-care awareness ([Tsai et al., 2021]). In
conversational interfaces, explanations were evaluated according to their
humanness and engagingness [Hepenstal et al., 2021, See et al., 2019], to
their persuasiveness [Hernandez-Bocanegra and Ziegler, 2021], or their
naturalness [Rebanal et al., 2021].

4.4.4 Interactive explanations increase trust, but not neces-
sarily overtrust

In Chapter 3 we found some evidence that explanations tend to in-
crease trust, even when it is unwarranted. However, it is still uncer-
tain whether interactivity in explainability can mitigate or resolve these
problems by better matching human cognitive processes. While theoreti-
cal work in education and psychology outline the benefits of interaction
for explanation and learning [Roussou, 2004, Miller, 2019], empirical re-
sults do not always align with these statements. In [Liu et al., 2021] for
example, they find that interactivity could increase human biases and
overreliance on AI. This subsection summarises the effects of interactive
explanations on trust and reliance using the controlled and qualitative
evaluations in our corpus. We base our qualitative findings on the sum-
mary presented in Figure 4.19, and on the qualitative analyses of the
effects of interactivity provided in the corpus.

No clear indication of an interactivity effect on overtrust, overreliance
or cognitive load. Some concern has been expressed that interactivity
could increase users’ cognitive load and their overreliance on AI [Liu
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Figure 4.19: Left: Count
of the positive, negative
and neutral quanti-
tative evaluations of
interactive explanations
compared to static
ones, against various
user-based metrics,
based on 9 different
studies. Right: Count of
the different evaluation
outcomes in the empir-
ical studies comparing
interactive explanations
with no explanation as a
baseline, extracted from
13 different papers in
the corpus.

et al., 2021]. We did not find many results to either confirm or refute this.
The results for user cognitive load were generally not directly related to
explanations alone, but to other external factors, either with the static
or no-explanation baseline. Buçinca et al. [2021] and Ghai et al. [2021]
highlighted the importance of the user’s individual need for cognition,
knowledge of the task to perform, or of the model used [Ross et al.,
2021]. Qualitative analyses suggest, however, that Simulate interactivity
techniques can increase users’ perceived difficulty of interacting with the
system as we detail in the paragraph 4.4.5.

Compared to no explanation, interactive explanations did not lead
users to over rely more on the AI. However, results were mixed for the
comparison of interactive explanations to static ones. On the one hand,
using Simulate interaction techniques, Liu et al. [2021] found that inter-
active explanations could increase users’ tendency to blindly trust the
AI. On the other hand, Buçinca et al. [2021] found that their on demand
interactive features in the Clarify style could significantly decrease over-
reliance. The interactivity type therefore seems to be instrumental in the
development of overreliance.

Higher perceived control leads to greater perceived fairness, perceived
transparency, and (less clearly) trust. A participant in [Yan et al., 2020]
said "I want to know why it is biased, not have the machine tell me
why". This highlights the power of user controls and interactivity to
drive trust and support users’ autonomous exploration of the AI model.
Lee et al. [2019] confirmed this with quantitative evidence, finding that
Reconfigure interactions significantly improved perceived fairness. The
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authors mentioned that the Answer interaction—here participants could
correct the algorithmic allocation—caused users to perceive the model as
fairer.

We did not find a substantial trend in the effect of interactivity on trust
in the quantitative studies in the corpus. As indicated by the right side
of Figure 4.19, the results in [Khurana et al., 2021] and [Cheng et al.,
2019] do not converge. Some studies described the link between trust
and external factors such as users’ prior experience with AI [Ghai et al.,
2021] or on users’ individual propensity to trust [Kim, Chris et al., 2021].

4.4.5 Interactive explanations are useful, but not easy to use

To take stock on the benefits of interactivity in explainability, we present
below a summary of empirical evaluations of interactive XAI on several
user based metrics other than trust.

Interactive explanations improve perceived usefulness but not usabil-
ity. Overall, there appears to be repeated evidence that interactivity does
not significantly improve perceived usability [Guo et al., 2022, Sovrano
and Vitali, 2021, Lee et al., 2019] compared to static explanations, but it
does improve perceived usefulness [Bove et al., 2022, Ghai et al., 2021,
Buçinca et al., 2021]. However, when compared to a baseline of no ex-
planation, interactive explanations lead to an increase in perceived ease
of use [Hepenstal et al., 2021, Tsai et al., 2021, Kim, Chris et al., 2021].
This reinforces the hypothesis that interactivity is not responsible for the
improvement in perceived usability, but the presence of explanations is.
It is possible that interactivity increases the complexity of the system, but
at the same time supports users in their task and exploration of the mod-
els. The authors of the Gamut interface [Hohman et al., 2019] state that
"interactivity was so fundamental for our participants’ understanding of
the models, that when we prompted them to comment on interactivity,
people could not conceive non-interactive means to answer both their hy-
potheses and prepared questions". This study illustrates the potential of
interactivity in terms of usefulness and as a factor in enabling users to
achieve their goals.

Interactive explanations improve performances of the (human+AI) team,
sometimes increasing time spent on explanations. Human+AI team per-
formance was found to be improved in [Ghazimatin et al., 2021, Buçinca
et al., 2021, Lee et al., 2019] with interactive versus static explanations.
However, in two other studies [Cheng et al., 2019, Buçinca et al., 2021],
the time spent to interact with the explanation system was higher for
interactive explanations compared to static ones. The presence of in-
teractive explanations compared to a "no explanation" baseline also im-
proved task performance. These results seem logical, as greater interac-
tivity can help users dive deeper into exploring a model and augment
their cognitive engagement in the process. However, increasing the num-
ber of interactions with the system, as well as deeper analytical thinking,
would understandably take more time. For example, interactivity can be
designed to elicit user cognitive engagement such as in [Buçinca et al.,
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2021], which in turn can enhance task performance. Further, Buçinca
et al. [2021] showed that on demand explanations—from the Clarify in-
teraction category—could significantly increase the performance of the
human+AI team compared to static explanations.

However, Naiseh et al. [2021a] demonstrated that an interactive friction-
based feature—falling in the Answer category—could lead participants to
interact significantly more with the system, while having no impact on
the time spent using the system.

Unclear role of interactivity on understanding and learning. From
Figure 4.19, it appears clearly that the presence of (interactive) expla-
nations compared to no explanation enhances user understanding of a
model. Similarly, learning seems to be persistently enhanced by the pres-
ence of interactive explanations [Tsai et al., 2021, Melsión et al., 2021].
At the same time, user understanding of a model was dependent on
other factors, including the order in which users saw weaknesses in the
system [Nourani et al., 2021], or the stage of interaction with the sys-
tem [Chromik et al., 2021], or the type of model that was explored [Ross
et al., 2021]. In addition, Cheng et al. [2019] found that interactive ex-
planations led to higher objective and subjective understanding of the
model compared to a static baseline, but Bove et al. [2022] could not find
any statistically significant improvement of interactive over static expla-
nations for both objective and subjective understanding. More work is
therefore needed to clarify the added value of interactive explanations
over static explanations for understanding and learning.

Qualitative evidence of the added-value of a few interaction tech-
niques. Despite the unclear quantitative evidence, the qualitative analy-
sis of the corpus suggests that understanding is facilitated by interactiv-
ity. For example, one participant reported that receiving feedback and
interacting with the model helped him "learn from my mistakes and ex-
pose my misconceptions" [Dodge et al., 2022]. Sevastjanova et al. [2021]
showed that participants appreciated the on demand display of explana-
tions as well as the ability to edit them. Morrison et al. [2018] emphasized
the usability of Compare interactive features to support human cognitive
processes, finding that "comparison is much easier than classification for
a person". Schaffer et al. [2015] demonstrated qualitatively that linear in-
teractivity was perceived as useful. Furthermore, Springer and Whittaker
[2019] highlight the need for progressive disclosure of model information
in order to prevent users from seeing their expectations violated and dis-
trusting the system when it is correct.

"Simulate" interactions can strain users’ memory and time. While
interactive explanations of the type Simulate have been evaluated posi-
tively on many fronts, notably usability, usefulness and understanding,
they also seem to take up more time as qualitative analyses in [Bove et al.,
2022, Ghai et al., 2021] show. Additionally, after using a simulation-based
interaction feature, a participant in [Jia et al., 2022] indicated that: "At the
end of the design process, I think my brain is stuck. I do not know what
I have specified before. When I want to add a new attribute, I need to
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go back to check if I have specified it already". This calls for a careful
consideration of the natural tendency of people to lose track of previous
simulations in the design of Simulate interactions. Consistent with this
observation, Ross et al. [2021] found that user performance in recreating
an outcome through perturbations of concept-features degraded as the
dimensionality of the concept-features increased. Future research should
therefore design simulation explanations taking into account the limita-
tions of people’s memory.

Current dialogic explanations lack humanness. In [Rebanal et al.,
2021], participants rated the naturalness of conversational explanations
more harshly than the other measured aspects of the explanations.

Also, in [Tsai et al., 2021], participants reported a similar lack of nat-
uralness for the questions that were asked by the system to the user.
The authors describe: "our participants felt confused about the questions
asked by the [conversational agent] in terms of the sequence, quantity,
and relevance." However, in [Hepenstal et al., 2021] participants indi-
cated they preferred to be able to "recognize when they were talking to
a human or to a machine", actually preferring that humanness levels of
explanations remain low. This questions the validity of aiming for more
"dialogic" explanations that replicate a human-like explanation process.
We provide more thoughts on this issue in the following section.

4.5 Discussion

We discuss below two open issues in interactive XAI. First, interactivity
itself needs to be explained to users, adding another layer of complexity
to XAI systems. Second, it is unclear whether dialogic/human-like ex-
planations should be considered the ideal form of explanation commu-
nication by XAI researchers.

4.5.1 Interactivity calls for meta explanations

Interactivity itself requires some learning by the user [Roussou, 2004].
In addition to learning about the model, users must learn how to use the
controls of the interface.

Hepenstal et al. [2021] observed that participants had many questions
about how to use the interface and control it—"Can I click on that ?". With
Answer interactions, Tsai et al. [2021] also found that some participants
felt confused by the questions asked by the system. They suggest that
it would be helpful to provide additional explanations answering ques-
tions like "why does the system ask these questions?", or "how many
questions would be asked or needed?" [Tsai et al., 2021]. These observa-
tions align with Sun et al. [2022]’s categorisation of user questions. One
of them is called "Control", and is defined as "Questions about options for
customizing or specifying preferences for how the model should work".
Therefore, interactivity adds a layer of explanation in addition to model
explanations.
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We can make a parallel with the concept of meta-explanation intro-
duced in [Dazeley et al., 2021]. Dazeley et al. [2021] point to a major issue
in XAI research, which is the user’s need to know where explanations
come from in order to be able to trust the model and its explanations.
As the authors put it: "if we cannot trust the agent’s original decision,
how can we trust the agent’s explanation of that decision?". They call
"meta-explanations" the explanations about the explanations themselves.
Meta-explanations introduce a paradox whereby more explanations calls
for more explanations, leading to unsustainable complexity. Similarly,
explanations on the control of the interface could lead to cognitive over-
load and effects such as users ignoring explanations and AI predictions,
as described in [Tsai et al., 2021].

Our corpus highlighted diverging results on whether interactivity has
an effect on cognitive load. Our analysis highlighted, however, the role
of individual factors to drive cognitive workload. There is therefore a
need for future research to investigate how to tackle the meta explanation
paradox in the context of interactive XAI, and how to find the right level
of explanation for each user [Dazeley et al., 2021, Buçinca et al., 2021].

4.5.2 Are dialogic explanations really the grail?

According to Miller [2019] and Graaf and Malle [2017], people expect
explanations to follow the conceptual framework of a social interaction.
One reason for this is that people attribute human traits to XAI agents
and therefore expect them to follow social conventions [Graaf and Malle,
2017]. Therefore, a good explanation would be provided through a so-
cial conversation. In fact, at least two studies from our corpus provided
quantitative evidence that explanations communicated through Ask in-
teractions improved perceived usability and understanding.

However, the participants in [Hepenstal et al., 2021] were bothered by
the humanness of the XAI agent and preferred to have it made clear that
they were not talking to a real person. Instead, they preferred robot-
like explanations with "logical and clear responses". Indeed, while ex-
plainability should bring trust, anthropomorphism through human-like
conversations can diminish trust by giving people the feeling of being
manipulated. Hepenstal et al. [2021] suggest that different evaluation
metrics could be applied to assess conversational XAI, such as under-
standing and bias mitigation, which are more representative of explain-
ability’s purpose.

If we take Miller [2019]’s depicted ideal of an AI agent’s explanation4, 4 Miller presents it as a
conversation, not nec-
essarily in natural lan-
guage, where the user
asks a first request and
follow-up questions

perhaps a more important criteria than the social structure of the expla-
nation would be the range of questions the explaining agent is able able
to answer. Overall, further theoretical work may be needed to clarify
what "social interaction" means, whether it refers to its dialogue struc-
ture or to the social rules it abides by, such as Grice [1975]’s maxims.
Future work could also examine the extent to which a "social" interac-
tion with an AI agent can resemble human conversations, or even if this
comparison makes sense.
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4.6 Limitations

One of the main limitations of scoping reviews is that they do not for-
mally appraise the quality of the included studies [Arksey and O’Malley,
2005] through the means of, for example, the Cochrane Risk of Bias or
other quality assessment tools. While this is compatible with the objec-
tives of this survey—to identify, map and discuss evidence on empirical
results in interactive XAI—we remind the reader again of this limitation.

Furthermore, although we applied a standardized methodology to
identify articles, it is possible that relevant papers were missed because
they were not published in peer-reviewed conferences or journals, be-
cause they were not present in the databases we surveyed or because
they did not match our keyword search. This was the case for [Slack
et al., 2022], which was published in a workshop and was therefore ex-
cluded during the eligibility phase, or for [Wu et al., 2021] which did not
appear in the databases we searched. Indeed, as mentioned earlier, we
chose to focus on HCI-oriented databases (ACM DL and IEEE Explore)
rather purely AI ones, which may have led us to leave out relevant work
in CS-focused venues. Since our interest is in interactivity and user stud-
ies, it seemed reasonable to limit ourselves to academic venues in HCI.
Other work like [Krause et al., 2016] and [Kulesza et al., 2015] were not
included in our study because the authors use the terms "interpreting" or
"explanatory" in their title/abstract as references to the "explainability"
notion. However, we believe that it would have been difficult to define
the verbs interpret or explain and their conjugations as keywords be-
cause of their ubiquity. To remedy the limitation of a keyword search
for the interactivity dimension, we searched for papers presenting an in-
teractive XAI system in the eligibility phase instead of the identification
phase [Moher et al., 2009]. This enabled us to include papers presenting
interactive XAI solutions even though they did not expressed or empha-
sized in the abstract their contributions to the interactive explainability
field.

In addition, we acknowledge that there may be a positive outcome
bias [Callaham et al., 1998] in the results on interactivity because we
searched published articles. We hope that by highlighting areas of uncer-
tainty where it is unclear whether interactivity has positive or negative
effects, this work will encourage others, including publishers, to consider
all types of outcomes, including neutral or negative.

Then, although steps were taken to ensure consistency in our coding—
including a final review of all the codings by one researcher—the final
matrix may reflect each reviewer’s own way of thinking.

Finally, it is possible that the summary of the papers’ findings in Sec-
tions 4.4.5 and 4.4.4 may not capture the nuance of each context in which
the results were found. However, it does provide a high-level, qualitative
view of the results of empirical studies, and that was our goal.
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4.7 Conclusion

This chapter presented a review of the literature on interactive expla-
nations evaluated with human users. We provided a qualitative analysis
of 48 papers shedding light on (1) the types of interactivity techniques
that have been used so far in XAI, (2) the context in which interactive
explanations were implemented, (3) the metrics used to evaluate inter-
active explanations with human users, and (4) the effects of interactivity
on user satisfaction, understanding, trust, performance at task and other
user-based metrics.

We provided a classification of XAI-specific interactivity techniques
which can serve as a basis for explainability system designers to navigate
the interactivity spectrum in XAI.

Our analysis showed that attention has been focused on interactivity
that allows for input modification, but less attention has been paid to
perturbing outcomes of AI systems, and to dialogic interactions. Combi-
nations of dialogic interactions with interactions that allow mutation or
selection is an under-explored area. The evaluation metrics we observed
provide a wide range of ideas for XAI researchers to evaluate their sys-
tems against what they were designed for. Finally, we found converg-
ing results regarding the effect of interactive explanations on users. We
identified that interactivity increases perceived usefulness and the per-
formance of the human+AI team compared to static explanations, but
it does not improve usability. In addition, it increases time spent by
users on XAI systems. The empirical studies gathered in our corpus
also demonstrated conflicting results on the role that interactivity has on
overreliance, cognitive load, learning and understanding. This highlights
grey areas to be addressed in future empirical research.

We hope that this work will help future research to share a common
vocabulary on interactive XAI. Also, we hope it will facilitate future sys-
tematic reviews to identify best practices in interactive XAI design, as
more empirical research is conducted in this area.

In the next part, we contribute to the onging efforts in explainability
to test explanations’ needs and effects empirically. We study explanation
needs in two applications of AI in the financial sector, taking a human-
centric approach.
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Evaluation concept Definition Main evaluation methods

Perceived usability User’s perception of how easy to use
the explanation user interface is.

Adapted question items from Explanation Satis-
faction Scale [Hoffman et al., 2019], Post-Scenario
Questionnaire [Lewis, 1991] or the User Engage-
ment Scale [O’Brien et al., 2018]; qualitative
think-aloud study [Jin et al., 2020].

Perceived usefulness User’s perception of how useful, effec-
tive or helpful the XAI system is for
achieving their goals.

Question items from Tintarev’s questionnaire
[Tintarev, 2007], Explanation Satisfaction Scale
[Hoffman et al., 2019] or [Vandenbosch and
Ginzberg, 1996]; qualitative think-aloud study
[Yan et al., 2020].

Understanding The extent to which the user under-
stands a model or its explanations.

"Objective understanding": Likert-type, context-
specific questionnaires [Bove et al., 2022, Cheng
et al., 2019, Ming et al., 2019, Rebanal et al.,
2021], "Subjective understanding": qualitative
think aloud or free-text analyses, e.g. [Bove et al.,
2022, Chromik et al., 2021].

Perceived explana-
tion length/quantity

User’s perception of the length or
quantity of the explanation, often used
as proxies for the complexity of the ex-
planation.

Direct questions about the quantity, length, or
complexity of the explanation, e.g. [Kouvela
et al., 2020, Buçinca et al., 2021, Szymanski et al.,
2021].

Time The time spent by the user interacting
with the XAI system to perform a task.

Direct measure of the interaction time, e.g. [Ross
et al., 2021].

Trust User’s willingness to depend on an
XAI system because of the character-
istics of the system [Mcknight et al.,
2011, Rousseau et al., 1998].

Question items from McKnight’s framework
[Mcknight et al., 2011], Tintarev’s questionnaire
[Tintarev, 2007] or Kouki et al. [2019]’s measure
of trust towards explanations.

Cognitive load The amount of working memory re-
sources used by the user while inter-
acting with the XAI system [Miyake
and Shah, 1999].

NASA-TLX workload index.

Performance at task The performance of the human+XAI
team in performing a specific task.

Measured through case-by-case metrics adapted
to a context-specific task, e.g. [Dodge et al.,
2022, Buçinca et al., 2021, Feng and Boyd-Graber,
2019].

Learning How well explanations and/or XAI
systems help users learn about a spe-
cific topic.

Context-specific questions usually defined by the
authors themselves about a topic. See examples
for learning about gender bias ([Melsión et al.,
2021]) or self-care awareness ([Tsai et al., 2021]).

Predicted accuracy User’s ability to correctly anticipate
the AI’s behavior.

Number of correct guesses of the AI’s prediction
by the user [Nourani et al., 2021, Chromik et al.,
2021, Springer and Whittaker, 2019].

Perceived control User’s perception of their control over
the XAI system.

Adapted question items from the Knijnenburg
et al. [2012] framework.

Perceived fairness The extent to which users perceive the
XAI system to be fair and transparent.

Fairness questionnaires from Binns et al. [2018]
or Lee et al. [2019].

Perceived trans-
parency

User’s perceived understanding of the
recommendation rationale

Adapted question items from Millecamp et al.
[2019] or Tintarev [2007] frameworks.

Reliance User’s ability to reject an incorrect AI
suggestion.

Precision and/or recall in correct rejections or ac-
ceptances of a prediction, e.g. [Ribeiro et al., 2016,
Liu et al., 2021, Buçinca et al., 2021, Kim, Chris
et al., 2021].

Figure 4.18: Evaluation concepts used twice or more in the corpus with corresponding definitions and
evaluation methods.



PART II

Complying with regulation
using human-centric explainable
AI: two case studies in finance





149

Chapter 5: Empowering customers of robo-advisors with explainabil-
ity presents a mixed-methods experiment (qualitative and quantitative)
on the impact of different formats of explanations on customers’ trust
and empowerment in life-insurance underwriting. This chapter builds
on the reflections presented in a 2022 workshop paper and on subsequent
studies that were published as a conference paper in 2023:

"Towards Informed Decision-making: Triggering Curiosity in Explanations to Non-expert
Users", Astrid Bertrand, 2022 Workshop on XAI and HCI, IHM Conference, Namur,
Belgium, 2022 https://hal.science/hal-03651368/document.

"Questioning the ability of feature-based explanations to empower non-experts in robo-advised
financial decision-making", Astrid Bertrand, James R. Eagan, Winston Maxwell, Pro-
ceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency
(FAccT ’23), Chicago, USA, 2023 https://doi.org/10.1145/3593013.3594053.

As the first author of these studies, I delineated the motivation and
research questions with the guidance of my colleagues at the ACPR, no-
tably Olivier Fliche and Christine Saidani, and both co-authors. I con-
ducted interviews with supervisors and novice users, coded a fictitious
robo-advisor using python and javascript, designed and coded expla-
nation prototypes, conducted and analyzed the quantitative study, and
wrote the paper. The methods, results, and text were discussed with all
three co-authors.

Chapter 6: Understanding the supervisors’ needs for explainable AI in
financial crime detection presents a qualitative, mixed-methods analysis
(leveraging HCI and legal approaches) of the perspective of regulatory
supervisors on the role of explainability in the field of anti-money laun-
dering. This chapter will soon be published as a conference paper:

"AI is Entering Regulated Territory: Understanding the Supervisors’ Perspective on Model
Justifiability in Financial Crime Detection", Astrid Bertrand, James R. Eagan, Winston
Maxwell, Joshua Brand, was conditionally accepted for publication in the proceed-
ings of the 2024 CHI Conference on Human Factors in Computing Systems (CHI ’24),
Honolulu, Hawaï, USA, 2024.

As the first author, I delineated the motivation and research questions,
designed and conducted all the workshops and interviews, and wrote the
paper. The fourth co-author helped in the analysis of a few workshop
transcripts. The methods, results, and text were discussed with all co-
authors.
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Chapter 5

Empowering customers
of robo-advisors with
explainability

This chapter sheds light on the challenge of using algorithmic expla-
nations for user empowerment and customer protection compliance. We
examine in a real world scenario the "explanation paradox": one the
one hand, explanations are necessary to inform users of critical infor-
mation regarding the decisions made about them. On the other hand,
Chapter 3 revealed that explanations tend to reinforce trust, even when
it is unwarranted, making customers more vulnerable to inappropriate
recommendations. In this chapter, we therefore explore the potential of
human-centric explainable AI to address this challenge.

Specifically, we investigate whether legally required feature-based ex-
planations for life-insurance robo-advisors1 help clients make better fi- 1 Robo-advisors are on-

line platforms that pro-
vide financial advice.

nancial decisions. We also consider the perspective of regulatory super-
visors in customer protection in life insurance. We find that providing
feature-based explanations does not improve appropriate reliance or un-
derstanding compared to not providing any explanation. In addition,
dialogic explanations increase users’ trust in the recommendations of the
robo-advisor, sometimes to the users’ detriment. This real-world scenario
illustrates how XAI can address information asymmetry in complex areas
such as finance. This case study was made possible by our collaboration
with the ACPR2, the regulatory authority for financial services in France. 2 In French "Autorité de

Contrôle Prudentiel et
de Résolution"We begin by presenting some background on the literature on XAI for

non-expert users and on the context of life-insurance in Section 5.2. We
then build Robex, an explainable robo-advisor, to enable our domain-
driven, contextual enquiry, using market research. We design explana-
tions of Robex using co-design with end-users and regulatory supervi-
sors. We present the methodology for this co-design qualitative study in
Section 5.3. We redesign our explainability prototype based the needs
of non-expert clients and the requirements of regulatory supervisors, ex-
perts in customer protection, in Section 5.4. In a subsequent study, we
use Robex to quantitatively compare the effectiveness of various expla-
nation formats in helping users understand, and appropriately rely on
recommendations. We test the capacity of explanations to meet the cus-
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tomer protection objectives pursued by financial regulation. We present
the methodology used for this quantitative experiment in Section 5.5,
and its results in Section 5.6. Section 5.7 discusses the implications of our
findings on the role of explainability to inform customers in finance.
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5.1 Motivation and research questions

With the rise of commercial recommender systems, online AI-based
services are becoming increasingly common. As a result, internet users
are frequently presented with opaque personalized suggestions. While
explanations are often unnecessary or non-critical in many low-risk ap-
plications of AI, such as for movie or music suggestions, they can be
required by law in some high-stakes industries, such as finance. This is
the case for systems distributing life insurance proposals in France.

Robo-advisors are democratising access to investing by enabling full
online distribution of life insurance contracts and other investment plans.
After answering a few profiling questions, users receive a recommenda-
tion for a life insurance contract that matches their financial situation. In
recent years, these recommender systems have started touting AI to make
more targeted suggestions. In Europe, financial legislation requires that
the reasons for recommending a life insurance plan be explained accord-
ing to the characteristics of the client, in order to empower her in making
a "fully informed decision". In this context, the financial regulation aims
at protecting clients from recommendations misaligned with their objec-
tives, risk appetite and other personal characteristics.

Additionally, the forthcoming AI Act classifies3 AI-based robo-advisors 3 as of December 2023,
based on the European
Commission’s proposal
and the Council and
Parliament’s adopted
texts.

as "high-risk"4, subjecting them to a demanding certification process and

4 Text adopted by the
Council in Nov. 2022,
Annex III, point 5: "AI
systems intended to be
used for risk assessment
and pricing in relation to
natural persons in the case
of life and health insur-
ance with the exception of
AI systems put into service
by providers that are mi-
cro and small-sized enter-
prises."

high transparency requirements in the near future.

Moreover, the financial domain can feel overwhelming and complex to
many people [Prawitz et al., 2006], which poses an additional challenge:
explaining in simple terms not only the attributes of the system but also
financial principles to novice users. Few studies [Bibal et al., 2021] have
focused on how to design legally required explanations for lay users in
complex, high-stakes scenarios. As seen in Chapter 2, , cross-disciplinary
efforts in both law and HCI are rare, and the regulatory challenges associ-
ated with explainability have not been fully explored by HCI researchers.

Nevertheless, recent advances in the fast-growing field of explainabil-
ity have brought a better understanding of how different representations
and interactions of AI explanations impact non-expert5 users [Szyman-

5 Here, "non-expert"
refers to users who are
either inexperienced
in the domain task or
inexperienced in using
AI systems.

ski et al., 2021, Bove et al., 2022, Cheng et al., 2019, Rebanal et al., 2021,
Mohseni et al., 2021b]. Szymanski et al. [2021] found that lay users pre-
ferred graphical explanations but could more easily misinterpret them
compared to textual explanations, motivating the need for hybrid textual
and visual explanations. However, little is known about where the cursor
should be placed between textual and visual content.

We aim to address these gaps by leveraging the knowledge of cus-
tomer protection specialists. We believe the insights from experts from
the regulatory sphere present interesting yet so far unsolicited proxies
for characterizing the users’ needs. We address the question of enabling
warranted customer trust in recommender systems [Buçinca et al., 2021],
which ties in with the research in the previous chapters.

Our research questions are as follows:
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RQ1: What are the regulatory expectations for explanations in financial invest-
ment services to protect customers? How can current XAI methods meet
them?

RQ2: How do regulatory supervisors on the one hand and end users on the
other describe the need for explanations?

RQ3: How effective are different representations of hybrid textual and graphical
explanations to protect non-expert users?

Our case study in life-insurance has implications for other profiling AI
systems that interact with customers and data-subjects. For example, for
systems making automatic individual decisions based on profiling, the
GDPR requires to provide explanations such as "meaningful information
about the logic involved"6. 6 Article 15(1)(h) Gen-

eral Data Protection
Regulation (GDPR).

5.2 Background

This study falls in the HCI line of research on understanding explain-
ability needs [Sun et al., 2022, Liao et al., 2020, Lim and Dey, 2009], and
on testing explanations’ effects with real users ("application-grounded
evaluations" [Doshi-Velez and Kim, 2017]). We describe those research
trends in Section 2.4 of Chapter 2. Specifically, we build on explainability
research focusing on non-expert users. We highlight relevant findings
below.

5.2.1 Mitigating overreliance issues for non experts

As reviewed in Chapters 3 and 4, some user studies evaluated the
ability of XAI methods to successfully convey accurate mental models
of AI systems to users. This line of research sheds light on the lim-
itations of some technical solutions for aiding user understanding, or
worse, on their potential for deception [Kumar et al., 2020, Kim et al.,
2016, Ribeiro et al., 2016]. In Chapter 3, we found that user expertise,
knowledge and skills appeared to be an essential factor for appropriate
trust calibration in explainable AI systems. Specifically, non-expert users
were more likely to be convinced by the mere presence of an explana-
tion [Eiband et al., 2021, Fürnkranz et al., 2020, Lai and Tan, 2019], or
to fell into confirmation or completeness bias [Szymanski et al., 2021].
Further, Simkute et al. [2020] stressed the importance of differentiating
the reasoning of experts from that of lay users and reflecting this differ-
ence in the design of explanations. Quite logically, experts are able to be
more critical of the explanations, sometimes at the cost of not trusting
them enough, whereas lay users are more subject to overreliance [Schaf-
fer et al., 2019, Bayer et al., 2021]. Explanations must therefore support
either trust building for experts, or critical thinking for lay users.

Another key difference is the level of motivation to use explanations,
which can be much lower for non-expert users. This makes it particularly
challenging to make explanations both simple and appealing to lay users,
while encouraging cognitive engagement and skepticism [Bertrand et al.,
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2022, Naiseh et al., 2021a]. It is still unclear if explanations for non-expert
users can be designed to foster trust and understanding while encourag-
ing users’ critical thinking (i.e. ability to detect errors) on the other. This
may be desirable in sensitive contexts where algorithmic predictions may
have a strong impact on the user’s quality of life.

5.2.2 Designing visualisations of AI explanations for non-
expert users

Some work has focused on the implementation of explanations for
non-expert users in specific contexts [Szymanski et al., 2021, Bove et al.,
2022, Cheng et al., 2019].

Cheng et al. [2019] presented explanations of an algorithmic school ad-
mission decision process to users with no domain or technical expertise.
They found that static and interactive explanations, where users could
change the inputs to see the resulting outcome, improved users’ under-
standing of the AI decisions. Bove et al. [2022], however, were unable
to replicate these results in the context of explaining an algorithmic car
insurance pricing decision. They did not find that explanations improved
comprehension but they did improve user satisfaction. Szymanski et al.
[2021] studied how different representations of explanations, either vi-
sual, textual or both, affect users’ understanding of an AI system in an
artificial task7. The paper shows that purely visual explanations8 can be 7 In the experiment,

participants were tasked
with estimating the
reading time of news
articles.
8 in this case, line graphs

subject to misinterpretation, while purely textual explanations are better
understood but less satisfactory to users. A combination of the two rep-
resentations could therefore provide the best of both worlds. However,
there may be many different ways to design "hybrid" textual and visual
explanations. Additionally, it is still unclear if textual explanations pre-
sented as conversations achieve better user preferences and improve task
accuracy compared to graphical formats.

Then, explanations’ ability to engage users in a sensitive and complex
topic such as financial investment has not yet been studied in the XAI
literature where artificial contexts are often used as test benches [Buçinca
et al., 2021, Dodge et al., 2022, Feng and Boyd-Graber, 2019].

5.2.3 Context: life-insurance distribution with "robo-advisors"

In this chapter, we focus on a real-case application of explainability:
explanations of online recommendations for life insurance products. In
Europe, explanations in this context are legally required by sector-specific
regulations to ensure customer protection. We describe below the case
study context and the related legal requirements for explanations.

Overview. As AI systems gain performance, their adoption expands
to areas considered critical. In finance, increasingly sophisticated rec-
ommender systems known as "robo-advisors" are democratizing online
distribution of life insurance. In France, where the study was conducted,
life insurance is a savings vehicle used both to pass on money to a des-
ignated beneficiary upon the death of the subscriber of the contract, and
to make a long-term financial investment in a tax-advantaged environ-
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ment. In the rest of the paper, we will only address the latter, most com-
mon usage of life-insurance. Life insurance subscribers are presented
with a financial recommendation with a specific level of risk (a higher
level of risk means more chances to win big but also more chances to
lose). Choosing a life insurance contract with an appropriate risk level—
not too high for the client’s financial situation—is crucial to ensuring
clients’ financial stability. However, many clients may not be financially
literate. Therefore, French and European legislation9 require insurance 9 The European Parlia-

ment and the European
Concil. 2016. Directive
(EU) 2016/97 on insur-
ance distribution.

providers to produce "clear, precise and non-misleading" explanations to
guide potential customers towards an "informed" decision and address
the asymmetry of information between client and advisor. Most existing
online recommender systems currently fall short of this explanation re-
quirement, according to our discussions with French supervisors in the
life-insurance sector. Specifically, explanations of online recommender
systems, i.e. robo-advisors, rarely focus on the reasons why a recommen-
dation is adapted to the user’s need, which is the type of explanation we
focus on in this paper.

A trend towards more digital, AI-powered robo-advisors. The auto-
mated advice provided by robo-advisors is seen as a more cost-effective
way of delivering propositions to parts of the population that otherwise
have no access to financial advice, as highlighted in an OECD report
[Mamiko, 2020]. In addition, the COVID crisis has accelerated the in-
terest in online systems by increasing the demand for online and real-
time services [Balasubramanian et al., 2021]. In France, most current
robo-advisors are rule-based, with varying degrees of complexity in the
amount and nature of the rules10. Yet, many studies foresee an ac- 10 This was pointed out

by the participants in
our study who are su-
pervisors of the life in-
surance sector.

celeration of AI-based solutions to distribute financial services and in
life-insurance plans[Balasubramanian et al., 2021, Mamiko, 2020]. AI-
powered systems offer faster and more personalized financial advice. For
brokers, data-driven profiling helps identify risk in a more fine-grained
manner [Balasubramanian et al., 2020]. The insurance market is also
gaining interest in AI-powered robo-advisors with the successful exam-
ples of companies which used this technology to increase sales revenue
significantly [Balasubramanian et al., 2020].

Regulatory requirements for feature-based explanations. In the life-
insurance context, financial legislation regarding the insurance sector
apply. The law on insurance distribution (Articles 20 and 30 of Direc-
tive (EU) 2016/97 of January 20, 2016), which aims to protect consumers
against the sale of products unsuited to their needs, specifies: "The dis-
tributor shall advise on a contract that is consistent with the requirements and
needs of the prospective subscriber and shall specify the reasons motivating this
advice."11. The text also mentions that: "the distributor specifies in writing 11 Article L. 521-4 of the

French Insurance Code[...] the client’s requirements and needs and provides objective information on
the insurance product offered in a comprehensible, accurate and non-misleading
form to enable the prospective subscriber to make a fully informed decision."
Further, the duty of information and advice in life insurance (L.522-5 of
the French Insurance Code) requires to "formalize the reasons for the ap-
propriateness of the proposed contract in relation to the requirements and needs
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expressed.", which implies a requirement for feature-based explanations.

This leads us to question more precisely the purpose of the explana-
tion in light of the objectives of the law. What exactly is expected of the
explanation so that it is effective with regard to the objectives of the Arti-
cles L. 521-4 and L. 522-5 of the French Insurance Code and EU Directive
2016/97? One of the objectives of the explanations is to enable future
life-insurance subscribers to make a "fully informed" decision about the
product being proposed. This objective is explicitly stated in the text of
Article L. 521-4 of the French Insurance Code and Article 20 of EU Direc-
tive 2016/97. However, this objective is relatively imprecise and difficult
to measure. To better assess whether an explanation allows for an "in-
formed" decision, the goal should be broken down into subgoals that are
easier to verify. We understand these subgoals to be 1) help users appro-
priately rely on a recommendation (and be able to detect a big mistake)
2) help users understand a recommendation and why it is appropriate
for them 3) help users calibrate their trust in robo-advisors. This is what
we measured in Study 2.

In addition to the goal of "fully informing" clients, the law aims at
enhancing the accountability of intermediaries by imposing the obliga-
tion to set out in writing the client’s needs as well as the reasons why
the recommended product is in line with those needs. The formalization
of these steps will reduce the risks of intermediaries letting conflicts of
interest interfere with their duty to give objective investment advice to
customers.

In other contexts, AI systems may also be affected by requirements
for feature-based explanations. Consumer protection law has provisions
regarding explanations of recommender systems in online marketplaces.
It notably imposes to show "the main parameters determining the ranking
[...] of offers presented to the consumer as a result of the search query and the
relative importance of those parameters as opposed to other parameters"12. The 12 New art. 6(a) of Di-

rective 2011/83 on Con-
sumer Rights

General Data Protection Regulation [European Parliament and Council,
2016] provisions also apply in the case of entirely automated individual
decisions based on profiling. It requires that data controllers disclose
"meaningful information about the logic involved" (articles 13-15). The GDPR
provisions apply "when the decisions (i) involve the processing of personal
data, (ii) are based solely on an automated processing of data and (iii) produce
legal or significant effects on the recipient of the decision" [Bibal et al., 2021,
European Parliament and Council, 2016].
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5.3 Study 1 Methodology: a market-driven co-
design approach

5.3.1 System design: Robex, the robo-advisor

Robex13 is a simplified and fictional life-insurance recommender sys- 13 Standing for EXplain-
able ROBo-advisortem developed for the purpose of this study. The recommendation algo-

rithm of Robex is not AI but a rule-based algorithm established with the
help of 4 domain experts, more precisely supervisors of the life-insurance
industry. Indeed, since our goal was to study explanation representations
using existing agnostic explainability methods, we did not need to use a
real AI algorithm for this study. Similarly, the design of Robex was not
our focus. However, we wanted our fictional robo-advisor to replicate the
type of interface that robo-advisor clients would face. Therefore, we con-
ducted a market analysis of existing online robo-advisors in France. This
lead us to review the design of four major players in France: Yomoni,
Nalo, Linxea and Wesave14. For each of the identified robo-advisors, we 14 https://www.yonomi

.fr/, https://www.nalo

.fr/, https://www.linx
ea.com/, https://www.
wesave.fr/

tested the user journey from the profiling questionnaire to the simulation
of the robo-advisor’s proposal. We took inspiration from their content
and interface design. This also allowed us to identified the classical steps
in a robo-advisor user journey.

The usual subscription process with robo-advisors is as follows. First,
users go through a series of questions about their profile and financial
objectives. Then, they can see the summary of their profile and the pro-
posed recommendation, on the same page. Robex follow the same first
stages. During the recommendation phase, Robex presents an additional
section on why this product is recommended to you.

The following elements from existing robo-advisors on the market
have inspired us to implement similar features in Robex:

• the questions used in the profiling questionnaire about the user’s char-
acteristics (risk appetite, financial knowledge) and project. The ones
we used in Robex are presented in Table 5.1.

• the brief, textual explanations in the profiling questionnaire to give
some context and to indicate the answer to a question testing financial
knowledge, as shown in Figure 5.4.

• the vocabulary used, driven by domain specificity and also by an in-
tention to be accessible to all.

• the seamless navigation between the different steps of the user journey,
and the clear presentation of the different stages upfront thanks to a
progress bar at the top of the page, usually including "project", "sim-
ulation", "subscription", "documents", "signature". As with real robo-
advisors, Robex presents a user journey progress bar, but adapted to
the journey of the participants in our experiments.

• the presentation of the allocation of assets into large themes "actions",
"obligations"... or by geographical region. However, all financial sup-
port and allocations in Robex were fictionnal.
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• matching the user to one of a number of proposals with different levels
of risk. Most robo-advisors propose a range of seven to ten proposals
(which they sometime present as "user profiles"). We limited the range
of proposals to five to reduce the complexity of our study.

Figure 5.1: Fictional
life-insurance plans
proposed by Robex,
the explainable robo-
advisor developed for
this study

In parallel, we conducted informal interviews with 4 supervisors with
experience in the supervision of life-insurance distributors to better un-
derstand the domain. These discussions were instrumental in developing
our own, simplified, profiling questionnaire to measure 5 user character-
istics: the amount to be invested compared to the user’s total financial
wealth, her investment objective, her financial knowledge and experi-
ence, her risk appetite and the proportion of her financial assets already
placed on financial markets. For each of the questions used to measure
these characteristics (cf.. Table 5.1), we associated coefficients so as to ob-
tain a risk-score that denoted the amount of risk a user can take. We then
sketched five fictional but realistic life-insurance plans that represent 5

levels of risk, as shown in Figure 5.1. Our score-based rules for insur-
ance distribution then matched a profile to a plan. Robex is simplified
because we have not taken into account the fees, investment horizons or
performance of the funds in order to keep the complexity of the exper-
iment manageable. The simplified Robex algorithm is presented in the
Appendix B2.
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Figure 5.2: Screenshot
of the Robex interface,
showing the profiling
questionnaire stage at
the start of the user jour-
ney. Translated from
French to English.

Figure 5.3: Screenshot
of the Robex interface,
showing the recom-
mendation stage. As
required by law, a
summary of the user’s
profile is displayed
first, followed by a
life-insurance contract
proposal with details.
The explanation is
presented on the same
page, just after the
proposal.
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User charact. Questions with [possible answers]

Objective What would be the main objective of your investment? [Make my savings grow, Finance a
project, Finance my retirement, Pass on my assets, Protect my savings]

Amount to be in-
vested

How much would you like to invest? [Less than 5000€, Between 5000€ and 10 000€, Between
10000€ and 50000€, More than 50000€]

This amount represents what percentage of your total financial assets (excluding your
home)? [Less than 5%, Between 5% and 25%, Between 25% and 50%, Between 50% and
75%, More than 75%]

Percentage of
assets already
invested

Have you already invested in a financial product with a risk of capital loss? If so, how
much of your total financial assets do these financial products represent? [Less than 5%,
Between 5% and 25%, Between 25% and 50%, Between 50% and 75%, More than 75%]

Risk appetite Which of the following statements is closest to the level of financial risk you are willing
to take when saving or investing? [Take significant financial risk hoping for significant
returns, Take above average financial risk hoping for above average returns, Take average
financial risk hoping for average returns, I do not wish to take any financial risk]

For the next three sentences, please indicate the likelihood that you would engage in the specified
behavior if you were in the situation described "Investing 10% of your annual income in an in-
vestment consisting of securities issued by the European Union" [Very unlikely, Somewhat
unlikely, Uncertain, Somewhat likely, Very likely]

"Investing 5% of your annual income in highly speculative securities" [Very unlikely, Some-
what unlikely, Uncertain, Somewhat likely, Very likely]

"Investing 10% of your annual income in a new business" [Very unlikely, Somewhat un-
likely, Uncertain, Somewhat likely, Very likely]

Financial Have you ever subscribed to a life insurance contract? [Yes, No]

knowledge and ex-
perience

Have you ever invested in a financial product with a risk of capital loss (e.g. PEA (Plan
d’Epargne en Actions), multi-support life insurance contract, securities account, crypto
assets, investment funds...)? [Yes, No]

A high expectation of gains implies a high risk of capital loss. [True, False]

A real estate fund (SCPI or OPCI) is a fund with guaranteed capital. [True, False]

The capital invested in a life insurance plan is blocked for 8 years. [True, False]
The capital invested in life insurance units of account is subject to a risk of capital loss.
[True, False]

Table 5.1: Question
used in the Robex’s
profiling questionnaire
for measuring users’
personal characteristics
(translated from French
to English).
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Figure 5.4: Screenshot
of the Robex interface,
showing the answers it
provided for test ques-
tions on participants’ fi-
nancial knowledge.
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5.3.2 Explanation prototype

As seen in Section 5.2.3, the required explanations in life-insurance
should link client’s characteristics to the recommendation, which is what
feature importance techniques do. To investigate the impact of feature
importance explanations on users’ trust and appropriate reliance on rec-
ommendations, we developed feature importance explanations in Robex.

We approached the explainability phase as if the rule-based recom-
mender algorithm in Robex was a black-box. Our results can therefore
be transposed to more opaque AI-powered robo-advisors. In each of
the studies presented below, we used SHAP [Lundberg and Lee, 2017]
a post-hoc, agnostic, and widespread interpretability method, to gener-
ate feature weights. We then use these weights as a basis for designing
explanations that differ in representation format and interactivity.

One of our early prototypes is shown in Figure 5.5. We first de-
signed the explanation interface taking inspiration from the graphical
Shapley explanations presented in [Lundberg and Lee, 2017]. However,
we tried to simplify the visual elements to make them readable by non-
professional users. Specifically, we simplified the graph into a table, be-
cause some research on explainability showed that tables were the most
interpretable representation medium for non-professional users [Huys-
mans et al., 2011]. The table sorts features per their influence on the risk
of the prediction: features that decreased the risk of the proposal are
shown in the left column and features that increased it on the left. We
also applied a card-based design for the display of each feature-related ex-
planation. This design enables to provide more context with each feature.
Each card contains the name of the feature in boldface, the value of the
feature for the user in grey, and its impact in natural language sentence
[Bove et al., 2022].

We showed to participants in Study 1 a prototypical "graphical" sum-
mary of the importance of each variable on the risk of the proposal, as
shown in Figure 5.5. We improved the explanation representation based
on the feedback from expert and lay participants of the co-design exper-
iment we present in the following section.

5.3.3 Co-design sessions and analysis

To answer our RQ1 and RQ2, we interviewed domain experts and lay
users to better understand end users and supervisors needs and expecta-
tions, following a participatory design approach [Spinuzzi, 2005]

Procedure. Each participant took part in an individual session that
lasted between 45 minutes and 1h30. The aim of the interviews was
to collect users’ feedback on our prototype, and work with users and
domain experts to create explanations that meet their needs and require-
ments. This participatory design approach has already been endorsed in
the field of explainability, for example in [Panigutti et al., 2023a, Cheng
et al., 2022, Wang et al., 2019a]. Each co-design session was divided into
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Figure 5.5: Screenshot
of the feature-based ex-
planation prototype for
Robex. In orginial lan-
guage (French). Indi-
vidual factors that de-
crease investment risk
are shown on the left in
descending order of im-
portance and factors in-
creasing investment risk
are on the right.

three parts: a semi-structured interview, a task-oriented think aloud por-
tion and a post-study questionnaire. One researcher was present during
all interviews and took detailed notes of the participants’ answers and
think-aloud statements. The first part of the session consisted of a semi-
structured interview to explore the needs of life-insurance clients for ex-
planations of recommendations. Structured questions varied slightly if
participants were supervisors or novice end-users. Regulatory supervi-
sors were asked about the role of explanations in enabling users to make
informed decisions. They were also asked about the best format and
type of explanation to achieve this goal. Additionally, they were asked
to provide their thoughts on the explanations currently offered by robo-
advisors and how to adapt to clients with little financial knowledge. We
asked novice users if they had any experience in using robo-advisors or in
receiving financial investment recommendations and what explanations
they would like to receive about the recommended financial product. We
gave some context on life-insurance and on robo-advisors to people that
had no experience at all with financial investments. During the second
part of the study, participants were asked to use Robex. Participants were
observed by the researcher and asked to think aloud throughout their in-
teraction with the system. Finally, participants were asked about their
overall impression of the system.

Participants. We conducted interviews with 11 participants: 6 con-
sumer protection experts15 and 5 end-users. 15 Four of them were dif-

ferent from the 4 per-
sons we interviewed to
design the Robex algo-
rithm.

The consumer protection experts were volunteers from the consumer
protection department of the ACPR, the French regulatory authority for
banking and insurance services with whom we collaborated for this study.
All participants had strong experience in auditing insurance providers
(from 3 to more than 10 years). Their expertise and role is to verify that
insurance distributors respect "the rules intended to ensure the protection
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of the customers" as well as the "adequacy of the means and procedures
which they implement for this purpose" and to promote fair commer-
cial practices among industrial professionals16. Half of them had some 16 https://acpr.banqu

e-france.fr/en/custom
er-protection/profes
sionals/customer-pro
tection-principles

experience in supervising robo-advisors.
The novice users were volunteer doctoral students recruited through

the network of the university with which the authors are affiliated. All
participants received a consent form informing them of the study objec-
tives and identified risks. All participants were volunteers, not compen-
sated, recruited through an email describing the objective and duration
of the experiment. An ethics committee was not required for this study.

Inductive content analysis. We conducted an inductive [Elo and Kyn-
gäs, 2008] content analysis of the detailed notes taken by one author dur-
ing the interviews with supervisors and end-users. One author identified
concepts and themes about the characteristics of the explanations that
emerged from reading the interview notes. First, the author observed
that participants talked mainly about either the explanation implementa-
tion or the explanation’s purpose (notably with discussion around risk).
On this basis, different themes for either explanations’ format/content or
explanations’ purpose could be derived that encompass most of the con-
cepts mentioned by participants. The translation from French to English
was done after the final categorization.
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5.4 Study 1 Results

5.4.1 Understanding explanation needs from two perspec-
tives

We grouped the main identified themes of the explanation require-
ments according to their connection to the format or content of the ex-
planation. Through the supervisor’s view, we were able to gather do-
main perspectives that end users alone would not necessarily have pro-
vided, such as understanding the interests of different stakeholders and
potential misalignment, where the vulnerability of certain users can be
exploited, or the wide range of best practices seen for recommendations
and explanations. Conversely, the end-users’ perspective reminds us of
what clients truly care about, regardless of existing regulations. While
the main focus of the supervisors was on the notion of risk, the main
concern of the users was not as clear. For some, it was the performance
of the proposed contract, for others the reliability of the robo-advisor,
and for others, the risk. We discuss below some themes that emerged
from both perspectives.

5.4.2 Redesign principles drawn from the co-design sessions

Give more precise explanations. The supervisors reported an increas-
ing trend for automated online robo-advisors, and a lack of "good" au-
tomated explanations to support those tools. Current robo-advisors’ ex-
planations were seen as very "generic" and "nebulous" in general. One
of the reasons is the use by many brokers of a third-party software to
produce explanations and recommendations, over which they have little
control. Supervisors also reported the difficulty for brokers to produce
explanations with the increasing complexity of their tools: "There’s too
much complexity even for them." This highlights the relevance of the
XAI domain to help solve real-world problems, even when the underly-
ing recommendation system is AI but rule-based.

Inform customers of the risk. The supervisors insisted on the impor-
tance of explanations as a safeguard to inform customers about risk, tak-
ing as an example cases of overestimation of the risk for vulnerable peo-
ple. Supervisors used to phrase "prise décision éclairée", which can be
translated literally into English as "enlightened decision-making", to de-
scribe the aim of the explanations. This French phrase conveys a stronger
notion of user empowerment than "informed choice".

Rule-based algorithm improvement. The supervisors we interviewed
also gave us feedback on the rule-based algorithm that we developed.
During algorithm testing, they deliberately simulated specific vulnerable
user profiles to verify that Robex’s recommendation was low-risk. This
enable us to add several exceptions to our rules such as if users’ risk
appetite is 0/7, redirect the user to the most secure proposal regardless
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Explanation
aspect

Supervisor view End-user view

Format
Schematic "schematic", "graphics and diagrams [for

novice users]", "playful", "step-by-step"
"I want to see the scale of the risk, and where
I’m placed on that scale"

Content
Synthetic vs.
exhaustive

short, simple, readable, "[Explanations] are a
sort of synthesis", "clean and clear" vs. ex-
haustive, "Just putting a sentence "considering
this and that..." is not enough", give links to
more information, give enough documenta-
tion

simple, "Something that tells you "this is re-
ally the points you need to know""

Adapted vo-
cabulary

"adapt vocabulary", "not too much text",
"avoid financial jargon"

"use simplified language, not the language of
a banker", "need to have more familiar lan-
guage", "I’m not sure what a placement is"

Purpose
Justify link user characteristics and product, "justifi-

cation", "real need of transparency" motivated
by misalignment of interest between insurers
and clients, prevent "scams", "what it is based
on?"

"Why are you making this recommendation?
What factors are you basing it on?", "I want an
explanation only if there is a disagreement."

Warn control, notify, warn, inform, "tendency to
underestimate [the risk]", "Explanations are
useful because there is a risk.", "the [hu-
man] advisor will not say everything", "robo-
advisors don’t have enough safeguards",
"make them [the users] understand that there
is a step to take, make them question "do I
agree?""

"What are the risks?", "How much do I con-
cretely risk losing on the 50,000 I put in?",
"What can I expect in terms of risks and ben-
efits?"

Engage users "It looks boring", "I’ll open them [the links]
and probably not look at them."

Teach enable users to have answers to their follow-
up questions

"I don’t know anything about that.", "I neither
agree nor disagree because I don’t really un-
derstand this financial concept", "I don’t un-
derstand this field"

Table 5.2: Main themes
emerging from the con-
tent analysis of supervi-
sors and end-users inter-
views, with correspond-
ing lexical field and cita-
tions.

of the other parameters, and if the objective is to protect my savings, cap
the recommendation at the second safest.

Support user engagement and learning. Although we could group both
supervisor and end-user perspectives into common themes, some themes
were discussed more by one group. For example, end-users expressed
their need to be engaged—some felt either overwhelmed or bored by
the topic. supervisors talked about the need for complete information
although end-users insisted on their need for simple, easy-to-digest in-
formation, that used simple vocabulary. One participant said that he
found it difficult to understand what the numbers or ranged used in the
explanations represented because he had no concept of scale in this area.
For example, it was difficult to make sense of "less than 30% of my as-
sets". Is that a small, a large portion? This makes it difficult to assess
explanations.
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Find the balance between text and graphics. One of the themes we
found was the need for schematic explanations on the one hand and
the need for more human explanations that can answer a wide range
of users’ questions on the other. Two supervisors very much appreci-
ated our graphical, Shapley-based explanations, finding they had never
seen something like that in the market and that it responded well to the
need to link users’ characteristics to the recommended product. How-
ever, many—supervisors and end-users alike—indicated their need to be
able to chat with a human counsellor despite the explanation. A supervi-
sor also imagined explanations could look more like a Frequently Asked
Questions menu and a participant said "I can imagine a chatbot with
someone behind it who can answer my questions." This led us to try to
balance between text and graphics, following Szymanski et al. [2021]’s
findings, and to compare more "conversational" or more "graphical" ex-
planations in the next study.

Clarify visually and accurately the feature’s impact. Some partici-
pants commented that it was quite difficult to understand what the two
columns represented. They would have liked more visual clues, with ar-
rows as in the original Shap explanation, to indicate the direction of each
feature’s effect. One participant also expressed that she would trust an
explanation that correctly scaled the effects of each impact.

Redesign specifications. Based on the legal requirements for explana-
tions and the analysis of supervisors’ and end-users’ expressed needs,
we derived the following elements for the redesign of our explanations.

• Risk of the recommendation. We added the risk score of each user from
the rule-based algorithm of Robex, and reported it on a scale of one
to five to make it correspond to the five recommendations. We added
the user risk score and risk scale below the visualisations of the five
recommendations.

• Important Definitions. As highlighted by end-users and supervisors in
Study 1, and by prior work [Bove et al., 2022], it is essential to give the
minimal background knowledge necessary to understand the financial
concepts used in the recommendations and explanations. We therefore
provided on-demand definitions for all important financial concepts
through information buttons.

• Vocabulary. As pointed out by a non-expert participant, we simplified
the vocabulary used in the text. Initially, it contained some financial
jargon that we had learned from our informal talks with regulatory
supervisors.

• Descriptions of the effect of complex user input parameters. Robex used
five user input parameters: "Your risk appetite", "Your level of finan-
cial knowledge", "the amount to invest proportionally to your total
financial assets", "Your financial objective" and "The portion of your
financial assets already invested". Out of those five parameters, we
saw in Study 1 that the last three were more complex to interpret. For
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each of these concepts, we provided (1) the effect it should have on the
proposition—either lower or increase the risk the customer can take—
(2) an indication of the magnitude of the user’s input (e.g. "75% is a
very big portion"). An example is shown in Figure 5.6.

• Direction and scale of the impact of features. We have converted our origi-
nal tabular visualisation into a tornado plot to make the direction and
scale of the features’ impact clearer.

Study 2 tests two additional formats to explore the optimal balance
between text and graphics: an interactive graphical format and a chatbot-
style dialogic format with a few graphical cues.
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5.5 Study 2 Methodology: A deception-based between-
subjects experiment

In this study, we expand upon the results of Study 1 to examine the
usefulness of legally required feature-based explanations in the context
of life insurance to help lay users appropriately rely on robo-advisor rec-
ommendations. Specifically, we conduct a between-subjects experiment
with deception to test for overtrust and overreliance effects. Below we
describe the design of the quantitative study, explaining the rationale for
the use of a 2x4 factorial design and a between subject crowd-sourced
survey.

5.5.1 A 2x4 factorial design

Experimental conditions. We used the results of Study 1 to refine the
original Robex explanation prototypes and to create different explana-
tion conditions for comparative evaluation. Study 1 led us to question
the right balance between text and graphics. Additionally, we build on
the findings of the explainability literature presented in Chapter 4, ac-
cording to which interactivity improves the usefulness of explanations.
Specifically, we want to test two types of interaction identified in our tax-
onomy: "simulate" and "ask" interactions, which have not been directly
compared in the existing literature. Therefore, our explanation condi-
tions vary in terms of interactivity and balance between visuals and text.
In this quantitative analysis, we examined four distinct explanation con-
ditions.

1. Control. Some participants did not receive any explanation. They
served as our control condition.

2. Graphical-static. The "graphical" explanation we had initially proto-
typed for Study 1 was improved based on participants’ feedback and
the redesign specifications outlined in Section 5.3.

3. Graphical-mutable. We implemented a version of the graphical explana-
tion where user could change a few parameters that were actionable
such as investment amount, objective and portion of assets invested
eleswhere. This interaction corresponds to the "mutate / simulate"
interaction described in our interaction taxonomy in Chapter 4.

4. Dialogic. As somme end users and supervisors compared Robex’s
explanations to those of a human advisor, we also designed more
human-like explanations, i.e."dialogic" ones. This approach has been
adopted in previous XAI work by [Hernandez-Bocanegra and Ziegler,
2021, Hepenstal et al., 2021] for "conversational" explanations. It cor-
responds to the "ask" interaction in our taxonomy. The dialogues were
not responses to free text input from the user, but responses to pre-
defined questions. The user would first see the list of these predefined
questions formatted like individual SMS text on the user side of the
conversation (in blue) and could click on any of these questions to see
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the answer on the Robex side of the conversation (in grey). The an-
swers to each predefined question was also predefined but adapted to
the user’s characteristics and recommendations. After having clicked
on a question, the user could click on any of the remaining predefined
questions.

Participants were divided into four groups corresponding to these
four different interfaces. The same contextual information was delivered
across all the different explanation conditions.

Figure 5.6: Explanation
interfaces for each of the
condition A "Graphical-
static": users see a
graphical summary of
how their characteristics
impact the risk of the
proposal. Translated
from French to English.

Additionally, as we wanted to test for overreliance and overtrust, we
introduced deceptive recommendations as an experimental condition.
The objective was to compare the ability of users of different interfaces
to detect a crude recommendation error. Each of the four explanation
groups described above was divided in two:

1. Reliable recommendation. One group received a correct recommenda-
tion. These were delivered through the building of a rule-based

2. Deceptive recommendation. The other group a false recommendation.
The false recommendation was produced by altering the score-based
algorithm so that the recommendation was either much too risky or re-
ally not risky enough. This was done by altering the initial user’s risk
score calculated by Robex by a roughly 50% change. The direction of
the change was so that more-than average risk-takers were redirected
to low-risk proposals and vice versa. For example, if a participant was
recommended "Securimax" by the normal Robex algorithm, her risk-
score would be increased artificially so as to output the "Flexiplus"
recommendation. On the contrary, participants for whom the initial
correct recommendation was the more risky "Flexiplus" would be rec-
ommended the more conservative "Securimax" product. For partici-
pants who initially got the "Flexi" recommendation, if their risk-score
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Figure 5.7: Explanation
interfaces for each of the
condition B "Graphical-
mutable": users first see
the graphical-static in-
terface and then a pop-
up message indicates
they can change some
of their characteristic.
Translated from French
to English.

was below 12—out of a maximum score of 21—, they were redirected
to "Dynamo" and for risk-scores above 12, to "Securimax". The modi-
fied Robex algorithm is presented in the appendix B2.

The explanations of the false recommendation were produced in the
same way as the correct recommendations, using agnostic SHAP feature
importances based on the skewed Robex algorithm. As a result, the ex-
planations for false recommendations were illogical, such as "Your risk
appetite: low (1/7) contributed to increase the risk of the recommenda-
tion" cf. Figure 5.9.

Measures. Building on prior work conducting empirical studies to
evaluate XAI systems [Buçinca et al., 2021, Shin, 2021, Lai et al., 2021, Liu
et al., 2021], we measured the concepts described below. We tested the
Cronbach’s alpha’s for the different sets of questions to verify the internal
consistency of the questions asked for each dimension. The questions are
reported in Table 5.3.

• Reliance. Reliance was measured by asking participants if they thought
the robo-advisor’s recommendation was adapted to their need or not.
We were able to measure overreliance when the participant followed
an incorrect recommendation.

• Trust. Trust was measured through the five question items from the
benevolence and competence aspects of McKnight’s framework [McK-
night et al., 2002]. One item was added to measure if participants felt
the need for any additional human advice. overtrust occurred when
the participant trusted an incorrect recommendation.

• Cognitive load. Cognitive load was measured through the mental de-
mand and effort items of the NASA-TLX Index.
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Figure 5.8: Explanation
interfaces for each of the
condition C "Dialogic":
the same information
provided in the inter-
faces A and B)is deliv-
ered through "sms-like"
textual messages. Some
graphics are added to
facilitate the visualisa-
tion of the risk and of
the variables decreasing
and increasing the risk
of the proposal. Trans-
lated from French to En-
glish.
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Figure 5.9: Explana-
tion interfaces examples
for an incorrect rec-
ommendation for each
of the three conditions:
A’ "Graphical-static"; B’
"Graphical-mutable"; C’
"Dialogic". The correct
user profile in this case
would have been "Se-
cure", but the skewed
Robex algorithm out-
puts "Dynamo". Only
A’ is translated from
French to English, the
rest are in original lan-
guage.

• User engagement. Three user engagement question items were adapted
from O’Brien and Cairns [2015]’s framework. Two items were taken
from the Felt Involvment (FI) category and one from the Novelty cate-
gory (NO).

• Objective understanding. Understanding of the recommendation on the
one hand and understanding of the explanation on the other were mea-
sured through "test" questions. The question about the recommenda-
tion was developed by the authors relying on their knowledge of the
field and discussions with experts. To measure understanding of the
explanation, we used three questions to test if they understood the di-
rection of the impact of some user inputs, as seen in prior XAI work
[Szymanski et al., 2021].
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Measure Questions with [possible responses] Cronbach’s
alpha

Understanding of
recommendation

What is your estimate of the euro fund percentage in the proposal that
was made to you? [Several proposals]

NA

On a scale of 1 to 5 (5 being the most risky), how risky do you think
the Robex proposal is?

What is special about a euro fund? [it offers a high expectation of
gains for a high risk of loss, it is mostly composed of actions, it is
guaranteed by the insurer, I do not know]

Understanding of
explanation

Of your characteristics and goals, which factor weighed the most in
the proposal the algorithm offered you? [Several proposals]

NA

How did the proportion of your financial assets already invested in
risky financial products, which is for you ... , impacted the risk of
proposal made by Robex? [Increase / decrease / neutral]

How did your investment objective, which is ... impacted the risk of
the proposal made by Robex?

Trust-Benevolence I think Robex is acting in my best interest 0.854

Robex wants to understand my needs and preferences

Trust-Competence Robex is skilled and effective in providing life insurance recommen-
dations

Robex has the expertise to understand my needs and preferences 0.878

Robex is fulfilling its role as a life insurance advisor very well

Trust-Other (not
used)

I would need a human advisor to help me choose a life insurance plan Not used

User engagement I felt involved in my task of choosing a life insurance plan

The content of the life insurance recommendation site has attracted
my curiosity

0.818

I was interested in the experience

Cognitive load I found it mentally demanding to read and understand the proposed
life insurance formula

0.829

I had to make an effort to read and understand the proposed life in-
surance formula

Table 5.3: Question used
for measuring different
metrics with Cronbach
alphas (translated from
French to English).
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5.5.2 Survey procedure and analysis

Figure 5.10: The work-
flow of our quantitative
experiments. The pro-
filing questionnaire is
used to produce a per-
sonalized recommenda-
tion of a life-insurance
contract. Clients can
review the recommen-
dation, the explanation
and then decide to fol-
low the recommenda-
tion or not.

Procedure. Our goal was to target participants who might be life insur-
ance robo-advisor users. As participants were crowd-sourced, we began
with a selective question to filter out users who were not likely to be
users of life-insurance in the near or distant future. The question used
was "To begin with, we would like to know how you feel about life in-
surance: 1 - I might sign up (for the first time or again) to life insurance
in the near or distant future. / 2 - I am not considering signing up (for
the first time or again) to life insurance in the near or distant future, even
though I’m curious to find out more on the subject." The answers were
formulated so that it was not obvious to guess which answer to select to
be able to continue. Only participants who checked the first answer were
selected to continue. On the crowd-sourcing platform, participants were
asked about their highest level of education and gender. Participants
were redirected to Robex and provided with an overview of the study.
They were asked to provide their consent to participate and then under-
went an attention check. The two following steps in the study process
replicate what we can see in existing robo-advisors: a profiling question-
naire followed by recommendation page. Participants had to go through
the profiling questionnaire. They were then distributed randomly in our
eight different conditions as shown in Figure 5.10, which illustrates the
experimental workflow. They read through their user profile summary
at the top of the page, the description of the recommendation. If appli-
cable, they saw an explanation of why this recommendation was made
to them, and then they had to choose whether to accept or reject the pro-
posed life-insurance plan. We also collected their qualitative feedback
about explanations through a short free-text field. Finally, a two-page
post-questionnaire measured their understanding, workload, trust and
engagement in using Robex.

The whole study lasted around 10 minutes. Participants were paid
around 3€50

17 for completing the study. We randomly assigned partici- 17 Lucid goes through
several suppliers to
gather participants.
Each supplier receives
3.50€ for each study
completed, takes a com-
mission and pays the
rest to the participant.

pants to an experimental condition until we had reached a minimum of
30 participants in each of our eight conditions.

Participants who failed attention checks, took less than 5 minutes or
wrote non-serious content (repeated keyboard strokes, clearly ironical or
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insulting content) in the free-text field were excluded. We also imple-
mented time counters: participants could not continue to next page if a
(small) minimum amount of time had not elapsed. In addition, on the
recommendation page, we set time counters for each of the three sec-
tions of the page: profile summary, recommendation and explanation.
The time thresholds were calibrated to correspond to a quick reading of
each section. After the time had elapsed, a button appeared to say "OK
continue" or "Show recommendation". These time counters therefore also
served as a way to gradually disclose content and avoid cognitive over-
load [Springer and Whittaker, 2019]. This was to make sure that partici-
pants read through the profiling questionnaire, the recommendation and
the explanation. We ended up with 32 participants in each condition.

At the end of the survey, participants in the deceptive condition were
informed that they had received a wrong recommendation. All partic-
ipants were reminded that the financial advice presented was fictitious
and non-relevant for their personal needs. The study was approved by
an academic research ethics committee.

Participants. French workers between 18 and 65 years old were re-
cruited online through the platform Lucid18. Of the study respondents 18 https://lucid.co/

that were finally included in the survey, 73% were female and 27% male—
although some participants did not provide any answer to that question.
61% had an undergraduate or a graduate degree (Bachelor, Master, Doc-
torate and other specialized education). We cannot explain the skew
towards women participants but it is possible that more male partic-
ipants did not want to answer this demographic question or that our
filters about the interest in life-insurance or seriousness of the responses
excluded more male participants. Participants had an average financial
knowledge score of 1.3 out of 5, and were therefore for the most part
representative of non-expert users. Financial knowledge was measured
in the pre-questionnaire through specific questions written with the help
of four supervisors from the French Regulation Authority of financial
services (cf. Table 5.1 for the detail of the questions).

Analysis. For all evaluation measures, we ran a two-way ANOVA anal-
ysis with the explanation conditions and the recommendation conditions
(correct or false) as the independent variables. Our eight groups had a
minimum of 32 participants in order to confidently meet sample size con-
siderations for ANOVA. For groups that had more participants, we ran-
domly selected 32 responses. When significant, we conducted post-hoc
Tukey’s HSD test for pairwise comparisons. We used the Shapiro-Wilk
test to check that the assumptions for ANOVA were met and the Bartlett
test to verify the homogeneity of variances. We also controlled for socio-
demographic confounding factors: education, age, and gender as control
variables, although this data variables was incomplete.
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5.6 Study 2 Results

All Cronbach’s alphas for the different sets of questions were signifi-
cant, except for trust: we had to remove the question about the human
advisor (we initially thought this question could be related to trust in the
robo-advisor, as it measured trust in a (human) advisor, but it was a false
intuition). For all the evaluation measures, the residuals of the regression
showed a near-normal distribution, as confirmed by the Shapiro-Wilk
test, validating the assumptions for ANOVA. Additionally, the Bartlett
test indicated that variances were homogeneous.

Figure 5.11: Results
for Study 2. Vertical
lines represent the 95%
confidence interval.
Asterisks and dots
indicate the statistical
significance of the re-
sults: *** p-value≤0.001,
** p-value≤0.01, *
p-value≤0.05, • p-
value≤0.07, "ns" non
significant.

5.6.1 Explanations do not help to better calibrate trust

We found that the no-explanation control group was more or equally
likely to distinguish between good and bad advice than the explanation
groups. We found a statistically significant difference in trust (p=0.001)
and reliance (p=0.01) between the no-explanation control group that re-
ceived a correct proposal and the no-explanation control group that re-
ceived an incorrect one. However, we did not always observe this with
participants who received explanations. Specifically, there was no statis-
tical difference in trust and reliance on the advice between the dialogic
explanation group that received a correct recommendation and the di-
alogic explanation group that received and incorrect recommendation.
For the graphic-mutable explanation, we found participants were able to
calibrate their reliance on the advice between the incorrect and correct
proposal (p=0.03), but not their trust. In the graphic-static explanation
condition, people trusted a correct proposition significantly more than an
incorrect one (p-value=0.05) and relied on the correct proposition almost
but not significantly more (p=0.064) than on the incorrect one. Overall,
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out of those three explanations, it may be the graph-mutable explana-
tion that performed best, because it enabled partcipants to appropriately
calibrate their demonstrated trust, i.e. reliance on the recommendation.
However, none of the explanations outperformed the control condition
in appropriately calibrating trust and reliance.

5.6.2 Dialogic explanations increase subjective trust

We found that users who were shown an incorrect recommendation
and a dialogic explanation trusted significantly more the robo-advice
compared to the no-explanation group (p=0.001). Further, we found that
participants in the incorrect recommendation and dialogic explanation
condition were almost significantly (p=0.068) more likely to rely on the
incorrect robo-advice than participants in the incorrect/control condition.

5.6.3 Dialogic or graphical explanations do not improve user
understanding

The different explanation formats did not improve users’ understand-
ing of the recommendation and more specifically its risk —question 1 out
of 3 measuring recommendation understanding (cf.. Table 5.3). Based on
the graphs in Figure 5.11, there appears to be a tendency for graphical-
mutable explanations to lead to better understanding of the recommen-
dation than other conditions, but the effect was not significant (p=0.1).
Further, the level of understanding of the explanations was compara-
ble across the different explanation conditions. However, people in the
deceptive conditions were significantly less likely to understand the char-
acteristics of the recommendation and the explanations (p=0.001). This
result is based on one-way ANOVA with solely the recommendation con-
dition (correct or false) as the independent variable.

This evidences that people are less likely to understand a recommen-
dation that is not suited to their needs, or that they did not expect.

5.6.4 Explanations do not affect cognitive load and user en-
gagement

We do not find any statistically significant effect for the different ex-
planation conditions on users’ subjective cognitive load and user engage-
ment. This finding contradicts other work on the cognitive cost of expla-
nation [Vasconcelos et al., 2022]. Perhaps this is the case here because un-
derstanding financial recommendations is already cognitively demand-
ing enough due to the complexity of the field, and the cost of adding
explanations is negligible in comparison—average perceived cognitive
workload for using the robo-advisor was 5.6 out of 10. The "simulate"
and "ask" interactions did not improve users’ subjective engagement in
the task. This may also be explained by the seriousness and unamusing
nature of this specific task in the finance domain.
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5.6.5 Higher levels of education reduce overreliance

As shown in Figure 5.12, we conducted an additional analysis to study
the effects of education. Indeed, while controlling for confounding fac-
tors, we had noticed that education could play a role in trust and un-
derstanding of the recommendation. The original categorical data col-
lected on the education crowdsourcing platform included eight different
categories representing levels of education in French. 68 participants
out of 256 respondants did not provide their education levels. We cre-
ated larger groups by combining educational levels equal to or less than
the "Baccalauréat", which is the equivalent of a high school diploma in
France. Educational levels one to three years after the Baccalauréat were
grouped together. Masters and doctorates, corresponding to more than
four years of education after the Baccalauréat, formed a third group. To
run a two-way ANOVA with education (three groups) and recommenda-
tion conditions (two groups) as independent variables, we checked the
minimum number of participants in these six groups m and randomly
selected participants in the largest groups to form six groups of size m =
20. The results from the two-way ANOVA indicated that participants in
the highest education level group tended to rely significantly less on the
wrong recommendation compared to the correct one (p=0.05). This indi-
cates that education plays a role in critical thinking and ability to exhibit
a healthy dose of skepticism. In addition, we found that participants in
the lowest educational group understood the incorrect recommendation
significantly less than the correct one (p=0.03).

Figure 5.12: Effects of
education on reliance,
understanding of the
recommendation and of
the explanation.
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5.7 Discussion

5.7.1 Dialogic vs. Graphical explanations

According to Miller [2019], explanations are best provided through a
social process, i.e. a conversation, because it matches the way humans
explain things. In fact, "dialogic" explanations have been favorably pre-
sented in the XAI literature. For example, Hernandez-Bocanegra and
Ziegler [2021] presented how dialogic management systems can respond
to users’ questions about a hotel recommender system, and Hepenstal
et al. [2021] showed how conversational explanations can be useful for
criminal investigators. While the benefits of dialogic explanations might
be real regarding user satisfaction and explanation usefulness in some
contexts [Hernandez-Bocanegra and Ziegler, 2021, Hepenstal et al., 2021],
our results, in turn, shed light on the overtrust downside of "dialogic"
explanations for clients of online recommender systems. It is possible
that either the "humanness" of the dialogic explanation we presented, or
the familiarity of users with chats, made them more inclined to accept
robo-advice. In fact, some people might see the anthropomorphisation
of systems as suspicious. One of our end-user participants in the pilot
Study said that "It’s quite a lot of anthropomorphization". This is consistent
with the study by Hepenstal et al. [2021] in which participants were un-
comfortable with the humanness of the XAI agent and wanted to have it
clear that they were not talking to a real person. Our findings also qual-
ify Szymanski et al. [2021]’s results according to which participants prefer
graphical explanations but understand textual explanations better. The
authors further advance that hybrid textual and graphical formats could
improve both user satisfaction and understanding. Our study qualifies
this result by showing that users made less mistakes with graphical for-
mats which presented small amounts of text than with dialogic formats
with small amounts of graphical visualizations. This contrasts with Szy-
manski et al. [2021]’s finding that text is better understood—however the
textual explanations in this work were much shorter. Perhaps the brevity
and the synthetic aspect of our graphic explanations compared to the
dialogic explanations were instrumental in improving users’ appropriate
reliance.

5.7.2 Legal requirements for feature-based explanations

In this study, we showed how legal requirements to justify investment
advice based on client’s features may take shape using a classical XAI
method (SHAP) and various explanation representations. We further
found that the legal sub-objectives of the explanation that we defined
in Section 5.2.3 to help users make "fully informed" decisions were not
fully achieved. Users were not better able to 1) appropriately rely on the
recommendation, 2) understand the recommendation or 3) appropriately
calibrate their trust in the robo-advisor compared to the control condi-
tion.
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As noted in Section 5.2.3, the objective of the law requiring insurance
intermediaries to specify in writing "the reasons for the appropriate-
ness of the proposed contract" is also to discipline brokers by making
non-objective, self-interested, recommendations more visible and pun-
ishable. Feature-based explanations are therefore not useless, because
they at least serve the purpose of disciplining insurance intermediaries
by forcing them to show how the proposed product corresponds to the
customer’s risk profile.

However, our work changes the perspective on the benefit of explana-
tions for customers’ understanding and reliance. Explanations are not al-
ways "all good", they must be designed so that overtrust and overreliance
effects are mitigated. If the explanation formats we presented could not
meet the legal objectives we highlighted, future work could address how
to design explanations that are cognitively engaging for lay-users. We
develop this in Section 7.2 of Chapter 7.

5.8 Limitations

This work has some limitations. First, the content analysis in Study
1 was performed based on the detailed notes that one author took dur-
ing the interviews, which may have limited the amount and breadth of
captured input from participants. In addition, the non-expert partici-
pants from the qualitative study were graduate students, who represent
a very specific sample of non-expert users. One of the limitations in our
domain-driven contextual enquiry is that we used a simplified and fic-
tional life-insurance robo-advisor. Some factors such as time horizon,
detailed descriptions of the funds, of their historical performances and
the costs of each contract were not taken into account. We did this to
simplify the building of the tool, and also because we felt adding costs
and performances might have diverted participants’ focus from the risk
of the proposals, which is the most critical information for users to un-
derstand according to supervisors and the spirit of the legislation. Future
work could explore similar research questions with a real robo-advisor.
Additionally, one of the main limitations of crowd-sourcing participants
in Study 2 is that they might lack the mental engagement or involve-
ment with the subject. To increase participant engagement, we let them
answer the survey with their own profile, instead of presenting a prede-
fined profile for all participants. We verified that the type of recommen-
dation did not have a significant impact on our measures. Additionally,
we implemented a question to filter out users completely uninterested
in life-insurance, attention checks, text fields and time counters to filter
out non-serious participants. Nevertheless, it is possible that the par-
ticipants in our study were not representative of a real user of a real
life-insurance robo-advisor. Also, the participants in our study were also
mainly women (73%).
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5.9 Conclusion

In this chapter, we carried out a co-design experiment aimed at under-
standing the needs and requirements for explanations in robo-advisors
from the perspectives of non-expert end-users and supervisors in cus-
tomer protection. Based on these findings, we designed various proto-
types of feature-based explanations for online recommendations in life-
insurance, including both interactive and static options. We then pre-
sented the results of a 2x4 between-subjects experiment to investigate
whether different formats of feature-based explanations help novice users
to appropriately rely on, trust, and understand life insurance plan rec-
ommendations. We found that providing feature-based explanations did
not significantly improve users’ understanding of the recommendation,
or lead to more accurate reliance on the recommendations compared to
having no explanation at all. We also found that explanations provided
in a dialogic format, where users can choose a question and get chatbot-
like text answers, increased users’ trust in the robo-advisor and did not
significantly improve user understanding. This led us to conclude that
graphical formats could be better suited to inform clients. This leaves us
in a quite unsatisfactory state of affairs where the obligation to inform
clients does not fulfill its promises to empower users in better under-
standing the recommendation or in making better decisions. However,
in regulated contexts such as life insurance, regulators and internal com-
pliance systems act as barriers to the manipulation of user trust, ahead of
the protection provided by user self-regulation. The ability to detect un-
trustworthy recommendations does not primarily rest on the shoulders
of end-customers.

In the next chapter, we investigate the explanation needs of financial
reguatory supervisors to control the trustworthiness of AI systems.
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Chapter 6

Understanding the
supervisors’ needs for
explainable AI in
financial crime detection

Regulatory supervisors play a critical role in ensuring the trust-
worthiness of AI systems and preventing end-customers from having to
detect false AI recommendations. Rather than mere explanations, super-
visors expect "justifications" by regulatees that an AI system or decision
complies with a legal standard, rule, or objective1. However, little is 1 Cf. Section 1.1.5 in

Chapter 1 for a clarifica-
tion of the terminology
employed and the differ-
ences between explana-
tion and justification. As
noted by [Hildebrandt,
2019] and [Henin and
Le Métayer, 2022], justi-
fications are extrinsic as
they refer to norms and
regulations.

known about the actual needs of supervisors concerning such justifica-
tions of AI systems.

In this chapter, we take another case study in finance: anti-money
laundering and countering financing terrorism (AML-CFT). We take a
dual user-centered and legal approach to describe the explanation needs
of regulatory supervisors to verify AI compliance with AML-CFT regu-
lation. We examine a socio-techno-legal supervision system in AML-CFT
in France, as an example of AI use in a highly-regulated industry. We
draw on 6 workshops with supervisors and bank practitioners to outline
the auditing approaches of AML-CFT supervisors. Our findings present
the AML obligations that conflict with AI opacity. We then formulate
seven needs that supervisors have for model justifiability. Finally, we
discuss the role of explanations as reliable evidence on which to base
justifications.

We begin by presenting the related literature and the relevant back-
ground in AML-CFT in Section 6.2. We then describe our methods and
findings in Sections 6.3 and 6.4.

This study was made possible thanks to the collaboration of the ACPR,
the French regulatory authority of financial services and the Crédit Agri-
cole, a large French bank. The views expressed in this chapter are ex-
clusively those of the authors and the participants of this study in their
personal capacity. They cannot be taken as the views or policies of the
ACPR or Crédit Agricole.
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6.1 Motivation and research questions

AI regulation has been rapidly gaining interest due to the advances
of generative AI and the emergence of new AI regulations2. However, 2 For example, the devel-

opments of the AI, Dig-
ital Services and Digital
Markets Acts in Europe
and the Algorithmic Ac-
countability Act in the
US this year [European
Commission, 2021, Eu-
ropean Parliament and
Council, 2022, Yvette D.
Clarke, 2023]

highly regulated industries, such as banking, healthcare, or the mili-
tary, already have structures in place to deal with technological risks.
These domains are characterized by well-established norms, experience
in putting principles into practice, a common goal of social welfare, and
robust professional accountability mechanisms [Mittelstadt, 2019]. In
banking, machine learning adoption is on the rise [Financial Conduct
Authority, 2019], with regulators sometimes encouraging industry play-
ers to consider AI to improve the efficiency of their systems [Board of
Governors of the Federal Reserve System et al., 2018]. However, lit-
tle new regulatory guidance has been provided to address the specific
risks of AI [The Federal Reserve Board of Governors in Washington DC,
2011, Financial Conduct Authority, 2022] and firms call for a more proac-
tive regulation approach [Financial Conduct Authority, 2019, Truby et al.,
2020]. Truby et al. [2020] notes an overall lack of guidance on AI use from
"typically cautious financial regulators". Overall, clarification is needed
on how current regulatory mechanisms address the risks of AI.

In this study, we focus on a highly-regulated area, anti-money laun-
dering and countering financing terrorism (AML-CFT). AI applications
for AML-CFT, such as unsupervised anomaly detection, have attracted
increasing attention from both industry players and academics for their
potential to reduce compliance costs and detect new patterns of money
laundering that current rule-based systems are not aware of [Gupta et al.,
2023, Singh et al., 2018]. In experimental conditions, Weber et al. [2018]
has found that these methods can reduce the number of false alerts for
money laundering by 20 to 30%. The impact of such technologies is all
the more promising as current AML-CFT systems are relatively ineffec-
tive [Bertrand et al., 2021]. The United Nations Office on Drugs and
Crime estimates that between 2 and 5% of global GDP is laundered each
year and less than 1% of these funds are seized or frozen [UNODC, 2011].
Banks have been increasingly touting the use of artificial intelligence (AI),
to the extent that AI use for AML-CFT is entering a tipping point. In
October 2022, a Dutch court ruling confirmed that the financial institu-
tion Bunq could use AI despite reservations from the regulator [Trade
and Industry Appeals Tribunal, 2022]. Big tech companies have also be-
gun to provide AI services for AML-CFT systems within banks, such as
Google’s collaboration with HSBC which resulted in a 60% reduction of
false positive alerts and quadrupling the number of true positives [Tokar,
2023].

Kruse et al. [2019] argue that the primary challenge posed by AI algo-
rithms in the finance industry is related to their opacity. As highlighted
by Kuiper et al. [2021], AI opacity undermines the ability of financial in-
stitutions and regulators to control their systems, thereby posing a risk
to financial stability, institutional trust and consumer protection [Kuiper
et al., 2021, McWaters and Blake, 2019]. In AML-CFT, concerns of regu-
lators have also focused on the lack of transparency in AI models and on
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measuring their added value [Gruppetta, 2017]. Overall, it is undisputed
that a certain level of transparency is required for AI models [McCaul,
2022]. However, it is rarely specified to what extent and why AI expla-
nations should be generated in relation to applicable legal requirements.
Moreover, few studies have explored the regulator perspective, despite
the fact that they are an essential audience of AI explanations.

In this chapter, we focus on AML-CFT supervisors in France, who act
as the national public auditors of AML-CFT systems in banks. We strive
to understand the supervisors’ perspective on AI transparency and justi-
fications, in this case in the highly regulated AML-CFT environment in
France. Specifically, we leverage two scenarios of promising AI applica-
tions from the AML-CFT literature and conceptual design artifacts of AI
justifications and explanations[Gaver and Martin, 2000]. We outline the
justification requirements and information needs of supervisors regard-
ing AI systems to help banks better design justifications for AI systems
and to help supervisors build relevant explainability and testing solu-
tions for auditing purposes. Grounded in the context of AML-CFT, our
study is guided by the following research questions:

RQ1: What are regulatory supervisors’ current auditing practices and socio-
techno context? (Section 6.4.1)

RQ2: How does AI opacity conflict with compliance requirements and to what
extent can justifiability address these tensions? (Section 6.4.2)

RQ3: What are the needs of supervisors for justifiability of AI systems? (Section
6.4.3)

Our study adopts two original approaches. First, the needs and con-
text of regulators, supervisors and auditors is not currently well under-
stood. By exploring their justification needs, we can reduce regulatory
uncertainty around the use of AI. Investigating the supervisor perspec-
tive will inform how existing accountability mechanisms can be applied
to AI technology. Second, in order to fully understand the objectives and
needs of supervisors, it is necessary to consider the legal requirements.
As such, we conduct a multi-pronged socio-techno-legal study of these
users and their context.
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6.2 Background

6.2.1 HCI work on eliciting user explainability needs

As presented in Section 2.4.3 in Chapter 2, HCI researchers have often
relied on interviews and workshops [Sun et al., 2022, Liao et al., 2023,
2020, Ehsan et al., 2021, Maltbie et al., 2021, Tsai et al., 2021, Kim et al.,
2023, Ehsan et al., 2019] to learn about the needs and context of specific
user groups and inform the design of explainability systems. Addition-
ally, scenario-based design, [Carroll, 1997], in which participants are en-
gaged in a scenario to elicit their feedback, was used multiple times in ex-
plainability [Cirqueira et al., 2020, Sun et al., 2022, Wolf, 2019, Liao et al.,
2023]. However, very little work has explored the needs of regulators
as a user group [Kuiper et al., 2021], and no work in the HCI field has
addressed the elicitation of explainability needs using both a scenario-
based and a legal approach, to the best of our knowledge. Our view is
that it is particularly relevant to the study of the needs of regulators. For
example, Chazette and Schneider [2020] emphasised that the elicitation
of explainability needs should also take into account laws and norms,
cultural and corporate values, domain aspects, organisational constraints
such as time, resources, etc [Maltbie et al., 2021].

6.2.2 Designing AI justifications for compliance

As noted by Hildebrandt [2019], explainability is only a small part
of the justifiability equation for AI systems and may obscure the big-
ger picture. However, the notion of legal justification of AI systems has
not received as much traction so far. Explainability has received much
more attention. Specifically, "legal explanations", i.e. explanations de-
signed to support the legal compliance process, have been examined by
XAI researchers [Carvalho et al., 2019, Beaudouin et al., 2020, Dupont
et al., 2020]. The requirements of the General Data Protection Regulation
(GDPR) [European Parliament and Council, 2016] to provide users with
"meaningful information about the logic involved" have received much
attention from explainability researchers [Hamon et al., 2022, 2020, Bibal
et al., 2021, Confalonieri et al., 2021, Doshi-Velez and Kortz, 2017]. Recent
work reviews in detail the legal requirements for explainable AI [Nan-
nini et al., 2023, Bibal et al., 2021, Doshi-Velez and Kortz, 2017, Panigutti
et al., 2023b]. Nannini et al. [2023] highlight that regulations are in-
formed by coarse notions of explanations. Nevertherless, Doshi-Velez
and Kortz [2017] argue that "legal explanations" are technically feasible,
mainly through local explanations and counterfactuals. Bibal et al. [2021]
presents four levels of explanations to meet the different types of require-
ments: explanation of the main features, of all features, of the features
involved in a decision, or of the whole model.

However, this interdisciplinary body of work, has not yet adopted a
user-centric approach to study the needs of regulators, who are the main
end-users of such "legal explanations".
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6.2.3 Auditing AI systems

Some work has emerged to define AI auditing and its role in relation
to traditional audits [Sandvig et al., 2014, Metaxa et al., 2021, Toader,
2019] or to outline audit approaches and principles [Sandvig et al., 2014,
Koshiyama et al., 2021, Raji and Buolamwini, 2019, Mökander et al.,
2023]. Sandvig et al. [2014] first introduced the notion of algorithm audit,
with the application of Internet platforms algorithms in mind. Mökander
et al. [2023] summarized the promise of AI auditing in three ideas: it is
procedurally regular and transparent, it enables proactivity in address-
ing AI harms, and it is conducted by independent parties. Koshiyama
et al. [2021] give four main verticals of algorithm auditing: performance
and robustness, bias and discrimination, explainability, and privacy. The
first vertical encompasses concepts such as resilience to attacks, fallback
plan, accuracy, reliability, and reproducibility. They define seven levels
of explainability, corresponding to increasing levels of access to infor-
mation up to the complete "white-box" setup. Raji et al. [2020] drew
lessons for AI auditing from industries including finance. The authors
discuss the historical role of internal audits in this domain, and their
focus on organisational aspects and risks. They also consider financial
auditing to be "lagging behind the process of technology-enabled finan-
cialisation of markets and firms". The literature on AI auditing is still
in its infancy [Falco et al., 2021], and has so far only focused on defini-
tions and methodological aspects of audits, from a theoretical point of
view. Very little research has offered qualitative empirical insights on the
socio-techno-legal aspects of AI audits.

6.2.4 The AML-CFT context

Overview. Money laundering is the action of concealing the origin of
funds illegally obtained. Terrorist financing is a different process: it in-
volves concealing the destination of funds by raising, storing, moving,
and using the money [Levi and Reuter, 2006]. To detect these financial
crimes, AML-CFT laws require banks to carefully control with whom
they are engaging in a business relationship and to actively monitor their
customers’ transactions [Bertrand et al., 2021]. This implies that banks
map out the money laundering risks to which they are exposed, tak-
ing into account their activities and customers, and putting in place a
detection system, including an often automated "transaction monitoring
system" that flags unusual activities. In general, this rule-based approach
begins with an alert is first triggered from an automated system usually
based on rules (such as "transaction is superior to a certain amount"),
then it is quickly reviewed by a human analyst and either closed or
passed on to a second level of review. If the alert is still considered
suspicious at this stage, a case is created and a more extensive investi-
gation is opened to be reviewed by more experienced analysts. If the
suspicion is confirmed, it is reported to the national financial investiga-
tive body—TRACFIN in France—which conducts a deeper investigation
[Jullum et al., 2020]. If there is evidence of a financial offence, the case is
passed on to the law enforcement authorities 3. 3 c.f. Figure 1 in [Kute

et al., 2021].
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Legal requirements. AML-CFT laws propose a risk-based approach,
meaning that banks have to identify the risks they are exposed to and
take appropriate measures to mitigate them [Financial Action Task Force,
2007]. The risk-based approach to AML-CFT is widely adopted and has
been recommended by the Financial Action Task Force (FATF), the in-
tergovernmental organization dedicated to combating money laundering
and the financing of terrorism, to its 39 members, which includes 24 non-
EU countries [Financial Action Task Force, 2014]. It is also the standard
approach in Europe as it has been recommended by the European Bank-
ing Authority [European Banking Authority, 2016].

The banking sector also has "internal control" obligations that consti-
tute a set of safeguards enabling financial institutions to control the risks
of their activities [Raji et al., 2020, Soh and Martinov-Bennie, 2011]. EU
countries are subject to such requirements under Directive 2013/36/EU.
Under these requirements, banks have to implement three "lines of de-
fense" to ensure that their financial activities remain legal: level one cor-
responds to the day-to-day business operators; level two requires a sepa-
rate unit responsible for monitoring level one; level three is an audit team
that intervenes periodically. If banks fail to comply with these obliga-
tions, they can face heavy fines by the national supervisory authority. In
France, these fines amounted to several million euros between 2016-2021,
sometimes amounting up to 6.5% of the fined banks’ revenues [Conseil
d’Orientation pour la lutte contre le blanchiment et le financement du
terrorisme, 2023].

The role of supervisors. Supervisors are agents of regulation. In
France, their role is laid down in the regulation4, and described on the 4 In Articles L561-36 to

L561-44 of the French
Monetary Code.

French Regulator’s website5. Supervisors monitor the compliance of fi-

5 https://acpr.banqu
e-france.fr/controler
/lutte-contre-le-bla
nchiment-des-capitau
x-et-le-financement
-du-terrorisme/presen
tation-du-controle-l
cb-ft

nancial institutions with European and national AML-CFT laws. They
also influence the development of AML-CFT frameworks by synthesiz-
ing gaps, threats, and best practices at the national level. For example,
the French supervisor annually reports on the threat posed by money
laundering and terrorist financing and often publishes guidelines and
thematic reviews detailing the supervisor’s expectations and interpreta-
tions of the law.

AI for AML-CFT. Banks have only recently begun to explore the use of
machine learning in AML-CFT, but it is one of the most impactful appli-
cations of AI in banking [Fritz-Morgenthal et al., 2022]. AI development
is mainly due to two factors. Firstly, AI promises better performance than
traditional detection systems, which are based on known scenarios of
money-laundering schemes. The most promising use is through unsuper-
vised and reinforced learning that have the potential to detect anomalies
which shed light on typologies of money laundering that have not been
previously reported [Canhoto, 2020]. AI can also help set smarter alert
thresholds, help human analysts prioritize alert treatment, and enhance
the quality and diversity of the data used in criminal investigations [Chen
et al., 2018, Kurshan and Shen, 2021, Labib et al., 2020, Lorenz et al., 2020,
Ngai et al., 2011]. Secondly, AI enables banks to cut costs by alleviating
repetitive tasks and reducing the human staff required to review alerts
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[Overrein, 2020, Singh et al., 2018].

However, AI is still a relatively recent topic in AML-CFT, and AI-based
systems have been subject to few, if any, regulatory audits to date. So far,
only a handful of national supervisory authorities have expressed posi-
tions on AI. In 2018, the Monetary Authority of Singapore stated to be
"in agreement that such advanced technologies can and should be lever-
aged by banks" [Singh et al., 2018]. A report on AI for AML in Norway,
however, argues that banks "as well as regulators have historically been
reluctant to use AI" [Overrein, 2020]. The Dutch Central Bank (DNB),
in November 2022, was hesitant over machine learning technologies for
AML as illustrated in a regulatory sanction [Blakey, 2022] but has since
cautiously opened the door for its use [Singh et al., 2018, Hoegen et al.,
2023]. The French supervisor has not yet expressed clear guidance on AI
but has been generally open to the technology. They have also developed
an internal AI-based tool to challenge the performance of banks’ systems
[Laporte, 2021].

Explainability and transparency in AML-CFT. Explainability (XAI)
has often been presented as a requirement to meet compliance standards
in AML-CFT [Bellomarini et al., 2020, Fritz-Morgenthal et al., 2022, Ger-
lings and Constantiou, 2022, Al-Shabandar et al., 2019]. In her 2022

speech about technologies to fight financial crime, Elizabeth McCaul,
member of the Supervisory Board of the European Central Bank (ECB),
presented explainability and transparency as "two of the most important
challenges for AI" [McCaul, 2022]. However, the specific requirements
for explainability and transparency remain vague and general. It is not
yet clear which precise legal requirements they would fulfill.

Nevertheless, several efforts to build explainability solutions have emerged
in AML-CFT over the past few years. According to Kute et al. [2021]’s
review of AI solutions in AML-CFT, 51% of the scientific papers that
present a machine learning method for AML also consider the explain-
ability of their solution, such as knowledge-graphs rule-based reasoning
approaches [Bellomarini et al., 2020]. Weber et al. [2023] identify case
studies from the literature where AI and XAI were successfully applied
in real financial contexts. The paper also stresses that XAI in AML is
under-explored. However, the majority of these contributions are in com-
puter science and do not consider the complex realities of the AML-CFT
context.

Some studies have provided more detail on users’ needs for explain-
ability in AML-CFT. Recent work has emphasized the need to understand
why an AI model raised an alert, and understand the main features that
drove the decision, for the banks’ investigators and the national financial
investigative bodies [Al-Shabandar et al., 2019, Gerlings and Constantiou,
2022, Bellomarini et al., 2020, Chen et al., 2018, Cirqueira et al., 2020].
The purpose of this explanation is to provide sufficient evidence about
the suspiciousness of a case [Kute et al., 2021]. Gerlings and Constantiou
[2022] investigated the needs for XAI in AML-CFT for banks’ investiga-
tors and capacity planners. They highlighted the need to explain the
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reasons for automatic closures of alerts and demonstrated the risk of bias
when the scoring of an alert was made visible to the investigators.

However, very few studies have explored user needs from the perspec-
tive of supervisors. While Gerlings and Constantiou [2022] hypothesize
that "auditors may require additional information on the model logic",
they do not describe the supervisor’s explainability requirements in more
detail. Kuiper et al. [2021] explored the perspectives of banks and su-
pervisors in the Netherlands regarding explainability in three financial
domains, including AML-CFT. They found that supervisors expected ex-
planations to have a broader scope than banking practitioners, who have
a more technical and local understanding of explainability. They did not,
however, detail the goals and needs of supervisors for explanations nor
justifications and did not consider the legal requirements supervisors ex-
pect to see in model explanations.

6.3 Methods

This section presents the qualitative methods we used to understand
the socio-techno-legal supervision system in AML-CFT and supervisors’
needs for model justifiability. We first conducted five semi-structured,
scenario-based workshops of two to three participants with 13 supervi-
sors in total. At the beginning of our research, we had initially planned
to study the need for transparency and explanation of the models, both
for the supervisory authorities and for the banks, but we shifted our fo-
cus early on to the supervisory authorities in order to provide a more
targeted and in-depth analysis. We nevertheless ran one workshop with
participants from a large French bank, which improved our understand-
ing of the existing supervisory mechanism from an other perspective:
that of regulated entities.

During the workshops, we observed that the participants, particularly
the supervisors, consistently referred to legal requirements or regulatory
sanction cases when asked about the questions they had about the AI
systems and the explanations or justifications they wished to see. This
prompted us to find out more about the AML-CFT laws that participants
referenced. Additionally, we noticed that the existing scientific or grey
literature did not clearly indicate which legal requirements could under-
mine the use of AI. For that reason, we adjusted our initial research ques-
tions and added the RQ2 on how AI opacity conflicts with compliance
requirements.

We present below the different methodological building blocks we
used in the study, presented in chronological order of implementation.
First, we present the procedure, artifacts used, and analysis for the work-
shops. We then present the methodology we used to complement the
analysis of the workshops with regulation-driven needs for algorithmic
justifiability. Lastly, we present our findings in post-analysis interviews
with two experts in AML-CFT regulation.
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6.3.1 Scenario-based semi-structured workshops

Procedure. All workshops were held in person at the participants’
workplace and lasted between 90 and 100 minutes. Participants were not
compensated. Upon their arrival, participants were asked to read and
fill in a paper consent form. The consent form included a description
of the purpose and possible risks (mainly confidentiality) of the study,
the mitigating measures we implemented to ensure the confidentiality
of the recordings and data presented in a publication, and finally their
choice to voluntarily participate in this research and to be recorded. They
were then asked to answer preliminary questions about their expertise in
AML-CFT and their familiarity with AI on a printed form. The inter-
viewer then detailed the workshop agenda.

The workshop questions focused on 4 main themes. First, participants
were asked about the existing compliance procedure in AML-CFT in their
profession (either controllers or bank practitioners). The following ques-
tions addressed the use of AI in AML-CFT to understand participants’
impressions of AI. We originally planned this to find out more about how
banking supervisors and practitioners envisage AI’s future in AML-CFT.
However, as the French supervisors were about to publish their position
on AI at the time of the study, they considered this information to be too
sensitive. We therefore limited the scope of our research to justifiability
and explainability needs. We then presented participants with a scenario
in which a supervisor controlled an AI-enhanced transaction monitoring
system. We asked participants which kind of questions they had about
the AI system and what kind of justifications they wanted to see. This
scenario-based elicitation approach was used in prior research to under-
stand users’ needs for justifications and explanations [Liao et al., 2023,
2020, Sun et al., 2022, Rosson and Carroll, 2009, Wolf, 2019]. Finally, con-
ceptual design artifacts [Gaver and Martin, 2000] of different explanations
and justifications were presented to the participants for fictitious alerts.
Participants were invited to discuss the relevance of the justifications and
their limitations. As seen in Section 6.2.4, AI’s entrance in AML-CFT is
a recent topic where regulatory thinking has not yet matured. Therefore
some of the questions called for speculative thinking. For this reason, we
chose to interview the participants in small groups, so that they could
discuss these issues together [Morgan, 1996].

Participants. One of the authors had several connections at the French
Supervisory Authority to help contact the appropriate directors to obtain
the necessary approvals to carry out the research and to connect with
controllers. We also learned that the French Supervisory Authority has
two departments, one for ongoing monitoring of all financial institutions
registered in France and one dedicated to on-site inspections. We used
the email lists for these two departments to recruit participants, describ-
ing the purpose of the research, the time, location, and agenda of the
workshops. In total, we recruited 13 controllers from the French super-
visory authority, 6 from the on-site inspections department and 7 from
the on-going monitoring department. They had between 1 and 20 years
of experience in AML-CFT supervision and their level of familiarity in
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AI averaged 3.6 out of a Likert scale of 7; two participants had extensive
expertise in AI—familiarity level with AI was 7/7.

The participants from the large French bank were recruited by a con-
tact the authors had at the bank with a specific selection criteria for the
participants, i.e. people specialising in AML-CFT with some previous ex-
posure to AI and, if possible, also to supervisory compliance. In total, six
participants took part in the workshop. Three participants’ expertise was
AML-CFT compliance. The other three participants came from machine
learning model development. Naturally, the participants in this study
spoke in their individual capacity and their views do not represent the
official positions of either the French Supervisory Authority or the Bank
that employed them.

Of the 6 workshops, 4 were recorded and 2 were not as some partic-
ipants did not feel comfortable with being recorded, notably due to the
sensitivity of AML-CFT. However, participants who did not want to be
recorded agreed to the interviewer writing notes. One of the unrecorded
workshops was with controllers with extensive AI experience, the other
was the workshop with banking actors. All participants were French and
the quotes presented in this paper were translated from French to English
by the authors. Table 6.1 details the profile of participants.

Artifacts provided.

Figure 6.1: Scenarios
used during the work-
shops with supervisors,
with a description of
the two use cases of
AI in AML-CFT, and
two examples of alerts
that were generated
or closed by the AI-
enhanced systems. Only
one of these case studies
was presented in each
workshop.

The scenarios featured a fictional character, Eric, whose role was either
a controller carrying an on-site mission at a Bank B (for supervisors) or
Bank B’s head of compliance (for banking practitioners).

We designed two scenarios involving two types of AI-enhanced trans-
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Figure 6.2: Conceptual
justifications shown for
the scenario 2 and its
example alert. Concep-
tual justifications for the
scenario 1 followed the
same format.



196 the explanation paradox and the human-centric path

action monitoring systems which have been presented as the most com-
mon applications of AI in the scientific literature [Canhoto, 2020, Gerlings
and Constantiou, 2022] and in reports from the French supervisory au-
thority [Autorité de Contrôle Prudentiel et de Résolution, 2023b, Dupont
et al., 2020]. In the first scenario, an unsupervised learning algorithm
is used to detect new typologies of financial crime. This algorithm trig-
gers alerts when it identifies a transaction as unusual for certain groups
of customers that it has defined. Those alerts come in addition to the
ones generated by the bank’s traditional rule-based system, which gen-
erates alerts based on predefined rules or "scenarios", e.g. "transaction
for this specific customer group is superior to $10.000". When an alert
is generated, a human analyst examines it and determines whether the
identified risk should be addressed by the creation of a new rule in the
traditional alert system. The second AI use case involved scoring alerts
from Bank B’s transaction monitoring system in order to prioritise, redi-
rect, or close them. For high-scored alerts, a Suspicious Activity Report
(SAR) was pre-filled automatically with generic information to be sent
quickly to the Financial Investigation Unit. Only one scenario was used
in each workshop. The first use case was used in three workshops and
the second in the other three.

For each scenario, we described fictional example alerts triggered by
the AI-enhanced AML-CFT system. For example, the example alert for
the first scenario was an alert triggered by the unsupervised AI module.
An example alert for the second scenario was an alert considered as low
risk and closed by the AI. For these examples, we designed conceptual
artifacts [Gaver and Martin, 2000] of different types of justifications and
explanations. Our aim was to encourage participants to comment and
imagine possible transparency solutions. We tried to balance the con-
creteness and openness of these artifacts and to leverage multiplicity in
order to get feedback on the concept of these justifications rather than
on their design. We chose to show the following justifications and expla-
nations based on what we considered as most common in the literature
on XAI for AML-CFT [Kuiper et al., 2021, Kute et al., 2021, Weber et al.,
2023, Financial Stability Board, 2017].

• a visualisation of the context of the alert in the form of graph net-
works

• a feature-based explanation showing the most important variables for
the AI-produced decision, their impact (positive or negative) and their
weight

• an uncertainty estimator showing the probability of the alert to be
suspect, as calculated by the algorithm

• a model documentation structure, including examples of sections:
role of the AI system, training data used, performance evaluations,
and choice of parameters.

• an example-based explanation presenting similar cases and their out-
comes.
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• a certification of the design, development, evaluation and maintenance
of the model by an external body. We added this artifact because it is
one of the provisions in the upcoming AI Act relating to high-risk AI
systems.

Figure 6.1 presents the scenarios we showed to participants. The con-
ceptual justification artifacts are presented in Figure 6.2.

Analysis. We used a content analysis methodology [Bengtsson, 2016]
to analyse the audio transcriptions—including question-answering and
think-aloud data—and the notes taken from the workshops. The notes
were taken by the interviewer during the workshops and we recognise
their limitations. Although they cannot reflect the details and nuances of
the participants’ thoughts and words, the notes nevertheless capture the
general and sometimes strong opinions of the participants. The broad
themes used for the content analysis followed the workshop structure:
(1) the socio-technical context and (2) technical approaches of the super-
visory authorities, (3) the AML-CFT legal requirements, (4) supervisors’
questions on AI, (5) ideas for designing AI justifications and explana-
tions. Based on the open codes gathered for each of these five overarching
themes, we used axial coding to establish links between the concepts and
refine them [Corbin and Strauss, 2014]. The first author, who was also the
interviewer and note-taker for the non-recorded workshops, carried out
the thematic and axial coding for 5 workshops—three fully transcribed
and two partially-transcribed using notes. Another author analysed the
audio transcripts of a workshop and applied open thematic coding sep-
arately. The two authors then discussed all the codes they had created
and refined them on a Miro board6. 6 https://miro.com/app

/dashboard/

6.3.2 Empirical legal research

As agents of regulation, supervisors’ goals are embedded in the legal
requirements they enforce. During the workshops, we observed that not
having a full grasp of the various legal themes to which the participants
were referring prevented us from capturing their motivations to ask for
specific justifications. Therefore, we complemented the scenario-based
eliciting approach with a qualitative empirical legal research [Webley,
2010]. We believe that combining needs elicitation with a legal analysis
is key to fully understanding regulators’ needs. In fact, the legal field
is also keen on qualitative approaches, using interviews and legal docu-
ment analyses, with methods similar to those used in the social sciences.
Webley [2010] points out that "many common law practitioners are un-
aware that they undertake qualitative empirical legal research on a regu-
lar basis". We conducted this legal approach in parallel to the analysis of
the workshops.

AI Compliance Assessment. Our methodology was adapted to ad-
dress our research question, as recommended by Webley [2010]. It was
carried out by the first author, who does not have a legal background,
but the methodology and findings were discussed multiple times with
another author with extensive experience in legal practice and research.
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We began using a doctrinal research as described by McConville [2017],
which consists in seeking what the law is in a particular area. We thus
examined regulatory sanction cases on AML-CFT, the relevant articles
of the French Monetary Code, and other useful legal documents on the
advice of a lawyer from the French Banking Supervisory Authority. The
data collected we used for this legal approach is detailed in Table 6.2.
We narrowed our focus on AML-CFT and internal control requirements,
as these are the requirements that banks are evaluated against during
AML-CFT supervisory audits. We identified the main legal themes and
specified their meaning, first using open coding on five regulatory sanc-
tion cases, because they reflect how supervisors’ interpret and structure
AML-CFT laws. We then refined the themes with the rest of the data col-
lected. We used the scenarios we defined in Section 6.3.1 to assess how
AI opacity impacts each identified theme. Finally we conducted feedback
interviews. In short, our method follows these six steps:

1. Identify the applicable laws in AML-CFT and define the scope of the
research through "doctrinal research"

2. Define the main themes in the applicable laws, building on the format
of the legal documents and invoked themes in the workshops,

3. Specify the meaning of the requirements in each theme, drawing on
the supervisors’ perspective and legal documents such as case law,
which inform on how the law is commonly interpreted,

4. Define scenarios featuring AI systems in AML-CFT,

5. Consider how the opacity of these systems conflicts with each sub-
theme identified, which can also be formulated as goals for which the
supervisors seek transparency,

6. Obtain feedback on our analysis from AML-CFT experts during inter-
views.

Feedback interviews. Because step 5 of the above methodology can be
somewhat subjective and potentially inaccurate due to the lack of exper-
tise of the first author in AML-CFT law, we conducted two interviews to
elicit feedback and corrections from experts. The two participants were
solicited upon advice from internal contacts at the French supervisory au-
thority, given their unique expertise in both AI and law. One of them was
a lawyer and the other an on-site inspector with extensive background in
AI. Our pre-interview included a presentation of the research, confiden-
tiality risk mitigation measures, and request to record interviews. We
began by asking participants two general questions: what do they see as
the key challenges in assessing AI’s compliance with AML-CFT require-
ments, and how does the opacity of AI make compliance with AML-CFT
requirements difficult. We then presented them an initial version of the
table shown in Appendix C2 and asked for feedback. Interviews were
used to both correct and complement our prior analyses. Interviews
were recorded, transcribed, and two authors analyzed and coded them
according to the process described in Section 6.3.1.
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6.4 Results

The results presented in this section are structured around three axes,
each aimed at improving our understanding of a user group that is
under-represented in the literature: regulators, more specifically, super-
visors in AML-CFT. The three axes correspond to our research ques-
tions: understanding the supervisors’ socio-technical context (RQ1), un-
derstanding the regulatory goals of supervisors in AMl-CFT (RQ2), and
articulating the supervisors’ needs for AI justifications and explanations
(RQ3).

6.4.1 Socio-techno-legal context and auditing approaches of
supervisors in AML-CFT

Figure 6.3 provides an overview of the workshop findings and the
socio-techno-legal context of supervisors.

Figure 6.3: Summary
of the workshops,
with socio-techno-legal
context of supervisors,
supervisors’ questions
on AI, AI auditing
approaches ideas and
ideas for justifications
and explanations.

How are supervisory audits organized in practice?

The French Banking Supervisory Authority carries out two types of
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inspections: document-based control and on-site.
The document-based control unit’s mission is to assess the maturity

of the AML-CFT system of each regulated entity in France (around
1,300). This control is based on numerous records, including an AML
questionnaire that banks report annually and exchange with the regu-
lated entities. They then notify the banks of their observations. This unit
can also suggest on-site inspections, as one participant notes:

"when we see a lot of deficiencies, we will inform the on-site inspection and propose
that the establishment be included in the investigation programme".

The role of on-site inspections is to confirm the true state of a bank’s
declarations concerning their system for AML-CFT and to assess their
effectiveness. Inspectors will challenge a bank’s system, observe how
employees work, compare declarative practices with what actually oc-
curs, exchange information with bank practitioners, and perform IT ex-
tractions to identify any major deficiencies within the allotted time for in-
spection, i.e. a few months. One participant emphasised the importance
of the iterative process when communicating with banks which helps
prevent misunderstandings. Around 40 on-site investigations take place
annually [Autorité de Contrôle Prudentiel et de Résolution, 2023a]. Fol-
lowing the findings of an on-site inspection, a sanctions committee may
then be called upon to decide whether a penalty should be imposed. Fig-
ure 6.4 details the anti-money laundering and terrorist financing controls
for the French supervisor.

It is worth noting that the large majority of controllers have a legal
background with expertise in financial crime analysis. Many partici-
pants, therefore, expressed unease with complex statistical tools such
as AI. For example, some participants said "our IT skills are a little limited"
(P3) and expressed their lack of computer science knowledge to deal with
the particularities of machine learning models. One of these participants,
however, was aware of unsupervised and supervised learning and many
participants with little familiarity with AI were able to generally describe
the functioning of the AI-based systems they had seen in banks. More-
over, on-site missions include at least one computer scientist to support
non-tech controllers. One participant stated

"When you need to go into details, you need to have knowledge, experience or even
ideas of what to do. Their [the banking actors’] job and ours is evolving, we’ll have
to speak both the financial crime and python languages." (P11)

How do supervisors describe the legal context in AML-CFT?

Section 6.2.4 provided an objective review of the legal context. Below
we give a brief impression of participants’ perspectives on these regula-
tions. Supervisors described the AML-CFT regulation as "prolix" (P1) and
"subtle, with high expectations and not much room for error" (P11). Another
participant added that "every system, even the best, does not detect everything,
confirming that a small margin for errors is left in transaction monitor-
ing given there is an obligation of implementing the best means and not
an obligation of results. Just as there exists a small margin for error for
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data quality7 they expect AI tools to also make errors. Supervisor toler- 7 roughly below 5%
ance is qualitative, and depends on error severity and systematicity. It
was also noted the regulation does not stipulate a requirement to auto-
mate tools. It is instead the size of the regulated entity and its volume of
transactions that will drive an implementation of automated "scenarios"
and ultimately, AI. One participant noted that

"[Banks] are fairly up to speed with regulation, they will end up on AI one day or
another."

What are the approaches of supervisors to audit the automated
AML-CFT systems in banks?

Participants emphasized that there is no single approach to auditing;
all audits adapt to their context. We identified, however, some common
approaches to auditing. Investigations or document-based assessments
usually start by examining the risk classification of banks8. Banks must 8 One participant noted:

"everything flows from the
risk classification"

produce this document, which identifies the money laundering and ter-
rorist financing risks related to the bank’s activities, size, customers, etc.
Supervisors can then identify gaps in the identified risks, in the risks cov-
ered by scenarios, and other automated tools. Then, during controls, su-
pervisors assess the quality and compliance of two aspects of the bank’s
AML-CFT systems: processes and results. Approaches to evaluate results
may pinpoint failures in the process and vice versa. Audit strategies of
AML-CFT frameworks can be broadly summarized in three approaches:
"global", "global to local" and "local towards global".

Global approaches consist in looking at metrics characterising the
efficiency of AML-CFT devices. These metrics include, for example, the
number of alerts generated, the number of reinforced examinations, and
the number of SARs. Supervisors interpret these metrics in relation to
the bank’s characteristics; as a participant notes,

"We’ll see if they’re consistent with the establishment’s activity. (P3)

It takes some time, however, for these measures to reflect the value of a
new tool:

"as long as the scenario hasn’t really run for a year, we won’t have very interesting
statistics." (P4)

Furthermore, a "global to local approach" enables controllers to find
cases to investigate. The French supervisory authority recently devel-
oped an AI-based tool, "LUCIA", to support controllers in sampling cases
and comparing them with the bank’s results [Laporte, 2021]. Participants
highlighted time-savings and novel offerings of this tool:

"It makes it possible to review, I don’t know, thousands of operations, whereas as
an on-site controller we can see a panel of about fifty operations." (P8)

P1 reported that the work of controllers is often very tedious and stressed
the need for tools like LUCIA,
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"so that we are in a position, not to anticipate anything, but to react to regulations
and perhaps to detect loopholes more easily." (P1)

P7 summarized the main goal of SupTech tools:

"enrich the control by giving possibilities or ideas that the analysts would not have
had or that they would not have had the means to look at." (P7)

Local approaches involve examining specific cases or part of the AML-
CFT framework to see if there are any crude errors in reasoning. Exam-
ining local cases can also give conclusions about the results. The "local
towards global" approach aims at drawing conclusions on the system
from ad-hoc observations. Supervisors draw on a thread of errors ob-
served in specific cases to trace systematic errors in the system. This is
enabled by "failure analyses" or "sample analyses" which consist of exam-
ining cases either brought to the attention of supervisors by TRACFIN or
another public authority, or drawn from a sampling strategy. Supervisors
ask:

"should the system have detected [the errors]? Was it within its scope? Was it
within its objectives and why didn’t it detect them, what went wrong? " (P14)

Overall, the superposition of different methods for auditing and de-
tecting financial crime in banks, whether AI-based or not, improves the
efficiency and robustness of the frameworks:

"We know that there will be illegal operations that go undetected. We can’t detect
everything, but there’s an obligation to try and detect as much as possible, and if
we start relying solely on AI, well, we’re bound to miss things. But we’ll miss less
if we superimpose different methods." (P14)

Figure 6.4: Flow di-
agram of the supervi-
sor’s control procedures
in AML-CFT
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6.4.2 What provisions in AML-CFT laws does AI opacity
conflict with?

This section presents the results of our compliance assessment, the
methodology of which was presented in Section 6.3.2. The paragraphs
below present a regulatory goal (RG) with which AI opacity can conflict.
Table C.2 in the Appendix also provides a summary of this analysis.

Verifying risk adaptation (RG1)

As part of compliance requirements, supervisory authorities verify the
adequacy and completeness of a bank’s operation monitoring system in
relation to its risk classification9. Much of this assessment is based on a 9 c.f. Article R. 561-12-

1 of the French Mon-
etary Code (CMF) and
Decision against AXA
Banque of the 15/02/23

qualitative understanding of the reasoning and criteria used by the sys-
tem to generate alerts. This enables controllers to verify that important
characteristics of the business relationship are considered (e.g., income),
or that the thresholds are relevant based on business expertise. The opac-
ity and complexity of AI led some participants to fear that this assessment
would become difficult:

"We’re going to end up with this like chickens with a knife and we won’t know
exactly why it generated this alert...we won’t be able to assess the adaptation to
the risk". (P4)

Verifying the bank’s ability to perform constant and careful ex-
amination (RG2)

Supervisors also have to verify that transaction monitoring systems de-
tect inconsistencies with up-to-date customer knowledge and fulfill the
bank’s obligations of carrying out "careful examinations" of operations10. 10 c.f. Article L561-6 of

the CMFSupervisors typically use performance metrics and a "local to global ap-
proach" to evaluate this. As AI algorithms are opaque, however, supervi-
sors may not be able to establish if an ad-hoc error in detecting financial
crime is linked to a broader issue in the system. Moreover, clarifying
how AI systems adjust to input updates might be needed to comply to
constant vigilance obligations.

Verifying the bank’s ability to perform "enhanced vigilance", to
produce quality Suspicious Activity Reports, and to update their
risk classification (RG3)

Financial institutions also have the obligation to increase surveillance
with regard to complex or risky transactions and to submit high-quality
SARs to TRACFIN. As one participant said:

"All alerts must be duly substantiated and analysed." (P10)

This implies that sufficient explanations be given on why a scoring algo-
rithm (as in the first scenario) considers an operation as risky and why
an alert was generated by an algorithm (as in the second scenario), so
that human analysts can write high-quality SARs:
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"We need to be able to understand the criteria that generate a risk. It’s a question
of auditability. Actually, before that, it’s a question of a human analyst’s ability to
understand what to look at." (P14)

Verifying that banks can detect incidents and have control over
the purpose and operation of any device used (RG4)

Internal control obligations require banks to: be able to detect inci-
dents; control the operation of their devices, notably over time; demon-
strate control over the purpose of their system, particularly when it is
provided by a third party; and plan for safety nets in case of failures 11. 11 C.f Article R561-38-4

of the CMF, Order of
November 3, 2014

However, AI opacity can prevent banks from correctly detecting insta-
bilities like drift or anticipating failures:

"If you don’t know what behaviour is expected, you can’t say that there’s been a
malfunction." (P10)

The inscrutability of algorithms can also create dependencies on AI:
"there is a risk of dependence on AI if the criteria are not understood. (P7)

Verifying the correct allocation of material and human resources
(RG5)

AML-CFT laws also require banks to put in place the material tools
and human resources needed to monitor operations12. Case law indicates 12 c.f. Article R561-38

CMFthat it is a question of striking a balance between human and automated
tools. AI transparency will be needed to show how human expertise
and AI systems are balanced and complementary. Many participants
insisted that human expertise cannot be replaced in many instances:

"there is a human expertise that cannot be replaced, particularly in advising banks
on signs of radicalisation..." (P1)

For that reason, the auto-filling of SARs by AI, if not verified and substan-
tiated by a human, as presented in scenario 1, was seen as problematic.
Moreover, explainability can have a major role in enabling transitions be-
tween machine and human analysts and to ensure timely processing of
the alerts, as P10 noted:

"there may be an impact of explainability on processing times."

Indeed, SARs should be filed without delay so that TRACFIN can bring
cases to court as quickly as possible.

Understanding the motivations for AI use (RG6)

Some participants, during the semi-structured workshops, were also
questioned on whether banks needed to justify the use of AI. Most par-
ticipants claimed that while it is not legally required, it could help better
understand the implemented transaction monitoring system. One partic-
ipant explained:

"I’d use motivate rather than justify, in other words, the Bank is free to use AI. On
the other hand, it must always be able to motivate, to explain why such change in
its system." (P7)
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6.4.3 Supervisors’ needs for model justifiability in AML-
CFT

The summary of the workshops presented in Figure 6.3 shows the
questions that supervisors asked about the AI systems described in the
scenarios. Based on the supervisors’ regulatory objectives described above
and their questions about AI, we formulate supervisor needs for justifia-
bility below.

Understand the basics (N1)

Supervisors who are primarily lawyers require high-level explanations
or machine-learning training to answer their questions like "How does
it work?", "What are we programming exactly [in machine learning pro-
grams]". They want be able to autonomously use a "Challenger" model,
the supervisor’s AI model, to assess bank’s systems. As noted by one par-
ticipant:

"controllers have to be able to understand the purpose and operation of the SupTech
tools that their IT team implements" (P11)

Their profession will evolve towards hybrid profiles that are both legal
and technical. However, the current challenger model developed by the
Supervisor, LUCIA, is designed as a support tool for in-depth analyses.
One participant explained:

"Paradoxically, the stakes may not be so high because you get to the stage where
you’re digging into the details anyway, and then you abstract from the surveillance
system." (P10)

Demonstrate legitimacy (N2)

With LUCIA, supervisors are in an advanced position where AI is
challenging traditional rule-based systems. The errors found during
this process also highlight the added-value of AI, one participant noted.
However, participants from the bank have stressed the need to be on a
level playing field, according to the legitimacy principle of due process
rights of regulated companies ("equality of arms") [OECD, 2021a]. For
that purpose, they would like to understand the data or methodology
used by the supervisor, especially data they do not have access to. Bank-
ing professionals also wanted to know if the challenger model was using
sensitive data, or if it was discriminatory in any way, as they are entities
subject to privacy regulations13. Nevertheless, a supervisor pointed out

13 The participants
from the bank were
concerned that LUCIA
would use insights com-
ing from comparisons
with other banks or
sensitive data, but this
is not the case. The
AI-based supervisory
tool only relies on the
data provided by the in-
spected bank [Laporte,
2021].

that they are rather at a disadvantage when it comes to finding unde-
tected financial crime, which fuels their need for AI tools:

"the tight time-frame [for investigations four months]14, we need to start every-
14 which is already
longer than in some
other countries, where
they investigations are
sometimes carried out
in a flash (a few days),
the participant noted.

thing from scratch each time, the data, everything..." (P14)

Supervisors have implemented question-answering sessions for banks on
this issue.
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Measure global efficiency (N3)

The global approaches described in Section 6.4.1 to measure the AML-
CFT framework performance are likely to remain valid for any system,
AI or not. One participant indicated that "Even before AI, the black box phe-
nomenon already existed."(P14). In particular, the current sampling strategy
by the supervisory authorities is still suited to assess AI-enhanced AML-
CFT systems.

"For us, the most practical and realistic way of checking that this [the system] is
not absurd is not to look at the parameterisation. Because it’s difficult to under-
stand the effects of a parameter when it interacts with other parameters. It’s a
question of seeing in situ how it behaves in reality when faced with examples that
we have selected ourselves." (P14)

A participant indicated three main approaches envisaged for evaluating
global performance of AI-enhanced AMl-CFT systems: (1) compare effi-
ciency with the pre-AI system, potentially comparing performances with
similar establishments; (2) analysis of the "failures" reported to the su-
pervisory authority; (3) comparison of the banks’ results with the results
obtained using a challenger model on sampled cases. The sampling ap-
proach was mentioned in all the workshops with supervisors.

P1 and P2 also brainstormed about "simple, basic" indicators to measure
efficiency, using, for example, the ratio of suspicious transaction reports
to turnover "or something similar", refined for relevant clusters of similar
establishments, potentially made with AI. Aggregated statistics of this
indicator could also be shared with financial institutions to encourage
improvement:

"if we give them the average, they set themselves a performance target which is, I
don’t know, like, 20% above average." (P2)

Another group of participants felt more dismayed by the increasing
opacity and complexity of AI systems. They argued for another approach
to measure efficiency that relies more on financial intelligence units:

"the standard controller will be completely helpless. We’ll have to change the
way we monitor, we’ll have to work more with the financial intelligence unit,
TRACFIN, which will then be the only one able to give an opinion on the alerts."

Establish reprehensibility (N4)

Despite implementing sampling strategies, having a closer look into
the AI system inner workings might be necessary to establish the rep-
rehensibility of the errors detected. Understanding why a suspicious
transaction was not detected might help conclude on the systematicity,
and therefore the reprehensibility of the problem. This requires a con-
trastive explanation, focusing on the negative which answers questions
such as "why did the system behave in this way (letting the fishy trans-
action go) and not in this other way (flagging the transaction)?". One
participant described:

"It’s the question of how you go from analysing individual declarative failings to
making structural observations about the structural failings of the system. (P10)
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Banks also need to implement such explanations when implementing
anomaly detection AI systems, as in Scenario 2. In this case, the unsu-
pervised algorithm may encounter a risk typology, not covered by the
traditional bank’s system. The bank then has to understand why this
risk was not detected and, if necessary, update the risk classification.

Verify and challenge banks’ AI understanding (N5, N6, N7)

As noted in Section 6.4.2, supervisors may need to examine a bank’s
explanatory practices to ensure that analysts are able to understand
alerts and justify their suspicious nature (N6). To that end, justifica-
tions based on local feature importance explanations, which would be
implemented by banks, have been preferred by participants:

"the feature importance explanation is more interesting than the example-based
one, which is quite limited eventually." (P7)

Bank participants said they were currently testing an explanation based
on Shapley values [Lundberg and Lee, 2017]. The contextualisation with
graphs networks has also been appreciated by some participants. In the
advent where graph neural networks would be used, we can also imagine
that graph visualisation will be highly recommended by supervisors, as
is the case for digital asset service providers using blockchain, one partic-
ipant commented. Views regarding uncertainty estimators were divided.
One participant mentioned that:

"It is important to know whether the connections made are coincidental or not."
(P14)

. However, some participants warned against the confirmation bias it can
trigger:

"all these very precise indicators create a push-button risk: as soon as there’s a lot
of red, bang! [the alert is escalated]." (P9)

Bank participants also confirmed they saw investigators fall into this bias
when testing explanations.

Supervisors also want to verify the human alignment of the decision
criteria used by AI systems (N6). Even though the need for explanations
of supervisors is more global, they may look for ad-hoc examples of local
explanations:

"We’re more interested in the global [...] We’ll ask them for local, but local exam-
ples for specific cases." (P7)

Supervisors will not only be interested in the explanation, but more im-
portantly in the justification of why or how developers have validated
these feature weights:

"The weight has to be less than..., OK a priori, but why?" (P6)

"It can be a relatively aggregated explanation, i.e. we’re not trying to go into the
details of the calculation, but to identify the main steps." (P8)

Finally, supervisors also need justifications that banks control what
their AI system is doing (N7):
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"it’s the idea that it creates a dependency on the AI and that the day the AI changes
or is hacked, we don’t notice the change because we don’t know what was at the
origin?"

Feature-based importance was seen as useful to that goal:

"with the feature importance explanation, we’ll be able to assess: are we in agree-
ment with all these factors?" (P7)

Another participant mentioned that justifications, such as the daily num-
ber of alerts generated, and periodic human verification of a sample of
alerts could be effective measures to prevent drift. Documentation was
also seen as crucial for N7 and N6: documentation is super-important to
check that they master their tools (P9). Certifications from third parties,
however, elicited more cautious responses. Some supervisor participants
argued that, if certification was to become the norm for AI models, it
would put regulators in the difficult position of having to adjust the scope
of their audits. Other participants from the AML department of the su-
pervisory authority said they would ignore this third party accreditation
which infringes upon their role.

6.5 Discussion

In this section, we discuss the importance of relying on accurate infor-
mation about AI systems to justify compliance, explanations’ limits and
alternative approaches like tests or challenger models.

6.5.1 The role of explanations for justifications

In this paper, we saw that regulators mainly seek justifications from
regulatees, i.e. argumentative demonstrations that their AI systems com-
ply with certain legal requirements. Justification is therefore a criti-
cal element in the process of enforcing regulations, i.e. for auditability
and more broadly for accountability [High-Level Expert Group on AI
(HLEG), 2019]. Just like explanation, justification is a process [Miller,
2019]. One participant mentioned the importance of exchanging with
regulatees. Another mentioned that "justifications are meant to be chal-
lenged" (P11).

[Henin and Le Métayer, 2022, Hamon et al., 2022, Hildebrandt, 2019]
argued that explanations are not sufficient to justify a decision. Further,
Hildebrandt [2019] added "we must not allow the discourse of explain-
ability to stand in the way of the question whether a decision is legally
justified, which requires a specific type of legal reasons" [Hildebrandt,
2019, Henin and Le Métayer, 2022]. Additionally, Henin and Le Métayer
[2022] precise that "justifications are complete only if they establish a con-
tinuous link between the high-level objectives of the [AI system] (the ap-
plicable norms, for example non-discrimination, reduction of recidivism
rate, or compliance with a given legal requirement) and its implemen-
tation". The authors also stress that justifications are "extrinsinc" in the
sense that they refer to external norms such as legal requirements.
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However, we argue that acceptable justifications about AI systems should
also take into account descriptive, intrinsic, and accurate information
about the "implementation" of AI models, to establish this "continuous
link". Just like explanations may not always be sufficient to ensure the
legitimacy of AI systems , information about an AI system’s objectives,
design choices, or performance may not always be sufficient to justify
the proper implementation of AI models. Furthermore, justifications are
intended to be challenged and if they do not rely on factual information
about algorithms, there is a risk that the question of the legitimacy of an
AI system becomes subjective and arbitrary. In their paper about algo-
rithmic audits, Koshiyama et al. [2021] argued that, without explainabil-
ity, a decision cannot be duly contested. Explanations may therefore be
insufficient, but are necessary, to provide descriptive, accurate and faith-
ful information about the behavior of an algorithm on which to develop
a justification.

The list of needs described in Section 6.4 illustrate why regulators may
need justifications from banks in AML-CFT, whether those rely on ex-
plainability or on other kinds of proof such as documentation or tests. In
AML-CFT, regulators not only assess results but also processes. There-
fore, looking at explanations of the inner workings of AI systems, even
high-level ones [Bibal et al., 2021, Dupont et al., 2020], may become nec-
essary, not only for banks but also for supervisors. The needs N1, N2

and N4 in Section 6.4 reflect this.

6.5.2 Considering the limits of explanations

However, current XAI techniques may fall short of regulators’ expec-
tations to provide accurate and faithful information about AI system’s
inner workings. As outlined in [Hamon et al., 2022, 2020], the fidelity,
robustness and truthfulness of explainability can be limited by the fact
that the many features used by complex algorithms are highly correlated.
This is a well-studied and strong limitation of feature-based explanations,
which make it difficult to comply with legal requirements to indicate the
most important factors in a decision [Hamon et al., 2022, Rouvroy, 2013].
This goes back to the question of the reliance of AI systems on correla-
tions rather than causal relationships. This can be an issue for measuring
model performance as well [Hamon et al., 2022].

Another issue with explanations is that they can be misinterpreted by
their users due to the technical language they usually use. Ronan et al.
call it the "transparency fallacy" when explanations are not effectively un-
derstood. We saw this in the reaction of some of the participants in this
study, who were unsettled by the precise weightings given by the fea-
ture importance explanations. Moreover, as demonstrated by Gerlings
and Constantiou [2022] and highlighted by some participants, investiga-
tors must have access to sufficient information other than explanations,
specifically risk scores, or they will fall into confirmation bias. Supervi-
sors will therefore need to verify that the context in which explanations
are presented to investigators, or supervisors themselves, takes account
of this bias and mitigates it.
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Given their mostly legal background, regulators may also be too quick
to accept these explanations as trustworthy. Moreover, the argumentative
process of transforming explanations into justifications could be used to
the advantage of regulated entities to conceal technical inaccuracies. For
example, Zhou and Joachims [2023] investigate the concept of "malicious
justification". They develop a malicious explanation system that replaces
the discriminatory factors (i.e. race) used by a biased decision model
with other, non-discriminatory factors to defend the decision. Further,
they demonstrate that it’s almost impossible even for auditors, who have
access to all the decisions, to uncover the deception. The authors also
highlight that current explanations do not provide answers to questions
like: "what factors caused the model to predict X instead of Y?". Yet,
as highlighted in Section 6.4.3, supervisors are likely to need such con-
trastive explanations to establish reprehensibility of failure cases (N4).
As a result, regulators may be in a difficult position to evaluate the ad-
equacy of explainable methods developed by banks, and may have to
develop their own "explainability challenger" toolkit.

Lastly, Lima et al. [2022] argues that there is a trade-off between ac-
countability and explainability, stating that post-hoc explanations such as
feature-importance could "obscure the responsibility of developers in the
decision-making process". While this phenomenon might be mitigated in
highly-regulated industries where solid accountability mechanisms are in
place, it is worth bringing this to the attention of regulators.

6.5.3 Supporting model performance measurement and test-
ing

To address the limits of explainability to audit AI systems, specifically
regarding fairness, Zhou and Joachims [2023] suggest that system-wide
metrics are more useful. This was overall supported by the supervisors
interviewed in this study. In fact, system-wide evaluation is a pillar in
the auditing approaches implemented by the AML-CFT supervisor. This
is reflected in the role of the document-based unit: assessing the maturity
of banks’ AML-CFT systems, and in the new challenger model developed
for investigations. Supervisors are therefore more likely to continue on
that "global" or "local to global" path, c.f. Section 6.4.1.

In the field of AML-CFT, however, current metrics to evaluate the effec-
tiveness of systems are limited, notably because banks and supervisors,
do not know the ground truth regarding alerts, i.e. whether a suspicious
case was actually money laundering or not. Instead, they have to rely
on proxies such as number of suspicious activity reports. The supervisor
may have more feedback on the ground truth through the financial in-
vestigation unit, but perhaps not to the point that they can calculate the
precision of the system, i.e. true positives reported to the sum of true pos-
itives and false positives. AI’s entry in the industry could represent an
opportunity for the supervisor to get closer to the financial investigation
unit, as one participant noted.

The consolidation and disclosure of aggregated data such as precision
on the performance of AI models from different banks could be useful for
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the regulated entities self-assessment and research purposes. In health-
care, the disclosure of a database of AI-based medical technologies with
regulatory approvals enabled researchers to point out some AI weak-
nesses [Meskó and Topol, 2023]. Further, such initiatives can help respect
the due process rights of regulated entities (N2), while striking a balance
with advancing the fight against financial crime.

However, this approach does not inform on the false negatives of AML-
CFT systems. Challenger models such as LUCIA can do this to some
extent by identifying some crimes that have fallen through the cracks.
However, they cannot fully measure the true proportion of crime that has
not been detected. This calls for relative comparisons instead of absolute
ones, such as comparing banks’ practices or pre-AI systems as outlined
by participants.

Lastly, to verify processes in addition to results, supervisors in this
study have proposed some testing and human oversight mechanisms.
More advanced testing methods will however have to be developed to
prevent risks specific to AI such as drift, discrimination, over-reliance on
AI. Certifications of the model development were seen as overlapping
with supervisors’ role. Discussions between certification providers and
supervisors might be beneficial to talk about best practices, such as stan-
dard models for documentation [Mitchell et al., 2019, Gebru et al., 2021],
or mathematical proofs that a code is correct, when applicable [Henin
and Le Métayer, 2022].

In summary, future work could investigate the design of:

• contrastive explanations to help supervisors establish reprehensibility
of failure cases (N4),

• meaningful sectorial, system-wide, metrics and databases to compare
the efficiency of AI-enhanced systems in relation to each other or to
pre-AI systems (N3),

• meaningful tests for AI to support supervisors in verifying correct use
of XAI (N5), human alignment of decision criteria (N6) and model drift
control (N7).
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6.6 Limitations

As the scenario-based elicitation task came fairly early in supervisors’
thinking about the use and audit of AI, their responses may not include
in-depth considerations on the issue. The purpose of this paper was to
articulate the needs of supervisors at a time when the use of AI in AML-
CFT and investigations into AI-enhanced systems are in their infancy. We
recognise that their needs may evolve as AI audits in AML-CFT develop
and new regulatory and case law guidance is issued. Moreover, our re-
search results rely on the specific scenarios and artefacts we presented to
participants. This may limit the scope and generalisablity of the results.
Specifically, we investigated two use cases of AI, which are considered as
the most common and promising in the literature, but other AI applica-
tions exist [Chen et al., 2018]. We also limited the number of conceptual
explanations and justifications to six to not overwhelm the participants
and to respect their time as volunteers. Other explanations could be
considered in future explorations with regulators. Further, we described
in the methodology section that two workshops were not recorded due
to participants’ concerns, we are aware that this limits the analysis and
findings from those workshops. However, we were able to conduct a
recorded interview with one of the participants in an unrecorded work-
shop, which enabled us to study the views of this person more closely.
Finally, as the first author who conducted the legal approach has no legal
training, the method remains fairly straightforward, but we did put in
place quality controls with another author, who has a legal background,
and two AML-CFT experts. We hope this study demonstrates the feasi-
bility and suitability of such an approach for HCI practitioners.

6.7 Conclusion

In this chapter, we examined a socio-techno-legal supervision system
in a highly-regulated industry, taking the example of the anti-money
laundering and countering terrorism financing domain (AML-CFT) in
France. We drew on 6 workshops with supervisors and bank practi-
tioners to outline the auditing approaches of AML-CFT supervisors. We
then outlined AML-CFT compliance requirements which raise clear is-
sues with AI opacity, and drew up a list of seven model justifiability
needs for the supervisors, integrating explainability aspects. In partic-
ular, we found that supervisors primarily need to measure the perfor-
mance of the AI-enhanced AML-CFT system. However, supervisors may
need contrastive AI explanations to establish the reprehensibility of sam-
pled failure cases, to verify and challenge banks’ correct understanding
of the AI and to demonstrate the legitimacy of their challenger model.
These needs are intricately linked to the regulations that supervisors en-
force, hence the need for a dual interview-based and legal approach. We
also presented explanations as having a role of "trial evidence" for justifi-
cations. We hope that this work will inform future research to design AI
justifications for regulators.
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Participant
ID Role Years in profes-

sion

Familiarity with
AI (on a 7 points
Likert scale)

Workshop
and Inter-
view ID

Recorded

P1
Supervisor, document-based
control >10 2 W1 Yes

P2 Supervisor, on-site control >10 3 W1 Yes

P3
Supervisor, document-based
control Between 1 and 3 3 W2 Yes

P4
Supervisor, document-based
control Between 4 and 10 3 W2 Yes

P5
Supervisor, document-based
control Between 1 and 3 3 W2 Yes

P6
Supervisor, document-based
control Less than a year 3 W3 Yes

P7
Supervisor, document-based
control Between 4 and 10 5 W3 Yes

P8
Supervisor, document-based
control Between 4 and 10 3 W3 Yes

P9 Supervisor, on-site control Between 1 and 3 7 W4 No

P10 Supervisor, on-site control Between 4 and 10 7 W4, I1 No,
Yes

P11 Supervisor, on-site control Between 4 and 10 1 W5 Yes

P12 Supervisor, on-site control Between 4 and 10 3 W5 Yes

P13 Supervisor, on-site control Between 4 and 10 3 W5 Yes

P14 Supervisor, AML-CFT policy >10 6 I2 Yes

P15
Bank, Head of AML-CFT com-
pliance >10 3 W6 No

P16 Bank, Head of data science Between 4 and 10 7 W6 No

P17
Bank, AML-CFT Compliance
Officer Between 4 and 10 1 W6 No

P18
Bank, AML-CFT Compliance
Officer Between 4 and 10 3 W6 No

P19 Bank, Data scientist Between 1 and 3 7 W6 No

P20 Bank, Data scientist Between 1 and 3 7 W6 No

Table 6.1: Description of
role, experience, famil-
iarity with AI of partic-
ipants in the study.
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Type Document

Regulatory • Sanction Commission Decision 2022-04 against BMW Fi-
nance

sanction cases • Sanction Commission Decision 2022-02 against Financière
des paiements électroniques
• Sanction Commission Decision 2022-01 against Axa
Banque
• Sanction Commission Decision 2021-05 of 1 December
2022 against Caisse régionale de Crédit agricole mutuel du
Languedoc
• Sanction Commission Decision 2021-01 of 1 March 2022

against W-HA

Law, orders • AML-CFT: Articles L561-1 to L564-2 of the French Mone-
tary and Financial Code [Légifrance, 2023b]
• Internal control: French Monetary and Financial Code,
Articles L511-55, L522-6, L522-14 and L526-27, Order of
November 3

rd, 2014 [Légifrance, 2023a].

Soft law • Joint ACPR and Tracfin guidelines on reporting obliga-
tions to TRACFIN
• Thematic review: Automated systems for monitoring of
AML-CFT transactions

Interviews • 5 Workshops with 13 supervisors/controllers
• 2 Interviews with 2 AI/AML-CFT supervisors

Table 6.2: Data used for
the empirical legal re-
search
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Need Description and related regulatory
goal

Model / XAI De-
veloper

Design ideas for explana-
tions and justifications

N1: General
comprehension

Understand how the challenger model
works to extract relevant and repre-
sentative case samples. Have a general
understanding of how the banks’ algo-
rithm works (RG6).

Challenger and
Bank model /
Supervisor and
Banks

High-level and global ex-
planation, practice using
the model and training, de-
scriptions and motivations
of AI’s role

N2: Ensure le-
gitimacy and ef-
ficiency of chal-
lenger model

Monitor performance of the challenger
model and make banks appreciate
the overall workings of the challenger
model.

Challenger
model / Super-
visor

Global explanation, specific
question-answering with
banks

N3: Measure effi-
ciency

Measure the performance of the algo-
rithm, not only in absolute terms but
also more concretely in a relative way.
Linked to (RG1), (RG2), (RG3).

Bank’s model /
Bank and Super-
visor

Performance metrics: de-
lays, number of SARs, num-
ber of reinforced exami-
nations, sampling analysis,
Tracfin’s feedback on alert
quality

N4: Establish the
reprehensibility
of sampled error
cases

Understand why a bank’s algorithm
did not detect a suspicious case, so
as to understand if it was an iso-
lated event or part of a bigger pattern:
is the error systematic, reprehensible?
Linked to (RG1), (RG2), (RG3).

Bank’s model /
Supervisor

Local feature importance,
Conterfactual explanations

N5: Verify cor-
rect use of ex-
plainability

Ensure that banking analysts have a
clear understanding of the alerts they
are required to handle, so that they can
produce high-quality analyses. Linked
(RQ3), (RQ4), (RG5).

Bank’s model /
Bank

Justifications that expla-
nations for analysts are
present and efficient, alert
contextualisations

N6: Verify hu-
man alignment
of decision crite-
ria

Verify that the criteria used by AI to
generate or escalate alerts are con-
sistent with the risk exposure and
aligned with human expertise. Linked
to (RG1), (RG6)

Bank’s model /
Bank

Feature combination used
for few cases with justifica-
tions of the weights (divide
features full list into groups
for readability)

N7: Verify model
control by the
bank

Ensure that the bank’s model does not
drift over time, that there is no bias.
Linked to (RG4).

Bank’s model /
Bank

Justify the existence and rel-
evance of tests: Periodically
draw up a list of impor-
tant factors, periodic hu-
man evaluation of an alert
sample

Table 6.3: Summary
of supervisors’ needs
for model justifiability,
corresponding descrip-
tion, model concerned
and developer of justi-
fications/explanations,
and justification and
explanation design
ideas that emerged
during the workshops.
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Chapter 7

Discussion

This chapter presents a discussion and a conclusion of the findings
of this thesis. We first summarize the research contributions made in
this dissertation in Section 7.1. The following sections are devoted to
a discussion of our findings and future work. In Sections 7.2 and 7.3,
we discuss the "explanation paradox" for decision-subjects of AI-based
decisions and the human-centric avenues to improve user empowerment.
In Section 7.4, we review the role of explainability to alleviate some of the
regulatory tension created by black-box AI models in AML-CFT. We also
highlight the relevance of the human-centric approach for implementing
explainability effectively in the AML-CFT context. Finally, the discussion
presents some thoughts on the lessons from the financial sector for other
industries, on my experience as an interdisciplinary researcher, or on the
challenge posed by Large Language Models for the explainability field.

7.1 Research contributions

In this thesis, we investigated the research question: To what extent can
AI explanations enable warranted trust and regulatory compliance in financial
applications? In Part I, we focused on the cognitive challenges for expla-
nations to enable warranted trust, i.e. trust that is well-calibrated. In
Part II, we explored how explanations can contribute to customer and
regulator warranted trust, and enable compliance in two use cases in fi-
nance. We summarize below the research contributions presented in this
dissertation.

Part I: Calibrating trust in explainable AI: common pitfalls and the
promise of interactivity

Chapter 3: Trust, overtrust, distrust in explainable AI: a cognitive
approach

– We provided a general vision of what and how cognitive biases affect
explainability systems: with which XAI technique (e.g., counterfac-
tual explanations), user type (domain expert, AI expert or lay users)
and AI-assisted task (e.g., medical diagnosis).

– We highlighted how explainable AI can lead to overtrust, distrust, or
how it can be misinterpreted. Some implementations of explainable



218 the explanation paradox and the human-centric path

AI, however, have proven useful in correcting prior human biases in
decision-making. We also emphasize that cognitive biases may affect
the evaluation of explanations.

– Overall, we found that explanations usually have a tendency to in-
crease trust, specifically for lay users, and potentially lead to unwar-
ranted trust.

– We summarized several important factors at play in trust calibration
with explainable AI systems, including user expertise, task expertise
and task familiarity, estimation of the AI’s confidence, explanation
completeness, timing of explanations and users’ motivation and indi-
vidual cognitive characteristics (need for cognition, rational or intu-
itive decision-making style...).

Chapter 4: Towards "human-like" explanations: the promise of in-
teractivity

– We adapted existing HCI taxonomies of interactivity to create a two-
level taxonomy of interactive techniques specific to XAI, describing
the interaction types and the way they support the human cognitive
process of explaining: "selective", "mutable" or "dialogic".

– We analyzed the extent, nature and distribution of the interactive XAI
systems included in the review.

– We offered a summary of the user-based evaluation metrics imple-
mented in interactive XAI.

– We offered a qualitative summary of the effects of interactive expla-
nations on several user-based evaluation metrics, finding that inter-
active explanations increase trust, but not necessarily overtrust, and
that interactive explanations are more useful than static ones, but less
easy to use and more time-consuming.

Part II: Complying with regulation using human-centric explainable
AI: two case studies in finance

Chapter 5: Empowering customers of robo-advisors with explain-
ability

– We developed a fictitious but realistic rule-based recommendation
system for life insurance plans, "Robex", based on interviews with
insurance supervisors and on market research.

– We created prototype explanations for Robex and redesigned them
based on feedback from insurance regulators, customer protection
specialists and end-users with no experience of life insurance invest-
ments.

– In our study, which involved a 2x4 between-subjects experiment with
256 participants, we found that explanations did not contribute to the
legal objectives of financial regulation to empower users. Explana-
tions did not significantly improve understanding, appropriate trust
or reliance, revealing a misalignment between legal objectives and
actual observed benefits of explanations.
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– We highlighted how explanations still contribute to the legal objective
of enhancing accountability of life insurance distributors by forcing
them to provide written reasons why a given financial product is
adapted to the customer’s profile.

Chapter 6: Understanding the supervisors’ needs for explainable AI
in financial crime detectiony

– We described the socio-techno-legal supervision system and auditing
approaches in the AML-CFT context. We reveal three main auditing
approaches: global, from global to local, and from local to global.
The global approach is focused on measuring the performance of the
system, the global to local approach is used to sample cases where
regulators discovered mistakes, and the local to global approach at-
tempts at establishing the seriousness, and therefore the reprehen-
sibility of the error on the whole AML system put in place by the
financial institution.

– We assessed compliance obligations specific to AI-enhanced AML-
CFT systems highlighting why the opacity of AI models may pose
problems with regard to AML-CFT obligations.

– We formulated seven needs that supervisors have regarding model
justifications and explanations. In particular, we find that supervi-
sors primarily need to measure the performance of the AI-enhanced
AML-CFT system such as gaps in detection (false negatives). How-
ever, supervisors may need contrastive AI explanations to establish
the reprehensibility of sampled failure cases, to verify and challenge
banks’ correct understanding of the AI and to demonstrate the legit-
imacy of their challenger model.

– We demonstrated the complementarity of a dual HCI and legal method-
ology to fully understand regulatory supervisors’ justification needs.

– We argued that explanations have a role of "trial evidence" to support
justifications. Justifications should not only be extrinsic by referring
to norms or regulations [Henin and Le Métayer, 2022], but also intrin-
sic by depending on faithful evidence of the system’s behavior that
explanations can provide.
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7.2 The potential of explanations to manipulate
decision-subjects’ trust

In this dissertation, we examined whether explanations could enhance
the understanding, appropriate reliance, and trust of lay users, in order
to achieve the regulatory objective of user empowerment—individual au-
tonomy, agency, free choice, informed consent—is an important objective
of many legal texts imposing explanations. Specifically, we appreciated
the complexity of the user empowerment problem and encountered an
"explanation paradox". On the one hand, it appears logical and necessary
to give individuals who are subject to an AI decision access to important
information about the decision made about them. On the other hand, we
revealed that explanations tend to increase unwarranted trust, and do not
appear to improve significantly users’ understanding of the decisions in
the life-insurance context, where domain (financial) knowledge is impor-
tant. Explanations play a important role in empowering end-users, while
also having the potential to create inappropriate trust and reliance.

This section describes the potential for users to be manipulated through
explanations. The following section will focus on the human-centric av-
enues that show promise for more effective explanations.

Much of the discussion below draws a comparison between meaning-
ful consent to data practices, which has been extensively studied in the
privacy literature, and meaningful consent to a decision made by an on-
line AI-based recommendation system. Consent for data processing and
AI recommendations share similar challenges in correcting power imbal-
ances between data/decision subjects and data/AI operators [Acquisti
et al., 2015].

7.2.1 The Self-governance fallacy

Our observations echo the warning of some legal scholars who have
stressed that end-user meaningful consent in the digital age is a theoreti-
cal and unattainable ideal [Obar, 2020, Pasquale, 2015]. Obar [2020] char-
acterized the situation as: "the seemingly impossible scenario of achieving,
consistently and ubiquitously, meaningful forms of consent". This is known
as the self-governance fallacy. Self-governance by end-users is an ideal
that aims to empower users to understand, then consent to or decline
the decisions made about them or their data. However, in the era of
big data and profiling, it seems unrealistic to expect end-users to con-
trol every decision they are subject to. Pasquale [2015] argued that the
"boring, time-consuming and overwhelming" nature of online consent,
coupled with its mismatch with end users’ real goals, who just want to
use a service, make it unrealistic to expect end users to engage in "tan-
gential" discussions about data policy (i.e., information that does not have
to do with the user’s search). Furthermore, Morley et al. [2020] described
how the self-governance approach risks creating a complex mechanism
of victim-blaming in case of failure. When "empowering" an individual
by providing them with choices and tools, responsibility is shifted to the
individual in case something goes wrong. In the healthcare context, Mor-
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ley et al. [2020] describe how an individual may be seen as a "bad actor"
for failing to follow the algorithm’s advice and be framed as morally
responsible for his or her poor health.

7.2.2 The dark pattern potential of explanations

At the same time, the objective of user empowerment stems from a
genuine concern that online recommendations can be harmful to end-
users when the interests of online service providers and users are not
aligned. Rozen et al. [2023] spoke of "dark patterns" in explainability to
refer to the situation where the effect of explanations to increase trust is
used to the advantage of the service provider and to the detriment of the
user: "this phenomenon of nudging users to act according to others’ interest
is known as "Dark Patterns" in XAI and benefits from humans’ automation
bias towards trusting machines [Gray et al., 2018, Rozen et al., 2023]. In
the context of data protection, Waldman [2020] argues that dark patterns
exploit users’ cognitive biases1 to nudge users to cede control over their 1 For example, the

author mentions hy-
perbolic discounting, a
tendency to overweight
immediate conse-
quences and discount
longer term ones.

privacy. Mathur et al. [2019] define dark patterns as:

Definition

Dark patterns. "Interface design choices that benefit an online service
by coercing, steering, or deceiving users into making decisions that, if fully
informed and capable of selecting alternatives, they might not make." [Mathur
et al., 2019].

Explanations can have the effect to disguise relevant or even contradic-
tory information as evidence in favour of a product that is inappropriate
for the user. In the experiment we presented in Chapter 5, participants
who accepted incorrect life-insurance proposals explained in the course
of dialogic explanations did not process the contradictory information
presented in the explanations. Instead, the explanations had the oppos-
ing effect of reinforcing trust. Following Bösch et al. [2016]’s taxonomy
of dark patterns, explanations could therefore fall into the dark pattern
category of "Hidden Legalese Stipulations", which consists of hiding ma-
licious information in lengthy legal paragraphs. Alternatively, untrust-
worthy explanations may be included in the broader "Sneaking" category
of Gray et al. [2018], where dark patterns are used to hide, disguise or
delay information that is relevant to the user.

7.2.3 Safeguards against user manipulation for critical on-
line decisions

The discussions on dark patterns or self-governance in academic lit-
erature have primarily focused on data privacy issues. In the privacy
context, Waldman contends that the "predatory behavior" of online plat-
forms is made possible because the law, "based on the myth of rational
disclosure", allows it [Waldman, 2020]. As a result, Waldman argues that
online privacy should be better regulated by requiring large platforms to
ensure the trustworthiness of their systems.



222 the explanation paradox and the human-centric path

However, in the context investigated in Chapter 5, which pertains to
online recommendations for life insurance contracts, recommender sys-
tems must be trustworthy by law. In finance and other highly regulated
environments, regulators and internal compliance systems act as safe-
guards against the manipulation of user trust and dark patterns, ahead
of the protection provided by user self-governance. The risk of using ex-
planations as "dark patterns" is therefore lower for critical decisions that
are subject to important regulation. In life insurance, it can be assumed
that the ’fiduciary model’ described by Obar [2020] is applicable. This
model positions the robo-adviser company as a fiduciary, responsible for
ensuring that the user’s best interests are served and that relevant infor-
mation is presented in an understandable manner.

However, the challenge of self-governance and consent remains preva-
lent in finance and other regulated industries. The legal concept of "en-
lightened choice" in life insurance is not solely intended for users to val-
idate their decisions, as recommendations are expected to be reliable.
Rather, it is intended to ensure that users understand the decisions they
are making. This can be particularly challenging in regulated environ-
ments where there is a significant domain knowledge requirement and
information asymmetry.

7.3 Human-centric directions for improved cus-
tomer empowerment

Explanations may not always have the intended effect of improving
user understanding and trust, despite regulatory expectations. Therefore,
it is important to avoid the misconception that explanations are a cure-all
for user empowerment and instead take a more realistic approach.

However, providing decision-subjects with relevant information on the
decision remains critical and necessary, specifically for online recommen-
dations for which human advisors are usually unavailable. The research
in this dissertation shows that human-centric explainability still has a es-
sential role to play to communicate important information to the user.
Explanation interfaces may not be useful for everyone at all times, but
we can optimize their design to make them "good enough", i.e. useful for
as many users as possible, most of the time. The explanation interfaces
designed in Chapter 5 offer only a few examples of the many design
choices available. More research needs to be done to craft quality inter-
actions to support customers’ understanding of AI-based decisions. In
what follows, I outline some promising human-centric ways of designing
explanations that are worth presenting to users, and that avoid, as much
as possible, the pitfalls of over-reliance and uselessness for understand-
ing.

7.3.1 Thinking beyond information access

According to Obar [2020], part of the problem is that the discussion
of user control and empowerment in legal and policy literature usually
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ends at the point of access of information. The author states: "once indi-
viduals have access to notice and choice manifestations, then what?". In legal
discussion, more emphasis should be put on the "tools for converting notice
materials into meaningful consent". Obar also discusses "a modified scenario
where users receive summaries as opposed to details, guidance as opposed to full
autonomy, support as opposed to silence". The turn that explainability has
taken in recent years towards making explanations more visual, concise
and interactive precisely aims at answering this call [Ooge, 2023].

In this thesis, we have linked legal and policy discussions on the non-
expert user control problem to this current trend in explainability, which
focuses on making information intelligible. The interactive, visual and
dialogic explanation approaches we tested showed disappointing results
in terms of end-user empowerment. However, many more explanation
design strategies remain to be tested. Specifically, below I highlight that
the explainability field has yet to fully exploit a wealth of research in
educational psychology.

The problem is as follows: How can explanations of online AI-based rec-
ommendations foster the empowerment of decision-subjects, specifically their un-
derstanding of decisions, and prevent user manipulation? Below, we discuss
three pathways to address the issue of client empowerment through ex-
plainability interface design:

1. Tailoring explanations to relevant user communities

2. Stimulating skepticism

3. Presenting a selected range of options

4. Fostering user engagement, curiosity and learning

7.3.2 Tailoring explanations to relevant user communities

In their discussion on the right to explanations for data protection,
Wachter et al. [2017] highlighted that: "What counts as a meaningful expla-
nation for one individual or group may not be meaningful for another". The
research community in explainability and HCI has also emphasized the
importance of adapting to the needs of different user groups [Ooge, 2023,
Cheng et al., 2019]. This involves striking a balance between one-size-
fits-all and individualized interfaces to efficiently meet the needs of most
users [Bødker, 2006]. As highlighted in [Stephanidis et al., 1999], the
information society and now AI have brought us to a world where peo-
ple are becoming increasingly dependent on online and AI-based ser-
vices, and where AI decision subjects are not necessarily domain experts
and have different skills, needs and preferences. This underlines the
need for designing human-centred and high-quality technological inter-
actions. Specifically, it requires the identification of relevant user com-
munities, within which individuals share key characteristics influencing
explanation design and have the same needs [Stephanidis et al., 1999].
The HCI discipline has a long history of "fitting" a computer artefact to a
specific user group and problem setting [Avital and Te’eni, 2009]. For ex-
ample, Vessey and Galletta [1991]discussed cognitive and Goodhue and
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Thompson [1995] organizational task technology fit. I am hopeful that,
in the near future, HCI research efforts will be able to identify the key
individual cognitive factors that influence explanation effectiveness and
"fit" explainability interfaces to maximize understanding among the user
groups formed by these identified characteristics. To date, little is known
about whether, which and how other aspects of a user’s personality and
profile, such as information processing styles, general intellectual ability,
personal goals [Klaczynski et al., 1997], should affect the design of ex-
planations [Naiseh et al., 2020]. In Chapter 3, we highlighted that user
domain knowledge, personal goals, or need for cognition have been iden-
tified in the literature as influential in the way users process information
and explanations [Klaczynski et al., 1997]. However, in Chapter 5, we did
not test whether different explanation strategies could be used for differ-
ent user domain knowledge. Future work could address this question.

It can be noted that adapting explanation techniques to individual pro-
files raises two legal challenges. First, the explainer must know some-
thing about the person receiving the explanation. This happens naturally
in person-to-person communications. In online contexts, the creation of
profiles, even for the sake of providing effective explanations, raises pri-
vacy concerns. Second, providing varying levels of information to differ-
ent user groups may raise concerns about unequal treatment, especially
if some groups receive less comprehensive information.

7.3.3 Stimulating skepticism

As previously mentioned, tangential explanations about the reasons
for receiving the recommendation may not always be in line with the
goals of the users, who are primarily interested in using the service, es-
pecially for low-stake decisions. One design approach therefore consists
in forcing users to pay attention to explanations through friction. Some
work has tested hiding explanations by default, or forcing users to at-
tend explanations through friction-based interface design. For example,
Buçinca et al. [2021] tested three friction-based designs: time counters,
which consist in making the user wait for a certain amount of time before
seeing the AI decision, on-demand buttons, which consist in displaying
the explanation only on-demand of the user, and uncertainty, which con-
sists in showing probability of the AI’s prediction (e.g., "the AI is 81%
confident in its suggestion").

Another possible friction-based design might be to make the warn-
ings about the risks of the AI proposal more prominent. Buçinca et al.
[2021] found that friction-based explanations reduced significantly over-
reliance, at the expense of user satisfaction, however. This approach ex-
ploits users’ possible suspicion that the service provider is not acting
in their best interests. The lack of transparency and certainty, or the
perceived risk of the AI suggestion can foster users’ skepticism and crit-
ical thinking. According to Klaczynski et al. [1997], threatening prob-
lems induces more sophisticated reasoning than goal-enhancing prob-
lems. However, the effectiveness of friction-based design in improving
understanding and learning has yet to be tested experimentally.
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7.3.4 Presenting a selected range of options

Promising avenues for explainability to better align with human’s cog-
nitive architecture include Evaluative XAI [Miller, 2023], in which expla-
nations are provided without the AI recommendations to avoid confir-
mation bias and clarify alternatives and trade-offs. For the same reason,
some researchers have advocated presenting multiple recommendations
rather than a single one. This follows the important observation that
good advice does not necessarily have to be presented as a single rec-
ommendation [Miller, 2023]. While this approach may seem useful and
necessary for experts such as doctors to make critical decisions, it may
not be appropriate in all contexts and to current business practices, which
seek to satisfy users’ demand for fast, clear and therefore single advice
to follow. Avoiding presenting recommendations defeats the purpose
of providing a service in the first place, and providing multiple recom-
mendations may increase the cognitive load for customers, who may not
be willing to invest time and thought. As a result, offering one recom-
mendation is often how medical (and much legal) advice is presented.
Nevertheless, it seems necessary that customers invest a certain amount
of time and thought if they are to make empowered decisions. We could
imagine designing recommendations and their explanations in such a
way that the cognitive load for customers remains low, for example by
presenting a small set of relevant recommendations. For example, in
situations where there are too many options to consider meaningfully,
the evaluative AI framework suggests helping people narrow down the
options.

7.3.5 Fostering user engagement, curiosity and learning

My intuition after the research in this thesis is that creating truly useful
explanations requires improving user engagement or curiosity. Work on
fostering motivation, curiosity, and learning in education, psychology,
or HCI provides a wealth of relevant knowledge for explanation design.
However, the explainability field has yet to fully tap into this research.

User engagement is related to users’ motivation and goals, and to
other attributes [O’Brien and Toms, 2008] such as challenge, positive af-
fect, endurability, aesthetic and sensory appeal, attention, feedback, vari-
ety/novelty, interactivity, and perceived user control. O’Brien and Toms
[2008] propose the following definition of user engagement:

Definition

User engagement. Engagement is a category of user experience charac-
terized by attributes of challenge, positive affect, endurability, aesthetic and
sensory appeal, attention, feedback, variety/novelty, interactivity, and per-
ceived user control.

The explanations we designed in Chapter 5 did not improve user en-
gagement. Future work could try to improve explanation design in the
context of life-insurance in order to optimize for the above aspects. I am
not aware of work in explainability that has considered all these aspects
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of user engagement for explanation design.

However, interesting work has started to emerge on the tangential con-
cept of curiosity [Danry et al., 2023, Melsión et al., 2021]. This work
is rooted in educational psychology. Unlike friction-based design, sup-
porting curiosity does not sacrifice users’ satisfaction, on the contrary.
According to Shin and Kim [2019], curiosity leads to a search for infor-
mation which, when fulfilled, resolves the psychological discomfort of
uncertainty and leads to a sense of satisfaction. In Section 2.3 of Chapter
2, we have seen that curiosity is one of the main reasons people ask for
explanations. It also helps them learn and memorize better [Shin and
Kim, 2019]. In the field of education, several studies have demonstrated
that curiosity is a key factor in learning, creativity and well-being [von
Stumm et al., 2011]. These provide promising avenues for research on
explainability to promote learning through curiosity.

Definition

Curiosity. "The desire for knowledge in the absence of extrinsic reward"
[Shin and Kim, 2019].

According to Shin and Kim [2019], curiosity is generated by the aware-
ness of a gap in knowledge, generally aroused by stimuli [Kang et al.
2009; Markey et Loewenstein 2014]. The authors argue: "This lack of in-
formation creates a feeling of deprivation, which naturally leads to a desire to
learn." Moreover, Shin and Kim argue that there is an optimal level of
knowledge gap to arouse curiosity. Curiosity depends on how attainable
the information is for them, meaning that the knowledge gap should not
be too large. The feeling of having the background knowledge and ability
to find an answer intensifies curiosity.

"The first step to instigate curiosity is creating an optimal knowledge gap and helping students to be
aware of it. A simple way to achieve this is to introduce cognitive incongruity immediately after
providing students with basic knowledge in a particular subject."

[Shin and Kim, 2019]

Asking questions to users is one way to introduce this "cognitive in-
congruity" and pique users’ curiosity. Danry et al. [2023]’s intuition in
their paper "Don’t Just Tell Me, Ask Me" is that framing explanations as
questions, rather than presenting them directly to the user, encourages
people to critically evaluate explanations2. They find that AI explana- 2 In [Danry et al., 2023],

an example of causal ex-
planation is: "If one per-
son played violent video
games and was aggressive,
it does not follow that
everyone who plays violent
video games will be aggres-
sive". Framed as a ques-
tion, it becomes: "If one
person played violent video
games and was aggressive,
does it follow that...?"

tions framed as questions were able to significantly increase human dis-
cernment of logically flawed statements. Similarly, Melsión et al. [2021]
designed "quiz" explanations by asking users—in this case children—
what they thought were the most important characteristics for an AI to
predict gender. The use of such gamified explanations was useful in
improving understanding and learning in the domain of gender bias.

The authors’ intentions in Danry et al. [2023] and Melsión et al. [2021]
was to improve respectively human discernment and learning. Although
the authors do not connect their research to the notion of curiosity, it
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seems like designing explanations as questions corresponds to the pro-
cess of stimulating curiosity described by Shin and Kim [2019]. Asking
users questions makes them aware of their knowledge gaps and serves as
a stimulus for curiosity. The notion of curiosity is interesting because it
extends beyond simply improving critical thinking. Curiosity can prompt
an active search for missing information, leading to enhanced user sat-
isfaction and learning upon resolution. This is particularly relevant in
domains with high information asymmetry, such as life insurance, where
effective explanation design could capitalise on significant opportunities
for learning. While fostering curiosity may seem like a worthwhile ob-
jective, it may be unattainable for some users due to time constraints and
context specificities. Further research is needed to confirm or invalidate
this hypothesis.

Based on Shin and Kim [2019]’s description of how to instigate cu-
riosity, we imagined explanations designed to support it in the context
of Robex, similarly as in [Danry et al., 2023]. However, due to a lack of
time and resources, we did not test them. Below, we present the expla-
nations we developed, with the hope of inspiring future researchers to
empirically test similar designs.

Figure 7.1 shows the prototype interface we created. Users would first
read basic information about Robex, as shown in Figure 7.1 a), to intro-
duce basic knowledge of the Robex algorithm. Curiosity stimuli then
take the form of questions as in [Danry et al., 2023]. Users would have to
find the answer to two or three questions such as "In your opinion, what
feature had the most impact on the recommendation made to you?" (Single choice
question) or "In your opinion, which of the following characteristics led Robex
to make you a riskier offer?" (Multiple choice question) as shown in Figure
7.1 b) and c). Users can click on feature cards, which turn green if it is
the right answer and grey otherwise. The questions are displayed one by
one to allow for progressive disclosure. [Springer and Whittaker, 2019,
Panigutti et al., 2023a]. After answering a few questions, users are able
to view the complete explanation, in a graphical format. The answers to
the questions are saved and displayed at the top of the interface.
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Figure 7.1: Explanation
interface to engage users
cognitively and stimu-
late their curiosity. First,
a brief explanation of
Robex is given: a); sec-
ond, the user answers
several multiple choice
questions that lead them
to question the impact
of some features: b) and
c); third, the full graphi-
cal explanation is given.
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7.4 The human-centric way forward for explain-
ability in a highly regulated environment

In the EU, the forthcoming AI Act will require internal compliance
mechanisms and third party audits to ensure that high-risk AI systems
are trustworthy. In parallel, highly regulated sectors such as finance al-
ready have in place accountability and oversight mechanisms that require
all systems, including AI-based, to be trustworthy. In this context, expla-
nations of AI systems serve to control the algorithms’ outputs and verify
their compliant functioning. They are directed to auditors, regulators or
supervisors who are experts in the domain of application or/and ma-
chine learning. However, designing explanations for this user group also
presents its own challenges, quite different from the challenges of design-
ing explanations for lay users. On the one hand, explanations appear to
ease the tension created by the use of black-box systems in highly reg-
ulated contexts. On the other hand, the limitations of current XAI tech-
niques make them weak candidates for providing reliable and tangible
evidence about machine learning’s behaviour.

7.4.1 AML-CFT illustrates the tension of using AI in a highly
regulated environment

In Chapter 6, we described the supervisory context in anti-money laun-
dering and countering financing terrorism (AML-CFT), where the use of
AI is progressing. The industry is experiencing a paradigm shift in the
detection of financial crime from deterministic rule-based models, which
have dominated the market for over 20 years, to probabilistic approaches
using machine learning.

An increasing number of projects in banks have been utilizing AI in
AML-CFT systems in recent years. AI’s benefits to reduce compliance
costs are beginning to materialize [Overrein, 2020], although scientific
evidence that it improves the detection of money laundering and terror-
ism financing is still lacking. So far, financial institutions and regulators
have seemed reluctant for machine learning to replace rules-based sce-
narios that detect known patterns of criminal activity [Blakey, 2022]. For
compliance, it is important to be able to map identified AML-CFT risks
to specific scenarios created in the system. Machine learning may actu-
ally be better than rules-based systems at detecting new, sophisticated,
patterns of criminal activity, but the mapping exercise will be more chal-
lenging. Compliance may become less certain.

The context of AML-CFT has given us an illustration of the fundamen-
tal conflict that black box AI creates in highly regulated sectors between
compliance risks and efficiency. In Chapter 6, we delved into the heart
of this conflict by detailing the regulatory reasons that make AI opacity
and complexity problematic. We saw that AI opacity hinders supervi-
sors’ ability to verify several key requirements of AML-CFT systems, in
particular that:

1. an AML-CFT system is adapted to the specific risks of the bank’s mar-
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ket,
2. an AML-CFT system "carefully examines" ongoing financial opera-

tions,
3. banking analysts can justify why an AI generated alert should or should

not be further examined,
4. banking operators can detect and anticipate AI failures,
5. the roles of human AML-CFT analysts and automated tools are com-

plementary.

Additionally, the strict compliance requirements in AML-CFT create
a conservative environment. To comply with AML-CFT regulation and
avoid fines that can soar up to 6-7% of their turnover, banks spend dozens
of billion of dollars in compliance every year and have developed costly
and large-scale information systems [Farley, 2017, Goranitis and Cailali,
2023]. Updating these systems is costly and takes time [Singh et al.,
2018]. Furthermore, regulators have been slow to produce guidelines
on AI, enhancing the regulatory uncertainty around the use of machine
learning in AML [Blakey, 2022].

All these factors heighten the tension between using AI to improve
AML-CFT efficiency and compliance risks.

7.4.2 Explainability is incomplete and uncertain

The CJEU’s Ligue des Droits Humains case3 requires models used to 3 CJUE, June 2021, 21,
Ligue des droits hu-
mains, Case law n° C-
817/19.

detect terrorist threats to be based on "predetermined criteria", which
raises the question of whether post-hoc explainability of black box mod-
els will ever go far enough to permit the kind of verification required
for critical use cases such as AML-CFT. In this section, we discuss why
explainability is unlikely to fully resolve the tension between compliance
and black box efficiency. In the next section, however, we argue that ex-
plainability does help to reduce this tension. We emphasize below that
explainability is just one technique in the auditor’s toolbox, that some
XAI methods have a reliability problem, and that some explanbility needs
still lack computational solutions to match specific regulator needs.

First, explainability only covers one aspect of the technological ap-
proaches necessary to demonstrate compliance. For example, in Chapter
6, we revealed that supervisors needed enhanced model performance
metrics to compare machine learning based AML-CFT systems with pre-
machine learning ones.

For the verification of the "careful examination" of ongoing financial
operations by an AML-CFT system (point 2), a sampling approach is
first needed to select some cases of interest with potential errors. Subse-
quently, explainability can be used to determine whether the algorithm’s
examination of specific cases indeed contains methodological shortcom-
ings. Challenger models, such as those used by the ACPR in France, also
seem particularly relevant and necessary to challenge point 2.

Similarly, explainability seems insufficient to fully demonstrate that
banking operators can detect and anticipate AI failures (point 4). What
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seems necessary in this case is a demonstration of a high-quality model
governance, which goes beyond the scope of explainability.

Second, current XAI techniques have a reliability problem. Currently,
there is a lack of assurance that the concept of explainability is one hun-
dred percent truthful [Bilodeau et al., 2023, Kindermans et al., 2017]. As
presented in Section 6.5.2 of Chapter 6, feature-based explanation tech-
niques are based on correlations between features, not on causation [Ha-
mon et al., 2022, 2020, Rouvroy, 2013], making it hard for regulators to
rely on explanations as "faithful" and factual evidence for justifications.
Explanations can also be manipulated in black-box audit settings so as to
hide potential biases in a model, as demonstrated by Zhou and Joachims
[2023]. In response, Jeannette Wing advocates for the use of formal meth-
ods to address the probabilistic nature of machine learning and the role
of data in training with a deterministic tool [Wing, 2021]. Formal verifi-
cations, she argues, are needed complements to fairness, robustness, ac-
countability, and explainability in order to achieve trustworthy AI. Addi-
tionally, some work on the causability of explanations such as [Holzinger
et al., 2020] are promising to address some of the inherent flaws of cur-
rent explainability methods [Confalonieri et al., 2021].

Third, our findings in Chapter 6 pointed to supervisors’ explainabil-
ity need to establish the level of reprehensibility of sampled failure cases
(point 2): "Was the failure an isolated incident or does it reveal a more se-
rious systemic problem?" However, Zhou and Joachims [2023] argue that
current explanations do not provide answers to questions like: "what
factors caused the model to predict X instead of Y?", although this is
precisely what supervisors are looking for in AML-CFT: "what factors
caused the model not to produce an alert for this case (instead of flag-
ging the case)? Computational solutions to provide such explanations are
indeed lacking in the explainability literature [Miller, 2021]. Future re-
search in explainability could investigate if contrastive explanation mod-
els such as in [Miller, 2021] could provide solutions to this problem.

7.4.3 Human-centric explainability alleviates some of the reg-
ulatory tension of black-box AI

Nevertheless, explainability can ease some of the tension for regula-
tory compliance caused by AI opacity. Explanations help to determine
whether a decision was made in accordance with procedural and sub-
stantive standards, which is the first aspect of accountability as defined
in [Doshi-Velez and Kortz, 2017]. Explainability also contributes to ac-
countability by providing evidence to support the justifications made by
the regulated entity [Felici et al., 2013]. The evidence may be imperfect
due to the reliability problem highlighted above, but at least some evi-
dence will be present.

The list below4 gives our assessment on the level of contribution of 4 This argumentation
format is inspired from
[Miller, 2023].

XAI to the five regulatory requirements listed above. The points 1’ and
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2’ describe some of the technical functions that XAI methods can per-
form, contributing to demonstrate compliance respectively to the points
1 and 2 in the list above. Furthermore, explainability may contribute to
answer the regulatory issues presented in points 3, 4, and 5. However,
the predominant human element in these contexts of XAI use makes the
adoption of a human-centric approach to explainability design particu-
larly critical.

1’. can reveal if certain characteristics of a bank’s clientele and risk pro-
files are duly taken into account, through global XAI,

2’. can reveal if the algorithm’s "examination" of operations contains
methodological errors, and how it adjusts to new information, using
local and global XAI methods,

3’. may enable an analyst to understand an alert and produce quality
reports using local XAI, provided that human cognitive biases and
human factors are carefully accounted for,

4’. may help banking operators to demonstrate control over their AI sys-
tem,

5’. may allow better coordination between machine and human analysts
and more timely processing of alerts.

In a qualitative enquiry with similar AML-CFT scenarios as we used
in 6, Gerlings and Constantiou [2022] found that contextual explanations
were much needed to enable banking investigators to understand an alert
produced by machine learning in a timely manner. Explanations can
therefore contribute to points 3’ and 5’. However, they also noted the
risk of investigators being influenced by an alert’s risk score5 and losing 5 "If the score is low,

effort is low and vice
versa." [Gerlings and
Constantiou, 2022]

time trying to understand it. The authors suggest removing such scores
altogether or providing more context-relatable explanations to point in-
vestigators to the issues with an alert.

In Chapter 6, we found that supervisors need explainability to verify
that the AI’s criteria for escalating or closing alerts are consistent with
human expertise. However, more research in HCI is needed to develop
useful explainability interfaces for supervisors to verify the bank’s con-
trol over its model and for banking practitioners to detect and anticipate
errors (points 3 and 4).

We also described in Chapter 6 the complexity of the socio-techno-legal
context of AML-CFT supervision. We found that supervisors mainly had
legal backgrounds, with few investigators having AI development knowl-
edge. The holistic perspective provided by human-centric approaches
will be particularly important to design explanations for supervisors that
take into account these social factors.

In the complex and high-dimensional context of AML-CFT, the human-
centric approach strikes me as particularly necessary for effective explain-
ability implementation. It allowed us to uncover the need for contrastive
explanations among supervisors, which can pave the way for adapted
computational XAI solutions that respond to this need. The human-
centric approach will also be necessary to ensure that banking analysts
are not biased by explanations, that development teams feel accountable
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for their models, that explanations improve human-machine collabora-
tion and that supervisors with high domain expertise but little computer
science skills have the means to challenge bank’s implementation of ex-
plainability. Explainability should not be seen as an off-the-shelf solution,
but as one tool among many in a complex socio-techno-legal context.

7.5 Peripheral observations

7.5.1 Why the financial sector is interesting for other highly-
regulated industries

As our discussion is based on the finance case studies presented in Part
II, we highlight below two reasons why the results we presented in the
financial sector can provide insights for other highly regulated industries.

First, the risk-based approach used in AML-CFT is a common regu-
latory approach, specifically in law pursuing "crime-fighting and pub-
lic safety objectives" [Black, 2001] The lessons we learned in the area of
AML-CFT therefore resonate in these other risk-based fields. The ap-
proach is generally presented as virtuous because of its proportionality
and cost-effectiveness [OECD, 2021b]. It is adopted, for example, in the
recent Digital Services Act to prevent the systemic risks posed by AI-
based information platforms [European Parliament and Council, 2022] or
in the Draft Regulation on the Dissemination of Terrorist Content Online
[European Parliament and Council, 2021, Maxwell, 2021]. Maxwell also
notes some downsides to this approach. One of its peculiarities is that it
shifts the burden of attaining public interest objectives through ’appropri-
ate’ means to private actors, which are not as directly accountable as are
public authorities for respect of fundamental rights. Where regulatory
compliance is measured in part by the quantity of resources devoted to a
detection or enforcement task, this can incentivize companies "to do too
much, rather than too little, to satisfy the law’s crime-fighting objectives,
a phenomenon known as gold-plating." Gold plating can in turn create
risks for fundamental rights by going beyond what is strictly necessary
and proportionate.

Second, the digital developments we have seen in this thesis in the
financial sector with the emergence of online robo-advisors and super-
visory technology tools for AML-CFT, such as "LUCIA", are likely to be
adopted in other areas of the regulated digital economy.

Current global efforts to regulate technology pose unprecedented chal-
lenges for regulators and create a demand for new regulatory technology.
The financial sector has been at the forefront of the development of tools
to support compliance and reporting. The rapid development of FinTech
in the aftermath of the 2008 crisis, together with the burdensome compli-
ance measures in the financial sector, have necessitated a corresponding
evolution of regulatory tools. RegTech addresses this demand by pro-
viding software tools that support regulatory compliance. It has been
instrumental in catalysing innovation and allowing digital companies to
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navigate in the complex financial compliance landscape [Paul Fehlinger,
2023].

Definition

RegTech. ”Any use of technology to match structured and unstructured
data to information taxonomies or decision rules that are meaningful to both
regulators and the firms they regulate, in order to automate compliance or
oversight processes.” [Emmanuel Schizas et al., 2019].

In summary, the risk-based approach to regulation and the pioneer-
ing regulatory developments in the financial sector suggest that lessons
learned in this area could be instructive for other highly regulated sec-
tors.

7.5.2 Principles for dealing with interdisciplinarity

This thesis has underlined the need for interdiscipliinarity in XAI re-
search. Interdisciplinary, however, is challenging. Acquiring adequate
proficiency in a single field demands extensive practice, making it par-
ticularly challenging to attain expertise in multiple areas. For a novice
researcher, not fully established in any research domain, interdisciplinar-
ity can therefore seem like an impossible endeavour, running the risk
of making no contribution anywhere and tackling subjects only superfi-
cially. I was confronted with this problem throughout my thesis. More-
over, building on different fields can make it particularly difficult to have
relevant experts review the scientific value of interdisciplinary contribu-
tions, and ensure their quality. Below, I highlight three principles that I
believe are important, although very simple, and not specifically original,
to address the challenges of interdisciplinarity.

1. Clarifying one’s roots. First, interdisciplinary authors should clarify
the disciplinary origin(s) of the methodologies used. Interdisciplinary
contributions sometimes lack a clear indication of the field or litera-
ture they draw upon. This can make it difficult to evaluate their sci-
entific value and can contribute to the undermining of interdisciplinary
research. However, if relationships to disciplines are clearly specified,
relevant reviewers can be called upon to verify research quality. Further-
more, I have realized in my research the importance of borrowing estab-
lished methods from academic disciplines (in my case mainly from HCI).
Using established methods allows for capitalising on decades of evolu-
tion in a field towards scientific value, and provides the opportunity to
demonstrate rigour, transparency, and accuracy in their application. It
also allows peer reviewers to assess the quality of the implementation of
the methods.

2. Establishing a shared vocabulary and knowledge base. Second,
interdisciplinary fields have to establish a shared knowledge base and
vocabulary among researchers from diverse backgrounds. Dealing with
various terms, multiple definitions for the same concept, and diverse
backgrounds is a well-known challenge faced by interdisciplinary re-
search communities. In explainability, several researchers have called
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for more unity and consensus in the vocabulary used [Doshi-Velez and
Kortz, 2017, Markus et al., 2021]. However, the idea is difficult to put
into practice, as in 2023, divergences still exist on the definition of ex-
plainability. Notable efforts to map the landscape of interdisciplinary
research on AI ethics, transparency or fairness are presented in [Jobin
et al., 2019, Abdul et al., 2018]. They provide useful insights on the com-
plex sub-communities that form the interdisciplinary research field on
AI. Other useful initiatives are workshops and courses provided in inter-
disciplinary conferences. They contribute to give all authors and review-
ers a minimum understanding of the different approaches and theories
relevant to the field.

3. Embracing historical research. Third, emerging interdisciplinary
movements and fields may sometimes lack sufficient connection to their
historical research roots. This is related to my first two points. It can be
hard to realize that some research has already been done on a topic if the
terminology employed was not exactly the same. Specifically, human-
AI interaction research should better embrace past research in HCI and
psychology to build upon it. For instance, the field of psychology and
visualisation has generated a considerable amount of literature on how
to communicate information effectively to individuals, without neces-
sarily referring to the concept of explanation. Yet, explainability would
have much to gain from these findings. If explainability does not recog-
nise its links with these disciplines, it not only misses the opportunity
to capitalise on relevant knowledge but also runs the risk of replacing
such knowledge with more recent studies that may not be based on as
well-established methodologies.

7.5.3 On explainability for LLMs

Significant developments have occurred in the field of explainability in
2023, driven by research on LLMs. The unprecedented size of large lan-
guage models (LLMs)6, their dependence on context thanks to attention 6 The phenomenon of

emergence in LLMs
refers to the abilities
that are not present
in smaller language
models but appear
when scaling up models
[Wei et al., 2023].

mechanisms [Vaswani et al., 2017], and their capture of the intricate nu-
ances of language have fascinated many researchers. LLMs also present
new risks [Gebru et al., 2021]. Specifically, they suffer from "hallucina-
tion", i.e. generating inaccurate, non-factual content [Yao et al., 2023a]
and their mode of interaction with people through dialogue, as we have
seen in Chapter 5, makes them particularly prone to cheat users and per-
suade them of false claims [Rozen et al., 2023]. As Bubeck et al. [2023]
puts it: "[GPT4] is remarkably good at generating reasonable and coherent ex-
planations, even when the output is nonsensical or wrong". This has driven
many scholars to attempt to better understand the underlying mecha-
nisms of LLMs. The last couple of years have therefore seen interesting
developments in the field of explainability, from an observation-based,
"natural science" approach to a more promising, mechanistic and engi-
neering approach.

One of the specificities of LLMs like GPT-4 is that it can give you an
explanation of its answers if you ask it to. A lot of the efforts to bet-
ter understand large language models have therefore focused on design-
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ing inputs or "prompts" that elicit explanations. For example, Chain-
of-Thought prompting (CoT) consists in eliciting intermediate reasoning
steps in the LLM’s output [Wei et al., 2023]. Many more strategies in that
vein have been developed to improve end task performance, for example
few-shot prompting which consists in giving an example of the expected
result in the prompt [Brown et al., 2020] or ReAct [Yao et al., 2023b]
which instructs the model to perform specific actions such as searching
an external information source. Bubeck et al. [2023] also tested GPT-4’s
explainability abilities by asking it to provide explanations for its an-
swers. They examined its output consistency, i.e. whether the explanation
given by GPT-4 is consistent with its output, and its process consistency,
i.e. whether the explanation gives us the ability to simulate GPT-4’s pre-
dictions in different similar contexts. They found that GPT-4 was particu-
larly output-consistent, even when providing an explanation for a wrong
answer, but not reliably process-consistent, especially for tasks that are
not inherently explainable, such as arbitrary ones.

Although these strategies are called "prompt engineering", they devi-
ate from the idea of understanding the algorithms’ internal components
through formal engineering and mathematical methods. In this sense,
they are more closely aligned with natural science approaches.

Most of the above-mentioned approaches rely on inference, observa-
tions, and more specifically on the language models’ outputs. However,
since LLMs’ outputs are unreliable [Yao et al., 2023a] there is no guaran-
tee that prompting strategies will make their answers and explanations
more accurate. Turpin et al. [2023] recently demonstrated that Chain-of-
Thoughts prompting can fail and generate false reasons for the chatbots’
answers in the step-by step reasoning. Moreover, the consistency of GPT-
4’s output presents a significant issue. If the responses are inaccurate, the
corresponding explanations will align with them and convince users of
erroneous assertions [Bubeck et al., 2023].

The classical black-box approaches to explainability provided by meth-
ods like SHAP, counterfactual and other model-agnostic techniques have
also been tested on LLMs. Martens et al. [2023] have even taken advan-
tage of the LLMs to provide "SHAPstories" and "CFstories", narratives
generated from the results provided by these techniques. They show
that these narratives are more convincing for human users, providing
useful tools to generate explanations to a general audience and nonspe-
cialists, they argue. Yet, these approaches have the limitations we know
of classical explainability methods, specifically lack of causability, in ad-
dition to the limitations of prompt-based explanation methods such as
non-robustness due to high sensitivity to prompt details combined with
output consistency problems and persuasiveness.

Some recent research has introduced promising results to "mechanis-
tic" explainability, i.e. explain models’ internal mechanisms and compo-
nents. Such advances have been made possible by experimenting with
small models. Early attempts at understanding LLMs and deep learn-
ing models have focused on trying to find what best activates individual
neurons [Nguyen et al., 2016, Carter et al., 2019]. However, the activa-
tion of a single neuron can take many different meanings in different
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contexts, which makes it impossible to interpret neural networks on this
basis. This is what Anthropic [2023] call the polysemanticity of individual
neurons. This can be due to the superposition phenomenon by which "a
neural network represents more independent "features" of the data than
it has neurons by assigning each feature its own linear combination of
neurons." [Anthropic, 2023]. However, recent research by Anthropic has
shown that mechanistic explanations are possible on small models at the
feature scale, which is much more appropriate than the scale of a single
neuron. By analyzing patterns (linear combinations) of neuron activa-
tions, they provide a promising path to breaking down the complexities
of neural networks into parts we can understand. For the first time, it
feels like the mechanistic approach could be surmountable, and explain-
ability could be achieved through a formal rather than purely inference-
based methods. These findings have yet to be replicated on larger, "fron-
tier" models, however.
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7.6 General conclusion

The first part of this thesis examined the impact of explainability on
appropriate trust through two detailed scoping reviews focusing respec-
tively on cognitive biases and interactive explainability. We established
that explanations have the potential to manipulate trust, by triggering
cognitive mechanisms that lead to overtrust, distrust or misusing al-
gorithmic explanations and predictions. We documented some factors
that play an important role in the trust calibration process with AI sys-
tems, namely users’ prior beliefs and knowledge, and the completeness,
framing and the timing of the explanation. Interactivity has recently
been advocated by some scholars as a possible way of better aligning
explainability interfaces with the human cognitive processes of explana-
tion. Therefore analysed the different types of interaction found in the
literature on explainability and summarised the effects of interactivity
on explainability. Currently, interactive explanations do not appear to
increase misplaced trust in AI systems. However, there is a scarcity of
relevant controlled experiments to confidently confirm or refute this.

In the second part of the dissertation, we explored the role of expla-
nations for appropriate trust, which is critical for AI compliance in two
case studies in finance.

In the domain of life-insurance distribution, we came across an "ex-
planation paradox". Explanations are intended to empower users by pro-
viding them with important domain knowledge to enable them to make
free, informed choices. However, explanations also have the potential to
increase unwarranted trust and make users more vulnerable to untrust-
worthy recommendations. In these circumstances, it appears challenging,
if not unattainable, for explanations to meet regulatory expectations of
ensuring meaningful consent from each and every individual. As high-
lighted in Section 7.3, explanations should not be seen as a silver bullet
for empowering customers. However, future work could explore how to
develop "better than nothing" explanations that work fairly well for most
people. Promising work in explanation design is moving in this direction
by studying how explanations can be tailored to relevant client groups,
how friction-based interface design can be used, and designs that support
curiosity and learning.

In the domain of anti-money laundering and countering terrorism
financing, we have discovered that explanations are necessary to en-
able regulatory supervisors to trust (or not) AML-CFT systems oper-
ated by financial institutions. Explanations can provide evidence on AI
systems’ behaviour. Such factual information supports the provision of
justifications—i.e. demonstrations of compliance—by regulated entities.
For example, explainability will be necessary to verify the alignment of
machine and human criteria for flagging money laundering cases, and
less clearly to verify the appropriate prevention of potential AI failures.
We also established the need of supervisors for contrastive explanations
that help to determine the level of reprehensibility of sampled failure
cases: "Was the failure an isolated incident or does it reveal a more se-
rious systemic problem?". However, computational solutions remain to
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be developed to address this need. Additionally, we noted that current
explainability methods have reliability issues that need to be resolved.
We argued that taking a human-centric approach is crucial in mitigating
the regulatory tensions caused by the use of opaque machine learning in
the complex socio-techno-legal environment of highly regulated sectors
such as AML-CFT.

Below are some short recommendations for future research and policy.
These recommendations reflect my subjective interpretation of the results
of my thesis.

Recommendation 1. Examine the needs of online robo-advisor clients
in more detail. This will help to better align them with regulatory objec-
tives. Further qualitative research should delve into the needs of different
types of robo-advisor clients in light of the regulatory objectives they are
intended to fulfill.

Recommendation 2. Determine whether friction-based explainabil-
ity design can improve user understanding and critical thinking, even
marginally. Some work has started to investigate how to force users
to pay attention to explanations through "friction" [Buçinca et al., 2021,
Naiseh et al., 2021a]. Further work could explore the effect of explana-
tions that use prominent risk warnings or that only appear if requested,
on user understanding of an AI recommendation

Recommendation 3. Examine the impact of question-driven explain-
ability design to optimize curiosity and learning. Absence of domain
knowledge can create obstacles to users’ effective understanding of AI
recommendations. Explainability should be viewed as an opportunity to
educate consumers on basic domain knowledge. Formulating explana-
tions as questions [Danry et al., 2023, Melsión et al., 2021] can be useful
in sparking consumer curiosity and learning. Research in educational
psychology should be leveraged to make sure explanations can foster
curiosity.

Recommendation 4. Take a human-centric approach for explainabil-
ity use in AML-CFT and other complex socio-techno-legal environments.
Explainability should not be viewed as a ready-made solution, but rather
as one tool among many in a complex socio-techno-legal context. There-
fore, we emphasise the importance of designing explainability with a
human-centric approach, taking into account the diverse backgrounds,
needs, feelings of accountability, and cognitive biases of different stake-
holders. This approach can be complemented by legal analyses to better
understand regulatory requirements, which go hand in hand with the
needs of supervisors.

Recommendation 5. Develop and design contrastive explanations to
help supervisors gauge the level of reprehensibility of failure cases. The
aim of this exploration would be to answer the supervisor’s question:
’Was the failure an isolated incident or does it reveal a more serious
systemic problem?’ At present, XAI techniques provide inadequate solu-
tions to this issue.
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Recommendation 6. Elaborate tests to verify the correct human and
AI alignment of decision criteria and prevention of failures. As we have
seen, machine learning in highly-regulated tasks such as AML-CFT must
permit regulated entities and supervisors to verify alignment of the sys-
tem with human-defined decision criteria. Current ex-post XAI tech-
niques do not permit this yet, but XAI developments are quickly advanc-
ing so that this alignment can be verified in the near future.
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A1. List of cognitive patterns when interpreting
explainable AI

Table A.1: List of cognitive patterns identified in the corpus created in
Chapter 3 that may lead to reasoning errors when using explainable AI
systems.

Cognitive pattern Definition Ref. in the corpus

Ambiguity aversion "The tendency to prefer known risks over unknown risks" [Kliegr et al., 2021] [Kliegr et al., 2021]

Anthropomorphism People tend to attribute human traits to machines and therefore expect AI explanations to use the same con-
ceptual framework used to explain human behaviors.

[Miller, 2019, Weld and Bansal, 2018]

Attention to aesthetics Human judgment ratings of explanations are biased toward visual appearance. [Mohseni et al., 2021a]

Attention to abnormality "People mostly ask for explanations of events that they find unusual or abnormal" [Miller, 2019] [Miller, 2019, Weld and Bansal, 2018]

Attention to confidence
levels

People need confidence levels to make better use of ML-assisted decision-making systems. "Prospect Theory
suggests that uncertainty (or risk) is not considered independently but together with the expected outcome"
[Bhatt et al., 2020]

[Bhatt et al., 2021, Miller, 2019]

Attention to demographic
features

Tendency to fixate on demographic features in explanations such as age and race [Liu et al., 2021]

Attention to False Nega-
tives rather than to False
Positives

"Users pay less attention to FP explanation errors and in turn, are more critical for FN explanation errors".
[Mohseni et al., 2021a]

[Mohseni et al., 2021a]

Attention to foil "Explanations are sought in response to particular counterfactual cases, which are termed foils. That is, people do not ask
why event P happened, but rather why event P happened instead of some event Q." [Miller, 2019]

[Miller, 2019, Weld and Bansal, 2018,
Woodcock et al., 2021]

Attention to intentional-
ity and responsibility

People tend to focus on intentional actions rather than non-intentional ones to select an event as a cause in
a causal chain. Similarly, "an event considered more responsible for an outcome is likely to be judged as a better
explanation than other causes."

[Miller, 2019, Weld and Bansal, 2018]

Attention to necessity,
sufficiency and robust-
ness

Events that are necessary, sufficient and robust to some changes are more likely to be selected as a cause. [Miller, 2019]

Automation bias / au-
tomation overreliance

The tendency to over rely on machine’s predictions. [Bansal et al., 2021, Bussone et al., 2015,
Danry et al., 2020, Liu et al., 2021, Naiseh
et al., 2021b]

Availability bias The tendency to believe that examples and events that easily come to mind are more representative than is
actually the case.

[Kliegr et al., 2021, Wang et al., 2019a,
Zytek et al., 2021]

Averaging bias "Using the average of probabilities of two events for the estimation of the probability of a conjunction of the
two events". [Kliegr et al., 2021]

[Kliegr et al., 2021]

Backfire effect "Corrections of misperceptions may enhance people’s false beliefs". [Nyhan and Reifler, 2010] [Lai and Tan, 2019]

Base-rate neglect "The tendency to underweight evidence provided by base rates". [Kliegr et al., 2021] [Kliegr et al., 2021]

Change blindness "Humans inability to notice all of the changes in a presented medium". [Simons, 2000] [Sokol and Flach, 2020]
Choice overload The difficulty to make a choice when facing many choices for people of the type "mazimizer". As a consequence,

they are less committed to their choices, display lower satisfaction with their choices.
[Coba et al., 2019]

Cognitive dissonance The tendency to agree with the AI’s suggestions, while being aware to have a different opinion. [Danry et al., 2020]

Completeness bias Longer explanations tend to lead more to overreliance than shorter ones. [Bussone et al., 2015, Fürnkranz et al.,
2020, Kulesza et al., 2015, Lai and Tan,
2019, Szymanski et al., 2021]
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Cognitive pattern Definition Ref. in the corpus

Confirmation bias and
hindsight bias

"The tendency to seek supporting evidence for one’s current hypothesis". [Kliegr et al., 2021] [Bayer et al., 2021, Kliegr et al., 2021, Bus-
sone et al., 2015, Naiseh et al., 2021b, Szy-
manski et al., 2021, Wang et al., 2019a]

Confusion of the inverse "The mistake of confusing the confidence of an implication A� B with its inverse B� A." [Kliegr et al., 2021] [Kliegr et al., 2021]

Conjunction fallacy Estimating the conjunction of two statements to be more probable than one of the two statements. [Fürnkranz et al., 2020, Kliegr et al., 2021,
Weld and Bansal, 2018]

Default or Status quo
bias

"The tendency to favor the default option and thus the proposed suggestion". [Bayer et al., 2021] [Bayer et al., 2021]

Disjunction fallacy "Judging the probability of an event as higher than the probability of a union of the event with another event".
[Kliegr et al., 2021]

[Kliegr et al., 2021]

Disregard of evidence Tendency to believe persuasive claims unsupported by evidence. [Danry et al., 2020]

Escalation of commit-
ment

"People stick to a choice they made despite understanding the logical implication that doing so might lead to
undesirable consequences" [Bayer et al., 2021]

[Bayer et al., 2021]

Familiarity bias “Unfamiliar information might induce a reinforcement effect that causes users to avoid interacting with various
content”. [Szymanski et al., 2021]

[Szymanski et al., 2021]

Framing bias People decide on options based on whether they are presented with positive or negative connotations or
whether they are presented after or before the AI recommendation.

[Bansal et al., 2021, Bhatt et al., 2021, Kim
and Song, 2020, Kliegr et al., 2021]

Illusion of Explanatory
Depth

People think they have a much deeper understanding of how complex concepts work than they actually do. [Chromik et al., 2021, Kaur et al., 2020,
Naiseh et al., 2021b]

Illusion of validity "Unjustified sense of confidence and hence failure when evaluating different possibilities" [Simkute et al., 2020] [Simkute et al., 2020]

Illusory superiority "Users with the highest need for advice may be the least likely to defer judgment." Also known as the Dunning-
Kruger effect [Schaffer et al., 2019].

Inherence bias "Humans tend to construct explanations based on accessible information about the inherent properties of a
particular phenomenon instead of inaccessible information about extrinsic factors". [Bekele et al., 2018]

[Bekele et al., 2018, Miller, 2019]

Information overload "Providing too much information at once can result in reduced accuracy" [Simkute et al., 2020] [Abdul et al., 2020, Naiseh et al., 2021b,
Simkute et al., 2020, Zytek et al., 2021]

Insensitivity to sample
size

When both confidence and support are stated, confidence scores positively affects plausibility and support is
largely ignored.

[Fürnkranz et al., 2020, Kliegr et al., 2021]

Insensitivity to sample
variance

"Users are primarily guided by the mean and the number of ratings, and to lesser degree by the variance and
origin of a rating" [Coba et al., 2019]

[Coba et al., 2019]

Mere exposure effect The increase of trust in an AI suggestion following the mere exposure of an explanation. [Eiband et al., 2019, Kliegr et al., 2021,
Lai and Tan, 2019]

Misunderstanding of
Boolean logic

"People interpret "AND" differently than logical conjunction", the TRUE and FALSE conditions are perceived
as non-intuitive. [Kliegr et al., 2021]

[Kliegr et al., 2021, Fürnkranz et al., 2020]

Misunderstanding of
confidence scores

Not understanding what the confidence scores refer to. [Bussone et al., 2015]

Narration bias (linked to
over-generalization)

Tendency to interpret information as being part of a larger story and to assume causal relations in the events
of that story.

[Andrienko et al., 2022, Atrey et al., 2020,
Kaur et al., 2020, Zytek et al., 2021]

Negativity bias Users pay more attention to negative features in the AI or the AI explanations which may lead to eroding trust
and pay more attention to negative outcomes.

[Branley-Bell et al., 2020, Kliegr et al.,
2021, Nourani et al., 2021, Shimojo et al.,
2020, Zytek et al., 2021]

Perceived goal impedi-
ment

"People in highly critical decision-making environments are likely to be in a serious-minded state, where
additional information might be prone to being perceived as a goal impediment".

[Naiseh et al., 2021b]

Pre-use algorithmic opti-
mism

Before using the XAI system, users had positive inferences about algorithmic capability, which disappeared
after using it.

[Springer and Whittaker, 2019]

Preference for broad ex-
planations

People prefer broad explanations, that explain more observations. [Miller, 2019]

Preference for more com-
plete explanations

People tend to prefer complete explanations over sound ones. Complete explanations help them form better
mental models.

[Kulesza et al., 2013]

Preference for simple ex-
planations

People prefer simple explanations to complex ones. [Abdul et al., 2020, Miller, 2019, Shimojo
et al., 2020, Zytek et al., 2021]

Preference for usability
vs. performance

User performance and preference on proxy tasks may not accurately predict their performance and preference
on the actual decision-making tasks where their cognitive focus is elsewhere, and they can choose whether and
how much to attend to the AI.

[Buçinca et al., 2020, Liu et al., 2021, Szy-
manski et al., 2021]

Primacy effect or Anchor-
ing bias

People quickly form opinions about something based on the first information we receive about it. [Kliegr et al., 2021, Naiseh et al., 2021b,
Nourani et al., 2021, Wang et al., 2019a]

Recognition bias Recognizing information makes the user more likely to trust the explanation. [Fürnkranz et al., 2020, Kliegr et al., 2021,
Szymanski et al., 2021, Woodcock et al.,
2021]

Redundancy aversion Redundant information is another cause of skipping explanations, making users lose trust in the explanations. [Naiseh et al., 2021b]

Reinforcement effect or
Reiteration effect

The increase of trust following repetition. [Kliegr et al., 2021]

Representativeness bias The similarity of objects or events makes people disregard the probability of an outcome. [Fürnkranz et al., 2020, Kaur et al., 2020,
Kliegr et al., 2021, Wang et al., 2019a,
Zytek et al., 2021]

Unit bias "The tendency to give a similar weight to each unit rather than weigh it according to its size". [Kliegr et al.,
2021]

[Kliegr et al., 2021]

Weak evidence effect "Weak argument in favor of a statement can lead to decreased believability of the statement". ([Kliegr et al.,
2021]

[Kliegr et al., 2021, Fürnkranz et al., 2020]
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B1. Co-design Study Questionnaire

Figure B.1: The following figure presents the questions used in the
co-design interviews conducted in Chapter 5.Workshop Guide 

 
Each interview included the following steps: 
1. Preliminary questions: End-user participants are asked questions on their experience with life-

insurance and robo-advisors, and on their explanations needs.  
1'. Preliminary questions: Regulator participants are asked questions about explanations’ role for 

customers and customer protection in life-insurance 
2. Testing the interface: Participants are asked to use Robex from the profiling questionnaire up to 

the recommendation and explanation. They are also asked to think aloud. Regulators are 
prompted to use Robex with several different imaginary user profiles. 

3. Feedback: Participants are asked for feedback about their overall experience using Robex. 
 
Below are the questions asked to participants. The questions have been adapted slightly depending 
on whether they were asked to regulators or end-users. Questions for regulators are shown in the 
blue boxes, those for non-expert participants in the red boxes. The purple boxes indicate that there 
was no difference between the questions asked to regulators and end-users for the phase in question. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase 1: Preliminary questions (Regulators) 

1. How important are explanations for users in life insurance? What type of explanations 
should be provided? 

2. How good are the explanations offered by robo-advisors? 
3. How can we reach people with no financial knowledge? 
4. What do you think potential subscribers need to make an informed decision? 

 

Phase 1: Preliminary questions (End-users) 

1. Do you have any experience of using a robo-advisor or life insurance? 
2. What is your level of familiarity with financial investment? 
3. What kind of explanations would you like to receive about an online financial 

recommendation? 

Phase 2: Testing the interface 

1. Do you agree with the proposal?  
2. What would you have suggested? 
3. Do you agree with the explanations? 
4. Test another profile 

  

Phase 3: Feedback 

1. What is your experience / opinion of the system? Do you think these explanations could 
help users?  

2. What do you think of the proposed explanations? Are there any limitations, other needs? 
3. What user characteristic would it be interesting to change in the explanations?   

 



244 the explanation paradox and the human-centric path

B2. The Robex recommendation system

We descibe below the simple, rule-based scoring algorithm for Robex.
o, as, c, ap, k represent the dimensional risk scores obtained by a user

after responding to a profiling questionnaire. o represents the user’s
financial objective, as her assets, c her asset composition, ap her risk ap-
petite and k her knowledge in finance. Dimensional risk score values
were calibrated through multiple discussions and tests with regulators.
rs is the total risk score, the sum of the dimensional risk scores.

reco is Robex’s recommendation. 1 is the least risky and 5 is the most
risky.

Algorithm 1: The Robex
rule-based algorithm

Ensure:
IR← o, as, c, ap, ak, rs
Z← reco with 1 ≤ reco ≤ 5
0 ≤ o ≤ 3
−2 ≤ as ≤ 4
−9 ≤ c ≤ 1 with c = f (as)
0 ≤ ap ≤ 7
0 ≤ k ≤ 5 rs = o + as + c + ap + k
if rs < 6 then

reco ← 1
else if rs < 10 then

reco ← 2
else if rs < 15 then

reco ← 3
else if rs < 19 then

reco ← 4
else

reco ← 5
end if

Additionally, ▷ Safety measures where added for specific user
answers.
if o = 0 then

reco ← min(reco, 2)
end if

and
if as1 = 0 then

reco ← 1
end if

The biased Robex algorithm works like this: the total risk score rs
that is obtained by a user is artificially reduced or increased by about 10

points, which amounts to the total false risk score f rs. The following al-
gorithm calculates false dimensional risk scores o, as, c, ap, k that together
sum up to the total false risk score f rs.
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Algorithm 2: The biased
Robex algorithm used to
make inappropriate rec-
ommendations and ex-
planations.

Ensure:
IR← frs
f rs← rs
R5 ← w is the array of o, as, c, ap, k values sorted in descending order
R5 ← MAX is the array of maximum values for o, as, c, ap, k
R5 ← MIN is the array of minimum values for o, as, c, ap, k
R5 ← INC is the array of increments for o, as, c, ap, k
if rs < 6 then

for each i in W do
while f rs < 15 do

if W(i) + INC(i) > MAX(i) then
W(i) = MAX(i)

else
W(i)←W(i) + INC(i)

end if
f rs← Sum(W.values)

end while
end for

else if rs < 12 then
for each i in W do

while f rs < 20 do
if W(i) + INC(i) > MAX(i) then

W(i) = MAX(i)
else

W(i)←W(i) + INC(i)
end if
f rs← Sum(W.values)

end while
end for

else if rs < 19 then
for each i in W do

while f rs > 2 do
if W(i) + INC(i) < MIN(i) then

W(i) = MIN(i)
else

W(i)←W(i)− INC(i)
end if
f rs← Sum(W.values)

end while
end for

else if rs ≥ 19 then
for each i in W do

while f rs > 9 do
if W(i) + INC(i) < MIN(i) then

W(i) = MIN(i)
else

W(i)←W(i)− INC(i)
end if
f rs← Sum(W.values)

end while
end for

end if
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C1. Workshop guide

Figure C.1: The following figures present the questions used in the
workshops conducted in Chapter 6.

Workshop Guide 
 
Each workshop included the following steps: 
0. Participants read and fill in the consent form, and then the pre-questionnaire (paper format) 
1. Participants are asked questions on the normal procedure in their AML-CFT profession (either the 

control procedures for regulators or conception procedure for model designers in banks) 
2. Participants questions are asked questions about the use of AI in AML-CFT to understand their 

impressions on AI. 
3. A scenario where AI is used in AML-CFT transaction monitoring systems is then introduced and 

participants are asked questions about this scenario. 
4. Finally, conceptual design artifacts of different explanations and justifications are shown to 

participants. Participants are asked to discuss them. 
 
Below are the questions asked to participants. The questions have been adapted slightly depending 
on whether they were asked to regulators or bank practitioners. Questions for regulators are shown 
in the blue boxes, those for participants from banks in the red boxes. The purple boxes indicate that 
there was no difference between the questions asked to regulators and bank practitioners for the 
phase in question. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phase 1: Understanding the control processes (Regulators) 
4. What are the different steps of a control? What are the criteria to evaluate AML/CFT 

processes? 
5. What should banks justify/explain regarding the tools used in AML/CFT (the example of 

transaction monitoring could be used)?  
6. What form do these justifications take? 

 

Phase 0: Pre-Questionnaire (Regulators) 

1. How many years of experience do you have in controlling AML/CFT systems? (Between 1 
and 3, Between 4 and 10, More than 10 years) 

2. Do you have any specific expertise in LCB-FT? 
3. What is your level of familiarity with: artificial intelligence? The cloud? Big data? (Likert-

type responses on a scale of 1 to 7) 

Phase 0: Pre-Questionnaire (Banks) 

1. How many years of experience do you have in AML/CFT systems in financial institutions? 
(Between 1 and 3, Between 4 and 10, More than 10 years) 

2. Do you have any specific expertise in LCB-FT? 
3. What is your level of familiarity with: artificial intelligence? The cloud? Big data? (Likert-

type responses on a scale of 1 to 7) 

Phase 1: Understanding the implementation of models in AML-CFT in banks 
4. What are the different steps in implementing a financial security project?  
5. What should banks justify/explain regarding the tools used in AML/CFT (the example of 

transaction monitoring could be used)?  
6. What form do these justifications take? 
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For phase 3, a "scenario" will be introduced. It describes a hypothetical situation involving an AI 
system in a bank. Its purpose is to provoke questions from the controllers and to bring out ideas.  It 
also features a fictional character. The purpose of this character is to encourage the participants to 
immerse themselves in a situation and encourage them to speak freely and react to details. 
 
There are two different scenarios involving AI in AML-CFT transaction monitoring systems: 

• Case study 1: Automatic redirection and closing of alerts (Transaction Monitoring) 
• Case study 2: Detection of new risk typologies (Transaction Monitoring) 

 
See the scenarios in the rest of the registration files for more details. 

 
 
 
 
 
 
 
 

 
 
 
 
For phase 4, examples of justifications are shown to participants showing examples of explanations of 
AI systems/decisions. 
 

Phase 2: Impressions on AI 

1. What new technologies are emerging in banks' AML/CFT systems? 
2. Can these situations be linked to artificial intelligence in your opinion: data collection, 

customer risk characterization, transaction monitoring system, alert review, monitoring 
tools. If so, what is the role of AI in these systems? 

3. How promising do you think this technology is? 
4. Do you think (and why) that using AI could be more or less risky for financial security 

than current systems (without AI)? 
5. Do you think these systems could be more or less difficult to control/monitor? 
AI debrief: at the end of this phase, if the participants are not very familiar with AI, the 
moderator will define AI (OECD and Wikipedia definitions of AI and Machine learning) and 
give a short presentation on different types of machine learning. 

Phase 3: The need for justifications 

1. Do you think this use of AI is legitimate? useful?  
2. What will Eric want to know to audit the system? What questions will Eric want to know 

about the algorithm?  
3. Does Bank B have to justify the use and the potential added value of AI? If so, how? What 

would be the baseline? 
4. Does Bank B need to justify changing or even eliminating any existing systems? If so, how? 
5. Is it possible to set an overall system performance target in the AML-CFT environment? If 

so, how can it be quantified? If not, why not? 

Phase 4: Ideation on justifications 

6. Are these justifications useful? Are they good ones? Are they necessary? Why? 
7. What are the limits of these justifications? How can they be improved? 
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C2. Compliance assessment

Table C.2: Summary of the compliance assessment made in Chapter
6 to determine the points in the AML-CFT legislation with which AI
opacity interferes. The assessment was made for the two AI use cases
presented in Figure 6.3.1: "SR" refers to "Risk Scoring" (Scenario 1), and
"NT" to "New typologies (scenario 2).

AML-CFT Theme Legal reference

Is AI opacity a
problem?
For which
model?

Why?

Customer knowledge and con-
stant vigilance over business re-
lationships

French Monetary
Code (CMF) Articles
L.561-4-1 to L. 561-
14-2

No
The update of customer and beneficial
owner databases is not made with AI
in the use cases we are considering.

Risk classification CMF Article L. 561-
4-1 Yes for NT

Banks need to understand the new ty-
pologies of risk detected by the AI to
update their risk classification.

Calibration / allocation of ma-
terial and human resources

CMF Article R. 561-
38

Yes for RS Assessing the suitability of AI for pri-
oritizing alerts

Constant vigilance CMF Article L. 561-6 Yes for NT Justifications might be needed on the
training frequency.

Careful examination: Abil-
ity to detect inconsisten-
cies/anomalies

CMF Article L. 561-6 Yes for NT

The relevance of a model can be jus-
tified with performance statistics, but
understanding why an anomaly was
not detected is important for both su-
pervisors and banks.

Processing alerts in a timely
manner

Sanction Decision
BMW Finance
16/06/23

Yes for NT and
SR AI opacity can make reviews longer

Adaptation / completeness of
the system in relation to the
risk classification

CMF Article R. 561-
12-1, Sanction De-
cision Axa Banque
15/02/23

Yes for NT
The alignment between human and
machine on important parameters
should be demonstrated

Enhanced vigilance: ability to
analyze risky alerts

CMF Article L. 561-
10-2 Yes for SR We need to be able to understand the

criteria that generate a risky alert.

SAR obligation: ability to pro-
duce high-quality SAR when
relevant

CMF Article L. 561-
15

Yes for SR and
NT

We need to be able to understand the
criteria that generate a risky alert.

Internal control: incident detec-
tion; Stability over time; mas-
tering of the system (from ex-
ternal service provider); Safety
net in case of failure

CMF Article R561-
38-4, Order of
November 3, 2014

Yes for SR and
NT

Have to be able to anticipate the
model’s behavior to anticipate plausi-
ble incidents; Have to demonstrate AI
behavior does not drift; Have to be
able to demonstrate the control of your
system.
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Résumé : L’IA devenant de plus en plus présente
dans nos vies, nous sommes soucieux de com-
prendre le fonctionnement de ces structures opaques.
Pour répondre à cette demande, le domaine de la re-
cherche en explicabilité (XAI) s’est considérablement
développé au cours des dernières années. Cepen-
dant, peu de travaux ont étudié le besoin en expli-
cabilité des régulateurs ou des consommateurs à la
lumière d’exigences légales en matière d’explications.
Cette thèse s’attache à comprendre le rôle des ex-
plications pour permettre la conformité réglementaire
des systèmes améliorés par l’IA dans des applica-
tions financières. La première partie passe en re-
vue le défi de prendre en compte les biais cogni-
tifs de l’homme dans les explications des systèmes
d’IA. L’analyse fournit plusieurs pistes pour mieux ali-
gner les solutions d’explicabilité sur les processus
cognitifs des individus, notamment en concevant des
explications plus interactives. Elle présente ensuite

une taxonomie des différentes façons d’interagir avec
les solutions d’explicabilité. La deuxième partie se
concentre sur des contextes financiers précis. Une
étude porte sur les systèmes de recommandation et
de souscription en ligne de contrats d’assurance-vie.
L’étude souligne que les explications présentées dans
ce contexte n’améliorent pas de manière significa-
tive la compréhension de la recommandation par les
utilisateurs non experts. Elles ne suscitent pas da-
vantage la confiance des utilisateurs que si aucune
explication n’était fournie. Une autre étude analyse
les besoins des régulateurs en matière d’explication
dans le cadre de la lutte contre le blanchiment d’ar-
gent et le financement du terrorisme. Elle constate
que les autorités de contrôle ont besoin d’explications
pour établir le caractère répréhensible des cas de
défaillance échantillonnés, ou pour vérifier et contes-
ter la bonne compréhension de l’IA par les banques.

Title : Misplaced trust in AI: the explanation paradox and the human-centric path. A characterisation of the
cognitive challenges to appropriately trust algorithmic decisions and applications in the financial sector.
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Abstract : As AI is becoming more widespread in
our everyday lives, concerns have been raised about
comprehending how these opaque structures ope-
rate. In response, the research field of explainabi-
lity (XAI) has developed considerably in recent years.
However, little work has studied regulators’ need for
explainability or considered effects of explanations
on users in light of legal requirements for expla-
nations. This thesis focuses on understanding the
role of AI explanations to enable regulatory com-
pliance of AI-enhanced systems in financial applica-
tions. The first part reviews the challenge of taking
into account human cognitive biases in the expla-
nations of AI systems. The analysis provides seve-
ral directions to better align explainability solutions
with people’s cognitive processes, including designing

more interactive explanations. It then presents a taxo-
nomy of the different ways to interact with explai-
nability solutions. The second part focuses on spe-
cific financial contexts. One study takes place in
the domain of online recommender systems for life-
insurance contracts. The study highlights that feature-
based explanations do not significantly improve non
expert users’ understanding of the recommendation,
nor lead to more appropriate reliance compared to
having no explanation at all. Another study analyzes
the needs of regulators for explainability in anti-money
laundering and financing of terrorism. It finds that su-
pervisors need explanations to establish the repre-
hensibility of sampled failure cases, or to verify and
challenge banks’ correct understanding of the AI.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Abstract
	Résumé
	Acknowledgments
	List of Figures
	List of Tables
	List of Definitions
	Introduction
	Research scope
	Problem statement
	Thesis overview
	Research approach
	Major findings
	Academic publications

	Background
	A historical perspective on explainability
	Explainability in Computer Science: the toolbox
	Explainability in the Social Sciences: the foundations
	Explainability in HCI: user and context first
	Explainability in Law: dreaming in color?

	I Calibrating trust in explainable AI: common pitfalls and the promise of interactivity
	Trust, overtrust, distrust in explainable AI: a cognitive approach
	Motivation and research questions
	Background
	Methodology
	Results
	Discussion
	Limitations
	Conclusion

	Towards "human-like" explanations: the promise of interactivity
	Motivation and research Questions
	Background
	Methodology
	Results
	Discussion
	Limitations
	Conclusion


	II Complying with regulation using human-centric explainable AI: two case studies in finance
	Empowering customers of robo-advisors with explainability
	Motivation and research questions
	Background
	Study 1 Methodology: a market-driven co-design approach
	Study 1 Results
	Study 2 Methodology: A deception-based between-subjects experiment
	Study 2 Results
	Discussion
	Limitations
	Conclusion

	Understanding the supervisors' needs for explainable AI in financial crime detection
	Motivation and research questions
	Background
	Methods
	Results
	Discussion
	Limitations
	Conclusion

	Discussion
	Research contributions
	The potential of explanations to manipulate decision-subjects' trust
	Human-centric directions for improved customer empowerment
	The human-centric way forward for explainability in a highly regulated environment
	Peripheral observations
	General conclusion

	Appendix
	A1. List of cognitive patterns when interpreting explainable AI
	B1. Co-design Study Questionnaire
	B2. The Robex recommendation system
	C1. Workshop guide
	C2. Compliance assessment

	Bibliography




