
HAL Id: tel-04662172
https://theses.hal.science/tel-04662172v1

Submitted on 25 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Moving code analysis from safety to security : attacker
model

Soline Ducousso

To cite this version:
Soline Ducousso. Moving code analysis from safety to security : attacker model. Modeling and
Simulation. Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALM084�. �tel-
04662172�

https://theses.hal.science/tel-04662172v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : VERIMAG

Aller de la sûreté à la sécurité en analyse de code : le modèle
d'attaquant

Moving code analysis from safety to security: attacker model

Présentée par :

Soline DUCOUSSO
Direction de thèse :

Marie laure POTET
PROFESSEURE DES UNIVERSITES, GRENOBLE INP

Directrice de thèse

Sébastien BARDIN
INGENIEUR DE RECHERCHE, CEA DE PARIS-SACLAY

Co-encadrant de thèse

Rapporteurs :

KARINE HEYDEMANN
INGENIEURE HDR, THALES RESEARCH & TECHNOLOGY
GUILLAUME HIET
PROFESSEUR, CENTRALESUPELEC RENNES

Thèse soutenue publiquement le 14 décembre 2023, devant le jury composé de :

MARIE-LAURE POTET
PROFESSEURE DES UNIVERSITES, GRENOBLE INP

Directrice de thèse

KARINE HEYDEMANN
INGENIEURE HDR, THALES RESEARCH & TECHNOLOGY

Rapporteure

GUILLAUME HIET
PROFESSEUR, CENTRALESUPELEC RENNES

Rapporteur

LAURE GONNORD
PROFESSEURE DES UNIVERSITES, GRENOBLE INP

Présidente

GUILLAUME BOUFFARD
INGENIEUR DE RECHERCHE, ANSSI

Examinateur

Invités :

SEBASTIEN BARDIN
INGENIEUR DE RECHERCHE, CEA DE PARIS-SACLAY

ii

Résumé1

Aller de la Sûreté à la Sécurité en Analyse de Code:2

le Modèle d’Attaquant3

Des travaux majeurs ont été réalisés, ces dernières décennies, dans le domaine de4

l’analyse de programme, tirant parti de techniques telles que l’exécution symbolique,5

l’analyse statique, l’interprétation abstraite ou la vérification bornée de modèles, pour6

chasser les bogues et vulnérabilités logicielles, conduisant à l’adoption de ces techniques7

par de grandes entreprises. Les bogues étant des points d’entrées pour les attaques,8

les éliminer est un premier pas vers une meilleure sécurité logicielle. Cependant, ces9

techniques reposent sur un modèle d’attaquant seulement capable de concevoir des en-10

trées malicieuses, exploitant des cas particuliers dans le code lui-même, typiquement un11

fichier formaté de manière à déclencher un débordement mémoire dans les routines de12

traitement. Un modèle d’attaquant plutôt faible, alors qu’un attaquant avancé est capa-13

ble de perturber l’exécution d’un programme en exploitant des vecteurs d’attaques tels14

que les injections de fautes matérielles, les attaques micro-architecturales, les attaques15

matérielles contrôlées par logiciel, et n’importe quelle combinaison de ces vecteurs16

d’attaques.17

Dans cette thèse, notre objectif est de concevoir une technique automatique et18

efficace pour raisonner sur l’impact d’un attaquant avancé sur les propriétés de sécu-19

rité d’un programme. Nous proposons l’atteignabilité adversariale, un formalisme qui20

étend la notion d’atteignabilité en y incluant les capacités de l’attaquant. Nous avons21

construit un nouvel algorithme, l’exécution symbolique adversariale, pour répondre au22

problème de l’atteignabilité adversariale sous l’angle de la recherche de bogues (vérifi-23

cation bornée). Notre algorithme évite l’augmentation significative de l’espace d’états24

à analyser due nouvelles capacités de l’attaquant, grâce à un nouvel encodage non bran-25

chant de celles-ci sous forme de fautes injectées. Nous le montrons correct et k-complet26

pour l’atteignabilité adversariale. De plus, nous avons imaginé deux optimisations27

visant à réduire le nombre de fautes : la détection précoce de saturation et l’injection28

à la demande.29

Nous proposons une implémentation de l’exécution symbolique adversariale au30

niveau binaire intégrée à l’outil BINSEC. Notre évaluation expérimentale repose sur31

des programmes usuels du domaine des fautes matérielles et des cartes à puce. Nos ex-32

périences montrent un gain de performance significatif par rapport à l’état de l’art, en33

moyenne d’un facteur x20 et x400 pour 1 et 2 fautes respectivement, avec un gain sim-34

ilaire en termes de chemins explorés. De plus, notre approche passe à l’échelle jusqu’à35

considérer 10 fautes alors que l’état de l’art atteint le temps limite pour 3 fautes. Nous36

montrons également l’utilisabilité de notre méthode dans différents scénarios de sécu-37

rité tels que reproduire une attaque BellCoRe sur CRT-RSA, chercher des attaques sur38

un programme protégé par la contre-mesure SecSwift, ou évaluer la robustesse d’un39

réseau de neurones. D’autre part, nous avons exploré le cas du programme de démar-40

rage de WooKey en rejouant des attaques et en évaluant des contre-mesures proposées.41

En particulier, nous avons trouvé une attaque non rapportée précédemment et avons42

proposé un nouveau correctif aux développeurs.43

Mots-clefs: sécurité logicielle · méthodes formelles · analyse de code · code binaire44

· vulnérabilités.45

iii

Abstract46

Moving Code Analysis from Safety to Security:47

the Attacker Model48

Major works have delved into program analysis over the last decades, leverag-49

ing techniques such as symbolic execution, static analysis, abstract interpretation or50

bounded model checking, to hunt for software vulnerabilities and bugs in programs, or51

to prove their absence, leading to industrial adoption in some leading companies. As52

bugs are an attack entry point, removing them is a first step towards better software53

security. Yet, they are based on the standard concept of reachability and represent54

an attacker able to craft smart, legitimate input, through legitimate input sources of55

the program, exploiting corner cases in the code itself, a rather weak threat model,56

typically a file formatted to trigger a buffer overflow in data processing. Tools only57

looking for bugs and software vulnerabilities may deem a program secure while the58

bar remains quite low for an advanced attacker, able for example to take advantage of59

attack vectors such as (physical) hardware fault injections, micro-architectural attacks,60

software-based hardware attacks like Rowhammer, or any combination of vectors.61

In this thesis, our goal is to devise a technique to automatically and efficiently rea-62

son about the impact of an advanced attacker onto a program security properties. We63

propose adversarial reachability, a formalism extending standard reachability to reason64

about a program execution in the presence of an advanced attacker. As equipping the65

attacker with new capabilities significantly increases the state space of the program66

under analysis, we build a new algorithm based on symbolic techniques, named ad-67

versarial symbolic execution, to address the adversarial reachability problem from the68

bug-finding point of view (bounded verification). Our algorithm prevents path explo-69

sion thanks to a new forkless encoding of attacker capabilities, modeled as faults. We70

show it correct and k-complete with respect to adversarial reachability. To improve the71

performance further, we design two new optimizations to reduce the number of injected72

faults while keeping the same attacker power: Early Detection of fault Saturation and73

Injection On Demand.74

We propose an implementation of our techniques for binary-level analysis, on top75

of the BINSEC framework. We systematically evaluate its performances against prior76

work, using a standard fault injection benchmark from physical fault attacks and smart77

cards. Experiments show a very significant performance gain against prior approaches,78

for example up to x20 and x400 times on average for 1 and 2 faults respectively -79

with a similar reduction in the number of adversarial paths. Moreover, our approach80

scales up to 10 faults whereas the state-of-the-art starts to timeout for 3 faults. We81

also show the use of our method in a number of different security scenarios such as82

reproducing a BellCoRe attack with one reset fault on CRT-RSA or looking for attacks83

on a program protected by the SecSwift countermeasure. In addition, we perform a84

security analysis of the well-tested WooKey bootloader and demonstrate the ability of85

our analysis to find attacks and evaluate countermeasures in real-life security scenarios.86

We were especially able to find an attack not reported before on a recently proposed87

patch, and proposed a new patch to the developers.88

Keywords: software security · formal methods · code analysis · binary code · vul-89

nerabilities.90

iv

Contents91

Résumé . iii92

Abstract . iv93

List of Figures ix94

List of Tables xi95

1 Introduction 196

1.1 Context . 197

1.2 Problem . 298

1.3 Goal & Challenges . 399

1.4 Proposal . 3100

1.5 Contributions . 4101

1.6 Impact and Perspectives . 5102

1.7 Manuscript Outline . 5103

2 Context and Motivation 7104

2.1 Security of Information Technology Systems 8105

2.1.1 Definition . 8106

2.1.2 Security Properties . 8107

2.1.3 Wide-spread Use . 9108

2.1.4 Attack Surface and Attackers 11109

2.1.5 Ensure Security . 13110

2.1.6 Example of Attack on a Security System 15111

2.1.7 Conclusion . 17112

2.2 Capabilities of a Powerful Attacker . 17113

2.2.1 Side Channel Attacks . 17114

2.2.2 Software Attacks . 18115

2.2.3 Hardware Fault Injection Attacks 19116

2.2.4 Software-Implemented Hardware Attacks 21117

2.2.5 Micro-Architectural Attacks . 22118

2.2.6 Man-At-The-End (MATE) Attacks 23119

2.2.7 Summary . 24120

2.3 Conclusion . 24121

3 Background 25122

3.1 Program Analysis Techniques . 26123

3.1.1 Overview . 26124

v

CONTENTS

3.1.2 Program Analysis is Undecidable 27125

3.1.3 Reachability Property . 29126

3.1.4 Link to the Thesis . 30127

3.2 Symbolic Execution . 30128

3.2.1 Overview . 30129

3.2.2 Symbolic Execution Algorithm 31130

3.2.3 Limitations . 32131

3.2.4 Link to the Thesis . 33132

3.3 Binary Code Analysis . 33133

3.3.1 Binary VS Source Code Analysis 33134

3.3.2 Challenges of Binary Analysis 34135

3.3.3 Link to the Thesis . 34136

3.4 Program Analysis Techniques for Fault Injection 34137

3.4.1 Simulation . 34138

3.4.2 Mutant Generation . 35139

3.4.3 Forking Techniques . 35140

3.4.4 Related Work . 36141

3.4.5 Link to the Thesis . 36142

4 Adversarial Reachability 37143

4.1 Attacker Model . 39144

4.1.1 Advanced Attacker . 39145

4.1.2 Attacker Actions . 39146

4.1.3 Fault Budget . 39147

4.1.4 Attacker Goal . 40148

4.2 Adversarial Reachability . 40149

4.2.1 Reminder: Standard Reachability 40150

4.2.2 Adversarial Reachability Definition 40151

4.2.3 Properties . 45152

4.2.4 Discussion . 46153

4.2.5 Conclusion . 46154

4.3 Forkless Adversarial Symbolic Execution (FASE) 47155

4.3.1 Overview . 47156

4.3.2 Forkless Fault Encoding . 47157

4.3.3 Fault Injection Algorithm . 50158

4.4 Optimizations . 54159

4.4.1 Early Detection of Fault Saturation (EDS) 54160

4.4.2 Injection on Demand (IOD) . 56161

4.4.3 Combination of Optimizations 58162

4.5 Discussion . 59163

4.5.1 Fault Model Support - Formalization VS Algorithm 59164

4.5.2 Forkless Faults and Multi-Fault Analysis 60165

4.5.3 Forkless Encoding for Other Properties 60166

4.5.4 Forkless Encoding for Other Formal Methods 61167

4.5.5 Forkless Encoding and Instrumentation 62168

4.6 Related Work . 62169

4.6.1 Fault Model Support . 62170

4.6.2 Multiple Fault Analysis . 62171

4.6.3 The Attacker in Different Security Fields 64172

vi

CONTENTS

4.6.4 Extending Existing Formalisms 64173

4.7 Conclusion . 65174

5 The BINSEC/ASE Prototype 67175

5.1 Overview . 69176

5.2 Background: the BINSEC Tool . 69177

5.2.1 BINSEC Presentation . 70178

5.2.2 General Work-Flow . 70179

5.2.3 Summary . 73180

5.3 BINSEC/ASE Implementation . 73181

5.3.1 BINSEC/ASE Overview . 73182

5.3.2 ASE Implementation . 74183

5.3.3 Forkless Fault Models . 77184

5.3.4 Early Detection of Fault Saturation (EDS) 81185

5.3.5 Injection On Demand (IOD) . 82186

5.3.6 Sub-fault Simplification . 82187

5.3.7 Forking Fault Models . 83188

5.3.8 Conclusion . 84189

5.4 User Guide: a Methodology to Analyse a New Program 86190

5.4.1 Running Example . 86191

5.4.2 Analysis Goal . 88192

5.4.3 Configuration . 93193

5.4.4 Reading BINSEC/ASE Output 93194

5.4.5 Analysis Process . 96195

5.4.6 Summary . 96196

5.5 Developer Guide: a Methodology to Add a New Fault Model 97197

5.5.1 Defining the New Fault Model 97198

5.5.2 Implementation . 98199

5.5.3 Dedicated Metrics . 99200

5.5.4 Testing . 99201

5.5.5 Summary . 99202

5.6 Discussion . 100203

5.6.1 BINSEC/ASE Limitations . 100204

5.6.2 Faults on Intermediate Representation 101205

5.6.3 Permanent VS Transient Faults 101206

6 Experimental Evaluation 103207

6.1 Evaluation Overview . 104208

6.1.1 Research Questions . 104209

6.1.2 Experimental Setting . 105210

6.1.3 Artifact Availability . 107211

6.2 Correctness and K-completeness (RQ1) 107212

6.3 FASE Evaluation for Arbitrary Data Faults (RQ2) 108213

6.3.1 Scalability (RQ2.1) . 108214

6.3.2 Impact of Optimizations (RQ2.2) 110215

6.3.3 Comparison of the Different Forkless Encodings (RQ2.3) 116216

6.4 FASE Evaluation of Other Fault Models (RQ3) 118217

6.4.1 FASE Evaluation of Reset Faults (RQ3.1) 119218

6.4.2 FASE Evaluation of Bit-Flip Faults (RQ3.2) 120219

6.4.3 FASE Evaluation of Test Inversion Faults (RQ3.3) 121220

vii

CONTENTS

6.4.4 FASE Evaluation of Instruction Skip Faults (RQ3.4) 122221

6.4.5 Summary . 123222

6.5 Forkless Faults in Instrumentation (RQ4) 124223

6.5.1 Experimental Settings . 125224

6.5.2 Scalability . 125225

6.5.3 Conclusion . 126226

6.6 Security Scenarios . 127227

6.6.1 CRT-RSA . 128228

6.6.2 Secret-keeping Machine . 129229

6.6.3 SecSwift Countermeasure . 130230

6.6.4 Neural Network . 131231

6.6.5 Security Scenarios Feedback . 132232

6.7 Case Study: WooKey Bootloader . 132233

6.7.1 Presentation of WooKey . 132234

6.7.2 Security Scenario and Goal of our Study 133235

6.7.3 Analyze Key Parts of Wookey 133236

6.7.4 Analyze a Security Patch of WooKey 136237

6.7.5 Propose a New Patch and Evaluate It 136238

6.7.6 Other Attacks on WooKey . 137239

6.7.7 Case Study Conclusion . 138240

7 Conclusion 139241

7.1 Conclusion . 139242

7.2 Perspectives . 140243

A Éléments de traduction en français I244

A.1 Chapitre 1 : Introduction . I245

A.2 Résumés de chaque chapitre . III246

A.2.1 Chapitre 2 : Contexte et Motivation III247

A.2.2 Chapitre 3 : Préambule . IV248

A.2.3 Chapitre 4 : Atteignabilité Adversariale IV249

A.2.4 Chapitre 5 : le Prototype BINSEC/ASE IV250

A.2.5 Chapitre 6 : Evaluation Expérimentale IV251

A.3 Chapitre 7 : Conclusion . V252

B Additional Experimental Data VII253

B.1 FASE Evaluation of Reset Faults (RQ B1) VII254

B.1.1 Impact of Optimizations (RQ B1.1) VII255

B.1.2 Comparison of the Different Forkless Encodings (RQ B1.2) . . . X256

B.2 FASE Evaluation of Bit-Flip Faults (RQ B2) XI257

B.3 FASE Evaluation of Instruction Skip Faults (RQ B3) XIV258

B.4 FASE Optimizations Summary . XV259

B.5 Influence of Solver on Encoding Operators (RQ B4) XV260

C Instrumentation Details XVII261

Bibliography XXI262

viii

List of Figures263

2.1 Motivating example, inspired by VerifyPIN [DPP+16] 16264

2.2 Example of a buffer overflow vulnerability. 18265

3.1 Illustration [Dan21] of an analysis A that over-approximates the behav-266

iors of a program P . 27267

3.2 Illustration [Dan21] of an analysis A that under-approximates the be-268

haviors of a program P . 28269

3.3 Mutant generation transformation in pseudo-code 35270

3.4 Forking technique transformation in pseudo-code 36271

4.1 Forkless injection technique . 48272

5.1 Overview of BINSEC workflow for symbolic execution 70273

5.2 Overview of BINSEC/ASE workflow 73274

5.3 Illustration of sub-fault simplification 83275

5.4 User guide workflow . 86276

5.5 Running example, inspired by VerifyPIN [DPP+16] 87277

5.6 Running example: disassembly of the main function 89278

5.7 Running example: disassembly of the verifyPIN function 91279

5.8 Running example: disassembly of the byteArrayCompare function . . . 92280

5.9 Running example: BINSEC/ASE configuration file 93281

5.10 Running example: BINSEC/ASE statistics output 95282

5.11 Running example: BINSEC/ASE attack path 96283

6.1 FASE-IOD and forking analysis time comparison for arbitrary data faults284

(RQ2.1) . 109285

6.2 FASE-IOD and forking number of explored paths comparison for arbi-286

trary data faults (RQ2.1) . 110287

6.3 FASE optimizations, analysis time for arbitrary data faults (RQ2.2) . . 112288

6.4 FASE optimizations, average solving time per query for arbitrary data289

faults (RQ2.2) . 114290

6.5 Forkless and forking analysis time for arbitrary data faults in instrumen-291

tation with Klee (RQ4) . 126292

6.6 FASE and forking number of explored paths for arbitrary data faults in293

instrumentation with Klee (RQ4) . 127294

6.7 functions of WooKey’s bootloader, with [LFBP21] fixes and our patch . 135295

6.8 CM1 double test pattern . 137296

ix

LIST OF FIGURES

C.1 Instrumented VerifyPIN main function XVIII297

C.2 Instrumentation utilitary functions . XIX298

x

List of Tables299

2.1 Attacker capabilities given by software attacks 19300

2.2 Attacker capabilities given by hardware fault injection attacks 21301

2.3 Attacker capabilities given by software-implemented fault injection attacks 22302

2.4 Attacker capabilities given by micro-architectural attacks 23303

4.1 Forkless encoding variants for arbitrary data faults 48304

4.2 Forkless encodings for various fault models 49305

4.3 Fault model support . 63306

5.1 Example of C and Intel x86 instructions translated to DBA 72307

5.2 Simplification rules added to BINSEC/ASE 77308

5.3 Arbitrary data encodings and their associated activation constraint . . 79309

5.4 Reset encodings and their associated activation constraint 79310

5.5 Bit-flip encoding and its activation constraint 79311

5.6 Instruction skip encoding for each dba instruction 81312

5.7 Ocaml interfaces . 99313

6.1 Benchmarks characteristics and statistics of a standard SE analysis . . 106314

6.2 FASE vulnerability results compared to benchmark ground truth (RQ1) 107315

6.3 FASE-IOD and forking analysis time comparison for arbitrary data faults316

(RQ2.1) . 109317

6.4 FASE-IOD and forking number of explored paths comparison for arbi-318

trary data faults (RQ2.1) . 110319

6.5 FASE optimizations, analysis time for arbitrary data faults (RQ2.2) . . 111320

6.6 FASE optimizations, number of explored paths for arbitrary data faults321

(RQ2.2) . 112322

6.7 FASE optimizations, number of queries created and sent to the solver323

for arbitrary data faults (RQ2.2) . 113324

6.8 FASE optimizations, average solving time per query for arbitrary data325

faults (RQ2.2) . 114326

6.9 FASE optimizations average number of ite operator per query for arbi-327

trary data faults (RQ2.2) . 115328

6.10 Analysis time for sub-fault simplification for arbitrary data faults (RQ2.2)115329

6.11 Average solving time per query for sub-fault simplification for arbitrary330

data faults (RQ2.2) . 116331

6.12 Average number of ite per query for sub-fault simplification for arbitrary332

data faults (RQ2.2) . 116333

xi

LIST OF TABLES

6.13 Arbitrary data encodings and their associated activation constraint . . 117334

6.14 Encodings, analysis time for arbitrary data faults (RQ2.3) 117335

6.15 Encodings, number of queries created and sent to the solver for arbitrary336

data faults (RQ2.3) . 118337

6.16 Encodings, average solving time per query for arbitrary data faults (RQ2.3)118338

6.17 Analysis time for reset faults (RQ3.1) 119339

6.18 Number of explored paths for reset faults (RQ3.1) 120340

6.19 Analysis time for bit-flip faults (RQ3.2) 120341

6.20 Number of explored paths for bit-flip faults (RQ3.2) 121342

6.21 Analysis time for test inversion faults (RQ3.3) 121343

6.22 Number of explored paths for test inversion faults (RQ3.3) 121344

6.23 Analysis time for instruction skip faults (RQ3.4) 122345

6.24 Number of explored paths for instruction skip faults (RQ3.4) 123346

6.25 Summary table comparing FASE and the forking technique (RQ3) . . . 124347

6.26 Analysis time for arbitrary data faults in instrumentation with Klee (RQ4)126348

6.27 Number of explored paths for arbitrary data faults in instrumentation349

with Klee (RQ4) . 127350

6.28 Benchmarks characteristics and statistics of a standard SE analysis . . 128351

6.29 Summary of the CRT-RSA security scenario 128352

6.30 Summary of the Secret keeping machine security scenario 130353

6.31 Summary of the SecSwift security scenario 131354

6.32 Summary of the Neural Network security scenario 132355

6.33 Benchmarks characteristics and statistics of a standard SE analysis . . 134356

6.34 Table summarizing the effects of countermeasures 135357

6.35 Summary of the WooKey bootloader case study 138358

B.1 Analysis time for reset faults (RQ B1.1) VIII359

B.2 Number of queries created and sent to the solver for reset faults (RQ B1.1) IX360

B.3 Number of queries created and sent to the solver comparison for reset361

fault encodings (RQ B1.2) . IX362

B.4 Average solving time per query for reset faults (RQ B1.1) X363

B.5 Analysis time for reset faults (RQ B1.2) X364

B.6 Average solving time per query for reset faults (RQ B1.2) XI365

B.7 Analysis time for bit-flip faults (RQ3.2) XII366

B.8 Average solving time per query for bit-flip faults (RQ B2) XII367

B.9 Number of queries created and sent to the solver for bit-flip faults (RQ368

B2) . XIII369

B.10 Number of queries created and sent to the solver comparison for instruc-370

tion skip faults (RQ B3) . XIII371

B.11 Analysis time for instruction skip faults (RQ B3) XIV372

B.12 Average solving time per query for instruction skip faults (RQ B3) . . . XV373

B.13 Analysis time and average solving time per query of arbitrary data faults374

with different solvers (RQ B4) . XVI375

C.1 Instrumentation examples . XVII376

xii

Chapter 1377

Introduction378

Contents
379

380
1.1 Context . 1381

1.2 Problem . 2382

1.3 Goal & Challenges . 3383

1.4 Proposal . 3384

1.5 Contributions . 4385

1.6 Impact and Perspectives . 5386

1.7 Manuscript Outline . 5387

388389
390

1.1 Context391

Programs. Programs are everywhere in our modern lives: our phones in our pockets,392

the computers we work on, our TVs at home, our local grocery store systems, but also393

the chips in our credit cards, systems in our cars, buses, trains, boats and planes, our394

hospital system, our water delivery system and our power grids, etc. Programs receive395

input from the world (or us), then perform a function and have an output, either396

as new data stored somewhere, as information display or as commands for actuators.397

Some features can be security-oriented, meaning that their failure can have important398

consequences, material-, money-, human- or information-wise.399

Vulnerabilities. Because programs are human-written, some errors are made. The400

specification for the developers can have holes or inconsistencies. The developers can401

make mistakes in their development work, or make incorrect assumptions about li-402

braries, interpreters or compilers behaviors. This leaves programs with bugs that can403

be exploited. Program protections can be added to reduce the attack surface, but404

are often incomplete when faced with an advanced attacker. Furthermore, advanced405

attackers can not only leverage existing bugs present in a program but also perform406

active fault injection attacks, injecting faulty behavior directly into the execution of407

the program. New attack techniques are regularly discovered, increasing an advanced408

attacker’s capabilities.409

1

1.2. Problem

Attackers. Some entities have an interest in exploiting a program’s incorrect behav-410

iors. Malicious groups such as government agencies, mafias or companies are known411

for, or suspected of, cyber-attacks like ransomware, blackmail, theft and corporate es-412

pionage. But they are not the only ones testing programs. Script kiddies do it for fun413

and learning. Security researchers challenge programs and further the state-of-the-art414

knowledge in security. Companies test the security of their products with the help of415

auditors before market release.416

Program Analysis. To prevent attackers from exploiting a program, major works have417

delved into automated program analysis over the last decades, leveraging techniques418

such as symbolic execution [CS13, GLM12, BGM13], static analysis [Fac], abstract in-419

terpretation [CGJ+03] or bounded model checking [CBRZ01], to hunt software vulner-420

abilities and bugs in programs, or to prove their absence [CCF+05, KKP+15], leading421

to industrial adoption in some leading companies [BGM13, Fac, BCLR04, KKP+15,422

LRV+22]. Ensuring a program works as intended, i.e. without bugs, is the notion of423

safety. As bugs are also an attack entry point, removing them ensures program safety424

and is a first step towards better software security.425

1.2 Problem426

Source Code VS Binary Analysis. Many program analysis techniques are performed427

at the source code level, to allow better developer adoption and understanding of the428

analysis results. However, what is actually executed by a computer is the binary429

program (for compiled languages), which can differ from the source code, binary code430

is where the real vulnerabilities lay. Binary analysis is a harder problem due to the431

loss of information such as types or data structures, and requires about ten times more432

lines than source code to express equivalent behavior.433

Advanced Attackers Across Security Fields. In addition to bugs, a program has other434

weaknesses during its execution. The more resourceful attackers, which we call ad-435

vanced attackers, are capable of using any attack vector to exploit a program, and per-436

form multiple actions through the course of an attack. For instance, micro-architectural437

attacks misuse complex micro-architectural behaviors such as cache systems or branch438

prediction. The running hardware can even be physically disturbed with hardware fault439

injection means. Those complex vulnerabilities, exploitable by an advanced attacker,440

are rarely taken into account in automated program analysis techniques.441

Security Progam Analysis. The existing program analysis techniques focus on finding442

bugs. It appears that all these methods consider a rather weak threat model, where443

the attacker can only craft smart “inputs of death” through legitimate input sources of444

the program, exploiting corner cases in the code itself. In order to perform a security445

evaluation, meaning replay advanced attacks at will, varying different parameters, per-446

form security evaluation and program protection, there is a need for security program447

analysis that would combine automated program analysis and attacker model. Tools448

only looking for bugs and software vulnerabilities may deem a program secure while449

the bar remains quite low for an advanced attacker.450

Efficient Progam Analysis Techniques. Taking into account all possible actions of an451

advanced attacker and their multiplicity in an analysis represents an added complexity,452

which leads to a state explosion in existing techniques. This limits the ability to replay453

attacks at will and to consider different attacker models.454

2

Chapter 1. Introduction

1.3 Goal & Challenges455

Our goal is to devise a technique to automatically and efficiently reason about the456

impact of an advanced attacker onto a program security properties, where the standard457

program analysis techniques only support an attacker crafting smart legitimate inputs.458

Represent an Advanced Attacker in a Formal Framework. To represent the impact459

of an advanced attacker on a program, the first step is to devise a model of such an460

attacker. Then, we need to provide a formal framework to study what an advanced461

attacker can do to attack a program under study. Interestingly, while it has been little462

studied for program-level analysis, such frameworks are routinely used in cryptographic463

protocol verification [Cer01, BCL14]. This formal framework can then be used as a464

theoretical base for an automated program analysis technique for security.465

Existing techniques tend to be domain specific and hence, represent an attacker466

usually able to exploit one attack vector, with only limited attack power. Our goal467

is to build a generic model able to represent an advanced attacker able to leverage468

multiple attack vectors.469

Efficient and Generic Code Analysis Techniques for Security. The second challenge470

is to design an efficient algorithm to assess the vulnerability of a program to a given471

attacker model, when adding capabilities to the attacker naturally gives rise to a sig-472

nificant explosion of program states to consider – especially in the case of an attacker473

able to perform multiple actions.474

The rare prior work in the field, mostly focused on encompassing physical fault in-475

jections for high-security devices, rely mostly on mutant generation [CCG13, RG14,476

GWJLL17, CDFG18, GWJL20] or forking analysis [PMPD14, BBC+14, BHE+19,477

LFBP21, Lan22], yielding scalability issues. Moreover, most of them are limited to478

a few predefined fault models, i.e. patterns of the injected faulty behavior, and do not479

propose a formalization of the underlying problem.480

1.4 Proposal481

Adversarial Reachability. We propose a model of an advanced attacker in terms of its482

capability to change program behavior and the goal of the attack as the violation of a483

security property of the program. We extend the usual transition system representing484

the execution of a program with new transitions modeling the attacker actions. Then,485

we extend the standard concept of reachability to reason about a program execution in486

the presence of an advanced attacker. Adversarial reachability is a formalism expressing487

the reachability of the attacker goal in this modified transition system.488

Adversarial Symbolic Execution. We build a new algorithm based on symbolic tech-489

niques, named adversarial symbolic execution (ASE), to address the adversarial reach-490

ability problem from the bug-finding point of view (bounded verification). Our algo-491

rithm is generic in terms of supported attacker capabilities and prevents path explosion492

thanks to a new forkless encoding of attacker capabilities, represented as faults in the493

program. We show it correct and k-complete with respect to adversarial reachabil-494

ity. To improve the performance further, we design two new optimizations to reduce495

the number of injected faults: Early Detection of fault Saturation and Injection On496

Demand.497

3

1.5. Contributions

Tool Prototype: BINSEC/ASE. We implemented ASE by modifying an existing sym-498

bolic execution engine for binary programs, BINSEC, building BINSEC/ASE.499

1.5 Contributions500

As a summary, we claim the following contributions:501

– We propose a model for a software-level advanced attacker and we formalize its502

impact on a program’s security properties in Chapter 4. We named it the adver-503

sarial reachability problem, extending standard reachability to take into account504

an advanced attacker in a transition system augmented with transitions repre-505

senting attacker actions. We define the associated correctness and completeness506

definitions;507

– We describe a new symbolic exploration method, adversarial symbolic execution,508

to answer adversarial reachability in Chapter 4. The goal of this analysis tech-509

nique is to automatically and efficiently reason about the impact of an advanced510

attacker on a program, and be generic in the supported attacker model. It fea-511

tures a novel forkless fault encoding to prevent path explosion and two optimiza-512

tion strategies to reduce the number of fault injections without loss of generality513

with respect to the attacker model. We establish adversarial symbolic execution514

correctness and completeness for adversarial reachability;515

– We propose an implementation of adversarial symbolic execution for binary-level516

analysis, on top of the BINSEC framework [DBT+16] in a tool called BIN-517

SEC/ASE, described in Chapter 5. In Chapter 6, we systematically evaluate518

its performances against prior work, using a standard SWIFI benchmark from519

physical fault attacks and smart cards. We highlight the interest and feasibility520

of our technique by exploring different security scenarios. Finally, we perform521

a case study on the WooKey bootloader, with a vulnerability assessment of two522

implementations and we propose our own patch for an attack not reported before.523

Publication524

Part of the work presented in this thesis has been published in an paper at ESOP525

2023: Soline Ducousso, Sébastien Bardin, and Marie-Laure Potet, ”Adversarial Reach-526

ability for Program-level Security Analysis”, European Symposium on Programming,527

2023 [DBP23].528

Talks & presentations529

Part of this work has been presented at:530

– Journées du Groupe de Travail Méthodes Formelles pour la Sécurité (GT MFS)531

in 2022 and 2023,532

– the seminar La Cybersécurité sur un plateau (CoaP) in February 2023,533

– Rendez-Vous de la Recherche et de l’Enseignement de la Sécurité des Systèmes534

d’Information (RESSI) in 2023,535

– Journée thématique sur les attaques par injection de fautes (JAIF) in 2023.536

4

Chapter 1. Introduction

Software Package and Artefacts537

Our benchmark infrastructure, case studies and the executable of BINSEC/ASE have538

been made available through artifacts for reproducibility purposes on GitHub1 and539

Zenodo2. The BINSEC/ASE source code will be open-sourced.540

1.6 Impact and Perspectives541

This work is a first step in designing efficient program analysis techniques able to take542

into account advanced attackers. The approach is generic enough to accommodate543

many common fault models, including the bit flips from RowHammer, test inversion,544

instruction skip or arbitrary data modification; still, generic instruction modifications545

are currently out of reach. Also, while we investigate the bug-finding side of the problem546

(under-approximation), the verification side (over-approximation) is interesting as well.547

These are exciting directions for future research.548

1.7 Manuscript Outline549

The remainder of the manuscript is organized as follows:550

– In Chapter 2, we describe the context of systems with security features and551

motivate the need for dedicated program analyses. We list a number of attack552

vectors and related capabilities available to an advanced attacker;553

– In Chapter 3, we propose an overview of program analysis techniques, with a focus554

on symbolic execution and binary analysis. We also explore existing techniques555

to automatically reason about an attacker able to inject faults into a program;556

– In Chapter 4, we detail our formalization of an advanced attacker and the concept557

of adversarial reachability, as well as an algorithm, adversarial symbolic execution,558

to verify adversarial reachability in practice;559

– In Chapter 5, we present our implementation of adversarial symbolic execution560

for binary-level analysis inside the BINSEC tool that we call BINSEC/ASE. We561

propose a user and a developer guide for BINSEC/ASE;562

– In Chapter 6, we evaluate BINSEC/ASE performance on standard SWIFI bench-563

marks and propose few security scenarios to showcase the interest and feasibility564

of our technique;565

– Finally, in Chapter 7 we conclude this thesis and propose future research direc-566

tions.567

1https://github.com/binsec/esop2023 artefact
2https://zenodo.org/record/7507112

5

https://github.com/binsec/esop2023_artefact
https://zenodo.org/record/7507112

1.7. Manuscript Outline

6

Chapter 2568

Context and Motivation569

Contents
570

571
2.1 Security of Information Technology Systems 8572

2.1.1 Definition . 8573

2.1.2 Security Properties . 8574

2.1.3 Wide-spread Use . 9575

2.1.4 Attack Surface and Attackers 11576

2.1.4.1 A Wide Attack Surface 11577

2.1.4.2 Attack Surface Through Time 12578

2.1.4.3 Protections Adding Attack Surface 12579

2.1.4.4 Malicious Attackers 13580

2.1.5 Ensure Security . 13581

2.1.5.1 Standard System Protections 13582

2.1.5.2 Product Validation 13583

2.1.5.3 Security Evaluation 14584

2.1.5.4 Certification Process 14585

2.1.5.5 Our Scope . 15586

2.1.6 Example of Attack on a Security System 15587

2.1.7 Conclusion . 17588

2.2 Capabilities of a Powerful Attacker 17589

2.2.1 Side Channel Attacks . 17590

2.2.2 Software Attacks . 18591

2.2.3 Hardware Fault Injection Attacks 19592

2.2.4 Software-Implemented Hardware Attacks 21593

2.2.5 Micro-Architectural Attacks 22594

2.2.6 Man-At-The-End (MATE) Attacks 23595

2.2.7 Summary . 24596

2.3 Conclusion . 24597

598599
600

7

2.1. Security of Information Technology Systems

This chapter aims to motivate the work of this thesis, that is, designing a technique601

to automatically and efficiently reason about the impact of an advanced attacker on a602

program’s security properties. First, in Section 2.1, we will have a glance at what are603

security-oriented IT systems, their usages and their properties. They are prevalent in604

modern life and their attack can have important consequences. Then, in Section 2.2,605

we will go over different kinds of attack techniques an advanced attacker can leverage606

against an IT system and what capabilities it gives them over a program.607

2.1 Security of Information Technology Systems608

In this section, we present IT (Information Technology) systems and their security-609

oriented features, we stress their prevalence. IT systems are targets for advanced at-610

tackers and can have a wide attack surface. We introduce techniques aimed at reducing611

this attack surface, going toward better system safety and security.612

2.1.1 Definition613

We call security-oriented IT systems any kind of IT system providing a security feature614

whose malfunction has bad consequences, knowledge, human, material or monetary-615

wise for instance.616

An IT system is at least composed of a hardware part, the chips themselves, and the617

software part, the program running on the hardware. It is often combined with input618

and output systems such as cabled connections, sensors, buttons, antennas, displays619

or engines, for interactions with the world. Such a system can be on its own as an620

embedded system like an IoT (Internet of Things) device, or part of a larger IT system621

like a cloud server.622

Many of today’s IT systems integrate some form of cryptography to protect the623

confidentiality of communications, which is one of the most famous security features.624

This gives an idea of the prevalence of systems with security properties.625

2.1.2 Security Properties626

In the security field, we typically identify three main security properties a system can627

have. Knowing they are not always compatible, the strength with which each should628

be enforced depends on the system application.629

– Integrity: the system is not to be modified except by legitimate means. In630

particular, the hardware shouldn’t suffer damage, the code shouldn’t be altered631

and the data shouldn’t be corrupted. For instance, data is encoded with extra632

information to detect errors in network transmissions. An example of a malicious633

integrity breach is the defacement of a website, where an attacker changes the634

content of a web page against the owner’s wishes.635

– Confidentiality: protected information is to be revealed only to legitimate users.636

An IT system contains a lot of information, from code to data or even hardware637

design. Some of that information is labeled as ‘public’ which means it can be638

exposed without endangering the confidentiality of the system. Other parts of639

8

Chapter 2. Context and Motivation

the information contained are labeled ‘private’ and should remain secret. They640

can be intellectual property like algorithms and hardware design, or secret data641

such as keys used for encryption or authentication, or personal data. A man-642

at-the-middle attack consists in intercepting, decoding, observing, re-encoding643

and sending on its way an information paquet on a network, threatening the644

confidentiality of those exchanges.645

– Availability: some systems shouldn’t stop working, even in unforeseen conditions646

like internal errors or when subjected to attack attempts. Availability is mea-647

sured as a minimum percentage of a system’s uptime. Systems integrate recovery648

mechanisms to restore a working state, fail soft modes or be able to restart the649

system so it continues its purpose. Denial of service (DoS) attacks target the650

availability of a system by bombarding it with requests until it cannot handle the651

number and stops answering requests.652

Other types of properties are sought for in security devices. We list some in the653

following.654

– Authentication: the use of an IT system’s features may be restricted to autho-655

rized users only, possibly according to their roles. Each user should register their656

identity and only perform actions they are allowed to on the system. An unau-657

thorized user is not to forge an authorized user’s identity. A brute-force attack658

can be used to try common passwords until one is accepted and the attacker is659

allowed entry on a system.660

– Tracability: each action on a system should be logged in order to be audited.661

What type of action, on what object and performed by whom should be saved.662

This is particularly important to detect traces of attackers on a large computer663

system, determine what has been compromised and where was the exploited664

breach.665

Those are general, system-level security properties. They can be refined into a wide666

range of other properties at different abstraction levels. For instance, one underlying667

property of integrity is memory safety. It consists in ensuring memory accesses only668

affect legitimate objects and does not corrupt or leak other objects.669

2.1.3 Wide-spread Use670

Many areas of our life use IT systems containing security-oriented features. We provide671

here a non-exhaustive list of fields and attack examples to stress the need for high672

security requirements.673

Military. The first domain to come to mind may be defense, where IT systems1,2 have674

life-and-death consequences on humans. Moreover, the confidentiality and integrity of675

information, or commands, from the enemy are necessary. There is also a need for676

preserving intellectual property as a military advantage.677

However, a wide variety of fields, in our everyday life, also takes advantage of678

systems with security-oriented features.679

1https://www.wired.com/story/dire-possibility-cyberattacks-weapons-systems/
2https://www.brookings.edu/techstream/hacked-drones-and-busted-logistics-are-the-cyber-future-

of-warfare/

9

https://www.wired.com/story/dire-possibility-cyberattacks-weapons-systems/
https://www.brookings.edu/techstream/hacked-drones-and-busted-logistics-are-the-cyber-future-of-warfare/
https://www.brookings.edu/techstream/hacked-drones-and-busted-logistics-are-the-cyber-future-of-warfare/

2.1. Security of Information Technology Systems

Aeronautics. Airplanes contain many cyber-physical devices to help pilots, anti-680

collision systems or pressure sensors for instance. They require communication with681

the airports and control towers. An airplane malfunction can put at risk the lives682

of hundreds of people. In 2015, a denial-of-service (DoS) attack3 on the Polish airline683

company LOT resulted in the cancellation of 10 flights, and 15 more were delayed. The684

company systems were unable to send flight plans and other information necessary for685

take off such as weather forecasts. This attack left 1.400 people stranded at Warsaw686

Chopin airport.687

Aerospace. The aerospace field is rich with security-oriented IT systems. They play688

a big part in communication systems, GPS, weather forecasts and cartography, for689

civilian and military usage. In addition, humans are sent to space, which is a hostile690

environment they need to be appropriately shielded from. In 19994, a teenager found691

a flaw in a system of the American Defense Threat Reduction Agency (DTRA) and692

gained access to messages, including authentication information belonging to NASA.693

He used it to perform a privilege escalation attack, ultimately downloading the source694

code of the software running on board the International Space Station (ISS), including695

temperature and humidity control within living quarters.696

Banking. Maybe the first example that comes to mind with security-oriented IT sys-697

tems present in our pockets is the credit card. It contains private encryption keys to698

authenticate to a bank and allow payments. Credit card terminals are equally vul-699

nerable. In 2015 and 2016, the SWIFT banking network suffered an attack5 where700

attackers, using a malware, gained access to legitimate SWIFT credentials they used701

to send transfer requests to other banks, who trusted the messages and transferred702

funds, leading to the theft of more than 100 millions of dollars. Maybe less known703

are crypto wallets, devices providing encryption keys to access a digital wallet of cryp-704

tocurrencies and allow trade. The cryptocurrencies themselves rely on blockchains, and705

smart contracts where a bug has devastating consequences and is hard to fix. This is706

a current topic of research [WZ18].707

Energy. The power grid is monitored and regulated by a network of devices. It can be708

attacked to cause blackouts. The first acknowledge successful attack on a power grid709

targeted Ukraine in 20156. Corporate networks were infiltrated with the BlackEnergy710

malware using spear-phishing emails. The attack then progressed on to SCADA devices711

switching them off remotely, and disabling IT infrastructure and emergency power712

systems, causing a wide power blackout affecting more than 200.000 people. In addition,713

a DoS attack on the call center kept consumers in the dark.714

The water management system is equally vulnerable. In 2021, Florida was the715

stage of an attack on its water system7. An attacker took advantage of a remote access716

software on a computer not up-to-date with an insufficient firewall rules to try and717

poison the water supply. Fortunately, it was discovered before any harm could be done718

to the population.719

Entertainment. While the entertainment industry doesn’t immediately come to mind720

when one thinks about security-oriented IT systems, their systems still record per-721

3https://www.cnbc.com/2015/06/22/hack-attack-leaves-1400-passengers-of-polish-airline-lot-
grounded.html

4https://cybernews.com/editorial/how-a-florida-teenager-hacked-nasas-source-code/
5https://en.wikipedia.org/wiki/2015–2016 SWIFT banking hack
6https://en.wikipedia.org/wiki/2015 Ukraine power grid hack
7https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

10

https://www.cnbc.com/2015/06/22/hack-attack-leaves-1400-passengers-of-polish-airline-lot-grounded.html
https://www.cnbc.com/2015/06/22/hack-attack-leaves-1400-passengers-of-polish-airline-lot-grounded.html
https://cybernews.com/editorial/how-a-florida-teenager-hacked-nasas-source-code/
https://en.wikipedia.org/wiki/2015%E2%80%932016_SWIFT_banking_hack
https://en.wikipedia.org/wiki/2015_Ukraine_power_grid_hack
https://edition.cnn.com/2021/02/10/us/florida-water-poison-cyber/index.html

Chapter 2. Context and Motivation

sonal data like account and password (sometimes reused elsewhere), but also banking722

information. In 2012, the PlayStation Network underwent an attack8 compromising723

the account of around 77millions of people, including children. Among that personal724

information was payment data. To limit the leak, the PlayStation network was down725

for 23 days preventing users from accessing the gaming service.726

Health. Another card in our wallet (in France at least) is the social security smart727

card. More and more health devices, remotely controllable to some extent, are used728

in medicine to help patients, like pacemakers or insulin pumps. They can be hacked729

to hurt the people wearing them. In general, hospitals rely on IT systems but are730

notorious for their lack of cybersecurity investments. For instance, in 2017 in the731

United Kingdom9, the NHS was infected by the ransomware WannaCry, blocking access732

to computers and medical equipment, appointments and operations were canceled and733

patient information was lost.734

Telecommunications. The field of telecommunication includes the Internet and the735

many routers and relais paving it. They are outside, in the world, and susceptible to736

disrupting the network or stealing sensitive data. Mobile phone telecommunications737

can also be targeted, as well as television, radio frequencies, etc. For instance, in738

1995, a radio contest in which the 102nd caller would win a Porsche was hijacked10.739

Telephone lines were blocked to make sure only the attacker call could succeed. In740

2015, the French television group, TV5Monde fell victim to an attack11 that targeted741

the broadcast system. All their channels when black which put the company at risk742

of losing distribution contracts. Their social media, website and internal systems also743

went down.744

Transport. The rise of autonomous cars [KKJ+21] gives growing responsibilities to745

manufacturers in traffic accidents and overall road safety. A famous example is a746

recognition software being derailed by a speed limit sign interpreted as a stop sign.747

Many other transport systems rely heavily on IT systems, such as boats, trains, traffic748

control systems, automated subways, drones and UAVs. In 2017, boat navigation was749

disturbed12 by an attack on the GPS system, placing some boats inland.750

2.1.4 Attack Surface and Attackers751

Security-oriented IT systems are a prime target for attackers, who would exploit vul-752

nerabilities from any component and at any stage of the product life-cycle.753

2.1.4.1 A Wide Attack Surface754

IT systems are complex systems, embedding many different layers which can all have755

vulnerabilities: the hardware, the micro-architecture, software-controlled hardware756

mechanisms, kernels, operating systems, network, software, algorithms or protocols. IT757

systems can reside in physically secure server rooms, providing their services through758

8https://en.wikipedia.org/wiki/2011 PlayStation Network outage
9https://www.nao.org.uk/reports/investigation-wannacry-cyber-attack-and-the-nhs/

10https://www.industrialcybersecuritypulse.com/threats-vulnerabilities/throwback-attack-kevin-
poulsen-wins-a-porsche-and-hacks-the-u-s-government/

11https://en.wikipedia.org/wiki/TV5Monde#April 2015 Cyberattack and resulting disruption
12https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-

russian-cyberweapon/

11

https://en.wikipedia.org/wiki/2011_PlayStation_Network_outage
https://www.nao.org.uk/reports/investigation-wannacry-cyber-attack-and-the-nhs/
https://www.industrialcybersecuritypulse.com/threats-vulnerabilities/throwback-attack-kevin-poulsen-wins-a-porsche-and-hacks-the-u-s-government/
https://www.industrialcybersecuritypulse.com/threats-vulnerabilities/throwback-attack-kevin-poulsen-wins-a-porsche-and-hacks-the-u-s-government/
https://en.wikipedia.org/wiki/TV5Monde#April_2015_Cyberattack_and_resulting_disruption
https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-russian-cyberweapon/
https://www.newscientist.com/article/2143499-ships-fooled-in-gps-spoofing-attack-suggest-russian-cyberweapon/

2.1. Security of Information Technology Systems

a cabled connection, usually over the Internet. As getting proximity access to such de-759

vices is difficult, attackers favor software-based attacks. Security-oriented IT systems760

can also be embedded devices, that is to say, small systems scattered in the world where761

they are needed for their features. Since embedded devices are in the open, an attacker762

can have direct contact with the hardware. It enables them to perform, in addition763

to the wide spectrum of attacks possible on physically secure systems, hardware fault764

injection attacks. We detail different types of attack vectors and what capabilities they765

provide an attacker in section 2.2.766

Some but not all attack vectors rely on existing vulnerabilities, or bugs, in an IT767

system. A vulnerability is a weakness in a system that can be exploited. It can be a768

design flaw or a development error for instance.769

2.1.4.2 Attack Surface Through Time770

In addition to being complex systems, IT systems also have a rich life cycle, each771

step possibly introducing vulnerabilities. The Common Criteria [CC2] detail different772

moments in the life-cycle of a product where vulnerabilities may arise through failures773

in IT:774

– requirements : an IT product may possess all the functions and features required775

of it and still contain vulnerabilities that render it unsuitable or ineffective with776

respect to security;777

– design: an IT product has been poorly designed. Building a secure product,778

system, or application requires not only the implementation of functional re-779

quirements but also an architecture that allows for the effective enforcement of780

specific security properties the product, system, or application is supposed to781

enforce. The ability to withstand attacks the product, system, or application782

may be face in its intended operational environment is highly dependent on an783

architecture that prohibits those attacks or, if they cannot be prohibited, allows784

for detection of such attacks and/or limitation of the damage such an attack can785

cause;786

– development : an IT product does not meet its specifications and/or vulnerabili-787

ties have been introduced as a result of poor development standards or incorrect788

design choices;789

– delivery, installation and configuration: an IT product has vulnerabilities intro-790

duced during the delivery, installation and configuration of the product;791

– operation: an IT product has been constructed correctly to a correct specification,792

but vulnerabilities have been introduced as a result of inadequate controls upon793

the operation.794

– maintenance: an IT product is maintained in such a way that new vulnerabilities795

are introduced.796

2.1.4.3 Protections Adding Attack Surface797

Interestingly, removing vulnerabilities in a device by adding protections can lead to798

adding components, micro-architectural or software, in the systems, which can them-799

selves suffer from vulnerabilities or induce new ones in other parts. Hence, adding800

countermeasures also increases the attack surface of a system.801

12

Chapter 2. Context and Motivation

This stresses the high potential for a wide range of vulnerabilities to exist in a802

security product.803

2.1.4.4 Malicious Attackers804

There is a wide diversity of malicious attackers with various motivations from monetary805

to politics. The most serious threats to security-oriented systems are powerful entities806

such as mafias and state agencies. They have enormous resources in terms of time,807

money to buy equipment and in terms of expertise. It is reasonable to assume such808

attackers will try every attack vector at their disposal and target any stage of the809

product life-cycle. They may even use some new vulnerabilities or attack techniques810

not yet known to the public. Those are called zero-day vulnerabilities [BD12]. They811

are hard to detect and impossible to protect against before they are publicly disclosed.812

Zero-day vulnerabilities can exist for years and are traded between malicious parties.813

Malicious attackers pose a real threat to security-oriented IT systems. Techniques814

and processes have been developed to harden system security and add considerable815

difficulties for malicious attackers.816

2.1.5 Ensure Security817

To harden security-oriented IT systems against attackers, different complementary ap-818

proaches have been developed.819

2.1.5.1 Standard System Protections820

The first step to producing a secure product is to produce a ‘good’ product. Developers821

exchange good practices for efficient but also readable and self-explanatory code and822

specifications. Companies put in place development processes like code review to reduce823

the risk of bugs.824

The design choice can have a big impact on reducing the risk and number of vulner-825

abilities. For instance, the choice of programming language can prevent some classes of826

bugs. A type-safe language contributes to program correctness and prevents type er-827

rors like using operations with incorrect data types. A memory-safe language enforces828

memory isolation.829

When the chosen programming language is compiled, a generic tool is used, GCC13
830

or Clang14 to compile C for instance. They integrate by default a number of security831

protections, like stack canaries, and can be configured more precisely.832

Limits. Those standard security practices permit the removal of some vulnerabilities,833

but are mostly human-based, hence fallible, or take advantage of default configurations834

that are rather weak and not tailored to a particular system.835

2.1.5.2 Product Validation836

To complement standard development processes, various test phases have been designed837

to improve functional correctness and detect bugs early. Unit tests are written or838

generated, for each functional unit, verifying correct output for a limited number of839

inputs. This help make sure of the normal behavior of the system, i.e. functional840

13https://gcc.gnu.org/
14https://clang.llvm.org/

13

https://gcc.gnu.org/
https://clang.llvm.org/

2.1. Security of Information Technology Systems

correctness. Then, integration tests check that each component interacts with others841

as expected, as many imprecisions or bugs lay at system interfaces, which can then be842

exploited by attackers. Regression testing ensures new developments haven’t impacted843

the nominal behaviors of the other parts of the system.844

Limits. This validation procedure allows to remove most vulnerabilities in a system.845

However, one of the main difficulties with tests is the coverage of all functional behav-846

iors. If a set of paths is not explored by a test, its correctness isn’t checked. Exhaus-847

tiveness is a hard problem and can result in very heavy test suites, too heavy for some848

development processes. Incomplete coverage often happens for corner cases, that an849

attacker can exploit. For instance, what happens if an element of a data structure is850

empty? In addition, test cases are often selected with functional testing in mind, that851

is to say, what the system should do, and not security, i.e. what the system shouldn’t852

do. In particular, incorrect inputs are not always exhaustively tested.853

2.1.5.3 Security Evaluation854

The next step in strengthening an IT system is to perform penetration testing. It is a855

security-oriented testing phase to evaluate the security by design in practice. Penetra-856

tion testing consists, for security practitioners, in attacking the system as a malicious857

attacker would to identify the remaining vulnerabilities and available attack vectors.858

Different entities perform penetration testing on IT systems.859

Manufacturer. It is the entity designing new IT systems they wish to market. They860

may externalize the hardware manufacturing and even the software development. How-861

ever, they are responsible for the end product security. Manufacturers test their prod-862

ucts and look for vulnerabilities to remove them as early as possible in the production863

process as making patches becomes more and more expensive. This includes trying to864

attack their product, to ensure a certain level of robustness to their clients.865

Evaluators. Penetration testing can be externalized to evaluators. They can work866

for manufacturers or certification authorities (see Section 2.1.5.4). Evaluators receive867

an IT system, perform its vulnerability assessment including penetration testing, and868

produce a report.869

Security Researcher. Researchers study the security of IT systems to improve the state870

of knowledge, discover new types of vulnerabilities, develop new tools to find them and871

devise new and more powerful countermeasures. Their work empowers the security872

community, helping improve their assessments. It is likely similar to the research made873

by malicious attackers, in particular, to discover zero-day vulnerabilities in systems.874

2.1.5.4 Certification Process875

Each company has its own development process, making it hard to compare systems876

quality and security. To bridge that gap, independent authorities receive product appli-877

cations and attribute to them a standardized label. Those are certification authorities,878

delivering certifications.879

Certification Authorities. At an international level, countries have gathered around880

Common Criteria. It takes the form of a procedure to obtain the Common Criteria881

certificate, with different security levels. Other certifications exist, at the national level882

for instance, in France, the CSPN can be delivered by the French National Cyberse-883

curity Agency (Agence Nationale de la Sécurité de Systèmes d’Information, or ANSSI884

14

Chapter 2. Context and Motivation

for short).885

Certification. The application consists of extensive documentation of the product,886

development and test processes followed by the company. It also integrates a pen-887

etration testing report from an external evaluation center. For instance, among the888

documentation required for the Common Criteria certification, the class AVA relates889

to vulnerability assessment, where the evaluator is expected to report on penetra-890

tion testing activities to ensure the non-exploitability of the product’s vulnerabilities891

[CC2]. The certification authority reviews the application and evaluates the product892

made available to them to decide whether or not to give the certification to the new893

product.894

2.1.5.5 Our Scope895

The work presented in this thesis focuses on program-level evaluation for security.896

It aims to identify vulnerabilities in an IT system that an advanced attacker could897

exploit. It could assist penetration testers identify sensitive code areas and possible898

attack paths. We propose for instance the following use cases:899

– the evaluation of the strength of different cryptographic implementations;900

– the evaluation of security features of security-oriented IT systems such as a secure901

bootloader;902

– the vulnerability evaluation of a program with various countermeasures.903

2.1.6 Example of Attack on a Security System904

As a motivating example, we consider a pin verification program. It can be used905

for different applications, for instance, for credit cards, building access control, secure906

storage devices, or authentication of any kind. Here, an attacker may want to leak the907

secret pin, or they can confuse the system into believing the attacker has the secret pin908

even if not, in order to continue and use authenticated features. More formally, the909

attacker’s goal is to be authenticated despite not knowing the correct pin.910

The first step for an attacker would be to retrieve the program, either from public911

sources or by leaking it. The motivating example is illustrated in Figure 2.1, it is an912

unprotected version of a VerifyPIN program [DPP+16], from the domain of hardware913

fault injection and smart cards. The user pin digits, stored in g userP in, are checked914

against the reference digits stored in g cardP in, using the byteArrayCompare function.915

The attacker seeks to be authenticated (satisfy the assert l.29) without knowing, i.e.916

entering, the right digits.917

We propose hereafter different attack scenarios for the attacker to exploit the Ver-918

ifyPIN program.919

Attack Scenario 1. Once the attacker has access to the program code, they would ana-920

lyze it for known Common Vulnerabilities and Exposures (CVEs) and classic exploitable921

vulnerabilities, checking for a buffer-overflow vulnerability for instance.922

Attack Scenario 2. During their analysis of the program, the attacker can notice this923

code is not constant-time. That is to say, a program branch depends on a secret value924

(l.10) leading to different execution times and information leakage about the secret.925

Here the program will take longer to execute, i.e. execute one more loop iteration,926

15

2.1. Security of Information Technology Systems

1 #def ine PIN SIZE 4
2
3 bool g authent i ca t ed = 0 ;
4 i n t g userPin [PIN SIZE] ;
5 i n t g cardPin [PIN SIZE] ;
6
7 bool byteArrayCompare (i n t * a1 , i n t * a2 , i n t s i z e) {
8 i n t i ;
9 f o r (i = 0 ; i < s i z e ; i++) {

10 i f (a1 [i] != a2 [i]) {
11 return 0 ;
12 }
13 }
14 return 1 ;
15 }
16
17 void ver i fyPIN () {
18 g authent i ca ted = 0 ;
19 i f (byteArrayCompare (g userPin , g cardPin ,
20 PIN SIZE) == 1)
21 {
22 g authent i ca ted = 1 ; // A u t h e n t i c a t i o n () ;
23 }
24 return ;
25 }
26
27 void main () {
28 ver i fyPIN () ;
29 a s s e r t (g authent i ca t ed == 1) ;
30 }

Figure 2.1: Motivating example, inspired by VerifyPIN [DPP+16]

for each correct digit. By performing a timing side-channel attack, the attacker can927

leak the secret pin by learning one digit at a time, testing all 10 possibilities. This928

would require at most 10×PIN SIZE attempts which is much lower than brute force929

(10PIN SIZE attempts). Then the attacker can use this information to get legitimately930

authenticated by the program.931

Attack Scenario 3. If they come up empty-handed, attackers could try and determine932

sensitive code areas, that is to say, code regions where inducing a fault in the execution933

is likely to result in a different program behavior, closer to what the attacker aims for.934

More details on means to inject faults into a program are presented in Section 2.2. If the935

injection of the fault requires precise timing, for hardware fault injections or software-936

induced hardware fault injections for instance, the attacker would need to observe the937

running program, through some form of side-channel leakages like power consumption938

or electromagnetic emission, to link processor activity with program execution in order939

to synchronize the injection with the execution of the vulnerable area. The attacker940

may need multiple attempts, changing the injection vector or the vulnerable code region941

16

Chapter 2. Context and Motivation

before performing a successful injection.942

Attack Scenario 3A. The attacker could use fault injection to change the control943

flow of the program, by inverting the test l.19 which checks the return value of the944

byteArrayCompare function, so that when it returns 0 (pin incorrect), the execution945

would in fact execute l.22 and authenticate the user.946

Attack Scenario 3B. The attacker could target data in memory. In this example,947

injecting a non-controlled fault into memory to corrupt g cardP in would not help the948

attacker. If they can inject a precise fault, resetting the whole memory array associated949

with g cardP in, then entering a ”0 0 0 0” pin would authenticate them.950

Attack Scenario 3C. The attacker can target the data flow of the program. By cor-951

rupting the initialization of g authenticated l.18 with a fault injection setting it to952

1, the program will detect the pin entered is wrong and forward the original value of953

g authenicated. Hence the attacker will be authenticated with an incorrect pin.954

2.1.7 Conclusion955

In this section, we had a look at various fields relying heavily on IT systems with956

security features and what efforts were put in place to harden their security against957

attackers, for instance through a Common Criteria certification. The VerifyPIN moti-958

vating example illustrated our focus on program-level security evaluation.959

Cyber-security is a cat-and-mouse game, where attackers and security researchers960

develop new attack techniques while manufacturers and other security researchers try961

to detect them and design countermeasures. Hence protections are imperfect and still962

leave ways for an advanced attacker to build successful attacks. In the next section, we963

will delve into what attack techniques are available to an advanced attacker and what964

attack capabilities they provide the attacker to reach their goal.965

2.2 Capabilities of a Powerful Attacker966

Security research has delved into many aspects of system security, leveraging a growing967

variety of attack techniques and attack surfaces that a powerful attacker can take968

advantage of.969

We aim in this section to touch on what impact an advanced attacker can have on970

a program. We consider many attack vectors from software to micro-architecture and971

hardware. We list the attack capability given to an attacker by each kind of attack.972

It is by knowing against what to defend a program that it is possible to evaluate its973

security and strengthen it.974

2.2.1 Side Channel Attacks975

A system running a program leaks a lot of information about its internal state. It976

can be through external observables like power consumption [KJJ99], electromagnetic977

emissions [AARR03, DOL+10], execution time [Koc96] or light emission [SNK+12], and978

more recently through sound emissions [GST17]. An attacker able to run a program979

on the target processor can also observe internal leakages like cache usage [Ber05,980

LM18] or branch prediction [AKS06]. An attacker observing those leaks deduces private981

information, like interesting addresses or secret keys. As the attacker does not modify982

17

2.2. Capabilities of a Powerful Attacker

the system’s behavior, it is a passive attack. We will not detail side channel attacks983

further and focus on active attacks in this thesis.984

2.2.2 Software Attacks985

Many tools have been developed to ensure system’s security, mostly taking into account986

an attacker able to craft malicious inputs to give to legitimate input sources of a987

program. Software attacks exploit existing software vulnerabilities. A number of them988

are recorded in the CVE database15. They can be performed remotely. We list below989

the most common ones and the attack primitive they give to an attacker.990

Buffer Overflows. It is probably the most famous one. This vulnerability appears991

when the program allows to write in memory outside the bound of a data structure,992

arrays in particular. This is an undefined behavior in the C language that is usually993

resolved by allowing the write outside of bounds. This vulnerability is often due to a994

code pattern where a write operation is performed inside a loop and there end up being995

too many iterations of the loop. It can also appear when copying a data structure into996

a smaller one. Figure 2.2, from OWASP16, illustrates a code relying on external data997

to control its behavior. The code uses the gets() function to read an arbitrary amount998

of data into a stack buffer. Because there is no way to limit the amount of data read999

by this function, the safety of the code depends on the user to always enter fewer than1000

BUFSIZE characters.

1 char buf [BUFSIZE] ;
2 ge t s (buf) ;

Figure 2.2: Example of a buffer overflow vulnerability.

1001

A buffer overflow attack [CWP+00] gives the attacker write capabilities. The speci-1002

ficities of the code will constrain what can be overwritten and how much of it. A1003

common usage is to overwrite the return pointer at the end of a function and start a1004

return-oriented type of attack.1005

Use-after-free. This type of attack [CGMN12] consists in dereferencing a pointer after1006

it has been released by the code. An attacker can use that pointer to perform illegal1007

memory accesses, on data or function pointers, retrieving old values or new ones al-1008

located after the space had been freed. A use-after-free attack enables an attacker to1009

control values from memory loads and jump to attacker control code.1010

Integer overflow. Integer overflow [DLRA15] consists in providing inputs such that1011

an arithmetical computation will overflow –or underflow, that is to say, the theoretical1012

result cannot be written with the chosen integer representation. This is an undefined1013

behavior in the C language. This vulnerability can be used to corrupt data and even1014

control flow when targeting loop iterations.1015

Conclusion. Software vulnerabilities provide the attacker with a number of interesting1016

attack primitives, mostly based on data corruption with extended effects. Table 2.11017

summarizes attacker capabilities. Here we only consider the impact of exploiting such a1018

vulnerability and presume attack prerequisites have been met. Interestingly, works on1019

15https://cve.mitre.org/
16https://owasp.org/www-community/vulnerabilities/Buffer Overflow

18

https://cve.mitre.org/
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

Chapter 2. Context and Motivation

Control Flow Integrity (CFI) mechanisms [ABEL09, BCN+17] also define hypothetical1020

attackers by their capabilities, such as “write anything anywhere” or “write anything1021

somewhere”, in order to prove that their countermeasure is indeed able to thwart such1022

an opponent.1023

Table 2.1: Attacker capabilities given by software attacks

Type of attack Attacker capability
Buffer overflow Overwrite data in memory
Use-after-free Corrupt data loads from memory
Integer overflow Corrupt input-related data

2.2.3 Hardware Fault Injection Attacks1024

When an attacker has direct access to a device, they can put it in extreme environmental1025

conditions, past the operating limits of the components, to induce hardware faults in1026

them. The faults occur at the circuit level, either setting a signal to zero (bit reset), to1027

one (bit set) or flipping the value (bit-flip). The consequences of that circuit-level fault1028

will manifest at the micro-architectural level depending on the location of the faults,1029

for instance at the fetch, decode, execute or store stage of the microprocessor pipeline,1030

in registers, cache or memory, etc. Finally, faults propagate to the software layer,1031

changing the behavior of the executed program. Faults can be transient, with effects1032

lasting only until they are naturally overwritten, or permanent, when they cause lasting1033

damage to the circuit. We will only consider transient fault in this thesis. Security1034

practitioners have identified various injection means [BECN+06, KSV13, BBKN12].1035

We list the most common ones in the following, with what types of capabilities they1036

are known to provide an attacker.1037

Laser Beam. A photoelectric effect happens when a material is hit by electromagnetic1038

radiation such as a laser beam, the material releases electrons creating electron holes1039

that induce currents and cause faults [DDCS+14]. This is the most accurate hard-1040

ware fault injection mean, with a timing precision of a few picoseconds [LBC+15] at1041

a location precise at a few micrometers [BMPM13]. A laser beam injection can affect1042

each stage of the pipeline (instruction fetch, decode, execute, write) [VTM+17]; for1043

instance corrupting operands, corrupting instructions or writing wrong results back in1044

a possibly different register. A laser beam can also inject a bit-flip in a register, a flag1045

value [VTM+17] or in flash memory [CMD+19] independently of program execution.1046

A concrete attack could be flipping a precise bit in the secure configuration register1047

(SCR) to bypass a secure boot [VTM+17]. A laser beam can inject multiple faults in1048

one attack:1049

– at different physical locations [CGV+22], for instance, precisely faulting each1050

check of a pin verification code [DRPR19];1051

– affecting consecutive instructions [RNR+15]. Interestingly, if we consider an at-1052

tacker capable of an infinite number of precise skips, they have a Turing com-1053

plete computing power [PCHR20]. In practice, up to 300 instructions have been1054

skipped [DRPR19].1055

Power glitch. The critical path is the signal taking the longest to get from one flip-1056

flop or memory unit, through some logic gates and to the next flip-flop or memory1057

unit. Under-powering a system will slow down signals until some signal in the critical1058

19

2.2. Capabilities of a Powerful Attacker

path cannot reach the next sampling unit in time. Those are called timing faults.1059

Power glitching allows for attacks with precise timing but no spatial control. The1060

power supply of a component must be accessible. A power glitch can skip instructions1061

or influence a branch decision, corrupt memory locations, or alter the result of an1062

instruction or its side effects [BFP19]. Power glitches can be used for privilege escalation1063

on a Linux system [TM17]. Multiple power glitching faults are possible [BFP19] and1064

can be leveraged to extract a protected firmware with more than a hundred faults to1065

force memory accesses.1066

Clock glitch. The clock gives the pulse at which rate flip-flops and memory units1067

sample signals. When the frequency is increased passed the maximal frequency safe1068

for the critical path, timing faults occur. The location of a clock glitch is architecture-1069

dependent but precise in timing. The device must have an external clock that can be1070

changed to an attacker-controlled one. A clock glitch in the CPU pipeline can corrupt1071

instructions by affecting an operand fetch or skipping an instruction [YGS+16], with or1072

without replaying the previous one [CPHR21]. A glitch injection platform [CPHR21]1073

has skipped a hundred consecutive instructions and performed multiple bursts of skips.1074

One clock glitch can bypass unprotected authentication and multiple faults, a protected1075

one [CPHR21].1076

Electromagnetic Pulse (EMP). The electromagnetic field of an EM probe generates1077

by induction eddy currents in the chip. This also creates timing faults in the circuit1078

[ZDT+14, OGSM15]. EMP attacks are temporally and spatially precise [MDP+20].1079

With a low-intensity electromagnetic disturbance, instructions can be corrupted to1080

other instructions, and at high-intensity, instruction’s op-code are zeroed [BGV11].1081

EMP has been shown [MDH+13] to inject faults either on the instruction bus, for1082

instance targeting branch instructions, ALU instructions or load-store instructions,1083

and on the data bus independently of the execution, bringing each faulted bit closer to1084

the precharge bit value (architecture dependent). Multiple bit-flips or most-significant1085

half-word reset on register values, operand substitutions and instruction skips or replay1086

were also observed [PHB+19]. EMP can induce vulnerabilities such as a buffer overflow1087

and enables control flow hijacking, covert backdoor insertion and Return Oriented1088

Programming [BLLL18]. Multiple consecutive instructions can be corrupted [RNR+15].1089

Conclusion. Hardware fault injection attacks have various effects, usually described1090

as modifications of instructions, or data corruption. We list the most common ones1091

in Table 2.2. In addition, multiple faults can be injected with a hardware attack.1092

Capabilities provided by hardware fault injection are the building blocks of exploitation:1093

– breaking cryptography [BS97, Gir05, BSGD09, BBB+10, BBKN12, VKS11, DDRT12,1094

HS14],1095

– leaking sensitive data [BDL01, DMM+13, BFP19],1096

– circumventing authentication [QS02, DPP+16, DRPR19, CPHR21],1097

– bypassing software protections [NHH+17, BLLL18], sometimes in parallel with a1098

software attack exploiting the created vulnerability as a combined attack [TS16,1099

NHH+17].1100

– bypassing secure boot [TS16, VTM+17, BFP19],1101

– performing privilege escalations [TS16, TM17];1102

– disrupting a system whose output is studied by side-channel analysis [AVFM07].1103

20

Chapter 2. Context and Motivation

Table 2.2: Attacker capabilities given by hardware fault injection attacks

Type of attack Attacker capability

Hardware fault injection
attack: laser beam, power
glitch, clock glitch,
temperature, EMP

Skip an instruction
Skip and replay the previous instruction
Change operator of an instruction
Change source register of an instruction
Corrupt load from memory
Change destination register of an instruction
Corrupt a store instruction’s value
Corrupt a memory cell
Corrupt a register
Corrupt a flag

2.2.4 Software-Implemented Hardware Attacks1104

We distinguish software-implemented hardware attacks from traditional hardware at-1105

tacks due to the source of the perturbation. While hardware perturbations are caused1106

by extreme environmental conditions (external) in hardware attacks, they are caused1107

by software-controlled mechanisms (internal) in software-implemented hardware at-1108

tacks. The goal is to push the hardware into unstable states using legitimate soft-1109

ware commands. While hardware-controlled injections require proximity to the target,1110

software-controlled injections can be done remotely. We list some examples of software-1111

controlled mechanisms that can be misused to inject faults into a program and their1112

associated fault models.1113

Rowhammer. In 2014, Kim [KDK+14] first discovered that high-intensity memory1114

access to the same location in memory can induce a bit-flip in the adjacent memory row,1115

in DRAM (Dynamic Random Access Memory). The trend of circuit miniaturization1116

leads to memory cells closer to one another and their charges being able to disturb each1117

other. This was named the Rowhammer vulnerability. It was then exploited in 20151118

to escape a sandbox and to perform a privilege escalation [SD15] by corrupting the1119

page table entry (PTE) to point to the attacker’s one and control all physical memory,1120

hence the entire system. Since then, a number of works have developed other exploits,1121

on many different platforms [MK19]. It provides the attacker with a bit-flip capability1122

at a precise location anywhere in flash memory [RGB+16].1123

Memory Delays. The time a signal takes to travel between the memory and the CPU1124

mostly depends on the length of the wire connecting them. However, that delay can1125

also change with voltage and temperature. To accommodate for the delays changing1126

from one board to another and due to working conditions, hardware timing control1127

mechanisms have been implemented, called delay-lines. They are usually configured1128

at boot but remain programmable. After being used for power side-channel attacks1129

[GDTM21b], exploiting the link between voltage fluctuations and memory delays, this1130

software-controlled mechanism was turned into a fault injection mean, named Fault-1131

Line, by Gravellier et al. [GDTM21a]. By modifying the delay-line to a shorter period,1132

an attacker can induce faults in memory transfers (loads and stores) of a victim appli-1133

cation. This provides the attacker with the capability to induce a precise number of1134

bit-flips either in memory loads or memory writes, or both. For instance, it allowed1135

Gravellier et al. to perform a BellCore attack on OpenSSL signatures.1136

21

2.2. Capabilities of a Powerful Attacker

Dynamic Voltage and Frequency Scaling (DVFS). Hardware manufacturers have de-1137

veloped CPU with energy management controls, adapting frequency and voltage to1138

increase performance in high-intensity computation phases and reduce consumption in1139

low-intensity phases. Those configurations are stored in registers that can be controlled1140

by kernel drivers, leading to potential misuse. Tang et al. devised the first exploit tech-1141

nique, CLKSCREW, based on the DVFS vulnerability in 2017 [TSS17]. They show1142

the microprocessor can be put in an unstable state, with the same consequences as1143

under-powering or overclocking. The attack is imprecise in location and induces faults1144

in flip-flops. DVFS has then been shown in the Plundervolt attack [MOG+20] to induce1145

memory safety vulnerabilities and recover secret keys from cryptographic programs on1146

an SGX enclave.1147

Conclusion. As systems become more complex, they often require more modularity1148

to adapt to different boards and functioning conditions. Hence a number of software-1149

implemented hardware mechanisms to keep signal synchronization and improve energy1150

efficiency. However, they often remain programmable hence vectors of attacks.1151

Software-implemented hardware attacks can yield the same types of faults than1152

hardware fault injection, summarized in Table 2.3, while lifting the direct access re-1153

striction. They can be used for the same classes of attacks, from memory corruption1154

to privilege escalation and cryptography attacks.1155

Table 2.3: Attacker capabilities given by software-implemented fault injection attacks

Type of attack Attacker capability
Rowhammer flip a bit in memory
Faultline bit-flips in memory transfers
DVFS flip a bit somewhere

2.2.5 Micro-Architectural Attacks1156

Manufacturers have design a wide variety of acceleration mechanisms to improve the1157

performance of their CPUs in parallel with the miniaturisation trend. Those mecha-1158

nisms can be misused to yield attacks. We present some of them in this section.1159

Spectre Attack. To improve modern processors’ performance and, in particular, to1160

avoid having to wait for a conditional branching resolution, branch prediction and1161

speculative execution have been implemented. Branch prediction consists, for the pro-1162

cessor, in making a guess as to which branch will be taken, based on previous decisions.1163

For instance, if the last hundred of time, the branch true was taken for a particular1164

conditional jump, the branch predictor can guess the true branch will be taken again1165

this time. The register state is saved and the processor enters a speculative execution1166

mode, where it continues executing the guessed branch instructions instead of doing1167

nothing, waiting for the branch result. Most of the time, the branch predictor is correct1168

and the processor gains time. Sometimes it is wrong, the processor state is restored1169

and the execution starts again on the other branch, which is not slower than simply1170

waiting for the branch result.1171

The Spectre attack [KHF+20] trains the branch predictor to its advantage to exploit1172

misprediction, i.e. when the branch predictor was wrong and started executing instruc-1173

tions it shouldn’t have, in addition to the observable effects left after the roll-back, like1174

22

Chapter 2. Context and Motivation

cache content. In effect, the attacker is able to invert a test during the speculative win-1175

dow. Many variants exist. Variant 1 allows an attacker to read from arbitrary memory,1176

variant 2 corrupts indirect branch target computation to deviate the execution to an1177

arbitrary location.1178

Load Value Injection (LVI). This attack [VBMS+20] also exploits speculation execu-1179

tion, but from the data perspective. When a load operation fails due to a page fault,1180

the processor can transiently use data from a micro-architectural buffer to increase1181

execution speed. The attacker controlling the buffer can inject arbitrary data from any1182

load operation, including implicit load micro-op like the x86 ret instruction.1183

Race attacks. Modern CPU cores can run multiple processes at once, interleaving their1184

execution with a scheduler. If those processes share some part of memory, they can1185

interfere in the other’s data flow [GSV03]. For instance, in a Time-Of-Check-To-Time-1186

Of-Use (TOCTOU) attack [WP05], the victim program will first sanitize some user1187

input, then the malicious program will overwrite said data with malicious and mal-1188

formed content, which will be processed by the victim as if correctly formed, causing1189

unintended behavior the attacker can exploit. Race attacks give write capabilities to1190

the attacker, on data in memory which includes saved register states.1191

Conclusion. To increase the execution speed of processors, micro-architectural behav-1192

iors have been developed like scheduling or speculative execution. Unfortunately, those1193

added behaviors also increase the attack surface of the target and offer new possibilities1194

for the attacker to induce unintended behavior. A summary of the capabilities due to1195

micro-architectural attacks is presented in Table 2.4.1196

Table 2.4: Attacker capabilities given by micro-architectural attacks

Type of attack Attacker capability

Spectre
Invert a test (transiently)
Read from arbitrary memory (transiently)
Jump to arbitrary location (transiently)

LVI Write data load results, from any, even implicit load (transiently)
Race attack Write data in memory and registers

2.2.6 Man-At-The-End (MATE) Attacks1197

In the context of a MATE attack, the attacker has unlimited access to the target,1198

meaning full observability and control over a software code and its execution [ASA+15].1199

The attacker can look at what is executed, inspect each instruction and possibly modify1200

it or any architectural element (register, memory) before executing it. For the victim,1201

considering MATE attacks is equivalent to executing code on an untrusted environment.1202

The goal of a MATE attack is usually to steal intellectual property such as sensitive1203

data or code through reverse engineering attacks. This can be done with direct access to1204

the device or remotely. Another type of MATE attacker is a malicious trusted user, an1205

unhappy system administrator for instance. They can use their knowledge of a system1206

and through legitimate access corrupt or erase data, or crash services, machines or an1207

entire IT system. A MATE attacker is also in a unique position to observe protections1208

and monitoring systems in place. Bypassing them is part of the attack. They can for1209

instance redirect a hardware interrupt signal triggered by their attack actions.1210

23

2.3. Conclusion

The associated attacker model is hence very powerful, with capabilities such as halt-1211

ing the execution, modifying data in memory and registers, and modifying instructions,1212

at any point of the execution.1213

2.2.7 Summary1214

We saw in this section that a wide variety of attacks vectors are available to an ad-1215

vanced attacker. Those attacks can be performed multiple time in one attack and in1216

combination. We described several real software-level security scenarios where the at-1217

tacker goes beyond crafting legitimate input to abuse the system under attack. The1218

effects of the attacks described can be represented using fault models.1219

2.3 Conclusion1220

Security-oriented IT systems are omnipresent. They need to be able to resist pow-1221

erful attackers able to exploit various kinds of attack techniques and attack surfaces.1222

We presented software attacks exploiting programs’ inputs, hardware fault injection1223

attacks attacking the physical layer, software-implemented hardware attacks targeting1224

software-controlled hardware mechanisms, micro-architectural attacks misusing micro-1225

architecture behaviors, and MATE attacks with full control over the program and its1226

execution.1227

It is important to be able to describe in a generic way the capabilities given to an1228

attacker by all those attack vectors. We do this by using fault models, inspired by the1229

hardware fault injection field. It allows to reason about attacks in an abstract way,1230

focusing on the impact an attacker can have on a program and evaluate a program’s1231

resistance. In particular, a unified description of attacker capabilities is easier to inte-1232

grate into generic tools to assist security practitioners in their program-level security1233

assessment.1234

To evaluate the vulnerability of programs to such an attacker model, from a program1235

hardening or vulnerability detection point of view, code analysis techniques exist as1236

detailed in the next chapter, Chapter 3.1237

24

Chapter 31238

Background1239

Contents
1240

1241
3.1 Program Analysis Techniques . 261242

3.1.1 Overview . 261243

3.1.1.1 Bugs in Programs 261244

3.1.1.2 Program Analysis 261245

3.1.2 Program Analysis is Undecidable 271246

3.1.2.1 Over-Approximation 271247

3.1.2.2 Under-Approximation 281248

3.1.3 Reachability Property . 291249

3.1.4 Link to the Thesis . 301250

3.2 Symbolic Execution . 301251

3.2.1 Overview . 301252

3.2.2 Symbolic Execution Algorithm 311253

3.2.3 Limitations . 321254

3.2.3.1 Path Explosion . 321255

3.2.3.2 Constraint Solving 331256

3.2.4 Link to the Thesis . 331257

3.3 Binary Code Analysis . 331258

3.3.1 Binary VS Source Code Analysis 331259

3.3.2 Challenges of Binary Analysis 341260

3.3.3 Link to the Thesis . 341261

3.4 Program Analysis Techniques for Fault Injection 341262

3.4.1 Simulation . 341263

3.4.2 Mutant Generation . 351264

3.4.3 Forking Techniques . 351265

3.4.4 Related Work . 361266

3.4.4.1 Robustness Analysis 361267

3.4.4.2 Mutation Testing 361268

25

3.1. Program Analysis Techniques

3.4.5 Link to the Thesis . 361269

12701271
1272

We saw in Chapter 2 a program can include security properties that should with-1273

stand a certification procedure, its production environment and attackers. In this back-1274

ground chapter, we introduce program analysis techniques used to verify programs in1275

Section 3.1, with a stronger focus on symbolic execution (Section 3.2) and binary anal-1276

ysis (Section 3.3) that the work described in this manuscript builds upon. In addition,1277

we present in Section 3.4 the general topic of software-implemented fault injection,1278

which consists of tools to evaluate program properties in the presence of an attacker1279

able to inject faults.1280

3.1 Program Analysis Techniques1281

In this section, we introduce the concept of automated program analysis and present1282

the main families of analyzer properties such as under- and over-approximation, and1283

correctness and completeness. Lastly, we present the notion of reachability which we1284

will build upon in this thesis.1285

3.1.1 Overview1286

First, we provide an overview of why program analysis techniques are needed to prevent1287

bugs in programs and present some general program properties that can be verified.1288

3.1.1.1 Bugs in Programs1289

Writing code without vulnerabilities or bugs is a hard problem, especially with systems1290

ever growing in complexity. Techniques such as good coding practices or code review1291

and manual testing help in the matter but do not provide strong guarantees. For1292

instance, the OSS-Fuzz platform performs continuous fuzzing on over 300 open-source1293

projects. It has discovered 23,907 bugs in 4 years [DLG21]. There is a need for program1294

analysis techniques able to detect vulnerabilities in programs.1295

3.1.1.2 Program Analysis1296

To analyze a program is to determine if the program behaviors satisfy a property. The1297

terms ‘program behavior’ and ‘property’ can mean different things. Here, we consider1298

a program behavior to be the sequence of states it goes through following an execution1299

path, and a property to be an oracle over the program behaviors. Properties are mainly1300

divided into two classes, safety and liveness.1301

Safety. A safety property prescribes that something bad will never happen. Some1302

examples are:1303

– There is no division by 0;1304

– The program never crashes;1305

– Memory safety : no illegitimate, out-of-bounds memory accesses are performed;1306

– The program does not deviate from specifications.1307

Liveness. A liveness property prescribes that something good will eventually happen in1308

the program execution. Here are a few examples:1309

26

Chapter 3. Background

– Availability : data provided to a program will eventually be treated;1310

– Termination: a program will eventually terminate.1311

Formalization. More formally, a program P satisfy a property P , written P |= P if1312

and only if P ⊆ P . That is to say, all behaviors of P are in the set P of all possible1313

program behaviors satisfying the property. Conversely, a program P violates a property1314

P , written P 2 P , if and only if ∃c ∈ P. c /∈ P . A program behavior that violates a1315

property is called a vulnerability or a bug.1316

Formal methods [CW96] are mathematically based techniques developed to assess1317

properties on programs, or find counter-examples, i.e. bugs.1318

3.1.2 Program Analysis is Undecidable1319

Unfortunately, Rice theorem [Ric53] states that the task of determining if a program1320

satisfies a non-trivial property is undecidable. A program analysis cannot be at the1321

same time precise, automatic, terminating and generic in supported programs. In1322

practice, program analysis techniques relax one or more of those attributes to get1323

interesting results.1324

For instance, deductive verification [HH19] is not automatic. It can require manual1325

annotations such as pre-conditions, post-conditions, invariants, or to fully write proofs1326

in some techniques.1327

A number of program analysis techniques relax precision to obtain results. We ex-1328

plore hereafter the two main categories, under-approximation and over-approximations.1329

3.1.2.1 Over-Approximation1330

An analysis over-approximates all possible program behaviors P byA, a set of computed1331

behaviors that include P (P ⊆ A), as illustrated in Figure 3.1. It provides a strong1332

guarantee that the program satisfies the property when the analysis proves the over-1333

approximated behavior satisfies the property. In particular, it can prove the absence1334

of bugs.1335

P ⊆ A ∧A ⊆ P ⇒ P ⊆ P ⇒ P |= P

Figure 3.1: Illustration [Dan21] of an analysis A that over-approximates the behaviors of a
program P

27

3.1. Program Analysis Techniques

Because the analysis over-approximates program’s behaviors, when a bug is found,1336

it may be a real one belonging to actual program behavior, or it can be a false positive,1337

i.e. it is not part of program behavior.1338

The notion of over-approximation relates to completeness. A program analysis1339

technique is said complete when all program behaviors are studied. In particular, the1340

analysis will find all violations of P . An over-approximation-based technique is usually1341

complete but not correct.1342

An example of a program analysis technique based on over-approximation is ab-1343

stract interpretation [Cou21, RY20]. The set of possible values for an object is over-1344

approximated by a superset with interesting mathematical properties. A well-known1345

example is representing possible integer values of a variable by an integer interval.1346

3.1.2.2 Under-Approximation1347

Another way to relax precision in an analysis is to under-approximate program be-1348

haviors, i.e. by missing some of them. The set of computed program behaviors A1349

is included in the actual program behaviors P (A ⊆ P) as illustrated in Figure 3.2.1350

Here, if a bug is found by the analysis, it corresponds to a true problematic program1351

behavior.1352

Figure 3.2: Illustration [Dan21] of an analysis A that under-approximates the behaviors of a
program P

A ⊆ P ∧ ∃c ∈ A. c /∈ P ⇒ ∃c ∈ P. c /∈ P ⇒ P 2 P

A program analysis technique based on under-approximation will not have false1353

positives but can miss bugs since some program behaviors elude it. Hence, such an1354

analysis technique cannot prove the absence of bugs in a program.1355

The notion of under-approximation is related to the correctness of an analysis. A1356

program analysis is said correct when all bugs found are actual program behaviors. An1357

under-approximation based technique is typically correct but not complete.1358

There are some common program analysis techniques based on under-approximation.1359

– An example of under-approximating program analysis technique is fuzzing [God20].1360

Fuzzing consists in generating a large number of program inputs and detecting1361

when the execution of the analyzed program violates a property using a monitor.1362

A common property is the absence of crashes in a program. The coverage of such1363

28

Chapter 3. Background

a technique is typically not complete, hence it misses some program behaviors,1364

but correct, detected bugs are true ones.1365

– Model checking [Cla97] consists in building a model of the studied program, and1366

proving that properties hold for that model. As the model or paths can be infinite,1367

bounded model checking (BMC) [CBRZ01] limits the depth of studied traces to a1368

bound k. Bounded model checking is typically correct but not complete.1369

– Symbolic execution (SE) [CS13] is a technique that interprets a program with1370

symbolic (non-deterministic) inputs and explores reachability properties but can1371

be non-terminating. As paths can be infinite in practice, symbolic execution is1372

often bounded to finite paths of length lesser than a bound k. Symbolic execution1373

in practice is typically correct but not complete. Another approximation angle1374

consists in concretizing some part of the exploration, system calls in particular.1375

This variant is called dynamic symbolic execution (DSE) or concolic execution1376

[Sen07].1377

The concept of completeness can be restricted to bounded completeness, also called1378

k-completeness. An analysis is said to be k-complete when it explores all program1379

behaviors constituting paths of length lesser than a bound k.1380

Note that not all program analysis techniques are either under-approximation or1381

over-approximations. They can be neither, like machine learning techniques for soft-1382

ware vulnerability detection [LWH+20] for instance.1383

3.1.3 Reachability Property1384

We present in this section a formalization of the reachability property, that can be1385

assessed by a program analysis technique. We will extend this definition of reachability1386

to include the impact of an attacker in the work presented in this thesis.1387

Transition System. Considering a program P, we denote S the set of all possible states.1388

A state is composed of the code memory, the data memory (i.e. the stack and heap),1389

the state of registers and the location of the next instruction to execute. The set of1390

input states of a program P is noted S0 ⊆ S. The set of transitions (or instructions)1391

of the program is denoted T . The execution of an instruction t ∈ T is represented by1392

a one-step transition relation →t∈ S × S. We denote s → s′ when s →t s
′ for some1393

transition t ∈ T .1394

Execution Path. We extend the transition relation over any finite path π ∈ T ∗ by the1395

composition of a finite sequence of transitions, denoted →π.1396

Reachability. The transitive reflexive closure of → is noted →∗. A state s′ ∈ S
reachable in a program P from a state s ∈ S, is noted s→∗ s′. We write for two states
s, s′ ∈ S:

s→∗ s′ ⇔ ∃π ∈ T ∗.s→π s
′

We use S → s′ as a shortcut for ∃s ∈ S.s→ s′, and→≤k for reachability in at most1397

k steps.1398

Location Reachability. We consider in the rest of the paper the case of location reach-1399

ability : given a location l (instruction or code address) of the program under analysis,1400

the question is whether we can reach any state s at location l. More formally, L is1401

the finite set of locations of P, and we consider a mapping loc : S 7→ L from states to1402

locations. For example, loc may return the program counter value. We write S →∗ l1403

as a shortcut for ∃s′ ∈ S.S →∗ s′ ∧ loc(s′) = l.1404

29

3.2. Symbolic Execution

Definition 3.1 (Standard reachability). A location l is reachable in a program P if1405

S0 →∗ l.1406

We extend this definition to location reachability in at most k steps, denoted:

S0 →∗≤k l

We now define correctness and completeness for a program analyzer.1407

Definition 3.2 (Correctness, completeness). Let V : (P, l) 7→ {1, 0} be a verifier taking1408

as input a program P and a target location l.1409

– V is correct when for all P, l, if V(P, l) = 1 then l is reachable in P;1410

– V is complete when for all P, l, if l is reachable then V(P, l) = 1;1411

– if V also takes an integer bound n as input, V is k-complete when for all bound1412

n and P,l, if l is reachable in at most n steps then V(P, l, n) = 1.1413

3.1.4 Link to the Thesis

Part of the work described in the thesis relates to automatic program analysis,
which we leverage with the reachability property in mind.

3.2 Symbolic Execution1414

In this section, we delve deeper into one program analysis technique, symbolic exe-1415

cution, as part of the work described in this thesis is based upon it. In particular,1416

symbolic execution can assess location reachability in a program. After an overview,1417

we present the main symbolic execution algorithm and its inherent limitations to keep1418

in mind.1419

3.2.1 Overview1420

Symbolic execution (SE) [Kin76, GKS05, SMA05, CGP+08, CS13, BCD+18] is an auto-1421

mated program analysis technique for bug finding and (bounded-)verification. Symbolic1422

execution is a symbolic exploration technique for standard reachability. SE consists in1423

simulating the execution of a program on symbolic inputs, i.e. of undetermined value,1424

instead of concrete ones. The analysis keeps the program state as a symbolic state where1425

program variables are expressed as terms of symbolic inputs. The analysis records a1426

path explored as the conjunction of constraints associated with each conditional and1427

indirect jump taken to follow the path, called a path predicate.1428

SE has two main usages.1429

– It can assess the reachability of a code location in a path by transforming the1430

path predicate in an SMT formula discharged to an SMT solver [BT18] that we1431

use as a black box.1432

– Either the solver answers ‘SAT’, meaning the formula is satisfiable and pro-1433

vides a model for symbolic inputs such that executing the program with1434

those inputs will reach the code location;1435

– Either the solver answers ‘UNSAT’ and the code location is not reachable1436

from that path.1437

30

Chapter 3. Background

– It is also possible to set a timeout to avoid having to wait a long time for1438

the solver to answer in some edge cases. If the solver reaches the timeout1439

then we cannot say anything about the reachability of the location.1440

When used with an oracle detecting a bug, SE becomes a useful bug-finding1441

technique, for instance, to detect use-after-free bugs [FMB+16].1442

– It can generate test cases with the goal of maximizing the test suite coverage,1443

each input covering one path.1444

3.2.2 Symbolic Execution Algorithm1445

Algorithm 3.1 gives a high-level view of a typical SE algorithm, adapted for location1446

reachability. More complex properties can be verified with the same principles, such1447

as local predicate reachability, trace properties or hyper-properties [DBR20].1448

Algorithm 3.1: Standard symbolic execution algorithm, taken from [GFB21]

Input: a program P , a bound k, a target location l
Output: Boolean value indicating whether l can be reached within k steps.

1 for path π in GetPaths(k) do
2 if π reaches l then
3 Φ := GetPredicate(π)
4 if Φ is satisfiable then
5 return true
6 end

7 end

8 end
9 return false

The analysis follows each possible path π of a program, enumerated by the function1449

GetPaths, up to a depth bound k. If π reaches the target location l, then we check1450

whether π is indeed feasible by computing its path predicate Φ – a logical formula1451

representing the path constraints over the input variables along π, and sending it to1452

an SMT solver, that will try to answer whether the formula is satisfiable or not, and1453

provide a model for free variables (e.g. inputs) if it is (omitted here for simplicity).1454

Property 3.1. SE is correct for location reachability, and k-complete if we assume a1455

correct encoding of path predicates [God11].1456

Algorithm 3.2: Assignment evaluation in SE

Input: path predicate Φ, assignment instruction x := expr
Output: Updated Φ

1 Function eval_assign(Φ, x, expr) is

2 return Φ ∧ (x , expr)
3 end

In this thesis, we will focus on the evaluation of assignments and conditional jumps1457

for SE, detailed in Algorithms 3.2 and 3.3 respectively, as this is where our adversarial1458

symbolic execution will mainly differ from the standard one. It requires going slightly1459

31

3.2. Symbolic Execution

Algorithm 3.3: Conditional jump evaluation in SE

Input: path predicate Φ, conditional jump instruction
if cdt then addrt else addre

Data: a worklist WL containing the pending path prefixes to explore – list of
pairs (path predicate, next location)

Output: WL updated in place

1 Function eval_conditional_jump(Φ, cdt, addrt, addre) is
2 if Φ ∧ cdt is satisfiable then
3 Add (Φ ∧ cdt, addrt) to WL
4 end
5 if Φ ∧ (¬cdt) is satisfiable then
6 Add (Φ ∧ ¬cdt, addre) to WL
7 end

8 end

deeper into details. In practice, the program paths are explored incrementally. A1460

worklist WL records all pending paths together with their associated path predicate1461

and their next instruction to explore.1462

– Assignments (Algorithm 3.2) are dealt with straightforwardly, simply adding a1463

new logical variable definition expr of the variable x to the path predicate Φ,1464

written x , expr. Actually, a symbolic state usually comprises the path predicate1465

itself plus a mapping from program variable names to logical variable names, and1466

assignments involve both creating new logical names and updating the mapping.1467

We abstract away from these details.1468

– On conditional branches (Algorithm 3.3), the symbolic path is split in two, one1469

for each branch (cdt and ¬cdt), updating the path constraint Φ accordingly. The1470

satisfiability of each associated formula is checked before adding the updated path1471

predicates to the worklist WL.1472

3.2.3 Limitations1473

Symbolic execution suffers two main limitations hindering performance and scalability:1474

path explosion and constraint solving.1475

3.2.3.1 Path Explosion1476

SE explores all paths, which are possibly infinitely many, even those which will prove1477

unfeasible, hence inducing a path explosion. A program typically contains various1478

patterns generating new paths.1479

– At each conditional jump, the path is split in two, one will follow the then branch,1480

the other the else branch.1481

– At indirect jump instructions, possible jump targets are enumerated and a new1482

path is created for each one.1483

– A loop whose termination is conditioned by a symbolic input becomes unbounded.1484

SE unrolls the loop for each possible number of iterations, yielding possibly in-1485

finitely many new paths.1486

– Similarly, if a program contains a recursion whose termination is conditioned by a1487

symbolic input, the analysis will call it for each possible recursion depth, yielding1488

32

Chapter 3. Background

possibly infinitely many new paths.1489

To tame path explosion during the exploration, different options are available:1490

– by identifying redundant paths that present a behavior already explored. Those1491

can be pruned [BCE08];1492

– by merging paths [KP05] at the price of more complex formulas [KKBC12];1493

– by limiting the maximal depth of a path, hence performing bounded verification;1494

– by using search heuristics to guide the analysis toward exploring paths to maxi-1495

mize some coverage criteria [XTDHS09]. Only a subset of paths are then explored.1496

The last two techniques presented forgo completeness. By using such techniques,1497

the analysis performs an under-approximation of the real program behavior and cannot1498

be used to prove a property, but only for bug finding.1499

3.2.3.2 Constraint Solving1500

Symbolic execution generates formulas expressing the feasibility of a branch or the1501

reachability of a location and discharges them to an SMT solver. SE analysis depends1502

on the ability of the solver to answer those queries which tend to grow in complexity as1503

the path explored is long and complex itself. SE performance is limited by the solver’s1504

performance, which is the main bottleneck of symbolic execution.1505

Analyses based on symbolic execution rely on different SMT theories, i.e. represen-1506

tations of structures more complex than boolean variables, such as integers or arrays,1507

and their corresponding axioms. Some theories are notoriously hard to reason about,1508

when they include quantifiers for instance. The work in this thesis extends a symbolic1509

execution algorithm but does not need a more complex theory.1510

3.2.4 Link to the Thesis

Symbolic execution explores all program paths of bounded depth as a bug-finding
technique for reachability. In this thesis, we adapt the symbolic execution engine
to support fault injection and use it to assess the reachability of a code location in
the presence of an advanced attacker.

3.3 Binary Code Analysis1511

In this section, we explore the specificities related to program analysis when applied1512

to binary programs. We call binary code or binary program an executable composed1513

of 0s and 1s, that the CPU will take as input. The assembly of a program, or its1514

representation at ISA level, is binary code interpreted as instructions, in a human-1515

readable form. The most well-known are Intel x86, ARM and RISC-V.1516

3.3.1 Binary VS Source Code Analysis1517

Binary code is a representation of what is executed on a machine, contrary to source1518

code. Source code is a human-readable representation that contains details such as1519

type information and data structures and hides others like memory VS register usage1520

and flag updates. Moreover, to go from source code to binary code, compilers apply1521

many transformation passes that:1522

– can remove part of the code considered to be dead code;1523

– can rewrite control and data flows, and rearrange the order of instructions;1524

33

3.4. Program Analysis Techniques for Fault Injection

– can break properties that hold at source level like constant time or non-interference;1525

– implements a specific behavior for each source-level undefined behavior;1526

– can use optimizations not guaranteed to preserve the semantics of the source1527

code. For instance, the optimization flag ‘-funsafe-math-optimizations’1 for float-1528

ing point arithmetic in gcc can violate language standards.1529

This phenomenon is known as What You See (in source code) Is Not What You eXecute1530

(machine code), or WYSINWYX for short [BR10]. Hence, an analysis at the binary1531

level is closer to what is actually executed than an analysis at the source level.1532

Another advantage of analyzing binary code is that it is available for any program1533

a user runs (except for remote reverse engineering). The associated source code is not1534

always provided, in particular when analyzing commercial, off-the-shelf executables, or1535

when studying malwares.1536

3.3.2 Challenges of Binary Analysis1537

Several challenges arise when analyzing programs at the binary level. A binary pro-1538

gram has more lines of code than the associated source code, challenging the scaling1539

capabilities of the analysis. Binary code is the encoding into ”0”s and ”1”s of an as-1540

sembly code (ISA), that encompasses implicit flag update. Those updates need to be1541

made explicit since they play an important role, for instance, in conditional jumps1542

where they determine the choice of the jump target. While source code analysis rea-1543

sons about typed variables, a binary code analysis requires precise reasoning about1544

the memory as assignments become load and store operations. It also needs to handle1545

explicit stack machinery. Finally, binary analysis tools tend to be harder to use than1546

source-level code, often requiring reverse engineering skills to configure the tool and1547

then understand the analysis results.1548

3.3.3 Link to the Thesis

In this thesis, we implemented our analysis technique at the binary level in order
to be close to what is actually executed by the processor and how it is disturbed
by fault injection.

3.4 Program Analysis Techniques for Fault Injection1549

In Chapter 2, we saw an advanced attacker could inject various kinds of faults into1550

a running program. Dedicated program analysis techniques have been designed to1551

account for those extra program behaviors in the assessment of a property. They are1552

called SoftWare-Implemented Fault Injection techniques (SWIFI). In this section, we1553

overview the main SWIFI techniques and their limitations.1554

3.4.1 Simulation1555

Dynamic analysis, also called simulation [DPdC+15, HSP20], consists in choosing con-1556

crete input and successively decoding and simulating the effects of decoded instructions1557

along the execution path. This technique can be used to simulate the effects of fault1558

injection. Typically, a golden run without fault is performed to identify all possible1559

1https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

34

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Chapter 3. Background

injection locations. Then a simulation is launched for each concrete fault-induced in-1560

struction modification. The final states are recorded and checked against the attacker’s1561

goal.1562

Limitation. Simulation only supports concrete inputs, forcing the analysis to only con-1563

sider one reference execution path at the time, hence is not complete. Furthermore,1564

simulation is limited by the explosion of simulations to run in particular when consid-1565

ering an attacker able to perform multiple faults, faults with different effects, or as the1566

program grows in size.1567

3.4.2 Mutant Generation1568

The mutant generation approach [CCG13, RG14, GWJLL17, CDFG18, GWJL20] con-1569

sists in analyzing slightly modified versions of the program (named mutants), each of1570

them embedding a different faulty instruction. For example, Figure 3.3 illustrates how1571

a program containing few instructions (Figure 3.3a) can be faulted into three different1572

mutants 3.3b, 3.3c and 3.3d. Each mutant is then analyzed on its own using standard

a := func t i on1 ()
b := x + y * z
c := 42

(a) Original

a := f a u l t v a l u e
b := x + y * z
c := 42

(b) Mutant 1

a := func t i on1 ()
b := f a u l t v a l u e
c := 42

(c) Mutant 2

a := func t i on1 ()
b := x + y * z
c := f a u l t v a l u e

(d) Mutant 3

Figure 3.3: Mutant generation transformation in pseudo-code

1573

program analysis tools. Inputs can be symbolic or concrete. Mutant generation is1574

usually used only for single-fault analysis.1575

Limitation. The main limitation of mutant generation is the explosion of mutants, in1576

particular when considering an attacker able to perform multiple faults, faults with1577

different effects, or as the program grows in size. Also, as the different mutants differ1578

only slightly, analyzing each of them separately wastes lots of time repeating similar1579

reasoning.1580

3.4.3 Forking Techniques1581

The forking approach [PMPD14, BBC+14, BHE+19, LFBP21, Lan22] consists in in-1582

strumenting the analysis (or the code, via instrumentation) to add all possible faults as1583

forking points (branches) controlled by boolean values indicating whether a particular1584

fault will be taken or not, plus constraints on the maximal number of faults allowed.1585

A forking data fault is illustrated in Figure 3.4. The original statement (Figure 3.4a)1586

is transformed into an if-then-else-like construct (Figure 3.4b). A standard program1587

analysis technique is then launched – typically symbolic execution or bounded model1588

checking. Compared with the mutant generation technique, this method allows sharing1589

of parts of the analysis between the different possible faults.1590

35

3.4. Program Analysis Techniques for Fault Injection

x := y + z

(a) Original statement

i f (f a u l t h e r e)
then x := f a u l t v a l u e
e l s e x := y + z

(b) Forking transformation

Figure 3.4: Forking technique transformation in pseudo-code

Limitation. The number of paths explored by the analysis explodes with the number1591

of possible faults (forking points).1592

3.4.4 Related Work1593

We list in the following the main topics related to software-implemented fault injection,1594

namely robustness analysis and mutation testing.1595

3.4.4.1 Robustness Analysis1596

SWIFI is also used for robustness evaluation [LH07, PNKI08, HTS+17, WTSS13,1597

LHGD18, PLFP19, CDSLN20, ZGWL+21], to consider the impact of safety faults1598

instead of security related faults. This type of analysis aims to verify the correct1599

behavior of error-handling mechanisms, implemented to recover from, or be resilient1600

to, such safety faults. They can be generated by hardware damage, nuclear radiation or1601

cosmic rays for instance. Robustness analyses rely also on mutant generation or forking1602

techniques. The fault models are similar to hardware fault injection, yet multi-fault1603

is not really an issue there, as faults are supposed to originate from safety issues and1604

have no reason to accumulate unreasonably.1605

3.4.4.2 Mutation Testing1606

Sometimes called software fault injection, mutation testing [PIK+18, CN13] aims to1607

generate a comprehensive test suite by building test cases discriminating various mu-1608

tants of a program, and is recognized as a very powerful testing criterion. As it fo-1609

cuses on coverage, the mutant explosion cannot be avoided. Dedicated SE techniques1610

[PM10, BCDK14, BKC14, MBK+18] have been designed.1611

3.4.5 Link to the Thesis

In this thesis, we present a new program analysis technique to represent the effect
of fault injection on a program, with the aim of mitigating the state explosion faced
by the existing techniques.

36

Chapter 41612

Adversarial Reachability1613

Contents
1614

1615
4.1 Attacker Model . 391616

4.1.1 Advanced Attacker . 391617

4.1.2 Attacker Actions . 391618

4.1.3 Fault Budget . 391619

4.1.4 Attacker Goal . 401620

4.2 Adversarial Reachability . 401621

4.2.1 Reminder: Standard Reachability 401622

4.2.2 Adversarial Reachability Definition 401623

4.2.2.1 Advarsarial Transitions 411624

4.2.2.2 Fault Expression . 411625

4.2.2.3 State-of-the-art Fault Models 431626

4.2.2.4 Attacker Budget . 441627

4.2.2.5 Adversarial Reachability 451628

4.2.2.6 Attacker Model Formalization 451629

4.2.3 Properties . 451630

4.2.4 Discussion . 461631

4.2.4.1 Other Properties . 461632

4.2.4.2 Other Attacker Actions 461633

4.2.4.3 Location Reachability 461634

4.2.5 Conclusion . 461635

4.3 Forkless Adversarial Symbolic Execution (FASE) 471636

4.3.1 Overview . 471637

4.3.2 Forkless Fault Encoding . 471638

4.3.2.1 Overview . 471639

4.3.2.2 Different Forkless Encodings 481640

4.3.2.3 Supported Fault Models 481641

4.3.2.4 Forkless Faults in the Analysis 501642

37

4.3.2.5 Complexity Trade-off 501643

4.3.3 Fault Injection Algorithm . 501644

4.3.3.1 Overview . 501645

4.3.3.2 Building the Adversarial Path Predicate 511646

4.3.3.3 Properties . 531647

4.4 Optimizations . 541648

4.4.1 Early Detection of Fault Saturation (EDS) 541649

4.4.1.1 Supported Fault Models 541650

4.4.1.2 Algorithm . 551651

4.4.1.3 Properties . 551652

4.4.2 Injection on Demand (IOD) 561653

4.4.2.1 Supported Fault Models 561654

4.4.2.2 Algorithm . 561655

4.4.2.3 Properties . 581656

4.4.3 Combination of Optimizations 581657

4.5 Discussion . 591658

4.5.1 Fault Model Support - Formalization VS Algorithm 591659

4.5.2 Forkless Faults and Multi-Fault Analysis 601660

4.5.3 Forkless Encoding for Other Properties 601661

4.5.4 Forkless Encoding for Other Formal Methods 611662

4.5.5 Forkless Encoding and Instrumentation 621663

4.6 Related Work . 621664

4.6.1 Fault Model Support . 621665

4.6.2 Multiple Fault Analysis . 621666

4.6.3 The Attacker in Different Security Fields 641667

4.6.4 Extending Existing Formalisms 641668

4.7 Conclusion . 651669

16701671
1672

In this chapter, we propose our model of an advanced attacker in Section 4.1, encom-1673

passing capabilities listed in Chapter 2. We describe a new formalization to represent1674

the impact of this advanced attacker on a program, called adversarial reachability, in1675

Section 4.2. Then, we design an algorithm to evaluate adversarial reachability, forkless1676

adversarial symbolic execution (FASE) in Section 4.3. The challenge is to prevent the1677

path explosion faced by the state of the art. We answer this challenge with a dedicated1678

forkless encoding of faults (Section 4.3.2) and optimizations (Section 4.4) aiming to re-1679

duce the number of injections without loss of generality. Discussions and comparisons1680

with related work are presented in Sections 4.5 and 4.6. The practical implementation1681

of the algorithms described in this chapter is detailed in Chapter 5.1682

Part of the work presented in this chapter has been published at ESOP 20231683

[DBP23].1684

38

Chapter 4. Adversarial Reachability

4.1 Attacker Model1685

This section presents how we model an advanced attacker at program level. Advanced1686

attackers can do more than carefully craft legitimate inputs to trigger vulnerabilities in1687

software. They can use a wide variety of attack vectors (e.g. hardware fault injection1688

attacks, software-implemented hardware attacks, micro-architectural attacks, software1689

attacks, etc), in any combination, and multiple times. We suppose attack vectors1690

prerequisites have been met, and only consider the impact of the generated faults on1691

the program under attack.1692

4.1.1 Advanced Attacker1693

We start by providing a definition of what we mean by an advanced attacker at the1694

program level.1695

Definition 4.1. We define an advanced attacker as an attacker able to perform multiple1696

program-level actions during one attack, independently of the actual attack vector used.1697

We model an advanced attacker by an attacker model composed of the following1698

components:1699

– a set of attacker actions;1700

– a fault budget;1701

– an attacker goal.1702

We describe those components in more detail in the following sections.1703

4.1.2 Attacker Actions1704

The first element of our attacker model is a set of attacker actions. Its purpose is to1705

establish clear boundaries of the power of the attacker model on a program so it can1706

fit a wide variety of security scenarios. An attacker action is composed of the following1707

elements:1708

– It encompasses the type of modification brought by the attack action, such as1709

flipping a bit, changing a word or resetting a variable;1710

– An action is also defined by the object it is applied to. It can be a register, an1711

instruction op-code or a cell in memory for instance.1712

Actions can also be described with a negative definition, that is to say, they can1713

be explicitly restricted. For instance, if a strong memory isolation is supposed to be in1714

place, it can be interesting to restrict a memory write capability to a certain range of1715

addresses.1716

We suppose an attacker can leverage multiple distinct attacker actions, possibly1717

originating from different attack vectors, hence the attacker model includes a set of1718

attacker actions.1719

Attacker actions are similar to fault models used to describe the effects of a hard-1720

ware fault injection on a program. Hence, in the rest of this manuscript, we will use1721

interchangeably attacker capability, attacker action and fault model.1722

4.1.3 Fault Budget1723

Now that our attacker has different actions at their disposal, they can perform them1724

at will on the program. To restrict the power of the attacker model we introduce a1725

39

4.2. Adversarial Reachability

maximum number of actions that can be performed during one attack. We call it the1726

fault budget of the attacker model. An attacker with infinite power can do anything1727

with the program, including disarming potential protections, which is not always very1728

interesting to consider or realistic in a threat assessment.1729

4.1.4 Attacker Goal1730

Finally, the attacker is trying to achieve something with their attack. We model this1731

attack goal by an oracle over the state of the program, and the aim of the attacker is1732

to reach a state of the program satisfying the oracle. A simple oracle is a code location1733

the attacker may want to reach. More complex functions of the program state can be1734

defined such as properties of the program’s variables or trace properties.1735

The ability to reach a state satisfying a property is the standard notion of reacha-1736

bility. However, here, the attacker can disrupt the execution of the program with their1737

capabilities in order to reach such a state. Hence we define the ability to reach a pro-1738

gram state satisfying a property in the presence of an advanced attacker as adversarial1739

reachability. This concept is detailed in Section 4.2.1740

4.2 Adversarial Reachability1741

In this section, we describe our formalism to reason about a program’s execution in the1742

presence of an advanced attacker. We consider a program as a transition system, where1743

the attacker’s capabilities are expressed as new transitions. Adversarial reachability is1744

standard reachability in this modified transition system. We start this section with a1745

reminder of the notations used in Section 3.1.3 for standard reachability, then we define1746

adversarial reachability and related properties.1747

4.2.1 Reminder: Standard Reachability1748

We use the following notations to describe a program as a transition system and express1749

standard reachability:1750

– a program P;1751

– the set S of all possible states, S0 the set of initial states of P;1752

– the set T of transitions (or instructions) of the program P;1753

– the execution of an instruction s→ s′ for some transition t ∈ T , with s, s′ ∈ S;1754

– an execution path →π, with π ∈ T ∗;1755

– the standard reachability of a state s ∈ S is S0 →∗ s, as a short way to write1756

∃s0 ∈ S0.s0 →∗ s;1757

– the standard reachability of a location l ∈ L is S0 →∗ l as a short way of writing1758

∃s ∈ S.S0 →∗ s ∧ loc(s) = l.1759

We refer the reader to Section 3.1.3 for the definition of correctness and completeness1760

for standard reachability.1761

4.2.2 Adversarial Reachability Definition1762

We now build upon the transition system and notations previously described to include1763

the presence of an advanced attacker and detail how attacker actions are encoded as1764

faults.1765

40

Chapter 4. Adversarial Reachability

4.2.2.1 Advarsarial Transitions1766

Adversarial Transitions. We extend the transition model previously described to in-1767

clude adversarial transitions denoted A∈ S×S, related to an attacker model A. The1768

total set of possible transitions in the context of an attacked program is composed of1769

legitimate program transitions and attacker transitions, noted TA = T∪ A.1770

Then, the transition relation of P under attack from an attacker model A is denoted1771

as 7→A=→ ∪ A= (∪t∈T t)∪ A.1772

Remark. The successor of a state in the execution of the program has no longer a1773

unique solution, as either the standard transition → corresponding to the legitimate1774

program instruction, or one or more adversarial transitions A can be taken.1775

Adversarial Path. We denote π ∈ T ∗A, an adversarial path, representing a succession1776

of program instructions and adversarial actions.1777

Program States. We consider a program state s ∈ S to be composed of:1778

– the code memory Mc,1779

– the data memory (i.e. the stack and heap) Md,1780

– the set of registers R,1781

– the location of the next instruction to execute ip.1782

The location of the next instruction to execute is often contained in a register, we single1783

it out in this model for clarity.1784

Transitions Granularity. A transition, adversarial or not, can only modify the next1785

instruction pointer and one other element of the state. For instance, we do not consider1786

writing at multiple locations in the data memory as one transition.1787

4.2.2.2 Fault Expression1788

We now illustrate various types of faults and how they can be represented as adversarial1789

transitions.1790

Faults In-Between Instructions. To represent a fault happening between normal tran-1791

sitions, in addition to legitimate program behavior, the adversarial transition corrupts1792

the relevant part of the program state, but leaves the next instruction pointer un-1793

changed.1794

We take the example of data faults corrupting a value in the data memory, with1795

addr an address in the data memory and fault v a corrupted value.1796

s{Mc,Md, R, ip} s′{Mc,Md{addr ← fault v}, R, ip}

This fault model corresponds for instance to a Rowhammer bit-flip, happening in1797

memory independently of the program execution.1798

Depending on the grammar complexity of the language modeled by the transition1799

system, faults in-between can have varying expressivity.1800

– For instance, in assembly, where every load and intermediate operation result1801

are stored in intermediary variables, typically in registers, a fault in-between1802

assembly instructions can express all possible combinations of corruption of the1803

end result;1804

– On the opposite, if complex operation aggregations are allowed by the grammar,1805

having a load operation as one element of a binary operation without intermediate1806

storing for instance, then an in-between fault could not fault just the result of1807

41

4.2. Adversarial Reachability

the load, hence cannot express corruptions between the memory and the data1808

treatment unit.1809

Specific Fault Behavior. To represent a specific behavior more precisely, the corrupted1810

value can be expressed as a function. Here, we denote Fault such a function.1811

s{Mc,Md, R, ip} s′{Mc,Md{addr ← Fault(Md[addr])}, R, ip}

si−1 →ti si →ti+1 si+1 →ti+2 si+2

si−1 →ti si s′i →ti+1 s
′
i+1 →ti+2 s

′
i+2

si−1 →ti si s′i+1 →ti+2 s
′
i+2

To precisely express the bit-flip from Rowhammer, we take

Fault(v) = v ⊕ (1 << bv)

with v a value, ⊕ denoting a bitwise xor operator and bv indicating the bit that is1812

flipped.1813

We now discuss the impact of using a Fault function expressing the fault behavior1814

on in-between fault expressivity:1815

– If the Fault function cannot access the inner representation of the expression be-1816

hind v, typically explore its syntax tree, but only use v as such, then expressivity1817

restrictions discussed above for in-between faults remain valid;1818

– On the contrary, if the Fault function can access and modify the inner repre-1819

sentation of v, restrictions are lifted. Coming back to the load inside a binary1820

operation example, such a Fault function could fault only the load part, equiva-1821

lent to faulting a solitary intermediate load.1822

Faults Replacing an Instruction. On the opposite of faults in-between instructions,1823

faults can be modeled as replacing a legitimate instruction, changing its original effect.1824

The adversarial transition ‘hijacks’ a legitimate transition, mimicking it but with faulty1825

behavior, and updating the instruction pointer to directly go to the next instruction,1826

in effect bypassing the legitimate transition.1827

Staying with the data fault in memory example, a legitimate store instruction of1828

the value contained in the register r, at the address addr, written1829

s{Mc,Md, R, ip} → s′{Mc,Md{addr ← R[r]}, R, ip← ip+ 1}

can be replaced by the following adversarial transition1830

s{Mc,Md, R, ip} s′{Mc,Md{addr ← fault value}, R, ip← ip+ 1}

This type of fault represents for instance the corruption of a stored value before it1831

reaches the memory.1832

Most in-between faults can be equivalently expressed as a replacing fault. The same1833

expressivity considerations apply.1834

– As in-between faults are somewhat independent of the execution, as long as they1835

happen before the corrupted value usage, they can be pushed ahead to the pre-1836

vious store. A replacing fault can then be used instead;1837

42

Chapter 4. Adversarial Reachability

– Only data in the initial state cannot be corrupted with a replacing fault, as no1838

instruction is storing them. However, each usage of this initial data can be faulted1839

with a replacing fault;1840

– Delaying the fault until the corrupted value usage and using an adversarial tran-1841

sition of each usage of that value until it is overwritten, if at all (global initial1842

variables are often constants), is equivalent to in-between faults. However, this1843

requires much more faults in the attacker’s budget.1844

Transient & Permanent Faults. Transient faults refer to faults whose effects last only1845

until the affected value is overwritten. On the contrary, permanent faults are faults1846

that cannot be overwritten during the execution of the program. This can represent1847

permanent damage in the chip containing code or data memory, or faults in the code1848

memory when it is not changed during the execution of the program, which is usually1849

the case, except for self-modifying programs.1850

The formalization presented is well-suited for transient faults, as illustrated by in-1851

between and replacing faults previously described. We can also express permanent1852

faults in the code memory, assuming it is unchanged during the execution.1853

s{Mc,Md, R, ip} s′{Mc{addr ← fault instr},Md, R, ip}

The new instruction fault instr will be used instead of the original one for the1854

remainder of the execution.1855

However, the state model used does not include the memory physical layer and1856

thus prevents us from expressing permanent fault on other parts of the program state1857

like the data memory or registers. Hence, this formalism cannot express faults such as1858

stuck-at bits (except having an in-between fault applying the fault effect each time).1859

A possibility to include permanent faults on data would be to add a mapping of the1860

physical layer to the values in the state, where a mask and fault effects would be applied1861

to each read and write of values.1862

4.2.2.3 State-of-the-art Fault Models1863

To specify practical fault models, restrictions are applied onto A, limiting what part1864

of the state can be modified and how. In particular, relevant Fault functions specifying1865

the fault behavior can be defined for each fault model available to the attacker. We1866

now explore a few common fault models.1867

Data Faults. Data faults have been described above, for arbitrary data faults and
bit-flips. Extensions to other types of data faults can be derived from those. We write
here a reset fault on the register r.

s{Mc,Md, R, ip} s′{Mc,Md, R{r ← 0}, ip← ip+ 1}

Instruction Skip Fault. An instruction skip consists of bypassing any sequence of
consecutive instructions with the following adversarial transition.

s{Mc,Md, R, ip} s′{Mc,Md, R, ip← ip+ n}

We write here ip+n to denote the nth next instruction address in the code memory1868

layout. A single instruction skip is written for n = 1.1869

Interestingly, this representation of instruction skips can model the corruption of the1870

program counter, modeled by ip here. But it also encompasses replacing an instruction1871

43

4.2. Adversarial Reachability

with a no-operation (NOP), as the proposed adversarial transition does not modify the1872

state and goes to the next instruction.1873

Replaying Instructions. Some observations of instructions skips report a replay of the1874

previous instructions, in particular for attacks on the instructions prefetch buffer. For1875

instance, to skip 4 instructions n to n + 3, the instructions up to n − 1 are executed1876

normally, and then instructions n−4 to n−1 are executed again, before going straight1877

to instruction n+4. This can be represented with 2 adversarial transitions, one setting1878

ip ← ip − 4 just before the instruction n should be executed, and one adversarial1879

transition ip← ip+ 4 just before the instruction n should again be played.1880

However, for those two adversarial transitions to be considered as one fault, extra1881

elements need to be added to the program state to track the relation between instruc-1882

tions.1883

Test Inversion. We consider a conditional jump to be written as follows, with a con-
ditional expression written (a ? b : c) where if a is true, then the expression evaluates
to b and to c otherwise. ipA and ipB are two instructions pointers.

s{Mc,Md, R, ip} → s′{Mc,Md, R, ip← R[r] ? ipA : ipB}

The fault model consisting of inverting a test can be written multiple ways, cor-
rupting the test condition before the conditional jump for instance.

s{Mc,Md, R, ip} s′{Mc,Md, R{r ← ¬r}, ip}

Or the conditional jump can be replaced with an adversarial conditional jump
inverting the instructions pointers.

s{Mc,Md, R, ip} s′{Mc,Md, R, ip← R[r] ? ipB : ipA}

The test inversion fault model illustrates that one fault can be expressed with1884

different adversarial transitions.1885

Limits and Extensions. We discuss now some limits of the current formalization and1886

possible extensions.1887

– Complex, multi-effect fault models can be split into their atomic components,1888

modeled separately. However, the number of fault count needs to account for this1889

split. Moreover, synchronizations between those atomic adversarial transitions1890

may require extending the state with some new elements, counters for instance;1891

– This formalization does not include any micro-architectural detail. As discussed1892

for instruction replay and permanent data faults, the representation of the pro-1893

gram state can be extended to account for more fault models.1894

4.2.2.4 Attacker Budget1895

Still, we need to take into account the maximum number of faults the attacker can1896

perform along an execution path. Given a path π over T ∗A, π is said to be legit if it1897

does not contain A, and faulty otherwise. The number of occurrences of transitions1898

 A in π is its number of faults.1899

Given a bound mA on the fault capability of A, we define 7→∗(A,mA) by limiting the1900

adversarial reachability relation to paths π with less than mA faults. We consider mA1901

to be +∞ in case the attacker has no such limitation. For the sake of simplicity, in the1902

following, we will consider mA as an implicit parameter of A, and simply write 7→∗A1903

instead of 7→∗(A,mA).1904

44

Chapter 4. Adversarial Reachability

4.2.2.5 Adversarial Reachability1905

We extend the notations for state reachability to the relation 7→A. Especially, S 7→∗A s′1906

means ∃s ∈ S.s 7→∗A s′. The adversarial transition relation up to k is denoted 7→A,≤k1907

and reaching a location l from a set of states S will be denoted S0 7→∗A l.1908

Definition 4.2 (Adversarial reachability). Given an attacker A with a mA fault budget1909

and a program P, a location l ∈ L is adversarially reachable if S0 7→∗A s′ ∧ loc(s′) = l1910

for some s′ ∈ S.1911

In the following, the adversarial reachability of location l from a set of states S will1912

be denoted S0 7→∗A l.1913

We extend the adversarial reachability definition to adversarial reachability in at1914

most k steps, noted S0 7→∗A,≤k l.1915

4.2.2.6 Attacker Model Formalization1916

Finally, we can write the formalization of our attacker model representing an advanced1917

attacker using adversarial reachability.1918

Definition 4.3 (Attacker model). We define an attacker model in this formalism by

A = {{ },mA, φ}

– the adversarial transitions { } correspond to attacker capabilities;1919

– mA is the maximum number of faults allowed;1920

– the goal of the attacker is noted φ ∈ S × {0, 1}. If ∃s ∈ S such that s is ad-1921

versarially reachable and φ(s) = 1, then the attack is successful. For location1922

reachability of a location lA, we take φ(s) = (loc(s) == lA).1923

4.2.3 Properties1924

We now discuss the properties of adversarial reachability and of a verifier for adversarial1925

reachability.1926

Proposition 4.1. Standard reachability implies adversarial reachability. The converse1927

does not hold.1928

Proof. Standard reachability can be viewed as adversarial reachability with an attacker1929

able to perform 0 faults.1930

We redefine what it means for an analysis answering adversarial reachability to be1931

correct, complete and k-complete.1932

Definition 4.4. Let VA : (P, A, l) 7→ {1, 0} be a verifier taking as input a program P, an1933

attacker A with mA fault budget and a target location l.1934

– VA is correct given A when for all P, l, if VA(P, A, l) = 1 then l is adversarially1935

reachable in P for attacker A;1936

– VA is complete given A when for all P, l, if l is adversarially reachable for attacker1937

A then VA(P, A, l) = 1;1938

– if VA also takes an integer bound n as input, VA is k-complete given A when1939

for all integer n and P,l, if l is adversarially reachable in at most n steps then1940

VA(P, A, l, n) = 1.1941

45

4.2. Adversarial Reachability

4.2.4 Discussion1942

In this section, we take a step back and discuss what kind of properties can be verified1943

using our formalization and how it could be extended to other types of attacker actions.1944

We also discuss the advantages of studying location reachability.1945

4.2.4.1 Other Properties1946

Our formalism itself is quite generic and can accommodate a wide range of properties,1947

as we mainly keep the property unchanged but modify the underlying transition system.1948

We focus in this work on the reachability property in this extended transition system.1949

However, more complex properties than location reachability can be studied. We list1950

here some examples.1951

– We can have an oracle over the state more complex, for instance looking for1952

use-after-free or buffer overflows.1953

– The oracle could be a monitor for runtime errors.1954

– We could imagine an attacker willing to activate a non-terminating execution1955

(denial of service).1956

Any property studied based on a transition system could be studied in the presence1957

of an attacker with our extended transition system.1958

4.2.4.2 Other Attacker Actions1959

The proposed formalism only considers active faults, i.e. faults modifying the state.1960

It does not include the possibility of passive faults, i.e. an attacker read action, nor1961

an attacker able to execute multiple times a program and learn from it until they can1962

achieve their goal.1963

While those are out of the scope of this thesis, we believe they could benefit from1964

our formalization, by extending the attacker model with a knowledge component, and1965

the transition system with a leakage model. Those extensions would allow to represent1966

an attacker performing combined passive and active attacks [AVFM07].1967

4.2.4.3 Location Reachability1968

We want to stress that while location reachability can be seen as a basic case, we1969

consider it sufficient here for two reasons:1970

– first, it keeps the formalism light while still straightforward to generalize to1971

stronger reachability properties (e.g., local predicates of the form (l, ϕ), sets of1972

finite traces, etc.);1973

– second, it is already rather powerful on its own, as we can still instrument the code1974

to reduce some stronger forms of reachability to it (e.g., adding local assertions1975

or monitors).1976

4.2.5 Conclusion1977

We proposed a formalization of an advanced attacker and their impact on a program.1978

We detail the concept of adversarial reachability as an attacker’s goal. Modeling ad-1979

vanced attackers allows to reason about them and ultimately strengthen programs1980

against those attackers. We also defined what it means for a verifier to be correct and1981

complete with respect to adversarial reachability. In the following section, we propose1982

a technique to assess adversarial reachability in practice.1983

46

Chapter 4. Adversarial Reachability

4.3 Forkless Adversarial Symbolic Execution (FASE)1984

In this section, we present our algorithm to verify adversarial reachability. It aims to1985

represent in practice the impact of an advanced attacker on a program. We mitigate1986

the path explosion faced by existing techniques (Section 3.4) with a forkless encoding1987

of attacker actions.1988

4.3.1 Overview1989

We conceived our fault injection technique with the following design guidelines in mind.1990

– We want a technique that prevents the path explosion faced by the state-of-the-1991

art, and is generic in supported fault models. We introduce in Section 4.3.2 the1992

forkless fault encoding that embedded the activation and effect of a fault in a1993

non-forking manner, and that is able to support many different fault models;1994

– We want an automated technique that is correct and k-complete for adversarial1995

reachability. We achieve this by basing our technique on symbolic execution as1996

described in Section 4.3.3, which is correct and k-complete for standard reacha-1997

bility;1998

– We want to limit the added complexity of generated SMT queries, as query reso-1999

lution is the main bottleneck of symbolic execution, which we burden with more2000

complexity due to the fault encodings. We designed two optimizations presented2001

in Section 4.4, Early Detection of fault Saturation (EDS) and Injection On De-2002

mand (IOD) to reduce the number of fault injections in SMT formulas.2003

4.3.2 Forkless Fault Encoding2004

We focus now on our forkless encoding of faults and the fault models it supports. It is2005

using this encoding that we will integrate the attacker’s actions into our analysis.2006

4.3.2.1 Overview2007

We use the term fault encoding to denote the replacement of a program instruction (or2008

group of) by some other instruction(s) with a different, illegitimate, behavior.2009

The forkless encoding aims to address the path explosion induced by the forking2010

treatment of fault injection in prior works. It focuses on data corruption, which can2011

be values or addresses, leading to a wide variety of supported fault models. The2012

forkless encoding consists of wrapping arithmetically an expression and embedding the2013

activation of the fault and its effect.2014

– The fault activation is a boolean variable whose value conditions if the fault is2015

active, i.e. modifies the normal program behavior, or if it is inactive and can2016

be considered as not present. A new activation variable is generated for each2017

possible fault location;2018

– The fault effect is a value corresponding to the corruption applied to the program2019

and depends on the fault model.2020

We show in Figure 4.1 an arbitrary data fault on the assignment of x receiving2021

the expression expr. The encoding uses an ite operator, an inlined form of if-then-2022

else. The activation of this fault location is determined by the symbolic boolean value2023

fault here, and the corrupted value of x, i.e. the fault effect, is the fresh variable2024

fault value.2025

47

4.3. Forkless Adversarial Symbolic Execution (FASE)

x := expr

(a) Original statement

x:= i t e f a u l t h e r e ? f a u l t v a l u e : expr

(b) Forkless transformation for arbitrary data fault

Figure 4.1: Forkless injection technique

The point is to embed the fault injection as an arithmetical expression inside the2026

path predicate, without any explicit path forking at the analysis level, in order to let2027

the analyzer reason about both legit executions and faulty executions at the same time2028

– this is akin to path merging in some ways, except that we do it only for the treatment2029

of fault injection (we could also see the approach as avoiding undue path splits).2030

4.3.2.2 Different Forkless Encodings2031

Different forkless encodings are possible. We considered a few different encodings for2032

arbitrary data faults in Table 4.1, leveraging various operators:2033

– the inlined if-the-else operator (Ite),2034

– the multiplication operator ∗ (Mul),2035

– the bitwise and operator & (And),2036

– the bitwise xor operator ⊕ (Xor).2037

Table 4.1: Forkless encoding variants for arbitrary data faults

Fault model Encoding
Original x := expr

Ite x := ite fault here ? fault value : expr
Mul x := expr + fault here * fault value
And x := expr + (-fault here) & fault value
Xor x := expr ⊕ ((−fault here) & fault value)

We use (−fault here) as a shortcut for a signed extension of the boolean variable2038

fault here and then take its opposite. When the fault is active and fault here :=2039

0b1, we consider (−fault here) to be 0xffffffff (only ones in the binary representation,2040

equivalent to−1 for signed integers), serving as a mask for the fault effect. The opposite2041

of 0 remains 0.2042

Experiments (see Appendix B.5) show that different solvers slightly favor different2043

encodings in terms of performance. For the solver used (see Section 5.2.2.4), the ite2044

operator proves to be the most efficient. Hence, we chose to mainly use the ite ex-2045

pression operator, an inlined form of if-then-else at the expression level that does not2046

induce forks in the analysis.2047

4.3.2.3 Supported Fault Models2048

We mainly illustrated the forkless fault encoding with arbitrary data faults, but other2049

fault models are supported, summarized as pseudo code transformation in Tables 4.2.2050

Link With Adversarial Transitions. In general, our forkless fault models are implemen-2051

tations of replacing adversarial transitions (see Section 4.2.2.2), hijacking a legitimate2052

instruction with a faulty behavior. By using in-between faults, an algorithm would2053

require to consider faulting each possible memory cell and register between each in-2054

struction. This is much more computationally heavy than replacing instructions with2055

48

Chapter 4. Adversarial Reachability

Table 4.2: Forkless encodings for various fault models

Fault model original instruction Forkless encoding
Arbitrary data x := expr x := ite fault here ? fault value : expr
Variable reset x := expr x := ite fault here ? 0x00000000 : expr
Variable set x := expr x := ite fault here ? 0xffffffff : expr

Bit-flip
x := expr x := ite fault here ?

(expr xor 1 << fault value) : expr

Test inversion
if cdt if (ite fault here ? ¬cdt : cdt)

then goto addr1 then goto addr1
else goto addr2 else goto addr2

Instruction skip
x := expr x := ite fault here ? x : expr
jump addr if fault here then jump next

else jump addr

predefined behavior expressing specific fault models. We detail, for each fault model,2056

the link with adversarial transitions (examples of fault models are detailed in Section2057

4.2.2.3).2058

Arbitrary Data Fault. This fault model only targets assignment operations, with2059

an arbitrary effect, meaning fault value is a fresh variable the solver will propose2060

an interesting value for. Arbitrary data faults impact the data memory (load and2061

store operations) and registers. Arbitrary data faults implement adversarial transitions2062

described in Section 4.2.2.2.2063

Reset Fault. We can use the forkless encoding to reset a variable instead of the legit-2064

imate value update. Here, the effect is simply to propagate the value 0. Reset faults2065

impact the data memory (load and store operations) and registers, as illustrated in2066

Section 4.2.2.3.2067

Set Fault. Similarly to reset faults, the forkless encoding can instantiate a set fault by2068

propagating the value 0xffffffff (all bits at one in the binary representation).2069

Bit-flip Fault. We encode a bit-flip as a xor of the original expression with a mask2070

containing only one set bit at a place determined by fault value. Bit-flip faults impact2071

the data memory (load and store operations) and registers, as described in Section2072

4.2.2.2.2073

Test Inversion Fault. We consider the test cdt of a conditional jump as a data and2074

fault it with our forkless encoding. The effect of the fault is to take the negation of the2075

condition, ¬cdt, hence inverting the test. We write goto addr1 and goto addr2 to repre-2076

sent the execution continuing to different instructions depending on the branch taken.2077

Here we chose a compromise between the first adversarial transition proposed (cor-2078

rupting the condition beforehand) and the second (inverting the addresses) discussed2079

in Section 4.2.2.3. The first one could be confused with a data fault that, interestingly,2080

can have a test inversion effect. With the expressive grammar we have in practice, we2081

can express the negation of the condition inside the if, which is equivalent to inverting2082

jump addresses.2083

Instruction Skip Fault. We can extend the forkless encoding to support the instruction2084

skip fault model by also considering jump addresses as data. With this representation,2085

we perform instruction skip as NOPs, and not as a corruption in the program counter.2086

49

4.3. Forkless Adversarial Symbolic Execution (FASE)

All categories of instructions have to be faulted to simulate their skipping. We take2087

our usual data fault encoding for assignments, with the old value of the left-hand side2088

as the fault effect. We transform jumps into conditional jumps where, if the fault is2089

active, the execution goes to the next address in the memory. More detail about the2090

implementation of the instruction skip fault model across instructions are available in2091

Section 5.3.3.3.2092

Other Fault Models. The list of fault models above does not represent exhaustively2093

what can be encoded with a forkless encoding. It showcases the most well-known ones2094

and can be extended to other fault models. We discuss encoding other forkless fault2095

models in Section 4.5.1.2096

4.3.2.4 Forkless Faults in the Analysis2097

For each instruction that could be targeted by the attacker, a forkless fault is injected2098

by the analysis. This allows to consider all possible placings simultaneously. Only later2099

will it be decided which faults are interesting and can lead to a successful attack path.2100

It also enables a multiple fault analysis by choosing how many faults are active at the2101

same time in a path, without any extra path created.2102

4.3.2.5 Complexity Trade-off2103

While a forkless encoding indeed allows a significant path reduction compared to forking2104

approaches, the corresponding path predicates are more complicated than standard2105

path predicates, as they involve lots of extra-symbolic variables for deciding whether2106

the faults occur and emulating their effect. This is experimentally verified in Chapter 6.2107

We show later in Section 4.4 how to reduce these extra variables through two dedicated2108

optimizations.2109

Also, note that we used the expressivity of the underlying SMT theory to encode2110

the possibility of faults and their effects. A more powerful, and hence more complex2111

to solve, theory is not needed here.2112

4.3.3 Fault Injection Algorithm2113

We present now how we use the forkless fault encoding to modify a symbolic execu-2114

tion algorithm into adversarial symbolic execution, an algorithm verifying adversarial2115

reachability.2116

4.3.3.1 Overview2117

In the same way that we extended a transition system with adversarial transitions to go2118

from expressing standard reachability to adversarial reachability, we extend symbolic2119

execution, a correct and k-complete analysis technique for standard reachability, with a2120

fault encoding to build an analysis correct and k-complete for adversarial reachability.2121

Our extension of the symbolic execution algorithm mainly consists of embedding our2122

fault encoding in the path predicate instead of the normal behavior of the program. Are2123

concerned the evaluation of assignments and conditional jumps. The various aspects2124

of symbolic execution not discussed in the following are kept as is. We named our2125

technique Forkless Adversarial Symbolic Execution, FASE for short, to express the2126

use of our forkless encoding (Forkless) to prevent path explosion in representing an2127

advanced attacker (Adversarial) in a reachability-oriented technique (SE). We also use2128

50

Chapter 4. Adversarial Reachability

the name Adversarial Symbolic Execution (ASE) to designate integrating faults into a2129

symbolic execution algorithm, without explicitly mentioning whether they are forkless2130

or forking faults.2131

4.3.3.2 Building the Adversarial Path Predicate2132

We start by considering data faults. FASE requires modifications to the evaluation of2133

assignments and conditional jumps.2134

Fault Counter. We keep track of the number of active faults with a fault counter nbf ,2135

containing the sum of all boolean activation values, extended to integers.2136

Adversarial Reachability Evaluation. The main algorithm for adversarial symbolic ex-2137

ecution (Algorithm 4.1) changes compared to standard SE (Algorithm 3.1) to include2138

the impact of the attacker. The function GetAdversarialPaths (line 1) is the adver-2139

sarial counterpart of GetPaths, enumerating all possible adversarial paths of bounded2140

depth. The function GetPredicate (line 3) then computes the adversarial path pred-2141

icate for each adversarial path. The adversarial reachability of a code location l also2142

ensures the attacker has not exceeded their fault budget (nbf ≤ mA) line 4.2143

Algorithm 4.1: Adversarial symbolic execution algorithm

Input: a program P , a bound k, a target location l, a maximal number of
faults mA

Data: fault counter nbf
Output: Boolean value indicating whether l can be reached within k steps.

1 for path π in GetAdversarialPaths(k) do
2 if π reaches l then
3 Φ := GetPredicate(π)
4 if Φ ∧ (nbf ≤ mA) is satisfiable then
5 return true
6 end

7 end

8 end
9 return false

Adversarial Assignment Evaluation. The assignment evaluation, originally described2144

in Algorithm 3.2 for standard SE, is transformed as illustrated in Algorithm 4.2. We2145

consider an assignment of the form ‘a variable x receives an expression expr’, written2146

x := expr. The assignment evaluation process embeds a wrapper, FaultEncoding,2147

encoding the fault in a forkless manner. It involves the declaration of fresh symbolic2148

variables for fault activation and fault effects – hence the update of the path predicate2149

Φ. The fault counter nbf is updated by adding to it an extension of the boolean2150

activation variable nbf := nbf + fault here. A new expression containing a fault2151

injection, expr′, is computed. The eval_assign function returns the updated path2152

predicate Φ, augmented with the assignment of x to the faulted expression.2153

Adversarial Conditional Jump Evaluation. The conditional jump evaluation, originally2154

described in Algorithm 3.3 for SE, is transformed as illustrated in Algorithm 4.3. We2155

consider a conditional jump of the form ‘if a condition cdt evaluates to true, then2156

the branch continuing at address addrt is taken, otherwise, the branch at addre is2157

51

4.3. Forkless Adversarial Symbolic Execution (FASE)

Algorithm 4.2: Forkless assignment evaluation for data faults

Input: path predicate Φ, assignment instruction x := expr
Data: fault counter nbf
Output: updated Φ, nbf updated in place

1 Function eval_assign(Φ, x, expr) is
2 Φ′, expr′, nbf := FaultEncoding(Φ, expr, nbf)

3 return Φ′ ∧ (x , expr′)
4 end

taken’, written if cdt addrt else addre. Checking the feasibility of each branch (cdt2158

and ¬cdt) also includes making sure the attacker does not exceed their fault budget2159

mA to explore it. Hence the number of faults check (nbf ≤ mA) is appended to each2160

satisfiability query. The number of faults check can be performed at different places.2161

We found the best trade-off for forkless faults is to perform it at conditional jump2162

evaluation, as checking it at the end of a path often involves exploring many unfeasible2163

faulty paths.2164

Algorithm 4.3: Forkless conditional jump evaluation for data faults

Input: path predicate Φ, conditional jump instruction if cdt addrt else addre
Data: fault counter nbf , maximal number of faults maxf , worklist WL
Output: WL updated in place

1 Function eval_conditional_jump(Φ, cdt, addrt, addre) is
2 if Φ ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
3 Add (Φ ∧ cdt, addrt) to WL
4 end

/* Idem for else branch (¬cdt) */

5 end

Test Inversion Case. A test inversion fault happens when considering a conditional2165

jump, leaving the standard SE process for assignments. We show in Algorithm 4.4 an2166

expression containing the activation of the fault and its effect is computed by the func-2167

tion FaultEncoding similarly to data faults. The resulting faulty condition, fault cdt2168

is used in the rest of the conditional jump evaluation as the condition.2169

Algorithm 4.4: Forkless conditional jump evaluation for test inversions

Input: path predicate Φ, conditional jump instruction if cdt addrt else addre
Data: fault counter nbf , maximal number of faults maxf , worklist WL
Output: WL and nbf updated in place

1 Function eval_conditional_jump(Φ, cdt, addrt, addre) is
2 Φ′, fault cdt, nbf := FaultEncoding(Φ, cdt, nbf)
3 if Φ′ ∧ fault cdt ∧ (nbf ≤ maxf) is satisfiable then
4 Add (Φ′ ∧ fault cdt, addrt) to WL
5 end

/* Idem for else branch (¬fault_cdt) */

6 end

52

Chapter 4. Adversarial Reachability

Instruction Skip Case. This fault model changes each instruction handled by the SE2170

to include the possibility of it having no effect and going to the next instruction in2171

memory. It is hence implementation specific and we refer the reader to implementation2172

details provided in Section 5.3.3.3. In particular for assignment evaluation, the process2173

presented in Algorithm 4.2 is used.2174

Implementation Details. We present our implementation of those algorithmic mod-2175

ifications to a standard SE engine in Section 5.3 for binary-level analysis inside the2176

BINSEC tool.2177

4.3.3.3 Properties2178

We now consider the properties of the FASE algorithm.2179

Proposition 4.2. The FASE algorithm is correct and k-complete for adversarial reach-2180

ability.2181

Proof. If our algorithm finds an adversarial path reaching the target location l, by2182

providing specific input values and a fault sequence, then an attacker executing the2183

program with the provided inputs and performing the proposed faults will reach its2184

goal. Our algorithm is based on symbolic execution with bounded path depth and2185

explores all possible adversarial paths according to the considered attacker model,2186

hence its k-completeness for adversarial reachability.2187

FASE will propose a set of adversarial paths if there are some, it is not guaranteed2188

to provide all possible adversarial paths with respect to fault placements.2189

Definition 4.5 (Path). We define a path by its control flow, that is to say, by the2190

sequence of branch choices and jump addresses leading to the target location.2191

Definition 4.6 (Equivalent Adversarial Paths). We define an adversarial path equiva-2192

lence class by the set of adversarial paths that follow the same control flow.2193

Proposition 4.3. FASE will only report one adversarial path per equivalence class.2194

Proof. FASE injects faults in a symbolic way, that is to say, they do not have concrete2195

placements during the path exploration performed by the SE analysis. Only at the end2196

of one path reaching the target location will the analysis ask an SMT solver for the2197

satisfiability of the adversarial path and a model for symbolic values. Hence, FASE2198

provides only one model (sequence for faults) for each path reaching the attacker’s2199

goal.2200

Remarque 4.1. In a multiple fault analysis, FASE is not guaranteed to output minimal2201

adversarial paths in the sense that there may be faults present that could be removed2202

while the path still reaches the attacker’s goal.2203

Proposition 4.4 (Tightness of FASE). Consider a single path with no branching instruc-2204

tion and a code location to reach at the end, together with f possible fault locations and2205

a maximum of mA faults. Then an SE injecting forking faults yields up to Cf
mA

1 paths2206

to analyze, and as many queries to send to the solver. In the same scenario, FASE2207

(with forkless faults) will analyze only the original path, and send a single query to the2208

solver.2209

1Remind that k among n, written Cn
k is Cn

k = (k
n) = n!

k!(n−k)!

53

4.4. Optimizations

Remarque 4.2. The Forkless encoding increases query complexity, as described in Sec-2210

tion 4.3.2.5 and experimentally verified in Section 6.3.2. We present in the remainder2211

of this chapter two mitigation techniques.2212

4.4 Optimizations2213

As previously mentioned, FASE introduces many new symbolic variables which increase2214

the burden of SMT solving in the analysis. FASE is based on a trade-off, no path2215

explosion at the price of more complex queries. Our goal is to reduce this query2216

complexity in an effort to get the best of both worlds.2217

In this section, we propose two optimizations, Early Detection of fault Saturation2218

(EDS) and Injection On Demand (IOD), that aim to produce queries with fewer faulty2219

expressions in them to alleviate the solver’s efforts, while remaining correct and k-2220

complete. The evaluation of each optimization’s effectiveness is performed in Section2221

6.3.2.2222

4.4.1 Early Detection of Fault Saturation (EDS)2223

Our first optimization is called Early Detection of Fault Saturation, or EDS for short.2224

The goal of EDS is to stop fault injection as soon as possible. The idea is to detect2225

when the attacker has necessarily spent all their fault budget in the currently explored2226

adversarial path, meaning they can’t inject more in the rest of that path. Fewer faults2227

injected in a path translates to fewer faulty expressions in the queries, hence, a reduced2228

query complexity.2229

4.4.1.1 Supported Fault Models2230

The saturation check itself can be performed anywhere, at the price of more queries.2231

We discuss here how it can be applied to our various fault models.2232

Data Faults. With forkless data faults in mind, we selected conditional jump eval-2233

uation as the saturation check location, taking advantage of the branch feasibility2234

computation already performed. Checking it at each fault location wouldn’t provide2235

more information, and only checking at the end would be useless.2236

Test Inversion Faults. For this fault model, injection locations are already conditional2237

jump evaluation. EDS can be applied straightforwardly, like for data faults. We do not2238

believe EDS would provide much performance gain as the number of fault locations is2239

very limited and the effect of test inversion fault does not add a new symbolic variable2240

to be expressed, it is simply the opposite of the condition. Hence it would add queries2241

and computation to try and mitigate a limited added query complexity. For those2242

reasons, we believe that EDS could be used with test inversion faults, but with limited2243

benefits. It has not been implemented in this thesis.2244

Instruction Skip Faults. We propose again to apply EDS at conditional jump evalu-2245

ation, to take advantage of the information of branch feasibility. We believe EDS can2246

be implemented for instruction skips. However, we made the choice in this thesis to2247

implement for instruction skip faults only the best performing optimization, Injection2248

On Demand, detailed in the next section. Section 6.3.2 shows the experimental results2249

for data fault that we believe can be extended to instruction skip since assignments2250

54

Chapter 4. Adversarial Reachability

are the most prevalent instructions in assembly. Hence, EDS for instruction skip faults2251

has not been implemented in this thesis.2252

4.4.1.2 Algorithm2253

EDS modifications to FASE concern only the conditional jump evaluation, illustrated2254

in Algorithm 4.5.2255

Algorithm 4.5: FASE-EDS conditional jump evaluation

Input: path predicate Φ, conditional jump instruction
if cdt then addrt else addre

Data: fault counter nbf , maximal number of faults maxf , worklist WL
Output: WL updated in place

1 Function eval_conditional_jump_EDS(Φ, cdt, addrt, addre) is
2 if Φ ∧ cdt ∧ (nbf < maxf) is satisfiable then
3 Add (Φ ∧ cdt, addrt) to WL
4 else if Φ ∧ cdt ∧ (nbf == maxf) is satisfiable then
5 Stop injection in this path
6 Add (Φ ∧ cdt, addrt) to WL

7 end
/* Idem for else branch (¬cdt) */

8 end

Instead of checking whether a branch can be explored without exceeding the max-2256

imum number of faults (nbf ≤ maxf), we double the check:2257

1. First we check whether the branch can be explored with strictly fewer faults than2258

allowed (nbf < maxf). If the query is satisfiable, the analysis continues down2259

that branch as usual;2260

2. If not satisfiable, we check whether the branch is feasible with exactly the maximal2261

number of faults allowed (nbf == maxf). If not, the branch is infeasible and we2262

stop as usual. Yet, if it is feasible, the saturation detection is triggered and we2263

know that we have spent all allowed faults. We can thus continue the exploration2264

without injecting any new fault in the corresponding search sub-tree, leading to2265

simpler subsequent queries.2266

4.4.1.3 Properties2267

We now consider the properties of FASE augmented with EDS, which we refer to as2268

FASE-EDS.2269

Proposition 4.5. FASE-EDS is correct and k-complete for the adversarial reachability2270

problem.2271

Proof. FASE-EDS remains correct as it does not modify the path predicate compu-2272

tation, and it remains k-complete as it only prunes fault injections that are actually2273

infeasible – and would have been proven so by the solver, later in the solving pro-2274

cess.2275

55

4.4. Optimizations

4.4.2 Injection on Demand (IOD)2276

Our second optimization is called Injection On Demand, or IOD for short. The goal of2277

IOD is to inject fault on demand, or as late as possible. The idea is to explore a path2278

without injecting faults, then, only when they become needed to continue the explo-2279

ration, they are added retrospectively to the path predicate. With this optimization,2280

there are most of the time fewer faulty expressions in queries than what the attacker2281

could do, since some injections have been delayed, hence reducing query complexity.2282

4.4.2.1 Supported Fault Models2283

We discuss here how it can be applied to our various fault models.2284

Data Faults. This optimization was designed with forkless data faults in mind. As2285

they add complexity to the path predicate, it is particularly interesting to delay the2286

injection until it is truly needed. This is evaluated at conditional jump locations to2287

ensure all branches possible with faults are indeed explored.2288

Test Inversion Faults. Again, test inversion fault injection locations are already condi-2289

tional jump evaluation. We do not believe IOD would provide much performance gain2290

as the number of fault locations is very limited, only to conditional jump instructions,2291

while data assignments are predominant, especially in assembly. Furthermore, the ef-2292

fect of test inversion fault does not add a new symbolic variable to be expressed, it is2293

simply the opposite of the condition. Hence it would add queries and computation to2294

try and mitigate a limited added query complexity. For those reasons, we believe that2295

IOD could be used with test inversion faults, but with limited benefits. It has not been2296

implemented in this thesis.2297

Instruction Skip Faults. This optimization works well with the data-related part of2298

instruction skip, in a similar manner as for data faults. The algorithm retrospectively2299

adding faults needs to be extended to take into account the other types of instructions.2300

This mechanism is detailed in Section 5.3.5, at the implementation phase, when the2301

types of instructions considered have been described.2302

4.4.2.2 Algorithm2303

IOD modifies FASE assignment evaluation as illustrated in Algorithm 4.6 and condi-2304

tional jump as shown in Algorithm 4.7.2305

Dual Path Predicates. In order to perform the retroactive injection of faults when2306

they are needed, we create a second path predicate.2307

– The first path predicate Φ is our main path predicate, upon which the analysis2308

reasons and builds queries.2309

– The second path predicate ΦF , or faulty path predicate, is our backup path2310

predicate containing all the faults as the exploration progresses. It is used only2311

when the analysis detects it needs more faults. It is then switched with the main2312

path predicate, in effect, injecting faults retrospectively.2313

Assignment Process. The assignment evaluation is duplicated as shown in Algorithm2314

4.6:2315

– The normal symbolic assignment, with the original right-end-side expression expr,2316

is performed in Φ;2317

56

Chapter 4. Adversarial Reachability

– The fault injection is performed in ΦF , which is updated with the fault encoding2318

of the assignment, expr′.2319

Algorithm 4.6: FASE-IOD assignment evaluation

Input: path predicate Φ, faulted path predicate ΦF , assignment instruction
x := expr

Data: fault counter nbf
Output: Updated Φ, ΦF , nbf updated in place

1 Function eval_assign_IOD(Φ, ΦF , cdt, x, expr) is
2 ΦF , expr′, nbf := FaultEncoding(ΦF , expr, nbf)

3 return (Φ ∧ (x , expr), ΦF ∧ (x , expr′))

4 end

Conditional Jump Process. The conditional jump evaluation is extended to test2320

whether more faults are needed. Queries are built according to the following rules:2321

1. The first branch feasibility check is built with the main, simpler, path predicate2322

Φ, encompassing the least number of faults. We continue this way as long as we2323

can, meaning we rely on standard reachability as much as we can;2324

2. When encountering a branch infeasible with Φ, we then check whether this branch2325

is feasible with all the possible faults seen so far, i.e. using ΦF . If not, that is a2326

stop, otherwise, we know that Φ does not encompass enough faults to go further.2327

We then replace Φ by ΦF (called a switch) at this stage, and thus continue with2328

strictly more faults. The switch is straightforward as ΦF and Φ only differ on2329

fault injections. Then again, the new Φ will not accumulate any fault (until a2330

new switch) while ΦF continues accumulating all possible faults.2331

Algorithm 4.7: FASE-IOD conditional jump evaluation

Input: path predicate Φ, conditional jump instruction if cdt then lt else le
Data: fault counter nbf , maximal number of faults maxf , under

approximation counter under counter, worklist WL
Output: WL updated in place

1 Function eval_conditional_jump_IOD(Φ, ΦF , cdt, lt, le) is
2 if Φ ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
3 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL
4 else if under counter ≤ maxf then
5 if ΦF ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
6 Φ := ΦF

7 under counter := under counter + 1
8 Add (Φ ∧ cdt, ΦF ∧ cdt, lt) to WL

9 end

10 end
/* Idem for else branch (¬cdt) */

11 end

Under-Approximation Counter. As a bonus, the number of path predicate switches2332

gives us an under-approximation under counter of the number of faults already needed2333

57

4.4. Optimizations

in the path under analysis. We use it to stop the injection early, when at least nbf2334

faults have been used.2335

4.4.2.3 Properties2336

We now consider the properties of FASE augmented with IOD, which we refer to as2337

FASE-IOD.2338

Proposition 4.6. FASE-IOD is correct and k-complete for the adversarial reachability2339

problem.2340

Proof. FASE-IOD explores the same feasible paths as FASE, hence preserving its prop-2341

erties.2342

4.4.3 Combination of Optimizations2343

Since our two optimizations approach the problem of query complexity reduction from2344

different angles, they can be combined, as illustrated in Algorithm 4.8. Taking FASE-2345

IOD as a basis, saturation detection is added for the faulted path predicate ΦF queries2346

at the conditional branch evaluation. If the saturation is detected ((nbf 6< maxf) ∧2347

(nbf == maxf)), the main path predicate switches to ΦF but for the last time along2348

this path and ΦF is not updated and queried upon anymore. This effectively stops2349

fault injection, thus reducing subsequent query complexity.2350

Algorithm 4.8: FASE-IOD and FASE-EDS combination, conditional jump
evaluation

Input: path predicate Φ, faulty path predicate ΦF , conditional jump
instruction if cdt then addrt else addre

Data: fault counter nbf , maximal number of faults maxf , under
approximation counter under counter, worklist WL

Output: WL updated in place

1 Function eval_conditional_jump_EDS_IOD(Φ, ΦF , cdt, addrt, addre) is
2 if Φ ∧ cdt ∧ (nbf ≤ maxf) is satisfiable then
3 Add (Φ ∧ cdt, ΦF ∧ cdt, addrt) to WL
4 else if under counter ≤ maxf then
5 if ΦF ∧ cdt ∧ (nbf < maxf) is satisfiable then
6 Φ := ΦF

7 under counter := under counter + 1
8 Add (Φ ∧ cdt, ΦF ∧ cdt, addrt) to WL

9 else if ΦF ∧ cdt ∧ (nbf == maxf) is satisfiable then
10 Φ := ΦF

11 Stop switches and Φ′ update and queries
12 Add (Φ ∧ cdt, ΦF ∧ cdt, addrt) to WL

13 end

14 end
/* Idem for else branch (¬cdt) */

15 end

58

Chapter 4. Adversarial Reachability

Proposition 4.7. The combination of FASE-EDS and FASE-IOD is correct and k-2351

complete for the adversarial reachability problem.2352

Proof. This combination also explores all possible paths for the considered attacker2353

models, like FASE, hence preserving its properties.2354

4.5 Discussion2355

In this section, we discuss the applicability of forkless fault encoding, from formal-2356

ization to verification algorithm and its advantages for multi-fault analysis. We also2357

consider using the forkless fault encoding to verify different properties and with differ-2358

ent formal techniques. General techniques used in prior work in SWIFI have already2359

been discussed in Section 3.4.2360

4.5.1 Fault Model Support - Formalization VS Algorithm2361

We discuss in this section what types of faults are supported by our formalization and2362

those supported by our algorithm, FASE.2363

Our formalization is an extension of a transition system with adversarial transi-2364

tions to represent the impact of an advanced attacker on a program. Our algorithmic2365

approach based upon it, FASE, currently supports:2366

– Data faults involving a single instruction,2367

– Simple control-flow faults (test inversion and instruction skip).2368

While our formalization supports the following types of faults, our algorithm ap-2369

proach does not.2370

– Advanced data faults, whose effects span over multiple instructions. We believe2371

that once characterized, those could be implemented by extending the program2372

state with some form of counters to link the different effects together;2373

– Advanced control-flow faults such as arbitrary jumps. We have no algorithm more2374

efficient in mind than a simple, and explosive, enumeration of possible effects for2375

this class of fault models;2376

– Instruction corruption permanently changes an instruction, while we modify com-2377

putation results. It is related to self-modification, which is a hard problem for2378

symbolic execution. Supporting instruction corruption would require modeling2379

instruction decoding and an efficient algorithm to avoid state explosion.2380

FASE can, in theory, support, or be extended to support, a vast number of different2381

fault models. However, we do not guarantee our algorithm will be efficient for them,2382

since they may involve new symbolic variables and an increased query complexity.2383

Representing Micro-Architectural Attacks. While Rowhammer’s bit-flip effects are2384

quite straightforward to model, modeling Spectre-type attacks is more difficult.2385

– For Spectre v1 (BTB, branch-target-buffer), the effect itself of mispredicting a2386

branch can be modeled by a test inversion, however, the duration of the effect is2387

limited in time and a rollback mechanism needs to be devised;2388

– In an LVI attack, transient execution is used to inject attacker-controlled values2389

in the victim process. The effect of the attack is an arbitrary data fault, but with2390

a limited effect duration to take into account;2391

– In Spectre v4 (STL, store-to-load), the processor speculates if a memory load2392

depends on previous stores that are buffered, or independent and the value in2393

59

4.5. Discussion

memory is the correct one. This can be seen as a restricted form of an LVI2394

attack, where the attack effect is a data corruption dependent on previous values2395

at the considered memory address. If those addresses are symbolic, the analysis2396

can suffer a state explosion. Again, the effect is of limited duration.2397

While we believe FASE could be adapted to model temporary effects and state rollback,2398

the application of our optimizations is not straightforward.2399

Other types of attacks exploit micro-architectural features and would require ex-2400

tending the program state with micro-architectural components [LBD+18, LBDPP19,2401

TAC+22] to represent:2402

– permanent data faults,2403

– faults in the instruction prefetch buffer,2404

– faults in hidden registers,2405

– faults in the multiplication unit,2406

– faults in the forwarding mechanism,2407

– skip faults on variable-length instruction set [ACD+22] with miss-aligned instruc-2408

tions.2409

While FASE is architecture-independent, extending the program state as such would2410

make the analysis architecture dependent, and would have to be adapted for each2411

architecture considered.2412

Probabilistic Faults. Some techniques [DPdC+15], mostly simulation-based, imple-2413

ment probabilistic fault models to account for the plausibility of a fault, depending on2414

injection parameters. We believe our formalism could be extended to support proba-2415

bilistic adversarial transitions. However, our current algorithm cannot support those2416

faults without a path explosion, forking to consider each fault having a non-zero prob-2417

ability.2418

Related Work. Fault model support of other SWIFI works is presented in Section2419

4.6.1.2420

4.5.2 Forkless Faults and Multi-Fault Analysis2421

We now discuss the interest of the forkless fault encoding for a multi-fault analysis.2422

The goal of the forkless encoding is to be able to represent attackers able to per-2423

form multiple faults in one attack while preventing the path explosion faced by existing2424

techniques. We do this by embedding the possibility of a fault at each possible location2425

without forking the path each time, at the price of more complexity in the path predi-2426

cate, which makes for more complex SMT queries, the bottleneck of symbolic execution.2427

SWIFI is a trade-off between exploring more paths or having more complex queries.2428

We chose to explore the side of more complex queries. Experiments (see Chapter 6)2429

will show that our approach yields the best performance in most cases, even without2430

our optimizations reducing the number of injection points in queries.2431

While our algorithm is abstraction-level independent, we implement it in Chapter 52432

for a binary-level analysis, which is harder than source-level analyses (see Section 3.3).2433

4.5.3 Forkless Encoding for Other Properties2434

The forkless encoding can surely benefit other classes of properties to be achieved2435

by the attacker, especially those known to be supported by (extensions of) symbolic2436

execution, for example:2437

60

Chapter 4. Adversarial Reachability

– Trace properties that can be evaluated based on a transition system, such as2438

use-after-free, could also be evaluated under attack when evaluated based on2439

our adversarial transition system instead. This corresponds to considering an2440

attack goal other than adversarial reachability, with a more complex oracle. In2441

particular, an extension to other trace properties allows to consider complex2442

multi-step attacks where a vulnerability is used to trigger the next one;2443

– K-hyperreachability properties (secret leakage, privacy leakage, violation of constant-2444

time, etc.) [DBR20] are often evaluated with relational symbolic execution, where2445

two traces following the same path are computed and then compared. Faults can2446

be added to that computation similarly to how we included them in symbolic2447

execution. This could be used to extend attacker goals beyond reachability, in2448

particular towards information leakage, or serve as a guide for multi-step attacks;2449

– The recent robust reachability proposal [GFB21] and its quantified version [BG22]2450

consider the control an attacker needs, or not, over each program parameter to2451

trigger a bug. This work aims to mitigate symbolic execution false positives2452

and find highly replicable bugs. This technique and ours could be combined to2453

quantify the control an attacker needs over the injected fault. For instance, does2454

the attacker have to corrupt a value to 0xdeadbeef as the adversarial symbolic2455

execution says, or any random value would work? In particular, this could help2456

an attacker decide what injection mean provides an adequate level of control over2457

the injected fault to perform the attack. However, robust reachability requires a2458

more expressive, and harder-to-solve, SMT theory than we use. We believe the2459

combination of the two techniques would suffer scalability issues.2460

4.5.4 Forkless Encoding for Other Formal Methods2461

While in this thesis, we focus on symbolic execution, we believe the main optimization2462

ideas developed here can be used with other formal techniques, e.g. Bounded Model2463

Checking, Abstract Interpretation or CEGAR model checking. Note that for each of2464

them, fault injection may result either in path explosion or precision loss. Still, our2465

forkless encoding should be able to help at least all approaches based to some extent2466

on path unrolling.2467

Previous works have explored non-forking injection techniques with abstract in-2468

terpretation [LFBP21], deductive verification [MKP22] and bounded model checking2469

[TAC+22].2470

Lacombe et al. [LFBP21] use abstract interpretation, through the Frama-C [KKP+15]2471

plugin Eva [BBY17]. They propose a form of forkless faults, xoring the result of a com-2472

putation with a free variable, manually added to a C program. However, they rely on2473

abstract interpretation only to filter injection points, not to find adversarial paths2474

directly.2475

Martin et al. [MKP22] use deductive verification at C level through the Frama-2476

C plugin LTEST [BCDK14] with test inversion faults. They use an uninterpreted2477

function to simulate the activation of the fault and its behavior. Only the contract2478

of this function is written, leaving Frama-C to verify if the security property can be2479

violated.2480

Tollec et al. [TAC+22] leverage bounded model checking for fault injection analysis,2481

except they reason at the RTL level, modeling the CPU micro-architecture. The RTL2482

model takes the place of the program, whose input is the binary program analyzed,2483

with possible faults on each wire on the RTL model. The analysis can be considered2484

61

4.6. Related Work

completely forkless as the possibility of faults and their effect are encoded directly into2485

the model of the bounded model checker, which never forks.2486

4.5.5 Forkless Encoding and Instrumentation2487

Several prior works use code-level instrumentation [MKP22] or llvm level instrumen-2488

tation [PMPD14, LFBP21, LHGD18] in order to leverage standard program analyzers2489

as is. The forkless encoding we propose can also be used this way, for more flexibility.2490

However, since using code-level instrumentation takes a step back from the symbolic2491

execution engine, not all optimizations still make sense. While we believe Early Detec-2492

tion of Fault Saturation could be adapted, Injection On Demand requires heavy path2493

predicate transformation that does not seem feasible in code instrumentation. Actu-2494

ally, we performed some experiments with Klee and C-level forkless instrumentation in2495

Section 6.5, and do observe significant performance improvement compared to a forking2496

instrumentation.2497

4.6 Related Work2498

In this section, we present the related work regarding fault model support and multi-2499

fault analysis. We also explore other fields considering attackers and other formalisms2500

that have been proposed.2501

4.6.1 Fault Model Support2502

We list in Table 4.3 the main SWIFI works and the fault models they support. Most2503

only support one or very few fault models that are typically simple data faults or2504

control-flow faults (test inversion and instruction skip). To our knowledge, only one2505

[TAC+22] includes micro-architecture details in their fault injection analysis which2506

allows them to reason about complex faults.2507

4.6.2 Multiple Fault Analysis2508

We now present how existing techniques support multi-fault in their analyses. Among2509

SWIFI techniques, half rely on the mutant approach [CCG13, RG14, GWJLL17, CDFG18,2510

GWJL20], which is not designed for multi-fault analysis has the number of mutants2511

explodes quickly. The other half relies on forking techniques [PMPD14, BBC+14,2512

BHE+19, LFBP21, Lan22] whose scalability in the number of faults considered is hin-2513

dered by path explosion. Very few works consider multi-faults [PMPD14, LFBP21,2514

MKP22, Lan22, GHHR23] (see Table 4.3).2515

Potet et al. [PMPD14] only considers test inversion faults, which are much less2516

frequent than data faults. They use a preprocessing consisting of a basic block coloring2517

algorithm based on reachability in a graph to filter necessary fault locations, locations2518

where faults should be avoided and uncertain locations. That information is then2519

embedded in a meta-mutant which is analyzed by symbolic execution with KLEE2520

[CDE+08]. Hence, the only forking faults handled by the symbolic engine are uncertain2521

fault locations of a fault model having few in total.2522

Lacombe et al. [LFBP21] use abstract interpretation, through the Frama-C [KKP+15]2523

plugin Eva [BBY17], to perform a data dependancy analysis reducing injection points2524

62

Chapter 4. Adversarial Reachability

Table 4.3: Fault model support

Reference A
n
al

y
si

s
le

ve
l

A
rb

it
ra

ry
d
at

a

B
it

-fl
ip

O
th

er
d
at

a
fa

u
lt

T
es

t
in

ve
rs

io
n

In
st

ru
ct

io
n

sk
ip

O
th

er

M
u
lt

i-
fa

u
lt

Christofi [CCG13] C 7 7 3 7 7 7 7

LAZART [PMPD14, LFBP21] llvm 3 7 7 3 7 7 3

Rauzy [RG14] Custom 3 7 3 7 7 7 7

EFS [BBC+14] Binary 7 7 7 7 3 7 7

Given-Wilson [GWJLL17] ISA 7 7 3 3 3 7 7

Carré [CDFG18] Binary 7 3 7 7 7 7 7

RobustB [BHE+19] Binary 3 7 7 7 3 7 7

Given-Wilson [GWJL20] Binary 7 3 3 7 3 7 7

Lacombe [LFBP21] C/llvm 3 7 7 7 7 7 3

Martin [MKP22] C 7 7 7 3 7 7 3

Tollec [TAC+22] RTL 7 7 7 7 7 3 7

Lancia [Lan22] ISA 3 3 3 3 7 7 3

SAMVA [GHHR23] ISA 7 7 7 7 3 7 3

FASE ISA 3 3 3 3 3 7 3

on C programs. The remaining injection points are then provided to a more recent ver-2525

sion of Lazart [PMPD14], able to reason on data faults, to compute adversarial paths.2526

Their fault injection pruning technique based on data-flow analysis is complementary2527

to our own method – still, static analysis at binary level is known to be hard.2528

Martin et al. [MKP22] use an uninterpreted function whose contract embeds the2529

activation of test inversion faults and a counter to limit them to the attacker’s budget.2530

This technique discharges the multi-fault reasoning to a solver, similar to our approach,2531

except that we have a concrete fault encoding, allowing us to reason about and prune2532

fault injection locations. Furthermore, they reason at the C level.2533

Gicquel et al. [GHHR23] have developed an injection technique based on graph2534

reasoning for the instruction skip fault model at the binary level. All possible faults2535

are encoded by adding edges on the graph representing the program with basic blocks,2536

each labeled as ‘neutral’, ‘skip’ or ‘execute’. Their algorithm then builds attack paths2537

placing instructions skips of arbitrary width to cover all ‘skip’ nodes while avoiding2538

all the ‘execute’ nodes. Here, increasing the attacker fault budget doesn’t change the2539

extended graph, it only offers more freedom to the placing algorithm.2540

In summary, those techniques are able to perform multiple fault analyses by:2541

– using preprocessing filtering fault locations to limit the path explosion [PMPD14,2542

LFBP21];2543

– reasoning at a higher abstraction level than ISA, such as C [LFBP21, MKP22]2544

or llvm [PMPD14];2545

– fine-tuning their multi-fault technique to a single fault model [PMPD14, MKP22,2546

GHHR23];2547

– limiting multi-fault considerations to two faults in practice [LFBP21, MKP22,2548

Lan22].2549

63

4.6. Related Work

4.6.3 The Attacker in Different Security Fields2550

In this section, we overview how attackers are represented in various fields for security2551

analysis.2552

Protocol Verification. It is common in the field of automated formal verification of2553

cryptographic protocols to consider models of attackers, typically extensions of the2554

“Dolev-Yao” model [DY83]. In the Dolev-Yao model, the attacker can see, intercept2555

and generate messages exchanged over the network. Cryptographic primitives are rep-2556

resented as abstract operators. The attacker only knows what has been previously2557

exchanged [AC04] to try and guess the secret key. Conversely, attackers can also be2558

represented by what they cannot do [BCL14].2559

Control-Flow Integrity. In software security, control-flow integrity attacks have been2560

categorized by the capability an attacker needs [BCN+17] to perform an attack or2561

against which a countermeasure will hold. Those capabilities are of the form ‘write2562

something anywhere’, ‘write anything anywhere’, etc. These efforts have been restricted2563

to manual reasoning.2564

Bug Triaging. With the advent of massive fuzzer usage, the number of bugs discovered2565

in programs becomes much higher than the capabilities of developers to fix them. A2566

rising area of research is bug triaging, where the severity and impact of bugs are eval-2567

uated to prioritize the most dangerous ones. Bugs are represented by the capabilities2568

[JGH+22] they provide to the attacker willing to exploit them, such as the number of2569

controlled bits.2570

High-Level Attacker. Some works intend to model an actual attacker, a “hacker”2571

in action [CTB+17, ASA+15, BCR+19, CTB+19]. They aim to categorize high-level2572

attackers, understand what capabilities they have or not, and when and why they2573

favor one over another in the course of an attack. Those capabilities are of the form2574

‘tamper with the execution environment’, ‘deobfuscate code’, ‘brute force attack’, etc.2575

While at a very high-level (workflow of the attack), these efforts are indeed relevant to2576

better understand which capabilities should be granted to a low-level formal model of2577

an attacker.2578

Precise Hardware Fault Models. Determining the most appropriate fault models rep-2579

resenting hardware faults is an ongoing research question. Fault models [GMA22,2580

RBSG22] can be derived from experiments. Methodologies have been proposed [DPdC+15].2581

However, software fault models miss architecture-specific behavior related to control2582

signals in the pipeline, able to bypass countermeasures [LBD+18]. Faults on data are2583

independent of hardware, and faults on instructions depend on the Instruction Set2584

Architecture (ISA).2585

4.6.4 Extending Existing Formalisms2586

We highlight the main works that extended existing formalisms to include the capabil-2587

ities of an attacker.2588

Adversarial Logic. Here, Vanegue [Van22] extends incorrectness logic [O’H19], propa-2589

gating accumulated errors to determine a bug exploitability. This bug-finding (under-2590

approximation) technique integrates an attacker from the side-channel and information2591

knowledge point of view. As our technique does not cover information leakage, it would2592

be interesting to try and combine both approaches in order to represent a more generic2593

64

Chapter 4. Adversarial Reachability

attacker, able to also seek knowledge.2594

Operational Semantic. Given-Wilson et al. [GWL20] propose a formalization of fault2595

injection on a program using Turing machines. The attacker model considered can2596

inject active faults without consideration of the injection mean and is very generic in2597

supported faulty behaviors. This work is orthogonal to ours, however, to our knowledge,2598

no algorithm has been built for this formalization. Also, Fournet et al. [FR08] propose a2599

type system for program-level non-interference, taking into account an active adversary2600

modeled as adversarial components able to perform any action at certain steps of the2601

program.2602

4.7 Conclusion2603

Summary. In this Chapter, we started by describing how we modeled an advanced2604

attacker, an entity with attack capabilities, a limitation on the number that can be2605

used and an attack goal expressed as a program location to reach. We then showed2606

how to extend reachability to include adversarial transitions, building the new concept2607

of adversarial reachability. Finally, we extended the symbolic execution algorithm, tra-2608

ditionally verifying reachability, to include attacker actions as fault injections, building2609

adversarial symbolic execution (ASE). ASE is correct and k-complete for adversarial2610

reachability. The main limitation of existing SWIFI techniques is the path explosion2611

experienced. To prevent it, we proposed a new forkless fault encoding, that has the2612

drawback of increasing query complexity. We designed two optimizations dedicated to2613

reducing this added complexity.2614

Extension to Published Work. Compared to the ESOP 2023 [DBP23] paper, we added2615

the instruction skip fault model and adapted our optimizations for it. We also proposed2616

several discussions, in particular regarding the expressivity of our adversarial transition2617

system.2618

Coming Next. In the next chapter, we present our implementation of ASE into a2619

tool, BINSEC/ASE, to verify in practice the vulnerability of a program to an attacker2620

model. Its practical interest and effectiveness are investigated in Chapter 6.2621

65

4.7. Conclusion

66

Chapter 52622

The BINSEC/ASE Prototype2623

Contents
2624

2625
5.1 Overview . 692626

5.2 Background: the BINSEC Tool . 692627

5.2.1 BINSEC Presentation . 702628

5.2.2 General Work-Flow . 702629

5.2.2.1 Parameters . 702630

5.2.2.2 Intermediate Representation: DBA 712631

5.2.2.3 Analysis Workflow 712632

5.2.2.4 SMT Solvers . 712633

5.2.2.5 Output . 732634

5.2.3 Summary . 732635

5.3 BINSEC/ASE Implementation . 732636

5.3.1 BINSEC/ASE Overview . 732637

5.3.2 ASE Implementation . 742638

5.3.2.1 Attacker Model Parameters and Goal 742639

5.3.2.2 Global Variables . 742640

5.3.2.3 Assignments . 742641

5.3.2.4 Conditional Jumps 752642

5.3.2.5 Exploration Directives 752643

5.3.2.6 BINSEC/ASE Output 762644

5.3.2.7 Statistics . 762645

5.3.2.8 Implementation Details 762646

5.3.3 Forkless Fault Models . 772647

5.3.3.1 Data Faults . 772648

5.3.3.2 Test Inversion Faults 792649

5.3.3.3 Instruction Skip Faults 802650

5.3.4 Early Detection of Fault Saturation (EDS) 812651

5.3.5 Injection On Demand (IOD) 822652

67

5.3.6 Sub-fault Simplification . 822653

5.3.7 Forking Fault Models . 832654

5.3.7.1 Forking Data Faults 832655

5.3.7.2 Forking Test Inversion Faults 842656

5.3.7.3 Forking Instruction Skip Faults 842657

5.3.8 Conclusion . 842658

5.4 User Guide: a Methodology to Analyse a New Program 862659

5.4.1 Running Example . 862660

5.4.2 Analysis Goal . 882661

5.4.2.1 Security Properties 882662

5.4.2.2 Attacker Model . 892663

5.4.3 Configuration . 932664

5.4.4 Reading BINSEC/ASE Output 932665

5.4.5 Analysis Process . 962666

5.4.6 Summary . 962667

5.5 Developer Guide: a Methodology to Add a New Fault Model 972668

5.5.1 Defining the New Fault Model 972669

5.5.1.1 State-of-the-art Attack 972670

5.5.1.2 Fault Model . 972671

5.5.2 Implementation . 982672

5.5.3 Dedicated Metrics . 992673

5.5.4 Testing . 992674

5.5.5 Summary . 992675

5.6 Discussion . 1002676

5.6.1 BINSEC/ASE Limitations . 1002677

5.6.1.1 Building on Top of an Existing Tool 1002678

5.6.1.2 Supported Fault Models 1002679

5.6.2 Faults on Intermediate Representation 1012680

5.6.3 Permanent VS Transient Faults 1012681

26822683
2684

In this chapter, we present BINSEC/ASE, our software-implemented fault injection2685

tool, based on Adversarial Symbolic Execution (described in Chapter 4). After a2686

brief introduction explaining the goal and interest of our approach (Section 5.1), we2687

describe the BINSEC tool1 (Section 5.2) and how we modified it to build BINSEC/ASE2688

(Section 5.3). Then, we provide a user guide detailing a methodology to add a new2689

benchmark (Section 5.4), as well as a developer guide showcasing the methodology to2690

add a new fault model through the instruction skip example (Section 5.5). At the end2691

of this chapter, we discuss the tool’s particularities and limitations (Section 5.6). The2692

evaluation of BINSEC/ASE is detailed in Chapter 6.2693

The BINSEC/ASE tool can be found as an artifact on GitHub2 and Zenodo3.2694

1BINSEC version of September 1st 2021
2https://github.com/binsec/esop2023 artefact
3https://zenodo.org/record/7507112

68

https://github.com/binsec/esop2023_artefact
https://zenodo.org/record/7507112

Chapter 5. The BINSEC/ASE Prototype

5.1 Overview2695

Adversarial Reachability aims at reasoning about the impact of an advanced attacker,2696

able to inject multiple faults, on a program’s security properties. We designed an algo-2697

rithm to answer the Adversarial Reachability problem, Adversarial Symbolic Execution.2698

We implement it inside a tool, BINSEC/ASE, answering Adversarial Reachability from2699

a bug-finding point of view (under-approximation).2700

This tool’s aim is to be integrated into the security evaluation of programs. Once a2701

risk assessment has identified threat models and security properties (not in the scope2702

of this thesis), BINSEC/ASE can help the security expert determine if the program is2703

vulnerable or not, and provide attack paths allowing the attacker to violate the security2704

property. This can be used to identify critical code sections to try and mount full2705

attacks on the program. Another use is countermeasure evaluation. Adding protections2706

also adds attack surface, so protecting a program against one attack may open the way2707

for a new attack for the same attacker model, hence an iterative process using a tool2708

such as BINSEC/ASE.2709

In the following, we motivate the main high-level design choices made for BIN-2710

SEC/ASE design.2711

– ISA Abstraction Level: we implemented Adversarial Symbolic Execution (ASE)2712

at the ISA level. ISA stands for Instruction Set Architecture, also called as-2713

sembly, it defines an interface between hardware and software. An analysis at2714

ISA level makes the tool independent from source-level languages and constructs2715

hindering analysis precision such as register dynamics. We also wanted to be in-2716

dependent of the specific micro-architecture of the system running the program,2717

which requires heavy modeling for each target system, hindering scalability and2718

for which specifications are often closed-sourced. A program may be launched2719

on multiple target architectures, requiring multiple costly analyses when consid-2720

ering the micro-architecture. ISA represents directly the code executed by the2721

processor, instructions and operands. Many fault models characterizing physical2722

fault injection in the literature are at the ISA level;2723

– Building Inside BINSEC: BINSEC is a symbolic execution engine working at the2724

ISA level, designed and developed at CEA LIST, which makes help to understand2725

BINSEC’s inner workings and to debug more easily available, which saves a lot2726

of time and effort. The BINSEC tool consists of about 60k loc of Ocaml, the2727

symbolic execution engine contains around 3.2k loc. We modified only the SE2728

engine, implementing ASE in 5.8k loc;2729

– ISA Support: we currently support Intel x86-32 bits and ARM 32 bits architec-2730

tures. Support can be extended to other architectures as they become available2731

in BINSEC.2732

5.2 Background: the BINSEC Tool2733

In this section, we present the BINSEC tool, upon which we built BINSEC/ASE.2734

Details of our modifications can be found in the next Section (5.3). BINSEC is an2735

open-source symbolic execution engine for binary programs developed at the CEA by2736

the Binsec team4. We use BINSEC version 0.4.0 in this work, forked September 1st2737

2021.2738

4https://binsec.github.io/

69

https://binsec.github.io/

5.2. Background: the BINSEC Tool

5.2.1 BINSEC Presentation2739

We implement BINSEC/ASE on top of the BINSEC symbolic engine [DBT+16, DB15,2740

BHL+11]. It has already been used in a number of significant case studies [BDM17,2741

RBB+19, RBB+21, DBR20, DBR21], and it is notably able to achieve bounded verifi-2742

cation (k-completeness) and to reasonably deal with symbolic pointers [FDBL18].2743

5.2.2 General Work-Flow2744

We detail in this section the part of BINSEC’s general workflow that is relevant to2745

the work presented in this thesis, from user inputs, internal path exploration and2746

communications with the SMT solver, to the provided output. Figure 5.1 provide an2747

overview of this workflow.2748

Figure 5.1: Overview of BINSEC workflow for symbolic execution

5.2.2.1 Parameters2749

BINSEC can be parameterized using command line options or by providing it with a2750

configuration file. The user defines a number of exploration parameters. We list here2751

the main ones we use, divided into two categories, the kernel options and the symbolic2752

exploration options.2753

Kernel options. They define the core elements required for BINSEC to run:2754

– the path to the binary file to analyse,2755

– the ISA for which the binary has been compiled,2756

– the entrypoint from which the symbolic analysis starts. It can be an address or2757

more commonly the symbol of a function like <main>.2758

Symbolic execution options. They describe SE parameters and goals.2759

– Exploration objectives are defined in terms of directives. They can be of various2760

forms such as reach an address once or multiple times, with or without a condi-2761

tion, cut the exploration when reaching an address, with or without a condition,2762

or force constraints at a location with an assume;2763

– BINSEC performs an analysis bounded by the maximal number of instructions2764

analyzed per path, set by the user;2765

– As the analysis starts at the defined entrypoint, the user can specify some variable2766

initializations in a memory file. In particular, it is used to provide an initial2767

address to the stack pointer, easing the analysis without loss of generality.2768

70

Chapter 5. The BINSEC/ASE Prototype

5.2.2.2 Intermediate Representation: DBA2769

To provide an analysis independent of the specific ISA used, BINSEC starts by reading2770

the binary and lifting the ISA instructions to an intermediate representation called2771

DBA (short for Dynamic Bitvector Automata). This is a language specific to BINSEC.2772

It abstracts each ISA instruction into a block of DBA instructions detailing registers,2773

memory and flag updates with arithmetic expressions, as well as the next instruction2774

to execute. There are four main kinds of DBA instructions: assignments, conditional2775

jumps, static jumps and dynamic jumps.2776

Table 5.1 illustrates the DBA syntax from a very simple C example, with the2777

associated ISA instructions (Intel x86). For readability, the updated expressions of2778

flags are not displayed, except when relevant. The ISA instructions don’t reflect the2779

full expressivity of the assume C statement, just the conditional branching.2780

5.2.2.3 Analysis Workflow2781

The symbolic execution engine will start its analysis at the entrypoint defined by the2782

user with the initialization contained in the provided memory file. Then instructions2783

are decoded one by one in their execution order.2784

– In the case of assignments, updates are made to the symbolic state, which records2785

the current value, concrete or symbolic, of each variable;2786

– For a conditional jump, the condition is added to the path predicate constraints2787

sent to the SMT solver. The analysis will fork if both branches are possible,2788

selecting one to keep exploring and storing the other in a worklist to continue the2789

exploration later;2790

– In the case of a static jump, the analysis will decode the instruction at the newly2791

provided address and continue from there;2792

– Lastly, for dynamic jumps, also known as indirect jumps (the target address has2793

been computed at runtime and is stored in a register), the analysis asks the2794

SMT solver for n possible values (3 by default but it can be changed through2795

configuration) for the jump target address and forks the analysis, continuing one2796

and storing all the others in the worklist. In practice, only one jump address2797

usually makes sense.2798

BINSEC uses a depth-first approach with its worklist of paths to analyze. The2799

exploration of a path ends when it meets a directive’s criteria or when it exceeds the2800

maximal instruction depth.2801

5.2.2.4 SMT Solvers2802

BINSEC uses the QF ABV theory, standing for Quantifier Free, Arrays and Bit-2803

Vectors, to discharge created formulas. BINSEC has a native binding with the SMT2804

solver Bitwuzla5 [NP20], winner of SMT-COMP 20226 for its category. It also inter-2805

faces with other solvers, such as z37 [DMB08] or Boolector8 [BB09], through the use of2806

the smtlib, a universal API for SMT solvers. A connection through the smtlib is slower2807

than a native binding, internally optimized for the solver.2808

5https://bitwuzla.github.io/
6https://smt-comp.github.io/2022/results/qf-bitvec-single-query
7https://github.com/Z3Prover/z3
8https://boolector.github.io/

71

https://bitwuzla.github.io/
https://smt-comp.github.io/2022/results/qf-bitvec-single-query
https://github.com/Z3Prover/z3
https://boolector.github.io/

5.2. Background: the BINSEC Tool

T
ab

le
5.1:

E
x
am

p
le

of
C

an
d

In
tel

x
86

in
stru

ction
s

tran
slated

to
D

B
A

C
co

d
e

In
tel

x
86

D
B

A

in
t

x
=

9
;

m
ov

[eb
p

+
0

x
f
f
f
f
f
f
f
4

]
,

0
x

9
0

:
@

[(
eb

p
<

32>
+
−

1
2
<

3
2
>

),4
]

:=
9
<

3
2
>

;
1

:
g

o
to

(0
8

0
4

9
d

1
c

,
0

)

x
=

x
+

1
;

a
d

d
[eb

p
+

0
x

f
f
f
f
f
f
f
4

]
,

0
x

1
0

:
re

s3
2
<

32>
:=

(@
[(

eb
p
<

32>
+
−

1
2
<

3
2
>

),4
]

+
1
<

3
2
>

);
1

:
O

F<
1>

:=
[
.
.
.
]
;

2
:

S
F
<

1>
:=

[
.
.
.
]
;

3
:

Z
F
<

1>
:=

[
.
.
.
]
;

4
:

A
F<

1>
:=

[
.
.
.
]
;

5
:

P
F
<

1>
:=

[
.
.
.
]
;

6
:

C
F
<

1>
:=

[
.
.
.
]
;

7
:

@
[(

eb
p
<

32>
+
−

1
2
<

3
2
>

),4
]

:=
re

s3
2
<

3
2
>

;
8

:
g

o
to

(0
8

0
4

9
d

2
0

,
0

)

a
s
s
e

r
t

(
x

=
=

8
)
;

cm
p

[eb
p

+
0

x
f
f
f
f
f
f
f
4

]
,

0
x

8
0

:
re

s3
2
<

32>
:=

(@
[(

eb
p
<

32>
+
−

1
2
<

3
2
>

),4
]
−

8
<

3
2
>

);
1

:
O

F<
1>

:=
[
.
.
.
]
;

2
:

S
F
<

1>
:=

[
.
.
.
]
;

3
:

Z
F
<

1>
:=

(0
<

3
2
>

=
re

s3
2
<

3
2
>

);
4

:
A

F<
1>

:=
[
.
.
.
]
;

5
:

P
F
<

1>
:=

[
.
.
.
]
;

6
:

C
F
<

1>
:=

(@
[(

eb
p
<

32>
+
−

1
2
<

3
2
>

),4
]
<

u
8
<

3
2
>

);
7

:
g

o
to

(0
8

0
4

9
d

2
4

,
0

)

jz
0

x
8

0
4

9
d

4
4

0
:

if
Z

F
<

1>
g

o
to

(0
8

0
4

9
d

4
4

,
0

)
e

ls
e

g
o

to
1

1
:

g
o

to
(0

8
0

4
9

d
2
6

,
0

)

72

Chapter 5. The BINSEC/ASE Prototype

5.2.2.5 Output2809

Among the usages BINSEC has, we are interested in standard reachability in this thesis.2810

When the SE engine encounters a code address associated with a reach directive, it2811

creates the associated formulas for the SMT solver to assess satisfiability. The solver2812

will either answer that the path does not validate the directive and BINSEC forwards2813

the information that the code location is unreachable from that path, either the solver2814

provides a model for symbolic variables such that the formula is true and BINSEC2815

forwards this model for symbolic inputs to the user.2816

5.2.3 Summary2817

BINSEC is a symbolic execution engine for binary programs with good properties:2818

– It can assess the standard reachability of code locations;2819

– It is correct assuming correct logical encoding of path predicates and correctness2820

of the underlying solver (if the solver answers SAT with a model, then the formula2821

is indeed satisfiable and the model is a real one);2822

– It achieves bounded verification (k-completeness), assuming all dynamic jumps2823

can be enumerated, which is usually the case in practice.2824

5.3 BINSEC/ASE Implementation2825

The work described in the rest of this chapter has been conducted during this thesis.2826

BINSEC symbolic engine core is the only part we changed in order to implement BIN-2827

SEC/ASE. We start by describing the main modifications made to BINSEC, before2828

detailing the fault models’ implementation and the implementation of our optimiza-2829

tions.2830

5.3.1 BINSEC/ASE Overview2831

From a user point of view, using BINSEC/ASE is very similar to using the BINSEC2832

tool. The main difference is the attacker model the user provides in the configuration.2833

BINSEC/ASE then assess the adversarial reachability of the attacker’s goal location2834

and outputs possible attack paths if they exist. Internally, several changes are needed2835

in the symbolic execution engine to account for the attacker model’s impact on the2836

program. Figure 5.2 presents an overview of the BINSEC/ASE workflow, detailed in2837

the following sections.2838

Figure 5.2: Overview of BINSEC/ASE workflow

73

5.3. BINSEC/ASE Implementation

5.3.2 ASE Implementation2839

The main modifications to the SE algorithm are described in chapter 4. We detail in2840

this section practical details regarding their implementations.2841

5.3.2.1 Attacker Model Parameters and Goal2842

The user configures the attacker model to consider for the analysis. It takes the form2843

of new parameters inside the configuration file, in particular, to specify the attacker’s2844

capability and the maximum number of faults that are allowed in one attack path.2845

More details on the configuration of the attacker model are available in the user guide2846

provided in Section 5.4.2.2. The attacker goal is expressed with a dedicated reach2847

directive.2848

5.3.2.2 Global Variables2849

We introduce new global variables in the symbolic state to keep track of injected faults.2850

Fault Counter. We use a symbolic variable, called FAULT NUMBER to keep track2851

of how many faults are active, computed by summing the individual fault activation2852

variables. It is initialized at 0 at the initialization of the analysis.2853

Fault Budget. We recover the configuration value given by the user setting the max-2854

imum number of faults allowed to the attacker model and store it inside a symbolic2855

variable called MAX FAULTS (with a concrete fixed value) at the analysis initializa-2856

tion. Having the fault budget as a symbolic variable makes it easy to compare it to2857

our symbolic fault counter in queries.2858

Activation Constraint. Without some additional constraints, a fault could be declared2859

active but have no effect. For instance, a value could be corrupted to a new but2860

identical value, or a reset fault could be performed on a variable already at 0. To count2861

only active faults, truly modifying a variable’s value, we generate and aggregate a2862

set of constraints in a symbolic variable called ACTIVATION CONSTRAINTS. This2863

variable is a boolean value initialized at true. For each fault in the path predicate,2864

ACTIVATION CONSTRAINTS is updated by the computation of a logical and of its2865

current value and the new constraint with respect to the fault model used. A constraint2866

ensuring ACTIVATION CONSTRAINTS is true is added to each query sent to the2867

SMT solver. To sum up, we add activation constraints to remove ineffective faults for2868

a more accurate fault count and possibly help the solver eliminate them.2869

5.3.2.3 Assignments2870

In the program analysis process, when an assignment instruction is encountered, the2871

symbolic state update is augmented.2872

Behavior Wrapper. We created a wrapper around the assignment behavior, which is in2873

charge of deciding which behavior should be applied for this assignment. In particular,2874

should the normal assignment behavior happen, or a behavior injecting a fault?2875

Fault Filter. Each assignment isn’t a possible fault location, there are several conditions2876

to satisfy.2877

1. The user has to have selected an attacker model able to perform faults, i.e. the2878

selected attacker capability isn’t None and the fault budget is strictly greater2879

than 0;2880

74

Chapter 5. The BINSEC/ASE Prototype

2. The instruction must be in the target ranges of the injection set by the user in2881

the configuration;2882

3. The type of the variable on the left-hand side of the assignment cannot be a2883

temporary variable (for DBA internal use with no architectural reality). Flags2884

are faulted or not according to the attacker model;2885

4. As we have no efficient algorithm for faults on addresses, we set a threshold above2886

which a variable is considered an address and is not faulted. This threshold is2887

set by default at 0x05000000 and can be changed by the user;2888

5. There are some variables the user may not want to fault, given in the configura-2889

tion. If the assigned variable is in this blacklist, it is not faulted. We mainly use2890

this feature to avoid faulting the stack pointer.2891

Fault Selection. Once the instruction qualifies for fault injection, a match-case selects2892

the assignment function implementing the desired behavior. If it isn’t a target for fault2893

injection, the normal assignment function (from BINSEC) is selected. Those functions2894

update the symbolic state according to the instruction and fault model.2895

5.3.2.4 Conditional Jumps2896

Conditional jumps can be a place of fault injection and bear some fault injection ma-2897

chinery.2898

Behavior Wrapper. We also created a wrapper around the conditional jump behavior,2899

which is in charge of deciding which behavior should be applied for this conditional2900

jump.2901

Number of Fault Check. A question was: when to make sure the number of active2902

faults doesn’t exceed the fault budget, for Forkless faults in particular? Checking the2903

number of faults at each fault location is costly and doesn’t bring more information,2904

since all assignments done after the last jump don’t bring new constraints. Checking2905

the number of faults at the end of the path leaves room to explore unfeasible paths,2906

that is to say, paths that require more faults than the user gave to the attacker model.2907

We opted for the third option, checking the number of faults at each conditional jump.2908

It takes advantage of the already existing queries at conditional jump locations, adds2909

information due to the activation constraint and allows to prune infeasible paths. To2910

implement this, we augment the normal conditional jump queries (one for the then2911

branch and one for the else branch) with a boolean condition stating that the current2912

value of the fault counter should be lesser or equal to the fault budget. We coupled2913

this number of faults check with checking the validity of the activation constraints.2914

Fault Filter and Selection. BINSEC/ASE implements the test inversion fault model,2915

which injects faults into conditional jumps. A filter is first applied, containing only2916

elements 1,2 and 5 of the enumeration of the assignment fault filter (Section 5.3.2.3).2917

Then, if the instruction is eligible for fault injection, the wrapper selects the faulty2918

behavior, otherwise, it selects the normal behavior, always passing the augmented2919

query.2920

5.3.2.5 Exploration Directives2921

The goal of the exploration is to assess the adversarial reachability of a code location.2922

Our modifications to BINSEC extend its original reachability assessment to adversarial2923

reachability.2924

75

5.3. BINSEC/ASE Implementation

On top of the fault injections, a guard is added to the reachability query, when2925

assessing the feasibility of a path reaching a code location specified by a directive. It2926

consists of a combination of the fault check (the current value of the fault counter needs2927

to be lesser or equal to the fault budget) and the activation constraints check (ensuring2928

ineffective faults are not activated).2929

5.3.2.6 BINSEC/ASE Output2930

BINSEC/ASE output is similar to BINSEC’s. If there exists a model for symbolic2931

variables such that the attacker’s goal is reached, it will be displayed. While in BINSEC2932

symbolic variables are mostly input of the program, with BINSEC/ASE, the model also2933

includes an activation value for each possible fault location, and a symbolic corruption2934

value depending on the fault model. For instance, there will be none for reset faults, it2935

indicates which bit is flipped for a bit-flip fault model, or an exact value in the case of2936

arbitrary data faults. More details are discussed in Section 5.3.3. A model for program2937

input and a fault sequence defines an adversarial path.2938

5.3.2.7 Statistics2939

We extended BINSEC’s computed statistics with, for instance, the number of injection2940

points in total and per path, statistics on queries such as the queries trivially true2941

or false, how many were created and how many were sent. We also implemented the2942

optional computation of the number of ite operators per query, giving a sense of the2943

query complexity. This is optional as it is costly to compute, requiring to traverse each2944

query. Those statistics help with the development effort, in particular, to ensure the2945

correctness of the analysis and assist the debugging process. They also allow comparing2946

techniques, encoding, optimizations, etc. More information on their usage is available2947

in the user guide (Section 5.4.4).2948

5.3.2.8 Implementation Details2949

BINSEC/ASE features other implementation details. They are not purely derived from2950

Adversarial Symbolic Execution algorithms but are tweaks to improve performance.2951

Symbolic default value. When an evaluation is performed on a model, to see if it2952

can be trivially resolved or if the solver needs to be used, and that model contains2953

free, unconstrained variables, BINSEC attributes them an arbitrary value. It helps2954

for performance inside BINSEC. However, since most of our symbolic variables relate2955

to faults, we noticed it improves performance to give them the default value of 0. It2956

means faults are not activated by default.2957

Simplification rules. The operator we favor for forkless encodings, the ite operator2958

is rarely used in DBA natively. For this reason, very few algorithmic simplification2959

rules for symbolic terms dedicated to the ite operator were implemented in BINSEC.2960

Simplification rules are used when symbolic terms are created and before they are2961

added to the symbolic state, path predicate or queried upon. This saves solver effort,2962

which is the main bottleneck in standard symbolic execution. To accommodate our use2963

of ites, we implemented in BINSEC/ASE additional rules that have been backported2964

to the BINSEC tool.2965

– When a unary operator, unop, not for instance, is applied to an ite, it can be2966

forwarded to the then and else members of the ite;2967

76

Chapter 5. The BINSEC/ASE Prototype

– When a binary operator, binop, plus or minus for instance, is applied to an ite2968

term and a constant, the binary operation can be forwarded inside the then and2969

else members of the ite;2970

– When a test operation, compop, equal or lower than for example, is applied to an2971

ite, the expression can be simplified if we know the results of the comparison for2972

each internal member t and e of the ite.2973

Formal rules are presented in Table 5.2.2974

Original expression Expression after simplification
unop (ite c ? t : e) ite c ? (unop t) : (unop e)
binop (ite c ? t : e) cst ite c ? (binop t cst) : (binop e cst)
binop cst (ite c ? t : e) ite c ? (binop cst t) : (binop cst e)

Original expression Condition Simplification
compop (ite c ? t : e) cst (compop t cst) && (compop e cst) 1
compop (ite c ? t : e) cst ¬(compop t cst) && (compop e cst) ¬c
compop (ite c ? t : e) cst (compop t cst) && ¬(compop e cst) c
compop (ite c ? t : e) cst ¬(compop t cst) && ¬(compop e cst) 0

Table 5.2: Simplification rules added to BINSEC/ASE

5.3.3 Forkless Fault Models2975

We detail in this section how our forkless fault models are implemented. To date,2976

we have implemented arbitrary data faults, reset faults, bit-flips, test inversions and2977

instruction skips. Those are generic and commonly used fault models to represent2978

faults from hardware fault injection attacks and can be applied to other fault injection2979

means.2980

5.3.3.1 Data Faults2981

Once this fault behavior has been selected for an assignment, it is possible to perform2982

the number of faults check and the activation constraints check, though it is not the2983

recommended way. If the checks don’t pass, the normal –non faulted behavior is2984

executed.2985

Otherwise, two new symbolic variables are created, one boolean value representing2986

the activation of the fault, and a variable the size of the left-hand side variable repre-2987

senting the fault effect. As a convenience, we add a suffix to those variables’ names with2988

the address of the current instruction. It helps to analyze the results and locate the2989

faults in the ISA of the program. The fault counter is incremented with the symbolic2990

value of the activation variable.2991

All elements required to generate the activation constraint of the fault according to2992

the fault model are set. We update the symbolic state with this additional constraint.2993

Finally, the new right-hand side expression is computed according to the fault model2994

and returned to the wrapping function which performs the final symbolic state update.2995

A summary of this process is shown in Algorithm 5.1 for arbitrary data faults. Note2996

that := denotes an assignment of code variables, while , denotes the mapping of a2997

variable in the symbolic state.2998

77

5.3. BINSEC/ASE Implementation

Algorithm 5.1: Implementation sketch of a forkless arbitrary data fault (with
ite operator) assignment process

Input: path predicate Φ, assignment instruction x := y
Data: fault counter NUMBER FAULT and activation constraint

ACTIV ATION CONSTRAINT stored in Φ
Output: Updated Φ

1 Function eval_assign_normal(Φ, x, y) is

2 return Φ ∧ (x , expr′)
3 end

4 Function eval_assign_arbitrary_data_forkless(Φ, x, y) is
5 addr := GetAddress()
6 Create in Φ a symbolic value named baddr of size 1
7 Create in Φ a symbolic value named non detaddr of size sizeof(y)
8 Φ := Φ ∧ (NUMBER FAULTS , NUMBER FAULTS + baddr)
9 new constraint := (non detaddr 6= y) || ¬baddr

10 Φ := Φ ∧ (ACTIV ATION CONSTRAINT ,
ACTIV ATION CONSTRAINT & new constraint)

11 y′ := ite baddr ? non detaddr : y
12 return Φ, y′

13 end

14 Function eval_assign_handler(Φ, x, y) is
15 if IsFaultLocationFilter() then
16 case ArbitraryDataFaultForkless do
17 Φ′, y′ := eval_assign_arbitrary_data_forkless(Φ, x, y)
18 return eval_assign_normal(Φ′, x, y′)

19 end
20 . . .

21 else
22 return eval_assign_normal(Φ, x, y)
23 end

24 end

Arbitrary data faults. We implemented four different arithmetic encodings for arbi-2999

trary data faults, we show in table 6.13 those encodings and their corresponding acti-3000

vation constraints. We use baddr to represent the activation variable and non detaddr to3001

represent the fault effect. Note that ites are written with a C-like syntax ite c ? t : e3002

where c is the boolean condition that if true, the expression results in the expression3003

t and if false, the ite expression results in the expression e; ⊕ is used to denote a3004

bitwise xor operator. We omit the extension operations from boolean to variable size3005

value for readability. Forkless arbitrary data fault with the ite operator is illustrated3006

in Algorithm 5.1.3007

Reset Faults. Similar to arbitrary data faults, we implement a reset fault model. The3008

differences lie in the fault effect, which does not require a symbolic variable to represent3009

it but is simply the value 0 or an expression resulting in 0 if baddr is active, and the3010

activation constraint that is adapted to exclude fault location assigning the value 0.3011

We also implemented four different forkless encodings with various operators. There3012

78

Chapter 5. The BINSEC/ASE Prototype

Table 5.3: Arbitrary data encodings and their associated activation constraint

Fault model Fault expression Activation constraint
None x := y
Inlined if-then-else x := ite baddr ? non detaddr : y (non detaddr 6= y) || ¬baddr
Multiplication x := y + baddr × non detaddr (non detaddr 6= 0) || ¬baddr
Bitwise and x := y + (−baddr) & non detaddr (non detaddr 6= 0) || ¬baddr
Bitwise xor x := y ⊕ (−baddr) & non detaddr (non detaddr 6= 0) || ¬baddr

are details in Table 5.4.3013

Table 5.4: Reset encodings and their associated activation constraint

Fault model Fault expression Activation constraint
None x := y
Inlined if-then-else x := ite baddr ? 0x0000 : y (y 6= 0x0000) || ¬baddr
Subtraction x := y − baddr × y (y 6= 0x0000) || ¬baddr
Bitwise and x := y − (−baddr) & y (y 6= 0x0000) || ¬baddr
Bitwise xor x := y ⊕ (−baddr) & y (y 6= 0x0000) || ¬baddr

Here, the activation constraint is always the same: the original right-hand side3014

expression should not be 0.3015

Bit-flip Faults. The implementation of the bit-flip fault model is again very similar to3016

the arbitrary data fault process. Two symbolic variables are created for the activation3017

and the effect, their combination is different to result in a bit-flip, as shown in Table3018

5.5.3019

Table 5.5: Bit-flip encoding and its activation constraint

Fault model Fault expression Activation constraint
None x := y
Inlined if-then-else x := ite baddr ? (non detaddr < sizeof(y))

y ⊕ (1 << non detaddr) : y || ¬baddr

We only implemented the ite encoding for bit-flip but others can be imagined. The3020

activation constraint limits the value of non detaddr with respect to the size of the3021

right-hand side expression to avoid overflows. This encoding of bit-flips allows only3022

one bit-flip per assignment, even in a multi-fault context. This represents real classes3023

of attacks, such as the Rowhammer attack. We believe an extended bit-flip encoding3024

can be devised using masks to encode the possibility of multiple bit-flips in one fault3025

location.3026

5.3.3.2 Test Inversion Faults3027

The implementation of the test inversion fault model differs from the implementation3028

of other data faults. The assignment handler takes the normal –non-faulted assignment3029

function. The faulty behavior is instantiated in the conditional jump handler. When3030

the test inversion behavior is selected, it computes the new, faulted condition to give3031

to the normal conditional jump function. This is illustrated in Algorithm 5.2.3032

79

5.3. BINSEC/ASE Implementation

Algorithm 5.2: Implementation sketch of a forkless test inversion process

Input: path predicate Φ, conditional jump instruction if cdt lt else le
Data: worklist WL, fault counter NUMBER FAULT and fault budget

MAX FAULT stored in Φ
Output: Updated Φ and WL

1 Function eval_assign_normal(Φ, cdt, lt, le) is
2 if Φ ∧ cdt ∧ (NUMBER FAULTS ≤MAX FAULT) is satisfiable then
3 Add (Φ ∧ cdt, lt) to WL
4 end

/* Idem for else branch (¬cdt) */

5 end

6 Function eval_test_inversion_forkless(Φ, cdt) is
7 addr := GetAddress()
8 Create in Φ a symbolic value named baddr of size 1

9 Φ := Φ ∧ (NUMBER FAULTS , NUMBER FAULTS + baddr)
10 cdt′ := ite baddr ? ¬cdt : cdt
11 return Φ, cdt′

12 end

13 Function eval_condition_jump_handler(Φ, cdt, lt, le) is
14 if IsFaultLocationFilter() then
15 case TestInversionForkless do
16 Φ′, cdt′ := eval_test_inversion_forkless(Φ, cdt)
17 return eval_conditional_jump_normal(Φ′, cdt′, lt, le)

18 end
19 . . .

20 else
21 return eval_conditional_jump_normal(Φ, cdt, lt, le)
22 end

23 end

There is no need for an activation constraint in this fault model, as the bitwise3033

negation of a boolean value is always its opposite. We used the ite operator but other3034

forkless encodings are possible.3035

5.3.3.3 Instruction Skip Faults3036

The last fault model we implemented is the instruction skip fault model. The idea is3037

to be able to create a nop (no-operation) with a forkless encoding. As each kind of3038

DBA instruction can be the target of a skip, the remaining ones (for static jumps and3039

dynamic jumps) are refactored with a wrapper and a fault filter like the conditional3040

jump handler. A summary of the fault effect for each DBA instruction is presented in3041

Table 5.6, where addr represents a distant code address, next is the next instruction in3042

the memory layout and expr corresponds to an expression computing one or multiple3043

addresses. No activation constraint is required. Except for assignments, the other3044

faulted instructions are likely to open new paths.3045

Faulting a DBA Block. The instruction skip fault model applies to an entire DBA3046

80

Chapter 5. The BINSEC/ASE Prototype

Table 5.6: Instruction skip encoding for each dba instruction

DBA instruction Fault model Fault expression
Assignment None x := y

Forkless Skip x := ite baddr ? x : y
Conditional jump None if cdt goto addr else goto next

Forkless Skip if (cdt & ¬baddr) goto addr else goto next
Static jump None goto addr

Forkless Skip if baddr goto next else goto addr
Dynamic jump None goto expr

Forkless Skip goto (ite baddr ? next : expr)

block, not just one DBA instruction, to correspond to one ISA instruction being3047

skipped. This is relevant only for assignment instructions that need more than one3048

instruction for flags and register updates.3049

Assignment. The Forkless encoding of the instruction skip fault model acts for assign-3050

ments as a data fault, with the effect corresponding to the old value of the right-end-side3051

variable. This is performed for all variables involved in the computation, may it be3052

flags, register or memory operations, with the same activation variable. The difficulty3053

is to know if one instruction in the DBA block is blacklisted (if it updates a variable3054

that should always remain without faults). If so, the fault needs to be canceled for3055

all previous instructions in the block as they were optimistically injected with faults.3056

In practice, the variable containing the activation for the whole bloc is assigned the3057

value 0 in the path predicate. An assignment DBA block ends with a static jump to3058

the next instruction, we reset the cancellation flag and the shared activation variable3059

at this stage.3060

Conditional Jump. Here, the condition is augmented with the possibility of a fault3061

before it is given to the normal conditional jump process.3062

Static Jump. This instruction is in effect replaced by a conditional jump, with the3063

fault activation variable as the condition.3064

Dynamic Jump. The expression that results in the target address of the jump is faulted3065

as a data expression would be.3066

5.3.4 Early Detection of Fault Saturation (EDS)3067

Our first optimization, EDS aims at stopping injection as soon as possible. The imple-3068

mentation follows the algorithm described in Section 4.4.1. Note that this optimization3069

has been designed and implemented for data faults only. Test inversion contains very3070

few fault locations in comparison. We believe it can straightforwardly be adapted for3071

instruction skips.3072

A new behavior is added to the conditional jump handler, where the satisfiability3073

query is first asked for nbf < maxf and then for nbf == maxf to detect the fault3074

saturation. We created an internal flag value to register the activation of EDS and not3075

inject fault when the flag is true.3076

We encountered a challenge implementing EDS. Imagine some faults F are injected,3077

then a conditional jump where no faults is needed to take a certain branch A. Then the3078

constraint nbf < maxf is recorded in the path predicate. Imagine the path encounters3079

81

5.3. BINSEC/ASE Implementation

another conditional jump, where one of its branches, B, needs a fault in F . In the3080

context of a single-fault attacker model, taking the branch A constrains F to be inactive3081

since the sum of the faults before A needs to be 0, hence preventing the exploration of3082

branch B, even if it is possible for the attacker model.3083

To solve this issue, we modified the implementation of the function performing3084

the solver call. An additional argument was added, containing the constraints that3085

shouldn’t be added to the path predicate but that are still part of the query. We call3086

this parameter such that: can the path predicate and the conditional condition be true3087

such that this parameter is also true.3088

5.3.5 Injection On Demand (IOD)3089

Our second optimization, IOD, described in Section 4.4.2, aims at starting injection3090

as late as possible, and only adding new faults when necessary. Note that again, this3091

optimization has been designed with data faults. Test inversion contains very few fault3092

locations in comparison. We show later how it was adapted for instruction skips, and3093

focus the first part of the description on its application to data faults.3094

Contrary to EDS, IOD required heavy refactoring. The injection on demand re-3095

quires to compute and keeping in parallel two path predicates. We name dual the3096

combined symbolic states. All functions have to be updated with this new type. Ei-3097

ther they need only one symbolic state and the caller function has to be modified to3098

give the relevant symbolic state, or the function receives a dual and its logic must be3099

adapted to take the dual into account.3100

The initialization instantiates an extra symbolic state. Path predicate update func-3101

tions need to perform the same operations twice, once on the normal predicate and3102

once on the faulted predicate. This includes assignments, conditional jumps, static3103

jumps and dynamic jumps, but also all functions interacting with the SMT solver3104

and the directive handlers. A new internal variable was created to keep track of the3105

under-approximation counter. Its value is checked before injecting faults.3106

The assignment process is duplicated, the normal path predicate is updated with3107

the normal assignment behavior, and the faulted path predicate is updated with the3108

faulty behavior presented above.3109

IOD for Instruction Skip. All types of instructions need to be taken into account for3110

this fault model.3111

– We keep the same mechanism for assignments and conditional jump, though3112

adding the possibility of skipping the latter;3113

– We never merge for static jumps, as previous instruction skips do not influence3114

the static jump address;3115

– We systematically merge for dynamic jumps. This is a choice different than3116

for data faults where paths are not merged there. As we do not have an effi-3117

cient algorithm for faults on addresses, this choice for data faults limits faults on3118

dynamically computed addresses. However, the forkless instruction skip doesn’t3119

have limitations on skipping address assignments or on faults regarding addresses3120

in general, all instructions can be skipped.3121

5.3.6 Sub-fault Simplification3122

To improve performance further by reducing the number of injection points, we devised3123

a new optimization, sub-fault simplification. The idea is to detect faults subsumed by3124

82

Chapter 5. The BINSEC/ASE Prototype

another fault, especially in the case of arbitrary data faults. The dominated fault can3125

be nullified without loss of generality.3126

x := 8
x := x + 1

(a) Original statement

x:= i t e f a u l t h e r e 1 ? f a u l t v a l u e 1 : 8
x:= i t e f a u l t h e r e 2 ? f a u l t v a l u e 2 :

(f a u l t h e r e 1 ? f a u l t v a l u e 1 : 8) + 1

(b) Forkless transformation for arbitrary data fault

Figure 5.3: Illustration of sub-fault simplification

An example of this pattern is provided in Figure 5.3. The same left-hand-side3127

variable is assigned multiple times, only the last one could be faulted with an arbitrary3128

data fault to reduce fault injection points.3129

We implemented this concept as a query preprocessing, adding the expression nul-3130

lifying fault activation variables in queries. We designed two variants:3131

– one where the dominated faults are detected on a per-query basis (Free),3132

– and another using a memoization technique in the hope of improving performance3133

(Mem).3134

However, a dominated fault in one query is not necessarily dominated in another,3135

hence there are some soundness issues with this technique. We detect unsound cases3136

and propose two recovery mechanisms:3137

– Abort where the SFS simplification is not added to the query,3138

– and Lazy still trying the query and sending it again without SFS if the query is3139

UNSAT.3140

Unfortunately, experiments showed (see Section 6.3.2) that this optimization was3141

costly in execution time due to query traversal. It was then abandoned.3142

5.3.7 Forking Fault Models3143

In order to compare our novel forkless encoding technique against the state-of-the-art3144

techniques in the fairest way, we implemented forking encodings alongside FASE. Note3145

that mutant generation scales worst. This allows us to restrict the comparison to the3146

encodings only, the rest of the analysis workflow being the same inside BINSEC.3147

Forking faults appear as other faulting options inside the instruction handler. Pre-3148

viously described optimizations do not apply to forking faults as their placements are3149

concrete.3150

5.3.7.1 Forking Data Faults3151

This behavior differs from forkless data faults as the path is split between a path3152

with faults for this instruction and one without. This is similar to a normal conditional3153

jump. Both paths are stored in BINSEC’s worklist WL and one is dequeued to continue3154

the exploration inside the wrapper. Algorithm 5.3 illustrates the general process for3155

arbitrary data fault.3156

83

5.3. BINSEC/ASE Implementation

The forking encodings split the path in two, in one path the activation variable baddr3157

is true, the assignment is faulted and the fault counter is incremented; in the second3158

path, the assignment proceeds with the normal behavior. We perform the number of3159

faults check at each fault location for forking faults because the number of faults is3160

concrete and it allows pruning unfeasible branches early on.3161

The arbitrary data fault model simply replaces the right-hand side of the assignment3162

with a nondeterministic value. The reset fault model is identical except it replaces the3163

right-hand side with zeros, and bit-flips flip a bit with an encoding similar to the forkless3164

one.3165

5.3.7.2 Forking Test Inversion Faults3166

The implementation of the forking test inversion fault model follows the same principles3167

as the forking data fault models, except it takes place in the conditional jump handler.3168

A verification of the number of faults already performed is done, then the path is split3169

in two, one will execute the normal conditional jump and the other one, a conditional3170

jump with the negation of the condition.3171

5.3.7.3 Forking Instruction Skip Faults3172

The instruction skips fault model also has its forking counterpart implemented, still3173

following the same principles. Here, when the fault on an assignment block has to be3174

canceled because it updates a black-listed variable, the exploration is simply stopped3175

in the faulted branch and continues in the branch without the fault.3176

5.3.8 Conclusion3177

We saw in this section how BINSEC was used to build an Adversarial Symbolic Exe-3178

cution tool, BINSEC/ASE, able to assess the adversarial reachability of a location in a3179

binary program. Most of BINSEC is kept as is, the main changes happen at the path3180

predicate computation.3181

We will now take a step back from technical details and explore a methodology to3182

analyze a new program as a user guide and a methodology to add a new fault model3183

as a developer guide.3184

84

Chapter 5. The BINSEC/ASE Prototype

Algorithm 5.3: Implementation sketch of a forking arbitrary data fault assign-
ment process

Input: path predicate Φ, assignment instruction x := y
Data: fault counter NUMBER FAULT and fault budget MAX FAULT

stored in Φ
Output: Updated Φ

1 Function eval_assign_normal(Φ, x, y) is

2 return Φ ∧ (x , expr′)
3 end

4 Function eval_assign_arbitrary_data_forking(Φ, x, y) is
5 if Φ ∧ (NUMBER FAULTS ≤MAX FAULT) is satisfiable then
6 addr := GetAddress()
7 Create in Φ a symbolic value named baddr of size 1
8 Create in Φ a symbolic value named non detaddr of size sizeof(y)
9 Split in Φ the values for variable baddr

10 case 0b1 do

11 Φ′ := Φ ∧ (baddr , 0b1)
12 Φ′ := Φ′ ∧ (NUMBER FAULTS , NUMBER FAULTS + 1)
13 new constraint := (non detaddr 6= y) || ¬baddr
14 Φ′ := Φ′ ∧ (ACTIV ATION CONSTRAINT ,

ACTIV ATION CONSTRAINT + new constraint)
15 y′ := non detaddr
16 return eval assign normal(Φ′, x, y′)

17 end
18 case 0b0 do

19 Φ′ := Φ ∧ (baddr , 0b0)
20 return eval assign normal(Φ′, x, y)

21 end

22 else
23 eval assign normal(Φ, x, y)
24 end
25 return Φ′, y′
26 end

85

5.4. User Guide: a Methodology to Analyse a New Program

5.4 User Guide: a Methodology to Analyse a New Pro-3185

gram3186

The aim of this section is to provide a brief guide to the interested user so they can3187

use BINSEC/ASE on their own programs, from the setup to the evaluation phase.3188

In particular, this section does not aim to be exhaustive but to give an idea of the3189

engineering effort required to perform an analysis and list the main steps. An overview3190

is resented in Figure 5.4.3191

Figure 5.4: User guide workflow

5.4.1 Running Example3192

To illustrate the usage of BINSEC/ASE, let’s consider again the basic version of the3193

VerifyPIN program that we saw in Chapter 2. It is presented in Figure 5.5, with some3194

PIN initialization (lines 7 to 17). We assume the attacker does not know the correct3195

PIN, so they try one at random, ”0 0 0 0” for instance. The attacker goal is to be3196

authenticated, i.e. to pass the assertion line 41.3197

The program works as follows. The main function line 38 starts by initializ-3198

ing the PINs, and then it calls the verifyPIN function. This function resets the3199

g authenticated variable to false by default, then calls the byteArrayCompare func-3200

tion to compute the PIN check. If byteArrayCompare returns 1, then the program3201

authenticates the user. Inside byteArrayCompare, each digit is checked against the3202

card PIN digit and if one is detected to be different, the function returns 0.3203

Note that this program is very naive and, in particular, not constant time. Other3204

versions are proposed in FISSC [DPP+16] that are. Here, we only consider an attacker3205

able to inject faults into a program, and not perform side-channel analysis.3206

We compile toward Intel x86-32 bits. As we use a previous version of BINSEC3207

(2021), support for Intel x86-64 bits is not available. It becomes available in newer3208

BINSEC versions. Note that our technique is architecture independent and considering3209

32-bit programs still makes sense in an embedded system context.3210

This C program is compiled with gcc using the following command line:3211

86

Chapter 5. The BINSEC/ASE Prototype

1 #def ine PIN SIZE 4
2
3 bool g authent i ca ted = 0 ;
4 i n t g userPin [PIN SIZE] ;
5 i n t g cardPin [PIN SIZE] ;
6
7 void i n i t i a l i z e () {
8 i n t i ;
9 // card PIN = 1 2 3 4

10 f o r (i = 0 ; i < PIN SIZE ; ++i) {
11 g cardPin [i] = i +1;
12 }
13 // user PIN = 0 0 0 0
14 f o r (i = 0 ; i < PIN SIZE ; ++i) {
15 g userPin [i] = 0 ;
16 }
17 }
18
19 bool byteArrayCompare (i n t * a1 , i n t * a2 , i n t s i z e) {
20 i n t i ;
21 f o r (i = 0 ; i < s i z e ; i++) {
22 i f (a1 [i] != a2 [i]) {
23 return 0 ;
24 }
25 }
26 return 1 ;
27 }
28
29 void ver i fyPIN () {
30 g authent i ca t ed = 0 ;
31 i f (byteArrayCompare (g userPin , g cardPin ,
32 PIN SIZE) == 1) {
33 g authent i ca t ed = 1 ; // A u t h e n t i c a t i o n () ;
34 }
35 return ;
36 }
37
38 void main () {
39 i n i t i a l i z e () ;
40 ver i fyPIN () ;
41 a s s e r t (g authent i ca ted == 1) ;
42 }

Figure 5.5: Running example, inspired by VerifyPIN [DPP+16]

87

5.4. User Guide: a Methodology to Analyse a New Program

3212

$ gcc −m32 −s t a t i c −O0 −g ver i fyPIN 0 . c3213
3214

The flag m32 indicates to compile into a 32 bits binary, static means all depen-3215

dencies are statically linked which is required by the BINSEC tool, the optimization3216

level O0 and the inclusion of debug symbols with the −g flag allow for easy mapping3217

between source code and binary program.3218

5.4.2 Analysis Goal3219

An analysis with BINSEC/ASE starts by defining what type of security property the3220

user wants to study and what type of attacker the program faces.3221

Depending on the analysis goal, the exploration can be configured through a ded-3222

icated option to stop at the first attack found if any, or to explore exhaustively all3223

adversarial paths in the program. If the program is resistant to the considered attacker3224

model, the analysis being k-complete, it explores all paths up to a bounded depth to3225

ensure no bounded attack paths are missed. It is sometimes possible to increase the3226

depth bound to get the completeness of the analysis.3227

5.4.2.1 Security Properties3228

Security properties are application-specific and finding relevant ones is an active area3229

of research. It is not in the scope of this thesis. However, we provide the following few3230

pointers.3231

Many different properties can be important to ensure in a program like authentica-3232

tion, data integrity or correct program output in general. When verifying an authen-3233

tication program, an interesting property is to make sure the password given is indeed3234

the reference password. For cryptographic programs, there may be mathematical for-3235

mulas that should remain true to avoid leaking the secret key like the BelCore attack3236

in CRT-RSA. The attacker’s goal is to violate that security property.3237

BINSEC/ASE supports properties that can be expressed with existing program3238

variables, or even ghost variables that the user updates through stubs. The security3239

oracle can also be written in DBA as part of the configuration file, then it can be3240

expressed with all DBA variables involved, and in particular it grants access to flags,3241

resisters and memory locations. We can even imagine verifying trace properties. In the3242

examples we provide, the property is expressed with program variables as an ‘assert’3243

in the program.3244

Once the desired security property is established, there remains the question of the3245

location in the program where it should be true. It may be at the end of the program to3246

verify a program’s output or in the middle, checking for memory access out of bounds3247

for instance. To increase the efficiency of the analysis, we suggest identifying locations3248

in the code from where the security property cannot be violated anymore to prune the3249

exploration. It can correspond to some program returns or calls to library functions3250

handling error cases.3251

Running example. In the VerifyPIN program, we consider that the attacker goal is to3252

be authenticated despite not having the correct PIN. At the program level, it corre-3253

sponds to reaching the true branch of the assertion in the binary (address 0x08049e3a)3254

corresponding to line 41 in C. We place a cut at the false branch of the assertion,3255

at address 0x08049e1e, since the attacker cannot succeed past that point. Figure 5.63256

shows the assembly code for the main function.3257

88

Chapter 5. The BINSEC/ASE Prototype

08049 deb <main>:
8049 deb : endbr32
8049 de f : l e a 0x4(%esp) ,% ecx
8049 df3 : and $ 0 x f f f f f f f 0 ,%esp
8049 df6 : pushl −0x4(%ecx)
8049 df9 : push %ebp
8049 dfa : mov %esp ,%ebp
8049 dfc : push %ebx
8049 dfd : push %ecx
8049 dfe : c a l l 8049 bc0 < x86 . get pc thunk . bx>
8049 e03 : add $0x9b1fd ,%ebx
8049 e09 : c a l l 8049 ce5 < i n i t i a l i z e >
8049 e0e : c a l l 8049 da7 <veri fyPIN>
8049 e13 : movzbl 0x12dc(%ebx) ,% eax
8049 e1a : cmp $0x1 ,% a l
8049 e1c : j e 8049 e3a <main+0x4f>
8049 e1e : l e a −0x30fd4(%ebx) ,% eax
8049 e24 : push %eax
8049 e25 : push $0x2b
8049 e27 : l e a −0x30 f f 8 (%ebx) ,% eax
8049 e2d : push %eax
8049 e2e : l e a −0x30fea(%ebx) ,% eax
8049 e34 : push %eax
8049 e35 : c a l l 804 a f f 0 < a s s e r t f a i l >
8049 e3a : nop
8049 e3b : l e a −0x8(%ebp) ,% esp
8049 e3e : pop %ecx
8049 e3 f : pop %ebx
8049 e40 : pop %ebp
8049 e41 : l e a −0x4(%ecx) ,% esp
8049 e44 : r e t

Figure 5.6: Running example: disassembly of the main function

5.4.2.2 Attacker Model3258

Once the security property to verify has been defined, the relevant attacker model has3259

to be specified. Note that a very powerful attacker model can break almost any security3260

property, hence the need to choose the right strength level, after a risk analysis for the3261

application.3262

Attacker Capability and Attacker Budget. Those two parameters define the strength3263

of the attacker model and can give an idea of the injection means at their disposal.3264

They should be selected according to the risk analysis previously performed.3265

Target Locations. This corresponds to the set of instruction addresses that can be3266

faulted by the attacker. It is expressed as a list of intervals. For large programs, we3267

recommend focusing the target locations on the critical sections of code to get faster3268

results. In a single fault scenario, the analysis can be split with a different section3269

targeted each time. If the security oracle has been added to the code, we recommend3270

89

5.4. User Guide: a Methodology to Analyse a New Program

excluding that part from the target locations.3271

This can also help refine the attacker model. If an attacker model can only fault3272

some specific instructions, target locations can be enumerated exhaustively. For in-3273

stance, skipping only function calls can be modeled by listing as targets only the func-3274

tion call with an instruction skip fault model. Faulting data only on loads and stores,3275

at the memory interface, can be represented in this way too. In those two examples, it3276

is possible to design specific fault models, we refer the interested reader to Section 5.5.3277

Other Fault Modifiers. To prevent faults on variables deemed secure, not interesting,3278

or with no efficient algorithm to handle them, a target blacklist can be used. We3279

mainly use it for the esp and gs registers in Intel x86 binaries. The esp register is the3280

stack pointer and we do not currently have an efficient algorithm to handle faulting it.3281

The gs resister is used as a base pointer to point to a data region in some programs.3282

Faulting gs results in a combinatorial explosion as the base pointer for data can now be3283

taken anywhere in a data fault model. In general, we do not have an efficient algorithm3284

to handle faults on memory addresses, those can be filtered out with a configuration3285

option.3286

By default, BINSEC/ASE doesn’t fault flags as it would largely increase the number3287

of fault locations and new symbolic variables. Faults on ‘normal’ variables are most of3288

the time expressive enough with respect to the attacker model. However, it is possible3289

to activate faults on flags with a configuration option.3290

Running example. Let’s consider an attacker model able to perform arbitrary data3291

fault for instance. Since the VerifyPIN program does not have any protection, we3292

expect it to be vulnerable to an attacker able to inject one fault. For target loca-3293

tions, we exclude the initialize and main functions. This leaves the verifyPIN and3294

byteArrayCompare functions (assembly code in Figures 5.7 and 5.8), where we also3295

exclude the beginning which put the return address onto the stack, as well as the3296

end of the functions handling the return process. It leaves two ranges of addresses3297

to fault: 0x08049dba to 0x08049de6 in verifyPIN and 0x08049d5e to 0x08049da0 in3298

byteArrayCompare.3299

90

Chapter 5. The BINSEC/ASE Prototype

08049 da7 <veri fyPIN >:
8049 da7 : endbr32
8049dab : push %ebp
8049 dac : mov %esp ,%ebp
8049 dae : push %ebx
8049 daf : c a l l 8049 bc0 < x86 . get pc thunk . bx>
8049db4 : add $0x9b24c ,%ebx
8049dba : movb $0x0 , 0 x12dc(%ebx)
8049 dc1 : push $0x4
8049 dc3 : mov $0x80e6c94 ,%eax
8049 dc9 : push %eax
8049 dca : mov $0x80e6c84 ,%eax
8049dd0 : push %eax
8049dd1 : c a l l 8049 d4a <byteArrayCompare>
8049dd6 : add $0xc ,%esp
8049dd9 : cmp $0x1 ,% a l
8049ddb : jne 8049 de5 <ver i fyPIN+0x3e>
8049ddd : movb $0x1 , 0 x12dc(%ebx)
8049 de4 : nop
8049 de5 : nop
8049 de6 : mov −0x4(%ebp) ,%ebx
8049 de9 : l e ave
8049 dea : r e t

Figure 5.7: Running example: disassembly of the verifyPIN function

91

5.4. User Guide: a Methodology to Analyse a New Program

08049 d4a <byteArrayCompare>:
8049 d4a : endbr32
8049 d4e : push %ebp
8049 d4f : mov %esp ,%ebp
8049 d51 : sub $0x10 ,%esp
8049 d54 : c a l l 8049 e45 < x86 . get pc thunk . ax>
8049 d59 : add $0x9b2a7 ,%eax
8049 d5e : movl $0x0 ,−0x4(%ebp)
8049 d65 : jmp 8049 d98 <byteArrayCompare+0x4e>
8049 d67 : mov −0x4(%ebp) ,% eax
8049 d6a : l e a 0x0(,%eax ,4) ,% edx
8049 d71 : mov 0x8(%ebp) ,% eax
8049 d74 : add %edx ,%eax
8049 d76 : mov (%eax) ,%edx
8049 d78 : mov −0x4(%ebp) ,% eax
8049d7b : l e a 0x0(,%eax ,4) ,% ecx
8049 d82 : mov 0xc(%ebp) ,% eax
8049 d85 : add %ecx ,%eax
8049 d87 : mov (%eax) ,% eax
8049 d89 : cmp %eax ,%edx
8049d8b : j e 8049 d94 <byteArrayCompare+0x4a>
8049d8d : mov $0x0 ,%eax
8049 d92 : jmp 8049 da5 <byteArrayCompare+0x5b>
8049 d94 : addl $0x1 ,−0x4(%ebp)
8049 d98 : mov −0x4(%ebp) ,% eax
8049d9b : cmp 0x10(%ebp) ,% eax
8049 d9e : j l 8049 d67 <byteArrayCompare+0x1d>
8049 da0 : mov $0x1 ,%eax
8049 da5 : l e ave
8049 da6 : r e t

Figure 5.8: Running example: disassembly of the byteArrayCompare function

92

Chapter 5. The BINSEC/ASE Prototype

5.4.3 Configuration3300

For detailed configuration options, we refer the interested reader to the online docu-3301

mentation and examples provided as part of the BINSEC/ASE artifact9.3302

Running Example. Figure 5.9 shows what a configuration file for the VerifyPIN pro-3303

gram would look like, with the described attacker model. The memory file mem only3304

contains a starting address for the stack pointer. An appropriate value for the maximal3305

exploration depth depth is discussed in Section 5.4.5.3306

3307

esp<32> := 0xFFFFFF00 ;3308
3309

[k e rne l]
i s a = x86
ent rypo int = main
f i l e = ver i fyPIN 0 . x

[s s e]
enabled = true
depth = 200
memory = mem

fau l t−model = ArbitraryData
max−f a u l t s = 1
goal−address = 0 x08049e3a
a s s e r t−f a i l −address = 0 x08049e1e
target−addre s s e s = 0x08049dba , 0 x08049de6 , 0 x08049d5e , 0 x08049da0
i n j e c t i o n−method = on−demand
target−b l a c k l i s t = esp
where−check−nb−f a u l t s = branch

Figure 5.9: Running example: BINSEC/ASE configuration file

5.4.4 Reading BINSEC/ASE Output3310

We base this section on the output of BINSEC/ASE for the VerifyPIN running example.3311

Run Statistic. The output ends with some analysis statistics (see Figure 5.10). For3312

instance, We can see on line 2 that the analysis explored 5 different paths, analyzed3313

206 instructions in total (line 5) and the longest path is 163 instructions deep (line 6).3314

To determine if the analysis was complete (as opposed to k-complete), the following3315

statistics should be checked:3316

– The number of ‘cut early paths’ line 8 should be 0;3317

– The number of SMT queries the solver answered ‘unknown’ for should be 0 (line3318

20).3319

The ‘SMT queries’ section provides a number of information about queries and3320

reliance on the SMT solver. It gives an idea about the query complexity handled by3321

the analysis.3322

9https://github.com/binsec/esop2023 artefact

93

https://github.com/binsec/esop2023_artefact

5.4. User Guide: a Methodology to Analyse a New Program

– Line 11, we see that 61 queries were generated but only 13 of them needed to be3323

sent to the solver (line 12). The difference has been arithmetically simplified into3324

true or false (lines 18 and 19 for assume queries);3325

– The ‘Average solving time’ (line 13) gives in seconds the average time the solver3326

took to answer per query. Here, our tool wasn’t precise enough to record the3327

small value, hence the display of a 0.3328

Among the ‘Fault injection’ statistics, we have a reminder of the selected attacker3329

model options (lines 23, 25, 26 and 27) and chosen optimizations (lines 24 and 28).3330

The total number of injections performed is indicated in line 29. In the end, resides3331

overall analysis results:3332

– ‘Models found’ (line 33) indicates the number of adversarial paths produced by3333

BINSEC/ASE;3334

– ‘Assert cut’ (line 34) relates to the number of paths where the attacker goal was3335

not adversarially reachable.3336

Attack Path. We explore in Figure 5.11 one of the produced attack paths to under-3337

stand how to read that part of the BINSEC/ASE output. Line 1 indicates that the3338

goal address 0x08049e3a has been reached and the solver proposed the model follow-3339

ing. Only 3 different faults were injected in that path and the fault at the address3340

0x08049d5e is the activated one (line 4). It corresponds to the initialization of the3341

loop counter i, equivalent to line 20 in Figure 5.5. The solver proposed to inject the3342

value 0x7ffffffc (line 9) instead of the original value 0. Since 0x7ffffffc is strictly greater3343

than PIN SIZE, the program does not enter the loop and returns 1 as if all digits were3344

correct. Hence, injecting this fault allows the attacker to reach its goal.3345

94

Chapter 5. The BINSEC/ASE Prototype

1 [s s e : i n f o] Explorat ion
2 Paths 5
3 Paths cont inu ing a f t e r max reached 0
4 Secondary q u e r i e s (EDS only) 0
5 Analysed i n s t r u c t i o n s 206
6 Max depth i n s t r u c t i o n 163
7 Max depth branchments 16
8 Cut e a r l y paths 0
9

10 [s s e : i n f o] SMT q u e r i e s
11 Number o f q u e r i e s 61
12 Number o f q u e r i e s sent to the s o l v e r 13
13 Average s o l v i n g time 0.000000
14 Total assume q u e r i e s 49
15 Assume q u e r i e s sent to s o l v eu r 13
16 Total enumerate q u e r i e s 12
17 Enumerate q u e r i e s sent to s o l v eu r 0
18 T r i v i a l t rue assume 18
19 T r i v i a l f a l s e assume 18
20 Unknown s o l v e r 0
21
22 [s s e : i n f o] Fault i n j e c t i o n
23 Fault model ArbitraryData
24 I n j e c t i o n method on−demand
25 Maximum number o f f a u l t s 1
26 Where number o f f a u l t s checked : branch
27 Where non det c o n s t r a i n s checked : branch
28 At branch optim : f a l s e
29 I n j e c t i o n l o c a t i o n s 15
30 Min I n j e c t i o n l o c a t i o n s per path 0
31 Max I n j e c t i o n l o c a t i o n s per path 15
32 Avg I n j e c t i o n l o c a t i o n s per path 11
33 Models found 3
34 Assert cut 2

Figure 5.10: Running example: BINSEC/ASE statistics output

95

5.4. User Guide: a Methodology to Analyse a New Program

1 [s s e : r e s u l t] Model 08049 e3a
2 −−− Model −−−
3 # Var iab l e s
4 b 8049d5e : #b1
5 b 8049d98 : #b0
6 b 8049dba : #b0
7 ebp : −−
8 ebx : −−
9 non det 8049d5e : #x 7 f f f f f f c

10 non det 8049d98 : #x 7 f f f f f f d
11 non det 8049dba : #x00
12
13 −− empty memory −−

Figure 5.11: Running example: BINSEC/ASE attack path

5.4.5 Analysis Process3346

We describe here the recommended process when adding a new benchmark, after the3347

security property and attacker model definition step has been performed. This is an3348

iterative process to ensure correct configuration and early results.3349

As configuring a BINSEC/ASE analysis may be a trial-and-error process, we recom-3350

mend starting with a non-faulted run. This helps to see if there is any warning or error3351

to resolve. If an attack is found, it should be investigated. Either there is an existing3352

bug in the program or the configuration is not adapted. Other statistics can be read3353

and examined, like the number of explored paths or solver statistics. As a convenience,3354

we use the maximal depth of a non-faulted run, rounded up to the hundred as a bound3355

for faulted runs, this metric can be recovered at this step. The default maximal depth3356

setting may need to be increased to adapt to the program.3357

The next step is to add the attacker model to the configuration. The analysis is3358

likely to take longer and explore more paths. We recommend starting from a rather3359

weak attacker model, able to perform only one fault, then analyzing the BINSEC/ASE3360

run, before incrementally strengthening the attacker model until the desired one. This3361

incremental process enables the detection of any abnormal behavior, warnings or errors3362

before the analysis gets too complex. If an attack is found for a weaker attacker model3363

than the desired one, the program is vulnerable. The attack can be analyzed and3364

possibly protected against.3365

5.4.6 Summary3366

We presented in this section a methodology to set up a new program for a BINSEC/ASE3367

analysis. Here is a summary of the different steps.3368

1. Express the security properties of the program;3369

2. Decide on an attacker model relevant to the program;3370

3. Write the configuration file;3371

4. Run BINSEC/ASE without faults to verify the configuration;3372

5. Incrementally increase the strength of the attacker model until the desired one.3373

Now that the program analysis is set up as intended, the results can be integrated3374

96

Chapter 5. The BINSEC/ASE Prototype

into the bigger picture, for instance, a security evaluation by a security practitioner.3375

– If the program was vulnerable when it was not supposed to be, a strengthening3376

process can begin, adding countermeasures and starting the analysis process pre-3377

sented above, iterating until the analysis results meet the security requirements;3378

– If the program proves resistant to the considered attacker model, it can be in-3379

teresting to consider other properties the program should have, and start the3380

analysis process again with this new attacker model.3381

5.5 Developer Guide: a Methodology to Add a New Fault3382

Model3383

The objective of this section is to present a methodology to add a new fault model3384

inside BINSEC/ASE. We acknowledge that there exist many different fault models.3385

We implemented some in this thesis as proof of concepts, but others may be more3386

relevant to a specific application. This guide is meant to provide a starting point for3387

interested developers and does not aim to be exhaustive.3388

Running Example. In this section, the instruction skip fault model is the running3389

example. It was the last to be implemented and required modifications in many parts3390

of the symbolic engine.3391

5.5.1 Defining the New Fault Model3392

The first step to adding a new fault model is to design it on paper. We discuss it in3393

this section.3394

5.5.1.1 State-of-the-art Attack3395

A fault model is usually derived from a capability given to an attacker by a real attack3396

that a security practitioner wishes to simulate. To represent this attack, a developer3397

needs to understand it in terms of:3398

– what type of capability it gives to an attacker (what action on what object);3399

– when it can be applied in the execution;3400

– in which part of the system the fault is introduced;3401

– does multiple faults make sense and if so how.3402

Running Example. Instruction skip is a common model used to describe the effects of3403

hardware fault injection on programs. In practice, instructions can be modified so they3404

don’t have side effects, or the prefetch buffer may be tempered with. A skip can occur3405

on any ISA instruction. Multiple separated faults are possible in the state-of-the-art,3406

as well as skipping multiple consecutive instructions.3407

5.5.1.2 Fault Model3408

The details of the attacker capability to model have to be expressed in terms of their3409

impact on the path predicate computation. That is to say, how they modify the3410

path predicate initialization, the adversarial reachability query and the behavior of the3411

four main DBA instructions: assigns, static, conditional and dynamic jumps. At this3412

step, the capability is often over-approximated for simplicity. It is possible to imagine3413

complex fault models with interactions between different instructions. It can be the3414

97

5.5. Developer Guide: a Methodology to Add a New Fault Model

case when considering precisely the micro-architecture [TAC+22]. It would require3415

keeping track of a trigger flag in the symbolic state.3416

Running Example. We modeled instruction skip as not executing an instruction en-3417

tirely, not updating the memory, the registers or the flags. Forkless instruction skip3418

has the following impact on the path predicate computation (see Section 5.3.3.3 for3419

more details).3420

– Assign: a data fault is injected, with the corrupted value being the old value of3421

the variable.3422

– Static jump: this instruction is transformed into a conditional jump, with the3423

fault activation as the condition, the next instruction directly below in addresses3424

as the target for the true branch, and the original target for the else branch.3425

– Conditional jump: the condition is augmented with an activation variable, that if3426

true, the analysis goes to the ‘then’ branch which corresponds to the next address3427

in the memory layout.3428

– Dynamic jump: the expression providing the possible jump targets is augmented3429

similarly to a data fault, adding the next instruction address as a jump target3430

possibility.3431

Here, we see an example of a fault model modifying all the DBA instructions, it is3432

not necessarily the case. For instance, a new kind of data fault would only modify the3433

assignment process.3434

We choose to implement multiple distinct faults to represent an attacker with a3435

multiple instruction skip capability, with the existing machinery (number of faults3436

check in particular). We believe implementing a fixed number of consecutive faults can3437

be done by storing fault activation variables and a timer in the path predicate, adding3438

with a logical and the stored activation variables to the current instruction’s activation3439

and decreasing the timer at each time until their timer reaches 0.3440

5.5.2 Implementation3441

Once the plan for which instruction handler needs to be modified and how, it can be3442

implemented inside BINSEC/ASE. A new fault model may need other adjustments,3443

such as:3444

– the initialization process,3445

– the directives handlers,3446

– the fault location filtering process already implemented may work or may need3447

to be modified,3448

– it may also require additional internal variables stored in the path predicate, like3449

counters, we have some for injected faults, or boolean flags, indicating a fault3450

saturation for instance,3451

– queries sent to the SMT solver may be impacted in their form (adding new3452

elements) and in which part of the query should be stored as a new constraint in3453

the path predicate or not,3454

– the new fault model has to be added to the configuration option to allow a user3455

to select it.3456

We provide Ocaml interfaces in BINSEC/ASE for the elements listed above in Table3457

5.7.3458

For comparison, we implemented a forking version of all our forkless fault models.3459

If the developer wishes to do the same, a new fault model needs to be designed, as the3460

impact of the forking fault model on the path predicate is different.3461

98

Chapter 5. The BINSEC/ASE Prototype

Table 5.7: Ocaml interfaces

Elements to modify BINSEC/ASE Ocaml interface
Initialization process src/ee/sse.ml:do sse
Directive handlers src/ee/sse.ml:[handle assumptions, handle reach],

src/ee/sse.ml:[handle enumerate, handle cut]
Fault filter src/ee/sse.ml:is fault location
Path predicate src/ee/sse types.[ml, mli]:Path state
SMT queries src/ee/senv.[ml, mli]:[assume, enumerate]
Options src/ee/sse options.[ml, mli]
Exploration metrics src/ee/sse.ml:Stats
Solver metrics src/ee/senv.ml:Query stats

5.5.3 Dedicated Metrics3462

We recommend implementing dedicated metrics to monitor the new fault model. It3463

can be the number of times it is triggered, a notion of where it is triggered, etc. This3464

helps the debugging process and provides more details in the BINSEC/ASE output3465

for further program or attack study. We distinguish two types of metrics, exploration3466

metrics and solver metrics. Interfaces for them are listed in Table 5.7.3467

Running Example. For instance, the instruction skip fault model comes with counters3468

for how many of each kind of DBA instruction has been faulted.3469

5.5.4 Testing3470

Implementing a new fault model is not trivial and requires testing to ensure the correct-3471

ness of the implementation. We recommend writing a few minimal testing programs,3472

each showcasing a different aspect of the fault model, for one and two faults. Then,3473

configure them, run the BINSEC/ASE analysis and analyze manually the results. This3474

means examining the number of paths explored and ensuring it is correct, seeing where3475

queries have been created and that it is reasonable, verifying the total number of injec-3476

tion points, etc. And study the dedicated metrics added to be sure to understand what3477

happens. BINSEC comes with different levels of debug logs which can be very helpful3478

in understanding the unrolling of the analysis. If the implementation of the new fault3479

model was somewhat ‘invasive’ and could potentially disturb other fault models, we3480

recommend performing non-regression tests.3481

5.5.5 Summary3482

We presented in this section a methodology to add a new fault model. Here is a3483

summary of the different steps.3484

1. Define what the fault model should represent (a type of attack for instance);3485

2. Define the fault model in terms of how it transforms DBA instructions;3486

3. Implement those transformations and other alterations to the symbolic engine;3487

4. Implement dedicated metrics;3488

5. Create testing programs and evaluate them to ensure the correctness of the im-3489

plementation.3490

When all of those steps are done, the new fault model is ready to be used in a real3491

security scenario.3492

99

5.6. Discussion

5.6 Discussion3493

We discuss in this section considerations on what can or cannot be represented with3494

BINSEC/ASE, in particular limits to fault model support.3495

5.6.1 BINSEC/ASE Limitations3496

We discuss here the main limitations of the BINSEC/ASE prototype.3497

5.6.1.1 Building on Top of an Existing Tool3498

The prototype presented in this chapter is based on BINSEC version 0.4.0, forked3499

September 1st 2021. BINSEC underwent a major refactoring shortly after, which made3500

rebasing impossible, only a full re-implementation could have worked. This was not3501

done for time reasons. Hence BINSEC/ASE does not benefit from recent developments3502

in configuration syntax readability, architecture support (Intel x86-64 bits for instance)3503

and other continued improvements. We leave as future work re-implementing the FASE3504

engine in the current BINSEC version.3505

5.6.1.2 Supported Fault Models3506

Faults on Addresses. We do not have an efficient algorithm for faults on addresses. As3507

many values are possible, the solver can lose time considering them and the possible3508

effects of their propagation in the following instructions. Another issue is that the3509

solver can select an address in an uninitialized part of the memory and fill it with3510

exactly the convenient content, which is not very realistic. Hence, we chose to avoid3511

faulting values ‘looking like’ address, with a configurable threshold. In practice, it also3512

limits our ability to study faults related to stack manipulations.3513

Faults on Instruction Op-Code. They can be either permanent faults when the code3514

memory is corrupted, or transient faults when an element of the micro-architecture3515

like the instruction buffer is attacked. The case of permanent VS transient faults3516

is discussed in Section 5.6.3. Changing one instruction into another in the general3517

sense is a hard problem in symbolic execution as it relates to self-modifying code,3518

inducing a state explosion to consider all possible options for each instruction. We3519

do not have an efficient forkless algorithm for faulting instruction op-codes. However,3520

some fault models can be considered as specific cases of instruction corruption like3521

the test inversion fault model where a conditional jump (jump-if-equal for instance)3522

is transformed into its opposite (jump-if-not-equal in that example). Instruction skips3523

can also be seen as a specific case of instruction corruption, changing an instruction to3524

a NOP.3525

Combination of Fault Models. BINSEC/ASE does not currently support the possibility3526

to combine fault models in one multi-fault adversarial path. It would make sense in3527

a security scenario considering an advanced attacker able to leverage different attack3528

vectors in one attack. We have not imagined a more efficient algorithm than a naive3529

combination of fault models into one big encoding. This naive technique could be3530

implemented without much effort and we leave as future work to design an efficient3531

combined injection technique.3532

Generic Support for Fault Models. We acknowledge that we implemented only a3533

limited number of fault models having specific effects in this prototype. The aim was3534

100

Chapter 5. The BINSEC/ASE Prototype

to showcase the ability of our tool to support various fault models that can represent3535

existing security scenarios. The interested user can extend BINSEC/ASE with new3536

fault models more suitable for their analysis context, based on our developer guide3537

(Section 5.5).3538

5.6.2 Faults on Intermediate Representation3539

Working on intermediate representation allows to abstract from specific ISAs and to3540

have a generic analysis. The semantics are preserved, however, it changes the syntax.3541

This becomes meaningful when considering faults modifying the binary encoding of3542

instructions, for instance flipping a bit in the op-code or switching one register for3543

another. Those faults require micro-architectural details to be known to the analysis,3544

at least through a mapping of ISA op-codes to DBA instructions. This is another3545

difficulty hindering the support of generic faults on instructions by BINSEC/ASE. Only3546

restrictions that can be expressed with DBA and that can be reasoned about without3547

micro-architectural information (instruction skip, test inversion, operand modification)3548

have been implemented. We also miss micro-architectural considerations such as fetch3549

and prefetch of instructions, without which we cannot model faults happening in those3550

components.3551

5.6.3 Permanent VS Transient Faults3552

In this work, we only consider transient faults, i.e. a corruption that lasts until the value3553

is overwritten. We believe permanent faults require micro-architectural information to3554

precise exactly which bit of which physical component is affected, and then propagate3555

it to the ISA level. Moreover, memory is often encrypted and permanent damage in3556

it can be hard to reason with. Some restrictions on permanent faults can likely be3557

implemented, such as permanent faults on a register, which is available at DBA level.3558

101

5.6. Discussion

102

Chapter 63559

Experimental Evaluation3560

Contents
3561

3562
6.1 Evaluation Overview . 1043563

6.1.1 Research Questions . 1043564

6.1.2 Experimental Setting . 1053565

6.1.2.1 Benchmark . 1053566

6.1.2.2 Attacker Model . 1063567

6.1.2.3 Competitor . 1063568

6.1.2.4 Experimental Setup 1063569

6.1.3 Artifact Availability . 1073570

6.2 Correctness and K-completeness (RQ1) 1073571

6.3 FASE Evaluation for Arbitrary Data Faults (RQ2) 1083572

6.3.1 Scalability (RQ2.1) . 1083573

6.3.2 Impact of Optimizations (RQ2.2) 1103574

6.3.3 Comparison of the Different Forkless Encodings (RQ2.3) . . . 1163575

6.4 FASE Evaluation of Other Fault Models (RQ3) 1183576

6.4.1 FASE Evaluation of Reset Faults (RQ3.1) 1193577

6.4.2 FASE Evaluation of Bit-Flip Faults (RQ3.2) 1203578

6.4.3 FASE Evaluation of Test Inversion Faults (RQ3.3) 1213579

6.4.4 FASE Evaluation of Instruction Skip Faults (RQ3.4) 1223580

6.4.5 Summary . 1233581

6.5 Forkless Faults in Instrumentation (RQ4) 1243582

6.5.1 Experimental Settings . 1253583

6.5.2 Scalability . 1253584

6.5.3 Conclusion . 1263585

6.6 Security Scenarios . 1273586

6.6.1 CRT-RSA . 1283587

6.6.2 Secret-keeping Machine . 1293588

6.6.3 SecSwift Countermeasure . 1303589

103

6.1. Evaluation Overview

6.6.4 Neural Network . 1313590

6.6.5 Security Scenarios Feedback 1323591

6.7 Case Study: WooKey Bootloader . 1323592

6.7.1 Presentation of WooKey . 1323593

6.7.2 Security Scenario and Goal of our Study 1333594

6.7.3 Analyze Key Parts of Wookey 1333595

6.7.4 Analyze a Security Patch of WooKey 1363596

6.7.5 Propose a New Patch and Evaluate It 1363597

6.7.6 Other Attacks on WooKey 1373598

6.7.6.1 Attack Vectors Combination 1373599

6.7.6.2 Faulty Redundant Test 1373600

6.7.7 Case Study Conclusion . 1383601

36023603
3604

This chapter is dedicated to the experiment evaluation of the approach presented3605

in this thesis through the BINSEC/ASE prototype described in Chapter 5. After3606

presenting our experimental setting (Section 6.1), we confirm the correctness and k-3607

completeness of our BINSEC/ASE prototype (Section 6.2) and systematically evaluate3608

its performance against our implementation of the forking technique representing the3609

state-of-the-art approach and compared to our various optimizations for arbitrary data3610

faults (Section 6.3) and for the other faults models (Section 6.4). We also investigate3611

the advantages of using a forkless fault encoding in instrumentation (Section 6.5).3612

Secondly, we explore various security scenarios (Section 6.6) and a case study (Section3613

6.7) to showcase the interest and feasibility of our technique.3614

6.1 Evaluation Overview3615

In this section, we introduce the research questions driving this experimental evaluation3616

of our technique, FASE (Forkless Adversarial Symbolic Execution), implemented in3617

the BINSEC/ASE tool. We also detail the experimental settings and present the3618

benchmarks used for the evaluation.3619

6.1.1 Research Questions3620

We aim to answer the following research questions during this evaluation.3621

RQ 1: Correctness and K-completeness. FASE algorithm has been shown to be correct3622

and k-complete for adversarial reachability (see Section 4.3.3.3). We start by checking3623

that our FASE implementation preserves those properties in Section 6.2.3624

RQ 2: FASE Evaluation for Arbitrary Data Faults. In Section 6.3, we evaluate the3625

performance of our technique compared to the forking technique implemented alongside3626

FASE in BINSEC/ASE. We also compare the performance of our optimizations and3627

forkless encoding variations through the following research questions.3628

– RQ 2.1: Scalability. We verify that FASE is able to scale in number of faults3629

without path explosion, better than the forking technique (Section 6.3.1);3630

104

Chapter 6. Experimental Evaluation

– RQ 2.2: Impact of Optimizations. We investigate the impact of our optimizations3631

on the performance of FASE and wonder which is the fastest optimization (Section3632

6.3.2);3633

– RQ 2.3: Forkless Encodings. We investigate the impact of the operators used3634

for the forkless encoding and wonder which one does result in the fastest analysis3635

(Section 6.3.3).3636

RQ 3: FASE Evaluation for Other Fault Models. We evaluate the impact of the other3637

implemented fault models: reset (RQ3.1 Section 6.4.1), bit-flip (RQ3.2 Section 6.4.2),3638

test inversion (RQ3.3 Section 6.4.3) and instruction skip (RQ3.4 Section 6.4.4). For3639

each, we verify that we can scale in number of faults without path explosion, compared3640

to the forking technique.3641

RQ 4: Forkless Faults in Instrumentation. In Section 6.5, we evaluate the performance3642

of forkless encodings compared with forking ones in source-level instrumentation. The3643

instrumentation process is described in Appendix C. We check that we can scale in3644

number of faults without path explosion, compared to the forking technique in instru-3645

mentation.3646

6.1.2 Experimental Setting3647

We now present the benchmark used for this performance evaluation and detail our3648

experimental settings.3649

6.1.2.1 Benchmark3650

Performance Benchmarks. We used here a standard set of programs from the SWIFI3651

literature on physical fault injections and high-security devices. This constitutes a3652

benchmark of 12 programs, characterized in Table 6.1.3653

– Eight versions of VerifyPIN from the FISSC [DPP+16] benchmark suite, ded-3654

icated to the evaluation of physical fault attack analyses. VerifyPIN is a toy3655

authentication program. There are one unprotected and 7 different protected3656

versions, some vulnerable, some resistant to one test inversion fault. An oracle is3657

provided by FISSC, checking if the user PIN truly corresponds to the reference3658

PIN;3659

– Two manually unrolled versions of the unprotected VerifyPIN, with a PIN size3660

of 4 and 16, to add diversity in the benchmarks with programs without loops;3661

– Two versions of the npo2 program from Le et al. [LHGD18], together with their3662

oracles. Npo2 is a program computing an integer’s upper power of two. The3663

attacker’s goal is to perform a silent data corruption, i.e. change the end result3664

without triggering countermeasures. One version is vulnerable to one arbitrary3665

data fault, the second is resistant due to extra arithmetic checks.3666

In the remainder of this chapter, this set of programs is denoted as the performance3667

benchmarks.3668

Compilation. The benchmarks are written in C and have been compiled with gcc for3669

the Intel x86-32 architecture. This was the first ISA supported by BINSEC/ASE and3670

we expect other ISAs to give the same results as only the lifting of the ISA to DBA3671

changes, not the adversarial symbolic execution itself. We use the flag“-O0”to preserve3672

countermeasures, and subsequently to improve assembly readability. For BINSEC com-3673

patibility, we use the “-static” flag to include the necessary library functions directly in3674

105

6.1. Evaluation Overview

Table 6.1: Benchmarks characteristics and statistics of a standard SE analysis

BINSEC analysis - no fault
Program C loc x86 loc #instructions #paths max Time
group (#) (explored) #branch

in a path

Sections 6.2 to 6.5
VerifyPINs (8) 80-140 160-215 192-269 1 17-34 < 0.1s
VerifyPIN

unrolled (2) 40-85 140-430 142-442 5-17 5-17 < 0.1s
npo2 (2) 50 200-220 607-653 3 31-33 < 0.1s

the binary.3675

6.1.2.2 Attacker Model3676

The attacker model chosen in this evaluation can perform a varying number of faults.3677

Its goal is expressed as a security oracle directly written in C for each benchmark,3678

the computation of which is not faulted. Specific details are provided for the different3679

experiments when relevant. In particular, the exact fault models used are indicated.3680

Except when explicitly stated otherwise, we do not fault addresses, nor fault directly3681

the stack pointer or the program counter, and we do not fault the status flags.3682

6.1.2.3 Competitor3683

We chose to represent the state-of-the-art work with the forking technique, which scales3684

better than mutant generation techniques for multiple faults. The forking technique3685

split the explored path into two at each possible fault location, creating one containing3686

the fault, and keeping one without the fault at that particular location. In order to3687

only compare encodings we implemented forking faults encodings inside BINSEC/ASE,3688

along with our new forkless ones, as described in Chapter 5. Note that the forking3689

technique induces path splits in the analysis exploration at fault locations, it does not3690

explicitly fork processes. We compare our approach to others on a more general level3691

in Section 4.5.3692

6.1.2.4 Experimental Setup3693

Machine Used. We ran our experiments on a cloud machine with a processor Intel3694

Dual Xeon 4214R with 48 CPU cores and 384GB of RAM. Experiments ran in parallel3695

on the 48 cores, each run using only one core.3696

BINSEC settings. We limit the maximal depth of an analysis to the depth necessary3697

to perform an exhaustive non-faulty analysis, rounded to the upper hundred. We may3698

not always be complete, which is not necessary for a performance evaluation. We3699

exhaustively explore all the possible adversarial paths up to this bound in order to3700

have comparable results. We set the global analysis timeout for 1 day.3701

106

Chapter 6. Experimental Evaluation

6.1.3 Artifact Availability3702

Our benchmark infrastructure, case studies and the executable of BINSEC/ASE have3703

been made available through artifacts for reproducibility purposes on GitHub1 and3704

Zenodo2. The BINSEC/ASE source code will be open-sourced.3705

6.2 Correctness and K-completeness (RQ1)3706

We start with a basic sanity check, in order to check whether our implementation3707

indeed is correct and k-complete.3708

RQ1. Is our tool correct and k-complete?3709

Goal. The goal of this first research question is to check that our tool works as expected3710

on several codes with known ground truth. In particular, we show that we are able3711

to find attacks on vulnerable programs and provide a complete analysis showing the3712

absence of vulnerabilities in secure programs.3713

Protocol. The performance benchmarks are used in this experiment. We consider an3714

attacker model able to perform either 1 or 2 arbitrary data faults, or 1 or 2 test inversion3715

faults. To study the correctness and completeness of BINSEC/ASE, we proceed as3716

follows.3717

1. We check that indeed, with no fault allowed, no attack is found in any of the3718

benchmarks. We make sure that the analysis is complete for this setting;3719

2. For each program of the benchmark, we get the ground truth provided by their3720

authors, setup the same attacker model, and observe BINSEC/ASE output.3721

Table 6.2: FASE vulnerability results compared to benchmark ground truth (RQ1)

AD: arbitrary data, TI: test inversion

V : vulnerable, S: secure, : unspecified in the reference paper

Program
Ground truth / FASE result

1 TI 2 TI 1 AD 2 AD
npo2 c1 (insecure) / S / S V / V V / V
npo2 c2 (secure) / S / S S / S S / S
VerifyPIN 0 V / V V / V / V / V
VerifyPIN 1 V / V V / V / V / V
VerifyPIN 2 V / V V / V / V / V
VerifyPIN 3 V / V V / V / V / V
VerifyPIN 4 V / V V / V / V / V
VerifyPIN 5 S / S V / V / V / V
VerifyPIN 6 S / S V / V / V / V
VerifyPIN 7 S / S V / V / V / V
VerifyPIN unrolled size 4 S / S S / S / V / V
VerifyPIN unrolled size 16 S / S S / S / V / V

Results. Results are summarized in Table 6.2. Vulnerability results are the same for3722

FASE and its optimizations, as well as for the forking technique. The exploration of our3723

1https://github.com/binsec/esop2023 artefact
2https://zenodo.org/record/7507112

107

https://github.com/binsec/esop2023_artefact
https://zenodo.org/record/7507112

6.3. FASE Evaluation for Arbitrary Data Faults (RQ2)

analysis was either complete or at least an adversarial path was found, demonstrating3724

the vulnerability of the program. As expected, the insecure npo2 program is vulnerable3725

to a single arbitrary data fault while the secure version is not, nor is it vulnerable to3726

two arbitrary data faults. According to their authors, the VerifyPIN versions 0 to 4 are3727

vulnerable to one test inversion, while VerifyPIN 5 to 7 are resistant to it. We indeed3728

reproduce these results. When allowing two faults, all VerifyPINs become vulnerable.3729

When using one arbitrary data fault against the VerifyPINs, all versions are found3730

vulnerable. We manually check that indeed the identified attack paths make sense.3731

Our manually unrolled versions of VerifyPINs do not contain conditional branching3732

instructions in the targeted function, making them resistant to test inversion. We3733

check that this is the case, while they are still vulnerable to a single arbitrary data3734

fault.3735

Conclusion RQ1. Our implementation of FASE preserves its correctness and k-
completeness properties on our benchmark. In particular, we can show a program’s
vulnerability to fault injection attacks and prove a program secure when it is.

6.3 FASE Evaluation for Arbitrary Data Faults (RQ2)3736

Arbitrary data faults are the most complex fault model BINSEC/ASE implements with3737

regard to the number of added symbolic variables. One determines the activation of3738

a fault and the second the corrupted value, and that for each possible fault location,3739

encompassing all assignments. Hence, characterizing FASE for arbitrary data faults is a3740

form of worst-case evaluation, and also where the efficiency gain is the most important.3741

We only consider arbitrary data faults in this section. First, we compare scaling3742

capabilities of FASE against the forking technique in terms of number of faults. Then,3743

we want to show which optimization results in the fastest analysis and what their3744

impact on the analysis is. We also evaluate the impact of the forkless encoding operator3745

used and show which is the fastest. We consider optimizations and encodings to be3746

independent and evaluate them separately. As a reminder, the analyses are set to3747

explore exhaustively all program paths within the 24-hour time limit.3748

6.3.1 Scalability (RQ2.1)3749

First, we show the general performance improvement of FASE over the forking tech-3750

nique, especially as more faults are considered. We selected our best performing opti-3751

mization, FASE-IOD, as shown in Section 6.3.2, to represent FASE.3752

RQ2.1. Can we scale in number of faults without path explosion compared to the3753

forking technique (for arbitrary data faults)?3754

Goal. The goal of this experiment is to check whether our technique is able to prevent3755

path explosion, especially when the number of faults increases, and that it translates3756

to improved analysis time.3757

Protocol. The performance benchmark is used in this experiment. We consider an3758

attacker model able to perform 1 to 10 arbitrary data faults.3759

Results. We start by looking at the analysis time to compare FASE and the forking3760

technique, as analysis time conditions the usability of a tool. Both techniques have3761

the same exploration strategy, analyze all possible paths, and can be compared fairly.3762

108

Chapter 6. Experimental Evaluation

Analysis time results are presented in Table 6.3 (p.109) and illustrated in Figure 6.13763

(p.109). First, we see that the forking technique starts to timeout for half of the3764

benchmarks for an attacker model able to perform 3 faults, and timeout for all for 83765

faults and above. FASE never timeouts in this experiment. FASE is on average x193766

times faster for 1 fault and x403 times faster for 2 faults. Values for 3 faults and above3767

for the forking technique are for incomplete runs, hence not comparable.

Table 6.3: FASE-IOD and forking analysis time comparison for arbitrary data faults (RQ2.1)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD 2.08 8.88 33.4 100 467 909 1.04k
Forking* 39.5 3.58k 8.17k 9.15k 35.6k 86.4k 86.4k

timeouts (24h) over 12 benchmarks in total
FASE-IOD 0 0 0 0 0 0 0
Forking 0 0 6 9 11 12 12

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

Figure 6.1: FASE-IOD and forking analysis time comparison for arbitrary data faults (RQ2.1)

3768

Then, we compare both techniques on the number of explored paths. FASE aims3769

to reduce path explosion, we check whether it is experimentally true. The number of3770

explored paths is presented in Table 6.4 (p.110) and illustrated in Figure 6.2 (p.110).3771

The forking technique shows an exponential increase in the number of paths explored3772

as the number of faults increases, while FASE increase in explored paths is much more3773

mitigated, still opening new paths as they become feasible due to the introduced faults.3774

On average, the forking technique explores x17 times more paths for 1 fault and x2673775

times more for 2 faults.3776

Lastly, we notice that values from around 4 faults to 10 tend to plateau. This is3777

especially visible in Figures 6.1 (p.109) and 6.2 (p.110). This is due not to our technique3778

but to the fact that the programs in our benchmark are not overly complex, and 4 to3779

109

6.3. FASE Evaluation for Arbitrary Data Faults (RQ2)

Table 6.4: FASE-IOD and forking number of explored paths comparison for arbitrary data
faults (RQ2.1)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD 22.3 108 381 1.05k 4.64k 11.1k 15.2k
Forking* 369 28.8k 170k 215k 1.41M 2.17M 2.2M

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

Figure 6.2: FASE-IOD and forking number of explored paths comparison for arbitrary data
faults (RQ2.1)

6 faults are sufficient to open all possible paths in the control-flow graph. Hence the3780

number of explored paths plateaus. Interestingly, the analysis time also plateaus, as3781

adding unnecessary faults does not open new paths to explore and relax the constraints3782

on fault placing, not making the solver’s tasks harder.3783

Conclusion RQ2.1. For arbitrary data faults, FASE is able to scale in the number
of faults considered while the forking technique struggles. A direct correlation
between the path explosion experienced by the forking technique and its slower
analysis time can be observed, compared to FASE which mitigates path explosion
and obtains faster analysis times.

6.3.2 Impact of Optimizations (RQ2.2)3784

We now evaluate our different optimizations for FASE. Two angles were considered to3785

optimize FASE analysis:3786

– We have two optimizations changing the computation of the path predicates3787

while keeping the same attacker power, EDS3 and IOD4, plus their combination3788

EDS+IOD;3789

3Early Detection of fault Saturation
4Injection On Demand

110

Chapter 6. Experimental Evaluation

– In addition, we also implemented optimizations aimed at adding query simplifi-3790

cations between their computation and them being sent to the solver, sub-fault3791

simplification (SFS), described in Section 5.3.6. As a reminder, SFS aims to3792

detect and nullify faults subsumed by another one. Different variants were im-3793

plemented.3794

RQ2.2. What is the impact of our optimizations?3795

Goal. The goal of this experiment is to evaluate our optimizations and how they3796

contribute to reducing query complexity.3797

Protocol. The performance benchmark is used in this experiment. We consider first an3798

attacker model able to perform 1 to 10 arbitrary data faults for our first optimizations3799

(EDS, IOD and EDS+IOD) evaluation. Then, for SFS, we consider an attacker able3800

to inject 1 to 4 arbitrary data faults.3801

Results - EDS, IOD, EDS+IOD. We start with our first set of optimizations and look at3802

whether they result in a faster analysis, with all parameters equal otherwise. Analysis3803

time data is presented in Table 6.5 (p.111) and illustrated in Figure 6.3 (p.112). Overall,3804

as expected, FASE without optimizations is the slowest, followed by FASE-EDS (x1.83805

times faster than FASE for 1 fault), then FASE-EDS+IOD (x3.3 times faster than3806

FASE for 1 fault) and the fastest being FASE-IOD (x3.7 times faster than FASE for 13807

fault).

Table 6.5: FASE optimizations, analysis time for arbitrary data faults (RQ2.2)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE 7.73 27.6 92.6 261 1.06k 2.2k 2.56k
FASE-EDS 4.27 17.6 64.0 201 958 2.22k 2.7k
FASE-IOD 2.08 8.88 33.4 100 467 909 1.04k
FASE-EDS+IOD 2.36 10.5 38.5 111 502 936 1.01k
Forking* 39.5 3.58k 8.17k 9.15k 35.6k 86.4k 86.4k

timeouts (24h) over 12 benchmarks in total
FASE 0 0 0 0 0 0 0
FASE-EDS 0 0 0 0 0 0 0
FASE-IOD 0 0 0 0 0 0 0
FASE-EDS+IOD 0 0 0 0 0 0 0
Forking 0 0 6 9 11 12 12

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

3808

We continue our experimental evaluation with a sanity check, looking at the number3809

of explored paths, presented in Table 6.6 (p.112). FASE, FASE-EDS, FASE-IOD and3810

FASE-EDS+IOD explore the same number of paths, which is expected since they3811

encode the same attacker model.3812

To provide more intuition on how optimizations impact the analysis and in par-3813

ticular contribute to reducing query complexity, we consider other, internal, metrics.3814

First, we consider the ratio of queries created over queries sent to the solver, presented3815

in Table 6.7 (p.113), to see if some queries have been made so simple that they can3816

be arithmetically reduced to true or false by the analysis, without the help of the3817

111

6.3. FASE Evaluation for Arbitrary Data Faults (RQ2)

Figure 6.3: FASE optimizations, analysis time for arbitrary data faults (RQ2.2)

Table 6.6: FASE optimizations, number of explored paths for arbitrary data faults (RQ2.2)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
FASE 22.3 108 381 1.05k 4.64k 11.1k 15.2k
FASE-EDS 22.3 108 381 1.05k 4.64k 11.1k 15.2k
FASE-IOD 22.3 108 381 1.05k 4.64k 11.1k 15.2k
FASE-EDS+IOD 22.3 108 381 1.05k 4.64k 11.1k 15.2k
Forking* 369 28.8k 170k 215k 1.41M 2.17M 2.2M

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

solver. At first glance, we notice the optimizations generate slightly more queries than3818

FASE, as expected from the related algorithms. For instance, on average for 1 fault3819

compared to FASE, FASE-EDS and FASE-IOD generate x1.04 times more queries and3820

FASE-EDS+IOD generates x1.09 times more queries. Despite this slight increase, fewer3821

queries are sent to the solver with the optimizations. For instance, for 1 fault, 44%3822

of queries are simplified without a solver call for FASE, 58% for FASE-EDS, 65% for3823

FASE-IOD and 62% for FASE-EDS+IOD. This shows that generating more queries3824

can, somewhat counterintuitively, reduce overall query complexity, as up to 2/3 are3825

resolved before needing to be sent to the solver. For the sake of comparison, 51% of3826

queries are simplified without a solver call for the forking technique.3827

The second internal metric measuring query complexity is the average solving time3828

per query, presented in Table 6.8 (p.114) and illustrated in Figure 6.4 (p.114). Measures3829

for average solving time per query tend to vary somewhat, which can have a significant3830

impact due to the small values. To mitigate this, we perform 100 runs for each con-3831

figuration (program, number of faults, technique) and only use the average values per3832

program. FASE encodings introduce many new symbolic variables and are expected to3833

increase the average solving time per query, which indeed is more than twice the value3834

of the forking technique (x2.7 times averaging values for 1 and 2 faults). As expected,3835

our optimizations reduce the average solving time per query. On average for all num-3836

112

Chapter 6. Experimental Evaluation

T
a
b
le

6
.7

:
F
A

S
E

o
p

ti
m

iz
a
ti

on
s,

n
u

m
b

er
of

q
u

er
ie

s
cr

ea
te

d
an

d
se

n
t

to
th

e
so

lv
er

fo
r

ar
b
it

ra
ry

d
at

a
fa

u
lt

s
(R

Q
2.

2)

N
u
m

b
er

of
q
u
er

ie
s

cr
ea

te
d

/
N

u
m

b
er

of
q
u
er

ie
s

se
n
t

to
th

e
so

lv
er

1f
2f

3f
4f

6f
8f

10
f

av
er

ag
e

va
lu

e
F
A

S
E

29
5

/
16

4
1.

24
k

/
67

9
3.

99
k

/
2.

11
k

10
.1
k

/
5.

22
k

37
.1
k

/
18
.7
k

69
.7
k

/
34
.2
k

83
.1
k

/
39
.8
k

F
A

S
E

-E
D

S
30

8
/

13
0

1.
32
k

/
58

4
4.

32
k

/
1.

98
k

11
.1
k

/
5.

29
k

41
.8
k

/
20
.9
k

79
.6
k

/
39
.9
k

94
.0
k

/
45
.4
k

F
A

S
E

-I
O

D
30

8
/

10
9

1.
38
k

/
55

8
4.

62
k

/
1.

98
k

12
.1
k

/
5.

46
k

46
.5
k

/
22
.9
k

89
.0
k

/
44
.9
k

10
6k

/
53
.0
k

F
A

S
E

-E
D

S
+

IO
D

32
1

/
12

1
1.

51
k

/
65

0
5.

02
k

/
2.

25
k

13
.1
k

/
6.

14
k

50
.1
k

/
25
.2
k

96
.6
k

/
49
.3
k

11
6k

/
58
.0
k

F
or

k
in

g*
3.

54
k

/
1.

74
k

20
4k

/
12

8k
1.

03
M

/
53

3k
1.

5M
/

55
7k

6.
99
M

/
4.

44
M

7.
53
M

/
4.

76
M

7.
02
M

/
4.

65
M

(F
or

k
in

g*
:

va
lu

es
fo

r
3

fa
u
lt

s
an

d
ab

ov
e

ar
e

co
m

p
u

te
d

fo
r

in
co

m
p

le
te

ru
n
s

d
u

e
to

ti
m

eo
u
ts

)

113

6.3. FASE Evaluation for Arbitrary Data Faults (RQ2)

bers of faults, FASE-EDS is x1.04 faster than FASE in solving time, and FASE-IOD3837

and FASE-EDS+IOD are x2 times faster than FASE.

Table 6.8: FASE optimizations, average solving time per query for arbitrary data faults
(RQ2.2)

Average solving time per query (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE 0.050 0.041 0.037 0.037 0.038 0.041 0.038
FASE-EDS 0.039 0.045 0.037 0.037 0.036 0.041 0.037
FASE-IOD 0.020 0.020 0.021 0.021 0.019 0.020 0.019
FASE-EDS+IOD 0.020 0.019 0.021 0.021 0.020 0.020 0.019
Forking* 0.015 0.018 0.012 0.012 0.008 0.019 0.020

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

Figure 6.4: FASE optimizations, average solving time per query for arbitrary data faults
(RQ2.2)

3838

Our last internal metric to measure query complexity is the average number of ite3839

operators per query, presented in Table 6.9 (p.115). For this metric, we add the values3840

for non-faulted analysis for comparison. For a non-faulted run, there is almost no ite3841

operator in queries, which makes an average of 0. FASE queries contain on average x7.43842

times more ite operators per query for 1 fault than the forking technique. This value3843

continues to increase as we consider more faults, but only slightly, as faulted expressions3844

are already computed in the path predicate, they are simply less constrained in number3845

of activated faults. The slight increase is due to some new paths opening thanks to3846

faults. FASE’s optimizations follow the same trend as FASE. On average for all fault3847

numbers, FASE-EDS only spear 6% of ite operators compared to FASE, while FASE-3848

IOD spears 39% of ite operators and FASE-EDS+IOD 38%. This shows that our3849

optimizations can indeed reduce injection points in query. Interestingly, the forking3850

technique also induces more ite operators in queries as the number of faults considered3851

increases, likely due to the new possibility offered by faults in conditional jumps that3852

114

Chapter 6. Experimental Evaluation

cannot be arithmetically simplified anymore, in particular for the arbitrary data faults3853

in this experiment.

Table 6.9: FASE optimizations average number of ite operator per query for arbitrary data
faults (RQ2.2)

Average number of ite operator per query
0f 1f 2f 3f 4f 6f 8f 10f

average value
FASE 0 2.87k 2.94k 2.99k 3.02k 3.05k 3.06k 3.07k
FASE-EDS 0 1.64k 3.11k 2.95k 3.0k 3.05k 3.06k 3.07k
FASE-IOD 0 1.53k 1.76k 1.83k 1.88k 1.92k 1.94k 1.94k
FASE-EDS+IOD 0 1.53k 1.94k 1.86k 1.9k 1.93k 1.94k 1.94k
Forking* 0 368 570 647 754 1.24k 1.32k 1.37k

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

3854

Finally, we remark that a plateau appears in the different metrics as 4 to 6 faults are3855

sufficient to open all possible paths (detailed in Section 6.3.1), except for the average3856

time per query, which does not directly depend on the number of paths explored.3857

Results - SFS. We start by looking at the analysis time, presented in Table 6.10 (p.115),3858

to check whether SFS optimizations result in a faster analysis. Unfortunately, SFS3859

variants yield significantly slower analysis times, which start to equal those of FASE3860

for large numbers of faults.

Table 6.10: Analysis time for sub-fault simplification for arbitrary data faults (RQ2.2)

Analysis time (s)
1f 2f 3f 4f

average value
FASE 5.41 23.0 79.9 223
FASE-Free-Lazy 8.23 31.3 94.7 255
FASE-Free-Abort 6.77 25.9 85.1 225
FASE-Mem-Lazy 17.2 44.2 116 215
FASE-Mem-Abort 16.0 40.3 106 217

3861

To get more intuitions on the impact of SFS optimizations, we consider the average3862

solving time per query. As expected, SFS allows for slower solving time, as it computes3863

query simplifications. SFS reduces the average solving time per query, from x1.1 to x1.43864

times faster. The memoization of part of the queries does not yield faster processing3865

than traversing queries each time (FASE-Free). Aborting SFS mechanism proves more3866

efficient than risking extra queries with the lazy approach.3867

SFS only adds a constraint on queries stating that the selected faults are null to3868

help the solver. BINSEC/ASE does not implement arithmetical simplification rules3869

complex enough to be at query scale, hence SFS does not reduce the number of ite3870

operators in queries as shown in Table 6.12.3871

115

6.3. FASE Evaluation for Arbitrary Data Faults (RQ2)

Table 6.11: Average solving time per query for sub-fault simplification for arbitrary data
faults (RQ2.2)

Average solving time per query (s)
1f 2f 3f 4f

average value
FASE 0.030 0.025 0.026 0.027
FASE-Free-Lazy 0.026 0.020 0.020 0.020
FASE-Free-Abort 0.028 0.023 0.024 0.025
FASE-Mem-Lazy 0.026 0.020 0.019 0.019
FASE-Mem-Abort 0.028 0.024 0.024 0.024

Table 6.12: Average number of ite per query for sub-fault simplification for arbitrary data
faults (RQ2.2)

Average number of ite per query
1f 2f 3f 4f

average value
FASE 2.87k 2.94k 2.99k 3.02k
FASE-Free-Lazy 2.87k 2.94k 2.99k 3.02k
FASE-Free-Abort 2.87k 2.94k 2.99k 3.02k
FASE-Mem-Lazy 2.87k 2.94k 2.99k 3.02k
FASE-Mem-Abort 2.87k 2.94k 2.99k 3.02k

Conclusion RQ2.2. Our different optimizations reduce query complexity compared
to FASE. While EDS, IOD and EDS+IOD result in significantly faster analysis
time overall, SFS slows down the analysis, its computation inside BINSEC is likely
too expensive compared to the gain obtained in query complexity. FASE-IOD is
our best-performing optimization. It is followed by FASE-EDS+IOD where the
combination of optimizations does not produce better results, maybe due to the
redundancy between the under-approximation counter of IOD and the saturation
logic of EDS. Then, FASE-EDS only slightly improves upon FASE. Last, SFS while
simplifying queries results in worst performance.

6.3.3 Comparison of the Different Forkless Encodings (RQ2.3)3872

We now consider different forkless encodings with various operators as described in3873

Section 5.3.3.1 (reminded Table 6.13) for the arbitrary data fault model. We compare3874

four forkless arbitrary data encodings, FASE-Ite, FASE-Mul (with a multiplication3875

operator), FASE-And (with a logical and operator) and FASE-Xor (with a logical xor3876

operator). We used FASE-Ite until now, as it will be shown to be the fastest encoding.3877

Here, FASE is used without optimizations.3878

RQ2.3. What is the impact of the different encodings on the performance of the solver?3879

Goal. Our goal is to explore the impact of different operators in the forkless encoding3880

and their affinity with the solver used by BINSEC/ASE.3881

Protocol. The performance benchmarks are used in this experiment. We consider an3882

attacker model able to perform 1 to 10 arbitrary data faults.3883

116

Chapter 6. Experimental Evaluation

Table 6.13: Arbitrary data encodings and their associated activation constraint

Fault model Fault expression Activation constraint
None x := y
Inlined if-then-else x := ite baddr ? non detaddr : y (non detaddr 6= y) || ¬baddr
Multiplication x := y + baddr × non detaddr (non detaddr 6= 0) || ¬baddr
Bitwise and x := y + (−baddr) & non detaddr (non detaddr 6= 0) || ¬baddr
Bitwise xor x := y ⊕ (−baddr) & non detaddr (non detaddr 6= 0) || ¬baddr

Results. We start by looking at the impact of encodings on the general analysis time,3884

presented in Table 6.14 (p.117). For 1 fault, FASE-Ite is x1.2 times faster than FASE-3885

Xor, and x1.5 times faster than FASE-Mul and FASE-And. FASE-Xor starts to per-3886

form better than FASE-Ite for 8 faults and more. FASE-Mul and FASE-And start to3887

experiment timeouts at 8 and 6 faults respectively.

Table 6.14: Encodings, analysis time for arbitrary data faults (RQ2.3)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-Ite 8.59 27.7 96.9 271 1.13k 2.18k 2.63k
FASE-Xor 10.4 31.0 105 287 1.16k 1.77k 2.21k
FASE-Mul* 12.5 46.4 213 884 6.75k 7.32k 7.32k
FASE-And* 12.5 52.7 308 1.74k 7.31k 7.31k 7.31k

timeouts (24h) over 12 benchmarks in total
FASE-Ite 0 0 0 0 0 0 0
FASE-Xor 0 0 0 0 0 0 0
FASE-Mul 0 0 0 0 0 1 1
FASE-And 0 0 0 0 1 1 1

FASE-Mul*: values for 8 faults and above are computed for incomplete runs due to timeouts,
FASE-And*: values for 6 faults and above are computed for incomplete runs due to timeouts

3888

Then, we evaluate the encodings on internal metrics, evaluating query complexity.3889

The ratio of queries created on the number of queries sent, presented in Table 6.153890

(p.118), to reflect query complexity before solver call. The number of queries created3891

and sent ratio is the same for the 4 encodings up to 4 faults, around 50%. FASE-3892

Mul and FASE-And start to experience timeouts for 6 faults and above. This shows3893

that arithmetic simplification rules implemented inside BINSEC to simplify expressions3894

before queries are sent to the solver impact our four operators in the same way.3895

Our last query complexity metric is the average solving time per query, presented3896

in Table 6.16 (p.118), to reflect the query complexity in solver calls. FASE-Ite is the3897

fastest, followed by FASE-Xor x1.3 times slower on average for all number of faults,3898

FASE-Mul is x2.4 times slower and FASE-And x3 times.3899

117

6.4. FASE Evaluation of Other Fault Models (RQ3)

Table 6.15: Encodings, number of queries created and sent to the solver for arbitrary data
faults (RQ2.3)

Number of queries created / Number of queries sent to the solver
1f 2f 3f 4f

average value
FASE-Ite 295 /164 1.24k /679 3.99k /2.11k 10.1k /5.22k
FASE-Xor 295 /164 1.24k /679 3.99k /2.11k 10.1k /5.22k
FASE-Mul 295 /164 1.24k /679 3.99k /2.11k 10.1k /5.22k
FASE-And 295 /164 1.24k /679 3.99k /2.11k 10.1k /5.22k

6f 8f 10f
FASE-Ite 37.1k /18.7k 69.7k /34.2k 83.1k /39.8k
FASE-Xor 37.1k /18.7k 69.7k /34.2k 83.1k /39.8k
FASE-Mul* 37.1k /18.7k 17.3k /9.22k 19.6k /10.2k
FASE-And* 10.9k /5.79k 11.9k /6.16k 16.9k /8.67k

FASE-Mul*: values for 8 faults and above are computed for incomplete runs due to timeouts,
FASE-And*: values for 6 faults and above are computed for incomplete runs due to timeouts

Table 6.16: Encodings, average solving time per query for arbitrary data faults (RQ2.3)

Average solving time per query (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-Ite 0.056 0.042 0.048 0.042 0.041 0.043 0.042
FASE-Xor 0.094 0.049 0.054 0.052 0.049 0.060 0.047
FASE-Mul* 0.089 0.070 0.107 0.084 0.101 0.165 0.138
FASE-And* 0.088 0.091 0.092 0.128 0.207 0.201 0.149

FASE-Mul*: values for 8 faults and above are computed for incomplete runs due to timeouts,
FASE-And*: values for 6 faults and above are computed for incomplete runs due to timeouts

Conclusion. FASE-Ite is the best-performing encoding for arbitrary data faults
with the solver used by BINSEC/ASE, up to 6 faults, then FASE-Xor becomes
better. Variations in overall analysis time when changing the operator of the
forkless encoding are significant. Arithmetic simplification rules implemented in
BINSEC to simplify queries before sending them to the solver are also important
and can spear solver calls if efficient. Here around 50% of queries are speared.

In this experiment, we only considered the solver natively bound with BINSEC/ASE,3900

Bitwuzla. However, different solvers may favor different operators. We investigate this3901

question in Appendix B.5, comparing Bitwuzla to two other common solvers. While3902

Boolector also favors the ’ite’ operator, z3 favors the xor encoding.3903

6.4 FASE Evaluation of Other Fault Models (RQ3)3904

After BINSEC/ASE evaluation for arbitrary data faults, we evaluate it for the other3905

implemented fault models: reset, bit-flip, test inversion and instruction skip.3906

118

Chapter 6. Experimental Evaluation

We aim to assess the extensibility of arbitrary data fault results. We expect the3907

same performance trends for analysis time and the number of explored paths for other3908

fault models, in particular for data faults since they are particular cases of arbitrary3909

data faults.3910

RQ3. For each fault model, can we scale in number of faults without path explosion3911

compared to the forking technique?3912

Protocol. We used the performance benchmarks in this experiment. We consider an3913

attacker model able to perform 1 to 10 faults of the selected fault model. Our analysis3914

explores exhaustively all possible paths until the time limit to obtain a fair comparison.3915

For data faults (reset and bit-flip) and for instruction skip, we only consider FASE-3916

IOD as it is implemented for those fault models and this optimization was shown to be3917

the best-performing one for arbitrary data faults. The test inversion fault model has3918

no optimization implemented.3919

6.4.1 FASE Evaluation of Reset Faults (RQ3.1)3920

First, we consider the overall analysis time, presented in Table 6.17 (p.119) . FASE-3921

IOD shows better performance than the forking technique for reset faults, on average3922

we are x2.5 times faster for 1 fault, x16 times faster for 2 faults, x90 times faster for3923

3 faults and x560 times faster for 4 faults. The forking technique starts to timeout for3924

6 faults instead of 3 for arbitrary data faults. This is likely due to the simpler fault3925

model, as the effect of the fault is hardcoded to zero, instead of being a new symbolic3926

value.

Table 6.17: Analysis time for reset faults (RQ3.1)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD 0.363 1.15 2.81 5.04 9.78 13.3 15.2
Forking 0.922 18.8 255 2.82k 3.69k 27.8k 11.3k

timeouts (24h) over 12 benchmarks in total
FASE-IOD 0 0 0 0 0 0 0
Forking* 0 0 0 0 9 9 11

(Forking*: values for 6 faults and above are computed for incomplete runs due to timeouts)

3927

Then, the number of explored paths results are presented in Table 6.18 (p.120). We3928

see that the forking technique explodes in number of paths explored while FASE-IOD3929

does not. On average, we explore x5.4 times fewer paths for 1 fault, x48 for 2 faults3930

and x400 for 3 faults.3931

Conclusion RQ3.1. We confirmed for the reset fault model the general trends of
improved performance for analysis time and number of explored paths observed so
far for arbitrary data faults.

119

6.4. FASE Evaluation of Other Fault Models (RQ3)

Table 6.18: Number of explored paths for reset faults (RQ3.1)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD 11.0 30.2 66.1 113 202 265 300
Forking* 59.2 1.45k 26.3k 388k 851k 8.48M 2.0M

(Forking*: values for 6 faults and above are computed for incomplete runs due to timeouts)

6.4.2 FASE Evaluation of Bit-Flip Faults (RQ3.2)3932

Analysis time results are presented in Table 6.19 (p.120). The forking technique seems3933

to favor this fault model compared to arbitrary data and reset fault models. The same3934

analysis time trends from other data faults can be seen, except that the forking line3935

drops below FASE-IOD for 1 fault. The forking technique starts to experience timeouts3936

for 4 faults. The forking technique is x1.9 times faster for 1 fault compared to FASE-3937

IOD but becomes x3.9 times slower than FASE-IOD for 2 faults. A possible explanation3938

for the forking technique being faster for one fault is the chosen forkless encoding, which3939

results in harder-to-solve queries than the arbitrary data faults (in average solving time3940

per query), that it is supposed to be a particular case of. Furthermore, as described3941

in Section 5.3.7, the forking technique is implemented such that a fork in the analysis3942

happens between a path with a bit-flip fault in an assignment and a path without. A3943

path is not created for each possible bit the fault could flip. This implementation may3944

be considered an optimization of the forking technique for bit-flips.

Table 6.19: Analysis time for bit-flip faults (RQ3.2)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD 1.25 2.89 4.69 6.35 8.76 9.27 9.15
Forking* 0.645 15.1 225 952 2.13k 13.4k 9.47k

timeouts (24h) over 12 benchmarks in total
FASE-IOD 0 0 0 0 0 0 0
Forking 0 0 0 2 7 8 10

(Forking*: values for 4 faults and above are computed for incomplete runs due to timeouts)

3945

The number of explored paths are presented in Table 6.20 (p.121). We can see that3946

the number of explored paths explodes for the forking technique, from 68.9 on average3947

for 1 fault to 1.44k for 2. FASE-IOD is able to mitigate the path explosion experienced3948

by the forking technique, which explores on average x4.8, x38 and x311 times more3949

paths for 1, 2 and 3 faults respectively.3950

Conclusion RQ3.2. FASE-IOD outperforms the forking technique in scalability in
number of faults considered. However, the forking technique results in a faster
analysis time for 1 fault and then becomes much slower as more faults are consid-
ered. This could indicate that our forkless encoding of bit-flips is not the optimal
one in terms of performance. We leave designing a faster one for future work.

120

Chapter 6. Experimental Evaluation

Table 6.20: Number of explored paths for bit-flip faults (RQ3.2)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD 14.5 37.2 60.4 80.8 110 119 122
Forking 68.9 1.44k 18.8k 92.3k 207k 999k 734k

(Forking*: values for 4 faults and above are computed for incomplete runs due to timeouts)

6.4.3 FASE Evaluation of Test Inversion Faults (RQ3.3)3951

As a reminder, the test inversion fault model has no optimization implemented.3952

Analysis time results are presented in Table 6.21 (p.121). The forking technique3953

results in faster analysis time for all numbers of faults, except for 10 faults. It is on3954

average, over all number of faults, x1.4 times faster. Neither FASE nor the forking3955

technique experiment timeouts for this fault model.

Table 6.21: Analysis time for test inversion faults (RQ3.3)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE 0.130 0.262 0.501 0.829 1.69 2.30 2.59
Forking 0.096 0.161 0.300 0.522 1.24 2.17 2.82

timeouts (24h) over 12 benchmarks in total
FASE 0 0 0 0 0 0 0
Forking 0 0 0 0 0 0 0

3956

The number of explored paths is presented in Table 6.22 (p.121). The forking3957

technique explores always more paths as the analysis considers more faults, but so does3958

FASE, as by definition a test inversion fault opens a new path when activated. FASE3959

explores slightly fewer paths on average. The gap in explored paths is significantly lesser3960

than for the other presented fault models. There is not enough of a gain to compensate3961

for the added query complexity of the forkless encoding. Furthermore, there are only3962

few possible fault locations for test inversion in the performance benchmark, hence3963

comparatively few new paths are created by the forking technique compared to data3964

faults, which tips to our disadvantage the explored paths VS query complexity trade-3965

off. However, as the gap in explored paths increases with faults, we can imagine that3966

FASE, which is faster for 10 faults, remains faster for more than 10 faults with an3967

increasing gain.3968

Table 6.22: Number of explored paths for test inversion faults (RQ3.3)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
FASE 12.2 33.2 69.7 122 249 343 379
Forking 15.3 42.6 92.4 171 433 769 1.02k

121

6.4. FASE Evaluation of Other Fault Models (RQ3)

Conclusion RQ3.3. FASE supports the test inversion fault model, however, it is
not the fastest technique for a small number of faults. FASE is more interesting
than the forking technique for a large number of faults (10 or more). This is likely
because FASE tends to perform better than the forking technique when there is a
big gap in the number of paths explored, which is the case for test inversion faults
only for a large number of faults. We emit the hypothesis that faults at control-flow
points would favor forking faults.

6.4.4 FASE Evaluation of Instruction Skip Faults (RQ3.4)3969

As a reminder, the only optimization implemented for instruction skips is IOD.3970

Analysis time results are presented in Table 6.23 (p.122). First, we can see that3971

there is 1 program for which FASE-IOD cannot finish in time, the unrolled version of3972

VerifyPIN with a PIN size of 16. It contains a long sequence of 175 assignments, that3973

seem to overload the analysis when faulted in a forkless manner. For comparison, the3974

basic VerifyPIN program never exceeds 10 consecutive assignments. We believe that in3975

a program with regular branching instructions, constraints are regularly added, hence3976

there is actually not that much freedom in variable assignments, contrary to a program3977

with a long assignment sequence adding no constraints. The forkless instruction skip3978

appears not well suited for programs with long assignment sequences.3979

The forking technique passes this program, likely because it spreads the difficulty3980

of placing the fault by exploring different paths. The forkless technique does not3981

experience any other timeout for the rest of the programs for any number of faults.3982

The forking technique, however, starts to experience timeouts from 3 faults. With3983

our incomplete results, FASE-IOD is slower for 1 fault but becomes faster for 2 faults.3984

While exact numbers do not have meaning, since we count the full 24h in the case of3985

a timeout, FASE-IOD is indeed faster for 2 faults onward.

Table 6.23: Analysis time for instruction skip faults (RQ3.4)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD* 95.6 150 329 515 822 842 962
Forking* 9.6 857 3.52k 16.3k 32.1k 86.4k 86.4k

timeouts (24h) over 12 benchmarks in total
FASE-IOD 1 1 1 1 1 1 1
Forking 0 0 3 6 10 12 12

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts
FASE*: all value from incomplete runs)

3986

The number of explored paths results are presented in Table 6.24 (p.123). Despite3987

the incomplete run, which is an unrolled program with very few paths to explore for3988

FASE-IOD, we can see that FASE-IOD mitigated the path explosion faced by the3989

forking technique for instruction skip faults.3990

122

Chapter 6. Experimental Evaluation

Table 6.24: Number of explored paths for instruction skip faults (RQ3.4)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
FASE-IOD* 19.1 87.7 283 734 2.67k 4.7k 5.78k
Forking* 164 11.0k 211k 3.44M 7.6M 28.1M 29.2M

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts
FASE*: all value from incomplete runs)

Conclusion. To conclude, instruction skip is a harder fault model for FASE-IOD,
as we experience a timeout. However, FASE-IOD clearly out-performs the forking
technique when considering multiple faults (3 faults or more).

6.4.5 Summary3991

Table 6.25 summarizes fault model data for comparison on analysis time, number of3992

explored paths and average solving time per query.3993

Conclusion RQ3. FASE implements various fault models, with unequal results
compared to the forking technique.

– We always outperform the forking technique for arbitrary data faults;
– We also always beat the forking technique for reset faults;
– It is only for 2 or more faults that FASE shows better results than the forking

technique for bit-flip faults;
– We struggle more for instruction skip faults as we experience a timeout, but

we clearly perform better than the forking technique for 3 or more faults.;
– FASE does not shine for test inversion faults as the forking technique experi-

ences a restricted path explosion. We only outperform the forking technique
for large numbers of faults (10 or more).

Overall, FASE tends to perform better than the forking technique for multi-fault
analyses. It would seem like the forkless technique favors faults at data assignments,
while the forking technique favors faults at control-flow points.

We refer the interested reader to Appendix B for more experimental data on fault3994

models other than arbitrary data faults. In particular, we investigate the impact of3995

the optimizations implemented for each fault model and comment on the impact of the3996

chosen encoding operator for reset faults.3997

123

6.5. Forkless Faults in Instrumentation (RQ4)

Table 6.25: Summary table comparing FASE and the forking technique (RQ3)

1f 2f 3f 4f 6f 8f 10f

Analysis time (s)
FASE-IOD

AD
2.08 8.88 33.4 100 467 909 1.04k

Forking 39.5 3.58k 8.17k* 9.15k* 35.6k* 86.4k* 86.4k*
FASE-IOD

RS
0.363 1.15 2.81 5.04 9.78 13.3 15.2

Forking 0.922 18.8 255 2.82k 3.69k* 27.8k* 11.3k*
FASE-IOD

BF
1.25 2.89 4.69 6.35 8.76 9.27 9.15

Forking 0.645 15.1 225 952* 2.13k* 13.4k* 9.47k*
FASE

TI
0.130 0.262 0.501 0.829 1.69 2.30 2.59

Forking 0.096 0.161 0.300 0.522 1.24 2.17 2.82
FASE-IOD

IS
95.6* 150* 329* 515* 822* 842* 962*

Forking 9.6 857 3.52k* 16.3k* 32.1k* 86.4k* 86.4k*

Explored paths
FASE-IOD

AD
22.3 108 381 1.05k 4.64k 11.1k 15.2k

Forking 369 28.8k 170k* 215k* 1.41M* 2.17M* 2.2M*
FASE-IOD

RS
11.0 30.2 66.1 113 202 265 300

Forking 59.2 1.45k 26.3k 388k 851k* 8.48M* 2.0M*
FASE-IOD

BF
14.5 37.2 60.4 80.8 110 119 122

Forking 68.9 1.44k 18.8k 92.3k* 207k* 999k* 734k*
FASE

TI
12.2 33.2 69.7 122 249 343 379

Forking 15.3 42.6 92.4 171 433 769 1.02k
FASE-IOD

IS
19.1* 87.7* 283* 734* 2.67k* 4.7k* 5.78k*

Forking 164 11.0k 211k* 3.44M* 7.6M* 28.1M* 29.2M*

Average solving time per query (s)
FASE-IOD

AD
0.020 0.020 0.021 0.021 0.019 0.020 0.019

Forking 0.015 0.018 0.012* 0.012* 0.008* 0.019* 0.020*
FASE-IOD

RS
0.005 0.006 0.007 0.006 0.006 0.007 0.006

Forking 0.003 0.003 0.003 0.003 0.001* 0.001* 0.002*
FASE-IOD

BF
0.035 0.024 0.024 0.024 0.026 0.026 0.027

Forking 0.003 0.004 0.003 0.002* 0.003* 0.004* 0.004*
FASE

TI
0.002 0.002 0.002 0.002 0.002 0.002 0.002

Forking 0.002 0.002 0.002 0.002 0.002 0.002 0.002
FASE-IOD

IS
0.017* 0.025* 0.023* 0.020* 0.023* 0.021* 0.023*

Forking 0.010 0.012 0.006* 0.005* 0.002* 0.003* 0.003*

XXX*: value computed for incomplete run due to timeouts
AD: arbitrary data, RS: reset, BF: bit-flip, TI: test inversion, IS: instruction skip

6.5 Forkless Faults in Instrumentation (RQ4)3998

Instrumentation is the process of adding data or metadata to a program, that an ana-3999

lyzer will pick up and reason upon. It is possible to inject faults through instrumenta-4000

tion in order to reuse existing analyzers, but it allows for less tuning of the analysis. For4001

instance, the Lazart tool [PMPD14] takes C code as input and uses instrumentation4002

with the Klee5 symbolic execution engine. The goal of this section is to show that the4003

5https://klee.github.io/

124

https://klee.github.io/

Chapter 6. Experimental Evaluation

forkless technique can also benefit instrumentation.4004

6.5.1 Experimental Settings4005

We start by briefly describing the experimental settings relevant to this section.4006

Benchmarks. We still use the performance benchmarks (see Section 6.1.2.1).4007

Instrumentation Process. Each source code, which is written in C, is instrumented4008

with forkless and forking fault encodings. We can no longer use the BINSEC framework,4009

easily at least, since we need a way to tell the analyzer which variables are symbolic4010

and to specify constraints on them. We use the Klee symbolic engine instead and take4011

advantage of its C-level API to instrument our C codes. We use Clang6 to compile the4012

instrumented C to bytecode, which is given as input to Klee for analysis.4013

To make sure the analysis would not fork for the forkless encoding, we did not use4014

the ite operator, but the encoding using the bitwise and operator. For more details,4015

we refer the interested reader to Appendix C.4016

Attacker Model. For this section, we consider an attacker model able to perform 1 to4017

10 arbitrary data faults.4018

Exploration Strategy. We set Klee to explore all paths for both the forkless and forking4019

encoding, in order to be able to compare results.4020

Other Settings. We limit this experimental evaluation with a 1h timeout.4021

6.5.2 Scalability4022

RQ4. Can we scale in number of faults without path explosion, compared to the forking4023

encoding when used in instrumentation?4024

Goal. The goal of this experiment is to check whether forkless faults can also benefit4025

program instrumentation.4026

Results. We start by comparing the analysis time in order to see the interest of using4027

the forkless encoding in instrumentation compared to the forking encoding. Analysis4028

time results are presented in Table 6.26 (p.126) and illustrated in Figure 6.5 (p.126).4029

Interestingly, the forking encoding is slightly faster (x1.07 times) for 1 fault than the4030

forkless encoding. We believe results may vary depending on the operator used for4031

the forkless encoding, as they did with BINSEC/ASE, we leave for future work to4032

determine which forkless operator Klee favors and if one results in better performance4033

than the forking encoding. There are also fewer injection points and paths to explore in4034

C compared to binary code, which may tip the paths explored / query complexity trade-4035

off in our disfavor. We see that, for a 1h timeout, the forkless technique also experiences4036

a timeout when considering an attacker able to inject 3 faults. This happens for the4037

VerifyPIN 7 program, the most complex of the VerifyPINs. The forking encoding also4038

experiences a timeout for this program and 3 more when considering 3 faults. Overall,4039

the forking encoding always experiences more timeouts than the forkless encoding.4040

Except for 1 fault, the forkless encoding shows improved performance in analysis time4041

(x6.4 times faster for 2 faults) and mitigates the path explosion experiences by the4042

forking encoding.4043

6https://clang.llvm.org/

125

https://clang.llvm.org/

6.5. Forkless Faults in Instrumentation (RQ4)

Table 6.26: Analysis time for arbitrary data faults in instrumentation with Klee (RQ4)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
Forkless* 14.6 92.9 350 505 820 1.1k 1.2k
Forking* 13.7 592 1.4k 1.93k 2.71k 2.8k 2.84k

timeouts (1h) over 12 benchmarks in total
Forkless 0 0 1 1 2 3 4
Forking 0 0 4 5 8 10 10

(Forking*, Forkless*: values for 3 faults and above are computed for incomplete runs due to
timeouts)

Figure 6.5: Forkless and forking analysis time for arbitrary data faults in instrumentation
with Klee (RQ4)

We also consider the number of explored paths to compare instrumentation tech-4044

niques, presented in Table 6.27 (p.127) and illustrated in Figure 6.6 (p.127). We can4045

see that, like inside BINSEC, a binary symbolic execution engine, a forking encoding4046

suffers a path explosion in instrumented C code when the number of faults increases.4047

The forking encoding explores x2.3 times more paths when considering 1 fault and x8.74048

times when considering 2.4049

We note that the same plateau effect as in the BINSEC/ASE evaluation appears,4050

maybe for fewer faults even. This phenomenon is due in part to incomplete runs, and4051

in part to the benchmarks used that are not so complex and few faults already open4052

most paths of the CFG.4053

6.5.3 Conclusion4054

126

Chapter 6. Experimental Evaluation

Table 6.27: Number of explored paths for arbitrary data faults in instrumentation with Klee
(RQ4)

Number of explored paths
1f 2f 3f 4f 6f 8f 10f

average value
Forkless* 17.7 84.3 154 384 420 498 527
Forking* 41.2 736 3.77k 15.0k 16.1k 12.5k 23.8k

(Forking*, Forkless*: values for 3 faults and above are computed for incomplete runs due to
timeouts)

Figure 6.6: FASE and forking number of explored paths for arbitrary data faults in instru-
mentation with Klee (RQ4)

Conclusion RQ4. The forkless encoding enables improved performance and miti-
gates the path explosion experienced by the forking encoding when considering a
multi-fault analysis, also when they are used for instrumentation, demonstrating
the interest of the forkless encoding. Still, our other optimizations cannot be used.

6.6 Security Scenarios4055

In this section, we explore different security scenarios. This showcases the usability4056

of our tool on various real-world programs, with different attacker models and attack4057

goals. Programs’ characteristics are presented in Table 6.28 (p.128).4058

In particular, we aim to show that:4059

– We can replay known attacks with BINSEC/ASE;4060

– Our technique is expressive enough to handle real-world scenarios;4061

– We are able to scale beyond our performance benchmarks to real-world programs.4062

127

6.6. Security Scenarios

Table 6.28: Benchmarks characteristics and statistics of a standard SE analysis

BINSEC analysis - no fault
Program C loc x86 or #instr #paths max Time
group (#) ARM (explored) #branch

loc in a path

Section 6.6
CRT-RSA (3) 125-170 400-600 108k-29M 1 5k-1.3M 0.4s-1m27
Secret keeping

machine (2) 100-200 240-360 1k-1.3k 1 130-150 < 0.1s
VerifyPIN 0 with

SecSwift (1) 80 430 430 1 22 < 0.1s
Neural

network (1) 100 275 774 1 109 0.1s

6.6.1 CRT-RSA4063

RSA is an asymmetric encryption algorithm. A way to implement this algorithm,4064

yielding faster execution, is known as CRT-RSA. We study this algorithm through4065

three implementations with various protections.4066

Attacker Model. We consider an attacker able to perform one reset fault in order to4067

conduct a BellCoRe attack [BDL97]. If the output of the CRT-RSA is mathematically4068

linked to the secret key, then, with a number of tries using the algorithm, it is possible4069

to reconstruct the secret key.4070

The Programs. We base this analysis on the work of Puys et al. [PRBL14]. They de-4071

scribe three versions of CRT-RSA: unprotected, Shamir version and Aumuller version.4072

Only the last one is shown to resist the BellCoRe attack.4073

Results. We were able to automatically reproduce the attack with 1 reset fault on the4074

unprotected version of CRT-RSA in under 2 seconds. The whole program took just4075

under 3 hours to fully analyze, yielding nine different adversarial paths executing a4076

BellCoRe attack.4077

Our analysis experienced a timeout (24h) for the remaining two implementations4078

without yielding attack paths. This is not due to a path explosion but to a query4079

complexity explosion. We compare analysis metrics for 1h of analysis and 12 hours.4080

The number of paths explored remained the same, 2 for both, and only x1.8 to x3.54081

more instructions were analyzed. However, the average solving time per query went4082

from 0.5 seconds to 1.7 seconds for both, which is a big increase, and significantly4083

higher than the 0.005 seconds in the performance benchmark. No more queries were4084

found trivially true or false by BINSEC/ASE without a solver call between 1h and 12h4085

of analysis.4086

We summarize those results in Table 6.29.4087

Table 6.29: Summary of the CRT-RSA security scenario

Version Ground truth Result
CRT-RSA basic Insecure Insecure 3

CRT-RSA Shamir Insecure Time-out without finding attacks 7

CRT-RSA Aumuller Secure Time-out without finding attacks 3

128

Chapter 6. Experimental Evaluation

Conclusion. We were able to find attacks on the basic CRT-RSA version and found4088

none in Aumuller’s version. Our analysis was not able to provide a conclusive result4089

for Shamir’s version.4090

Cryptography is a weak spot of symbolic execution, as it relies on difficult-to-solve4091

problems to avoid reverse-engineering, which is related to what symbolic execution4092

attempts. It is hence not unexpected we would encounter scalability issues for this4093

security scenario. We leave for future work to design optimization techniques to improve4094

our analysis performance of cryptographic programs.4095

6.6.2 Secret-keeping Machine4096

Dullien [Dul17] proposes two versions of a toy secret-keeping machine in an exploration4097

of weird states that deviate from normal program behavior and showcases the impact4098

of implementation on program vulnerability.4099

The Programs. One version is based on linked lists and is manually shown to be4100

exploitable by an attacker able to perform a single bit-flip, while the array version is4101

proven secure against that attacker model. This bit-flip happens in the memory of the4102

secret-keeping machine, modeling a bit-flip from Rowhammer for instance.4103

The program works as follows. To store a new secret, a user gives the machine a4104

password and a secret. To retrieve their secret, the user sends just their password to4105

the secret-keeping machine, which will output the associated secret.4106

Attacker Model. Dullien considers an attacker model able to perform one bit-flip in4107

the memory (not in registers or intermediary variables). Its goal is to find the victim’s4108

secret without knowing the password.4109

We start by adapting Dullien’s attacker model to BINSEC/ASE, as we do not4110

support the capability ‘a bit-flip in memory’. Instead, we use BINSEC/ASE bit-flip4111

capability which happens when a value (register or memory) is updated. Then we4112

manually filter the results to only consider faults in memory loads overwritten afterward4113

and in memory stores.4114

Attack Scenario. This attack is performed in a scenario of interaction with the secret-4115

keeping machine:4116

1. The attacker interacts with the machine, storing and retrieving secrets, to set the4117

machine’s memory in a specific state;4118

2. The victim stores a password-secret pair;4119

3. The attacker interacts again with the machine, induces a bit-flip in memory at4120

some point and enters a value in the machine that should output the victim’s4121

secret.4122

We now present how we experimented with this security scenario.4123

Experimental Settings. We reimplemented the two versions presented in the paper.4124

One implements the memory with a linked list, the second version uses an array. We4125

simulate the interaction by calling multiple times the secret-keeping machine program4126

with different inputs recreating the scenario proposed in the paper. We discriminate4127

when to inject faults and when not by duplicating the functions interacting with the4128

machine’s memory, which is unique and shared. Only the duplicates are faulted.4129

For this benchmark, we activated faults on variables used as addresses.4130

Finding a Vulnerability. Our first goal is to reproduce the attack found in the paper4131

129

6.6. Security Scenarios

on the vulnerable version. We are happy to report that BINSEC/ASE is able to find4132

the attack described in the paper following the same interaction scenario.4133

– In memory, data are structured by triplets of password, secret and pointer to4134

the next triplet. When a secret is returned to the user, the program clears the4135

triplet, and puts it on the free linked list, setting the pointer to the next triplet4136

accordingly;4137

– The attack changes a pointer to the next memory triplet, such that instead of4138

pointing to the next password, it points to its associated secret, both belonging4139

to the attacker;4140

– Then the attacker sends this secret, acting as a password, to the secret machine,4141

which will output the next pointer and clear the triplet, i.e. the secret, the pointer4142

and the password of the next triplet. The (victim’s) password of that next triplet4143

is overwritten by a computable pointer, hence now known to the attacker;4144

– The attacker sends to the machine the pointer value and the machine outputs4145

the victim’s secret.4146

With this restrictive scenario, it is the only attack we found. It took BINSEC/ASE4147

0.1s to find it and 7h30min to analyze the whole program.4148

Program Resistance. Our second goal was to see if we could show that the secure4149

version is indeed secure. We analyze the second, array-built version with the same4150

attacker model. Our analysis was complete and did not report any attacks for a bit-flip4151

in memory.4152

A More Powerful Attacker Model. Then we explore for which attacker model the4153

resistant version becomes vulnerable. Our analysis of the array-built program shows4154

that by inducing a bit-flip in registers, the attack succeeds. We find the first adversarial4155

path in 78 minutes and analyze the whole program in 13h20min, finding 34 adversarial4156

paths. In the linked-list version, pointers to the next cell are placed in memory and4157

are the target of the attack found. In the array version, array indices provide that4158

function but are stored in registers, hence the array version becomes vulnerable when4159

broadening the specter of the attacker’s capability.4160

Table 6.30: Summary of the Secret keeping machine security scenario

Version Attacker model Ground truth Result
Linked-list 1 bit-flip in memory Insecure Insecure 3

Array 1 bit-flip in memory Secure Secure 3

Array 1 bit-flip anywhere Insecure Insecure 3

Conclusion. To conclude, BINSEC/ASE was able to replay the results from Dullien4161

[Dul17] as summarized in Table 6.30. They highlight the importance of the implemen-4162

tation decisions in program vulnerability. We also show that specifying the attacker4163

model against which to protect a program from is important, as a slight difference can4164

open new attack surface for an attacker.4165

6.6.3 SecSwift Countermeasure4166

SecSwift [dF21, CdFB21] is a control-flow integrity (CFI) countermeasure at the llvm4167

level. It is developed by STMicroelectronics.4168

Experimental Settings. We borrow an implementation of the SecSwift ControlFlow4169

countermeasure from Boespflug et al. [BEMP20] at the llvm level. According to the4170

130

Chapter 6. Experimental Evaluation

authors, it associates a unique identifier to each basic block and uses a xor-based4171

mechanism to ensure that the correct branch has been taken. In a nutshell, it prevents4172

the execution from deviating from the CFG. It is a restricted, less powerful version of the4173

real, closed-source, SecSwift countermeasure. We applied the protection to VerifyPIN4174

version 0, the basic version without protections, to study the effects of SecSwift without4175

interference from other protections.4176

Goal. Our goal is to assess the increased protection provided by the SecSwift coun-4177

termeasure and to investigate whether we can find attacks on a SecSwift-protected4178

program.4179

Attacker Model. We consider an attacker able to perform one arbitrary data fault4180

or one test inversion. Their goal is to be authenticated without entering the correct4181

password.4182

Results. We were able to find nine different attack paths in this binary, all yielding4183

an early loop exit, with either a single test inversion or a single arbitrary data fault.4184

Those attacks take the branch not entering the loop body, or exiting it early, paths that4185

belong to the CFG of the program. These attacks are not unexpected as the adversarial4186

paths stay in the legitimate CFG, yet it is still interesting that our technique finds them4187

automatically. It took BINSEC/ASE 22 minutes to find the first attack and 30 minutes4188

to analyze the whole program. Results are summarized in Table 6.31.

Table 6.31: Summary of the SecSwift security scenario

Version Ground truth Result
VerifyPIN 0 with SecSwift Insecure Insecure 3

4189

Conclusion. It is important to characterize exactly against what type of attack a4190

protection is efficient, so they can be combined to provide increased resistance. An4191

incomplete countermeasure may not increase a program’s resistance to an attacker.4192

6.6.4 Neural Network4193

The CEA List from Grenoble provided us with a very small neural network, based4194

on an implementation from CEA Gardanne [DHM+23]. This neural network is used4195

for evaluating hardware fault injection attack efficiency on microcontrollers for neural4196

networks and highlights their vulnerability. While actual neural networks for embedded4197

system evaluations have tens to hundreds more neurons than this one, it has the same4198

representative architecture (few layers deep, no convolution, ReLU) and allows testing4199

proof of concepts. It has 3 layers of 4,5 and 3 nodes.4200

The goal of this experiment is to see if an attacker can disturb the computation4201

of the neural network so that it classifies the input incorrectly, finding adversarial4202

examples.4203

This security scenario was the motivation behind extending BINSEC/ASE support4204

to ARM executables.4205

Attacker Model. The attacker model chosen is able to perform 1 bit-flip with the goal4206

of making the neural network classify a particular input in the desired incorrect class.4207

Vulnerabilities Found. Since this program has not been designed to resist fault in-4208

jection, it is expected that we would find vulnerabilities. BINSEC/ASE found 134209

131

6.7. Case Study: WooKey Bootloader

adversarial attack paths in 18 hours, the first attack path was found in 66 seconds.4210

Here are a few examples of successful fault injection:4211

– Corrupting the load of a weight;4212

– Corrupting the multiplication between a weight and the value coming from the4213

previous layer;4214

– Corrupting the formatting function used.4215

Here, many corruptions result in a wrong computation giving the desired class, but4216

they still need to be targeted depending on the input and the desired class. Table 6.324217

summarizes those results.

Table 6.32: Summary of the Neural Network security scenario

Version Ground truth Result
Neural Network Insecure Insecure 3

4218

Conclusion. We have shown on this small neural network that an attacker has a wide4219

attack surface at their disposal to corrupt to their wishes the output of the network.4220

This stresses the importance of taking security into account for neural networks, espe-4221

cially for embedded usage and if they perform a security feature.4222

6.6.5 Security Scenarios Feedback4223

After those security scenarios, this section provides some feedback on the usability of4224

BINSEC/ASE.4225

What Was Easy With BINSEC/ASE. There was no real difficulty in configuring BIN-4226

SEC/ASE once the program was implemented with its oracle. This last part was not4227

always easy though.4228

What Was Not so Easy With BINSEC/ASE. Understanding BINSEC/ASE output is4229

not trivial for a complex program. In particular, BINSEC/ASE provides the address4230

of activated faults, but only a very loose sense of the attack path, which hinders attack4231

understanding.4232

Improvments Due to the Security Scenarios. In order to analyze the neural network,4233

which was provided to us as an ARM binary, we had to extend BINSEC/ASE support4234

to this ISA by back-porting it from BINSEC.4235

6.7 Case Study: WooKey Bootloader4236

We confront BINSEC/ASE to a real-life security system, WooKey. After presenting4237

WooKey and the goals of this case study, we explore the bootloader, replaying attacks,4238

and evaluate a recent protection scheme, where we found an attack not mentioned4239

before. We propose and evaluate our own patch. Then we explore two other attacks4240

on the WooKey project.4241

6.7.1 Presentation of WooKey4242

First presented in 2018 by ANSSI, the French cybersecurity agency, the WooKey plat-4243

form [BRT+18, Woo] is “a custom STM32-based USB thumb drive with mass storage4244

capabilities designed for user data encryption and protection, with a full-fledged set4245

132

Chapter 6. Experimental Evaluation

of in-depth security defenses”. Their choice to be open source and open hardware4246

makes WooKey a relevant case study: it is a real-life, complex device, security-focused4247

and available for reproducibility. Wookey has been extensively analyzed, as it was the4248

target of an ANSSI cybersecurity challenge for security professionals [AAE+20].4249

We focus on the WooKey bootloader, a dual-bank system enabling hot firmware4250

updates. The system is hardened, especially redundant test protections are present in4251

critical sections to protect against an attacker able to perform one test inversion fault.4252

6.7.2 Security Scenario and Goal of our Study4253

We detail in this section the experimental setting and the analysis overview constituting4254

this case study.4255

WooKey Bootlaoder. We see in Table 6.33 (p.134) that WooKey bootloader size is4256

orders of magnitude larger than the programs used for performance evaluation. Wookey4257

is available as C code. We borrowed C stubs from Lacombe et al. [LFBP21] and we4258

compile the bootloader as we did for the evaluation benchmarks (Section 6.1.2.1).4259

Attacker Model. We consider the same attack goal as the ANSSI challenge did4260

[AAE+20]: the attacker seeks to manipulate the bootloader logic to boot on the older4261

firmware, more likely to contain security vulnerabilities. We also consider an attacker4262

able to perform a single arbitrary data fault.4263

Analysis Overview. We conduct the following three analyses:4264

1. We automatically analyze WooKey at binary-level to check whether we are able4265

to find previously known attacks [LFBP21], and/or new ones in Section 6.7.3: we4266

are indeed able to find the two attacks identified by prior work [LFBP21] (A1,4267

A2), as well as an attack they did not report (A3);4268

2. We automatically analyze at binary level the patched version of Wookey proposed4269

by Lacombe et al. [LFBP21] in Section 6.7.4: we found that the proposed patch4270

indeed blocks the two known attacks (A1 and A2), but not the unreported attack4271

(A3);4272

3. We propose a definitive patch by adding a counter-measure for A3 and removing4273

parts of the counter-measures that are shown to be useless here (Section 6.7.5).4274

The patch is proven correct w.r.t. our attack model;4275

4. We explore in Section 6.7.6 other parts of the WooKey project, replaying two4276

other attacks.4277

6.7.3 Analyze Key Parts of Wookey4278

The relevant parts of the bootloader’s functions are presented in Figure 6.7. Attacks4279

found are summarized in Table 6.34.4280

Methodology. In this case study, since we only consider an attacker model able to4281

perform one fault (the program is not meant to resist a more powerful attacker), we4282

divide our analysis, faulting only one function at a time. This divide-and-conquer4283

approach allows to obtain fast results.4284

Results. Lacombe et al. [LFBP21] find an attack in the loader exec req selectbank4285

function (A1) and another in the loader exec req flashlock function (A2). They cor-4286

respond to data corruption in branching conditions.4287

133

6.7. Case Study: WooKey Bootloader

T
ab

le
6.3

3
:

B
en

ch
m

ark
s

ch
aracteristics

an
d

statistics
of

a
stan

d
ard

S
E

an
aly

sis

B
IN

S
E

C
an

aly
sis

-
n
o

fau
lt

P
rogram

grou
p

(#
)

C
lo

c
x
86

lo
c

#
in

stru
ction

s
(ex

p
lored

)
#

p
ath

s
m

ax
#

b
ran

ch
in

a
p
ath

T
im

e
S
ection

s
6.2

to
6.5

V
erify

P
IN

s
(8)

80-140
160-215

192-269
1

17-34
<

0.1s
V

erify
P

IN
u
n
rolled

(2)
40-85

140-430
142-442

5-17
5-17

<
0.1s

n
p

o2
(2)

50
200-220

607-653
3

31-33
<

0.1s
S
ection

6.6
C

R
T

-R
S
A

(3)
125-170

400-600
108k

-29M
1

5k
-1.3M

0.4s
-

1m
27

S
ecret

keep
in

g
m

ach
in

e
(2)

100-200
240-360

1k
-1.3k

1
130-150

<
0.1s

V
erify

P
IN

0
w

ith
S
ecS

w
ift

80
430

430
1

22
<

0.1s
N

eu
ral

n
etw

ork
100

275
774

1
109

0.1s
S
ection

6.7
W

o
oK

ey
b

o
otload

er
3.2k

2350
290k

17
18k

9s

134

Chapter 6. Experimental Evaluation

1 s t a t i c l o a d e r r e q u e s t t l o a d e r e x e c r e q s e l e c t b a n k (l o a d e r s t a t e t
nex t s t a t e) {

2 // . . .
3 i f ((f l i p s h a r e d v a r s . fw . bootab le == FW BOOTABLE &&

f l o p s h a r e d v a r s . fw . bootab le == FW BOOTABLE) &&
4 ! (f l i p s h a r e d v a r s . fw . bootab le != FW BOOTABLE | |

f l o p s h a r e d v a r s . fw . bootab le != FW BOOTABLE)) {
5 // . . .
6 }
7 i f (f l o p s h a r e d v a r s . fw . bootab le == FW BOOTABLE
8 (CM1 − X) && f l i p s h a r e d v a r s . fw . bootab le != FW BOOTABLE) {
9 i f (! (f l o p s h a r e d v a r s . fw . bootab le == FW BOOTABLE

10 (CM2) && f l i p s h a r e d v a r s . fw . bootab le != FW BOOTABLE))
11 goto e r r ;
12 ctx . b o o t f l o p = s e c t r u e ;
13 // . . .
14 }
15 i f (f l i p s h a r e d v a r s . fw . bootab le == FW BOOTABLE
16 (CM3 − X) && f l o p s h a r e d v a r s . fw . bootab le != FW BOOTABLE) {
17 ctx . b o o t f l i p = s e c t r u e ;
18 // . . .
19 }
20 // . . .
21 }
22
23 s t a t i c l o a d e r r e q u e s t t l o a d e r e x e c r e q f l a s h l o c k (l o a d e r s t a t e t

nex t s t a t e) {
24 // . . .
25 i f (ctx . dfu mode == s e c t r u e) {
26 (CMA) i f (ctx . dfu mode != sec t rue)
27 (CMA) goto err ;
28 // . . .
29 }
30 e l s e i f (ctx . dfu mode == s e c f a l s e) {
31 i f (ctx . b o o t f l i p == s e c t r u e) {
32 (CM4) i f (ctx . b o o t f l i p != s e c t r u e)
33 (CM4) goto e r r ;
34 // . . .
35 ctx . next s tage = (app entry t) (FW1 START) ;
36 }
37 // . . .
38 }
39 }

Figure 6.7: functions of WooKey’s bootloader, with [LFBP21] fixes and our patch

Table 6.34: Table summarizing the effects of countermeasures

Protection scheme A1 A2 A3
l.3 l.31 l.25

Normal Wookey 3 3 3

Prior patch (CM1+CM2+CM3+CM4) 7 7 3

Our patch (CM2+CM4+CMA) 7 7 7

Legend - 3: attack path found by our tool / 7: no attack found

135

6.7. Case Study: WooKey Bootloader

– For attack A1, faulting the test at line 3 when both firmware flip and flop are4288

bootable results in the execution carrying on to a later test (line 7), which only4289

checks if flop can be booted, assuming at least one firmware cannot. If both are4290

bootable, and flop is the older one, the attacker’s goal can be satisfied;4291

– Attack A2 takes advantage of the lack of countermeasure in loader exec req4292

flashlock, which computes the pointer to the boot function of the chosen firmware.4293

Inducing a fault that inverts the test line 31 leads to the wrong pointer being se-4294

lected.4295

We are able to find both attacks, linking faults back to their locations in the C4296

code with debug information. We also find an additional, unreported attack 7, faulting4297

another part of the loader exec req flashlock function (A3).4298

– In attack (A3), by inverting the test line 25, it is possible to select the wrong4299

firmware pointer to boot on, in particular, if we are not in a secure Direct4300

Firmware Update (DFU) mode, it is possible to boot as if we were.4301

Remark. While we consider an attacker model able to perform an arbitrary data fault,4302

all attack paths found can equivalently be produced with a test inversion fault, the4303

fault model the WooKey project aims to be resistant to. This shows the scalability4304

of our tool to consider a more powerful attacker model. Interestingly, using arbitrary4305

data faults instead of test inversion does not open new attack paths here.4306

6.7.4 Analyze a Security Patch of WooKey4307

We now evaluate the protection scheme proposed by Lacombe et al. [LFBP21] for these4308

attacks. It consists of four extra counter-measures, adding duplicated tests, named from4309

CM1 to CM4, illustrated in Figure 6.7 (p.135).4310

Our results are summarized in Table 6.34 (p.135). We found indeed that:4311

– The full protection prevents attacks A1 and A2, as claimed by the authors of the4312

patch;4313

– Yet, our analysis shows that the protection does not prevent the unreported4314

attack A3.4315

6.7.5 Propose a New Patch and Evaluate It4316

Patching Attack A3. We manually inspect the analysis results to understand what4317

happens. We have especially been able to identify the root cause of A3 and propose4318

a dedicated countermeasure for it (named CMA and illustrated in Figure 6.7 (p.135)).4319

It consists again of adding a duplicated test line 26.4320

Counter-measure Analysis. We analyze each counter-measure in isolation, meaning4321

we implement only one per binary and evaluate each binary separately. We have been4322

able to understand that:4323

– Counter-measures CM1 and CM3 do not block any attack path as they are redun-4324

dant with other tests in the code and can be safely removed, for the considered4325

attacker model. As protections often induce an important overhead, only adding4326

useful ones is an interesting area of research. From CM1, we derive the following4327

principle: when there are two nested tests, and no instruction belonging solely4328

to the outer test, doubling the outer test is unnecessary (illustrated Figure 6.84329

7After discussion with the authors [LFBP21], it turns out that they actually found this path but
did not report it in the article, as they did not consider it as a real attack w.r.t. the Wookey challenge.

136

Chapter 6. Experimental Evaluation

(p.137)). We have not been able to derive a general rule from the removal of4330

CM3.4331

– CM2 and CM4 each block one of the attacks found by Lacombe et al.4332

1 i f (cond i t i on 1) {
2 i f (c ond i t i on 1){
3 i f (cond i t i on 2) {
4 i f (c ond i t i on 2) {
5 // code only here
6 }
7 }
8
9 }

10 }

Figure 6.8: CM1 double test pattern

Overall, our new patch (CMA + refined former patch) is shown by our tool to protect4333

against all the attacks, for an attacker able to perform one arbitrary data fault, which4334

is an attacker more powerful than the one considered initially in the WooKey project.4335

6.7.6 Other Attacks on WooKey4336

We also explore other parts of the WooKey project and we were able to replay two4337

other known attacks.4338

6.7.6.1 Attack Vectors Combination4339

The iso8716 library is used in WooKey for secure communication.4340

Attacker Model. We consider an attacker able to perform one arbitrary data fault.4341

The attack goal (A4) is to induce a buffer overflow to be exploited in a combined attack.4342

Results. Our analysis found a vulnerability to fault injection which enables a software4343

buffer-overflow in function SC get ATR [LFBP21]. Contrary to the attack paths found4344

before, this one could not be created with a test inversion fault.4345

6.7.6.2 Faulty Redundant Test4346

Martin et al. [MKP22] study the correctness of implemented counter-measures. In4347

particular, they were able to detect that one counter-measure doubling a test was4348

incorrectly implemented.4349

Attacker Model. We consider an attacker able to perform an arbitrary data fault,4350

including on flags. Since we study a small function that directly starts with the double4351

test of interest, this is equivalent to a test inversion fault.4352

Results. We show that indeed, a redundant test preventing single test inversion faults in4353

the loader set state function is in fact vulnerable (A5), hence incorrectly implemented4354

as pointed out by Martin et al. We implement the correction they propose and show4355

the correctness of their patch.4356

137

6.7. Case Study: WooKey Bootloader

6.7.7 Case Study Conclusion4357

In this case study of WooKey’s bootloader, we demonstrated some uses of our tool, in4358

a real-life context. It can replay known attacks, including from source-level analysis4359

and find new ones. It also assists in the countermeasure design and evaluation process.4360

A summary table is presented in Table 6.35.4361

Table 6.35: Summary of the WooKey bootloader case study

Attacker model
Version Attack

Ground
truth

Result
Capability Attack goal

1 AD
boot on older
firmware

basic A1, A2 Insecure Insecure
basic A3 Insecure
CM 1+2+3+4 A1, A2 Secure Secure
CM 1+2+3+4 A3 Insecure
CM 2+4 A1, A2 Secure
CM 2+4+A A1, A2 Secure Secure
CM 2+4+A A3 Secure Secure

1 AD trigger a buffer
overflow

basic A4 Insecure Insecure

1 AD
bypass
redundant test

basic A5 Insecure Insecure
basic A5 Secure Secure

AD: arbitrary data fault

138

Chapter 74362

Conclusion4363

Contents
4364

4365
7.1 Conclusion . 1394366

7.2 Perspectives . 1404367

43684369
4370

7.1 Conclusion4371

Program analysis techniques for safety consider a rather weak attacker model, only able4372

to craft smart inputs. In practice, an advanced attacker has many attack vectors at4373

their disposal, providing them with a wide range of (reusable) capabilities, threatening4374

program security. In this work, we address program analysis in the presence of an4375

advanced attacker. Our goal is to design a bug-finding program analysis technique4376

that is automatic, efficient and generic, integrating a model of an advanced attacker to4377

assess their impact on a program’s security properties.4378

First, we define a model of what we consider to be an advanced attacker. We4379

formalize the impact of this advanced attacker on a program’s execution. We extend4380

the standard notion of reachability to adversarial reachability, by including attacker4381

actions as a new type of transition in the transition system representing the program.4382

Then, we propose a dedicated symbolic algorithm for adversarial reachability, ad-4383

versarial symbolic execution. We extend symbolic execution by integrating attacker4384

actions as fault injections into the program analysis. A main limitation experienced4385

by the state-of-the-art techniques is path explosion, we mitigate it by integrating a4386

novel forkless encoding of attacker actions. Furthermore, we design two optimizations4387

dedicated to reducing the number of fault injections in queries to alleviate the solver’s4388

task. Early Detection of fault Saturation aims to stop fault injection as soon as possi-4389

ble, while Injection On Demand only adds faults when necessary to explore a branch,4390

injecting them as late as possible. Both preserve the attacker model’s power.4391

We implement adversarial symbolic execution on top of the BINSEC framework4392

for binary-level analysis. While adversarial symbolic execution is independent of the4393

analysis abstraction level, what is executed on the processor, and hence faulted, is the4394

binary program, motivating our implementation abstraction level. Our technique is4395

shown to significantly reduce the number of paths to explore, and scales up to 10 faults4396

on a standard SWIFI benchmark, where prior forking attempts timeout for 3 faults.4397

139

7.2. Perspectives

We illustrate the interest and feasibility of our technique through different security4398

scenarios, replaying attacks of attackers with various capabilities. Also, we show that4399

our method scales to realistic size examples, such as the WooKey project where we have4400

been able to replay known fault attacks and even find a vulnerability not reported in4401

a recently proposed countermeasure patch.4402

Essentially, this work is a first step in designing efficient program analysis techniques4403

able to take into account advanced attackers.4404

7.2 Perspectives4405

We present several directions to extend or improve the work presented in this thesis.4406

Extend the Supported Attacker Model. While our formalization allows for a generic4407

attacker model, our implementation of adversarial symbolic execution is more restricted4408

in attacker capabilities. For instance, it would be interesting and would widen the scope4409

of this tool’s usability to implement an attacker model able to perform actions from4410

different fault models in one attack. Similarly, our technique would benefit from having4411

an efficient algorithm to deal with fault on addresses, for instance by recording seen4412

addresses deemed ‘interesting’, or having a preprocessing selecting a set of ‘interesting’4413

addresses. It would allow corrupting pointers, for instance, to point to the reference4414

password instead of the user input password in the password comparison of an authenti-4415

cation program. Efficient faults on addresses can also be used for advanced control-flow4416

attacks, such as return-oriented programming (ROP), when reasoning about code ad-4417

dresses. Currently, we support those faults with a combinatorial explosion. We are also4418

missing an efficient algorithm for general instruction corruption. Another angle would4419

be to extend the supported fault models to broaden the scope of represented attacks.4420

In particular, micro-architectural components could be modeled to account for more4421

attacks targeting micro-architectural elements such as physical fault injection on the4422

prefetch buffer.4423

Such extensions would likely increase the complexity of the analysis. We believe4424

more optimizations can be designed to minimize the burden of fault injection on sym-4425

bolic execution, working towards reducing query complexity. It would also be interest-4426

ing to see how different fault encodings are in fact handled inside the solver to select4427

or design the best one. It could even be a mix of encoding.4428

A Hybrid Forking/Forkless Technique. We have seen in Chapter 6 that not all pro-4429

grams and not all fault models respond best to a forkless fault encoding. At first glance,4430

forkless encodings seem best suited for data faults while forking encodings could be fa-4431

vored for control-flow faults. It would be interesting to characterize what types of4432

programs respond best to a forkless technique and which respond best to a forking4433

one. Going further, we believe that inside a program, some possible fault locations4434

could respond best to one technique or the other. Hence, a future research direction4435

would be to design a hybrid forkless/forking technique and heuristics to choose which4436

technique to use on which possible fault location. Interestingly, this problem relates4437

to path merging in symbolic execution, where heuristic split cases into either fork the4438

analysis (analog to forking fault injection) or keep a merged state (analog to forkless4439

fault injection). The best performance for the path merging problem is found with a4440

hybrid technique, motivating this future research direction.4441

Finding the Minimal Attacker. The approach presented in this thesis focuses on as-4442

140

Chapter 7. Conclusion

sessing the vulnerability or resistance of a program to an attacker model. The problem4443

can also be seen from the opposite perspective, that is to say, having an analysis find a4444

‘minimal’ attacker model for which a program is vulnerable. Here, an order that makes4445

sense between various fault models and number of faults considered would have to be4446

coined.4447

141

7.2. Perspectives

142

Appendix A4448

Éléments de traduction en français4449

French summary of the thesis. The remaining of this appendix will be written in French.4450

Une introduction substantielle est proposée Section A.1, suivie d’un résumé de4451

chaque chapitre Section A.2, terminant par une conclusion Section A.3.4452

A.1 Chapitre 1 : Introduction4453

Contexte. Des programmes se trouvent partout dans nos vies : des smartphones dans4454

nos poches aux ordinateurs sur lesquels nous travaillons, nos télévisions, les systèmes4455

informatiques du supermarché du coin, mais aussi les puces de nos cartes de crédits, nos4456

systèmes de transport, de nos hôpitaux, les systèmes de distribution d’eau, d’électricité,4457

etc. Ces programmes peuvent contenir des fonctionnalités de sécurité, dont le mauvais4458

fonctionnement peut avoir de graves conséquences en termes monétaires, matérielles,4459

humaines, ou en termes de fuite de secret.4460

Cependant, les programmes étant écrits à la main par des développeurs, des er-4461

reurs s’y immiscent. Ces bogues peuvent ensuite être exploités par des attaquants,4462

par exemple, utiliser un dépassement de tampon pour lire ou écrire des données, ou4463

exécuter du code arbitraire. Des protections existent mais restent souvent incomplètes4464

et le programme continue à être vulnérable face à un attaquant avancé, par ailleurs4465

capable d’utiliser des vecteurs d’attaque autres que les vulnérabilités logicielles tel que4466

l’injection de faute durant l’exécution du programme. De nouveaux vecteurs et tech-4467

niques d’attaque sont régulièrement découverts.4468

De nombreux travaux de recherche, ces dernières décennies, se sont intéressés au4469

problème de l’analyse automatique de programme afin de les rendre plus robustes. De4470

nombreuses techniques ont été développées telles que l’exécution symbolique [CS13,4471

GLM12, BGM13], l’analyse statique [Fac], l’interprétation abstraite [CGJ+03] ou4472

l’analyse bornée de modèles [CBRZ01], détectant des bogues ou cherchant à montrer4473

leur absence [CCF+05, KKP+15], conduisant à une adoption industrielle [BGM13, Fac,4474

BCLR04, KKP+15, LRV+22]. S’assurer qu’un programme fonctionne comme voulu,4475

c’est-à-dire sans bogue, relève de la sûreté de fonctionnement. Comme les bogues sont4476

une porte d’entrée aux attaques, les supprimer est un premier pas vers la sécurité4477

logicielle.4478

Problème. Ces analyses de programmes pour la sûreté se reposent sur un modèle4479

d’attaquant faible, seulement capable de concevoir des entrées malveillantes. En pra-4480

I

A.1. Chapitre 1 : Introduction

tique, un attaquant avancé est capable d’exploiter des vulnérabilités complexes pour4481

monter des attaques micro-architecturales ou encore des attaques matérielles, physiques4482

ou contrôlées par logiciel tel que Rowhammer. Il peut également combiner ces différents4483

vecteurs d’attaque.4484

Pour construire une analyse de programme pour la sécurité, grâce à laquelle il4485

serait possible de rejouer des attaques, faisant varier différents paramètres et d’évaluer4486

des protections logicielles, nous avons identifié le besoin de réconcilier analyse de4487

programme et modèle d’attaquant avancé. Cependant, prendre en compte les nom-4488

breuses actions possibles d’un attaquant augment significativement l’espace d’état du4489

programme à analyser, menaçant la capacité de l’analyse à passer à l’échelle.4490

Objectif et Défis. Notre objectif est de concevoir une technique automatique, efficace et4491

générique pour raisonner sur l’impact d’un attaquant avancé sur les propriétés de sécu-4492

rité d’un programme alors que les analyses standards ne considèrent qu’un attaquant4493

capable de créer des entrées malicieuses.4494

Notre premier défi consiste à modéliser un attaquant avancé et à imaginer une4495

formalisation de son impact sur l’exécution d’un programme. Notre second défi est4496

de concevoir un algorithme efficace et générique pour étudier la vulnérabilité d’un4497

programme à un modèle d’attaquant donné, tout en mâıtrisant la complexité inhérente4498

à l’ajout d’actions possible pour l’attaquant, en particulier lorsque plusieurs actions4499

sont considérées durant une seule attaque.4500

Les rares techniques existantes dans le domaine se concentrent sur les injections de4501

fautes matérielles pour des composants de sécurité. Elles se basent sur des techniques4502

comme la génération de mutants [CCG13, RG14, GWJLL17, CDFG18, GWJL20] ou4503

des analyses branchantes [PMPD14, BBC+14, BHE+19, LFBP21, Lan22]. Ces tech-4504

niques souffrent de difficultés de passage à l’échelle, en particulier pour considérer4505

plusieurs fautes lors d’une attaque. De plus, elles sont généralement limitées à quelques4506

modèles de fautes pré-définis.4507

Proposition. Nous proposons un modèle caractérisant un attaquant avancé en fonction4508

de ses capacités à modifier le comportement du programme et de son objectif d’attaque.4509

Afin de pouvoir raisonner sur ce modèle d’attaquant, nous présentons une extension4510

du système de transitions représentant l’exécution d’un programme avec de nouvelles4511

transitions modélisant les capacités de l’attaquant. L’atteignabilité adversariale est un4512

formalisme exprimant l’atteignabilité de l’objectif de l’attaquant dans ce système de4513

transitions étendu.4514

Nous construisons un nouvel algorithme basé sur l’exécution symbolique, appelé4515

exécution symbolique adversariale, pour répondre au problème de l’atteignabilité ad-4516

versariale selon l’angle de la détection de bogue (vérification bornée). Notre algo-4517

rithme est générique en termes de support de capacités attaquant et permet d’atténuer4518

l’explosion du nombre de chemins à analyser grâce à un encodage non-branchant des4519

capacités de l’attaquant, présentées comme des fautes injectées. Afin d’améliorer da-4520

vantage les performances, nous proposons deux optimisations permettant de réduire le4521

nombre de fautes injectées. Nous montrons enfin que notre algorithme est correct et4522

k-complet pour l’atteignabilité adversariale.4523

Nous implémentons cet algorithme pour l’analyse de programme binaire dans la4524

plateforme BINSEC d’exécution symbolique, construisant BINSEC/ASE.4525

Contributions. Dans cette thèse, nous revendiquons les contributions suivantes :4526

– Nous proposons un modèle représentant un attaquant avancé et nous formalisons4527

son impact sur les propriétés d’un programme avec l’atteignabilité adversariale,4528

II

Chapter A. Éléments de traduction en français

une extension du concept d’atteignabilité en présence d’un attaquant avancé.4529

Nous définissons les propriétés de correction et de complétude associées ;4530

– Nous décrivons l’exécution symbolique adversariale, une nouvelle technique sym-4531

bolique évaluant l’atteignabilité adversariale. L’objectif de cet algorithme est4532

d’être automatique et efficace dans son raisonnement sur l’impact d’un attaquant4533

avancé sur un programme, et d’être générique quant au support du modèle4534

d’attaquant. Notre algorithme comprend un nouvel encodage non-branchant des4535

capacités de l’attaquant pour atténuer l’explosion de chemins et deux optimi-4536

sations pour limiter le nombre d’injections tout en préservant le même modèle4537

d’attaquant. Nous montrons que notre algorithme est correct et k-complet pour4538

l’atteignabilité adversariale ;4539

– Nous proposons une implémentation de l’exécution symbolique adversariale pour4540

l’analyse de programme binaire au sein de la plateforme BINSEC, construisant4541

un outil appelé BINSEC/ASE. Nous procédons à une évaluation expérimentale4542

de la performance de BINSEC/ASE comparé à l’état de l’art en utilisant des4543

programmes de test issus du domaine de l’injection de fautes matérielles et des4544

cartes à puce. Nous montrons un gain significatif en termes de temps d’analyse et4545

de chemins explorés. Nous soulignons l’intérêt et la faisabilité de notre technique4546

en explorant plusieurs scénarios de sécurité. Enfin, nous étudions le cas du pro-4547

gramme de démarrage de WooKey, accomplissant une étude de vulnérabilité de4548

deux implémentations et proposons un correctif pour une attaque non rapportée4549

précédemment.4550

Ces travaux sont un premier pas vers la conception d’analyse de programme efficace4551

pour la sécurité, prenant en compte un attaquant avancé. Notre approche est suffisam-4552

ment générique pour inclure de nombreuses capacités attaquant comme l’inversion de4553

bit de Rowhammer, l’inversion de test, le saut d’instruction ou la corruption arbitraire4554

de données. Cependant, la modification d’instructions reste hors de notre portée. Alors4555

que nous avons investigué le côté détection de vulnérabilité (sous-approximation) de4556

l’atteignabilité adversariale, le coté vérification (sur-approximation) serait intéressant4557

à explorer également. Ce sont des directions passionnantes pour de futurs travaux de4558

recherche.4559

Une partie des travaux présentés dans cette thèse ont été publiés à ESOP 20234560

[DBP23].4561

A.2 Résumés de chaque chapitre4562

A.2.1 Chapitre 2 : Contexte et Motivation4563

Ce chapitre décrit le contexte des systèmes d’information implémentant des fonctionnal-4564

ités de sécurité, bien plus répandus que l’on peut le penser, ainsi que les vulnérabilités4565

auxquelles ils font face et les processus de sécurisation mis en place. Nous motivons4566

le besoin d’intégrer un modèle d’attaquant avancé dans les analyses de programme4567

en listant quelques vecteurs d’attaque à la disposition d’un tel attaquant, notamment4568

l’injection de faute, et les capacités obtenues.4569

III

A.2. Résumés de chaque chapitre

A.2.2 Chapitre 3 : Préambule4570

Dans ce chapitre, nous discutons de quelques notions importantes pour la compréhen-4571

sion de la suite du manuscrit. L’analyse de programme, les différents type d’approximations4572

et quelques propriétés qui peuvent être vérifiées dans un programme sont présentés.4573

En particulier, la notion d’atteignabilité y est définie. Nous présentons une technique4574

d’analyse de programme, l’exécution symbolique, utilisée dans cette thèse. Nous abor-4575

dons ensuite les particularités de l’analyse de programme au niveau binaire, et de4576

l’analyse de programme pour l’injection de faute.4577

A.2.3 Chapitre 4 : Atteignabilité Adversariale4578

Ce chapitre débute par la formalisation du modèle d’attaquant utilisé, composé (1) des4579

capacités d’attaque, (2) d’un nombre maximal d’actions et (3) d’un objectif d’attaque.4580

Nous intégrons ce modèle d’attaquant dans la notion d’atteignabilité, définissant ainsi la4581

notion d’atteignabilité adversariale, en étendant la représentation d’un programme sous4582

forme d’un système de transition avec de nouvelles transitions adversariales. La correc-4583

tion et complétude d’une analyse pour l’atteignabilité adversariale sont définies. Un al-4584

gorithme de vérification de l’atteignabilité adversariale est ensuite proposée, l’exécution4585

symbolique adversariale, basée sur l’exécution symbolique. Les actions de l’attaquant4586

sont modélisées par des fautes, encodées de façon non branchante dans la construction4587

du prédicat de chemin. Deux optimisations permettant de réduire le nombre de fautes4588

dans les requêtes au solveur sont décrites.4589

A.2.4 Chapitre 5 : le Prototype BINSEC/ASE4590

Dans ce chapitre, nous décrivons l’implémentation de notre algorithme d’exécution4591

symbolique adversariale dans l’outil BINSEC, pour l’analyse de code au niveau bi-4592

naire. En particulier, nous changeons la manière dont sont traitées les instructions4593

pour y inclure la possibilité d’une faute. Nous détaillons également l’implémentation4594

de la technique branchant dans BINSEC, qui construit le compétiteur face auquel nous4595

comparer. Enfin, nous proposons un guide utilisateur pour utiliser BINSEC/ASE avec4596

un nouveau programme, et un guide développeur pour ajouter de nouveaux modèles4597

de fautes.4598

A.2.5 Chapitre 6 : Evaluation Expérimentale4599

Ce chapitre contient l’évaluation expérimentale de notre outil BINSEC/ASE. En par-4600

ticulier, nous montrons que notre technique d’injection améliore significativement les4601

performances de l’analyse, d’autant plus lorsque le nombre de fautes considéré est élevé.4602

Notre technique permet d’atténuer l’explosion du nombre de chemins à laquelle l’état4603

de l’art fait face.4604

Nous montrons également l’intérêt et la faisabilité de notre technique en explo-4605

rant différents scénarios de sécurité : reproduire une attaque BellCoRe sur CRT-RSA,4606

étudier la différence de vulnérabilité de deux implémentations d’une bôıte à secret,4607

chercher des attaques sur la contre-mesure SecSwift, étudier l’impact d’un attaquant4608

sur un réseau de neurones, et enfin, analyser le cas du programme de démarrage de4609

WooKey, un challenge de sécurité de l’ANSSI. Nous sommes capables de rejouer des4610

attaques et avons trouvé une attaque non rapportée dans un correctif récent.4611

IV

Chapter A. Éléments de traduction en français

A.3 Chapitre 7 : Conclusion4612

Les techniques d’analyse de programme se concentrent majoritairement sur l’aspect4613

sûreté et considèrent un modèle d’attaquant faible, seulement capable de créer des4614

entrées malicieuses pour les programmes. En pratique, un attaquant puissant peut4615

tirer parti de nombreux vecteurs d’attaques, menaçant la sécurité des programmes.4616

Dans cette thèse, nous visons à porter l’analyse de programme de la sûreté à la sécurité4617

par la modélisation et l’intégration d’un modèle d’attaquant avancé et de son impact4618

sur les propriétés de sécurité d’un programme.4619

Nous avons d’abord défini un modèle d’attaquant représentant un attaquant avancé4620

et nous avons formalisé son impact sur l’exécution d’un programme au travers de4621

l’atteignabilité adversariale qui étend le système de transition représentant un pro-4622

gramme avec des transitions adversariales modélisant les actions de l’attaquant.4623

Nous avons ensuite conçu un algorithme, l’exécution symbolique adversariale pour4624

répondre au problème de l’atteignabilité adversariale. Les techniques de l’état de4625

l’art souffrent d’une explosion du nombre de chemins à explorer. Nous atténuons4626

ce phénomène par un encodage non branchant des capacités de l’attaquant et deux4627

optimisations permettant de réduire la complexité des requêtes au solveur.4628

Puis, nous avons implémenté cet algorithme dans le moteur d’exécution symbolique4629

BINSEC, créant une analyse de sécurité au niveau binaire. Notre évaluation expérimen-4630

tale montre une amélioration significative des performances de l’analyse par rapport4631

à la technique branchante de l’état de l’art, en parallèle d’une réduction manifeste du4632

nombre de chemins à explorer.4633

Enfin, nous illustrons l’intérêt et la faisabilité de notre technique au travers de4634

différents scénarios de sécurité. Nous étudions également le cas du programme de4635

démarrage de WooKey, un challenge de sécurité de l’ANSSI. Nous sommes capables4636

de trouver des attaques connues, et avons même mis en évidence une attaque non4637

rapportée précédemment sur un correctif récent et proposé notre propre correctif.4638

Travaux Futurs. Nous présentons maintenant quelques perspectives de travaux futurs4639

étendant ou améliorant les travaux présentés dans cette thèse :4640

– Étendre le support de BINSEC/ASE à de nouveaux modèles de faute, avec un4641

besoin d’algorithmes efficaces. Par exemple, notre formalisation est générique et4642

permet de modéliser un attaquant avec plusieurs types d’actions différentes, ce4643

qui n’est, à l’heure actuelle, pas implémenté dans notre outil. Il serait égale-4644

ment intéressant de poursuivre la recherche d’optimisations limitant en amont le4645

nombre de points d’injection possibles ;4646

– Certains programmes, modèles de fautes, ou peut-être même points d’injection4647

se révèlent plus long à traiter avec une analyse non branchante. À première vue,4648

une analyse non branchante semble être plus performante sur des fautes sur les4649

données, alors qu’une analyse branchante pourrait avoir de meilleur résultat pour4650

des fautes sur le flow de control. Il serait intéressant de chercher des heuristiques4651

pour déterminer quand utiliser l’une ou l’autre des techniques, créant une analyse4652

hybride ;4653

– Dans cette thèse, nous nous intéressons à montrer la vulnérabilité ou la résistance4654

d’un programme à un modèle d’attaquant donné. À l’inverse, on pourrait chercher4655

quel est l’attaquant ”minimal” pouvant attaquer un programme. Il serait alors4656

nécessaire de proposer une relation d’ordre entre les modèles de faute et leurs4657

nombres qui fasse sens.4658

V

A.3. Chapitre 7 : Conclusion

VI

Appendix B4659

Additional Experimental Data4660

In this appendix chapter, we include additional experimental data that did not fit in4661

Chapter 6. The interested reader will find:4662

– A deeper evaluation of the reset fault model in Section B.1 (RQ B1), assessing4663

the impact of our optimizations (RQ B1.1) in Section B.1.1 and the impact of4664

the forkless encoding (RQ B1.2) in Section B.1.2;4665

– An evaluation of the impact of our optimizations on bit-flip faults (RQ B2) in4666

Section B.2;4667

– An evaluation of the impact of our optimizations on instruction skip faults (RQ4668

B3) in Section B.3;4669

– A summary of our optimization evaluation across fault models in Section B.4;4670

– An evaluation of the affinity of different solvers to our various arbitrary data4671

forkless encodings (RQ B4) in Section B.5.4672

B.1 FASE Evaluation of Reset Faults (RQ B1)4673

We evaluate BINSEC/ASE for the reset fault model regarding the impact of our op-4674

timizations and the impact of the chosen forkless encoding. We assess them indepen-4675

dently. Our aim is to verify the extensibility of arbitrary data fault results.4676

B.1.1 Impact of Optimizations (RQ B1.1)4677

We evaluate now the impact of the different optimizations, EDS, IOD and their com-4678

bination, IOD+EDS, for reset faults.4679

RQ B1.1. What is the impact of our optimizations on reset faults?4680

Goal. The goal of this experiment is to evaluate our optimizations for the reset fault4681

model and evaluate how they contribute to reducing query complexity. In particular,4682

we want to check whether general trends for arbitrary data fault evaluation also hold4683

for reset faults.4684

Protocol. We evaluate FASE on the performance benchmark, with an attacker model4685

able to perform 1 to 10 reset faults.4686

Results. We start by checking which is the fastest optimization. Analysis time results4687

are presented in Table B.1 (p.VIII). On average for all numbers of faults, FASE-EDS is4688

x1.05 times faster than FASE, FASE-IOD x1.6 times faster and FASE-EDS+IOD x1.44689

times faster.4690

VII

B.1. FASE Evaluation of Reset Faults (RQ B1)

Table B.1: Analysis time for reset faults (RQ B1.1)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-Reset 0.815 2.32 4.53 7.48 12.4 17.5 19.6
FASE-Reset-EDS 0.561 1.85 4.42 7.56 13.9 20.0 24.0
FASE-Reset-IOD 0.363 1.15 2.81 5.04 9.78 13.3 15.2
FASE-Reset-EDS+IOD 0.414 1.3 3.15 5.65 10.8 14.9 16.9
Forking-Reset 0.922 18.8 255 2.82k 3.69k 27.8k 11.3k

timeouts (24h) over 12 benchmarks in total
FASE-Reset 0 0 0 0 0 0 0
FASE-Reset-EDS 0 0 0 0 0 0 0
FASE-Reset-IOD 0 0 0 0 0 0 0
FASE-Reset-EDS+IOD 0 0 0 0 0 0 0
Forking-Reset* 0 0 0 0 9 9 11

(Forking-Reset*: values for 6 faults and above are computed for incomplete runs due to
timeouts)

To measure the impact of our optimizations on query complexity, we consider the4691

ratio of queries created on the number of queries sent to the solver, presented in Table4692

B.2 (p.IX). This provides information about the complexity of the created queries and4693

how many can be solved to true or false with arithmetic rules inside BINSEC without4694

a solver call. We can see a trend similar to arbitrary data faults, where optimizations4695

increase the number of queries created by the analysis, but allow for simpler queries,4696

as many more are simplified without the solver’s help.4697

Finally, our second measure of query complexity is the average solving time per4698

query, assessing the complexity of queries for those that need to be sent to the solver.4699

Results for average solving time per query are presented in Table B.4 (p.X). The average4700

solving time per query also decreases with optimizations. However, while FASE-IOD4701

managed to get to the level of the forking technique for arbitrary data faults, here the4702

forking technique remains x2.3 times faster than FASE-IOD on average for all numbers4703

of faults.4704

Conclusion RQ B1.1. Reset faults experimentally show trends in performance
similar to arbitrary data faults, with FASE-IOD still the best optimization.

VIII

Chapter B. Additional Experimental Data

T
ab

le
B

.2
:

N
u
m

b
er

of
q
u
er

ie
s

cr
ea

te
d

an
d

se
n
t

to
th

e
so

lv
er

fo
r

re
se

t
fa

u
lt

s
(R

Q
B

1.
1)

N
u
m

b
er

of
q
u
er

ie
s

cr
ea

te
d

/
N

u
m

b
er

of
q
u
er

ie
s

se
n
t

to
th

e
so

lv
er

1f
2f

3f
4f

6f
8f

10
f

av
er

ag
e

va
lu

e
F
A

S
E

-R
es

et
18

5
/

80
.8

46
5

/
20

4
89

9
/

38
3

1.
38
k

/
58

3
2.

16
k

/
93

9
2.

64
k

/
1.

21
k

2.
9k

/
1.

36
k

F
A

S
E

-R
es

et
-E

D
S

19
8

/
65
.6

51
8

/
21

1
1.

04
k

/
44

1
1.

65
k

/
70

2
2.

66
k

/
1.

19
k

3.
3k

/
1.

56
k

3.
66
k

/
1.

8k
F
A

S
E

-R
es

et
-I

O
D

19
8

/
48
.2

52
7

/
17

6
1.

08
k

/
41

0
1.

76
k

/
71

2
2.

9k
/

1.
29
k

3.
59
k

/
1.

71
k

3.
96
k

/
1.

95
k

F
A

S
E

-R
es

et
-E

D
S
+

IO
D

20
5

/
53
.0

55
5

/
19

1
1.

15
k

/
44

4
1.

87
k

/
76

5
3.

11
k

/
1.

38
k

3.
87
k

/
1.

85
k

4.
32
k

/
2.

15
k

F
or

k
in

g-
R

es
et

*
1.

34
k

/
17

3
29
.2
k

/
4.

08
k

47
6k

/
69
.0
k

6.
22
M

/
96

3k
8.

27
M

/
2.

04
M

61
.2
M

/
20
.8
M

13
.1
M

/
6.

0M

(F
o
rk

in
g
-R

es
et

*:
va

lu
es

fo
r

6
fa

u
lt

s
an

d
ab

ov
e

ar
e

co
m

p
u
te

d
fo

r
in

co
m

p
le

te
ru

n
s

d
u
e

to
ti

m
eo

u
ts

)

T
ab

le
B

.3
:

N
u
m

b
er

o
f

q
u
er

ie
s

cr
ea

te
d

an
d

se
n
t

to
th

e
so

lv
er

co
m

p
ar

is
on

fo
r

re
se

t
fa

u
lt

en
co

d
in

gs
(R

Q
B

1.
2)

N
u
m

b
er

of
q
u
er

ie
s

cr
ea

te
d

/
N

u
m

b
er

of
q
u
er

ie
s

se
n
t

to
th

e
so

lv
er

1f
2f

3f
4f

6f
8f

10
f

av
er

ag
e

va
lu

e
F
A

S
E

-R
es

et
-I

te
18

5
/

80
.8

46
5

/
20

4
89

9
/

38
3

1.
38
k

/
58

3
2.

16
k

/
93

9
2.

64
k

/
1.

21
k

2.
9k

/
1.

36
k

F
A

S
E

-R
es

et
-S

u
b

18
5

/
10

3
46

5
/

27
1

89
9

/
52

1
1.

38
k

/
80

1
2.

16
k

/
1.

26
k

2.
64
k

/
1.

59
k

2.
9k

/
1.

79
k

F
A

S
E

-R
es

et
-A

n
d

18
5

/
10

3
46

5
/

27
1

89
9

/
52

1
1.

38
k

/
80

1
2.

16
k

/
1.

26
k

2.
64
k

/
1.

59
k

2.
9k

/
1.

79
k

F
A

S
E

-R
es

et
-X

or
18

5
/

10
3

46
5

/
27

1
89

9
/

52
1

1.
38
k

/
80

1
2.

16
k

/
1.

26
k

2.
64
k

/
1.

59
k

2.
9k

/
1.

79
k

IX

B.1. FASE Evaluation of Reset Faults (RQ B1)

Table B.4: Average solving time per query for reset faults (RQ B1.1)

Average solving time per query (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-Reset 0.007 0.009 0.009 0.009 0.010 0.010 0.009
FASE-Reset-EDS 0.007 0.008 0.009 0.009 0.009 0.009 0.009
FASE-Reset-IOD 0.005 0.006 0.007 0.006 0.006 0.007 0.006
FASE-Reset-EDS+IOD 0.005 0.007 0.007 0.006 0.007 0.007 0.006
Forking-Reset* 0.003 0.003 0.003 0.003 0.001 0.001 0.002

(Forking-Reset*: values for 6 faults and above are computed for incomplete runs due to
timeouts)

B.1.2 Comparison of the Different Forkless Encodings (RQ B1.2)4705

Multiple forkless encodings have been implemented for reset faults (see Section 5.3.3.1).4706

We compare them here.4707

RQ B1.2. What is the impact of the different encodings on the solver’s performance?4708

Goal. Our goal is to explore the impact of different operators in the forkless encoding4709

and their affinity with the solver used by BINSEC/ASE. We check whether the ite4710

operator also makes for the fastest forkless encoding with reset faults.4711

Protocol. We evaluate FASE on the performance benchmark, with an attacker model4712

able to perform 1 to 10 reset faults. We compare four encodings, FASE-Reset-Ite,4713

FASE-Reset-Sub (with a munis operator), FASE-Reset-And (with a logical and opera-4714

tor) and FASE-Reset-Xor (with a logical xor operator), on three metrics. No optimiza-4715

tions were used.4716

Results. First, analysis time results are presented in Table B.5 (p.X). In terms of4717

overall analysis time, FASE-Reset-Ite is x2.1 times faster than FASE-Reset-Xor for 14718

fault on average, x3.5 times faster than FASE-Reset-And and x3.4 times faster than4719

FASE-Reset-Sub.

Table B.5: Analysis time for reset faults (RQ B1.2)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-Reset-Ite 0.815 2.32 4.53 7.48 12.4 17.5 19.6
FASE-Reset-Sub 2.79 7.03 14.0 23.5 39.4 52.0 55.2
FASE-Reset-And 2.86 7.78 15.8 25.9 45.7 59.7 71.6
FASE-Reset-Xor 1.72 4.87 10.0 16.2 26.9 34.2 39.3

4720

Then, looking at query complexity, our first metric is the ratio of queries created on4721

the number of queries sent, presented in Table B.3 (p.IX), reflecting query complexity4722

at query creation inside BINSEC, before solver call. FASE-Reset-Ite enables more4723

arithmetical simplifications preventing a solver call for all fault numbers. FASE-Reset-4724

Ite simplifies 56% of queries, while the other 3 encodings only simplify 44% of queries.4725

This difference is likely due to the various arithmetic simplification rules implemented4726

X

Chapter B. Additional Experimental Data

in BINSEC, not treating concrete constant values (in reset faults) like more general4727

expressions (in arbitrary data faults).4728

Finally, the average solving time per query results are presented in Table B.6 (p.XI),4729

to reflect the query complexity in solver calls. Due to variability in the measurements,4730

100 runs were averaged for each program of the benchmark. FASE-Reset-Ite is also4731

the encoding generating queries that take the least time to solve. Averaging over all4732

number of faults, FASE-Reset-Ite is x3.4 times faster than FASE-RESET-Sub, x3.74733

times faster than FASE-Reset-And and x1.8 times faster than FASE-Reset-Xor.

Table B.6: Average solving time per query for reset faults (RQ B1.2)

Average solving time per query (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE-Reset-Ite 0.007 0.009 0.009 0.009 0.010 0.010 0.009
FASE-Reset-Sub 0.031 0.030 0.029 0.035 0.028 0.028 0.029
FASE-Reset-And 0.032 0.036 0.035 0.030 0.031 0.033 0.035
FASE-Reset-Xor 0.014 0.016 0.017 0.017 0.017 0.017 0.017

4734

Conclusion RQ B1.2. The encoding using the ite operator is the best-performing
encoding for reset faults and arbitrary data faults for our BINSEC/ASE imple-
mentation and the solver it uses.

B.2 FASE Evaluation of Bit-Flip Faults (RQ B2)4735

In this section, we assess the last data fault model implemented by evaluating our4736

different optimizations (FASE+EDS, FASE+IOD and FASE-EDS+IOD) and FASE.4737

We have only one forkless encoding implemented, using an ite and a shift operator, for4738

the bit-flip fault model.4739

RQ B2. What is the impact of our optimizations on bit-flip faults?4740

Goal. The goal of this experiment is to check that FASE-IOD also performs best for4741

bit-flips and evaluate how optimizations contribute to reducing query complexity.4742

Protocol. We evaluate FASE on the performance benchmark, with an attacker model4743

able to perform 1 to 10 bit-flip faults.4744

Results. We present the analysis time results in Table B.7 (p.XII). FASE IOD is x2.24745

times faster than FASE, x1.4 times faster than FASE-EDS and x1.1 times faster than4746

FASE-EDS+IOD.4747

To compare query complexity, we start with the ratio of queries created over queries4748

sent to the solver, presented in Table B.9 (p.XIII). As expected, optimizations generate4749

some more queries than FASE, x1.6 times for FASE-EDS and FASE-IOD for 1 fault,4750

and x1.1 times more for FASE-EDS+IOD. Despite this, they succeed in reducing query4751

complexity as more queries are arithmetically resolved to true or false by BINSEC4752

without the help of the solver. FASE-EDS sends x1.1 times fewer queries to the solver,4753

FASE-IOD x1.4 times fewer and FASE-EDS+IOD x1.2 times fewer. As the number of4754

faults increases, the ratio of queries simplified without a solver call increases also.4755

XI

B.2. FASE Evaluation of Bit-Flip Faults (RQ B2)

Table B.7: Analysis time for bit-flip faults (RQ3.2)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE 2.71 5.42 7.97 9.84 13.0 13.8 14.2
FASE-EDS 1.71 4.58 7.87 10.3 15.1 15.2 16.0
FASE-IOD 1.25 2.89 4.69 6.35 8.76 9.27 9.15
FASE-EDS+IOD 1.4 3.82 5.25 6.9 9.51 10.4 10.5
Forking* 0.645 15.1 225 952 2.13k 13.4k 9.47k

timeouts (24h) over 12 benchmarks in total
FASE 0 0 0 0 0 0 0
FASE-EDS 0 0 0 0 0 0 0
FASE-IOD 0 0 0 0 0 0 0
FASE-EDS+IOD 0 0 0 0 0 0 0
Forking 0 0 0 2 7 8 10

(Forking*: values for 4 faults and above are computed for incomplete runs due to timeouts)

Our second measure of query complexity is the average solving time per query,4756

presented in Table B.8 (p.XII). On average over all faults, FASE-EDS queries are x1.044757

faster to solve, FASE-IOD x1.9 times and FASE-EDS+IOD x1.8 times faster.

Table B.8: Average solving time per query for bit-flip faults (RQ B2)

Average solving time per query (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE 0.050 0.053 0.052 0.046 0.050 0.050 0.050
FASE-EDS 0.035 0.045 0.060 0.049 0.057 0.048 0.053
FASE-IOD 0.035 0.024 0.024 0.024 0.026 0.026 0.027
FASE-EDS+IOD 0.034 0.037 0.024 0.024 0.025 0.026 0.027
Forking* 0.003 0.004 0.003 0.002 0.003 0.004 0.004

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts)

4758

Conclusion RQ B2. FASE-IOD is still the fastest optimization for the bit-flip fault
model.

XII

Chapter B. Additional Experimental Data

T
ab

le
B

.9
:

N
u
m

b
er

of
q
u
er

ie
s

cr
ea

te
d

an
d

se
n
t

to
th

e
so

lv
er

fo
r

b
it

-fl
ip

fa
u
lt

s
(R

Q
B

2)

N
u
m

b
n
er

of
q
u
er

ie
s

cr
ea

te
d

/
N

u
m

b
er

of
q
u
er

ie
s

se
n
t

to
th

e
so

lv
er

1f
2f

3f
4f

6f
8f

10
f

av
er

ag
e

va
lu

e
F
A

S
E

16
1

/
86
.1

30
3

/
16

2
43

5
/

22
8

54
7

/
28

7
67

6
/

35
8

71
5

/
37

7
72

6
/

38
2

F
A

S
E

-E
D

S
17

1
/

78
.0

33
0

/
16

5
48

0
/

24
3

60
9

/
31

3
76

6
/

40
7

81
3

/
43

2
82

6
/

43
9

F
A

S
E

-I
O

D
17

1
/

60
.8

34
5

/
14

4
51

7
/

22
2

66
0

/
29

2
82

3
/

37
0

87
0

/
38

8
88

3
/

39
3

F
A

S
E

-E
D

S
+

IO
D

18
1

/
70
.8

37
2

/
16

6
55

7
/

25
0

71
2

/
32

1
90

2
/

41
6

96
0

/
44

0
97

6
/

44
7

F
or

k
in

g*
1.

06
k

/
23

7
17
.8
k

/
5.

24
k

20
4k

/
68
.0
k

1.
05
M

/
34

9k
2.

09
M

/
70

3k
8.

18
M

/
3.

07
M

5.
19
M

/
2.

15
M

(F
o
rk

in
g
*:

va
lu

es
fo

r
3

fa
u
lt

s
an

d
ab

ov
e

ar
e

co
m

p
u

te
d

fo
r

in
co

m
p

le
te

ru
n
s

d
u

e
to

ti
m

eo
u
ts

)

T
ab

le
B

.1
0:

N
u
m

b
er

o
f

q
u
er

ie
s

cr
ea

te
d

an
d

se
n
t

to
th

e
so

lv
er

co
m

p
ar

is
on

fo
r

in
st

ru
ct

io
n

sk
ip

fa
u

lt
s

(R
Q

B
3)

N
u
m

b
er

of
q
u
er

ie
s

cr
ea

te
d

/
N

u
m

b
er

of
q
u
er

ie
s

se
n
t

to
th

e
so

lv
er

1f
2f

3f
4f

6f
8f

10
f

av
er

ag
e

va
lu

e
F
A

S
E

*
27

4
/

15
6

95
1

/
53

5
2.

52
k

/
1.

32
k

5.
41
k

/
2.

76
k

14
.0
k

/
7.

29
k

20
.8
k

/
10
.5
k

25
.9
k

/
12
.7
k

F
A

S
E

-I
O

D
*

35
2

/
11

4
1.

25
k

/
51

9
3.

3k
/

1.
4k

6.
99
k

/
2.

94
k

17
.3
k

/
7.

44
k

24
.5
k

/
10
.1
k

30
.5
k

/
12
.4
k

F
or

k
in

g*
2.

8k
/

47
4

13
3k

/
34
.0
k

2.
76
M

/
49

6k
69
.0
M

/
4.

67
M

46
.7
M

/
13
.6
M

18
1M

/
32
.3
M

13
3M

/
33
.8
M

(F
o
rk

in
g
*:

va
lu

es
fo

r
3

fa
u
lt

s
an

d
ab

ov
e

ar
e

co
m

p
u

te
d

fo
r

in
co

m
p

le
te

ru
n
s

d
u

e
to

ti
m

eo
u
ts

F
A

S
E

*:
al

l
va

lu
e

fr
om

in
co

m
p
le

te
ru

n
s)

XIII

B.3. FASE Evaluation of Instruction Skip Faults (RQ B3)

B.3 FASE Evaluation of Instruction Skip Faults (RQ B3)4759

We now evaluate BINSEC/ASE’s performance for instruction skips. Only one forkless4760

encoding has been implemented, using an ite operator. FASE support instruction skips4761

in its un-optimized version, and with IOD.4762

RQ B3. What is the impact of our optimizations on instruction skip faults?4763

Goal. The goal of this experiment is to check whether IOD improves FASE’s perfor-4764

mance and evaluate how it contributes to reducing query complexity.4765

Protocol. We evaluate FASE on the performance benchmark, with an attacker model4766

able to perform 1 to 10 instruction skip faults.4767

Results. We start with the analysis time results, presented in Table B.11 (p.XIV). First,4768

we can see that there is 1 program for which the instruction skip forkless cannot finish4769

in time for FASE and FASE-IOD similarly. It is the unrolled version of VerifyPIN with4770

a PIN size of 16. This is a rather long sequence of assignments that seem to overload4771

the analysis when faulted in a forkless manner. As FASE and FASE-IOD timeout for4772

the same benchmark, we can still compare their results in analysis time. We see that4773

FASE-IOD is x1.1 times faster than FASE on average for 1 fault, which is less than for4774

data fault models. Injection On Demand was designed with data faults in mind, we4775

leave to future work to imagine an optimization tailored for this particular fault model.4776

Table B.11: Analysis time for instruction skip faults (RQ B3)

Analysis time (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE* 107 175 343 625 1.73k 2.94k 3.23k
FASE-IOD* 95.6 150 329 515 822 842 962
Forking* 9.6 857 3.52k 16.3k 32.1k 86.4k 86.4k

timeouts (24h) over 12 benchmarks in total
FASE 1 1 1 1 1 1 1
FASE-IOD 1 1 1 1 1 1 1
Forking 0 0 3 6 10 12 12

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts
FASE*: all value from incomplete runs)

4777

Then, we evaluate FASE-IOD compared to FASE on query complexity metrics. The4778

ratio of queries created over queries sent is presented in Table B.10 (p.XIII). As runs4779

are incomplete for at least one benchmark, comparison of exact values does not make4780

sense, but trends are preserved. Hence we can see that, as expected, FASE-IOD creates4781

more queries but reduces query complexity enough so that it sends fewer to the solver4782

than FASE.4783

Our second query complexity metric, the average solving time per query, is presented4784

in Table B.12 (p.XV). As for other fault models, FASE-IOD allows to greatly reduce4785

the average solving time per query. On average over all number of faults, FASE-IOD4786

has queries x5.4 faster to solve than FASE.4787

XIV

Chapter B. Additional Experimental Data

Table B.12: Average solving time per query for instruction skip faults (RQ B3)

Average solving time per query (s)
1f 2f 3f 4f 6f 8f 10f

average value
FASE* 0.051 0.085 0.138 0.143 0.135 0.132 0.140
FASE-IOD* 0.017 0.025 0.023 0.020 0.023 0.021 0.023
Forking* 0.010 0.012 0.006 0.005 0.002 0.003 0.003

(Forking*: values for 3 faults and above are computed for incomplete runs due to timeouts
FASE*: all value from incomplete runs)

Conclusion RQ B3. FASE-IOD also reduces query complexity for the instruction
skip fault model, which allows for a faster analysis.

B.4 FASE Optimizations Summary4788

FASE-IOD is our best-performing optimization, and thus across all fault models for4789

which it is implemented. This gives us hope that it will be efficient too for yet another4790

fault model useful to a BINSEC/ASE user. It is interesting to see that it reduces4791

query complexity in our two metrics, generating a high percentage of queries that4792

can be resolved by BINSEC/ASE without a solver call, and the remainder is still less4793

complex to solve.4794

B.5 Influence of Solver on Encoding Operators (RQ B4)4795

BINSEC/ASE inherits the native binding of BINSEC to the solver bitwuzla. Conse-4796

quently, BINSEC/ASE results in a faster analysis with this native binding.4797

In this section, we consider the influence of the operator used in the forkless encoding4798

and the solver used, considering z3, boolector and bitwuzla without the native binding.4799

RQ B4. What is the impact of the choice of the solver on the performance of the4800

forkless encodings?4801

Goal. The goal of this experiment is to check whether the forkless encoding using4802

the ite operator results in the fastest analysis independently of the solver used, or if4803

different solvers favor different operators.4804

Protocol. We evaluate FASE without optimizations on the performance benchmark,4805

with an attacker model able to perform 1 to 4 arbitrary data faults, with three different4806

solvers (Bitwuzla without native binding, Boolector and z3), for four different encodings4807

(Ite, Mul, And and Xor). We limit our experiment to 4 faults since some encodings4808

start to experience timeouts after with the native binding that is faster than using4809

external solvers.4810

Results. Analysis time results and average solving time per query are presented in4811

Table B.13. None of these analyses experimented a timeout.4812

First, we can see that globally, Bitwuzla performs better than the other two solvers,4813

even without the native binding, in analysis time and in average solving time per query.4814

Bitwuzla is tuned for the specific SMT theory used by BINSEC (QF ABV), while4815

XV

B.5. Influence of Solver on Encoding Operators (RQ B4)

Boolector and z3 are more generic in SMT theories, hence do not perform as well in4816

this specific theory.4817

Bitwuzla still favors the Ite encoding, so does z3, while Boolector favors the Xor4818

encoding. This shows the encoding used and the chosen solver have a big influence4819

on the analysis time. For instance, with z3, the best-performing encoding yields an4820

analysis x3.4 times faster than the worst for 1 fault. The best encoding of Bitwuzla4821

results in an analysis x16.7 times faster than the slowest z3 encoding for 1 fault.

Table B.13: Analysis time and average solving time per query of arbitrary data faults with
different solvers (RQ B4)

1f 2f 3f 4f
Analysis time (s)

Bitwuzla-Ite 10.4 38.7 130 358
Bitwuzla-Mul 13.8 56.7 252 979
Bitwuzla-And 14.1 59.6 311 1.26k
Bitwuzla-Xor 11.0 40.2 136 371
Boolector-Ite 25.0 125 423 1.22k
Boolector-Mul 38.8 198 717 2.21k
Boolector-And 40.4 219 836 2.4k
Boolector-Xor 23.5 113 377 1.05k
Z3-Ite 51.3 279 872 2.12k
Z3-Mul 147 761 1.97k 4.3k
Z3-And 154 790 2.03k 4.49k
Z3-Xor 174 877 2.12k 4.38k

Average solving time per query (s)
Bitwuzla-Ite 0.065 0.052 0.055 0.054
Bitwuzla-Mul 0.089 0.074 0.088 0.087
Bitwuzla-And 0.09 0.087 0.087 0.107
Bitwuzla-Xor 0.071 0.056 0.066 0.06
Boolector-Ite 0.198 0.224 0.231 0.241
Boolector-Mul 0.28 0.294 0.301 0.32
Boolector-And 0.278 0.299 0.31 0.34
Boolector-Xor 0.183 0.202 0.207 0.214
Z3-Ite 0.273 0.305 0.324 0.341
Z3-Mul 0.663 0.791 0.751 0.74
Z3-And 0.688 0.801 0.773 0.75
Z3-Xor 0.707 0.834 0.772 0.747

4822

Conclusion RQ B4. As SMT queries are a bottleneck for symbolic execution, it is
important to select a solver tuned for the SMT theory used and to select operators
to yield good analysis performance.

XVI

Appendix C4823

Instrumentation Details4824

This appendix chapter aims to provide more information about the way we instru-4825

mented programs of our benchmark for evaluation (Section 6.5).4826

Attacker Model. We preserve the attack goal written with an assert in each benchmark4827

program and do not fault its computation. We consider here a user-defined number of4828

arbitrary data faults.4829

General C Instrumentation. Programs are written in C. In Table C.1, we illustrate4830

how each type of C statement is instrumented.4831

– The right-hand side of assignments are wrapped into a utility function inject AD,4832

injecting the fault;4833

– Conditional statements are expended. First, a new variable is created and holds4834

the faulted conditional expression. It is this new variable that is inserted into the4835

conditional statement;4836

– Return statements are instrumented similarly to assignments.4837

Table C.1: Instrumentation examples

C code Instrumented C code

i n t x = expr ; i n t x = inject AD (expr) ;

i f (cdt expr) {
\ \ . . .

}

i n t cdt 1 = inject AD (cdt expr) ;
i f (cdt 1) {

\ \ . . .
}

return expr ; return inject AD (expr) ;

Instrumentation Settings. We add instrumentation settings as calls to instrumentation4838

library functions from the main of the instrumented program as illustrated in Figure4839

C.1 for a VerifyPIN program.4840

– We initialize instrumentation with the fault budget and whether we consider4841

forkless or forking faults, by calling the init injection function;4842

– The body of the verifyPIN function if instrumented as presented above;4843

– A check constraining the total number of faults is inserted before the assert for4844

forkless faults.4845

Instrumentation Library. The functions described in Figure C.2 are written in a4846

separate file, serving as a library.4847

XVII

1 #def ine MAX FAULTS 0
2 #def ine IS FORKLESS f a l s e
3
4 i n t main (){
5 i n i t i n j e c t i o n (MAX FAULTS, IS FORKLESS) ;
6 i n i t i a l i z e () ;
7 ver i fyPIN () ;
8 i n t o = o r a c l e () ;
9 f a u l t c o n d i t i o n () ;

10 a s s e r t (o) ;
11 return 0 ;
12 }

Figure C.1: Instrumented VerifyPIN main function

– The function init injection sets global variables holding the analysis injection4848

parameters;4849

– The function fault condition adds the fault budget constraint for forkless faults;4850

– The inject AD function first creates a new symbolic boolean variable for the4851

fault activation and adds it to the sum variable. If we consider forkless faults,4852

a new symbolic variable is created for the effect of the arbitrary data fault, and4853

a forkless fault encoding is returned, taking the place of the original expression.4854

The forkless encoding chosen uses a And operator. In the case of forking faults,4855

the fault budget is checked first, then the control flow is split depending on the4856

symbolic value of b. If the fault happens, a new symbolic value is returned,4857

otherwise, the original expression is returned.4858

Instrumentation Extension. This instrumentation framework has been written for the4859

evaluation of arbitrary data faults. However, it can be extended to support more:4860

– It is possible to extend this instrumentation framework to other data fault mod-4861

els or other forkless encodings simply by modifying the fault encoding in the4862

inject AD function;4863

– Fault models other than data faults can also be implemented based on this tem-4864

plate, they may require slightly different C instrumentation than what is pre-4865

sented in Table C.1 though;4866

– We believe EDS optimization can be implemented as well in this framework.4867

Some work or rethinking of optimizations might be needed before implementing4868

other optimizations.4869

XVIII

Chapter C. Instrumentation Details

1 i n t sum , max fau l t s ;
2 bool i s f o r k l e s s ;
3
4 void i n i t i n j e c t i o n (i n t max , bool ib) {
5 sum = 0 ;
6 max fau l t s = max ;
7 i s f o r k l e s s = ib ;
8 }
9

10 bool f a u l t c o n d i t i o n () {
11 i f (i s f o r k l e s s) {
12 klee assume (sum <= max faul t s) ;
13 }
14 return t rue ;
15 }
16
17 i n t inject AD (i n t x) {
18 i n t b ;
19 klee make symbol ic (&b , s i z e o f (i n t) , ”b”) ;
20 klee assume (b <= 1) ;
21 klee assume (b >= 0) ;
22 sum += b ;
23
24 i f (i s f o r k l e s s) {
25 i n t non det ;
26 klee make symbol ic (&non det , s i z e o f (i n t) ,
27 ”non det ”) ;
28 klee assume (non det != 0) ;
29 return x + ((−b) & non det) ;
30 }
31 e l s e {
32 klee assume (sum <= max faul t s) ;
33 i f (b){
34 i n t non det ;
35 klee make symbol ic (&non det , s i z e o f (i n t) ,
36 ”non det ”) ;
37 klee assume (x != non det) ;
38 return non det ;
39 }
40 return x ;
41 }
42 }

Figure C.2: Instrumentation utilitary functions

XIX

XX

Bibliography4870

[AAE+20] ANSSI, Amossys, EDSI, LETI, Lexfo, Oppida, Quarkslab, SERMA,4871

Synacktiv, Thales, and Trusted Labs. Inter-cesti: Methodological and4872

technical feedbacks on hardware devices evaluations. In SSTIC 2020,4873

Symposium sur la sécurité des technologies de l’information et des com-4874

munications, 2020. 1334875

[AARR03] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Ro-4876

hatgi. The em side—channel (s). In Cryptographic Hardware and Embed-4877

ded Systems-CHES 2002: 4th International Workshop Redwood Shores,4878

CA, USA, August 13–15, 2002 Revised Papers 4, pages 29–45. Springer,4879

2003. 174880

[ABEL09] Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-4881

flow integrity principles, implementations, and applications. ACM Trans-4882

actions on Information and System Security (TISSEC), 13(1):1–40, 2009.4883

194884

[AC04] Mart́ın Abadi and Véronique Cortier. Deciding knowledge in security4885

protocols under equational theories. In International Colloquium on Au-4886

tomata, Languages, and Programming, pages 46–58. Springer, 2004. 644887

[ACD+22] Ihab Alshaer, Brice Colombier, Christophe Deleuze, Vincent Beroulle,4888

and Paolo Maistri. Variable-length instruction set: Feature or bug? In4889

2022 25th Euromicro Conference on Digital System Design (DSD), pages4890

464–471. IEEE, 2022. 604891

[AKS06] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret4892

keys via branch prediction. In Topics in Cryptology–CT-RSA 2007: The4893

Cryptographers’ Track at the RSA Conference 2007, San Francisco, CA,4894

USA, February 5-9, 2007. Proceedings, pages 225–242. Springer, 2006. 174895

[ASA+15] Adnan Akhunzada, Mehdi Sookhak, Nor Badrul Anuar, Abdullah Gani,4896

Ejaz Ahmed, Muhammad Shiraz, Steven Furnell, Amir Hayat, and4897

Muhammad Khurram Khan. Man-at-the-end attacks: Analysis, taxon-4898

omy, human aspects, motivation and future directions. Journal of Network4899

and Computer Applications, 48:44–57, 2015. 23, 644900

[AVFM07] Frederic Amiel, Karine Villegas, Benoit Feix, and Louis Marcel. Passive4901

and active combined attacks: Combining fault attacks and side channel4902

XXI

BIBLIOGRAPHY

analysis. In Workshop on Fault Diagnosis and Tolerance in Cryptography4903

(FDTC 2007), pages 92–102. IEEE, 2007. 20, 464904

[BB09] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver4905

for bit-vectors and arrays. In Tools and Algorithms for the Construction4906

and Analysis of Systems: 15th International Conference, TACAS 2009,4907

Held as Part of the Joint European Conferences on Theory and Practice4908

of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings 15,4909

pages 174–177. Springer, 2009. 714910

[BBB+10] Alessandro Barenghi, Guido M Bertoni, Luca Breveglieri, Mauro Pellicioli,4911

and Gerardo Pelosi. Low voltage fault attacks to aes. In 2010 IEEE Inter-4912

national Symposium on Hardware-Oriented Security and Trust (HOST),4913

pages 7–12. IEEE, 2010. 204914

[BBC+14] Maël Berthier, Julien Bringer, Hervé Chabanne, Thanh-Ha Le, Lionel4915

Rivière, and Victor Servant. Idea: embedded fault injection simulator on4916

smartcard. In International Symposium on Engineering Secure Software4917

and Systems, pages 222–229. Springer, 2014. 3, 35, 62, 63, II4918

[BBKN12] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache.4919

Fault injection attacks on cryptographic devices: Theory, practice, and4920

countermeasures. Proceedings of the IEEE, 100(11):3056–3076, 2012. 19,4921

204922

[BBY17] Sandrine Blazy, David Bühler, and Boris Yakobowski. Structuring ab-4923

stract interpreters through state and value abstractions. In International4924

Conference on Verification, Model Checking, and Abstract Interpretation,4925

pages 112–130. Springer, 2017. 61, 624926

[BCD+18] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu,4927

and Irene Finocchi. A survey of symbolic execution techniques. ACM4928

Computing Surveys (CSUR), 51(3):1–39, 2018. 304929

[BCDK14] Sébastien Bardin, Omar Chebaro, Mickaël Delahaye, and Nikolai Kosma-4930

tov. An all-in-one toolkit for automated white-box testing. In Interna-4931

tional Conference on Tests and Proofs, pages 53–60. Springer, 2014. 36,4932

614933

[BCE08] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. Rwset: Attack-4934

ing path explosion in constraint-based test generation. In Tools and Algo-4935

rithms for the Construction and Analysis of Systems: 14th International4936

Conference, TACAS 2008, Held as Part of the Joint European Confer-4937

ences on Theory and Practice of Software, ETAPS 2008, Budapest, Hun-4938

gary, March 29-April 6, 2008. Proceedings 14, pages 351–366. Springer,4939

2008. 334940

[BCL14] Gergei Bana and Hubert Comon-Lundh. A computationally complete4941

symbolic attacker for equivalence properties. In Proceedings of the 20144942

ACM SIGSAC Conference on Computer and Communications Security,4943

pages 609–620, 2014. 3, 644944

XXII

BIBLIOGRAPHY

[BCLR04] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K Rajamani. Slam4945

and static driver verifier: Technology transfer of formal methods inside4946

microsoft. In International Conference on Integrated Formal Methods,4947

pages 1–20. Springer, 2004. 2, I4948

[BCN+17] Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz,4949

Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Precision,4950

security, and performance. ACM Computing Surveys (CSUR), 50(1):1–33,4951

2017. 19, 644952

[BCR+19] Cataldo Basile, Daniele Canavese, Leonardo Regano, Paolo Falcarin, and4953

Bjorn De Sutter. A meta-model for software protections and reverse en-4954

gineering attacks. Journal of Systems and Software, 150:3–21, 2019. 644955

[BD12] Leyla Bilge and Tudor Dumitraş. Before we knew it: an empirical study4956

of zero-day attacks in the real world. In Proceedings of the 2012 ACM4957

conference on Computer and communications security, pages 833–844,4958

2012. 134959

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance4960

of checking cryptographic protocols for faults. In International conference4961

on the theory and applications of cryptographic techniques, pages 37–51.4962

Springer, 1997. 1284963

[BDL01] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the impor-4964

tance of eliminating errors in cryptographic computations. Journal of4965

cryptology, 14:101–119, 2001. 204966

[BDM17] Sébastien Bardin, Robin David, and Jean-Yves Marion. Backward-4967

bounded dse: targeting infeasibility questions on obfuscated codes. In4968

2017 IEEE Symposium on Security and Privacy (SP), pages 633–651.4969

IEEE, 2017. 704970

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and4971

Claire Whelan. The sorcerer’s apprentice guide to fault attacks. Proceed-4972

ings of the IEEE, 94(2):370–382, 2006. 194973

[BEMP20] Etienne Boespflug, Cristian Ene, Laurent Mounier, and Marie-Laure4974

Potet. Countermeasures optimization in multiple fault-injection context.4975

In 2020 Workshop on Fault Detection and Tolerance in Cryptography4976

(FDTC), pages 26–34. IEEE, 2020. 1304977

[Ber05] Daniel J Bernstein. Cache-timing attacks on aes. 2005. 174978

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping4979

the glitch: optimizing voltage fault injection attacks. IACR transactions4980

on cryptographic hardware and embedded systems, pages 199–224, 2019.4981

204982

[BG22] Sébastien Bardin and Guillaume Girol. A quantitative flavour of robust4983

reachability. arXiv preprint arXiv:2212.05244, 2022. 614984

XXIII

BIBLIOGRAPHY

[BGM13] Ella Bounimova, Patrice Godefroid, and David Molnar. Billions and bil-4985

lions of constraints: Whitebox fuzz testing in production. In 2013 35th4986

International Conference on Software Engineering (ICSE), pages 122–131.4987

IEEE, 2013. 2, I4988

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-depth4989

and black-box characterization of the effects of clock glitches on 8-bit4990

mcus. In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptog-4991

raphy, pages 105–114. IEEE, 2011. 204992

[BHE+19] Jean-Baptiste Bréjon, Karine Heydemann, Emmanuelle Encrenaz,4993

Quentin Meunier, and Son-Tuan Vu. Fault attack vulnerability assess-4994

ment of binary code. In Proceedings of the Sixth Workshop on Cryptog-4995

raphy and Security in Computing Systems, pages 13–18, 2019. 3, 35, 62,4996

63, II4997

[BHL+11] Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Renaud4998

Tabary, and Aymeric Vincent. The bincoa framework for binary code4999

analysis. In International Conference on Computer Aided Verification,5000

pages 165–170. Springer, 2011. 705001

[BKC14] Sébastien Bardin, Nikolai Kosmatov, and François Cheynier. Efficient5002

leveraging of symbolic execution to advanced coverage criteria. In 20145003

IEEE Seventh International Conference on Software Testing, Verification5004

and Validation, pages 173–182. IEEE, 2014. 365005

[BLLL18] Sebanjila K Bukasa, Ronan Lashermes, Jean-Louis Lanet, and Axel Leqay.5006

Let’s shock our iot’s heart: Armv7-m under (fault) attacks. In Proceed-5007

ings of the 13th International Conference on Availability, Reliability and5008

Security, pages 1–6, 2018. 205009

[BMPM13] Stephen P Buchner, Florent Miller, Vincent Pouget, and Dale P McMor-5010

row. Pulsed-laser testing for single-event effects investigations. IEEE5011

Transactions on Nuclear Science, 60(3):1852–1875, 2013. 195012

[BR10] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What you see is not5013

what you execute. ACM Transactions on Programming Languages and5014

Systems (TOPLAS), 32(6):1–84, 2010. 345015

[BRT+18] Ryad Benadjila, Mathieu Renard, Philippe Trebuchet, Philippe Thierry,5016

Arnauld Michelizza, and Jérémy Lefaure. Wookey: Usb devices strike5017

back. Proceedings of SSTIC, 2018. 1325018

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-5019

tosystems. In Advances in Cryptology—CRYPTO’97: 17th Annual Inter-5020

national Cryptology Conference Santa Barbara, California, USA August5021

17–21, 1997 Proceedings 17, pages 513–525. Springer, 1997. 205022

[BSGD09] Shivam Bhasin, Nidhal Selmane, Sylvain Guilley, and Jean-Luc Dan-5023

ger. Security evaluation of different aes implementations against practical5024

setup time violation attacks in fpgas. In 2009 IEEE International Work-5025

shop on Hardware-Oriented Security and Trust, pages 15–21. IEEE, 2009.5026

205027

XXIV

BIBLIOGRAPHY

[BT18] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Hand-5028

book of model checking, pages 305–343. Springer, 2018. 305029

[CBRZ01] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded5030

model checking using satisfiability solving. Formal methods in system5031

design, 19:7–34, 2001. 2, 29, I5032

[CC2] Common criteria for information technology security evaluation. part5033

3: Security assurance components, cc:2022, revision 1. https://www.5034

commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf. 12,5035

155036

[CCF+05] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-5037

toine Miné, David Monniaux, and Xavier Rival. The astrée analyzer. In5038

Programming Languages and Systems: 14th European Symposium on Pro-5039

gramming, ESOP 2005, Held as Part of the Joint European Conferences5040

on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April5041

4-8, 2005. Proceedings 14, pages 21–30. Springer, 2005. 2, I5042

[CCG13] Maria Christofi, Boutheina Chetali, and Louis Goubin. Formal verifica-5043

tion of an implementation of crt-rsa vigilant’s algorithm. In PROOFS5044

workshop: pre-proceedings, volume 28, 2013. 3, 35, 62, 63, II5045

[CDE+08] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted5046

and automatic generation of high-coverage tests for complex systems pro-5047

grams. In OSDI, volume 8, pages 209–224, 2008. 625048

[CdFB21] Hervé Chauvet, François de Ferrière, and Thomas Bizet. Software fault5049

injection for secswift qualification, 2021. 1305050

[CDFG18] Sébastien Carré, Matthieu Desjardins, Adrien Facon, and Sylvain Guilley.5051

Openssl bellcore’s protection helps fault attack. In 2018 21st Euromicro5052

Conference on Digital System Design (DSD), pages 500–507. IEEE, 2018.5053

3, 35, 62, 63, II5054

[CDSLN20] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto5055

Natella. Profipy: Programmable software fault injection as-a-service. In5056

2020 50th annual IEEE/IFIP international conference on dependable sys-5057

tems and networks (DSN), pages 364–372. IEEE, 2020. 365058

[Cer01] Iliano Cervesato. The dolev-yao intruder is the most powerful attacker. In5059

16th Annual Symposium on Logic in Computer Science—LICS, volume 1,5060

pages 1–2. Citeseer, 2001. 35061

[CGJ+03] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut5062

Veith. Counterexample-guided abstraction refinement for symbolic model5063

checking. Journal of the ACM (JACM), 50(5):752–794, 2003. 2, I5064

[CGMN12] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Un-5065

dangle: early detection of dangling pointers in use-after-free and double-5066

free vulnerabilities. In Proceedings of the 2012 International Symposium5067

on Software Testing and Analysis, pages 133–143, 2012. 185068

XXV

https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf
https://www.commoncriteriaportal.org/files/ccfiles/CC2022PART5R1.pdf

BIBLIOGRAPHY

[CGP+08] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and5069

Dawson R Engler. Exe: Automatically generating inputs of death. ACM5070

Transactions on Information and System Security (TISSEC), 12(2):1–38,5071

2008. 305072

[CGV+22] Brice Colombier, Paul Grandamme, Julien Vernay, Émilie Chanavat, Lil-5073

ian Bossuet, Lucie de Laulanié, and Bruno Chassagne. Multi-spot laser5074

fault injection setup: New possibilities for fault injection attacks. In Smart5075

Card Research and Advanced Applications: 20th International Confer-5076

ence, CARDIS 2021, Lübeck, Germany, November 11–12, 2021, Revised5077

Selected Papers, pages 151–166. Springer, 2022. 195078

[Cla97] Edmund M Clarke. Model checking. In Foundations of Software Tech-5079

nology and Theoretical Computer Science: 17th Conference Kharagpur,5080

India, December 18–20, 1997 Proceedings 17, pages 54–56. Springer, 1997.5081

295082

[CMD+19] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain5083

Moëllic, Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced5084

single-bit faults in flash memory: Instructions corruption on a 32-bit5085

microcontroller. In 2019 IEEE International Symposium on Hardware5086

Oriented Security and Trust (HOST), pages 1–10. IEEE, 2019. 195087

[CN13] Domenico Cotroneo and Roberto Natella. Fault injection for software5088

certification. IEEE Security & Privacy, 11(4):38–45, 2013. 365089

[Cou21] Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.5090

285091

[CPHR21] Ludovic Claudepierre, Pierre-Yves Péneau, Damien Hardy, and Erven5092

Rohou. Traitor: a low-cost evaluation platform for multifault injection.5093

In Proceedings of the 2021 International Symposium on Advanced Security5094

on Software and Systems, pages 51–56, 2021. 205095

[CS13] Cristian Cadar and Koushik Sen. Symbolic execution for software testing:5096

three decades later. Communications of the ACM, 56(2):82–90, 2013. 2,5097

29, 30, I5098

[CTB+17] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Bart Coppens, Bjorn5099

De Sutter, Paolo Falcarin, and Marco Torchiano. How professional hack-5100

ers understand protected code while performing attack tasks. In 20175101

IEEE/ACM 25th International Conference on Program Comprehension5102

(ICPC), pages 154–164. IEEE, 2017. 645103

[CTB+19] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo Falcarin, Marco5104

Torchiano, Bart Coppens, and Bjorn De Sutter. Understanding the be-5105

haviour of hackers while performing attack tasks in a professional setting5106

and in a public challenge. Empirical Software Engineering, 24(1):240–286,5107

2019. 645108

[CW96] Edmund M Clarke and Jeannette M Wing. Formal methods: State of the5109

art and future directions. ACM Computing Surveys (CSUR), 28(4):626–5110

643, 1996. 275111

XXVI

BIBLIOGRAPHY

[CWP+00] Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan5112

Walpole. Buffer overflows: Attacks and defenses for the vulnerability5113

of the decade. In Proceedings DARPA Information Survivability Confer-5114

ence and Exposition. DISCEX’00, volume 2, pages 119–129. IEEE, 2000.5115

185116

[Dan21] Lesly-Ann Daniel. Symbolic binary-level code analysis for security. Ap-5117

plication to the detection of microarchitectural timing attacks in crypto-5118

graphic code. PhD thesis, Université Côte d’Azur, 2021. ix, 27, 285119

[DB15] Adel Djoudi and Sébastien Bardin. Binsec: Binary code analysis with5120

low-level regions. In International Conference on Tools and Algorithms5121

for the Construction and Analysis of Systems, pages 212–217. Springer,5122

2015. 705123

[DBP23] Soline Ducousso, Sébastien Bardin, and Marie-Laure Potet. Adversarial5124

reachability for program-level security analysis. Programming Languages5125

and Systems LNCS 13990, page 59, 2023. 4, 38, 65, III5126

[DBR20] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Binsec/rel: Ef-5127

ficient relational symbolic execution for constant-time at binary-level. In5128

2020 IEEE Symposium on Security and Privacy (SP), pages 1021–1038.5129

IEEE, 2020. 31, 61, 705130

[DBR21] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. Hunting the5131

haunter-efficient relational symbolic execution for spectre with haunted5132

relse. In NDSS, 2021. 705133

[DBT+16] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Jos-5134

selin Feist, Marie-Laure Potet, and Jean-Yves Marion. Binsec/se: A dy-5135

namic symbolic execution toolkit for binary-level analysis. In SANER,5136

2016. 4, 705137

[DDCS+14] Jean-Max Dutertre, Stephan De Castro, Alexandre Sarafianos, Noémie5138

Boher, Bruno Rouzeyre, Mathieu Lisart, Joel Damiens, Philippe Cande-5139

lier, Marie-Lise Flottes, and Giorgio Di Natale. Laser attacks on integrated5140

circuits: from cmos to fd-soi. In 2014 9th IEEE International Conference5141

on Design & Technology of Integrated Systems in Nanoscale Era (DTIS),5142

pages 1–6. IEEE, 2014. 195143

[DDRT12] Amine Dehbaoui, Jean-Max Dutertre, Bruno Robisson, and Assia Tria.5144

Electromagnetic transient faults injection on a hardware and a software5145

implementations of aes. In 2012 Workshop on Fault Diagnosis and Tol-5146

erance in Cryptography, pages 7–15. IEEE, 2012. 205147

[dF21] François de Ferrière. Software countermeausres in the llvm risc-v compiler,5148

2021. 1305149

[DHM+23] Mathieu Dumont, Kevin Hector, Pierre-Alain Moellic, Jean-Max5150

Dutertre, and Simon Pontié. Evaluation of parameter-based attacks5151

against embedded neural networks with laser injection. arXiv preprint5152

arXiv:2304.12876, 2023. 1315153

XXVII

BIBLIOGRAPHY

[DLG21] Zhen Yu Ding and Claire Le Goues. An empirical study of oss-fuzz bugs.5154

In 2021 IEEE/ACM 18th International Conference on Mining Software5155

Repositories (MSR), pages 131–142. IEEE, 2021. 265156

[DLRA15] Will Dietz, Peng Li, John Regehr, and Vikram Adve. Understanding5157

integer overflow in c/c++. ACM Transactions on Software Engineering5158

and Methodology (TOSEM), 25(1):1–29, 2015. 185159

[DMB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.5160

In Tools and Algorithms for the Construction and Analysis of Systems:5161

14th International Conference, TACAS 2008, Held as Part of the Joint5162

European Conferences on Theory and Practice of Software, ETAPS 2008,5163

Budapest, Hungary, March 29-April 6, 2008. Proceedings 14, pages 337–5164

340. Springer, 2008. 715165

[DMM+13] Amine Dehbaoui, Amir-Pasha Mirbaha, Nicolas Moro, Jean-Max5166

Dutertre, and Assia Tria. Electromagnetic glitch on the aes round counter.5167

In Constructive Side-Channel Analysis and Secure Design: 4th Interna-5168

tional Workshop, COSADE 2013, Paris, France, March 6-8, 2013, Re-5169

vised Selected Papers 4, pages 17–31. Springer, 2013. 205170

[DOL+10] Amine Dehbaoui, Thomas Ordas, Victor Lomné, Philippe Maurine, Li-5171

onel Torres, and Michel Robert. Incoherence analysis and its application5172

to time domain em analysis of secure circuits. In 2010 Asia-Pacific Inter-5173

national Symposium on Electromagnetic Compatibility, pages 1039–1042.5174

IEEE, 2010. 175175

[DPdC+15] Louis Dureuil, Marie-Laure Potet, Philippe de Choudens, Cécile Dumas,5176

and Jessy Clédière. From code review to fault injection attacks: Filling5177

the gap using fault model inference. In International conference on smart5178

card research and advanced applications, pages 107–124. Springer, 2015.5179

34, 60, 645180

[DPP+16] Louis Dureuil, Guillaume Petiot, Marie-Laure Potet, Thanh-Ha Le, Aude5181

Crohen, and Philippe de Choudens. Fissc: A fault injection and simula-5182

tion secure collection. In International Conference on Computer Safety,5183

Reliability, and Security, pages 3–11. Springer, 2016. ix, 15, 16, 20, 86,5184

87, 1055185

[DRPR19] Jean-Max Dutertre, Timothé Riom, Olivier Potin, and Jean-Baptiste5186

Rigaud. Experimental analysis of the laser-induced instruction skip fault5187

model. In Secure IT Systems: 24th Nordic Conference, NordSec 2019,5188

Aalborg, Denmark, November 18–20, 2019, Proceedings 24, pages 221–5189

237. Springer, 2019. 19, 205190

[Dul17] Thomas Dullien. Weird machines, exploitability, and provable unex-5191

ploitability. IEEE Transactions on Emerging Topics in Computing,5192

8(2):391–403, 2017. 129, 1305193

[DY83] Danny Dolev and Andrew Yao. On the security of public key protocols.5194

IEEE Transactions on information theory, 29(2):198–208, 1983. 645195

[Fac] Facebook. Infer static analyzer. https://fbinfer.com/. 2, I5196

XXVIII

BIBLIOGRAPHY

[FDBL18] Benjamin Farinier, Robin David, Sébastien Bardin, and Matthieu5197

Lemerre. Arrays made simpler: An efficient, scalable and thorough pre-5198

processing. In LPAR, pages 363–380, 2018. 705199

[FMB+16] Josselin Feist, Laurent Mounier, Sébastien Bardin, Robin David, and5200

Marie-Laure Potet. Finding the needle in the heap: combining static5201

analysis and dynamic symbolic execution to trigger use-after-free. In5202

Proceedings of the 6th Workshop on Software Security, Protection, and5203

Reverse Engineering, pages 1–12, 2016. 315204

[FR08] Cédric Fournet and Tamara Rezk. Cryptographically sound implemen-5205

tations for typed information-flow security. In George C. Necula and5206

Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT5207

Symposium on Principles of Programming Languages, POPL 2008, San5208

Francisco, California, USA, January 7-12, 2008. ACM, 2008. 655209

[GDTM21a] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, and Philippe Lou-5210

bet Moundi. Faultline: Software-based fault injection on memory trans-5211

fers. In 2021 IEEE International Symposium on Hardware Oriented Se-5212

curity and Trust (HOST), pages 46–55. IEEE, 2021. 215213

[GDTM21b] Joseph Gravellier, Jean-Max Dutertre, Yannick Teglia, and Philippe Lou-5214

bet Moundi. Sideline: How delay-lines (may) leak secrets from your soc.5215

In Constructive Side-Channel Analysis and Secure Design: 12th Interna-5216

tional Workshop, COSADE 2021, Lugano, Switzerland, October 25–27,5217

2021, Proceedings 12, pages 3–30. Springer, 2021. 215218

[GFB21] Guillaume Girol, Benjamin Farinier, and Sébastien Bardin. Not all bugs5219

are created equal, but robust reachability can tell the difference. In In-5220

ternational Conference on Computer Aided Verification, pages 669–693.5221

Springer, 2021. 31, 615222

[GHHR23] Antoine Gicquel, Damien Hardy, Karine Heydemann, and Erven Rohou.5223

Samva: Static analysis for multi-fault attack paths determination. In5224

Constructive Side-Channel Analysis and Secure Design: 14th Interna-5225

tional Workshop, COSADE 2023, Munich, Germany, April 3–4, 2023,5226

Proceedings, pages 3–22. Springer, 2023. 62, 635227

[Gir05] Christophe Giraud. Dfa on aes. In Advanced Encryption Standard–AES:5228

4th International Conference, AES 2004, Bonn, Germany, May 10-12,5229

2004, Revised Selected and Invited Papers 4, pages 27–41. Springer, 2005.5230

205231

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed au-5232

tomated random testing. In Proceedings of the 2005 ACM SIGPLAN5233

conference on Programming language design and implementation, pages5234

213–223, 2005. 305235

[GLM12] Patrice Godefroid, Michael Y Levin, and David Molnar. Sage: whitebox5236

fuzzing for security testing. Communications of the ACM, 55(3):40–44,5237

2012. 2, I5238

XXIX

BIBLIOGRAPHY

[GMA22] Aakash Gangolli, Qusay H Mahmoud, and Akramul Azim. A systematic5239

review of fault injection attacks on iot systems. Electronics, 11(13):2023,5240

2022. 645241

[God11] Patrice Godefroid. Higher-order test generation. In Proceedings of the5242

32nd ACM SIGPLAN conference on Programming language design and5243

implementation, pages 258–269, 2011. 315244

[God20] Patrice Godefroid. Fuzzing: Hack, art, and science. Communications of5245

the ACM, 63(2):70–76, 2020. 285246

[GST17] Daniel Genkin, Adi Shamir, and Eran Tromer. Acoustic cryptanalysis.5247

Journal of Cryptology, 30:392–443, 2017. 175248

[GSV03] Bharat Goyal, Sriranjani Sitaraman, and S Venkatesan. A unified ap-5249

proach to detect binding based race condition attacks. In Int’l Workshop5250

on Cryptology & Network Security (CANS), page 16, 2003. 235251

[GWJL20] Thomas Given-Wilson, Nisrine Jafri, and Axel Legay. Combined soft-5252

ware and hardware fault injection vulnerability detection. Innovations in5253

Systems and Software Engineering, 16(2):101–120, 2020. 3, 35, 62, 63, II5254

[GWJLL17] Thomas Given-Wilson, Nisrine Jafri, Jean-Louis Lanet, and Axel Legay.5255

An automated formal process for detecting fault injection vulnerabilities5256

in binaries and case study on present. In 2017 IEEE Trustcom/Big-5257

DataSE/ICESS, pages 293–300. IEEE, 2017. 3, 35, 62, 63, II5258

[GWL20] Thomas Given-Wilson and Axel Legay. Formalising fault injection and5259

countermeasures. In Proceedings of the 15th International Conference on5260

Availability, Reliability and Security, pages 1–11, 2020. 655261

[HH19] Reiner Hähnle and Marieke Huisman. Deductive software verification:5262

from pen-and-paper proofs to industrial tools. Computing and Software5263

Science: State of the Art and Perspectives, pages 345–373, 2019. 275264

[HS14] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel5265

and heating fault attacks. In Smart Card Research and Advanced Ap-5266

plications: 12th International Conference, CARDIS 2013, Berlin, Ger-5267

many, November 27-29, 2013. Revised Selected Papers 12, pages 219–235.5268

Springer, 2014. 205269

[HSP20] Max Hoffmann, Falk Schellenberg, and Christof Paar. Armory: Fully5270

automated and exhaustive fault simulation on arm-m binaries. IEEE5271

Transactions on Information Forensics and Security, 16:1058–1073, 2020.5272

345273

[HTS+17] Siva Kumar Sastry Hari, Timothy Tsai, Mark Stephenson, Stephen W5274

Keckler, and Joel Emer. Sassifi: An architecture-level fault injection tool5275

for gpu application resilience evaluation. In 2017 IEEE International5276

Symposium on Performance Analysis of Systems and Software (ISPASS),5277

pages 249–258. IEEE, 2017. 365278

XXX

BIBLIOGRAPHY

[JGH+22] Zhiyuan Jiang, Shuitao Gan, Adrian Herrera, Flavio Toffalini, Lucio5279

Romerio, Chaojing Tang, Manuel Egele, Chao Zhang, and Mathias Payer.5280

Evocatio: Conjuring bug capabilities from a single poc. In Proceedings of5281

the 2022 ACM SIGSAC Conference on Computer and Communications5282

Security, pages 1599–1613, 2022. 645283

[KDK+14] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk5284

Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in5285

memory without accessing them: An experimental study of dram distur-5286

bance errors. ACM SIGARCH Computer Architecture News, 42(3):361–5287

372, 2014. 215288

[KHF+20] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,5289

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas5290

Prescher, et al. Spectre attacks: Exploiting speculative execution. Com-5291

munications of the ACM, 63(7):93–101, 2020. 225292

[Kin76] James C King. Symbolic execution and program testing. Communications5293

of the ACM, 19(7):385–394, 1976. 305294

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analy-5295

sis. In Advances in Cryptology—CRYPTO’99: 19th Annual International5296

Cryptology Conference Santa Barbara, California, USA, August 15–19,5297

1999 Proceedings 19, pages 388–397. Springer, 1999. 175298

[KKBC12] Volodymyr Kuznetsov, Johannes Kinder, Stefan Bucur, and George Can-5299

dea. Efficient state merging in symbolic execution. Acm Sigplan Notices,5300

47(6):193–204, 2012. 335301

[KKJ+21] Kyounggon Kim, Jun Seok Kim, Seonghoon Jeong, Jo-Hee Park, and5302

Huy Kang Kim. Cybersecurity for autonomous vehicles: Review of attacks5303

and defense. Computers & Security, 103:102150, 2021. 115304

[KKP+15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles,5305

and Boris Yakobowski. Frama-c: A software analysis perspective. Formal5306

aspects of computing, 27(3):573–609, 2015. 2, 61, 62, I5307

[Koc96] Paul C Kocher. Timing attacks on implementations of diffie-hellman, rsa,5308

dss, and other systems. In Advances in Cryptology—CRYPTO’96: 16th5309

Annual International Cryptology Conference Santa Barbara, California,5310

USA August 18–22, 1996 Proceedings 16, pages 104–113. Springer, 1996.5311

175312

[KP05] Alfred Koelbl and Carl Pixley. Constructing efficient formal models from5313

high-level descriptions using symbolic simulation. International Journal5314

of Parallel Programming, 33:645–666, 2005. 335315

[KSV13] Duško Karaklajić, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hard-5316

ware designer’s guide to fault attacks. IEEE Transactions on Very Large5317

Scale Integration (VLSI) Systems, 21(12):2295–2306, 2013. 195318

XXXI

BIBLIOGRAPHY

[Lan22] Julien Lancia. Detecting fault injection vulnerabilities in binaries with5319

symbolic execution. In 2022 14th International Conference on Electronics,5320

Computers and Artificial Intelligence (ECAI), pages 1–8. IEEE, 2022. 3,5321

35, 62, 63, II5322

[LBC+15] Marc Lacruche, Nicolas Borrel, Clement Champeix, Cyril Roscian,5323

Alexandre Sarafianos, Jean-Baptiste Rigaud, Jean-Max Dutertre, and5324

Edith Kussener. Laser fault injection into sram cells: Picosecond ver-5325

sus nanosecond pulses. In 2015 IEEE 21st International On-Line Testing5326

Symposium (IOLTS), pages 13–18. IEEE, 2015. 195327

[LBD+18] Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-5328

Peyroula, and Athanasios Papadimitriou. On the importance of analysing5329

microarchitecture for accurate software fault models. In 2018 21st Euromi-5330

cro Conference on Digital System Design (DSD), pages 561–564. IEEE,5331

2018. 60, 645332

[LBDPP19] Johan Laurent, Vincent Beroulle, Christophe Deleuze, and Florian Pebay-5333

Peyroula. Fault injection on hidden registers in a risc-v rocket processor5334

and software countermeasures. In 2019 Design, Automation & Test in5335

Europe Conference & Exhibition (DATE), pages 252–255. IEEE, 2019. 605336

[LFBP21] Guilhem Lacombe, David Feliot, Etienne Boespflug, and Marie-Laure5337

Potet. Combining static analysis and dynamic symbolic execution in a5338

toolchain to detect fault injection vulnerabilities. In PROOFS WORK-5339

SHOP (SECURITY PROOFS FOR EMBEDDED SYSTEMS), 2021. ix,5340

3, 35, 61, 62, 63, 133, 135, 136, 137, II5341

[LH07] Daniel Larsson and Reiner Hähnle. Symbolic fault injection. In Inter-5342

national Verification Workshop (VERIFY), volume 259, pages 85–103.5343

Citeseer, 2007. 365344

[LHGD18] Hoang M Le, Vladimir Herdt, Daniel Große, and Rolf Drechsler. Resilience5345

evaluation via symbolic fault injection on intermediate code. In 20185346

Design, Automation & Test in Europe Conference & Exhibition (DATE),5347

pages 845–850. IEEE, 2018. 36, 62, 1055348

[LM18] Yangdi Lyu and Prabhat Mishra. A survey of side-channel attacks on5349

caches and countermeasures. Journal of Hardware and Systems Security,5350

2:33–50, 2018. 175351

[LRV+22] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer,5352

and Peter W O’Hearn. Finding real bugs in big programs with incor-5353

rectness logic. Proceedings of the ACM on Programming Languages,5354

6(OOPSLA1):1–27, 2022. 2, I5355

[LWH+20] Guanjun Lin, Sheng Wen, Qing-Long Han, Jun Zhang, and Yang Xiang.5356

Software vulnerability detection using deep neural networks: a survey.5357

Proceedings of the IEEE, 108(10):1825–1848, 2020. 295358

[MBK+18] Michaël Marcozzi, Sébastien Bardin, Nikolai Kosmatov, Mike Papadakis,5359

Virgile Prevosto, and Löıc Correnson. Time to clean your test objec-5360

tives. In Proceedings of the 40th International Conference on Software5361

Engineering, pages 456–467, 2018. 365362

XXXII

BIBLIOGRAPHY

[MDH+13] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson, and5363

Emmanuelle Encrenaz. Electromagnetic fault injection: towards a fault5364

model on a 32-bit microcontroller. In 2013 Workshop on Fault Diagnosis5365

and Tolerance in Cryptography, pages 77–88. Ieee, 2013. 205366

[MDP+20] Alexandre Menu, Jean-Max Dutertre, Olivier Potin, Jean-Baptiste5367

Rigaud, and Jean-Luc Danger. Experimental analysis of the electromag-5368

netic instruction skip fault model. In 2020 15th Design & Technology of5369

Integrated Systems in Nanoscale Era (DTIS), pages 1–7. IEEE, 2020. 205370

[MK19] Onur Mutlu and Jeremie S Kim. Rowhammer: A retrospective. IEEE5371

Transactions on Computer-Aided Design of Integrated Circuits and Sys-5372

tems, 39(8):1555–1571, 2019. 215373

[MKP22] Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto. Verifying5374

redundant-check based countermeasures: a case study. In Proceedings of5375

the 37th ACM/SIGAPP Symposium on Applied Computing, pages 1849–5376

1852, 2022. 61, 62, 63, 1375377

[MOG+20] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel5378

Gruss, and Frank Piessens. Plundervolt: Software-based fault injection5379

attacks against intel sgx. In 2020 IEEE Symposium on Security and Pri-5380

vacy (SP), pages 1466–1482. IEEE, 2020. 225381

[NHH+17] Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi,5382

Hitoshi Fuji, and Takafumi Aoki. Buffer overflow attack with multiple5383

fault injection and a proven countermeasure. Journal of Cryptographic5384

Engineering, 7:35–46, 2017. 205385

[NP20] Aina Niemetz and Mathias Preiner. Bitwuzla at the SMT-COMP 2020.5386

CoRR, abs/2006.01621, 2020. 715387

[OGSM15] Sébastien Ordas, Ludovic Guillaume-Sage, and Philippe Maurine. Em5388

injection: Fault model and locality. In 2015 Workshop on Fault Diagnosis5389

and Tolerance in Cryptography (FDTC), pages 3–13. IEEE, 2015. 205390

[O’H19] Peter W O’Hearn. Incorrectness logic. Proceedings of the ACM on Pro-5391

gramming Languages, 4(POPL):1–32, 2019. 645392

[PCHR20] Pierre-Yves Péneau, Ludovic Claudepierre, Damien Hardy, and Erven5393

Rohou. Nop-oriented programming: Should we care? In 2020 IEEE5394

European Symposium on Security and Privacy Workshops (EuroS&PW),5395

pages 694–703. IEEE, 2020. 195396

[PHB+19] Julien Proy, Karine Heydemann, Alexandre Berzati, Fabien Majéric, and5397

Albert Cohen. A first isa-level characterization of em pulse effects on5398

superscalar microarchitectures: a secure software perspective. In Proceed-5399

ings of the 14th International Conference on Availability, Reliability and5400

Security, pages 1–10, 2019. 205401

[PIK+18] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and René5402

Just. An industrial application of mutation testing: Lessons, challenges,5403

XXXIII

BIBLIOGRAPHY

and research directions. In 2018 IEEE International Conference on Soft-5404

ware Testing, Verification and Validation Workshops (ICSTW), pages 47–5405

53. IEEE, 2018. 365406

[PLFP19] Lucas Palazzi, Guanpeng Li, Bo Fang, and Karthik Pattabiraman. A tale5407

of two injectors: End-to-end comparison of ir-level and assembly-level5408

fault injection. In 2019 IEEE 30th International Symposium on Software5409

Reliability Engineering (ISSRE), pages 151–162. IEEE, 2019. 365410

[PM10] Mike Papadakis and Nicos Malevris. Automatic mutation test case gen-5411

eration via dynamic symbolic execution. In 2010 IEEE 21st International5412

Symposium on Software Reliability Engineering, pages 121–130. IEEE,5413

2010. 365414

[PMPD14] Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil.5415

Lazart: A symbolic approach for evaluation the robustness of secured5416

codes against control flow injections. In 2014 IEEE Seventh International5417

Conference on Software Testing, Verification and Validation, pages 213–5418

222. IEEE, 2014. 3, 35, 62, 63, 124, II5419

[PNKI08] Karthik Pattabiraman, Nithin Nakka, Zbigniew Kalbarczyk, and Ravis-5420

hankar Iyer. Symplfied: Symbolic program-level fault injection and error5421

detection framework. In 2008 IEEE International Conference on Depend-5422

able Systems and Networks With FTCS and DCC (DSN), pages 472–481.5423

IEEE, 2008. 365424

[PRBL14] Maxime Puys, Lionel Riviere, Julien Bringer, and Thanh-ha Le. High-5425

level simulation for multiple fault injection evaluation. In Data Privacy5426

Management, Autonomous Spontaneous Security, and Security Assur-5427

ance, pages 293–308. Springer, 2014. 1285428

[QS02] Jean-Jacques Quisquater and David Samyde. Eddy current for magnetic5429

analysis with active sensor. In Proceedings of eSMART, volume 2002,5430

2002. 205431

[RBB+19] Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier,5432

and Marie-Laure Potet. Get rid of inline assembly through verification-5433

oriented lifting. In 2019 34th IEEE/ACM International Conference on5434

Automated Software Engineering (ASE), pages 577–589. IEEE, 2019. 705435

[RBB+21] Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Matthieu5436

Lemerre, Laurent Mounier, and Marie-Laure Potet. Interface compli-5437

ance of inline assembly: Automatically check, patch and refine. In5438

2021 IEEE/ACM 43rd International Conference on Software Engineer-5439

ing (ICSE), pages 1236–1247. IEEE, 2021. 705440

[RBSG22] Jan Richter-Brockmann, Pascal Sasdrich, and Tim Guneysu. Revisiting5441

fault adversary models–hardware faults in theory and practice. IEEE5442

Transactions on Computers, 2022. 645443

[RG14] Pablo Rauzy and Sylvain Guilley. A formal proof of countermeasures5444

against fault injection attacks on crt-rsa. Journal of Cryptographic Engi-5445

neering, 4(3):173–185, 2014. 3, 35, 62, 63, II5446

XXXIV

BIBLIOGRAPHY

[RGB+16] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuffrida,5447

and Herbert Bos. Flip feng shui: Hammering a needle in the software5448

stack. In USENIX Security symposium, volume 25, pages 1–18, 2016. 215449

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their5450

decision problems. Transactions of the American Mathematical society,5451

74(2):358–366, 1953. 275452

[RNR+15] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien5453

Bringer, and Laurent Sauvage. High precision fault injections on the5454

instruction cache of armv7-m architectures. In 2015 IEEE International5455

Symposium on Hardware Oriented Security and Trust (HOST), pages 62–5456

67. IEEE, 2015. 19, 205457

[RY20] Xavier Rival and Kwangkeun Yi. Introduction to static analysis: an ab-5458

stract interpretation perspective. Mit Press, 2020. 285459

[SD15] Mark Seaborn and Thomas Dullien. Exploiting the dram rowhammer bug5460

to gain kernel privileges. Black Hat, 15:71, 2015. 215461

[Sen07] Koushik Sen. Concolic testing. In Proceedings of the twenty-second5462

IEEE/ACM international conference on Automated software engineering,5463

pages 571–572, 2007. 295464

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing5465

engine for c. ACM SIGSOFT Software Engineering Notes, 30(5):263–272,5466

2005. 305467

[SNK+12] Alexander Schlösser, Dmitry Nedospasov, Juliane Krämer, Susanna Or-5468

lic, and Jean-Pierre Seifert. Simple photonic emission analysis of aes:5469

photonic side channel analysis for the rest of us. In Cryptographic Hard-5470

ware and Embedded Systems–CHES 2012: 14th International Workshop,5471

Leuven, Belgium, September 9-12, 2012. Proceedings 14, pages 41–57.5472

Springer, 2012. 175473

[TAC+22] Simon Tollec, Mihail Asavoae, Damien Couroussé, Karine Heydemann,5474

and Mathieu Jan. Exploration of fault effects on formal risc-v microar-5475

chitecture models. In 2022 Workshop on Fault Detection and Tolerance5476

in Cryptography (FDTC), pages 73–83. IEEE, 2022. 60, 61, 62, 63, 985477

[TM17] Niek Timmers and Cristofaro Mune. Escalating privileges in linux us-5478

ing voltage fault injection. In 2017 Workshop on Fault Diagnosis and5479

Tolerance in Cryptography (FDTC), pages 1–8. IEEE, 2017. 205480

[TS16] Niek Timmers and Albert Spruyt. Bypassing secure boot using fault5481

injection. Black Hat Europe, 2016, 2016. 205482

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. Clkscrew:5483

Exposing the perils of security-oblivious energy management. In USENIX5484

Security Symposium, volume 2, pages 1057–1074, 2017. 225485

[Van22] Julien Vanegue. Adversarial logic. In Static Analysis: 29th International5486

Symposium, SAS 2022, Auckland, New Zealand, December 5–7, 2022,5487

Proceedings, pages 422–448. Springer, 2022. 645488

XXXV

BIBLIOGRAPHY

[VBMS+20] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina5489

Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and5490

Frank Piessens. Lvi: Hijacking transient execution through microarchi-5491

tectural load value injection. In 2020 IEEE Symposium on Security and5492

Privacy (SP), pages 54–72. IEEE, 2020. 235493

[VKS11] Ingrid Verbauwhede, Dusko Karaklajic, and Jorn-Marc Schmidt. The5494

fault attack jungle-a classification model to guide you. In 2011 Workshop5495

on Fault Diagnosis and Tolerance in Cryptography, pages 3–8. IEEE, 2011.5496

205497

[VTM+17] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adele Moris-5498

set, and Sébastien Ermeneux. Laser-induced fault injection on smartphone5499

bypassing the secure boot. In 2017 Workshop on Fault Diagnosis and Tol-5500

erance in Cryptography (FDTC), pages 41–48. IEEE, 2017. 19, 205501

[Woo] https://github.com/wookey-project. accessed july 2021. 1325502

[WP05] Jinpeng Wei and Calton Pu. Tocttou vulnerabilities in unix-style file5503

systems: An anatomical study. In FAST, volume 5, pages 12–12, 2005.5504

235505

[WTSS13] Stefan Winter, Michael Tretter, Benjamin Sattler, and Neeraj Suri. simfi:5506

From single to simultaneous software fault injections. In 2013 43rd An-5507

nual IEEE/IFIP International Conference on Dependable Systems and5508

Networks (DSN), pages 1–12. IEEE, 2013. 365509

[WZ18] Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns in5510

the ethereum ecosystem and solidity. In 2018 International Workshop on5511

Blockchain Oriented Software Engineering (IWBOSE), pages 2–8. IEEE,5512

2018. 105513

[XTDHS09] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte.5514

Fitness-guided path exploration in dynamic symbolic execution. In 20095515

IEEE/IFIP International Conference on Dependable Systems & Networks,5516

pages 359–368. IEEE, 2009. 335517

[YGS+16] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Desh-5518

pande, Conor Patrick, and Patrick Schaumont. Software fault resistance5519

is futile: Effective single-glitch attacks. In 2016 Workshop on Fault Diag-5520

nosis and Tolerance in Cryptography (FDTC), pages 47–58. IEEE, 2016.5521

205522

[ZDT+14] Loic Zussa, Amine Dehbaoui, Karim Tobich, Jean-Max Dutertre, Philippe5523

Maurine, Ludovic Guillaume-Sage, Jessy Clediere, and Assia Tria. Effi-5524

ciency of a glitch detector against electromagnetic fault injection. In 20145525

Design, Automation & Test in Europe Conference & Exhibition (DATE),5526

pages 1–6. IEEE, 2014. 205527

[ZGWL+21] Igor Zavalyshyn, Thomas Given-Wilson, Axel Legay, Ramin Sadre, and5528

Etienne Riviere. Chaos duck: A tool for automatic iot software fault-5529

tolerance analysis. In 2021 40th International Symposium on Reliable5530

Distributed Systems (SRDS), pages 46–55. IEEE, 2021. 365531

XXXVI

https://github.com/wookey-project

