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Abstract

Making sound decisions is an inevitable challenge for managing the performance of socio-
technical systems. Uncertainty concerning the outcome of decisions leads to seeking princi-
ples that systems might follow. The current study leverages and investigates a framework
called, “Physics Of Decisions” as an innovative approach for decision support in the context
of instability and uncertainty. The focus is on developing a theoretical and mathematical
model to depict risks and opportunities as physical forces pushing and pulling investi-
gated systems as an object within a multidimensional performance framework built on
the system’s evaluation criteria. The main ambition is to define a method of identifying
forces, including their origins, intensity, and interdependence, to inherit principles and law
from physics. The principles of classical physics are investigated in the defined framework
considering mapping management concepts to the physical notations. This connection
allows to (i) examine the system’s developments in its performance space through kinematic
analysis and (ii) provide reactive and predictive decision support as a result of physical
forces analysis and its application to the system through force-related physical laws. Investi-
gating the system’s behavior under such laws might disclose its compound relationships,
thus leading to proper decisions. The foremost objective of this Ph.D. thesis is to establish
a generic perspective for performance management of socio-technical systems that visual-
izes and integrates the impact of risks and opportunities to control the performance of the
examined system. Overall, the main intended contribution of this study is to demonstrate
the principles of connecting the system to its performance through an innovative model-
ing framework using different techniques. In further depth, this approach transforms the
investigated system and its internal and contextual potentialities from implicit to explicit
connection using sensitivity analysis, differential equations, and optimization functions. The
significance of this study has been investigated in various application domains: (i) Polling
place management, simulated with an Agent-Based Model (ABM), (ii) an epidemic-affected
population, simulation with System Dynamics (SD) simulation model, (iii) road traffic man-
agement, performed with Discrete Event Simulation (DES) model, and (iv) a mathematical
model to simulate a manufacturing production model.

Keywords: Decision Support System (DSS), Performance Management, Modeling, Risks,
Opportunities, Simulation, Physics, Force.
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Resumé

Prendre des décisions judicieuses est un défi incontournable pour gérer la performance
des systèmes sociotechniques. L’incertitude concernant le résultat des décisions conduit
à rechercher des principes que les systèmes pourraient suivre. L’étude actuelle exploite
et étudie un cadre appelé "Physics of Decision" en tant qu’approche innovante d’aide à la
décision dans un contexte d’instabilité et d’incertitude. L’accent est mis sur le développement
d’un modèle théorique et mathématique pour décrire les risques et les opportunités en tant
que forces physiques poussant et tirant les systèmes étudiés en tant qu’objet dans un
cadre de performance multidimensionnel construit sur les critères d’évaluation du système.
L’ambition principale est de définir une méthode d’identification des forces, y compris leurs
origines, leur intensité et leur interdépendance, pour hériter des principes et des lois de la
physique. Les principes de la physique classique sont étudiés dans le cadre défini en tenant
compte des concepts de gestion de mappage aux notations physiques. Cette connexion
permet (i) d’examiner les développements du système dans son espace de performance
grâce à l’analyse cinématique et (ii) de fournir une aide à la décision réactive et prédictive
à la suite de l’analyse des forces physiques et de son application au système par le biais
de lois physiques liées aux forces. Enquêter sur le comportement du système en vertu
de telles lois pourrait révéler ses relations complexes, conduisant ainsi à des décisions
appropriées. L’objectif premier de ce doctorat est d’établir une perspective générique
pour la gestion de la performance des systèmes socio-techniques qui visualise et intègre
l’impact des risques et des opportunités pour contrôler la performance du système examiné.
Dans l’ensemble, la principale contribution prévue de cette étude est de démontrer les
principes de connexion du système à ses performances grâce à un cadre de modélisation
innovant utilisant différentes techniques. Plus en profondeur, cette approche transforme le
système étudié et ses potentialités internes et contextuelles d’une connexion implicite à une
connexion explicite en utilisant une analyse de sensibilité, des équations différentielles et des
fonctions d’optimisation. L’importance de cette étude a été étudiée dans divers domaines
d’application : (i) la gestion des bureaux de vote simulée avec un modèle à base d’agents
(ABM), (ii) une simulation de population touchée par une épidémie avec le modèle de
simulation system dynamics (SD), (iii ) gestion du trafic routier réalisée avec un modèle de
simulation d’événements discrets (DES), et (iv) un modèle mathématique pour simuler un
modèle de production manufacturière.

Mots clés : Système d’Aide à la Décision (DSS), Gestion de la Performance, Modélisation,
Risques, Opportunités, Simulation, Physique, Force.
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Preface

This dissertation presents a physics-based framework to investigate an innovative decision
support approach called “Physics of Decision,” whose primary idea has been raised by
Benaben et al. in the following article. “A tentative framework for risk and opportunity detec-
tion in a collaborative environment based on data interpretation” (Benaben et al., 2019b). This
foundation aimed at conveying classical physics to management science, notably in the risk
management field. Later, Benaben et al. developed their initial idea to assume potential
perturbations in systems as “physical forces” impacting the system’s indicators (Benaben
et al., 2019a). In their recent work, Benaben et al. formally defined the physics-based theory
to navigate among risks and opportunities, claiming that “Instability is the norm!” and
decision support systems must provide tools and technologies to deal with that (Benaben
et al., 2022). The proposed theory has so far been investigated in a wide range of contexts,
including the COVID-19 pandemic crisis, air pollution, traffic management, supply chain
management, project management, and polling place management.

This dissertation is an article-based presentation including four primary parts leveraging
and investigating the aforementioned physics-based theory. The first part presents the
context and problematic formulation. The second part is dedicated to the background of
the study and examining research works in the literature. The third part illustrates the
applicability of this theory and its corresponding methods through four contributions to
four distinguished case studies. Finally, the fourth part concludes this effort and provides
potential research places for the future.

Throughout the study, important notes and information are highlighted as follows.

1. The key “Objectives” and “Questions” are presented in gray-colored frames.

2. The essential “Requirements” are presented in green-colored frames.

3. The significant “Takeaways & Summaries” are presented in red-colored frames.

Like many researchers in academia, I do believe uncertainty acknowledges undiscovered
rules behind human social activities. The current advances, notably in the psychology realm,
move toward proofing that behind human decision-making, natural laws from physics,
chemistry, biology, etc., lied because there may be a strong connection between nature
and social activities. This work is a rudimentary investigation that aims at advancing this
ambition.

Nafe Moradkhani.
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1.1 Main overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Performance Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1.8 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Main overview
The world is the whole body of things and phenomena observed or postulated; which
comprise a whole and work together to make things happen and are known as a system
(Merriam-Webster, 2022). A system is “a regularly interacting or interconnected set of
elements creating a cohesive whole,” according to (Merriam-Webster, 2022). Similarly,
the Oxford Dictionary describes a system as “a group of things, pieces of equipment, etc.,
connected or work together” (Oxford, 2022). Most of the world’s systems, such as those in
plants, animals, rivers, mountains, sky, clouds, and sun, are “natural,” meaning humans did
not design or construct them. Some systems are “engineered,” indicating their development
was the result of planning, designs, and construction, much as the production of computers,
pencils, cars, or building manufacturing, enterprises, etc. (Webb, 2009). The “abstract”
systems, including, for instance, the legal, social, and educational systems, might not be
easily observed or touched even if people likewise created them. No matter what kind it is,
it might be considered a system if it is composed of components or entities that interact to
provide a variety of outcomes. A system’s borders, structure, and purpose—all impacted
and surrounded by its environment—are reflected in how it functions (i.e., they affect the
system’s behavior). Therefore, whether natural, engineered, or abstract, a system refers
to a collection that has been put together for particular purposes. The system, its border,
structure, and even its purposes are susceptible to circumstances that might influence it.
These events might occur naturally or purposefully through decisions (Backlund, 2000).

Decision support seeks to deliver on system promises (Shim et al., 2002). Many of the current
efforts in this area undergo defeat because making decisions is intrinsically challenging due
to system complexity and its excessive degrees of uncertainty (Kochenderfer, 2015). It might
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Introduction

be possible to lessen these complexities and uncertainties by developing a framework that
can investigate the system by employing tried-and-true principles, such as mathematical
and physical laws. In this context, a detailed examination of complex systems and their
surroundings might shed light on the breadth of system disturbances and viable control
solutions (Sterman, 2010).

Physics touches the whole facet of human life. It enables understanding of the universe
and the natural world—and much of today’s and tomorrow’s technology relies on the
extracted knowledge from physics. Physics delivers the underlying understanding required
for technological advancements that will continue to drive global economic engines, as well
as the technical infrastructure and the necessary skills to benefit from scientific advances and
discoveries (Simonyi, 2012; L. Phillips, 2014; Teixeira et al., 2012). This research is interested
in using physics to understand the behavior of complex systems in response to perturbations
and benefit from physical laws to minimize disturbances and maximize opportunities.

Decision-making refers to a process that leads to selecting an action or a course of action
among several possible alternative options (Kahneman et al., 1984). This process involves
the mental activity or process of obtaining information and understanding through thought,
experience, and the senses, which encompasses all elements of intellectual functions and pro-
cesses such as perception, attention, thought, intelligence, and the formation of knowledge
(Edwards, 1954; Simon, 1979).

Decision theory is concerned with decision-making based on assigning probabilities to
diverse elements and the imposition of numerical implications on the result. There are three
branches of decision theory (Edwards, 1961; Peterson, 2017):

▶ Normative decision theory: is concerned with identifying the optimal decisions where
the best options are continually recognized while considering a hypothetical decision-
maker who is comprehensively rational and capable of doing calculations with perfect
precision. This theory could be exemplified in how managers strive to identify the best
answer to catastrophic problems such as pandemic diseases. For instance, quarantining
the infected individuals must be prior to wearing a mask to decrease the outbreak or vice versa.
Some managers like the delegation model, in which staffs come up with appropriate
answers. Other executives prefer the choice technique that delivers the best solution
and knowledge,

▶ Descriptive decision theory: is concerned with identifying and illuminating regulari-
ties in the decisions that individuals are disposed to make. It is often set apart from
normative decision theory, which aims to explain the decisions that individuals ought to
make (normative statements are characterized by the modal verbs “should,” “would,”
“could” or “must.”). Descriptive decision theory is therefore related to the following
instances. What will happen if the public is forced to wear masks or stay home? Does it
decrease mortality? If yes, how much? If not, how much it increases the mortality rate?,

▶ Prescriptive decision theory: is interested in describing observable activities and
behaviors through conceptual models, assuming that individuals who make the de-
cisions act under standardized rules. Roughly speaking, what should an individual
do to make better decisions? What modes of thought, decision aids, and conceptual
schemes are helpful? For instance, developing epidemiological models to demonstrate
the connections between various control alternatives (e.g., wearing masks and quarantining
infected individuals) and containing an outbreak.

Decision support system (DSS) is an information system to assist organizations and busi-
nesses in their decision-making processes (Keen, 1980). DSSs aid an organization’s manage-
ment, operations, and planning levels to support making decisions concerning situations
where things might change quickly and are challenging to foresee in advance. DSSs might
be either automated, operated by individuals, or a combination of the two (Brill et al., 1990).
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Main overview

Socio-technical system (STS) is a system with a complex structure that acknowledges the
connection between people and technology in the designs used in executive development
(Stranks, 2007; Haula et al., 2020). The “socio-technical” phrase describes the intricate
networks of human relationships, technological devices, and cybernetic operations that
make up expansive and sophisticated infrastructures (Haula et al., 2020). Social society
and its underlying substructures are considered complex STSs. The term “socio-technical”
describes how social and technical components of a system are connected (Long, 2018;
Stranks, 2007).

Socio-technical theory (STT) concerns joint optimization, with a shared emphasis on
excellence achievement in the performance of technical and social elements. A Socio-
Technical System (STS) is an elaboration of Socio-Technical Theory (STT). The socio-technical
theory is an approach to complex organizational designs that mainly focuses on social
and technical systems in a workplace (Walker et al., 2008; Trist, 1981). The following two
fundamental principles serve as the foundation for the STT.

∙ The first is that social and technical elements interact to produce the condition of
effective (or poor) system performance. These interactions include (i) “non-linear,”
complicated, and even unpredictable interactions and (ii) “linear” or explicit cause-
and-effect connections, which often are planned relationships. Whether planned
or unintentional, the involvement of social and technological factors leads to both
interactions (Trist, 1981; Fox, 1995),

∙ The implication of the first principle leads to the second principle, emphasizing that
focusing solely on the optimization of one aspect—be it socio or technical—tends to
increase not only the number of unpredictable, unplanned relationships but also those
relationships that are destructive to the system’s performance (Trist, 1981; Fox, 1995).

The STT, therefore, aims at a joint optimization between socio and technical systems, or
the coordinated design of the social and technical systems which ensure their compatibility
(Cooper et al., 1971; Long, 2018). For a particular socio-technical system (STS), socio-technical
theory (STT) proposes numerous potential methods for collaborative optimization. Instead
of the all-too-common ways in which new technology fails to meet the expectations of
designers and users, socio-technical theory typically focuses on designing various system
structures where the interactions between socio and technical elements result in the emer-
gence of productivity (Walker et al., 2008). In light of the noted definitions and explanations,
the primary purpose of this study is the following.

This study introduces a physics-based approach to developing a Decision Support
System emphasizing Prescriptive decision theory in support of Socio-technical

Theory for Socio-technical Systems.

Figure 1.1 is a brief and to-the-point presentation of the physics-based approach that aims
at understanding the options available and the associated trigger decisions or uncontrolled
events connected with them as essential requirements for system management and decision-
making in uncertain situations. Whether controlled or not, these options can be categorized
as risks and opportunities. The phrase “physics-based” refers to this study’s approach
in which risks and opportunities are viewed as physical forces impacting the system’s
performance. According to Figure 1.1, this approach considers a socio-technical System
facing some internal (from the system itself) and external (from its environment) Potentials.

The internal potentials include (i) Charges, or the required costs (regardless of their natures)
of the system, and (ii) Innovations, or some internal initiatives aimed at improving the
system’s structure or behavior. The external potentials include (i) Characteristics from the
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Introduction

Figure 1.1: Conceptual structure of physics-based DSS for STS (Benaben et al., 2022)

system’s environment, such as contextual changes, and (ii) Interactions, the flow of goods,
information, or elements from the environment to the system or vice-versa. If the system
is susceptible to internal potential (Charge and Innovation) or external ones (Characteristic
and Interaction), the potentials create forces (risks and opportunities potentially impacting
the system). The ability to govern potentials or make decisions about them classifies them
into inflicted or managed. The term “inflicted” refers to potentials that are impossible to be
created, eliminated, or controlled; while “managed” potentials can be created, eliminated,
and controlled (i.e., potential decisions are made about the managed potential; arrows from
Decision to managed Potentials, Interaction and Innovation, in Figure 1.1). Figure 1.2 presents
the distinction among potentials. These distinctions, however, do not exist in a binary sense
in reality; rather, they are on a continuum between being “inflicted” and being “managed.”

Charge Innovation

In�licted Managed
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al

InteractionCharacteristic

Figure 1.2: Potential category

In keeping with Figure 1.1, the Causal Chain (black chain)
explains that the system is susceptible to its internal and
external potentials, which are likely to generate some Po-
tentialities (risks and opportunities seen as physical forces).
Moreover, these potentialities may be sensible to some Con-
ditions and thus activated under those specific conditions,
making them Actualities and changing the system’s per-
formance. The Propagation Chain (red chain) shows how
actuality can create, modify or remove the existing system,
its potential, or conditions of (other) causal chains. The
Decision Chain (green chain) compares the system’s actu-
alities (performance) to its intended Objectives, after which
managers can make various Decisions (mostly about Inter-
actions and Innovations, managed ones in Figure 1.2) to get
the system’s actualities closer to its objectives. Benaben et
al. provide a more detailed explanation of the conceptual
structure, presented in Figure 1.1 (Benaben et al., 2022).

The main takeaway of the conceptual structure presented in Figure 1.1 is to establish a
generic perspective for performance management of STSs that visualizes and integrates the
impact of risks and opportunities on the system performance (indicated as Actuality in the
figure). Overall, the main expected contribution of this study is to appoint a new modeling
paradigm for STSs that may facilitate the handling of complexities of the system and its
environment that are implicitly connected. In further depth, the physics-based approach
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Performance Space

proposed in this study—based on prescriptive decision theory to describe the system changes
through a conceptual model with the aim of identifying the optimal decisions—could be
sound for some use cases by transforming the investigated system and its internal and
contextual potentialities from implicit to explicit connections.

The management of STSs is primarily concerned with accomplishing its short-term, mid-
term, and long-term objectives. These objectives can take numerous forms, but the most
common approach to tracking them is through Key Performance Indicators (KPIs) (Par-
menter, 2015). Although these indicators may not be able to investigate intangible or
qualitative objectives, they are used to assess the vast majority of system objectives. Con-
sequently, the management of the STSs strives to push its performance indicators toward
its predetermined short-term, mid-term, and long-term objective values of KPIs. In Figure
1.1, the KPIs are determined with the system Objective where the Actuality represents their
quantitative values while the Potentiality influenced them (risk and opportunities viewed as
forces). The first of the three requirements for establishing the physics-based approach to
develop a DSS for STS, this study’s objective, is as follows.

Requirement 1

A multi-criteria space is required to explore the KPIs of socio-technical systems across
time—determine them with objective, present them with actuality, and analyze their
variation according to potentiality. This space, called Performance Space, also allows
the pursuit of the overall system performance and a vis-a-vis study between KPIs.

1.2 Performance Space
The “Performance Space” (PS) is built using quantitative system KPIs positioned on axes.
Given that indicators might have a specific value at any given time, the system performance
can be measured by the created trajectory of the indicators’ variations across time in the
Performance Space presented in Figure 1.3. The 𝑆𝑡 presents the system position or the
KPIs vector at the given time 𝑡, and its variation over time shapes the system “Performance
Trajectory” (PT). Keeping in mind the conceptual layout shown in Figure 1.1, the KPIs evolve

𝐾𝑃𝐼2

𝐾𝑃𝐼1 𝐾𝑃𝐼𝑚

𝑆𝑡+1

𝑆𝑡−1

𝑆𝑡−2

𝑆𝑡−3

Accessible
Zone

Danger Zone

Target Zone

𝐹2 𝐹3

𝐹𝑝

𝐹1

𝑆𝑡+2

Performance Trajectory
(future)

object

Performance
Trajectory

(past)

𝑆𝑡

Figure 1.3: Proposed performance space of a socio-technical system
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due to changes in the system’s “potentialities,” indicating that their trigger “conditions”
have been satisfied, and consequently, they have become “actualities.” Overall, “potentiality”
is perceived as an opportunity if the implications are positive in terms of intended KPIs; in
other words, a potentiality is an opportunity if it enables the system to move closer to its
targets, shown as “Target Zone” (TZ) in Figure 1.3. In a symmetrical sense, “potentiality” is
a risk if its consequences shift the system away from the predefined desirable values of KPIs,
Target Zone; in other words, this potentiality gets the system closer to undesirable values of
its KPIs, indicated as the “Danger Zone” (DZ) in Figure 1.3 (Olsson, 2007; Benaben et al.,
2022). As a result of system internal or contextual changes, the preset Target and Danger
zones in Figure 1.3 may dynamically change over time. This dynamicity indicates that all
the stated zones in Figure 1.3 are current zones rather than permanently fixed zones. For
instance, the “Accessible Zones” (AZ) in Figure 1.3 (while not being a Target Zone at time 𝑡)
may indicate the system’s Target Zone at a different time (𝑡′ ̸= 𝑡).

The presented red Performance Trajectory depicted with a dot-dashed curve in Figure
1.3 refers to the initial (past in the figure) system development until time 𝑡 (there may
have been forces applied to the system that shaped the trajectory in such a presented way;
however, the study mainly investigates the applied forces from time 𝑡 onward). The risks
and opportunities seen as forces (𝐹1, 𝐹2, · · · , 𝐹𝑝) may push and pull the system (considered
as an object, depicted with a yellow sphere) in the presented multidimensional Performance
Space in Figure 1.3. In other words, the forces resultant deviate the initial Performance
Trajectory (the red one) toward (or away from) Target Zone through a new (future in the
figure) Performance Trajectory depicted in a blue dashed curve.

This study concentrates on developing a theoretical and mathematical model to depict
risks and opportunities as physical forces impacting the system viewed as an object in its
Performance Space. The primary purposes are the following. (i) First, defining a method
of identifying forces (their nature and sources), (ii) Second, assessing the identified forces
(learning their behavior) (section 1.3 addresses these two purposes), (iii) Third, evaluating
the impact of forces (judging, measuring, and examining what has been learned). Section
1.5 addresses this ambition.

1.3 Force Characterization
The proposed Performance Space in Figure 1.3 focuses on the system mobility (considered
as an object), where its movements are studied in this multidimensional space bounded
by its KPIs with a potentially very high number of dimensions. Throughout this study,
the Performance Trajectory is examined concerning the quantitative values of the KPIs.
Although there may be correlations among the KPIs, as the value of each KPI at any given
time indicates the system performance associated with that KPI, the KPIs are studied
independently (e.g., similar to projecting the movement of a ball on an inclined plane onto
the 𝑥, 𝑦, and 𝑧 dimensions and assuming their quantitative values as KPIs). Therefore,
Performance Space is an orthogonal space—its axes are perpendicular to one another.

The system performance (Actuality in Figure 1.1) is examined through the system’s Perfor-
mance Trajectory in the given space on the undesirable or conducive potentialities (risks and
opportunities, respectively). Indeed, the potentialities are assumed to as physical forces that
veer the system’s Performance Trajectory. Therefore, forces are perceived as the fundamental
players at the heart of risk and opportunity management and eventually managing the
system performance in the context of this study. This section on “characterizing the forces”
enables the system manager to comprehensively investigate the potentialities that might
deviate the Performance Trajectory in the sequential stages, briefly described below.

(i) Identifying potential forces emerging from the system and its environment. Section
1.3.1 addresses this aim,
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(ii) Assessing the parameters of the potential forces; once they have been identified in the
previous stage. Section 1.3.2 addresses this aim.

1.3.1 Force Identification
The first and foremost step following establishing the Performance Space (Figure 1.3) is
determining the system drivers that move it within the space. According to Figure 1.1, forces
emerge due to the system’s susceptibility to its identified potentials shown in Figure 1.2.
The following forces, generated by the identified potentials in Figure 1.2, are introduced to
support the identification and formalization of risks and opportunities modeled as forces
within the Performance Space.

1. Natural forces ⇒ an internal, inflicted force brought on by the system’s inertial
potential (charge). For instance, it could be a company’s salary payment and fixed
costs, a sports player’s aging, the usual mortality rates in society, or the typical wear
on a material1,

2. Autonomous forces ⇒ an internal, managed force resulting from innovation potential.
For instance, it could be replacing an outdated machine or gadget with a new one for
the company, a sports player losing 2 kg weight, developing a new anti-aging therapy
to lower mortality rates, or altering the composition of a material,

3. Contextual forces ⇒ an external, inflicted force resulting from environmental poten-
tials (characteristic). For instance, the bank’s interest rate for the company, the crowd
pressure for the sports player, fatality due to a vehicle crash or an unexpected epidemic,
or temperature change for a material,

4. Interface forces ⇒ an external and managed force resulting from exchange potentials
(interaction). For instance, it could be suppliers providing raw materials for a company,
nutrition & training for a sports player, immigration policy for a society, or electrolyzer
& catalyst for a material.

The transition from potentials to potentialities (susceptibility in the causal chain presented
in Figure 1.1) is shown in Figure 1.4 equivalently. The main takeaway from this figure is
to identify the origin (internal/external) and the nature (inflicted/managed) of forces that
influence (deviate) the Performance Trajectory in the Performance Space (Figure 1.3).
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Figure 1.4: System Potentials vs. existing Forces

The Performance Trajectory is subject to force sources whose trigger conditions are satisfied.
The Performance Trajectory may reveal more sources of forces as it develops—where un-
known forces could drastically change the system’s performance. However, if the framework
is developed in a way that identifies these forces, it could play a vital role in minimizing
potential risks or even turning those risks into opportunities.

1Similar to how every mass-containing object experiences the unavoidable gravitational force on planets.
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1.3.2 Force Assessment
The Force Identification stage (section 1.3.1) classifies the possible forces (Figure 1.4). How-
ever, it exclusively identifies their nature and origins and does not explain their properties.
The force assessment stage serves to describe the properties of the identified forces. The
following are the essential questions that this stage strives to answer. How much is the force
strength? How likely is it to occur? What paradigm would the force have? When and for How
Long do the identified forces are applied?

1. Force Strength ⇒ The Force Strength examines the actuality (Figure 1.1) that follows the
force occurrence. The absolute magnitude of a force vector determines the geometrical
deviation of the system’s trajectory from its expected trajectory (the one without this
force). This property, depending on the system’s short-term, mid-term and long-term
objectives, specifies the severity of risks (Insignificant, Minor, Moderate, Major, and
Severe) and symmetrically gives weight to the opportunities, which subsequently
determines the safe margins of the system to consider the risks or ignore them and, in
the same way, determines the system’s distance (how far or close the system is) from
opportunities (mainly “Accessible Zones” in Figure 1.3) to seize or relinquish them
[answer to How much],

2. Force Likelihood ⇒ The Force Likelihood examines the conditions (Figure 1.1) that
activate the identified forces which could deviate the Performance Trajectory (Figure
1.3). This property could be characterized (i) qualitatively through expert forums,
interviews, best guesses, data collections, data reviews, brainstorming, and a variety
of other techniques (Rare, Unlikely, Possible, Likely, Almost Certain), and eventually,
quantifying the results to exploit, or (ii) quantitatively through probability distribu-
tion calculation of its occurrence (Bernoulli, Uniform, Binomial, Normal, Poisson,
Exponential or even Random Distributions) [answer to How likely],

3. Force Pattern ⇒ This property of the identified force—whether inflicted or man-
aged—refers to its application mode. The force pattern (e.g., punching, linear, logarith-
mic, wave-forms (sine, square, triangular, ramp, saw-tooth), etc.) could be consistent
over time or dynamically change across time [answer to What Paradigm],

4. Force Onset time & Duration ⇒ The importance of the Onset time of force applica-
tion—regardless of its source and nature—depends on the current situation of the
system in the Performance Space; for example, instead of the occurrence of the force at
time 𝑡, if it happens before (𝑡 − 𝑖) or later (𝑡 + 𝑗), it could get the system easier (or more
difficult) to its target. This assertion holds for the force duration application. Merely
noted, in the Performance Space, time matter [answer to When and How Long].

The nature, origin, and properties of forces (characterized through Force Identification and
Assessment stages) are equally important; they provide independent perspicuities on forces
to be well comprehended. For the system to yield all its promise (short-term, mid-term, and
long-term objectives), these stages must be aligned so that decision-makers at any given time
may perceive the relationship between the forces and the shape of Performance Trajectory,
which may aid them in making cost-effective decisions at the appropriate time and place.

Requirement 2

The necessity of a space dedicated to the forces with the ability to describe and
connect the system to its environment is inevitable. This space must (i) dynamically
examine (observe, update, and change) the stages of the Force Characterization
(identification and assessment) and (ii) adequately describe the observed system, its
environment, and the relationships—connections, interactions—between them.
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1.4 Description Space
This space presents the system and its environment (parameters, scope of variations, and
their relationships) while characterizing the expected forces generated by identified poten-
tials (Figure 1.4). Description Space (DS) generally refers to what is happening within and
around the system and how their changes generate forces in the Performance Space.

The Description Space, similar to Performance Space (which stands on the system’s KPIs),
is a multidimensional, orthogonal virtual space with dimensions of the system and its
environment on its axes2. The dimensions of the Description Space that correspond to the
“system” are known as “Attributes,” whilst the dimensions that pertain to its “environment”
are known as “Characteristics.” A system with certain attributes might be influenced by
several independent events with distinctive characteristics.

Expected
 force pattern

Control Space 
(system)

Control Space
(environment)

Control Space
(environment)

Figure 1.5: Description Space with system’s Attributes and its environment’s Character-
istics

Figure 1.5 presents the Description Space of a system with “Attributes,” 𝐴1, 𝐴2, · · · , 𝐴𝑝 and
its environment including two environmental components with independent “Character-
istics,” 𝐶1, 𝐶2, · · · , 𝐶𝑝′ and 𝐶 ′

1, 𝐶 ′
2, · · · , 𝐶 ′

𝑝′′ on axes. The blue and red spheres present the
current value of parameters (dimensions) of the system and its environment at a specific
time 𝑡𝑖, respectively—whereas the purple ones, or any other place of the Description Space,
may present the current value for both the system and its environment, at the same time 𝑡𝑖.

Constraints on the variations of the parameters determine the degree of liberty for intentional
or desirable changes in the system and its environment (variations of attributes and charac-
teristics) which are shown with a bounded subspace called “Control Space3.” Movements
within Control Space present the “managed” potentials (Innovation and Interaction) and
subsequently point to the “managed” forces (Autonomous and Interface) in the Performance
Space. The other possible movements which do not start and terminate within the Control
Spaces (start inside and terminate outside, start outside and terminate inside, start outside
and terminate outside), shown in red and orange dashed arrows, indicate the “inflicted”
potentials, Charge (for the system) and Characteristic (for the environment)—later their
equivalent expected Natural and Contextual forces in the Performance Space.

According to constraints on the attributes and characteristics, Control Spaces could take
various forms in the Description Space (Figure 1.5). For instance, the torus-shaped Control
Space of the system on the 𝐴1 −𝐴𝑝 plane aggregates a discrete-stochastic control on attribute
𝐴1, uniform-discrete control on attribute 𝐴2, and discrete-stochastic control on 𝐴𝑝.

The following statements briefly adjust the Force Characterization stages (sections 1.3.1 and
1.3.2) to the Description Space presented in Figure 1.5.

2KPIs are often a formulation between the system’s internal dimensions and its external environment, while
a dimension is an atomic property (individual and not breakable to several properties) of the system or its
environment.

3Yet more uncertain, unknown, and tough to recognize in the system environment (the two side figures).

9



Introduction

▶ Force Identification: The parameters of the system and its environment (𝐴1, 𝐴2, · · · , 𝐴𝑝

and 𝐶1, 𝐶2, · · · , 𝐶𝑝′ ) on axes present the “internal” and “external” forces’ sources. The
intentional or spontaneous variation of these parameters indicates the force’s nature;
if it starts and terminates within the Control Spaces, it refers to “managed” forces;
whereas the other variations on parameters refer to the “inflicted” ones (it could be a
combination of forces, at least one of which is “inflicted”),

▶ Force Assessment: Movements—whether internal/external/inflicted/managed—in
the Description Space holds the following properties. The strength (the scope of its
geometric projection on the space’s axes), likelihood (the chance that it will occur), and
pattern (the mode of its application to the system).

In summary, the Force Characterization (section 1.3) addresses the origin, nature, and
properties of supposed forces. The Description Space built on the dimensions of the system
and its environment characterizes the forces that could deviate the Performance Trajectory
in the Performance Space (Figure 1.3). However, the Force Characterization section does not
address the “impact” of identified and assessed forces. The evaluation of the characterized
forces, which depends on how the system responds to them, is discussed in the following
section.

1.5 Force Evaluation
The system position (or Performance Trajectory) in the Performance Space (Figure 1.3) is
thoroughly contingent upon existing internal and external forces. The evaluation stage seeks
to determine the deviations of the Performance Trajectory impacted by “identified” and
“assessed” forces in the previous sections. The evaluation refers to the “impact” of the force
and not its “origin,” “nature,” and “properties.” In other words, the evaluation stage is
thoroughly tied to the structure and properties of the system; how it reacts to the purposely
applied (or imposed) forces.

1. Trajectory Orientation ⇒ Determines whether the applied force is a risk or an op-
portunity. The force might push the system (the object in the Performance Space)
towards its objectives, indicated as Target Zone in Figure 1.3 (could be perceived as an
opportunity); symmetrically, it could push the system away from the Target Zone and
gets it closer to the Danger Zone (could be perceived as a risk). Merely noted, in the
Performance Space, direction matters4,

2. Trajectory Reaction ⇒ Examines the force consequence on the Performance Trajectory
according to the system characteristics on the two following issues.

(a) Trajectory Paradigm. The system responds to the applied forces with or without
delay (it might not respond by absorbing the force, see more here); therefore,
the force would emerge in a delayed or an instantaneous manner, respectively
(identically, if the considered force is eliminated, its effect may last for a while
before deviating the Performance Trajectory or, it may do so right away),

(b) Trajectory Deviation. or object (so-called system) displacement, examines the
force consequence on the Performance Trajectory according to the force mag-
nitude (Force Strength in section 1.3.2). The system displacement could be as
expected according to the applied force, while it could be less or more depending
on the system characteristics (see more here).

4In the proposed Performance Space in Figure 1.3, the center of the mass is consistently subjected to force
application; therefore, the angle between a force and the direction of the object (system considered as an object) is
not the focus of this study. However, this angle—one of the study’s perspectives—is important.
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The Force Evaluation quantifies the force impact on the Performance Trajectory. The sort
of the Trajectory Orientation and Trajectory Reaction might be acquired statically, meaning
that a single study can indicate whether (i) a force poses a risk or an opportunity, (ii) the
system responds to the applied force with delay or not, and (iii) the movement of the system
is consistent with the strength of the applied force or not. This statement is also valid for
the Force Identification stage, characterizing the source and the nature of a force; unless
fundamental changes happen in the system (its internal and external structure, objectives,
etc.) or an unknown force is discovered/identified, then introduced into the system.

In contrast, the quantitative deviations of trajectory require examining the system according
to the properties of the applied forces to it (Strength, Likelihood, Pattern, Onset time &
Duration presented in 1.3.2). These properties could have various initialization and settings
and dynamically change in numerous scenarios. The evaluation stage explores all possible
(what-if) scenarios of “Force Strength,” “Force Likelihood,” “Force Pattern,” and “Force
Onset time & Duration.” These variables operate independently from one another at
all times and might interchangeably (or comparable) perform to deviate the Performance
Trajectory. For instance, the difference between Performance Trajectory deviations if the
force occurs at 𝑡−𝑗 and not at 𝑡 (Onset time) could be a similar deviation if the force Strength
(resp. Likelihood) is Moderate (resp. Rare) and not Severe (resp. Almost Certain).

Dynamic review of Control Space (restricted parts of the Description Space shown in Figure
1.5) and having far-reaching look at its boundaries is crucial. The flexibility on the Control
Space borders could suggest an “inflicted” force according to the present Control Space (i.e.,
beyond its limits) while critical to deviate the Performance Trajectory toward the Target
Zones and worth investing in it. In other words, this flexibility might suggest extending the
Control Space to turn the “inflicted” but critical force into a “managed” one.

This study is a force-based paradigm in performance management systems; accordingly,
Force Evaluation is centered on the physical forces and the system’s movements stemming
from their applications. In practice, the physical notations related to characterized forces
are examined to learn the relationship between the forces and the system performance. The
Force Evaluation, throughout this study, illustrates the relations between a KPI (and its
associated notions, such as its variation, growth, and fluctuation) and physical notations
(such as displacement, velocity, and acceleration).

Requirement 3

The rationale for the trajectory deviations is rooted in the forces applied to the
system, represented in its Performance Space (section 1.2). On the one hand, the
Performance Space displays this trajectory and its back-and-forth movements toward
the system’s objectives (shown as Target Zones in Figure 1.3); on the other hand, the
Description Space examines the reasons for these deviations and the configuration of
the trajectory. A framework that synchronously deals with the Performance Trajectory
and the grounds for its deviations, which provides a right-through investigation of
the Force Evaluation (1.5), is presented as the last Requirement in the following.

1.6 Physics of Decision framework
The “Physics of Decision” (POD) framework in this section, as a core of this study, links
(joins and tunes) the Description Space (Figure 1.5) to the Performance Space (Figure 1.3).
This connection presents the relationships between the dimensions of the system and its
environment (Description Space) to the considered KPIs (Performance Space) to pave the
way to fulfill the Force Evaluation presented in section 1.5. Furthermore, this map between
the spaces allows for examining the bidirectional causal effects relations between them.
Figure 1.6 illustrates the concatenated spaces (without Zones and Control Spaces).

11



Introduction

Performance Space

System

Environment

Description Space

Physics of  Decision

(Requirement 2)

(Requirement 1)

(Requirement 3)

Figure 1.6: Physics of Decision framework

12



Physics of Decision framework

The Description Space, at the bottom of the figure, presents a system with 𝜃 “Attribute”
(𝐴1, 𝐴2, · · · , 𝐴𝜃) and 𝑟 exclusive contextual elements in its environment (𝐸1, 𝐸2, · · · , 𝐸𝑟−1, 𝐸𝑟

with 𝜃1, 𝜃2, · · · , 𝜃𝑟−1, 𝜃𝑟 “Characteristics,” respectively). The system goes on its expected
Performance Trajectory until time 𝑡, at which moment it is subjected to forces generated by
the system (depicted with 𝑆 force in Performance Space) and the exclusive contextual ele-
ments from its environment (depicted with 𝐸1, 𝐸2, 𝐸𝑟−1, 𝐸𝑟—either Contextual or Interface
forces). Likewise, this situation holds for later times and possible incoming forces applied to
the Performance Trajectory from the system or its environment.

Mapping between the Description Space and the Performance Space through the
“Physics of Decision” framework provides the chance to evaluate the forces deviating

the Performance Trajectory.

In summary, the Physics of Decision framework aims at evaluating the forces; examining
the Performance Trajectory back-and-forth in the Performance Space brought on by the
variations of “Force Strength,” “Force Likelihood,” “Force Pattern,” and “Force Onset time &
Duration.” The Force Evaluation stage is when the POD framework has its most significant
upshots and plays a crucial role in simulating STSs. However, this assertion does not stand
for the POD theory (discussed in section 1.7); see the reason and more detail in section 2.4.
This mapping offers the chance to examine the two spaces thoroughly by investigating the
internal and external forces (inflicted and managed) as circumstances that may deviate the
Performance Trajectory in the Performance Space.

The presentation of the POD framework and the introduction of this study concluded with
the following challenge.

What are the properties of the object (the so-called system in the Performance Space)
subjected to forces arising from the system and its environment, and how are these
properties taken into account in the Physics of Decision framework?

The POD framework in Figure 1.6 focuses on the system mobility, considered as an object,
inside its Performance Space. The properties of this object may influence the trajectories
(expected and deviated ones) and vary their behavior or shape. In other words, some
physical properties of the object, such as its mass, stiffness, damping, etc., are factors that
might affect the supposed deviations of the Performance Trajectory (i.e., increase or decrease
the absolute magnitude of the supposed force).

For instance, the object’s (system’s) mass may prevent it from moving and therefore neutral-
ize the applied forces to it (it absorbs or repels the applied forces); similarly, it may throw
the object more than expected (most common) displacements when its mass is light. More-
over, the damping or stiffness may vary the “Force Paradigm” (instantaneous to delayed
or vice-versa). In conclusion, these non-conformities may thoroughly influence the Force
Evaluation stage (section 1.5). These hypotheses hold for other possible physical properties
of the object. The premise behind one of this study’s limits is as follows.

Assumption

The considered object in the Performance Space (Figures 1.3 and 1.6) is assumed as a
solid object that consistently stays in a unique shape and does not absorb or repel
the applied forces; its displacements on the referential space of its KPIs are always
related to KPIs’ quantitative values. In other words, one unit of system movement
always corresponds to one unit variation of KPI on its associated axis. Therefore,
this study overlooked the object properties by (i) dealing with the quantitative
values of KPIs and (ii) assuming the system is a rigid object.
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1.7 Research Problems
The present work aims at providing a Decision Support System for complex systems in
uncertain environments. The Physics of Decision theory aggregates a wide variety of studies
in the literature review concerned with risk management, performance management systems,
and system modeling. The Physics of Decision is an open theory to serve in almost any
time-dependent system. The primary ambition is to benefit from classical physics to (i)
consider a Socio-technical System as physical objects or volumes (rigid or porous solid,
liquidy, gaseous, etc.); (ii) equate the system’s features to the properties of the object
or volume (mass, viscosity, damping, etc.); (iii) connect the system’s perturbations to
physical phenomena (e.g., forces, pressures, tensions, heat, etc.); (iv) interpret the system’s
performance through physical notations (e.g., displacement, velocity, acceleration, etc.);
and (v) exploit the proven physical laws to figure out the optimum decision (mitigate the
risks and strengthen the opportunities) in navigating the system to meet its intended
objectives indicated in a multidimensional virtual space built on its criteria (KPIs).
However, the above ambitions are abstract hypotheses and a global vision of the POD theory.
The POD theory is not a focus of this study; rather, its framework is the primary pursuit.

The three essential requirements—Requirement 1, Requirement 2, and Requirement 3—are
primary research areas. However, the stated Assumption is a fundamental physics-oriented
aspect of the POD theory to investigate. Given that the present work primarily focuses
on Requirement 3, the remainder of this section attempts to define the pertinent research
problems concerning the three requirements.

Construction of the Performance Space (Requirement 1). The introduced Performance
Space in section 1.2 and depicted in Figure 1.3 is dedicated to the real-time review of the
system’s efficiency in fulfilling its determined objectives. The questions regarding the
quantitative KPIs are the central pivot of this space, as the first research area. Assuming that
some preliminary KPI-oriented investigations are performed and the ones considered are
significantly relevant and measurable, the following aspects must be aligned to develop the
Performance Space pertinent to system objectives and preferences.

▶ Axes selection: The identified and considered KPIs on the axes of the Performance
Space stand for the aspects of the system that the POD users are seeking to study,

▶ Axes normalization: The numerical units of the axes must be carefully selected to
ensure that they are comparable. Additionally, concerning the visualization, the KPIs
unit must be aligned appropriately (scale up to each other),

▶ Zone determination: The persistent resolution of the unfavorable, neutral5, and favor-
able quantitative values of KPIs determines the Danger, Accessible, and Target zones,
respectively. The desired (targeted) or unfavorable (dangerous) values for a particular
KPI on its associated axis—minimum, maximum, or specified interval—innumerable
zones are determined in the Performance Space. A dynamic review of the considered
level for each KPI is crucial in deviating the Performance Trajectory toward intended
Target Zones efficiently; This is more true for uncertain systems since agile decisions
or trade-offs among system objectives are inevitable aspects in those systems.

Construction of the Description Space (Requirement 2). Somewhat similar to the construc-
tion of the Performance Space, the Description Space (introduced in section 1.4 and depicted
in Figure 1.5) aims at identifying the system (Attributes), its environment (Characteristics),
and the connections between them. The main interest in the Description Space is charac-
terizing the Attributes and Characteristics rather than system KPIs. Similar to the stated

5The KPI values are not the system’s objectives and may even be dangerous, but these levels are the points
where risky decisions are taken to advance the system toward its Target Zones.
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aspect for constructing the Performance Space, the following addresses those aspects for
the Description Space. Description Space serves as the background of the POD framework
rather than its visualization aspect; therefore, Axes normalization might not be an essential
aspect to investigate (unlike the Performance Space). In contrast, the Description Space is
where the relationships between axes are paramount, as they present the reasons for the
system’s behavior (i.e., Performance Trajectory deviations).

▶ Axes determination: The axes of the Description Space represent a comprehensive
examination of all internal potentials and external ones (contextual elements) that the
system might face. Identifying all involved Attributes (system) and Characteristics
(environment) in the system performance is mandatory and not an option (whereas
KPIs are purposefully picked in the Performance Space),

▶ Axes connections: The formulation (usually mathematical equations) between the
system axes with its environment Description Spaces explains their relationships.
However, both the Attributes and the Characteristics may be connected (formulated)
internally in some way,

▶ Zone determination: Zone in the Description Space refers to the Control Space. The
constant resolution of the boundaries of the system’s Control Space determines the
internal potentials (Charge and Innovation), identically, the external ones (Contextual
and Interaction) of the system’s environment. The dynamic review of the Control Space
borders is critical, similar to the Zones in the Performance Space (see the details in
section 1.5, more precisely, here).

Installing the POD framework (Requirement 3). Following the mentioned research prob-
lems on constructing the spaces, establishing their connection is the most fundamental step
in examining the system (Description Space) and its performance (Performance Space);
putting the POD framework into practice meets this purpose. Installing the POD framework
completes the proposed physics-based approach to managing the risk and opportunities
in socio-technical systems. In other words, the POD framework puts the presented stages
(Force Identification, Force Assessment, and Force Evaluation) together intending to exam-
ine the system, its environment, the forces (risks and opportunities) that the system might
face, and their influence on system performance. The following are the main questions
concerning the POD framework installation (section 1.6 and Figure 1.6) as the primary
contribution of this study.

• What are possible approaches to install the POD framework (map the
Description Space to Performance space and vice versa)? In other words,
what are possible ways to make a precise or approximate formulation
between the system and its environment structure versus its performance?

• How are the available approaches for the POD framework installation
served? In other words, how are the existing approaches for installing the
POD framework used in various systems with particular applications?

These challenging problems are notably essential in supporting the Force Evaluation stage
(section 1.5). Discovering potential forces (Internal/External/Inflicted/Managed) and char-
acterizing their properties (Strength, Likelihood, and Pattern) is performed independently
of the mapping between the Description and Performance space; Nevertheless, it appears
senseless to perform these two stages without exploring how the forces impact the perfor-
mance trajectory (Force Evaluation stage). Therefore, the primary aim of the POD framework
is to pave the way to perform the “Force Evaluation” stage (section 1.5).
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The current work models several socio-technical systems in distinct ways (compatible with
the case studies) and subsequently builds and investigates the POD framework for each
instance. However, there is some discussion of the research problems related to the spaces’
constructions in the presented contributions.

The stated research problems together aim to make the POD framework qualified to investi-
gate forces-based principles and laws from classical physics. The ultimate purpose is to pick
the best combination of “managed” forces (best balance of risks and opportunities) to lessen
the negative impacts of “inflicted” ones. In other words, efficiently deviate the Performance
Trajectory toward the stated system objectives (Target Zones) at any particular time (or for a
period).

1.8 Thesis Organization
Following is a breakdown of how the remaining portions of this study are organized based
on background and related works, thesis contributions, and conclusions and perspectives.

Chapter 2. This chapter, on the literature review, addresses the following topics.

1. The inspiration for this work and related existing physics-based approaches in diverse
areas such as social phenomena, economics, psychology, decision-making, etc.,

2. The justification for decision-making, emphasizing the prescriptive decision theory
domain, has to do with giving decision-makers tools and conceptual frameworks to
assist them in their decision-making processes,

3. Introducing Decision Support Systems (DSSs) with a specific discussion on model-
oriented types and their diverse application domains,

4. Specific investigations of the existing challenges and shortcomings in human decision-
making and suggested remedies, and

5. The comparison between this study’s approach and the present tools and technology
in the DSS field, besides their significance in addressing the limitations in the decision-
making.

Chapter 3. This chapter, on the contributions of this study, mainly on the POD framework
installation, provides the following efforts.

1. A mathematical presentation of the framework,

2. Simulation models for the three distinctive case studies—System Dynamics (SD),
Discrete Event Simulation (DES), and Agent-based Model (ABM), and

3. A mathematical model for simulating physical systems using differential equations.

Chapter 4. This chapter summarizes the main objective of this research work, along with
the research questions and their answers. In addition, this chapter demonstrates research
challenges, limitations, and future works.
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2.1 Principal concepts and motivations
Although “making decisions” concerns forecasting the future, it addresses an assumption of
the occurrence of an event (Bennet et al., 2008). Making decisions is naturally challenging; it
is complexities pile on complexities. Therefore, decision-makers are obliged to rely more
and more on tools and technology to support their intuition and judgment and eventually
forecast the future (Mahmud et al., 2022; Bennet et al., 2008). The more effectively these tools
and technologies decrease complexities, the more apparent the relationships, the simpler
it is to decompose the entangled interactions, the more straightforward decision-making
becomes, and ultimately, the more concrete the predictions develop (Mahmud et al., 2022;
Le Bris et al., 2019). This chapter initially intends to investigate the existing approaches in the
related areas to this study, then leverage them to reduce the complexities in decision-making
based on standard and proven rules to examine the socio-technical systems (STSs).

Making decisions is primarily concerned with avoiding risks and seizing opportunities
while selecting an action (Benaben et al., 2019b; Bekefi et al., 2008; Hammond et al., 2006).
The “Physics of Decision” framework introduced in chapter 1 inherits classical physics to
study the system by viewing the risks and opportunities as physical forces pushing and
pulling the system as an object in a multidimensional space built on its KPIs (Figure 1.3).
The proposed POD framework for decision-making serves as a DSS; therefore, it operates as
a prescriptive tool to facilitate the intricacies of the decision-making process.

This chapter discusses (i) the motivation for the presented framework according to the
decision theory and performance management (section 2.1), (ii) the main principles of DSSs
and contributions from the literature in association with this study (section 2.2), and (iii)
a selective comparison of the DSSs in the literature in competition with the features of the
POD framework in dealing with complexities of decision-making processes (section 2.3).
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2.1.1 Physics in decision-making
Social Physics is a branch of science that studies social phenomena from the same perspec-
tive as astronomical, physical, chemical, and physiological phenomena—that is as being
governed by natural, unchanging laws—the discovery of which is the specific goal of its
study (Comte, 1856). Social physics has recently been applied to analyze the COVID-19
pandemic, demonstrating that the considerable difference in the spread of the virus between
countries is due to differences in responses to social stress (Kastalskiy et al., 2021).

Econophysics is an interdisciplinary research field that employs concepts and procedures
first developed by physicists to address economic issues, frequently those involving uncer-
tainty, stochastic processes, and nonlinear dynamics (Mantegna et al., 1999).

Psychophysics originated to explain the mathematical relationship between the body and
the mind alongside the conscious experience of a sensation induced by an external physical
stimulus. Psychophysics had a massive impact on psychology, sensory physiology, and
related fields because it provided means of measuring “sensation,” which previously, like
all other aspects of the mind, had been considered private and immeasurable (Engen, 1988).

Field Theory is a discipline that studies how individuals interact with their environment
as a whole. Kurt Lewin, inspired by force fields in physics, investigates the imposed
changes in systems through the vision of “Driving Forces” and the system’s reaction to them
as “Restraining Forces,” which lead the system to “Equilibrium Positions” as a result of
interactions between Driving and Restraining Forces (Lewin, 1942; Martin, 2003). Lewin’s
change model includes unfreezing, change (movement), and refreezing stages. The formula
for Lewin’s field theory is 𝐵 = 𝑓(𝑝, 𝑒), which states that behavior (𝐵) is a function of the
person (𝑝) and their cultural environment (𝑒) (Burnes et al., 2013; Martin, 2003).

Apart from many applications of physics in everyday life aspects, this study leverages the
existing related approaches and aims at establishing a reverse-engineering framework
for mechanical analysis and reconstruction of the development of socio-technical sys-
tems, which serves as the inspiration for the POD theory, discussed in section 1.7. In the
POD framework, the system development is investigated through the constitution of the
Performance Trajectory in the Performance Space, subjected to both generated and already
existing risks and opportunities viewed as “physical forces” applied to the system. Hence,
the principles of the POD framework are founded on those physical forces and the laws
that govern them. Although a DSS could operate by individuals (manual), automatically
(automatic), or a combination of both (semi-automatic), its basis is founded on the intuition
and judgment of individuals as decision-makers to decide on both social and technical
aspects (Brill et al., 1990; Keen, 1980). Without losing generality, technical aspects primarily
concern the inanimate realm, while the social aspects concern the animate (living) domain.
The following are some omnipresent instances that could serve as the motivation behind
employing physics in social activities by illustrating the connection between the animate
domain and physical phenomena.

(i) The periodic gain and loss of weight due to overeating and lack of activity versus
healthy diet and exercise, respectively,

(ii) The sporadic increase and decrease in sales rate stemming from high and low client
demand for a seasonal product, respectively,

(iii) Increment and decrement of virus transmission rate depending on whether a mask is
worn or not, quarantine of infected people, population vaccination, workplace closure,
etc., in the emergence of epidemic diseases,

(iv) Increase and drop in inflation brought on by changes in the demand for particular
goods, the price of raw materials, devaluations, etc.
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In these instances (and tons of similar spontaneous decisions or imposed events in daily
life), overeating, dieting, customer demand, wearing masks, population quarantine, high
demand for specific goods, etc., might be understood as “physical forces” applied on a
system assimilated to an inanimate object (e.g., a pendulum). In contrast, the weight, sales
rate, virus transmission rate, and inflation might be viewed as the object’s position (an
indicator or KPI). The motivation for the POD framework is laid forth in the assertion that
follows.

The Physics of Decision framework is centered on connecting system behavior to
physical laws of motion, emphasizing that social aspects (animate domains) behave in
a way comparable to technical elements (inanimate realms) in terms of abiding by the

physics’ force-based principles.

The stationary-action principle, also known as the least-action principle, used to analyze the
motion of a mechanical system yields the system’s equations of motion. According to this
principle, the trajectories—that is, the results of solving the motion equations—are shaped
with stationary points of the action function of the system. To represent diverse phenomena
using a single physics principle, Mousavi and Sunder (Mousavi et al., 2021) cover topics and
overarching principles for three fundamental scientific disciplines, animate (social sciences),
inanimate (physics/chemistry), and animate-inanimate (biology/molecular chem), while
considering a shared feature among the three disciplines, “physical existence in all domains
is subject to physical laws.” Mousavi and Sunder, based on the least action principle, explore
how actions (decisions interested in what to do) might be defined by fundamental physical
principles before deferring to biological and social science norms. The idea of least action is
used by (Mousavi et al., 2020) to structure both animate and inanimate activities from an
inverted perspective between physics and decision-making. All inanimate things, animals,
and people share the physical corpus, governed by the same physical laws as all other
things. For instance, whatever the cause—wind, accident, or suicidal intent—a person or a
stone will fall to the ground according to the identical laws of gravity (Mousavi et al., 2019).
Out of all possible paths from starting point 𝐴 to ending point 𝐵, the materially efficient
course involves the least amount of action; where the action is a scalar corresponding to
the dimension in which value has been preserved (appropriately specified) (Mousavi et al.,
2020).

The POD framework, similar to discussed approaches in this section, motivated by
laws and principles of classical physics, intends to connect the behavior of the system,
depicted as a trajectory in its Performance Space, to classical laws in physics and to

drive the system to the most convincing parts of the space possible at hand (Figure 1.3).

2.1.2 Decision Theory
Decision theory is the theory of rational decision-making to choose an action among a
set of alternatives. In a nutshell, the main objective of decision theory is to provide as
exact and accurate hypotheses about rational decision-making as possible (Bradley, 2017).
Decision theory is an interdisciplinary subject researched by economists, mathematicians,
data scientists, psychologists, biologists, politicians, and other social scientists, philosophers,
and computer scientists (Peterson, 2017). The following are some primary paramount ap-
proaches to the root of decision theory and the rationale behind the behaviors of individuals
while making decisions.

Ward Edwards created behavioral decision theory as a new field in psychology with two
seminal articles: “The Theory of Decision Making” (Edwards, 1954) and “Behavioral De-
cision Theory” (Edwards, 1961). “Judgment Under Uncertainty: Heuristics and Biases”
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(Kahneman et al., 1982) discussed three heuristics that humans employ to form judgments
about uncertainty: representativeness, availability, and anchoring. The “Framing of Deci-
sions and the Psychology of Choice” discusses how decision frames affect decision-maker
perception of the decision problem (Tversky et al., 1985). Prospect theory is a descriptive
decision-making theory that differs from expected utility theory by using insights from
behavioral decision analysis (Kahneman, 1979).

Decision theory characterizes and explains regularities in the choices that individuals are
disposed to make (descriptive theory), how rational individuals ought to make decisions
(normative theory), and how to assist less-rational individuals who strive for rationality in
making better decisions (prescriptive theory) (Bell et al., 1988). Less-rational or non-rational
individuals refer to ordinary people who have not thought through their decision-making
process or, even if they have, are cognitively incapable of carrying out the desired procedure.
Human beings as decision-makers are not perfectly rational; they make mistakes, feel
regret, experience anxiety, and finally, struggle to come to a choice. The (Bell et al., 1988)
study has considered the third component, the “prescriptive” side, to the usual dichotomy
that distinguishes between the normative and descriptive sides (the “ought” and the “is”
respectively). This prescriptive study is necessary to respond to the following question. How
can actual people—as opposed to idealized, super-rational, hypothetical beings without psyches—make
better decisions in a way that doesn’t violate their profound cognitive concerns?

In summary, the “prescriptive” decision theory seeks to answer the following questions.
How could individuals improve their decision-making? What type of decision-making tools
and conceptual frameworks could be helpful?—not for idealized, unconscious machines
(i.e., the inanimate automata), but rather for real animate decision-makers (Bell et al., 1988).

The POD framework presented in chapter 1 focuses on the prescriptive aspect of
decision theory to provide a DSS with standardized features derived from classical
physics (mainly force-based laws of motion). This framework, as a prescriptive tool,

seeks to pave the way to provide a multi-criteria performance analysis to STS.

2.1.3 Performance Management
The process of ensuring that a collection of actions and outputs effectively and efficiently
achieves an organization’s objectives is known as performance management. Performance
management might concentrate on an organization, a department, an employee, or the
processes in place to manage particular tasks (Harzing et al., 2010). The most frequent
application of performance management principles is in the workplace; however, these
principles are present in any setting where people interact with their environment to achieve
desired developments, including schools, community gatherings, sports teams, health
settings, governmental agencies, social events, and even political settings (Mettler et al.,
2009). Performance management is an approach used by system managers to more closely
match the long-term objectives of the system with its short-term and mid-term pursuits to
boost effectiveness, productivity, and profitability (Armstrong, 2006).

In general, “system performance” refers to how effectively a system achieves its stated
objective and creates value for the stakeholders it aims to reach (Lazowska et al., 1984).
Accordingly, “system performance management” focuses on how the management systems,
processes, and products translate a system’s stated mission into practice (Schleicher et al.,
2018; Lægreid et al., 2006). The system could be social (Xiahou et al., 2018; Abdul Khalid
et al., 2019), economical (Băndoi et al., 2021), environmental (Xue et al., 2020), or any other
form of a STSs.

In the POD framework context, the notion is that managing a system entails focusing on
particular objectives, often expressed by numerical values of KPIs. This study does not
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judge the relevancy of the KPIs to the system objectives—for example, whether the selected
KPIs are SMART (Specific, Measurable, Attainable, Relevant, and Time-bound) or not (Ishak
et al., 2019). Regardless of the system type and the KPIs’ relevance to the system objectives,
the POD framework deals with the quantified criteria (KPIs) in the Performance Space.

In the context of the POD framework, system performance management intends to
bring its KPIs as close as possible to the targeted values, depicted as Target Zones in
the Performance Space (Figure 1.3). The measurements are physics-based notations
(e.g., displacement, velocity, and acceleration) to make different levels of decisions

(operational, tactical, and strategic).

2.2 Decision Support System
Peter G. W. Keen initially used the phrase “Decision Support Systems” (DSS) in the late
1970s. In their 1978 book entitled “Decision Support Systems: An Organizational Perspec-
tive,” authors Keen and Morton provided a comprehensive behavioral orientation to DSS
analysis, design, implementation, evaluation, and development. This study characterized
the DSSs as computer systems that impact decisions where computer and analytical tools
may be sound while the manager’s intent is crucial (Averweg, 2009; Scott-Morton et al.,
1978; Keen, 1978). A Decision Support System is an interactive software system that offers
information from data and models to assist decision-makers in more successfully solving
decision problems.

In light of the above definition, a DSS does not necessarily make a decision maker more
effective or a decision maker’s replacement (Newman et al., 2014). Decision Support Systems
are developed to enable the decision-maker to take into account more aspects of a decision,
potentially create better alternatives, analyze more choices, and allow the consideration
of multiple scenario analysis and uncertainty (testing options for robustness, minimizing
regret, and enhancing the efficiency of complex decision analysis), as well as to possibly
support in the exploration of the decision maker’s perceptions and values (H. B. Eom et al.,
1990). By incorporating management science and operations research methods, DSSs set
themselves apart from other computer-based information systems (Newman et al., 2014).

Moreover, DSS must offer reliable, fast, and comprehensive information to analyze. A
particular DSS must present data in a suitable manner that is simple to comprehend and
use. DSSs may create the information it presents using a decision model, transaction data
analysis, or data from external sources. DSS may provide managers with information from
inside and outside the system, wise judgments, and projections. Managers seek the relevant
information at the right moment, in the appropriate format, and for a reasonable cost.
Although these system requirements appear straightforward and uncomplicated, fulfilling
them is challenging (Shih, 2022; Holsapple et al., 1996; Sprague Jr et al., 1982).

2.2.1 General Background
One of the constantly evolving boundaries in the use of computers in industries is the
development of decision support systems. DSSs undoubtedly come in a wide variety. Most
of DSSs put a strong emphasis on data, models, and communications. Moreover, the scope of
DSS varies—some are developed to serve stand-alone by a single primary user, while others
serve a wide range of users inside an organization. DSS varies concerning who utilizes each
system; for example, some are used by decision-makers directly, while others are used by
intermediates like marketing analysts or financial analysts (Power, 2002). Steven Alter had
the first attempt to suggest a taxonomy of DSS in 1978. This categorization is arranged on
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how much the outcome of the DSS can influence a decision. A range of generic operations
that DSS can carry out is related to the taxonomy. From data-oriented to model-oriented,
the general processes span this dimension (Alter, 1978). The seven DSS types are included
in Alter’s taxonomy. The following is a quick overview of the DSS types that Alter suggests.
The highlighted ones, shown in blue, are more tied to the features of POD framework.

• Data-oriented (data-driven, retrieval-oriented)

– File drawer systems that provide access to data items. Examples include inven-
tory reordering, monitoring systems, and real-time equipment monitoring. This
category includes basic online transaction processing (OLTP) query and reporting
tools.

– Data analysis systems that enable the processing of data through either more
specialized or more generic operators and tools, depending on the task at hand.
Examples include the examination of investment prospects and monitoring of
variances in budgets. The majority of data warehouse applications fall under this
category.

– Analysis information systems that allow users to access several decision-oriented
databases and compact models. Examples include competition assessments,
product planning and analysis, and sales forecasts based on marketing databases.
Systems like online analytical processing (OLAP) fit into this set.

• Model-oriented (model-based, quantitative)

– Accounting and financial models that investigate “what-if analysis” and de-
termine the results of various decision-making options. Creating estimates for
income statements and balance sheets, goal-seeking analyses of operational strate-
gies, and profitability estimations for new products are a few examples. These
models are used in conjunction with “What-if” or sensitivity studies.

– Representational models are simulation models that use causal relationships and
accounting concepts to assess the effects of actions. Examples include simulating
equipment and industrial processes, risk analysis, and market reaction models.

– Optimization models provide the best outcome while assuming several restric-
tions and then offering advice for action. Systems for scheduling, allocating
resources, and optimizing material use are a few examples.

– Suggestion models carry out the logical processing that results in a particular
advised choice for a structured or well-understood task. An optimum bond-
bidding model, a DSS that uses log-cutting, and credit scoring are a few examples.

Several scholars adapted or expanded Alter’s taxonomy (or separately discussed the DSS
categories from other points of view); For instance, Donovan and Madnick classified DSS as
either institutional or ad-hoc DSS (Donovan et al., 1977); Holsapple and Whinston suggested
text-oriented, database-oriented, spreadsheet-oriented, solver-oriented, and rule-oriented
DSSs (Holsapple et al., 1996); Power extended Alter’s categorization in terms of intended
users, purpose, and enabling technology (Power, 2002). These categorizations provide
features in support of defining a particular DSS or decision-support product.

Hackathorn and Keen suggested a DSS framework built on the structure of tasks (unstruc-
tured, semi-structured, and structured) from Simon Herbert (Simon, 1960) and classifica-
tion of managerial activities (i.e., operational control, management control, and strategic
planning) from Robert N. Anthony (Anthony, 1965), by adding a new dimension, task de-
pendency, in three distinct yet interrelated categories: independent, pooled, and sequential.
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Figure 2.1: DSS framework proposed by Hackathorn and Keen (Hackathorn et al., 1981)

Figure 2.1 presents the suggested DSS framework by Hackathorn and Keen (Hackathorn
et al., 1981). H. B. Eom and S. M. Lee concentrated on the management level, where DSSs
might be classified as supporting operational, tactical, or strategic decisions, predominantly
(Newman et al., 2014; Borshchev et al., 2004). They placed particular attention on the
Management Activity aspect of the proposed DDS in Figure 2.1 (H. B. Eom et al., 1990). The
following briefly explains the decision levels on the Management Activity aspect.

▶ Strategic Decision. Long-term, complex, non-routine decisions often made at a senior
management level,

▶ Tactical Decision. Mid-term, less complex decisions often made to achieve strategic
policy at a middle management level,

▶ Operational Decision. Short-term, simpler, routine, day-to-day decisions, made at a
junior management level.

The presented POD framework in chapter 1 serves as a physics-based DSS for STSs.
In terms of the characteristics and types of DSSs, the POD framework is investigated
from predominantly two angles: (i) Modeling the STSs and its environment and (ii)

Modeling potential internal and external perturbations of the system (risks and
opportunities) as physical forces impacting the object, so-called system.

The following positions the POD framework into the Model-oriented (notably, Repre-
sentational and Optimization models) type of DSS according to Alter’s taxonomy and
Management Activity aspect of Hackathorn framework (Figure 2.1).

▶ Modeling the system (Alter Taxonomy)

– Representational model. The presented POD framework (Figure 1.6) performs
the causal-effect relationships between the Description and Performance spaces
(shown in Figures 1.5 and 1.3, respectively) which provides the chance to ex-
amine the impact of the intentional or imposed events from the system and its
environment.

– Optimization Model. Moreover, the POD framework considering the restriction
on the Attributes and Characteristics (Control Spaces of the system and contextual
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elements, shown in Figure 1.5), offers the best actions to take through the Force
Evaluation stage (section 1.5).

▶ Modeling potentials (Hackathorn framework)

– Operational Decision. The object’s displacement on the associated axis to a
KPI in the Performance Space is connected to the immediate variations of that
KPI (Micro-level). In such a sense, short-term base action must take (gener-
ate/eliminate forces) to move the object toward Target Zones.

– Tactical Decision. The object’s velocity on the associated axis to a KPI in the
Performance Space is connected to positive or negative growths of that KPI (Meso
-level). In such a sense, mid-term base decisions could regulate the system’s speed
toward Target Zones.

– Strategic Decision. The magnitude and direction of the object’s acceleration on
the associated axis to a KPI are connected to the positive or negative fluctuation
of that KPI (Macro-level). Therefore, a long-term base action is required to ensure,
all around, the object advances toward the Target Zones.

DSS application areas. Eom found many different DSS applications had been published in
the academic literature (S. B. Eom, 2002; S. B. Eom, 2003). Eom studied DSS applications
documented in the literature from 1970 to 1992, overlooking conference proceedings articles
and Ph.D. dissertations. Further, Eom found more than 1800 papers about DSS, many of
which concentrated on the model-driven DSS described in this article (S. B. Eom, 2003).
An additional bibliography of DSS applications is provided by Kim and Eom (H. B. Eom
et al., 1990). Most subjects of DSSs and interfaces include articles illustrating practical
applications of DSS, and so does this work; Shim et al. have offered a comprehensive
conceptual perspective on decision support systems (Shim et al., 2002).

In their most recent study on DSS applications, Eom and Kim looked at how DSS applications
and technologies evolved through time into (i) corporate functional management, which
accounted for 73.3% of the study, and (ii) non-corporate domains, which accounted for
26.7%. The DSS applications for these two domains are listed below (S. Eom et al., 2006);
highlighting that similar to the interest of research studies in the cooperative functional
management category, the selected case studies in this work are mainly in this category
(more specifically, production/operation area1, ~32% out of the total).

• Corporate functional management. Inter-Organizational decisions (2%), Strategic
Management (4%), Human Resources (4%), Finance (6%), Multi-Functional Applica-
tions (8%), Management Information Systems (14%), Marketing/Transportation (18%),
Production/Operation (44%).

• Non-corporate areas. Agriculture (7%), Urban/Community Planning (7%), Military
(11%), Natural Resources (13%), Hospital/Health-Care (13%), Miscellaneous (14%),
Education (16%), Government (20%).

There are still discussions and disagreements regarding the categories and the applications
of DSS; consequently, there is a substantial dose of research related to DSS (Power et al.,
2007). Given that, the POD theory aims at creating a general DSS committed to assisting
with problems in STSs—which encompasses a wide range of systems with tremendous
diverse challenges. Therefore, regardless of the systems’ types and their challenges, the
foundation of the theory is observing systems from an abstract point of view, which seeks to
find affinities that could be obtained from the perspective of laws founded in physics. This

1Polling place management (mainly operation), road traffic management (mainly operation), pandemic simula-
tion model (mainly operation), and manufacturing production model (mainly production/operation).
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argument implies that addressing the POD theory’s functionality and potential challenges
in decision-making is considerably more crucial than focusing on its potential areas of
contribution. The remainder of this section discusses the primary challenges and how the
POD framework addresses them.

2.2.2 Bounded Rationality
The essential bottleneck of DSS models is that, once they are developed and created, they are
seldom checked in the future to see whether they still serve as accurate representations of
the system, its environment, and potential perturbations they might face. Decision makers
(usually managers) provide a model to be built based on their experiences and thoughts,
and programmers transform these specifications and expertise into an applicable DSS. Once
a model starts producing reliable results, rarely does DSS’s user wonder if it still delivers
correct results or not. The model definition stands the presumption that the underlying
hypotheses are still valid. Consistently questioning the reliability of DSS is a fundamental
aspect of DSS since the alternative decision-makers may have depended heavily on the
presumptions about the problem situation (Madhavan et al., 2007; Paradice, 2008).

The aforementioned pervasive issue remains concealed in the shadow of the following fact
and extends until such a time that the developed DSS is no longer reliable. The fact is that
decision-makers inevitably are compelled to consider a variety of realistic options that satisfy
them rather than opting for decisions or behaviors to maximize and optimize the outcomes
(Paradice, 2008). Simon argued that the most fundamental unit of analysis in decision-
making is the premises (i.e., assumptions). The principles that one is most compatible with
are those that are most relevant to a particular situation, in Simon’s perspective. These
assumptions control the alternatives considered and consequently influence the decision-
making process and dictate decisions (Simon, 1950; Newell et al., 1972; Simon, 2013).

Bounded rationality is Simon’s hypothesis that when individuals make decisions, their
rationality is restricted and that, as a result, they will choose a decision that is satisfactory
rather than optimum. The complexity of the decision-making problem, the mind’s cognitive
aptitude, and the amount of time available are some of these constraints. According to
this theory, decision-makers operate as satisficers, seeking a satisfactory answer with what
they currently have available rather than an ideal one. Thus, humans do not do a thorough
cost-benefit analysis to decide the best course of action, instead opting for a solution that
satisfies their adequacy requirements. Altogether, the Bounded Rationality hypothesis states
that individuals do not make perfectly rational decisions because of both cognitive limits
(the difficulty in obtaining and processing all the information needed) and social limits
(personal and social ties among individuals) (Simon, 1960; Simon, 1990; Sent, 2018).

According to Herbert Simon’s hypothesis of Bounded Rationality, some activities are sug-
gested to minimize the impact of potential issues brought on by Bounded Rationality. The
following is an excerpt from his book “Administrative Behavior,” addressing those activities
and types of decisions that individuals are exposed to make in the organizational sector as
an example of the socio-technical systems (Simon, 1950).

Decision-making can be a challenging task sometimes; this especially happens
when we are uncertain about the outcome of the decision we make or when we
lack knowledge about the particular subject on which we are making the decision.
Decision-making skills have become crucial in the present-day workplace with
employees’ managers and team leaders working towards their organizational goals.
The proposed decision-making theory is established by exploring the traits of
decision-making by people in administrative posts in organizations. The hypothesis
states that there are three steps involved in forming decisions: “Intelligence,”
“Design,” and “Choice” activities.
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Intelligence Activity involves identifying issues in organizations and striv-
ing to gather data and information for possible solutions to develop. Considering
that possible solutions have found a few different ways to overcome a particular
problem, now is the time to examine each solution and list its pros and cons; This
is performed in the second stage, known as a Design Activity. Finally, when the
solutions and their pros and cons are examined, the decisions having the most
desirable outcome are selected; since each decision comes with consequences, this
process is pretty challenging as it requires a variety of skills such as being able to
judge between solutions fairly, having a sense of creativity, and of course prior
experience in the context of the problem. This stage is known as Choice Activity.

Further principles are followed by the three mentioned activities while mak-
ing decisions. While formulating a decision, there is a Value component and a Fact
to it. Values are the ethical component, or more precisely, they are the moral beliefs
of the decision-maker. Moral beliefs can be right for one person while being wrong
for another, which is why this theory recommends reducing the number of Values
used in decision-making but not completely nullifying them. The Factual part is
verifiable information. It is possible to verify this aspect of the decision, and all
parties will likely come to a conclusion—whether it is right or wrong. However, to
make a rational decision, a high level of specialization, the use of scientific methods,
a comprehensive understanding of the market and political structures, and extensive
knowledge of the problem’s context, are all required.

In the administrative sector, there are two different forms of decision-making:
Program decisions and Non-program decisions. Program decisions resemble
everyday routines that individuals create on a chart but seldom follow; whereas
non-programmed are those that are unique and non-repetitive for every challenge.
For instance, establishing a new business to compete with rivals, perhaps enhancing
brand image, or even making a personal lifestyle, are some instances of using this
theory.

Prior to Simon’s theory, decisions in organizations were exclusively dependent on statistical
data, where decision-makers have struggled with the reasons for adverse outcomes of
their judgments; Simon drew attention to the limits of human psychology along with other
aspects like stress and the environment’s anxiety. The proposed activities, Intelligence (prob-
lem discovery), Design (solution discovery), and Choice (choosing solution), to overcome
Bounded Rationality are presented in Figure 2.2.

Intelligence Design Choice

Figure 2.2: Intelligence, Design, and Choice activities and their relationships

According to Figure 2.2, the decision-making process includes (i) the Intelligence-Design-
Choice forward chain, shown with blue arrows, and (ii) the Choice-Design-Intelligence
backward chain, shown with red arrows. The backward chain is the consequence of the
forward chain, where there are deficiencies in the steps of the forward chain, problem
discovery, solution discovery, or choosing solutions. The backward chain is briefly detailed
in the following though not covered in the excerpt from Simon’s book. The following
presents the two chains together and concludes the relationships among the activities.
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▶ Forward Chain

– Intelligence ⇒ Design. This step transfers the identified problem and the ac-
quired data from Intelligence Activity to generate solutions and alternatives for
the problem at hand through the Design Activity.

– Design ⇒ Choice. This step transfers the discovered solutions and alternatives
from the Design Activity to examine and ultimately select the most desirable
solutions through the Choice Activity.

▶ Backward Chain

– Choice ⇒ Design. This step is performed when none of the discovered solutions
from the Design Activity step provide satisfactory results.

– Design ⇒ Intelligence. This step is taken when the discovered solution or
alternative has not been examined well (i.e., there is insufficient knowledge of its
benefits and drawbacks).

The intrinsic nature of introduced activities in Simon’s theory is positioned on “Prescriptive
Decision Theory” (introduced in sections 1.1 and 2.1.2) aimed at improving the decision-
making abilities of non-idealized (less rational) decision-makers2. The activities and their
relationships must be aligned to make a successful decision.

The fundamental component of the POD framework is modeling the system (and its envi-
ronment) and its potentials, which are bonded to the Activities and Chains (Forward and
Backward), respectively, in Simon’s suggested model.

“Intelligence,” “Design,” and “Choice” activities are what the POD framework based on
“Prescriptive Decision Theory” is seeking to cover throughout the Force Characterization
and Evaluation stages presented in sections 1.3 and 1.5, respectively. The POD framework’s
integration into Simon’s suggested Activities is briefly justified in the following.

In successive steps, (i) building the “Description” and “Performance” spaces
and the relationship among them assists in identifying the problema and po-
tentials solutions to it (Intelligence Activity), (ii) constructing the “Mapping”
between the two spaces, allows examining the solutions (Design Activity), and
ultimately, (iii) exploring the “Control Spaces” provides the most desirable
obtained action through controlling (creating or eliminating, later, selecting)
managed forces (Choice Activity). Figure 2.3 summarizes these justifications.

aPretty much, in the POD context, the stated “problem” is generally translated to minimizing
the difference between “Actuality” (system’s current performance) and the intended “Objective”
according to the conceptual structure depicted in Figure 1.1.

Two fundamental aspects make up the “Mapping” between two spaces. (i) How the system
interacts with its environment; and (ii) How perturbations (risks and opportunities, so-called
forces) are examined through mapping. The first aspect mainly pertains to “Intelligence
Activity,” whereas the second one primarily pertains to “Design Activity.”

In addition to tuning the POD framework to the proposed activities by Simon, the Force
Characterization stage (Identification and Assessment stages presented in section 1.3) and
Force Evaluation stage (section 1.5) support the Forward and Backward Chains.

2However, the stated “Fact” and “Value” principles in Simon’s theory are mainly related to the “Normative
Decision Theory” (choices that individuals ought to make) and “Descriptive Decision Theory” (choices that
individuals are disposed to make), respectively. In addition, the “Programmed” and “Non-programmed” decisions
are related to “linear” and “non-linear” interactions, respectively, in the first principle of Socio-Technical Theory,
presented in section 1.1.
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The axes and arrows depicted in Figure 2.3, along with the following explanations, present
this alignment. The following presents the relationships between the transitions among
activities and the proposed steps of Force Identification, Force Assessment, and Force
Evaluation.
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Figure 2.3: The POD framework adjustment into the Activities & Chains (Simon, 1950)

▶ Forward Chain

– Intelligence ⇒ Design. The identified forces (Natural, Contextual, Autonomous,
Interface) from the Identification stage are transferred to the Assessment stage
to examine their parameters (Strength, Likelihood, and Pattern), then,

– Design ⇒ Choice. The best force (or combination of the most convincing ones)
among the Managed forces (the ones generated/eliminated from Control Spaces),
followed by simulating, calculating, and anticipating their impacts, is picked
to deviate the Performance Trajectory toward the Target Zones following the
Evaluation stage.

▶ Backward Chain

– Choice ⇒ Design. The dynamic review of Control Spaces and flexibility on its
boundaries might suggest an “inflicted” force with the possibility to turn it into a
“managed” force, meaning an undiscovered solution could be identified (see the
details in section 1.5, more precisely, here).

– Design ⇒ Intelligence. Following the Mapping among spaces, it is possible that
the forces’ nature and source are classified inaccurately, or their parameters differ
from what was supposed. Thus, re-doing the Assessment or the Identification
stage might serve as the second step of the Backward chain.

2.3 Tools and Technologies in DSS
The decision-making tools enable the exploration of all potential choices and alternatives
to the decision at hand, appraisal of the costs if chosen, and the probabilities of success
or failure. These applications provide the groundwork for ways to make the right choice
by simplifying the decision-making process. The wide range of DSS types, discussed in
section 2.2.1, has led to the development of tools and technologies that support the specified
thoughts, concepts, and strategies that underlie every single type of DSS.

The overall objective of the “Physics of Decision” is to define a unified and generalized theory
for performance management and to pave the way to build a decision-support technology
based on physical laws. This theory would be independent of a specific application field
while equipped with several scientific technologies.
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The POD theory (section 1.7) focuses on unforeseen perturbations, which leads to risks
and opportunities that the systems might face, and so does its framework. According to
the section summary of the “Administrative Behavior” book (2.2.2), Simon distinguished
between programmed and non-programmed decision types (Simon, 1950). Perturbations,
which mainly arise from non-linear interactions in socio-technical systems (section 1.1);
dealing with them, are primarily associated with non-programmed decisions (Hassanien
et al., 2018).

This section focuses on exploring the existing tools and technologies which assist in making
non-programmed decisions in association with Intelligence, Design, and Choice activities to
reduce the effect of Bounded Rationality drawbacks (i.e., toward making optimum decisions,
not just ones that are satisfying). In addition to differentiating the tools and technologies
according to the maturity of supporting the mentioned activities, they might be classified as
either automated (operated without human intervention), manual (handled by individuals),
or semi-automated (a combination of the automated & manual) (Brill et al., 1990; Keen,
1980).

BI

SIM

CL
POD

DL

MCDM

SWOT/PESTEL

RMABC

ABACUS

BSC

SCOR

SPC ROI Manual

Semi-automated

Automated

Intelligence

Design

Choice

Figure 2.4: DSS Tools and Technologies in support of activities for Bounded Rationality

In Figure 2.4, the primary tools and technologies for performance management and decision-
making (i.e., DSSs) are succinctly and qualitatively outlined, along with their significance
for the Intelligence, Design, and Choice aspects. The circle’s slices are colored to symbolize
these aspects and scored on a scale of three for the low, mid, and high levels of maturity.
The POD framework (highlighted with black color) is envisaged to receive a total score in
the three aspects, emphasizing its strength in the Intelligence one (indicated with red color).
The simulation (SIM) approach is acknowledged as being the most advantageous (while
the competitive one) to the POD framework (indicated with yellow color).

Most of the current tools and technologies exclusively address one or two of the activities,
and none significantly support all of the decision-making issues stemming from Bounded
Rationality with a high level of maturity. The grading in Figure 2.4 is briefly justified
below (clockwise and starting from “Manual” ones), along with some advantages and
disadvantages concerning the activities for each tool or technology.
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“Manual Decision Support Systems”

SWOT/PESTEL. The Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis man-
ually deals with defining an organization’s strategic action. The power of SWOT is its
internal scrutiny of the organization’s capabilities (Intelligence), followed by environmental
scanning to identify appropriate opportunities and threats (Intelligence) and a chance to
discover the opposite of the identified opportunities and threats (Design), which might help
in choosing the most relevant action later on (Choice) (GURL, 2017; Benaben et al., 2022).

However, the following are some drawbacks of SWOT which confirm its weaknesses, mainly
in the Design aspect. (i) No straightforward methodology has been proposed to identify
strengths and weaknesses (Intelligence), (ii) Most SWOT analyses focus on an excessive
number of the organization’s strengths and weaknesses rather than on the main ones, which
makes it difficult to translate the findings into actions (Choice), (iii) There is no indication
of causality among the strengths and weaknesses, nor are they ranked into any hierarchy
(Design), (iv) The SWOT analysis is typically a one-time event lacking mechanisms for
acting upon and monitoring the changes in strengths and weaknesses over the longer term
(Intelligence/Choice) (Coman et al., 2009).

The Political-Economic-Social-Technological-Environmental-Legal (PESTEL) analysis, in
terms of the maturity of its impact on Simon’s activities, might be compared to the SWOT
analysis as a complementary approach that insists on identifying “external” opportunities
and threats (Benaben et al., 2022; Sarsby, 2016).

Risk Management (RM). Risk management involves identifying risks (Intelligence), mea-
suring them (Intelligence), examining the solutions to those risks (Design), and putting
those solutions into practice (Choice), then using resources in a coordinated and economical
way to lessen the likelihood or impact of unfortunate events or to maximize the realization
of opportunities (Culp, 2002).

Risk Management is a generic, primitive, often manual, and traditional DSS that fully
covers Simon’s activity to enrich the proposed activities. However, due to the high level
of uncertainty regarding the system, its environment (Intelligence), and their interactions,
along with a lack of knowledge of them (Intelligence), the Risk Management processes
became complicated; Consequently, all these weaknesses make the Risk Management
approach an unreliable DSS for making decisions (Ward et al., 2003).

“Semi-automated Decision Support Systems”

ABACUS. or in general computer-aided software engineering (CASE), is a software suite
for finite element analysis and computer-aided engineering. Automotive, aeronautical, and
other industrial products employ ABACUS. There are three distinct phases to every whole
finite-element investigation. (i) Pre-processing or modeling, this step involves creating
an input file including the engineer’s design for a finite-element analyzer (Intelligence),
(ii) Processing or finite-element analysis, this step generates a visual file as the result of
processing or finite-element analysis (Design), and (iii) Post-processing, including modifying
the output file or producing a report, picture, animation, etc. from it (Choice) (Ashby et al.,
2013; Fermin et al., 2011).

ABACUS as an instance of CASE primarily address design and choice aspects while neglect-
ing lifecycle because of the significant assumptions and offered models (basic geometry,
deterministic) (Intelligence) (Ashby et al., 2013; Fermin et al., 2011).

Return on Investment (ROI). ROI is a performance measure used to evaluate the efficiency
or profitability of an investment (Design) or compare the efficiency of several different
investments (Design). ROI acts as a comparative analysis that aims to quantify the amount
of return on a particular investment concerning the cost of the investment (Design). These
analyses enable the decision-maker to select an investment that will improve both divisional

30



Tools and Technologies in DSS

and organizational profit performance (Choice) while also allowing them to make better
use of current investments. As a result of education or skill development, ROI refers to the
quantity of knowledge retained and learned (Intelligence) (J. J. Phillips, 1998; Hamelmann
et al., 2017).

However, ROI (i) might be incomparable with other companies, (ii) encourages management
to invest in a short-term project and discourage them from making new investments, and
(iii) overlooks the time factor throughout its processes. In summary, ROI cannot be the only
indicator used by investors to make decisions because it does not account for risk or time
horizon and necessitates a precise measurement of all expenses (Intelligence) (P. P. Phillips
et al., 2009; Hamelmann et al., 2017).

Statistical Process Control (SPC). is a subfield of statistics that combines exacting time series
analysis techniques with graphical data visualization (Intelligence), frequently revealing
insights into the data more quickly (Design) and in a manner more intelligible to ordinary
decision-makers (Intelligence & Design). Researchers and practitioners might boost their
insight from SPC and its central tool—the control chart—to more effectively comprehend
and communicate data from the system and its surroundings (Design) (Benneyan et al.,
2003).

SPC relies on the system’s users to provide data about the process using the charts they fill
in while monitoring the system. Their reluctance to deliver a sufficient and reliable chart
might be a threat (Intelligence). Additionally, although a high proportion of undesirable
outcomes is a sign of an uncontrolled function, this might be interpreted as a critique of the
decision-ability maker’s to make a choice. Some decision-makers may feel intimidated and
insecure about their decisions (Choice) if the system manager hasn’t thoroughly described
the SPC’s function (Intelligence) (Hawkins et al., 2003).

Balanced Scorecard (BSC). is a strategic planning framework used by businesses to prior-
itize their initiatives, goods, and services, coordinate communications around them, and
schedule routine tasks and decisions (Intelligence & Design). The scorecard allows busi-
nesses to track and gauge the effectiveness of their plans to assess how well they have done
(Design). BSC permits organizations to identify their weaknesses and devise solutions to
them (Intelligence & Design) Gomes et al., 2014.

The following weaknesses roughly place the BSC in such a level of maturity concerning
Simon’s activities. (i) In practice, firms become mired in the task of developing indicators
without devoting enough effort to formulating their strategies, resulting in indicators that
are out of sync with their strategic objectives (Intelligence) (Richardson, 2004), (ii) The BSC
does not keep track of industry competitiveness or technical advancements; meaning that
BSC does not account for the inherent dangers and ambiguity in the occurrences that might
threaten to examine the actions (Design) (Gomes et al., 2014), (iii) The effects of this control
model can lead to seriously dysfunctional behavior and a loss of control over the choices
that the decision-maker opts and how the strategy is applied (Choice) (Nørreklit, 2003), and
(iv) The strategy’s execution issues make it challenging to strike a balance between financial
and non-financial indicators (Choice) (Anand et al., 2005).

Supply Chain Operations Reference (SCOR). is a management tool that helps companies
address, improve, and communicate supply chain management decisions to their suppliers
and clients (Intelligent & Choice). The model outlines the business procedures necessary
to fulfill a customer’s requests (Intelligence). Additionally, it aids in the explanation of all
supply chain operations and offers a framework for how to enhance them (Design). SCOR
uses appropriate technology to support communication between partners that are part of
the supply chain (Intelligence & Design) (Huan et al., 2004; Lee et al., 2010; Salazar et al.,
2012).

The SCOR model includes five central process workflows: demand and supply planning,
warehousing and delivery, sourcing strategies, reverse logistics, and transformation pro-
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cesses. These workflows primarily focus on managing the internal system and fall short
in evaluating external events—primarily composed of non-programmed decisions. This
claims that the absence of the first step in the decision-making process, Intelligence, impacts
the following steps, the Design and Choice steps. However, SCOR cannot expound on a
what-if perspective since it is constrained to a specific application domain (Intelligence &
Choice) (Huan et al., 2004; Salazar et al., 2012).

Activity Based Costing (ABC). might be thought of as the contemporary replacement for
absorption costing (Design), enabling managers to comprehend the net profitability of the
product and the client (Intelligence). As a result, the company might make successful
decisions since they are value-based (Choice). ABC has shown to be a practical semi-
automated managerial decision-making method that might result in reasonable revenues
right away (Cooper et al., 1991; Lombardo, 2015).

However, ABC also faces weaknesses such as complicated implementation (Design), pricey,
employee opposition, arduous and time-consuming information collection, and questionable
information gathering (Intelligence) (Lombardo, 2015; Reyhanoglu, 2004).

“Automated Decision Support Systems”

Business Intelligence (BI). refers to the methods and tools that organizations employ to
manage and analyze their business information. Reporting (Choice), online analytical
processing (Design), analytics (Design/Choice), dashboard development (Design), data
mining (Design/Choice), process mining (Intelligence/Design), are examples of typical
functions of BI systems (Negash et al., 2008; Chaudhuri et al., 2011).

Information provided by BI tools is outdated. Specifically, decisions often need to make
judgments before all the pertinent data is available; This indicates that data gathered from BI
reports do not apply to current new challenges (Intelligence). Moreover, BI tools frequently
fail to identify process problems (Design) and consequently fail in predicting (Choice)
(Lahrmann et al., 2011).

Simulation (SIM). is the most convincing imitation of the operation of a real-world process
or system over time. Models are an inevitable requirement for simulations; the model reflects
the salient traits or behaviors of the chosen system or process (Intelligence), whilst the
simulation depicts the model’s development through time (Design). The use of simplifying
approximations and assumptions within the model (Intelligence), the commitment and
validity of the simulation results, as well as the acquisition of reliable information about
the pertinent selection of key characteristics and behaviors used to build the model are all
important issues in modeling and simulation (Choice) (Banks, 1998).

Simulation techniques such as discrete event simulation, multi-agent simulation, system
dynamics are very powerful to manage changes (Design) and pick the most affordable
decisions (Choice) but it is very time-consuming to implement, and often limited to specific
systems. Due to the lack of knowledge necessary to create flexible links between the
simulated system and recently arrived changes, simulation usually encounters a severe
hurdle (Intelligence) (Eldabi et al., 2002).

Control Loop (CL). is the fundamental building block of industrial control systems. It
has all the physical parts and control capabilities required to automatically change the
value of a monitored process variable (Intelligence) to match the value of the desired
set-points (Design). It consists of the process sensor, controller function, and last control
element, all of which are necessary for automated control (Design/Choice). The analysis
and implementation of cause-and-effect interactions (Design) are the primary focuses of the
CL mechanism (Hägglund, 1995).

The CLs are used for open and closed systems. For instance, the following are some issues
for open-loop systems. The non-feedback (open) system in CL does not facilitate the process
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of automation, meaning that if the output of CL is affected by some external disturbances,
there is no way to correct them automatically (Intelligence/Design) (Hägglund, 1995).

Deep Learning (DL). or Deep neural networks (DNN) models have the potential to provide
new insights into the study of cognitive processes, such as human decision-making, due to
their high capacity and data-driven design. DL is pretty similar to the simulation approach
(LeCun et al., 2015). The most important drawback of DL method compared to the simulation
technique is the amount of data required to go through layers, extract information about the
situation, and then present solutions (Intelligence) (Fintz, 2020).

Multi-Criteria-Decision-Making (MCDM). is a research area that involves the analysis
of various available options in a situation or research field which spans daily life, social
sciences, engineering, medicine, and many other application domains. To assess if each
criterion is a good or bad choice for a particular application (Choice), MCDM analyzes the
measures. It also tries to evaluate this criterion, depending on the chosen criteria, against
every other choice to help the decision-maker pick an option with the fewest trade-offs
and the most benefits (Design/Choice). As a central weakness of MCDM, the first two
activities, Intelligence and Design, are required to meet before moving on to the Choice
aspect (Ozsahin et al., 2021; Triantaphyllou, 2000).

2.4 Summary and Conclusion
This section discusses the backbone of the proposed physics-based framework to support
the POD theory standing on the Prescriptive Decision Theory. Prescriptive Decision Theory
strives to provide tools and applications to non-idealized decision-makers (section 2.1.2) to
make better choices among the possible ones; so does POD theory.

The notions of well-established approaches in the literature, including sociophysics, econo-
physics, psychophysics, and field theory, serve as inspiration for the suggested framework
(POD). The POD theory and its framework are founded on the hypothesis that some social
phenomena might be conceived as occurring in inanimate worlds (physical actions, chemical
reactions), which allows those events to be studied using well-known classical physics laws
and principles (sections 2.1.1 and 2.1.2).

Section 2.2.1 discusses the features of the POD framework as a DSS on modeling the system
and its environment and some potential that it might face on mainly the model-oriented
DSS type to support the operational, tactical, and strategic decision levels.

In keeping with investigating the POD framework as a model-oriented DSS, section 2.2.2
discusses the issues in the decision-making processes according to the Bounded Rationality
hypothesis and the proposed actions to lessen those issues (section 2.2.2). Moreover, the
characteristics of the POD framework are discussed and tuned to proposed activities and
relationships that go along with them to support Bounded Rationality (Figure 2.3).

Finally, section 2.3 looks at several prominent DSS tools and technologies that primarily
focus on non-programmed decisions and briefly discusses their significance on Simon’s
proposed activities (Figure 2.4). The fact is that none of the current approaches fully account
for the activities that underpin decision-making processes. This section also examines these
drawbacks.

According to the approaches scored in Figure 2.4, the simulation (SIM) approach (with a
yellow border in Figure 2.4) is well-appropriate to the real-time examination of the system,
its environment, and the changes (perturbations, so-called risks & opportunities) that they
may undergo. Consequently, simulation is the top-ranked approach among the discussed
ones.

However, there is a lot of ambiguity and a high degree of uncertainty due to the nonlinearity
of interactions. In conclusion, all approaches, even simulation (see the details here), face a
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significant barrier due to the absence of information about those situations required to build
agile connections between the simulated system and newly arriving circumstances. In short,
the maturity of intelligence activity is critical to overcoming uncertainty, which leads to the
discovery of some solutions to investigate (design activity), and hence the selection of the
best course of action (choice activity) to make a more accurate prediction of the system’s
behavior.

The main idea of the POD theory is rooted in discovering and revealing some patterns
and trends of the system behavior (mainly social aspect) by connecting its evolution (its
development as time passes) to proven physical laws of motion. This statement points to
the intelligence aspect that POD theory might provide as a DSS in uncertain systems. In
addition, several “sensitivity analysis” and “optimization functions” tools are supplied in
the POD approach to enhance the Design and Choice aspects, respectively.

To cope with non-programmed decisions, the POD framework, based on the POD theory
and insisting on the “Intelligence” aspect (envisaged to achieve three out of three, bordered
with red color in Figure 2.4), aims at connecting non-linear interactions with nature in
the yearnings of identifying patterns, behaviors, and inherent laws from physics into the
system and interactions. This Ph.D. study on the shoulder of the simulation approach moves
toward finding undiscovered laws among systems and their environments. The frequent
employment of the simulation approach in the contributions of this thesis aims to draw
closer to the desired result in dealing with non-programmed decisions.
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3.1 Preliminaries and Notations
The introduced “Physics of Decision” framework in chapter 1 (section 1.6) strives to link
the defined Description Space (section 1.6) to the proposed Performance Space (section
1.2). Managing the performance of socio-technical systems (STS) through making optimum
decisions is the target for POD theory investigations and demonstrating its significance in
decision-making processes in uncertain contexts. Installing the POD framework with estab-
lishing the connection between spaces is the primary contribution of this work—detailed in
the primary Research Questions. The first and foremost step in installing the POD frame-
work is simplifying the Description and Performance spaces in such a way as to observe the
changes in the system and its environment situation and readily pursuit its performance
evolutions. The following is an attempt to mathematically present the POD framework and
open the door for further investigations.

In a general sense, on the one hand, the Description Space is positioned for reviewing the
system (and its environment) changes and making decisions to deviate the Performance
Trajectory toward its stated Target Zones as the “input” for the POD framework; whereas,
on the other hand, the Performance Space is positioned to observe system performance as
the framework’s “output.” Therefore, the POD framework can be expressed as a function
(F) from an input space (U), representing the Description Space of the system, into an output
space (Y), representing the Performance Space of the system.

The function F is defined implicitly by the specified input-output pairs. The input points
to the vector of “Attributes” and “Characteristics” together in the Description Space,
whereas the output points to the vector of “KPIs” in the Performance Space. The method of
representing time-dependent systems by vector differential or differential equations is well
established in systems theory and applies to a fairly large class of systems (Kumpati et al.,
1990).

35



Thesis Contributions

For example, the differential equation:

𝑑𝑥(𝑡)
𝑑𝑡

≜ �̇�(𝑡) = Φ[𝑥(𝑡), 𝑢(𝑡)], 𝑡 ∈ R+

𝑦(𝑡) = Ψ[𝑥(𝑡)].
(3.1)

where:

𝑢(𝑡) ≜ [𝑢1(𝑡), 𝑢2(𝑡), · · · , 𝑢𝑝(𝑡)]𝑇

𝑥(𝑡) ≜ [𝑥1(𝑡), 𝑥2(𝑡), · · · , 𝑥𝑛(𝑡)]𝑇

𝑦(𝑡) ≜ [𝑦1(𝑡), 𝑦2(𝑡), · · · , 𝑦𝑚(𝑡)]𝑇

represents a 𝑝-input, 𝑚-output system of order 𝑛. While 𝑢𝑖(𝑡) represents the 𝑖-th input vector
at time 𝑡, 𝑥𝑖(𝑡) represents the 𝑖-th state variable of inputs’ vectors, 𝑢1(𝑡), 𝑢2(𝑡), · · · , 𝑢𝑝(𝑡), at
time 𝑡, and 𝑦𝑖(𝑡) represents the 𝑖-th output vector at time 𝑡. Functions Φ and Ψ are dynamic
(or static), nonlinear (or linear) maps defined as Φ : R𝑛 × R𝑝 → R𝑛 and Ψ : R𝑛 → R𝑚.

The function Φ presents the states of the system inputs in space U; Since the number of
inputs is considerably fewer than their possible states (𝑝 << 𝑛), the Φ would be a 𝑛 × 𝑝 → 𝑛
dimension function.

The Ψ function is used to depict the relationship between inputs (vector 𝑢(𝑡), composed of
quantitative values of Attributes and Characteristics) and outputs (vector 𝑦(𝑡), composed of
the quantitative values of the system’s KPIs). The vector 𝑥(𝑡) denotes the state of the system
at time 𝑡 and is determined by the state at time 𝑡0 < 𝑡 and the input 𝑢(𝑡) defined over the
interval [𝑡0, 𝑡). The output 𝑦(𝑡) is determined by the state of the system at time 𝑡 (Haaser,
1991; Kumpati et al., 1990).

Equation 3.1 is referred to the input-state-output representation of the system. This study
is concerned with several time-dependent static (presented in sections 3.2.1 and 3.2.4) and
dynamic (presented in sections 3.2.2 and 3.2.3) systems which could be represented by
differential equations corresponding to the differential equation given in equation 3.1; yet
complicated for some systems (e.g., case studies of 3.2.2 and 3.2.3). These take the form:

𝑥(𝑘 + 1) = Φ[𝑥(𝑘), 𝑢(𝑘)],
𝑦(𝑘) = Ψ[𝑥(𝑘)]. (3.2)

where 𝑢(.), 𝑥(.), and 𝑦(.) are discrete-time sequences. Fig. 1.5 depicts the Physics of Decision
framework as a time-dependent technique with the input-states-output vision.

Figure 3.1: Mathematical representation of the Physics of Decision framework
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According to equation 3.1, the variations of vector 𝑢(𝑡) change the �̇�(𝑡) via function Φ. These
changes go through function Ψ and consequently deviate Performance Trajectory, shaped
with vector 𝑦(𝑡) in the Performance Space Y. This transition from the variation of vector 𝑢(𝑡)
to the deviation of the Performance Trajectory is assumed as “physical forces” in the POD
framework.

The mathematical representation of the POD framework (equation 3.1) is a general vision
and serves nearly all time-dependent systems. However, discovering the functions Φ and Ψ
is a tremendous challenge and almost impossible for most socio-technical systems because
of several unexpected and chaotic behaviors (e.g., actions, movements, decisions, etc.) of
individuals in diverse settings. Indeed, the social aspect of the socio-technical systems results
in nonlinear, dynamic functions of Φ and Ψ, which frequently change due to individual
complex behavior.

In outline, the POD framework is obtained by determining the Φ and Ψ functions in equation
3.1. The ambition is to solve this “Differential Equation” (DE) among Description and
Performance spaces which subsequently provide the chance to discover physical laws of
motion. The following three related approaches to this study are proposed based on how
complicated the Φ and Ψ functions are to obtain. (i) Modeling, (ii) precise DE, or (iii)
Learning Mechanism (LM).

The DE is considered the core approach to establishing the POD framework. The Modeling
serves for low abstraction, more detail, in general studying the systems at the micro-level
(associated with operational decisions with the more precise approximation of the system
presentation). In contrast, the LM is employed for high abstraction, fewer details, in general,
studying the systems at the macro-level (associated with strategic decisions, with a less
precise approximation of the system presentation).

The present work includes four contributions to the Modeling (three publications) and DE
(one publication) approaches while holding the LM approach (mainly with Neural Network
or NN) as a future study. The related contributions to the Modeling approach include
three distinctive publications dedicated to the simulation approach as follows (i) Polling
place management simulated with an Agent-Based Model (ABM), (ii) an epidemic-affected
population simulation with System Dynamics (SD) simulation model, and (iii) road traffic
management performed with a Discrete Event Simulation (DES) model.
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Figure 3.2: Outline of the thesis contributions

The related contribution to the DE approach includes a publication dedicated to state-space
(SS) representation, a mathematical model for physical systems, to simulate a manufacturing
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production model. Figure 3.2 presents an overview schematic of the proposed approach
versus the thesis contributions (blue arrows indicate present publications, while gray arrows
indicate upcoming research). The remainder of this section introduces the simulation
and SS contributions for installing the POD framework, along with several investigations
associated with potential forces and their effects on the performance trajectory in the system’s
performance space.

3.2 Thesis Contributions
Referring to the Research Questions, the main focus of this work—an article-based dis-
sertation—is the POD framework implementation. The contributions in each subsection
are briefly described, along with the author’s version and online access to the publisher’s
version of the articles.

3.2.1 System Dynamics Simulation
The POD framework in this case study is installed through a well-known System Dynamics
(SD) model called Susceptible-Exposed-Infected-Recovered (SEIR). The SD model includes
several differential equations for the transmission of a specific virus among a population
in a particular region. The Description Space has constructed on the dimensions of the
“region” as the system (Attributes), where the “virus” serves as the contextual element
(Characteristics). The Performance Space has constructed on some KPIs, for example, the
number of infected, hospitalized, and dead, to examine the impact of several forces. The
“inflicted” and “managed” forces are generated respectively from the changes in the virus
parameters (e.g., latent period) and region parameters through containment measures to
control the outbreak (e.g., reducing contact rate through lockdown).
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Multi-criteria performance analysis based on
Physics of Decision — Application to COVID-19

and future pandemics
Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Matthieu Lauras, Julien Jeany, and Louis Faugère

Abstract—The purpose of this study is to present a novel perspective on decision support based on the conventional SEIR pandemic
model paradigm considering the risks and opportunities as physical forces deviating the expected performance trajectory of a system.
The impact of a pandemic is measured by the deviation of the social system’s performance trajectory within the geometrical framework
of its Key Performance Indicators (KPIs). According to the overall premise of utilizing Ordinary Differential Equations to simulate
epidemics, the deviations are connected to several alternative interventions. The model is essentially built on two sets of parameters: (i)
social system parameters and (ii) pandemic parameters. The ultimate objective is to propose a multi-criteria performance framework to
control pandemics that includes a combination of timely measures. On the one hand, the current study optimizes prospective strategies
to manage the potential future pandemic, while on the other hand, it explores the COVID-19 epidemic in the state of Georgia (USA).

Index Terms—SEIR, Pandemic, Decision Support System (DSS), Performance Management, Risk management, Optimization
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1 INTRODUCTION

T RANSMISSION of infectious diseases has long been a
cause of worry and a hazard to public health. It has

presented severe risks to the survival of humans and so-
cial development. Following pandemic crises such as the
Cholera (1817-1923), Spanish Flu (1918-1919), COVID-19
(2019-present), and others [1], [2], implementing pandemic
preparedness measures has become a top concern for world-
wide public health. Pandemic prevention and containment
techniques fall into three major categories: antiviral (chiefly
a drug or treatment effective against viruses), vaccination
(treatment with a vaccine to produce immunity against
disease), and non-pharmaceutical (isolation of the infected
cases, quarantine, closure of school and workplaces, and
travel restrictions) [3]. A critical step in controlling a ”non-
pharmaceutical” infectious disease outbreak is attempting
to reduce the epidemic peak, which reduces the danger
of overburdening healthcare systems and allows for more
time for the development of a vaccine and treatment [4].
A thorough assessment of the pandemic-contaminated area
and the pandemic itself can provide insight into the scope
of the pandemic threat and potential control strategies. The
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proposed study considers a pandemic-contaminated region
as a system and a pandemic as a potential that may affect
system KPIs in a multi-dimensional performance space. The
Physics-of-Decision (POD) paradigm proposed in [5] is used
in this study. Risks and opportunities, according to the
original POD framework, may be viewed as physical forces
applied to the system trajectory that could push or pull it in
its performance space by varying the system’s KPIs [6].

The primary goal of this study is to present a tentative
Decision Support System (DSS) by tuning a well-known
Susceptible-Exposed-Infected-Recovered (SEIR) pandemic
model to the POD framework through Ordinary Differential
Equations (ODEs). To this aim, by putting the POD princi-
ples into practice, researchers may be able to study various
strategies that might impact the performance of the consid-
ered system and assist them in successfully intervening in
the control of future pandemics.

The paper is structured as follows. Section 2 focuses
on current research efforts and scientific contributions that
are related to the topic at hand. Section 3 first introduces
the pandemic modeling through ODEs then tunes the pre-
sented model into the POD framework. Section 4 provides
a specific POD framework process for a Decision Support
System. Section 5 shows the value of the POD as a strategies
management framework for the COVID-19 pandemic in
the State of Georgia (USA) and to control potential future
pandemics efficiently. Finally, section 6 provides conclusive
remarks and proposes areas for further research.

2 BACKGROUND AND RELATED WORKS

Effective management of emerging pandemic infectious
disease issues in the absence of treatment or vaccine is
primarily dependent on government preventive strategies
[7]. Scientific understanding is scarce regarding these
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strategies in the field of infectious disease control.
There is also little information on whether theories
and measurements created for risk perception studies on
chronic diseases, for example, can be used for infectious
diseases [8]. Such information, however, is critical for the
successful management of newly developing infectious
illnesses, because the capacity to promote health-protective
behavioral change is conditional on the understanding
of major drivers of such behavior [9]. In recent years,
epidemiological models have been the subject of significant
research. Compartmental models, such as the SEIR model
(see subsection 3.2), have been utilized often for epidemic
analysis among the many models. The early dynamics of
disease transmission, from initial infected cases through the
potential of the intervention to limit disease spread, are the
primary focus of epidemic modeling approaches [10].

This study looks at a simplified version of the SEIR
pandemics model implemented through ODEs in which no
one has preexisting immunity, and every infected one has
immunity after recovery. The objective is to characterize the
pandemic model to investigate the possible interventions
to control the outbreak through finding the most desirable
solutions considering the limits of their execution. Interna-
tional travel restrictions [11], contact reduction [12], isolation
of sick persons from the outset [13], and the use of masks
[14] are some of the most common measures for control-
ling a non-pharmaceutical pandemic. The current research
delves into the SEIR model to distinguish the model’s inputs
from its outputs, and it looks at the mentioned pandemic
control strategies with the assumption that changes in sys-
tem inputs generate changes in its outputs. Some modified
SEIR models such as [15], [16], and [17] attempt to thor-
oughly assess various intervention techniques. The inputs of
the pandemic model are divided into two categories: virus
and society. The influence of virus-related elements and the
characteristics of the pandemic-affected region as a society
on the epidemic, are examined in this study. To investigate
a behavioral dynamic epidemic model for multidimensional
policy analysis that includes endogenous viral transmission,
various simulation-based assessments of outbreak reactions
and tactics are established [18]. Understanding the inter-
action between factors in nonlinear systems attempts to
investigate ”what-if” possibilities based on the community
and region’s capabilities. The wearing masks as an example
among the non-pharmaceutical intervention measures has
been studied in [19] for the COVID-19 epidemic. In the SEIR
model, population transmission through dynamic flows has
been established using various ODEs. Various pandemics
are represented by different input values for the equations,
as mentioned in [20].

The foundation of system diagnostics is the charac-
terization of the system and the relationship between its
parameters. Controlling the system, necessitates the iden-
tification of such linkages and their impact on the system’s
performance. The varied circumstances of the system across
time are defined by system states [21]. Over the last few
decades, the field of risk management has produced a
number of acknowledged outcomes that are now regarded
as reliable contributions [5]. According to [22], risk is de-
fined as a mix of the severity of the system’s consequences

on the one hand and the likelihood of occurrence on the
other. The Physics of Decision (POD), which is based on
physical principles and mathematical equations, is a novel
performance management technique in the field of risk
management [5]. The POD framework is a multi-criteria,
time-dependent approach for performance analysis that
quantifies the impact of various pandemic control methods.
When compared to earlier researches, the innovation of
this approach is the ability to measure the influence of
multiple strategies (simultaneously) on system performance
in a multi-dimensional framework and then determine the
optimum strategies while keeping the execution restrictions
in mind.

3 PHYSICS-BASED DECISION SUPPORT SYSTEM

The term ”Risk” is used in many ways and is given different
definitions depending on the field and context. Common
to most definitions of risk is uncertainty and undesirable
outcomes. From a reciprocal perspective, those uncertainties
that could bring benefits if they were to occur are known
as “Opportunities” [23]. The definition of opportunity is:
“an uncertainty that could have a positive effect leading to
benefits or rewards”. The opportunity could be seen as just
another form of risk: a risk with negative impacts is a threat,
whereas a risk with a positive impact is an opportunity [24].

Decision Support Systems (DSSs) are at the heart of
risk/opportunity management projects [25]. The necessity
of such systems is critical to deal with the complexities due
to massive data and interconnectivity between the system’s
components and its environment [26].

In this section, the Physics Of Decisions (POD) is pre-
sented and illustrated as an innovative approach for deci-
sion support in context of instability and uncertainty. POD
considers that risks and opportunities can be created by
spontaneous or intentional changes in the system’s param-
eters or in its environment parameters. These changes may
push or pull the system in its performance space by varying
system’s KPIs. Essentially, these variations’ consequences
are observed through the deviation of the system ”trajec-
tory” within the multidimensional performance space of
its KPIs.

3.1 Preliminaries, Basic Concepts, and Notation
System characterization and identification are fundamental
problems in systems theory. The problem of characterization
is concerned with the mathematical representation of a
system. A model of a system can be expressed as a function
F from an input space U into an output space Y [27].
The function F is defined implicitly by the specified input-
output pairs. The method of representing time-depended
systems by vector differential or differential equations is
well established in systems theory and applies to a fairly
large class of systems [28]. For example, the differential
equation:

dx(t)

dt
, ẋ(t) = Φ[x(t), u(t)], t ∈ R+

y(t) = Ψ[x(t)].
(1)
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Fig. 1. Mathematical representation of input-state-output of a system

where u(t) , [u1(t), u2(t), · · · , up(t)]T ,
x(t) = [x1(t), x2(t), · · · , xn(t)]T , and y(t) =
[y1(t), y2(t), · · · , ym(t)]T , represents a p input, m output
system of order n with ui(t) representing the inputs,
xi(t) the state variables, and yi(t) the outputs of the
system. Φ and Ψ are static nonlinear maps defined as
Φ : Rn × Rp → R

n and Ψ : Rn → R
m. The vector x(t)

denotes the state of the system at time t and is determined
by the state at time t0 < t and the input u defined over the
interval [t0, t). The output y(t) is determined by the state
of the system at time t. Equation (1) is referred to as the
input-state-output representation of the system [27], [28].
This paper is concerned with discrete-time systems which
can be represented by differential equations corresponding
to the differential equation given in (1). These take the form

x(k + 1) = Φ[x(k), u(k)],

y(k) = Ψ[x(k)].
(2)

where u(.), x(.), and y(.) are discrete-time sequences. Fig. 1
illustrates a time-dependent input-states-output system.

3.2 Pandemic modeling through Ordinary Differential
Equations

Quantitative studies on mechanisms of disease
transmissions provide a foundation for pandemic
prevention and control. The Epidemic Dynamics
formulates mathematical models based on the occurrence
and progressions of diseases to its surroundings to
characterizing the infectious agents, describing the
transmission processes, analyzing origins of the diseases
and factors involved in the transmissions, and predicting
the prevalence of the diseases and their patterns [10].
Dynamic models for infectious diseases are mostly based
on compartment structures [10]. To formulate a dynamic
model for the transmission of an epidemic disease, the
population in a given region is often divided into several
different groups or compartments. Such models describing
the dynamic relations among these compartments are
called compartment models. The population is assigned
to compartments with labels – for example, S, I, or R,

(Susceptible, Infectious, or Recovered). The population
may progress between compartments. The order of the
labels usually shows the flow patterns between the
compartments; for example, SEIS means Susceptible,
Exposed, Infectious, then Susceptible again. The numbers
of individuals are presented in the compartments S, E, I, and
R, at time t, as S(t), E(t), I(t), and R(t), respectively [29]. This
section introduces the generic version of pandemics model
including Susceptible, Exposed, Hospitalized, Recovered,
and Dead as common compartments of different pandemics
shown in Fig. 2.

S E I H

R

D

Exposing Infecting

Recovering 1

Hospitalizing

Recovering 2

Dying

Fig. 2. Flow chart of the SEIR model

This model postulates rules on how populations in each
category move to the next categories. Based on Fig. 2, the
transitions of the population through the flows from left to
right are as follows:

(i) Exposing flow ⇒ The individuals move from S to
E through this flow (Fig. 2) at the exposure rate, i.e., the
population in category S decreases concerning time t and
the population in E correspondingly increases at the same
rate. The exposure rate grows with I, the number of infected
individuals. A standard hypothesis is that exposure rate is
the product of the transmission rate (or contact rate (cr))
and the probability of infection given that contact occurred
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(infectious rate (ir)) divide by latency due to infectious duration
(id) [30].

Exposing flow =
ir × cr
id

S × I. (3)

(ii) Infecting flow ⇒ The Exposed individuals progress to
the Infected category through this flow after the latent period
(lp), the period at which exposed hosts become infected [30].

Infecting flow =
E

lp
. (4)

(iii) Hospitalizing flow ⇒ The individuals with lower
immunity in case of virus infection, called severe infected
group, progress to the Hospitalized compartment with the
rate of fraction hospitalized (fh).

Hospitalizing flow = fh× I. (5)

(iv) Recovering 1 flow ⇒ The lightly Infected individuals
(non-severe cases), those who don’t need to be Hospitalized,
progress to the Recovery compartment directly after the
infectious duration (id).

Recovery 1 flow =
1− fh
id

I. (6)

(v) Recovering 2 and Dying flows ⇒ The Hospitalized indi-
viduals, depending on the fatality rate (fr) of the virus, either
recover (Recovering 2 flow) or die after infectious duration
(Dying flow). The hospitalized fatality rate (hfr) is calculated
by dividing the fatality rate (fr) of the virus by the fraction
hospitalized (fh), hfr=(fr)/(fh).

Recovery 2 flow =
1− hfr
id

H,

Dying flow =
hfr

id
H.

(7)

The basic reproductive number (denoted R0), in epidemio-
logical modeling, is the expected number of cases directly
caused by one case in a community where everyone is sus-
ceptible. In the majority of commonly used epidemic mod-
els, a pandemic can spread in a population if R0 > 1, but
not if R0 < 1. The basic reproductive number for the SEIR
model is shown in equation 8, assuming that the latency
period is a random variable with exponential distribution
with parameter α (i.e., the average latency period is α−1,
or lp−1), β, γ, and µ are the rates of infection (the number
of contacts per person per time (cr/id), multiplied by the
probability of disease transmission in a contact between
a susceptible and an infectious subject (ir)), recovery, and
mortality, respectively [30].

R0 =
α

µ+ α

β

µ+ γ
(8)

Since the natural mortality rate is not included in the
presented SEIR model in Fig. 2 (µ = 0). According to the
”Recovery 1” and ”Recovery 2” flows in Fig. 2 and equations
6 and 7, the γ is obtained using equation 9.

γ =
1− fh
id

+
1− hfr
id

=
2− (fh+ hfr)

id
(9)

Finally, the reproductive number of the presented model is
obtained through equation 10.

R0 =
β

γ
=

(cr/id)× ir
(2− (fh+ hfr)/id

=
cr × ir

2− (fh+ hfr)
(10)

Given that the disease spreads in a closed environment;
the paper considers there is no emigration nor immigration
and neither birth nor death in the population so that the
total population remains a constant N for all t, that is:

S(t) + E(t) + I(t) +H(t) +R(t) +D(t) = N (11)

Instead of establishing the system for a specific total
number of the population, the paper simplifies the equation
11 by dividing the sides of the equation by total population
N to be efficient for any population size. Therefore, the
following proportions are obtained.

s(t) =
S(t)

N
, e(t) =

E(t)

N
, i(t) =

I(t)

N
,

h(t) =
H(t)

N
, r(t) =

R(t)

N
, d(t) =

D(t)

N
,

s(t) + e(t) + i(t) + h(t) + r(t) + d(t) = 1

(12)

Based on Fig. 2 and equations (3) - (7), there are six
parameters involved in the flows. The vector u presents
those parameters as inputs for derived equations.

u = [lp, id, fr, ir, cr, fh]T = [u1, u2, u3, u4, u5, u6]T (13)

The rate of change in the compartments in Fig. 2 from
left to right according to the transmission of individuals are
represented in equation 14 through Ordinary Differential
Equations (ODEs) based on equations and the input vector
u (13).

ds

dt
= −u4u5

u2
si,

de

dt
=
u4u5
u2

si− e

u1
,

di

dt
=

e

u1
− (1− u6)

u2
i− u6i,

dh

dt
= u6i−

(1− u3

u6
)

u2
h− h

u2
× u3
u6
,

dr

dt
=

(1− u3

u6
)

u2
h+

(1− u6)

u2
i,

dd

dt
=

h

u2
× u3
u6
.

(14)

The ordinary differential equations (ODEs) system in
equation 14, together with some initial conditions (values
of the input variables of the model (vector u) at initial
starting time t0 = 0), make up an Initial Value Problem,
or IVP. IVPs are ubiquitous in modeling systems that evolve
in time. They encapsulate how a future state of a system
is determined by the present state (the initial data) plus
certain rules on how quantities evolve (the ODEs) [31]. As
soon as the preliminary infected (or exposed) cases appear
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in the region, the pandemic starts to spread. The ODEs in
equation 14 are supplemented with some initial conditions.
For example, some percentage of the whole population (α)
is infected (or exposed) and the rest are susceptible to be
infected.

s(0) = 1− α, e(0) = 0, i(0) = α,

h(0) = 0, r(0) = 0, d(0) = 0.
(15)

The modeling through ODEs has been completed. The
following are some remarks on specific hypotheses.
(i) The simple version of the presented SEIR model in
this section considers that the recovered individuals gain
permanent immunity. However, for bacterial diseases, such
as encephalitis, and gonorrhea, the recovered individuals
don’t gain permanent immunity and can be reinfected [10].
(ii) The paper considers there is not an emigration or immi-
gration, and neither birth nor death in the population and
the population size remains a constant N for all t.
(iii) The presented model considers all the individuals are
susceptible to be infected. It might be a portion of the
population is immune to the virus and so not susceptible
to it. Besides, depending on the type of the virus, due to
the sensitivity of the virus to some parameters such as age
category, the health status of the population in the region;
some individuals might be more susceptible and some not.
(iv) The exposed compartment could be distinguished to
individuals with and without symptoms and the Infected
group, in addition to the light and severe groups, could
include infected individuals that don’t carry the virus.
(v) The severely infected individuals could be hospitalized
and ICU sections. The model doesn’t consider differentia-
tion between these two groups, while it might be the limit
capacity for the ICU bed in hospitals.

In addition to the above remarks, there may be other
hypotheses for the epidemic model that are not considered
in this study. This paper considers one of the simplest cases
that is common to most epidemics. It’s important to point
out that the paper does not cover all the possible versions
of epidemics models. This is mostly due to the fact that the
study’s focus is on the model’s application rather than its
relevance.

3.3 Physics of Decision theory and its tuning to pan-
demic performance management

The Physics Of Decision (POD) framework introduced in
section 2 is a mathematical representation of a system con-
sidering internal system connections and communication of
the system with its environment. The next step after char-
acterization and identification of the system is to evaluate
the system performance. The three modes are considered
to assess the system performance: (i) Inertia mode: The
performance could change due to its normal behavior and
the associated consumption. In this mode, the system is
not facing any perturbation. (ii) Passive mode: In addition
to the performance changes of Inertia, the performance
might change because there is (are) perturbation(s) in the
system or its environment, (iii) Active mode: In addition to
the performance changes of Inertia, the performance could
change because the system is facing some perturbations

(passive changes) and also because of some taken decisions
to manage the consequences of those perturbations. In the
case of a pandemic crisis, the change of population size due
to migration, or natural birth/death is considered Inertia, the
sudden change of the population because of the pandemic
issues is considered Passive, and the change of the popula-
tion due to some intervention in comparison to the Passive
mode is considered as Active mode. The POD framework
defines two spaces in which a system can be positioned.

The Description Space describes the parameters of the
system and the scope of their variation. The p-input vector
u(t) represents the input system parameters (subsection 3.1).
Description Space generally refers to what is happening in
and around the monitored system. The parameters of the
Description Space refer to the ”System” and are known as
”Attributes”. A monitored system with particular attributes
could be affected by several circumstances. These circum-
stances are known as ”Potentials”. A potential could have
positive or negative impacts on the system (Risks and
Opportunities). The parameters of systems’ potentials are
known as ”Characteristics”. State variable x(t) is one set of
input parameters including Attributes (system’s parameters)
and Characteristics (potentials’ parameters) that describes the
mathematical “states” of a system under function Φ (See
Fig. 3 and equation 2).

The Performance Space under function Ψ describes the
system performance with an m-output vector y(t). The
output vector y(t) is determined by the system state in the
Description Space (vector x(t)) at time t.

The relationship between the two spaces is determined
by the map function Ψ of the state variables, x(t) (one set of
input parameters including Attributes and Characteristics)
to the outputs, y(t). This map function could be known
(e.g., is formulated with equations from inputs to outputs),
or it could be unknown but estimable (e.g., through sim-
ulation analysis, approximation function, Neural Network,
etc.).

The Description Space in Fig. 3 represents a system with a
p-input vector composed by one vector of Attribute (system)
and r vector of potentials (system’s environment). The vec-
tor of each potential is represented with its characteristics:

(i) θi characteristics for potential Pi (on-axis) and the δi
possible state variables for each Pi at specific time t
shown with colored points in Fig. 3 (oval marked with
”Environment”),

(ii) θ Attributes (on-axis) of the system S and δ possible
state variables for these Attributes at specific time t
shown with colored points in Fig. 3 (oval marked with
”System”).

Equation 16 presents the number of inputs p of the input
vector u and the number of possible system states n for the
generic version of the POD framework presented in Fig. 3.

|p| =
r∑

i=0

θi + θ,

|n| =
r∏

i=1

δi × δ.
(16)

According to the state variables of Attributes and Char-
acteristics, δ and

∏r
i=1 δi respectively, n possible initial
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Fig. 3. Description and Performance Spaces of POD framework

system states exist at time t in the Description Space (x(t) =
[x1(t), x2(t), · · · , xn(t)]).

The Performance Space, according to Fig. 3, describes:
(i) on the top, in the case of ”no perturbation”, the ”Inertia”
trajectory is shown in green. Besides, the n possible passive
trajectories have been depicted according to n possible
initial system states in the Description Space. In this case, the
system goes through its own “passive” trajectories in the
system’s KPIs space according to the δ given colored points
for the Attributes of the system S and δi given colored point
of Characteristics for each potential Pi,
(ii) on the bottom, “active” trajectory, in the sense that one
movement at specific time ti from one colored point to
another one has been made through green edge in order
to deviate the passive trajectory (blue trajectory as one of
possible n passive trajectories). The same process continues
at tj(j > i) from the new state of the system to another
state through another edge (e.g., purple edge).

The system might be destabilized by unforeseen
changes. These changes are due to the existence of
perturbations that create a passive trajectory. The passive
trajectory is determined by the instance in question, with
the most likely case being chosen. The changes related to
decisions mainly refer to the varying of system parameters
including Attributes and Characteristics (changing the system
state by moving the colored points through edges) and
consequently, deviation from the system’s passive trajectory.
Any deviation from that trajectory is considered an active
one for the system.

Subsection 3.2 presented the ODEs modeling for the pan-
demic that disease spread in a closed environment. In the

perspective of the presented POD framework in this section,
the system is the ”region” contaminated by a ”pandemic”.
The ”Attributes” are related to the parameters of the region
and there is only one ”Potential” which is a pandemic and
means, r = 1 in equation 15 (at the same period, the
potentials except pandemic could be other similar negative
potentials (risks) such as hurricanes, earthquakes, etc., or
positive potentials (opportunities) such as the development
of agriculture and industry, increasing social security, im-
proving the standard of living acts, etc.).

According to Fig. 2 (or equation 13), all the compart-
ments (or left sides of ODEs) could be a KPI in the POD
performance space (m = 6). Besides, the system’s inputs,
represented in vector u (equation 12), are parameters of the:

(i) Potential⇒ pandemic, including the following Charac-
teristics: latent period, infectious duration, fatality rate,
and infectious rate of the virus,

P1 = [C1
1 , C

1
2 , C

1
3 , C

1
4 ] = [u1, u2, u3, u4].

(17)
(ii) System⇒ region, including contact rate and hospital-

ized fraction as attributes

S = [A1, A2] = [u5, u6] (18)

In other words, in the POD framework for the presented
ODEs of pandemic, r = 1, θ1 = 4, and θ = 2 (see
equation 16).

4 PHYSICS OF DECISION METHODOLOGY

In the perspective of the POD framework, deviations from
the system passive trajectory happen due to changes in the
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TABLE 1
Physics of Decision process applied on the pandemic model presented in section 3.2

Input u Vector Variation (Min, Avg, Max) Movement Type Consequence Type Considered Potentiality

Latent Period u1 P1 (3, 7, 11) [days] [20], [32], [33] Elusive Inflicted Mutation

Infectious Duration u2 P1 (7, 12, 17) [days] [20], [32], [33] Elusive Inflicted Mutation

Fatality Rate u3 P1 (1, 5, 9) [percent] [20], [32], [33] Elusive Inflicted Mutation

Infectious Rate u4 P1 (40, 60, 80) [percent] [32], [33] Elusive Managed Mask/Social Distance

Contact Rate u5 S (5, 10, 15) [person/day] Driver Managed Lockdown/Curfew

Fraction Hospitalized u6 S (5, 10, 15) [percent] [20], [33] Driver Managed Partial Lockdown

system state in the Description Space (moving the colored
point in Fig. 3). A movement of a colored point is considered
a ”strategy”. According to the performance space in Fig. 3,
the passive trajectory is formed by inputs of the pandemic
(vector P1 in equation 17) and inputs of the region (vector
S in equation 18).

The key objective of the POD management theory is to
use the results of a model-based system on the paradigm
of input-states-output to develop a management strategy.
The main expected benefit of this vision is to enable
decision-makers to manage the performance trajectory of a
considered system by visualizing and combining the impact
of risks and opportunities. This section develops an original
process of the presented approach on a considered system
that might face instabilities (Risks and Opportunities). This
POD process is applied to the considered problem in the
sequential steps presented as follows.

4.1 System Establishment
The first step of the POD process is understanding the
observed system and its environment. First, the system
which is supposed to be studied is determined; The bound-
aries of the system in terms of precise study must be
clear. The environment of the selected system refers to its
potentials (Risks and Opportunities). Once the system and
its potentials are determined, the associate parameters of
the system to the considered potentials must be appointed
(i.e., characterizing the θ inputs of the system). Similarly,
the inputs of the system’s potentials have to be specified
(i.e., characterizing the Ci

j|{i ∈ [1, r] ∧ j ∈ [1, θr]}).
Subsection 3.2 is dedicated to performing this step for the
pandemic (potential) in a closed environment (system).

4.2 System Characterization
The established system includes the inputs of the system
(Attributes) and its potentials (Characteristics). These inputs
could be categorized into two groups in terms of their
movement in the Description Space.

(i) The changes (i.e., movements in the Description Space)
of inputs more related to the potential are known as ”elu-
sive” changes. The elusive changes are considered out of
control changes (or at least hard to perform). Table. 1 shows
that the inputs u1 to u4 are connected to the virus’s features
(potential), and it is impossible to change them unless the
virus itself has a mutation (e.g., fatality rate of the COVID-
19 (1%-3.4%) is different from Ebola (50%) [34]). Roughly

speaking, elusive changes look like impossible (or hard)
strategies. The consequences resulted from elusive move-
ments could be in two categories, (i) Inflicted consequences
that are imposed on the system’s outputs and unmanage-
able, (ii) Managed consequences that might be controlled
through some potentialities (e.g., the infectious rate, u4, is
related to the nature of the virus while the Mask and Social
Distance potentialities could reduce it).

(ii) The changes more related to the system are known as
”driver” changes. The driver changes (more possible strate-
gies) mainly create deviations in the passive trajectories. In
other words, driver changes (and also the elusive changes
with ”Managed” consequence) make the active trajectories
(Fig. 3). The consequences of the driver changes are mainly
managed consequences but are essentially related to the
limits of the system (see section 4.3).

4.3 System Intending
The consequences of elusive and driver movements in the
Description Space appear as a deviation in the trajectory of
the system in the Performance Space. This step is related to
(i) Which outputs (KPIs) the system manager is looking for
to study (e.g., the number of Hospitalized and Dead cases
in the SEIR model), (ii) What constraints might exist for
the movement in the Description Space; In cases where the
system must not be positioned in some states xi forever
or for a specific period in the Description Space (e.g., the
region allowed to be in confinement only for one month, i.e.,
the (cr) value can’t be close to zero more than one month),
(iii) Which movement is preferable to the other if there is
any specific priority and/or preference (e.g., wearing mask
potentiality to reduce infectious rate is more feasible than
confinement potentiality to reduce contact rate), and (iv)
The onset of changes and periods that the system stays
after the changes until the next change (e.g., the region
can’t be quarantined until two months after the onset of
the pandemic and must return to no-quarantine status after
one month).

4.4 Strategy Exploration
When the relationship between inputs in the Description
Space and outputs in the Performance Space is specified
(either formulated or estimated), this step would be the
final step in the POD process. The last step of the POD
process is dedicated to exploring all possible movements
in the Description Space through experiment analysis to find
the most desirable ones to be as close as possible to the
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optimum outputs. This is necessarily dependent on clear
information about the following elements presented in the
previous steps. (i) Inputs (what are they, which type they
have, and which type of consequences might they have in
terms of movement in the Description Space), (ii) Outputs
(which ones are considered to study and which one is more
important to optimize), and (iii) The constraints (the limits
of movements, their preferences, onset and period of the
movements).

Table 1 presents the POD process (the first and second
steps) for the presented model in subsections 3.2 and 3.3.
Table 1 presents an overview of the system and possible
potentialities for system management. The managers of
the system identify the ”Managed” consequences and
adopt strategies that are related to the inputs that their
movement in the Description Space lead to this group
of consequences. The highlighted rows in Table 1 refer to
such inputs with such properties for the pandemic model.
The third and fourth steps of the POD process for the
presented pandemic model is more investigated in section
5. In the POD approach, the key point is to locate the
system (region) and the faced potential (pandemic) within
the Description Space in order to parametrize and initialize
the Decision Support System. The approach addresses the
identified system with all of its constraints and the possible
strategies to explore when it comes to automated function-
ing. Finally, following the strategy exploration (4.4), the best-
fit strategies to execute will be offered automatically.

5 EXPERIMENTS AND RESULTS

The main experiments are centered on strategy exploration
to find the most desirable outcomes to the objectives of the
system. The exploration in this context is to study the possi-
ble movements in the Description Space and finally propose
the best ones at any time t that divert the passive trajectory
toward the objective of the system in the Performance Space.

The input vector for the presented well-known SEIR
model in subsection 3.2 includes the ”Attribute”, the
parameters of the system, and ”Characteristics”, the
parameters of the system’s potential. The ”Attributes” and
”Characteristics” refer to region and pandemic respectively.

The Description Space U for the presented SEIR model
includes the inputs of the pandemic and the region with
vectors P (t) and S(t) respectively.

u(t) = [P1(t), P2(t), · · · , Pr(t)︸ ︷︷ ︸
Potential

, S(t)︸ ︷︷ ︸
System

]T ,

u(t) = [u1, u2, u3, u4︸ ︷︷ ︸
Pandemic

, u5, u6︸ ︷︷ ︸
Region

]T .
(19)

The given vector u(t) illustrates the state x(t) of the system
and its potentials in the specific time t through function Φ.

The Performance Space Yfor the presented SEIR model
indicates by vector y(t) in a given x(t) through function
Ψ. This vector includes some notable KPIs.

y(t) = [s(t), e(t), i(t), h(t), r(t), d(t)]T (20)

The vector y(t) presents the current position of the
system at time t in its multi-dimensional KPI space
(Performance Space). Different perspectives might be
considered for the strategy exploration step of a specific
system. Which KPIs are considered to study (it could be all
of them at the same time) and which one between selected
ones is prior to another one to optimize (they may not have
priority): These are two essential questions that must be
answered before strategy exploration.

Sensitivity analysis of the inputs and outputs depicted in
Fig. 4, (e.g., through simulation campaign) presents the cor-
relation between them. This analysis proposes the priority
for the movements in the Description Space. The inputs with
”Managed” consequences (See Table. 1) are highlighted in
blue frame in Fig. 4. The correlation between inputs (u(t))
and the outputs (KPIs presented with y(t) vector) are as
follows: on average 0.035, 0.012, and 0.0036 for the contact
rate (cr), infectious rate (ir), and fraction hospitalized (fh)
respectively.

According to these values, the impact of ”contact rate” is
more than the impact of ”infectious rate”, which is greater
than the impact of ”hospitalized fraction”. In other words,
potentialities are equally important as following commands,
according to the ”Considered Potentiality” column in Table.
1; Lockdown/Curfew comes first, followed by Mask/Social
Distance, and then Partial Lockdown.

Fig. 4. Input-Output correlations of the presented SEIR model in section
3.2

To examine the POD framework, the three most
dominant KPIs in terms of management, including I , H ,
and D compartments (Infected, Hospitalized, and Dead)
are selected to study the possible movements (strategies)
through potentialities, considering the onset and period
of the strategies in the 3D performance space. The POD
perspective for the selected KPIs is to minimize them as
much as possible without any preferences between them.
The rest of this section is centered on this objective.
According to this objective, the foremost objective is the
minimum value for each KPI at any time t. In the 3D
Performance Space, the reference to study different possible
movements (strategies) would be the origin of the space,
the (0, 0, 0) coordinates for each axis.
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Fig. 5. Pandemic positioning results for its inputs and their distances from the system objective, (0,0,0) coordinates

According to Table. 1, on the one hand, the linked
potentiality to vector P ’s inputs (pandemic), involves
wearing masks or keeping a safe distance from other
people in the community (social distance), both of which
might lower the infectious rate (ir). Lockdown and/or
Curfew to minimize contact rate (cr) or Partial lockdown
of the fragile group to receive the virus, to lower the
fraction hospitalized (fh), on the other hand, are associated
potentialities to the inputs of vector S (region). These
strategies are applied to the ODEs of the presented SEIR
model which is equivalent to changing the system states
in the Description Space through the movements (See
subsection 5.2).

The POD will be ready to investigate strategies once the
possible potentialities and their implementation limits, such
as their start time and duration, have been defined.

5.1 Potential positioning

Understanding the possible effects of potential on the sys-
tem trajectory in the Performance Space is the first step in
the experiment analysis. Various viruses may have different
parameters as inputs in vector u [2], [20]. According to
column ”Variation” in Table. 1, considering that 1% of the
total population is infected at first (α = 0.01 in equation
15), the Fig. 5 presents the different trajectories of Minimum,
Average, and Maximum values for the u1(t), u2(t), u3(t),
and u4(t) in purple, yellow, and black colors respectively.

The values for non-varying inputs of ”Potential” (e.g., in the
case of u1 trajectories in Fig. 5, the u2, u3, and u4) as well as
the ”System” inputs are considered on ”Average” in Table.
1.

The inverse impact of u1 and proportionate impact of
u2, u3, and u4 on the selected KPIs (I, H, and D) are shown
in Fig. 5 (In the proportional impact, the distance between
the points and the origin (0,0,0) grows as the value of input
grows, and vise versa for the inverse impact). In addition,
Table 2 shows that u2 and u4 have bigger fluctuations on
the KPIs than u1 and u3.

TABLE 2
Pandemic positioning results for its inputs and the sum of distance from

the system objective, (0,0,0) coordinates

Input u Min Avg Max

Latent Period u1 8.82 8.62 8.50

Infectious Duration u2 5.34 8.62 11.48

Fatality Rate u3 8.62 8.62 8.63

Infectious Rate u4 6.99 8.62 9.17

Table. 2 presents an overview of the potential impacts on
the selected KPIs (I, H, and D). Except the ”infectious rate”
row, the value of other rows would be on average for the
system positioning (subsection 5.2). Because this parameter
is the only potential parameter that could have ”Managed”
consequence in terms of movement in the Description Space
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(i.e., between the ”Elusive” inputs, there is only ”feasible
potentiality” for infectious rate which could be wearing
mask and social distance potentialities).

The experiments cover the period from the initial
observation of infected cases to 180 days (six months)
afterwards. In other words, each point of the given curves
in Fig. 5 represents the values for one day of the selected
KPIs (daily cases), and the results in Table. 2 are the total
sum of the distance between the point (0,0,0) and the 180
points of the curves.

The results presented in Fig. 5 show the system passive
trajectories of daily KPIs. In this case, the initial position
of the system (region, on the average value) and potential
(pandemic) remain constant for the period of study (180
days).

x(t1) = x(t2) = · · · = x(t180) (21)

5.2 System positioning
The impact of potential inputs on KPIs is discussed in
the preceding section in the absence of any strategy
(no movement on the axis related to the system in the
Description Space has been taken). This section investigates
the active trajectory by examining the results of several
possible movements in the Description Space of the COVID-
19 (potential) for the state of Georgia (region) as alternative
strategies that the system manager could take to control the
system’s trajectory in the Performance Space based on the
selected system objectives.

The average considered value of the ”latent period” and
”infectious duration” for the COVID-19 are 6 days and 12
days respectively [19] (these values could vary, for example,
the infectious duration is shorter when children or less
severe cases are involved [32]). The study uses real data

Fig. 6. Fraction Hospitalized and Fatality Rate of the COVID-19 in the
State of Georgia

from the COVID-19 virus in the state of Georgia between
July 2020 and April 2021 to obtain the values of ”fatality
rate” and ”fraction hospitalized” experimentally [35], [36].

The average value for the fatality rate (fr) indicated in the
red plot in Fig. 6, is 2%. Also indicated in blue is the fraction

hospitalized (fh), which is 10% on average. In equation 7, the
”hospitalized fatality rate” (hfr) is calculated by dividing
the (fr) by (fh), as illustrated in the black plot. Based on
what has been mentioned so far, the input vector of the
Covid-19 potential in the state of Georgia is as follows (see
Table. 1 for the units of input vector).

u = [u1, u2, u3, u4, u5, u6]T = [6, 12, 2, u4, u5, 10]T

(22)
The three highlighted inputs with ”Managed”

consequences of vector u are presented in Table. 1.
The wearing mask potentiality, to reduce ”infectious rate”
(u4) and the lockdown potentiality, to reduce ”contact rate”
(u5) are considered to study the active trajectories through
these two potentialities.

The three related alternatives to these potentialities
are being investigated to determine the ideal timing for
movements equivalent to the considered potentialities in
the Description Space of the COVID-19 (Potential) in the state
of Georgia (System).

(i) The two-week lockdown potentiality from week i-th to
two weeks after (6 months contains 24 weeks starting
at the first day after week-first),

(ii) The wearing mask obligation starting from week i-th
until the end of the study (6 months),

(iii) The two potentialities (i) and (ii) simultaneously.

The results are presented assuming that the managers
can only carry out the potentialities (changing the colored
point(s) in the Description Space) on the first day of the week
for the pandemic-affected region. In other words, the state
of the system is altered at the following set.

x(t7i)|i ∈ {1, 2, · · · , 24} (23)

The passive trajectory of the COVID-19 in the state of
Georgia is shown in blue in Fig. 7. This trajectory is the
result of the ”potential positioning” presented in subsection
5.1 and the reference to examine specified alternatives. The
active trajectories in Fig. 7 are related to alternatives (i), (ii),
and (iii) of daily KPIs depicted in brown, yellow, and red
respectively. It’s important to note that these alternatives
may have an influence on potential (virus) and system
inputs, which isn’t reflected in the results (e.g., lockdown
and wearing mask potentialities may reduce the fatality
rate and fraction hospitalized).

The system positioning related to alternatives of week 2,
week 3, week 5, and week 10 after week-first of outset (t1
to t7) is presented in Fig. 7. The following are some related
observations.

(i) The active trajectories correspond to the passive trajec-
tory (blue) until the moment of activation, t21, t28, t42,
and t77 linked to the specified weeks,

(ii) The deviations of the active trajectories related to the
”wearing mask” potentiality from the moment of exe-
cution to the end of the path are smooth,

(iii) In the early weeks, the deviations of the active trajec-
tories associated with the ”lockdown” potentiality are
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Fig. 7. Region positioning results for its inputs and their distances from the system objective, (0,0,0) coordinates

like a forth and back break (deviation), and as we move
away from the early weeks, these deviations become
smoother,

(iv) The later the movement of colored points in the De-
scription Space (taking the strategies), the closer the
active trajectories are to the passive trajectory.

Fig. 8. The considered potentialities for the COVID-19 in the State of
Georgia and the sum of the distances from system objective for given
potentiality in the 3D framework during 6 months (week 1 to week 24).

Fig. 8 shows the final results of the study for the considered
potential strategies for the state of Georgia to containment
the COVID-19 in this region. Since the less the sum of the

distances from the origin, the better the movement in the
Description Space, the following results can be deduced from
Fig. 8.

(i) Week 5th is the ideal time for movement on the ”cr”
axis, which is the lockdown strategy (starting lock-
down after two months),

(ii) The sooner the ”wearing mask obligation” strategy
(movement on the ”ir” axis) is implemented, the better.
Over the weeks, the total distance from the target,
(0,0,0) has increased,

(iii) The best time to implement two strategies simultane-
ously is the 4th week,

(iv) From about the 11th week onwards, the implementa-
tion of strategies has very little influence on pandemic
control (the sum of the distances is approximately
equal to the passive mode).

6 CONCLUSION AND PERSPECTIVES

In this paper, a simplified version of the SEIR model for
pandemic spread through Ordinary Differential Equation
(ODEs) has been introduced to support a wide range
of instances of viruses and populations. The considered
parameters allow covering a wide range of scenarios by
assessing the consequence of an observed pandemic on
the KPIs of a given population. The POD vision has been
established to examine the influence of mitigation measures
on the evaluation of these KPIs to control COVID-19 in the
state of Georgia (USA) and a potential future pandemic.
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Within the system KPIs framework, this prediction may be
visually displayed as a performance trajectory. Furthermore,
decisions may be represented as ”what if” scenarios, and
their influence, as well as the deviation of the performance
trajectory, can be predicted. The next stage in this research is
first, to look at the addition vector of the impacts of several
simultaneous actions on the performance trajectory in the
performance space, and second, to employ this pandemic
model as a data supplier for neural network systems. The
primary idea is to perform large-scale combinatory simula-
tion campaigns to collect big datasets concerning the general
situation of a pandemic-affected social system. Using this
data to train neural network systems will allow us to create
a formal system capable of simulating any social system
affected by a pandemic and implementing any mitigation
actions. Optimization algorithms may be used with these
tools to determine the best set of actions to do in each
given situation (whatever social system is hit by any virus).
Finally, the ultimate goal is to develop a modeling system
that can characterize the population affected by a specific
virus and suggest a combination of timed measures, which
can be viewed as physical forces pushing or pulling the
observed system’s performance trajectory within the perfor-
mance framework, to optimize its response to the looming
pandemic.
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[16] L. López and X. Rodo, “A modified seir model to predict the covid-
19 outbreak in spain and italy: simulating control scenarios and
multi-scale epidemics,” Results in Physics, vol. 21, p. 103746, 2021.

[17] T. de Camino-Beck, “A modified seir model with confinement and
lockdown of covid-19 for costa rica,” medRxiv, 2020.

[18] J. Struben, “The coronavirus disease (covid-19) pandemic:
simulation-based assessment of outbreak responses and postpeak
strategies,” System Dynamics Review, vol. 36, no. 3, pp. 247–293,
2020.

[19] T. Li, Y. Liu, M. Li, X. Qian, and S. Y. Dai, “Mask or no mask
for covid-19: A public health and market study,” PloS one, vol. 15,
no. 8, p. e0237691, 2020.

[20] C. P. Vyasarayani and A. Chatterjee, “New approximations, and
policy implications, from a delayed dynamic model of a fast
pandemic,” Physica D: Nonlinear Phenomena, vol. 414, p. 132701,
2020.

[21] A. Ferreira and D. Otley, “The design and use of performance
management systems: An extended framework for analysis,” Man-
agement accounting research, vol. 20, no. 4, pp. 263–282, 2009.

[22] F. Benaben, M. Lauras, B. Montreuil, L. Faugère, G. Juanqiong,
and W. Mu, “Physics of organization dynamics: An ai framework
for opportunity and risk management,” in 2019 International Con-
ference on Industrial Engineering and Systems Management (IESM).
IEEE, 2019, pp. 1–6.

[23] R. Olsson, “In search of opportunity management: Is the risk
management process enough?” International journal of project man-
agement, vol. 25, no. 8, pp. 745–752, 2007.

[24] D. Hillson, Exploiting future uncertainty: creating value from risk.
Routledge, 2017.

[25] C. Fang and F. Marle, “A simulation-based risk network model
for decision support in project risk management,” Decision Support
Systems, vol. 52, no. 3, pp. 635–644, 2012.

[26] K. Yuthas, “Tamara bekefi, marc j. epstein and,” 2008.
[27] N. B. Haaser, Real analysis. Courier Corporation, 1991.
[28] S. N. Kumpati, P. Kannan et al., “Identification and control of

dynamical systems using neural networks,” IEEE Transactions on
neural networks, vol. 1, no. 1, pp. 4–27, 1990.

[29] J. Tolles and T. Luong, “Modeling epidemics with compartmental
models,” Jama, vol. 323, no. 24, pp. 2515–2516, 2020.

[30] O. N. Bjørnstad, K. Shea, M. Krzywinski, and N. Altman, “The
seirs model for infectious disease dynamics.” Nature Methods,
vol. 17, no. 6, pp. 557–559, 2020.

[31] A. Bourgois, “Safe & collaborative autonomous underwater
docking,” Ph.D. dissertation, ENSTA Bretagne-École nationale
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3.2.2 Discrete Event Simulation
The POD framework in this case study has been installed by simulating the Nantes ring road
with the vehicles as agents and flooding on a specific part of the ring road as events (named
“Disruption Scenarios” in the article). The Description Space has been constructed on the
dimensions of the “ring road” (length and capacity and speed limit) and “vehicle” (flow,
length) as the system (Attributes), where the “flood” (with its onset time and magnitude
as parameters) serves as the contextual element (Characteristics). The Performance Space
has constructed on some KPIs, for example, the number of vehicles on the ring road, their
average speed, etc., to examine the impact of several forces. The “inflicted” and “managed”
forces are generated respectively from both the ring road and flood (e.g., traffic jam, flooding,
respectively) and parameters to control the traffic (e.g., opening alternative routes for vehicles
in the flooding area and directing them to those routes to reduce traffic).
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Abstract

In the context of crisis, the characteristics of
the crisis area and the operational measures of the
community play key roles in managing the crisis. The
Nantes ring road in France is always exposed to flooding
and its disruptions. To anticipate the disruptions and
timely preventive actions for this frequent phenomenon,
the main challenges are (i) forecast of vehicles’ flows,
(ii) capacity of the ring road to handle the traffic (iii)
evaluate the performance of alternate routes during the
flooding. The flooded area as a system has components
of (i) the flood (e.g. time of onset, magnitude,
intensity, etc.), (ii) the area (e.g. geographical features,
temporary perimeter barriers, dam, diversion canals),
and (iii) the community (e.g. reaction time, emergency
strain, evacuation delay). The chosen approach to
conduct this anticipative study consists of collecting
data about forecasts and using simulation models to
work simultaneously on evaluating the performance of
the ring road and its alternative routes.

1. Introduction

The city of Nantes is surrounded by the 43 km long
Nantes Ring Road (RN 844). The ring road is operated
by the Interdepartmental Direction of Western Roads
(DIRO), except on a portion to the north that is operated
by Cofiroute (see Fig. 1) [1].

With the development of the urban area, the traffic of
the ring road has increased significantly and it reaches
more than 100,000 vehicles per day in certain sections;
therefore, the network congestion is notable at peak
hours. Up to 100,000 vehicles circulate on the ring
road with the traffic peaks in the morning (8 am-9 am)
and evening (5 pm-6 pm) [1, 2, 3]. Significant flows
are observed in the south-north (SN) direction in the
morning and the opposite direction in the evening. Most
of the jobs are located in the northern part of the city
and are the main reason for the difference between these
flows.

Figure 1: Nantes ring road and its operators.

The northeast part of the Nantes ring road is
flooded frequently due to the overflow of the “Gesvres”
river. The Gesvres river originates from the Erdre river
which is started near Angers city and ends in the city of
Nantes. The historical data from the Joneliere station
which reports the Gesvres water level shows whenever
the Erdre river overflows so does the Gesvres river
[3]. This paper focuses on a predictive model of the
traffic on the ring road during the flooding to cope with
flooding disruptions [3, 4, 5].

Preventive systems with the ability to detect, predict,
and make decisions are very useful in the field of
crisis management. The necessity of predictor systems
to deal with unforeseen events such as flooding is
indispensable. These systems are able to detect crises as
early as possible and implement appropriate solutions
to manage them [6].

This paper relies on an intelligent physics-based
framework introduced in [7] to manage crises. This
original framework, Physics Of Decision (POD),
considers that crisis can be seen as physical forces
applied to the system which may push or pull it in its
performance space by varying the system’s KPIs (Key
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Performance Indicators) [8]. The framework guides
decision-makers in assessing the risks that may happen
to a system. Fig. 2 describes the framework, including
its components and the relationships between them.

Figure 2: POD crisis management framework.

In the POD framework, the considered system is
the Nantes ring road which is facing some potentials,
e.g. a heavy traffic jam. These potentials include (i)
Characteristics, i.e. the environmental potentials of the
system such as precipitation which causes its nearby
river overflow and road blockage or it might happen
during holidays, (ii) Interactions, i.e. vehicle flows
of the routes leading to the ring road, (iii) Charges,
i.e. mandatory system costs including minimum trip
time considering maximum speed allowed between two
spots on the ring road at normal times/ peak times,
and (iv) Innovations, i.e. some initiatives dedicated
to modify or improve the structure or the behavior of
the system such as partially activation some alternative
routes in peak hours or totally during the flood. The
susceptibility of the ring road to the traffic jam generates
some potentialities (i.e. heavy traffic jam considered
as physical forces). Heavy traffic jam as potential
might be activated by the water level of the Gesvres
river as the condition which triggers the forces and
changes the system’s performance: the potentialities
become actualities and change the performance of
the system. By comparing actualities to the actual
objectives of the system (e.g. light traffic on the ring
road), managers take some decisions to minimize the
difference between the current state of the system and
its objectives. A detailed definition of the components
and their relationships is given in [9].

The main objective of this article is to introduce
a data-driven simulation model and POD-based
predictive crisis management system to control
the traffic jam and to investigate its value using
a case study from the Nantes ring road which is
permanently exposed to the Erdre river flood.

The remainder of this paper is organized as follows:
Section 2 highlights related existing research works
and scientific contributions. Section 3 describes the
Intelligent Crisis Management framework and its
principles. Section 4 deals with the implementation
through the simulation of the case study. Section
5 examines the results of the simulation-based
investigation for the Nantes ring road. Finally, section 6
concludes this research work and provides avenues for
further research.

2. Background and related works

Flooding in the Nantes ring road is a regular
phenomenon due to the overflow of the Erdre river
[10]. The height of the Gesvres river is the indicator
of this crisis [11]. The huge traffic on the ring road in
the flooded part reduces the vehicle speed to 10 km/h
[12]. This paper deals with the performance of the
Nantes ring road under uncertainty and disruption crises,
and the management of the potential forces (crises)
to evaluate the performance of the ring road. The
keys to crisis management are anticipation, planning,
preparation, and training. Much of the responsibility for
such action rests with the executive board of directors
and the road secretary [5]. The crisis management
framework studies the crisis in three stages, (i)
Management Phases include a loop of pre-crisis
(Preparedness), during the crisis (Response), and the
post-crisis (Recovery and Mitigation). (ii) Interaction
between crisis respondents (Public, Organizations), and
(iii) Information Management Enablers (Information
Collection, Communication, and Collaboration) [13].
Damage by flood hazards depends on the vulnerability
of exposed elements. The term vulnerability refers
to the inherent characteristics of these elements which
determine their potential to be harmed [14]. Road
traffic jams continue to remain a major problem in most
cities around the world, especially in developing regions
resulting in massive delays, increased fuel wastage,
and monetary losses. Several metrics define traffic
characteristics such as speed, flow, and density of a road
[15].

The systematic combination of simulation methods
with empirical research is a powerful tool in risk
management research. This study considers the vehicles
as agents which are circulating on the ring road so that it
simulates the road traffic problem through Agent-Based
Modeling (ABM). Most of the commonly used ABM
platforms follow the “framework and library” paradigm,
providing a framework—a set of standard concepts
for designing and describing ABMs—along with a
library of software implementing the framework and
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providing simulation tools [16]. There is some
software to simulate the traffic considering the capacity
of the roads, buffer size, exit rate, etc. (e.g.
Aimsun (Transport Simulation Systems (TSS)), CUBE,
Dynameq, MITSIMLab, Simtraffic, etc.) [17].

In this paper, quantitative agent-based and stochastic
simulation modeling of the ring road is used as it best
fits the complexity, context, and essence of the ring
road with routes and agents (vehicles). Such simulation
modeling is embedded into the physics-based crisis
management framework to simulate the traffic process
in the ring road and to assess and mitigate the potential
crisis related to the ring road.

3. Physic-based crisis management
framework

3.1. General Perspective of POD for crisis
management

A system might be destabilized by unforeseen
changes. These changes mainly refer to the variation of
system parameters and consequently, deviation from the
system’s expected trajectory. The expected trajectory
depends on the considered case, but this is often the
targeted, planned, or most probable one. Any deviation
from that trajectory is considered a crisis for the system.
System attributes define the different situations of the
system. Identifying these attributes, their relationship,
and their level of security is required to design a smart
predictor system. The Physics Of Decision (POD)
framework introduced in section 1 defines two spaces
in which a system can be positioned [9].

Figure 3: POD-based intelligent crisis management
framework.

The Performance Space, depicted on the right side
of Fig. 3, describes the performance of the system in
a given state by locating it relative to KPIs, with crisis
being shown as force vectors in that referential.

The Description Space, depicted on the left side of
Fig. 3, represents the system’s states by locating it
relative to axes defined according to its attributes.

Some attributes are changed at certain times by
decision-makers to control the deviation of trajectories.
The degree of changes for each attribute is determined
by system constraints in the Control Space, which is
basically the “easy to access” subpart of the Description
Space.

The relationship between the two spaces is
determined by a function of Attribute(s) to KPI(s),
which maps Description Space to Performance Space.
This function can be straightforward or complex [8].
In cases where equations between the two spaces can
be determined, it would be possible to analyze the data
and deviations from the normal trajectory caused by the
forces. Otherwise, this function should be determined
differently, notably through simulation experiments as
in this paper, so as to generate the data from which the
unknown relationships between attributes and KPIs can
be inferred [9].

3.2. Problem statement

The Interdepartmental Direction of Western Roads
(DIRO) and Cofiroute operators are responsible for
frequent floods on the northeast part of the Nantes ring
road [2]. To cope with this crisis, the DIRO must close
the ring road, partially or totally (depending on the
extent of the submersion of the water to the roadway),
between two stations, “Porte de la Chapelle” and ”Porte
de la Beaujoire” which are two ring road interchanges
then they activate other routes (called: “S” alternative
routes) which are major alternative adjacent routes in the
flooded part [2, 3]. The DIRO decides to close the ring
road (totally or partially) between the aforementioned
ports based on the Gesvres water level reported by “La
Jonelière”, measuring station nearby the river according
to the following indicator for the water level [3, 10]:

• 203 cm: water arrives on the right lane of the outer
ring road;

• 210 cm: water arrives on the left lane of the outer
ring road;

• 228 cm: water arrives on the left lane of the inner
ring road;

• 230 cm: water arrives on the right lane of the inner
ring road.

The reaction of the ring road operators to the crisis is
critical in the flooded part and it gets increasingly more
critical if the flood happens during peak hours usage of
the ring road. This article mainly focuses on assessing
the capability of the ring road to handle the traffic in
normal days usage and the flooding days with different
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possible times of onset and intensity. The major focus of
the case study is ascertaining the bottlenecks and rupture
points in the Nantes ring road where issues may emerge
from the perspective of the POD-based intelligent crisis
management framework.

4. Methodology

4.1. Nantes ring road architect and Gesvres
flood

The inner roadway of the Nantes ring road has 23
exits and 24 entrances and the outer roadway has 23
exits and 22 entrances (there is one exit for almost every
entrance). Exceptions are located at interchanges 43
(Porte d’Anjou) on its inner roadway and interchange
33 (Porte d’Or Mor) on its outer roadway which have
two entrances and two consecutive exits respectively
(see Fig. 4).

Figure 4: Nantes ring road map.

As soon as the water of the Gesvres river rises
and reaches the minimum blockage indicators, the ring
road is closed (partially or totally depending on the
flood intensity) and the alternative routes are activated
to prevent the traffic jam. The alternative route S6
is activated for the vehicles in the south-north (SN)
direction (on the outer roadway) and S5 is activated for
vehicles in the north-south (NS) direction (on the inner
roadway). These two detour routes are indicated for
ring road users by specific signs or messages before the
blockage part [18].

According to the slope of the ring road in the
blockage part, the outer roadway flooded first then based
on the intensity of the flood, the water approaches the
inner roadway. The two alternative routes S5 and S6

Figure 5: Alternative routes during Gesvres flood on the
Nantes ring road (DIRO, 2015).

follow the urban network of Nantes Metropole and the
Cofiroute motorway network.

4.2. Traffic jam topology and its process
modeling

The traffic jam process is modeled to begin with the
entry of a vehicle from one of the 46 entrances (inner
and outer) to the Nantes ring road. Once on the ring
road, the vehicles circulate on the ring road until they
reach their destination. The simulation initializes at 12
midnight so that generally a small number of vehicles
are traveling (of course after one full day running the
simulation, some vehicles, oncoming vehicles, already
travel on the ring road). To reflect the real traffic
situation, the whole length of the ring road is segmented
into dual segments among each two consecutive exists.

The first segment is from an exit to the first next
entrance and the second segment starts from the first
observed entrance to the next exit. This process
is applied to the whole ring road (inner and outer
roadways). This process correctly illustrates the logic
of a moving vehicle that has passed an exit on the ring
road (the vehicle definitely sees and passes the first
next entrance and travels until the next exit and finally
decides to exit or keeping continue on the ring road).

The next step is the traffic jam implementation.
The vehicles that have passed the first exit, cannot
enter segment 1 while there is no space (the minimum
required space is at least the vehicle length). The same
logic is applied for the vehicles that have passed segment
1 and are trying to enter segment 2. Besides, those
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Figure 6: Traffic logic between two exits (including 2
segments) [19]

that are entering the ring road from entrances (Incoming
vehicle (green) at yellow cell in Fig. 6) have to stop
in the detour route leading to ring road until there is
required space at segment 2. The parameters of the
implemented traffic process are given in section 4.4. The
traffic jam process is applied to the alternative routes (S5
and S6) as well.

Fig. 7 shows the schema of a sample of
whole segmented routes on the Nantes ring road for
implemented Traffic jam process with the Process
Modeling and GIS libraries of the AnyLogic©
simulation software used in this study.

Figure 7: Traffic jam process modeling for the Nantes
ring road.

AnyLogic© Process Modeling Library supports
discrete-event, or, to be more precise, process-centric
modeling paradigm. Process Modeling Library objects
can model the real-world systems in terms of agents
(transactions, customers, products, parts, vehicles, etc.),
processes (sequences of operations typically involving
queues, delays, resource utilization), and resources. The
processes are specified in the form of flowcharts - a
widely adopted graphical representation used in many
areas: manufacturing, call centers, business processes,
logistics, healthcare, etc.

AnyLogic© flowcharts are hierarchical, scalable,
extensible, and object-oriented, which enables the user
to model large complex systems at any level of detail.
Another important feature of the Process Modeling
Library is the ability to create very sophisticated
animations of process models. Besides, the GIS
library uses the GIS map to implement the routing
and navigation from any origin (point/region) to a
destination. This library requests the routing from Open
Street Map (OSM) server for considered routes with the
possibility of shortest or fastest routes for any agent type
(car, rail, bike, foot, etc.) [20].

4.3. Safe driving modeling

As long as there is no other vehicle in the sight of a
moving vehicle, the vehicle will move at the freeway’s
speed limit (the paper considers other possible objects
appearing in the path of a moving vehicle as another
vehicle). The initial speed considered for the vehicles
is a triangular distribution between the minimum and
maximum speed limit. The considered initial speed for
the ring road is:

Triangular (70 km/h, 90 km/h, 80 km/h)
These values may change when there are other

vehicles in the sight of the moving vehicles’ drivers. To
simulate the process of decreasing and increasing speed
on the ring road, the simulation applies the “Two-second
rule”. The two-second rule is a rule of thumb by which a
driver may maintain a safe trailing distance at any speed
[21, 22]. The rule is that a driver should ideally stay at
least two seconds behind any vehicle that is directly in
front of his or her vehicle. It is intended for automobiles,
although its general principle applies to other types
of vehicles. Depending on the distance between the
moving vehicle and the newly appeared vehicle, the
simulation decreases the speed of the vehicle until the
vehicle is within the Two-second rule (likewise, the
speed restore gradually as soon as the capacity is back
to the allowable range). This process continues until the
number of vehicles reaches the maximum capacity of
the segment on which the vehicle is moving and as soon
as the segment is full, the Hold markup is activated (see
Fig. 7).

4.4. Data sources and scenarios

The simulation utilized various parameters as
attributes in the Description Space. These parameters
include the values of (i) the vehicles as agent (e.g.
car, truck) includes their flows, length, origin, speed,
and destination (ii) the ring road includes total length,
segment’s lengths, speed limit, capacity (one-line or
more than one-line roadway), and (iii) the flood includes
the time of onset (date and time) and its magnitude.

The Gesvres water level (as the magnitude of the
flood) is considered as the origin of applied force to the
system (section 3.2). The goal is then to evaluate the
probable forces of the modeled crises and their impact
on the system trajectory in the Performance Space of
the Nantes ring road to reflect a realistic simulation of
the traffic jam process.

This section gives more details about the
aforementioned parameter considered as Attributes
for the Description Space, in the other words, the
simulation inputs.
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4.4.1. Agent The Description Space related to the
parameters of the vehicle, ring road, and the river.
This section is related to the parameters of the vehicles
considered as agents.

Flow: The simulation only had access to data recorded
by some on-road cameras (not all of them) include
the flow of the vehicles passing them and their speed
(Oncoming vehicles in Fig.6). Lack of access to the
flow and speed of the vehicles at entrances and exits was
a challenge. To distribute the entire flow of vehicles
recorded by on-road cameras between entrances and
exits, the two following possibilities are considered
concerning the current position of a sample vehicle.
(i) Possibility of departure of the intended vehicle
while traveling on the road (Oncoming vehicle) at its
upcoming exits, (ii) Possibility of departure of a newly
arrived vehicle (Incoming vehicle in Fig. 6) on the
ring road at the upcoming exits. The first hypothesis
is to ensure the exit of an arrived vehicle on the ring
road after crossing the maximum halfway of the ring
road. Otherwise, the driver should have chosen the
opposite direction (this hypothesis is based on heavy
traffic data and the almost always optimal time selection
of the shortest route). With these hypotheses and
trial and error by varying the possible values for the
exit probability through the simulation campaigns, the
following formula has been obtained for the ring road
exits. (U:Uniform, I: Incoming vehicles, O: Oncoming
vehicles)

Pr(exiti) = 1−U(0.7, 0.95) × ΣIi + U(0.4, 0.6) × ΣOi

ΣIi + ΣOi

(1)

According to Fig. 7, the exit probability at the
second exit markup in the schema (the distinguisher
connected to sink 1) is calculated for the vehicles
between ‘StartTime’ and ‘Exit2’ markups and the
vehicles between ‘Entrance’ and ‘Exit2’ markups.

The second issue with the vehicle flows was the
lack of access to all on-road cameras. The simulation
had access to the recorded data of 6 on-road cameras
located between exit 40 (Porte de la Beaujoire) and 45
(Porte de Goulaine) (see Fig. 4). To feed the flows of
entrances and exits in the simulation on the rest exits,
the simulation is duplicated the existing data of exits
40-45 to other similar congestion exits. This simulation
feed is implemented according to the vehicle congestion
map shown in Fig. 8 concerning the high flow in the
south-north direction in the morning and the opposite in
the evening.

Figure 8: Nantes Agglomeration Traffic Operating
System (DREAL - 2010).

Length: The average length of vehicles in terms of
type, e.g. car or truck, uniform (4.5, 5.5) meter has
been considered [23]. Besides, the minimum considered
distance between the agent in heavy traffic is 1 meter.

4.4.2. Ring road Section 4.1 is dedicated to the
Nantes ring road architect and its interchanges. In
this section, the considered values for the ring road as
another attribute in Description Space are explained.

Length and capacity: The Nantes ring road is 43 km
long. The total length is segmented into dual segments.
The first segment start from an exit to the first next
entrance and the second segment starts from the first
observed entrance and ends at the next exit (see Fig.
6). To calculate the capacity of each segment, the
total length of the segment in meters (automatically is
calculated by the OSM server) concerning the minimum
distance between two consecutive agents has been
divided by the average length of the vehicles.

Speed limit: The permitted speeds were selected to
corroborate the rule is used to determine traffic jams
in the main cities in France. These rule judges that,
for a regulated speed between 70 km/h and 90 km/h
and at maximum 60 km/h for the alternative routes.
Besides, the following indicator has been considered for
the traffic status:

• Traffic is fluid if the speed is greater than 50 km/h,

• Traffic is dense if the speed is between 30 km/h
and 50 km/h,

• Traffic is congested if the speed is less than 30
km/h
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4.4.3. Flood There are different parameters related
to the flooding of the Gesvres river. Some of these
parameters are precipitation, rainfall intensity, humidity
index, slope, land use, etc. The only parameter
considered in this study is the Gesvres water level
reported by “La Jonelière” measuring station nearby the
river and disrupt the system according to the defined
indicator in section 3.2

The attributes’ values can vary in some specific
ranges because of the degrees of liberty for the ring road
considering, capacity, speed limits. These variations are
considered in the control space of Description Space
(Fig. 3). Besides, the water level of Gesvres can vary
and impacts the ring road performance. The water level
is out of control and is considered as “Characteristic” in
the POD framework. The water level’s impact on ring
road performance (fluid, dense, and congestion traffic)
is considered as “Environmental Force” in Fig.3.
According to the objectives of the ring road, these
variations impact the ring road’s performance. To
evaluate the ring road performance, the following Key
Performance Indicators (KPIs) are considered:

• The average speed of all exits for each direction
(inner and outer roadway of the ring road) and the
GIS points on the alternative routes,

• The average flow of vehicles on the ring road and
the alternative routes,

• The Average Trip Time (ATT) between
interchange 37 and interchange 44 as critical path
that could be impacted by the Gesvres flood.

4.5. Disruption Scenarios

Some possible scenarios are considered to
implement in the simulation and study their impact
on the system’s trajectories in the performance space.
These scenarios mainly refer to the flood attributes.
Table 1 provides illustrative distinct possible Disruption
Scenarios (DS) for the traffic on the Nantes ring road.

Table 1 shows a very limited number of possible
disruption scenarios. These scenarios considering the
onset of the flood, its intensity, and the interval of
the flood (start-end period of the flood) could be
different. Table 1 in case of flood, considers the possible
disturbances from the beginning of the flood to its end
on the same day.

Table 1: Possible Disruption Scenarios (DS) for the
Gesvres flood on the Nantes ring road.

DS Description Onset Magnitude
DS1 Partial flood at peak

hour
08:30 am 207 cm

DS2 Partial flood at peak
hour

08:30 am 215 cm

DS3 Total flood at normal
hour

12:00 pm 240 cm

DS4 Total flood at peak
hour

08:30 am 240 cm

5. Experiment and results

The main experiment is centered on the
crisis-affected performance of the Nantes ring road.
The heavy traffic jam of the ring road due to the Gesvres
flood in its northeast part is considered a crisis which
is the physical force in the POD framework. In the
perspective of the physics-based crisis framework,
deviations from the inertia trajectory (i.e. the most
probable scenario) are considered as perturbation
forces.

According to the POD framework, the first and
foremost trajectory is the inertia trajectory which is
the reference trajectory to study different possible
scenarios. The flow of the vehicles, the capacity of the
ring road (i.e. the segments’ capacities), and the limit
speed of the ring road are considered to track the inertia
trajectory of the ring road. The considered flow for the
simulation is for February 5th of 2020 (Wednesday, a
typical working day in France).

The result related to the inertia trajectory is for
February 5th, 2020. The values for the ring road
capacity calculated by the OSM server through
AnyLogic© software and the triangular distribution
for the limit speed in section 4.3. is considered. The
simulation results for the ”Inertia” trajectory is shown
with magenta color in Fig. 9.

Three disruption scenarios are investigated for
the Nantes ring road in terms of flood parameters.
Scenarios are related to the onset time and magnitude of
the flood at Gesvres river (Table 1). But they could be
distinguished scenarios only related to the onset or only
related to the magnitude.

The results for the considered scenarios (Table 1)
are shown in Fig. 9. The results are for the following
interval on 5th of February 2020: (00:00:00-23:59:59).
The results for the inertia indicate the high flow from
south to north in the outer ring in comparison to the inner
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Figure 9: The simulation results for the Nantes ring road and its possible crises.

ring due to the high number of jobs located in the north
on the Nantes city. The average speed for the inertia
is close to the minimum of the triangular distribution for
the limit speed which means the two-line roadway of the
Nantes ring road is not quite enough for the vehicle’s
flow on a normal day. The flow of vehicles on the
outer roadway is definitely impacted by DS2, DS3, and
DS4. These results show the importance of the onset and
magnitude of the flood on the ring road performance.
The selected distance between interchanges (37, 44)
is about 12.5 km. Considering the limit speed for
the ring road, this distance ideally should take 8-9
minutes to travel. The Average Trip Time in “Inertia”,
“DS3”, and “DS4”, highlights the following conclusions
respectively: (1) lack of road lines for the most probable
vehicle flow, (2) the high impact of the Gesvres flood
in the outer ring of the ring road and the low capacity
of the alternative routes chosen to control the traffic, and
(3) besides (1) and (2), the alternative routes (S5 and S6)
have a very low capacity to handle the traffic caused by
the river flood in the inner roadway.

The performance space gives an overview of the
KPIs to the decision-maker while it would be more
helpful to have a comparative image of the Nantes
ring road traffic-oriented performance. To reach this
objective, the KPIs should be examined on the same
scale in the performance space. The performance spaces
in Fig. 10 are presented for the following KPIs for the
inner and outer roadway of the Nantes ring road in two
different performance spaces and their comparisons with

non-flooding day (inertia trajectory): (i) Vehicle flow,
(ii) Average speed on the roadway, and (iii) Average Trip
Time between the two critical interchanges on the ring
road.

6. Conclusion and perspectives

This article presented the application of the Physics
Of Decision (POD) approach to the crisis situations.
The empirical experimentation reported in this paper
assesses and quantifies the impact of disruptions on a
sensitive highway to heavy traffic jam due to blockage in
its specific part. This evaluation is essentially based on
an agent-based simulation model, fed on the one hand
by vehicle flow forecasts and the structural features of
the road and on the other hand by the description of the
consequences of disruptions on the system’s parameters.
The obtained results mainly concern the visualization of
performance trajectories and the deviations generated by
the anticipated disturbances. The dynamic simulation of
the water level in the flooded part of the ring road and
connecting it to the current simulation could be the next
step for the presented work.

One important takeaway from the presented work in
this article concerns the use of forecasts: The next step
is to show how real-time data could be used directly to
benefit from the presented contributions and provide a
live management dashboard to control the traffic jam
on a road exposed to blockage. The decision-makers
could then visualize or monitor the performance of the
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Figure 10: Scaled Inertia trajectories (red trajectories) for outer and inner roadway vs Scaled deviated trajectories (blue
trajectories) for the Nantes ring road exposed to Gesvres river.

system live and anticipate the impact of current or future
disruption to support their decision-making process.
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3.2.3 Agent-based Simulation
The POD framework in this case study has been installed by simulating the polling place
in the McCamish Pavilion, located on the Georgia Tech campus in Atlanta, for the 2020 US
presidential election. This simulation has been dedicated to examining the overwhelming
flow of voters and equipment failure as events (named “Disruption Scenarios” in the article).
The Description Space has been constructed on the dimensions of the “polling place” (num-
ber of receptors, officers, equipment, etc.) and “voters” (their flow in probable, optimistic,
and conservative levels) as the system (Attributes) where the “service times of equipment”
(e.g., ballot devices, scanners, etc.) serves as the contextual element (Characteristics). The
Performance Space has constructed on some KPIs, for example, the number of voters in the
place, number of waiting voters, number of completed votes, etc., to examine the impact
of several forces. The “inflicted” and “managed” forces are generated respectively from
both the voters and building (e.g., flow and speed of the voters, number of equipment
and service providers, respectively) and parameters to accelerate the voting process (e.g.,
injecting equipment and employing more service providers).
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Abstract—In the context of the global pandemic, the practical 

management of the 2020 presidential election in the USA was a strong 

concern. To anticipate and prepare for this election accurately, one of 

the main challenges was to confront (i) forecasts of voter turnout, (ii) 

capacities of the facilities and, (iii) potential configuration options of 

resources. The approach chosen to conduct this anticipative study 

consists of collecting data about forecasts and using simulation models 

to work simultaneously on resource allocation and facility 

configuration of polling places in Fulton County, Georgia’s largest 

county. A polling place is a dedicated facility, where voters cast their 

ballots in elections using different devices. This article presents the 

results of the simulations of such places facing pre-identified potential 

risks. These results are oriented towards the efficiency of these places 

according to different criteria (health, trust, comfort). Then a dynamic 

framework is introduced to describe risks as physical forces perturbing 

the efficiency of the observed system. Finally, the main benefits and 

contributions resulting from this simulation campaign are presented. 

 

Keywords—Performance, Decision Support, Simulation, 

Artificial Intelligence, Risk Management, Election, Pandemics, 

Information System. 

I. INTRODUCTION 

OLLING places, where electors cast their votes in person, 

have long been recognized to be core to the efficiency, 

convenience, and integrity of election systems all across the 

world.  They are so ubiquitous that they have become taken for 

granted. Yet they are complex facilities subject to intense 

scrutiny, huge uncertainty, and severe disruptions. This paper 

focuses on intelligent risk management for these polling places 

to support their design, sizing, and operation for high 

performance from their multiple stakeholders’ perspectives 

under such uncertainty and disruption.  

Intelligent systems with the ability to detect, predict, and 

make decisions are very useful in the field of management 

science [1]. In the risk management area, due to dealing with 

unforeseen events, the necessity of such systems is undeniable. 

Intelligent Risk Management (IRM) systems are able to identify 

risks as early as possible and implement appropriate strategies 

to manage them. 

 

This paper leverages the Physics-of-Decision (POD) 

intelligent risk management framework introduced in [4]. This  
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original framework considers that risks can be seen as 

physical forces applied to the system which may push or 

pull it in its performance space by varying the system’s 

KPIs (Key Performance Indicators) [2]. The framework guides 

decision-makers in assessing the risks that may happen to a 

system. Fig. 1 describes the framework, including its 

components and the relationships between them. 

  
Fig. 1 Intelligent Risk Management framework 

 

In the POD framework, the considered system is facing some 

potentials. These potentials include (i) Characteristics, i.e. the 

environmental potentials of the system including contextual 

changes such as weather or flows of voters, (ii) Interactions, i.e. 

flows of goods or information between partners, (iii) Charges, 

i.e. mandatory system costs including allocated resources, time, 

running costs, etc., and (iv) Innovations, i.e. some initiatives 

dedicated to modify or improve the structure or the behavior of 

the system. The susceptibility of the system to the surrounding 

potential generates some potentialities (i.e. risks or 

opportunities considered as physical forces). These 

potentialities might be activated by conditions which trigger the 

forces and change the system’s performance: the potentialities 

become actualities and change the performance of the system. 

By comparing actualities to the actual objectives of the system, 

managers take some decisions to minimize the difference 

between the current state of the system and its objectives. A 

detailed definition of the components and their relationships is 

given in [3, 4]. 

 

Benoit. Montreuil. Physical Internet Center, ISyE School, Georgia Tech, 
Atlanta, USA (e-mail: benoit.montreuil@isye.gatech.edu). 

Ali. Vatankhah Barenji. Physical Internet Center, ISyE School, Georgia 

Tech, Atlanta, USA (e-mail: abarengi@gatech.edu). 
Dima. Nazzal. ISyE School, Georgia Tech, Atlanta, USA (e-mail: 

dima.nazza@gatech.edu). 

 

Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, and Dima Nazzal 

Physics of decision for polling place management:  

A case study from the 2020 USA presidential election  

P 

Thesis Contributions

63

mailto:nafe.moradkhani@mines-albi.fr
mailto:frederick.benaben@mines-albi.fr
mailto:benoit.montreuil@isye.gatech.edu
mailto:abarengi@gatech.edu
mailto:dima.nazza@gatech.edu


 

 

The main objective of this article is to introduce a data-

driven simulation-model and POD based intelligent risk 

management system for polling places and to investigate its 

value using a case study from the largest county in the 

U.S.A., that is Fulton County in Georgia, in the 2020 

presidential election. 

 

The remainder of this paper is organized as follows: Section 

II highlights related existing research works and scientific 

contributions. Section III describes the Intelligent Risk 

Management framework and its principles. Section IV deals 

with the implementation through the simulation of the case 

study. Section V examines the results of the simulation-based 

investigation for the polling place in the McCamish Pavilion, in 

the Georgia Tech campus in Atlanta. Finally, section VI 

concludes this research work and provides avenues for further 

research. 

II. BACKGROUND AND RELATED WORKS 

The events of 2020 set the stage for one of the most important 

presidential elections in the history of the United States. In 

addition to the polarized politics and security concerns, high 

likelihood of voter participation and public health concerns due 

to the COVID-19 pandemic made the 2020 presidential 

elections more important, and yet more complex, than ever. The 

June 2020 primary elections in Georgia gave a preview of how 

poorly the election system can perform under these 

complexities if planning and design were not adjusted to reflect 

the increased risks. At some polling locations, voters endured 

5-hour wait in queue [5]. Judges ordered 20 counties to extend 

their operating hours to accommodate the higher turnout and 

the slower processes [6]. Clearly, Georgia was not prepared for 

a pandemic election with the potential for historic voter turnout. 

Andrew et al. [7] studied political shifts due to COVID-19 in 

the 2020 election. Robert et al. [8] show the implications of the 

2020 election for the US health policy. This paper deals with 

the performance of polling places under uncertainty and 

disruption risks, and the management of the potential forces 

(Risks and Opportunities) to evaluate the performance of the 

polling places. 

 

Instability is mainly related to mainstream requirements such 

as security, privacy, compliance, and capability [9]. Managing 

risk has always been a challenge in most areas of management. 

The variety of areas and perspectives have led to different 

approaches to risk management: Cost-Benefit Analysis and 

Risk-Benefit Analysis (CBA and RBA) [10], Hertz-type 

simulation, Hazard and Operational study, Failure Mode and 

Effects Analysis (FMEA) [9], Fault Tree Analysis, and Event 

Tree Analysis (FTA and ETA) [11], Monte Carlo and Expert 

Systems [12, 13]. The new Physics of Decision (POD) 

framework leveraged in this paper for application to polling 

places, inspired by the physical laws, is an innovative approach 

to cover a large spectrum of risk management techniques and 

opens the doors to apply the intelligent tools to deal with the 

complexity of relationships between risk factors and big data 

[14]. 

 

Simulation is an increasingly significant methodological 

approach to theory development in the literature focused on 

strategy and organizations [15]. The systematic combination of 

simulation methods with empirical research is a powerful tool 

in risk management research. The design of simulation models 

is strongly linked to the type of system under study. Generally, 

four important distinctions between types of simulation 

techniques can be made. These distinguished techniques are (i) 

Deterministic versus Stochastic, (ii) Static versus Dynamic (iii) 

Continuous versus Event-Driven, and (iv) Quantitative versus 

Qualitative [16]. In recent decades, agent-based simulation 

models have increasingly been utilized, to capitalize on their 

capability to reproduce the interactions between members of an 

organization or between different organizations in an artificial 

environment where ‘‘agents’’ make decisions and 

communicate one with another [17]. 

 

In this paper, quantitative agent-based and event-driven 

dynamic and stochastic simulation modeling of polling places 

is used as it best fits the complexity, context and essence of 

polling places with their various interacting objects (building 

components, voting machines, scanners, etc.), and agents 

(voters, volunteers, staff, etc.). Such simulation modeling is 

embedded into the physics-based risk management framework 

so as to simulate the voting process in the polling places during 

election days and to assess and mitigate the potential risks 

related to the voter flow, equipment failures, and long waiting 

time for the voters, as notably influenced by the polling place 

configuration in terms of resources and layout. 

III. PHYSICS-BASED INTELLIGENT RISK MANAGEMENT 

A. General Perspective of IRM framework 

A system can be destabilized by unforeseen changes. These 

changes mainly refer to the variation of system parameters and 

consequently, deviation from the system’s expected trajectory. 

The expected trajectory depends on the considered case, but this 

is often the targeted, planned or most probable one. Any 

deviation from that trajectory is considered a risk for the 

system. System attributes define the different situations of the 

system. Identifying these attributes, their relationship, and their 

level of security is required to design a smart system. The 

Physics Of Decision (POD) framework introduced in section I 

defines two spaces in which a system can be positioned [12]. 
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Fig. 2 POD IRM framework spaces 

 

The Performance Space, depicted on the right side of Fig. 

2, describes the performance of the system in a given state by 

locating it relative to KPIs, with risks and opportunities being 

shown as force vectors in that referential. The Description 

Space, depicted on the left side of Fig. 2, represents the 

system’s states by locating it relative to axes defined according 

to its significant attributes. Some attributes are changed at 

certain times by decision-makers to control the deviation of 

trajectories. The degree of changes for each attribute is 

determined by system constraints in the Control Space, which 

is basically the “easy to access” subpart of the Description 

Space. 

The relationship between the two spaces is determined by a 

function of Attribute(s) to KPI(s), which maps Description 

Space to Performance Space. This function can be 

straightforward or complex [3, 4]. In cases where equations 

between the two spaces can be determined, it would be possible 

to analyze the data and deviations from the normal trajectory 

caused by the forces. Otherwise, this function should be 

determined differently, notably through simulation experiments 

as in this paper, so as to generate the data from which the 

unknown relationships between attributes and KPIs can be 

inferred. 

B. Problem statement 

Polling places can be conceptualized as complex discrete 

event logistics systems. Their complexity stems from the fact 

that they are constrained in resources, fraught with variability 

and uncertainty in voter arrival pattern and resource reliability, 

and subject to high public scrutiny. Performance is assessed 

along several criteria such as efficiency, security, voter 

experience, accessibility, etc. The design and operation of 

polling places are critical when faced with such multi-criteria 

performance expectations in modern democracies, and get 

increasingly more critical when adding such criteria as voting 

safety in the midst of the COVID-19 pandemic, and voting 

process trustability, as challenged in 2020 USA Presidential 

Election. 

 

This article mainly focuses on assessing the capability of 

polling places to perform in high-risk contexts, as impacted by 

resource constraints, equipment breakdowns, and COVID-19 

safety considerations. The case studied in this research 

encompasses polling places within Fulton county in the state of 

Georgia, the largest county in the USA, in the context of the 

2020 Presidential Election. In these polling places, voters make 

their selection on the ballots using Ballot Marking Devices 

(BMDs), then cast their ballot by scanning it. This article 

examines one specific polling place among those studied, the 

McCamish Pavilion which is an indoor arena located on the 

campus of the Georgia Institute of Technology in Atlanta. The 

major focus of the case study is ascertaining the bottlenecks and 

rupture points in the polling place system where issues may 

emerge from the perspective of the POD-based intelligent risk 

management framework. 

IV. METHODOLOGY 

A. McCamish Pavilion layout and Voter flow forecast  

The results presented in this article are connected to other 

contributions from collaborators on this global project: 

McCamish polling place layout has been designed and 

optimized by a Facility Capacity and Layout Design Team to 

decide on the number and location of equipment (BMDs, 

scanners), helpdesks, registration check-in stations, observers, 

etc. This physical layout of the place has been defined by 

allocating the space to the equipment while maintaining social 

distancing for voters. Similarly, the voter flow between 7:00 

and 21:00 each day from early voting to the final day voting has 

been estimated by the Scenario Forecasting Team based on the 

historical data and voter surveys conducted throughout 2020. In 

the article, the focus is on the most probable and high turnout 

scenarios that were studied. Fig. 3 shows the layout and voter 

flows for the McCamish polling place. These results are 

considered as input for the current work. 
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Fig. 3 McCamish Pavilion polling place layout and Voter flow 

 

B. Voting Process 

The voting process is modeled to begin with the entry of 

voters from the entrance on the site of the McCamish polling 

place. Once in the building, voters move around the McCamish 

basketball court and then enter the polling place. The check-in 

process is to validate the eligibility of the voters and to register 

them with poll pads. A voter needing guidance on the voting 

process is referred to the helpdesks (estimated 3% of the total 

voters). Otherwise, the next step is for the voter to mark the 

ballot at one of several available BMDs. These BMDs are 

located in a specific part of the polling place (each collection of 

2 or 4 BDMs is considered as one BMD carrier). The final step 

is for the voter to scan the ballots using a scanner. Each voter’s 

choice is marked on one or more ballots that pass through the 

scanner, which creates an electronic image of each ballot, 

interprets it, and tabulates the votes. Fig. 4 shows the schema of 

the voting process with the Pedestrian library of the AnyLogic© 

simulation software used in this study. 

Fig. 4 Voting Process modelled for the McCamish polling place 

 

AnyLogic© Pedestrian Library is dedicated to simulating 

pedestrian flows in a "physical" environment. The Pedestrian 

Library allows the creation of flexible models, collects basic 

and advanced statistics, and effectively visualizes the modeled 

process to validate and present it. In models created with the 

Pedestrian Library, pedestrians move in continuous space, 

reacting to different kinds of obstacles (walls, closed doors, 

etc.) and other pedestrians.  

 

 

 

 

 

 

Besides, this library makes it possible to model voter's 

behavior (reflecting the real speed of their walking according to 

their age), physical distance between voters as a precaution 

against the virus transmission (and present density of voters on 

a heatmap), cameras at different        locations on the layout (for 

the manager of the place, security, and observers to track the 

voters and check the density of voters on the place in 2D and 

3D. Fig. 5 present these functionalities with the Pedestrian 

Library. 
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Fig. 5 2D and 3D outputs of McCamish layout for heatmap and cameras 

C. Data sources and Scenarios  

The simulation utilized various parameters as attributes in the 

Description Space conceived by the Scenario Forecasting 

Team. That team has also defined some Disruption Scenarios. 

The main potential disruptions are related to the voters (agents), 

and the services (number of operational BMDs for instance). 

The goal is then to evaluate the probable forces of the modeled 

risks and their impact on the system trajectory in the 

Performance Space to reflect a realistic simulation of the 

election day voting process. 

 

The simulation uses the following mobility and physiology 

related variables for every single agent. Initial speed (Uniform 

(0.3, 0.7) m/s), Comfortable speed (Uniform (0.5, 1) m/s), the 

diameter of agent (Uniform (0.4, 0,5) m), and the physical area 

around an agent (1 𝑚2). 

 

Services in pedestrian flow models define a group of similar 

physical service objects (turnstiles, ticket vending machines, 

security checkpoints, check-in counters, etc.). There are two 

types of space markup shapes to draw services in the pedestrian 

model: (i) Service with Lines and (ii) Service with Area. 

Service with Lines is used for defining service(s) with a 

queue(s) where pedestrians wait until the service becomes 

available in a queue line. Service with Area has the same 

properties as Service with Line but the pedestrians wait 

chaotically in a specific area instead of queue. The simulation 

uses the Service with Line to put the voters in queues to respect 

the physical distance between them. The queue choice policy 

for all services is the closest queue (the queue that is closest to 

the service). 

 

The number of resources for the McCamish layout is 

suggested by the Facility Layout Design Team. In some 

scenarios, the results show deficiency in resource allocation, 

which is a force (risk) on the KPIs. In other scenarios, the results 

show slack in capacity utilization, which is an opportunity to 

share the resources with other polling places. For such services, 

the simulation assumed Recovery Delay time (required time for 

the voters to use them again). Table I summarizes the service 

parameters reflected in the simulation. 

 

 

 
1 The considered BMD carriers include 2 and 4 BMDs 

 

 

 
TABLE I 

ATTRIBUTES OF SERVICES FOR SIMULATION CAMPAIGN 

Services 

Type No 
Service Time Recovery 

Delay 

Primary 

Checking 
1 

Uniform (10,20) sec 
0 

Check-in 5 

Optimistic: Normal (2, 0.52) min 

Probable: Normal (3.5, 0.752) min 

Conservative: Normal (5, 12) min 

Uniform 

(5,15) sec 

BMDs1 15  

Optimistic: Normal (7, 1.752) min 

Probable: Normal (8, 22) min 

Conservative: Normal (9, 2.252) min 

Uniform 

(0,5) sec 

Scanners 2 Uniform (20, 40) sec Uniform 

(0,5) sec 

 

The attributes’ values can vary in some specific ranges 

because of the degrees of liberty for the polling place 

considering, space, cost. These variations are considered in 

the control space of Description Space (Fig. 2). Besides, the 

voter turnout can vary (Fig.3) and impacts the KPIs. The 

voter turnout is out of control and is considered as 

“Characteristic”. The voter turnout’s impact on KPIs is 

considered as “Environmental Force” in Fig.2.  

 

According to the objectives of the polling place, these 

variations impact the polling place’s performance. The 

scenario team considered different possible scenarios to 

implement in the simulation and study their impact on the 

system’s trajectories in the performance space. Table II 

provides illustrative distinct possible disruption scenarios for 

the election day at the McCamish polling place. 

 
TABLE II 

SIMULATION DISRUPTION SCENARIOS 

Disruption Scenarios 

Type Description 

DS1 1 BMD carrier outage during peak hours 

DS2 1 BMD machine outage during peak hour 

DS3 Three BMD machines outages at varying hours 

DS4 Entire IT system failure during peak hour 

 

 

Thesis Contributions

67



 

 

 

V.  EXPERIMENTS AND RESULTS 

 

The main experiments are centered on the risk-affected 

performance of the McCamish polling place in different aspects 

such as equipment capacity requirements, health, trust, and 

comfort. In the perspective of the IRM framework, deviations 

from the inertia trajectory (i.e. the most probable scenario) are  

considered as forces. Attributes of the voters (agents), the 

number of services and their significant times (system time and 

recovery delay) are considered in the Description Space. There 

are different KPIs to provide to the decision-makers of the 

McCamish, such as: (i) Number of active voters, (ii) Number of 

waiting voters, (iii) Number of completed votes, (iv) Total 

voting time and (v) Utilization of each service (Check-in, 

BMDs, and scanners). These KPIs are considered as 

dimensions of the Performance space.  

 

According to the POD framework, the first and foremost 

trajectory is the inertia trajectory which is the reference 

trajectory to study different possible scenarios. The voter flows 

and different service time levels are considered to track the 

inertia trajectory of the place. As mentioned earlier, two 

scenarios are considered for voter flow: most probable and high 

turnout. Three levels for the service time are: Optimistic, 

Probable, and Conservative. Combining voter flow scenarios 

and service time scenarios leads to six possible inertia 

trajectories (See Fig. 6). 

According to the Description space and control subspace, 

some attributes are “Charge” for the polling place. “Charge” 

refers to uncontrolled attributes that impact the performance: 

for example, attributes of voters (speed, diameter, social 

distance) and services time (system time and recovery delay 

time). In general, all the running costs are Charge as well. 

However, some attributes like the number of BMDs, number of 

scanners, and number of polling pads (Check-in) result from 

managers’ decision and vary from user-specified minimum to 

maximum in the control space. In this section, simulation has 

been run four times based on the values suggested by the 

forecast team and the average results are as follows. 

A. Inertia Trajectory (Baseline) 

The results related to the inertia trajectory are for Most 

Probable and High Voter Turnout with three different levels for 

service times. Depicted in Table III, the results show average 

performance on election day. 
 

TABLE III 
RESULTS FOR MOST PROBABLE AND HIGH TURNOUT VOTER FLOW AND PROBABLE / OPTIMISTIC / CONSERVATIVE LEVELS FOR THE SERVICE TIMES 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

The results of the Most Probable voter flow columns show 

that the place is definitely receptive to the expected values for 

the McCamish. The service utilization levels are relatively low 

(in the worst case, Check-In: 47% BMD: 52%, Scanner: 33%). 

Conservative level of Check-In utilization compared to the 

probable and optimistic levels negatively increased (10%, 22%, 

47%) but still enough to serve the voters. Most of the voters 

have been served. The worst case is the conservative level for 

which 970 out of 978 voters (total voters) have voted (99%). 

 

The results of the High turnout level clearly are different 

from Most Probable level. This conclusion is based on Check-

In utilizations in probable and conservative levels (71%, 98%), 

the Voting time (26 min, 79 min), and the voting rate (e.g. 73% 

in conservative level, 1186 out of 1618 voters (total voters) 

have been served).  

 

 

 

 

 

However, if the service time is optimistic, the results show 

that McCamish is able to serve the high turnout voter flow 

(Voting time: 18.2 min, Check-In utilization: 28%, Completed 

vote: 99%). This result absolutely highlights the force of the 

efficiency of the BMDs, Scanner as well as the speed of the 

voter in the voting process. 

 

As a conclusion, if McCamish place could have enough 

space to receive more than 15 people (on average), considering 

the social distance between voters and also officers, receptors, 

etc., McCamish would need more Check-In resources. This 

result could be deduced from the utilization of the BMDs and 

scanners (at max 68%).  

 

 

 

 

 

Attribute Probable Optimistic Conservative 

Check-In [n] 

Help Desk [n] 

BMD [n] 

Scanner [n] 

5 

5 

15 

2 

5 

5 

15 

2 

5 

5 

15 

2 

KPI 
Most 

Probable 

High 

Turnout 

Most 

Probable 

High 

Turnout 

Most 

Probable 

High 

Turnout 

Voters in Place [n] 

Waiting Voters [n] 

Completed Votes [n] 

Voting Time [min] 

8.92 

0.4 

972 

18.88 

14.28 

1.2 

1607 

26.05 

7.82 

0.34 

974 

16.99 

12.78 

1.01 

1607 

18.2 

9.88 

0.43 

970 

22.39 

12.34 

0.72 

1186 

79.47 

Check-In Utilization  

BMD Utilization  

Scanner Utilization 

22% 

46% 

31% 

71% 

68% 

58% 

10% 

39% 

33% 

28% 

59% 

60% 

47% 

52% 

31% 

98% 

64% 

39% 
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Fig. 6 shows the inertia trajectories for most probable (First 

row) and high turnout (Second row) voter flow for the 

following KPIs: (i) Number of voters in the place (First 

column), (ii) Number of waiting voters (Second column), and 

(iii) Number of completed votes (Third column). More probable 

values are highlighted in gray parts. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Inertia Trajectories for McCamish layout 

 

B. Forces of Disruption scenarios 

Four Disruption Scenarios are here investigated for the 

McCamish place (See Table. II). Scenarios DS1, DS2, and DS3 

are related to the BMDs break down (scenario DS4 is related to 

massive IT failure, see below). According to the results in 

Table. III, the BMDs utilizations do not affect too much the 

KPIs. The results for the worst case (DS1: 1 BMD carrier 

outage during peak hours) are provided in Table IV. 

 
 

TABLE IV 
DS1: 1 BMD CARRIER (4 BMD MACHINES) OUTAGE DURING PEAK HOURS (AVG, 4PM – 5PM AND 5PM-6PM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The comparison of Table III and Table IV shows that the 

BMDs failure doesn’t change the results too much (we obtained 

almost the same results). This is an obvious result because the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BMDs serve the voters who passed the Check-In, since the 

Check-In number is low, consequently, the BMDs utilization is 

almost the same. The last scenario DS4 is the failure of all the 

IT systems during peak hours. The results are provided in Table 

IV. 

Attribute Probable Optimistic Conservative 

Check-In [n] 

Help Desk [n] 

BMD [n] 

Scanner [n] 

5 

5 

15 

2 

5 

5 

15 

2 

5 

5 

15 

2 

KPI 
Most  

Probable 

High 

Turnout 

Most 

Probable 

High 

Turnout 

Most 

Probable 

High 

Turnout 

Voters in Place [n] 

Waiting Voters [n] 

Completed Votes [n] 

Voting Time [min] 

9.13 

0.53 

971 

19.06 

16.01 

1.93 

1606 

24.78 

7.48 

0.42 

972 

16.62 

13.77 

1.4 

1607 

18.63 

10.6 

0.79 

970 

22.89 

14.05 

1.14 

1284 

81.81 

Check-In Utilization  

BMD Utilization  

Scanner Utilization  

22% 

45% 

32% 

70% 

73% 

58% 

10% 

37% 

33% 

25% 

63% 

58% 

50% 

54% 

32% 

98% 

69% 

43% 
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TABLE IV 

DS1: 1 DS4: Entire IT system failure during peak hour (Avg, 4pm – 5pm and 5pm-6pm)

Attribute Probable Optimistic Conservative 

Check-In [n] 

Help Desk [n] 

BMD [n] 

Scanner [n] 

5 

5 

15 

2 

5 

5 

15 

2 

5 

5 

15 

2 

KPI 
Most  

Probable 

High 

Turnout 

Most 

Probable 

High 

Turnout 

Most 

Probable 

High 

Turnout 

Voters in Place [n] 

Waiting Voters [n] 

Completed Votes [n] 

Voting Time [min] 

9.01 

0.72 

972 

26.28 

15.95 

1.75 

1566 

38.78 

7.93 

0.64 

972 

22 

14.33 

2.45 

1605 

28.6 

10.3 

0.53 

970 

34.71 

13.31 

0.85 

1171 

89.67 

Check-In Utilization  

BMD Utilization  

Scanner Utilization  

33% 

43% 

34% 

80% 

74% 

57% 

20% 

37% 

33% 

39% 

59% 

58% 

57% 

53% 

33% 

98% 

68% 

40% 

 

DS4 negatively affects the Voting time and the Utilizations 

of voting devices. These results are quite intuitive because the 

entire system shuts down. This means the voters need to spend 

more time to go through. Besides, the influx of the voters after 

the failure increases the utilization of the services. 

 

Based on the forces of failures, managers can add more 

resources to bottlenecks or take out the extra resources to share 

with other polling places. The IRM framework provides this 

possibility by presenting the Inertia trajectory and its deviations 

because of forces at some specific time. The framework can 

also study the deviated trajectories because of different 

disruptions (BMDs, poll pads, scanners, etc.) and their impact 

on the performance trajectory. The simulation results provide 

an overview of the mapping between two spaces (relationships 

between Attributes and KPIs) (See Fig.2).  

 

To study the possible trajectories, the simulation, considered 

disruption scenarios for all services (Check-In, BMDs, and 

Scanners). The high turnout voter flow with probable level for 

the services are selected as attributes in the description space. 

Besides, three KPIs have been chosen for the performance 

space: (i) Number of voters in the place, (ii) Number of waiting 

voters and (iii) Voting time. The results in Table I, Table II and 

Table III showed that BMDs and Scanner utilizations were 

quite low, so we considered more Check-Ins to study the forces 

due to these two resources. Besides, in this section, the 

simulation data is from 3 pm to 8 pm, as the most variations and 

disruptions are for this interval. The results are provided in Fig. 

7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Inertia trajectories vs Failure trajectories (3-8 pm) for McCamish layout 

Note: The plots have been smoothed because of high oscillation and noisy points due to the agent's movement in the place. 
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The orange parts in Fig. 7 show the forces for BMD and 

Scanner failure and their impact on the most probable values. 

The values for the failure trajectories should be negatively more 

than the Inertia trajectories, while some parts do not follow this 

rule. The reasons are the impact of the stochastic values (section 

3.3.3) for the attributes and the low impact of the failure in these 

specific parts (First and second rows in Fig. 7). The force of 

Check-In resources is represented on the third row in Fig. 7. 

The greater values of Inertia compared to the Check-In failure 

in some parts indicates that this force does not affect 

significantly the KPIs and the green parts are the effect of 

stochastic values for the attributes. 

 

The summary for the presented results for the McCamish 

layout considering possible disruption scenarios are as follows: 

(i) McCamish with the suggested values for the number of 

services (BMDs, Scanners, and Check-In) in the case of most 

probable voter turnout is sufficient and close to the targets. 

According to Tables (III, IV, V) the worst performances are: 

Voting time: 34.71 mins, Completed votes: 99%, BMD 

utilization: 54%, Check-In utilization: 57% and Scanner 

utilization: 34%. (ii) In the case of the possibility of more than 

16 voters in the McCamish, there is an opportunity to have 

better performance by injecting more poll pads into the place. 

On the other hand, the high voter turnout flow has a huge 

impact on the KPIs. While the impact of the services’ time is 

not negligible. In the case of the optimistic level, the 

performance of the McCamish is high, even better than the most 

probable turnout in some cases. Here are key results: Voting 

time 29 mins, Completed votes 99%, BMD utilization 63%, 

Check-In utilization 39%, and Scanner utilization 60%. These 

interesting results indicate that efficiency of the equipment and 

adequate knowledge of the voter in the voting process (to keep 

the services’ time on optimistic level), significantly improve the 

performance of the polling places. 

 

The performance space gives an overview of the KPIs to the 

decision-maker while it would be more helpful to have a 

comparative image of the polling place performance. To reach 

this objective, the KPIs should be examined on the same scale 

in the performance space. The performance spaces in Fig. 8 are 

presented for the following KPIs: (i) Number of voters waiting 

for the scanner, (ii) Number of voters waiting for BMD and (iii) 

Completed votes, and (v) Voting time (just in the third space). 

Besides, the disruptions for the performance spaces are as 

follows: (i) 1 scanner failure at 2 pm (ii)1 BMD carrier failure 

at 4 pm, and (i) and (ii) on the same run simultaneously in the 

third space. 

 
 

Fig. 8 Scaled Inertia trajectories vs Scaled Failure trajectories for McCamish layout 

 

On the previous Fig. 8, three 3D performance spaces have 

been presented, each for different events impacting the polling 

site. The blue curves represent the inertia performance 

trajectories (i.e. without any perturbation) while the red ones 

represent the performance trajectories impacted by the 

considered events (from left to right BMD failure, Scanner 

failure and both devices failure). The scale is also different from 

one diagram to another. It is interesting to notice that the ratio 

of BMDs for this precise polling site seems to be over-estimated 

 

 

 

 

 

 

 as the failure has almost no impact while the scanner failure is 

clearly critical (difference between first and second diagrams). 

Besides, even when both devices are facing issues, the waiting 

time for BMDs is not significantly impacted (with regards to 

the inertia trajectory). This is a clear warning regarding either 

the ratio between BMDs and scanners, either the physical 

arrangement of the polling site. The actual opportunity to see 

these trajectories and to compare them also with measures that 

could be taken, and see how it inflict positively the trajectory is 

one of the benefit of the approach. 
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VI. CONCLUSIONS AND PERSPECTIVES 

The work presented in this article presented the first 

application of the POD vision to the election system. The 

empirical experimentation reported in this paper assesses and 

quantifies the impact of disruptions to a polling location on the 

KPIs for the election system. This evaluation is essentially 

based on a pedestrian-level simulation model, fed on the one 

hand by voter flow forecasts and on the other hand by the 

description of the consequences of disruptions on the system's 

variables. 

 

The obtained results mainly concern the visualization of 

performance trajectories and the deviations generated by the 

anticipated disturbances. In the studied case, the actual 

visualization is made possible because the performance is 

evaluated according to three dimensions, but this performance 

could be supervised in much higher dimensions, even if it is not 

easily visualized (which would not penalize the measurement 

of the deviation of the performance trajectory generated by the 

events under consideration).  

 

One important takeaway from the work presented in this 

article concerns the use of forecasts: The very next step is to 

show how real-time data could be used directly to benefit from 

the presented contributions and provide a live management 

dashboard for a voting place. The decision-makers could then 

visualize or monitor the performance of the system live and 

anticipate the impact of current or future disruption to support 

their decision-making process. 

 

Three alternative avenues for further research are hereafter 

introduced. The first concerns the implementation of simulation 

campaigns covering a wide range of system parameter values 

in order to cover more widely the space of possibilities in terms 

of system variability and associated performance. The objective 

of these simulation campaigns would be to provide the material 

likely to discover the event’s impact variability and the 

sensitivity of the system to this event. This could allow the 

modeling of these impacts in the form of formalized forces. 

These forces impacting the performance of a polling place 

could thus be anticipated according to different characteristics 

of both the sites considered and the events identified. 

 

The second avenue concerns the multi-site (and possibly 

multi-channel) dimension of the electoral system. In particular, 

it involves investigating the management of voter flows and 

resource flows holistically at the county or state level, for 

example. An electoral system’s performance would then be 

aggregated and studied according to the same principles, but the 

degrees of freedom offered would be much more significant. 

The forces exerted on the system would have to be studied with 

a potentially particulate vision in order to aggregate all the 

forces at the systemic level. 

 

 

 

 

 

 

Finally, the third avenue concerns the optimization aspect of 

the vision proposed in this article. At this stage, the 

contributions presented allow to use the "trajectory" vision in 

order to model, evaluate and potentially visualize the deviation 

of a polling place's performance due to the occurrence of one 

(or several) risk(s). However, nothing at this stage allows to use 

the results of a model based on this paradigm of physical forces 

to develop a management strategy. This said, the exploration of 

these performance spaces and the forces exerted within them 

could make it possible to define strategies for moving within 

this space, benefiting from certain forces and minimizing 

certain cost functions. 

 

These three avenues are part of a generic-scope research 

roadmap on the "Physics Of Decisions" (POD) intelligent risk 

management framework. 
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3.2.4 State-space Representation Method
The POD framework in this case study has been installed first by simulating some pedagog-
ical physical systems (Mass-Spring-Damper and pendulum) and then management systems
(Bass diffusion and inventory-workforce, modeled with system dynamic approach). This
simulation has been dedicated to examining combining and aggregating generated forces
in non-linear systems. In the main example, the inventory-workforce model, the Descrip-
tion Space has been constructed on the dimensions of the “inventory” (e.g., shipment rate,
safety stock coverage, etc.) and “workforce” (e.g., hiring rate, attrition rate) as the system
(Attributes) where their setting (e.g., number of workers, number of products, etc.) serves as
the contextual element (Characteristics). The Performance Space has constructed on some
KPIs, for example, the number of vacant jobs, number of laborers, number of completed
products, etc., to examine the impact of several forces. The “inflicted” and “managed” forces
have been generated from both the inventory and workforce (e.g., shortage of workers,
delay in product delivery, labor productivity, etc.). The main contribution is dealing with
non-linearity by leveraging a linearization approach for nonlinear systems (Taylor Series
and Jacobian Matrix), consequently, benefiting from control measures established for Linear
Time Invariant (LTI) systems.

A force-inspired paradigm for performance-based decision support—Physics of
Decision application in nonlinear dynamical systems

This work provides a perspective on performance-based decision support. The
chosen approach is based on the principles of “Physics of Decision,” which considers
the performance of a system as a physical trajectory within the boundaries of its
performance indicators that might be deviated through variation of system parameters.
According to the overall premise of employing the state-space method to simulate
physical systems, this work presents a decision aggregation method in dynamic
systems. The core contribution is to propose a multi-criteria performance framework to
manage multi-input-multi-output (MIMO) system performance with a combination of
affordable decisions. A nonlinear inventory-workforce management model has been
used to demonstrate the proposed approach.
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A B S T R A C T
This paper provides a perspective on performance-based decision support. The chosen approach is
based on the principles of “Physics of Decision,” which considers the performance of a system as a
physical trajectory within the boundaries of its performance indicators that might be deviated through
variation of system parameters. According to the overall premise of employing the state-space method
to simulate physical systems, this work presents a decision aggregation method in dynamic systems.
The core contribution is to propose a multi-criteria performance framework to manage multi-input-
multi-output (MIMO) system performance with a combination of affordable decisions. A nonlinear
inventory-workforce management model has been used to demonstrate the proposed approach.

1. Introduction
Providing a reliable decision support system (DSS) is

a long-standing challenge in decision-making. In addition
to several fundamental properties that DSS must possess
(discussed in section 2), the following defects make im-
plementing DSSs challenging and consequently present an
imprecise imitation or simulation of real-world systems: (i)
neglecting to consider some components with underlying ef-
fects on the system performance, (ii) improper construction
of relationships between system parameters, and (iii) inac-
curate system performance predictions due to nonlinear
interactions among its parameters [1, 2, 3].

The third issue is primarily the focus of the present work,
which aims to pinpoint how individual decisions in nonlinear
circumstances could be combined and consequently estimate
their influences on the system’s performance despite com-
plexities due to the system’s nonlinearity. To put it simply,
if the studied system is nonlinear, the singular impact of its
parameter variations on the system’s performance could not
be aggregated; In other words, single parameters’ variations
and then the aggregation of their effects on the system
performance would not have the same consequence on the
system performance when the considered parameters vary
concurrently.

In physical systems, the “explicit” method calculates the
system status at a future time from the currently known sys-
tem status, whereas, the “implicit” methods attempt to find
a solution to the nonlinear system of equations iteratively
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by considering the current state of the system as well as its
subsequent (or previous) time state [4]. The implicit method,
for example, deals with the nonlinear relationship between
applied forces on the system and its physical displacement.
Figure 1 illustrates the relationships between the intensity
of applied forces to an object connected to a spring (with
constant and variable stiffness coefficient, 𝑘) and the object
displacement (𝐹 = 𝑘𝑥).

Displacement (x) Displacement (x)

For
ce (

F)

For
ce (

F)

Linear spring (constant sti�fness) Nonlinear spring (non-constant sti�fness)

Figure 1: Force vs. Displacement in mass-spring system with
linear & non-linear springs

The Physics-of-Decision (POD) is a physics-inspired
framework to manage multi-input multi-output (MIMO) sys-
tems [5]. According to the original POD framework, oppor-
tunities and risks may be viewed as physical forces applied
to the system trajectory that could push the system toward or
away from its objectives in its performance space. Leverag-
ing the POD framework and a well-known physical system
modeling, state-space representation [6, 7], the proposed
work attempts to provide an implicit method to address
decision-related consequences on the system performance
in nonlinear dynamical systems. The overall objective is
to provide a solution to a nonlinear system to predict its
performance through individual decisions by eliminating
imposed consequences that arise from the system’s non-
linearity and assisting the system manager in evaluating
several distinctive decisions before taking the best ones.
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The paper is structured as follows. Section 2 focuses on
the Physics-of-Decision fundamentals and current research
efforts related to the topic. Section 3 first introduces the
state-space modeling, then tunes the POD framework to that.
Section 4 provides two nonlinear dynamic models to present
the work’s significance. Finally, section 5 gives conclusive
remarks and proposes areas for further research.
2. Background and related works

As asserted in [8], truth exists, and so does uncertainty.
Uncertainty acknowledges the existence of an underlying
truth that is a fact in the future. Probability, which is the
language of uncertainty, therefore aims at truth. Probability
presupposes truth; it is a measure or characterization of truth.
Probability is not necessarily the quantification of the uncer-
tainty of truth, because not all uncertainty is quantifiable.
Uncertainties are considered potentialities in the decision-
making context, whereas potentialities with undesirable out-
comes are referred to as “risks” and the ones with conducive
consequences as “opportunities” [5]. POD introduces an
innovative Decision Support System (DSS) based on physics
laws of motion to address those quantified or quantifiable
potentialities that arise from incomplete information, lack of
knowledge, and experimental data and are reducible in the
case of risk and achievable in the case of opportunity.
2.1. Physics-based decision support system

Physics of Decision is concerned with multi-criteria
management of systems subject to almost ubiquitous in-
stability and uncertainty, which have to be coped with,
and accounted for when managing the systems and their
performance [5, 9]. Decision support technologies and
performance management allow examining such systems
in the three following aspects, as proposed in [10]. (i)
Intelligence: to comprehend the considered system, its Key
Performance Indicators (KPIs), its context, its current and
target performance, (ii) Design: to comprehend the potential
changes that this system and its context may undergo, and
(iii) Choice: to find a way to choose among changes and
their effects on performance to make appropriate decisions.

Through the following methodology, the POD, an in-
novative approach to decision support, might completely
encompass the Intelligence, Design, and Choice aspects of
decision support systems in the context of instability and
uncertainty [9].

(i) Intelligence through system establishment and char-
acterization: First, the intention of the considered sys-
tem (objectives considered as KPIs), its specific study
limits, the system’s associated parameters to the rec-
ognized potential, as well as the context parameters
themselves, and its internal and external (system’s
context) potentials are collected and described,

(ii) Design through system vulnerability and sustainability
identification: Second, a detailed assessment of the
investigated system through sensitivity analysis (e.g.,

simulation campaign runs, Artificial Neural Networks
(ANN), and clustering) infers the correlation matrix
between the system inputs and the intended KPIs,

(iii) Choice through strategy exploration: Finally, regard-
ing the system preferences and limits, using the opti-
mization algorithms, notably the heuristic approach,
the most desirable decisions are offered to lead the
system toward its objectives in the performance space.

The proposed methodology is included in the POD
framework, which has been studied in several contexts. Cri-
sis management context, such as the COVID-19 pandemic
crisis [9], the COVID-19 pandemic impact on air pollution
[11]. Operational management contexts, such as road traffic
management [12], supply chain management [13, 14], and
polling place management [15, 16]. Efficiency management
context, such as project management [17]. The following
section describes the preliminaries and basic concepts of the
POD framework.
2.2. Foreword, essential definitions, and notations

System characterization and identification are essential
challenges in systems theory. The mathematical represen-
tation of a system lies at the heart of the characterization
challenge. A simulation method that aims to represent the
system functionality through a performance-based approach
can be expressed as a function F from an input space U,
representing the description space of the system, into an
output space Y, representing the performance space of the
system [5]. The function F is defined implicitly by the
specified input-output pairs. The method of representing
time-dependent systems by differential equations is well
established in systems theory and applies to a fairly large
class of systems [18]. For example, the differential equation:

𝑑𝑥(𝑡)
𝑑𝑡

≜ �̇�(𝑡) = Φ[𝑥(𝑡), 𝑢(𝑡)], 𝑡 ∈ ℝ+

𝑦(𝑡) = Ψ[𝑥(𝑡)].
(1)

where:
𝑢(𝑡) ≜ [𝑢1(𝑡), 𝑢2(𝑡),⋯ , 𝑢𝑝(𝑡)]𝑇

𝑥(𝑡) ≜ [𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑛(𝑡)]𝑇

𝑦(𝑡) ≜ [𝑦1(𝑡), 𝑦2(𝑡),⋯ , 𝑦𝑚(𝑡)]𝑇

represents a 𝑝-input, 𝑚-output system of order 𝑛. While 𝑢𝑖(𝑡)represents the 𝑖-th input vector at time 𝑡, 𝑥𝑖(𝑡) represents the
𝑖-th state variable of inputs’ vectors, 𝑢1(𝑡), 𝑢2(𝑡),⋯ , 𝑢𝑝(𝑡), at
time 𝑡, and 𝑦𝑖(𝑡) represents the 𝑖-th output vector at time 𝑡.
Functions Φ and Ψ are dynamic1 “linear” or “nonlinear”
maps defined as Φ ∶ ℝ𝑛 × ℝ𝑝 → ℝ𝑛 and Ψ ∶ ℝ𝑛 → ℝ𝑚.
The function Φ presents the states of the system inputs in
space U; Since the number of inputs is considerably fewer
than their possible states (𝑝 << 𝑛), the Φ would be a

1Although the Φ and Ψ functions could be time-invariant (static) [9],
this study concentrates mainly on dynamic (time-variant) functions
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Figure 2: Mathematical representation of the Physics of Decision approach

𝑛 × 𝑝 → 𝑛 dimension function. The Ψ function is used
to depict the relationship between inputs (vector 𝑢(𝑡)) and
outputs (vector 𝑦(𝑡)). The vector 𝑥(𝑡) denotes the state of
the system at time 𝑡 and is determined by the state at time
𝑡0 < 𝑡 and the input 𝑢(𝑡) defined over the interval [𝑡0, 𝑡). The
output 𝑦(𝑡) is determined by the state of the system at time
𝑡 [19, 18]. Equation 1 is referred to the input-state-output
representation of the system. This paper is concerned with
dynamic systems which can be represented by differential
equations corresponding to the differential equation given in
equation 1. These take the form:

𝑥(𝑘 + 1) = Φ[𝑥(𝑘), 𝑢(𝑘)],
𝑦(𝑘) = Ψ[𝑥(𝑘)]. (2)

where 𝑢(.), 𝑥(.), and 𝑦(.) are discrete-time sequences. Fig. 2
depicts the POD framework as a time-dependent technique
with the input-states-output vision.

According to equation 1, the variations of vector 𝑢(𝑡)
change the �̇�(𝑡) via function Φ. These changes go through
function Ψ and consequently deviate the system trajectory
shaped with vector 𝑦(𝑡) in the performance space Y. This
transition from the variation of vector 𝑢(𝑡) to the deviation
of the system trajectory is assumed as “physical forces” in
the POD framework.

3. Force-based paradigm in performance
management
The space Y in Fig. 2 presents the predetermined time-

independent Target (objective) and Danger (or could be less
targeted) zones concerning the intended level of quantified
KPIs (𝑦1, 𝑦2,⋯ , 𝑦𝑚) on the axes. The degree of the system’s
liberty to assign values to system inputs (𝑢1, 𝑢2,⋯ , 𝑢𝑝) in the
space U along with the system’s sensitivity to the critical
level of the system’s inputs is the main factor in these de-
terminations (system’s susceptibilities) in the performance
space Y. Although these levels may change over time, they
provide a forward-thinking view of the systems’ objectives.
The most essential takeaway from the presented framework
in Fig. 2 is to see the studied system as an object in its multi-
dimensional performance space Y, which might be pushed

and pulled by produced forces (𝑓1, 𝑓2, ⋯, 𝑓𝑝) resulting from
changes in the system’s parameters or in its environment
parameters (𝑢1, 𝑢2,⋯ , 𝑢𝑝) at any time 𝑡. Essentially, these
variations’ consequences are observed through the deviation
of the system ”trajectory” within the space Y, the multidi-
mensional performance space of systems’ KPIs.
3.1. Physics of Decision in practice

In the presented POD framework, the emphasis is on the
mobility of the investigated system within its performance
space Y, where movements are studied in this multidi-
mensional space defined by the system’s KPIs. These KPIs
evolve as a result of changes in the system’s internal and
contextual input parameters, vector 𝑢(𝑡) in equation 1 [5].

The purpose of the POD theory, which derives from clas-
sical physics, is to facilitate the handling of the intricacies
of the observed system to assist decision-makers in steering
the system (especially in nonlinear circumstances) toward its
objectives. The following illustrates the relation between a
KPI (and its associated concepts) and physics notations such
as displacement, velocity, and acceleration.

(i) Displacement ⇔ Variation: The displacement (𝛿𝑘𝑖)of the system on the associated axis to a KPI in the
performance space Y (e.g., 𝑦𝑖) is equivalent to the
variations of that KPI (𝛿𝑥),

(ii) Velocity ⇔ Growth: The derivative of a KPI (𝜕𝑘𝑖∕𝜕𝑡)shows its positive/negative growth, which is equalized
to the system’s velocity (𝜕𝑥∕𝜕𝑡) on the KPI’s connected
axis,

(iii) Acceleration ⇔ Fluctuation: The velocity derivation
indicates the system’s acceleration (𝜕𝑣∕𝜕𝑡 = 𝜕2𝑥∕𝜕𝑡2)
on the connected axis.

The “Displacement” of a KPI shows where the system
is falling behind or veering off course to take corrective
action quickly, solving the issue before it escalates into a
full-blown problem. Displacement mainly gives an intuition
or insight of “Operational” decisions that seek to get closer
and closer to real time measurement to evaluate the system
performance on a short-term basis.
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The “Velocity” of a KPI monitors the progress or trend
of the system toward a stated destination (system objectives
in the performance space Y) to take “Strategic” decisions
over time. This measurement effectively requires observa-
tion over a more extended period to provide an accurate
picture of system development.

The “Acceleration” magnitude may reflect how strongly
or weakly a KPI fluctuates on its connected axis and might
help on the “Operational” decisions, while its positive or
negative direction may aid in the “Strategic” decision and
is always the same as the net force acting on the system
produced by inputs’ variations (vector 𝑢(𝑡)).

The displacement, velocity, and acceleration are equally
important; they just provide different information for differ-
ent purposes. For systems to yield all their promise, strategic
and operational decisions must be aligned so that decision-
makers at all levels may perceive the relationship between
system activity and system performance.

The POD approach focuses on a force-based vision to
assess the system’s performance. According to this vision, a
system is perceived as an object, and its performance as a tra-
jectory within the performance spaceY may veer off course
due to internal or contextual perturbations (interpreted as
risks and opportunities) viewed as physical forces acting on
the object.
3.2. Physics of Decision installation on state-space

representation
State-space representation, a well-established mathe-

matical model in physics, provides a practical and condensed
method to describe and analyze systems with multiple inputs
and outputs. The most general state-space representation of a
linear system with 𝑝-inputs, 𝑚-outputs, and 𝑛-state variables
takes the following form:

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),
𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡) (3)

where 𝐴 is the “state matrix”, 𝐵 is the “input matrix”, 𝐶
is the “output matrix”, and 𝐷 is the “feed-through (or feed-
forward) matrix”. The first equation is the state equation and
the latter is the output equation. While all matrices (𝐴, 𝐵, 𝐶 ,
and 𝐷 ) are allowed to be time-variant (i.e., their elements
can depend on time, e.g., 𝐴(𝑡)); in the common Linear Time
Invariant (LTI) systems, matrices will be time invariant (i.e.,
the functions Φ and Ψ in equation 1 are static). This study
focuses on systems whose outputs do not influence inputs;
however, this could occur in several systems (e.g., thermostat
heater, automatic clothes iron, etc.). In such systems, the
state and output equations are influenced by a “feedback”
matrix 𝐾 from the system output2. Fig. 3 shows the block
diagram for the linear state-space representation, with feed-
back 𝐾 (indicated by a dashed line) from the system’s output
𝑦 to its input 𝑢 [6, 7]. Using transfer functions (Laplace
transfer form) or differential equations to model complex
systems becomes laborious; this is even more true if the

2In such systems, the equation 3 becomes: �̇�(𝑡) = 𝐴𝑥(𝑡) +𝐵𝐾𝑦(𝑡) and
𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝐾𝑦(𝑡) - note that 𝐾 is the feedback matrix.

+
+

+
+

𝐵 ∫

𝐷

𝐴

𝐾

𝐶 𝑦�̇� 𝑥𝑢

Figure 3: General state-space representation model

system has multiple inputs and outputs [7]. The state space
method largely alleviates this complexity. Fig. 4 shows a
Mass-Spring-Damper system with its mass, 𝑚, spring con-
stant, 𝑘, and damping coefficient, 𝑏, where the external force
acting on the mass, 𝑓 (𝑡), is considered as input while its
position, 𝑝(𝑡), is considered as output. According to the free-

𝑘

𝑏

𝑚 𝑚𝑓 (𝑡)

𝑏�̇�(𝑡)

𝑘𝑝(𝑡)

𝑓 (𝑡)

𝑝(𝑡) 𝑝(𝑡)

Figure 4: Mass-Spring-Damper System

body diagram shown in dashed lines and Newton’s 2nd law,
equation 4 presents the differential equation of this system.

𝑓 (𝑡) − 𝑏
𝑑𝑝
𝑑𝑡

− 𝑘𝑝(𝑡) = 𝑚
𝑑2𝑝
𝑑𝑡2

(4)
This system is a straightforward illustration of a “linear”
state-space representation. When there is a mass in a system,
its position and velocity are commonly chosen as state vari-
ables. Also, position, velocity, and force (input) are sufficient
to determine this system’s future position (output). For these
reasons, position and velocity are chosen as state variables
(𝑥(𝑡) in equation 3). The input vector (𝑢(𝑡)), state vector
(𝑥(𝑡)), and output vector (𝑦(𝑡)) are shown in equation 5.
𝑢(𝑡) = 𝑓 (𝑡), 𝑥(𝑡) =

[
𝑥1(𝑡)
𝑥2(𝑡)

]
=
[
𝑝(𝑡)
�̇�(𝑡)

]
, 𝑦(𝑡) = 𝑝(𝑡). (5)

Considering the new notation in equation 5, equation 4
becomes equation 6.

𝑢(𝑡) − 𝑏𝑥2(𝑡) − 𝑘𝑥1(𝑡) = 𝑚�̇�2(𝑡) (6)
Through rearranging equations to express �̇�(𝑡) and 𝑦(𝑡) in
terms of 𝑥(𝑡) and 𝑢(𝑡), equation 7 is obtained.

�̇�1(𝑡) = 𝑥2(𝑡),
�̇�2(𝑡) = − 𝑘

𝑚
𝑥1(𝑡) −

𝑏
𝑚
𝑥2(𝑡) +

1
𝑚
𝑢(𝑡),

𝑦(𝑡) = 𝑥1(𝑡).
(7)
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Figure 5: Mass-Spring-Damper and Pendulum systems tuning into the Physics of Decision framework and analyses

Finally, by organizing equation 7 into matrix format, equa-
tion 8 shows (the state and output equations) the state-space
model of the Mass-Spring-Damper system presented in Fig.
4.

[
�̇�1(𝑡)
�̇�2(𝑡)

]
=

𝐴
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[

0 1
−𝑘∕𝑚 −𝑏∕𝑚

] [
𝑥1(𝑡)
𝑥2(𝑡)

]
+

𝐵
⏞⏞⏞[

0
1∕𝑚

] [
𝑢(𝑡)

]
,

𝑦(𝑡) =
[
1 0

]
⏟⏟⏟

𝐶

[
𝑥1(𝑡)
𝑥2(𝑡)

]
.

(8)

The POD framework studies the system’s trajectory in
the performance space Y through produced forces stem-
ming from inputs’ variations (𝑢1, 𝑢2,⋯ , 𝑢𝑝) at any time 𝑡,
as opposed to state-space representation in “Time Invariant”
systems, which only has 𝑢(𝑡) as a time-dependent force.
Given this distinction, the state-space representation would
be continuous time-variant, as equation 9 shows the matrices
and vectors used in the POD framework could be time-
variant.

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡),
𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) +𝐷(𝑡)𝑢(𝑡) (9)

Considering the whole Mass-Spring-Damper system as an
object in its performance space Y built on the (i) system
position and (ii) system velocity as its KPIs (i.e., output
matrix 𝐶 =

[
1 1

]), Fig. 5 (II) presents the tuning of
this system to the POD framework along with the results
of several discussed investigations in the following. Con-
sidering the external force, 𝑓 (𝑡), the mass, 𝑚, the spring
constant, 𝑘, and damping coefficient, 𝑏, the input vector
of this system includes 𝑢(𝑡) = [𝑓 (𝑡), 𝑚(𝑡), 𝑘(𝑡), 𝑏(𝑡)] =
[𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)].

To evaluate the system performance, the three following
modes are considered to assess the system performance:
(i) Inertia mode: The performance could change due to
its normal behavior and the associated consumption. In
this mode, the system is not facing any force, (ii) Passive
mode: In addition to the performance changes of Inertia, the
performance might change because there is (are) force(s)
in the system or its environment, and (iii) Active mode:
In addition to the performance changes of Inertia, the
performance could change because the system is facing some
forces (passive changes) and also because of some taken
decisions to manage the consequences of those forces [9].

It is important to note that the parameter initialization,
settings, and applied scenarios in the remaining of this
section were chosen to reflect the POD framework, which
could be irrational and impossible to implement in real-
world circumstances.

The following forces have been picked to investigate
the Mass-Spring-Damper system as a “Linear-Time-Variant”
system in the POD framework with the initial input vector,
𝑢(𝑡0) = [5𝑁, 20𝐾𝑔, 2𝑁∕𝑚, 4𝑁𝑠∕𝑚].

(i) 𝑓1: replacement of spring at time 𝑡20 with a higher
constant → 𝑘(𝑡20) = 3𝑁∕𝑚 [𝑘(𝑡0) to 𝑘(𝑡19) = 2],

(ii) 𝑓2: concurrent replacement of the following elements
at time 𝑡30. (i) mass with a lighter mass → 𝑚(𝑡30) =
10𝐾𝑔 [𝑚(𝑡0) to 𝑚(𝑡29) = 20] and (ii) damper with a
higher damping coefficient → 𝑏(𝑡30) = 6𝑁𝑠∕𝑚 [𝑏(𝑡0)to 𝑏(𝑡29) = 2],

(iii) 𝑓3: applying a greater force at time 𝑡40 → 𝑓 (𝑡40) = 8𝑁
[𝑓 (𝑡0) to 𝑓 (𝑡39) = 5].
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According to the tuning of the Mass-Spring-Damper system
as a “Linear-Time-Variant” system (equation 9) to the POD
framework and applied forces, Fig. 5 (I) displays the sys-
tem’s variables 𝑥(𝑡) (position and velocity) for 50 seconds.
The passive trajectory (system variables with initial input
vector 𝑢(𝑡0)) and deviations (active trajectory) due to 𝑓1, 𝑓2,
and 𝑓3 have been depicted if the chosen forces are applied
together. In Fig. 5 (II), trajectories (passive and active) of the
tuned system into the POD framework and built on its KPIs
(output 𝑦(𝑡) = 𝑥(𝑡)) have been depicted analogously; with
the difference that the whole system viewed as an object in
this framework that is being pulled and pushed by generated
forces.

The initial passive trajectory is depicted for the period
from 𝑡0 until the moment that the first force arrives (𝑓1 at
𝑡20). In linear systems like Mass-Spring-Damper, after 𝑓1takes effect, a new passive trajectory is formed that takes into
account both 𝑓1 and the initial passive impacts with itself
starting at time 𝑡20 (input vector 𝑢(𝑡0) and 𝑢(𝑡20)). Likewise,
this rule holds for later times and possible incoming forces
applied to the system. The vector sum of applied forces is
well established in such systems (∑𝑖=𝑝

𝑖=1 𝑓𝑖 = 𝑓1+𝑓2+⋯+𝑓𝑖),making it feasible for applied forces to be aggregated (as
in classical physics). The equalized KPI-oriented concepts
(variation, growth, and fluctuation) to the Kinematic phys-
ical notations (displacement, velocity, and acceleration) in
section 3.1 is employed directly for system analyses (taking
operational and strategic decisions). If either the state or the
output equations-or both-are nonlinear, the vector sum of
applied forces is invalid (∑𝑖=𝑝

𝑖=1 𝑓𝑖 ≠ 𝑓1 + 𝑓2 +⋯ + 𝑓𝑖).The following example illustrates such systems and po-
tential solutions to deal with this issue.

The 𝑢(𝑡) argument in equation 9 to the functions can be
dropped if the system is unforced (i.e., it has no external
force). A classic “nonlinear” system is a simple unforced
pendulum shown in Fig. 6.

𝑥

𝑦l
𝐓

𝑚𝐠

𝑚

𝜃

𝜃

Figure 6: An unforced pendulum system

Equation 10 presents the pendulum motion equation.
𝑚l2�̈�(𝑡) = −𝑚l𝑔 sin 𝜃(𝑡) − 𝑘l�̇�(𝑡) (10)

where:
• 𝑔 is the gravitational acceleration,
• 𝑘 is coefficient of friction at the pivot point,

• l is the radius of the pendulum (to the center of gravity
of the mass 𝑚).

• 𝜃(𝑡) is the angle of the pendulum with respect to the
direction of gravity,

• 𝑚 is the mass of the pendulum (pendulum rod’s mass
is assumed to be zero),

Equation 11 shows the state equation of the pendulum.
�̇�1(𝑡) = 𝑥2(𝑡),
�̇�2(𝑡) = − 𝑔

l
sin 𝑥1(𝑡) −

𝑘
𝑚l

𝑥2(𝑡).
(11)

where:
• 𝑥1(𝑡) = 𝜃(𝑡) is the angle of the pendulum,
• 𝑥2(𝑡) = �̇�1(𝑡) is the pendulum’s rotational velocity,
• �̇�2(𝑡) = �̈�1(𝑡) is the rotational acceleration.

Finally, equation 12 presents the general form of the pendu-
lum state and output equations (11).

�̇�(𝑡) =
[
�̇�1(𝑡)
�̇�2(𝑡)

]
= Φ(𝑥(𝑡)) =

[
𝑥2(𝑡)

− 𝑔
l
sin 𝑥1(𝑡) −

𝑘
𝑚l𝑥2(𝑡)

]

𝑦(𝑡) =
[
1 1

] [�̇�1(𝑡)
�̇�2(𝑡)

]

(12)
Similar to the Mass-Spring-Damper system example, Fig.
5 (III) and (IV), with the same equivalent legends in
(I) and (II) respectively, present the state variables (rota-
tional velocity and rotational acceleration) and output vector
𝑦(𝑡) in POD together with the initial input vector 𝑢(𝑡) =
[𝑔(𝑡), 𝑘(𝑡),l(𝑡), 𝜃(𝑡), 𝑚(𝑡)] = [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡)]= [10𝑚∕𝑠2, 2, 8𝑚, 30◦, 5𝐾𝑔] at 𝑡0 and the deviations in
accordance with the following forces at 𝑡20, 𝑡30 and 𝑡40.

(i) 𝑓1: 𝑘(𝑡20) = 10 [𝑘(𝑡0) to 𝑘(𝑡19) = 2],
(ii) 𝑓2: including 𝑓21: l(𝑡30) = 6𝑚 [l(𝑡0) to l(𝑡29) = 8]

and 𝑓22: 𝑚(𝑡30) = 30𝐾𝑔 [𝑚(𝑡0) to 𝑚(𝑡29) = 5],
(iii) 𝑓3: 𝑔(𝑡40) = 8𝑚∕𝑠2 [𝑔(𝑡0) to 𝑔(𝑡39) = 10].
The presented “continuous time-variant” pendulum system
is no longer linear due to the term 𝑠𝑖𝑛𝑥1(𝑡) in equation
11; hence such nonlinear systems don’t obey the forces
aggregation rule analogous to linear systems.

Since the x(t) in Fig. 5 (III) alters almost in the (−1,+1)
interval (shown in black dashed lines) and the term 𝑠𝑖𝑛𝑥1(𝑡)is almost the same as 𝑥1(𝑡) on this interval, so 𝑠𝑖𝑛𝑥1(𝑡)in the state equation is estimated with 𝑥1(𝑡) (Fig. 4 (V)).
This estimation makes the state equation linear; thus,
the forces aggregation works like linear systems. Fig. 5
(VI) depicts the linearized pendulum system, which almost
resembles the original nonlinear trajectory shown in Fig. 5
(IV) (According to Fig. 5 (V), as the pendulum moves away
from the point (0, 0), the absolute value of the approxima-
tion, 𝑥(𝑡), is greater than the actual value, 𝑠𝑖𝑛𝑥(𝑡); thus, the
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movement of the pendulum is slightly faster than the original
movement, and this shift is evident when comparing the Fig.
5 (IV) and Fig. 5 (VI)).

The system equilibrium or stationary points are those
when the following condition is satisfied. The applied forces
are neutralized by each other (𝐹𝑛𝑒𝑡 = 0), so that �̇� = 0 [13].
The equilibrium points of a pendulum are those that satisfy[
𝑥1(𝑡), 𝑥2(𝑡)

]= [
𝑛𝜋, 0

] for 𝑛 ∈ ℤ (same for the Mass-Spring-
Damper system when 𝑘𝑝(𝑡) + 𝑏�̇�(𝑡) = 𝑓 (𝑡)) in Fig. 4.

Real-world systems are almost entirely nonlinear; there-
fore, applying the state-space model to them is not straight-
forward as it is for LTI systems (equation 3). It turns out
that many nonlinear systems have characteristics that are
strikingly comparable to those of their linear counterparts.
In addition, various methods make it possible to use linear
analysis on nonlinear systems. The linearization of nonlin-
ear systems is a potent method in nonlinear analysis. In
dynamics analysis, particularly close to equilibrium points,
linearization is used to represent a nonlinear system of
ODEs as a linear system [20, 21]. It is possible to employ
linearized systems to construct dynamical system controllers
that benefit from cutting-edge linear controller approaches
to comprehend the local behavior of dynamical systems,
notably at equilibrium points [20].

The Taylor series of dynamical ODEs is one of the most
widely used linearization methods. The general 1st order
structure of the Taylor series is recalled by equation 13 to
linearize the function Φ in equation 1 around point (𝑥, 𝑢)
[21].
�̇�(𝑡) = Φ(𝑥, 𝑢) ≈ Φ(�̄�, �̄�) + 𝜕Φ

𝜕𝑥
|||�̄�,�̄�(𝑥 − �̄�) + 𝜕Φ

𝜕𝑢
|||�̄�,�̄�(𝑢 − �̄�)

(13)
If the values of 𝑥 and 𝑢 are chosen in steady state conditions
(at equilibrium points) then Φ(�̄�, �̄�) = 0 because the deriva-
tive term 𝜕Φ∕𝜕𝑢 = 0 in steady states.

The POD framework is supplemented with the lineariza-
tion method to assess the aggregation of individual decisions
(applied forces) in nonlinear case studies to control the
system trajectory in the performance space Y. To state it
plainly, in nonlinear systems, aggregation of taken indi-
vidual decisions, where the decisions are viewed as forces
that move the system in its performance space, will not
necessarily be the same as if they were taken together. This
issue mainly arises from cascading effects and subsequently
delayed implications in nonlinear systems (see Figure 1).
Section 4 goes into further detail about this issue and applies
the introduced solution to an extended example.

4. Experiments and results
The main experiments are centered on the significance of

the force-based paradigm in the POD framework as a DSS
on industrial and strategic simulation models. The presented
POD framework in this study constrains the experiments
by requiring differential equation models of the systems

being studied in this form so that the equivalent state-space
model to the system’s ordinary differential equations (ODEs)
could form (however, the other POD studies have been
implemented through different simulation approaches such
as agent based modeling (ABM) [15] and discrete event
modeling (DEM) [12] too). The most prevalent form of ODE
modeling is the System Dynamics approach (compartmental
models), consisting of compartments, flows, causal loop
diagrams (CLD), and system parameters. The POD answers
the following critical business question in nonlinear systems
that the System Dynamics approach, due to nonlinearity, can
not address.

“What if the system manager decides to take several in-
dividual decisions which cost the system less (easier path or
farther from intended danger zones, or both, in the system’s
performance space (Fig. 2)) if they were taken together and
then aggregate them to evaluate the system performance?”

The presented work and supplied procedures assess two
well-known nonlinear models: a simple illustrative model
to apply the linearization and forces aggregation, then an
industrial and complicated model, both implemented with
the System Dynamics approach to address this issue.
4.1. Bass diffusion system dynamics model

The dynamic model of a basic Bass Diffusion system
implemented with ODEs is used to illustrate the state-space
method and linearization procedures in nonlinear dynamical
systems where the state-space representation in equation 3
cannot be directly applied [22].

Potential
Adopters Adopters

AdoptionFromAd AdoptionFromWoM

ContactRate

TotalPopulation
AdoptionFractionAdEffectiveness

Adoption Rate

Figure 7: Basic Bass Diffusion system dynamic model

This model consists of a simple differential equation
describing how “new products are adopted in a population.”
The model presents a rationale for how current and po-
tential adopters of a new product interact. The premise of
the strategy is that potential adopters might become new
customers through advertisement or word-of-mouth (WoM)
mechanism among potential and existing consumers. The
Adoption Rate is the accumulation of these two ways of
adoption (Advertise and WoM) at any given moment [23].
The potential and current Adopters variations are considered
as state variables 𝑥1(𝑡) and 𝑥2(𝑡), respectively. The popula-
tion individuals are either customers or potential customers,
meaning that 𝑥1 + 𝑥2 = Total population (𝑢2 latter) and,
consequently, �̇�1 = −�̇�2. Equation 14 presents the state and
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Figure 8: Individual inputs’ variations (applied forces) and their aggregations vs. output (potential adopters)

output equations of the Bass Diffusion presented in Fig. 7.
�̇�1(𝑡) = −(AdoptionFromAd + AdoptionFromWoM)
�̇�1(𝑡) = Φ(𝑥(𝑡), 𝑢(𝑡)) = −𝑥1𝑢1 − 𝑥1𝑥2𝑢3𝑢4∕𝑢2
�̇�(𝑡) =

[
�̇�1
�̇�2

]
=
[
−𝑥1(𝑢1 + 𝑢3𝑢4) + 𝑥21𝑢3𝑢4∕𝑢2
𝑥1(𝑢1 + 𝑢3𝑢4) − 𝑥21𝑢3𝑢4∕𝑢2

]

𝑦(𝑡) =
[
1 0

] [�̇�1
�̇�2

]

(14)
where:

• 𝑢1(𝑡) is AdEffectiveness: Advertisement influence co-
efficient on Adoption Rate,

• 𝑢2(𝑡) is Total Population: Total adopters and potential
adopters,

• 𝑢3(𝑡) is Adoption Fraction: The imitation rate of po-
tential adopters from current adopters,

• 𝑢4(𝑡) is Contact Rate: Contact rate between potential
adopters and current adopters,

• 𝑢(𝑡) = [𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)].
The state equation of the Bass Diffusion model in equation
14 is nonlinear (due to the term 𝑥1𝑥2 before arrangement,
later 𝑥21) that requires linearization. The presented Jacobian
Matrix in equation 15 linearizes this state variable concern-
ing input vector 𝑢(𝑡) to be in the “continuous time-variant”
state-space form (equation 9). Note that 𝜕𝑥∕𝜕𝑥1 = −𝑢1 −
𝑢3𝑢4 + 2𝑥1𝑢3𝑢4∕𝑢2.

𝐽 ( ⃖⃗𝑥) =
[ 𝜕𝑥
𝜕𝑢1

, 𝜕𝑥
𝜕𝑢2

, 𝜕𝑥
𝜕𝑢3

, 𝜕𝑥
𝜕𝑢4

]
= [−𝑥1,−𝑢3𝑢4𝑥21∕𝑢

2
2,−𝑢4𝑥1

+𝑢4𝑥21∕𝑢2,−𝑢3𝑥1 + 𝑢3𝑥21∕𝑢2]

(15)
Fig. 8 shows the consequences of changing inputs individu-
ally (𝑢1, 𝑢2, 𝑢3, and 𝑢4 on top) on the Potential Adopters as
intended output in linear and nonlinear forms at the bottom.
The final plot (the rightmost at the bottom) demonstrates the
impact of aggregated input changes (𝑢1, 𝑢2, 𝑢3, and 𝑢4) on
the output in both linear and nonlinear situations.

According to the zoomed portion of the “Contact Rate”
variation plot in Fig. 8, the comparison between linearized
and nonlinear versions indicates the following conclusions.

(i) The 1st order linearization from the Taylor series is
sufficient (𝑥21 ≈ 0) to transform the nonlinear state
equation 14 to continuous time-variant form (equations
9) and consequently compute the effects of input varia-
tions on the output for the basic Bass Diffusion model,
yet; high oscillated models require higher orders.

(ii) The forces have immediate impacts on the output in
the nonlinear form, whereas; there are considerable
behind-time impact in the linearized versions. For in-
stance, the variation of Contact Rate from 50 to 350
contacts per person starting at the beginning of year
7th.

(iii) The forces aggregation in the linear version closely
resembles the application of forces together in the
nonlinear form (the depicted plots in the rightmost at
the bottom of Fig. 8).

4.2. Inventory-workforce system dynamics model
This section presents a more industrial, high oscillated,

and continuous time-variant system dynamic approach of
an inventory-workforce model, which is entirely nonlinear
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Figure 9: System Dynamic model of inventory-workforce management provided in [24]

in nature. The study employs the linearization approach to
compute the linear counterpart of the nonlinear inventory-
workforce system at the time of input variations (applied
forces), and it calculates the KPIs variation, growth, and
fluctuation (section 3.1), which are connected to the phys-
ical notations of displacement, velocity, and acceleration,
respectively [13].

The inventory-workforce model illustrates how produc-
tion scheduling and employment regulations interact, po-
tentially causing inconsistency in effectively responding to
consumer demand.

The model makes some significant simplifying assump-
tions. Order backlog is ignored and customer orders are
exogenous. The inventory-workforce model emphasizes la-
bor’s importance as a production factor. When the workforce
model and the inventory model are combined, production
starts to adapt with a delay to the targeted start time. The in-
ventory level with the connected workforce model decreases
further after the demand shock (high order from customers)
than the inventory model without it.

The inventory model structure and the equations be-
tween its parameters, stocks, flows, and causal loop dia-
grams (CLD) are thoroughly described in chapter 18 of the
“Business Dynamics” book [24]. Chapter 19 discusses the
workforce model and its link to the inventory model. The
behavior of the coupled model, including oscillations and
their sources, is also explored [24].

This study avoids repeating how the models work and
suffices with the structure of the models and the relationships

between the parameters, stocks, and flows presented in Fig.
9. Dashed arrows represent the shared parameters of the
two coupled models. The reason for skipping the inventory-
workforce model explanation is that the goal of this research
is to apply the presented force-inspired paradigm to the time-
dependent nonlinear models (e.g., system dynamic models)
rather than the models themselves to propose a decision-
making tool.

The inventory-workforce model is tuned to the POD
framework presented in section 3 as follows. The POD
framework considers the parameters in Fig. 9 with just
output arrows (this property is present in 17 parameters) as
inputs in the space U. Fig. 9 depicts the model’s inputs with
an asterisk symbol (∗). The remaining components, such as
flows (e.g., “Shipment Rate”), stocks (e.g., “Labor”), and
hybrid variables (e.g., “Desired Vacancies”) are outputs in
the space Y. Input parameters are those that the simula-
tion modeler is able to assign values and alter (∗). Hybrid
variables, on the other hand, can be utilized as input from
a different point of view. The distinction between inputs
and outputs is clearly based on the system management’s
perspective; it is just a way to separate inputs from outputs
inside the POD framework. Following the mapping manage-
ment concepts onto physical notations, then the linearization
approach through the Taylor series and forces aggregation in
the inventory-workforce model are explored.
The experiments begin a passive trajectory with the force

of 1000 “Costumer Order,” which triggers the entire system
(other input parameters). The input parameters in Fig. 9
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Figure 10: Passive, nonlinear, and linearized trajectories for variation, growth, and fluctuation of the selected KPIs

with the (*) symbol have been initialized to the values in
parentheses to form the passive trajectory. The following
challenging experiment contrasts individual decisions and
their aggregation in linear (or linearized) versus nonlin-
ear circumstances. This evaluation enables mitigating risks
brought on by unforeseen outcomes brought on by shifts in
system performance by comparing the tentative decision-
making that is not the same as definitive decision-making
due to the system’s nonlinearity. The assertion of the chal-
lenging experiment is backed by the forces having the prop-
erties listed below. (i) Selected inputs to vary (force creation)
belong to both the inventory and workforce sectors; (ii)
Forces have indirect impacts on the concerned KPIs (Fig. 9:
to be checked through the path from input to the KPIs), and
(iii) The applied forces are studied for relatively long periods
to take into consideration the simultaneous influence of the
interacting forces on the KPIs (not only a brief shock to the
system).

(i) 𝑓1: The "Safety Stock Coverage" climbed from 2 to 4
product over timeframe (50,70): from inventory sector,

(ii) 𝑓2: The "Productivity" descend from 40% to 25% over
a (100,150) timeframe: from workforce sector,

(iii) 𝑓3: The "Average Time to Fill Vacancies" descend
from 10 to 8 over a (120,180) timeframe: from work-
force sector.

Fig. 10 depicts the passive, nonlinear, and linearized
trajectories for inventory, labor, and vacancies on axes, re-
spectively, for variation, growth, and fluctuation. A pre-
process fit_transform has been performed on the trajectories
to scale the KPIs values to be able to have a vis-a-vis
study. This procedure allows simultaneous investigation of
trajectories despite different units of indicators (e.g., the
Inventory unit is “product” while the Labor unit is “per-
son”). First, the MinMaxScale estimator scales and translates
each KPI individually such that it is in the given range

(in this experiment, between zero and one instead of the
actual values of KPIs); then, the fit method calculates the
mean and variance of each present feature in the data. The
transform method transforms all the KPIs through respective
mean and variance. Note that in contrast to nonlinear and
linearized plots, the supplied passive trajectory plots for
Velocity and Acceleration in Fig. 10 depict actual values
rather than scaled values due to the significant difference
between passive and active trajectories. In addition to this
justification, Fig. 10 tries to illustrate the main objective
of the study rather than comparisons between passive and
active trajectories (actual performance distinctions), which
is performance shifts in nonlinear and linearized systems.

Essentially, the coupled inventory-workforce model has
been designed in a way that system dynamicity through pa-
rameter configuration and tuning fulfills the system demands
over time. In other words, through parameter configuration
and regularization, the applied forces to the system are
neutralized as time passes (e.g., see the tail of the plot for
displacement in Fig. 10). Similarly, in physics, the “restoring
force” is a force that acts to bring a body to its equilibrium
position. The restoring force is always directed back toward
the system equilibrium position that depends only on the
mass or particle position (the same as the system viewed as
an object in this study) [25].

The applied forces, 𝑓1, 𝑓2, and 𝑓3, have been chosen so
that the linearization significantly estimates the nonlinear
system. In other words, the applied forces are not drastic
(e.g., raising the “safety stock coverage” from 2 to 4 units),
meaning that the linear system is only an approximation that
holds for slight deviations from equilibrium. This keynote
highlights the inefficiency of decision aggregation in lin-
earization technique under crisis-like circumstances with
drastic variations in system parameters (applied forces to the
system). Despite the resemblance between the displacement
and velocity plots, the striking difference in the acceleration
(fluctuation) plot (i.e., how strongly or weakly the KPIs
fluctuate in the system’s performance space - section 3.1)
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between nonlinear and linearized systems demonstrates the
critical role of linearization in the decision aggregation in
nonlinear systems.

5. Conclusions and perspectives
This study on top of the "Physics of Decision" principles

[5, 9], first tunes the simulation models to well-known
physical simulation models called “state-space representa-
tion” and then addresses the aggregation of the decisions
in nonlinear systems. The decision aggregation importance
is that taking numerous decisions at once is cumbersome,
overpriced, and unfuturistic; in contrast, taking the same
decisions independently and then aggregating them is more
advantageous from a financial and futuristic standpoint. This
approach assists decision-makers in (i) exploring a variety of
strategies and taking the best ones, (ii) allocating resources
firmly, and (iii) driving the system toward its objectives
through constant avoidance of determined risky zones and
proximity to safe areas (targeted objectives) in the system
performance space built on systems indicators, that allows
them to be more readily in seizing opportunities and avoid-
ing risks. The work’s significance has been examined in the
experiment section, first with an outdated but illustrative ex-
ample from the Bass Diffusion model, after with a nonlinear
model of an inventory-workforce system developed with the
System Dynamic modeling.

Three primary places are listed below to develop the pre-
sented work and further research. (i) Model: the presented
work deals with System Dynamic models implemented with
Ordinary Differential Equations (ODEs); however, including
alternative simulation approaches such as agent-based mod-
eling (ABM), discrete event modeling (DEM), and others is
an essential development aspect, (ii) Visualization: although
the performance space is not limited to three dimensions,
examining more than three KPIs concurrently is impossible.
Virtual reality (VR) technologies could map and analyze
how system inputs affected the performance trajectory for
several KPIs at once to look at how they are related, and
(iii) Complexity: A comprehensive sensitivity analysis of the
system’s inputs and outputs could help in determining the
impact pattern of inputs and outputs (such as linear, wave-
forms (sine, square, triangular, ramp), etc.) to examine the
performance trajectory of both with and without them as
well as to decompose the performance trajectory into mul-
tiple trajectories with distinct patterns to a have a rigorous
linearization.
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4.1 Research Summary
The present work strives to propose a novel attitude to overcome the limits in the decision-
making context. The study based on the foundations of the Physics of Decision theory
aims at bringing classical physics into the decision-making realm by providing a Decision
Support System built on physical laws of motion. The targeted systems to investigate are
STSs with entangled connections between people and technology in executive development.
The approach is to decompose, as much as feasible, the parameters and conditions involved
in the activities (i.e., choices) that decision-makers are disposed (or sometimes obliged) to
take. Two virtual orthogonal spaces are defined to separate the system’s performance from
its parameters (as well as the ones from its environment)—the first space is constructed
on its Key Performance Indicators (KPIs), while the second one is on the system attributes
(and its environment characteristics). The originality is perceiving risks and opportunities
as physical forces that vary the position of an object—considered the equivalent for the
system—in back-and-forth movements toward or far from its targeted places. The perfor-
mance space’s targeted places, which the system managers seek to reach, are shaped by the
preferred quantitative values of KPIs there. Therefore, the objective is to characterize the
forces that the system might undergo and ultimately discover the optimum combinations of
existing ones to navigate the system toward its stated targets in the Performance Space.

Two steps in characterizing the forces—force identification and force assessment—are de-
fined to investigate their nature, source, and properties. The last step in evaluating the
forces aims to find affordable combinations of those at hand in the system’s navigation
toward the targeted parts of the performance space. The first two steps are performed in
the designated space for system attributes and environmental characteristics, while the
third step (evaluation of forces) requires joining the two designated spaces. The present
work focuses on creating connections between spaces and leads off to evaluate the potential
forces.

Following the introduction of the research study and the scope of this study’s contributions,
the literature review section addresses the following subjects and subsequently discusses
the POD framework for each one.
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1. The physics-inspired research works in several areas (social phenomena, economics,
psychology, etc.),

2. The rationale of decision-making with a focus on the prescriptive decision theory do-
main—is related to providing tools and conceptual models to help non-ideal decision-
makers, against unconscious machines, improve their decision-making processes,

3. General background of Decision Support Systems (DSSs), including a discussion on
the model-oriented types and their application domains,

4. Exclusive discussions on the Bounded Rationality hypothesis on the defects and limits
of human-being in decision-making and the proposed activities to lessen them,

5. The existing tools and technologies in the DSS area and their maturity on the sug-
gested activities followed by the Bounded Rationality issues—Intelligence, Design,
and Choice.

The contribution section first defines a mathematical representation to represent the POD
framework and then discusses the potential approaches to solve the provided model. The
POD framework is set on a differential equation (DE) model in which, on the one hand,
the system’s parameters (and its environment) are the equation’s inputs, and their changes
over time (i.e., the applied forces to the system) are the equation’s state variables; on the
other hand, the equation’s outputs represents the KPI values as the system’s performance
indicator. The complexities of the transition functions (i) inputs to state variables and (ii)
state variables to outputs are the main challenge of this study. The supplied DE model may
be solved using several approaches, which can then be applied using the relevant tools.

4.2 Research Contributions
The research contributions are centered around the proposed DE (equation 3.1) to install
the POD framework between the defined spaces. The considered approaches to solving
the proposed equation are (i) Modeling, (ii) precise DE, or (iii) Learning Mechanism (LM).
The contribution section (section 3.2) supplied three simulation models for the Modeling
approach—System Dynamics (SD), Discrete Event Simulation (DES), and Agent-based
Model (ABM). Furthermore, a mathematical model for physical systems called state-space
(SS) representation supplied the precise DE approach.

1. The chosen SD simulation model is dedicated to modeling the epidemic outbreak—the
case study is the COVID-19 epidemic in the state of Georgia in the USA (section 3.2.1).

2. The chosen DES simulation model is dedicated to modeling the impact of disruptions
on a sensitive highway to heavy traffic jam due to blockage in its specific part—the
case study is the traffic in Nantes city (France) due to flood exposure of the Gesvres
river (section 3.2.2).

3. The chosen ABM simulation model is dedicated to modeling the impact of facility
configuration disruptions of polling locations during elections—the case study is the
2020 presidential election in the McCamish Pavilion, an indoor arena located on the
campus of the Georgia Institute of Technology in Atlanta (section 3.2.3).

4. On the DE approach, the chosen state-space (SS) representation is dedicated to mod-
eling a nonlinear manufacturing production model. Several potential perturbations
(e.g., safety stock coverage on inventory management, the productivity of workforces,
etc.) and their influences are considered to explore some KPI-oriented concepts—for
instance, variation, growth, and fluctuation of KPIs, linked to physical notations,
displacement, velocity, and acceleration, respectively (section 3.2.4).
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In addition to these contributions, a simulation study using SD modeling is offered, which
is more physics-oriented and explores Newton’s laws of motion while modeling the same
use case as the DE technique (manufacturing production model). The following reference
contained this study (Moradkhani et al., 2022b).

4.3 Future works and perspectives
From the vantage point of the Physics of Decision theory, the current study seeks to provide
a framework investigating several STSs. The presented work examined the systems as
physical objects, and the potential perturbations (risks and opportunities) were viewed as
physical forces acting on them. Although the physical notations slightly have been explored,
the stated Assumption has exempted the study from equating the system’s features to the
properties of the object and subsequently exploiting the proven physical laws. The main
drawback of the current study is the assumption that has been made—which envisages
fundamental research to discover the relationships between the system’s features and object
properties. The following are future realms of study on the Learning Mechanism for the
POD framework, along with research concerning the construction of the Performance space
(see the details in 1.7).

1. Construction and exploration of Performance Space. Learning Mechanism (LM)
including unsupervised Machine Learning (ML) approach (e.g., clustering) could be
used to identify the stated zones in the Performance Space—Target, Danger, and
Accessible—and supervised ML as optimization approach (e.g., classification and
regression) to choose the optimum Performance Trajectory among the possible ones.
Nevertheless, Reinforcement Learning based on award mechanisms could be sound to
find the optimum Performance Trajectory.

2. Performance Trajectory prediction. Examining the behavior of Performance Trajec-
tory independent of the POD framework (e.g., lack of reliable mapping between the
spaces) and exclusively from provided raw data of the system could be a research
point. The envisaged Learning Mechanism is through back-propagation mechanisms
in recurrent neural networks (RNN), notably long short-term memory (LSTM) neu-
ral networks—this might allow predicting the future behavior of the Performance
Trajectory from the expected and previous ones.

3. Construction of the POD framework. The Learning Mechanism is quite promising
in discovering the Φ and Ψ functions in equation 3.1. The purpose is to discover
the functions through the trial-and-error mechanism and consequently come to a
solution. The most promising approaches are (i) Physics-informed neural networks
(PINNs), a universal type of function approximator that can embed the knowledge of
any physical laws that govern a given data set in the learning process and described by
partial differential equations (PDEs) and (ii) Deep Implicit Layers, known as Neural
ODE, based deep equilibrium model using implicit layers—are defined through an
equilibrium point of an infinite sequence of computation.

In addition to the POD framework installation perspectives, the following might be further
points to investigate on the diverse subjects.

1. Target Definition. From the geometrical perspective, several targets might form to
reach a specific value of a KPI; for instance, point (one KPI), plane (two KPIs), or
volume (for more than two KPIs) with minimum/maximum values or open/closed
interval on axes. A detailed examination of the Performance Space could aid in
determining such geometrical forms and, as a result, provide a chance to investigate
the vector-based calculations within them to identify the most suitable trajectory from
the system’s current position toward its objectives.
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2. Object Properties. The considered object throughout this study was a solid object
which moves on the Performance Space regarded to graded axes based on the quan-
titative values of KPIs. Exploring the POD framework with actual data through
trial-and-error research and comparing the results with reality may provide insights
into the object’s true qualities over the course of several simulation campaigns runs.
This viewpoint offers an opportunity to improve or lessen the effect of applied forces
on the system, increasing the trajectory predictions’ accuracy and, ultimately, a realistic
resemblance of the system and its behavior.

3. Energy aspect. Quite comparable to the actual world, STSs may hold or release
potentials according to their assets (level of their KPIs). The system’s position or
configuration of its attributes within the Performance Space may express its potential
energy and could be independent of forces that undergo. In contrast to Potential
Energy, Kinetic Energy is related to other resting and moving items in its immediate
vicinity (e.g., if the object is placed at a higher height, its kinetic energy will be higher).
Therefore, Kinetic Energy could resemble the system’s agility in avoiding risks and
seizing opportunities due to its level of KPIs.

4. Risk and Opportunity Identification. The Performance Trajectory is shaped from the
system’s stationary points in the Performance Space. Examining the previous (from
historical data) and inertia trajectories (only impacted by Charge and Contextual forces)
might give intuitions on the system’s general behavior. Therefore, predicting the future
stationary points through obtained information from past and inertia trajectories could
be practical in identifying the forces (risks and opportunities) and ultimately finding
their most affordable combination to deviate the Performance Trajectory toward Target
Zones.

Finally, the Physics of Decision is an open framework whereby leveraging classical DSSs,
specific studies might be made. Future works could center on how possible events can be
broadly described in more detail, akin to physical phenomena in the real world. For instance,
force fields could be sound to employ: Relevant evaluation dimensions of the system and
its environment allow identifying different types of force fields. For example, aiming at
directing the object (so-called system) to the system’s target zones, the investigation could
be interested in its critical attributes (e.g., speed, location, radiation, temperature, etc.).
Consequently, the related force fields could be regarded (e.g., gravitational fields, magnetic
fields, etc.). Then, each distinct contextual element from the system’s environment might be
seen as a relevant force field with a directional and measurable magnitude at every place.
Similarly, the system might be deemed as a force field-sensitive element (e.g., equivalent to
the “Lorentz force1” for a charged particle in an electromagnetic field). However, leaning on
the sort of system and potential events that might face, other force-based physical laws such
as Newton law2 and Colomus3 law could be employed.

1𝐹 = 𝑞(𝐸 + 𝑉 ) × 𝐵
2𝐹 = 𝑚𝑎
3𝐹 = 𝑞1𝑞2/𝑟2
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Résumé étendu en français

La physique touche toutes les facettes de la vie humaine. Elle permet de comprendre
l’univers et le monde naturel et une grande partie de la technologie d’aujourd’hui et de
demain repose sur les connaissances extraites de la physique. La physique fournit la
compréhension fondamentale nécessaire pour les avancées technologiques qui continueront
à alimenter les moteurs économiques mondiaux, ainsi que l’infrastructure technique et les
compétences nécessaires pour tirer parti des avancées scientifiques et des découvertes. Cette
recherche s’intéresse à utiliser la physique pour comprendre le comportement des systèmes
complexes en réponse aux perturbations et tirer parti des lois physiques pour minimiser les
perturbations et maximiser les opportunités.

La décision est le processus de sélection d’une action parmi plusieurs options en fonction de
la pensée, de l’expérience et des sens. La théorie de la décision traite de la prise de décision en
attribuant des probabilités aux éléments. Il existe trois branches de la théorie de la décision:
normative, descriptive et prescriptive. La théorie normative de la décision se concentre
sur l’identification des décisions optimales en supposant un décideur rationnel avec une
précision parfaite. La théorie descriptive de la décision examine les régularités dans la prise
de décision, tandis que la théorie prescriptive de la décision explique comment prendre de
meilleures décisions. Un système d’aide à la décision (DSS) est un système d’information
utilisé pour aider à la prise de décision dans les organisations et les entreprises, en particulier
dans des situations dynamiques et difficiles. Le DSS peut être automatisé, exploité par des
individus ou une combinaison des deux.

Le système socio-technique (STS) est une structure complexe qui reconnaît l’interconnexion
entre les personnes et la technologie dans le développement exécutif. Le terme “socio-
technique” désigne le réseau complexe de relations humaines, de technologies et d’opérations
qui composent des infrastructures sophistiquées. La théorie socio-technique (STT) se concen-
tre sur l’optimisation conjointe des éléments techniques et sociaux dans un lieu de travail,
dans le but d’améliorer les performances du système. Les deux principes fondamentaux
de la STT sont : (1) les éléments sociaux et techniques interagissent pour produire une
performance efficace ou déficiente et (2) une optimisation conjointe entre les systèmes socio
et techniques est nécessaire pour éviter des relations destructives. La STT propose des
méthodes d’optimisation collaborative et se concentre sur la conception de structures de
système qui aboutissent à la productivité. Le but principal de cette étude est basé sur les
définitions et explications de la STT.
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Cette étude présente une approche basée sur la physique pour développer un
système de support à la décision mettant l’accent sur la théorie décisionnelle

prescriptive en soutien de la théorie socio-technique pour les systèmes
socio-techniques.

L’étude présentée dans la Figure 1.1 est une approche basée sur la physique pour compren-
dre les options disponibles et leurs décisions de déclenchement associées ou les événements
incontrôlés pour la gestion et la prise de décision dans des situations incertaines. Ces options
sont classées en risques et opportunités et sont considérées comme des forces physiques im-
pactant les performances du système. L’étude considère un système sociotechnique qui fait
face à des potentiels internes et externes. Les potentiels internes incluent les charges et les in-
novations, tandis que les potentiels externes incluent les caractéristiques de l’environnement
et les interactions. Les potentiels peuvent créer des forces qui impactent le système et
peuvent être de deux types infligées ou gérées. L’étude se base sur la théorie décisionnelle
prescriptive pour décrire les changements du système et identifier les décisions optimales.
La gestion du système sociotechnique vise à atteindre des objectifs à court, moyen et long
terme, qui sont généralement suivis à l’aide d’indicateurs de performance clés (KPIs). Cette
gestion vise à faire évoluer les indicateurs de performance vers des valeurs objectives de
KPIs.

Cette étude se concentre sur le développement d’un modèle théorique et mathématique
pour représenter les risques et les opportunités en tant que forces physiques impactant le
système considéré comme un objet dans son Espace de Performance. Les principales finalités
sont les suivantes: (i) premièrement, définir une méthode pour identifier les forces (leur
nature et leurs sources), (ii) deuxièmement, évaluer les forces identifiées (apprendre leur
comportement) (La caractérisation de la force répond à ces deux objectifs), (iii) troisièmement,
évaluer l’impact des forces (juger, mesurer et examiner ce qui a été appris). La caractérisation
de la force répond à cet objectif. Il y a trois exigences pour construire le cadre basé sur la
physique.

• Exigence 1 : Un espace à critères multiples est nécessaire pour explorer les indica-
teurs clés de performance (KPIs) des systèmes socio-techniques dans le temps - les
déterminer avec objectivité, les présenter avec actualité et les analyser en fonction
de la potentialité. Cet espace, appelé Espace de Performance, permet également de
poursuivre la performance globale du système et une étude entre les KPIs.

• Exigence 2 : La nécessité d’un espace dédié aux forces avec la capacité de décrire
et de connecter le système à son environnement est inévitable. Cet espace doit (i)
examiner de manière dynamique (observer, mettre à jour et changer) les étapes de la
Caractérisation des forces (identification et évaluation) et (ii) décrire adéquatement le
système observé, son environnement et les relations - les connexions, les interactions -
entre eux.

• Exigence 3 : La raison pour les déviations de trajectoire est enracinée dans les forces ap-
pliquées au système, représentées dans son Espace de Performance (section 1.2). D’une
part, l’Espace de Performance affiche cette trajectoire et ses mouvements alternatifs en
direction des objectifs du système (montrés sous forme de zones cibles dans la Figure
1.3); d’autre part, l’Espace de Description examine les raisons de ces déviations et la
configuration de la trajectoire. Un cadre qui traite de manière synchrone la trajectoire
de performance et les raisons de ses déviations, qui fournit une enquête approfondie
de l’Évaluation des forces (section 1.5), est présenté comme la dernière Exigence dans
le paragraphe suivant.
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Le cadre “Physique de la décision” (POD), qui est au cœur de cette étude, lie ( relie et ajuste)
l’Espace de Description (Figure 1.5) à l’Espace de Performance (Figure 1.3). Cette connexion
présente les relations entre les dimensions du système et de son environnement (Espace de
Description) aux indicateurs de performance considérés (Espace de Performance). De plus,
cette carte entre les espaces permet d’examiner les relations causales bidirectionnelles entre
eux. La Figure 1.6 illustre les espaces concaténés.

Questions de recherche
Ce travail vise à fournir un système d’assistance à la décision pour les systèmes complexes
dans des environnements incertains. La théorie de la physique de la décision regroupe une
large variété d’études dans la revue de la littérature concernant la gestion des risques, les
systèmes de gestion de la performance et la modélisation des systèmes. La physique de
la décision est une théorie ouverte pour servir dans presque tout système dépendant du
temps. L’ambition principale est de bénéficier de la physique classique pour (i) considérer
un système socio-technique comme des objets ou volumes physiques (solides rigides ou
poreux, liquides, gazeux, etc.); (ii) équilibrer les caractéristiques du système aux propriétés
de l’objet ou volume (masse, viscosité, amortissement, etc.); (iii) relier les perturbations du
système à des phénomènes physiques (par exemple, forces, pressions, tensions, chaleur,
etc.); (iv) interpréter les performances du système à travers des notations physiques (par
exemple, déplacement, vitesse, accélération, etc.); et (v) exploiter les lois physiques éprou-
vées pour trouver la décision optimale (réduire les risques et renforcer les opportunités)
dans la navigation du système pour atteindre ses objectifs visés dans un espace virtuel
multidimensionnel construit sur ses critères (KPIs).

L’installation du cadre POD (Exigence 3) est le principal besoin de l’approche basée sur
la physique de cette étude pour gérer les risques et les opportunités dans les systèmes
socio-techniques. Autrement dit, le cadre POD rassemble d’examiner le système, son
environnement, les forces (risques et opportunités) auxquelles le système peut être confronté
et leur influence sur les performances du système. Voici les principales questions concernant
l’installation du cadre POD (section 1.6 et Figure 1.6) en tant que contribution principale de
cette étude.

• Quelles sont les approches possibles pour concevoir le cadre POD (map-
per l’Espace de Description sur l’Espace de Performance et vice versa) ?
En d’autres termes, quelles sont les possibilités de formuler avec précision
ou approximativement la structure du système et de son environnement
par rapport à ses performances ?

• Quelles sont les approches de la litterature existante qui pourrait par-
ticiper à la conception du cadre POD ? En d’autres termes, qui sont-elles
et comment sont-elles utilisées dans différents systèmes avec des applica-
tions spécifiques ?

Etat de l’art
Ce chapitre vise à réduire les complexités de la prise de décision en étudiant les approches
existantes dans les domaines connexes et en les utilisant en fonction de règles standardisées
et éprouvées pour examiner les systèmes socio-techniques. Le cadre “Physique de la
Décision” introduit dans le chapitre 1 utilise la physique classique pour étudier le système
en considérant les risques et les opportunités comme des forces physiques agissant sur le
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système dans un espace multidimensionnel construit sur ses indicateurs clés de performance.
Le cadre proposé sert de système d’aide à la décision pour faciliter le processus de prise de
décision et fonctionne comme un outil prescriptif. Le chapitre discute de la motivation pour
le cadre, des principes fondamentaux des systèmes d’aide à la décision et d’une comparaison
des systèmes d’aide à la décision dans la littérature avec les caractéristiques du cadre POD
pour faire face aux complexités de la prise de décision.

L’étude discute de l’application de différentes branches de la physique dans la prise de
décision et les activités sociales. La physique sociale étudie les phénomènes sociaux de la
même manière que les phénomènes physiques et a récemment été utilisée pour analyser la
pandémie de COVID-19. L’éconophysique utilise des concepts de physique pour aborder les
problèmes économiques. La psychophysique a été mise au point pour expliquer la relation
entre le corps et l’esprit et a fourni des moyens de mesurer la sensation. La théorie du
champ étudie comment les individus interagissent avec leur environnement et le modèle
de changement de Lewin comprend les étapes de décongélation, de changement et de
reconstitution. Le cadre POD vise à établir un cadre d’ingénierie inverse pour l’analyse
mécanique du développement des systèmes socio-techniques. Voici le résumé du contexte
de cette étude.

1. Théorie de la Décision. La section discute du domaine interdisciplinaire de la théorie
de la décision, qui vise à comprendre la prise de décision rationnelle et à fournir
des hypothèses précises à ce sujet. Le domaine inclut des recherches provenant
de différents domaines tels que l’économie, les mathématiques, la psychologie et
l’informatique. La théorie de la décision comportementale et la théorie du choix
prospectif sont deux approches qui ont été étudiées. La théorie de la décision peut
être décrite comme descriptive, normative ou prescriptive. La théorie descriptive de
la décision caractérise les choix que font les individus, la théorie normative explique
comment les individus devraient prendre des décisions et la théorie prescriptive aide
les individus à prendre de meilleures décisions. La théorie de la décision prescriptive
cherche à répondre à la question de comment les individus peuvent améliorer leur
prise de décision et quels outils et cadres pourraient être utiles pour les décideurs
réels.

2. Gestion des Performances La gestion de la performance est le processus de veille
à ce qu’une collection d’actions et de résultats atteigne efficacement et efficacement
les objectifs d’une organisation. Elle peut se concentrer sur une organisation, un
département, un employé ou un processus et est utilisée dans divers contextes, y
compris le lieu de travail, les écoles, les rassemblements communautaires, les équipes
sportives, les centres de santé, les agences gouvernementales et les environnements
politiques. L’objectif est de faire correspondre les objectifs à long terme aux poursuites
à court et à moyen terme pour améliorer l’efficacité, la productivité et la rentabilité. La
gestion de la performance du système se concentre sur la manière dont les systèmes
de gestion, les processus et les produits transposent la mission déclarée d’un système
en pratique. Dans le cadre du modèle POD, le focus est sur des objectifs particuliers,
exprimés par des valeurs numériques des indicateurs clés de performance, dans
l’Espace des Performances, quelle que soit le type de système ou la pertinence des
indicateurs clés de performance pour les objectifs du système.

Un système a l’aide de la décision (DSS) est un système logiciel interactif qui aide les
décideurs à prendre des décisions informées en fournissant des informations, des analyses
et des modèles à partir de données. Le DSS ne prend pas de décisions pour l’utilisateur,
mais offre un soutien pour la prise de décision. Le DSS peut utiliser des modèles de décision,
l’analyse de données de transaction ou des sources de données externes pour générer des
informations et doit fournir des informations rapides, fiables et complètes. Steven Alter
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a proposé une taxonomie du DSS en 1978 qui comprend 7 types allant du DSS orienté
données (comme les systèmes de classement et les systèmes d’analyse de données) au DSS
orienté modèles (comme les modèles comptables et financiers, les modèles de simulation,
les modèles d’optimisation et les modèles de suggestion). Le but du DSS est d’aider les
décideurs à considérer plusieurs scénarios, à analyser plus d’options et à prendre en compte
l’incertitude. Un résumé sur la catégorisation est dans le suivant, en insistant sur le fait que
le POD est principalement dans le DSS orienté modèle.

1. DSS orienté données incluent :

(a) Les systèmes de classement pour accéder aux éléments de données (réapprovi-
sionnement d’inventaire, systèmes de surveillance, OLTP)

(b) Les systèmes d’analyse de données pour le traitement de données à l’aide
d’opérateurs et d’outils spécialisés/génériques (applications de data warehouse)

(c) Les systèmes d’information d’analyse pour accéder à des bases de données
orientées décision et des modèles compacts (OLAP)

2. DSS orienté modèle incluent :

(a) Les modèles comptables et financiers pour l’analyse “what-if” et les options de
prise de décision (estimations d’états financiers et de bilan)

(b) Les modèles représentatifs pour la simulation à l’aide de relations causales et de
concepts comptables (simulation d’équipements et de processus industriels)

(c) Les modèles d’optimisation pour trouver les meilleurs résultats en prenant en
compte les restrictions (planification, allocation de ressources, optimisation de
matériaux)Suggestion models for logical processing leading to advised choice for
structured/well-understood tasks (bond bidding, log-cutting, credit scoring).

(d) Les modèles de suggestion sont des systèmes de calcul qui fournissent des recom-
mandations pour des tâches structurées. Des exemples incluent la mise aux
enchères optimale de bons, un système d’aide à la décision utilisant la découpe
de journaux et le scoring de crédit.

Le cadre POD présenté dans le chapitre 1 sert de système d’aide à la décision
basé sur la physique pour les STS. En termes de caractéristiques et de types
de systèmes d’aide à la décision, le cadre POD est étudié à partir de deux
angles principaux : (i) la modélisation des STS et de son environnement et (ii)
la modélisation des perturbations internes et externes du système (risques et
opportunités) en tant que forces physiques affectant le système.

Théorie de la rationalité limitée
La théorie de la rationalité limitée (Bounded Rationality Theory), proposée par Herbert
Simon, suggère que la rationalité des individus dans la prise de décision est limitée par
des contraintes cognitives et sociales, et qu’ils choisissent donc des solutions satisfaisantes
plutôt que des solutions optimales. La théorie affirme que la complexité du problème de
prise de décision, la capacité cognitive de l’esprit et les contraintes temporelles contribuent
toutes à cette rationalité limitée. Dans la perspective de Simon, les décideurs agissent en
tant que satisfacteurs, cherchant une solution qui satisfait leurs besoins plutôt que de mener
une analyse coûts-avantages approfondie. Dans le contexte des DSSs, cette théorie met en
lumière la nécessité d’une évaluation continue de la fiabilité des modèles de SDS, car les
hypothèses et les prémisses sous-jacentes peuvent changer au fil du temps. Simon suggère
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certaines activités pour minimiser l’impact de la rationalité limitée dans la prise de décision
organisationnelle. Ce qui suit explique brièvement ces trois activités en se basant sur son
livre, “Administrative Behavior” (Simon, 1950).

La prise de décision peut être une tâche difficile, surtout lorsque nous sommes
incertains quant à l’issue de la décision que nous prenons ou lorsque nous manquons
de connaissances sur le sujet sur lequel nous prenons une décision. Les compétences
en matière de prise de décision sont devenues cruciales dans le monde du travail
actuel, avec les gestionnaires et les responsables d’équipe travaillant à atteindre
leurs objectifs organisationnels. La théorie de la prise de décision proposée est
établie en explorant les traits de la prise de décision des personnes occupant des
postes administratifs dans les organisations. L’hypothèse affirme qu’il existe trois
étapes impliquées dans la formation de décisions: les activités de “Intelligence”, de
“Design” et de “Choice”.

L’activité d’Intelligence consiste à identifier les problèmes dans les organisa-
tions et à tenter de rassembler des données et des informations pour développer des
solutions possibles. Compte tenu que les solutions possibles ont trouvé plusieurs
moyens différents de surmonter un problème particulier, il est maintenant temps
d’examiner chaque solution et de dresser la liste de ses avantages et inconvénients;
cela se fait dans la deuxième étape, connue sous le nom d’Activité Design. Enfin,
lorsque les solutions et leurs avantages et inconvénients sont examinés, les décisions
ayant le résultat le plus souhaitable sont sélectionnées; étant donné que chaque
décision comporte des conséquences, ce processus est assez difficile car il nécessite
une variété de compétences telles que la capacité à juger entre les solutions de
manière équitable, un sens de la créativité et bien sûr une expérience antérieure dans
le contexte du problème. Cette étape est connue sous le nom d’Activité Choice.

Selon la proposition de Simon, la Figure 2.2 présente la relation entre les activités. Le
processus de prise de décision comporte deux chaînes : la chaîne Intelligence-Design-Choix
en avant (représentée par des flèches bleues) et la chaîne Choix-Design-Intelligence en arrière
(représentée par des flèches rouges). La chaîne arrière est le résultat de déficiences dans la
chaîne avant (découverte de problèmes, découverte de solutions ou choix de solutions). Les
deux chaînes sont combinées et les relations entre les activités sont conclues.

▶ Chaîne avant

– Intelligence ⇒ Design. Cette étape transfère le problème identifié et les données
acquises de l’activité Intelligence pour générer des solutions et des alternatives
pour le problème en question à travers l’activité Design.

– Design ⇒ Choix. Cette étape transfère les solutions et alternatives découvertes
de l’activité Design pour examiner et finalement sélectionner les solutions les
plus souhaitables à travers l’activité Choix.

▶ Chaîne arrière

– Choix ⇒ Design. Cette étape est effectuée lorsque aucune des solutions décou-
vertes de l’étape Design ne fournit de résultats satisfaisants.

– Design ⇒ Intelligence. Cette étape est prise lorsque la solution ou alternative
découverte n’a pas été bien examinée (c’est-à-dire qu’il y a une connaissance
insuffisante de ses avantages et inconvénients).

Le cadre POD est basé sur la “Théorie prescriptive de la décision” et vise à couvrir les
activités “Intelligence”, “Design” et “Choice” dans les étapes de Caractérisation de la force
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et d’Évaluation. L’intégration du cadre POD dans les activités proposées par Simon est
brièvement expliquée.

En étapes successives, (i) construire les espaces “Description” et “Performance”
et leur relation les aide à identifier le problème et les solutions potentielles (Ac-
tivité Intelligence), (ii) construire le “Mapping” entre les deux espaces permet
d’examiner les solutions (Activité Design), et enfin, (iii) explorer les“Control
Spaces” fournit l’action la plus souhaitable obtenue en contrôlant (créant ou
éliminant, puis en sélectionnant) les forces gérées (Activité Choice). La Figure
2.3 résume ces justifications.

Outils et Technologies en DSS
Cette section examine l’utilisation d’outils et de technologies de prise de décision pour
simplifier le processus de décision et soutenir les décisions non programmées. La Physique
de la décision vise à créer une théorie générale pour la gestion des performances et la
technologie de prise de décision fondée sur des lois physiques. La théorie se concentre sur
les perturbations imprévues qui entraînent des risques et des opportunités, principalement
associées à des décisions non programmées. Les outils et les technologies sont classés en
automatisés, manuels et semi-automatisés, et ils aident à réduire les effets de la rationalité
limitée en améliorant l’intelligence, la conception et les activités de choix.

Dans la Figure 2.4, les principaux outils et technologies pour la gestion des performances
et la prise de décision (c’est-à-dire les DSS) sont succinctement et qualitativement décrits,
ainsi que leur signification pour les aspects Intelligence, Design et Choice. Les tranches du
cercle sont colorées pour symboliser ces aspects et évaluées sur une échelle de trois pour les
niveaux de maturité bas, moyen et élevé. Le cadre POD (mis en évidence en couleur noire)
est censé recevoir un score total dans les trois aspects, en mettant l’accent sur sa force dans
le domaine de l’Intelligence (indiqué en couleur rouge). L’approche de simulation (SIM)
est reconnue comme étant la plus avantageuse (tout en étant la plus concurrentielle) par
rapport au cadre POD (indiqué en couleur jaune).

En résumé, la section état de l’art discute d’un cadre basé sur la physique qui soutient la
Théorie de la Décision Prescriptive. La théorie POD est conçue pour aider les décideurs non
idéalisés à prendre de meilleures décisions, et est inspirée d’approches bien établies dans la
littérature telles que la sociophysique, l’éconophysique, la psychophysique et la théorie des
champs. Le cadre POD repose sur l’hypothèse que les phénomènes sociaux peuvent être
étudiés en utilisant les lois et les principes de la physique classique, et sert de système d’aide
à la décision (DSS) pour soutenir les décisions opérationnelles, tactiques et stratégiques. Le
cadre est conçu pour aborder les problèmes dans les processus de prise de décision liés à la
Théorie de la rationalité limitée et est également discuté en termes de ses caractéristiques et
de ses relations pour soutenir la Raison Borne. L’article examine également plusieurs outils
et technologies DSS importants, avec l’approche de simulation considérée comme la plus
appropriée pour l’examen du système et de son environnement en raison de sa capacité à
gérer les changements en temps réel.
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Contributions de la Thèse
La section de contribution définit d’abord une représentation mathématique pour représen-
ter le cadre POD (Figure 1.6) et examine ensuite les approches potentielles pour résoudre le
modèle fourni (Équation 3.1). Le cadre POD est basé sur un modèle d’équation différentielle
(ED) dans lequel, d’une part, les paramètres du système (et son environnement) sont les
entrées de l’équation et leurs changements au fil du temps (c’est-à-dire les forces appliquées
au système) sont les variables d’état de l’équation; d’autre part, les sorties de l’équation
représentent les valeurs KPI en tant qu’indicateur de performance du système. Les com-
plexités des fonctions de transition (i) entrées à variables d’état et (ii) variables d’état à
sorties sont le principal défi de cette étude. Le modèle ED fourni peut être résolu à l’aide de
plusieurs approches, qui peuvent ensuite être appliquées à l’aide des outils pertinents.

La représentation mathématique du cadre POD (Équation 3.1) est une vision générale
et convient à presque tous les systèmes dépendants du temps. Cependant, découvrir
les fonctions Φ et Ψ est un défi considérable et presque impossible pour la plupart des
systèmes socio-techniques en raison de plusieurs comportements imprévus et chaotiques
(par exemple, actions, mouvements, décisions, etc.) des individus dans des environnements
divers. En effet, l’aspect social des systèmes socio-techniques entraîne des fonctions non
linéaires et dynamiques de Φ et Ψ qui changent fréquemment en raison du comportement
complexe des individus.

En résumé, le cadre POD est obtenu en déterminant les fonctions Φ et Ψ dans l’équation 3.1.
L’ambition est de résoudre cette “équation différentielle” (ED) entre les Espaces Description
et Performance qui offrent ensuite la possibilité de découvrir les lois physiques du mouve-
ment. Les trois approches suivantes sont proposées en fonction de la difficulté à obtenir les
fonctions Φ et Ψ : (i) modélisation, (ii) ED précise, ou (iii) mécanisme d’apprentissage (LM).

L’ED est considérée comme l’approche centrale pour établir le cadre POD. La modélisation
sert pour une abstraction faible, plus de détails, en général, en étudiant les systèmes au
niveau micro (associé à des décisions opérationnelles avec une approximation plus précise
de la présentation du système). À l’inverse, le LM est employé pour une abstraction
élevée, moins de détails, en général, en étudiant les systèmes au niveau macro (associé à
des décisions stratégiques, avec une approximation moins précise de la présentation du
système).

Le travail actuel comprend quatre contributions à l’approche de la modélisation (trois
publications) et à l’approche de l’ED (une publication) tout en gardant l’approche LM
(principalement avec un réseau neuronal ou NN) comme objet d’étude futur. Les contribu-
tions liées à l’approche de la modélisation incluent trois publications distinctes dédiées à
l’approche de simulation comme suit : (i) gestion de l’emplacement de vote simulée avec un
modèle basé sur les agents (ABM), (ii) simulation de la population affectée par une épidémie
avec un modèle de simulation de dynamique système (SD), et (iii) la gestion du trafic routier
effectuée avec un modèle de simulation d’événements discrets (DES).

La contribution associée à l’approche DE comprend une publication consacrée à la représen-
tation d’espace d’état (SS), un modèle mathématique pour les systèmes physiques, pour
simuler un modèle de production de fabrication. La Figure 3.2 présente un schéma général
de l’approche proposée par rapport aux contributions de la thèse (les flèches bleues in-
diquent les publications actuelles, tandis que les flèches grises indiquent les recherches
à venir). Le reste de cette section introduit les contributions de simulation et de SS pour
l’installation du cadre POD, ainsi que plusieurs enquêtes associées aux forces potentielles et
à leurs effets sur la trajectoire de performance dans l’Espace de performance du système.

Le principal objectif de ce travail, une thèse basée sur des articles, est la mise en œuvre du
cadre POD. Les contributions de chaque sous-section sont brièvement décrites, ainsi qu’un
accès en ligne aux articles.
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Simulation de la dynamique du système (SD)
Le cadre POD dans cette étude de cas est installé à travers un modèle de Dynamique
des systèmes (SD) bien connu appelé Susceptible-Exposed-Infected-Recovered (SEIR). Le
modèle SD comprend plusieurs équations différentielles pour la transmission d’un virus
spécifique parmi une population dans une région particulière. L’Espace de Description est
construit sur les dimensions de la “région” en tant que système (attributs), où le “virus” sert
d’élément contextuel (caractéristiques). L’Espace de Performance est construit sur certains
indicateurs clés de performance, tels que le nombre de personnes infectées, hospitalisées
et décédées, pour examiner l’impact de plusieurs forces. Les forces “infligées” et “gérées”
sont générées respectivement par les changements des paramètres du virus (par exemple, la
période latente) et des paramètres de la région à travers les mesures de confinement pour
contrôler l’épidémie (par exemple, en réduisant le taux de contact par le confinement).

Multi-criteria performance analysis based on Physics of Decision—Application to
COVID-19 and future pandemics

Résumé. Le but de cette étude est de présenter une perspective nouvelle sur le soutien
à la décision fondé sur le paradigme classique du modèle pandémique SEIR, en prenant
en compte les risques et les opportunités en tant que forces physiques déviant la
trajectoire de performance attendue d’un système. L’impact d’une pandémie est mesuré
par l’écart de la trajectoire de performance du système social dans le cadre géométrique
de ses indicateurs clés de performance (KPIs). Selon la base générale de l’utilisation
d’équations différentielles ordinaires pour simuler les épidémies, les déviations sont
liées à plusieurs interventions alternatives. Le modèle repose essentiellement sur deux
ensembles de paramètres: (i) les paramètres du système social et (ii) les paramètres de
la pandémie. L’objectif ultime est de proposer un cadre de performance multi-critères
pour contrôler les pandémies qui inclut une combinaison de mesures opportunes.
D’une part, l’étude actuelle optimise les stratégies prospectives pour contrôler la
pandémie potentielle à venir, tout en explorant l’épidémie de COVID-19 dans l’état de
Géorgie (États-Unis).

Mots clés. SEIR, Pandémie, Système d’aide à la décision (DSS), Gestion de la perfor-
mance, Gestion des risques, Optimisation

Auteures. Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Matthieu Lauras,
Julien Jeany, and Louis Faugere
Éditeur. IEEE Transactions on Services Computing (TSC)
Date de publication. 29 juin 2022
Référence. Moradkhani et al., 2022a
Accès en ligne. Multi-criteria performance analysis based on Physics of Decision —
Application to COVID-19 and future pandemics

Simulation d’événements discrets (DES)
Le cadre POD dans cette étude de cas a été installé en simulant la rocade de Nantes avec les
véhicules comme agents et les inondations sur une partie spécifique de la rocade comme
événements (nommés “Perturbation Scenarios” dans l’article). L’Espace de Description a
été construit sur les dimensions de la “rocade” (longueur et capacité et limite de vitesse)
et du “véhicule” (flux, longueur) en tant que système (attributs), où l’ “inondation” (avec
son temps de début et sa magnitude en tant que paramètres) sert d’élément contextuel
(caractéristiques). L’Espace de Performance a été construit à partir de certains KPIs, tels que
le nombre de véhicules sur la rocade, leur vitesse moyenne, etc., pour examiner l’impact

99

https://ieeexplore.ieee.org/document/9810485
https://ieeexplore.ieee.org/document/9810485


Résumé étendu en français

de plusieurs forces. Les forces “infligées” et “gérées” sont respectivement générées à
la fois de la rocade et de l’inondation (par exemple, les embouteillages, les inondations,
respectivement) et des paramètres pour contrôler la circulation (par exemple, en ouvrant
des routes alternatives pour les véhicules dans la zone inondée et en les dirigeant vers ces
routes pour réduire la circulation).

Persistent physics-based crisis management framework: A case study of traffic in the
Nantes city due to flood exposure

Résumé. Dans le contexte de la crise, les caractéristiques de la zone de crise et les
mesures opérationnelles de la communauté jouent des rôles clés dans la gestion de
la crise. La rocade de Nantes en France est toujours exposée aux inondations et à ses
perturbations. Pour anticiper les perturbations et prendre des mesures préventives
en temps opportun pour ce phénomène fréquent, les principaux défis sont (i) la
prévision des flux de véhicules, (ii) la capacité de la rocade à gérer la circulation (iii)
évaluer les performances des routes alternatives pendant les inondations. La zone
inondée en tant que système comporte des composants de (i) l’inondation (par exemple,
heure de début, magnitude, intensité, etc.), (ii) la zone (par exemple, caractéristiques
géographiques, barrières périmétriques temporaires, barrage, canaux de dérivation)
et (iii) la communauté (par exemple, temps de réaction, charge d’urgence, délai
d’évacuation). L’approche choisie pour mener cette étude prospective consiste à
collecter des données sur les prévisions et à utiliser des modèles de simulation pour
travailler simultanément sur l’évaluation des performances de la rocade et de ses routes
alternatives.

Mots clés. Informations sur les catastrophes, résilience, pour les technologies d’urgence
et de crise, basées sur des agents, gestion de crise, évacuation, inondation, performance,
simulation

Auteures. Nafe Moradkhani, Hélène Dolidon, and Frederick Benaben
Éditeur. Hawaii International Conference on System Sciences (HICSS)
Date de publication. 4 janvier 2022
Référence. Moradkhani et al., 2022c
Accès en ligne. Persistent physics-based crisis management framework: A case study
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Simulation basée sur des agents (ABM)

Le cadre POD dans ce cas d’étude a été installé en simulant le lieu de vote au McCamish
Pavilion, situé sur le campus de Georgia Tech à Atlanta, pour l’élection présidentielle des
États-Unis en 2020. Cette simulation a été consacrée à l’examen du flux débordant des
électeurs et de la défaillance des équipements en tant qu’événements (nommés “Pertubation
Scenarios” dans l’article). L’Espace de Description a été construit sur les dimensions du
“lieu de vote” (nombre de récepteurs, d’officiers, d’équipements, etc.) et des “électeurs”
(leur flux à des niveaux probable, optimiste et conservateur) en tant que système (attributs)
où les “délais de service des équipements” (par exemple, les dispositifs de bulletin, les
numériseurs, etc.) servent d’élément contextuel (caractéristiques). L’Espace de Performance
a été construit à partir de certains indicateurs clés de performance, tels que le nombre
d’électeurs sur place, le nombre d’électeurs en attente, le nombre de votes terminés, etc.,
pour examiner l’impact de plusieurs forces. Les forces “infligées” et “gérées” sont générées
respectivement des électeurs et du bâtiment (par exemple, le flux et la vitesse des électeurs,
le nombre d’équipements et de fournisseurs de services) et les paramètres pour accélérer le
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processus de vote (par exemple, l’injection d’équipement et l’emploi de plus de fournisseurs
de services).

Physics of Decision for Polling Place Management: A Case Study from the 2020 USA
Presidential Election

Résumé. Dans le contexte de la pandémie mondiale, la gestion pratique de l’élection
présidentielle 2020 aux États-Unis était un sujet de grande préoccupation. Pour
anticiper et préparer cette élection de manière précise, un des principaux défis consistait
à faire face à: (i) les prévisions de la participation électorale, (ii) les capacités des
installations, et (iii) les options de configuration potentielles des ressources. L’approche
choisie pour mener cette étude préventive consiste à collecter des données sur les
prévisions et à utiliser des modèles de simulation pour travailler simultanément sur
l’allocation de ressources et la configuration des installations de vote dans le comté
de Fulton, le plus grand comté de Géorgie. Cet article présente les résultats des
simulations de ces lieux confrontés à des risques potentiels pré-identifiés. Ces résultats
sont orientés vers l’efficacité de ces lieux selon différents critères (santé, confiance,
confort). Ensuite, un cadre dynamique est introduit pour décrire les risques en tant
que forces physiques perturbant l’efficacité du système observé. Enfin, les principaux
avantages et contributions découlant de cette campagne de simulation sont présentés.

Mots clés. Performance, Aide à la Décision, Simulation, Intelligence Artificielle, Gestion
des Risques, Election, Pandémies, Système d’Information

Auteures. Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah
Barenji, and Dima Nazzal
Éditeur. International Journal of Industrial and Manufacturing Engineering
Date de publication. 15 juin 2021
Référence. Moradkhani et al., 2021
Accès en ligne. Physics of Decision for Polling Place Management: A Case Study from
the 2020 USA Presidential Election

Méthode de représentation de l’espace d’état (SS)

Le cadre POD dans cette étude de cas a été installé en premier lieu en simulant des systèmes
physiques pédagogiques (Masse-Ressort-Amortisseur et pendule) puis des systèmes de
gestion (Diffusion de Bass et inventaire-main-d’œuvre, modélisés avec une approche de
système dynamique). Cette simulation a été consacrée à l’examen de la combinaison et de
l’agrégation des forces générées dans des systèmes non linéaires. Dans l’exemple principal, le
modèle inventaire-main-d’œuvre, l’Espace de Description a été construit sur les dimensions
de l’inventaire (par exemple, taux d’expédition, couverture de stock de sécurité, etc.) et
de la main-d’œuvre (par exemple, taux d’embauche, taux de départ) en tant que système
(attributs) où leur réglage (par exemple, nombre de travailleurs, nombre de produits, etc.)
sert d’élément contextuel (caractéristiques). L’Espace de Performance a été construit sur
certaines KPIs, par exemple, le nombre de postes vacants, le nombre de travailleurs, le
nombre de produits terminés, etc., pour examiner l’impact de plusieurs forces. Les forces
“infligées” et “gérées” ont été générées à la fois par l’inventaire et la main-d’œuvre (par
exemple, pénurie de travailleurs, délai de livraison de produits, productivité du travail,
etc.). La principale contribution consiste à gérer la non-linéarité en utilisant une approche
de linéarisation pour les systèmes non linéaires (séries de Taylor et matrice de Jacobien),
par conséquent, bénéficiant des mesures de contrôle établies pour les systèmes linéaires et
invariants dans le temps (LTI).
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A force-inspired paradigm for performance-based decision support—Physics of
Decision application in nonlinear dynamical systems

Ce document présente une perspective sur le soutien à la décision basé sur les
performances. La méthode choisie repose sur les principes de “Physique de la
Décision”, qui considère la performance d’un système comme une trajectoire physique
dans les limites de ses indicateurs de performance qui peuvent être déviés par la
variation des paramètres du système. Selon la première hypothèse d’utilisation de la
méthode de l’espace d’état pour simuler les systèmes physiques, ce travail présente
une méthode d’agrégation de décisions dans les systèmes dynamiques. La principale
contribution est de proposer un cadre de performance multi-critères pour gérer les
performances des systèmes multi-entrées-multi-sorties (MIMO) avec une combinaison
de décisions abordables. Un modèle de gestion de l’inventaire-main-d’œuvre non
linéaire a été utilisé pour démontrer l’approche proposée.

Travaux futurs et perspectives
Depuis le point de vue de la théorie de la physique de la décision, l’étude actuelle vise à
fournir un cadre d’investigation de plusieurs systèmes STS. Le travail présenté a examiné
les systèmes comme des objets physiques, et les perturbations potentielles (risques et
opportunités) ont été considérées comme des forces physiques agissant sur eux. Bien que les
notations physiques aient légèrement été explorées, l’hypothèse énoncée a exempté l’étude
d’équation des caractéristiques du système aux propriétés de l’objet et, par conséquent,
d’exploitation des lois physiques éprouvées. Le principal inconvénient de l’étude actuelle
est l’hypothèse qui a été faite, ce qui prévoit une recherche fondamentale pour découvrir
les relations entre les caractéristiques du système et les propriétés de l’objet. Les domaines
suivants sont des régions futures d’étude sur le mécanisme d’apprentissage pour le cadre
POD, ainsi que des recherches concernant la construction de l’Espace de Performance (voir
les détails à 1,7).

1. Construction et exploration de l’Espace de Performance. Le mécanisme d’apprentissage
(LM) comprenant une approche d’apprentissage automatique non supervisée (ML)
(par exemple, le regroupement) pourrait être utilisé pour identifier les zones in-
diquées dans l’Espace de Performance - cible, danger et accessible - et une approche
d’optimisation supervisée d’apprentissage automatique (par exemple, la classification
et la régression) pour choisir la trajectoire de performance optimale parmi les possibles.
Cependant, l’apprentissage par renforcement basé sur des mécanismes de récompense
pourrait être solide pour trouver la trajectoire de performance optimale.

2. Prédiction de la trajectoire de performance. En examinant le comportement de la
trajectoire de performance indépendamment du cadre POD (par exemple, manque
de mappage fiable entre les espaces) et exclusivement à partir des données brutes du
système pourrait être un point de recherche. Le mécanisme d’apprentissage prévu est
à travers les mécanismes de rétropropagation dans les réseaux neuronaux récurrents
(RNN), notamment les réseaux neuronaux à mémoire à court terme à long terme
(LSTM) - cela pourrait permettre de prédire le comportement futur de la trajectoire de
performance à partir de ceux attendus et précédents.

3. Construction du cadre POD. Le mécanisme d’apprentissage est très prometteur pour
découvrir les fonctions Φ et Ψ dans l’équation 3.1. L’objectif est de découvrir les
fonctions à travers le mécanisme d’essai-erreur et de parvenir ainsi à une solution.

102



Travaux futurs et perspectives

Les approches les plus prometteuses sont (i) les réseaux de neurones informés de la
physique (PINNs), un type universel d’approximateur de fonction qui peut intégrer
les connaissances de toutes les lois physiques qui régissent un ensemble de données
donné dans le processus d’apprentissage et décrites par des équations différentielles
partielles (PDEs) et (ii) les couches implicites profondes, connues sous le nom de ODE
de neurones, un modèle d’équilibre profond basé sur des couches implicites - sont
définies à travers un point d’équilibre d’une séquence infinie de calcul.

En plus de la construction du cadre POD, les points suivants pourraient être des sujets à
explorer sur les différents sujets :

1. Définition de la cible. Du point de vue géométrique, plusieurs cibles pourraient se
former pour atteindre une valeur spécifique d’un KPI ; par exemple, un point (un KPI),
un plan (deux KPIs), ou un volume (plus de deux KPIs) avec des valeurs minimales
/ maximales ou un intervalle ouvert / fermé sur les axes. Une étude détaillée de
l’Espace de Performance pourrait aider à déterminer ces formes géométriques et, en
conséquence, offrir l’occasion d’étudier les calculs basés sur les vecteurs à l’intérieur
d’eux pour identifier la trajectoire la plus appropriée à partir de la position actuelle du
système vers ses objectifs.

2. Propriétés des objets. L’objet considéré dans cette étude était un objet solide qui se
déplace dans l’Espace de Performance par rapport à des axes gradués en fonction
des valeurs quantitatives des KPIs. L’exploration du cadre POD avec des données
réelles par la recherche par essais et erreurs et la comparaison des résultats avec la
réalité peut fournir des informations sur les qualités réelles de l’objet au cours de
plusieurs campagnes de simulation. Cette perspective offre l’occasion d’améliorer ou
de réduire l’effet des forces appliquées sur le système, d’augmenter la précision des
prévisions de trajectoire et, finalement, une ressemblance réaliste du système et de son
comportement.

3. Aspect de l’énergie. Tout à fait comparable au monde réel, les STS peuvent retenir
ou libérer des potentiels selon leurs actifs (niveau de leurs KPIs). La position ou la
configuration des attributs du système dans l’Espace de Performance peut exprimer
son énergie potentielle et pourrait être indépendante des forces qui y sont soumises.
À l’inverse de l’énergie potentielle, l’énergie cinétique est liée à d’autres éléments en
repos et en mouvement dans son environnement immédiat (par exemple, si l’objet est
placé à une hauteur plus élevée, son énergie cinétique sera plus élevée). Par conséquent,
l’énergie cinétique pourrait ressembler à l’agilité du système dans l’évitement des
risques et la saisie des opportunités en raison de son niveau de KPIs.

4. Identification des risques et des opportunités. La trajectoire de performance est
formée à partir des points stationnaires du système dans l’Espace de Performance.
L’examen des trajectoires précédentes (à partir des données historiques) et d’inertie
(uniquement impactées par les forces de charge et contextuelles) peut donner des
intuitions sur le comportement général du système. Par conséquent, la prédiction
des points stationnaires futurs à partir des informations obtenues à partir des trajec-
toires passées et d’inertie pourrait être pratique pour identifier les forces (risques et
opportunités) et, finalement, trouver leur combinaison la plus abordable pour dévier
la trajectoire de performance vers les zones cibles.

Enfin, la physique de la décision est un cadre ouvert permettant de tirer parti des systèmes
de décision classiques, des études spécifiques peuvent être menées. Les travaux futurs
pourraient se concentrer sur la façon dont les événements possibles peuvent être largement
décrits en plus de détails, similaires à des phénomènes physiques dans le monde réel. Par
exemple, les champs de force pourraient être utiles à employer: les dimensions d’évaluation
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pertinentes du système et de son environnement permettent d’identifier différents types de
champs de force. Par exemple, en visant à diriger l’objet (appelé système) vers les zones
cibles du système, l’enquête pourrait être intéressée par ses attributs critiques (tels que la
vitesse, l’emplacement, la radiation, la température, etc.). Par conséquent, les champs de
force associés pourraient être considérés (tels que les champs gravitationnels, magnétiques,
etc.). Ensuite, chaque élément contextuel distinct de l’environnement du système pourrait
être considéré comme un champ de force pertinent avec une magnitude directionnelle et
mesurable à chaque endroit. De manière similaire, le système pourrait être considéré comme
un élément sensible aux champs de force (par exemple, équivalent à la “force de Lorentz4”
pour une particule chargée dans un champ électromagnétique). Cependant, en se basant
sur le type de système et les événements potentiels qui pourraient survenir, d’autres lois
physiques basées sur les forces telles que la loi de Newton5 et la loi de Colomus6 pourraient
être utilisées.

4𝐹 = 𝑞(𝐸 + 𝑉 ) × 𝐵
5𝐹 = 𝑚𝑎
6𝐹 = 𝑞1𝑞2/𝑟2
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RÉSUMÉ

Etude d’une approche d’aide à la décision en gestion de systèmes socio-techniques, basée sur les principes physiques
de la mécanique du point et du solide

Prendre des décisions judicieuses est un défi incontour-
nable pour gérer la performance des systèmes sociotech-
niques. L’incertitude concernant le résultat des décisions
conduit à rechercher des principes que les systèmes pour-
raient suivre. L’étude actuelle exploite et étudie un cadre
appelé "Physics of Decision" en tant qu’approche inno-
vante d’aide à la décision dans un contexte d’instabilité et
d’incertitude. L’accent est mis sur le développement d’un
modèle théorique et mathématique pour décrire les risques
et les opportunités en tant que forces physiques poussant
et tirant les systèmes étudiés en tant qu’objet dans un cadre
de performance multidimensionnel construit sur les cri-
tères d’évaluation du système. L’ambition principale est
de définir une méthode d’identification des forces, y com-
pris leurs origines, leur intensité et leur interdépendance,
pour hériter des principes et des lois de la physique. Les
principes de la physique classique sont étudiés dans le
cadre défini en tenant compte des concepts de gestion de
mappage aux notations physiques. Cette connexion per-
met (i) d’examiner les développements du système dans
son espace de performance grâce à l’analyse cinématique
et (ii) de fournir une aide à la décision réactive et prédic-
tive à la suite de l’analyse des forces physiques et de son
application au système par le biais de lois physiques liées

aux forces. Enquêter sur le comportement du système en
vertu de telles lois pourrait révéler ses relations complexes,
conduisant ainsi à des décisions appropriées. L’objectif
premier de ce doctorat est d’établir une perspective géné-
rique pour la gestion de la performance des systèmes socio-
techniques qui visualise et intègre l’impact des risques et
des opportunités pour contrôler la performance du sys-
tème examiné. Dans l’ensemble, la principale contribution
prévue de cette étude est de démontrer les principes de
connexion du système à ses performances grâce à un cadre
de modélisation innovant utilisant différentes techniques.
Plus en profondeur, cette approche transforme le système
étudié et ses potentialités internes et contextuelles d’une
connexion implicite à une connexion explicite en utilisant
une analyse de sensibilité, des équations différentielles et
des fonctions d’optimisation. L’importance de cette étude
a été étudiée dans divers domaines d’application : (i) la
gestion des bureaux de vote simulée avec un modèle à base
d’agents (ABM), (ii) une simulation de population touchée
par une épidémie avec le modèle de simulation system
dynamics (SD), (iii ) gestion du trafic routier réalisée avec
un modèle de simulation d’événements discrets (DES), et
(iv) un modèle mathématique pour simuler un modèle de
production manufacturière.

MOTS-CLÉS : Système d’Aide à la Décision (DSS), Gestion de la Performance, Modélisation, Risques, Opportunités, Simulation, Physique, Force.

ABSTRACT

Study of a decision support approach in socio-technical systems management, based on the physical principles of
point and solid mechanics

Making sound decisions is an inevitable challenge for man-
aging the performance of socio-technical systems. Uncer-
tainty concerning the outcome of decisions leads to seeking
principles that systems might follow. The current study
leverages and investigates a framework called, “Physics
Of Decisions” as an innovative approach for decision sup-
port in the context of instability and uncertainty. The focus
is on developing a theoretical and mathematical model
to depict risks and opportunities as physical forces push-
ing and pulling investigated systems as an object within
a multidimensional performance framework built on the
system’s evaluation criteria. The main ambition is to define
a method of identifying forces, including their origins, in-
tensity, and interdependence, to inherit principles and law
from physics. The principles of classical physics are in-
vestigated in the defined framework considering mapping
management concepts to the physical notations. This con-
nection allows to (i) examine the system’s developments
in its performance space through kinematic analysis and
(ii) provide reactive and predictive decision support as a
result of physical forces analysis and its application to the
system through force-related physical laws. Investigating

the system’s behavior under such laws might disclose its
compound relationships, thus leading to proper decisions.
The foremost objective of this Ph.D. thesis is to establish a
generic perspective for performance management of socio-
technical systems that visualizes and integrates the impact
of risks and opportunities to control the performance of the
examined system. Overall, the main intended contribution
of this study is to demonstrate the principles of connect-
ing the system to its performance through an innovative
modeling framework using different techniques. In further
depth, this approach transforms the investigated system
and its internal and contextual potentialities from implicit
to explicit connection using sensitivity analysis, differential
equations, and optimization functions. The significance
of this study has been investigated in various application
domains: (i) Polling place management, simulated with
an Agent-Based Model (ABM), (ii) an epidemic-affected
population, simulation with System Dynamics (SD) simula-
tion model, (iii) road traffic management, performed with
Discrete Event Simulation (DES) model, and (iv) a math-
ematical model to simulate a manufacturing production
model.

KEYWORDS: Decision Support System (DSS), Performance Management, Modeling, Risks, Opportunities, Simulation, Physics, Force.
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