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Abstract

The interaction of waves with media possessing spatial or/and temporal fluctuations leads to

interesting phenomenology. Within this framework, in the present thesis four wave phenomena are

studied: two occurring in spatially-varying media and two in time-varying media. We begin by

exploring wave scattering by a finite spatially-periodic setup that is subject to perturbation. Our

focus is on perfect transmission resonances (PTRs) and we develop a method for preserving them

under asymmetric perturbations. The performed analysis reveals a pairwise connection between

PTRs of a spatially-periodic scattering setup with mirror symmetric cells. In the same context

of spatially varying media, we compute the localization length of the topological edge modes that

are supported in a mechanical mass-spring chain possessing random fluctuations of its stiffness

parameters. In the presence of strong chiral disorder the localization length diverges, implying a

topological phase transition that is induced purely by disorder. As a next step we consider the

case where the couplings of the mechanical mass-spring chain vary with time in a deterministic

way. Then this time-varying system can serve as a platform for transferring a topological edge

mode. Going beyond the adiabatic limit, we design a protocol for the time-varying couplings

that results in a fast and robust transfer and even more leads to amplification of the transferred

edge mode. To shed light into the phenomenon of amplification in a time-varying platform, we

explore the propagation of a wave in a medium with time-periodic refractive index and with wave

dynamics governed by the Mathieu equation. The wave exhibits transient amplification due to the

non normal nature of the propagator matrix and we provide numerical evidence that the global

amplifying features are provided merely by the monodromy matrix.
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Introduction

A. Some features of spatial media

Exploring how waves interact with media that display structures in space, not only advances

technology but also deepens our understanding for the natural world. This interaction between

waves and spatial media gives rise to a wide and diverse range of phenomena. In the first part

of this thesis we focus our attention on perfect transmission resonances (PTRs) and on wave

localization in disordered topological lattices.

A1. Periodic media and perfect transmission resonances

The investigation of the wave behavior in periodic media has certainly attracted great interest in

physics over the years. This research contains the study of the wave propagation in infinite periodic

media [1] and the wave scattering by finite periodic ones [2]. It is known that the energies for which

the wave propagation is allowed in a one-dimensional infinite periodic medium form bands that are

separated by gaps. Namely, the energy spectrum shows a band structure form [3] (see Fig. 1(a) for

an example). Fingerprints of a band structure form can be observed in the transmission spectrum

of a one-dimensional finite periodic medium [4, 5]. Specifically, for certain energies of the wave

that scatters by such a medium the transmission coefficient is close to zero (transmission gaps)

and for certain other energies the transmission coefficient is close to one (transmission bands).

The positions of transmission bands (gaps) match with the corresponding energy levels for which

the wave propagation is allowed (prohibited) in the corresponding infinite medium [6]. Moreover,

within each of these transmission bands the transmission coefficient becomes exactly equal to 1 at

least N −1 times (N is the number of the cells that comprise the finite periodic medium) [2,4,5,7]

(see Fig. 1(b)).

The case of transmission equal to one is known as a perfect transmission resonance (PTR).

Specifically, a PTR refers to the following situation

PTR: A wave (with real wave number k) perfectly transmits through a medium that it is incident

to.

The appearance of PTRs is not limited in periodic media since aperiodic scattering setups that

possess global mirror symmetry usually support PTRs as well [8–11]. Furthermore, it has been

1



Introduction

Figure 1: (a) Upper: Schematic description of the propagation of a wave in an infinite array of
delta Dirac functions. Lower: The energies for which the propagation is allowed form bands. (b)
Upper: Schematic description of the scattering of an incident wave by a finite array with 8 Dirac
scatterers. Lower: Corresponding transmission coefficient T as a function of the energy of the
incident wave. The PTRs are the peaks that correspond to T = 1.

found that even the global mirror symmetry is not a necessary condition for the appearance of

PTRs [12] and asymmetric systems that support PTRs have also been reported [12–16]. The latter

results open up many research directions for the design of asymmetric media that possess desired

PTRs in their transmission spectra, for instance in ref. [17] the design of a locally symmetric

medium that supports PTRs has been accomplished based on the transfer matrix method [18].

When a symmetric scattering setup that exhibits PTRs is perturbed, then its PTRs are a priori

lost because its symmetry is broken. However, this subject is much less studied and it is certainly

interesting to apply the perturbation theory for this investigation. To this end, in Chapter 1 we

will perturb a finite periodic scattering setup that supports bands with N − 1 PTRs and we will

apply the techniques of the regular perturbation analysis. We will demonstrate a semianalytical

approach that we developed, based on which we are able to design an asymmetric perturbation that

preserves a desired PTR of the unperturbed setup. Surprisingly, our study led to the discovery of

a connection between two apparently independent PTRs of a class of finite periodic media (those

whose building block has parity symmetry). This connection implies that if one PTR among

the N − 1 of a band is preserved under some perturbations, then another PTR is automatically

preserved as well.

2
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A2. Topological properties

Another characteristic of periodic media has been revealed in recent years, by employing the con-

cepts of topology [19]. It has been found that in various cases the band diagrams are characterized

by quantities that are invariant under deformations that leave the gaps open [20]. It has also been

established that these invariant quantities – which are referred as topological invariants – originate

from the Berry phase [21,22]. An inherent feature of media with non-trivial topological invariants

is that they support states that are localized at their boundaries (edges) [23, 24]. These edge

states typically appear within the band gaps and a key advantage of them is that they are robust

against various forms of disorder [20, 25], something that points them toward various potential

applications. Moreover, even though edge states and a non-trivial topology were first captured

within a quantum framework – in the context of the quantum Hall effect [26] – up to this day,

topological phases have been realized in a very wide range of systems, including mechanic [27–32],

acoustic [33–38], photonic [39–44] and hydrodynamic [45–47] ones.

Figure 2: Shown here are

five eigenstates of a disordered

Hamiltonian (correspond to the

five curves with different colors).

The size of the disordered sys-

tem is N = 300 sites. All these

eigenstates are localized. The

energies of these eigenstates are

close in the energy spectrum,

however their spatial extent is

different.

At the same time, the impact of random disorder in a

medium with topological properties has also been examined.

First of all, it is known that a wave cannot undergo diffusion in a

disordered medium (in which the disorder is strong and random)

and gets localized within it [48] (see Fig. 2). This is the well

known phenomenon of the Anderson localization [49]. Along

this line, it has been found that when a periodic medium with

topological properties is disordered, then a topological phase

transition from trivial to non-trivial may be caused [50–56]. This

topological phase transition has been named topological Ander-

son insulator and has been experimentally verified in acoustic

systems [57], in photonic ones [58] and in atomic wires [59]. In

addition, this topological phase transition is accompanied by a

divergence of the localization length of the edge states, which is

of particular interest in the context of the Anderson localization.

Most of the investigations regarding the topological Ander-

son insulator have been conducted in quantum systems. We

will show in Chapter 2 that such transitions take place even

in disordered mechanical systems. In particular, we found that

the localization length of the edge states that are supported in a

mass-spring dimer lattice (due to a non-trivial topology), diverge

in the presence of a strong disorder. Moreover, we revealed that

the form of the disorder that is applied (random or correlated)

has a strong impact at the manifestation of these phenomena.

3
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B. Time-modulated media

Similar to spatially varying media, time-varying media – media whose properties vary with time

– host novel phenomena and enrich our scientific knowledge. They play a crucial role for wave

manipulation and for optimizing dynamic processes. In the second part of this thesis we investigate

non-adiabatic state transfers and wave amplifying phenomena in such time-varying media.

B1. Non-adiabatic state transfer

The existence of edge states and their robustness against various forms of disorder, are features

of platforms with topological properties that make them ideal for implementing a transferring

process [20]. Generally speaking, the state transfer – the transfer of some information from one

location to another (see Fig. 3) – is a subject of great importance and has been accomplished via

photons [60], in linear spin chains [61, 62], in quantum dots [63] and in many other platforms.

Figure 3: Schematic description

of the transfer of an edge state

across a lattice with N = 21

sites.

However, more recent studies have explored the state transfer un-

der the prism of topology [64–68], in order to exploit the robust-

ness of the edge states against imperfections of the transferring

network. Most of these recent studies, build upon the concept

of Thouless adiabatic pumping [69], that is the quantized charge

transport in a one-dimensional periodic potential that is slowly

varied in time and in a cyclic manner. Thouless adiabatic pump-

ing has been realized in several systems with a non-trivial topol-

ogy, including cold atoms [70–73], photonic [74–76], artificial spin

systems [77, 78], quantum dots [79, 80], mechanical metamateri-

als [81–83], acoustic ones [84], etc.

At the same time, there are several methods that have been

developed in order to speed up adiabatic transfer processes, in

order to overcome the lossy factors that these adiabatic processes

are subject to, due to the slow time scales. These methods are

known as ”Shortcuts to Adiabaticity” [85, 86] and the general

idea behind these methods is to produce the same final state – given the same initial state – as

an adiabatic process does, by exploiting the non-adiabatic excitations that take place when the

parameters of a system vary rapidly in time. Two such techniques that are widely used are the

counteradiabatic driving (or transitionless driving) [87–90] (see ref. [91, 92] for the experimental

realization of a counteradiabatic driving process) and the inversed engineering based on the Lewis-

Riesenfeld invariants [93, 94]. There are other methods that also enable fast transfers and which

are known as optimal control ones [95]. In these optimal control methods the objective is to

find time-dependent control parameters that maximize a specific cost function, typically known as

fidelity, under specific constraints. This is accomplished through the use of numerical techniques

4
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that update the control parameters iteratively, until the cost function is maximized (with respect

to some bound).

The counteradiabatic driving [96] and the optimal control methods [97] have been applied for

the fast transfer of edge states in quantum topological lattices. In Chapter 3 we will show – using

an optimal control method – that a fast transfer of an edge state is possible in a mechanical lattice

as well. We will also demonstrate that the transfer is not only fast but also robust against disorder

in the transfer network. An interesting finding of this study is that the transferred state can

be amplified or disamplified, due to the absence of unitarity in the time-varying lattice that we

considered (which is a non-autonomous system).

B2. Amplification in time-varying media

During the past decade, there has been noted a significant interest for the exploration of wave

propagation in time-varying media [98,99]. This interest is attributed to a lot of fascinating features

that such time-varying media display, as for instance band structures in their dispersion diagrams

and non-trivial topological properties [100]. Moreover, wave phenomena like time-reflection and

time-refraction [101, 102] that are captured in such media [103], also play a significant role in

generating this great interest. And there is no doubt that one of their most fascinating effects, is

their ability to amplify the energy of the waves that propagate in them [104]. The amplification

in such time-varying media is usually (but not always - see ref. [105]) related with parametric

instabilities [106].

Figure 4: Schematic descrip-

tion of Faraday instability.

Parametric instabilities can emerge in any dynamical system

when a parameter of a system is modulated periodically in time

with an appropriate frequency. A well known example is the Fara-

day instability in fluid mechanics [107, 108]: when a tank with a

fluid layer is vertically oscillated then waves at the surface of the

fluid emerge, which are called Faraday waves. The parametric in-

stabilities are usually studied under the prism of Floquet analy-

sis [109], since this theory derives the stability properties of the so-

lutions and the unstable solutions are related with the parametric

instabilities. Along the line of amplification there is a mechanism

– that is well known in the field of hydrodynamics and emerges in

static systems as well, not necessarily in time-varying ones [110] –

that leads to transient amplification of stable solutions [111]. The

stable solutions of a system can be transiently amplified when the matrix that propagates the ini-

tial conditions forward in time is non-normal, having thus non-orthogonal eigenvectors [112, 113].

The description of these transient amplifying features need particular tools and multiple methods

are being used, as for instance the singular value decomposition [114]. Especially, one of the tools

5
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that has been developed in this direction and is widely used, is the ε-pseudospectrum [110].

The ε-pseudospectrum can been utilized in the context of wave propagation in time-varying

media, since phenomena of non-normal nature are often captured in these media. We will present

such a description in Chapter 4. In particular, we used the ε-pseudospectrum toolbar and we

quantified the transient amplification that a wave that propagates in an infinite harmonically

modulated medium could undergo. We considered the modulation of the medium to be carried

out in a way such that the Mathieu equation [115] governs the wave dynamics [116,117].

C. Plan of the Thesis

In this thesis we try to get an understanding of the above wave phenomena by studying four differ-

ent problems. Specifically: In Chapter 1 we investigate the robustness to asymmetric perturbation

of the PTRs that are supported in a finite periodic scattering system that is build from a mirror

symmetric cell. As a first step, we calculate the correction at the wave numbers of the incident

waves that correspond to these PTRs (in first order perturbation theory). Subsequently, we con-

sider a perturbation that consists of Dirac scatterers and we show how PTRs could still appear

in the perturbed case with a suitable design of the perturbation. Finally, we reveal a connection

between two apparently independent PTRs of the unperturbed setup, which lies in the mirror

symmetry of the cells.

In Chapter 2 we study the localization properties of a disordered 1D dimer mass-spring chain.

In the absence of disorder, the dimer chain that we consider consists of same masses and springs

with alternating stiffness values. Such a dimer chain possesses a so called chiral symmetry and

non-trivial topological features. As a result, edge states are supported in a corresponding finite

dimer chain. We apply two forms of disorder in a finite dimer chain: the first form retains its

chiral symmetry while the second one breaks it and we compute the localization length of the edge

states using the transfer matrix method.

The model that we use in Chapter 3 is again a dimer mass-spring chain. However, in this

Chapter we use this setup under a different prism, since our goal here is to transfer an edge state

through the chain. To achieve such a transfer we let the spring couplings to vary with time,

making thus the chain time-dependent (the chain that we use in Chapter 2 is static). We are also

interested to achieve the transfer fast and to that end we use an optimal control method. We

design several protocols for the time-varying couplings and we show how to reduce the transfer

time. Furthermore, we explore the impact of disorder to these transfer protocols in order to deduce

whether the gain in transfer speed comes with a cost in robustness.

In Chapter 4 we consider the propagation of a wave in an infinite medium that is periodically

modulated in time, in a way so that the Mathieu equation emerges [116, 117]. The Mathieu

equation contains both stable and unstable regions in the parameter space [115] and we explore

the amplification features of its stable solutions. We search for the maximum possible transient

6
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amplification by optimizing the initial conditions as well as the initial start of the process. We also

make use of several quantities of the ε-pseudospectrum of the monodromy matrix – the matrix

that propagates the initial conditions over one period – and we provide numerical evidence that

the knowledge of the monodromy matrix is sufficient to derive the overall maximum amplification.

Finally in Chapter 5 we conclude our findings and we discuss our future perspectives. This

thesis is accompanied by four appendices. Each one of these appendices corresponds to each one

of the four chapters. Particularly: In Appendix A we provide the analytic proofs of some relations

that are given in Chapter 1. In Appendix B we give some details regarding the transfer matrix

method that we use in Chapter 2. In Appendix C, we prove – using the WKB method [118] – that

if the couplings of the dimer chain that we consider in Chapter 3 vary slowly in time, then the

transfer process is done successfully. Finally, in Appendix D we provide closed form expressions

that help us to get a deeper understanding of some results that are presented in Chapter 4.

7



Chapter 1

Perfect transmission resonances of

perturbed scattering systems

1.1 Introduction

A one-dimensional periodic scattering setup is known to possess a transmission spectrum that has

a band-like structure form [5]. Within each of the bands, the transmission becomes exactly one at

least N−1 times, where N is the number of cells of the setup. The case of transmission 1 is known

as a perfect transmission resonance (PTR). When such a periodic scattering setup is perturbed,

then the PTRs that it supports are a priori lost.

In this Chapter, we investigate the PTRs of a perturbed 1D finite periodic system with mir-

ror symmetric cells. For this investigation we use the transfer matrix method and the classical

perturbation analysis.

1.2 Scattering by a periodic system with mirror symmetric

cells

We begin by considering the scattering in one dimension by a mirror symmetric potential barrier

V (x). The potential V (x) is real and zero outside the region [−d/2, d/2]. For a schematic illustra-

tion of such a potential and of the scattering process see Fig. 1.1(a). The waves involved satisfy

the stationary Schrödinger equation

ψ′′ +
[
k2 − V (x)

]
ψ = 0, (1.1)

where ψ is the wave function, prime denotes differentiation with respect to x and k is the wave

number of the waves in the regions outside of the scattering area (which is free). At the left side

of the barrier the wave function is given by ψL = ψ+
L + ψ−L where ψ+

L = Aeikx and ψ−L = Be−ikx

8



1.2. Scattering by a periodic system with mirror symmetric cells

Figure 1.1: (a) Schematic description of scattering by a mirror symmetric potential V (x). (b)
Corresponding schematic description of scattering by a finite periodic potential V(x) that is build
by the repetition N times in space of the barrier that is shown in (a).

and similarly at the right side of the barrier the wave function is ψR = ψ+
R +ψ−R where ψ+

R = Ceikx

and ψ−R = De−ikx.

By invoking the boundary conditions at the two edges of the setup, namely at the points

x = ±d/2, we find two linear relations for the wave function(
ψ+
R

ψ−R

)∣∣∣∣∣
x=d/2

= M

(
ψ+
L

ψ−L

)∣∣∣∣∣
x=−d/2

. (1.2)

The matrix M is called transfer matrix and is given by

M =

(
1/t∗ r/t

(r/t)∗ 1/t

)
, (1.3)

where t and r are the transmission and reflections coefficients accordingly.1 The probability that

the wave is transmitted (reflected), is the transmission (reflection) coefficient and is given by

T = |t|2 (R = |r|2).

If we repeat the barrier V (x) that is illustrated in Fig. 1.1(a) N times in space, then we build

the potential V(x) that is shown in Fig. 1.1(b). Similarly to the single barrier case, the transfer

matrix of this finite periodic setup relates the fields ψ±L,R at the two edges of the scattering region

(these edges are the −D/2 and D/2 this time, with D = Nd). Furthermore, the transfer matrix

of this finite periodic setup is given by the N times multiplication of the transfer matrix that is

given in Eq. (1.3), it is namely the MN . With the use of the Chebychev identity [2], we get that

1To find the physical meaning of the coefficients r and t we consider the scattering only from the one side of
the barrier. For instance, if we consider the scattering from the left side of the barrier (we set ψ−

R = 0 and the
incoming wave is the ψ+

L ), then we get that ψ+
R(x = d/2) = tψ+

L (x = −d/2) and ψ−
L (x = −d/2) = rψ+

L (x = −d/2).
For that reason, the quantities t and r are called the transmission and reflections coefficients accordingly. We note
here, that the transfer matrix M contains in general two reflection amplitudes r and r̃ when the scattering by the
two sides of the barrier are considered. However, when the barrier is mirror symmetric, as in our problem, then the
two reflection amplitudes are the same. For a detailed discussion see ref. [119].

9



Chapter 1. Perfect transmission resonances of perturbed scattering systems

MN is given by

MN =

(
1/t∗N rN/tN

−rN/tN 1/tN

)
=


1

t∗
sin(Nφ)

sin(φ)
− sin ((N − 1)φ)

sin(φ)

r

t

sin(Nφ)

sin(φ)

−r
t

sin(Nφ)

sin(φ)

1

t

sin(Nφ)

sin(φ)
− sin ((N − 1)φ)

sin(φ)


(1.4)

where φ =
1

2
Tr(M) = Re

[
1

t

]
is the Bloch phase of the infinite periodic system and is related with

the wave number k.

1.2.1 Perfect transmission resonances

A nice expression for the transmission coefficient TN = |tN |2 of the finite periodic system is given

by (see for instance ref. [6])

TN =
1

1 +

(
1

T
− 1

)
sin2(Nφ)

sin2(φ)

. (1.5)

Notice that for φn = nπ/N + mod (2π) with n = 1, 2, ..., N − 1 then TN = 1. Besides, whenever

T = 1 then TN = 1 as well.

As an illustration we consider the scattering from the left side of the setup that is shown in

Fig. 1.2(a). Notice that this setup consists of 8 rectangular barriers (further details are given in the

caption). In Fig. 1.2(b) we present the corresponding transmission spectrum TN(k). Clearly, the

transmission spectrum shows a band-like structure form, while each band consists of at least N−1

PTRs (the transmission coefficient TN is equal to 1). We stress here that this band structure form

is related only with the periodicity of the system and not with its mirror symmetry (the mirror

Figure 1.2: (a) Scattering from the left side of a setup that consists of 8 rectangular barriers. The
length of each barrier is s = d/6 and therefore the free space between two neighboring barriers
has length 5d/6 (notice that this figure does not represent such distances). We set the heights
U = max

x
V (x) of the barriers at d2U = 27. (b) Transmission coefficient TN as a function of kd

when scattering by the setup that is shown in (a) is considered.
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1.2. Scattering by a periodic system with mirror symmetric cells

symmetry imposes some extra conditions that we will see in the following). All one-dimensional

finite periodic scattering setups have transmission spectrum with a similar structure, that is due

to Eq. (1.5).

1.2.2 Implications of mirror symmetry

As will appear in the following, the symmetry of the wave function has an implication at the

formulas that we obtain when the potential V(x) is perturbed. From now on we denote with ψn(x)

the wave function that corresponds to the PTR number n. Due to the mirror symmetry of the

scattering setup, the real part Re[ψn(x)] can become symmetric and the imaginary part Im[ψn(x)]

can become antisymmetric with respect to the axis where the potential V(x) is also symmetric.

Throughout this work, we set this axis to be at x = 0. More specifically, if we set the amplitude

A of the incoming wave (we consider scattering from the left side of the setup and therefore the

incoming wave is given by ψ+
L = Aeikx) equal to

A =

eiknD/2, for even n

eiknD/2−iπ/2, for odd n
(1.6)

where kn is the wave number that corresponds to the PTR number n, then the real part of ψn

is symmetric and the imaginary part is antisymmetric around x = 0. In Fig. 1.3(a) we show the

real and imaginary parts of the wave function that correspond to the last PTR (n = 7) of the

first band that is shown in Fig. 1.2(b) (this PTR is indicated with the green star), when we set

A = eik7H/2−iπ/2. Clearly the real part is symmetric and the imaginary part is antisymmetric. In

Fig. 1.3(b) we show the corresponding real and imaginary parts of the wave function for a choice

of A that is not equal to eik7H/2−iπ/2. In this case the real and imaginary parts of the wave function

are not symmetric.

We close this section by noting that the wave function ψn(x) is found from the solution of the

Schrödinger equation Eq. (1.1) with boundary conditions

dψn(x)

dx

∣∣∣∣
x=−D/2

− iknψn(−D/2) = 0

dψn(x)

dx

∣∣∣∣
x=D/2

− iknψn(D/2) = 0

. (1.7)

Notice that for the case of a mirror symmetric potential V(x), Eq. (1.1) and the boundary conditions

in Eq. (1.7) form an eigenvalue problem that is PT -symmetric [120,121], where P : x→ −x is the

parity operator and T : z → z∗ is the time reversal operator.
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Chapter 1. Perfect transmission resonances of perturbed scattering systems

Figure 1.3: (a) Real and imaginary parts of the wave function ψ7(x) that corresponds to the PTR
number n = 7 that is shown in Fig. 1.2(b) and is indicated with a green star. The amplitude of
the incoming wave is A = eik7H/2−iπ/2 where k7 is the wave number of the 7th PTR in the first
band. (b) Same as (a) but for A 6= eik7H/2−iπ/2.

1.3 Perturbing the potential

Consider now that a finite periodic and mirror symmetric potential V0(x) – as the one that is

illustrated in Fig. 1.1(b) – is perturbed. After the perturbation, the scattering region is described

by the potential

V(x) = V0(x) + εV1(x) (1.8)

with ε << 1. We assume that the perturbing potential V1(x) is non-zero only inside the region

[−D/2, D/2], that is inside the unperturbed scattering region. The goal of this part is to examine

the influence of the perturbation at the wave numbers of the unperturbed system that correspond

to the PTRs, namely at the wave numbers k0,n. Hereafter, the index 0 denotes the unperturbed

system and the index n denotes a PTR, n = 1, 2, ..., N − 1.

1.3.1 Perturbation expansion

The wave number and the wave function that correspond to the PTR number n change as

kn = k0,n + εk1,n + . . . (1.9)

ψn(x) = ψ0,n(x) + εψ1,n(x) + . . . (1.10)

We plug these forms, along with the potential V(x) that is given in Eq. (1.8), into the Schrödinger

equation Eq. (1.1) and at the corresponding boundary conditions that are given in Eq. (1.7) and

we collect in powers of ε. Clearly, the ψ0,n(x) and k0,n satisfy the zero order problem, which we

12



1.3. Perturbing the potential

write again for convenience:

d2ψ0,n(x)

dx2
+
(
k2

0,n − V0(x)
)
ψ0,n(x) = 0 (1.11)

and
dψ0,n(x)

dx

∣∣∣∣
x=−D/2

− ik0,nψ0,n(−D/2) = 0

dψ0,n(x)

dx

∣∣∣∣
x=D/2

− ik0,nψ0,n(D/2) = 0

. (1.12)

After a few manipulations, we find that the first order term ψ1,n(x) is given by the solution of the

equation
d2ψ1,n(x)

dx2
+
(
k2

0,n − V0

)
ψ1,n = − (2k0,nk1,n − V1)ψ0,n (1.13)

while it satisfies the boundary conditions

dψ1,n(x)

dx

∣∣∣∣
x=−D/2

− ik0,nψ1,n(−D/2) = ik1,nψ0,n(−D/2)

dψ1,n(x)

dx

∣∣∣∣
x=D/2

− ik0,nψ1,n(D/2) = ik1,nψ0,n(D/2).

(1.14)

The latter boundary conditions are not guaranteed to give a PTR: for the PTR number n to be

preserved perturbatively (only in first order and not in higher order), the imaginary part of the

wave number k1,n has to be zero.

For the calculation of k1,n, we apply the classical solvability condition, namely we multiply

Eq. (1.13) with ψ0,n(x) and we integrate in the scattering region, which leads to the equation

∫ D/2

−D/2
ψ0,n(x)

d2ψ1,n(x)

dx2
dx =

[
ψ0,n(x)

dψ1,n(x)

dx
− dψ0,n(x)

dx
ψ1,n(x)

]D/2
−D/2

+

∫ D/2

−D/2

d2ψ0,n(x)

dx2
ψ1,n(x)dx

(1.15)

By inserting Eq. (1.11)-(1.14) in Eq. (1.15) we find the expression for the wave number k1,n,

k1,n =

∫ D/2

−D/2
V1ψ

2
0,ndx

i[ψ2
0,n(D/2)− ψ2

0,n(−D/2)] + 2k0,n

∫ D/2

−D/2
ψ2

0,ndx

, (1.16)

where ψ0,n is the wave function of the unperturbed system (thus the index 0).

For the derivation of Eq. (1.16) the potential V0 does not need to be periodic or mirror sym-

metric. Yet, if V0 is mirror symmetric then the real/imaginary parts of the wave function ψ0,n

become symmetric if we multiply ψ0,n with a suitable phase (see Section 1.2.2). Using symmetric

real/imaginary parts of ψ0,n we can show that the denominator in Eq. (1.16) is real and therefore
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Chapter 1. Perfect transmission resonances of perturbed scattering systems

the imaginary part of k1,n is given by

Im[k1,n] = C
∫ D/2

−D/2
V1Re[ψ0,n]Im[ψ0,n]dx (1.17)

with C real. As we noted before, we are interested in Im[k1,n] because if it is zero then the PTR

number n of the unperturbed setup remains as a PTR after the perturbation (in first order). The

real part of k1,n shows whether a PTR is shifted right or left in the transmission spectrum when

Im[k1,n] = 0.

1.3.2 Preserving all PTRs

Notice that if V1 is mirror symmetric (even function with respect to x = 0) then Im[k1,n] = 0

for all n, because the quantity Re[ψ0,n]Im[ψ0,n] is odd for all n. Therefore, all the PTRs of the

unperturbed system are preserved (in first order) after the addition of such a mirror symmetric

perturbation.

For an illustration, we consider the scattering from the left side of the setup that is shown in

Fig. 1.4(a). In Fig. 1.4(b) we present the corresponding transmission spectrum. Notice that bands

with N − 1 = 7 PTRs appear again as it was the case in Fig. 1.2(b). However, these PTRs do not

appear at the same wave numbers as the ones that are shown in Fig. 1.2(b), since the real part of

k1,n is in general not zero.

Figure 1.4: We set the parameter ε of the perturbation at ε = 0.1. (a) The unperturbed setup is
the same as in Fig. 1.2(b) and we consider that only the strengths of the barriers are perturbed
(all the distances are the same as in Fig. 1.2(b)). The perturbations at the first and last barriers
satisfy d2U1 = d2U8 = −27. We set the perturbations at the rest barriers at: d2U2 = d2U7 = 0,
d2U3 = d2U6 = −72 and d2U4 = d2U5 = 27. (b) Transmission spectrum of the setup that is shown
in (a).
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1.3. Perturbing the potential

1.3.3 Preserving one PTR

In this part we show how to design perturbing potentials V1(x) that preserve specific PTRs (not all

of them as an even V1 does). To that end we use Eq. (1.17) and we design V1 so that Im[k1,n] = 0

for a specific PTR (number n). However, it is not a trivial task to design such a V1. We can

simplify the analysis though and make this design easy if we choose V1 to be a sum of Dirac

scatterers,

V1 =
M∑
m=1

cmδ(x− wm) (1.18)

where M is the number of Dirac scatterers that we place inside the unperturbed scattering region,

cm are their strengths and wm ∈ [−D/2, D/2] are their positions.

In order to see clearly why the design is now easy, notice first that Eq. (1.17) with V1 a sum of

Dirac functions gets the form

Im[k1,n] = C
M∑
m=1

cmRe[ψ0,n(wm)]Im[ψ0,n(wm)]. (1.19)

The wave function ψ0,n(x) is known. So, we can search for the strengths of the Dirac scatterers

that result in Im[k1,n] = 0 for a specific n.

As an illustration, suppose that we add two delta scatterers at a finite periodic potential, as the

one that is shown in Fig. 1.1(b). We place the first scatterer in the region of the barrier number

i and the second scatterer in the region of the barrier number j. Then for the nth PTR to be

preserved after the addition of the two scatterers the following condition must hold (we drop the

index n)

ci × Re[ψ0(wi)]Im[ψ0(wi)] + cj × Re[ψ0(wj)]Im[ψ0(wj)] = 0, (1.20)

Now, we can set the strength of one of the two scatterers at some value and we can find the

strength of the other scatterer so that Eq. (1.20) holds.

In Fig. 1.5 we present an example. Figure 1.5(a) shows the scattering setup that we consider

and Fig. 1.5(b) shows the corresponding transmission spectrum of this setup. Notice that the

scatetring setup consists of 8 rectangular barriers and 2 Dirac scatterers. We place the first Dirac

scatteter in the region of the first rectangular barrier and the second Dirac scatteter in the region

of the second rectangular barrier. We note here that we do not place the Dirac scatterers in the

centers of the barriers (for the details see the caption). We set the strength of the first delta

function, c1, to some arbitrary value and calculate c2 from Eq. (1.20) so that the PTR number

n = 7 is preserved after the perturbation. Evidently, with a look at the transmission spectrum

that is shown in Fig. 1.5(b) (notice that we only show the first band) we get that the PTR number

n = 7 is indeed preserved, while the rest of the PTRs are not.
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Chapter 1. Perfect transmission resonances of perturbed scattering systems

Figure 1.5: We set the parameter ε of the perturbation at ε = 0.1. (a) Schematic description of
scattering by a setup that consists of rectangular barriers and 2 delta scatterers. The height of
the barriers, the lengths and the free space between two neighboring barriers are the same as in
Fig. 1.2(b). The distance between the first Dirac scatterer and the left edge of the first barrier is
0.1s (recall that s is the length of each barrier). The strength of the first Dirac scatterer is set
at dc1 = 4.8. The distance between the second Dirac scatterer and the right edge of the second
barrier is 0.05s. The strength of the second Dirac scatterer is found from Eq. (1.20) in order for the
PTR number n = 7 to be preserved after the addition of the two delta scatterers. (b) Transmission
spectrum of the setup that is shown in (a). Notice that only the PTR number n = 7 is preserved
(it is indicated with the arrow).

1.4 Particular classes of perturbations that preserve two

PTRs

In this part we design again perturbations with Dirac scatterers that preserve desired PTRs. The

difference now is that we place the Dirac scatterers either in the centers or at the edges of the cells

of the unperturbed system.

1.4.1 Perturbation at the centers of the cells

We start this part with the presentation of an example. The scattering setup that we consider is

illustrated in Fig. 1.6. Notice that it consists of 8 rectangular barriers and 2 Dirac scatterers. The

first Dirac scatterer is placed at the center of the first barrier and the second Dirac scatterer at

the center of the third barrier. In Fig. 1.6(b)-(d) we show the transmission of this setup, for three

different choices of the strength c3. In Fig. 1.6(b) we choose the strength c3 so that the first PTR

(n = 1) is preserved. The result is that apart from the first PTR, the PTR that corresponds to

the index n = 7 is also preserved. In Fig. 1.6(c) we choose the strength c3 so that the second PTR

is preserved after the perturbation. Notice that the symmetric PTR (n = 6) is preserved as well.

Similarly, in Fig. 1.6(d) we choose the strength c3 so that the third PTR is preserved after the

perturbation. Notice that PTR number n = 5 is also preserved. These results suggest that there

16



1.4. Particular classes of perturbations that preserve two PTRs

Figure 1.6: We set the parameter ε of the perturbation at ε = 0.1. (a) Schematic description of
scattering by a setup that consists of rectangular barriers and 2 delta scatterers that are placed
at the center of the first and third barrier respectively. Again, the heights of the barriers, the
lengths and the free space between two neighboring barriers are the same as in Fig. 1.2(b). (b)-(d)
Transmission of the setup that is shown in (a) for three different choices of c3. The arrows above
the transmission spectra show which PTRs are preserved after the perturbation. In (b) we set the
strength of the first scatterer equal to dc1 = 12. The strength c3 is given by Eq. (1.20) so that
the PTR number number n = 1 is preserved. Notice that the PTR number n = 7 is preserved as
well. In (c) we set dc1 = 4.5 and we calculate the strength c3 so that PTR number number n = 2
is preserved. Indeed this PTR is preserved. The symmetric PTR, n = 6, is preserved as well. In
(d) dc1 = 2.4 and c3 is designed to preserve the PTR number n = 3. Notice that the symmetric
PTR n = 5 is also preserved.

is a connection between the PTRs number n and N − n in each band.

This connection lies in a symmetry between the quantities K(n,m) = Re[ψ0,n(am)]Im[ψ0,n(am)]

and K(N − n,m) = Re[ψ0,N−n(am)]Im[ψ0,N−n(am)] where am are the centers of the cells and

m = 1, 2, ..., N . In Appendix A we prove that for any periodic system with mirror symmetric cells

the following relation holds (to the best of our knowledge the analytic results given in this and in

the next subsections are not known in the bibliography and are stated here for the first time)

Re[ψ0,n(am)]Im[ψ0,n(am)] = f(φn)g(m,φn) (1.21)

where

g(m,φn) = sin2 [(N −m)φn]− sin2 [(m− 1)φn] (1.22)

and

φn =
nπ

N
(1.23)

is the Bloch phase of the nth PTR. Notice that if we interchange n with N − n then for the Bloch
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Chapter 1. Perfect transmission resonances of perturbed scattering systems

phases φN−n and φn we get that

φN−n = π − φn (1.24)

and it is easy to see that the functions g(m,φn) and g(m,φN−n) are the same. Importantly, f(φn)

does not depend on the index m. The fact that g(m,φn) and g(m,φN−n) are the same and that

f(φn) does not depend on the index m concludes our proof since the sum in Eq. (1.19) is on the

index m.

We note here that the relations that are given in Eq. (1.21)-(1.23) hold for any one-dimensional

periodic system with mirror symmetric cells. Therefore, we have proven that if we place Dirac

scatterers at the centers of a periodic setup with mirror symmetric barriers and the PTR number

n is preserved, then the PTR number N − n will also be preserved.

1.4.2 Perturbation at the edges of the cells

Now, we consider the case where the Dirac scatterers are placed at the edges of the cells. We

denote the locations of the edges of the cells as bm, m = 0, 1, 2, ..., N . Similarly to the previous

part, we analyze the quantity Re[ψ0,n(bm)]Im[ψ0,n(bm)]we show that it is written in the form (see

Appendix A),

Re[ψ0,n(bm)]Im[ψ0,n(bm)] = f̃(φn)g̃(m,φn) (1.25)

where φn = nπ/N is again the Bloch phase of the nth PTR. Notice that the function f̃(φn) does

not depend on the index m – position of a Dirac scatterer. The function g̃(m,φn) is given by

g̃(m,φn) = sin(2mφn). (1.26)

In this case we find two symmetries. First, the function g̃(m,φn) is invariant under the inter-

change n → N − n, showing that if the PTR number n is preserved after the perturbation, the

PTR number N − n is also preserved. The second symmetry is due to the 2 factor in the sine

function in Eq. (1.26). In the interchange n→ (N/2)− n we find that the function g̃(m,φ(N/2)−n)

becomes equal to (−1)mg̃(m,φn). Therefore, for N even, if the number m is only odd or even

(meaning that we place Dirac scatterers only at the edges of the odd/even cells) and if the PTR

number n is preserved, so does the PTR number (N/2)− n.

As an illustration, we consider scattering by the setup that is shown in Fig. 1.7(a). Once more,

we use as the unperturbed system the one that consists of 8 rectangular barriers. We place one

Dirac scatterer at the right edge of the first cell and another Dirac scatterer at the right edge of

the third cell. We set the strength of the first scatterer at some value and calculate the strength of

the second one from Eq. (1.20) so that the PTR number n = 1 is preserved in Fig. 1.7(b) and the

PTR number n = 2 is preserved in Fig. 1.7(c). Notice that in Fig. 1.7(b) the PTR number n = 7

is also preserved due to the symmetry in the interchange n → N − n. What is more, the PTRs

number n = 3 and n = 5 are also preserved, due to the symmetry n → (N/2)− n. In Fig. 1.7(c)
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because both the symmetries n→ N −n and n→ (N/2)−n render back the PTR number n = 6,

only this PTR is found in the transmission spectrum, apart from the PTR number n = 2.

Figure 1.7: We set the parameter ε of the perturbation at ε = 0.1. (a) Schematic description of
scattering by a setup that consists of rectangular barriers and 2 delta scatterers that are placed at
the edges of the first and third barrier respectively. The heights, the lengths of the barriers and
the free space between two neighboring barriers are as in Fig. 1.2(b). (b) We set the strength c1

of the first delta scatterer equal to dc1 = 1.5 and we calculate c3 from Eq. (1.20) so that the PTR
number n = 1 is preserved. We find that the PTR number n = 7 is preserved as well, due to the
symmetry in the interchange n→ N−n. We also find that the PTRs number n = 2 and n = 6 are
also preserved. This result is due to the symmetry in the interchange n→ (N/2)− n. (c) We set
dc1 = 1.5 and we calculate c3 again from Eq. (1.20) so that the PTR number n = 2 is preserved.
Due to the symmetry n → N − n we find that the PTR number n = 6 is preserved as well. The
symmetry n→ (N/2)− n preserves the same PTR, i.e., n = 6.

1.5 Concluding remarks

Figure 1.8: Influence of the parameter

ε of the perturbation at PTRs.

In this Chapter we have studied the scattering by a per-

turbed periodic setup with mirror symmetric cells. We

have shown how to build a perturbation that is comprised

by Dirac scatterers and that maintains PTRs of the un-

perturbed setup, by tuning appropriately the strengths

of the Dirac scatterers. We have also shown that if the

Dirac scatterers are placed either at the centers or at the

edges of the cells then the PTRs are preserved in pairs.

As a last remark we show in Fig. 1.8 the influence of the

parameter ε of the perturbation at the PTRs for three

different cases.
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Chapter 2

Localization properties of a disordered

dimer chain

2.1 Introduction

Probably the most simple model that captures essential topological features, such as the emergence

of edge states, is the celebrated Su-Schrieffer-Heeger (SSH) model [122]. The SSH model was

developed in a quantum mechanical framework: it describes the hopping of particles in a one

dimensional lattice with two alternating coupling strengths. During the last years, the impact of

disorder in a SSH lattice has been investigated and it has been found that a static disorder causes

a topological phase transition [54,55].

The mechanical analogue of the SSH lattice is a chain with identical masses that are connected

by alternating springs: a dimer mechanical chain [123]. Such a mechanical chain exhibits also

topological features, since it has the same internal symmetry with the quantum SSH lattice, the so

called chiral symmetry [19]. Due to the chiral symmetry, a mechanical dimer chain and a quantum

SSH lattice share the same topological invariant, that is the Zak phase [124] – a special case

of the general Berry phase [21]. Despite the similarities between the two systems there are some

fundamental differences, for instance the mechanical chain is described by a system of second-order

differential equations in time while the quantum SSH lattice is described by a system of first-order

differential equations.

In this Chapter, we study the localization properties of the edge modes that are supported in

a dimer mechanical chain, in the presence of disorder. We apply two forms of disorder, one that

respects the chiral symmetry and a second one that does not. We compute the localization length

numerically – using the transfer matrix method – and we find significant differences for the two

forms of disorder. The results that are presented in this Chapter are based on ref. [125].
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2.2. Topological features of a dimer chain

2.2 Topological features of a dimer chain

We begin this Chapter by reviewing the topological properties that a dimer mass-spring chain, as

the one that is shown in Fig. 2.1, possesses [123]. This chain consists of same masses m that are

coupled with each other with alternating springs of stiffnesses κ1 and κ2. All masses are attached

to the ground with couplings of stiffness κ0, which act in the horizontal direction. We denote as α

the equilibrium distance between two neighboring masses. We also denote as un the displacement

of the mass that is located at the site number n of the chain, from its equilibrium position. We

consider only nearest neighbors interactions and therefore we obtain the following equations for

the displacements un

m
d2un
dt2

= κn+1(un+1 − un)− κn(un − un−1)− κ0
nun (2.1)

where κn = κ1 when n is odd, κn = κ2 when n is even and κ0
n = κ0 ∀n.

Due to the dimer nature of this chain, we seek for solutions to Eq. (2.1) that have the plane

wave form

un(t) =

A1e
ikna−iωt , n = 2s− 1 with s ∈ Z

A2e
ikna−iωt , n = 2s with s ∈ Z

(2.2)

where k is the wave number, ω is the frequency of the wave and A1 (A2) is the amplitude of

oscillation of the masses that locate at odd (even) sites. By substituting Eq. (2.2) into Eq. (2.1)

we arrive at the following eigenvalue problem

mω2

(
A1

A2

)
= D̃(k)

(
A1

A2

)
=

1

m

(
κ1 + κ2 + κ0 −κ2 − κ1e

−2ika

−κ2 − κ1e
2ika κ1 + κ2 + κ0

)(
A1

A2

)
, (2.3)

where the matrix D̃(k) is called the dynamical matrix. The eigenvalues of the dynamical matrix

are the eigenfrequencies squared ω2 and we find that these are given by

ω2
(±) =

κ1 + κ2 + κ0

m
± 1

m

√
κ2

1 + κ2
2 + 2κ1κ2 cos(2ka) . (2.4)

Figure 2.1: Schematic description of a dimer mass-spring chain with ground springs. The chain
consists of of same masses m that are connected with alternating springs of stiffnesses κ1 and κ2

and are attached to the ground with springs of stiffnesses κ0.

21



Chapter 2. Localization properties of a disordered dimer chain

Equation (2.4) is the dispersion relation of the dimer chain and Fig. 2.2 illustrates this relation for

κ1 > κ2 in (a), for κ1 = κ2 in (b) and for κ1 < κ2 in (c). When the two couplings are different,

two bands appear in the dispersion relation that are separated by a gap.

We will now show that this infinite dimer chain has non-trivial topological features. As a first

step we write the dynamical matrix in the basis that is formed by the identity I and the three

Pauli matrices σi, i = x, y, z

D̃(k) =
κ1 + κ2 + κ0

m
I− κ2 + κ1 cos(2ak)

m
σx −

κ1 sin(2ak)

m
σy . (2.5)

Notice that after the removal of the diagonal term ω2
0 =

κ1 + κ2 + κ0

m
from D̃(k), the remaining

matrix obeys the anticommutative relation{
D̃(k)− ω2

0I, σz

}
= 0 (2.6)

Due to the anticommutative relation given in Eq. (2.6), the infinite dimer chain is said to possess

chiral symmetry which in turn induces non-trivial topological features. The topological features

of this dimer chain are captured through the Zak phase [124], which is given by

γ
(±)
Zak = i

∫ π
2a

− π
2a

(
A(±)

)† · ∂kA(±)dk , (2.7)

where A(±) are the two eigenvectors of the dynamical matrix and the symbol +(-) denotes the

upper (lower) band. Namely, the Zak phase characterizes each one of the two bands. And as we

will now show, the Zak phase of each band remains unchanged as long as the band gap is open –

it is therefore a topological invariant [20]. To show this, first we calculate the eigenvectors A(±).

Figure 2.2: Dispersion relation of a diatomic dimer chain for (a) κ1 > κ2, (b) κ1 = κ2 and (c)
κ1 < κ2.
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2.2. Topological features of a dimer chain

These are easily found when we write D̃(k) in terms of the identity and the three Pauli matrices

D̃ = ω2
0I− d · σ =

(
ω2

0 − dz −dx + idy

−dx − idy ω2
0 + dz

)
. (2.8)

We express the vector d =
(
dx dy dz

)T
(T denotes the transpose) in spherical coordinates

as

d = |d|n with n =

cosφ sin θ

sinφ sin θ

cos θ

 , 0 ≤ φ < 2π , 0 ≤ θ ≤ π . (2.9)

and with this notation the dynamical matrix gets the form

D̃ =

(
ω2

0 − |d| cos θ −|d|e−iφ sin θ

−|d|eiφ sin θ ω2
0 + |d| cos θ

)
. (2.10)

The two eigenvalues and two eigenvectors of the matrix that is given in Eq. (2.10) are

λ(±) = ω2
0 ± |d| (2.11)

and

A(−) =

(
A

(−)
1

A
(−)
2

)
=

(
cos(θ/2)

eiφ sin(θ/2)

)
, A(+) =

(
A

(+)
1

A
(+)
2

)
=

(
sin(θ/2)

−eiφ cos(θ/2)

)
. (2.12)

We apply these results to the dynamical matrix that describes the dimer mass-spring chain

(see Eq. (2.3)). We find that the angle θ is equal to π/2 and the vector d is given by

d =

κ2 + κ1 cos(2ka)

κ1 sin(2ka)

0

 . (2.13)

Therefore, the vector d lies in the xy plane and can be represented by the complex number |d|eiφ.

Moreover, the two eigenvectors A± of the dynamical matrix are equal to

A(±) =
1√
2

(
1

∓eiφ

)
(2.14)

suggesting that the Zak phase is given by

γ
(±)
Zak = −1

2

∫ π
2a

− π
2a

dφ

dq
dq = −1

2
(φ(π/2a)− φ(−π/2a)) + 2πm , m = 0,±1,±2, ... (2.15)
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Chapter 2. Localization properties of a disordered dimer chain

To proceed further, we remind the definition of the winding number of a curve (from complex

analysis). The winding number of a curve around a point z0 gives the number of times this curve

passes around that point and it is given by

n(z0) =
1

2πi

∮
dz

z − z0

,

meaning that the winding number of a curve around the origin is equal to

n =
1

2πi

∮
dz

z
. (2.16)

By writing z in polar coordinates: z = reiφ ⇒ dz = eiφdr + ireiφdφ⇒ dz

z
=
dr

r
+ idφ, we obtain

that
dz

z
= d(ln r) + idφ. The total change of ln r is zero around a closed path so the winding

number of a curve is equal to

n =
1

2πi

∮
idφ(k) =

1

2π
(φ(π/2a)− φ(−π/2a)) . (2.17)

Thus, we immediately obtain that the Zak phase is related to the winding number of the d(k)

vector and we only need to study the variation of this vector for k ∈ [−π/2a, π/2a). In Fig. 2.3

we present this variation for κ1 > κ2 in (a), for κ1 = κ2 in (b) and for κ1 < κ2 in (c). We observe

that for κ1 > κ2 the vector d(k) has a winding number equal to 1 and therefore the Zak phase is

equal to π for both bands. For κ1 < κ2 the winding number is zero meaning that the Zak phase

is also zero for both bands. So the Zak phase number is a topological invariant.

Figure 2.3: Variation of the vector d for k ∈ [−π/2a, π/2a) when (a) κ1 > κ2, (b) κ1 = κ2 and
(c) κ1 < κ2.
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2.3. Finite dimer chain

2.3 Finite dimer chain

A question that naturally arises at this point is what are the consequences of the non-trivial

topology that the infinite dimer chain possesses. To give an answer to this question we will study

in this Section the finite dimer chain that is illustrated in Fig. 2.4 (it is the finite counterpart of

the infinite chain that is shown in Fig. 2.1). As we shall see in the following , this finite dimer

chain supports edge modes, due to the non-trivial topological properties. Notice that the finite

chain shown in Fig. 2.4 consists of an even number N of masses m, while the first and the last

masses are connected to walls (fixed boundary conditions are used).

Figure 2.4: Schematic description of a finite dimer mass-spring chain with an even number N of
masses. Fixed boundary conditions are used.

2.3.1 Equations of motion

We denote as u1, u2, ..., uN the displacements of the masses that locate at the sites number

1, 2, ..., N of the finite chain from their equilibrium positions. Apart from the first and the last

masses (that are connected to the walls), the displacements of all the other masses, namely the un

with n = 2, ...N − 1, are given by Eq. (2.1). The equations for the displacements of the first the

last masses are

mü1 = −κ1u1 − κ2(u1 − u2)− κ0u1, (2.18)

müN = κ2(uN−1 − uN)− κ1uN − κ0uN . (2.19)

We can rearrange the equations of all the displacements un with n = 1, ...N in the matrix form

ü(t) + Du(t) = 0 (2.20)

where u =
(
u1 u2 · · · uN

)T
is the vector of displacements and D is the dynamical matrix,

D =
1

m

 κ1+κ2+κ0 −κ2 0 ...
−κ2 κ1+κ2+κ0 −κ1 0 ...

0 −κ1 κ1+κ2+κ0 −κ2 ...
...
... −κ1 κ1+κ2+κ0 −κ2
... 0 −κ2 κ1+κ2+κ0

 . (2.21)
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Chapter 2. Localization properties of a disordered dimer chain

The dynamical matrix D possesses chiral symmetry as well, since it obeys a similar anticommu-

tative relation as the dynamical matrix of the infinite chain does (see Eq. (2.6). Specifically, it

holds {
D− κ1 + κ2 + κ0

m
IN ,Σz

}
= 0, (2.22)

where

Σz =

 1 0 0 0 ··· ··· 0
0 −1 0 0 ··· ··· 0
...

. . .
...

0 ··· ··· 0 0 1 0
0 ··· ··· 0 0 0 −1

 . (2.23)

The matrix Σz is known as the chiral operator.

2.3.2 Eigenanalysis

To obtain the frequency spectrum of the finite chain, we follow a similar procedure with the

one that we followed at the infinite chain. Namely, we substitute solutions of plane wave form

u(t) = ueiωt at the equations of motion (Eq. (2.20)) and we get that

ω2
nun = Dun, (2.24)

The ωn are the eigenfrequencies and the un are the eigenmodes of the finite chain (n = 1, 2..., N).

In Fig. 2.5(a)-(c) we present the eigenfrequencies ωn (calculated numerically) of a chain with

N = 50 masses in three different scenarios. In (a) we set κ1 < κ2, in (b) κ1 = κ2 and in (c) κ1 > κ2.

In all cases we set m = 0.01, κ0 = 5 and κ1 = 11. In Fig. 2.5(a) we set κ2 = 1.5 - notice the band

structure that is formed. In Fig. 2.5(b) we set κ2 = 1 - there is no gap in this case. Finally, in

Fig. 2.5(c) we set κ2 = 0.5 - we find two modes whose frequencies lie in the band gap. These two

modes are called edge modes (we note here that one edge mode is always supported in the chain

when N is odd – see next Section). In Fig. 2.5(d) and (e) we present their profiles. Notice that

these modes are localized at the two edges of the chain. This localized profile of the edge modes

holds as soon as κ1 > κ2 and is more localized the more the stiffness values κ1 and κ2 differ.

The frequencies of the two edge modes that are illustrated in Fig. 2.5(c) are not exactly the

same. There is a frequency splitting, meaning that the two eigenfrequencies are not exactly located

at ω0 =
√

(κ1 + κ2 + κ0)/m but at ω+
0 , ω−0 . This frequency splitting is decreasing as the size of

the chain is increasing. Therefore, for a large chain there is a sufficiently small splitting and thus

we have a ”degeneracy” of the eigenmodes. In that case, the two edge modes could be localized at

opposite edges of the chain, but each mode at one edge only. In Fig. 2.6 we present an example.

We use a chain that consists of N = 500 masses (we set κ1 = 1, κ2 = 0.5 and κ0 = 5). In Fig. 2.6(a)

we see the eigenfrequencies ωn of this chain and in Fig. 2.6(b) and (c) we see the profiles of the

two edge modes. Notice that these modes are localized only at the one side of the chain in this

1In all the following numerical results, we set the value of m at 0.01 in arbitrary units m̄. We also measure the
stiffnesses of the couplings in arbitrary units κ̄.
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2.3. Finite dimer chain

case. A closer look at these profiles (see the insets of Fig. 2.6(b) and (c)) reveals that only the

masses that locate at sites with n even or n odd are excited. This is an known consequence of the

chiral symmetry [20].

Figure 2.5: In all cases we use a finite chain that consists of N = 50. We set m = 0.01, κ1 = 1 and
κ0 = 5. Fixed boundary conditions are used. Shown are the eigenfrequencies ωn for (a) κ2 = 1.5
(b) κ2 = 1 and (c) κ2 = 0.5. (d) and (e) Profile of the two edge modes.

Figure 2.6: (a)-(c) Same as Fig. 2.5(c)-(e) but for a chain with N = 500 masses. The edge
modes are localized only at the one side of the chain due to ”degeneracy”. Also, due to the chiral
symmetry, only the masses that locate at sites with n even or n odd are excited in each case - see
the insets.
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Chapter 2. Localization properties of a disordered dimer chain

2.4 Disorder analysis

A known characteristic of the edge modes is their robustness against disorder that respects the

chiral symmetry [20]. In this Section, we aim to illustrate this robustness. For this, we consider

that the couplings of the chain that is illustrated in Fig. 2.4 are randomly varied. Namely, we

apply disorder. We apply two forms of disorder: the first retains the chiral symmetry of the chain,

while the second form not.

2.4.1 Chiral disorder

We begin with the form of disorder that retains the chiral symmetry of the chain. Meaning that

the dynamical matrix of the finite disordered chain satisfies the anticimmutative relation that is

given in Eq. (2.22). In order for this matrix to satisfy this anticimmutative relation, it must have

the same diagonal elements. However, after a careful look at the dynamical matrix that is given

in Eq. (2.21) – the dynamical matrix in the clean limit (no disorder) – we conclude that we cannot

alter only the two couplings κ1 and κ2 if we want the diagonal terms of the dynamical matrix to be

the same. We have to alter the ground springs κ0 as well (if we restrict ourselves to same masses,

namely disorder only on the stiffnesses).

First of all, we consider that the stiffnesses of the couplings κ1 and κ2 are randomly varied and

are given by

κn →

κ1 + δn = κ1 +W1εn if n is odd

κ2 + δn = κ2 +W2εn if n is even
(2.25)

where εn are random numbers, uniformly distributed in the interval [−1, 1] andW1,2 are the disorder

strengths. In order to keep the chiral symmetry, the ground springs must change in the following

way

κ0
n → κ0 − δn − δn+1. (2.26)

A schematic illustration of this form of disorder is given in Fig. 2.7(a).

The dynamical matrix of this disordered chain is given by

D =
1

m



κ1 + κ2 + κ0 −κ2 − δ2 0 . . .

−κ2 − δ2 κ1 + κ2 + κ0 −κ1 − δ3 0 . . .

0 −κ1 − δ3 κ1 + κ2 + κ0 −κ2 − δ4 . . .

. . .

. . . −κ1 − δN−1 κ1 + κ2 + κ0 −κ2 − δN

. . . 0 −κ2 − δN κ1 + κ2 + κ0


.

(2.27)

Notice that this dynamical matrix obeys the anticimmutative relation that is given in Eq. (2.22),

since its diagonal elements are the same, and is therefore chiral symmetric.
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2.4. Disorder analysis

Figure 2.7: (a) Schematic description of chiral disorder. (b) Eigenfrequencies squared of a chain
with N = 50 masses as a function of the disorder strength W = W2 = 2W1. We set m = 0.01,
κ1 = 1, κ2 = 0.5, κ0 = 5,

In Fig. 2.7(b) we present the eigenfrequencies squared ω2
n of a chain with N = 50 masses,

κ1 = 1, κ2 = 0.5, κ0 = 5. We also set the disorder strengths W1 and W2 at W = W2 = 2W1 (this

choice is based on the fact that κ1/κ2 = 2 in this example). From Fig. 2.7(b) we get that: 1)

the frequencies of the edge modes do not change with increasing the disorder strength 2) all the

eigenfrequencies squared are symmetric with respect to the center of the gap. These two results are

due to the preservation of the chiral symmetry. We note here that we present the eigenfrequencies

squared, since these are the eigenvalues of the dynamical matrix.

2.4.2 Non-correlated disorder

Let us now study the case of non-correlated disorder. In this form of disorder we keep the ground

springs unperturbed (their stiffness is equal to κ0), while we consider that the springs κ1 and

κ2 are perturbed again independently and their stiffnesses are given by Eq. (2.25). A schematic

description of this form of disorder is given in Fig. 2.8(a).

In this case, the dynamical matrix takes the form

D =
1

m

 κ1+κ2+κ0+∆1 −κ2−δ2 0 ...
−κ2−δ2 κ1+κ2+κ0+∆2 −κ1−δ3 0 ...

0 −κ1−δ3 κ1+κ2+κ0 −κ2−δ4 ...
...
... −κ1−δN−1 κ1+κ2+κ0 −κ2−δN
... 0 −κ2−δN κ1+κ2+κ0+∆N

 , (2.28)

where ∆n = δn+δn+1. Notice that diagonal elements of this matrix are not the same and therefore

it does not obey the anticimmutative relation that is given in Eq. (2.22).

In Fig. 2.8(b) we show the eigenfrequencies squared ω2
n of a chain with non-correlated disorder.

The chain consists of N = 50 masses and we set κ1 = 1, κ2 = 0.5, κ0 = 5 and the disorder strengths

at W = W2 = 2W1. Notice that all the eigenfrequencies are affected from this type of disorder.
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Chapter 2. Localization properties of a disordered dimer chain

Figure 2.8: (a) Schematic description of non-correlated disorder. (b) Eigenfrequencies squared
of a chain with N = 50 masses as a function of the disorder strength W = W2 = 2W1. We set
m = 0.01, κ1 = 1, κ2 = 0.5, κ0 = 5,

2.5 Localization properties

In this part, we study the localization length Λ at the mid-gap frequency ω0 for a disordered chain.

We compute the localization length numerically by employing the transfer matrix method. For

that, we rewrite Eq. (2.1) as (
un+1

un

)
= Tn

(
un

un−1

)
, (2.29)

where Tn is the transfer matrix and is given by

Tn =

κn+1 + κn + κ0
n −mω2

0

κn+1

− κn
κn+1

1 0

 . (2.30)

In order to compute the localization length, we calculate the Lyapunov exponents γ1 and γ2 using

the typical numerical schemes that are described in [126]. We found that γ1 ≈ −γ2 = γ. The

localization length is then given by

Λ =
1

γ
. (2.31)

A more detailed discussion regarding the numerical computation of the localization length Λ is

given in Appendix B.

As an illustration, we compute the localization length at the mid gap frequency ω0 of a non-

disordered chain. We set κ1 = 1 and we compute the localization length Λ as we vary the stiffness κ2

from 0.5 to 1.5. The transfer matrix was iterated 106 times. The results are illustrated in Fig. 2.9.

Notice that when κ2 = κ1 = 1 the localization length diverges. This is expected since for κ1 = κ2
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there is no gap at the frequency spectrum. More specifically, for κ1 = κ2 and at the frequency ω0

an extended state exists and thus the assumption of an exponentially localized solution results in

this divergence. We note here that in this clean limit (no disorder) the localization length can be

calculated analytically and is equal to Λ =
2

| ln(κ1/κ2)|
, which matches with the numerical results

that are illustrated in Fig. 2.9.

Figure 2.9: Numerical computation (with the transfer matrix method) of the localization length
at the mid gap frequency ω0.

2.5.1 Chiral disorder

We begin this part by illustrating the numerical results for the case of the chiral disorder. We note

first that in the following we set the disorder strengths W1 and W2 at W = W2 = 2W1. We also

set the stiffness of the coupling κ1 at 1.

We calculate the localization length Λ at the mid-gap frequency, using the transfer matrix

method, for each pair of κ2 and W . The result is shown in Fig. 2.10. We stress here that the

transfer matrix was iterated 106 times at each point of the grid and a numerical method for

correcting the rounding errors was applied (see Appendix B). Clearly, there is a critical line in

the plane (W,κ2) in which the localization length diverges [127]. In the following, in order to

get an insight into this result, we will see the frequency spectrum and the profile of the modes

with frequency ω0 for multiples pairs of (W,κ2). But before that, we will compute the localization

length analytically, since for the chiral disorder this is possible.

We note first that for the case of the chiral disorder we obtain the following solution at ω0

u2m−1 = (−1)m−1

m−1∏
n=1

κ2n

κ2n+1

u1

u2m = (−1)m−1

m−1∏
n=1

κ2n+1

κ2n+2

u2,

(2.32)
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Figure 2.10: Shown here is the localization length for the chiral disorder case, calculated numer-
ically from the transfer matrix method.

where the κn’s are given by Eq. (2.25). Then, assuming an exponential form for these solutions

we obtain that the localization length of these solutions is given by

Λ−1 =

∣∣∣∣∣ lim
m→∞

1

m

m∑
n=1

(ln |κ1 +W1εn| − ln |κ2 +W2ε
′
n|)

∣∣∣∣∣ (2.33)

where εn and ε′n are random numbers, uniformly distributed in the interval [−1, 1]. According to

the ergodic theorem (see ref. [55]) one obtains the following expression for Λ

Λ−1 =

∣∣∣∣∣12
∫ 1

−1
dε
∫ 1

−1
dε′ (ln |κ1 +W1ε| − ln |κ2 +W2ε

′|)
4

∣∣∣∣∣ , (2.34)

where an ensemble average has been used. After performing the integration we get that

Λ−1 =
1

4

∣∣∣∣∣ln
[
|κ1 +W1|(κ1/W1+1)

|κ1 −W1|(κ1/W1−1)

|κ2 −W2|(κ2/W2−1)

|κ2 +W2|(κ2/W2+1)

]∣∣∣∣∣ . (2.35)

In Fig. 2.11 we compare the numerical results with the analytic ones. The blue line shows the

points in the (W,κ2) plane in which the Λ(ω0) diverges (the blue line corresponds to the analytic

expression of Eq. (2.35)). Clearly, the analytic results match perfectly with the numerical ones.
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Figure 2.11: Comparison between the transfer matrix method and the analytic result.

In order to get an insight into the results, we analyze the eigenfrequencies and the center modes

of a chain with N = 500 masses for three sets of W and κ2. The positions of these three sets in the

(W,κ2) plane are shown in Fig. 2.12 with the three crosses: two before and one after the critical

line in which the localization diverges. For each of these three sets we consider one chiral disorder

realization and in Fig. 2.12 we present the eigenfrequencies of the chain and the profiles of the two

center modes.

The panels (a)-(c) of Fig. 2.12 correspond to κ2 = 0.6 and W = 0.25 (indicated with the yellow

cross). Specifically, in the panel (a) we see the eigefrequencies and in the panels (b) and (c) we

see the profiles of the two center modes. Notice that for this set of (W,κ2), we find again a gap at

the frequency spectrum and the two center modes are localized at the edges of the chain. Next,

we increase the disorder strength. The panels (d)-(e) correspond to one disorder realization with

W = 1.25 and κ2 = 0.6 (this set is indicated with the green cross). Notice that the two center

modes are still localized at the edges of the chain. We continue increasing the disorder strength

and the panels (g)-(i) correspond to one disorder realization with W = 2.5 and κ2 = 0.6 (this set

is indicated with the magenta cross). In this case, the two center modes are localized anywhere at

the chain.
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Figure 2.12: (a)-(c) Eigenfrequencies and profile of the two center modes for one disorder
realization under chiral disorder. We set κ1 = 1, κ2 = 0.5 and the disorder strengths at
W = W2 = 2W1 = 0.25. Notice that the two center modes are localized at the edges of the
chain and there is a band gap in the frequency spectrum. (d)-(f) Same as (a)-(c) but we set the
disorder strengths at W = W2 = 2W1 = 1.25. The two center modes are still localized at the edges
of the chain but the gap in the frequency spectrum is closed. (g)-(i) Same as (a)-(c) but we set
the disorder strengths at W = W2 = 2W1 = 2.5. The two center modes are localized at the center
of the chain and the gap in the frequency spectrum is closed.

More insight is provided in Fig. 2.13. Here we show only the profile of the two center modes for

three sets of (W,κ2) that are indicated with the three crosses. In all cases we set κ2 = 1.05 (white

dashed line). In Fig. 2.13(a) and (b) we set W = 0.25, in Fig. 2.13(c) and (d) we set W = 1.25

and finally in Fig. 2.13(e) and (f) we set W = 2.5. Notice that the center modes in the panels

(a), (b), (e) and (f) are localized in the interior of the chain. Yet, in Fig. 2.13(b) and (c) the two

center modes are localized at the edges of the chain.
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Figure 2.13: (a)-(b) Profile of the two center modes for one disorder realization under chiral
disorder. We set κ1 = 1, κ2 = 1.05 and the disorder strengths at W = W2 = 2W1 = 0.25. Notice
that the two center modes are localized at the center of the chain. (c)-(d) Same as (a)-(b) but
we set the disorder strengths at W = W2 = 2W1 = 1.25. Notice that the two center modes are
localized at the edges of the chain. (e)-(f) Same as (a)-(b) but we set the disorder strengths at
W = W2 = 2W1 = 2.5. Notice that the two center modes are localized at the center of the chain
again.

To sum up, in this part we found that there is a critical line in plane (W,κ2) in which the

localization length (calculated at the mid-gap frequency) diverges. This critical line divides the

(W,κ2) in two regions. We found that for pairs of W and κ2 that lie in the ”lower side” region

the center modes are localized at the edges of the chain. But for pairs of W and κ2 that lie

in the ”upper side” region we found that the center modes are localized anywhere in the chain:

strong chiral disorder destroys the topological protection of the center modes. The calculation

of a special topological index, called topological local marker [127], shows that the ”lower side”

region is topologically non-trivial and the ”upper side” region is topologically trivial. Therefore,

the chiral disorder introduces a topological transition from trivial to non-trivial.
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2.5.2 Non-correlated disorder

We discuss now the effect of non-correlated disorder. Namely, we remove the disorder on the

ground springs and in this way we break the chiral symmetry of the system. We begin again by

calculating numerically the localization length (using the transfer matrix method), at the mid-gap

frequency ω0, for each pair of κ2 and W (the transfer matrix was iterated 106 times at each point

of the grid). Once more, we fix the disorder strengths at W = W2 = 2W1 and the stiffness of κ1

at 1. The results are illustrated in Fig. 2.14. Notice that there is no signature of divergence of the

Λ(ω0) in this case. We note here that for the non-correlated disorder case, we cannot find a closed

form expression for the displacements un with n = 1, 2, ..., N as we did for the chiral disorder (see

Eq. (2.35)). Therefore, we cannot compute the localization length analytically this time.

Figure 2.14: Shown here is the localization length for the non-correlated disorder case, computed
numerically from the transfer matrix method.

In Fig. 2.15 we analyze again the eigenfrequencies and the two center eigenmodes of a chain

with N = 500 masses as a function of the disorder strength. We use the same sets of W and κ2

with the ones that we also used in Fig. 2.10. Specifically, in Fig. 2.15(a)-(c) we set κ2 = 0.6 and

W = 0.25. Notice that there is a gap in the frequency spectrum and the two center modes are

localized at the edges of the chain. In Fig. 2.15(d)-(f) we set κ2 = 0.6 and W = 1.25. Notice that

the two center modes are localized in the interior of the chain. This is in contrast with the case

of the chiral disorder. Recall that in that form of disorder, for this set of (W,κ2), the two center

modes were localized at the edges of the chain. Next, we increase the strength of the disorder. We

consider W = 2.5 (and κ2 = 0.6). Notice that the center modes are localized again anywhere in

the chain.
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Figure 2.15: (a)-(c) Eigenfrequencies and profile of the two center modes for one disorder re-
alization under non-correlated disorder. We set κ1 = 1, κ2 = 0.5 and the disorder strengths at
W = W2 = 2W1 = 0.25. Notice that the two center modes are localized at the edges of the chain
and there is a band gap in the frequency spectrum. (d)-(f) Same as (a)-(c) but we set the disorder
strengths at W = W2 = 2W1 = 1.25. The two center modes localized at the center of the chain
and the gap in the frequency spectrum is closed. (g)-(i) Same as (a)-(c) but we set the disorder
strengths at W = W2 = 2W1 = 2.5. The two center modes are localized again at the center of the
chain and the gap in the frequency spectrum is closed.

2.6 Concluding remarks

In this Chapter we have shown that a finite dimer mass-spring chain is chiral symmetric and due

to this symmetry it supports edge modes – modes that are localized at the edges of the chain and

whose frequency lies at the middle of the frequency spectrum. We have considered that such a

dimer chain was disordered and we have explored the impact of chiral disorder (disorder that retains

the chiral symmetry of the chain) and of uncorrelated disorder (disorder that breaks the chiral

symmetry of the chain). Using the transfer matrix method, we calculated the localization length

at the middle of the frequency spectrum and we concluded that a strong chiral disorder can make a

topologically non-trivial chain topologically trivial and vice versa. These conclusions are supported

by the calculation of proper topological indices like the topological local marker [125,127].
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Chapter 3

State transfer in periodic time-varying

mechanical lattices

3.1 Introduction

In Chapter 2, we saw that a finite mass spring chain that consists of an even number of masses,

supports either two edge modes or none, depending on the stiffnesses of the spring couplings.

On the other hand, in a dimer chain with an odd number of masses, one edge mode is always

supported, which is localized either at the left or at the right side of the chain, again depending

on these stiffnesses.

Our goal in this Chapter is to transfer such an edge mode that is always supported in a dimer

chain with an odd number of masses, from the chain’s one end to its other. To accomplish such

a state transfer, we let the spring couplings to vary with time and to exchange values between

the initial and the final times of the transfer process. Furthermore, we use the CRAB optimal

control theory [128, 129] in order to achieve this transfer fast. The results that are presented in

this Chapter are based on ref. [130].

3.2 Finite dimer chain with odd masses

Our model in this chapter is similar to the one of chapter 2. It is again a 1D finite dimer mass-

spring chain. All the masses m are the same and are coupled with each other with alternating

springs of stiffnesses κ1 and κ2. We impose again fixed boundary conditions at both ends of the

chain. However, the chain that we consider here consists of an odd number N of masses (the

chain of chapter 2 consists of an even number of masses) and these masses are not attached to the

ground. For a schematic illustration of such a setup see Fig. 3.1. As we shall see below, this odd

sized chain always supports one edge mode as long as κ1 6= κ2.
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Figure 3.1: Schematic description of a finite dimer chain that consists of an odd number N of
same masses m and alternating springs of stiffnesses κ1 and κ2. Fixed boundary conditions are
used.

3.2.1 Small vibrations

Our goal until the end of this section is to derive the eigenmodes that are supported in this

odd-sized dimer chain. The analysis that we follow is very similar with the corresponding one in

Chapter 2. Namely, we consider small vibrations of this dimer chain and we denote as un with

n = 1, 2, ..., N the displacement of the mass that locates at the site number n of the chain from

its equilibrium position. Instead of writing the equations for these displacements – we wrote these

equations in Chapter 2 – we write here the Lagrangian that describes these small vibrations. This

Lagrangian is given by

L =
1

2
u̇TMu̇− 1

2
uTKq, (3.1)

where we denote again with u the vector of displacements, i.e., u =
(
u1 u2 · · · uN

)
. Also

M = mIN is the mass matrix (IN denotes the identity matrix of size N) and K is the stiffness

matrix 1

K =



κ1 + κ2 −κ2 0 . . .

−κ2 κ1 + κ2 −κ1 0 . . .

0 −κ1 κ1 + κ2 −κ2 . . .

. . .

. . . −κ2 κ1 + κ2 −κ1

. . . 0 −κ1 κ1 + κ2


. (3.2)

Notice that the diagonal elements of the stiffness matrix are the same. Therefore, this stiffness

matrix obeys the anticommutative relation

{K− (κ1 + κ2)IN ,Σz} = 0, (3.3)

1We note at this point that in Chapter 2, instead of the stiffness matrix K, we used the dynamical matrix
D = K/m. However, there is no difference in the analysis to use either the stiffness matrix K or the dynamical
matrix D since the masses m of the chain are the same. We find it more convenient to work with the stiffness
matrix K in this Chapter and therefore we continue our analysis with the use of this matrix.
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where Σz is the matrix

Σz =


1 0 0 0 ··· ··· 0
0 −1 0 0 ··· ··· 0
...

. . .
...

··· ··· 0 1 0 0
0 ··· ··· 0 0 −1 0
0 ··· ··· 0 0 0 1

 . (3.4)

Due to the anticimmutative relation in Eq. (3.3) the system is said to possesses chiral symmetry,

which guarantees the existence of edge modes.

3.2.2 Eigenanalysis

To obtain the eigenfrequencies and the eigenmodes of the chain, we follow the same procedure with

the one that we followed in Chapter 2. Namely, we substitute solutions of the form u(t) = ueiωt

in the Euler-Lagrange equations of the Lagrangian that is given in Eq. (3.1) and we find that

ω2
nun = Kun, where ωn are the eigenfrequencies and un are the eigenmodes of the chain, with

n = 1, 2, ..., N .

In Fig. 3.2 we present an example. We use a chain that consists of N = 21 masses. We set the

mass m = 1 in arbitrary units m̄. We also keep the quantity κ1 + κ2 constant and equal to 4 in

arbitrary units κ̄ and we present the eigenfrequencies ωn as a function of κ2 − κ1. Notice that for

κ1 6= κ2 we find one mode whose frequency lies in the band gap. This mode is the edge mode. Its

eigenfrequency is found explicitly in semi-infinite chains using the transfer method approach and

is equal to

ω̃ =

√
κ1 + κ2

m
, (3.5)

(hereafter, every variable or parameter with a tilde, corresponds to the edge mode (n = (N+1)/2)).

This mode is localized at either one of the two edges of the chain and decays exponentially with

Figure 3.2: (a) Eigenfrequencies ωi as a function of κ2 − κ1 keeping κ1 + κ2 = 4 of a chain with
N = 21 masses. (b) When κ1 > κ2 the edge mode is localized at the left side of the chain while
when (c) κ1 < κ2 it is localized at the right side.
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increasing distance from the edge. Specifically, when κ1 > κ2 this mode is localized in the left side

of the chain, while when κ1 < κ2 it is localized in the other side. In Fig. (b) and (c) we present

the profile of the edge mode for (a) κ1 = 3κ2 and for (b) κ2 = 3κ1.

3.3 Basics for state transfer

Our goal is to transfer a localized mode from the one side of the chain to the other. Our initial

mode will be a localized edge mode at the left side of the chain, as the one that we see in Fig. 3.2(b).

Our target mode will be a right localized edge mode, as the one that we see in Fig. 3.2(c). To

accomplish such a transfer we will let the spring stiffnesses to vary with time and to exchange

values between the initial time t = 0 and a final time t = T

κ1(0) = κ2(T ) , κ2(0) = κ1(T ). (3.6)

We aim to accomplish the transfer fast, namely to minimize the time T needed for the initial mode

to reach the target one. In order to conclude whether the state transfer has been achieved we need

a proper measure. We call this measure fidelity and we will define it via the energy flow in the

chain.

3.3.1 Energy

From now on we assume that the couplings of the chain vary with time, meaning that the stiffness

matrix is time-dependent K = K(t). Therefore, the system is non conservative and the energy is

not constant. The energy of the chain is given by the Hamiltonian, which in turn is given by a

Legendre transformation of the Langrangian that is given in Eq. (3.1)

H(q,p, t) =
1

2

(
pTp+ uTK(t)u

)
(3.7)

where pn ≡ ∂L/∂u̇n is the nth element of the conjugate momentum.

Notice that the stiffness matrix K(t) that is given in Eq. (3.7) is positive symmetric. Thus, it can

be diagonalized by an orthogonal matrix which is composed by the instantaneous eigenvectors qn(t)

of K(t). We denote this orthogonal matrix as A(t). Therefore, it holds that A(t)TK(t)A(t) = ∆(t)

where ∆(t) = diag (ω2
1(t), ..., ω2

N(t)) is the diagonal matrix with elements the eigenvalues of the

stiffness matrix, i.e., the instantaneous eigenfrequencies squared.

With the use of the matrix A(t) we change variables now. We consider the transformation

(u,p)→ (Q,P ) with

Q = A(t)Tu,P = A(t)Tp. (3.8)
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The Hamiltonian that is given in Eq. (3.7) is written in these new variables as

H =
1

2
(P TP +QT∆(t)Q). (3.9)

Therefore, the total energy of the chain is written as the sum

E(t) =
N∑
n=1

En(t) =
N∑
n=1

(
Pn

2

2m
+

1

2
mωn(t)2Q2

n

)
. (3.10)

where Ei(t) is the instantaneous energy of each one of the N eigenmodes.

The variable change that is given in Eq. (3.8) is canonical and the generating function of this

transformation is given by

F (p,Q, t) = −pTA(t)Q. (3.11)

Therefore, the Hamiltonian H′(Q,P , t) that describes the system’s dynamics in terms of the new

variables Q, P and the time t reads

H′(Q,P , t) =
1

2

(
P TP +QT∆(t)Q

)
− P TA(t)T Ȧ(t)Q. (3.12)

Notice that the first two terms of H′ can be written as a sum of N independent Hamiltonians of

harmonic oscillators. Excitations between different modes can take place due to the last term of

H′. This is because this term contains the matrix A(t)T Ȧ(t) which is not diagonal. Yet, when the

system’s parameters change slowly in time - the process is adiabatic - then excitations between

different modes do not take place since Ȧ(t) is small.

Before closing this part, we note that the Hamiltonian H that is given in Eq. (3.9) describes

the instantaneous total energy of the chain, while the Hamiltonian H′ that is given in Eq. (3.12)

governs the dynamics of the variables Q and P .

3.3.2 Fidelity

We are ready to define a fidelity for the transferring process at this point. First, we introduce

a quantity that measures how much of the total energy of the chain is distributed at the mode

number n (n = 1, 2, ..., N) at time t. This measure is given by

Cn(t) =
En(t)

E(t)
. (3.13)

namely it is the ratio of the instantaneous energy of the mode number n and of the total energy

of the chain.

For the definition of the fidelity we will use the quantity Cn(t) of the edge mode – corresponding
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to index n = N+1
2

– at final time T , namely we will use the quantity

F = C̃(T ) =
Ẽ(T )

E(T )
. (3.14)

Notice that the quantity F measures how much of the final energy of the chain is stored in the

target edge mode. If this quantity is one that means that all of the energy of the chain at time T

is stored in the target edge mode and therefore the transfer is perfect. Yet, the quantity F does

not take into account the initial mode.

The initial edge mode is an oscillating mode, with period of oscillation T̃ = 2π/ω̃. We may

choose any initial phase φ0 of this oscillation in order to determine the initial conditions, i.e., initial

displacements and velocities. The quantity F depends on the initial phase φ0 and therefore it is

not a good measure for deciding if the initial edge mode has reached the target mode, since it

could have a large value for some initial phase and a low value for some other φ0. For this reason

we consider the initial phase as a free parameter ranging from [0, 2π) and we define as fidelity the

following quantity

Fidelity = F = min
φ0

F. (3.15)

Using as fidelity the minimum of F over φ0 we can be sure that the transfer has been achieved

with a certain target fidelity regardless of the initial conditions.

3.3.3 Adiabatic invariant

If we let the couplings to vary slowly with time so that the transfer process is done adiabatically,

then the initial edge mode reaches the target edge mode without exciting other modes (the bulk

modes) at any time t ∈ [0, T ]. However, if the transfer process is done beyond the adiabatic

limit, then there will be excitations to instantaneous bulk modes, namely En(t) 6= 0 for t > 0 and

n 6= N+1
2

. In order to track the degree of adiabaticity of the process we use the adiabatic invariant

of a system of N -coupled time-varying harmonic oscillators that is given by [131]

I(t) =
∑
n

En(t)

ωn(t)
. (3.16)

In the general case, I(t) oscillates and is not exactly invariant. In order for I(t) to be considered an

adiabatic invariant (and thus the process adiabatic), it must vary more slowly than the parameters

vary (in our case κ1 and κ2).
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3.4 Transfer protocols

Our goal in this part, is to find control schemes for the two couplings κ1(t) and κ2(t) that result

in a fast transfer (minimize the total time T ) of the edge mode across the chain. First of all, when

the total time T is finite, then nonadiabatic excitations will appear in our system and it is not

possible to have perfect transfer, namely fidelity F = 1. Therefore, we have to set an acceptable

lower bound for F that ensures almost perfect state transfer [132]. We choose Ftarget = 99% and

we consider that the transfer is successful when F > Ftarget. In Appendix C we show, using the

WKB method [118], that if the two couplings κ1,2(t) change slowly with time so that the transfer

is done adiabatically, then the initial mode is transferred to the target mode with fidelity 1.

For all the cases that we consider in the following, we use a chain that consists of N = 21

masses and we set the initial/final stiffness values at κ1(0) = κ2(T ) = 3 and κ2(0) = κ1(T ) = 1 in

arbitrary units of κ0, which without loss of generality we set at κ0 = 1. We also set the values of

the masses at m = 1 in arbitrary units m̄.

3.4.1 Constrained protocols

We begin our analysis by studying control schemes which can all be written in the form

κ1(t) = κ+ + κ−f(t) , κ2(t) = κ+ − κ−f(t), (3.17)

where κ+ = κ1(0)+κ2(0)
2

and κ− = κ1(0)−κ2(0)
2

. Notice that these protocols keep the eigenfrequency of

the edge mode constant during the whole time of the process since for every t, κ(t) = κ1(t) +κ2(t)

is constant and equal to κ1(0) + κ2(0)
(

recall that ω̃(t) =
√
κ1(t) + κ2(t)

)
.

Trigonometric protocol

As a first step, we consider that the function f(t) is the trigonometric function,

f(t) = cos

(
πt

T

)
. (3.18)

This control scheme is shown in Fig. 3.3(a). In Fig. 3.3(b) we present the corresponding fidelity F
of this scheme as a function of the final time of the process T . Clearly, F increases smoothly with

T and approaches unity as T →∞, while it reaches the target fidelity at Ttrig = 297. Furthermore,

in Fig. 3.3(c) we present the instantaneous eigenfrequencies ωn as a function of the time. Notice

that the frequency of the edge mode (indicated with the red line) is constant at all times.

The time Ttrig = 297 that is required so that the transfer is successful is almost two or-

ders of magnitude longer than the period of oscillation of the initial (and target) edge mode(
Ttrig � T̃ = 2π

ω̃
= π

)
. This implies that the protocol is nearly adiabatic. To justify this further
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Figure 3.3: (a) κ1(t) and κ2(t) for the trigonometric protocol. (b) F(T ) for this scheme. (c)
Eigenfrequencies ωi. (d) Instantaneous energy of each mode Ei(t) (e) Adiabatic invariant I(t). (f)
Time evolution of the absolute value of the particle displacements. In panels (d)-(f) we set the
initial phase φ0 at zero.

we present in Fig. 3.3(d) the instantaneous energies En(t) of all of the N modes and in Fig. 3.3(e)

the adiabatic invariant I(t). In both cases we set the initial phase at zero, φ0 = 0, meaning that

initially all the masses have zero velocities and maximum displacements from their equilibrium po-

sitions. From Fig. 3.3(d) we observe very limited excitations to bulk modes (the purple shows the

instantaneous energy of the edge mode). From Fig. 3.3(e) we get that the adiabatic invariant shows

small oscillations and vanishing deviation from the initial value I(0) = 1. Finally, in Fig. 3.3(f) we

show the spatio-temporal evolution of the absolute value of the mass displacements. Again we set

the initial phase at zero. With the evolution at a final time 2T , with κ1,2(T ≤ t ≤ 2T ) = κ1,2(T ),

we verify that the edge mode remains localized at the other side of the chain, after reaching the

target mode at time Ttrig.

Linear protocol

We now modify the way that the couplings change in time. We consider that the function f(t)

varies linearly with time,

f(t) = 1− 2
t

T
. (3.19)
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Figure 3.4: (a) κ1(t) and κ2(t) for the linear protocol. (b) F(T ) for this scheme.

We present this control scheme in Fig. 3.4(a). In Fig. 3.4(b) we illustrate the corresponding

fidelity. This protocol has smoothly increasing fidelity with T and reaches F > 99% for total time

Tlinear = 192.

Notice that the linear function approaches to and departs from the closed gap point, namely at

the point where κ1 = κ2, at the same rate. On the contrary, the trigonometric function is slower in

the beginning (and in the end) when the gap is very open and fast when it approaches the closed

gap point. The higher speed of the linear protocol, compared to the trigonometric one, could mean

that protocols that reach the closed gap point faster may reach the desired fidelity at a shorter

time. We continue our study along this line and in the following we study a control scheme that

approaches the closed gap point faster than the linear protocol.

Tangential protocol

We consider that the control function f(t) is given by

f(t) =
tan(πt/Tf + α)

tanα
(3.20)

where Tf = πT
2π−2α

and α ∈ (π/2, π) is a free parameter. We search for the value of α that results

in a fidelity F that reaches its target value (99%) at the shortest possible final time T . We find

that the desired value of α is π/2 + 0.4.2 We present this control scheme for this value of α in

Fig. 3.5(a). Furthermore, we get that for α = π/2+0.4, the fidelity reaches its target value at time

Ttan = 89. The corresponding fidelity of this scheme as a function of the final time T is illustrated

in Fig. 3.5(b).

In Fig. 3.5(c) we present the instantaneous energies En(t) of the modes, for φ0 = 0. From this

2For the derivation of this value of α we use the CRAB optimal control method that we mention at the beginning
of this chapter.
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Figure 3.5: (a) κ1(t) and κ2(t) for the optimal tangential protocol. (b) F(T ) for this scheme. (c)
Instantaneous energy of each mode, Ei(t) (d) Adiabatic invariant I(t).

figure we get that this optimal tangential protocol has a bit higher bulk mode excitations than

the trigonometric one. Moreover, the adiabatic invariant of this scheme (see Fig. 3.5(d)) - it is

calculated again for φ0 = 0 - shows also a bit higher oscillations that the trigonometric protocol.

Therefore, we conclude that this optimal tangential protocol is a less adiabatic protocol than the

trigonometric one.

Up to now, we have studied three protocols and our conclusion is that the protocol that

approaches the closed gap point faster (the optimal tangential), is the one that speeds up the

energy transfer. This observation drives us to study an extreme case. We study the control

scheme that is illustrated in Fig. 3.6(a), where the function f(t) is almost a step function. This

function f(t) is given from Eq. (3.20) by setting α = π/2 + 0.001. In Fig. 3.6(b) we present the

corresponding fidelity of this control scheme. Clearly, this fidelity does not reach high values and

oscillates strongly. Furthermore, in Fig. 3.6(c) we present the spatio-temporal evolution at the final

time T = 89, i.e., at the final time that the previous control scheme reaches the target fidelity.

Clearly, the initial edge mode does not reach the target one.

The step protocol does not improve the transfer due to the following reason: Even though

this protocol approaches directly the closed gap point, it stays longer at its vicinity where the

probability of nonadiabatic excitations becomes higher. However, the probability of nonadiabatic

excitations becomes higher at the vicinity of the closed gap point. These observations indicate

the following: there is no trivial simple process that can reach high fidelity at vanishing time. On
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Figure 3.6: (a) κ1(t) and κ2(t) for the step protocol. (b) F(T ) for this scheme. (c) Time evolution
of the absolute value of the particle displacements.

the opposite, as we deviate from adiabaticity the handling of the energy flow is very subtle. This

requires to search for optimal solutions.

3.4.2 Non-constrained protocols

All the protocols that we have studied so far, keep the frequency of the edge mode constant during

the whole time of the process. In this part, we raise this constraint in order to get more transfer

speed (if it is possible). We also use the CRAB optimal control method [128,129].

3-step protocol

The first control scheme that we study and that does not keep the frequency of the edge mode

constant during the transfer process, is illustrated in Fig. 3.7(a). We call this protocol as 3-step

protocol since it consists of 3 time intervals. In the first time interval (we denote its length as

∆t1) the stiffness of the coupling κ1 is constant and equal to its initial value, while the stiffness of

the coupling κ2 increases linearly up to the value of κ1(0). In the second time interval ∆t2, both

coupling stiffnesses are constant at their maximum value κ1(0). Finally, in the third time interval

∆t3 the stiffness of the coupling κ1 drops to the value of κ2(0), while the stiffness of the coupling

κ2 remains constant and equal to κ1(0).

If we impose the mirror condition κ2(t) = κ1(T − t), then there is only one free parameter.

This free parameter is the length of the first/third time interval. We search for the optimal value

of this time interval, i.e., the value of ∆t1(= ∆t3) for which the fidelity reaches the target value

99% at the minimum final time T . We find that the fidelity reaches the value F > 99% at time

T3-step = 39 when the first/third time intervals have length ∆t1 = ∆t3 = 0.4T3-step. We present the

fidelity as a function of the final time T in Fig. 3.7(b). Opposite to the previous protocols, the

fidelity is fluctuating in this case (in all the protocols that we have studied so far – apart from the

step protocol – the fidelity is close to 1 for final times T larger than 300).
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Figure 3.7: (a)-(e): Same as Fig. 3.3 but for the 3-step protocol.

In Fig. 3.7(c) we present the instantaneous eigenfrequencies ωn as a function of the time t.

Notice that the instantaneous frequency of the edge mode ω̃(t) is shifted up and down and its

mean value ω̃mean is higher than its initial/final value. Therefore, the time scales which may be

considered inverse proportional to ω̃mean effectively decrease and this is why the transfer gets faster

in this case.

In Fig. 3.7(d) we show the instantaneous energies En of the modes. Clearly, these increase and

decrease substantially during the time intervals ∆t1 and ∆t2. Finally, in Fig. 3.7(e) we present

adiabatic invariant I(t). Notice that it shows rather larger oscillations, compared to previous

protocols, during the time intervals ∆t1 and ∆t2.

We close our analysis for the 3-step protocol with the following comment: We lifted the mirror

symmetry condition κ2(t) = κ1(T − t) and we searched again for the optimal values of the free

parameters (the free parameters are two in this case). The optimization procedure returned values

for these parameters that render back the mirror symmetry. Namely, the parameters and the

results were the same with the ones that we got when we imposed the mirror symmetry.

3-step up protocol

The 3-step up protocol revealed that if we take the value of ω̃mean to be larger than ω̃(0) = ω̃(T ),

then the state transfer is becoming faster. A natural step towards this direction is to increase

further the value of ω̃mean. This is accomplished with the protocol that we study here and which is

illustrated in Fig. 3.8(a). We call this protocol as 3-step up for evident reasons: It is similar with
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Chapter 3. State transfer in periodic time-varying mechanical lattices

Figure 3.8: (a)-(e): Same as Fig. 3.3 but for the 3-step up protocol.

the 3-step protocol with the difference that in the time interval ∆t2 the values of the stiffnesses

are equal to κmax = 30.3

In this case, we do not impose the mirror symmetry κ2(t) = κ1(T − t) from the beginning.

Therefore, we have 4 free parameters. Two time intervals for the coupling κ1 (for example the ∆t1

and the ∆t3) and two time intervals for the coupling κ2. The optimization procedure returned

the following optimal values: The coupling κ1 is constant (and equal to κmax = 30) at the time

interval [0.138T, 0.546T ] and the coupling κ2 is constant and equal to κmax = 30 at the time

interval [0.454T, 0.862]. From these values we get that the optimization procedure rendered back

again the mirror symmetry κ2(t) = κ1(T − t) (this is also evident from Fig. 3.8(a)). For these

optimal values, the fidelity reaches the target value 99% at time T3-step up = 22 which is another

significant reduction compared to the 3-step protocol. We present the fidelity as a function of the

final time in Fig. 3.8(b).

This gain in the transfer speed is explained from the evolution of the eigenfrequencies ωn. These

are illustrated in Fig. 3.8(c). The eigenfrequencies change substantially here and clearly the mean

value of ω̃(t) is much larger, compared to the 3-step protocol. Finally, in Fig. 3.8(d) and (e) we

present the instantaneous energies En and the adiabatic invariant I(t) as a function of the time t.

These two panels suggest that this protocol is the most non-adiabatic compared to all others we

have examined so far.

3Notice that in the 3-step protocol the corresponding maximum value of the stiffnesses was κmax = 3.
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3-step & 3-step up cubic protocols

We can gain more transfer speed by considering control schemes that include more parameters.

For instance, the couplings κ1 and κ2 in the 3-step and in the 3-step up protocols are linear

functions and have different linear forms in three time intervals. We build the cubic analogues

of these protocols, which we call 3-step cubic and 3-step up cubic protocols. In this protocols,

the couplings κ1 and κ2 are cubic polynomials and have different forms in three time intervals.

Moreover, the difference between the 3-step cubic and the 3-step up cubic is that in the former

case the values of κ1(t) and κ2(t) cannot exceed the value κ1(0) = κ2(T ).

The coefficients of these polynomials and the time intervals are found again with an optimization

procedure. The results are illustrated in Fig. 3.9. Notice that the 3-step cubic protocol reaches

the fidelity F > 99% at total time T3-step cubic = 35 (recall that T3-step = 39). The 3-step cubic up

protocol reaches the target fidelity at total time T3-step cubic up = 12 (recall that T3-step up = 22).

Figure 3.9: (a) κ1,2(t) for the 3-step cubic protocol. (b) Corresponding κ1,2(t) for the 3-step up
cubic protocol.

3.4.3 Disorder analysis

In this part, we apply disorder at some of the protocols that we studied before. The protocols that

we will examine in the presence of disorder are: the trigonometric, the tangential, the 3-step, and

the 3-step up protocols. We consider a form of disorder that affects only the initial stiffness values

κn(0)→ κn(0) (1 + ηwn) , n = 1, ..., N + 1 (3.21)

with η = 0.2 and wn ∈ [−1, 1] a random number that is uniformly distributed.

We set the initial phase at φ0 = 0 and we calculate the quantity F (φ0 = 0) for each disorder

realization. Also, for each protocol we evolve the system at the corresponding final times that the

fidelity reaches its target value, namely at T = 297 for the trigonometric protocol, at T = 89 for

the tangential protocol, at T = 39 for the 3-step protocol and at T = 22 for the 3-step up protocol.

In Fig. 3.10 we present the statistical distribution of F (φ0) = 0 out of 105 disorder realizations.
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Chapter 3. State transfer in periodic time-varying mechanical lattices

Figure 3.10: Shown is the statistical distribution of F (φ0 = 0) out of 105 realizations of disorder
for the (a) Trigonometric (b) Tangential (c) 3-step and (d) 3-step up protocol.

Clearly, the trigonometric protocol is more robust than the tangential and the 3-step protocol.

But the 3-step up is even more robust than the trigonometric. This is attributed to the fact that

the edge mode remains well separated from the bulk modes throughout the process.

To shed more light, we present in Fig. 3.11(a) and (b) the instantaneous eigenfrequencies of

the tangential protocol for two different disorder realizations. In Fig. 3.11(a) the fidelity remains

high after the application of disorder while in Fig. 3.11(b) the fidelity drops with the application

of disorder. Similarly, in Fig. 3.11(c) and (d) we present the instantaneous eigenfrequencies of

the 3-step protocol when the fidelity remains high with the application of disorder (panel (c))

Figure 3.11: Instantaneous eigenfrequencies ωi as a function of time t after the application of
disorder for (a) the tangential protocol and when the fidelity remains high (b) the tangential
protocol and when the fidelity drops (c) the 3-step protocol and when the fidelity remains high (d)
3-step protocol and when the fidelity drops.
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and when the fidelity drops with the application of disorder (panel (d)). Notice that the fidelity

remains high after the application of disorder, when the band gap is sufficiently open and the

eigenfrequency of the edge mode is separated from the bands. On the contrary, the fidelity drops

with the application of disorder, when the frequency of the edge mode approaches the two bands,

since the bulk modes are strongly excited in this case.

3.5 Energy amplification

As we noted before, when the couplings of the chain change with time, the system is non-

conservative. Meaning that the energy that is stored in the chain after time T could be higher/lower

than the energy that is initially stored. Similarly, the final energy of the final edge mode (right

localized) can exceed the energy of the initial edge mode (left localized).4 Therefore, we define a

quantity that measures this energy amplification of the edge mode. It is given by

A =
Ẽ(T )

Ẽ(0)
=
Ẽ(T )

E(0)
. (3.22)

In Fig. 3.12 we show the quantity A as a function of the initial phase φ0 for the 3-step up protocol

(the final time is T = 22 - the fidelity is above 99%). Notice that A > 1 for various values of φ0

and therefore the initial edge mode is transferred across the chain and is simultaneously amplified.

Moreover, A could be less than 1 for certain other values of φ0, meaning that the transferred mode

is disamplified. As a final remark, we note here that when the transfer is done adiabatically (which

is not the case for the 3-step up protocol), then the initial mode is transferred to the target one

without being amplified. We prove this in Appendic C, using the WKB method.

Figure 3.12: (a) Amplification A as a function of the initial phase φ0 for the 3-step up protocol.

4Notice that the energy that is given at the start of the process to the initial edge mode is also the total energy
that is given to the system initially, since no other modes are excited at t = 0. Therefore, Ẽ(0) = E(0).
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3.6 Concluding remarks

Figure 3.13: Amplification A as a function

of κmax for the 3-step up protocol.

We have shown in this Chapter how to achieve a fast

and robust transfer in a mechanical chain. Due to

the absence of unitarity in the classical system that

we studied, the transferred mode can be either am-

plified or disamplified, according to the initial’s edge

mode phase of oscillation φ0. As a closing remark,

we note that the phase φ0 is not the only parameter

that results in amplification/disamplification. For

instance, in Fig. 3.13 is shown the quantity A as a

function of κmax for the 3-step up protocol (we set

φ0 = 0). Notice that we can get A > 1 (amplifica-

tion) or A < 1 (disamplification) with an appropri-

ate choice of the bound κmax.
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Chapter 4

Transient amplification for the Mathieu

equation without parametric instability

4.1 Introduction

In Chapter 3, we encountered the phenomenon of amplification in a time-varying platform. We

are interested to investigate this phenomenon further. To achieve this, we will employ the well

known Mathieu equation [1, 115] since it occurs naturally when we consider wave propagation in

an infinite medium that is periodically modulated in time [116,117].

The Mathieu equation is among the well studied equations in physics [1,109,115,118,133–135]

and it is known to lead to parametric instability in some regions of its parameter space. However,

it has been reported that even the stable solutions of the Mathieu equation can be transiently

amplified [136].

In this Chapter, we explore the transient effects and the global maximum amplification of the

stable solutions of the Mathieu equation. To do so we use several quantities of the ε-psudospectrum

[110] of the monodromy matrix – the matrix that propagates the initial conditions over one period

– and we demonstrate that is the degree of non-normality of this matrix [112] that determines the

global amplifying features.

4.2 Wave propagation in Floquet media

To start this part, we follow ref. [116, 117] and we consider the wave propagation in a one dimen-

sional infinite medium that is governed by the following wave equation
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∂2ψ(x, t)

∂t2
=
[
δ̃ − 2q̃ cos(Ωt)

] ∂2ψ(x, t)

∂x2
(4.1)

where δ̃, q̃ and Ω are constants. In order to solve Eq. (4.1) we apply the method of separation of

variables. That is, we assume that the solution ψ(x, t) is written in the form ψ(x, t) = f(t)h(x)

and by substituting this form into Eq. (4.1) we arrive at the following set of ODE’s for f(t) and

h(x)

d2h(x)

dx2
+ k2h(x) = 0 (4.2)

d2f(t)

dt2
+ k2

[
δ̃ − 2q̃ cos(Ωt)

]
f(t) = 0 (4.3)

where k is the real wave number of the wave. From Eq. (4.2) we get that h(x) has the form

h(x) ∼ e±ikx. To get an insight into the function f(t), first we rescale the time as τ = Ωt/2 and

then we set δ = 4k2δ̃/Ω2, q = 4k2q̃/Ω2 (we should keep in mind that the parameters δ and q are

related with the wave number k). After this, Eq. (4.3) drops to the usual form of the Mathieu

equation, that is

f̈ + [δ − 2q cos(2τ)] f = 0 (4.4)

where dot represents differentiation with respect to the time τ .

4.2.1 Unstable and stable solutions of the Mathieu equation

The Mathieu equation contains both stable and unstable solutions according to the values of the

parameters δ and q. For an illustration, we present in Fig. 4.1 the evolution of the function f(τ)

for two different sets of parameters (δ, q). We indicate the set of (δ, q) that is used in Fig. 4.1(a)

with an orange rectangle and the corresponding set of (δ, q) that is used in Fig. 4.1(b) with a green

rectangle. Also, in both cases, we used as initial conditions: f(0) = 0 and ḟ(0) = 1.

Clearly, the set of (δ, q) that is used in Fig. 4.1(a) leads to an unstable solution f(τ) and

in particular f(τ) grows exponentially with time. On the contrary, in Fig. 4.1(b) we used a set

of parameters (δ, q) that leads to a stable f(τ): the solution f(τ) is oscillating in time and is

transiently amplified.

In the next part, we are interested in understanding and quantifying the transient amplification

that stable solutions can exhibit. For that, we will show first the regions in the (δ, q) plane that

correspond to the stable solutions of Eq. (4.4), essentially, the stable regions of the stability chart

of the Mathieu equation.
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4.2. Wave propagation in Floquet media

Figure 4.1: Evolution of the function f(τ) that is a solution of the Mathieu equation for the
initial conditions f(0) = 0 and ḟ(0) = 1 and for the set of parameters (a) q = 0.4578, δ = 3q and
(b) q = 0.5072, δ = 3q.

4.2.2 Review of Mathieu equation

We write first the Mathieu equation as a system of two linear differential equations

η̇(τ) = A(τ)η(τ), (4.5)

with η(τ) =

(
f(τ)

ḟ(τ)

)
and A(τ) =

(
0 1

−(δ − 2q cos(2τ)) 0

)
. The general solution of Eq. (4.5) is

written in the form

η(t) = Ψ(τ, τ0)η(τ0), (4.6)

where the vector η(τ0) contains the initial conditions f(τ0) and ḟ(τ0) and the matrix Ψ(τ, τ0) is

called principal matrix solution and it solves the matrix valued problem dΨ(τ,τ0)
dτ

= A(τ)Ψ(τ, τ0)

with Ψ(τ0, τ0) = I (see for example ref. [109]). In order to calculate the elements of the principal

matrix solution for any set of times τ and τ0, we have to evolve the initial conditions η1(τ0) =(
f1(τ0)

ḟ1(τ0)

)
=

(
1

0

)
and η2(τ0) =

(
f2(τ0)

ḟ2(τ0)

)
=

(
0

1

)
forward in time. The principal matrix solution

is then given by Ψ(τ, τ0) =

(
f1(τ) f2(τ)

ḟ1(τ) ḟ2(τ)

)
. For the case of the Mathieu equation, we calculate

f1(τ), ḟ1(τ) and f2(τ), ḟ2(τ) by solving Eq. (4.4) numerically, since there is no analytical solution.

The analysis for the derivation of the principal matrix solution that we discuss here applies to

any system of nonautonomous linear ordinary differential equations that is written in the form

η̇(τ) = A(τ)η(τ). However, when the matrix A(τ) is a periodic one, then we can apply the

Floquet theory and derive the stability of the solutions as we show next.
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Notice that for the Mathieu equation the matrix A(τ) is π-periodic, i.e., A(τ + π) = A(τ).

The Floquet theory states that the stability of the solutions is derived by the eigenvalues of

the principal matrix that is evaluated over one period, namely by the eigenvalues of the matrix

Ψ(τ0 + π, τ0). The matrix Ψ(τ0 + π, τ0) is called the monodromy matrix. The eigenvalues of the

monodromy matrix are commonly known as Floquet multipliers. We denote the Floquet multipliers

as λ±. From Liouville’s formula det [Ψ(τ0 + π, τ0)] = exp
[∫ τ0+π

τ0
Tr (A(s)) ds

]
[109] we get that

the determinant of the monodromy matrix is 1 and therefore the Floquet multipliers satisfy the

relation λ+λ− = 1. When |λ±| = 1, then the Floquet multipliers are restricted to lie in the unit

circle in the complex plane and are complex conjugates. In that case the solutions of the Mathieu

equation are stable. When |λ±| 6= 1 then the Floquet multipliers lie in the real axis in the complex

plane and in that case the solutions of the Mathieu equation are unstable and grow exponentially

with time. We note here that the Floquet multipliers do not depend on the initial time τ0. This is

because the matrices Ψ(π+ τ1, τ1) and Ψ(π+ τ2, τ2) are similar and therefore they share the same

eigenvalues [109].

In Fig. 4.2 we present the norm of the Floquet multipliers for each pair of the parameters δ and

q. In the red region of this chart |λ±| = 1 and therefore the solutions of the Mathieu equation are

stable for these pairs of (δ, q). In the blue region |λ±| 6= 1 and therefore this area corresponds to

exponentially growing solutions. In the boundary between these two areas, both the eigenvalues

and the eigenvectors of the monodromy matrix coalescence. Therefore, the boundary between the

stable and the unstable region corresponds to exceptional points and in the most general case the

solutions grow linearly with time [115]. This plot is known as the stability chart of the Mathieu

equation [1,115]. For reasons that will get clear in the following, we also show in the stability chart

the line δ = 3|q| with black solid line. In this line, the orange and green rectangular indicate the

sets of (δ, q) that were used in Fig. 4.1(a) and (b) respectively.

More generally, the Floquet theory states that the principal matrix solution is written in the

form [109]

Ψ(τ, τ0) = P̃(τ, τ0)eB̃(τ0)(τ−τ0), (4.7)

where the matrix B̃(τ0) depends only on the initial time τ0 and the matrix P̃(τ, τ0) is periodic

on both times τ and τ0, having the same period with the matrix A(τ) (this period is π for the

Mathieu equation). The eigenvalues of the matrix B̃(τ0) are related with the eigenvalues of the

monodromy matrix – the Floquet multipliers λ± – through the relation [109]

γ± =
1

π
ln(λ±). (4.8)

The eigenvalues γ± are referred as Floquet exponents. Moreover, since λ+λ− = 1, it follows that

γ+ + γ− = 0 mod 2πi. In the stable region the Floquet exponents are purely imaginary and

therefore we set γ± = ±iγ with γ a real parameter. In Fig. 4.2(b) we present the exponent γ along
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Figure 4.2: (a) Shown here is the norm of the eigenvalues λ± of the monodromy matrix as a
function of the parameters δ and q. Also shown is the cut δ = 3|q|. (b) Floquet exponent for the
stable solutions as the line δ = 3|q| is scanned.

the cut δ = 3q. This is a Floquet spectrum [137]. The bands correspond to the stable regions and

the gaps to the unstable ones. We note here that the set of parameters that is used in Fig. 4.1(b)

and is indicated with the green rectangular, results in a Floquet exponent γ equal to 0.9.

4.3 Measuring the transient amplification

In this part we will elaborate on the transient amplification that a stable solution (as the one that

is shown in Fig. 4.1(b) - indicated with the green rectangular) can exhibit. One of our goals is

to introduce a measure that quantifies this transient amplification. This is done in the first two

subsections of this part.

The transient amplification cannot be captured by the Floquet multipliers (Floquet exponents)

since they have norm one (they are purely imaginary) in the stable region of the stability chart.

These eigenvalues determine the large time limit and fail to predict any transient effects. One of the

tools that was developed in order to capture such transient effects is the ε-pseudospectrum [110].

To that end, we will study the ε-pseudospectrum of the monodromy matrix.

It is known that transient effects and non-normal dynamics are due to the non-normality of the

matrix that propagates the initial conditions forward in time [110,138]. A non-normal matrix has

non orthogonal eigenvectors and this non-orthogonality can result to transient effects [112]. There

are quantities - related with the ε-pseudospectrum - like the Kreiss constant and the Petermann
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Chapter 4. Transient amplification for the Mathieu equation without parametric instability

factors [139] that indicate the non-normality of a matrix. For this reason, we will study these

quantities as well.

4.3.1 Choice of variables

For reasons that will get clear in the following, we change variables at this point. We consider the

transformation (f, ḟ)→ (F,G) with

F (τ) = f(τ)
√
ω(τ) , G(τ) = ḟ(τ)/

√
ω(τ). (4.9)

and ω2(τ) = δ − 2q cos(2τ) (see Eq. (4.4)). This transformation is illuminated when we consider

the WKB limit of Eq. (4.3), that is when ω(τ) varies slowly with time, Ω << ω. The solution of

Eq. (4.3) in the WKB limit is given by f(τ) = e±i
∫ τ
0 ω(r)dr [118] and is predicting amplification.

Yet, by choosing the variables in Eq. (4.9) we cancel this adiabatic effect: in the WKB limit the

norm of the vector ξ(τ) =

(
F (τ)

G(τ)

)
, i.e., ||ξ(τ)|| =

√
|F (τ)|2 + |G(τ)|2, is constant and equal to√

|F (0)|2 + |G(0)|2. Away from the WKB limit the norm of the vector ξ(τ) is not constant and

this is when non-trivial amplification is captured in the sense that is not predicted by WKB.

In Fig. 4.3 we present an example. In all of the three panels we show the evolution of the

variables F (0) = 1/
√

2, G(0) = 1/
√

2 and the norm of the vector ξ(τ) for three different sets of δ

and q. In (a) we set q = 0.82 in (b) q = 4.4 (c) q = 20.03 and in all of these three cases we also

set δ = 3q. We used these particular sets of δ and q because all these choices result in Floquet

exponents equal to γ = 0.5. By inspecting this figure it is clear that as q and δ increase, the norm

of the vector ξ(τ) tends to a constant value which is its initial value. The limit of large q and δ

is essentially the WKB limit of Eq.(4.4). Therefore, we get that the norm of the vector ξ(τ) is an

elegant measure for the description of the transient amplification since it is constant (and equal to

||ξ(0)||) in the WKB limit and it is non-constant (and oscillates) away from the WKB limit.

From the transformation that is given in Eq. (4.9), we get that outside the cone δ = 2|q| the

variable G(τ) acquires singularities since the parameter ω2(τ) becomes zero at some instants of

time. As a result, we restrict our analysis only in the area that locates inside the cone δ = 2|q|.
Outside of this cone, we have to consider another suitable transformation, based on which we

can describe the transient amplification properly. However, the amplification is not qualitatively

different in the regions outside and inside of the cone δ = 2|q|, because the initial variables f(τ)

and ḟ(τ), which express the physical properties of the system, change smoothly across the whole

stability chart.

At this point, we will show the equations that govern the dynamics of the variables F (τ) and

G(τ) and we will express the general solution of these equations in terms of a propagating matrix.

Essentially, we will follow a similar procedure to the one that we followed for the variables f(τ)

and ḟ(τ). Notice first that the equations that the new variables F (τ) and G(τ) satisfy, are also
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Figure 4.3: Shown here is the evolution of the variables F (0) and G(0) as well the quantity√
X2(τ) + Y 2(τ). In all cases we set δ = 3q and in (a) q = 0.82, (b) q = 4.4, (c) q = 20.03.

written in the form of a system of two linear differential equations

ξ̇(τ) = C(τ)ξ(τ) (4.10)

with C(τ) =

(
ω̇/2ω ω

−ω −ω̇/2ω

)
. The general solution of Eq. (4.10) is written in the form

ξ(τ) = Φ(τ, τ0)ξ(τ0), (4.11)

where ξ(τ0) =

(
F (τ0)

G(τ0)

)
is the vector that contains the initials conditions and the matrix Φ(τ, τ0)

evolves these initial conditions forward in time. Hereafter, in order to discriminate the matrix

Φ(τ, τ0) from the matrix Ψ(τ, τ0) (that evolves the variables f(τ0) and ḟ(τ0) in time), we will

call the matrix Φ(τ, τ0) as the propagator. Using the transformation that is given in Eq. (4.9), it

is straightforward to show that the propagator Φ(τ, τ0) is given in terms of the principal matrix

Ψ(τ, τ0) through the relation

Φ(τ, τ0) =


√
ω(τ)√
ω(τ0)

Ψ11(τ, τ0)
√
ω(τ)ω(τ0)Ψ12(τ, τ0)

1√
ω(τ)ω(τ0)

Ψ21(τ, τ0)

√
ω(τ0)√
ω(τ)

Ψ22(τ, τ0)

 . (4.12)

Recall that ω2(τ) = δ − 2q cos(2τ) and therefore ω(τ0) = ω(τ0 + π). Using the latter property, we

can easily show that the eigenvalues of the monodromy matrix Φ(τ0 + π, τ0) are the same with

the eigenvalues of the monodromy matrix Ψ(τ0 + π, τ0). Namely, the eigenvalues of Φ(τ0 + π, τ0)
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are the Floquet multipliers λ±. This should not come as a surprise, since there is no reason for

the stability properties of the new variables F (τ) and G(τ) to be different from from the stability

properties of the initial variables f(τ) and ḟ(τ).

We close this part, by exploiting the Floquet theory again which states that the propagator

Φ(τ0 + π, τ0) is written as a product

Φ(τ, τ0) = P(τ, τ0)eB(τ0)(τ−τ0), (4.13)

where P(τ, τ0) is π-periodic on both τ and τ0 and the matrix B(τ0) depends only on τ0. Notice

that that we are able to apply the Floquet theory because the matrix C(τ) (see Eq. (4.10)) is

periodic as well.

4.3.2 Choice of measure

As we noted before, the norm of the vector ξ(τ) quantifies properly the transient amplification.

However, it depends on the choice of the initial vector ξ(τ0). Therefore, if we are interested to know

the maximum possible amplification of the vector ξ(τ) over all initial conditions, is reasonable to

compute the quantity

max
||ξ(τ0)||=1

||ξ(τ)||
||ξ(τ0)||

= max
||ξ(τ0)||=1

||Φ(τ, τ0)ξ(τ0)||
||ξ(τ0)||

. (4.14)

Namely, we consider a maximization over all initial unit vectors. The quantity that is given in

Eq. (4.14) is the 2-norm of the propagator matrix Φ(τ, τ0) since by definition

||Φ(τ, τ0)|| = max
||ξ(τ0)||=1

||Φ(τ, τ0)ξ(τ0)||. (4.15)

Therefore, the 2-norm of the propagator matrix Φ(τ, τ0) reveals the maximum amplification of the

vector ξ(τ) at time τ when the propagation starts at τ0, out of all the initial unit vectors ξ(τ0).

The 2-norm of a matrix is provided by its largest singular value, as this is given by the singular

value decomposition (SVD) [114]. For the case of a real matrix, such as the propagator Φ(τ, τ0),

the SVD is the decomposition

Φ(τ, τ0) = U(τ, τ0)Σ(τ, τ0)VT (τ, τ0) (4.16)

where the matrices V(τ, τ0) and U(τ, τ0) are real and orthogonal and the superscript T denotes

the transpose. The matrix Σ(τ, τ0) is diagonal and its elements are real, nonnegative and are

arranged in descending order. These diagonal elements are called the singular values σi(τ, τ0) with

i = 1, 2, ..., N and N is the dimension of the matrix (in our problem N = 2). The largest singular

value - that is σ1(τ, τ0) - is the 2-norm of the matrix Φ(τ, τ0). The SVD provides also the initial

conditions that are amplified the most for a given set of initial and final times, τ and τ0. These
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4.3. Measuring the transient amplification

initial conditions are the elements of the first column of the orthogonal matrix V(τ, τ0) [113].

Figure 4.4 illustrates an example. We used the same set of parameters (δ, q) that we used

in Fig. 4.1(b) and we set the initial time at τ0 = 0. In Fig. 4.4(a) we present the norm of the

propagator Φ(τ, 0) as a function of the time τ . Clearly, the norm exceeds 1 at almost all times

and reveals that the solution of the Mathieu equation can be transiently amplified for this set of

parameters (δ, q) at almost all times. Also, it appears that the norm of the propagator is periodic

with a period of 10π. We stress here that when the exponent γ is a proper fraction m1/m2, then

the propagator is of period at most m2π. Recall that this set of parameters returns a Floquet

exponent that is equal to 0.9 and that it why the norm of the propagator oscillates with a period

of 10π. Therefore, the value that is indicated with a blue dashed line and is captured at τ = 5.32π

is the overall maximum value of ||Φ(τ, 0)||, it is namely the max
τ
||Φ(τ, 0)||. This maximum is the

largest possible transient amplification that a stable solution of the Mathieu equation can exhibit

(for this set of parameters (δ, q)), when the propagation starts at τ0 = 0 under the proper initial

condition given by SVD.

To shed some light, we consider two different sets of initial conditions (F (0), G(0)) and in

Fig. 4.4(b) and (c) we present their time evolution. These two sets of initial conditions are found

as follows: we compute the singular value decomposition of the propagator matrix Φ(τ, 0) at 2

different times τ , at τ1 = 0.8π and at τ2 = 5.32π. From the SVD we find the matrices V(τ1, 0)

and V(τ2, 0) and we use the first columns of these two matrices as the two different sets of initial

conditions in Fig. 4.4(b) and Fig. 4.4(c) respectively. These two different sets of initial conditions

yield the maximum value of the norm of the vector ξ(τ) at the final times τ1 = 0.8π and τ2 = 5.32π

accordingly. To visualize this, we also present in Fig. 4.4(b) and (c) the norm ||ξ(τ)|| (with a solid

Figure 4.4: We set the initial time τ0 at zero and we used the same set of (δ, q) that we also used
in Fig. 4.1(b) - green rectangular. (a) Norm of the matrix Φ(τ, 0). (b) Evolution of the initial
conditions F (0) = 0.7469 and G(0) = 0.6651. These initial conditions maximize the norm of the
vector ξ(τ) at time τ = 0.8π. (c) Same as (b) with initial conditions X = F (0) = −0.0481 and
G(0) = 0.9988. These initial conditions maximize the norm of the vector ξ(τ) at time τ = 5.32π.
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Chapter 4. Transient amplification for the Mathieu equation without parametric instability

gray curve in (b) and a solid black curve in (c)). Clearly, the black curve reaches a higher value

than the gray curve at time τ2 = 5.32π. However, even though it is not visible, the gray curve

takes a higher value than the black curve at time τ1 = 0.8π.

4.3.3 Pseudospectrum analysis

As we mentioned in the beginning of this section, the spectrum of the monodromy matrix – the

Floquet multipliers λ± – do not give any information regarding the transient amplification of a

bounded solution. These determine the asymptotic behavior of the solution, namely whether it

is bounded or not. On the contrary, the ε-pseudospectrum [110] of the monodromy matrix can

detect transients. First of all, the ε-pseudospectrum of a matrix (for instance of the monodromy

matrix Φ(τ0 + π, τ0)) is the set of all the complex numbers z, such that

||(z −Φ(τ0 + π, τ0))−1|| > ε−1, (4.17)

with ε > 0. We denote this set as σε[Φ(τ0 + π, τ0)]. It follows that in the limit of ε → 0,

then σε[Φ(τ0 +π, τ0)]→ σ[Φ(τ0 +π, τ0)] where σ [Φ(τ0 + π, τ0)] is the spectrum of the monodromy

matrix. Notice that, unlike the spectrum, the pseudospectrum is not uniquely defined and depends

on the choice of ε.

In Fig. 4.5 we present an example. We set the initial time τ0 again at zero and we use the

same set of parameters (δ, q) that we also used in Fig. 4.1(b). In Fig. 4.5(a) the two crosses

correspond to the two Floquet multipliers. Notice that these are complex conjugates and lie in

the unit circle in the complex plane (gray circle) since this set of parameters (δ, q) belongs in the

stable region of the stability chart. In this panel, we also show with the four solid closed curves

the boundaries of the ε-pseudospectrum, for four values of ε : 0.08, 0.14, 0.2 and 0.26. The value

of ε = 0.08 corresponds to the closed cyan curves that surround the Floquet multipliers. As the

value of ε gradually increases these two curves extend to the complex plane and for some value

of ε they touch and unite in a single curve. For instance, the boundary of the ε-pseudospectrum

for ε = 0.14 is the single blue curve. As ε keeps increasing this single curve keeps extending in

the complex plane (see for instance the purple line that is the boundary of the ε-pseudospectrum

for ε = 0.26). We note here again that these solid closed curves that we present in Fig. 4.5(a)

are not the ε-pseudospectra of the monodromy matrix but the boundaries of the ε-pseudospectra.

The ε-pseudospectra are the sets with all the complex numbers inside these curves. To shed more

light, we show in Fig. 4.5(b) the norm ||(z −Φ(π, 0))−1|| as a function of z ∈ C. Clearly, the two

spikes correspond to the Floquet multipliers. The four solid closed curves are the boundaries of

the ε-pseudospectra that are shown in (a).

The pseudospectrum provides several useful bounds for the transient amplification and it can

be estimated very accurately. For example, there is a very useful lower bound for the quantity
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4.3. Measuring the transient amplification

Figure 4.5: We used the set of parameters (δ, q) that we also used in Fig. 4.1(b) - green rectangular.
(a) Shown here with the two crosses is the spectrum of the monodromy matrix Φ(π, 0) and with
the four solid lines the boundaries of the ε-pseudospectra for ε: 0.08, 0.14, 0.2 and 0.28. (b) Shown
here is the norm ||(z −Φ(π; 0))−1|| as a function of z ∈ C.

max
n
||Φn(τ0 + π, τ0)|| with n an integer.1 As an illustration, we present first in Fig. 4.6(a) the

quantity ||Φn(π, 0)|| for the same set of parameters (δ, q) that we used in Fig. 4.5. We also show

with a faded magenta line this time the corresponding norm of the propagator Φ(τ, 0) (like in

Fig. 4.4). Clearly, the maximum value of the black dots, that is the quantity max
n
||Φn(τ0 + π, τ0)||,

is a lower bound for the max
τ
||Φ(τ, 0)|| and this is why it is of interest to find a lower bound for

the max
n
||Φn(τ0 + π, τ0)||.

This lower bound for the maximum norm of the ||Φn(τ0 + π, τ0)|| is given by

max
n
||Φn(τ0 + π, τ0)|| ≥ max

ε

ρε(Φ(τ0 + π, τ0))− 1

ε
(4.18)

where ρε(Φ(τ0+π, τ0)) is the ε-pseudospectrum radius. The pseudospectrum radius ρε(Φ(τ0+π, τ0))

is the set of all the complex numbers z such that

ρε(Φ(τ0 + π, τ0)) = max
{
|z| : z ∈ C, ||(z −Φ(τ0 + π, τ0))−1|| > ε−1

}
. (4.19)

The quantity at the right hand side of Eq. (4.18) which is the maximum (over ε) of the quantity
ρε − 1

ε
, is called the Kreiss constant. In Fig. 4.6(b) we present the quantity

ρε − 1

ε
as a function

of ε. This quantity reaches a plateau for small values of ε. Some insight into this plateau is

1Notice that the quantity ||Φn(τ0 + π, τ0)|| = ||Φ(τ0 +nπ, τ0)|| is the norm of the propagator at multiples of the
period.
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Chapter 4. Transient amplification for the Mathieu equation without parametric instability

Figure 4.6: We used again the same set of parameters (δ, q) that we used in Fig. 4.1(b) - green
rectangular. (a) Shown here is the norm of the monodromy matrix ||Φn(π, 0)|| with n = 1, 2, ...20.
Also shown with a faded magenta line is the norm of the propagator, ||Φ(τ, 0)||. The latter quantity
is also shown in Fig. 4.4(a) with the magenta line. The yellow line shows the value of the discrete

Kreiss constant which is a lower bound for the max
n
||Φ(π, 0)n||. (b) Shown here is the ratio

ρε − 1

ε
as a function of ε. The maximum value of this ratio is the discrete Kreiss constant.

provided in Appendix D where we approximate the propagator matrix with the monodromy matrix

continuously and we find closed form expressions for the Kreiss constant. Finally, in order to

visualize that the Kreiss constant is indeed a lower bound for the maximum value of the norm of

the monodromy matrix, we present its value in Fig. 4.6(a) with a yellow solid line. Clearly, the

yellow line is below the maximum black dot.

The fact that the value of the discrete Kreiss constant exceeds one suggests that the monodromy

Φ(π, 0) is non-normal, i.e. [Φ(π, 0),Φ(π, 0)†] 6= 0. For a normal matrix the value of the Kreiss

constant is one. As we explained at the beginning of this section, we find transient amplification

because the propagator (and the monodromy) matrix is non-normal. The non-normality of a matrix

is reflected at its eigenvectors which are not orthogonal. For that reason, in the following part

we briefly remind the Petermann factors because we can easily understand this non-orthogonality

through these quantities.

4.3.4 Petermann factors

The Petermann factors [139] measure the nonorthogonality of the left and right eigenvectors of a

matrix and thus they indicate the non-normality of this matrix. We are interested to measure the

non-normality of the monodromy matrix Φ(τ0 + π, τ0) and therefore our goal is to compute the

Petermann factors of Φ(τ0 + π, τ0). However, we will give first the definition of the Petermann
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factors of a general matrix that is of dimension N and after that we will restrict to the monodromy

matrix Φ(τ0 +π, τ0). We denote this general matrix of dimension N as Q and its N eigenvalues as

λi, with i = 1, 2, ...N . We denote the N right eigenvectors of Q as ui, namely it holds Qui = λiui,

and we also denote its left eigenvectors as vi, namely v†iQ = λiv
†
i , where † denotes complex

conjugate transpose. Then, the N Petermann factors of this general matrix Q are defined as

Ki =
||ui|| ||vi||
|v†iui|

, i = 1, 2, ..., N. (4.20)

If the matrix Q is normal, we can take its right and left eigenvectors to be the same and therefore

all of the N Petermann factors Ki are equal to 1.

Going back to the monodromy matrix Φ(τ0 + π, τ0) of our problem, we note first that this

matrix depends on the initial time τ0. Therefore, its two right and two left eigenvectors depend

also on τ0. We denote these right eigenvectors as u±(τ0) and the corresponding left ones as v±(τ0).

Since the determinant of Φ(τ0 + π, τ0) is one, we immediately get that the two right and two left

eigenvectors of Φ(τ0 + π, τ0) are complex conjugates, namely u+ = u− and v+ = v−. Therefore,

the two Petermann factors K± of the monodromy matrix are equal, K+ = K− = K. As an

example, we used the set of parameter (δ, q) that we have mainly used so far (see Fig. 4.4, Fig. 4.5

and Fig. 4.6) and we set again the initial time at τ0 = 0. We computed the Petermann factors

of Φ(π, 0) and we found that they are approximately equal to 2.147. As we expected, we found

Petermann factors that are not equal to one, since this matrix is non-normal.

4.4 Impact of the initial time τ0

Up to now, the only thing that we have mentioned regarding the initial time τ0, is that the spectrum

of the monodromy matrix – the two Floquet multipliers λ± – do not depend on it. And this is due

to the similarity of the monodromy matrices that propagate initial conditions from different initial

times [109]. Regarding the phenomenon of the transient amplification though, there is no reason

for it to be independent on the choice of the initial time τ0. Therefore, in this part we explore the

impact of τ0 at these transient effects.2

We begin with the illustration of an example that is shown in Fig. 4.7. Once more, we used the

same set of (δ, q) that we used in Fig. 4.1(b). In the top three panels of this figure, we present with

the magenta lines the norm of the propagator Φ(τ, τ0) as a function of the final time τ , for three

choices of the initial time τ0 = 0.2π, 0.32π, 0.5π. In these panels, we also present with the black

dots the quantity ||Φn(τ0 + π, τ0)|| with n an integer (we stress here again that this is the norm of

the propagator at multiples of the period). What we immediately get from these four panels is that

the norm of the propagator and its sampling at each period change as the initial time τ0 changes.

2Notice that in all the examples that we have presented so far, we have set the initial time to be zero.
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Chapter 4. Transient amplification for the Mathieu equation without parametric instability

To get a first insight into the latter result, at the three lower panels of Fig. 4.7 we present the

boundaries of the pseudospectrum of the monodromy matrix Φ(τ0 +π, τ0) for the same initial times

that we used at the corresponding upper panels and for the four values of ε = 0.08, 0.14, 0.2, 0.26

that we also used in Fig. 4.5. Clearly, the pseudospectrum of the monodromy matrix depends on

τ0 since its boundaries extend/shrink into the complex plane as the initial time changes. At these

lower panels we also show the spectrum of the monodromy matrix (with the crosses) that does not

change as the initial time τ0 changes.

Figure 4.7: We used the set of parameters (δ, q) that we also used in Fig. 4.1(b) - green rectangular.
Upper panels: Shown here are the quantities ||Φ(τ, τ0)|| and ||Φ(τ0 + π, τ0)|| for (a) τ0 = 0.2, (b)
τ0 = 0.32 and (c) τ0 = 0.5. Bottom figures: Corresponding boundaries of the pseudospectra for
ε =0.08, 0.14, 0.2 and 0.26.

A close look at Fig. 4.7(b) reveals that the black dot with the maximum value coincides with

the magenta line at its maxima. This drives us to compute the quantities max
τ
||Φ(τ, τ0)|| and

max
n
||Φn(τ0 + π, τ0)|| as a function of the initial time τ0. The results are shown in Fig. 4.8(a).

Clearly, these two curves touch at their maxima, meaning that the quantity max
τ0

[max
τ
||Φ(τ, τ0)||]

is equal to the max
τ0

[max
n
||Φn(τ0 + π, τ0)||]. We emphasize that the max

τ0
[max

τ
||Φ(τ, τ0)||], contains
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a maximization in the initial conditions, in the final time τ , and in the initial time τ0 and is

therefore the overall biggest amplification that we can get for this set of parameters (δ, q). And

according to the results that are shown in Fig. 4.8(a) this overall maximum is provided merely by

the monodromy matrix. We note here that this finding is not a peculiarity of the specific choice

(δ, q) that we used here since we have verified it using several parameters δ and q (that all belong

in the stable regime of the stability chart).

As a next step we compute the Kreiss constant as a function of the initial time τ0. The results

are shown in Fig. 4.8(b). Notice that this curve has the same pattern with the ones that are

shown in Fig. 4.8(a) and suggests that the monodromy matrix Φ(τ0 + π, τ0) becomes the most

non-normal for τ = 0.32π and the least non-normal for τ0 = 0. Furthermore, we compute the

Petermann factors K = K+ = K− of the monodromy matrix Φ(τ0 + π, τ0) as a function of τ0.

The results are illustrated in Fig. 4.8(c). Notice that this curve has the same pattern with all the

other curves that are shown in the same figure. Again, we conclude that the monodromy matrix

becomes the most non-normal at τ = 0.32π.

Figure 4.8: We used the set of parameters (δ, q) that we also used in Fig. 4.1(b) - green rectangular.
(a) Shown here is the max

τ
||Φ(τ, τ0)|| and the quantity max

n
||Φ(τ0 + π, τ0)|| with n an integer. (b)

Discrete Kreiss constant as a function of the initial time τ0. (c) Petermann factors K = K+ = K−
of the monodromy matrix as as a function of the initial time τ0.

4.4.1 Maximum transient amplification

Up to now, we have used a particular set of the parameters δ and q in the most examples that

we have presented. For this reason, we will calculate in this part the overall maximum transient

amplification that all the stable solutions of the Mathieu equation can exhibit. Namely, we will

calculate the quantity

max
τ0

[
max
τ
||Φ(τ, τ0)||

]
, (4.21)
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Chapter 4. Transient amplification for the Mathieu equation without parametric instability

at the stable region of the stability chart, that is inside the cone δ = 2|q|. The results are shown

in Fig. 4.9(a). We note here that we calculated the quantity that is given in Eq. (4.21), only in

the stable region that locates inside the cone δ = 2|q|. Clearly, for the set of (δ, q) that locate

close to the unstable area, the corresponding solutions are intensively amplified. Furthermore, the

maximum transient amplification of a solution grows as the boundary with the unstable region is

approached.

A natural step in our analysis, is to compute the quantity

max
t0

[
max
n
||Φ(t0 + π, t0)n||

]
(4.22)

as well, since in the previous part we concluded that the is the same with the corresponding

quantity that is given in Eq. (4.21). The results are shown in Fig. 4.9(b). Notice that both

the quantities that are shown in Fig. 4.9(a) and (b) match perfectly. This supports our finding

that merely the monodromy matrix provides the overall maximum amplification that the stable

solutions of the Mathieu equation exhibit. For that reason we state the following as a conjecture:

Conjecture Given the Floquet representation of a propagator matrix Φ(t, t0), namely Φ(t, t0) =

P(t, t0)eB(t0)(t−t0) where P(t, t0) is a T -periodic matrix on both times, the following relation

holds

max
t0

[
max
t
||Φ(t, t0)||

]
= max

t0

[
max
n
||Φ(t0 + nT, t0)||

]
. (4.23)

Figure 4.9: Shown here are the quantities (a) log10{max
τ0

[
max
τ
||Φ(τ, τ0)||

]
} and (b)

log10{max
τ0

[
max
n
||Φn(τ0 + π, τ0)||

]
}, at the stable regime inside the cone that is formed by the

line δ = 2|q|.
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4.5 Concluding remarks

Figure 4.10: Example of a standing

wave that is transiently amplified in

time.

In this chapter we have made a comprehensive investiga-

tion of the transient amplification exhibited by the stable

solutions of the Mathieu equation. As a last remark we

give here an example of a wave whose evolution is gov-

erned by Eq. (4.1) and that is transiently amplified in

time. We remind that we have applied the method of

separation of the variables and we have written the so-

lution of the wave equation (4.1) as ψ(x, t) = h(x)f(t)

where f(t) is a solution of the Mathieu equation and

h(x) = Aeikx + Be−ikx In the example that is illustrated

in Fig. 4.10 we set A = 1 and B = 0, we use the set of

parameters (δ, q) that is indicated with the green rectan-

gular and we set the initial time at τ0 = 0.32π, which

as we have seen in Section 4.4 results in the maximiza-

tion of the norm that we have chosen. We also use as

initial conditions f(0) and ḟ(0) the ones that the SVD

yields. In Fig. 4.10 we present the real part of the so-

lution ψ(x, t) and the result is a standing wave that is

transiently amplified in time.
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Chapter 5

Summary and perspectives

In this thesis, we explored the wave propagation in space or time varying media aiming to shed

light and understand in depth some phenomenological aspects which have not been yet explored

in detail. Based on the findings of the present thesis a very general future perspective is to explore

the wave propagation in space-time varying media, since these kind of media have attracted great

interest over the last years [98].

In the context of wave propagation in space varying media, we explored the effect of a pertur-

bation in the transmittance of a periodic potential with mirror symmetric cells (Chapter 1). Due

to periodicity, the transmittance had a band-like structure form and each band was consisting of at

least N − 1 perfect transmission resonances (PTRs), N being the number of the mirror symmetric

cells. Employing Dirac scatterers we achieved to develop a systematic way to perturb the set-up

so that specific PTRs survive after its modification.

Both the unperturbed and perturbing potentials that we considered in Chapter 1 were real.

Yet the transmittance of a periodic potential that is complex and PT -symmetric, has also a band-

like structure form and supports PTRs in each band [140]. Therefore, it would be of interest to

investigate whether the results that were presented in Chapter 1, could be generalized to the case

of a complex and PT -symmetric periodic potential.

The perturbing potential that we used in Chapter 1 comprised Dirac scatterers - for simplicity.

Another perspective is to construct a perturbing potential that preserves PTRs but does not

comprise Dirac scatterers. This could reveal additional phenomena and would make the problem

more easily realizable in an experimental setup.

We also investigated the spectral properties of a finite periodic dimer chain possessing spatial

perturbations due to disorder (Chapter 2). In the clean limit (no disorder) the frequency spectrum

of the chain showed a gap and depending on the stiffness couplings, two modes whose frequency

lied in the middle of the gap were supported (topological edge modes). We found that under a

strong chiral disorder, the localization length of the edge modes diverged, indicating the occurrence

of a topological phase transition.
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It would be interesting to verify the results that were presented in Chapter 2 in an experimental

platform, for instance in an electric circuit [141]. Moreover, the extension of these findings to

mechanical systems that are of higher dimension could reveal new phenomena.

In the framework of time-varying media, we considered that the couplings of the dimer chain (in

the clean limit - no disorder) varied with time (Chapter 3). Our goal was to transfer a topological

edge mode from the chain’s one end to the other in minimum time. We used an optimal control

method and we found a simple protocol – we called it 3-step up protocol – consisted of three

time intervals with linear increase, constant and linear decrease of the springs stiffness parameters

that resulted in a fast and robust (against disorder) transfer of the edge mode. An interesting

result of our analysis in Chapter 3, was the emergence of the phenomenon of amplification of

the transferred mode, which is absent in the corresponding quantum systems, for example in the

transfer of qubits [97].

For the experimental realization of the transfer process that we studied in Chapter 3, it is

important to investigate some aspects of this problem further. For instance, a more thorough

study of the impact of the disorder is important. We have investigated the impact of one form of

disorder, but other sources should be studied as well. Also, the total time needed for the transfer

to be successful, depends on the size of the chain and therefore a thorough study of this issue is of

importance as well.

Moreover, it would be of interest to compare the method that we used in Chapter 3 with other

methods of shortcuts to adiabaticity. For instance, the authors in ref. [96] suggested a method for

state transfer in a quantum topological chain (Su-Schrieffer-Heeger chain). This method could be

applied at the mechanical chain that we considered in Chapter 3.

The under system in Chapter 3 was non-autonomous. We have taken this into account when we

optimized the fidelity over the initial edge mode’s phase of oscillation. We showed that this initial

phase had a strong impact at the whole transfer process, since it could lead to either amplification

or disamplification of the transferred mode. It would be of interest to explore the impact of

the initial phase in more depth. For instance, we could quantify the degree of adiabaticity of

the transfer process more rigorously (we have used the adiabatic invariant in this chapter) and

investigate whether this degree is affected by the initial phase.

The phenomenon of amplification that we encountered in Chapter 3, set the frame of our study

on the transient amplification of a wave that propagates in an infinite medium whose properties

vary periodically with time (Chapter 4). We considered wave dynamics governed by the Mathieu

equation and we explored the transient amplification of its stable solutions. We have searched for

the global maximum transient amplification by optimizing the initial conditions and the initial

start of the process and we claimed that the knowledge of the monodromy matrix is sufficient to

derive this global maximum.
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Figure 5.1: Mathieu equation with loss. (a) The eigenvalues of the

monodromy matrix lie inside the unit circle. (b) The propagator is

a non normal matrix. (c) Example of transient amplification of the

solution.

The results that were il-

lustrated in Chapter 4 open

a lot of research directions.

First of all, the addition of

a loss term would make the

model realizable in experi-

mental setups and therefore

an extensive study of this

is needed. Some initial nu-

merical results for the im-

pact of loss are illustrated

in Fig. 5.1.

In particular, we con-

sider the Mathieu equation

with loss: ẍ+ εẋ+ω2(t)x =

0 and then we change vari-

ables to the ones that are

given in Eq. (4.9) in Chap-

ter 4. In Fig. 5.1(a) we

present with the crosses the

eigenvalues of the monodromy matrix in the complex plane. The two eigenvalues of the monodromy

matrix lie inside the unit circle (shown with the gray solid curve) and therefore the solution decays

asymptotically. In Fig. 5.1(b) we present the norm of the propagator (this figure is the analogous

of Fig. 4.4(a) that we presented in Chapter 4). Finally, in Fig. 5.1(c) we present the evolution

of the initial conditions F (0) = 0 and G(0) = 1. Notice that even though the solution decays

asymptotically, it can be transiently amplified since the propagator is still a non normal matrix.

Another perspective is to study the transient amplifying effects of other time-modulated sys-

tems. In particular, we aim to study a relevant time-dependent system in fuid mechanics, first

because the ε-pseudospectrum has its orginigs in this area of physics and second because the Math-

ieu equation emerges in many problems in hydrodynamics. For instance, it is a known fact that

all 2-dimensional, incompressible, time-independent elliptic flows are bounded. Meaning that if we

impose a perturbation at such a time-independent elliptic flow, then the energy of the perturbation

remains bounded with time. For example, in Fig. 5.2(a) we present the velocity field u0 of such

an elliptic flow and in the panel (b) we present the energy of a compressible perturbation that we

impose at this flow (the perturbation has random initial velocity and pressure). Notice that the

energy of the perturbation is bounded. Yet, if we vary the shape of the elliptic flow with time, i.e.,

u0 = u0(T ), then the energy of the perturbation can grow with time.
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Summary and perspectives

Figure 5.2: (a) Velocity field of a time-independent ellip-

tic flow. (b) Energy of a perturbation that we impose at

a time-independent elliptic flow. Notice that it remains

bounded and therefore the flow is stable. (c) We let the

elliptic flow to vary with time in a cosine way. Shown here

is the maximum Lyapunov exponent (corresponding to a

perturbation) which converges to some positive value. (d)

The value at which the maximum Lyapunov converges as a

function of the frequency and amplitude of the modulation.

For instance, we let the shape of

the elliptic flow to change in a co-

sine way with a particular frequency

and a particular amplitude, we com-

puted the velocity and the pressure

of a perturbation that we imposed

at such a time-varying flow and in

Fig. 5.2(c) we present the maximum

Lyapunov exponent (corresponding

to the perturbation). The maximum

Lypaunov converges asymptotically

to some positive value, meaning that

the energy of the perturbation grows

exponentially with time. This is a

paremetric resonance. In Fig. 5.2(d)

we present the value at which the

maximum Lyapunov converges (the

Mean Lyapunov - see Fig. 5.2(c)) as a

function of the frequency and the am-

plitude of the modulation. We find

some regions in the parameter space

in which the time-dependent elliptic

flow is unstable (these regions actu-

ally match with the Arnold tongues

of the Mathieu equation). Next thing is to calculate the transient amplifying effects of the stable

perturbations of this time-dependent elliptic flow.

To conclude, the study presented in the current thesis revealed the rich phenomenology of wave

physics in time and/or space varying media, while the exploration of both classical and quantum

systems highlighted the diversity and broad range of applications within wave physics. The world

of wave physics never stops amazing us, and novel wave phenomena that continuously emerge only

serve to deepen our understanding of the physical world.
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Mirror symmetric cells

We give here the analytic derivation of the relations that are given in Eq. (1.21), (1.22), (1.25)

and (1.26) in Chapter 1. We remind first that the periodic potential that we considered in that

Chapter was build from a mirror symmetric cell. Due to this mirror symmetry, the transfer matrix

of this cell (that is the transfer matrix M that is given in Eq. (1.2)) is decomposed around its

center of symmetry as M = M2M1 with M−1
2 = PM1P and P =

(
0 1

1 0

)
is the parity operator.

Therefore if we set M1 =

(
α β

β∗ α∗

)
then M−1

2 =

(
α∗ β∗

β α

)
. We will use this decomposition

in both of the following proofs.

A.1 Centers of the cells

We begin by giving the derivation of the relations that are given in Eq. (1.21) and (1.22). To start

we remind that we have denoted the centers of the mirror symmetric cells as am withm = 1, 2, ..., N .

We denote as ϕ the vector that contains the right and left going waves at each point. For

instance, at x = −D/2 (left edge of the setup, see Fig. 1.1(b) of the main text), since there is no

reflected wave it holds

ϕ(−D/2) =

(
1

0

)
(A.1)

The wave function is the sum of the two components of the vector ϕ, and therefore at x = −D/2
it holds

ψ(−D/2) = 1. (A.2)

Next, we calculate the vector ϕ at x = D/2 (right edge of the setup) using the Chebychev identity.
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The Chebyshev identity states that if the transfer matrix M is written in the form

M =

(
m11 m12

m21 m22

)
(A.3)

then the matrix (M)N is given by

(M)N =

(
m11UN−1 − UN−2 m12UN−1

m12UN−1 m22UN−1 − UN−2

)
(A.4)

where

UN =
sin((N + 1)φ)

sin(φ)
. (A.5)

where φ is the Bloch phase and it is equal to nπ/N at the nth PTR. Therefore, for the PTR number

n it holds

ϕ(D/2) =

(
(−1)n

0

)
(A.6)

and the wave function there is equal to

ψ(D/2) = (−1)n. (A.7)

Now, we calculate the vector φ at the centers of the first and last cells, namely at the positions

a1 and aN . At x = a1 we get

ϕ(a1) = M1ϕ(−D/2) =

(
α

β∗

)
(A.8)

meaning that the wave function there is equal to

ψ(a1) = α + β∗. (A.9)

Similarly, at the the centers of the center of the last cell, x = a1, it holds

ϕ(aN) = M−1
2 ϕ(D/2) =

(
(−1)nα∗

(−1)nβ

)
(A.10)

and therefore the wave function there is equal to

ψ(aN) = (−1)n(α∗ + β). (A.11)

For the next step, it is necessary to define a new transfer matrix. We define the matrix

M̃ = M1M2. Notice that this matrix differs from the matrix M which is equal to M = M2M1.
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We denote the two eigenvectors of the matrix M̃ as vq and v−q. The determinant of M̃ is equal

to 1 and therefore its eigenvectors are written in the form

vq =
1√

1 + |κ|2

(
1

κ

)
v−q =

1√
1 + |κ|2

(
κ∗

1

)
. (A.12)

We use the vectors vq and v−q as a basis and we write the vector ϕ(a1), i.e., at the center of the

first cell, as

ϕ(a1) = Avq +Bv−q, (A.13)

where A and B are coefficients that are calculated by the boundary conditions. The wave function

at x = a1 is written as

ψ(a1) = Az +Bz∗ (A.14)

with z =
1 + κ√
1 + |κ|2

.

The wave function at the center am is calculated by acting with the transfer matrix M̃m−1 at

the vector ϕ(a1),

ϕ(am) = Aei(m−1)φnvq +Be−i(m−1)φnv−q (A.15)

and therefore for the wave function at x = am we get

ψ(am) = Aei(m−1)φnz +Be−i(m−1)φnz∗. (A.16)

The coefficients A and B are found from the boundary conditions that are given in Eq. (A.9) and

(A.11). These result to,

A =
we−i(N−1)φn − w∗(−1)n

z (e−i(N−1)φn − ei(N−1)φn)
(A.17)

and

B =
(−1)nw∗ − wei(N−1)φn

z∗ (e−i(N−1)φn − ei(N−1)φn)
(A.18)

where w = α + β∗.

If we plug the coefficients A and B at the expression that is given in Eq. (A.16), then we get

that the wave function at the center am is given by

ψ(am) =
1

sin[(N − 1)φn]
{[wR sin[(N −m)φn] + (−1)nwR sin[(m− 1)φn]] +

+i [wI sin[(N −m)φn]− (−1)nwI sin[(m− 1)φn]]} (A.19)

where wR and wI are the real and imaginary components of w. Finally, the quantity Re[ψ(am)]Im[ψ(am)]
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is equal to

Re[ψ(am)]Im[ψ(am)] =
wRwI

sin2[(N − 1)φn]
×
{

sin2[(N −m)φn]− sin2[(m− 1)φn]
}

(A.20)

which is Eq. (1.21) of the main text.

As we mentioned in the main text, Eq. (A.20) proves that if we place Dirac scatterers at the

centers of the cells, then the PTRs are always preserved in pairs. To see this clearly, notice that

from Eq. (A.20) we get the following relation

Re[ψ0,n(am)]Im[ψ0,n(am)] =
f(φn)

f(φN−n
Re[ψ0,N−n(am)]Im[ψ0,N−n(am)] (A.21)

If the PTR number n is preserved after the addition of Dirac scatterers, then the imaginary part

of k1,n is zero, which means (recall Eq. (1.19) of the main text) that

N∑
m=1

cmRe[ψ0,n(wm)]Im[ψ0,n(wm)] = 0. (A.22)

Using, Eq. (A.22) we immediately get that Im[k1,N−n] is also zero and therefore the PTR number

N − n is preserved as well.

A.2 Edges of the cells

The derivation of the relations that are given in Eq. (1.25) and (1.26) in Chapter 1 is similar to

the previous proof. First, we remind that we have denoted the edges of the cells as bm and notice

that the index m this time gets the values: m = 0, 1, 2, ..., N .

For this proof we will make use of the transfer matrix M = M2M1 =

(
m11 m12

m21 m22

)
. We

denote the two eigenvectors of this transfer matrix as

uq =
1√

1 + |λ|2

(
1

λ

)
u−q =

1√
1 + |λ|2

(
λ∗

1

)
. (A.23)

We stress here that due to the mirror symmetry of the cells, the parameter λ is real, i.e., λ = λ∗ .

Even if we did not write it in the previous proof – in Appendix A.1 – this holds for the parameter

κ as well (see Eq. (A.12), the definition of the eigenvectors of the M̃ matrix).

We write now the vector ϕ(−D/2) = ϕ(b0) (see Appendix A.1) using as a basis the vectors φq

and φ−q

ϕ(b0) = C1
1√

1 + |λ|2

(
1

λ

)
+ C2

1√
1 + |λ|2

(
λ

1

)
(A.24)
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The coefficients C1 and C2 are found from the fact that the analysis refers to PTRs, namely

ϕ(−D/2) =

(
1

0

)
, (A.25)

and we get that

ϕ(b0) =
1

1− λ2

(
1

λ

)
− 1

1− λ2

(
λ

1

)
. (A.26)

We can now calculate the vector ϕ at each point bm, if we act with the transfer matrix Mm.

Therefore, we get

ϕ(bm) = eimφn
1

1− λ2

(
1

λ

)
− e−imφn 1

1− λ2

(
λ

1

)
(A.27)

where again φn = nπ/N is the Bloch phase of the nth PTR. The sum of the two components of

the vector ϕ(bm) is the wave function ψ(bm) and therefore it is equal to

ψ(bm) =
1

1− λ
[
eimφn − λe−imφn

]
. (A.28)

Finally, for the quantity Re[ψ(bm)]Im[ψ(bm)], which is of interest in the preservation of the PTRs,

we get

Re[ψ(bm)]Im[ψ(bm)] =
1

2

1 + λ

1− λ
sin(2mφn), (A.29)

which is Eq. (1.26) of the main text.
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Numerical computation of the

localization length

We provide here a more detailed discussion regarding the numerical computation of the localization

length that we studied Chapter 2. Recall that for this computation, we employed the transfer

matrix method and we wrote the displacements of the masses from their equilibrium positions

(that is un), in the matrix form (see Eq. (2.29))

An+1 = TnAn (B.1)

where An =

(
un

un−1

)
. The matrix Tn is given in Eq. (2.30). Therefore, given an initial vector A1,

the behavior of the vector AN is given from the matrix

PN =
N∏
i=1

Ti (B.2)

According to the Oseledec’s theorem [126], the matrix

B = lim
N→∞

(
PT
NPN

)1/2N
(B.3)

exists and the logarithms of its eigenvalues are the Lyapunov exponents. In our problem, B is a

2 × 2 matrix and for its two eigenvalues we found that: λ1 ≈ −λ2. Therefore, the two Lyapunov

exponents satisfy the relation γ1 ≈ −γ2 as well. The localization length is by definition equal to

Λ =
1

γmin
(B.4)

where γmin is the minimum positive Lyapunov exponent, and therefore in the under study problem

we get that Λ = 1/γ1 since only one exponent is positive (the γ1).
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For chains of large size (large N) we encountered rounding errors when we computed the

Lyapunov exponents from the eigenvalues of the matrix B that is given in Eq. (B.3). To overcome

these rounding errors we followed ref. [142] and we normalized the vector An at the previous step

of each iteration. Specifically: By definition, the maximum Lyapunov exponent (which is γ1 is our

problem as well) is given by

γ1 =
1

N
ln (||AN ||) (B.5)

where ||.|| denotes the Euclidean norm. By using an initial vector A1 with norm 1, from Eq. (B.5)

we get that

γ1 =
1

N
ln

(
||AN ||
||AN−1||

||AN−1||
||AN−2||

· · · ||A3||
||A3||

||A2||
||A1||

)
(B.6)

At each step of iteration, we normalize the vector An with its norm at the previous step of the

iteration, defining thus the vector

A′n =
An

||An−1||
(B.7)

Then from Eq. (B.6) we get that the Lyapunov exponent γ1 is given by

γ1 =
1

N
SN (B.8)

where SN+1 = SN + ln
(
||A′N+1||

)
.
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Adiabatic state transfer

We prove here that if the couplings of the time-varying chain that we considered in Chapter 3

vary slowly with time, then the initial edge mode is perfectly transferred across the chain, without

being amplified. To prove this we use the WKB method [118].

Let q1, q2, ..., qN be the displacements of all masses from their equilibrium positions and q̇1, q̇2, ..., q̇N

the corresponding velocities. Dot represents derivative with respect to time. Then the equations

of motion can all be written in the form

Ẇ = AW (C.1)

where

W = ( q1 ··· qN q̇1 ··· q̇N )T (C.2)

and

A =



0 0 ··· 0 0 1 0 ··· 0
0 0 ··· 0 0 0 1 ··· 0

... ...
0 0 ··· 0 0 0 0 ··· 1

−κ1−κ2 κ2 0 ··· 0 0 0 ··· 0
κ2 −κ1−κ2 κ1 ··· 0 0 0 ··· 0

... ...

0 ··· κ2 −κ1−κ2 κ1
...

0 0 ··· κ1 −κ1−κ2
...


(C.3)

where the superscript T stands for the transpose and κ1,2 are the couplings of the chain that vary

with time (without loss of generality we set the values of the masses of the chain at m = 1).

We assume that the couplings vary slowly with time, namely κ1,2 = κ1,2(εt) with ε << 1. We

introduce the slow time scale τ = εt and then Eq. (C.1) gets the form

ε
dW

dτ
= A(τ)W . (C.4)
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In order to solve Eq. (C.4), we apply the WKB method. Namely, we use as an ansatz the vector

W (τ) = e
i
ε
S(τ)

(
W0(τ) + εW1(τ) + ε2W2(τ) + ...

)
. (C.5)

Plugging this ansatz into Eq. (C.4) and collecting powers of ε we get

O(1) : i
dS(τ)

dτ
W0(τ) = A(τ)W0(τ) (C.6)

O(ε) : i
dS(τ)

dτ
W1(τ) +

dW0(τ)

dτ
= A(τ)W1(τ) (C.7)

From Eq. (C.6) we get that idS/sτ is one of the eigenevalues of the matrix A(τ) and that

W0(τ) is proportional to the associated eigenvector. It remains to find the proportionality factor.

This factor is found as follows: We act with some vector Y † at Eq. (C.7) († stands for the complex

congugate transpose)

Y †
(

A(τ)− idS(τ)

dτ

)
W1 = Y †

dW0

dτ
(C.8)

which is also written as [(
A(τ)− idS(τ)

dτ
I

)†
Y

]†
W1 = Y †

dW0

dτ
. (C.9)

We choose Y to be on the kernel of the matrix B(τ) =

(
A(τ)− idS(τ)

dτ
I

)†
. Then from Eq. (C.9)

we get that Y and dW0/dτ are orthogonal. From this orthogonality condition, we find the corre-

sponding proportional factor.

Next, we show how to apply this, at the eigenvector of the matrix A(τ) that corresponds to

the edge mode. First of all, notice that the matrix A(τ) has an eigenvalue that is equal to

λ̃(τ) = i
√
κ1(τ) + κ2(τ) = iω̃(τ). (C.10)
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This eigenvalue corresponds to the edge mode. The associated eigenvector to this eigenvalue is

ũ(τ) =



(−1)
N−1

2 r
N−1

2

0
...
−r
0

1

i(−1)
N−1

2 ω̃r
N−1

2

0
...
−iω̃r

0

iω̃



, (C.11)

where we set r = r(τ) = κ1(τ)/κ2(τ).

The vector W0(τ) of the WKB ansatz is written as

W0(τ) = c̃(τ)ũ(τ), (C.12)

where c̃(τ) is the proportional factor. To find this factor we use the orthogonality of the vectors

W0(τ) and Y . The vector Y is found to be the following one

Y =



iω̃(−1)
N+1

2 r
N−1

2

0
...
iω̃r

0

−iω̃

(−1)
N−1

2 r
N−1

2

0
...
−r
0

1



. (C.13)

From the orthogonality of the vectors Y and dW0/dτ we arrive at the following ODE that the

factor c̃(τ) satisfies,

1

c̃

dc̃

dτ
= −

Y † · dũ
dτ

Y † · ũ
. (C.14)

After a few calculations we find that Eq. (C.14) takes the form

1

c̃
c̃′ = −1

2
r′
∑N

i=1,i odd (i− 1) ri−2∑N
i=1,i odd r

i−1
− ω̃′

2ω̃
(C.15)
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where prime denotes derivative with respect to τ . Integrating the last equation we get that

c̃(τ) ∼ 1√∑N
i=1,i odd r

i−1(τ)

1√
ω̃(τ)

e
i
ε

∫ τ
0 ω̃(s)ds. (C.16)

Therefore, the vector W (τ) of the WKB ansatz is given by

W (τ) =
C√∑N

i=1,i odd r
i−1(τ)

√
ω̃(τ)

e
i
ε

∫ τ
0 ω̃(s)dsũ(τ) + c.c, (C.17)

where the constant C is related with the initial conditions. At time t = 0 the vector W is given

by

W (0) =
C√∑N

i=1,i odd r
i−1(0)

√
ω̃(0)



(−1)
N−1

2 r
N−1

2 (0)

0
...

−r(0)

0

1

iω̃(0)(−1)
N−1

2 r
N−1

2 (0)

0
...

−iω̃(0)r(0)

0

iω̃(0)



+ c.c, (C.18)

At time t = T , the couplings are inverted κ1(T ) = κ2(0) and κ2(T ) = κ1(0). So, ω̃(T ) = ω̃(0) and

r(T ) = 1/r(0). After a few calculations, we find the vector W at the final time T ,

W (T ) =
C√∑N

i=1,i odd r
i−1(0)

1√
ω̃(0)



(−1)
N−1

2

0
...

−r(0)
N−3

2

0

r(0)
N−1

2

iω̃(0)(−1)
N−1

2

0
...

−iω̃(0)r(0)
N−3

2

0

iω̃(0)r(0)
N−1

2



e
i
ε

∫ εT
0 ω̃(s)ds + c.c. (C.19)

We compare the vectors W (0) and W (T ) and we find that the initial mode is transferred to the

other side of the chain with the same amplitude (it is not amplified).
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Approximation and closed form formula

The results that are presented in this appendix provide some insight into the results of Chapter

4. First of all, we show here that under some assumptions we get closed form expressions for the

pseudospectra. We also get a closed form formula that provides insight into the plateau that the

quantity (ρε − 1)/ε shows in Fig. 4.6(b) (recall that ρε is the pseudopectral radius). We begin

by reminding that the Floquet theorem states that the propagator matrix Φ(τ, τ0) is written as

the product of two matrices. The first matrix is a π-periodic one and we denoted this matrix as

P(τ, τ0) in Eq. (4.13) of the main text. The second matrix is the exponential eB(τ0)(τ−τ0).

Our assumption is that we do not take into account the periodic matrix P(τ, τ0). Namely, we

assume that the time evolution is governed only by the exponential eB(τ0)(τ−τ0),

Φ(τ, τ0)→ eB(τ0)(τ−τ0). (D.1)

To illustrate this assumption, we present in Fig. D.1(a) and (b) the norms ||Φ(τ, 0)|| and ||eB(0)τ ||
for two different sets (δ, q). In Fig. D.1(a) we used the same set as in Fig. 4.1(b) of the main

text - green rectangular, namely q = 0.5072 and δ = 3q. We remind that this set of parameters

returns a Floquet exponent that is equal to γ = 0.9. In Fig. D.1(b) the parameter q is equal to

1.2389 and again δ = 3q. This choice results in a Floquet exponent that is equal to γ = 0.1. From

Fig. D.1(b) we get that for γ << 1, the exponential eB(τ0)(τ−τ0) follows closely the propagator.

However, this is not the case for γ ≈ 1 (see Fig. D.1(a)). Yet, in both cases the maximum value of

the ||eB(0)τ ||, namely the quantity max
τ
||eB(0)τ ||, is a lower bound for the corresponding maximum

of the propagator.

As we mentioned at the beginning of this appendix, at this point we are interested to get an

insight into some results that are illustrated in the main text. For that reason, we will set the

initial time τ0 at zero and we will try to get some information for the quantity ||eB(0)τ || and not for

the general ||eB(τ0)(τ−τ0)||. As we shall see, this simplification will allow us to obtain closed form

expressions. First of all, we note that the matrix B(0) has zero diagonal elements and is therefore

87



Appendix D

Figure D.1: Shown here are the quantities ||Φ(τ)||, ||eB(0)τ || and ||eBnπ|| for two different sets
(δ, q). (a) q = 0.5072 and δ = 3q which yields a Floquet exponent γ = 0.9. (a) q = 1.2389 and
δ = 3q which yields a Floquet exponent γ = 0.1.

written in the form

B =

(
0 a

b 0

)
. (D.2)

This form is due to the symmetry of the matrix C(τ) =

(
ω̇/2ω ω

−ω −ω̇/2ω

)
in time inversion.

Information regarding the norm ||eB(0)τ || is provided by the pseudospectrum of the B(0) matrix.

First of all, for a matrix B(0) with zero diagonal elements, we find that the boundaries of the

pseudospectra (which are found from the solution of the equation ||(z−B(0))−1|| = ε−1) are given

by (we set z = x+ iy)y1,2 =
√
−ab+ ε2 − x2 ±

√
ε2(a− b)2 + 4abx2, y > 0

y3,4 = −
√
−ab+ ε2 − x2 ±

√
ε2(a− b)2 + 4abx2, y < 0

(D.3)

An example of these boundaries is illustrated in Fig. D.2 for three values of ε. We used the same

set of parameters that we also used in Fig. D.1(a). The elements a and b of the B(0) are found

numerically. Notice that these boundaries have the same form as the ones that are shown in

Fig. 4.5(a) in Chapter 4.

The pseudospectrum of the B(0) matrix provides bounds for the max
τ
||eB(0)τ ||. A lower bound

for this quantity is given by the continuous Kreiss constant. More precisely, the following relation

holds

max
τ
||eB(0)τ || ≥ max

ε
[αε(B)/ε] (D.4)

where αε is the pseudospectral abscissa - the maximum of the real part of the pseudospectra of
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Figure D.2: Shown are the curves y1,2,3,4 for the set of parameters (δ, q) that we also used in
Fig. D.1(a) and for (a) ε = 0.01, (b) ε = 0.038 and (c) ε = 0.08.

the B(0) matrix. The quantity that is given at the right hand side of Eq. (C.4) is called the

continuous Kreiss constant. Using the curves y1,2,3,4 that are given in Eq. (C.3), we can calculate

the pseudospectral abscissa. The result is
αε =

ε|a− b|
2
√
|ab|

for ε <
2|ab|
|a+ b|

αε =
√
ε2 − |ab|+ ε|a+ b| otherwise

(D.5)

In Fig. D.3 we present the quantity αε(B)/ε as a function of ε. Notice that the quantity αε/ε is

constant up to a value of ε (that is equal to ε̃ = 2|ab|/|a+ b|) and after that it drops. Therefore,

this quantity shows a plateau for small values of ε as it was the case in Fig. 4.6(b) in Chapter 4.

Figure D.3: Once more, we used the set of parameters (δ, q) that we also used in Fig. D.1(a).
Shown here is the quantity αε(B)/ε as a function of ε. The max

ε
[αε(B)/ε] is the continuous Kreiss

constant and is a bound for the max
τ
||eB(0)τ ||.

89



Bibliography

[1] L. N. Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lat-
tices. Dover Publications, 1953.

[2] D. Sprung, H. Wu, and J. Martorell, “Scattering by a finite periodic potential,” American
Journal of Physics, vol. 61, p. 1118, 1993.

[3] N. W. Ashcroft and N. D. Mermin, Solid State Physics. Holt, Rinehardt and Winston, New
York, 1976.

[4] D. J. Griffiths and N. F. Taussig, “Scattering from a locally periodic potential,” American
Journal of Physics, vol. 60, p. 883, 1992.

[5] D. J. Griffiths and C. A. Steinke, “Waves in locally periodic media,” American Journal of
Physics, vol. 69, p. 137, 2001.

[6] P. Markos and C. M. Soukoulis, Wave propagation: From Electrons to Photonic Crystals and
Left-Handed Materials. Princeton University Press, 2008.

[7] F. Barra and P. Gaspard, “Scattering in periodic systems: from resonances to band struc-
ture,” Journal of Physics A: Mathematical and General, vol. 32, p. 3357, 1999.

[8] X. Huang, Y. Wang, and C. Gong, “Numerical investigation of light-wave localization in
optical Fibonacci superlattices with symmetric internal structure,” Journal of Physics: Con-
densed Matter, vol. 11, p. 7645, 1999.

[9] X. Huang, S. Jiang, R. Peng, and A. Hu, “Perfect transmission and self-similar optical
transmission spectra in symmetric Fibonacci-class multilayers,” Physical Review B, vol. 63,
p. 245104, 2001.

[10] R. Peng, X. Huang, F. Qiu, M. Wang, A. Hu, S. Jiang, and M. Mazzer, “Symmetry-induced
perfect transmission of light waves in quasiperiodic dielectric multilayers,” Applied Physics
Letters, vol. 80, p. 3063, 2002.

[11] P. Mauriz, M. S. d. Vasconcelos, and E. L. d. Albuquerque, “Optical transmission spectra in
symmetrical Fibonacci photonic multilayers,” Physics Letters A, vol. 373, p. 496, 2009.

[12] S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic
multilayers,” Physical Review A, vol. 81, p. 053808, 2010.
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Περίληψη

Η αλληλεπίδραση των κυμάτων με μέσα που διαθέτουν χωρικές ή/και χρονικές διακυμάνσεις οδηγεί

σε ενδιαφέρουσα φαινομενολογία. Σε αυτό το πλαίσιο, στη παρούσα διατριβή μελετώνται τέσσερα

κυματικά φαινόμενα: δύο που εμφανίζονται σε χωρικά μεταβαλλόμενα μέσα και δύο σε χρονικά μετα-

βαλλόμενα μέσα. Συγκεκριμένα:

Στο κεφάλαιο 1 διερευνούμε την ανθεκτικότητα των συντονισμών πλήρους διέλευσης που υπ-

οστηρίζονται σε ένα περιοδικό σύστημα σκέδασης με καθρεπτικά συμμετρικά κελιά, σε ασύμμετρες

διαταραχές. Ως πρώτο βήμα, υπολογίζουμε τη διόρθωση στους κυματικούς αριθμούς των προσπιπ-

τόντων κυμάτων που αντιστοιχούν στους συντονισμούς πλήρους διέλευσης (σε πρώτη τάξη θεωρίας

διαταραχών). Στη συνέχεια, μελετάμε μια διαταραχή που αποτελείται από σκεδαστές Dirac και δείχ-

νουμε πώς συντονισμοί πλήρους διέλευσης εμφανίζονται και υπό τη παρουσία διαταραχής που έχει

κατάλληλα σχεδιαστεί. Τέλος, αποκαλύπτουμε μια σύνδεση μεταξύ δύο φαινομενικά ανεξάρτητων συν-

τονισμών πλήρους διέλευσης του μη διαταραγμένου συστήματος σκέδασης, η οποία οφείλεται στην

κατοπτρική συμμετρία των κελιών.

Στο κεφάλαιο 2 υπολογίζουμε το μήκος εντοπισμού των τοπολογικά εντοπισμένων καταστάσεων

που υποστηρίζονται σε μια διμερή αλυσίδα μάζας-ελατηρίου η οποία έχει τυχαίες διακυμάνσεις στις

σταθερές των ελατηρίων της. Απουσία διαταραχών, η διμερή αλυσίδα που θεωρύμε διαθέτει χειρα-

λική συμμετρία και μη τετριμμένα τοπολογικά χαρακτηριστικά. Υπό την παρουσία ισχυρής χειραλικής

διαταραχής το μήκος εντοπισμού των τοπολογικά εντοπισμένων καταστάσεων αποκλίνει, υπονοών-

τας ότι μια τοπολογική αλλαγή φάσης λαμβάνει χώρα και η οποία προκαλείται αποκλειστικά από τη

διαταραχή.

Το μοντέλο που χρησιμοποιούμε στο κεφάλαιο 3 είναι πάλι μια διμερής αλυσίδα μάζας-ελατηρίου.

Σε αυτό το κεφάλαιο ωστόσο, χρησιμοποιούμε αυτό το σύστημα σε ένα διαφορετικό πλαίσιο, καθώς

ο στόχος μας εδώ είναι να μεταφέρουμε μια τοπολογικά εντοπισμένη κατάσταση από τη μια άκρη

της αλυσίδας στην άλλη. Για να επιτύχουμε μια τέτοια μεταφορά επιτρέπουμε στις σταθερές των

ελατηρίων να μεταβάλλονται με το χρόνο, καθιστώντας έτσι την αλυσίδα χρονικά μεταβαλλόμενη (η

αλυσίδα που χρησιμοποιούμε στο κεφάλαιο 2 είναι στατική). Μας ενδιαφέρει επίσης να επιτύχουμε τη

μεταφορά γρήγορα και για το σκοπό αυτό χρησιμοποιούμε μια βέλτιστη μέθοδο ελέγχου. Ξεπερνώντας

το αδιαβατικό όριο, σχεδιάζουμε ένα πρωτόκολλο για τις χρονικά μεταβαλλόμενες σταθερές των

ελατηρίων που έχει ως αποτέλεσμα μια γρήγορη και ανθεκτική μεταφορά και ακόμη περισσότερο

οδηγεί στην ενίσχυση της μεταφερόμενης τοπολογικής κατάστασης.



Για να κατανοήσουμε το φαινόμενο της ενίσχυσης σε μια χρονικά μεταβαλλόμενη πλατφόρμα, στο

κεφάλαιο 4 εξετάζουμε τη διάδοση ενός κύματος σε ένα μέσο με χρονικά περιοδικό δείκτη διάθλασης

και με δυναμική που διέπεται από την εξίσωση Mathieu. Η εξίσωση Mathieu διαθέτει τόσο ευσταθείς

όσο και ασταθείς λύσεις και διερευνούμε την παροδική ενίσχυση των ευσταθών της λύσεών. Αναζη-

τούμε τη μέγιστη δυνατή παροδική ενίσχυση βελτιστοποιώντας στις αρχικές συνθήκες καθώς και στον

αρχικό χρόνο. Εξετάζουμε επίσης αρκετές ποσότητες του ε-ψευδοφάσματος του μονόδρομου πίνακα

– του πίνακα που διαδίδει τις αρχικές συνθήκες σε μία περίοδο – και παρέχουμε αριθμητικά δεδομένα

που δείχνουν ότι η μέγιστη δυνατή ενίσχυση καθορίζεται μόνο από τον μονόδρομο πίνακα.

Τέλος, στο κεφάλαιο 5, συνοψίζουμε τα ευρήματά μας και συζητάμε περαιτέρω ερευνητικά ερωτή-

ματα που ανοίγονται. Η παρούσα εργασία συνοδεύεται από τέσσερα παραρτήματα. Κάθε ένα από

αυτά τα παραρτήματα αντιστοιχεί σε καθένα από τα τέσσερα κεφάλαια. Ειδικότερα: Στο παράρτημα Α

παρέχουμε τις αναλυτικές αποδείξεις ορισμένων σχέσεων που δίνονται στο κεφάλαιο 1. Στο παράρτημα

Β δίνουμε ορισμένες λεπτομέρειες σχετικά με τη μέθοδο του πίνακα μεταφοράς που χρησιμοποιούμε

στο κεφάλαιο 2. Στο Παράρτημα Γ, αποδεικνύουμε – χρησιμοποιώντας τη μέθοδο WKB – ότι αν οι

σταθερές των ελατηρίων της διμερούς αλυσίδας που εξετάζουμε στο κεφάλαιο 3 αλλάζουν αργά στο

χρόνο, τότε η μεταφορά της τοπολογικά εντοπισμένης κατάστασης γίνεται με επιτυχία. Τέλος, στο

παράρτημα Δ δίνουμε κάποιες εκφράσεις σε κλειστή μορφή, οι οποίες μας βοηθούν να κατανοήσουμε

καλύτερα ορισμένα αποτελέσματα που παρουσιάζονται στο κεφάλαιο 4.



Résumé

L’interaction des ondes avec des milieux possédant des fluctuations spatiales et/ou temporelles

conduit à une phénoménologie intéressante. Dans ce cadre, dans la présente thèse quatre phénomènes

ondulatoires sont étudiés: deux se produisant dans des milieux variant dans l’espace et deux dans

des milieux variant dans le temps. Spécifiquement:

Dans le chapitre 1, nous étudions la robustesse aux perturbations asymétriques des résonances

de transmission parfaite (PTRs) supportés dans un système de diffusion périodique fini construit à

partir d’une cellule à symétrie miroir. En première étape, nous calculons la correction aux nombres

d’onde des ondes incidentes qui correspondent à ces PTR (dans la théorie des perturbations du

premier ordre). Par la suite, nous considérons une perturbation constituée de diffuseurs de Dirac et

montrons comment des PTR pourraient encore apparâıtre dans le cas perturbé avec une conception

appropriée de la perturbation. Enfin, nous révélons une connexion entre deux PTR apparemment

indépendants de la configuration non perturbée, qui réside dans la symétrie miroir des cellules.

Dans le chapitre 2, nous calculons la longueur de localisation des modes de bord topologiques

qui sont supportés dans une châıne mécanique masse-ressort possédant des fluctuations aléatoires

de ses paramètres de rigidité. En l’absence de désordre, la châıne dimère que nous considérons

présente une symétrie chirale et des caractéristiques topologiques non triviales. En présence d’un

fort désordre chiral, la longueur de localisation diverge, ce qui implique une transition de phase

topologique induite uniquement par le désordre. Le modèle que nous utilisons au chapitre 3 est

encore une fois une châıne masse-ressort dimère. Cependant, dans ce chapitre, nous utilisons cette

configuration sous un angle différent, puisque notre objectif ici est de transférer un état de bord à

travers la châıne. Pour réaliser un tel transfert, nous laissons les couplages des ressorts varier avec

le temps, rendant ainsi la châıne dépendante du temps (la châıne que nous utilisons au chapitre

2 est statique). Nous cherchons également à effectuer le transfert rapidement, et à cette fin, nous

utilisons une méthode de contrôle optimal. Au-delà de la limite adiabatique, nous concevons un

protocole pour les couplages variables dans le temps qui aboutit à un transfert rapide et robuste

et conduit encore plus à une amplification du mode de bord transféré.

Pour comprendre le phénomène d’amplification dans une plateforme variable dans le temps,

nous considérons au chapitre 4 la propagation d’une onde dans un milieu à indice de réfraction

périodique et dont la dynamique des ondes est régie par l’équation de Mathieu. L’équation de

Mathieu contient à la fois des solutions stables et instables et nous explorons les caractéristiques



d’amplification transitoire de ses solutions stables. Nous recherchons l’amplification transitoire

maximale possible en optimisant les conditions initiales ainsi que le démarrage initial du processus.

Nous utilisons également plusieurs quantités du ε-pseudospectre de la matrice de monodromie –

la matrice qui propage les conditions initiales sur une période – et nous fournissons la preuve

numérique que les caractéristiques globales d’amplification sont fournies simplement par la matrice

de monodromie.

Enfin, dans le chapitre 5, nous résumons nos découvertes et discutons de nos perspectives

futures. Cette thèse est accompagnée de quatre annexes. Chacune de ces annexes correspond

à chacun des quatre chapitres. En particulier : dans l’annexe A, nous fournissons les preuves

analytiques de certaines relations données au chapitre 1. Dans l’annexe B, nous donnons quelques

détails concernant la méthode de matrice de transfert que nous utilisons au chapitre 2. Dans

l’Annexe C, nous prouvons – en utilisant la méthode WKB – que si les couplages de la châıne

dimère que nous considérons au chapitre 3 varient lentement dans le temps, alors le processus de

transfert s’effectue avec succès. Enfin, dans l’Annexe D, nous fournissons des expressions sous

forme fermée qui nous aident à mieux comprendre certains résultats présentés au chapitre 4.



 

 

 

 
 

 

Titre : Phénomènes ondulatoires dans des milieux spatiaux ou temporels unidimensionnels 

Mots clés : résonances de transmission parfaites, longueur de localisation, transfert non 
adiabatique, équation de Mathieu,  pseudospectrum 

Résumé :  L'interaction des ondes avec des milieux 
possédant des fluctuations spatiales et/ou temporelles 
conduit à une phénoménologie intéressante. Dans ce 
cadre, dans la présente thèse quatre phénomènes 
ondulatoires sont étudiés: deux se produisant dans 
des milieux variant dans l’espace et deux dans des 
milieux variant dans le temps. Nous commençons par 
explorer la diffusion des ondes par une configuration 
spatialement périodique finie sujette à des 
perturbations. Nous nous concentrons sur les 
résonances de transmission parfaite (PTR) et nous 
développons une méthode pour les préserver sous 
des perturbations asymétriques.  L'analyse effectuée 
révèle une connexion par paire entre les PTR d'une 
configuration de diffusion spatialement périodique 
avec des cellules à symétrie miroir. Dans le même 
contexte de milieux variant spatialement, nous 
calculons la longueur de localisation des modes de 
bord topologiques qui sont supportés dans une chaîne 
mécanique masse-ressort possédant des fluctuations 
aléatoires de ses paramètres de rigidité.  En présence 
d'un fort désordre chiral, la longueur de localisation 
diverge, ce qui implique une transition de phase 
topologique induite uniquement par le désordre. 
 

Dans une prochaine étape, nous considérons le cas 
où les couplages de la chaîne masse-ressort 
mécanique varient avec le temps de manière 
déterministe. Ce système variable dans le temps 
peut alors servir de plate-forme pour transférer un 
mode de bord topologique. Au-delà de la limite 
adiabatique, nous concevons un protocole pour les 
couplages variables dans le temps qui aboutit à un 
transfert rapide et robuste et conduit encore plus à 
une amplification du mode de bord transféré. Pour 
éclairer le phénomène d'amplification dans une 
plateforme variable dans le temps, nous explorons la 
propagation d'une onde dans un milieu à indice de 
réfraction périodique et dont la dynamique des ondes 
est régie par l'équation de Mathieu. L'onde présente 
une amplification transitoire en raison de la nature 
non normale de la matrice de propagation et nous 
fournissons la preuve numérique que les 
caractéristiques d'amplification globales sont 
fournies simplement par la matrice de monodromie. 
 

 

Title : Wave phenomena in one-dimensional space or time varying media 

Keywords : perfect transmission resonances, localization length, non-adiabatic state transfer, 
Mathieu equation, pseudospectrum 

Abstract : The interaction of waves with media 
possessing spatial or/and temporal fluctuations leads 
to interesting phenomenology. Within this 
framework, in the present thesis four wave 
phenomena are studied: two occurring in spatially-
varying media and two in time-varying media. We 
begin by exploring wave scattering by a finite 
spatially-periodic setup that is subject to 
perturbation. Our focus is on perfect transmission 
resonances (PTRs) and we develop a method for 
preserving them under asymmetric perturbations. 
The performed analysis reveals a pairwise 
connection between PTRs of a spatially-periodic 
scattering setup with mirror symmetric cells. In the 
same context of spatially varying media, we compute 
the localization length of the topological edge modes 
that are supported in a mechanical mass-spring 
chain possessing random fluctuations of its stiffness 
parameters. In the presence of strong chiral disorder 
the localization length diverges, implying a 
topological phase transition that is induced purely by 
disorder. 
 

As a next step we consider the case where the 
couplings of the mechanical mass-spring chain vary 
with time in a deterministic way. Then this time-
varying system can serve as a platform for 
transferring a topological edge mode. Going beyond 
the adiabatic limit, we design a protocol for the time-
varying couplings that results in a fast and robust 
transfer and even more leads to amplification of the 
transferred edge mode. To shed light into the 
phenomenon of amplification in a time-varying 
platform, we explore the propagation of a wave in a 
medium with time-periodic refractive index and with 
wave dynamics governed by the Mathieu equation. 
The wave exhibits transient amplification due to the 
non normal nature of the propagator matrix and we 
provide numerical evidence that the global amplifying 
features are provided merely by the monodromy 
matrix. 
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