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Introduction

Quantum information is a dynamic field that exploits the rules of quantum
mechanics for information processing. A classical computer uses bits that
are either in the 0 or 1 logical state. In contrast, a quantum bit is encoded
on a two-level quantum system and can exist in a superposition of logical
states. Furthermore, the application of the superposition principle to ensem-
bles of qubits allows for entanglement, the creation of quantum correlation
between various qubits. This allows for parallel computation and potentially
solving certain problems much faster than classical computers [80]. In addi-
tion, a controlled quantum system can be leveraged to simulate another less-
controlled system, and access important observables. Finally, flying qubits
(possibly entangled) are also key to establish long haul quantum communi-
cations [47].

A qubit can be encoded on a matter system, that can belong either to the
field of diluted atomic and molecular systems or to the field of condensed-
matter. Prominent atomic systems include ions confined in an electrostatic
trap [27] and individual Rydberg atoms trapped in arrays of optical tweezers
[3]. Important condensed-matter systems include Josephson superconducting
circuits [92] and spins carried by atomic impurities or trapped in QDs [78].

Alternatively, a qubit can be encoded on an optical field. One typically
distinguishes continuous variables encoding (based on field quadratures) [25]
and discrete variable encoding (based on photons) [94]. In the latter case, the
quantum states are represented in finite-dimensional Hilbert spaces. Discrete
photonic qubits can be encoded in polarization, path, time-bin, or even a
combination of those. Like other quantum particles, photons can exist in
superposition and entangled state, which is a crucial property for quantum
communication and quantum computation protocols.

Optical photons are indeed very attractive flying qubits. They can travel
over long distances without undergoing significant decoherence, making them
ideally-suited for quantum communication protocols. For this reason pho-
tons are the workhorse of quantum key distribution (QKD), a technique
that leverages the principles of quantum mechanics to secure communication
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channels [47]. QKD allows two parties to share a secret key securely, as
any attempt to eavesdrop on the communication would disturb the quantum
state, alerting the users to potential security breaches. In recent years there
were a number of spectacular demonstrations of QKD ranging from fiber
optics [173] to free space utilizing a satellite [110].

Quantum simulation is another promising field for photonic based quan-
tum technologies. As a first example, ”boson sampling” is a quite specific
quantum computational task which involves the sampling of the probability
distribution of identical bosons scattered by a linear interferometer [1]. Sim-
ulating this process is highly demanding for classical computers, and belongs
to the class of #P-hard problems [189]. That is however much easier handled
by a quantum computer, and represents a first important benchmark for a
quantum computing platform [26, 168, 178, 41, 29, 28, 166]. The photonic
platform is well-suited for this task as the computation is performed by send-
ing indistinguishable photons through a complex network of beam splitters:
ideally the computational time is thus just the time taken by the photons to
traverse the device and be detected (and acquiring sufficient statistics). In
reality photon losses and decoherence in the system can result in an erro-
neous computation which must be repeated and thus lead to overall longer
computational times.

More generally it has been shown that it is possible to achieve univer-
sal quantum computation via linear optics manipulation of the photons and
single-photon detection [2, 93]. This paradigm is known as linear optic quan-
tum computing (LOQC). Its main advantage is its simplicity: quantum
gates only require beam splitters, phase shifters and single-photon detectors.
LOQC allows to ”bypass” the need of photon interaction by relying heavily
on photon interference via the Hong Ou Mandel (HOM) effect (which requires
single photons with a high degree of indistinguishability). This has sprout
efforts to develop programmable photonic quantum computers [13, 119, 108,
8, 23, 76, 42, 174]. Globally, the field benefits from the fast progress of
integrated photonics [144]. Nevertheless LOQC is considered as poorly scal-
able, due to the limited reliability of the quantum gates. In order to solve
this problem error correction mechanism are employed but they require large
resource overheads. On the other hand significant efforts are conducted to
implement photon interaction as a base for quantum computation. This can
be achieved through the use of nonlinear crystals or other materials that ex-
hibit non-linear optical effects [69, 111, 121] and could lead to more reliable
quantum gates.

In this context, the ability to generate single-photon wavepackets with a
high rate is crucial. Moreover these photons need to be in a pure quantum
state (no multi-photon pulses) and indistinguishable from one another (same
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spatial and temporal mode). The development of single-photon sources fol-
lows two main tracks: i) heralded generation with a nonlinear process and
ii) on-demand emission using artificial atoms.

For a long time, nonlinear sources of single photons have been the workhorse
of quantum optics. They rely either on spontaneous parametric down conver-
sion (SPDC), a χ(2) process, or on four wave mixing (FWM), a χ(3) process.
For example, in SPDC a single photon from a pump laser beam incident
on a nonlinear crystal generates two entangled photons. The generation is
inherently probabilistic: the generation of entangled photon pairs for ev-
ery incident photon is not guaranteed. However, when a pair is generated,
the detection of one photon can be used to signal the presence of the other
(heralding), effectively creating single-photon pulses [90]. These sources can
operate at ambient temperature and offer a great photon indistinguishabil-
ity. However, the number of generated photon pairs per pulse depends on the
intensity of the input laser pulses and can be greater than one. To limit the
probability of multipair emission, the input laser needs to be weak enough
to generate mainly 0 or 1 pair per pulse. There is thus an intrinsic trade-off
between brightness (the rate of photon generation) and purity.

To overcome this limitation, one can employ solid-state artificial atoms
to generate single photons [206]. Owing to the Pauli exclusion principle, the
excited state of a two-level system can only accommodate one excitation. In
optically-active systems, the radiative decay to the ground state then leads
to the emission of a single photon. Examples of artificial atoms include
atomic defects such as color centers in diamond [103] or silicon [149] and
semiconductor QDs [128], which are the focus of this PhD thesis.

A QDs is a nanoscale structure consisting of a semiconductor material
embedded in a semiconductor matrix with a larger bandgap. The QD pro-
vides a three-dimensional confinement for electrons, resulting in quantized
energy levels, akin to the energy levels of electrons in an atom. The size
of the QD directly influences the energy spacing between these levels, with
smaller dots having larger energy spacings. We will focus here on epitaxial
InAs/GaAs QDs, which are obtained from a self-assembly process. For a
long time, they offered the best performance among QDs. Recently, other
fabrication routes have also led to high-quality emitters. For example, one
can cite GaAs/AlGaAs QDs obtained from droplet etching and nanohole
infilling [53] and InAsP/InP nanowire QDs [85]. At cryogenic temperature
(4 K), eptiaxial QDs are remarkable solid-state emitters. They offer a close
to unity radiative yield, a stable emission and a spectrally-narrow optical
emission.

Nevertheless, building a single-photon source with a QD comes with sev-
eral challenges. 1) Light extraction: A QD features a dipole-like emission
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pattern and is embedded in a large-index material. If nothing is done, only
2% of the emitted photons can be collected by a microscope objective. 2)
Decoherence: as any solid-sate system, a QD is subject to various noises and
unwanted interactions coming from the surrounding semiconductor crystal
(phonons, fluctuating charge, fluctuating nuclear spins). These noises induce
a spectral broadening of the QD transition and make the emitted photons
distinguishable. 3) Emitter variability: the QD emission wavelength is ex-
tremely sensitive to the QD size. In general, two QDs will thus emit photons
with distinct colours. This is a limitation for applications requiring the op-
eration of several identical sources in parallel.

Challenge 3 can be addressed by using a tuning knob (e.g. electrical field,
mechanical strain) to control the QD emission wavelength. Embedding the
emitter in a photonic structure [116], such as a microcavity or a waveguide,
allows addressing challenges 1 and 2. Microcavities are optical structures
designed to resonantly enhance light-matter interactions. The selective ac-
celeration of the spontaneous emission into the cavity mode — the famous
Purcell effect — can be leveraged to dynamically funnel all the QD emission
into the cavity mode. In addition, the global acceleration of the spontaneous
emission process is particularly beneficial for improving the photon indis-
tinguishability. However, microcavities offer a narrow operation bandwidth
(as defined by the cavity spectral lineshape) which is not compatible with
large emitter tuning. Waveguides, on the other hand, provide a broadband
approach to light extraction. However, they typically lack the significant
Purcell effect achieved in microcavities. This limitation hampers their abil-
ity to enhance the emission rate of quantum emitters. Nanocavities offer
a best-of-both-worlds approach. Thanks to their ultrasmall mode volume,
they provide a large Purcell acceleration with a modest optical quality factor
(Q-factor) of about a few tens. This moderate Q-factor is advantageous for
large operation bandwidth.

The quantum photonics team at CEA recently developed a new type of
“nanopost” cavity, based on a segment of a photonic wire standing on a
gold and silica mirror [97]. This design is the result of collaborative effort,
with contributions from the group of Niels Gregersen (DTU, Denmark). A
first generation of structures has been fabricated by Saptarshi Kotal and
Alberto Artioli, former PhD student and postdoc in the team, respectively.
They notably demonstrated the broadband Purcell acceleration of sponta-
neous emission, using a nonresonant optical excitation. During my PhD, I
conducted the first demonstration of strictly resonant spectroscopy of a QD
in a nanopost cavity. This was done during a stay (three months) in the
group of Richard Warburton at Basel university. I conducted most of the
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experimental work and data analysis was done in collaboration with Maxime
Gaignard (PhD student jointly supervised by Jean-Philippe Poizat and Julien
Claudon). This is an important result since it proves the feasibility of reso-
nant excitation and especially of the cross polarization rejection scheme on
these small structures. In particular, it enables the fine optical characteriza-
tion of the emitter (Finazzer?, Gaignard? et al., article in preparation).

The second axis of my PhD work aimed to tackle the challenge of tun-
ing the emission wavelength of quantum dots without compromising their
optical properties. To this end, I investigated QDs embedded in a tapered
microwire (a ”photonic trumpet”) equipped with on-chip electrodes. Upon
biasing with a DC voltage, an electrostatic force bends the photonic trumpet,
which induces strain at the wire base where the quantum dots are embedded,
enabling a controlled tuning of the emission wavelength. The device was also
fabricated by Saptarshi Kotal and Alberto Artioli. Collaborating with Fab-
rice Donatini (Néel Institute), I conducted an in-depth study of the static
tuning process. This work has been published recently (Finazzer et al., Nano
Lett. 2023).

Finally, on-chip electrodes also constitute an excellent tool to excite the
vibration modes of a photonic trumpet. This capability is relevant for hybrid
nanomechanics, a field that investigates the interaction of an artificial atom
(here a quantum dot), with a mechanical resonator. We leveraged the broad
operation bandwidth of the excitation scheme to investigate experimentally
high-frequency resonances supported by the photonic trumpet. The study
of dynamical actuation nicely complements and extends that of the static
actuation. I contributed to this work, but the experimental effort was led
by Rana Thanos (at the time postdoc in the team). A manuscript reporting
this work was recently submitted (Tanos et al., submitted).

The thesis is organized as follows:
In chapter 1 we explore the theoretical foundations of the artificial atom

model, including discussions on the band structure of bulk semiconductors,
the effects of confinement, the available states and their optical excitation.
We also discuss the interaction of QDs with the surrounding environment,
both as a source of noise and decoherence but also as mean to tune their
properties. Finally we discuss the tailoring of spontaneous emission using
photonic structures.

In chapter 2, we turn our attention to resonant excitation of QDs in
nanopost cavities. With a detailed exploration of structure design, fabrica-
tion, and the theory of resonant excitation, we set the stage for experiments
involving resonant linescans and intensity autocorrelation measurements.

In chapter 3, the spotlight turns to strain tuning of QDs embedded in a
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photonic wire antenna. Beginning with a theoretical background, we study an
electrostatic actuation device and demonstrate energy shift of QD emission
induced by mechanical strain. This experimental demonstration of strain
tuning lays the foundation for practical applications in quantum photonic
devices.

In chapter 4, our focus shifts to the electrostatic driving of nanowire vi-
bration modes. We start with giving a theoretical background, exploring
the principles of exciting vibration modes. We conduct extensive simulations
which will guide the research into the experimental excitation and identifi-
cation of vibration modes. We then push the research to high order modes
approaching the sideband resolved regime.



Chapter 1

Quantum dots in photonic
structures

1.1 Self-assembled quantums dots
This thesis work is centered around applications of QDs made of Indium
Arsenide (InAs) that are embedded in a Gallium Arsenide (GaAs) matrix.
Both materials are III-V semiconductors. These semiconductors are widely
used in optoelectronics due to their direct and low energy bandgap, enabling
efficient optical transitions.

1.1.1 Overview of the growth process
The most widespread method for obtaining self-assembled QDs is the Stranski-
Krastanov method [68]. In the case of InAs/GaAs the principle is to grow
InAs on a single-crystal, planar crystalline GaAs wafer. This growth is
achieved by molecular beam epitaxy (MBE). Normally, growth occurs layer
by layer, the surface remains flat: it is a two-dimensional growth. A typical
case is GaAs/AlAs, as both materials have the same crystalline structure and
lattice parameter. When we try to grow layers with different lattice parame-
ters, initially, there is still 2D growth. However as the structure grows there
is an accumulation of elastic energy due to the deformation of the epitaxial
layer to adapt to the substrate’s lattice parameter. There are two possible
ways to relax: i) creation of a network of dislocations at the interface, ii)
transitioning to a 3D geometry with the formation of nanometric islands.

For InAs/GaAs the lattice mismatch is ≈ 7% and the predominant mech-
anis is the second one. The InAs layer initially adapts to the substrate,
forming a coherent, planar layer on GaAs. Beyond a critical thickness of
1.7 InAs monolayers the stress due to lattice mismatch relaxes elastically

7



8 CHAPTER 1. QDS IN PHOTONIC STRUCTURES

Figure 1.1: TEM image of an InAs/GaAs QD cross-section. In the
image, we can identify the QD, with a the thin 2D InAs wetting layer (WL)
on each side. The ensemble is embedded in GaAs. This image was obtained
from A. Ponchet (CNRS/CEMES) Toulouse, captured on a sample fabricated
by J.M. Gérard (France Télécom/CNET, 1993).

through a morphological transition. Three-dimensional islands appear on
the residual 2D layer called the wetting layer. Once the InAs islands have
been formed, they are covered (capped) by GaAs, which makes it possible
to obtain optically-active structures called quantum dots. This encapsula-
tion step modifies the morphology and composition of the dots due to the
diffusion of GaAs into the InAs. Moreover the speed of the capping process
influences the dimension and the symmetry of the dots [67].

1.1.2 Theoretical foundations of the artificial atom model
The theoretical study of the optical properties of QD is quite convoluted. In
this section, we first introduce the properties of the bulk crystal. Then we
can study the effect of confinement, both in the 2D wetting layer (WL) and
into the 0D QD.

1.1.2.1 Introduction to the band structure of bulk semiconductors

The Bloch theorem. GaAs and InAs are III-V direct bandgap semicon-
ductors crystallizing in the Zinc-blende structure. Each unit cell consists
of two atoms with 8 valence electrons. In principle we should solve the
Schrödinger equation for all the atoms and the electrons of our system, but
some clever approximation are made: first we consider a rigid crystal lattice
(Born-Oppenheimer approximation) which allows to focus only on the elec-
trons wavefunctions. Then, instead of solving the equations for all the elec-
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trons, we consider that every electron experiences an effective mean potential
due to the lattice and all the other electrons (Hartree-Fock approximation).
This leads to the equation:(

− h̄2

2m∇2 + V (r)
)

Ψ(r) = EΨ(r), (1.1)

where the potential V (r) is a periodic function with the same periodicity as
the crystal lattice. From the Bloch theorem we know that the solutions of
the eq. (1.1) can be written as:

ψj,k(r) = e−ik·ruj,k(r). (1.2)

The first factor is a plane wave, which characterizes translational invariance
in the crystal, the second factor is the so called atomic function uj,k(r), which
has the same periodicity as the crystal lattice. So, plugging eq. (1.2) into
eq. (1.1) we can derive an equation for the atomic functions:(

− h̄2

2m(∇ − k)2 + V (r)
)
uj,k(r) = Ej,kuj,k(r). (1.3)

For each value of k vector in the reciprocal lattice, there are thus many
solutions indexed by j with eigenvalues Ej,k. The number of energy levels is
high and define a band, that is the range of energy levels that electrons may
occupy. For insulating materials and semiconductors, the bands are filled
with electrons up to the top of the so-called valence band. The next-higher
energy band is empty and is called the conduction band.

Effective mass approximation. GaAs and InAs are direct bandgap semi-
conductors, and the valence band maximum and the conduction band mini-
mum lay at the same point Γ that corresponds to the center of the Brillouin
zone in k-space. To study the optical properties of these semiconductors
we will consider transitions from the valence band to the conduction band.
Since the momentum of optical photons is quite small all we need to know is
the band structure in the vicinity of the Γ-point . In particular the energy
around the Γ-point can be approximated by a Taylor expansion up to the
second order. In the simple case of an isotropic k-dependence, this yields a
parabolic approximation:

Ej(k) ' Ej(0) + ∂2Ej(k)
∂k2

∣∣∣∣
k=0

k2. (1.4)

The curvature of the parabola is given by the derivative term in eq. (1.4).
Electron wavefunctions at the Γ-point are constructed as wavepackets of
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Bloch functions and the curvature of the parabola controls the dispersion
relation. This allows us to define an effective mass m∗ as:

h̄2

2m∗ = ∂2Ej(k)
∂k2

∣∣∣∣
k=0

. (1.5)

An electron in a band is thus characterized by his crystal momentum k,

S

P

L=0

L=1
k

E

(a)

J=1/2

J=3/2

J=1/2

k

E

ΔSO

(b)

hh
lh

k
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(c)

Figure 1.2: Schematic representation of the band structure of an
InAs crystal near the Γ point. In (a) we see the band stucture before
any correction is made. The conduction band is characterized by an orbital
angular momentum of L = 0. The valence band has an orbital momentum
L = 1 and features a threefold degeneracy. In (b) the spin-orbit coupling
has the total angular momentum as eigenvalue. It partially removes the
degeneracy of the valence band, pushing the doublet J = 1

2 at lower energies.
Finally in (c) the biaxial compressive stress splits the valence band in heavy-
hole and light-holes, and increases the energy gap.

the orbital angular momentum and his projection |L,mz〉 and the spin with
its projection |σ, σz〉. At the Γ-point, k = 0 and the electronic states are
completely described by the spin and angular momentum: |L,mz, σ, σz〉.

Spin-orbit interaction. For InAs the conduction band is characterized
by L = 0; it is not degenerate and in an analogy with atomic physics is of
type S. The valence band, however features L = 1; it is degenerate, with
mz = −1, 0, 1 it is thus of type P. The bands are shown in fig. 1.2.

Until now we have ignored the spin-orbit interaction, however in III-
V materials the spin-orbit coupling is significant [146]. This is taken into
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account by the spin-orbit Hamiltonian:

HSO ∝ L̂ · σ̂. (1.6)

The total angular momentum Ĵ ≡ L̂ + σ̂ commutes with the spin-orbit
Hamiltonian, so we can rewrite the electrons states in terms of the total
angular momentum as |J, jz〉. For the conduction band we have a doublet
with J = 1

2 , while for the valence band we have the quadruplet J = 3
2 and the

doublet J = 1
2 . The effect of the spin-orbit is to lift the degeneracy between

the quadruplet and the doublet, as shown in fig. 1.2b. The value of ∆SO

for GaAs is around 340meV [146], and thus we will ignore this band in the
following.

The two remaining valence bands have different effective mass from which
they are named heavy holes (hh) and light holes (lh) bands. The bi-axial com-
pressive strain inherent to a self-assembled QD lifts the degeneracy between
these two bands, as seen in fig. 1.2c [123]. In this case the splitting is of the
order of several tens of meV [124]: it is important enough to allows us to
consider just the heavy-hole band.

1.1.2.2 Confinement and envelope function formalism

In the previous section we have shown how to describe the electrons in a
bulk crystal in a simplified way. Our system actually consists of a QD,
a 0D structure, a wetting layer, which provides a 2D confinement and a
3D GaAs matrix. In order to study the effects of confinement we use the
envelope function formalism. It was first introduced by G. Bastard to study
quantum well heterostructures and adapted next to quantum wire and QD
heterostructures [14]. We expect our solution to be composed of three parts:

Ψj,k(r) = Φn,j(r)eik·ruj,k(r), (1.7)

where the last two factors are like in eq. (1.2). The first factor is the envelope
function, which results from the confinement of carriers in the nanostructure.

Effect of confinement in the WL. Let’s start with the wetting layer.
We can consider to a first approximation that it is perfectly smooth. In this
case the charges are free to move in the x and y directions and confined in
the z direction. The envelope function only depends on z:

Φn,j(r) = Φn,j(z), (1.8)

which now corresponds to a localized state in the z direction. The correspond-
ing density of states thus has a stair-step profile. In the case of InAs/GaAs
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VB CB

WL
2D
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2D

ρ(E)

E
1.7L

~20 meV ~40 meV

2L 1.7L2L

Figure 1.3: Schematic representation of the density of states in the
2D wetting layer. The rugosity of the wetting layer causes the step-like
theoretical density to be smoothed out. As a reference, the dotted lines shows
the theoretical position of the step for a perfect layer of thickness 1.7ML (the
critical thickness), as shown in [67]. The figure is adapted from [30].

QD, the strong confinement along z and the presence of bi-axial strain makes
it possible to consider only heavy hole states for the valence band. Moreover,
only the first n = 1 state is confined. The density of states thus features a
single step.

In reality, the wetting layer is not perfectly smooth. It is made up of
”steps” of one to two atomic layers with an average value of 1.7 monolayers
(ML). These defects behave like very flattened QDs. For a given band j of
the wetting layer it is necessary to then replace the 2D quasi-continuum by a
distribution of more or less localized states [32, 143, 67]. This has the effect
of softening the step profile of the ideal 2D density of states as illustrated in
fig. 1.3.

Effect of confinement in the QD. As discussed at the beginning of this
chapter a QD is a nanostructure that confines carriers in all three directions
of space, leading to a discretization of accessible energy levels. The confine-
ment potential associated with a realistic description of the QD is complex:
self-assembled InAs/GaAs QDs generally have a flattened lens shape in the
growth direction z (the [001] direction of the crystal). In addition, they often
exhibit ellipticity in the growth plane [31]. Moreover the composition is not
uniform inside the QD, but rather it is made of InGaAs with different relative
amounts of In and Ga across the structure. Even considering an in-plane ro-
tational symmetry for the confinement potential, it is still not separable into
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a plane part and a vertical part due to the complex shape of the structure.
This makes an analytical resolution impossible; a realistic calculation needs
to be done numerically.

e CB

VB

Sh

Ph

Se

Pe

EP
e

ES
e

e
Econf

EP
h ES

h

h
Econf

GaAs GaAsInAs

(a)

Ph  mz=-1

Pe  mz=-1 Pe  mz=+1

Se  mz=0

Sh  mz=0

Ph  mz=+1

(b)

Figure 1.4: QD energy levels and allowed transitions. (a) shows a
simplified schematics of the QD energy levels. Note that VB corresponds
to the heavy hole (hh) band of the strained material. We see that due to
the shape and depth of the confinement potential only S and P states are
available. For bigger QDs we can also have higher angular momentum levels
(D). Dipole allowed transitions are shown in (b). The transitions are divided
in intraband (grey) and interband (black) and must satisfy selection rules
dictated by symmetry and angular momentum conservation.

While a simplified treatment fails to precisely predict the energy levels,
it can however illustrate the physics of the phenomena involved. Moreover
a simplification can form the basis for a variational approach, as in [86].
The simpler way to approach the problem consists into treating the QD as
a flattened cylinder. In this simplified geometry, the confinement potential
is the product on an in-plane potential with a rotational symmetry times a
vertical step-like potential.

We will use the envelope function formalism again, with a wavefunction as
in eq. (1.7). This time the envelope function can be factorized into two parts.
The first one describes the vertical confinement (along z). As in the case of
the wetting layer, only the first state n = 1 is confined. The second part
describes confinement in the transverse plane, with cylindrical symmetry.
We describe this transverse part in the basis of the envelope eigenstates
|L,mz〉 associated with the L̂2 and L̂z operators. The band structure of the
semiconductor is taken in account by solving the Schrödinger equation within
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the effective mass approximation.

ρ(E)

E

VB CB

InAs QD

WL
2D

GaAs
3D

WL
2D

GaAs
3D

Figure 1.5: Density of states of the QD with the surrounding 2D
wetting layer. This schematics illustrates the position of the QD discrete
states with respect to the 2D and 3D continuum associated with the WL and
GaAs respectively. The numbers are indicative of the mean gap values at
T = 4K. The figure is adapted from [30].

Only a finite number of states can be confined within the InAs QD due to
the finite depth of the confinement potential. For fairly small self-assembled
InAs/GaAs QDs (emitting at a wavelength of less than 1µm), only those
states that have an envelope function associated with L = 0 (S) and L = 1
(P) meet this condition. In a QD (contrary to an atom) the P states are
doubly degenerate (mz = ±1). The state mz = 0 has higher energy. This
comes from the shape of the dot: the state mz = 0 extends into the z
direction, direction in which the flat QD has a much smaller dimension.

The QD energy levels are shown in fig. 1.4a. So we have succesfully
introduced the electronic bands of a bulk semiconductor, the wetting layer,
and the confined states in a QD. If we put everything together, we can
describe the entire InAs/GaAs system according to the diagram shown in
fig. 1.5. The values shown in the figure are average values at cryogenic
temperature (T = 4K). Exact values depend on the growth details and on
morphology of the QDs.

1.1.3 Optical properties
In this section we describe the optical transitions between the QD energy
levels. As a first thing, let’s return to the energy levels of the QD. We see
that the semiconductor band structure provides a S conduction band and a
P valence band, of which we just retain the heavy hole one. The confinement
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provides a discretization of the levels into the band with his own Se,h an Pe,h

orbitals, belonging to the envelop function. This energy structure is shown
in fig. 1.4a.

In the dipole approximation, the Hamiltonian describing an interaction
with the electromagnetic field has the form:

HI = e

m0
A · p, (1.9)

where e is the elementary charge, m0 the mass of the free electron, A the vec-
tor potential associated with the electromagnetic field and p the momentum
operator. We expect A to have vanishingly small variation across the QD
since the QD is more than 20 times smaller than the wavelength of infrared
light. The probability for the transition between an initial state |i〉 to a final
state |f〉 is controlled by the matrix element:

〈f |HI |i〉 ∼ e

m
A · 〈χf | p |χi〉 · 〈uf |ui〉+ (1.10)

e

m
A · 〈χf |χi〉 · 〈uf | p |ui〉 ,

which is the sum of two terms. The first one is associated with with intraband
transitions, in which two distinct envelop states |χi〉 and |χf〉 are coupled.
Typically, a transition between the conduction states Se and Pe for a InAs
QD has an energy of the order of ' 10meV. The second term is associated
with interband transitions.

The fact that the incoming light carries an angular momentum of one
gives rise to selection rules, which are summarized in fig. 1.4b. Our main focus
here is on interband transitions.The scalar product of the envelop functions
restricts the transitions to envelope states with the same symmetry (S or P
in the case of our system). Furthermore the dipole term imposes a variation
in the total angular momentum projection. These selection rules determine
which pairs of states are coupled to light.

1.1.3.1 Excitonic states

To characterize an elementary excitation, we need to describe the conduction
state of one electron and the valence states of the remaining N - 1 electrons.
In solid state the absent electron from the valence band is described by
means of a fictitious particle: the hole. This quasi-particle has the same
characteristics as electrons, but with opposite signs.

Neutral excitons. The mechanism of spontaneous emission involves the
radiative recombination of an electron in a conduction state with a hole in
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(a) (b)

(c) (d)

Figure 1.6: Neutral excitons and trions. Schematics of the excited states
of QD’s S level in an ideal QD, without considering exchange interaction and
asymmetries in geometry or stress in the QD. Starting from a neutral QD we
can have two bright excitons states (a) which recombine emitting circularly
polarized photons. Then, in (b) we have two dark excitonic states which are
not optically-active but can be reached from a bright excitonic state via a
spin-flip process. The QD can be charged, starting with a negative charge
we have two negative trion states (c) and for a positive charge two positive
trions (d). The trions remain degenerate even when considering exchange
interaction and asymmetries due to the Kramers theorem. The degeneracy
can be lifted adding a magnetic field. There is one last important S shell
complex which is the biexciton, shown in fig. 1.7.

the valence states. For this we need to consider a two-body representation
of the electron-hole pair states confined in the QD. So, holes in the va-
lence band have |Jh = 3

2 , Jh,z = ±3
2〉, and can form up to four states with the

corresponding electrons in the conduction band:
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|↑,⇓〉 ≡ |jz = −1〉 (1.11)
|↓,⇑〉 ≡ |jz = +1〉 (1.12)
|↑,⇑〉 ≡ |jz = +2〉 (1.13)
|↓,⇓〉 ≡ |jz = −2〉 (1.14)

where we have introduced the notation |↑〉 ≡ |Je = +1/2, je,z = +1/2〉, |↓〉 ≡
|Je = +1/2, je,z = −1/2〉 for the electrons states, and |⇑〉 ≡ |Jh = +3/2, je,z = +3/2〉,
|⇓〉 ≡ |Jh = +3/2, je,z = −3/2〉 for the holes. According to the interband se-
lection rules, only pair states with jz = ±1 can be coupled to light. The
radiative recombination of the states |↑,⇓〉 and |↓,⇑〉 will therefore result in
the emission of circularly polarized photons. These optically-active states are
the so-called bright exciton states and the process is schematized in fig. 1.6a.
The states |↑,⇑〉 and |↓,⇓〉 on the other hand have |jz = ±2〉 and cannot
lead directly to photon emission or absorption: they are called dark exci-
tons (see fig. 1.6b). Dark excitons cannot be created directly by a resonant
optical excitation. However, a bright exciton can be converted into a dark
one by a spin-flip process. Furthermore, in non-resonant optical excitation
schemes, the spin memory of the excitation is often lost, which can lead to a
population of dark excitons in the QD.

Our model for the QD reduced a multiparticle problem into a single
particle one by using a mean field approach. The introduction of the hole
as a fictitious particle, requires us to consider the effect of the Coulomb
interaction between the electron and the hole. In self-assembled QDs such
as InAs/GaAs QDs the Coulomb binding energy between electron and hole
provides a weak correction to the energy of the electron-hole pair, which
is essentially determined by confinement. While the energy corrections are
overall small, the exchange interaction lifts the degeneracy between the dark
exciton and the bright excitons, as was shown in fig. 1.7.

Biexciton. The QD can host two electron-hole pairs in the S shell: this
excitonic complex is called a bi-exciton. Due to the Pauli exclusion principle,
the two electrons must be in a singlet state; the pair of holes should fulfill
the same condition. We can thus write the bi-exciton state as:

|XX〉 = 1√
2

(|↑↓〉 − |↓↑〉) ⊗ (|⇑⇓〉 − |⇓⇑〉). (1.15)

The energy of the bi-exciton is:

EXX = 2EX + EC, (1.16)
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ΔFSS

G

Figure 1.7: Biexciton radiative cascade, in the presence of a fine
structure splitting. The biexciton |XX〉 decays following one of two paths,
resulting in the emission of two entangled linearly polarized photons. In gen-
eral, the decay |XX〉 → |H〉 or |V 〉 and |H〉 or |V 〉 → |G〉 have a different
transition energy even without FSS due to the Coulomb interaction in the
biexciton. This energy can be both positive or negative. All the four exci-
tons have in general different energies. The break of degeneracy between the
bright and dark exciton states comes from an exchange interaction. More-
over, asymmetry in the geometry or strain in the QD lead to a FSS between
the two bright excitons. This asymmetry causes a splitting of the dark exci-
tons as well, albeit a less important one.

where EX is the energy of the exciton and EC is the Coulomb interaction
energy. The bi-exciton state can decay through the emission of two photons.
While the simultaneous emission of two photons at the energy EXX/2 is an
allowed process, it is very weak and generally not observed experimentally.
Bi-exciton recombination follows instead a cascaded process composed of two
single-photon emission processes, involving an intermediate exciton state, as
sketched in fig. 1.7. Due to the Coulomb interaction the energy of the two
emitted photons is in general different. That is a good news in practice since
it means that the two emitted photons can be spectrally separated. The bi-
exciton is a non-degenerate state, with a total angular momentum of 0 which
in theory means that the two emitted photons are circularly polarized with
opposite polarization. Since there are two possible paths, the spontaneous
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emission of the bi-exciton can be described by the entangled photon state:

|ψ〉 ⇒ 1√
2

(|σ+
XX〉 |σ−

X〉 + |σ−
XX〉 |σ+

X〉), (1.17)

where |σ±
XX〉 (|σ±

X〉) represents a circular polarized photon from the |XX〉 →
|X〉 (|X〉 → |G〉) transition.

In reality the QD doesn’t have a cylindrical symmetry. The true eigen-
states are linear combination of the two exciton states:

|H〉 = 1√
2

(|↑⇓〉 − |↓⇑〉) (1.18)

|V 〉 = 1√
2

(|↑⇓〉 + |↓⇑〉). (1.19)

They are not, in general, degenerate and they relax by emitting linearly po-
larized light, see fig. 1.7. The difference in energy between the two excitonic
states is called the fine structure splitting (FSS). One of the main conse-
quence of a nonzero FSS is that the photons emitted along the two paths
become distinguishable. This will affect the emission of entangled photons.
Moreover, while the relaxation of the bi-exciton state still produces an en-
tangled photon state, the FSS introduces a random phase difference for each
realization:

|Ψ〉 = 1√
2
(
|πHπH〉 + eiφ |πV πV 〉

)
, (1.20)

where φ = EFSSτ
h̄

is a phase which depends on the FSS and the time τ elapsed
between the first and second photon. This time is random and varies between
sudsequent emission processes: this spoils the time-integrated entanglement
[172, 82]. Since an exciton has a finite lifetime, and thus a finite linewidth
(supposing a radiatively-limited linewidth) the effect of the FSS has to be
evaluated in comparison to the linewidth (see fig. 1.7). Note that the dark
excitons also feature a FSS, albeit with a smaller value. We will see in the
following that there exists ways to tune the optical properties of the dots,
and thus, for instance correct, or at least mitigate, the asymmetries leading
to the FSS and restore the time-integrated entanglement.

Trions. Finally there are other states that need to be considered. A QD
can be in a charged state, that is, contain a hole or an electron in its ground
state. It is then possible to create an electron-hole pair in a charged QD, we
call this state a trion. As seen before, we need to take in account the Pauli
principle when there are multiple fermions in the same state. So, if we start
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with a negatively-charged QD we can have two negative trions:

|X−
↑ 〉 = 1√

2
(|↑↓〉 − |↓↑〉) ⊗ |⇑〉 (1.21)

|X−
↓ 〉 = 1√

2
(|↑↓〉 − |↓↑〉) ⊗ |⇓〉 . (1.22)

Starting with a positively charged QD gives the two positive trions:

|X+
⇑ 〉 = |↑〉 ⊗ 1√

2
(|⇑⇓〉 − |⇓⇑〉) (1.23)

|X+
⇓ 〉 = |↓〉 ⊗ 1√

2
(|⇑⇓〉 − |⇓⇑〉). (1.24)

One of the interesting properties of the trions, which we will use in this thesis,
concerns the degeneracy. Kramers’ theorem states that a system containing
an odd number of fermions (in this case, electrons and holes) remains at least
twice degenerate if it is described by a time-reversal symmetric Hamiltonian.
This is the the case for the Coulomb exchange interaction and also for the
Hamiltonian describing the stress on the QD. Thus the trion states remain
degenerated, even in the presence of structutral or strain asymmetries. An
important exception is an Hamiltonian which depends on the magnetic field,
since the magnetic field is antisymmetric with respect to time inversion. In
addition, trion states are always bright.

1.1.3.2 Quasi continuum of mixed QD-WL states

So far we have considered the coonfined states hosted by the QD. Recalling
the diagram in fig. 1.5, we have the bulk states in the GaAs, then we have a
constant density of nonlocalized states in the wetting layer which due to the
rugosity of the surface has a smooth edge. There are a family of mixed states
that we haven’t discussed: they involve both the wetting layer and the QD.

These are mixed pairs where one of the carriers is localized in the QD and
the other one is delocalized in the WL. These states behave like a 2D - 0D
quasi-continuum. The quasi-continuum of crossed states overlaps with the
Pe Ph interband transition of the QD, basically extending the 2D continuum
down to the highly localized excited states of the QD. This is shown in the
diagram in fig. 1.8. The Se Sh transitions remain spectrally isolated from
this quasi-continuum (by a few tens of meV). The quasi-continuum is very
important since it provides a relaxation mechanism, for pairs created into
the wetting layer (see section 1.1.4.1), to reach the Pe Ph states.
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Figure 1.8: Quasi continuum 2D-0D. Calculation of the interband absorp-
tion spectrum for a system composed of a WL and a QD. The contribution
of the WL alone is showed in dashed line. The various peaks correspond to
the different transitions coupling WL and/or QD states and are indicated by
the black arrow. The figure is adapted from [190].

1.1.4 Optical excitation techniques
1.1.4.1 Non resonant excitation

In the case of non-resonant excitation, we generally excite our system with
energies below the GaAs bandgap energy (Eg = 1.52eV) but above the wet-
ting layer bandgap energy (Eg = 1.46eV). This excitation scheme is shown
in fig. 1.9. Free carriers are injected by a non resonant laser into the the
wetting layer.

In semiconductors in general relaxation through acoustic phonons is in-
efficient, the energy mismatch between electron states being much too large
[22, 16].

In bulk, planar and 1D structures, the main energy relaxation channel
is the irreversible emission of longitudinal optical (LO) phonons through
the Fröhlich coupling and next through acoustic phonons, made possible by
the presence of a continuum of final states. Within their lifetime (' 1 ns)
carriers thermalize at their band edges and decay radiatively there. Despite
its effectiveness, this electron-phonon coupling is weak, and is usually well
described by the Fermi golden rule.

Going to 0D, this mechanism is no longer possible. As shown in [77]
LO phonons in a QD are always in a strong coupling regime and form an (in
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Figure 1.9: Non resonant optical excitation. The non resonant laser (left
black arrow) creates electron-holes pairs into the WL. The electrons (holes)
relax into the lower (higher) energy band of the QD system Se (Sh). Finally
the electron-hole pair can recombine by emitting a photon. Figure adapted
from [30].

theory) everlasting mixed electron-phonon mode called polaron. Because the
optical phonons shows very little dispersion, one would expect that the LO
phonon assisted relaxation in semiconductor quantum dots could be efficient
only if the energy of the phonon would match the energy transition. This
represents an unavailable relaxing channel for QD due to the scarcity of final
states satisfying both energy and momentum conservation. This phenomenon
goes by the name of ”photon bottleneck” [16].

However the capture of carriers by the QD and its photo-luminescence
(PL) emission show the existence of fast (' 10 ps) capture and relaxation
mechanisms for the QD systems [65]. How to explain this contradiction? As a
first step it is worth briefly talk about how the electron-hole pair is captured
by the QD. This process is not based just on diffusion: as discussed in
[65], during the growth process, following the formation of the InAs/GaAs
island, GaAs experiences a strain which is essentially a biaxial compression
(enhanced bandgap) between the 3D islands and biaxial tension (reduced
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bandgap) near the top or the bottom of an island. These strain fields generate
channels which drain the carriers toward the islands, making the capture
process much more efficient.

Regarding the relaxation process two possible mechanisms have been pro-
posed.

• Relaxation exploiting Auger effect. In [65] a possible sequence
of relaxation is based on the Auger effect. To briefly explain it let’s
restate the photon bottleneck problem: the electron-hole pair, once is
trapped near the QD cannot relax by itself into the ground state due to
energy conservation and lack of suitable channels. However the pres-
ence of another carrier can provide such a channel: for instance the
energy lost by the relaxation of the electron in the pair can kick one
electron in the continuum of states (2D WL or 3D GaAs) where it can
quickly relax by standard electron-phonon scattering.

• Instability of LO phonons. Another possibility is illustrated in
[191] and is based on the fact that the crystal anharmonicity drives
the instability of LO phonons. This leads to a decay of polaron states
which otherwise would be everlasting. By such a mechanism a single
electron in an excited dot state can relax down to the ground state
even if the electron energy difference differs from the optical phonon
energy.

It is reasonable to believe that both of this processes contribute to the fast
relaxation seen in QD systems.

The advantage of non resonant excitation is that the excitation laser is
usually spectrally quite far from the emission of the dots, and thus easily
filtered out. However this excitation technique has several drawbacks. The
incoming laser creates many electron-hole pairs, which contribute to spectral
diffusion. Residual charges undergo trapping and de-trapping processes in
defects and barriers near the QD [17, 52]. These fluctuations influence the
QD’s emission energy through the quantum-confined Stark effect. In order
to mitigate these effects one needs to lower the excitation power. Actually
we will see in section 2.5.3, that a low-power non resonant laser can lead to
a stabilization of spectral diffusion. In that case the power is so low that the
emission of the QD is not relevant.

Another drawback is that the photon emission follows a random process of
carrier relaxation, from the capture by the QD down to the relaxation to the
lowest S energy levels. This introduces a jitter in the photon emission which
impacts the temporal indistinguishability of subsequently emitted photons.
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1.1.4.2 Resonant excitation

Resonant excitation is a coherent excitation of the TLS. The advantages of
this excitation method are the suppression of some of the occurring dephas-
ing processes, in particular those related to unnecessary charges in the QD
environment. Moreover in resonant excitation pairs are created directly into
the TLS virtually eliminating the time-jitter of non resonant excitation. This
is especially important when one wants the QD to emit strictly identical sin-
gle photons from one excitation pulse to the next. Nevertheless, local charge
environment fluctuations, are still a problem even resonance excitation. This
can lead to spectral wandering and blinking as we will see in section 2.5.3.

From a technical point of view, resonance excitation is more difficult to
implement, since, compared to non-resonant excitation, the exciting scat-
tered laser can not be filtered out spectrally. One technique to get rid of the
laser is to filter it out in polarization. This requires a sample with a smooth
surface which will not change the polarization of the laser upon reflection.
Provided that the sample is suitable, it is essential to have a good quality
setup and well aligned polarization optics. This can lead to suppression ra-
tios up to 106 as seen in section 2.5.2. The downside of this technique is
that half of the light emitted by the QD will be lost due to having the same
polarization of the laser.

1.1.5 Tuning the QD optical emission
The mechanism of formation of QDs produces a random distribution of dots,
with different geometrical dimensions, which leads to different resonance fre-
quencies, and asymmetries. As a result two distinct QDs generally emit
photon at distinct wavelengths. In many cases we are interested in appli-
cations where photons produced from different QDs needs to interfere. A
mechanism to tune the QD emission wavelength is thus required.

1.1.5.1 Temperature

Temperature affects the structure of crystals: an increase in temperature
leads to an expansion of the crystal lattice, resulting in an increase in the
interatomic distances. This leads to a change in the band gap. Therefore
temperature can be used as a tuning mechanism for QD. From the work
in [51] we can see that shifts as large as 1.4 nm can be obtained with a
temperature ranging from 10 K to 40 K, without loss in intensity. The heat
can be provided by a laser, or resistors, in which case it can be applied
locally. Tuning with temperature is relatively simple to implement and it
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is also reversible. The main disadvantage is that it becomes at some point
detrimental for the emission efficiency and introduces thermal phonons which,
interacting with excitons, increase the dephasing.

1.1.5.2 Magnetic field

Figure 1.10: Magnetic field tuning. (a) Magneto-PL spectra measured
from B = 0 up to 6 T in the Faraday geometry. (b) B-dependent energy
shifts of the X and XX lines. Solid and dashed lines are fitting curves using
a quadratic B dependence. Figure reproduced from [187].

A magnetic field can be used to tune the emission of a QD. The effect
of the magnetic field on the QD is double. On one side we have the Zeeman
effect, which can be described by a perturbation Hamiltonian such as:

HM = −µ · B, (1.25)

where µ is the magnetic moment of the exciton, which is proportional to the
total angular momentum J . The Zeeman effect causes the splitting of the
doublet of the bright exciton states (see fig. 1.10), as well as for the trions.
The effect is linear in the applied field.

In addition there is the diamagnetic shift, an increase in energy caused
by changes in the spatial confinement, and in the electron-hole Coulomb
interaction. Indeed magnetic field squeezes the exciton wave function, which
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in turn enhances the binding energy. So, the diamagnetic shift causes an
increase of the energy which is proportional to B2 for a neutral exciton as a
first approximation.

This is illustrated in fig. 1.10, where both the diamagnetic shift and the
Zeeman splitting are shown for an exciton state. The maximum shift ob-
tained is around 1 meV but it requires a strong magnetic field of about 6 T.

1.1.5.3 Electric field

Figure 1.11: Tuning the wavelength and charge state of single GaAs
quantum dots. (a) Schematic band structure (conduction band) of the
diode hosting charge-tunable GaAs QD. (b) The PL emitted by an exem-
plary single quantum dot as a function of the gate voltage, Vg. (Positive
gate voltage indicates a forward bias.) The corresponding electric field, F, is
plotted as an additional x-axis on top. The emission spectrum shows several
plateaus corresponding to different charge states of the QD. We observe nar-
row PL-linewidths on highly charged excitons where up to eight additional
electrons occupy the QD. Figure reproduced from [205].

In a real QD, the confinement potential, even if as a first approxima-
tion has a cylindrical symmetry, shows a dependency in z. In general the
wavefunction of the electrons and the holes are different, mainly due to their
difference in the effective mass. This means that the mean position of the
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hole is different from the mean position of the electron. This results in a
permanent dipole moment for an exciton in a QD. Moreover, the presence of
the electric field modifies the confinement potential of the QD, which affects
the energy levels of confined electrons and holes, with the effect of tuning
the QD emission. This is the so called quantum-confined Stark effect. When
the field is weak, this effect can be treated perturbatively. The odd terms of
the energy correction vanish due to symmetry consideration, which leaves at
lower order a dependency of the field squared. So, the effect of the electric
field on the QD energy can be written as [59]:

E = E0 + pF + βF 2. (1.26)

Here, p is the permanent exciton dipole moment of the QD and β is the
polarizability of the state.

There have been multiple demonstrations of QD tuning in recent years
[54, 24]. One of the most impressive is shown in [205]. Incidentally fig. 1.11
shows that an electric field can be used to charge the QD by tunneling in and
out electrons. The main disadvantage of the electric field tuning is that, for
large electric fields, the increasing electron and hole wavefunctions separation
leads to PL quenching [54].

1.1.5.4 Mechanical strain

Mechanical strain significantly impacts the band structure of a semiconduc-
tor, which leads to modification of the energy bandgap. For this reason,
stress can be used as a mechanism for tuning the optical properties of a QD
[162, 161]. Compared to other tuning mechanism, strain tuning preserves
the quality of the QD optical emission.

Quantum optics applications require the ability to control the excitonic
emission energy as well as the FSS. This requires the combination of multiple
and independent ”tuning knobs”. For instance electric field can be combined
with strain [186]. The control over FSS requires two degrees of freedom.
Indeed to obtain the greater reduction the perturbation must be applied
along the direction aligned with the polarization axis of the exciton emission
[164, 183].

Strain alone can provide multiple of such tuning knobs. For instance a
complete control over strain in the xy plane provides 3 tuning knobs, via
the three components of the stress tensor εxx, εyy, εxy. With that one can
achieve the FSS correction and the tuning of the exciton emission as shown
in fig. 1.12 [184].

We will see in chapter 3 a device that leverages strain to tune the QD
emission.
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a

b

Figure 1.12: Full control of the in-plane strain. (a) Sketch of a 6-legged
device with a GaAs nanomembrane bonded on it (left panel). The PL is
measured from QDs located at the central gap between the six legs. Voltages
(V1,V2,V3) are applied to pairs of aligned legs to avoid lateral displacements
of the active structure. An optical picture of the central gap of a 6-legged
device is shown (right panel). (b) Sketch of the QD anisotropy for a QD
with s 6= 0 (left panel). The deviations from a circle indicate the existence
of an in-plane anisotropy in the QD confining potential. The anisotropy can
be aligned along the actuating direction of leg-2 with leg-1 (V1). Finally, the
anisotropies can be fully compensated with leg-2 (V2). Reprinted from [184].

1.1.6 Sources of decoherence

As seen in the previous section a QD is not an isolated system and inter-
acts with its environment. QDs are quite sensitive to electric field, magnetic
field and strain. In QDs we can have charge noise resulting in a fluctuating
electric field, spin-flips which in the environment resulting in a fluctuating
magnetic field, and the interaction with phonons which represents a fluctu-
ating stress on the semiconductor lattice. All of them can lead to dephasing
and decoherence of optical and spin states.

Charge noise arises from the fluctuation of charge occupation in the en-
vironment of the QD. This leads to fluctuations in the electric field experi-
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enced by the QD. The electric field shifts the optical transition energy via
the quantum-confined Stark effect. In general, charge noise occurs at fre-
quencies that are much smaller than the QD emission rate. This results in
random fluctuations of the central energy of the emitted photons, a process
often called spectral wandering.

The QD is coupled to lattice vibration (phonons). This interaction is
associated with the deformation potential, which couples the QD bandgap
energy to the crystal strain. Theory and experiments had shown that for
s shell excitons, the longitudinal acoustic phonons represent the greatest
source of decoherence [60, 148]. At first order the coupling to phonons leads
to acoustic siebands that surround a central zero-phonon emission line. At
second order, phonon coupling also induces an homogeneous broadening of
the zero-phonon line. These features strongly depend on the temperature.

Spin noise is typically the result of fluctuations in the nuclear spins of the
host material. This results in a fluctuating magnetic field (the Overhauser
field). This magnetic field induces a shift in the QD energy levels. This noise
has usually a lower amplitude than the charge noise, but is present over a
larger bandwidth [101]. More important is the effect over an electron or hole
spin: the resulting hyperfine interaction causes a fast spin dephasing.

1.1.7 Summary on self-assembled QDs

In this first section we have discussed the electronic properties of self-assembled
QDs. We first discussed the band structure and shown how the confinement
in three dimension leads to the development of the artificial atom model. This
two-level system (TLS) system can host several excitonic complexes such as
the exciton, the trion and the biexciton, which we will encounter through-
out this thesis. We have also seen the characteristics of real structures, in
particular the FSS and its impact on the emission of entangled photon pairs.
We have seen how to excite this artificial atom and introduced non-resonant
and resonant excitation, two important techniques used all throughout this
thesis. Finally we have seen how to control the QD emission using temper-
ature, electric field, magnetic field and strain. In particular strain is a very
powerful tool for a comprehensive tuning of a QD optical properties.

In the next section we will continue along this path, this time looking
at the photonic environment surrounding the QD. We will see how the
QD emission can be accelerated and funneled into a specific mode. This is
particularly important to improve some of the weak points of artificial atoms
in the bulk, such as the low extraction efficiency and the impact of noise from
its environment.
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1.2 Photonic structures for spontaneous emis-
sion control

A single photon source (SPS) based on a QD exploits the exciton recombi-
nation through spontaneous emission. This emission features a dipole-like
emission pattern, and, because we are dealing with a material of high refrac-
tive index, the majority of it is trapped by total internal reflection, especially
in a planar geometry (see fig. 1.13). In this section, we will introduce micro-
cavities and waveguides which enable the funneling all photons into a selected
mode that can be efficently coupled to external collection optics.

n=3.6

n=1

QD

Figure 1.13: Light collection for planar structures. A QD is embedded
in a high refractive index planar structure. The extraction efficiency ε is quite
low due to total internal reflection. Moreover, half of the light is emitted
downwards and lost into the substrate.

1.2.1 Strategies for spontaneous emission control
Spontaneous emission (SE) is a purely quantum effect involving an emitter in
an excited state which relaxes by emitting a photon. The system is thus com-
posed of the emitter and the electromagnetic field. The latter is constituted
by a large reservoir of harmonic oscillators representing all the modes with
which the emitter can couple to. The treatment of SE requires a quantum
description of both the emitter and the field.

The challenge of spontaneous emission control consists in engineering the
photonic environment of the emitter in order to suppress the coupling to
all unwanted modes and/or strongly enhance the coupling to one preferred
mode.

We will consider two systems leading to single-mode spontaneous emis-
sion: i) optical microcavities that support descrete resonant modes and ii)



1.2. PHOTONIC STRUCTURES FOR SPONTANEOUS EMISSION CONTROL31

single-mode waveguides that support only a single familly of guided modes.
We note ΓM the SE rate into the mode M of interest (cavity mode or guided
mode). In addition, the QD is also coupled to a continuum of background
modes. The SE rate into these modes is denoted ΓB. The fraction of SE into
mode of interest, β, is given by:

β = ΓM

ΓM + ΓB

. (1.27)

Two main strategies can be employed to bring β close to unity: i) the mi-
crocavity approach, which exploits the Purcell effect to selectively enhance
ΓM (see [63]); ii) the single-mode waveguide approach, inhibiting SE in other
modes using a 3D photonic crystal [202] or dielectric screening effect in high-
index-contrast waveguides [37].

Combining these two approaches is also possible, such as slow modes in
photonic crystal waveguides [5] and nanocavities [97]. All these concepts will
be detailed in the following sections.

1.2.2 Optical microcavities
A first strategy to control spontaneous emission is to embed the emitter into
an optical cavity which increases the zero-point fluctuations and spectral
density of states associated with the cavity mode. This strategy makes it
possible to accelerate spontaneous emission via resonant coupling between
the emitter and a cavity mode. This acceleration is quantified by the Purcell
factor Fp. It is defined as the ratio between ΓM , the spontaneous emission
rate in the mode of interest M , and Γ0 the emission rate in an unstructured
environment that serves as a reference (for a QD one usually considers the
bulk semiconductor):

Fp = ΓM

Γ0
. (1.28)

Despite the fact that it was originally introduced for optical cavities, where
emission acceleration can be very large, it is easily generalized and used in
other structures, such as waveguides.

Historically the acceleration of spontaneous emission was first predicted
in the context of the engineering of spin relaxation, by spontaneous emission
in the microwave spectral range [21]. The first experimental demonstration
of the Purcell effect came in 1983 within the research group led by S. Haroche
[70]. This involved the coupling of a single Rydberg atom with a microwave
cavity. In the solid-state the Purcell acceleration was first demonstrated in
1998 with InAs QDs integrated into a micropillar (see [64, 62]).
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In the following we introduce the theoretical bases of cavity quantum
electrodynamics, which describes the light-matter interraction in an atom-
cavity system.

1.2.2.1 Weak and strong coupling regimes

g

Figure 1.15: An atom coupled to a single cavity mode. g is the coupling
constant of the dipole-interaction Hamiltonian. There are two loss channels:
spontaneous emission of the atom into other modes that the cavity one (rate
γ) and cavity losses (rate κ).

An optical cavity confines light in all three directions of space, thus dis-
cretizing the density of optical modes accessible to photons emitted by the
emitter. The study of an emitter placed in an optical cavity constitutes a
complex system which couples the evolution of the emitter, the electromag-
netic field inside the cavity and the electromagnetic field continuum. The
Hamiltonian describing the coupling between the cavity and the atom is the
Jaynes-Cummings Hamiltonian:

Ĥ/h̄ = ωatσ̂
+σ̂− + ωcâ

†â+ ig(â†σ̂− − σ̂+â). (1.29)

Here, g is the coupling strength, ωat is the frequency of the TLS, ωc the
resonance frequency of the cavity, σ̂− (σ̂+) is the lowering (rising) operator
for the atom and â (â†) is the annihilation (creation) operator for a photon
in the cavity mode.

The study of such a system makes use of the master equation formalism:

ρ̇ = − i

h̄
[Ĥ, ρ] + Lcav + Lse (1.30)

The L· are Lindblad operators that describe the interaction of the system
with the surroundings. Here they represents the cavity damping (rate κ) and
emission into other modes that the cavity mode (rate γ).
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Figure 1.16: Light-matter interaction regimes. Simulation of a TLS
coupled to a cavity, using the Python package QuTip to solve the Lindblad
master equation eq. (1.30). Three regimes are studied: the QD not coupled
to the cavity, the weak coupling regime (κ � g) and the strongly coupled
regime (κ � g). In all cases γ � κ. (a) shows the time evolution of the
population of the atom excited state. (b) shows the time evolution of the
cavity photon population.

To give an extensive treatment of the emitter/cavity system is not the
scope of this section, however eqs. (1.29) and (1.30) allows us to grasp the
physical meaning of the relevant quantities. As a starting point, we consider
an excited emitter and an empty cavity. Depending on the hierarchy between
the coupling strength and the loss rates, we can identify two main regimes:

• Weak coupling regime: when g � κ a photon emitted by the atom
into the cavity mode escapes into the free-space continuum before it
can be reabsorbed by the emitter. This regime will be further discussed
later.

• Strong coupling regime: When g � κ the photons emitted by
the emitter can be reabsorbed before they escape the cavity. This phe-
nomenon is called Rabi oscillations [126]. Figure 1.16a shows the coher-
ent exchange of an elementary excitation between the emitter and the
cavity. The damping of the oscillation is due to losses (here mainly cav-
ity losses). The eigenstates of the Hamiltonian are a combination of the
emitter and the cavity excited states. These are called dressed states
and provide non linearities exploitable at very low photon numbers.
This phenomenon can be very useful for realizing coherent couplings
and entangled quantum systems [79, 153, 145].
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1.2.2.2 Purcell effect

In the weak coupling regime, the cavity losses dominate over the coupling
strength so that a photon emitted into the cavity will leave it before being
reabsorbed. From the emitter point of view, the lossy cavity is just a con-
tinuum of modes whose density of states has a Lorentzian profile. As seen
in fig. 1.16a the cavity induces an acceleration of the spontaneous emission:
this is the Purcell effect.

The Purcell effect can be calculated analytically (see [66]), giving:

Fp = ΓC

Γ0
= 3

4π2

(
λ

n

)3
Q

Veff
, (1.31)

where ΓC is the spontaneous emission rate into the cavity mode, and

Veff =
∫∫∫

n2(~r)| ~E(~r)|2 d3~r

n2max
(∣∣∣ ~E(~r)2

∣∣∣) (1.32)

is the effective volume of the cavity, and

Q ≡ 2π energy stored in the cavity
energy lost per optical cycle

= ωc

κ
(1.33)

is the quality factor. Note that ΓC can be derived from the coupling strength
and from the atom and cavity damping:

ΓC = 4g2

κ+ γ
. (1.34)

It is therefore possible to accelerate the emission rate by increasing the quality
factor Q and reducing the effective volume Veff of the cavity mode under
consideration. Accelerating spontaneous emission is important because the
emitter has less time to interact with its surrounding, thus making the system
more resilient to noise. Note that this effective acceleration increases the
linewidth of the emitted photons. The coupling of the emitter with the
cavity has a positive impact on the β factor. Indeed the latter reads:

β = ΓC

ΓC + ΓB

= Fp

Fp + ΓB

Γ0

, (1.35)

where ΓB represents the emission in other channels which are not the cavity
mode (B stands for background). We see that increasing the Purcell factor
reduces the relative importance of these unwanted channels.

Given the importance of the enhancement of spontaneous emission of
a quantum emitter, many strategies have been pursued for improving the
Purcell factor. This has led to a variety of optical cavities with interesting
designs, which will be explored in the next section.
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1.2.2.3 Examples of optical cavities

Figure 1.17: Examples of optical cavities. (a) scanning electron micro-
scope (SEM) image of a micropillar cavity containing a QD placed between
two AlGaAs/GaAs Bragg mirrors (adapted from [152]). (b) SEM image
of a microdisk cavity (adapted from [169]). (c) Top: atomic force micro-
scope (AFM) image of a L3 photonic crystal cavity. The bright contrast at
the surface corresponds to a few manometer high deformation, which reveals
the presence of a buried QD. Bottom: calculated field map of the resonant
mode (adapted from [79]). (d) Sketch of an open tunable Fabry-Perot mi-
crocavity, which also shows the mode field map (adapted from [135]). (e)
Sketch of a bullseye cavity (adapted from [114]). (f) Left: SEM image of
a nanopost cavity (adapted from [97]). Right: calculated field map of the
resonant mode [84].
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Micropillar. Micropillar cavities consist of two Bragg mirrors produced by
planar epitaxy using alternating layers of refractive index n1 and n2 (GaAs
and AlGaAs materials are often used) with a thickness of λ/4ni (i = 1, 2,
λ is the wavelength at cavity resonance). The micropillar is formed by dry
etching. The emitter is positioned in a thicker layer λ

n1
between the two Bragg

mirrors, where the cavity mode is confined. The reflectivity of the Bragg
mirrors is controlled by adjusting the number of layers. In general, the two
mirrors do not have the same number of layers, resulting in a highly reflective
lower mirror and an upper mirror with higher transmission. This degrades
the quality factor Q but allows photons to be extracted preferentially towards
the top of the structure, rather than towards the substrate.

The diameter of the micropillar is a crucial parameter in these structures.
It needs to be small enough to minimize the mode effective volume. How-
ever, diameters of less than 1 − 2 µm reduce the quality factors. Indeed for
an ideal structure, Q is approximately constant with respect to the diameter
but degrades below ≈ 4λ/n. However, in practice, for small pillars, losses are
dominated by surface roughness scattering resulting from imperfect fabrica-
tion [156, 107]. Effective volumes achieved in the literature are of the order
of Veff ≈ 10(λ/n)3 and quality factors up to Q = 104 − 105 [117, 154].

Photonic-crystal cavities. Photonic crystals are photonic structures which
use a periodic arrangement of subwavelength structures to control the prop-
agation of light via interference phenomena. The periodic arrangement aims
to emulate the band structure arising in crystal lattices. In particular it is
possible to create a structure with a photonic bandgap, a wavelength range
where light propagation is impossible. The interesting part is that the prop-
erties of the structure can be completely engineered acting on the spacing
and dimensions of the elements composing the photonic crystal. The pho-
tonic crystal can extend in 3D, or in lower dimensions. For instance a Bragg
mirror is a 1D photonic crystal. From a practical point of view 3D crys-
tals are very difficult to fabricate. Most of the structures are defined on 2D
membranes as they are much simpler to work with. Photonic crystal cavities
are obtained by inserting a local defect into a membrane where holes are
periodically etched [49].

There are many types of photonic crystal cavities, but one of the most
successful and widespread is the one obtained by removing three holes from
a triangular periodicity membrane, as seen in fig. 1.17. These structures can
achieve very low effective volumes of the order of (λ/n)3 and thanks to the
photonic bandgap, strongly reduce emission in free-space modes [4].

In theory one could fabricate cavities with very high quality factors. In
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practice the limiting factor is the sensibility to manufacturing defects, which
is more constraining that in micropillars. Nevertheless quality factors as high
as Q = 3 · 104 has been obtained in GaAs membranes [153]. Silicon cavities
working at telecom wavelength reached a quality factor of Q = 2 · 106. This
was possible due to the longer wavelength (around 1.55 µm) which permits
photonic crystals with bigger structures and the more mature fabrication
technology for silicon [106].

Microdisks. Microdisks are thin dielectric disks with a diameter of 1 −
10 µm and a thickness close to λ/n. Optical confinement is based on total
internal reflection and the structure supports the so-called gallery modes.
The gallery modes are localized at the periphery of the disk. The disk stands
on a pedestal with a smaller diamter. From an optical point of view the modes
are quite isolated from the substrate which enables very high quality factors.
Effective volumes are generally larger than with the other approaches but
this is compensated by higher quality factors. The drawback of microdisks
is the light collection, indeed the light propagates in the plane of the disk
which makes photon extraction tricky.

Bullseye. This cavity employs a circular Bragg grating around the emitter,
which serves at the same time to suppress the emission into unwanted modes
and to provide Purcell acceleration. It can be etched in a planar structure
[104] or defined in a suspended membrane [158]. Moreover, the introduction
of a dielectric spacer and of a bottom metallic reflector further improves the
performance [114, 197].

This cavity combines a moderate quality factor Q ≈ 120 and a small
effective mode volume Veff ≈ 0.4(λ/n)3. This allows for broadband opera-
tion, while the emission is a single-lobe, weakly divergent radiation pattern
providing excellent out-coupling toward fibers or free-space collection optics.

Open Fabry-Pérot microcavity. An open Fabry-Perot microcavity is
formed by a bottom planar Bragg mirror and top concave dielectric Bragg
mirror (see fig. 1.17) [135]. One of the main differences in comparison to the
previous structures is the much larger effective mode volume Veff ≈ 60(λ/n)3.
The Q factor is determined by the mirror reflectivities of the two mirrors
and can be engineered to reach Q ≈ 4 · 105 for cavities containing an active
layer with QDs in the bottom AlAs/GaAs structure. Here the cavity can
be adapted to the emitter: lateral displacement of the top mirror allows
centering the cavity mode around any emitter, whereas vertical displacement
allows for a fine tuning of the cavity resonance. One of the greatest assets of
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the cavity is the light collection: it produces a Gaussian output beam which
can be coupled with high-efficiency to an optical fiber (see [179]).

1.2.2.4 Summary on optical cavities

Cavities are a great tool for the control of spontaneous emission. The Pur-
cell acceleration offers many advantages: it increases the light extraction
efficiency, the emitter radiative yield and makes the emitter less sensitive to
external noise sources.

The accelerated emission has paved the way for the generation of highly
indistinguishable photons [165]. However, this approach comes with certain
limitations. For instance, the emitter must be precisely tuned to the reso-
nance of the cavity mode, both spectrally and spatially.

These difficulties can be overcame thanks to deterministic manufacturing
processes. These techniques involve precise spatial and spectral control of
QDs prior to etching the cavity. The spatial control can be achieved a poste-
riori utilizing scanning electron microscopes [11] or atomic force microscopes
[79] to locate the QD prior to the definition of the cavity. One of the most
promising approaches to resolve both issues (spatial and spectral control)
comes from P. Senellart’s group. Here the cavity is defined via a determin-
istic in situ lithography technique, allowing for the simultaneous determina-
tion of the QD’s position and energy at T = 10K via photoluminescence.
Subsequently, another laser is employed to define an etching hard mask by
exposing a photosensitive resist deposited on the sample’s surface. These
methodologies facilitate the production of high-quality single QD cavities
but are complex and require significant fabrication process and technological
resources.

To relax the spectral constrain we note that the Purcell factor as in
eq. (1.31) depends on both the quality factor and the effective volume. In a
cavity with a very small mode volume, one can decrease the quality factor
while preserving a large Purcell factor. A modest quality factor directly yields
a broad operation bandwidth. This approach has been developped by our
group and will be presented more in detail in chapter 2, which is dedicated
to nanopost cavities.

1.2.3 Waveguides
A possible strategy to achieve a broadband spontaneous emission control is
to rely on a waveguide. We sill see that tight transverse confinement yields
a significant spontaneous emission rate into the guided mode. However,
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achieving single-mode emission generally requires to also supress spontaneous
emission into the continuum of free-space modes.

1.2.3.1 Emission rate into the guided mode

The generalized Purcell factor for a waveguide reads:

Fp = Γwg

Γ0
= 3

4π
(λ/n)2

Seff

ng(ω)
n

, (1.36)

where Γwg is the rate of emission into the waveguide, ng is the group index
and

Seff =
∫∫
n2(~r)| ~E(~r)|2 d2~r

n2max
(∣∣∣ ~E(~r)2

∣∣∣) . (1.37)

Seff is the effective area of the guided mode which describes the waveguide’s
ability to confine light in the plane transverse to z. We can see an anal-
ogy between the Purcell factor in cavities eq. (1.31) and in the waveguides
eq. (1.36): the spatial confinement of the mode has a similar expression and
is characterized by the volume Veff for the optical cavities and an area Seff for
the waveguides. The quality factor is replaced by the factor ng/n. In order to
increase the Purcell factor we can thus minimize Seff which depends both on
the cross section and the refracting index difference between the waveguide
and the surrounding. Increasing ng (slow light) yields a flatter dispersion
curve which corresponds to a higher density of states.

In the next section we will explore some of the designs used for waveg-
uides.

1.2.3.2 Examples of waveguides

Photonic crystal waveguides. A photonic crystal waveguide is created
by defining a line defect in a photonic crystal. These are usually defined on
2D photonic crystal membrane of thickness ≈ λ/n where light is confined
thanks to a combination of total internal reflection in the vertical direction
and distributed Bragg reflection in the membrane plane. Photonic crystal
waveguides are very interesting for the control of spontaneous emission. The
photonic bandgap can in theory completely inhibit the coupling with the
free space continuum; this can lead to β factors close to 1 [109, 120]. This
is true for an ideal structure, in reality manufacturing imperfections degrade
the performance of the photonic crystal causing transmission losses and thus
limiting β. The photonic crystal waveguides have typically quite small mode
surface Seff ≈ 1/3(λ/n)2 and can reach very high group index up to ng = 300
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Figure 1.18: Examples of photonic waveguides for control of SE.
(a) Tilted SEM view (false colors) of a photonic wire designed for out-of-
plane emission into free-space (adapted from [37]). (b) Top SEM view of a
suspended in-plane photonic wire with grating outcouplers [39]. (c) Tilted
SEM view of a cleaved W1 photonic crystal waveguide [157].

in a silicon waveguide [192]. These two characteristics can be exploited to
increase the Purcell factor as seen in eq. (1.36). However relying on high
group index for increasing SE generally implies a reduced bandwidth and
greater sensitivity to manufacturing precision which can lead to the formation
of localized photonic states [157]. In order to preserve the bandwidth, and
relax fabrication constraints, it is interesting to use a moderate group index.
As an example in [6] a photonic crystal waveguide with ng ≈ 60 already yields
a very large Fp ≈ 10. P. Lodahl’s group succeeded in achieving β > 0.89 over
a spectral range of 20nm with a GaAs structure [118].

Dielectric photonic wire waveguides. These structures consist of a di-
electric cylinder that can be obtained by etching a planar sample or directly
by epitaxial growth. These nanowires have a high refractive index relative to
the background medium, which ensures transverse confinement by total in-
ternal reflection. The confinement is optimized for diameters around d ' λ/n
which leads to a diffraction-limited mode surface Seff ' 1/4(λ/n)2.

We also have ng/n ≈ 1, which leads to Γg/Γ0 ≈ 1. The spontaneous
emission into the guided mode is thus significant, even if there is no accel-
eration of spontaneous emission compared to the bulk case. In addition, a
dielectric screening effect suppresses the emission into the continuum of free
space modes.

The key feature of photonic nanowires is their broadband character: a
large beta factor is maintained over a wide spectral range, which can go
up to ∆λ > 100 nm as calculated for an infinite wire [57]. In addition
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these waveguides offer a very simple structure that is robust to fabrication
imperfections. Finally the broadband character of photonic wire means that
they are compatible with tuning mechanisms, possibly over a large range.
One of this tuning mechanism makes use of strain and will be extensively
discussed in chapter 3.

Another key feature of these structures is the far field emission control.
Indeed once the light is efficiently coupled to the wire we then need a way
to collect it. With proper engineering of the nanowire ends one can achieve
highly directive emission and a Gaussian beam profile. Two main strategies
have been pursued, based on a needle shaped and a trumpet shaped tip
[72, 37]. The needle shaped tip adiabatically expands the guided mode in
the background. This also brings the effective index close to one, which
suppresses the reflectivity of the top facet. For small taper angles (< a few
degree) one obtains a directive far-field emission with a Gaussian profile. In
the case of a trumpet shaped tip the wire diameter slowly increases in order
to adiabatically expand the guided mode inside the structure. The wire
then ends with a flat surface that is covered with an antireflection coating.
The trumpet shape has proven to be as efficient as the needle like but more
robust to manufacturing imperfections (there is a larger tolerance on the
taper angle). In all cases the structure stands on a gold-silica mirror to also
collect the photons that are emitted downwards.

The major drawback of dielectric waveguides is that they not provide
a significant acceleration of spontaneous emission. Indeed simulations have
shown that for a dipole perpendicular to the wire axis and for an optimal wire
diameter ΓWG = 0.9Γ0 is achieved. The above-mentioned mirror improves
the situation [58, 38] when located at a proper distance from the emitter in
order to exploit contructive interference from the reflected light. Under these
conditions, a Purcell factor Fp ' 1.5 has been measured [20].

1.2.3.3 Summary on waveguides

The SE control in waveguides is based on the inhibition of SE into the 3D
continuum of nonguided modes. This involves the engineering of the photonic
environment around the emitter. On one side unwanted emission channels
are suppressed, on the other a single-mode electromagnetic environment is
created around the emitter.

The main advantage of waveguides in comparison to microcavities is the
broad operation bandwidth. This is a crucial asset for the realization of
tunable sources of single photons, or for the realization of sources of entangled
photon pairs that exploit the radiative cascade of the QD biexciton.

Moreover, they can offer efficient coupling into photonic circuits or highly
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directive far-field emission, with a Gaussian angular profile.
On the other hand, this approach usually offers low Purcell factor, which

is an important tool in the realization of indistinguishable photon sources.

1.2.4 Conclusion
The first part of this chapter introduced the concepts used throughout the
whole thesis. We have seen (section 1.1) that QDs are excellent artificial
atoms and that there are many interesting excitonic states that can be pro-
duced and manipulated (section 1.1.3.1). We discussed in section 1.1.4 the
techniques used to excite the QDs: non resonant excitation (will be employed
in chapters 3 and 4) and resonant excitation (makes the core of chapter 2).
We have also explored the main methods for tuning the optical properties of
QDs in section 1.1.5. More precisely we focused on stress tuning (the focus
of chapter 3). Finally we have introduced the main decoherence mechanisms
in section 1.1.6.

In the second part of this chapter we have seen that photonic structures
can greatly benefit QDs-based emitters. More specifically we have introduced
the two main approaches to spontaneous emission control: photonic cavities
and waveguides.

In this thesis we will investigate two types of broadband photonic struc-
tures. In chapter 2 we investigate a new type of optical nanocavity based on
a nanopost design. We will demonstrate the first resonant excitation of a QD
embeded in such a structure. In chapter 3 we consider a tapered nanowire
waveguide (a photonic trumpet) that is equipped with on-chip electrodes.
These generate a force that bends the nanowire. The resulting strain field
is leveraged to tune the QD emssion wavelenght. Chapter 4 goes beyond
quantum photonics and uses the electrodes to excite the vibration modes
of the wire. In these experiments, changes in the QD emission wavelength
are used to detect the vibration. One exploits also here the broad operation
bandwidth of the nanowire.



Chapter 2

Resonant excitation of a QD in
a nanopost cavity

2.1 Introduction

We have seen in chapter 3 that both microcavities and waveguide structures
enable to efficiently collect the emission of an embedded QD. A microcavity
relies on the Purcell effect, which also enables an acceleration of the total
radiative rate, which in turn eases the emission of indistinguishable photons.
However, to reach a significant Purcell effect, microcavities typically feature
quality factors of a few 103. This translates into a narrow operation band-
width, which can be a limitation for some devices. For example, it limits the
spectral range over which an emitter can be tuned while preserving the emis-
sion brightness. In contrast, waveguides generally feature a much broader
operation bandwidth, but typically lack Purcell acceleration of spontaneous
emission. They are thus fully compatible with broadband emitter tuning, but
the emission of indistinguishable photons is challenging with these systems.

In this chapter we aim for a best-of-both-worlds approach and investigate
a photonic structure that offers a broadband Purcell acceleration of sponta-
neous emission. Our strategy relies on a nanocavity. Indeed, the Purcell
factor scales as Q/V , the ratio of the quality factor over the mode volume.
An ultrasmall V (approaching the diffraction limit) yields a significant Pur-
cell factor even for a modest Q of about a few tens. This modest Q is
desirable, as it directly translates into a broad operation bandwidth.

Specifically we investigate a nanopost cavity, a structure that was de-
signed in the frame of a collaboration between CEA and DTU (group of
Niels Gregersen). A first generation of devices was fabricated at CEA and
investigated under non-resonant QD excitation.

43
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The promising results of the first generation of the device stimulated
further theoretical investigation which provided a deeper understanding of
the complex photonic properties of the device, well explored in [84] and
discussed as well in this chapter. Moreover this encourages us to continue
investigations, with the prospect of using these devices for the generation of
indistinguishable single photons. For this, the natural next step consists of
an optical characterisation in resonant excitation. This is indeed a powerful
tool for a fine characterization of the emitter. In this chapter we present the
first resonant spectroscopy of a QD embedded in a nanopost cavity.

This chapter starts with a discussion of the design principles, briefly dis-
cussing the simpler model which led to the fabrication of the first (and cur-
rent) generation. It then expands to discuss the simulations which allowed
to gain a deeper insight of devices on the optical properties of the structure.
In section 2.3 the fabrication process is briefly discussed. Then in section 2.4
we show the measurement to obtain the lifetime of the transition. The core
of the chapter is section 2.5 which discusses the resonant excitation mea-
surements. The work done on resonant excitation has been performed in
University of Basel in the group of prof. Richard Warburton. This successful
collaboration has been possible thanks to the EU funded QUDOT-TECH
project.

2.2 Structure design
In this section we will discuss the design principles leading to the realization
of the nanopost nanocavity. The design and theoretical work is the result
of a prolific collaboration with the group of Niels Gregersen at Technical
University of Denmark (DTU).

If we remove the anti-reflection coating from the design of fig. 3.1 and
then cut the nanowire, we are left with a cylinder, resembling fig. 2.1a. This
structure is made of a GaAs cylinder over a SiO2-Au mirror. The presence of
the SiO2 here is necessary in order to avoid the coupling to surface plasmon
polaritons which would hamper the reflectivity of the guided mode (HE11)
at the bottom [58]. The modal reflectivity of the bottom mirror is 0.9. The
nanocavity’s top facet acts as a second mirror and, surprisingly, the modal
reflectivity appears to be larger than the reflectivity for a planar interface,
(n − 1)2/(n + 1)2 = 0.3, for the optimum diameter. In simple words, the
tightly confined mode HE11 has large k// components that help getting a
strong reflection at the GaAs/air interface. This device is thus a cavity with
the fundamental mode HE11 shown in fig. 2.1b for the resonant wavelength
λc. We can see the presence of three anti-nodes, and the emitters are here
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(a) (b)

Figure 2.1: Nanopost nanocavity. (a) shows a schematics of the nanocav-
ity. (b) shows a simulation of the in plane electric field (absolute value)
associated with the resonant cavity mode. This mode features 3 electric field
antinodes. (b) is reproduced from [84].

located at the first one.
The enhancement of spontaneous emission is measured by the Purcell

factor:
FP ≡ ΓC

Γ0
, (2.1)

where ΓC is the rate of spontaneous emission in the cavity mode and Γ0 is
the rate of spontaneous emission in the bulk.

Following the derivation given in [96] a first way to study and gain insight
on this system is by using a simplified single mode model (SMM) followed
by 1D Purcell factor calculation. The nanocavity is treated like an infi-
nite waveguide, the effective refractive index of the supported mode can be
computed from the refractive index of the material and the diameter of the
waveguide. Then the infinite cylinder is cut and both the top and bottom
reflectivity can be obtained by electrostatic FEM simulations. Finally the
system can be studied with a Fabry-Pérot 1D model, which gives:

FP ≡ ΓC

Γ0
= Re

[
(1 + |rt|)(1 − |rb|)

1 − |rtrb|

]
ΓHE11

Γ0
, (2.2)

where ΓHE11 is the rate of emission into HE11 guided mode. This equation
shows that the Purcell factor can be engineered acting on reflectivity of the
top and bottom mirrors as well as ΓHE11 . rb should be as high as possible
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(a) (b)

(c)

Figure 2.2: Infinite nanowire and reflectivity at the two wire ends.
(a) is a plot of the power emitted in various channels in the infinite nanowire
as a function of the diameter, D. In (b) we plot the reflection and trans-
mission of the fundamental mode at the top interface as a function of the
diameter, D. (c) shows the (top) modal reflection and (bottom) reflection
into radiation mode of the fundamental mode as a function of both the di-
ameter and the silica layer thickness (tSiO2). Each plot shows a sketch of the
studied emission channels. Reproduced from [84].

in order to limit the radiative losses. For this reason a thin layer of SiO2 is
necessary as seen in fig. 2.2c. We can see also that rb doesn’t show a strong
dependence on the diameter. However rt depends on the mismatch between
the effective index of HE11 and the refractive index of the backgroud, and
thus on the cavity diameter. In general the larger the diameter the larger rt,
as seen in fig. 2.2b. The last factor ΓHE11 , the spontaneous emission into the
guided mode will favor a more compact mode and thus a smaller diameter as
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seen in fig. 2.2a for an infinite long nanowire. The interplay between these
two effects gives an optimum for a diameter of D = 240nm. For this diameter
and a SiO2 thickness of 7 nm, which corresponds to the parameters of the
fabricated device, we find a Purcell factor of ≈ 6.5 and a collection efficiency
of ≈ 0.4.

Thus far we have discussed the Purcell factor but not on the collection
efficiency ε. In the design of SPS the Purcell factor is usually related to the
fraction of the light that is emitted into the cavity mode [63], commonly
called β:

β ≡ ΓC

ΓC + Γrad

= Fp

Fp+ Γrad

Γ0

, (2.3)

where and Γrad is the emission in (usually unwanted) radiative modes. The
claim is that efficiency is proportional to the beta factor:

ε = ΓCβ, (2.4)

where ΓC is the collection efficiency of cavity mode emission by our set-up,
that is governed by the numerical aperture (NA) of the first objective.

Thus for low Q cavities one way to maximize the collection efficiency is
to maximize the Purcell factor. This is a well established paradigm [198] for
the design of SPS as we can see in microcavity pillars [198, 196, 165, 44] and
also on open cavities approaches [179]. However for very high Q cavities,
the collection efficiency can be affected by imperfections (e.g. scattering by
sidewall roughness) ([12]). Equation (2.4) is usually a good approximation to
make when the light emitted into radiation modes is lost. This is however not
always the case, such as in circular Bragg cavity (also known as ”bullseye”) for
which high collection efficiency is obtained in a wavelength range significantly
broader (≈ 100nm) than the typical resonance linewidth (≈ 10nm) [203, 114,
196].

The work done in [97] has shown that even for nanocavities the collection
efficiency is approximately constant on a larger range for detuning bigger than
the resonance width. The SMM doesn’t accurately describe the nanocavity
mode, due to the coupling of HE11 to weakly guided or non-guided modes
upon reflection on the facets. This has required further analysis performed
using a fourier modal method (FMM) Fourier Modal Method [198], in order
to gain physical insight into the role of non-guided and radiation modes.

A thoroughly analysis has been performed in [84]. This analysis shows a
quite different picture for what concerns the efficiency, which is much higher
than the prediction of the SMM thanks to additional transmission channels
to the far-field, whose beneficial contributions are dominating over the reso-
nant cavity effect, as shown in fig. 2.3b. The far-field emission results mainly
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Figure 2.3: Simulation of the Purcell factor and collection efficiency.
Simulations of the Purcell factor are shown on the left while the far field
collection efficiency (ΓC) is shown on the right. The simulations take in
account three distinct scenarii: QD at the 2nd antinode (a), at the 1st
antinode (b) and at any antinode using the SMM (c). For each scenario a
map is constructed as a function of the diameter, D, and the thickness of
silica layer tSiO2 . The device studied in this chapter has been designed using
the SMM, it features thus a 7 nm SiO2 layer, has a diameter of 230 nm and
is placed at the first antinode. Reproduced from [84].

from 3 channels, associated with the scattering of HE11 at the wire ends: 1)
direct transmission by the top facet, 2) backscattering from the top facet and
reflection on the gold-silica mirror and 3) scattering at the connection with
the mirror. The far-field angular profile depends on the interference between
these channels. To understand the physics behind one can look at the far
field emission in fig. 2.4. Figure 2.4b shows the far field emission for the
fundamental mode, while fig. 2.4c shows the far field emission for the scat-
tered radiation. In fig. 2.4a we see the phase between the fundamental mode
and the scattered radiation, for both TE and TM modes; β =

√
nk2

0 − k2
⊥

is the propagation constant and k0 = 2π
λ

is the free space wavenumber. The
ratio β

k0
goes from 1 (light directed vertically upwards) to 0 (light more and

more tilted). For higher values of β
k0

there is constructive interference be-
tween the direct transmission and the background radiation. For the light
that propagates horizontally, the phase difference is closer to π, and thus
there is destructive interference. The net remarkable result is that the in-
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Figure 2.4: Far field emission. (a) phase difference between the direct
transmission of the fundamental mode and the background continuum for
TE and TM modes as a function of the propagation constant, β

K0
. (b)

The far-field of the fundamental mode. (c) The far-field of the background
continuum. (d) The total far-field. The white dotted line indicates NA =
0.75. The scale of (b) (c) is different from (d). Reproduced from [84].

terference between the fundamental mode and the radiation modes focuses
the far-field, as can be seen in fig. 2.4d. Moreover, the contribution from
the scattered light, decouples the efficiency from the Purcell factor, which
remains high over a large detuning (see fig. 2.3b) so that eq. (2.4) is not valid
anymore. Finally contributions from radiative and evanescent modes influ-
ence also the Purcell factor. In general, the effect of these modes on the two
antinodes, shows both positive and negative deviations across the parameter
space (fig. 2.3a) compared to the SMM.

If we want to maximise the Purcell factor we will place the emitter at
the second antinode and with a SiO2 thickness of ' 12 nm we would achieve
a Purcell factor of 7.75 with a diameter of ' 250 nm. Incidentally, for this
particular case, the collection efficiency is also improved. On the other end
if the goal is to maximise the emission efficiency we want to reduce the
SiO2 thickness, allowing to achieve ε = 0.68 for no silica and a diameter
of ' 230 nm. Note that the second antinode offers in general the better
performances both for the Purcell factor and far field emission efficiency.
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To conclude, the traditional Fabry-Pérot SMM, which typically provides
an excellent description of the physics for cavity-based SPS significantly un-
derestimates the achievable performance of the nanopost structure. Moreover
since the efficiency is now decoupled from the Purcell factor future designs
can achieve better performances for both of them, even if simulations have
shown that the maximum of values for Purcell factor and collection efficiency
are obtained for very different sets of parameters.

2.3 Fabricated device

Figure 2.5: Planar heterostructure grown by MBE.

The section describes the fabrication process of nanowire nanocavities
for broadband Purcell enhancement. The growth was done by Yann Genuist
(CNRS/Institut Néel), and the clean room processing was performed by Sap-
tarshi Kotal and Alberto Artioli.

The process begins with the growth of planar heterostructures on a semi-
insulating (001) GaAs wafer using molecular beam epitaxy. The planar sam-
ple consists of a layer of self-assembled InAs QDs embedded in GaAs, resting
on a sacrificial layer of Al0.8Ga0.2As (see fig. 2.5). The substrate temperature
is controlled, and arsenic-rich environment is maintained during the growth
to prevent surface roughening.

After the epitaxial growth, the next step is to deposit the high reflectivity
mirror, consisting of a Au and dielectric SiO2 layers. Before deposition, the
epitaxial sample undergoes thorough cleaning and treatment to ensure high-
quality mirror deposition. A 7nm SiO2 layer is deposited using electron-
beam evaporation, followed by a 250nm Au layer using electron-beam metal
evaporation, with a 3nm Ti layer for adherence.

The flip-chip process involves bonding the planar sample mirror-side down
on a new GaAs substrate using SU-8 2005 epoxy-based photoresist. The
growth wafer is partially removed by mechanical polishing and then fully
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removed using a H2O2 and C6H8O7 solution. This exposes the AlGaAs sac-
rificial layer, which is removed by concentrated HF (50%).

Figure 2.6: Unit cell layout. This pattern is repeated in both directions in
order to cover the entire surface and then used to generate the lithography
mask for the nanocavity sample. On the sample, a cell is indexed using a
letter and a number visible in the bottom left. Within the cell we find 40 nano
cavities arranged in a 10 × 4 matrix. The nano cavities nominal diameter
ranges from 500 nm (bottom left) to 110 nm (top right), in steps of 10 nm
moving left to right. The arrows are used for easy optical alignment and to
better navigate across the sample.

To define nanostructures from a planar heterostructure using a top-down
approach, a mask is defined to encompass the entire sample design layout.
The mask is created from a pattern of unit cells shown in fig. 2.6.

A positive electron-beam resist is spin coated on the top of the sample.
Electron-beam lithography is utilized to precisely pattern the mask on the
sample’s resist. Once developed the exposed resist is removed and a layer of
nickel (Ni) is deposited, creating a protective hard mask for selective etching.
The residual resist is removed, leaving just the Ni; at this point reactive ion
etching (using SiCl4, BCl3 and Ar as reactants) is employed to define the
desired nanostructures. Laser interferometry is utilized to determine the
etch endpoint accurately. Finally, a solution of 10% HNO3 will remove the
Ni mask residues.

The fabrication process is completed, in fig. 2.7 we can see SEM images
of the nanocavity sample after the fabrication process.
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Figure 2.7: SEM images of the fabricated nanocavity sample. (Left)
Top view of the unit cell schematized in fig. 2.6. (Right) close up image of
a fabricated nanocavity (tilted view).

2.4 Preliminary characterization under non
resonant excitation

In this section we perform a preliminary analysis under non resonant excita-
tion. The objective is to identify a line that is suitable for resonant excitation
studies. We search for a structure, and particularly for a QD emission line
with the following characteristics: i) emission from a trion transition, ii)
bright emission, iii) shows Purcell enhancement, iv) relatively isolated.

Our goal is to find a ”line” well isolated and suitable to be studied in
resonant excitation. We focus on a trion transition because it features a
simpler level structure as compared to a neutral exciton (no dark states, no
fine structure splitting).

The lifetime is obtained using the setup in fig. 2.8, the laser excitation
pulse is at 835 nm wit a power P = 10%Psat. In fig. 2.9b is shown a typical
lifetime histogram. The lifetime is obtained via a fit with the IRF curve in
fig. 2.9a convoluted to an exponential decay. This gives a lifetime of 0.34
ns. The lifetime of the QDs in bulk is obtained from lifetime measurements
on the square espace of 1.65 ns [96]. From these two measurements, using
eq. (2.1) we obtain a Purcell factor of 4.9. This transition was choosen due
to its spectral isolation and brightness both in non-resonant and resonant
excitation. The measurement was done at Néel Institute with Maxime Gaig-
nard.
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Figure 2.8: Setup for nonresonant characterization. The setup is easily
re-configurable to perform lifetime measurements, non resonant, resonant and
phonon assisted excitation, autocorrelations and HOM interferometry. Here
it is used to perform a lifetime measurements. The excitation part consists
of a pulsed Ti-sapphire laser and a laser diode (not used). The laser passes
through a LP and a PBS. After that is sent and focused on to the sample via
an objective. On the way back the laser excitation is removed and half of the
signal passes through the PBS and goes through a monochromator. The laser
cross polarization rejection is useful to prevent too much power to enter the
monochromator. The light is then sent to a BS and finally to the APDs. The
measure is a start/stop measure, the start being the trigger of the pulsed
laser. The APDs are in a Hambury Brown and Twiss (HBT) configuration,
but we’re just interested in counts; rather than remove (and disalign) the BS
two start/stop measurements are done by the time tagger and subsequently
summed.

2.5 Resonant excitation
Resonance fluorescence is an excitation technique to study a TLS; it consists
in using a laser which resonates with the optical transition. This allows in-
teracting directly with a specific excitonic transition. Here ”directly” is the
key word: in non resonant excitation electron-hole pairs are created into the
wetting layer and randomly fall into the QD potential where they recombine
at a later time. In pulsed operation the resonant pumping allows to elim-
inate the time jitter given by the migration of the electron-hole pair; this
is essential for achieving a good indistinguishability. Furthermore, this is a
”clean” excitation scheme, which only creates electron-hole pairs in the QD.
In contrast, non resonant excitation yields spurious e-h pairs around the QD,
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Figure 2.9: Photo-luminescence lifetime. (a) Impulse response function
(IRF) of the setup, measured with a pulsed laser. (b) Lifetime histogram,
the fit is a convolution between the IRF and an exponential decay.

which often degrade its spectral linewidth.
We focus here on cw resonant spectroscopy, which allows for a fine char-

acterization of the QD spectral properties. In order to be able to perform
such experiments we need a tunable and narrow bandwidth laser, where nar-
rowband means much smaller than the linewidth of the transition we want
to study (we used a laser with a 300 kHz linewidth). The great challenge is
that the laser used for excitation needs to be filtered out. Since it has (by
definition) the same wavelength than that of the excitonic transition, it can’t
be filtered out spectrally. Instead we can use polarization ([100]). The ex-
citation laser is thus linearly polarized and removed from the collected light
with a polarization filter. One major problem is that there is no guarantee
that the reflected laser light will still be linearly polarized. This depends on
the surface of the sample and for the nanocavity, on the effect of the nanopil-
lars on the scattered laser. Even if the surface doesn’t substantially alter the
polarization, the rejection is still a technically difficult step, requiring good
quality optics and precise alignment.

As seen in section 1.1.3.1 the emission from a transition in a QD is also
polarized. Let’s suppose that we want to do RF on an exciton, due to the
FSS the two exciton states have a different energy. To excite one transi-
tion I will preferably align on the corresponding dipole direction, in order
to maximize the coupling, however also the emission will be in the dipole
direction and thus will be filtered out. A solution is to excite with a laser
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polarisation making a 45◦ angle with respect to the exciton dipole and to
align the polarization rejection at 90◦ with respect to the exciton dipole. In
this way the laser can be properly rejected and light collected at the expense
of a halved collection efficiency. As seen in section 1.1.3.1 the light from the
trion is circularly polarized, the excitation is then independent of the dipole
direction, however, still, half of the light will be lost in the process of laser
rejection by cross polarization. The trion allows us to not bother with the
FSS and so a suitable trion line will be employed in the rest of section.

RF is an essential tool for the employment of photon source in QI. In
this section, I will discuss the development of this technique made during
my PhD. The setup used is discussed in section 2.5.2. In section 2.5.3, I will
describe the RF scans which provides information about the linewidth, in
particular Gaussian noise and homogeneous broadening. In section 2.5.4, I
will discuss second order correlation measurements and especially blinking of
the QD source, and ways to improve it.

2.5.1 Theory of resonant excitation for a two level emit-
ter

In order to gain insight into the performed experiments we would like to
construct a theoretical model for our system. The interaction between light
and matter has been extensively studied, we are interested in the case of a
coherent beam of light exciting a QD close a transition, such as the system
can be studied as a TLS. A brief treatment will be given following [74].

Atom-field Hamiltonian. The Hamiltonian of the system is composed
by three parts: the atom, the field and the interaction term:

H = 1
2 h̄ωgeσ̂z +h̄

∑
k,s

ωk

(
â†

k,sâk,s + 1
2

)
−d̂ · Ê (2.5)

= Hatom +Hfield +Hint (2.6)

The atom is modelled as a TLS constituted by a ground state |g〉 and an
excited state |e〉. These two levels are separated by an energy h̄ωge. We have
introduced the Pauli operator σ̂z = |e〉 〈e| − |g〉 〈g|.

The field is described on a basis of propagating plane waves with a prop-
agation constant k, an angular frequency ωk and a transverse polarization
ek,s identified by the index s = 1 or 2. The field Hamiltonian is the sum of
independent harmonic oscillators.

Finally, the light-matter interaction is treated in the dipole approxima-
tion. Ê = ek,sEzpf (âk,s + â†

k,s) is the electric field operator at the atom lo-
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cation (set at r = 0). d̂ is the dipole operator associated with the |g〉 ↔ |e〉
transition. In general, d̂ can be written as:

d̂ = degσ̂+ + deg
∗σ̂− (2.7)

with the lowering and raising operators:

σ̂− ≡ |g〉 〈e| (2.8)
σ̂+ = σ̂†

− = |e〉 〈g| (2.9)

deg is the strength of this transition. For a linear optical dipole deg = deged =
deg

∗.

Semiclassical model. In the following we consider an intense laser field
that impinges on the atom. We describe it as a single mode (k, ek,s) of
angular frequency ωf that is placed in a coherent state |α(t)〉 = e−iωf t |α(0)〉,
with α(0) = |α|e−iφ. In the following we treat this light field as a classical
field: all field operators are replaced by their expectation value. In particular
the classical electrical field reads:

E(t) = ek,sE0 cos(ωf t+ φ), (2.10)

with the amplitude E0 = 2|α|Ezpf . This procedure leads to the Hamiltonian:

Hatom + h̄ωf |α|2 − h̄ΩR(σ̂+ + σ̂−)(ei(ωf t+φ) + e−i(ωf t+φ)) (2.11)

and we have introduced the Rabi angular frequency:

h̄ΩR = E0deg(ek,s.ed) (2.12)

The first term in eq. (2.11) remains unaffected, the second term gives an
overall constant that is not important for the dynamics of the system and
can be ignored. The third term, represents the interaction of the field with
the atom and is now expressed entirely in terms of operators (σ̂+ and σ̂−)
acting on the atom.

Now that the field part is traced out, we focus on the TLS. The Hamil-
tonian in eq. (2.11) can be written in matrix form:

HTLS = h̄

2

 −ωge −ΩR

(
ei
(

ωf t+φ
)

+ e−i
(

ωf t+φ
))

−ΩR

(
ei
(

ωf t+φ
)

+ e−i
(

ωf t+φ
))

ωge

 .
(2.13)
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In order to obtain the evolution of the system we can use the Liouville equa-
tion:

ρ̇ = − i

h̄
[HTLS, ρ], (2.14)

where ρ is the density matrix given in the {|g〉 , |e〉} basis by:

ρ =
[
ρgg ρge

ρeg ρee

]
. (2.15)

Rotating wave approximation. The Hamiltonian in eq. (2.13) has, how-
ever, an explicit time dependence which prevents a straightforward analytical
solution. In order to eliminate this time dependence we introduce the rotat-
ing frame of light. The transformation into the rotating frame corresponds
to the unitary transformation represented by the operator:

U(t) = exp
[
iωf t

2 σ̂z

]
=
e−

iωf t

2 0
0 e

iωf t

2

 . (2.16)

Applying the transformation we obtain:

HTLS −→H̃TLS = U(t)HTLSU
†(t) + ih̄

d

dt
(U)U † (2.17)

ρ −→ρ̃ = U(t)ρU †(t) (2.18)

where, expanding the first term, we obtain:

U(t)HTLSU
†(t) = h̄

2

 −ωge −ΩR

(
eiφ + e−i

(
2ωf t+φ

))
ΩR

(
ei
(

2ωf t+φ
)

+ e−iφ

)
ωge

 .
(2.19)

We see that the unitary transformation U(t) eliminates the terms oscillating
at ωf and introduces ”fast” oscillating terms at 2ωf . Here we are interested in
the resonant excitation, where ωf ≈ ωge. In this condition and with ΩR � ωf

we can neglect the fast oscillating term. This is known as secular approxi-
mation or rotating wave approximation. The transformed Hamiltonian now
reads:

H̃TLS = h̄

2

[
ωf − ωge −ΩRe

iφ

−ΩRe
−iφ −ωf + ωge

]
= h̄

2

[
−δ −ΩRe

iφ

−ΩRe
−iφ δ

]
, (2.20)

where we have introduced the detuning δ ≡ ωge − ωf . Now we can write a
new Liouville equation for the transformed Hamiltonian and density matrix:

˙̃ρ = − i

h̄
[H̃TLS, ρ̃]. (2.21)
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Introduction of the Lindblad master equation. This model represents
the idealized case of a closed system, in which the dynamics of the TLS is
completely determined by the incoming field strength and the detuning from
the TLS transition. In reality there are other processes which contribute to
the evolution of the TLS, such as, for example, spontaneous emission and
pure dephasing. These processes arise from the interaction of the TLS with
the surrounding. In order to take them into account one has to move to the
theory of open quantum systems.

The theory of open quantum systems considers the evolution of the system
as well as the environment and the interaction between the two. In order
to make the problem treatable one can try to trace out the evolution of the
environment and retain only the effects on the system part. This usually
requires some assumptions on the environment and the result is a so-called
master equation. Depending on the assumptions that are made one can
obtain different master equations. In our case, the approximations are:

• Separability: it requires that the state of the environment does not
significantly change as a result of the interaction with the system.
Moreover the system and the environment need to remain separable
throughout the evolution. These assumptions are justified if the inter-
action is weak and if the environment is much larger than the system.
In summary:

ρtot(t) ≈ ρ(t) ⊗ ρenv. (2.22)

• Markov approximation: the time-scale of decay for the environment
(τenv) is much shorter than the smallest time-scale of the system dy-
namics (τsys). This approximation is often deemed a ”short-memory
environment” as it requires that environmental correlation functions
decay on a time-scale fast compared to those of the system.

• Secular approximation: stipulates that elements in the master equa-
tion corresponding to transition frequencies satisfy |ωab − ωcd| � 1

τsys
,

i.e., all fast-rotating terms in the interaction picture can be neglected.

This leads to the Lindblad master equation in the rotating frame of light:

˙̃ρ = − i

h̄
[H̃TLS, ρ̃] + L̂(ρ̃), (2.23)

where L̂ is the Lindbladian super operator, defined as:

L̂(ρ) =
∑

n

(LnρL
†
n − 1

2L
†
nLnρ− 1

2ρL
†
nLn) (2.24)
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and the Ln are Lindblad jump operators. Through these operators one can
describe interaction with the environment. For example, for spontaneous
emission the jump operator reads:

Lse =
√

Γradσ̂− (2.25)

where Γrad is the rate of spontaneous emission.
Another effect that can be captured by the master equation formalism is

the pure dephasing. In this case the associated operator is:

Lpd =
√
γ∗

2 σ̂z (2.26)

where γ∗ is the rate of pure dephasing.
We can rewrite the eq. (2.23) in matrix form (assuming φ = 0 for sim-

plicity):

d

dt

[
ρgg ρge

ρeg ρee

]
= − i

h̄

[ ΩRh̄(−ρeg+ρge)
2 − h̄(2∆ρge+ΩRρee−ΩRρgg)

2
− h̄(−2∆ρeg−ΩRρee+ΩRρgg)

2
ΩRh̄(ρeg−ρge)

2

]

+
[

Γradρee
ρge(−Γrad−2γ∗)

2
ρeg(−Γrad−2γ∗)

2 −Γradρee

]
. (2.27)

Since ρ is an Hermitian matrix ρeg = ρ∗
ge; moreover ρee = 1 − ρgg, so the

evolution of the system consists of 2 coupled first-order differential equations.
It is useful to define the total dephasing rate:

Γ = Γrad

2 + γ∗. (2.28)

Alternatively this relation can be rewritten as:

1
T2

= 1
2T1

+ 1
T ∗

2
, (2.29)

where T2 = 1/Γ is the total dephasing time, T1 = 1/Γrad is the radiative
decay time and T ∗

2 = 1/γ∗ is the pure dephasing time.

Stationary state. When the system is in the stationary state, the master
equation reads:

˙̃ρ = 0 = − i

h̄
[H̃TLS, ρ̃] + L̂(ρ̃) (2.30)
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The intensity I of the light emission by the TLS is proportional to the pop-
ulation of the excited state ρee. It is given by:

ρee = 1
2

Ω2
R

ΓΓrad

δ2

Γ2 + 1 + Ω2
R

ΓΓrad

. (2.31)

This equation is a Lorentzian function of the detuning δ. At resonance (δ = 0)
the intensity of the emission is given by:

I ∝ 1
2

P

P + P0
(2.32)

where we have defined the two quantities (which have the dimensions of
power):

P ≡ h̄Ω2
R P0 ≡ h̄ΓΓrad (2.33)

Moreover, the full width at half maximum (FWHM) (∆E) is given by

∆E = 2h̄
T2

√
1 + P

P0
(2.34)

These two equations eq. (2.32) and eq. (2.34) can be used to calculate T2.

2.5.2 Resonant excitation setup
This section describes the resonant excitation setup at Basel University. It
uses a cross-plarization scheme to reject stray light from the excitation laser.

2.5.2.1 Microscope head and laser rejection

The experimental setup used for resonant excitation is shown in Figure 2.10.
The sample is mounted on a sample holder, which provides a lens for focusing
at the top and space for piezoelectric actuators. The sample holder is then
attached to a structure which is inserted into a cylinder. The cylinder is
first vacuumed for 1 day and then filled with helium at a pressure of 5mbar.
The cylinder is then inserted into a liquid Helium Dewar. The helium in the
cylinder transfers heat from the sample to the liquid helium bath.

On top of the Dewar there is the optical setup for the resonant excitation
and laser rejection. The laser passes through a quarter wave plate (QWP),
then it enters the cylinder and it is finally focused on the sample. Part of
the laser light is reflected, in addition to the light emitted by the QD in the
sample. Going back this light encounters again the QWP and the PBS. The
QWP is used to compensate the change in polarization resulting from the
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Figure 2.10: Resonant excitation setup. The nanocavity sample is lo-
cated on the bottom of a transport Dewar, inside a low pressure He filled
cylinder. On top of the cylinder is mounted a microscope for resonant ex-
citation with laser rejection via cross polarization. The sample is mounted
on piezoelectric actuators to control its position with respect to the pump
beam. The HWP and QWP are mounted on rotating stages. The resonant laser
RE enters from the left (a non resonant laser NRE can also be added via a
fiber beam splitter FBS), is reflected downwards by a PBS, rotated by the
QWP and focused on the sample by the lens L. The scattered laser, together
with the sample emission exits the cylinder and is rotated again by the QWP.
The angle of the QWP is adjusted in order to compensate the change in polar-
ization resulting from the scattering from the sample. This leaves just the
light emitted by the sample to pass through the PBS and being collected. In
reality the PBS is not a perfect component and there is leakage of light of
the unintended polarization passing through or being reflected. The addition
of the HWP ensures that the input polarization is in the right direction, pre-
venting some of this leakage. The second PBS further improves on the laser
rejection, while also being used during alignment where it reflects the light
on the camera CAM.
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scattering from the sample. In this way the laser reflection can be filtered
out by the PBS, while part of the emission of the QD pass straight through.

Ideally one QWP and a PBS would suffice to build a laser rejection
scheme. In practice though, the PBS lets some light with unwanted polar-
ization passing through or being reflected. In order to reduce these ”leaks”
as much as possible, the input laser passes through a HWP which fixes the
axis of polarization before being reflected by the first PBS. Moreover another
PBS is added above the first one, which allows further rejection of laser light.
In addition, to improve laser rejection, the second PBS is used during align-
ment: the QWP angle is changed by π

4 allowing the light to pass through the
first PBS and be then reflected into a camera.

The laser rejection provided by this setup has been measured on 4 dif-
ferent points on the sample surface. For a given input power, the HWP and
QWP are adjusted in order to first maximize the transmission power to the
outer coupler (PMAX) and then to extinct it as much as possible (PMIN). The
ratio PMIN/PMAX gives the extinction rate. The four different points on the
sample surface are: a random point on the gold mirror, a 230 −nm-diameter
nanocavity, a 500 − nm-diameter nanocavity and the square mesa structure.
For the first three cases laser rejection is > 106, while being ≈ 106 for the
mesastructure. These values are very promising and not expected for a non
planar sample, furthermore they compare well with state-of-the-art laser re-
jection [138, 100].

... From the sample

Time
Tagger

50/50

SNSPD

SNSPD

Figure 2.11: Light collection stage. Light from the sample is filtered in
free space by a grating and sent to a fiber BS and to two SNSPDs. Note that
there is a polarization controlled stage before each of the SNSPDs. Finally
the time tagger can be configured in different ways, acting as a correlator for
g(2) measurements (section 2.5.4), or to perform a linescan (section 2.5.3).

Since the excitation uses a resonant laser mixed with a non resonant one
(as explained in section 2.5.3), the collected signal contains a small amount of
emission from other QDs, not just the one being resonant with the laser. For
that reason the light collected by the microscope is sent to a filter, shown in
fig. 2.11, which has a free spectral range (FSR) of around 50GHz. The light is
then splitted in half and sent to the supercondactive nanowire single photon
detectors (SNSPDs). A time tagger collects the electrical pulses from the
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SNSPD and can be configured to perform g(2) measurements (section 2.5.4),
or to perform a linescan (section 2.5.3).

2.5.2.2 Laser stabilization

IN

OUT

4 2 PBS
CV

AOM PH

PD

L1CI L2
CO

M

(a) Single pass
IN

OUT
4 4PBS

AOM

M

L1

CI

L2

PH
CV

CO

(b) Double pass

Figure 2.12: AOM based laser stabilization systems. CI and CO are the
input and output fiber couplers, L1 and L2 focus the laser into the AOM. The
AOM is aligned in order to extract the first order scattering, the remaining
orders are filtered by the pinhole (PH). The input CV controls the contrast of
the diffraction grating, and thus the amount of light in the first order. In
the single pass configuration (a) the light passes just once into the AOM.
Meanwhile in the double pass configuration (b) the light is reflected back into
the AOM by the mirror M. The double passage on the λ

4 plate rotates the
light by π

2 in order to it to pass through the PBS. The double passage allows
for a better rejection of the unwanted diffracted orders, which is critical for
low power control.

The lasers used in the experiments are a TOPTICA tunable laser for the
resonant excitation, and a non tunable laser at 830 nm for the non resonant
excitation. In the beginning of our measurement campaign we realized that
the power reaching the sample was drifting at a considerable level. The
main reason was the laser polarization drifts, since free space light passes
through a linear polarizer (LP) before being coupled to a fiber. Moreover,
light polarization in fibers is quite sensitive to strain so every time a small
change was made to the optics, the power sent to the sample was changed.
For these reasons we used a stabilization system based on an acoustic optical
modulator (AOM).

An AOM is a device in which a pressure wave is applied to a crystal
creating differences in the refractive index through the crystal itself. For a
standing wave we have a grating with a contrast dependent on the pressure
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Figure 2.13: Schematics of the laser stabilization system. The Laser
passes through the AOM system (see fig. 2.12), through the fiber BS and is
collected on one end. The other branch of the BS is used for the feedback
loop. The laser signal is collected by a photodiode, the current signal is
amplified and fed into the process variable (PV) port of a PID system. The
PID system compares the PV input with the provided set point (SP) in order
to generate the proper control variable (CV) output to control the AOM. The
inputs of the system are the DAC voltage and the amplification factor which
together allow to cover all the output power range of the AOM system. The
output is the power measured by the photodiode.

wave amplitude. The laser is thus diffracted by the grating and we collect
the first order refraction. The amount of power diffracted into the first order
depends on the contrast of the grating. In fig. 2.12 we can see two realizations
of such a circuit, both of them used for our measurements. In fig. 2.12a we
see the simpler configuration. We note that the light enters the AOM with
a defined polarization, since the response is polarization dependent. When
it comes to fine tuning of the power, it is very important to be able to filter
out light diffracted in the unneeded orders, so the pinhole aperture is crucial,
as well as the distance from the pinhole to the collimating lens L2. In the
circuit in fig. 2.12b the light makes a double passage on the AOM. In order
to extract the light on a different branch than the input one, the light is
rotated by π

2 and a PBS is used. The advantage of a double pass circuit is a
greater range of output powers attainable and a better rejection of unwanted
diffracted orders compared with similar sized single pass. This comes at the
cost of a more complex circuit, harder to align.

We want the AOM system of fig. 2.12 to stabilize the laser, and we do
this with a feedback loop, as seen in fig. 2.13. The output of the AOM
system is measured by a photodiode and then amplified; the electrical signal
is then sent on a proportional integral derivative (PID) controller. The PID
compares this signal with a provided set point in order to generate the proper
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driving signal to control the AOM circuit. The laser output power depends
thus on the set point defined by the DAC and on the amplification factor of
the amplifier.

2.5.3 Line scans

Figure 2.14: Resonant excitation scans for different RE power. The
non-resonant laser power is fixed at 160nW (2%Psat). The experimental data
are fitted using a Voigt function. In order to estimate the quality of the fit
at resonance and around the side wings, the data and the fit are shown in
linear scale (top row) and in logarithmic scale (bottom row).

In order to study the behavior of the TLS we spectrally sweep the tunable
laser over the QD resonance. According to eq. (2.31) a Lorentzian function
is expected expected in the case of an homogeneously-broadened emitter.
The measurements are shown in fig. 2.14. As we can see the curve is not
a Lorentzian but it is actually a Voigt function (V (x;σ, γ)), which is the
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convolution between a Lorentzian and a Gaussian:

V (x;σ, γ) ≡
∫ ∞

−∞
G(x′;σ)L(x− x′; γ) dx′ (2.35)

G(x;σ) ≡ e−x2/(2σ2)

σ
√

2π
L(x; γ) ≡ γ

π(x2 + γ2) . (2.36)

Figure 2.15: Emission intensity saturation curve. Evolution of the
emission intensity as resonance as a function of the RE power. The curve
is fitted using eq. (2.32) in order to get P0 = 9.0 nW. The non-resonant
excitation laser is kept at 160 nW. The data points between 5 to 10 nW were
not correctly acquired due to an error in the acquisition script.

Spectral wandering. We attribute the Gaussian component to spectral
wandering which arises from defects, impurities, and trapped charges present
in the proximity of the QD, as seen in the study conducted by [17, 89]. The
influence of these perturbations depends on their time scale compared to the
radiative time of the emitter. For ”slow modulation” the spectral wandering
mirrors the statistical spreading of the perturbations which is here taken as
Gaussian noise, and thus gives rise to a Gaussian broadening. Conversely,
within the ”fast modulation” domain, the perturbations act on the timescale
of the radiative emission or faster. These do not affect the energy of the
transition since they average to 0 over the transition time, but perturb the
evolution of the excited state, introducing what is called as pure dephasing.
The effect of fast modulation (pure dephasing) is taken into account in the
evolution of the TLS via a Lindblad operator (eq. (2.26)) in the master
equation. This results into a Lorentzian broadening.
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Homogeneously-broadened
TLS

Figure 2.16: Emission linewidth. The linewidth of emission as a function
of the RE power. The linewidth features a Lorentzian contribution from a
TLS (which comprises the radiative decay, the pure dephasing and power
broadening) and a Gaussian spectral wandering. The value for P0 comes
from the fit in fig. 2.15. From this measurement one can deduce the time T2
using eq. (2.34).

The scans in fig. 2.14 are thus fitted with a Voigt function from which
we can recover the Gaussian and Lorentzian parts. The Lorentzian part is
attributed to the natural linewidth in collaboration with the pure dephasing,
while the Gaussian contribution comes from slower noise. Supposing the
same Gaussian noise for the different linewidth scans and fitting with a Voigt
function, we obtain a Gaussian noise with a FWHM of 2.08 ± 0.03 GHz.

Performing several linescans at different laser powers we can obtain a
saturation curve such as in fig. 2.15, which can be fitted using eq. (2.32) to get
P0. Then from the same data set we can get the Lorentzian part of FWHM
(fig. 2.16) from which, via eq. (2.34) we can obtain the time T2 = 360 ± 5 ps.
The time T2 gives the homogeneous linewidth of the transition, since T1 is
known from lifetime measurements, we can get T ∗

2 = 740 ps using eq. (2.29).
The homogeneous broadening reduces the T2 below the radiative limit, which
is 2T1 ≈ 680 ps.
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Figure 2.17: Resonant excitation scans for different non resonant
powers. Scans over the QD resonance for different values of non resonant
power. Increasing the non-resonant power causes a great enhancement of the
emission intensity. The resonant laser power is fixed at 5nW (55%Psat). The
experimental data are fitted using a Voigt function. The data and the fit are
shown in linear scale (top row) and in logarithmic scale (bottom row).

Noise reduction. In order to reduce the spectral wandering noise, we have
tried to add a non-resonant laser, as seen in fig. 2.17. The idea is that the
addition of a non resonant laser will constantly create charges into the semi-
conductor matrix, which would provide a more stable charge environment,
and hopefully reduce the fluctuations ([150]). On the other hand the laser
needs to be attenuated enough in order to not influence the emission of QD
via non resonant excitation. As shown in fig. 2.18 the addition of the non
resonant laser greatly benefits the emission intensity. Note that the extra
counts do not come from the non resonant laser, which by himself, cause
a barely visible emission, comparable to dark counts. Moreover we can see
that we obtain a narrower linewidth thanks to the reduction of the Gaus-
sian component. To obtain more insights into the emission process, we also
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(a) (b)

Figure 2.18: Effects of the non resonant laser on the intensity and
linewidth. (a) Emission intensity as a function of non resonant laser power.
(b) Linewidth as a function of non resonant laser power. The total linewidth
is made of contribution from the lorentzian emission (radiative and dephas-
ing) of the TLS (in dashed red) and a Gaussian spectral wandering (blue).

performed intensity autocorrelation measurements.

2.5.4 Intensity autocorrelation measurements
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Figure 2.19: Effect of Rabi frequency over intensity correlation sim-
ulations. g(2) simulations for different values of Rabi frequency fr. The
radiative rate Γrad is fixed to 1 in units of fr and γ∗ = 0. We see that the
amplitude and frequency of oscillations increase with the Rabi frequency and
the detuning. The time unit is 1/Γrad.

An important tool for the characterization of SPS is the intensity auto-
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correlations, or g(2). The g(2), for a stationary system, is defined at follows:

g(2)(τ) = 〈: I(t)I(t+ τ) :〉
〈: I(t) :〉〈: I(t+ τ) :〉 = 〈a†(t)a†(t+ τ)a(t+ τ)a(t)〉

〈a†(t)a(t)〉〈a†(t+ τ)a(t+ τ)〉 , (2.37)

where I(t) is the intensity operator and 〈: :〉 represents the expected value
using normal order for creation and annihilation operators. Going back to
the TLS treatment given in section 2.5.1, the g(2) can be expressed in terms
of the raising and lowering operators of the emitter:

g(2)(τ) = 〈σ̂+(t)σ̂+(t+ τ)σ̂−(t+ τ)σ̂−(t)〉
〈σ̂+(t)σ̂−(t)〉〈σ̂+(t+ τ)σ̂−(t+ τ)〉 . (2.38)
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Figure 2.20: Effect of the dephasing rate on intensity correlation.
g(2) simulations for different values of dephasing γ∗. Γrad is fixed to 1 and
fr = 0.5Γrad. We see that the effect of increasing γ∗ is to dampen the
amplitude of the oscillations.

We are interested to see what shape has the g(2) in our model. For that
we can simulate the system using a python simulation toolbox called QuTip
([88]). Note that QuTip is dimensions agnostic, and assumes h̄ ≡ 1, so in
fig. 2.19 we fix Γrad = 1 which effectively acts as frequency reference quantity.
We then put γ∗ to 0 and we look at the effect of the Rabi frequency and the
detuning on the g(2). The g(2) shows the characteristic antibunching dip
around 0, at low powers g(2) is 1 just outside the dip, while increasing the
power we start to see oscillations due to the fact that the TLS gets more and
more coherently driven. The detuning of the laser from resonance further
increases the antibunching ripples and the frequency of the oscillations. To
understand the role of γ∗ we can fix the value of the Rabi frequency and make
γ∗ vary, as shown in fig. 2.20. Pure dephasing induces a faster reduction of the
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dipole of the TLS. This smooths out the oscillations in the autocorrelation
function.

Finally we know from linescans that the emitter undergoes spectral wan-
dering. The fast part causes an homogeneous broadening of the line, and it
is thus taken in account by the pure dephasing operator within the Lindblad
equation. The slow part is not considered in the model, and it causes the
resonance frequency to drift from the initial value. That could be included
as a time dependent term in the Hamiltonian, a perturbation on the de-
tuning with a stochastic evolution. In a first and preliminary approach, we
simulate a g(2) many times with a detuning term drawn from the estimated
noise distribution. In order to see the effects on the g(2) we simulate the
TLS at 0 detuning, Γrad and γ∗ comes from experiments and the noise is the
Gaussian part of the linescans fits. The results are shown in fig. 2.21 where
a low power (fig. 2.21a) and a high power (fig. 2.21b) regime are simulated.
For both powers the addition of the noise decreases the coherence time, and
for high power, it can slightly enhance the antibunching due to the Rabi
oscillations.
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Figure 2.21: Preliminary simulation of the impact of low-frequency
noise on g(2) Simulation of the intensity correlation function g(2) in presence
of spectral wandering. The two figures are obtained for Rabi frequency fr =
0.1 ((a)) and fr = 0.5 ((b)). The red curve is the g(2) with no noise, while the
black curves represent a g(2) where the noise has caused a detuning between
the QD and the laser. The thick green curve shows the total effect of the
inhomogeneous noise on the g(2).

Moving to the experiments, we realize that the g(2) shape is not flat as
we will expect fig. 2.25. We can see that the expected antibunching dip at
0 is present. However a clear bunching is also oberved at short delays, with
a g(2) that peaks around 5 and the correlation drops to 1 on a timescale of
hundreds of ns, which is much slower than T2.
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PNRE=69nW PNRE=150nW PNRE=189nW

Figure 2.25: Intensity autocorrelation measurements at long delays.
Measurements of g(2) for long time delays, taken at different values of the
non-resonant laser power. The RE power is 20 nW (2.2P0) for all the mea-
surements. Increasing the non resonant laser power significantly decreases
the blinking. The curves are fitted with eq. (2.40).

We attribute this effect to blinking. This is a common phenomenon which
causes intermittent fluctuations in the emission intensity of QDs over time. It
is characterized by periods of bright emission (on-states) followed by periods
of no emission or very weak emission (off-states). These on-off fluctuations
can happen on various timescales. The mechanism behind is complex and
can involve several factors. First of all QDs are sensitive to their local envi-
ronment, which can include changes in temperature, impurities and defects.
These fluctuations can lead to changes in the quantum dot’s electronic struc-
ture, affecting its emission properties and causing blinking. Another con-
tribution arises from the charging and discharging of the QD with trapped
charges. When a charge is present, the QD emission is shifted to another
energy, leading to a quench in the resonant excitation and thus in the de-
tected signal (off state) ([137]). When the trapped charge is released, the
emission can resume, leading to an on-state. In a first approach, the effect
of blinking can be modeled using the so called telegraphic-noise. Telegraphic
noise, refers to a type of noise or signal variation that resembles a telegraph-
like pattern of alternating high and low states. This phenomenon is often
observed in electronic systems and data transmission, where the signal fluc-
tuates between discrete levels. Following [43] let’s make the assumption that
the intensity emission of the whole system comes from the TLS (Ion(t)) and
the blinking via a telegraphic stochastic process (S(t)), so that

I(t) = Ion(t)S(t). (2.39)

Under the assumption that Ion(t) and S(t) are statistically independent, the
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g(2) becomes

g(2)(τ) =
(

1 + toff

ton
e

−|τ |
(

1
ton

+ 1
toff

))
g(2)

on (τ), (2.40)

where g(2)
on is the autocorrelation function of the TLS. The effect of the

telegraphic noise is thus to multiply g(2)
on by a function which depends on the

two characteristic times of the telegraphic noise ton and toff. A measure of
blinking is given by the factor B ≡ toff

ton
, whereas the timescale is given by:

1
τB

=
(

1
ton

+ 1
toff

)
.

(a) (b)

Figure 2.28: Characteristic times of blinking as a function of non
resonant laser power. (a) shows the characteristic times (ton, toff) of the
telegraphic noise as a function of non resonant laser power. (b) shows the
corresponding blinking. The resonant laser power is PRE = 5 nW = 55%P0.

We can then try to fit the data for the g(2) at long delays with the formula
in eq. (2.40). As shown in fig. 2.25 the fit works very well. As for the RF scan,
we have tried to see if the addition of a non-resonant laser could mitigate
the blinking. For this reason we have performed several scans, changing
the non resonant power, while keeping RF power fixed. The measurements
shown in fig. 2.25 shows that blinking greatly improves with the addition of
the non-resonant laser. We can summarize the action of the non-resonant
laser in fig. 2.18 where we see the evolution of ton and toff as a function of
non-resonant laser power. Both of them decrease with the increasing of non
resonant laser power. As shown in fig. 2.18 the blinking intensity B also
decreases as well as the timescale. This experiment allows us to find an
appropriate value for the power of non resonant laser, one that reduces the
blinking, without being too much powerful to cause significant emission.
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Figure 2.29: Intensity correlation at different RE power. The intensity
correlation function g(2)

on (the effect of blinking is removed) is measured at
short delays for different values of the RE power. Increasing the power we
can see the emergence of Rabi oscillations. The red curve corresponds to the
numerical simulation of the g(2).

We can fit the g(2) using the model discussed in section 2.5.1. For that
we already know the value of T1 from the section 2.4, and T2, T ∗

2 and P0 from
section 2.5.3. We make use of a python library called QuTip in order to obtain
numerical simulations of our g(2). The spectral wandering is tricky to be
inserted directly into the Hamiltonian. However we have seen in section 2.5.3
that the Gaussian part of the linewidth enlargement is due to ”slow” noise
which acts on a timescale larger than the timescale of the emission. This
means that the g(2) is the result of many g(2) taken at different detunings,
the detuning being a random variable with a Gaussian distribution. We can
see the effect of this noise on a g(2) in fig. 2.21. With this we are able to obtain
the fits in fig. 2.29, which shows that the model is able to satisfactorily fit the
data. Future work is planned to investigate the impact of spectral wandering
on the g(2).

2.6 Conclusion
In this chapter we have studied a novel photonic structure, simple in its
conception, yet rich of interesting properties and promising as a photonic
device.

Photonic structure. From a photonic point of view the nanopost design
has shown high emission acceleration and collection efficiency across a wide
spectral range. One potential application of this nanocavity is to create a
bright and tunable source of indistinguishable single photons, possibly by
using a piezo actuator to apply mechanical stress on QDs. Following these
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promising results, an extensive numerical analysis has shown that the tra-
ditional Fabry-Pérot single mode model underestimates the performance of
nanopost structures as SPS. Indeed, perhaps surprisingly, light scattered
into radiation modes, which is usually ignored, participates into Purcell en-
hancement and improves collection efficiency. This scattering mechanism also
decouples collection efficiency from the Purcell factor. These results suggest
the potential for unconventional SPS design, particularly in non-resonant
conditions. Moreover, the simplicity of the device, makes it appealing for use
with emerging material systems that may not be as technologically mature
as established III-As semiconductors.

Resonant excitation spectroscopy. From a technical point of view, it
is the first time that RE measurements have been done on such a structure.
This is by no means trivial, since a good laser rejection is needed. This
means, first that the scattering on the sample surface needs to change the
polarization in an homogeneuos way. Moreover the optical setup needs to
be carefully assembled and aligned in order to obtain a good laser rejection.
This result is essential for the future of these structures in building a bright
and tunable source of indistinguishable single photons. This has solely been
possible thanks to the expertise of the group of prof. Richard Warburton.

Coherence times. The RF laser scans have given access to the linewidth
of the QD emission. This has prompted us to construct a model for the
emission linewidth and to determine the various factors that contribute.

In this regard we’ve been able to obtain the dephasing time T2. The ratio
T2/2T1 ' 0.52 is relatively far from the ideal radiative limit of T2/2T1 = 1
During his PhD at Néel Institute, Maxime Gaignard measured a Hong Ou
Mandel visibility of 80% for photons separated by 3ns emitted by exactly the
same device. This suggests T2/2T1 = 0.8. Our measurements are however
integrated over relatively long periods of time (≈ 1 minute for a linewidth
scan). This discrepancy could also come from other sources of noise with
a Lorentzian spectral density, slow enough to not cause pure dephasing but
affecting photons emitted on larger timescales than the lifetime of the tran-
sition.

Finally, by precisely measuring and fitting the emission line profile, we
were able to measure the spectral wandering of the emission line. Due to slow
modulations of the perturbations, it has a Gaussian shape with a full width
at half maximum of 2.08 GHz which shows no correlation with the resonant
excitation power.
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Blinking and nonresonant excitation. The measurement of the auto-
correlation at long delays shows that the QD is blinking. However this effect
can be greatly mitigated by the addition of a non-resonant laser, which has
the effect of creating a more stable charge environment around the emitter.
This is a precious tool for more advanced experiments with these structures.
It is also a reminder that the charge control is crucial for having good sources
of single photons and that new designs would need to tackle this problem.

Perspectives. These RE measurements have permitted a better charac-
terization of the system. The mitigation of the blinking opens the doors to
other experiments (such as four wave mixing spectroscopy) which will al-
low for an even better understanding of the device. There are two main
directions of improvements: from a photonic point of view (as discussed in
section 2.2) thanks to more precise simulations, is worth experimenting with
different geometric parameters in order to get higher collection efficiency or
Purcell factors. From a technical point of view, in order to improve on the
spectral wandering we can think of new designs. These are usually based on
the addition of an electric field which should allow to evacuate the trapped
charges. This can be done for instance via electrodes connected to a PIN
junction ([165, 135]).



Chapter 3

Electrostatic strain tuning of
QDs embedded in a photonic
wire antenna

This chapter is adapted from the article: Matteo Finazzer, Rana Tanos,
Yoann Curé, Alberto Artioli, Saptarshi Kotal, Joël Bleuse, Yann Genuist,
Jean-Michel Gérard, Fabrice Donatini, and Julien Claudon. “On-Chip Elec-
trostatic Actuation of a Photonic Wire Antenna Embedding Quantum Dots”.
In: Nano Letters 23.6 (2023). Publisher: ACS Publications, pp. 2203–2209

3.1 Introduction
Quantum dot (QD) embedded in photonic structures feature key assets for
photonic quantum technologies [115]. In particular, this solid-state plat-
form can generate various non-classical states of light on-demand, with high
brightness and fidelity [163, 81, 181]. However, applications requiring multi-
ple sources in spectral resonance face a significant challenge. Whatever the
growth technique, two given QDs generally slightly differ by their geometry
or alloy composition, resulting in distinct emission wavelengths. Spectral
tuning of the QD emission is mandatory to overcome this limitation. Among
various possible ‘tuning knobs’, such as temperature [50], electrical [55] and
magnetic [155] fields, mechanical stress stands out. This approach, usually
implemented with a piezo actuator [122], offers a large tuning range while
preserving the excellent QD optical properties [56, 201, 182, 34]. In practice,
maintaining the source brightness upon spectral tuning requires a broadband
photonic structure such as an optical nanocavity [112, 113, 195, 95, 71, 141],
a microlens [75] or a waveguide [36, 151, 133, 6, 176]. Whereas piezo ac-
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tuators were successfully integrated with most of these platforms [98, 48,
129, 159], an alternative strategy can be employed to strain photonic wire
antennas. When a force is applied on the free end of a nanowire, it bends.
As a result, QDs embedded near the anchored end experience a large strain.
This modifies their bandgap energy, leading to the desired spectral tuning.
Recently, this idea was demonstrated by simply pushing the top part of a
photonic trumpet with a micro-manipulator tip [188].

In this chapter, we build on this proof-of-principle experiment and demon-
strate a practical, integrated device in which on-chip electrodes generate an
electrostatic bending force. Control over the amplitude and bending direc-
tion is achieved thanks to two distinct bias configurations. This enables to
blueshift or redshift the emission of any individual QDs embedded in the
wire.

The chapter is structured as follows: in section 3.2 we will briefly dis-
cuss the ideas behind the design and the relevant geometrical and physical
quantities, used through the chapter. In Section 3.3 we provide the theoret-
ical framework on which the design is based. The mechanics of the device
is analyzed using the Euler-Bernoulli beam theory, which allows us to iden-
tify the relevant geometrical parameters and their influence on the device
behavior. Moreover the effect of strain on QD light emission is discussed.
Finally finite elements method (FEM) simulations are used to investigate
the different components of the device in order to have a complete picture
on the mechanics, electrostatic and electrical behavior of the device. The in-
vestigated device we fabricated by Saptarshi Kotal and Alberto Artioli. The
steps of the fabrication process are discussed in section 3.4, as well as the
mask design and the sample layout. Finally section 3.5 covers the sample
characterization and the experimental results.

3.2 Device concept
As shown in fig. 3.1a, we consider a photonic trumpet, a conical nanowire
antenna that efficiently funnels the emission of embedded QDs into a Gaus-
sian output beam [133, 170]. The antenna is here made of GaAs, stands
on a planar silica/gold mirror and features a top Si3N4 antireflection layer
(thickness: 115 nm) (fig. 3.1b). The trumpet is oriented along the ‘vertical’
ẑ axis. Through the paper, we set dimensions equal to the ones of the in-
vestigated devices: height h = 16.4 µm, bottom radius rb = 130 nm and top
radius rt = 800 nm. Close to its base, the trumpet embeds a single sheet
of self-assembled InAs QDs. The vertical QD location is precisely controlled
(zQD = 95 nm), but their lateral location in the trumpet cross-section is
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Figure 3.1: Device concept. (a) Applying a force f = fxx̂ on the trumpet
top facet generates stress in the QD cross-section. Map of the longitudinal
stress component (σzz) in the QD section, calculated for fx = 1 nN. The
triangles represent randomly-located QDs. (b) Schematics of the device:
three on-chip electrodes generate an electrostatic bending force.

random.
In our device, the bending force is generated by three on-chip electrodes

fig. 3.1b. The bottom gold mirror serves as a first, planar electrode (B). In
addition, two needle-like electrodes (left, L and right, R) are located close
to the top facet, at a distance of dL = dR = 550 nm. We first consider bias
configuration R: R is biased at a potential Vdc, whereas all other electrodes
are grounded. This setting establishes a highly inhomogeneous electrical field
between the tip of R and the bottom plane. The large relative permittivity
of GaAs (εr = 12.9) enables the build-up of a strong dielectric polarization
of the trumpet, which is then attracted towards the tip of R — the area of
most intense electric field. We will see in the next section that free carriers
associated with non-intentional doping of GaAs further increase the trumpet
polarization and thus the applied force.

The electrostatic force features a roughly quadratic voltage dependence:
whatever the sign of Vdc, the trumpet is always attracted toward the right
electrode in configuration R. We achieve control over the bending direction
by using the mirror-symmetric bias configuration L. A potential Vdc is applied
to the left electrode, whereas all other electrodes are grounded. The trumpet
is then attracted towards L. The inversion of the bending direction reverses
the stress map and enables obtaining red and blue shifts for any QD location,
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thereby doubling the spectral tuning range.

3.3 Theoretical background
In this section, we first introduce a simple analytic model to describe the
stress in a bended photonic trumpet and the resulting energy shift of a strain-
tuned QD (sections 3.3.1 and 3.3.2). The second part of the section discusses
FEM simulations which provide a complete picture of the whole device. First
mechanical simulations allow to validate the predictions made by the theo-
retical model. Then the electrical behavior of the sample is studied. Finally
the electrostatic simulations provide the strength of the applied force to feed
the mechanical model.

3.3.1 Euler-Bernoulli beam theory
A beam is a structure which responds to a force applied laterally with respect
to its main axis and where the mechanical response is dominated by bending.
If the lateral deflection is small and shear stresses can be neglected, these
kind of structures can be studied using the Euler-Bernoulli beam theory,
which is a simplification from the more general theory of linear elasticity.
Therefore, the theory can be used to study the physics of the bending of a
tapered beam.

The geometry is the one of the fig. 3.1a: the conical trumpet is anchored
at its base (z = 0) and its top facet (z = h) is free. At z = h, one applies a
transverse force f = fxx̂ on the top facet center (with an associated moment
MO = hfxŷ) which leads to a deflection u = u(z)x̂ of the neutral axis of the
beam. The scalar deflection u(z) satisfies the static Euler-Bernoulli equation:

d2

dz2

[
Y Iy(z)d

2u(z)
dz2

]
= 0. (3.1)

Here, Y is the Young modulus of the beam material; Iy(z) is the second
moment of area with respect to the y axis. For a beam that features a
circular cross-section of radius r(z), Iy(z) reads

Iy(z) = π

4 r(z)
4. (3.2)

We consider here a linear taper for which the cross-section radius at height
z, r(z), increases linearly from r(0) = rb to r(h) = rt according to

r(z) = rb

[
1 + δ(z/h)

]
, (3.3)
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with δ = rt/rb − 1 being a parameter that characterizes beam tapering. By
successive integration of eq. (3.1) and taking into account the set of four
boundary conditions:

d

dz

[
Y Iy

d2u

dz2

]
(L) = −fx,

d2u

dz2 (L) = 0, du

dz
(0) = 0, u(0) = 0, (3.4)

one obtains the beam deflection u(z). It reaches a maximum at the level of
the top facet (z = h):

u(h) = 4
3π

h3

Y r3
brt

fx. (3.5)

Compared to a cylindrical beam of identical bottom radius, beam tapering
(with δ > 0) reduces the free end displacement u(h) by a factor of (rt/rb).
For the geometry considered in main text, one obtains u(h) = 12.4 nm for
fx = 1 nN. The normalized deflection profile is given by:

u(z)
u(h) = (z/h)2

(
1 + δ

1 + δ(z/h)

)2 (3 − (z/h) + 2δ(z/h)
2 + 2δ

)
. (3.6)

The longitudinal stress σzz is deduced from eq. (3.6) using

σzz(x, z) = −Y xd
2u(z)
dz2 . (3.7)

We note that σzz does not depend on y. The stress reaches a maximum (in
absolute value) at the base (z = 0) for the two symmetric sidewall points
satisfying |x| = rb. At x = +rb, the stress is compressive for fx > 0 and
reaches

σzz(rb, 0) = − 4
π

h

r3
b

fx. (3.8)

For a given applied force, the maximum stress at the base is thus identical
for tapered and untapered beams having identical rb. Put in another way,
beam tapering has no impact on the stress at the base (z = 0).

When z 6= 0 the general expression for the stress inside the tapered beam
is:

σzz(x, z) = −
(

4hfx

πr3
b

)(
x

r(z)

)(
1 − z/h

(1 + δz/h)3

)
, (3.9)

As illustrated in fig. 3.1a, half of a given cross section is stretched (σzz > 0),
whereas the other one is compressed (σzz < 0). The stress is null on the x = 0
diameter and reaches a maximum in absolute value for the two circumference
points with x = ±r(z).
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Y (GPa) ν εr

GaAs 85.9 0.31 12.9
Si3N4 250 0.23 7.5
SiO2 70 0.17 3.9
Au 70.0 0.44 −

Table 3.1: Material parameters.

Beam tapering profoundly affects the longitudinal stress distribution in
the trumpet:

σzz(x, z)
σzz(rb, 0) =

(
x

r(z)

)(
1 − z/h

(1 + δz/h)3

)
. (3.10)

This can be directly traced back to the r(z)4 dependence of Iy(z).

We compared this analytic model to finite-element simulations performed
with the linear elasticity module of the software COMSOL. All materials
are supposed to be isotropic from a mechanical point of view; their Young
modulus (Y ) and Poisson coefficient (ν) are given in table 3.1. A transverse
force f = fxx̂ with a magnitude fx = 1 nN is applied at the top facet center
of a conical GaAs trumpet. In a first simulation, we used the same boundary
condition as in Euler-Bernoulli calculation: the bottom facet is clamped.
One then obtains an excellent agreement between analytic and finite element
simulations: the stress σzz at the QD level (95nm above the clamped base) is
4% smaller in the simulation, while the top facet deflections u(h) are almost
identical. We additionally investigated the effect of a deformable GaAs and
Au substrate. These changes have a minor impact on the calculated stress
in the QD section. For a conical trumpet, Euler-Bernoulli beam theory thus
offers an excellent estimate of the stress in the QD section.

3.3.2 Energy shift of the QD emission
We have seen in the previous section that the stress tensor in a bended trum-
pet is dominated by the σzz component. This mechanical stress can impact
the QD emission energy in many ways. Through the deformation poten-
tials [19], the resulting strain affects the bandgap energy of the QD material.
Since strain also affects the band energy of the barrier material, this will also
change the confinement potential seen by electrons and holes. Strain also
modifies the physical dimensions of the QD, hence the confinement energy.
Finally, for some crystalline directions, stress can also induce a piezoelectric
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effect, which impacts the QD emission through the quantum-confined Stark
effect.

At lowest order the energy shift experienced by a QD is related to the
stress by a linear relation: a given QD located at xQD undergoes an energy
shift ∆E = sσzz(xQD). The leading contribution to the tuning slope s is
the change in the bandgap energy of the QD material. Here, the trumpet
longitudinal z axis coincides with the growth direction. For an uniaxial stress
applied along this direction, s reads [171, 10]

s =
[
aQD(1 − 2νGaAs) + bQD(1 + νGaAs)

]
/YGaAs. (3.11)

Here, YGaAs = 85.9GPa and νGaAs = 0.31 are the Young modulus and Poisson
ratio of GaAs, respectively; aQD and bQD are the hydrostatic and shear defor-
mation potentials of the QD, respectively. We assume an In0.5Ga0.5As alloy
composition and perform a linear interpolation between InAs and GaAs [194]
to obtain aQD = −7.2 eV and bQD = −1.9 eV. Equation (3.11) then yields
s = −61 µeV.MPa−1. For example, a tiny force of 1 nN, which is the typical
magnitude of the force obtained via electrostatic actuation, already gener-
ates σzz = −8.6 MPa (εzz = −0.01 %) for xQD = r(zQD). The corresponding
spectral shift ∆E = 530µeV exceeds the QD radiative linewidth (∼ 0.7µeV)
by nearly three orders of magnitude. Trumpet bending is thus an efficient
way to tune the emission of embedded QDs. In this example, the minute wire
deflection (top facet deflection of 12nm, bending angle below 0.05◦) does not
affect light collection.

3.3.3 Electromechanical numerical simulations
We evaluate in this section the electrostatic bending force and the maximal
QD spectral shift. To obtain a correct order of magnitude, it is necessary to
take into account the free carriers in GaAs that result from non-intentional p-
type doping. Given the size of our device, 3D numerical simulations combin-
ing semiconductor physics, electrostatics and linear elasticity are too compu-
tationally demanding. Therefore, we adopt a simplified, cascaded approach:

1. First we describe the electrode stack using an analytic 1D model.

2. Next we perform 3D electrostatic simulations and evaluate the bending
force in two limit cases:

• Dielectric trumpet: no free-carriers, but already significant di-
electric polarization, yielding a minimal value for the bending
force.
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• Metallic trumpet: maximal polarization associated with free
carriers, yielding an upper bound for the bending force.

Our weakly doped semiconductor (p ∼ 1015 cm−3) lays between these
two extreme cases.

3. Finally, we plug these results into linear elasticity simulations (using
the finite elements method software COMSOL) to obtain the stress in
the QD section. One then deduces the maximal spectral shift using
the tuning slope established in section 3.3.2, which can be compared
to experimental results.

3.3.3.1 1D model of the electrode stack

(a)

Si3N4

Au

Au

GaAs p

SiO2

115 nm

10 nm

16.4 µm

Vdc

W

z

V(z)

(b) Vdc < 0

z

r(z)

W

z

V(z)

(c) Vdc > 0

z

r(z)

dep.

acc.
dep.

acc.

150 nm

Figure 3.2: (a) Structure of the on-chip electrodes and bias configuration.
(b) Sketches of the volume charge density ρ(z) distribution and of the elec-
trostatic potential V (z) for a top bias Vdc < 0. (c) Same sketches for a
bias Vdc > 0. Note the exchange of the location of the depleted (dep.) and
accumulation (acc.) sections.

The complete electrode stack (top to bottom: Au-Si3N4-GaAs-SiO2-Au)
is shown in fig. 3.2(a). Earlier Hall measurements have revealed a non-
intentional p-type doping of GaAs. The electrode stack consists of two face-
to-face Metal-Insulator-Semiconductor structures, that we describe with a
simple 1D model. Since we consider large applied voltages Vdc, we also ne-
glect the built-in potential associated with the difference in the work func-
tions of Au and GaAs (flatband configuration for Vdc = 0). For a negative
applied voltage, holes accumulate close to the Si3N4-GaAs interface whereas
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the bottom GaAs-SiO2-Au structure is in the depletion regime (fig. 3.2(b)).
For a positive voltage, the situation is reversed, as shown in fig. 3.2(c). For
voltages that typically exceed the bandgap of GaAs (1.5V at cryogenic tem-
perature), and for perfectly insulating layers, the depleted zone should be
accompanied by an inversion layer (a very thin layer populated by minor-
ity carriers — electrons in the present case). I-V measurements show that
our structure features significant leakage currents (∼ 10 nA for Vdc = −5 V
and ∼ 20 nA for Vdc = +5 V, at cryogenic temperature) that we attribute
to imperfect dielectric barriers (see section 3.5.1). Modeling the insulating
layer as a parallel resistor-capacitor association, we estimate a minimum es-
cape rate for the electrons on the order of 1/(10 ms). This largely exceeds
the thermal generation rate of minority carriers, which is vanishing small at
cryogenic temperature. We thus suppose that the inversion layer is absent
and that all the voltage drop in the semiconductor is accommodated by the
depletion layer. The latter features a width W for a total charge per unit
area QW = −|q|NAW (q is the electron charge and NA the acceptor concen-
tration). Within these hypotheses, the width W of the depletion layer is set
by the condition:

|Vdc| = |q|NAW

CSi3N4

+ |q|NAW
2

2εGaAs
+ |q|NAW

CSiO2

. (3.12)

In this equation, the three terms are the potential drops across the Si3N4, de-
pletion and SiO2 layers (∆VSi3N4 , ∆Vdep and ∆VSiO2 , respectively); CSi3N4 =
εSi3N4/tSi3N4 and CSiO2 = εSiO2/tSiO2 are the capacitance per unit area associ-
ated with the two dielectric layers; εi and ti are the dielectric constant of the
considered material (i = Si3N4, GaAs and SiO2, see material parameters in
table 3.1). For |Vdc| = 10 V and NA = 1015 cm−3, one obtains W = 3.5 µm,
∆Vdep = 8.8V, ∆VSi3N4 = 1V and ∆VSiO2 = 0.2V. The potential profiles are
sketched in fig. 3.2(b) and (c) for Vdc < 0 and Vdc > 0, respectively.

3.3.3.2 Electrostatic bending force

We next evaluate the bending force and the maximum stress in the QD sec-
tion using finite element simulations that are performed with the software
COMSOL. Figure 3.3a shows the geometry, as derived from SEM observa-
tions, that is implemented in simulations. We consider in the following a
trumpet that is located in the middle of the two electrodes. It is then suffi-
cient to discuss one of the bias configurations, for example R (R biased at Vdc,
L and B grounded). By symmetry, the other configuration yields an opposite
bending force. In the simulation, we impose the potential at the surface of
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the metallic Au parts. For the grounded electrode L, the surface potential
of the semiconductor is set to 0. For electrode R, the semiconductor part
features a space charge zone and a neutral part whose properties are fixed
by the 1D model. Finally we examine two limit cases for the trumpet:

• Purely dielectric trumpet: the static relative permittivity of GaAs
is εr = 12.9.

• Metallic trumpet: this case is treated by taking the limit εr → ∞
for the trumpet material, in practice εr = 104.

We consider here ‘small’ top facet displacements: the maximum top facet
displacement (∼ 20 nm) is much smaller than the facet-electrode distance
(∼ 500 nm). This allows us to decouple electrostatics and linear elasticity
simulations. Using the electrostatics module of COMSOL, we first evaluate
the total force f and the bending moment MO that are experienced by the
trumpet (the point O is the center of the clamped base of the trumpet). We
are interested in the y-component of the bending moment, MO,y = MO.ŷ.
Since the contribution associated with the vertical force component is neg-
ligible, MO,y = zffx. This expression defines the altitude zf at which an
equivalent point-like force is applied. The force distribution takes large val-
ues ‘far’ from the QD section. According to Saint-Venant principle, one can
replace the distributed electrostatic force by a point-like force to calculate
the maximal stress in this section, σzz,max. In order to check the validity of
the decoupling between the mechanical and electrostatic simulations we have
benchmarked the faster, cascaded approach against a multiphysics simula-
tion that couples the electrostatics and linear elasticity modules: they yield
identical results within a few percents. We note that σzz,max can also be de-
termined using the analytic expression in eq. (3.9) by replacing (hfx) by the
moment of the electrostatic force MO,y = (zffx).

For a modest voltage Vdc = −10 V, we estimate the moment of the elec-
trostatic force to be 5 nN.µm for a dielectric trumpet and 22 nN.µm for a
metallic one. Our weakly doped trumped lays between these two limit cases.

3.3.3.3 Maximum QD spectral shift

Finally, one deduces the maximum QD spectral shift

∆Emax(Vdc) = |sσzz,max(Vdc)|

using the stress tuning slope s = −61 µeV.MPa−1 (see eq. (3.11)). Fig-
ure 3.3b shows the calculated maximal spectral shift as a function of the
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Figure 3.3: (a) Geometry used in electrostatics and linear elasticity simula-
tions. Geometrical parameters are given in the main text. The figure also
shows an example of calculated potential distribution in the electrode plane
(configuration R, Vdc = −10 V, dielectric trumpet). (b) Calculated max-
imum spectral shift as a function of Vdc. We consider two limit cases: i)
purely dielectric trumpet and ii) metallic trumpet. The triangles correspond
to measurements on the QD emission line 4, which exhibits the maximum
shift in fig. 3.10a. The star indicates the mean of the maximum experimental
shifts (taken at Vdc = −10 V) measured over all the studied devices.

bias Vdc for the two limit cases discussed above (purely dielectric trumpet
and metallic trumpet). A purely dielectric trumpet already experiences a
significant bending force. However, a metallic structure always experiences
a larger force. This is expected, as dielectric polarization is smaller than the
metallic one (dielectric screening leads to a partial screening of external elec-
trical fields, whereas a metal ensures a perfect screening). The model also
predicts an asymmetry between positive and negative bias voltages, which
directly reflects the distinct potential distributions in the electrode stack.
This asymmetry is almost negligible in the dielectric case, which leads to a
roughly parabolic voltage dependence. In contrast, it is more pronounced in
the metallic case.

In the section 3.5, we discuss experimental results. We will see that
the model developed in this section provides a good estimate of the device
performance.
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(a)

(b)

10 µm

250 µm

Figure 3.4: Scanning electron microscope images of the fabricated
device. (a) Side view of photonic trumpets flanked by on-chip electrodes. (b)
Top view of a device subfield contacted with two tips. The left pad and the
bottom electrode are grounded; the right pad is biased at potential Vdc > 0,
which reduces secondary electron emission and yields a dark contrast.

3.4 Fabricated device
Figure 3.4 shows a SEM image of the investigated device. The device was
fabricated in the team by Yann Genuist (MBE growth), Saptarshi Kotal
(mask design and clean room processing) and Alberto Artioli (mask design
and clean room processing). The fabrication process is described in fig. 3.5.
We start with the molecular beam epitaxy growth of a structure over a (001)
GaAs wafer. We grow a GaAs layer containing a single sheet of self-assembled
InAs QDs over a 500 nm-thick Al0.8Ga0.2As sacrificial layer. The QDs are
formed during the fast (1s) deposition of 1.9 monolayers of InAs, immediately
followed by GaAs capping. These growth conditions lead to a QD areal
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3.5: Overview of the fabrication steps. (a) MBE growth of a
planar heterostructure. (b) Deposition of a SiO2-Au mirror. (c) Flip-chip
process. (d) Deposition of the Si3N4 layer, which acts as an anti-reflection
coating over the trumpets, and as electrical insulation between Au electrodes
and GaAs. (e) EBL step 1 and deposition of Au to define the electrodes and
alignment markers, and deposition of Ni hard mask. (f) EBL step 2 and
deposition of Ni mask over trumpets (g) ICP etching of Si3N4 . (h) ICP
etching of GaAs and removal of Ni hard mask (see [96]).

density of a few 100 µm−2 and to ‘small’ lens-shape QDs, with an ensemble
luminescence that peaks around 920 nm (≈ 1.35 eV) ([67]). After deposition
of the SiO2-Au mirror, the sample is flip-chipped on a host substrate and
the growth substrate and the sacrificial layer are removed. We next deposit
a 115 nm-thick Si3N4 layer by sputtering. It will serve as an antireflection
coating for the trumpet top facet and provide electrical isolation for the
top electrodes. The device geometry is next defined by top-down processing.
Two aligned levels of electron-beam lithography followed by metal deposition
and lift-off define the electrodes and their contact pads (Ti (5 nm)/Au (150
nm)/Ni (180 nm)) as well as the trumpet top facet (Ni (180 nm)). In a
RIE-ICP chamber we next etch the Si3N4 layer (gases: Ar, CH2F2, SF6).
Subsequent GaAs etching is performed in the same chamber (gases: Ar,
BCL3, SiCl4) and allows defining the trumpets and the suspended electrodes
in a single step. To this end, the process was carefully optimized to offer a
controlled and constant under-etching angle. Finally, residues of the Ni hard
mask are removed with nitric acid diluted in water.

Across the wafer we patterned a series of subfields (see fig. 3.6). Each
subfield features 32 trumpets with nominally identical top radius as shown in
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Figure 3.6: Lithography mask design for trumpets. Each subfield con-
sist of 32 devices with identical top diameter.

fig. 3.7. Each trumpet is flanked by a pair of electrodes that are connected to
two contact pads. The experiments described in this chapter are conducted
on devices that belong to the same subfield and thus feature identical top
diameter.

3.5 Experimental demonstration of strain tun-
ing

3.5.1 Preliminary electrical characterization
Figure 3.8b presents a typical I-V measurement performed at room temper-
ature. The electrical connection is made using micromanipulators which are
then connected to a semiconductor parameter analyzer (Agilent 4155C). As
shown in fig. 3.8a, the bottom mirror is grounded whereas the top gold elec-
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Figure 3.7: Basic lithography mask motif for electrostatically-
actuated trumpets. This motif is replicated over a 22 by 6 matrix to
fill a 6 x 5.5 mm sample. (inset) Electrode geometry, divided into five sec-
tions in order to define a dedicated dose to each.

GaAs
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SiO2

Si3N4
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16700nm

150nm
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115nm

150nm

V

(a) (b)

Figure 3.8: (a) Bias configuration for I−V measurements. (b) Typical I−V
curve measured at room temperature. The absolute value of the current |I|
is plotted with a logarithmic scale. We impose a 1 mA-limit on the source
current to protect the device.
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trode is biased at Vdc. Starting from Vdc = 0 V and increasing the voltage
bias, one observes a threshold at ∼ +10V above which the current increases
sharply with a step-like behavior. From this point, ramping down the voltage
leads to a different I-V branch, with a smaller voltage threshold and a larger
current. A similar behavior is observed for negative voltages, albeit with a
slightly larger threshold and a less pronounced hysteresis. After this initial
cycle, the I-V curves do not show any significant hysteresis and are stable
on a time scale of a few hours. However, the structure generally ‘heals’ itself
overnight, leading to a reset of the I-V features.

The device always features significant leakage currents. We note that the
leakage current is generally smaller for negative voltages. This observation
is also valid at cryogenic temperatures. For |Vdc| > 10 V, we attribute the
sharp increase in the current to the dielectric breakdown of the SiO2 and
Si3N4 layers, combined with an avalanche mechanism in the depleted region
discussed in section 3.3.3.1. Subsequent SEM inspections have shown that
such current surges can severely damage the electrodes. In the experiments
presented in the following section, the bias voltage is thus kept between −10V
and +6 V to protect the device.

3.5.2 Experimental setup

nanomanipulators

parabolic mirror

T=4K

MONO
CROMATOR

E-BEAM

GaAs

GaAs

QDs

Au
SiO2

Si3N4
Au

OD4

BP
830±10

HP
850

HP
900

~ 930nm

LASER DIODE
830nm

Figure 3.9: SEM and micro photoluminescence setup. Schematics of
the setup used for the static actuation of the trumpet (designed by Fabrice
Donatini). The SEM, which is equipped with the nanomanipulators, allows
for rapid testing of the different structures.
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The setup used for static tuning experiments is shown in fig. 3.9. The
device chip is mounted on a cryogenic sample holder (T = 5 K) in a SEM
chamber equipped with an optical access. Moreover 4 nanomanipulators al-
lows for a fast device characterization. The QDs luminescence is excited by
a continuous wave laser tuned to λexc = 830 nm, in the absorption contin-
uum associated with the QD wetting layer. The laser is focused on a single
trumpet device with a parabolic mirror (focal length: 3 mm). The same
mirror collects the device luminescence, which is focused on the entrance
slit of a grating spectrometer using a concave mirror (focal length: 200 mm,
magnification: ×67). The grating spectrometer (600 grooves per mm, focal
length: 55 cm) is equipped with a Si charge-coupled device (CCD) camera
(2048 pixels, pitch: 13.5 µm). Experiments are conducted around 920 nm
(1.348 eV) and the width of the entrance slit is 100 µm. Considering a uni-
form illumination, this defines an upper bound of 420 µeV for the spectral
resolution (the internal magnification of the spectrometer is ×1). When the
trumpet image at the entrance of the spectrometer becomes smaller than the
CCD pixel size, the latter imposes a lower bound on the resolution. We take
a typical limit that corresponds to two CCD pixels or 120 µeV. The actual
resolution is found between these two values; it depends on the exact size of
the trumpet image at the entrance of the spectrometer.

The bottom Au mirror is grounded and the two top electrodes are con-
tacted with movable tips (see fig. 3.4(b)). After placing the tips, the imaging
electron-beam is shut down when performing experiments: the associated
charges indeed impact both the QD optical emission and the electrostatic
actuation.

3.5.3 Demonstration of strain tuning
We first investigate spectral tuning in configuration R (R biased at Vdc, L
grounded). In order to limit leakage current and preserve the device integrity,
Vdc is kept between −10V and +6V (see section 3.5.1). Figure 3.10a shows a
reference micro photoluminescence spectrum acquired when all electrodes are
grounded (no applied force). It features sharp peaks associated with the re-
combination of excitonic complexes trapped in various QDs. Figure 3.10b is
a zoom on the QD emission line 4 for various Vdc. A clear spectral shift is vis-
ible, without noticeable degradation of the intensity nor spectral broadening.
From a fit to a Lorentzian spectral profile we determine the central emission
energy E0 and deduce the spectral shift ∆Edc = E0(Vdc)−E0(0). Figure 3.10c
shows the voltage dependence of ∆Edc for the 5 QD lines identified in panel
(a). Strikingly, distinct QD lines can exhibit very different ∆Edc, which can
be of opposite signs. Such a dispersion directly reflects the inhomogeneity of
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Figure 3.10: Static spectral tuning. (a) Reference microphoto-
luminescence spectrum, measured when all electrodes are grounded. (b)
Spectra of the QD emission line 4 for Vdc ranging between −10 V and +6 V
(configuration R). The transparent solid lines correspond to measurements;
the plain solid lines are fit to Lorentzian line-shape. (c) Spectral shifts ∆Edc
of individual QD emission lines versus Vdc in configuration R. (d) Same plot
in configuration L. Dots are experimental points and solid lines are fit to a
parabolic law centered at Vdc = 0.

the stress profile in the QD section (Figure 3.1a). Figure 3.10d shows similar
measurements in configuration L. Compared to configuration R, all QDs ex-
hibit a spectral shift of opposite sign: as the trumpet bends in the opposite
direction, the zone previously under tensile stress is now compressed, and
vice versa. The absolute value of the shifts are slightly smaller in configu-
ration L. Due to a fabrication imperfection, the trumpet is slightly closer to
electrode R, which explains the observed asymmetry. One can also remark
that the curves associated with QD lines 1 and 2 are superimposed: they
very likely belong to the same QD, as distinct excitonic complexes feature
similar response to strain [102].

In our experiments, Vdc is kept between −10V and +6V to limit leakage
current and to preserve the device integrity. Overall, the measured spectral
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shifts are correctly reproduced by a quadratic voltage law centered at Vdc = 0
(solid lines in Figures 3.10c and 3.10d). A close inspection reveals that neg-
ative Vdc’s systematically lead to slightly larger spectral shifts than positive
ones. We attribute this feature to an asymmetry in the electrostatic bending
force. To compare experimental and predicted shifts, we introduce ∆Emax,
the largest absolute spectral shift that is achieved considering all the QDs
embedded in a given device. For Vdc = −10 V in configuration R, QD line
4 exhibits ∆Emax = 530 µeV. In order to gain statistics, we repeated this
experiment in 6 nominally identical trumpets with the same bias configura-
tion (∼ 40 distinct emission lines in total). The average maximum shift is
470 µeV. This value exceeds the estimation for a purely dielectric trumpet
(180 µeV), but remains smaller than the predicted value in the metallic case
(750µeV). We conclude that free carriers in GaAs significantly contribute to
the electrostatic force. For a given value of Vdc, experimental data sometimes
reveal an asymmetry between the absolute shifts obtained in configurations
R and L (for example, typically 20 % when comparing figs. 3.10c and 3.10d).
Our simulations show that it can be explained by a small misalignment (a
few tens of nanometers) of the photonic trumpet with respect to the central
position. This leads to an imbalance between the forces exerted in the two
configurations.

3.5.4 Quantum dot linewidth

(a) (b)

Figure 3.11: (a) QD linewidth (FWHM) as a function of the applied voltage
Vdc in configuration R (the data corresponds to the 5 spectral lines investi-
gated in the Fig. 3 in the main text). (b) QD linewidth as a function of the
absolute spectral shift |∆Edc| measured at Vdc = −10 V.

Figure 3.11a shows the FWHM as a function of the applied voltage Vdc,
for the five QD lines investigated in fig. 3.10 (configuration R, fig. 3.10c). In
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all cases, the linewidths remain constant when Vdc is varied between −10 V
and +6 V. This feature is confirmed in several nominally-identical devices.
Within this voltage range, strain tuning does not induce any measurable
broadening of the QD linewidth (within the spectral resolution of the experi-
ment). Outside this voltage range, we however sometimes observe a spectral
broadening. It is correlated with the sharp increase in the leakage current
that has been discussed in section 3.5.1. We believe that these currents induce
an extra noise on the QDs. We note that the data do not reveal a significant
redshift of the QD emission, which excludes a simple heating process.

Figure 3.11b shows the QD linewidth as a function of the absolute spectral
shift |∆Edc|. Since large |∆Edc| are obtained for QDs that are located close
to the wire sidewall, such a plot can be used to reveal sources of decoherence
that are hosted by the wire surface. To gain statistics, we consider all the QD
emission lines (without any selection) originating from 6 distinct, nominally
identical devices. Measurements have been performed in configurations R
and L, for Vdc = −10 V. We observe significant linewidth fluctuations from
QD to QD, with a mean value of 200µeV. Many QD emission linewidths are
found within the resolution window given in section 3.5.2. Quite surprisingly,
there is no clear correlation between the QD linewidth and the spectral shift.
In particular, it is possible to observe large shifts for narrow QD emission
lines.

This observation is of course bounded by the experimental spectral reso-
lution. In the future, it would be very interesting to run a similar experiment
using resonant QD optical excitation. The latter offers a much better spectral
resolution and minimizes excitation-induced QD decoherence.

3.6 Conclusion and perspectives
The electrostatic actuation scheme demonstrated in this work can tune inde-
pendently several devices embarked on the same chip. Blue and red shifts of
magnitude 0.5meV has been demonstrated; this represents a key asset for the
scale-up to applications requiring multiple sources operated in parallel. In
practice, the choice of moderately off-axis QDs (radial distance below rb/2)
will preserve a reasonable tuning range without compromising the excellent
light extraction offered by photonic nanowires [20]. As demonstrated in very
similar structures [132, 136, 91], a clean, resonant QD excitation is also de-
sirable in order to optimize the spectral coherence of the emitted photons.

Towards a larger tuning range. In the present device, the tuning range
is limited by the maximum applied voltage. The latter is in turn imposed by
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Figure 3.12: Generation of an anisotropic inplane strain with an
asymmetric shell. An example of an asymmetric shell surrounding a trum-
pet. The shell is made of a low refractive index material in order to maintain
the optical symmetry, while breaking the mechanical symmetry.

the appearance of leakage currents. In a future device, realistic improvements
in the quality of the dielectric materials (SiO2 and Si3N4), possibly combined
with an increase of their thicknesses, should allow multiplying the maximum
voltage by a factor of 10. This will increase the applied force and consequently
the tuning range by two orders of magnitude. The quality of the dielectric
materials can be largely improved. Indeed, the dielectric breakdown field of
electronic-grade Si3N4 is about 107 kV.cm−1, a value that is compatible with
a bias of 100 V. In the first device, the Si3N4 was deposited by sputtering at
room temperature. Switiching to plasma-enhanced chemical vapor deposition
(PECVD) deposition should largely increase the material quality. At the
same time, this represents an opportunity to investigate the response of self-
assembled QDs to large (|εzz| ∼ 1 %) tensile or compressive strains [15].

Fine structure splitting correction. So far, we have discussed mainly
the tuning of the QD emission wavelength. However, strain can also be
employed to adjust other optical properties of QDs, such as the FSS. In self-
assembled InAs QDs, the FSS typically amounts to a few tens of meV. For the
emission of entangled photon pairs based on the recombination of a neutral
biexciton, the FSS should be brought below 1 µeV. However the stress in
the z direction affects photons emitted in both polarization in the same way,
rather we are interested in the components εxx and εyy of the stress tensor.
In the device shown in Figure 3.1a simulations have shown that these two
components are indeed present, but the symmetry of the system make them
equal. In order to compensate for the natural asymmetry of the QD, one can
immerse the QD in a strain field that features an in-plane anisotropy [183]
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(εxx 6= εyy). In a wire with a circular section, the stress is locally uniaxial
along z, which leads to εxx = εyy.

Figure 3.12 shows one possible approach to make εxx 6= εyy. The trumpet
is covered by a shell of SiO2. Due to the large contrast in refractive indexes
between GaAs and SiO2, the optical properties are not significantly affected;
on the other hand the shell changes dramatically the mechanical properties
of the trumpet, especially the in-plane strain associated with bending. Sim-
ulations has shown that the shell induces a mechanical anisotropy (shown
εxx 6= εyy). To maximise the in-plane strain anisotropy, the direction of de-
flection should be different from the direction of the deposition of the shell
and with an angle α comprised between 20 and 70 degrees.

Collective optical effects. The single-mode electromagnetic environment
defined by a photonic wire [20, 131] combined with the specific stress pattern
associated with trumpet bending is also particularly well suited to explore
collective effects, such as superradiance [73]. Indeed, the presence of tensile
and compressive stress in a cross section facilitates the tuning of two distinct
QDs into resonance. This capability is illustrated in fig. 3.13. In this context,
a supplementary pair of electrodes in the y direction, would offer a vectorial
control over the bending direction, enabling to control the orientation of the
stress gradient in the wire cross-section. This could allow for the tuning of
up to 3 distinct QDs into resonance.
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Figure 3.13: Photo-luminescence spectrum of a QDs located at the
base of another trumpet as a function of electrode bias. Some QDs
experience positive strain and some other a negative one, this shifts the
emission in opposite directions in this way two emission lines belonging to
different QDs are brought to the same energy. The data were acquired using
the setup described in section 4.4.1, the scans are automatized, allowing
for longer time integration of the signal and higher resolution in electrode
polarization. The measurement is performed on another device, in which the
trumpet is largely off-axis.
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Chapter 4

Electrostatic driving of the
nanowire high order vibration
modes

This chapter represents the natural progression from the work done in [125]
where the exploration of a dynamical regime was proposed as one of the main
perspectives. This chapter is adapted from the submitted (under review)
manuscript: ”High-order nanowire resonances for high-frequency, large cou-
pling strength quantum dot hybrid nanomechanics” by Rana Thanos, Hajer
Tlili, Yoann Curé, Matteo Finazzer, Alberto Artioli, Saptarshi Kotal, Yann
Genuist, Pierre Verlot, Joël Bleuse, Jean-Michel Gérard, and Julien Claudon.
The experimental work has been led by Rana Thanos. I contributed with
the realization of a physical support for the sample and the electrical in-
terconnections. This allowed the sample to be used without the help of
nanomanipulators and thus outside the SEM setup (section 3.5.2) which is
not adapted to perform photoluminescence measurements with the precision
required in this work. Moreover I participated in the discussions and helped
on the data analysis.

4.1 Introduction
Recent years have witnessed the blossoming of hybrid systems that couple
a two-level system (TLS) to a mechanical resonator [180]. Leveraging the
TLS to achieve quantum control over the oscillator motion [139, 35] enables
addressing fundamental questions, such as the exploration of the quantum-
classical boundary. From a more applied perspective, hybrid systems can
also be employed to realize quantum-enhanced sensors and could play a key

101
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role in the architecture of quantum information devices [147]. In a rich land-
scape of practical implementations [139, 35, 7, 142, 175], hybrid systems
based on optically-active TLS [204, 130, 177, 140] open specific opportu-
nities. For instance, they could interface a long-lived mechanical memory
with flying photons, and enable microwave-to-optical conversion of photons
through optomechanical wavemixing [199, 83]. Among solid-state quantum
light emitters, semiconductor quantum dots (QDs) stand out for their re-
markable optical properties [115, 163]. Key assets include a nearly-ideal
radiative yield [87, 20], highly-stable emission and close-to-lifetime-limited
spectral linewidth [99]. Furthermore, the extreme sensitivity of the QD
bandgap energy to mechanical strain [18, 123] gives birth to large, built-in
coupling to mechanical vibrations [200, 127, 204, 130, 160]. Most envisioned
applications demand a large mechanical frequency, which exceeds the emit-
ter spectral linewidth. To achieve this goal, QDs have been recently coupled
to high-frequency oscillators such as surface acoustic wave resonator [83] or
the Lamb modes of a doubly-clamped cantilever [193]. Whereas the hybrid
system formed by a single QD in a vibrating nanowire has enabled many
early demonstrations in the field [204, 130, 10, 132, 91], most investigations
so far focused on the low-frequency (sub-MHz) fundamental flexural mode.

In this chapter we’ll present a comprehensive exploration of hybrid nanome-
chanics for a vibrating nanowire. In particular we delve into the dynamical
interplay of quantum dots (QDs) and the vibration modes supported by the
structure. In the first section we introduce a model for the interaction of the
QD embedded in the nanowire with the strain induced by the nanowire’s vi-
bration modes. Then in the second section we dive deep into the theoretical
foundations of vibration modes and the analogies with 1D harmonic oscil-
lators. Moreover we explore the electrostatic excitation of vibration modes,
both in the DC and AC configurations. Here, finite-element simulations
showcase how off-axis nanowires can excite all families of vibration modes.
Equipped with this theoretical background we will then introduce the prin-
ciple of the experiment. Here we will take a closer look at our experimental
setup, discuss a wide-range frequency scan, and demonstrate the successful fit
of vibration-broadened QD emission spectra. In the next section we explore
how the QD ensemble becomes a probing tool, allowing us to discriminate be-
tween the transverse stress profile. For this we will make use of finite-element
simulations in order to unveil the footprint of different vibrating modes. This
journey through hybrid nanomechanics of the nanowire bring us to two re-
markable vibration modes. In that section we will shine a spotlight on the
high-order flexural mode F7x and the intriguing longitudinal resonance L1
and uncover the unique characteristics that make them interesting from an
hybrid-nanomechanics point of view. Finally we will discuss the scaling of
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mechanical Q-Factor and coupling strength with the mode order. We will
then see how to obtain the coupling strength, discussing the important case
of F7x.

4.2 Hybrid nanomechanics with a QD in a
vibrating nanowire

The vibration modes of a microwire fall into three families: flexural (F),
torsional (T) and longitudinal (L). Our device features an elliptical base,
due to a slight anisotropy of the etching. Therefore, we distinguish between
flexural modes that are polarized along the major ellipse axis x axis (Fx

modes) and flexural modes that are polarized along the minor axis y (Fy

modes). In the following, the mode order is indicated with an integer index
n (n = 1 corresponds to the first mode of each family). The mode shape
associated with F1x, F1y, T1 and L1 is shown in fig. 4.1.

As the wire vibrates, the embedded QDs experience an oscillating strain
that modulates their bandgap energy according to the Bir-Pikus Hamilto-
nian [18]. We consider here self-assembled InAs QDs which feature a large (a
few %), built-in compressive biaxial strain. Their fundamental optical tran-
sition involves conduction electrons and heavy holes (valence band mixing is
negligible in our QDs [40]). At first order in perturbation theory, they are
thus sensitive to the local hydrostatic εh = εxx +εyy +εzz and tetragonal shear
strain εsh = 2εzz − εxx − εyy associated with the vibration. Locally, the stress
tensor associated with F - and L-modes is dominated by the longitudinal
component σzz. The associated strain components directly impacts the QD
bangap energy. In contrast, the shear stress components (σxz, σyz) associated
with T -modes are weakly coupled to the QD. However, the elliptical base
also results in a significant σzz stress for T -modes. Figure 4.1b shows that
the stress distribution in the QD section strongly depends on the nature of
the mode.

Formally, the interaction between a given QD and a given vibration mode
m is described by the Hamiltonian:

H/h̄ = ωegσ̂
†σ̂ + Ωmb̂

†
mb̂m + gmσ̂

†σ̂(b̂†
m + b̂m). (4.1)

The first term describes the QD, which is modelled as a two-level system
whose ground state |g〉 and excited state |e〉 are separated by an energy
Eeg = h̄ωeg; σ̂ = |g〉〈e| is the lowering operator. The vibration mode is
treated as a 1D harmonic oscillator of angular frequency Ωm and effective
mass meff; b̂m is the associated phonon annihilation operator. The third term
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couples the QD energy to oscillator reduced position b̂†
m + b̂m = x̂/xzpf, with

xzpf =
√
h̄/(2meffΩm) the rms value of the zero-point position fluctuations.

The associated coupling strength reads:

gm = (∂xωeg)xzpf. (4.2)

The modulation parameter ∂xωeg is equal to 1
h̄

[
a∂xεh + b∂xεsh

]
, with a and b

the deformation potentials of the QD material. In this chapter, a ‘large’ wire
vibration is driven by a classical voltage source: the vibration mode is thus
treated in the classical limit. A sinusoidal vibration of amplitude xac then
induces a modulation of the QD transition energy with an amplitude:

Eac = h̄gm
xac

xzpf
. (4.3)

Such a modulation broadens the QD photon emission spectrum, as we will
see in section 4.4.2.

4.3 Excitation of vibration modes: theoreti-
cal background

In this section we provide some theoretical background for the description of
vibration modes.

4.3.1 Vibration modes as 1D harmonic oscillators
In the frame of linear elasticity, the nanowire supports a discrete, infinite set
of independent vibration modes. We adopt here a classical perspective and
focus below on a given vibration mode, with a free-running angular frequency
Ωm. The associated displacement field can be factorized as:

u(r, t) = um(r)x(t), (4.4)

where um(r) is the modal displacement field (or mode shape) and x(t) a scalar
coordinate. Here, we chose to normalize um(r) such that maxr |um(r)| = 1.
In practice, Ωm and um(r) are determined using a finite-element software
(see section 4.3.3). Thanks to the factorization of u(r, t), the 3D vibration
mode can be described as an effective 1D harmonic oscillator of position x(t).
This oscillator features an effective mass:

meff =
∫
ρ(r)|um(r)|2d3r, (4.5)
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where ρ(r) is the volumetric mass density. We also introduce the effective
spring constant:

keff = meffΩ2
m. (4.6)

The time evolution of x(t) is governed by the equation of motion of a damped
harmonic oscillator:

ẍ(t) + Ωm

Qm

ẋ(t) + Ω2
mx(t) = 1

meff
Feff(t). (4.7)

Here, the mechanical quality factor Qm parameterizes mechanical damping.
External driving is included by considering an effective driving force Feff(t)
that will be discussed in the next paragraph. We neglect thermal fluctua-
tions, which are much smaller than the driven oscillation amplitude. Note
that eq. (4.7) is analogous to the equation for a classical damped harmonic
oscillator, where the mass is replaced by the effective mass meff and the force
by Feff(t).

In the following, we consider a driving force Feff(t) = Fac cos(ωt) and recall
textbook results regarding the amplitude resonance of a driven harmonic
oscillator. In the steady state, x(t) oscillates in time according to: x(t) =
xac(ω) cos(ωt+ϕ(ω)). As discussed later, our measurements are not sensitive
to the phase ϕ(ω). We focus on the amplitude response of the oscillator,
which is given by:

xac(ω) = Fac

keff

1√(
1 − 1

2Q2
m

−
(

ω
Ωm

)2
)2

+ 1
Q2

m
− 1

4Q4
m

. (4.8)

For Qm ≥ 1/
√

2, xac(ω) features a resonance peak centred at

ωr = Ωm

√
1 − 1

2Q2
m

. (4.9)

In the low-loss limit (Qm � 1), ωr is very close to the free-running fre-
quency Ωm. In the vicinity of the resonance frequency (|ω − Ωm| � Ωm),
the resonance peak is well approximated by the square root of a Lorentzian
profile:

xac(ω) ≈ FacΩm

2keff

1√
(ω − Ωm)2 +

(
Ωm

2Qm

)2
. (4.10)

At 1√
2 -level, the resonance curve features a total linewidth ∆ω = Ωm/Qm.
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Figure 4.1: Strain-coupled QD-nanowire hybrid system. (a) Device
schematics: a set of on-chip electrodes drive the mechanical resonances of the
nanowire. They are detected by measuring the time-averaged photolumine-
scence spectrum of embedded QDs (red beam). (b) Calculated displacement
profile of the first vibration modes of each family: F1x, F1y, T1 and L1. The
colors represent the stress component σzz for a maximum displacement of
1 nm. For each mode, we also show the distribution of σzz in the QDs cross-
section.

4.3.2 Electrostatic excitation of vibration modes
Mechanical vibrations are driven by applying an electrostatic force on the
nanowire thanks to three on-chip electrodes (fig. 3.1b). As shown in fig. 4.1a,
one of the top needle electrodes is biased at a potential V (t) = Vdc +
Vac cos(ωt), whereas the other needle electrode and the bottom gold plane
are grounded. We choose here a negative DC bias in order to limit leakage
currents and typically operate the device with |Vac| � |Vdc| (see section 3.5.1.
This immerses the wire into an inhomogeneous electrostatic force field that
is proportional to V (t)2 and features a DC and an AC part.

Locally, on the wire, an infinitesimal volume δV experiences a force
δF(r, t) = f(r, t)δV . The force volumic density can be decomposed as

f(r, t) = fdc(r) + fac(r, t), (4.11)

where the first term is the static contribution and the second term the time
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varying one. In our measurements, |Vdc| � |Vac|. The DC part of the force
field is then proportional to V 2

dc, whereas the AC part scales as 2VdcVac. This
reflects on the excerted force: the typical amplitude of fdc is much larger than
that of fac.

DC force field. The static component fdc(r) induces a static bending of
the wire (the result of static bending for the wire investigated in this chapter
is shown in section 3.5). Furthermore, the external force field fdc(r) “dresses”
the oscillator. In the perturbative regime, and to lowest order, the gradient of
fdc(r) leads to an additional spring constant for the oscillator. For example,
we consider the mode F1x that vibrates along the direction parallel to the
unitary vector x̂. The spring constant due to the gradient of the dc force
reads:

k∇ = −
∫
∂x(fdc(r) · x̂)|uF1x(r)|2d3r. (4.12)

Note that k∇ can be either positive or negative. A similar expression is
obtained for F1y by changing x into y in eq. (4.12). As shown in section 4.7,
this effect induces a measurable shift of the resonance frequency of F1x and
F1y.

AC force field. We now focus on the oscillating part fac(r, t), which is
dominated by a driving at the angular frequency ω (the driving at the 2ω-
harmonic can be neglected). The effective force that appears in eq. (4.7) is
given by:

Feff(t) =
∫

fac(r, t) · um(r)d3r. (4.13)

This expression clearly highlights that the driving force depends on the vec-
torial overlap between the external force field density fac(r, t) and the mode
shape um(r). We did not compute Feff for all the modes. Instead, we em-
ployed FEM simulations to compute the total force and torque applied to
the microwire in the static (DC) case. This provides a good indication of the
ability of our actuation scheme to drive the various vibration modes. These
calculations are detailed in the next section.

4.3.3 Finite-element simulations of the static force field
In this section, we present numerical simulation for the magnitude and di-
rection of the force and torque applied on the nanowire via the electrostatic
excitation. This allows us to study the effect of an off-axis nanowire location.
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Figure 4.2: Investigated device. Top SEM view of the investigated
nanowire. Note the offset of the nanowire along the y direction.

(a)

Figure 4.3: Geometry used in finite-element simulations. This geom-
etry is derived from SEM observation. Distances in nm, not to scale.

Simulated geometry. Figure 4.2 shows a SEM picture of the investigated
device. Globally, its geometry is identical to one of the device presented in
chapter 3. There is however an important difference: in chapter 3, the center
of the nanowire top facet was located on the x-axis defined by the two top
electrodes, in a central position. The top facet is offset by ∼ 200 nm in the
x direction and ∼ 600 nm in the y direction (see fig. 4.2). This asymmetric
location yields additional components for the force field experienced by the
nanowire, as discussed in section 4.3.2. For details regarding nanofabrication,
see the previous chapter in section 3.4.

Simulations are based on the geometry obtained from the SEM inspection
and shown in fig. 4.3. The structure features a total height of 16.4 µm. The
top facet is circular (radius rt = 800 nm), as defined by e-beam lithography.
The bottom end is elliptical due to a slight anisotropy of the etching process:
we measure rbx = 150nm and rby = 105nm. While this was not an important
detail for strain tuning in chapter 3 it has a much greater importance for
the dynamics as discussed in section 4.2. SEM inspection also reveals that
the structure deviates from an ideal conical shape. To account for this, we
introduce 3 intermediate sections (fig. 4.3). The wire is made of GaAs, which
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is treated as an isotropic material (Young modulus, Y = 85.9 GPa; Poisson
ratio, ν = 0.31; volumic mass, ρ = 5.316kg.m−3). In the simulation, the wire
base is rigidly anchored. We have checked that including the first layers of
the substrate (200 nm of gold, on 5 µm of SU8 resist) does not significantly
changes the predictions.

Figure 4.4: Finite element simulations. (a) Calculated components of
the total static force Fdc versus the y-offset ∆y. (b) Calculated components
of the total moment MB

dc versus ∆y. In both cases, we consider three values
for the x-offset: ∆x = 0, 100, 200 nm and use Vdc = −10 V.

Force and torque on a nanowire in an asymmetric location. We
employ finite-element simulations (COMSOL) to investigate the impact of
the asymmetric wire location on the electrostatic force. Starting from the
symmetry point O (on the x axis, in-between the two top electrodes), the
center of the wire base B is offset by ∆x and ∆y. We use here the same
model as in section 3.3.3.2 and recall that free carriers in the wire provide
an important contribution to the force. We consider here the metallic case,
which gives an upper bound for the force. We first focus on Fdc, the total
force experienced by the wire. fig. 4.4a shows the dependence of its three
components as a function of ∆x and ∆y for Vdc = −10 V. At a centered
location (∆x = ∆y = 0), the force features an x-component (towards the
biased electrode) and a z-component (towards the substrate). Increasing ∆y
gives birth to a significant y-component, which points towards the electrodes.
We next consider the total moment calculated at the center of the wire base
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B, MB
dc. In fig. 4.4b, its three components are plotted as a function of ∆x

and ∆y. In addition to the bending moments oriented along the x and y
axes, simulations reveal a longitudinal moment (oriented along z). This last
component only exists for ∆y 6= 0 and arises because of the inhomogeneity
of the force field.

These simulations provide information on the ability of electrostatic ac-
tuation to drive the various modes. We stress that, in all rigour, one should
compute the overlap between the force field and the mode shape to extract
the effective driving force (eq. (4.13)). Nevertheless, the calculations yield a
reasonnable estimate, in particular for the first modes of each family.

To conclude, the complex force field allows us to induce the following
deformations on the nanowire: flexion along x̂, flexion along ŷ, axial defor-
mation (along ẑ) and torsion (rotation of axis ẑ). This tells us that we should
be able to excite the following first order modes: F1x, F1x, L1, T1. We also
see that the contributions associated with the two flexions largely dominate
the other ones.

4.4 Principle of the experiment

4.4.1 Experimental setup

Objective

Cold finger

4 K

Vector Network 
Analyzer

CW laser

Beam splitter

High-pass filter

Microwire

N.A 0.6

Grating spectrometer

Photoluminescenceλ = 830nm

V V(t)= Vdc+Vaccos(ωt)

Single-mode fiber

Figure 4.5: Schematics of the experimental setup.
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Experiments are performed in a micro-photoluminescence setup that is
schematized in fig. 4.5. The sample is mounted on the cold finger of a liquid
helium flow cryostat (T ≈ 4 K) which is continuously pumped to mantain a
pressure (P ≈ 10−6 mbar). The cryostat is equipped with an optical access.
To excite the QD luminescence, we employ a Ti-Sapphire laser operated in
cw mode. The excitation wavelength (λexc = 830 nm) is tuned 10 nm above
the bandgap of GaAs, in the absorption continuum of the wetting layer of the
QDs. This nonresonant excitation scheme enables us to simultaneously light
up all the QDs that are embedded in the nanowire. After spatial filtering
with a single-mode fiber, the laser beam is focused on a single nanowire
with a microscope objective (focal length: 5 mm, numerical aperture: 0.6).
The same objective collects the device luminescence, which is focused on the
entrance slit of a grating spectrometer with a lens (focal length: 75 mm,
magnification: ×25). The grating spectrometer (1200 grooves per mm, focal
length: 64cm) is equipped with a Si CCD camera (1024 pixels, pitch: 26µm).
The width of the entrance slit is 100µm. Considering a uniform illumination,
this defines an upper bound of 140µeV for the spectral resolution (the internal
magnification of the spectrometer is ×1). When the nanowire image at the
entrance of the spectrometer becomes smaller than the CCD pixel size, the
latter imposes a lower bound on the resolution. We take a typical limit that
corresponds to two CCD pixels or 70 µeV. The actual resolution is found
between these two values; it depends on the exact size of the trumpet image
at the entrance of the spectrometer. We drive the wire mechanical vibration
by applying a bias V (t) = Vdc+Vac cos(ωt) to one of the needle-like electrodes
(the other needle electrode and the bottom plane are both grounded). The
signal V (t) is generated by a spectrum analyser (Agilent E50613) and is
routed to the sample with a 50Ω BNC coaxial cable.

4.4.2 Principle
To perform a mechanical spectroscopy of the device, we scan the driving
frequency ω/(2π) while measuring the QD photoluminescence spectrum (in-
tegration time ∼ 1s). Far from a mechanical resonance, the wire is at rest and
the luminescence spectrum consists of sharp spectral lines that are associated
with the recombination of excitonic complexes trapped in QDs (neutral and
charged excitons, neutral biexciton). Approaching the resonance we expect
a spectral broadening from the stress induced shift in the lines (as shown
in fig. 4.6). Quantitative analysis of vibration-broadened spectra aims at
determining the modulation amplitude Eac for relevant QD emission lines.
When the mechanical frequency is much smaller than the QD radiative rate
(Γrad/(2π) = 160 MHz for a typical exciton lifetime of 1 ns), the QD emis-
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Figure 4.6: Calculation of the vibration-broadened spectrum. (a)
the photoluminescence emission of a QD embedded in vibrating nanowire
consists in a Lorentzian profile whose central frequency oscillates in time.
(b) the final spectrum is obtained time averaging, as in eq. (4.14). Here
Eac > δE so that we observe the characteristic camelback lineshape.

sion spectrum adiabatically follows the mechanical oscillation. We describe
the QD emission as a Lorentzian profile whose central frequency oscillates
in time: Eeg(t) = Edc + Eac(ω) cos(ωt). Here, Edc includes the static shift
induced by the static part of the electrostatic force field. Since we employ
continuous wave (CW) excitation and do not record the photon arrival time,
we discarded a phase term that is not relevant for our experiments. We also
assume that the spectral linewidth δE remains constant in the course of the
oscillation. Time averaging then yields the emission spectrum:

S(E, ω) = Iint

(
ω

2π

) ∫ + π
ω

− π
ω

δE

2π
1

(E − Eeg(t))2 + (δE/2)2dt, (4.14)

where the scaling factor Iint corresponds to the spectrally-integrated intensity.
When Eac exceeds δE, eq. (4.14) yields a “camelback” lineshape (see fig. 4.6),
with two peaks that are approximately separated by 2Eac. Since Eac is
proportional to the vibration amplitude xac, it is clear that the brodenand
QD spectrum directly reflects the amplitude response of the oscillator.
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Figure 4.7: Example of wide-range frequency scan. Measured photo-
luminescence intensity (color coded) versus the photon energy and the driving
frequency ω/(2π). The driving frequency increases from 5MHz up to 61MHz
by steps of 5 kHz and the measurement is performed for Vdc = −10 V and
Vac = 1 V. Total measurement time: 4h.

4.4.3 Example of widerange frequency scan
Figure 4.7 shows QD photoluminescence spectra as the driving frequency
is varied from 5 MHz and up to 61 MHz by steps of 5 kHz. The discrete
resonances of the nanowire stand on a very clean background. This is typ-
ically the case up to ∼ 120 MHz. Mode identification will be discussed in
section 4.5. It is based on the modulation pattern of the various QDs em-
bedded in the microwire. This experimental fingerprint is complemented by
finite-element simulations.

The total scan lasted 4 hours: this measurement is thus also an excellent
test of the QD spectral stability. However, fig. 4.7 reveals that some QD lines
can exhibit significant spectral jumps (e.g. close to 7 MHz).In the following
we will mostly discuss QD lines 1, 2 and 3.

4.4.4 Fit of vibration-broadened QD emission spectra
This section discusses the fit process, which is illustrated for the flexural
mode F4x. The left panel in fig. 4.8a shows the measured QD photolumine-
scence spectra when scanning the driving frequency across the mechanical
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Figure 4.8: Fit procedure - mode F4x. (a) Left panel: Measured photo-
luminescence intensity (color-coded) versus the photon energy and the driv-
ing frequency ω/(2π) (zoom on line QD1). Right panel: fit. (b) Linecuts
for selected ω/(2π) (transparent solid lines: experimental data, plain solid
lines: fit). (c) Mechanical spectrum: modulation amplitude Eac of QD1
versus ω/(2π) (disks: experiment, red solid line: fit). Driving parameters:
Vdc = −6 V and Vac = 0.63 V.

resonance F4x. We zoom here on the brightest QD line 1, which dominates
the spectra. We fit the measurement to a broadened Lorentzian profile, as
given by eq. (4.14). The fit parameters are: the unperturbed peak energy,
the QD linewidth, the integrated intensity and the modulation amplitude
(Edc, δE, Iint and Eac, respectively) plus a constant background. The fit
process runs as follows. We first select a driving frequency “far” from the
mechanical resonance. This allows us to determine Edc, δE, Iint as well as the
background level. We next fix these quantities (within ±5% on account of
possible experimental drifts). For all driving frequencies we next adjust Eac
in order to reproduce the experimental spectra. The right panel in fig. 4.8a
demonstrates that this procedure accurately reproduces the emission of QD1.
The fit quality is confirmed by the linecuts shown in fig. 4.8b. When the wire
vibrates, the QD spectrum features a characteristic camel back shape (see
fig. 4.6). Figure 4.8c shows the modulation amplitude of QD1 as a function
of ω/(2π). Since Eac(ω) ∝ xac(ω), this plot directly reflects the amplitude
response of the oscillator. In the low-loss limit and close to the resonance
peak, the latter is well approximated by the square root of a Lorentzian:

xac(ω) ∝ 1√
(ω − Ωm)2 +

(
Ωm

2Qm

)2
. (4.15)
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A fit to the modulation amplitude response then yields the resonance fre-
quency Ωm/(2π) = 59.45MHz and the mechanical quality factor Qm = 1030.

4.4.5 Linear dependence of the vibration amplitude on
Vac
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Figure 4.9: Impact of Vac on the vibration amplitude. (a) Measured
photoluminescence spectra of QD line 1 for increasing values of Vac, when
driving the mode F4x at resonance (Vdc = −6 V). Transparent solid lines:
experimental QD spectra, plain solid lines: fit. (b) Modulation amplitude
Eac of QD1 as a function of Vac. The disks are deduced from experimental
data and the solid line is a linear fit.

The measurements presented in this chapter are performed in the linear
vibration regime. In particular, we have checked that Vac does not affect
the resonance frequency nor the mechanical Q-factor. We have also checked
that the vibration amplitude is proportional to Vac. As an example, we
consider here the mode F4x. fig. 4.9a shows the spectra of QD1 when F4x is
driven at resonance for increasing values of Vac. From a fit of the data, we
determine the modulation amplitude Eac. This quantity — proportional to
the vibration amplitude — is plotted versus Vac in fig. 4.9b. As expected,
Eac is proportional to Vac.

4.5 Identification of the vibration modes
Mode identification is based on the measured modulation pattern of the
embedded QDs. This experimental information is complemented by finite
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element simulations.

4.5.1 The QD ensemble as a probe for the transverse
stress profile

Figure 4.10: Identification of three families of vibration modes. Flex-
ural mode F1x: (a) Measured photoluminescence intensity (color-coded) ver-
sus the photon energy and the driving frequency ω/(2π). (b) Modulation
amplitude Eac of QD lines 1, 2 and 3, when F1x is driven at resonance
(ω/(2π) ≈ 305 kHz). (c) and (d): Similar plots for the flexural mode F1y.
(e) and (f): Similar plots for the longitudinal mode L1. We fix Vdc = −5 V
for all measurements; F1y (a,b) is driven with Vac = 64 mV, F1x (c,d) with
Vac = 57 mV and L1 (e,f) with Vac = 199 mV.

The left panels in fig. 4.10 show closeups on the F1x, F1y and L1 reso-
nances, which peak at 304 kHz, 230.5 kHz and 24.65 MHz, respectively. In
all cases the wire vibration is revealed by a simultaneous blurring of QD
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emission lines. Strikingly, driving F1x, F1y or L1 yields very different modu-
lation patterns for the various QD lines (fig. 4.10). The embedded, pointlike
QDs probe the strain at various (random) locations in the wire cross section.
The observed modulation pattern thus directly reflects the transverse strain
distribution, which we leverage for unambiguous mode identification.

In fig. 4.10, we selected three spectral lines (QD1, 2 and 3) on account of
their spectral stability and their contrasted response to the various vibration
modes. The right panels (b), (d) and (f) show the modulation amplitude
of these lines when F1x, F1y and L1 are driven at resonance. When exciting
F1x, QD2 is much less modulated than QD1 and 3. This reflects the inho-
mogeneity of the stress pattern (fig. 4.1b) and implies that QD2 is closer to
the y-oriented minor diameter than QD1 and 3 [10]. Driving F1y completely
reverses the modulation pattern: QD2 is much more modulated than the
two other lines. Roughly speaking, the stress distribution of F1y is obtained
by rotating the one of F1x by π

2 . Thus, QD1 and 3 are much closer to the
x-oriented major diameter than QD2. When driving L1, all QDs exhibit
a similar modulation. This reflects the very homogeneous stress distribu-
tion of this mode. In the following, mode identification is also backed by
finite-element simulations.

4.5.2 Finite element simulations of vibration modes

We perform FEM mechanical simulations in order to find the resonance fre-
quency of the supported vibration modes. The predicted resonance frequen-
cies provide guidelines for mode identification and complement the measure-
ment of the QDs modulation pattern. The calculated frequencies are listed
in table 4.1. Overall, we obtain a good agreement between numerical simula-
tion and measurements. We stress that the considered frequency span covers
3 orders of magnitude and that we directly plugged the wire geometry as
derived from SEM observation, without any adjustment. For a given mode,
we define the relative error ε = |Ωsim

m /Ωexp
m − 1|. The average error for the Fx

family (7 modes) is ε̄ = 8%. For the Fy family (5 modes), ε̄ = 16%. Finally,
we obtain ε = 7% for L1.
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Exp. Simulations
Ωm

2π
Ωm

2π
meff uzpf

|gmax
m |
2π

(MHz) (MHz) (pg) (fm) (MHz)
F1y 0.230 0.183 49.2 30.5 0.37
F1x 0.307 0.251 48.9 26.1 0.41
T1 − 4.07 37.3 7.43 0.15
F2y 6.04 7.01 29.0 6.42 1.07
F2x 7.56 7.82 30.1 5.97 1.09
L1 24.7 26.5 88.9 1.89 1.59
F3y 25.6 30.1 9.98 5.28 1.85
F3x 29.6 32.6 10.9 4.86 1.80
F4y 50.5 60.8 6.93 4.46 2.64
F4x 59.4 65.7 7.76 4.06 2.48
F5y − 99.1 5.41 3.96 3.34
F5x 102 107 6.24 3.55 3.08
T2 − 120 10.43 2.59 0.15
F6y 134 144 4.35 3.67 3.89
F6x 146 154 5.22 3.23 3.57
L2 − 174 21.00 1.51 2.08
T3 − 190 5.77 2.77 0.20
F7y − 194 3.47 3.53 4.23
F7x 189 208 4.38 3.04 3.92

Table 4.1: Finite-element modelling of vibration modes. The mea-
sured experimental frequencies are shown in the first column (Exp.); for F1x

and F1y we show the low-Vdc value.

4.6 Two remarkable modes

4.6.1 The high-order flexural mode F7x

This section discusses the excitation and detection of the the highest reso-
nance identified so far. The modulation pattern of QD1, 2 and 3 shown in
fig. 4.11c is characteristic of the Fx family. We identify this mode as the
high-order flexural mode F7x, which features 7 displacement antinodes (see
fig. 4.11a).

As we can see in fig. 4.11b an unstable spectral line is present close to
QD1. It is stable on the timescale of the measurement of F7x, but was
for example absent in the measurement of F4x (fig. 4.8). The left panel in
fig. 4.12a shows the measured QD photoluminescence spectra when scanning
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Figure 4.11: Mechanical spectroscopy of the high-order flexural
mode F7x. (a) Calculated mode shape of F7x (not to scale); the σzz > 0
stress component is color-coded. (b) Measured photoluminescence intensity
(color-coded) versus the photon energy and the driving frequency ω/(2π). In
this measurement, an unstable emission line is close to QD1. (c) Modula-
tion amplitude Eac of QD lines 1, 2 and 3, when F7x is driven at resonance
(ω/(2π) = 189.5 MHz). (d) Mechanical spectroscopy of F7x : modulation
amplitude Eac of QD1 versus the driving frequency ω/(2π) (disks: experi-
mental data, solid line: fit). Driving parameters: Vdc = 5 V, Vac = 1 V.

the driving frequency across the mechanical resonance F7x. The fit process is
similar to the one described in section 4.4.4, except that the measured spectra
are now fit to a sum of two broadened Lorentzian profiles. An excellent
agreement with the experimental data is also achieved in this case, as shown
by the right panel in fig. 4.12a and the linecuts in fig. 4.12b. This demonstrate
the robustness of the fit approach.

We focus on QD1 and determine Eac for the various driving frequencies
ω/(2π) (fig. 4.11d). The fit of the data yields the mechanical resonance fre-
quency Ωm/(2π) = 189.5 MHz and the mechanical quality factor Qm = 800.
So far, most experiments with QD-nanowire hybrid systems have involved
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Figure 4.12: Fit procedure - mode F7x (a) Left panel: Measured photo-
luminescence intensity (color-coded) versus the photon energy and the driv-
ing frequency ω/(2π) (zoom on QD line 1, note the presence of a nearby QD
line). Right panel: fit. (b) Linecuts for selected ω/(2π) (transparent solid
lines: experimental data, plain solid lines: fit). (c) Mechanical spectrum:
modulation amplitude Eac of QD1 versus ω/(2π) (disks: experiment, red
solid line: fit). Driving parameters: Vdc = −5 V and Vac = 1 V.

the fundamental flexural mode (F1x or F1y). The resonance frequency of F7x

is typically one thousand times larger. Furthermore, it exceeds the QD radia-
tive rate (Γrad/(2π) = 160MHz). This will enable the future exploration of a
new interaction regime for QD-nanowire hybrid systems, beyond the purely
adiabatic regime.

These considerations call for a comment regarding data analysis. Whereas
the adiabatic model is perfectly suited to describe low-frequency resonances
such as F1x, F1y and L1, the mode F7x would require a more refined treatment.
In our experiments, deviations from the adiabatic model are likely blurred by
i) additional QD decoherence due to the nonresonant optical excitation and
ii) the spectral resolution of the setup which vastly exceeds the mechanical
frequency. As a result, the adiabatic model provides an excellent description
of the QD emission spectrum, even for F7x.

4.6.2 The longitudinal resonance L1

We have seen that the wire also supports longitudinal vibration modes (fig. 4.10a).
These are particularly interesting for hybrid nanomechanics. Indeed, the
coupling strength gm weakly depends on the QD location and reaches a max-
imum value on the wire axis. From a photonic point of view this location
simultaneously maximizes the coupling to the fundamental guided mode [20]
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Figure 4.13: Mechanical spectroscopy of L1. Modulation amplitude Eac
of QD1 versus the driving frequency ω/(2π). Disks: value obtained from the
fit of the experimental spectrum; solid line: fit to the amplitude response of
a driven harmonic oscillator. The arrows indicate the linewidth at 1√

2 -level.
Driving parameters: Vdc = −5 V, Vac = 199 mV.

and the distance to the sidewall — host of potential decoherence sources.
fig. 4.13 shows the resonance curve of L1. This mode resonates at 24.65MHz
and features a quality factor of 1760, close to the one of the fundamental
flexural modes F1x and F1y. Similarly than for flexural modes, higher-order
longitudinal resonances are particularly interesting for nanomechnanics. Fi-
nite element simulations predicts that L2 resonates around 175 MHz. We
indeed observe a feature in this frequency range, but on a large spectral
bandwidth and with a lot of spectral rebounds. To a much smaller extend,
such rebounds are already visible in the resonance curve of L1 (fig. 4.13). We
suspect here a coupling with substrate modes or a strain-coupling between
neighbouring structures [45, 46]. We stress that the structure is glued on the
host substrate using 4 µm of SU8 resist, a relatively soft material (its Young
Modulus, 4 GPa, is much smaller that of GaAs, 85.9 GPa). Whereas the
investigation of collective vibration modes in a very interesting topic on his
own [45, 46], the investigation of higher-order longitudinal modes will require
a new device with a hard bonding layer.
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4.7 Scaling of the mechanical Q-factor with
the mode order

0.1 1.0 10.0 100.0 500.0
Mechanical frequency (MHz)

0

500

1000

1500

2000

2500

3000
Qu

al
ity

 fa
ct

or

F1y

F1x

F2y

F2x

L1

F3y

F3x

F4y
F4x

F5x
F6y

F6x

F7x

Figure 4.14: Mechanical Q-factors. Measured Q-factor and resonance
frequency Ωm/(2π) for the vibration modes identified in this work. Measure-
ment conditions: F1x, Vdc = −0.4V; F1y, Vdc = −2V; F2y to F5x, Vdc = −10V;
F6y to F7x, Vdc = −5 V.

We identified all the series of flexural modes between F1x and F7x, which
unveils the dependence of the quality factor Qm on the mode frequency.
Detailed investigation revealed that special care should be taken with the
fundamental resonance F1x, which is very sensitive to the DC bias (see sec-
tion 4.7). For the fundamental mode, we use the low-Vdc value, Qm = 2500,
as a reference. For all higher-order modes, Qm features an almost negligi-
ble dependence on Vdc. fig. 4.14 shows that the quality factor is surprisingly
robust when resonance frequency increases: from F1x to F7x, Ωm/(2π) is mul-
tiplied by ∼ 103 and Qm only drops by a factor of 3. The series of flexion
modes along y (F1y and F5y) follow a very similar trend.

Impact of Vdc on the fundamental flexural modes. We first focus on
the voltage dependence of the resonance frequency of F1x (fig. 4.15b). When
Vdc varies from −0.4V to −12V, Ωm/(2π) decreases by ∼ 8%. Furthermore,
the shift of the resonance frequency exhibits a quadratic voltage dependence
(dashed line). We attribute this behavior to the spatial dependence of the
DC part of the external force field. In the perturbative regime, the gradient
∂x(fdc(r).x̂) introduces an additional spring constant k∇, which is given by
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a) b) c)

c) d) f)

Figure 4.15: Impact of Vdc on the fundamental flexural modes. (a)
Mechanical resonance of F1x: Modulation amplitude Eac of QD1 versus the
driving frequency ω/(2π). Disks: value obtained from the fit of the exper-
imental spectrum; solid line: fit to the amplitude response of a driven har-
monic oscillator. Arrows indicate the linewidth at 1√

2 -level. (b) Resonance
frequency Ωm/(2π) as a function of |Vdc| (Vdc < 0). Disks: experimental
data; dashed line: fit to a quadratic law. (c) Mechanical Q-factor as a func-
tion of |Vdc|. (d), (e), (f): Similar plots for F1y. Driving conditions: mode
F1x (top panels): in (a) Vdc = −1 V, in all panels (a, b, c) Vac = 57 mV;
mode F1y (bottom panels): in (d) Vdc = −2V, Vac = 162mV, in (e) and (f)
Vac = 63mV except for the data point at Vdc = −2V, taken at Vac = 162mV.

eq. (4.12) (section 4.2). This yields a relative change in the resonance fre-
quency δΩm/Ωm ≈ k∇/(2keff). Since fdc(r).x̂ increases with x, k∇ < 0 and
δΩm < 0, which is also consistent with the observation. Furthermore, the
DC electrostatic force — and thus its gradient — scales as V 2

dc, hence the
observed quadratic frequency shift. Figure 4.15e shows the voltage depen-
dence of the resonance frequency of F1y. In this case, the frequency increases
quadraticaly up to ∼ 3% when |Vdc| increases. Compared to F1x, the y-
polarized mode experiences a projected force gradient of opposite sign, with
weaker amplitude.

We now turn to the voltage dependence of the mechanical quality factors



124 CHAPTER 4. DRIVING NANOWIRE’S VIBRATION MODES

Qm of modes F1x and F1y (figs. 4.15c and 4.15f, respectively). Since the
amplitude of the effective driving force scales as the product VdcVac, one could
naively expect that Vdc and Vac play a symmetric role. This is not always
the case. As shown in fig. 4.15, both the resonance frequency Ωm/(2π) and
the quality factor Qm of the fundamental flexural modes depend on Vdc. In
both cases, Qm decreases dramatically when |Vdc| increases. Considering
for example F1x, Qm exceeds 2500 for Vdc = −0.4 V and drops down to 53
for Vdc = −12 V. The origin of these supplementary mechanical losses is
not yet fully elucidated, but we suspect free-carriers, located in particular
in the nearby electrode stacks. Indeed, electrical measurements reveal a
highly nonlinear I-V curve, with a resistance that strongly depends on Vdc
(section 3.5.1). For all other modes, the impact of Vdc on Ωm/(2π) and Qm

is almost negligible.
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Figure 4.16: Coupling strength. Calculated maximal coupling strength
gmax

m /(2π) as a function of the mechanical frequency Ωm/(2π). For flexural
modes, this maximum value is achieved on the sidewall. For longitudinal
modes, gm is maximum on the wire axis and features a much weaker spatial
dependence.

Scaling of the coupling strength with the mode order. We can
obtain a numerical estimate of the coupling strength gm via FEM simu-
lations. As discussed in section 4.2 the coupling constant is defined as:
gm = (∂xωeg)xzpf, with xzpf =

√
h̄/(2meffΩm) the rms value of the zero

point fluctuations of the oscillator position. For our self-assembled QDs,
∂xωeg = 1

h̄

[
a∂xεh + b∂xεsh

]
. Here, εh = εxx + εyy + εzz is the hydrostatic
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shear strain and εsh = 2εzz − εxx − εyy is the tetragonal shear strain; a and
b are the deformation potentials of the QD material. We consider a QD
made of In0.5Ga0.5As and perform a linear interpolation between the defor-
mation potentials of pure InAs and pure GaAs [194] to obtain a = −7.5 eV
and b = −1.9 eV. This immediately yields ∂xεh and ∂xεsh. The effective
mass meff can for example be obtained from the time-averaged elastic energy
〈Wel〉t = 1

4meffΩ2
mx

2
ac. Owing to the inhomogeneous strain distribution in the

wire cross-section, gm generally depends on the QD location. In table 4.1,
we give the maximum value of the coupling strength |gmax

m |. For flexural and
torsional modes, the maximum value is achieved on the sidewall. For longi-
tudinal modes, it is reached on the wire axis.

Figure 4.16 shows the maximum value gmax
m in the QD section for the in-

vestigated modes. For flexural modes, gm increases linearly with the distance
to the neutral diameter and reaches a maximum on the sidewall. For F7x,
gmax

m /(2π) is as high as 3.9 MHz: this is the largest value reported so far for
a QD-based hybrid system. In particular, it exceeds the state-of-the-art of
high-frequency QD-hybrid systems [193, 83] by nearly two orders of magni-
tude. Such an improvement results from the combination of two key factors.
First, the longitudinal uniaxial stress applied along z = [001] optimizes the
QD energy shift. Indeed, the shifts associated with hydrostatic and tetrag-
onal shear strains add constructively [171]. Second, fig. 4.16 demonstrates
that increasing the mode order vastly increases the coupling strength. Such
a favourable scaling can be understood from a simple analytical model that
considers QDs located at the anchoring end of a cylindrical wire. Due to
the increase in the curvature radius with the mode order, ∂xωeg ∝ Ωm; in
parallel, xzpf ∝ 1/

√
Ωm, which leads to gm ∝

√
Ωm for this simple case.

Note that here the coupling strength is estimated using finite-element
simulations, another way to obtain the coupling strength would be by mea-
suring the actual physical displacement and use eq. (4.3).

4.8 Conclusion
We leveraged an on-chip actuation technique to explore the high-order vi-
bration modes of a GaAs nanowire that embeds self-assembled inas QDs.
The QDs microphotoluminescence spectrum allows to optically detect me-
chanical vibration and to identify the mode nature. More specifically, we
conduct a comprehensive characterization of flexural vibrations over the
200 kHz − 200 MHz frequency span and identify a mode that resonates close
to 189.5 MHz, with a quality factor as high as 800. The QD-mode coupling
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strength — calculated using finite-element simulations — reaches 3.9 MHz:
this is the highest value reported so far for a QD-hybrid system. Beyond flex-
ural resonances, longitudinal modes are also particularly promising: close-to-
axis QD locations simultaneously optimize both the coupling strength and
the photonic properties [20]. Whereas L1 was clearly identified in the present
device, the L2 resonance is blurred, likely by hybridization with modes sup-
ported either by the substrate or by nearby nanowires [45, 46].

The massive increase in the resonance frequency achieved thanks to higher-
order modes brings QD-nanowire hybrid systems very close to the so-called
resolved-sideband regime [9], in which the mechanical frequency Ωm/(2π)
exceeds the total QD linewidth δE/h. Under resonant optical excitation,
a self-assembled InAs/GaAs QD embedded in a photonic trumpet features
δE/h as low as 1 GHz [132]. Over the years, bottom-up nanowire QDs
have also demonstrated impressive progress: in state-of-the-art InAsP/InP
structures, δE/h now reaches 300 MHz [105]. Spectrally-resolved phonon
sidebands enable frequency conversion based on optomechanical wave mix-
ing [199, 83]. In this context, QD-nanowire systems offer a large coupling
strength and an excellent optical interfacing between the QD and external
collection optics [36, 151, 131].

Control of the wire motion by optical means is another important per-
spective of this work. For example, a selective driving of the low-frequency
sideband cools down the mechanical mode, which constitutes a first step to-
wards the generation of quantum states of motion. This first step is in fact
already quite challenging: whereas cavity optomechanics exploits the circu-
lation of many photons to boost the effective coupling strength [33], a hybrid
system operates with at most one quanta. This imposes stringent constraints
on gm and Qm: in the resolved sideband regime (gm/Ωm)2Qm should exceed 1
to enable efficient mode cooling [200]. Considering the mode F7x identified in
this chapter, we obtain a value of 0.2 that approaches the cooling threshold.
Looking ahead, shrinking the nanowire length down to the submicron range
appears as a simple yet powerful strategy to further boost gm by one order
of magnitude. Mode cooling then becomes possible with Qm ∼ 103.



Conclusion and perspectives

In the following, we summarize the main results and discuss the perspectives
associated with each chapter.

Nanopost optical cavity. In chapter 2 we have studied a novel optical
nanocavity based on a nanopost design. Despite its simplicity, it offers a large
extraction efficiency and a broadband acceleration of spontaneous emission.
Specifically we extended the study done in [97] by performing resonant exci-
tation spectroscopy of a QD embedded in the nanocavity. From a technical
point of view, it is the first time that RE measurements have been done
on such a structure. These measurements have been performed with a con-
focal microscope using a cross-polarization scheme for laser rejection. We
found a laser rejection exceeding 106, quite impressive for such a structured
sample. During this study, we gained a lot of expertise in optical resonance
spectroscopy, in particular in the way of building up and align the optical
setup.

We investigated a trion emission line experiencing a Purcell acceleration
by a factor of 4.9 (T1 = 340 ps). We observed that an additional weak, non
resonant laser is crucial to obtain a resonance fluorescence signal. Such a be-
haviour has been observed by other groups and is attributed to a stabilization
of the QD charge environment. We performed two types of measurements:
linescans and intensity auto-correlation measurements. Linescans reveal a
significant spectral broadening, that we attribute to a low-frequency spectral
wandering. A fit to a Voigt profile yields a Gaussian contribution (assumed
to account for all the spectral wandering) and a Lorentzian one (assumed
to account for homogeneous broadening, including power broadening). Our
model yields a spectral wandering with a full width at half maximum of
2 GHz which shows no correlation with the resonant excitation power. We
attribute it mainly to charge noise and will discuss possible improvements in
the following section. In the low-power limit, we obtain a ratio T2/2T1 ' 0.5
that is far from the radiative limit of T2/2T1 = 1. During his PhD at Néel
Institute, Maxime Gaignard measured a Hong Ou Mandel visibility of 80%

127
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for photons separated by 2 ns emitted by exactly the same device. This sug-
gests that T2/2T1 ' 0.8 and that our model overestimates pure dephasing.
A possible explanation would be a contribution to spectral wandering with a
Lorenztian profile. We now turn our attention to intensity auto-correlation.
At long delays, the measurements reveal that the QD is blinking on a typical
timescale of a few hundreds of ns. This effect can be partially mitigated by
increasing the non-resonant laser power.

Nanocavities are interesting in particular to realize bright and broadly-
tuneable sources of indistinguishable single photons. We discus below future
directions and first focus on the improvement of the QD spectral properties
and next discuss spectral tuning.

A recent theoretical study, conducted in collaboration with the group of
Niels Gregersen (DTU), suggests straightforward improvements of the cavity
design. Indeed, the second antinode of the cavity mode offers in general bet-
ter performances both for the Purcell factor and for the far-field collection
efficiency. The Purcell factor can reach 7.7, which is of course beneficial to
maximize the photon indistinguishability. In addition, this second antinode
is more favorable to limit decoherence due to thermal vibration. Indeed,
previous work in the team has shown that nanowire structures are highly
sensitive to this spectral broadening mechanism. Even if the short height
of the nanopost reduces a lot the number of low-frequency modes (say be-
low 1GHz), preliminary numerical studies reveal that the first flexural mode
(500 MHz) could lead to a significant line broadening for a QD located on
the first antinode. These simulations also show a significant improvement
when moving the QD to the second antinode, which is located farther from
the anchoring point. Regarding the low-frequency charge noise, the applica-
tion of an electrical field on the QD is an established technique to control
the charge environment of the QD [165, 135]). Still in collaboration with
the DTU group, we investigated several nanocavity designs that are com-
patible with electrical contacts. This should improve the control over the
low-frequency noise. Beyond InAs self-assembled QDs, GaAs QDs have also
recently demonstrated appealing performance, in particular photon interfer-
ence from two distinct QDs without any Purcell acceleration [185, 205]. The
design and fabrication process could be easily adapted in order to define an
AlGaAs nanocavity around these GaAs QDs.

Finally, wavelength tuning of a QD embedded in a nanopost cavity can
also be achieved by mechanical strain. It is unlikely that the electrostatic
actuation demonstrated with photonic trumpets will work with a 0.5µm-high
nanowire. Instead, we plan to glue the nanopost structure on a planar piezo
actuator [184], and to transfer the mechanical strain from the planar piezo



4.8. CONCLUSION 129

to the nanowire.

Electrostatically-actuated photonic trumpet. In chapter 3, we demon-
strated the strain-tuning of QDs embedded in a photonic wire antenna. In
this device, the antenna is flanked by two needle-like electrodes and the bot-
tom mirror serves as a third electrode. Biasing one of the needle electrode
with a DC voltage whereas the other electrodes are grounded leads to an
electrostatic force that bends the nanowire and immerses the QDs in a strain
field. Biasing the other needle-like electrode bends the nanowire in the oppo-
site direction. The emission of a given QD can thus be blue- and red-shifted,
with a maximum absolute shift of 0.5meV for Vdc = −10V. In another device,
in which the trumpet is largely off-centred, we achieved a shift as large as
2.5 meV for a similar voltage.

In the present device, the tuning range is limited by the maximum ap-
plied voltage. The latter is in turn imposed by the appearance of leakage
currents. We suspect here a bad quality of the dielectric layers (in particular
Si3N4 that was deposited at low temperature for technical reasons). In a fu-
ture device, realistic improvements in the quality of the dielectric materials,
possibly combined with an increase of their thicknesses, should allow multi-
plying the maximum voltage by a factor of 10. This will increase the applied
force and consequently the tuning range by two orders of magnitude. An-
other simple idea is to bring the trumpet closer to one of the electrodes. One
then increases a lot the bending force, but looses the ability to significantly
bend the structure in the other direction.

The ability to tune independently several devices embarked on the same
chip represents a key asset for the scale-up to applications requiring multiple
sources operated in parallel. This will require a clean, resonant QD excitation
to optimize the spectral coherence of the emitted photons. We note here that
strain tuning can be included in a feedback mechanism in order to stabilize
the QD emission with respect to low frequency drifts.

In addition to tuning of the QD emission wavelength, strain can also be
employed to adjust other optical properties of the QDs, such as the FSS.
This is crucial for the emission of polarization-entangled pairs of photons,
emitted by the radiative cascade of the bi-exciton. In order to compensate
for the natural asymmetry of most QDs, one can immerse the QD in a strain
field that features an in-plane anisotropy [183] (εxx 6= εyy). In a wire with
a circular section, bending yields equal strain components εxx and εyy. A
non-symmetric shell of SiO2 breaks this symmetry and creates an in-plane
mechanical anisotropy while preserving the optical symmetry of the nanowire
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[61](the refractive index of GaAs is much larger than that of SiO2).
Finally, the single-mode electromagnetic environment defined by a pho-

tonic wire [20, 131] combined with the specific stress pattern associated with
trumpet bending is also particularly well suited to explore collective effects,
such as superradiance [73]. Indeed, the presence of tensile and compressive
stress in a given wire cross-section facilitates the tuning of two distinct QDs
into resonance. In this context, a supplementary pair of electrodes would
offer a vectorial control over the bending direction, enabling to control the
orientation of the stress gradient in the wire cross-section. This could allow
for the tuning of up to 3 distinct QDs into resonance.

High-order nanowire vibration modes. We have shown in chapter 4
that on-chip electrodes also constitute a very convenient tool to excite the vi-
bration modes of the nanowire. This capability is relevant for hybrid nanome-
chanics, a line of research that investigates and exploits the coupling between
a quantum system (here the QD) and a mechanical oscillator. In our exper-
iments, the QDs microphotoluminescence spectrum is leveraged to optically
detect mechanical vibration and to identify the mode nature. Starting from
the sub-MHz fundamental flexural mode, we have shown that high-order flex-
ural resonances enable a dramatic increase of both the mechanical frequency
and the hybrid coupling strength. In particular, we identify a flexural mode
that resonates close to 190 MHz — a value that exceeds the QD radiative
rate — with a mechanical quality factor as high as 800. For a QD located
at the stress maximum, the hybrid coupling strength reaches 3.9 MHz, the
highest value reported so far for a QD hybrid system.

The massive increase in the resonance frequency achieved thanks to higher-
order modes brings QD-nanowire hybrid systems very close to the so-called
resolved-sideband regime [9], in which the mechanical frequency exceeds the
total QD linewidth. Under resonant optical excitation, a self-assembled
InAs/GaAs QD embedded in a photonic trumpet indeed features a linewidth
as low as 1 GHz [132]. In the resolved-sideband regime, Raman transitions
appear as spectrally-resolved satellites on the side of the bare QD emis-
sion. Driving these transitions with a narrow laser enables a control over the
phonon population of the mode. To enter deeply into the sideband regime,
a decrease of the nanowire height will help in increasing both the mechani-
cal frequencies and the spectral separation between the various resonances.
Another benefit of the size reduction is the increase in the hybrid coupling
strength, due to the decrease in the effective mass of the oscillator.

In this respect, the nanopost optical cavity can be seen as an extremely
short nanowire. As such, the structure investigated in the first chapter is also
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interesting in the context of hybrid nanomechanics. Indeed, finite-element
simulations predict that the fundamental F1 mode resonates close to 500MHz
and that the F2 resonance should occur close to 2 GHz. During my stay at
Basel, we tried to measure the Brownian motion of theses modes, using a
technique similar to the one employed in [134] (a cw narrow laser is tuned
on the flank of the QD transition and Brownian motion generates noise on
the resonant PL signal at the vibration frequency, that can be deduced from
a Fourier analysis of the signal). At the time, we did not found any ev-
idence of any vibrational mode. However, recent advances in the group of
Richard Warburton have shown that high-frequency modes (frequency larger
than the QD radiative rate) require specific detection condition. The laser
power should be increased such that the Rabi frequency matches the me-
chanical frequency [167]. This result likely explains the lack of signal in
the first experiments; another experimental run will be soon scheduled. Be-
yond flexural resonances, longitudinal modes are also very interesting for
future experiments. In that case, close-to-axis QD locations simultaneously
optimize both the coupling strength and the photonic properties [20]. We
estimate that with a mechanical quality factor of the order of 1000, the
hybrid coupling strength in nanopost structures should enable a cooling of
the mechanical mode. This constitutes a first, important step towards the
all-optical manipulation of the mechanical state.
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