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Abstract

The interaction of waves with media possessing spatial or/and temporal fluctuations leads to
interesting phenomenology. Within this framework, in the present thesis four wave phenomena are
studied: two occurring in spatially-varying media and two in time-varying media. We begin by
exploring wave scattering by a finite spatially-periodic setup that is subject to perturbation. Our
focus is on perfect transmission resonances (PTRs) and we develop a method for preserving them
under asymmetric perturbations. The performed analysis reveals a pairwise connection between
PTRs of a spatially-periodic scattering setup with mirror symmetric cells. In the same context
of spatially varying media, we compute the localization length of the topological edge modes that
are supported in a mechanical mass-spring chain possessing random fluctuations of its stiffness
parameters. In the presence of strong chiral disorder the localization length diverges, implying a
topological phase transition that is induced purely by disorder. As a next step we consider the
case where the couplings of the mechanical mass-spring chain vary with time in a deterministic
way. Then this time-varying system can serve as a platform for transferring a topological edge
mode. Going beyond the adiabatic limit, we design a protocol for the time-varying couplings
that results in a fast and robust transfer and even more leads to amplification of the transferred
edge mode. To shed light into the phenomenon of amplification in a time-varying platform, we
explore the propagation of a wave in a medium with time-periodic refractive index and with wave
dynamics governed by the Mathieu equation. The wave exhibits transient amplification due to the
non normal nature of the propagator matrix and we provide numerical evidence that the global

amplifying features are provided merely by the monodromy matrix.
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Introduction

A. Some features of spatial media

Exploring how waves interact with media that display structures in space, not only advances
technology but also deepens our understanding for the natural world. This interaction between
waves and spatial media gives rise to a wide and diverse range of phenomena. In the first part
of this thesis we focus our attention on perfect transmission resonances (PTRs) and on wave

localization in disordered topological lattices.

A1l. Periodic media and perfect transmission resonances

The investigation of the wave behavior in periodic media has certainly attracted great interest in
physics over the years. This research contains the study of the wave propagation in infinite periodic
media [1] and the wave scattering by finite periodic ones [2]. It is known that the energies for which
the wave propagation is allowed in a one-dimensional infinite periodic medium form bands that are
separated by gaps. Namely, the energy spectrum shows a band structure form [3] (see Fig. 1(a) for
an example). Fingerprints of a band structure form can be observed in the transmission spectrum
of a one-dimensional finite periodic medium [4,5]. Specifically, for certain energies of the wave
that scatters by such a medium the transmission coefficient is close to zero (transmission gaps)
and for certain other energies the transmission coefficient is close to one (transmission bands).
The positions of transmission bands (gaps) match with the corresponding energy levels for which
the wave propagation is allowed (prohibited) in the corresponding infinite medium [6]. Moreover,
within each of these transmission bands the transmission coefficient becomes exactly equal to 1 at
least N —1 times (N is the number of the cells that comprise the finite periodic medium) [2,4,5,7]
(see Fig. 1(b)).

The case of transmission equal to one is known as a perfect transmission resonance (PTR).

Specifically, a PTR refers to the following situation

PTR: A wave (with real wave number k) perfectly transmits through a medium that it is incident

to.

The appearance of PTRs is not limited in periodic media since aperiodic scattering setups that

possess global mirror symmetry usually support PTRs as well [8-11]. Furthermore, it has been
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Figure 1: (a) Upper: Schematic description of the propagation of a wave in an infinite array of
delta Dirac functions. Lower: The energies for which the propagation is allowed form bands. (b)
Upper: Schematic description of the scattering of an incident wave by a finite array with 8 Dirac
scatterers. Lower: Corresponding transmission coefficient 7" as a function of the energy of the
incident wave. The PTRs are the peaks that correspond to 7' = 1.

found that even the global mirror symmetry is not a necessary condition for the appearance of
PTRs [12] and asymmetric systems that support PTRs have also been reported [12-16]. The latter
results open up many research directions for the design of asymmetric media that possess desired
PTRs in their transmission spectra, for instance in ref. [17] the design of a locally symmetric

medium that supports PTRs has been accomplished based on the transfer matrix method [18].

When a symmetric scattering setup that exhibits PTRs is perturbed, then its PTRs are a priori
lost because its symmetry is broken. However, this subject is much less studied and it is certainly
interesting to apply the perturbation theory for this investigation. To this end, in Chapter 1 we
will perturb a finite periodic scattering setup that supports bands with N — 1 PTRs and we will
apply the techniques of the regular perturbation analysis. We will demonstrate a semianalytical
approach that we developed, based on which we are able to design an asymmetric perturbation that
preserves a desired PTR of the unperturbed setup. Surprisingly, our study led to the discovery of
a connection between two apparently independent PTRs of a class of finite periodic media (those
whose building block has parity symmetry). This connection implies that if one PTR among
the N — 1 of a band is preserved under some perturbations, then another PTR is automatically

preserved as well.
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A2. Topological properties

Another characteristic of periodic media has been revealed in recent years, by employing the con-
cepts of topology [19]. It has been found that in various cases the band diagrams are characterized
by quantities that are invariant under deformations that leave the gaps open [20]. It has also been
established that these invariant quantities — which are referred as topological invariants — originate
from the Berry phase [21,22]. An inherent feature of media with non-trivial topological invariants
is that they support states that are localized at their boundaries (edges) [23,24]. These edge
states typically appear within the band gaps and a key advantage of them is that they are robust
against various forms of disorder [20,25], something that points them toward various potential
applications. Moreover, even though edge states and a non-trivial topology were first captured
within a quantum framework — in the context of the quantum Hall effect [26] — up to this day,
topological phases have been realized in a very wide range of systems, including mechanic [27-32],
acoustic [33-38], photonic [39-44] and hydrodynamic [45-47] ones.

At the same time, the impact of random disorder in a

medium with topological properties has also been examined.

First of all, it is known that a wave cannot undergo diffusion in a

disordered medium (in which the disorder is strong and random)

and gets localized within it [48] (see Fig. 2). This is the well | w

known phenomenon of the Anderson localization [49]. Along i ‘\l! HM o __
this line, it has been found that when a periodic medium with i ,lul HI‘[W N ' B
topological properties is disordered, then a topological phase '

transition from trivial to non-trivial may be caused [50-56]. This

topological phase transition has been named topological Ander-

100 200

son insulator and has been experimentally verified in acoustic 0 300
systems [57], in photonic ones [58] and in atomic wires [59]. In N
addition, this topological phase transition is accompanied by a Figure 2: Shown here are

divergence of the localization length of the edge states, which is g0 cigenstates of a disordered

of particular interest in the context of the Anderson localization.

Most of the investigations regarding the topological Ander-
We

will show in Chapter 2 that such transitions take place even

son insulator have been conducted in quantum systems.

in disordered mechanical systems. In particular, we found that
the localization length of the edge states that are supported in a
mass-spring dimer lattice (due to a non-trivial topology), diverge
in the presence of a strong disorder. Moreover, we revealed that
the form of the disorder that is applied (random or correlated)

has a strong impact at the manifestation of these phenomena.

Hamiltonian (correspond to the
five curves with different colors).
The size of the disordered sys-
tem is N = 300 sites. All these
eigenstates are localized. The
energies of these eigenstates are
close in the energy spectrum,
however their spatial extent is
different.
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B. Time-modulated media

Similar to spatially varying media, time-varying media — media whose properties vary with time
— host novel phenomena and enrich our scientific knowledge. They play a crucial role for wave
manipulation and for optimizing dynamic processes. In the second part of this thesis we investigate

non-adiabatic state transfers and wave amplifying phenomena in such time-varying media.

B1. Non-adiabatic state transfer

The existence of edge states and their robustness against various forms of disorder, are features
of platforms with topological properties that make them ideal for implementing a transferring
process [20]. Generally speaking, the state transfer — the transfer of some information from one
location to another (see Fig. 3) — is a subject of great importance and has been accomplished via
photons [60], in linear spin chains [61,62], in quantum dots [63] and in many other platforms.

However, more recent studies have explored the state transfer un-

der the prism of topology [64-68], in order to exploit the robust-

Initial ness of the edge states against imperfections of the transferring
state t; network. Most of these recent studies, build upon the concept
of Thouless adiabatic pumping [69], that is the quantized charge

State transfer transport in a one-dimensional periodic potential that is slowly

- t< < varied in time and in a cyclic manner. Thouless adiabatic pump-

ing has been realized in several systems with a non-trivial topol-

ogy, including cold atoms [70-73], photonic [74-76], artificial spin

1 N 21 systems [77, 78], quantum dots [79,80], mechanical metamateri-
als [81-83], acoustic ones [84], etc.

Figure 3: Schematic description At the same time, there are several methods that have been

of the transfer of an edge state developed in order to speed up adiabatic transfer processes, in

across a lattice with N = 21 1qer to overcome the lossy factors that these adiabatic processes

sites. are subject to, due to the slow time scales. These methods are

known as ”Shortcuts to Adiabaticity” [85,86] and the general
idea behind these methods is to produce the same final state — given the same initial state — as
an adiabatic process does, by exploiting the non-adiabatic excitations that take place when the
parameters of a system vary rapidly in time. Two such techniques that are widely used are the
counteradiabatic driving (or transitionless driving) [87-90] (see ref. [91,92] for the experimental
realization of a counteradiabatic driving process) and the inversed engineering based on the Lewis-
Riesenfeld invariants [93,94]. There are other methods that also enable fast transfers and which
are known as optimal control ones [95]. In these optimal control methods the objective is to
find time-dependent control parameters that maximize a specific cost function, typically known as

fidelity, under specific constraints. This is accomplished through the use of numerical techniques

4
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that update the control parameters iteratively, until the cost function is maximized (with respect
to some bound).

The counteradiabatic driving [96] and the optimal control methods [97] have been applied for
the fast transfer of edge states in quantum topological lattices. In Chapter 3 we will show — using
an optimal control method — that a fast transfer of an edge state is possible in a mechanical lattice
as well. We will also demonstrate that the transfer is not only fast but also robust against disorder
in the transfer network. An interesting finding of this study is that the transferred state can
be amplified or disamplified, due to the absence of unitarity in the time-varying lattice that we

considered (which is a non-autonomous system).

B2. Amplification in time-varying media

During the past decade, there has been noted a significant interest for the exploration of wave
propagation in time-varying media [98,99]. This interest is attributed to a lot of fascinating features
that such time-varying media display, as for instance band structures in their dispersion diagrams
and non-trivial topological properties [100]. Moreover, wave phenomena like time-reflection and
time-refraction [101, 102] that are captured in such media [103], also play a significant role in
generating this great interest. And there is no doubt that one of their most fascinating effects, is
their ability to amplify the energy of the waves that propagate in them [104]. The amplification
in such time-varying media is usually (but not always - see ref. [105]) related with parametric
instabilities [106].
Parametric instabilities can emerge in any dynamical system

when a parameter of a system is modulated periodically in time
Faraday waves

with an appropriate frequency. A well known example is the Fara-
day instability in fluid mechanics [107,108]: when a tank with a
fluid layer is vertically oscillated then waves at the surface of the
fluid emerge, which are called Faraday waves. The parametric in-
stabilities are usually studied under the prism of Floquet analy-
sis [109], since this theory derives the stability properties of the so-
lutions and the unstable solutions are related with the parametric
instabilities. Along the line of amplification there is a mechanism Figure 4: Schematic descrip-
— that is well known in the field of hydrodynamics and emerges in tion of Faraday instability.
static systems as well, not necessarily in time-varying ones [110] —

that leads to transient amplification of stable solutions [111]. The

stable solutions of a system can be transiently amplified when the matrix that propagates the ini-
tial conditions forward in time is non-normal, having thus non-orthogonal eigenvectors [112,113].
The description of these transient amplifying features need particular tools and multiple methods

are being used, as for instance the singular value decomposition [114]. Especially, one of the tools

5
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that has been developed in this direction and is widely used, is the e-pseudospectrum [110].

The e-pseudospectrum can been utilized in the context of wave propagation in time-varying
media, since phenomena of non-normal nature are often captured in these media. We will present
such a description in Chapter 4. In particular, we used the e-pseudospectrum toolbar and we
quantified the transient amplification that a wave that propagates in an infinite harmonically
modulated medium could undergo. We considered the modulation of the medium to be carried

out in a way such that the Mathieu equation [115] governs the wave dynamics [116,117].

C. Plan of the Thesis

In this thesis we try to get an understanding of the above wave phenomena by studying four differ-
ent problems. Specifically: In Chapter 1 we investigate the robustness to asymmetric perturbation
of the PTRs that are supported in a finite periodic scattering system that is build from a mirror
symmetric cell. As a first step, we calculate the correction at the wave numbers of the incident
waves that correspond to these PTRs (in first order perturbation theory). Subsequently, we con-
sider a perturbation that consists of Dirac scatterers and we show how PTRs could still appear
in the perturbed case with a suitable design of the perturbation. Finally, we reveal a connection
between two apparently independent PTRs of the unperturbed setup, which lies in the mirror
symmetry of the cells.

In Chapter 2 we study the localization properties of a disordered 1D dimer mass-spring chain.
In the absence of disorder, the dimer chain that we consider consists of same masses and springs
with alternating stiffness values. Such a dimer chain possesses a so called chiral symmetry and
non-trivial topological features. As a result, edge states are supported in a corresponding finite
dimer chain. We apply two forms of disorder in a finite dimer chain: the first form retains its
chiral symmetry while the second one breaks it and we compute the localization length of the edge
states using the transfer matrix method.

The model that we use in Chapter 3 is again a dimer mass-spring chain. However, in this
Chapter we use this setup under a different prism, since our goal here is to transfer an edge state
through the chain. To achieve such a transfer we let the spring couplings to vary with time,
making thus the chain time-dependent (the chain that we use in Chapter 2 is static). We are also
interested to achieve the transfer fast and to that end we use an optimal control method. We
design several protocols for the time-varying couplings and we show how to reduce the transfer
time. Furthermore, we explore the impact of disorder to these transfer protocols in order to deduce
whether the gain in transfer speed comes with a cost in robustness.

In Chapter 4 we consider the propagation of a wave in an infinite medium that is periodically
modulated in time, in a way so that the Mathieu equation emerges [116,117]. The Mathieu
equation contains both stable and unstable regions in the parameter space [115] and we explore

the amplification features of its stable solutions. We search for the maximum possible transient



Introduction

amplification by optimizing the initial conditions as well as the initial start of the process. We also
make use of several quantities of the e-pseudospectrum of the monodromy matrix — the matrix
that propagates the initial conditions over one period — and we provide numerical evidence that
the knowledge of the monodromy matrix is sufficient to derive the overall maximum amplification.

Finally in Chapter 5 we conclude our findings and we discuss our future perspectives. This
thesis is accompanied by four appendices. Each one of these appendices corresponds to each one
of the four chapters. Particularly: In Appendix A we provide the analytic proofs of some relations
that are given in Chapter 1. In Appendix B we give some details regarding the transfer matrix
method that we use in Chapter 2. In Appendix C, we prove — using the WKB method [118] — that
if the couplings of the dimer chain that we consider in Chapter 3 vary slowly in time, then the
transfer process is done successfully. Finally, in Appendix D we provide closed form expressions

that help us to get a deeper understanding of some results that are presented in Chapter 4.



Chapter 1

Perfect transmission resonances of

perturbed scattering systems

1.1 Introduction

A one-dimensional periodic scattering setup is known to possess a transmission spectrum that has
a band-like structure form [5]. Within each of the bands, the transmission becomes exactly one at
least N — 1 times, where N is the number of cells of the setup. The case of transmission 1 is known
as a perfect transmission resonance (PTR). When such a periodic scattering setup is perturbed,
then the PTRs that it supports are a priori lost.

In this Chapter, we investigate the PTRs of a perturbed 1D finite periodic system with mir-
ror symmetric cells. For this investigation we use the transfer matrix method and the classical

perturbation analysis.

1.2 Scattering by a periodic system with mirror symmetric

cells

We begin by considering the scattering in one dimension by a mirror symmetric potential barrier
V(z). The potential V' (z) is real and zero outside the region [—d/2,d/2]. For a schematic illustra-
tion of such a potential and of the scattering process see Fig. 1.1(a). The waves involved satisfy

the stationary Schrodinger equation
W [ - V()] v =0, (L1)

where v is the wave function, prime denotes differentiation with respect to x and k is the wave
number of the waves in the regions outside of the scattering area (which is free). At the left side

of the barrier the wave function is given by ¥ = ¢} + ¢ where /] = Ae™*® and ¢y, = Be ™

8



1.2. Scattering by a periodic system with mirror symmetric cells

: oot

[ ] L [ ]
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—d/2 0 d/2 x —D/2 T

Figure 1.1: (a) Schematic description of scattering by a mirror symmetric potential V(z). (b)
Corresponding schematic description of scattering by a finite periodic potential V(z) that is build
by the repetition NV times in space of the barrier that is shown in (a).

and similarly at the right side of the barrier the wave function is ¢ = ¥} + ¢ where 1}, = Ce*®
and ¢ = De ™,
By invoking the boundary conditions at the two edges of the setup, namely at the points

xr = +d/2, we find two linear relations for the wave function

(L3
1/)1; x=d/2 dji

The matrix M is called transfer matrix and is given by

M ( 1/t r/t) | 13)
(r/tyr 1t

where t and r are the transmission and reflections coefficients accordingly.! The probability that

(1.2)

x=—d/2

the wave is transmitted (reflected), is the transmission (reflection) coefficient and is given by
T =t (R=rf).

If we repeat the barrier V' (z) that is illustrated in Fig. 1.1(a) N times in space, then we build
the potential V(x) that is shown in Fig. 1.1(b). Similarly to the single barrier case, the transfer
matrix of this finite periodic setup relates the fields 1/)2[’ r at the two edges of the scattering region
(these edges are the —D/2 and D/2 this time, with D = Nd). Furthermore, the transfer matrix
of this finite periodic setup is given by the N times multiplication of the transfer matrix that is
given in Eq. (1.3), it is namely the M”. With the use of the Chebychev identity [2], we get that

ITo find the physical meaning of the coefficients r and ¢ we consider the scattering only from the one side of
the barrier. For instance, if we consider the scattering from the left side of the barrier (we set 1), = 0 and the
incoming wave is the 1}), then we get that ¢}, (z = d/2) =ty (z = —d/2) and ¢ (v = —d/2) = rp} (x = —d/2).
For that reason, the quantities ¢ and r are called the transmission and reflections coefficients accordingly. We note
here, that the transfer matrix M contains in general two reflection amplitudes r and 7 when the scattering by the
two sides of the barrier are considered. However, when the barrier is mirror symmetric, as in our problem, then the
two reflection amplitudes are the same. For a detailed discussion see ref. [119].



Chapter 1. Perfect transmission resonances of perturbed scattering systems

MY is given by

1sin(N¢) sin((N —1)¢) rsin(N¢)
MY — 1/t rn/ty _ | t* sin(¢) . sin(¢) ' t siq(¢)
—rn/ty 1/tw _rsin(Ng) Lsin(N¢)  sin ((N —1)¢)
t sin(¢) t sin(¢) sin(¢)

(1.4)
1 1
where ¢ = §Tr(1\/I) = Re [;] is the Bloch phase of the infinite periodic system and is related with

the wave number k.

1.2.1 Perfect transmission resonances

A nice expression for the transmission coefficient Ty = |t |? of the finite periodic system is given

by (see for instance ref. [6])
1

. 2 .
L+ 1_1 SlI.l gNgb)
T sin®(¢)
Notice that for ¢, = nw/N + mod (27) with n =1,2,..., N — 1 then Ty = 1. Besides, whenever
T =1 then Ty = 1 as well.

As an illustration we consider the scattering from the left side of the setup that is shown in

Ty =

(1.5)

Fig. 1.2(a). Notice that this setup consists of 8 rectangular barriers (further details are given in the
caption). In Fig. 1.2(b) we present the corresponding transmission spectrum Ty (k). Clearly, the
transmission spectrum shows a band-like structure form, while each band consists of at least N —1
PTRs (the transmission coefficient Tl is equal to 1). We stress here that this band structure form

is related only with the periodicity of the system and not with its mirror symmetry (the mirror

1
(a) Ty (b)
U 0.5}
= — \
Ry
3 T 1 2 3 4 5 6

kd

Figure 1.2: (a) Scattering from the left side of a setup that consists of 8 rectangular barriers. The
length of each barrier is s = d/6 and therefore the free space between two neighboring barriers
has length 5d/6 (notice that this figure does not represent such distances). We set the heights
U= max V(x) of the barriers at d?U = 27. (b) Transmission coefficient Ty as a function of kd

when scattering by the setup that is shown in (a) is considered.

10



1.2. Scattering by a periodic system with mirror symmetric cells

symmetry imposes some extra conditions that we will see in the following). All one-dimensional
finite periodic scattering setups have transmission spectrum with a similar structure, that is due
to Eq. (1.5).

1.2.2 Implications of mirror symmetry

As will appear in the following, the symmetry of the wave function has an implication at the
formulas that we obtain when the potential V(z) is perturbed. From now on we denote with 1), ()
the wave function that corresponds to the PTR number n. Due to the mirror symmetry of the
scattering setup, the real part Re[t,(z)] can become symmetric and the imaginary part Im|¢, (x)]
can become antisymmetric with respect to the axis where the potential V(x) is also symmetric.
Throughout this work, we set this axis to be at x = 0. More specifically, if we set the amplitude
A of the incoming wave (we consider scattering from the left side of the setup and therefore the

incoming wave is given by ¢} = Ae**) equal to

ethnD/2 for even n
a=3°" (1.6)
ehnD2=im/2  for odd n

where £, is the wave number that corresponds to the PTR number n, then the real part of ¢,
is symmetric and the imaginary part is antisymmetric around z = 0. In Fig. 1.3(a) we show the
real and imaginary parts of the wave function that correspond to the last PTR (n = 7) of the
first band that is shown in Fig. 1.2(b) (this PTR is indicated with the green star), when we set
A = *7H/2=im/2 - Clearly the real part is symmetric and the imaginary part is antisymmetric. In
Fig. 1.3(b) we show the corresponding real and imaginary parts of the wave function for a choice
of A that is not equal to e?*7H#/2=i7/2 T this case the real and imaginary parts of the wave function

are not symmetric.

We close this section by noting that the wave function v, (x) is found from the solution of the

Schrodinger equation Eq. (1.1) with boundary conditions

Walt)| ikn(-D/2) =0
dr|,__p (1.7)
dipn () : B ‘
o — ik, (D/2) =0

Notice that for the case of a mirror symmetric potential V(x), Eq. (1.1) and the boundary conditions
in Eq. (1.7) form an eigenvalue problem that is P7T-symmetric [120,121], where P : x — —x is the

parity operator and 7 : z — z* is the time reversal operator.

11



Chapter 1. Perfect transmission resonances of perturbed scattering systems

(a) A = ekrH/2—in/2 (b) A ?_L ekrH/[2—im /2

— Re[y7](z)
= Im[1)7](z)

z/d

Figure 1.3: (a) Real and imaginary parts of the wave function ¢7(z) that corresponds to the PTR
number n = 7 that is shown in Fig. 1.2(b) and is indicated with a green star. The amplitude of
the incoming wave is A = e**71/2717/2 where k; is the wave number of the 7" PTR in the first
band. (b) Same as (a) but for A # etkrH/2=i/2,

1.3 Perturbing the potential

Consider now that a finite periodic and mirror symmetric potential Vy(x) — as the one that is
illustrated in Fig. 1.1(b) — is perturbed. After the perturbation, the scattering region is described
by the potential

V(z) = Vo(z) + eVi(x) (1.8)

with € << 1. We assume that the perturbing potential V;(x) is non-zero only inside the region
[—D/2, D/2], that is inside the unperturbed scattering region. The goal of this part is to examine
the influence of the perturbation at the wave numbers of the unperturbed system that correspond
to the PTRs, namely at the wave numbers kg ,. Hereafter, the index 0 denotes the unperturbed
system and the index n denotes a PTR, n=1,2,.... N — 1.

1.3.1 Perturbation expansion

The wave number and the wave function that correspond to the PTR number n change as

k‘n = kO,n + Eklyn + ... (19)
Un(x) = Yon(T) + €y p(x) + ... (1.10)
We plug these forms, along with the potential V(z) that is given in Eq. (1.8), into the Schrodinger

equation Eq. (1.1) and at the corresponding boundary conditions that are given in Eq. (1.7) and

we collect in powers of e. Clearly, the v, (x) and kg, satisfy the zero order problem, which we

12



1.3. Perturbing the potential

write again for convenience:

Ao
1/;0_:,62(56) + (K5, — Vo(@)) thom(a) =0 (1.11)
and
M — ikgntbon(—D/2) =0
ey (1.12)
dq/JO,n(l‘) . . '
o o — ikonton(D/2) =0

After a few manipulations, we find that the first order term 1), ,(x) is given by the solution of the

equation
del,n (l’)

dx?

while it satisfies the boundary conditions

+ (kg,n - VO) 7vZJl,n = - (2k0,nk1,n - Vl) ¢O,n (113)

Winl)| b (<DJ2) = ikytn(-D/2)

dx 2=—D/2 (114)
dY1.n(2) — kot n(D/2) = ik ntbo.n(D/2),

de z=D/2

The latter boundary conditions are not guaranteed to give a PTR: for the PTR number n to be
preserved perturbatively (only in first order and not in higher order), the imaginary part of the
wave number £, ,, has to be zero.

For the calculation of k,, we apply the classical solvability condition, namely we multiply

Eq. (1.13) with vy, (x) and we integrate in the scattering region, which leads to the equation

D2 &1y () A1 (z)  difo(z) b2 D2 oy ()

1/17nx—’ndx:[¢,nx o — ke I/Jnl’:| +/ —’nzb,nacdx

—DJ2 () dx? on(®) dx dx 1n(7) Dy _pjp d? 1n(7)
(1.15)

By inserting Eq. (1.11)-(1.14) in Eq. (1.15) we find the expression for the wave number & ,,,
D/2
/ V1¢§7nd$
krp = =k e , (1.16)
i[5.,(D/2) = 4¢3 (=D /2)] + 2ko / Vo ndz
-D/2

where 1y, is the wave function of the unperturbed system (thus the index 0).

For the derivation of Eq. (1.16) the potential V, does not need to be periodic or mirror sym-
metric. Yet, if V) is mirror symmetric then the real/imaginary parts of the wave function vy,
become symmetric if we multiply g, with a suitable phase (see Section 1.2.2). Using symmetric

real /imaginary parts of ¢, we can show that the denominator in Eq. (1.16) is real and therefore

13



Chapter 1. Perfect transmission resonances of perturbed scattering systems

the imaginary part of ki ,, is given by

D/2

Imlky ] = C/ ViRe[to »]Im[tpg | dx (1.17)
—-D/2

with C real. As we noted before, we are interested in Im[k; ,] because if it is zero then the PTR

number n of the unperturbed setup remains as a PTR after the perturbation (in first order). The

real part of ki, shows whether a PTR is shifted right or left in the transmission spectrum when

Im[k;lm] =0.

1.3.2 Preserving all PTRs

Notice that if V) is mirror symmetric (even function with respect to x = 0) then Im[k;,] = 0
for all n, because the quantity Re[tg,]Im[¢g,] is odd for all n. Therefore, all the PTRs of the
unperturbed system are preserved (in first order) after the addition of such a mirror symmetric
perturbation.

For an illustration, we consider the scattering from the left side of the setup that is shown in
Fig. 1.4(a). In Fig. 1.4(b) we present the corresponding transmission spectrum. Notice that bands
with N — 1 =7 PTRs appear again as it was the case in Fig. 1.2(b). However, these PTRs do not
appear at the same wave numbers as the ones that are shown in Fig. 1.2(b), since the real part of

ki ,, is in general not zero.

(a) . |®

N
—
—
o

L
x 1 2 3 ! 5 6
kd

Figure 1.4: We set the parameter € of the perturbation at ¢ = 0.1. (a) The unperturbed setup is
the same as in Fig. 1.2(b) and we consider that only the strengths of the barriers are perturbed
(all the distances are the same as in Fig. 1.2(b)). The perturbations at the first and last barriers
satisfy d?U; = d?Ug = —27. We set the perturbations at the rest barriers at: d?U, = d?U; = 0,
d*Us = d*Us = —T72 and d*U, = d*Us = 27. (b) Transmission spectrum of the setup that is shown
in (a).
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1.3. Perturbing the potential

1.3.3 Preserving one PTR

In this part we show how to design perturbing potentials V; (z) that preserve specific PTRs (not all
of them as an even V; does). To that end we use Eq. (1.17) and we design V; so that Im[k;,,] =0
for a specific PTR (number n). However, it is not a trivial task to design such a V;. We can
simplify the analysis though and make this design easy if we choose V; to be a sum of Dirac

scatterers,
M

V) = Z Cm0(x — wy,) (1.18)

m=1
where M is the number of Dirac scatterers that we place inside the unperturbed scattering region,

¢ are their strengths and w,, € [-D/2, D/2] are their positions.

In order to see clearly why the design is now easy, notice first that Eq. (1.17) with V; a sum of

Dirac functions gets the form

Imky ] = C Y emRe[tho (W) Im[tho  (w,)]. (1.19)

m=1

The wave function vy, (z) is known. So, we can search for the strengths of the Dirac scatterers

that result in Im[k; ,] = 0 for a specific n.

As an illustration, suppose that we add two delta scatterers at a finite periodic potential, as the
one that is shown in Fig. 1.1(b). We place the first scatterer in the region of the barrier number
i and the second scatterer in the region of the barrier number j. Then for the n'* PTR to be
preserved after the addition of the two scatterers the following condition must hold (we drop the

index n)

¢ % Refuo(wy)Im{tho(w,)] + ¢; x Reftho(w,)|Imlti(uw,)] = 0. (1.20)

Now, we can set the strength of one of the two scatterers at some value and we can find the
strength of the other scatterer so that Eq. (1.20) holds.

In Fig. 1.5 we present an example. Figure 1.5(a) shows the scattering setup that we consider
and Fig. 1.5(b) shows the corresponding transmission spectrum of this setup. Notice that the
scatetring setup consists of 8 rectangular barriers and 2 Dirac scatterers. We place the first Dirac
scatteter in the region of the first rectangular barrier and the second Dirac scatteter in the region
of the second rectangular barrier. We note here that we do not place the Dirac scatterers in the
centers of the barriers (for the details see the caption). We set the strength of the first delta
function, ¢, to some arbitrary value and calculate ¢y from Eq. (1.20) so that the PTR number
n = 7 is preserved after the perturbation. Evidently, with a look at the transmission spectrum
that is shown in Fig. 1.5(b) (notice that we only show the first band) we get that the PTR number

n = 7 is indeed preserved, while the rest of the PTRs are not.
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Chapter 1. Perfect transmission resonances of perturbed scattering systems

(a) Ty
0.5
4_’ >
> 0 : .
Xz 2 2.5 3

kd

Figure 1.5: We set the parameter € of the perturbation at € = 0.1. (a) Schematic description of
scattering by a setup that consists of rectangular barriers and 2 delta scatterers. The height of
the barriers, the lengths and the free space between two neighboring barriers are the same as in
Fig. 1.2(b). The distance between the first Dirac scatterer and the left edge of the first barrier is
0.1s (recall that s is the length of each barrier). The strength of the first Dirac scatterer is set
at dc; = 4.8. The distance between the second Dirac scatterer and the right edge of the second
barrier is 0.05s. The strength of the second Dirac scatterer is found from Eq. (1.20) in order for the
PTR number n = 7 to be preserved after the addition of the two delta scatterers. (b) Transmission
spectrum of the setup that is shown in (a). Notice that only the PTR number n = 7 is preserved
(it is indicated with the arrow).

1.4 Particular classes of perturbations that preserve two
PTRs

In this part we design again perturbations with Dirac scatterers that preserve desired PTRs. The
difference now is that we place the Dirac scatterers either in the centers or at the edges of the cells

of the unperturbed system.

1.4.1 Perturbation at the centers of the cells

We start this part with the presentation of an example. The scattering setup that we consider is
illustrated in Fig. 1.6. Notice that it consists of 8 rectangular barriers and 2 Dirac scatterers. The
first Dirac scatterer is placed at the center of the first barrier and the second Dirac scatterer at
the center of the third barrier. In Fig. 1.6(b)-(d) we show the transmission of this setup, for three
different choices of the strength c3. In Fig. 1.6(b) we choose the strength ¢z so that the first PTR
(n = 1) is preserved. The result is that apart from the first PTR, the PTR that corresponds to
the index n = 7 is also preserved. In Fig. 1.6(c) we choose the strength c3 so that the second PTR
is preserved after the perturbation. Notice that the symmetric PTR (n = 6) is preserved as well.
Similarly, in Fig. 1.6(d) we choose the strength c3 so that the third PTR is preserved after the

perturbation. Notice that PTR number n = 5 is also preserved. These results suggest that there
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Ty || O T |©
C1 c 0.8 1 09
3
(a) T
I 0.6 1 ost
0.4 1 ! A
= — (@
0.2 u \-T‘M
a; ay ag an xb 0 5 o5 . 0.8 |2 - :
kd kd

Figure 1.6: We set the parameter € of the perturbation at ¢ = 0.1. (a) Schematic description of
scattering by a setup that consists of rectangular barriers and 2 delta scatterers that are placed
at the center of the first and third barrier respectively. Again, the heights of the barriers, the
lengths and the free space between two neighboring barriers are the same as in Fig. 1.2(b). (b)-(d)
Transmission of the setup that is shown in (a) for three different choices of ¢3. The arrows above
the transmission spectra show which PTRs are preserved after the perturbation. In (b) we set the
strength of the first scatterer equal to de; = 12. The strength ¢z is given by Eq. (1.20) so that
the PTR number number n = 1 is preserved. Notice that the PTR number n = 7 is preserved as
well. In (c) we set de; = 4.5 and we calculate the strength ¢ so that PTR number number n = 2
is preserved. Indeed this PTR is preserved. The symmetric PTR, n = 6, is preserved as well. In
(d) dey = 2.4 and c3 is designed to preserve the PTR number n = 3. Notice that the symmetric
PTR n =5 is also preserved.

is a connection between the PTRs number n and N — n in each band.

This connection lies in a symmetry between the quantities K (n, m) = Re[t n(am)|Im[to »(am)]
and K(N —n,m) = Re[ton—n(am)|Im[tyo N—n(an)] where a,, are the centers of the cells and
m=1,2,..., N. In Appendix A we prove that for any periodic system with mirror symmetric cells
the following relation holds (to the best of our knowledge the analytic results given in this and in

the next subsections are not known in the bibliography and are stated here for the first time)

Re[1o,5(am ) Im[o,n(am)] = f(Pn)g(m, ¢n) (1.21)
where
g(m, ¢n) = sin” (N —m)pn] — sin” [(m — 1)) (1.22)
and
Op = N (1.23)

is the Bloch phase of the n'* PTR. Notice that if we interchange n with N —n then for the Bloch
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Chapter 1. Perfect transmission resonances of perturbed scattering systems

phases ¢n_,, and ¢, we get that
ON-—p =T — Oy (1.24)

and it is easy to see that the functions g(m, ¢,,) and g(m, ¢x_,) are the same. Importantly, f(¢,)
does not depend on the index m. The fact that g(m, ¢,) and g(m, ¢n_,) are the same and that
f(¢,) does not depend on the index m concludes our proof since the sum in Eq. (1.19) is on the
index m.

We note here that the relations that are given in Eq. (1.21)-(1.23) hold for any one-dimensional
periodic system with mirror symmetric cells. Therefore, we have proven that if we place Dirac
scatterers at the centers of a periodic setup with mirror symmetric barriers and the PTR number

n is preserved, then the PTR number N — n will also be preserved.

1.4.2 Perturbation at the edges of the cells

Now, we consider the case where the Dirac scatterers are placed at the edges of the cells. We
denote the locations of the edges of the cells as b,,, m = 0,1,2,..., N. Similarly to the previous
part, we analyze the quantity Re[vg (b)) Im[tg (b)) we show that it is written in the form (see
Appendix A),

Re[tho,n (b ) T[40, (br)] = f (&) g (2, &) (1.25)

where ¢, = nw/N is again the Bloch phase of the n'* PTR. Notice that the function f () does

not depend on the index m — position of a Dirac scatterer. The function g(m, ¢,) is given by
g(m, ¢,,) = sin(2may,). (1.26)

In this case we find two symmetries. First, the function g(m, ¢,) is invariant under the inter-
change n — N — n, showing that if the PTR number n is preserved after the perturbation, the
PTR number N — n is also preserved. The second symmetry is due to the 2 factor in the sine
function in Eq. (1.26). In the interchange n — (N/2) —n we find that the function g(m, ¢(n/2)—n)
becomes equal to (—1)™g(m, ¢,). Therefore, for N even, if the number m is only odd or even
(meaning that we place Dirac scatterers only at the edges of the odd/even cells) and if the PTR
number n is preserved, so does the PTR number (N/2) — n.

As an illustration, we consider scattering by the setup that is shown in Fig. 1.7(a). Once more,
we use as the unperturbed system the one that consists of 8 rectangular barriers. We place one
Dirac scatterer at the right edge of the first cell and another Dirac scatterer at the right edge of
the third cell. We set the strength of the first scatterer at some value and calculate the strength of
the second one from Eq. (1.20) so that the PTR number n = 1 is preserved in Fig. 1.7(b) and the
PTR number n = 2 is preserved in Fig. 1.7(c). Notice that in Fig. 1.7(b) the PTR number n =7
is also preserved due to the symmetry in the interchange n — N — n. What is more, the PTRs
number n = 3 and n = 5 are also preserved, due to the symmetry n — (N/2) —n. In Fig. 1.7(c)
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1.5. Concluding remarks

because both the symmetries n — N —n and n — (N/2) — n render back the PTR number n = 6,

only this PTR is found in the transmission spectrum, apart from the PTR number n = 2.

TN /

(a) 7 | |®) ” (c) ﬂ
—> —> 0.9 i
} |

by by by bs by z 08 2 2.5 3 2 2.5 3

kd kd

Figure 1.7:  We set the parameter € of the perturbation at ¢ = 0.1. (a) Schematic description of
scattering by a setup that consists of rectangular barriers and 2 delta scatterers that are placed at
the edges of the first and third barrier respectively. The heights, the lengths of the barriers and
the free space between two neighboring barriers are as in Fig. 1.2(b). (b) We set the strength ¢;
of the first delta scatterer equal to de; = 1.5 and we calculate ¢3 from Eq. (1.20) so that the PTR
number n = 1 is preserved. We find that the PTR number n = 7 is preserved as well, due to the
symmetry in the interchange n — N —n. We also find that the PTRs number n = 2 and n = 6 are
also preserved. This result is due to the symmetry in the interchange n — (N/2) —n. (c) We set
dey = 1.5 and we calculate ¢z again from Eq. (1.20) so that the PTR number n = 2 is preserved.
Due to the symmetry n — N — n we find that the PTR number n = 6 is preserved as well. The
symmetry n — (N/2) — n preserves the same PTR, i.e., n = 6.

1.5 Concluding remarks

In this Chapter we have studied the scattering by a per-

turbed periodic setup with mirror symmetric cells. We
Mirror symmetric perturbation /

have shown how to build a perturbation that is comprised . 1** PTR Fig.1.4(b)

by Dirac scatterers and that maintains PTRs of the un- Perturbation preserving PTR
perturbed setup, by tuning appropriately the strengths 3} 0.9 1" PR Tig-1.6(b)

of the Dirac scatterers. We have also shown that if the % 08

Dirac scatterers are placed either at the centers or at the §

edges of the cells then the PTRs are preserved in pairs. E o

As a last remark we show in Fig. 1.8 the influence of the 06y rorving PIRS
parameter € of the perturbation at the PTRs for three 05 2" PTR Fig.1.6(b)

different cases. 0.1 0.15 0.2

€

Figure 1.8: Influence of the parameter
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Chapter 2

Localization properties of a disordered

dimer chain

2.1 Introduction

Probably the most simple model that captures essential topological features, such as the emergence
of edge states, is the celebrated Su-Schrieffer-Heeger (SSH) model [122]. The SSH model was
developed in a quantum mechanical framework: it describes the hopping of particles in a one
dimensional lattice with two alternating coupling strengths. During the last years, the impact of
disorder in a SSH lattice has been investigated and it has been found that a static disorder causes

a topological phase transition [54,55].

The mechanical analogue of the SSH lattice is a chain with identical masses that are connected
by alternating springs: a dimer mechanical chain [123]. Such a mechanical chain exhibits also
topological features, since it has the same internal symmetry with the quantum SSH lattice, the so
called chiral symmetry [19]. Due to the chiral symmetry, a mechanical dimer chain and a quantum
SSH lattice share the same topological invariant, that is the Zak phase [124] — a special case
of the general Berry phase [21]. Despite the similarities between the two systems there are some
fundamental differences, for instance the mechanical chain is described by a system of second-order
differential equations in time while the quantum SSH lattice is described by a system of first-order

differential equations.

In this Chapter, we study the localization properties of the edge modes that are supported in
a dimer mechanical chain, in the presence of disorder. We apply two forms of disorder, one that
respects the chiral symmetry and a second one that does not. We compute the localization length
numerically — using the transfer matrix method — and we find significant differences for the two

forms of disorder. The results that are presented in this Chapter are based on ref. [125].
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2.2. 'Topological features of a dimer chain

2.2 Topological features of a dimer chain

We begin this Chapter by reviewing the topological properties that a dimer mass-spring chain, as
the one that is shown in Fig. 2.1, possesses [123]. This chain consists of same masses m that are
coupled with each other with alternating springs of stiffnesses k; and ko. All masses are attached
to the ground with couplings of stiffness o, which act in the horizontal direction. We denote as «
the equilibrium distance between two neighboring masses. We also denote as u,, the displacement
of the mass that is located at the site number n of the chain, from its equilibrium position. We
consider only nearest neighbors interactions and therefore we obtain the following equations for

the displacements u,,

d?u,,

dt?

m = Kng1 (Ung1 — Un) — Kn(Up — Up_1) — KOU, (2.1)

where k,, = k1 when n is odd, k,, = k3 when n is even and k2 = ko Vn.
Due to the dimer nature of this chain, we seek for solutions to Eq. (2.1) that have the plane

wave form
Ajetkra=iwt o — 95— 1 with s € Z
un(t) = — (2:2)
Ajethna—iwt i — 9g with s € Z
where k is the wave number, w is the frequency of the wave and A; (Ay) is the amplitude of

oscillation of the masses that locate at odd (even) sites. By substituting Eq. (2.2) into Eq. (2.1)

we arrive at the following eigenvalue problem

A ~ A 1 e —2ika A
me? [ 1) = D(k) vy _ 1 [ mthret o kg — Ki€ B (2.3)
Ay Ay m \ —rkg — Kpe?ke K1+ K2 + Ko Ay
where the matrix D(k) is called the dynamical matrix. The eigenvalues of the dynamical matrix

are the eigenfrequencies squared w? and we find that these are given by

2 _I€1+I€2+l€0i
m

1
—\/n% + K2 + 2K Ky cos(2ka) . (2.4)
m

Figure 2.1: Schematic description of a dimer mass-spring chain with ground springs. The chain
consists of of same masses m that are connected with alternating springs of stiffnesses k1 and ko
and are attached to the ground with springs of stiffnesses k.
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Chapter 2. Localization properties of a disordered dimer chain

Equation (2.4) is the dispersion relation of the dimer chain and Fig. 2.2 illustrates this relation for
K1 > Ky in (a), for Ky = Ky in (b) and for k1 < k2 in (¢). When the two couplings are different,

two bands appear in the dispersion relation that are separated by a gap.

We will now show that this infinite dimer chain has non-trivial topological features. As a first
step we write the dynamical matrix in the basis that is formed by the identity I and the three
Pauli matrices o, i = z,y, 2

- K1 + Ko + Ko Ko + k1 cos(2ak) K1 sin(2ak)

D(k) = I- y— ———————0y . 2.5
() = L2 S g, - M, (25)

K1+ Ko + Ko

from D(k), the remaining
m

Notice that after the removal of the diagonal term w2 =

matrix obeys the anticommutative relation
{ﬁ(k) — WL az} =0 (2.6)

Due to the anticommutative relation given in Eq. (2.6), the infinite dimer chain is said to possess
chiral symmetry which in turn induces non-trivial topological features. The topological features

of this dimer chain are captured through the Zak phase [124], which is given by

2a

£ Z/ (A 9, A® k| (2.7)
~%a

where A®) are the two eigenvectors of the dynamical matrix and the symbol +(-) denotes the

upper (lower) band. Namely, the Zak phase characterizes each one of the two bands. And as we

will now show, the Zak phase of each band remains unchanged as long as the band gap is open —

it is therefore a topological invariant [20]. To show this, first we calculate the eigenvectors A®).

2 (a)  K1> Ko (c) K1 <ke
w 2
v /\
K1HROFTRO Lo N
m
0 0 0
_ T 0 T _ T 0 T _ 0 T
2« L 2a 2« Lk 2a 2a k 2«

Figure 2.2: Dispersion relation of a diatomic dimer chain for (a) k1 > kg, (b) K1 = ko and (c)
K1 < Rag.
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2.2. 'Topological features of a dimer chain

These are easily found when we write D(k) in terms of the identity and the three Pauli matrices

(2.8)

- 2—d, —d, +ud
chu%I—d-az(wo +2y> .

—d, —id,  wP+d.

T
We express the vector d = (dw dy dz) (T denotes the transpose) in spherical coordinates

as
cos ¢ sin 6

d=|dn with n= | singsind ,0<op<2r ,0<0< 7. (2.9)

cos b

and with this notation the dynamical matrix gets the form

5 wi — ]d] cosf)  —|d|e"*sind . (2.10)
—|d|e™ sin 6 w2 + |d| cos @
The two eigenvalues and two eigenvectors of the matrix that is given in Eq. (2.10) are
AE) =2 £ |d] (2.11)

and
_ Aﬁ‘) cos(6/2) A§+) sin(6/2)
A — (Aé_)> - (ei¢ sin(@/Q)) ) A — (Ag+)) = (_ew COS(@/Z) . (2.12)

We apply these results to the dynamical matrix that describes the dimer mass-spring chain
(see Eq. (2.3)). We find that the angle 6 is equal to 7/2 and the vector d is given by

Ko + K1 cos(2ka)
d= K1 sin(2ka) . (2.13)
0

Therefore, the vector d lies in the xy plane and can be represented by the complex number |d|e®.

Moreover, the two eigenvectors AT of the dynamical matrix are equal to

o _ 11
A® — 5 (:Fei¢> (2.14)

suggesting that the Zak phase is given by

W(Zii _ _% /_2‘1 @dq — —% (¢<7r/2a) —_ gb(—?r/Qa)) —I— 27rm y m = 0, :|:17 :|:2, (215)

T
2a
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Chapter 2. Localization properties of a disordered dimer chain

To proceed further, we remind the definition of the winding number of a curve (from complex
analysis). The winding number of a curve around a point z gives the number of times this curve

passes around that point and it is given by

(z0) 1 f dz
n(z) = —
0 2mi | 2 — 2z

meaning that the winding number of a curve around the origin is equal to

1 dz
n=—ao—. 2.16
271 z ( )
.. . . , , o dz dr .
By writing z in polar coordinates: z = re'® = dz = €'®dr + ire’®d¢ = — = — + id¢p, we obtain
z r

d
that &£ = d(Inr) 4+ id¢. The total change of Inr is zero around a closed path so the winding
z

number of a curve is equal to

1 . 1
n = $ido(k) = — (6(/2a) — 6(—/20)) . (2.17)

2ms 2m
Thus, we immediately obtain that the Zak phase is related to the winding number of the d(k)
vector and we only need to study the variation of this vector for k € [—7/2a,7/2a). In Fig. 2.3
we present this variation for k1 > ko in (a), for kK1 = k2 in (b) and for k; < k2 in (c). We observe
that for k1 > Ky the vector d(k) has a winding number equal to 1 and therefore the Zak phase is

equal to m for both bands. For ki < ks the winding number is zero meaning that the Zak phase

is also zero for both bands. So the Zak phase number is a topological invariant.

dy

R1 — Ro dy

2
V
x
I\
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Figure 2.3: Variation of the vector d for k € [—7/2a,7/2a) when (a) k1 > kg, (b) kK1 = kg and
(c) K1 < Ka.
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2.3. Finite dimer chain

2.3 Finite dimer chain

A question that naturally arises at this point is what are the consequences of the non-trivial
topology that the infinite dimer chain possesses. To give an answer to this question we will study
in this Section the finite dimer chain that is illustrated in Fig. 2.4 (it is the finite counterpart of
the infinite chain that is shown in Fig. 2.1). As we shall see in the following , this finite dimer
chain supports edge modes, due to the non-trivial topological properties. Notice that the finite
chain shown in Fig. 2.4 consists of an even number N of masses m, while the first and the last

masses are connected to walls (fixed boundary conditions are used).

Figure 2.4: Schematic description of a finite dimer mass-spring chain with an even number N of
masses. Fixed boundary conditions are used.

2.3.1 Equations of motion

We denote as uy, us, ..., uy the displacements of the masses that locate at the sites number
1, 2,..., N of the finite chain from their equilibrium positions. Apart from the first and the last
masses (that are connected to the walls), the displacements of all the other masses, namely the u,
with n = 2,...N — 1, are given by Eq. (2.1). The equations for the displacements of the first the

last masses are

miy = —Kiup — HQ(U1 - Uz) — KolUz, (2-18)

miiy = Ko(Uun_1 — Uy) — K1UN — KoUN- (2.19)

We can rearrange the equations of all the displacements u,, with n = 1,...N in the matrix form

u(t) + Du(t) =0 (2.20)
T
where u = (u1 Ug e u N) is the vector of displacements and D is the dynamical matrix,
K1+K2+K0 —k2 0
1 —K2 K1+kK2+K0o —K1 0

D= — 0 —K1 K1t+k2+Ko —K2 . (2.21)

m —K1 K1tKk2+Ko —K2

0 —K2 K1+K2+Ko
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Chapter 2. Localization properties of a disordered dimer chain

The dynamical matrix D possesses chiral symmetry as well, since it obeys a similar anticommu-
tative relation as the dynamical matrix of the infinite chain does (see Eq. (2.6). Specifically, it
holds

m
where
10 00 « - 0
0 -1 0 0 « = 0
> = ] (2.23)
0 .- . 0 01 O
0 0 0 0 -1

The matrix X, is known as the chiral operator.

2.3.2 Eigenanalysis

To obtain the frequency spectrum of the finite chain, we follow a similar procedure with the
one that we followed at the infinite chain. Namely, we substitute solutions of plane wave form

u(t) = ue™ at the equations of motion (Eq. (2.20)) and we get that
wru, = Du,, (2.24)

The w, are the eigenfrequencies and the u,, are the eigenmodes of the finite chain (n = 1,2..., N).

In Fig. 2.5(a)-(c) we present the eigenfrequencies w, (calculated numerically) of a chain with
N = 50 masses in three different scenarios. In (a) we set k1 < kg, in (b) k1 = ke and in (c) K1 > K.
In all cases we set m = 0.01, kg = 5 and k; = 1. In Fig. 2.5(a) we set k3 = 1.5 - notice the band
structure that is formed. In Fig. 2.5(b) we set ko = 1 - there is no gap in this case. Finally, in
Fig. 2.5(c) we set ko = 0.5 - we find two modes whose frequencies lie in the band gap. These two
modes are called edge modes (we note here that one edge mode is always supported in the chain
when N is odd — see next Section). In Fig. 2.5(d) and (e) we present their profiles. Notice that
these modes are localized at the two edges of the chain. This localized profile of the edge modes
holds as soon as k1 > ko and is more localized the more the stiffness values k1 and xo differ.

The frequencies of the two edge modes that are illustrated in Fig. 2.5(c) are not exactly the

same. There is a frequency splitting, meaning that the two eigenfrequencies are not exactly located

at wo = /(K1 + Ka + Ko)/m but at wy, wy. This frequency splitting is decreasing as the size of
the chain is increasing. Therefore, for a large chain there is a sufficiently small splitting and thus
we have a ”degeneracy” of the eigenmodes. In that case, the two edge modes could be localized at
opposite edges of the chain, but each mode at one edge only. In Fig. 2.6 we present an example.
We use a chain that consists of N = 500 masses (we set k1 = 1, ko = 0.5 and o = 5). In Fig. 2.6(a)
we see the eigenfrequencies wy, of this chain and in Fig. 2.6(b) and (c¢) we see the profiles of the

two edge modes. Notice that these modes are localized only at the one side of the chain in this

'In all the following numerical results, we set the value of m at 0.01 in arbitrary units m. We also measure the
stiffnesses of the couplings in arbitrary units &.
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2.3. Finite dimer chain

case. A closer look at these profiles (see the insets of Fig. 2.6(b) and (c)) reveals that only the
masses that locate at sites with n even or n odd are excited. This is an known consequence of the

chiral symmetry [20].
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Figure 2.5: In all cases we use a finite chain that consists of N = 50. We set m = 0.01, x; = 1 and
ko = 5. Fixed boundary conditions are used. Shown are the eigenfrequencies w,, for (a) ko = 1.5
(b) ke =1 and (c) k2 = 0.5. (d) and (e) Profile of the two edge modes.
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Figure 2.6: (a)-(c) Same as Fig. 2.5(c)-(e) but for a chain with N = 500 masses. The edge
modes are localized only at the one side of the chain due to ”"degeneracy”. Also, due to the chiral
symmetry, only the masses that locate at sites with n even or n odd are excited in each case - see
the insets.
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Chapter 2. Localization properties of a disordered dimer chain

2.4 Disorder analysis

A known characteristic of the edge modes is their robustness against disorder that respects the
chiral symmetry [20]. In this Section, we aim to illustrate this robustness. For this, we consider
that the couplings of the chain that is illustrated in Fig. 2.4 are randomly varied. Namely, we
apply disorder. We apply two forms of disorder: the first retains the chiral symmetry of the chain,

while the second form not.

2.4.1 Chiral disorder

We begin with the form of disorder that retains the chiral symmetry of the chain. Meaning that
the dynamical matrix of the finite disordered chain satisfies the anticimmutative relation that is
given in Eq. (2.22). In order for this matrix to satisfy this anticimmutative relation, it must have
the same diagonal elements. However, after a careful look at the dynamical matrix that is given
in Eq. (2.21) — the dynamical matrix in the clean limit (no disorder) — we conclude that we cannot
alter only the two couplings k1 and ko if we want the diagonal terms of the dynamical matrix to be
the same. We have to alter the ground springs xq as well (if we restrict ourselves to same masses,
namely disorder only on the stiffnesses).

First of all, we consider that the stiffnesses of the couplings x; and ko are randomly varied and
are given by

K1+ 0p, = k1 + Wie, if n is odd
P ' ' (2.25)

Ko + 0, = Ko + Wae, if n is even
where €, are random numbers, uniformly distributed in the interval [—1, 1] and W 5 are the disorder
strengths. In order to keep the chiral symmetry, the ground springs must change in the following
way
KO = Ko — Op — Opp1. (2.26)

A schematic illustration of this form of disorder is given in Fig. 2.7(a).

The dynamical matrix of this disordered chain is given by

K1+ Ko+ kg  —Kog— 09 0
—Kg — 0y K1+ Ky+Ky —Ki—03 0
D:i 0 —K1 — 03 K1+ Ko+ Ky —Ko— 04
m
—K1—O0N_1 K1+ Ko+Ky —kg—Opn
0 —Ky — 0N K1+ Kg + Ko
(2.27)

Notice that this dynamical matrix obeys the anticimmutative relation that is given in Eq. (2.22),

since its diagonal elements are the same, and is therefore chiral symmetric.
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2.4. Disorder analysis
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Figure 2.7: (a) Schematic description of chiral disorder. (b) Eigenfrequencies squared of a chain
with N = 50 masses as a function of the disorder strength W = W, = 2W;. We set m = 0.01,
k1 =1, kg = 0.5, kg = 9,

In Fig. 2.7(b) we present the eigenfrequencies squared w? of a chain with N = 50 masses,
k1 =1, ko = 0.5, kg = 5. We also set the disorder strengths W; and Wy at W = Wy = 2W; (this
choice is based on the fact that x1/ke = 2 in this example). From Fig. 2.7(b) we get that: 1)
the frequencies of the edge modes do not change with increasing the disorder strength 2) all the
eigenfrequencies squared are symmetric with respect to the center of the gap. These two results are
due to the preservation of the chiral symmetry. We note here that we present the eigenfrequencies

squared, since these are the eigenvalues of the dynamical matrix.

2.4.2 Non-correlated disorder

Let us now study the case of non-correlated disorder. In this form of disorder we keep the ground
springs unperturbed (their stiffness is equal to kg), while we consider that the springs x; and
Ko are perturbed again independently and their stiffnesses are given by Eq. (2.25). A schematic
description of this form of disorder is given in Fig. 2.8(a).

In this case, the dynamical matrix takes the form

K1+K2+kKo+AL —K2—02 0
1 —ko—02 K1+kr2+ro+A2  —K1—03 0
D— — 0 —k1—03 R1tR2+Ro —Kg—04 , (2.28)
m 7/{1*6]\/_1 K1+K2+K0 *52*5N

0 —ko—O0N Kit+k2t+ro+AN

where A,, = d,,+,+1. Notice that diagonal elements of this matrix are not the same and therefore
it does not obey the anticimmutative relation that is given in Eq. (2.22).

In Fig. 2.8(b) we show the eigenfrequencies squared w? of a chain with non-correlated disorder.
The chain consists of N = 50 masses and we set K, = 1, ko = 0.5, kg = 5 and the disorder strengths

at W = W, = 2W;. Notice that all the eigenfrequencies are affected from this type of disorder.
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Chapter 2. Localization properties of a disordered dimer chain
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Figure 2.8: (a) Schematic description of non-correlated disorder. (b) Eigenfrequencies squared
of a chain with N = 50 masses as a function of the disorder strength W = W, = 2W;. We set
m =0.01, k1 =1, ko = 0.5, kg = b,

2.5 Localization properties

In this part, we study the localization length A at the mid-gap frequency wy for a disordered chain.

We compute the localization length numerically by employing the transfer matrix method. For

(“"“) ~T, ( thn ) , (2.29)

where T,, is the transfer matrix and is given by

that, we rewrite Eq. (2.1) as

Kng1 + Kn + KO — mw? K
Tn = Rn+1 Knp+1 . (230)
1 0

In order to compute the localization length, we calculate the Lyapunov exponents v, and 7, using
the typical numerical schemes that are described in [126]. We found that v, = —v, = 7. The
localization length is then given by
A=l (2.31)
Y
A more detailed discussion regarding the numerical computation of the localization length A is
given in Appendix B.
As an illustration, we compute the localization length at the mid gap frequency wqy of a non-
disordered chain. We set k1 = 1 and we compute the localization length A as we vary the stiffness ko
from 0.5 to 1.5. The transfer matrix was iterated 10° times. The results are illustrated in Fig. 2.9.

Notice that when k9 = k; = 1 the localization length diverges. This is expected since for k1 = kg
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2.5. Localization properties

there is no gap at the frequency spectrum. More specifically, for k1 = ko and at the frequency wy
an extended state exists and thus the assumption of an exponentially localized solution results in

this divergence. We note here that in this clean limit (no disorder) the localization length can be

calculated analytically and is equal to A = , which matches with the numerical results

| In(k1/K2)]
that are illustrated in Fig. 2.9.
10°
A
10%}
107}
10° :
0.5 1 1.5
Ra

Figure 2.9: Numerical computation (with the transfer matrix method) of the localization length
at the mid gap frequency wy.

2.5.1 Chiral disorder

We begin this part by illustrating the numerical results for the case of the chiral disorder. We note
first that in the following we set the disorder strengths W; and W5 at W = Wy = 2W;. We also
set the stiffness of the coupling x; at 1.

We calculate the localization length A at the mid-gap frequency, using the transfer matrix
method, for each pair of ko and W. The result is shown in Fig. 2.10. We stress here that the
transfer matrix was iterated 10° times at each point of the grid and a numerical method for
correcting the rounding errors was applied (see Appendix B). Clearly, there is a critical line in
the plane (W, k2) in which the localization length diverges [127]. In the following, in order to
get an insight into this result, we will see the frequency spectrum and the profile of the modes
with frequency wy for multiples pairs of (W), k3). But before that, we will compute the localization
length analytically, since for the chiral disorder this is possible.

We note first that for the case of the chiral disorder we obtain the following solution at wy

Uopm—1 = (_1)m71 Raon Uy
ey f2nt1
et (2.32)
u2m _ (_1)m_1 2n+1 u27
el Ron+2
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Figure 2.10: Shown here is the localization length for the chiral disorder case, calculated numer-
ically from the transfer matrix method.

where the k,,’s are given by Eq. (2.25). Then, assuming an exponential form for these solutions

we obtain that the localization length of these solutions is given by

1
nlbl_r)noog Z (In|r1 + Wie,| — In|ke + Wae, |)

n=1

A= (2.33)

where €, and €, are random numbers, uniformly distributed in the interval [—1,1]. According to

the ergodic theorem (see ref. [55]) one obtains the following expression for A

oL de S e (in e + Wael — I + W)
=13 1 , (2.34)
where an ensemble average has been used. After performing the integration we get that
AL — 1 In K1+ W1|(M/W1H) |ko — W2|(@/W271) (2.35)
AT [ = WA iy | [ |

In Fig. 2.11 we compare the numerical results with the analytic ones. The blue line shows the
points in the (I, k) plane in which the A(wg) diverges (the blue line corresponds to the analytic

expression of Eq. (2.35)). Clearly, the analytic results match perfectly with the numerical ones.
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2.5. Localization properties

Analytic result

100

Figure 2.11: Comparison between the transfer matrix method and the analytic result.

In order to get an insight into the results, we analyze the eigenfrequencies and the center modes
of a chain with N = 500 masses for three sets of W and k5. The positions of these three sets in the
(W, k2) plane are shown in Fig. 2.12 with the three crosses: two before and one after the critical
line in which the localization diverges. For each of these three sets we consider one chiral disorder
realization and in Fig. 2.12 we present the eigenfrequencies of the chain and the profiles of the two

center modes.

The panels (a)-(c) of Fig. 2.12 correspond to k2 = 0.6 and W = 0.25 (indicated with the yellow
cross). Specifically, in the panel (a) we see the eigefrequencies and in the panels (b) and (c) we
see the profiles of the two center modes. Notice that for this set of (W), k3), we find again a gap at
the frequency spectrum and the two center modes are localized at the edges of the chain. Next,
we increase the disorder strength. The panels (d)-(e) correspond to one disorder realization with
W = 1.25 and ky = 0.6 (this set is indicated with the green cross). Notice that the two center
modes are still localized at the edges of the chain. We continue increasing the disorder strength
and the panels (g)-(i) correspond to one disorder realization with W = 2.5 and xy = 0.6 (this set
is indicated with the magenta cross). In this case, the two center modes are localized anywhere at

the chain.
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Chapter 2. Localization properties of a disordered dimer chain
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Figure 2.12:  (a)-(c) Eigenfrequencies and profile of the two center modes for one disorder
realization under chiral disorder. We set k1 = 1, ks = 0.5 and the disorder strengths at

W = W, = 2W; = 0.25. Notice that the two center modes are localized at the edges of the
chain and there is a band gap in the frequency spectrum. (d)-(f) Same as (a)-(c) but we set the
disorder strengths at W = Wy = 2W; = 1.25. The two center modes are still localized at the edges
of the chain but the gap in the frequency spectrum is closed. (g)-(i) Same as (a)-(c) but we set
the disorder strengths at W = Wy = 2W; = 2.5. The two center modes are localized at the center
of the chain and the gap in the frequency spectrum is closed.

More insight is provided in Fig. 2.13. Here we show only the profile of the two center modes for
three sets of (W, kg) that are indicated with the three crosses. In all cases we set ko = 1.05 (white
dashed line). In Fig. 2.13(a) and (b) we set W = 0.25, in Fig. 2.13(c) and (d) we set W = 1.25
and finally in Fig. 2.13(e) and (f) we set W = 2.5. Notice that the center modes in the panels
(a), (b), (e) and (f) are localized in the interior of the chain. Yet, in Fig. 2.13(b) and (c) the two

center modes are localized at the edges of the chain.
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Figure 2.13:  (a)-(b) Profile of the two center modes for one disorder realization under chiral
disorder. We set k1 = 1, ko = 1.05 and the disorder strengths at W = W, = 2W; = 0.25. Notice
that the two center modes are localized at the center of the chain. (c)-(d) Same as (a)-(b) but
we set the disorder strengths at W = W, = 2W; = 1.25. Notice that the two center modes are
localized at the edges of the chain. (e)-(f) Same as (a)-(b) but we set the disorder strengths at
W = Wy = 2W; = 2.5. Notice that the two center modes are localized at the center of the chain

again.

To sum up, in this part we found that there is a critical line in plane (W, ks) in which the
localization length (calculated at the mid-gap frequency) diverges. This critical line divides the
(W, Kk2) in two regions. We found that for pairs of W and ko that lie in the ”lower side” region
the center modes are localized at the edges of the chain. But for pairs of W and ks that lie
in the "upper side” region we found that the center modes are localized anywhere in the chain:
strong chiral disorder destroys the topological protection of the center modes. The calculation
of a special topological index, called topological local marker [127], shows that the "lower side”
region is topologically non-trivial and the "upper side” region is topologically trivial. Therefore,

the chiral disorder introduces a topological transition from trivial to non-trivial.

35



Chapter 2. Localization properties of a disordered dimer chain

2.5.2 Non-correlated disorder

We discuss now the effect of non-correlated disorder. Namely, we remove the disorder on the
ground springs and in this way we break the chiral symmetry of the system. We begin again by
calculating numerically the localization length (using the transfer matrix method), at the mid-gap
frequency wy, for each pair of ky and W (the transfer matrix was iterated 10° times at each point
of the grid). Once more, we fix the disorder strengths at W = W, = 23 and the stiffness of x4
at 1. The results are illustrated in Fig. 2.14. Notice that there is no signature of divergence of the
A(wp) in this case. We note here that for the non-correlated disorder case, we cannot find a closed
form expression for the displacements u,, with n =1,2,..., N as we did for the chiral disorder (see

Eq. (2.35)). Therefore, we cannot compute the localization length analytically this time.
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w

Figure 2.14: Shown here is the localization length for the non-correlated disorder case, computed
numerically from the transfer matrix method.

In Fig. 2.15 we analyze again the eigenfrequencies and the two center eigenmodes of a chain
with N = 500 masses as a function of the disorder strength. We use the same sets of W and ks
with the ones that we also used in Fig. 2.10. Specifically, in Fig. 2.15(a)-(c) we set kg = 0.6 and
W = 0.25. Notice that there is a gap in the frequency spectrum and the two center modes are
localized at the edges of the chain. In Fig. 2.15(d)-(f) we set ko = 0.6 and W = 1.25. Notice that
the two center modes are localized in the interior of the chain. This is in contrast with the case
of the chiral disorder. Recall that in that form of disorder, for this set of (W, ks), the two center
modes were localized at the edges of the chain. Next, we increase the strength of the disorder. We
consider W = 2.5 (and ks = 0.6). Notice that the center modes are localized again anywhere in

the chain.
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Figure 2.15:  (a)-(c) Eigenfrequencies and profile of the two center modes for one disorder re-
alization under non-correlated disorder. We set k; = 1, ko = 0.5 and the disorder strengths at
W =Wy = 2W; = 0.25. Notice that the two center modes are localized at the edges of the chain
and there is a band gap in the frequency spectrum. (d)-(f) Same as (a)-(c) but we set the disorder
strengths at W = Wy = 2W; = 1.25. The two center modes localized at the center of the chain
and the gap in the frequency spectrum is closed. (g)-(i) Same as (a)-(c) but we set the disorder
strengths at W = Wy = 2W; = 2.5. The two center modes are localized again at the center of the
chain and the gap in the frequency spectrum is closed.

2.6 Concluding remarks

In this Chapter we have shown that a finite dimer mass-spring chain is chiral symmetric and due
to this symmetry it supports edge modes — modes that are localized at the edges of the chain and
whose frequency lies at the middle of the frequency spectrum. We have considered that such a
dimer chain was disordered and we have explored the impact of chiral disorder (disorder that retains
the chiral symmetry of the chain) and of uncorrelated disorder (disorder that breaks the chiral
symmetry of the chain). Using the transfer matrix method, we calculated the localization length
at the middle of the frequency spectrum and we concluded that a strong chiral disorder can make a
topologically non-trivial chain topologically trivial and vice versa. These conclusions are supported

by the calculation of proper topological indices like the topological local marker [125,127].
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Chapter 3

State transfer in periodic time-varying

mechanical lattices

3.1 Introduction

In Chapter 2, we saw that a finite mass spring chain that consists of an even number of masses,
supports either two edge modes or none, depending on the stiffnesses of the spring couplings.
On the other hand, in a dimer chain with an odd number of masses, one edge mode is always
supported, which is localized either at the left or at the right side of the chain, again depending
on these stiffnesses.

Our goal in this Chapter is to transfer such an edge mode that is always supported in a dimer
chain with an odd number of masses, from the chain’s one end to its other. To accomplish such
a state transfer, we let the spring couplings to vary with time and to exchange values between
the initial and the final times of the transfer process. Furthermore, we use the CRAB optimal
control theory [128,129] in order to achieve this transfer fast. The results that are presented in
this Chapter are based on ref. [130].

3.2 Finite dimer chain with odd masses

Our model in this chapter is similar to the one of chapter 2. It is again a 1D finite dimer mass-
spring chain. All the masses m are the same and are coupled with each other with alternating
springs of stiffnesses k1 and ks. We impose again fixed boundary conditions at both ends of the
chain. However, the chain that we consider here consists of an odd number N of masses (the
chain of chapter 2 consists of an even number of masses) and these masses are not attached to the
ground. For a schematic illustration of such a setup see Fig. 3.1. As we shall see below, this odd

sized chain always supports one edge mode as long as kK # Ks.

38



3.2. Finite dimer chain with odd masses

Figure 3.1: Schematic description of a finite dimer chain that consists of an odd number N of
same masses m and alternating springs of stiffnesses x; and k3. Fixed boundary conditions are
used.

3.2.1 Small vibrations

Our goal until the end of this section is to derive the eigenmodes that are supported in this
odd-sized dimer chain. The analysis that we follow is very similar with the corresponding one in
Chapter 2. Namely, we consider small vibrations of this dimer chain and we denote as u,, with
n =1,2,..., N the displacement of the mass that locates at the site number n of the chain from
its equilibrium position. Instead of writing the equations for these displacements — we wrote these
equations in Chapter 2 — we write here the Lagrangian that describes these small vibrations. This

Lagrangian is given by

1 1
L=-u"Mu - -u"Kgq, (3.1)
2 2
where we denote again with w the vector of displacements, i.e., u = <u1 Us e N>. Also
M = mly is the mass matrix (Iy denotes the identity matrix of size N) and K is the stiffness
matrix !
K1+ Ko —R9 0
—KR9 K1+ Ko —K1 0
0 —K K1+ Ky —K
K — 1 1 2 2 (3.2)
—Ko K1+ Ko —K1
0 —K1 K1+ Ko

Notice that the diagonal elements of the stiffness matrix are the same. Therefore, this stiffness

matrix obeys the anticommutative relation

{K — (k1 + r2)In, X} =0, (3.3)

We note at this point that in Chapter 2, instead of the stiffness matrix K, we used the dynamical matrix
D = K/m. However, there is no difference in the analysis to use either the stiffness matrix K or the dynamical
matrix D since the masses m of the chain are the same. We find it more convenient to work with the stiffness
matrix K in this Chapter and therefore we continue our analysis with the use of this matrix.
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where X, is the matrix

1 0 0 O 0
0 -1 0 O 0
3, = ; (3.4)
1 0 O
0 0 0 -1 0
0 0O 0 1

Due to the anticimmutative relation in Eq. (3.3) the system is said to possesses chiral symmetry,

which guarantees the existence of edge modes.

3.2.2 Eigenanalysis

To obtain the eigenfrequencies and the eigenmodes of the chain, we follow the same procedure with
the one that we followed in Chapter 2. Namely, we substitute solutions of the form w(t) = ue™*
in the Euler-Lagrange equations of the Lagrangian that is given in Eq. (3.1) and we find that
wu, = Ku,, where w, are the eigenfrequencies and wu,, are the eigenmodes of the chain, with
n=12 .. N.

In Fig. 3.2 we present an example. We use a chain that consists of N = 21 masses. We set the
mass m = 1 in arbitrary units m. We also keep the quantity ki + k2 constant and equal to 4 in
arbitrary units £ and we present the eigenfrequencies w, as a function of k5 — k1. Notice that for
k1 # Ko we find one mode whose frequency lies in the band gap. This mode is the edge mode. Its
eigenfrequency is found explicitly in semi-infinite chains using the transfer method approach and

is equal to
- K1+ Ka
W= ,
m

(3.5)

(hereafter, every variable or parameter with a tilde, corresponds to the edge mode (n = (N+1)/2)).

This mode is localized at either one of the two edges of the chain and decays exponentially with

3 (2) - (b) (10) §
2 =05} K2 K2 3
/\ =
A 2, L o |
P ———————————— 3 0} @ ¢ ©000000000000000( [0000000000000000 @ ¢
0 -0.5
9 0 9 0 5 10 15 20 0 5 10 15 20
K2 — K1 Site Site
Figure 3.2: (a) Eigenfrequencies w; as a function of ks — k; keeping k1 + ko = 4 of a chain with

N = 21 masses. (b) When r; > ko the edge mode is localized at the left side of the chain while
when (c) k1 < ks it is localized at the right side.
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increasing distance from the edge. Specifically, when x; > ko this mode is localized in the left side
of the chain, while when k; < ks it is localized in the other side. In Fig. (b) and (c) we present

the profile of the edge mode for (a) k; = 3k2 and for (b) ky = 3k;.

3.3 Basics for state transfer

Our goal is to transfer a localized mode from the one side of the chain to the other. Our initial
mode will be a localized edge mode at the left side of the chain, as the one that we see in Fig. 3.2(b).
Our target mode will be a right localized edge mode, as the one that we see in Fig. 3.2(c). To
accomplish such a transfer we will let the spring stiffnesses to vary with time and to exchange

values between the initial time ¢t = 0 and a final time ¢t =T
l€1(0> == HQ(T) y KQ(O) == Kll(T). (36)

We aim to accomplish the transfer fast, namely to minimize the time 7" needed for the initial mode
to reach the target one. In order to conclude whether the state transfer has been achieved we need
a proper measure. We call this measure fidelity and we will define it via the energy flow in the

chain.

3.3.1 Energy

From now on we assume that the couplings of the chain vary with time, meaning that the stiffness
matrix is time-dependent K = K(¢). Therefore, the system is non conservative and the energy is
not constant. The energy of the chain is given by the Hamiltonian, which in turn is given by a

Legendre transformation of the Langrangian that is given in Eq. (3.1)

Ha.p.1) = 5 (0P + u"K(u) (3.7)
where p, = 0L /0, is the n'* element of the conjugate momentum.
Notice that the stiffness matrix K(¢) that is given in Eq. (3.7) is positive symmetric. Thus, it can
be diagonalized by an orthogonal matrix which is composed by the instantaneous eigenvectors g, (t)
of K(t). We denote this orthogonal matrix as A(t). Therefore, it holds that A ()T K (t)A(t) = A(t)
where A(t) = diag (wi(t),...,w%(t)) is the diagonal matrix with elements the eigenvalues of the
stiffness matrix, i.e., the instantaneous eigenfrequencies squared.
With the use of the matrix A(¢) we change variables now. We consider the transformation
(u,p) — (Q, P) with
Q=A{t)"u,P=A()"p. (3.8)
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The Hamiltonian that is given in Eq. (3.7) is written in these new variables as
1
H= é(PTP +QTA(1)Q). (3.9)

Therefore, the total energy of the chain is written as the sum

E(t)=)Y E.t)=)_ <]23—”m + %mwn(t)%gi) . (3.10)

n=1 n=1

where E;(t) is the instantaneous energy of each one of the N eigenmodes.

The variable change that is given in Eq. (3.8) is canonical and the generating function of this

transformation is given by

F(p,Q,t) = —p"At)Q. (3.11)
Therefore, the Hamiltonian H'(Q, P,t) that describes the system’s dynamics in terms of the new
variables Q, P and the time t reads

H(Q,P,t) == (P"P+Q"AM1Q) - PTA()TA(1)Q. (3.12)

1
2
Notice that the first two terms of ‘H' can be written as a sum of N independent Hamiltonians of
harmonic oscillators. Excitations between different modes can take place due to the last term of
H'. This is because this term contains the matrix A (¢)TA(t) which is not diagonal. Yet, when the
system’s parameters change slowly in time - the process is adiabatic - then excitations between

different modes do not take place since A(t) is small.
Before closing this part, we note that the Hamiltonian #H that is given in Eq. (3.9) describes
the instantaneous total energy of the chain, while the Hamiltonian H’ that is given in Eq. (3.12)

governs the dynamics of the variables @ and P.

3.3.2 Fidelity

We are ready to define a fidelity for the transferring process at this point. First, we introduce
a quantity that measures how much of the total energy of the chain is distributed at the mode

number n (n = 1,2,..., N) at time ¢. This measure is given by

Co(t) = : (3.13)

namely it is the ratio of the instantaneous energy of the mode number n and of the total energy
of the chain.

For the definition of the fidelity we will use the quantity C,,(¢) of the edge mode — corresponding
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to index n = ¥+1 ; L — at final time 7', namely we will use the quantity
- E(T)
F=0CT)=—=. 3.14

Notice that the quantity F' measures how much of the final energy of the chain is stored in the
target edge mode. If this quantity is one that means that all of the energy of the chain at time T’
is stored in the target edge mode and therefore the transfer is perfect. Yet, the quantity F does

not take into account the initial mode.

The initial edge mode is an oscillating mode, with period of oscillation T = 2 /@. We may
choose any initial phase ¢ of this oscillation in order to determine the initial conditions, i.e., initial
displacements and velocities. The quantity F' depends on the initial phase ¢y and therefore it is
not a good measure for deciding if the initial edge mode has reached the target mode, since it
could have a large value for some initial phase and a low value for some other ¢y. For this reason
we consider the initial phase as a free parameter ranging from [0, 27) and we define as fidelity the
following quantity

Fidelity = F = H(})}Jn F. (3.15)

Using as fidelity the minimum of F' over ¢y we can be sure that the transfer has been achieved

with a certain target fidelity regardless of the initial conditions.

3.3.3 Adiabatic invariant

If we let the couplings to vary slowly with time so that the transfer process is done adiabatically,
then the initial edge mode reaches the target edge mode without exciting other modes (the bulk
modes) at any time ¢ € [0,7]. However, if the transfer process is done beyond the adiabatic
limit, then there will be excitations to instantaneous bulk modes, namely F,, (t) # 0 for ¢ > 0 and
n # % In order to track the degree of adiabaticity of the process we use the adiabatic invariant

of a system of N-coupled time-varying harmonic oscillators that is given by [131]

1=y 28 (3.16)

wn(t)

In the general case, I(t) oscillates and is not exactly invariant. In order for 7(¢) to be considered an
adiabatic invariant (and thus the process adiabatic), it must vary more slowly than the parameters

vary (in our case k1 and ko).
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3.4 Transfer protocols

Our goal in this part, is to find control schemes for the two couplings k() and ry(t) that result
in a fast transfer (minimize the total time 7") of the edge mode across the chain. First of all, when
the total time T is finite, then nonadiabatic excitations will appear in our system and it is not
possible to have perfect transfer, namely fidelity F = 1. Therefore, we have to set an acceptable
lower bound for F that ensures almost perfect state transfer [132]. We choose Fiarget = 99% and
we consider that the transfer is successful when F > Fiaget. In Appendix C we show, using the
WKB method [118], that if the two couplings k 2(t) change slowly with time so that the transfer
is done adiabatically, then the initial mode is transferred to the target mode with fidelity 1.

For all the cases that we consider in the following, we use a chain that consists of N = 21
masses and we set the initial/final stiffness values at x1(0) = k2(7") = 3 and k2(0) = k1 (T) = 1 in
arbitrary units of kg, which without loss of generality we set at kg = 1. We also set the values of

the masses at m = 1 in arbitrary units m.

3.4.1 Constrained protocols

We begin our analysis by studying control schemes which can all be written in the form

ki(t) =kt + K f() , k(b)) =kt — K f(1), (3.17)

K1 (0) —K9 (0)
2

the edge mode constant during the whole time of the process since for every t, ®(t) = k1 (t) + ra(t)

is constant and equal to £1(0) 4 x2(0) (recall that @(t) = \/k1(t) + /€2(t)>.

) and Kk~ =

where kT = —“1(0);”2(0

. Notice that these protocols keep the eigenfrequency of

Trigonometric protocol

As a first step, we consider that the function f(¢) is the trigonometric function,

F(t) = cos (%) . (3.18)

This control scheme is shown in Fig. 3.3(a). In Fig. 3.3(b) we present the corresponding fidelity F
of this scheme as a function of the final time of the process T'. Clearly, F increases smoothly with
T and approaches unity as 7' — oo, while it reaches the target fidelity at Tt = 297. Furthermore,
in Fig. 3.3(c) we present the instantaneous eigenfrequencies w, as a function of the time. Notice
that the frequency of the edge mode (indicated with the red line) is constant at all times.

The time Ty = 297 that is required so that the transfer is successful is almost two or-
ders of magnitude longer than the period of oscillation of the initial (and target) edge mode
(Ttrig >T = zw—” = 7T>. This implies that the protocol is nearly adiabatic. To justify this further
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Figure 3.3: (a) x1(t) and ko(t) for the trigonometric protocol. (b) F(7') for this scheme. (c)
Eigenfrequencies w;. (d) Instantaneous energy of each mode F;(t) (e) Adiabatic invariant I(¢). (f)
Time evolution of the absolute value of the particle displacements. In panels (d)-(f) we set the
initial phase ¢g at zero.

we present in Fig. 3.3(d) the instantaneous energies F,,(t) of all of the N modes and in Fig. 3.3(e)
the adiabatic invariant I(¢). In both cases we set the initial phase at zero, ¢y = 0, meaning that
initially all the masses have zero velocities and maximum displacements from their equilibrium po-
sitions. From Fig. 3.3(d) we observe very limited excitations to bulk modes (the purple shows the
instantaneous energy of the edge mode). From Fig. 3.3(e) we get that the adiabatic invariant shows
small oscillations and vanishing deviation from the initial value 7(0) = 1. Finally, in Fig. 3.3(f) we
show the spatio-temporal evolution of the absolute value of the mass displacements. Again we set
the initial phase at zero. With the evolution at a final time 27", with k(T <t < 2T) = k1 2(T),
we verify that the edge mode remains localized at the other side of the chain, after reaching the

target mode at time Ti,i,.

Linear protocol

We now modify the way that the couplings change in time. We consider that the function f(t)

varies linearly Wlth time, "
ft) =1—2—. 3.19
(t) T (3.19)
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Figure 3.4: (a) x1(t) and ko(t) for the linear protocol. (b) F(T') for this scheme.

We present this control scheme in Fig. 3.4(a). In Fig. 3.4(b) we illustrate the corresponding
fidelity. This protocol has smoothly increasing fidelity with 7" and reaches F > 99% for total time
Thinear = 192.

Notice that the linear function approaches to and departs from the closed gap point, namely at
the point where k1 = Ko, at the same rate. On the contrary, the trigonometric function is slower in
the beginning (and in the end) when the gap is very open and fast when it approaches the closed
gap point. The higher speed of the linear protocol, compared to the trigonometric one, could mean
that protocols that reach the closed gap point faster may reach the desired fidelity at a shorter
time. We continue our study along this line and in the following we study a control scheme that

approaches the closed gap point faster than the linear protocol.

Tangential protocol
We consider that the control function f(t) is given by

_ tan(wt/Ty + )
N tan «

f(t) (3.20)

7T
2m—2a

in a fidelity F that reaches its target value (99%) at the shortest possible final time 7. We find

that the desired value of « is m/2 + 0.4.2 We present this control scheme for this value of « in

where Ty = and o € (7/2,7) is a free parameter. We search for the value of o that results

Fig. 3.5(a). Furthermore, we get that for « = 7/2+0.4, the fidelity reaches its target value at time
Tian = 89. The corresponding fidelity of this scheme as a function of the final time 7T is illustrated
in Fig. 3.5(b).

In Fig. 3.5(c) we present the instantaneous energies F,, () of the modes, for ¢y = 0. From this

2For the derivation of this value of o we use the CRAB optimal control method that we mention at the beginning
of this chapter.
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Figure 3.5: (a) k1(t) and ko (t) for the optimal tangential protocol. (b) F(T) for this scheme. (c)
Instantaneous energy of each mode, E;(t) (d) Adiabatic invariant I(t).

figure we get that this optimal tangential protocol has a bit higher bulk mode excitations than
the trigonometric one. Moreover, the adiabatic invariant of this scheme (see Fig. 3.5(d)) - it is
calculated again for ¢y = 0 - shows also a bit higher oscillations that the trigonometric protocol.
Therefore, we conclude that this optimal tangential protocol is a less adiabatic protocol than the

trigonometric one.

Up to now, we have studied three protocols and our conclusion is that the protocol that
approaches the closed gap point faster (the optimal tangential), is the one that speeds up the
energy transfer. This observation drives us to study an extreme case. We study the control
scheme that is illustrated in Fig. 3.6(a), where the function f(¢) is almost a step function. This
function f(¢) is given from Eq. (3.20) by setting o = 7/2 + 0.001. In Fig. 3.6(b) we present the
corresponding fidelity of this control scheme. Clearly, this fidelity does not reach high values and
oscillates strongly. Furthermore, in Fig. 3.6(c) we present the spatio-temporal evolution at the final
time T = 89, i.e., at the final time that the previous control scheme reaches the target fidelity.

Clearly, the initial edge mode does not reach the target one.

The step protocol does not improve the transfer due to the following reason: Even though
this protocol approaches directly the closed gap point, it stays longer at its vicinity where the
probability of nonadiabatic excitations becomes higher. However, the probability of nonadiabatic
excitations becomes higher at the vicinity of the closed gap point. These observations indicate

the following: there is no trivial simple process that can reach high fidelity at vanishing time. On
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Figure 3.6: (a) x1(t) and ko(t) for the step protocol. (b) F(7T') for this scheme. (c) Time evolution
of the absolute value of the particle displacements.

the opposite, as we deviate from adiabaticity the handling of the energy flow is very subtle. This

requires to search for optimal solutions.

3.4.2 Non-constrained protocols

All the protocols that we have studied so far, keep the frequency of the edge mode constant during
the whole time of the process. In this part, we raise this constraint in order to get more transfer
speed (if it is possible). We also use the CRAB optimal control method [128,129].

3-step protocol

The first control scheme that we study and that does not keep the frequency of the edge mode
constant during the transfer process, is illustrated in Fig. 3.7(a). We call this protocol as 3-step
protocol since it consists of 3 time intervals. In the first time interval (we denote its length as
Aty) the stiffness of the coupling k; is constant and equal to its initial value, while the stiffness of
the coupling ko increases linearly up to the value of x1(0). In the second time interval Aty, both
coupling stiffnesses are constant at their maximum value x1(0). Finally, in the third time interval
Ats the stiffness of the coupling k; drops to the value of k2(0), while the stiffness of the coupling
Ko remains constant and equal to x1(0).

If we impose the mirror condition ky(t) = k1(T — t), then there is only one free parameter.
This free parameter is the length of the first/third time interval. We search for the optimal value
of this time interval, i.e., the value of At;(= At3) for which the fidelity reaches the target value
99% at the minimum final time 7. We find that the fidelity reaches the value F > 99% at time
T step = 39 when the first /third time intervals have length Aty = Aty = 0.475 ep. We present the
fidelity as a function of the final time 7" in Fig. 3.7(b). Opposite to the previous protocols, the
fidelity is fluctuating in this case (in all the protocols that we have studied so far — apart from the

step protocol — the fidelity is close to 1 for final times 7" larger than 300).
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Figure 3.7: (a)-(e): Same as Fig. 3.3 but for the 3-step protocol.

In Fig. 3.7(c) we present the instantaneous eigenfrequencies w,, as a function of the time ¢.
Notice that the instantaneous frequency of the edge mode @(t) is shifted up and down and its
mean value Wnyean 18 higher than its initial /final value. Therefore, the time scales which may be
considered inverse proportional to Wyean effectively decrease and this is why the transfer gets faster
in this case.

In Fig. 3.7(d) we show the instantaneous energies F,, of the modes. Clearly, these increase and
decrease substantially during the time intervals At; and Ats. Finally, in Fig. 3.7(e) we present
adiabatic invariant I(¢). Notice that it shows rather larger oscillations, compared to previous
protocols, during the time intervals At; and Ats.

We close our analysis for the 3-step protocol with the following comment: We lifted the mirror
symmetry condition ko(t) = k1(T — t) and we searched again for the optimal values of the free
parameters (the free parameters are two in this case). The optimization procedure returned values
for these parameters that render back the mirror symmetry. Namely, the parameters and the

results were the same with the ones that we got when we imposed the mirror symmetry.

3-step up protocol

The 3-step up protocol revealed that if we take the value of Wpean to be larger than ©(0) = &(7),
then the state transfer is becoming faster. A natural step towards this direction is to increase
further the value of Wyean. This is accomplished with the protocol that we study here and which is

illustrated in Fig. 3.8(a). We call this protocol as 3-step up for evident reasons: It is similar with
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Figure 3.8: (a)-(e): Same as Fig. 3.3 but for the 3-step up protocol.

the 3-step protocol with the difference that in the time interval Aty the values of the stiffnesses
are equal to Kyax = 30.3

In this case, we do not impose the mirror symmetry ry(t) = k1(7 — t) from the beginning.
Therefore, we have 4 free parameters. Two time intervals for the coupling x; (for example the At;
and the Ats) and two time intervals for the coupling k. The optimization procedure returned
the following optimal values: The coupling r; is constant (and equal to Kmax = 30) at the time
interval [0.1387,0.5467] and the coupling ks is constant and equal to Kpax = 30 at the time
interval [0.4547,0.862]. From these values we get that the optimization procedure rendered back
again the mirror symmetry ro(t) = k(7 — t) (this is also evident from Fig. 3.8(a)). For these
optimal values, the fidelity reaches the target value 99% at time T3 gtep up = 22 which is another
significant reduction compared to the 3-step protocol. We present the fidelity as a function of the
final time in Fig. 3.8(b).

This gain in the transfer speed is explained from the evolution of the eigenfrequencies w,,. These
are illustrated in Fig. 3.8(c). The eigenfrequencies change substantially here and clearly the mean
value of @(t) is much larger, compared to the 3-step protocol. Finally, in Fig. 3.8(d) and (e) we
present the instantaneous energies F,, and the adiabatic invariant I(¢) as a function of the time ¢.
These two panels suggest that this protocol is the most non-adiabatic compared to all others we

have examined so far.

3Notice that in the 3-step protocol the corresponding maximum value of the stiffnesses was Kmax = 3.
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3-step & 3-step up cubic protocols

We can gain more transfer speed by considering control schemes that include more parameters.
For instance, the couplings x; and ko in the 3-step and in the 3-step up protocols are linear
functions and have different linear forms in three time intervals. We build the cubic analogues
of these protocols, which we call 3-step cubic and 3-step up cubic protocols. In this protocols,
the couplings k; and ko are cubic polynomials and have different forms in three time intervals.
Moreover, the difference between the 3-step cubic and the 3-step up cubic is that in the former
case the values of k;(t) and ky(t) cannot exceed the value k1(0) = ko(T).

The coefficients of these polynomials and the time intervals are found again with an optimization
procedure. The results are illustrated in Fig. 3.9. Notice that the 3-step cubic protocol reaches
the fidelity F > 99% at total time T3 gtep cubic = 35 (recall that T ep = 39). The 3-step cubic up
protocol reaches the target fidelity at total time T3 gtep cubic up = 12 (recall that T gtep up = 22).

3-step cubic 3-step cubic up

10%

3 K1 (b)
&b (a) &b
z I T=12
22 2, 10 K1
3 T=35 3
° K9 ° k2
1 10° )
0 0.5 1 0 0.5 1
t/T t/T

Figure 3.9: (a) k12(t) for the 3-step cubic protocol. (b) Corresponding ki 2(t) for the 3-step up
cubic protocol.

3.4.3 Disorder analysis

In this part, we apply disorder at some of the protocols that we studied before. The protocols that
we will examine in the presence of disorder are: the trigonometric, the tangential, the 3-step, and

the 3-step up protocols. We consider a form of disorder that affects only the initial stiffness values
kn(0) = kK, (0) (1 +nw,) , n=1,. ,N+1 (3.21)

with n = 0.2 and w,, € [-1, 1] a random number that is uniformly distributed.

We set the initial phase at ¢g = 0 and we calculate the quantity F(¢o = 0) for each disorder
realization. Also, for each protocol we evolve the system at the corresponding final times that the
fidelity reaches its target value, namely at T' = 297 for the trigonometric protocol, at T' = 89 for
the tangential protocol, at T" = 39 for the 3-step protocol and at T" = 22 for the 3-step up protocol.
In Fig. 3.10 we present the statistical distribution of F'(¢g) = 0 out of 10° disorder realizations.
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Figure 3.10: Shown is the statistical distribution of F(¢y = 0) out of 10° realizations of disorder
for the (a) Trigonometric (b) Tangential (c) 3-step and (d) 3-step up protocol.

Clearly, the trigonometric protocol is more robust than the tangential and the 3-step protocol.

But the 3-step up is even more robust than the trigonometric. This is attributed to the fact that

the edge mode remains well separated from the bulk modes throughout the process.

To shed more light, we present in Fig. 3.11(a) and (b) the instantaneous eigenfrequencies of

the tangential protocol for two different disorder realizations. In Fig. 3.11(a) the fidelity remains

high after the application of disorder while in Fig. 3.11(b) the fidelity drops with the application

of disorder. Similarly, in Fig. 3.11(c) and (d) we present the instantaneous eigenfrequencies of

the 3-step protocol when the fidelity remains high with the application of disorder (panel (c))

Figure 3.11:
disorder for (a) the tangential protocol and when the fidelity remains high (b) the tangential
protocol and when the fidelity drops (c) the 3-step protocol and when the fidelity remains high (d)
3-step protocol and when the fidelity drops.
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2 Q—m—— |
Vm§ T =289 /@
1= — 1 — —
0 0
0 0.5 1 0 0.5 1
t/T t/T
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Instantaneous eigenfrequencies w; as a function of time t after the application of
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3.5. Energy amplification

and when the fidelity drops with the application of disorder (panel (d)). Notice that the fidelity
remains high after the application of disorder, when the band gap is sufficiently open and the
eigenfrequency of the edge mode is separated from the bands. On the contrary, the fidelity drops
with the application of disorder, when the frequency of the edge mode approaches the two bands,

since the bulk modes are strongly excited in this case.

3.5 Energy amplification

As we noted before, when the couplings of the chain change with time, the system is non-
conservative. Meaning that the energy that is stored in the chain after time 7" could be higher /lower
than the energy that is initially stored. Similarly, the final energy of the final edge mode (right
localized) can exceed the energy of the initial edge mode (left localized).® Therefore, we define a

quantity that measures this energy amplification of the edge mode. It is given by

(3.22)

In Fig. 3.12 we show the quantity A as a function of the initial phase ¢, for the 3-step up protocol
(the final time is 7" = 22 - the fidelity is above 99%). Notice that A > 1 for various values of ¢y
and therefore the initial edge mode is transferred across the chain and is simultaneously amplified.
Moreover, A could be less than 1 for certain other values of ¢y, meaning that the transferred mode
is disamplified. As a final remark, we note here that when the transfer is done adiabatically (which
is not the case for the 3-step up protocol), then the initial mode is transferred to the target one

without being amplified. We prove this in Appendic C, using the WKB method.

1
¢o/ T

Figure 3.12: (a) Amplification A as a function of the initial phase ¢, for the 3-step up protocol.

4Notice that the energy that is given at the start of the process to the initial edge mode is also the total energy
that is given to the system initially, since no other modes are excited at ¢t = 0. Therefore, E(0) = E(0).
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3.6 Concluding remarks

We have shown in this Chapter how to achieve a fast

and robust transfer in a mechanical chain. Due to

the absence of unitarity in the classical system that
we studied, the transferred mode can be either am-
plified or disamplified, according to the initial’s edge

mode phase of oscillation ¢y. As a closing remark,

we note that the phase ¢q is not the only parameter

that results in amplification/disamplification. For
instance, in Fig. 3.13 is shown the quantity A as a 20 40 60 80 100 120

Hmﬂ,’lﬁ

function of K,q, for the 3-step up protocol (we set

= 0). Notice that tA>1 lifica-
féo ). Notice _ . We' can.ge _ (amnpli Cé Figure 3.13: Amplification A as a function
tion) or A < 1 (disamplification) with an appropri-
of Kyaz for the 3-step up protocol.

ate choice of the bound kKpax.
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Chapter 4

Transient amplification for the Mathieu

equation without parametric instability

4.1 Introduction

In Chapter 3, we encountered the phenomenon of amplification in a time-varying platform. We
are interested to investigate this phenomenon further. To achieve this, we will employ the well
known Mathieu equation [1,115] since it occurs naturally when we consider wave propagation in

an infinite medium that is periodically modulated in time [116,117].

The Mathieu equation is among the well studied equations in physics [1,109,115,118,133-135]
and it is known to lead to parametric instability in some regions of its parameter space. However,

it has been reported that even the stable solutions of the Mathieu equation can be transiently
amplified [136].

In this Chapter, we explore the transient effects and the global maximum amplification of the
stable solutions of the Mathieu equation. To do so we use several quantities of the e-psudospectrum
[110] of the monodromy matrix — the matrix that propagates the initial conditions over one period
— and we demonstrate that is the degree of non-normality of this matrix [112] that determines the

global amplifying features.

4.2 Wave propagation in Floquet media

To start this part, we follow ref. [116,117] and we consider the wave propagation in a one dimen-

sional infinite medium that is governed by the following wave equation
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% (,)
ot?

0*(x,t)

= |0 — 2§ cos(t) 52
x

(4.1)
where 5, ¢ and €) are constants. In order to solve Eq. (4.1) we apply the method of separation of
variables. That is, we assume that the solution v (z,t) is written in the form ¢ (z,t) = f(¢t)h(zx)
and by substituting this form into Eq. (4.1) we arrive at the following set of ODE’s for f(¢) and
h(x)

digj(f) + k2h(z) = 0 (4.2)
d C}’; §t> + k? [S — 2Gcos(Qt)| f(t) =0 (4.3)

where k is the real wave number of the wave. From Eq. (4.2) we get that h(z) has the form
h(z) ~ e**. To get an insight into the function f(t), first we rescale the time as 7 = Qt/2 and
then we set & = 4k20/02, ¢ = 4k2G/Q2 (we should keep in mind that the parameters 6 and ¢ are
related with the wave number k). After this, Eq. (4.3) drops to the usual form of the Mathieu
equation, that is

f416 —2qcos(27)] f =0 (4.4)

where dot represents differentiation with respect to the time 7.

4.2.1 Unstable and stable solutions of the Mathieu equation

The Mathieu equation contains both stable and unstable solutions according to the values of the
parameters 0 and ¢. For an illustration, we present in Fig. 4.1 the evolution of the function f(7)
for two different sets of parameters (0, q). We indicate the set of (d,¢) that is used in Fig. 4.1(a)
with an orange rectangle and the corresponding set of (¢, ¢) that is used in Fig. 4.1(b) with a green

rectangle. Also, in both cases, we used as initial conditions: f(0) =0 and f(0) = 1.

Clearly, the set of (d,¢) that is used in Fig. 4.1(a) leads to an unstable solution f(7) and
in particular f(7) grows exponentially with time. On the contrary, in Fig. 4.1(b) we used a set
of parameters (9,q) that leads to a stable f(7): the solution f(7) is oscillating in time and is

transiently amplified.

In the next part, we are interested in understanding and quantifying the transient amplification
that stable solutions can exhibit. For that, we will show first the regions in the (6, ¢) plane that
correspond to the stable solutions of Eq. (4.4), essentially, the stable regions of the stability chart
of the Mathieu equation.
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4.2. Wave propagation in Floquet media

x10°

0 10 20 30 40 0 10 20 30 40
T/m T/m
Figure 4.1:  Evolution of the function f(7) that is a solution of the Mathieu equation for the

initial conditions f(0) = 0 and f(0) = 1 and for the set of parameters (a) ¢ = 0.4578, § = 3¢ and
(b) ¢ = 0.5072, § = 3q.

4.2.2 Review of Mathieu equation

We write first the Mathieu equation as a system of two linear differential equations
n(r) = A(T)n(7), (4.5)

with (1) = (}CE:;

written in the form

0 1
and A(1) = . The general solution of Eq. (4.5) is
—(6 —2qcos(27)) O

Tl(t) = ‘Il(Tv To)’?(%)» (46)

where the vector () contains the initial conditions f(79) and f(79) and the matrix ¥(r, 79) is
called principal matrix solution and it solves the matrix valued problem w = A(7)¥(7,70)
with W(7y,79) = I (see for example ref. [109]). In order to calculate the elements of the principal
matrix solution for any set of times 7 and 7y, we have to evolve the initial conditions n(7y) =
(f}(%)) = <1> and mo(710) = <f.2(7-0)> = <O> forward in time. The principal matrix solution
fi(70) 0 f2(70) 1
fim)  fa(7)
' VIO
fi(7), fi(7) and fo(7), fo(7) by solving Eq. (4.4) numerically, since there is no analytical solution.

is then given by ¥(7,79) = . For the case of the Mathieu equation, we calculate

The analysis for the derivation of the principal matrix solution that we discuss here applies to
any system of nonautonomous linear ordinary differential equations that is written in the form
n(t) = A(r)n(r). However, when the matrix A(7) is a periodic one, then we can apply the

Floquet theory and derive the stability of the solutions as we show next.
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Chapter 4. 'Transient amplification for the Mathieu equation without parametric instability

Notice that for the Mathieu equation the matrix A(7) is m-periodic, i.e., A(T + 1) = A(7).
The Floquet theory states that the stability of the solutions is derived by the eigenvalues of
the principal matrix that is evaluated over one period, namely by the eigenvalues of the matrix
W(79 + 7, 79). The matrix W(ry + m,79) is called the monodromy matrix. The eigenvalues of the
monodromy matrix are commonly known as Floquet multipliers. We denote the Floquet multipliers
as Ar. From Liouville’s formula det [®(7y + 7, 70)] = exp [f;;)” Tr (A(s)) ds} [109] we get that
the determinant of the monodromy matrix is 1 and therefore the Floquet multipliers satisfy the
relation A, A\_ = 1. When |[AL| = 1, then the Floquet multipliers are restricted to lie in the unit
circle in the complex plane and are complex conjugates. In that case the solutions of the Mathieu
equation are stable. When |Ay| # 1 then the Floquet multipliers lie in the real axis in the complex
plane and in that case the solutions of the Mathieu equation are unstable and grow exponentially
with time. We note here that the Floquet multipliers do not depend on the initial time 7. This is
because the matrices W(m + 71, 71) and W(mw + 75, 75) are similar and therefore they share the same

eigenvalues [109].

In Fig. 4.2 we present the norm of the Floquet multipliers for each pair of the parameters § and
q. In the red region of this chart |Ay| = 1 and therefore the solutions of the Mathieu equation are
stable for these pairs of (J,¢). In the blue region |[Ay| # 1 and therefore this area corresponds to
exponentially growing solutions. In the boundary between these two areas, both the eigenvalues
and the eigenvectors of the monodromy matrix coalescence. Therefore, the boundary between the
stable and the unstable region corresponds to exceptional points and in the most general case the
solutions grow linearly with time [115]. This plot is known as the stability chart of the Mathieu
equation [1,115]. For reasons that will get clear in the following, we also show in the stability chart
the line § = 3|q| with black solid line. In this line, the orange and green rectangular indicate the

sets of (0, ¢) that were used in Fig. 4.1(a) and (b) respectively.

More generally, the Floquet theory states that the principal matrix solution is written in the
form [109]
(1, 79) = P(7, 70) B0 (4.7)

where the matrix B(r) depends only on the initial time 7 and the matrix P(r,7) is periodic
on both times 7 and 7y, having the same period with the matrix A(7) (this period is 7 for the
Mathieu equation). The eigenvalues of the matrix B(TO) are related with the eigenvalues of the

monodromy matrix — the Floquet multipliers Ay — through the relation [109]

1
The eigenvalues v, are referred as Floquet exponents. Moreover, since A, A_ = 1, it follows that
Y+ + v~ = 0 mod 2mi. In the stable region the Floquet exponents are purely imaginary and

therefore we set v+ = +iy with v a real parameter. In Fig. 4.2(b) we present the exponent 7 along
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4.3. Measuring the transient amplification

Figure 4.2:  (a) Shown here is the norm of the eigenvalues Ay of the monodromy matrix as a
function of the parameters § and g. Also shown is the cut 6 = 3|q|. (b) Floquet exponent for the
stable solutions as the line 0 = 3|q| is scanned.

the cut 6 = 3¢. This is a Floquet spectrum [137]. The bands correspond to the stable regions and
the gaps to the unstable ones. We note here that the set of parameters that is used in Fig. 4.1(b)

and is indicated with the green rectangular, results in a Floquet exponent ~ equal to 0.9.

4.3 Measuring the transient amplification

In this part we will elaborate on the transient amplification that a stable solution (as the one that
is shown in Fig. 4.1(b) - indicated with the green rectangular) can exhibit. One of our goals is
to introduce a measure that quantifies this transient amplification. This is done in the first two
subsections of this part.

The transient amplification cannot be captured by the Floquet multipliers (Floquet exponents)
since they have norm one (they are purely imaginary) in the stable region of the stability chart.
These eigenvalues determine the large time limit and fail to predict any transient effects. One of the
tools that was developed in order to capture such transient effects is the e-pseudospectrum [110].
To that end, we will study the e-pseudospectrum of the monodromy matrix.

It is known that transient effects and non-normal dynamics are due to the non-normality of the
matrix that propagates the initial conditions forward in time [110,138]. A non-normal matrix has
non orthogonal eigenvectors and this non-orthogonality can result to transient effects [112]. There

are quantities - related with the e-pseudospectrum - like the Kreiss constant and the Petermann
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factors [139] that indicate the non-normality of a matrix. For this reason, we will study these

quantities as well.

4.3.1 Choice of variables

For reasons that will get clear in the following, we change variables at this point. We consider the
transformation (f, f) — (F,G) with

F(r) = f(r)yw(r) . G(r)=f(1)//w(7). (4.9)

and w?(1) = § — 2qcos(27) (see Eq. (4.4)). This transformation is illuminated when we consider
the WKB limit of Eq. (4.3), that is when w(7) varies slowly with time, 2 << w. The solution of
Eq. (4.3) in the WKB limit is given by f(7) = e**Jo “(4 [118] and is predicting amplification.
Yet, by choosing the variables in Eq. (4.9) we cancel this adiabatic effect: in the WKB limit the
F(r)
G(7)
VIF(0)2 4 |G(0)]2. Away from the WKB limit the norm of the vector &(7) is not constant and

this is when non-trivial amplification is captured in the sense that is not predicted by WKB.

norm of the vector &(7) = ) S €M = VIF(T)]2 + |G(7)]2, is constant and equal to

In Fig. 4.3 we present an example. In all of the three panels we show the evolution of the
variables F(0) = 1/v/2, G(0) = 1/+/2 and the norm of the vector &(7) for three different sets of ¢
and ¢. In (a) we set ¢ = 0.82 in (b) ¢ = 4.4 (c) ¢ = 20.03 and in all of these three cases we also
set 0 = 3¢q. We used these particular sets of 0 and ¢ because all these choices result in Floquet
exponents equal to v = 0.5. By inspecting this figure it is clear that as ¢ and ¢ increase, the norm
of the vector &£(7) tends to a constant value which is its initial value. The limit of large ¢ and §
is essentially the WKB limit of Eq.(4.4). Therefore, we get that the norm of the vector £(7) is an
elegant measure for the description of the transient amplification since it is constant (and equal to
[1€(0)]|) in the WKB limit and it is non-constant (and oscillates) away from the WKB limit.

From the transformation that is given in Eq. (4.9), we get that outside the cone § = 2|g| the
variable G(7) acquires singularities since the parameter w?(7) becomes zero at some instants of
time. As a result, we restrict our analysis only in the area that locates inside the cone § = 2]g|.
Outside of this cone, we have to consider another suitable transformation, based on which we
can describe the transient amplification properly. However, the amplification is not qualitatively
different in the regions outside and inside of the cone § = 2|q|, because the initial variables f(7)
and f (7), which express the physical properties of the system, change smoothly across the whole
stability chart.

At this point, we will show the equations that govern the dynamics of the variables F'(7) and
G(7) and we will express the general solution of these equations in terms of a propagating matrix.
Essentially, we will follow a similar procedure to the one that we followed for the variables f(7)
and f (7). Notice first that the equations that the new variables F'(7) and G(7) satisfy, are also
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Figure 4.3:  Shown here is the evolution of the variables F'(0) and G(0) as well the quantity
VX2(7) + Y2(7). In all cases we set § = 3¢ and in (a) ¢ = 0.82, (b) ¢ = 4.4, (c) ¢ = 20.03.

written in the form of a system of two linear differential equations

&(r) = C(7)&(7) (4.10)
with C(7) = (wZQW B '72 ) . The general solution of Eq. (4.10) is written in the form
() = B(r. )€ (). (a.11)
F(70)

where &(79) = > is the vector that contains the initials conditions and the matrix ®(, )

G(70)

evolves these initial conditions forward in time. Hereafter, in order to discriminate the matrix
®(7,7) from the matrix W(r,7) (that evolves the variables f(7y) and f(7) in time), we will
call the matrix ®(7,79) as the propagator. Using the transformation that is given in Eq. (4.9), it
is straightforward to show that the propagator ®(7,7) is given in terms of the principal matrix
W (7, 79) through the relation

w(r) Uy (7, 70) w(T)w(70) Wia (T, 70)

R VT
¢( ) 0) 1 \1121(7_ 7_0) M\I]m(T 7_0) : (412>
w(T)w(7o) ’ w(7) ’

Recall that w?(7) = § — 2q cos(27) and therefore w(7y) = w(7y + 7). Using the latter property, we
can easily show that the eigenvalues of the monodromy matrix ® (7 + 7, 79) are the same with

the eigenvalues of the monodromy matrix W(7y + 7, 7). Namely, the eigenvalues of ®(my + 7, 79)
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are the Floquet multipliers A\y. This should not come as a surprise, since there is no reason for
the stability properties of the new variables F'(7) and G(7) to be different from from the stability
properties of the initial variables f(7) and f(7).

We close this part, by exploiting the Floquet theory again which states that the propagator

® (19 + 7, 79) is written as a product
B(r, ) = P(r, )P, (1.13)

where P(7,7p) is m-periodic on both 7 and 7y and the matrix B(7y) depends only on 7y. Notice
that that we are able to apply the Floquet theory because the matrix C(7) (see Eq. (4.10)) is

periodic as well.

4.3.2 Choice of measure

As we noted before, the norm of the vector £€(7) quantifies properly the transient amplification.
However, it depends on the choice of the initial vector &(7p). Therefore, if we are interested to know
the maximum possible amplification of the vector &(7) over all initial conditions, is reasonable to

compute the quantity
1€l [12(7, 70)€(70)||

max = max
letro)i=1 ||E(T0)]|  lleGori=1  ||€(70)]]

Namely, we consider a maximization over all initial unit vectors. The quantity that is given in

(4.14)

Eq. (4.14) is the 2-norm of the propagator matrix ®(7,79) since by definition

|@(7,70)|| = max |[®(7,70)&(70)]|- (4.15)
[1€(T0)I=1
Therefore, the 2-norm of the propagator matrix ® (7, 79) reveals the maximum amplification of the
vector £(7) at time 7 when the propagation starts at 7y, out of all the initial unit vectors &(7o).
The 2-norm of a matrix is provided by its largest singular value, as this is given by the singular
value decomposition (SVD) [114]. For the case of a real matrix, such as the propagator ®(r, 1),
the SVD is the decomposition

®(r,70) = U(7,70)2(7, 70) VT (7, 70) (4.16)

where the matrices V(7,79) and U(7,79) are real and orthogonal and the superscript 7 denotes
the transpose. The matrix X(7,79) is diagonal and its elements are real, nonnegative and are
arranged in descending order. These diagonal elements are called the singular values o;(7, 79) with
i=1,2,...,N and N is the dimension of the matrix (in our problem N = 2). The largest singular
value - that is o1(7, 7) - is the 2-norm of the matrix ®(7, 7). The SVD provides also the initial

conditions that are amplified the most for a given set of initial and final times, 7 and 7p. These
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initial conditions are the elements of the first column of the orthogonal matrix V (7, 7) [113].

Figure 4.4 illustrates an example. We used the same set of parameters (d,q) that we used
in Fig. 4.1(b) and we set the initial time at 7y = 0. In Fig. 4.4(a) we present the norm of the
propagator ®(7,0) as a function of the time 7. Clearly, the norm exceeds 1 at almost all times
and reveals that the solution of the Mathieu equation can be transiently amplified for this set of
parameters (9, q) at almost all times. Also, it appears that the norm of the propagator is periodic
with a period of 10m. We stress here that when the exponent v is a proper fraction my/msy, then
the propagator is of period at most mom. Recall that this set of parameters returns a Floquet
exponent that is equal to 0.9 and that it why the norm of the propagator oscillates with a period
of 10m. Therefore, the value that is indicated with a blue dashed line and is captured at 7 = 5.327
is the overall maximum value of ||®(7,0)|], it is namely the max||®(7,0)||. This maximum is the
largest possible transient amplification that a stable solution on the Mathieu equation can exhibit
(for this set of parameters (9, ¢q)), when the propagation starts at 7o = 0 under the proper initial
condition given by SVD.

To shed some light, we consider two different sets of initial conditions (F'(0),G(0)) and in
Fig. 4.4(b) and (c) we present their time evolution. These two sets of initial conditions are found
as follows: we compute the singular value decomposition of the propagator matrix ®(7,0) at 2
different times 7, at 7, = 0.87 and at 7, = 5.327. From the SVD we find the matrices V (7, 0)
and V(7,0) and we use the first columns of these two matrices as the two different sets of initial
conditions in Fig. 4.4(b) and Fig. 4.4(c) respectively. These two different sets of initial conditions
yield the maximum value of the norm of the vector &£(7) at the final times 7, = 0.8 and 75 = 5.327

accordingly. To visualize this, we also present in Fig. 4.4(b) and (c) the norm |[£(7)|| (with a solid

=—=F(r) =—=G(r)

3.5 - - 3.5 - 3.5 -
(a) (b) [[E@)] (c) [1§(®)]
3t
25| : . 1
; 0 0
2 : -1H -1
15}
: —|2(7, 0)l '
1 . -3.5 : : : 3.5 : - -
0 o 15 20 0 b) 10 15 20 0 5 10 15 20
T/ T/ T/m

Figure 4.4: We set the initial time 74 at zero and we used the same set of (J, ¢) that we also used
in Fig. 4.1(b) - green rectangular. (a) Norm of the matrix ®(7,0). (b) Evolution of the initial
conditions F'(0) = 0.7469 and G(0) = 0.6651. These initial conditions maximize the norm of the
vector &£(7) at time 7 = 0.87. (c) Same as (b) with initial conditions X = F'(0) = —0.0481 and
G(0) = 0.9988. These initial conditions maximize the norm of the vector £(7) at time 7 = 5.32.
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gray curve in (b) and a solid black curve in (c)). Clearly, the black curve reaches a higher value
than the gray curve at time 7, = 5.327. However, even though it is not visible, the gray curve

takes a higher value than the black curve at time 7 = 0.87.

4.3.3 Pseudospectrum analysis

As we mentioned in the beginning of this section, the spectrum of the monodromy matrix — the
Floquet multipliers AL — do not give any information regarding the transient amplification of a
bounded solution. These determine the asymptotic behavior of the solution, namely whether it
is bounded or not. On the contrary, the e-pseudospectrum [110] of the monodromy matrix can
detect transients. First of all, the e-pseudospectrum of a matrix (for instance of the monodromy

matrix ®(7p + 7, 7)) is the set of all the complex numbers z, such that
[(z — ®(m0 +7,70)) || > e, (4.17)

with € > 0. We denote this set as o [®(19 + m,7)]. It follows that in the limit of ¢ — 0,
then o [® (10 +m,70)] = o[®(79+ 7, 79)] where o [®(7y + 7, 79)] is the spectrum of the monodromy
matrix. Notice that, unlike the spectrum, the pseudospectrum is not uniquely defined and depends

on the choice of e.

In Fig. 4.5 we present an example. We set the initial time 7y again at zero and we use the
same set of parameters (d,q) that we also used in Fig. 4.1(b). In Fig. 4.5(a) the two crosses
correspond to the two Floquet multipliers. Notice that these are complex conjugates and lie in
the unit circle in the complex plane (gray circle) since this set of parameters (9, ¢) belongs in the
stable region of the stability chart. In this panel, we also show with the four solid closed curves
the boundaries of the e-pseudospectrum, for four values of € : 0.08,0.14,0.2 and 0.26. The value
of € = 0.08 corresponds to the closed cyan curves that surround the Floquet multipliers. As the
value of € gradually increases these two curves extend to the complex plane and for some value
of € they touch and unite in a single curve. For instance, the boundary of the e-pseudospectrum
for € = 0.14 is the single blue curve. As € keeps increasing this single curve keeps extending in
the complex plane (see for instance the purple line that is the boundary of the e-pseudospectrum
for € = 0.26). We note here again that these solid closed curves that we present in Fig. 4.5(a)
are not the e-pseudospectra of the monodromy matrix but the boundaries of the e-pseudospectra.
The e-pseudospectra are the sets with all the complex numbers inside these curves. To shed more
light, we show in Fig. 4.5(b) the norm ||(z — ®(m,0))7!|| as a function of z € C. Clearly, the two
spikes correspond to the Floquet multipliers. The four solid closed curves are the boundaries of

the e-pseudospectra that are shown in (a).

The pseudospectrum provides several useful bounds for the transient amplification and it can

be estimated very accurately. For example, there is a very useful lower bound for the quantity
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Figure 4.5: We used the set of parameters (4, ¢) that we also used in Fig. 4.1(b) - green rectangular.
(a) Shown here with the two crosses is the spectrum of the monodromy matrix ®(m,0) and with
the four solid lines the boundaries of the e-pseudospectra for e: 0.08, 0.14, 0.2 and 0.28. (b) Shown
here is the norm ||(z — ®(7;0))7!|| as a function of z € C.

max ||[®" (19 + 7, 7)|| with n an integer.!
n

As an illustration, we present first in Fig. 4.6(a) the
quantity ||®"(m,0)|| for the same set of parameters (9, ¢) that we used in Fig. 4.5. We also show
with a faded magenta line this time the corresponding norm of the propagator ®(7,0) (like in
Fig. 4.4). Clearly, the maximum value of the black dots, that is the quantity max ||®" (7 + 7, 70)|],
is a lower bound for the max ||®(7,0)|| and this is why it is of interest to find a lower bound for
the mSXH‘I)n(TO + m,70)|]- ’

This lower bound for the maximum norm of the ||®"(7y + 7, 79)|| is given by

pe(® (10 +7,70)) — 1
€

max ||®" (79 + 7, 79)|| > max (4.18)

where p.(®(19+7, 7)) is the e-pseudospectrum radius. The pseudospectrum radius p.(®(7o+7, 79))

is the set of all the complex numbers z such that
pe(® (o + 7,70)) = max {|z| : 2 € C,[|(z — ®(r0 + 7, 70)) || > €'} (4.19)

The quantity at the right hand side of Eq. (4.18) which is the maximum (over €) of the quantity
Pe —

Pe — ;
as a function

1
, is called the Kreiss constant. In Fig. 4.6(b) we present the quantity

€ €
of e. This quantity reaches a plateau for small values of e. Some insight into this plateau is

!Notice that the quantity ||®" (7o + 7, 70)|| = ||® (70 + n7, 70)|| is the norm of the propagator at multiples of the
period.
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Figure 4.6: We used again the same set of parameters (d,¢) that we used in Fig. 4.1(b) - green
rectangular. (a) Shown here is the norm of the monodromy matrix ||®"(7,0)|| with n = 1,2, ...20.
Also shown with a faded magenta line is the norm of the propagator, ||®(7,0)||. The latter quantity
is also shown in Fig. 4.4(a) with the magenta line. The yellow line shows the value of the discrete
Pe —

€

Kreiss constant which is a lower bound for the max ||® (7, 0)"||. (b) Shown here is the ratio

as a function of €. The maximum value of this ratio is the discrete Kreiss constant.

provided in Appendix D where we approximate the propagator matrix with the monodromy matrix
continuously and we find closed form expressions for the Kreiss constant. Finally, in order to
visualize that the Kreiss constant is indeed a lower bound for the maximum value of the norm of
the monodromy matrix, we present its value in Fig. 4.6(a) with a yellow solid line. Clearly, the
yellow line is below the maximum black dot.

The fact that the value of the discrete Kreiss constant exceeds one suggests that the monodromy
®(7,0) is non-normal, i.e. [®(m,0), ®(w,0)7] # 0. For a normal matrix the value of the Kreiss
constant is one. As we explained at the beginning of this section, we find transient amplification
because the propagator (and the monodromy) matrix is non-normal. The non-normality of a matrix
is reflected at its eigenvectors which are not orthogonal. For that reason, in the following part
we briefly remind the Petermann factors because we can easily understand this non-orthogonality

through these quantities.

4.3.4 Petermann factors

The Petermann factors [139] measure the nonorthogonality of the left and right eigenvectors of a
matrix and thus they indicate the non-normality of this matrix. We are interested to measure the
non-normality of the monodromy matrix ®(7y + 7, 79) and therefore our goal is to compute the

Petermann factors of ®(7y + m, 7). However, we will give first the definition of the Petermann

66



4.4. Impact of the initial time 7

factors of a general matrix that is of dimension N and after that we will restrict to the monodromy
matrix ® (7 + m, 79). We denote this general matrix of dimension N as Q and its IV eigenvalues as
A, with e = 1,2, ...N. We denote the N right eigenvectors of Q as u;, namely it holds Qu; = \;u;,
and we also denote its left eigenvectors as v;, namely 'viT Q = )\i'vj ., where T denotes complex
conjugate transpose. Then, the N Petermann factors of this general matrix Q are defined as

= Milllll -y (4.20)

’UJ uil
If the matrix Q is normal, we can take its right and left eigenvectors to be the same and therefore
all of the N Petermann factors K; are equal to 1.

Going back to the monodromy matrix ®(1y + 7, 79) of our problem, we note first that this
matrix depends on the initial time 79. Therefore, its two right and two left eigenvectors depend
also on 7p. We denote these right eigenvectors as u () and the corresponding left ones as v4(7p).
Since the determinant of ® (15 + 7, 7p) is one, we immediately get that the two right and two left
eigenvectors of ® (79 + 7, 79) are complex conjugates, namely u, = w_ and v, = v_. Therefore,
the two Petermann factors K. of the monodromy matrix are equal, K, = K_ = K. As an
example, we used the set of parameter (9, ¢) that we have mainly used so far (see Fig. 4.4, Fig. 4.5
and Fig. 4.6) and we set again the initial time at 79 = 0. We computed the Petermann factors
of ®(m,0) and we found that they are approximately equal to 2.147. As we expected, we found

Petermann factors that are not equal to one, since this matrix is non-normal.

4.4 Impact of the initial time 7

Up to now, the only thing that we have mentioned regarding the initial time 7, is that the spectrum
of the monodromy matrix — the two Floquet multipliers Ay — do not depend on it. And this is due
to the similarity of the monodromy matrices that propagate initial conditions from different initial
times [109]. Regarding the phenomenon of the transient amplification though, there is no reason
for it to be independent on the choice of the initial time 7y. Therefore, in this part we explore the
impact of 7y at these transient effects.?

We begin with the illustration of an example that is shown in Fig. 4.7. Once more, we used the
same set of (9, q) that we used in Fig. 4.1(b). In the top three panels of this figure, we present with
the magenta lines the norm of the propagator ®(7,7y) as a function of the final time 7, for three
choices of the initial time 79 = 0.27,0.327,0.57. In these panels, we also present with the black
dots the quantity ||®" (1 + 7, 70)|| with n an integer (we stress here again that this is the norm of
the propagator at multiples of the period). What we immediately get from these four panels is that

the norm of the propagator and its sampling at each period change as the initial time 7y changes.

2Notice that in all the examples that we have presented so far, we have set the initial time to be zero.
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Chapter 4. 'Transient amplification for the Mathieu equation without parametric instability

To get a first insight into the latter result, at the three lower panels of Fig. 4.7 we present the
boundaries of the pseudospectrum of the monodromy matrix ®(7y+, 79) for the same initial times
that we used at the corresponding upper panels and for the four values of ¢ = 0.08,0.14,0.2,0.26
that we also used in Fig. 4.5. Clearly, the pseudospectrum of the monodromy matrix depends on
Tp since its boundaries extend/shrink into the complex plane as the initial time changes. At these
lower panels we also show the spectrum of the monodromy matrix (with the crosses) that does not

change as the initial time 75 changes.

70 = 0.27 7 = 0.327 70 = 0.57
4l (a) |- (b) {4t (c)
3 3t 3
2 2t 2
1 - ¢ - 1 - ¢ - 1 : -
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Figure 4.7:  We used the set of parameters (d, ¢) that we also used in Fig. 4.1(b) - green rectangular.
Upper panels: Shown here are the quantities ||® (7, 79)|| and ||® (7 + 7, 70)|| for (a) 790 = 0.2, (b)
70 = 0.32 and (c¢) 79 = 0.5. Bottom figures: Corresponding boundaries of the pseudospectra for
€ =0.08, 0.14, 0.2 and 0.26.

A close look at Fig. 4.7(b) reveals that the black dot with the maximum value coincides with
the magenta line at its maxima. This drives us to compute the quantities max ||®(7, 79)|| and
max ||®" (1) + 7, 70)|| as a function of the initial time 79. The results are shown in Fig. 4.8(a).

Clearly, these two curves touch at their maxima, meaning that the quantity max[max ||®(7, 79)||]
TO T

is equal to the max[max ||®" (7o + 7, 79)||]. We emphasize that the max[max ||® (7, 79)||], contains
T0 n T0 T
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4.4. Impact of the initial time 7

a maximization in the initial conditions, in the final time 7, and in the initial time 7y and is
therefore the overall biggest amplification that we can get for this set of parameters (J,¢). And
according to the results that are shown in Fig. 4.8(a) this overall maximum is provided merely by
the monodromy matrix. We note here that this finding is not a peculiarity of the specific choice
(0, q) that we used here since we have verified it using several parameters § and ¢ (that all belong
in the stable regime of the stability chart).

As a next step we compute the Kreiss constant as a function of the initial time 75. The results
are shown in Fig. 4.8(b). Notice that this curve has the same pattern with the ones that are
shown in Fig. 4.8(a) and suggests that the monodromy matrix ®(7y + 7, 7) becomes the most
non-normal for 7 = 0.327 and the least non-normal for 7, = 0. Furthermore, we compute the
Petermann factors K = K, = K_ of the monodromy matrix ®(7y + 7, 79) as a function of 7.
The results are illustrated in Fig. 4.8(c). Notice that this curve has the same pattern with all the
other curves that are shown in the same figure. Again, we conclude that the monodromy matrix

becomes the most non-normal at 7 = 0.327.

. 2.2 5
4l
351 F (a)
3t 3r
max |2 (7, 70| ! K=K, =K
_ — max||®" (1 + 7, 70)|| :
2.5 i TIL 14 : . 2 : s
0 0.32 05 1 0 0.32 05 1 0 0.32 0.5 1
To/™ o/ ™ To/™

Figure 4.8: We used the set of parameters (d, ¢) that we also used in Fig. 4.1(b) - green rectangular.
(a) Shown here is the max ||®(7, 79)|| and the quantity max ||® (7 + 7, 70)|| with n an integer. (b)

Discrete Kreiss constant as a function of the initial time 7y. (c¢) Petermann factors K = K, = K_
of the monodromy matrix as as a function of the initial time 7.

4.4.1 Maximum transient amplification

Up to now, we have used a particular set of the parameters § and ¢ in the most examples that
we have presented. For this reason, we will calculate in this part the overall maximum transient
amplification that all the stable solutions of the Mathieu equation can exhibit. Namely, we will
calculate the quantity
max |max ||®(r, TO)||], (4.21)
70 T
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Chapter 4. 'Transient amplification for the Mathieu equation without parametric instability

at the stable region of the stability chart, that is inside the cone § = 2|q|. The results are shown
in Fig. 4.9(a). We note here that we calculated the quantity that is given in Eq. (4.21), only in
the stable region that locates inside the cone 0 = 2|q|. Clearly, for the set of (4,q) that locate
close to the unstable area, the corresponding solutions are intensively amplified. Furthermore, the
maximum transient amplification of a solution grows as the boundary with the unstable region is
approached.

A natural step in our analysis, is to compute the quantity
max [max 1®(ty + . t0)"| (4.22)
0 n

as well, since in the previous part we concluded that the is the same with the corresponding
quantity that is given in Eq. (4.21). The results are shown in Fig. 4.9(b). Notice that both
the quantities that are shown in Fig. 4.9(a) and (b) match perfectly. This supports our finding
that merely the monodromy matrix provides the overall maximum amplification that the stable

solutions of the Mathieu equation exhibit. For that reason we state the following as a conjecture:

Conjecture Given the Floquet representation of a propagator matriz ®(t,ty), namely ®(t,tg) =
P(t,t0)eBt0)t=t) where P(t,ty) is a T-periodic matriz on both times, the following relation
holds

max [mgxx ||<I>(t,t0)||} = max [méxx || ®(to + nT, t0)||} . (4.23)

(a) logyo [mT?X (max || @ (. T0)||)} (b) logyg [mgx (max [|@" (o + 7, TO)H)]

0 = 2|q|

10.5
—0
q q
Figure 4.9: Shown here are the quantities (a) log,,{max |max||®(7,7)|||} and (b)
T0 T

log;o{max |max ||®" (1o + 7T,7'0)H] }, at the stable regime inside the cone that is formed by the
0 n

line 6 = 2|q|.
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4.5. Concluding remarks

4.5 Concluding remarks

In this chapter we have made a comprehensive investiga-
tion of the transient amplification exhibited by the stable
solutions of the Mathieu equation. As a last remark we
give here an example of a wave whose evolution is gov-
erned by Eq. (4.1) and that is transiently amplified in
time. We remind that we have applied the method of
separation of the variables and we have written the so-
lution of the wave equation (4.1) as ¥(z,t) = h(x)f(¢)
where f(t) is a solution of the Mathieu equation and
h(z) = Ae™*® + Be~** In the example that is illustrated
in Fig. 4.10 we set A = 1 and B = 0, we use the set of
parameters (0, ¢) that is indicated with the green rectan-
gular and we set the initial time at 7y = 0.327, which
as we have seen in Section 4.4 results in the maximiza-
tion of the norm that we have chosen. We also use as
initial conditions f(0) and f(0) the ones that the SVD
yields. In Fig. 4.10 we present the real part of the so-
lution ¥ (z,t) and the result is a standing wave that is

transiently amplified in time.
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Figure 4.10: Example of a standing
wave that is transiently amplified in

time.



Chapter 5
Summary and perspectives

In this thesis, we explored the wave propagation in space or time varying media aiming to shed
light and understand in depth some phenomenological aspects which have not been yet explored
in detail. Based on the findings of the present thesis a very general future perspective is to explore
the wave propagation in space-time varying media, since these kind of media have attracted great
interest over the last years [98].

In the context of wave propagation in space varying media, we explored the effect of a pertur-
bation in the transmittance of a periodic potential with mirror symmetric cells (Chapter 1). Due
to periodicity, the transmittance had a band-like structure form and each band was consisting of at
least N — 1 perfect transmission resonances (PTRs), N being the number of the mirror symmetric
cells. Employing Dirac scatterers we achieved to develop a systematic way to perturb the set-up

so that specific PTRs survive after its modification.

Both the unperturbed and perturbing potentials that we considered in Chapter 1 were real.
Yet the transmittance of a periodic potential that is complex and P7T-symmetric, has also a band-
like structure form and supports PTRs in each band [140]. Therefore, it would be of interest to
investigate whether the results that were presented in Chapter 1, could be generalized to the case
of a complex and PT-symmetric periodic potential.

The perturbing potential that we used in Chapter 1 comprised Dirac scatterers - for simplicity.
Another perspective is to construct a perturbing potential that preserves PTRs but does not
comprise Dirac scatterers. This could reveal additional phenomena and would make the problem

more easily realizable in an experimental setup.

We also investigated the spectral properties of a finite periodic dimer chain possessing spatial
perturbations due to disorder (Chapter 2). In the clean limit (no disorder) the frequency spectrum
of the chain showed a gap and depending on the stiffness couplings, two modes whose frequency
lied in the middle of the gap were supported (topological edge modes). We found that under a
strong chiral disorder, the localization length of the edge modes diverged, indicating the occurrence

of a topological phase transition.
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It would be interesting to verify the results that were presented in Chapter 2 in an experimental
platform, for instance in an electric circuit [141]. Moreover, the extension of these findings to

mechanical systems that are of higher dimension could reveal new phenomena.

In the framework of time-varying media, we considered that the couplings of the dimer chain (in
the clean limit - no disorder) varied with time (Chapter 3). Our goal was to transfer a topological
edge mode from the chain’s one end to the other in minimum time. We used an optimal control
method and we found a simple protocol — we called it 3-step up protocol — consisted of three
time intervals with linear increase, constant and linear decrease of the springs stiffness parameters
that resulted in a fast and robust (against disorder) transfer of the edge mode. An interesting
result of our analysis in Chapter 3, was the emergence of the phenomenon of amplification of
the transferred mode, which is absent in the corresponding quantum systems, for example in the
transfer of qubits [97].

For the experimental realization of the transfer process that we studied in Chapter 3, it is
important to investigate some aspects of this problem further. For instance, a more thorough
study of the impact of the disorder is important. We have investigated the impact of one form of
disorder, but other sources should be studied as well. Also, the total time needed for the transfer
to be successful, depends on the size of the chain and therefore a thorough study of this issue is of

importance as well.

Moreover, it would be of interest to compare the method that we used in Chapter 3 with other
methods of shortcuts to adiabaticity. For instance, the authors in ref. [96] suggested a method for
state transfer in a quantum topological chain (Su-Schrieffer-Heeger chain). This method could be

applied at the mechanical chain that we considered in Chapter 3.

The under system in Chapter 3 was non-autonomous. We have taken this into account when we
optimized the fidelity over the initial edge mode’s phase of oscillation. We showed that this initial
phase had a strong impact at the whole transfer process, since it could lead to either amplification
or disamplification of the transferred mode. It would be of interest to explore the impact of
the initial phase in more depth. For instance, we could quantify the degree of adiabaticity of
the transfer process more rigorously (we have used the adiabatic invariant in this chapter) and

investigate whether this degree is affected by the initial phase.

The phenomenon of amplification that we encountered in Chapter 3, set the frame of our study
on the transient amplification of a wave that propagates in an infinite medium whose properties
vary periodically with time (Chapter 4). We considered wave dynamics governed by the Mathieu
equation and we explored the transient amplification of its stable solutions. We have searched for
the global maximum transient amplification by optimizing the initial conditions and the initial
start of the process and we claimed that the knowledge of the monodromy matrix is sufficient to

derive this global maximum.
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The results that were il-

lustrated in Chapter 4 open 1 25
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In particular, we con- -3
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0 and then we change vari- monodromy matrix lie inside the unit circle. (b) The propagator is

ables to the ones that are a non normal matrix. (c) Example of transient amplification of the
given in Eq. (4.9) in Chap-
ter 4. In Fig. 5.1(a) we

present with the crosses the

solution.

eigenvalues of the monodromy matrix in the complex plane. The two eigenvalues of the monodromy
matrix lie inside the unit circle (shown with the gray solid curve) and therefore the solution decays
asymptotically. In Fig. 5.1(b) we present the norm of the propagator (this figure is the analogous
of Fig. 4.4(a) that we presented in Chapter 4). Finally, in Fig. 5.1(c) we present the evolution
of the initial conditions F'(0) = 0 and G(0) = 1. Notice that even though the solution decays

asymptotically, it can be transiently amplified since the propagator is still a non normal matrix.

Another perspective is to study the transient amplifying effects of other time-modulated sys-
tems. In particular, we aim to study a relevant time-dependent system in fuid mechanics, first
because the e-pseudospectrum has its orginigs in this area of physics and second because the Math-
ieu equation emerges in many problems in hydrodynamics. For instance, it is a known fact that
all 2-dimensional, incompressible, time-independent elliptic flows are bounded. Meaning that if we
impose a perturbation at such a time-independent elliptic flow, then the energy of the perturbation
remains bounded with time. For example, in Fig. 5.2(a) we present the velocity field ug of such
an elliptic flow and in the panel (b) we present the energy of a compressible perturbation that we
impose at this flow (the perturbation has random initial velocity and pressure). Notice that the
energy of the perturbation is bounded. Yet, if we vary the shape of the elliptic flow with time, i.e.,

ug = uo(T), then the energy of the perturbation can grow with time.
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Figure 5.2: (a) Velocity field of a time-independent ellip-
tic flow. (b) Energy of a perturbation that we impose at
a time-independent elliptic flow. Notice that it remains
bounded and therefore the flow is stable. (c) We let the
elliptic flow to vary with time in a cosine way. Shown here
is the maximum Lyapunov exponent (corresponding to a
perturbation) which converges to some positive value. (d)
The value at which the maximum Lyapunov converges as a

function of the frequency and amplitude of the modulation.

For instance, we let the shape of
the elliptic flow to change in a co-
sine way with a particular frequency
and a particular amplitude, we com-
puted the velocity and the pressure
of a perturbation that we imposed
at such a time-varying flow and in
Fig. 5.2(c) we present the maximum
Lyapunov exponent (corresponding
to the perturbation). The maximum
Lypaunov converges asymptotically
to some positive value, meaning that
the energy of the perturbation grows
exponentially with time. This is a
paremetric resonance. In Fig. 5.2(d)
we present the value at which the
maximum Lyapunov converges (the
Mean Lyapunov - see Fig. 5.2(c)) as a
function of the frequency and the am-
plitude of the modulation. We find
some regions in the parameter space
in which the time-dependent elliptic
flow is unstable (these regions actu-

ally match with the Arnold tongues

of the Mathieu equation). Next thing is to calculate the transient amplifying effects of the stable

perturbations of this time-dependent elliptic flow.

To conclude, the study presented in the current thesis revealed the rich phenomenology of wave

physics in time and/or space varying media, while the exploration of both classical and quantum

systems highlighted the diversity and broad range of applications within wave physics. The world

of wave physics never stops amazing us, and novel wave phenomena that continuously emerge only

serve to deepen our understanding of the physical world.
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Appendix A
Mirror symmetric cells

We give here the analytic derivation of the relations that are given in Eq. (1.21), (1.22), (1.25)
and (1.26) in Chapter 1. We remind first that the periodic potential that we considered in that
Chapter was build from a mirror symmetric cell. Due to this mirror symmetry, the transfer matrix

of this cell (that is the transfer matrix M that is given in Eq. (1.2)) is decomposed around its

0 1
center of symmetry as M = MyM,; with M, = PM,P and P = Lo is the parity operator.

Therefore if we set M; = ;k B) then M, ! = (CZ & ) . We will use this decomposition

o a

in both of the following proofs.

A.1 Centers of the cells

We begin by giving the derivation of the relations that are given in Eq. (1.21) and (1.22). To start

we remind that we have denoted the centers of the mirror symmetric cells as a,,, withm = 1,2, ..., N.

We denote as ¢ the vector that contains the right and left going waves at each point. For

instance, at = —D/2 (left edge of the setup, see Fig. 1.1(b) of the main text), since there is no

(~D/2) = (1) (A1)

reflected wave it holds

0
The wave function is the sum of the two components of the vector ¢, and therefore at z = —D /2
it holds
v(—=D/2) = 1. (A.2)

Next, we calculate the vector ¢ at © = D/2 (right edge of the setup) using the Chebychev identity.

76



Appendix A

The Chebyshev identity states that if the transfer matrix M is written in the form

m m
M — 11 12 (A.3)
ma1 ma2
then the matrix (M)" is given by
(M) = m11Unv—1 — Un—2 mi2Un—1 (A4)
mi1aUn_1 maUn_1 —Un_2

where

B sin((N + 1)¢)
=)

where ¢ is the Bloch phase and it is equal to nw/N at the n'® PTR. Therefore, for the PTR number

n 1t holds
o(D/2) = (H) ) (A6)

(A.5)

0

and the wave function there is equal to
»(D/2) = (-1)". (A.7)

Now, we calculate the vector ¢ at the centers of the first and last cells, namely at the positions

ay and ay. At x = a; we get

o
p(a1) =Mip(—D/2) = (5*> (A.8)
meaning that the wave function there is equal to

Y(a) = a+ [ (A.9)

Similarly, at the the centers of the center of the last cell, x = ay, it holds

_ -l _ (=)
plan) = My '(D/2) = ( T 5) (A.10)

and therefore the wave function there is equal to
Y(ay) = (=1)"(a* + B). (A.11)

For the next step, it is necessary to define a new transfer matrix. We define the matrix
M = M;M,. Notice that this matrix differs from the matrix M which is equal to M = MyMj;.
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We denote the two eigenvectors of the matrix M as v, and v_,. The determinant of M is equal

to 1 and therefore its eigenvectors are written in the form

v:; L v :; W (A.12)
V1R \K RViES PR '

We use the vectors v, and v_, as a basis and we write the vector ¢(a;), i.e., at the center of the

first cell, as
p(ay) = Av, + Bvu_,, (A.13)

where A and B are coefficients that are calculated by the boundary conditions. The wave function
at x = a; 1s written as
¥(ay) = Az + Bz* (A.14)
1+k

with z = ——.
V14 |k
The wave function at the center a,, is calculated by acting with the transfer matrix M™ ! at
the vector ¢(ay),
plan) = Aei(m_l)‘ﬁ"vq + Be‘i(m_1)¢"v_q (A.15)

and therefore for the wave function at z = a,, we get
Y(am) = Aemn 5 4 Bemim=1)én ox (A.16)

The coefficients A and B are found from the boundary conditions that are given in Eq. (A.9) and

(A.11). These result to,
we—i(N—l)qﬁn _ w*(_l)n

A= z (e*i(N*1)¢>n _ ei(N*1)¢>n>

(A.17)

and .
(_ 1)”?1)* - wez(N—l)an

B= 2* (e*i(N*1)¢n — ei(N*1)¢n)

(A.18)

where w = o + *.

If we plug the coefficients A and B at the expression that is given in Eq. (A.16), then we get

that the wave function at the center a,, is given by

! i " in{(m —
Vlan) = oy (oSN —m)on] + (<1 wgsinl(m — )6, +

+i [wrsin[(N — m)o,] — (—1)"wrsin[(m — 1)¢,]]}  (A.19)
where wg and wy are the real and imaginary components of w. Finally, the quantity Re[¢(a., )| Im[¢(am,)]
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is equal to

WRWT

Rely(am Mmlplan)] = Sy — 16,7

x {sin’[(N — m)¢,] — sin®[(m — 1)p,] } (A.20)

which is Eq. (1.21) of the main text.
As we mentioned in the main text, Eq. (A.20) proves that if we place Dirac scatterers at the
centers of the cells, then the PTRs are always preserved in pairs. To see this clearly, notice that

from Eq. (A.20) we get the following relation

f(¢n)

Reltn (@) T (@) = 7

Re[1o,5—n(am)]Tm[1o §—n(am)] (A.21)

If the PTR number n is preserved after the addition of Dirac scatterers, then the imaginary part

of k1, is zero, which means (recall Eq. (1.19) of the main text) that

N
> cmRe[toon (W) Imto , (wy,)] = 0. (A.22)
m=1

Using, Eq. (A.22) we immediately get that Im[ky x_,] is also zero and therefore the PTR number

N — n is preserved as well.

A.2 Edges of the cells

The derivation of the relations that are given in Eq. (1.25) and (1.26) in Chapter 1 is similar to
the previous proof. First, we remind that we have denoted the edges of the cells as b,, and notice
that the index m this time gets the values: m =0,1,2,..., N.

m m
For this proof we will make use of the transfer matrix M = MyM; = ( 1 12) . We
ma1 Mag

denote the two eigenvectors of this transfer matrix as

u:; ! U (N (A.23)
VTR T V) '

We stress here that due to the mirror symmetry of the cells, the parameter A is real, i.e., A = \* .
Even if we did not write it in the previous proof — in Appendix A.1 — this holds for the parameter
k as well (see Eq. (A.12), the definition of the eigenvectors of the M matrix).

We write now the vector ¢(—D/2) = ¢(by) (see Appendix A.1) using as a basis the vectors ¢,
and ¢_,

1 1 1 A
¢(bo) = Cl\/ﬁ (/\) + 02\/?|)\|2 (1) (A.24)
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The coefficients Cy and C are found from the fact that the analysis refers to PTRs, namely

0

plio) = 5 (i) - (i) . (A.26)

We can now calculate the vector ¢ at each point b,,, if we act with the transfer matrix M™.

. 1 1 : 1 A
— ,imon _ —imén
p(by) =e Y (}\) e Y <1> (A.27)

where again ¢,, = nm/N is the Bloch phase of the n'* PTR. The sum of the two components of

o(—D/2) = <1> : (A.25)

and we get that

Therefore, we get

the vector ¢(b,,) is the wave function (b,,) and therefore it is equal to

V(b)) = : i T [e"mon — Ne7mon] (A.28)

Finally, for the quantity Re[¢(by,)]Im[¢)(b,,)], which is of interest in the preservation of the PTRs,

we get
11+ A

Re[t) (b)) Im[e)(by,)] = 31T\ sin(2ma,,), (A.29)

which is Eq. (1.26) of the main text.
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Numerical computation of the

localization length

We provide here a more detailed discussion regarding the numerical computation of the localization
length that we studied Chapter 2. Recall that for this computation, we employed the transfer
matrix method and we wrote the displacements of the masses from their equilibrium positions
(that is u,), in the matrix form (see Eq. (2.29))

where A, = . The matrix T,, is given in Eq. (2.30). Therefore, given an initial vector Ay,

Un—1
the behavior of the vector Ay is given from the matrix

N
Py=]]T (B.2)
=1

According to the Oseledec’s theorem [126], the matrix

B = lim (PLPy)"*"

N—oo

(B.3)

exists and the logarithms of its eigenvalues are the Lyapunov exponents. In our problem, B is a
2 X 2 matrix and for its two eigenvalues we found that: \; & —\y. Therefore, the two Lyapunov

exponents satisfy the relation v; ~ —v5 as well. The localization length is by definition equal to

1

A= (B.4)

Ymin

where 7,,i, is the minimum positive Lyapunov exponent, and therefore in the under study problem

we get that A = 1/, since only one exponent is positive (the ;).
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For chains of large size (large N) we encountered rounding errors when we computed the
Lyapunov exponents from the eigenvalues of the matrix B that is given in Eq. (B.3). To overcome
these rounding errors we followed ref. [142] and we normalized the vector A, at the previous step
of each iteration. Specifically: By definition, the maximum Lyapunov exponent (which is 7, is our

problem as well) is given by

1
n =5 n(lAxl]) (B.5)
where ||.|| denotes the Euclidean norm. By using an initial vector A; with norm 1, from Eq. (B.5)

we get that
(B.6)

%_gln( A ||AN_1||H,||A3||||A2||)
N AT TAN I 1A A

At each step of iteration, we normalize the vector A, with its norm at the previous step of the

iteration, defining thus the vector

A
A= —" (B.7)
[ An—1]]
Then from Eq. (B.6) we get that the Lyapunov exponent ~; is given by
1
Y1 = —SN (B8)

N

where Sy41 = Sy + In (|| A1)
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Adiabatic state transfer

We prove here that if the couplings of the time-varying chain that we considered in Chapter 3
vary slowly with time, then the initial edge mode is perfectly transferred across the chain, without
being amplified. To prove this we use the WKB method [118].

Let q1, ga, ..., gn be the displacements of all masses from their equilibrium positions and ¢, ¢, ..., ¢n
the corresponding velocities. Dot represents derivative with respect to time. Then the equations

of motion can all be written in the form

W = AW (C.1)
where
. . T
W=(a - av @ ~ din) (C.2)
and
0 0 0 0 10 - 0
0 0 0 0 o1 - 0
0 0 0 0 00 1
—K1—K2 K2 0 0 00 0
A. - Ko —K1—K2 K1 0 00 0 (C 3)
0 Ko —K1—K2 K1
0 0 K1 —K1—K2

where the superscript 7 stands for the transpose and ko are the couplings of the chain that vary

with time (without loss of generality we set the values of the masses of the chain at m = 1).

We assume that the couplings vary slowly with time, namely k12 = k1 2(et) with € << 1. We

introduce the slow time scale 7 = et and then Eq. (C.1) gets the form

edd—‘f =A(T)W. (C4)
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In order to solve Eq. (C.4), we apply the WKB method. Namely, we use as an ansatz the vector
W (r) = 50 (Wy(7) + eWi (1) + EWa(1) + ..) . (C.5)

Plugging this ansatz into Eq. (C.4) and collecting powers of € we get

o(1) : @dflf) Wo(r) = A(T)Wo(7) (C.6)
O(e) idflS_T) Wi(r) + %g@ = A(1)Wy(1) (C.7)

From Eq. (C.6) we get that idS/s7 is one of the eigenevalues of the matrix A(7) and that
W (7) is proportional to the associated eigenvector. It remains to find the proportionality factor.
This factor is found as follows: We act with some vector YT at Eq. (C.7) (T stands for the complex

congugate transpose)

Yt (A(T) - z‘d*z(:)) W, =Yt % (C.8)
which is also written as
[(A(T) . z'dS(T)I>T Y] T w, — vyt (C.9)
dr dr

dS(7)

;
We choose Y to be on the kernel of the matrix B(7) = (A(T) —1 I) . Then from Eq. (C.9)

we get that Y and dWy/dr are orthogonal. From this orthogonality condition, we find the corre-

sponding proportional factor.

Next, we show how to apply this, at the eigenvector of the matrix A(7) that corresponds to

the edge mode. First of all, notice that the matrix A(7) has an eigenvalue that is equal to
A7) = ik (7) + ro(T) = i (7). (C.10)
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This eigenvalue corresponds to the edge mode. The associated eigenvector to this eigenvalue is

N—-1 N-1
(=12 r2

u(r) = | : (C.11)

where we set r = r(7) = Kk1(7)/Kka(T).

The vector Wy(7) of the WKB ansatz is written as
Wy (1) = é(r)a(r), (C.12)

where ¢(7) is the proportional factor. To find this factor we use the orthogonality of the vectors

Wy(7) and Y. The vector Y is found to be the following one

(-1 Tt
0
0
Y = o . (C.13)

N—-—1 N-1

(—1)TTT
0
0

From the orthogonality of the vectors Y and dWy/dr we arrive at the following ODE that the

factor ¢(7) satisfies,
du
vie Y (C.14)
cdr Yh-a '
After a few calculations we find that Eq. (C.14) takes the form

N . - .
1, 1 /Zizl,i oaq (i — 1)1 2w C15
EC = —57’ N i1 - % ( . )
Zi:l,i odd T
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where prime denotes derivative with respect to 7. Integrating the last equation we get that

1 1 i pr -
or) ~ —_ee Jo O()ds, (C.16)
VI eaarii(r) VOUT)

Therefore, the vector W (7) of the WKB ansatz is given by

W(r) = ¢ e do “Edsq(r) + c.c, (C.17)
N 1 =
\/Zi:l,i oad THT)V@(T)

where the constant C' is related with the initial conditions. At time ¢ = 0 the vector W is given
by

N—-1 N-1

(-1)"z r 2z (0)
0
—r(0)
0
¢ 1
W= N ‘ - No1 N-o1 +coe (C.18)
\/Ziili odd TZ_I(O) (:J(O) iw(0)(-1)"2 r 2 (0)
’ 0
—i@(0)r(0)
0

iw(0)
At time t = T, the couplings are inverted x1(7T") = k2(0) and ro(T) = £1(0). So, ©(T) = @(0) and
r(T) = 1/r(0). After a few calculations, we find the vector W at the final time T,

N—-1

()"

- O

C 1 i peT -
W(T) = —— A - el e e (C.19)
\/Zi:u () \/w(()) @(0)(~1) "2

We compare the vectors W (0) and W (T') and we find that the initial mode is transferred to the
other side of the chain with the same amplitude (it is not amplified).
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Approximation and closed form formula

The results that are presented in this appendix provide some insight into the results of Chapter
4. First of all, we show here that under some assumptions we get closed form expressions for the
pseudospectra. We also get a closed form formula that provides insight into the plateau that the
quantity (p. — 1)/e shows in Fig. 4.6(b) (recall that p. is the pseudopectral radius). We begin
by reminding that the Floquet theorem states that the propagator matrix ®(7, 1) is written as
the product of two matrices. The first matrix is a m-periodic one and we denoted this matrix as

P(7,7) in Eq. (4.13) of the main text. The second matrix is the exponential ¢B(70)(7=70),

Our assumption is that we do not take into account the periodic matrix P(7, 7). Namely, we

assume that the time evolution is governed only by the exponential eB(70)(7=70)
®(1,79) — eB(r0)(T—70) (D.1)

To illustrate this assumption, we present in Fig. D.1(a) and (b) the norms ||®(7,0)|| and ||eB©)7||
for two different sets (d,¢). In Fig. D.1(a) we used the same set as in Fig. 4.1(b) of the main
text - green rectangular, namely ¢ = 0.5072 and 0 = 3¢q. We remind that this set of parameters
returns a Floquet exponent that is equal to v = 0.9. In Fig. D.1(b) the parameter ¢ is equal to
1.2389 and again 6 = 3¢. This choice results in a Floquet exponent that is equal to v = 0.1. From
Fig. D.1(b) we get that for v << 1, the exponential eB(™)(7=70) follows closely the propagator.
However, this is not the case for v ~ 1 (see Fig. D.1(a)). Yet, in both cases the maximum value of

B(0)r

the ||eB7]|, namely the quantity max ||e ||, is a lower bound for the corresponding maximum
T

of the propagator.

As we mentioned at the beginning of this appendix, at this point we are interested to get an
insight into some results that are illustrated in the main text. For that reason, we will set the
initial time 7y at zero and we will try to get some information for the quantity ||eB(®7|| and not for
the general ||eB(™)(™=70)|| As we shall see, this simplification will allow us to obtain closed form

expressions. First of all, we note that the matrix B(0) has zero diagonal elements and is therefore
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3.5 : : : 3.5

(a) v=0.9 b) =01
3t : 3t { — 20
1eBO]
° ||€B(0)n7rH
0 ) 10 15 20 0 ) 10 15 20
T/m T/m
Figure D.1:  Shown here are the quantities ||®(7)]|], ||eB@7|| and ||eB""|| for two different sets

(0,9). (a) ¢ = 0.5072 and 6 = 3¢ which yields a Floquet exponent v = 0.9. (a) ¢ = 1.2389 and
0 = 3q which yields a Floquet exponent v = 0.1.

0 a
o () o

w/2w w

written in the form

This form is due to the symmetry of the matrix C(7) = ( > in time inversion.

—Ww —w/2w

Information regarding the norm ||eB()7|| is provided by the pseudospectrum of the B(0) matrix.
First of all, for a matrix B(0) with zero diagonal elements, we find that the boundaries of the
pseudospectra (which are found from the solution of the equation ||(z —B(0))7!|| = ¢7!) are given

by (we set z = x + iy)

Y12 = \/—ab+ €2 — 22+ /e2(a — b)2 + 4aba?, y > 0
Y34 = —\/—ab+ 2 — 22 £ \/e2(a — b)? + 4aba?, y <0

(D.3)

An example of these boundaries is illustrated in Fig. D.2 for three values of e. We used the same
set of parameters that we also used in Fig. D.1(a). The elements a and b of the B(0) are found
numerically. Notice that these boundaries have the same form as the ones that are shown in
Fig. 4.5(a) in Chapter 4.

The pseudospectrum of the B(0) matrix provides bounds for the max [|eB®7]|. A lower bound

for this quantity is given by the continuous Kreiss constant. More precisely, the following relation
holds
max ||eBO7|| > max [a.(B) /€] (D.4)

where «, is the pseudospectral abscissa - the maximum of the real part of the pseudospectra of

38



Appendix D

2 2 2
| @ o ® 1@
[ e — — e=0.8
Im(z)| © 0-1 © Im(z) €=038 Im(z)
0 0 0
-1 ®) -1 -1
-2 -2 -2
2 -1 0 1 2 2 -1 0 1 2 2 -1 0 1 2
Re(z) Re(z) Re(z)

Figure D.2: Shown are the curves y; 234 for the set of parameters (6, q) that we also used in
Fig. D.1(a) and for (a) e = 0.01, (b) € = 0.038 and (c) € = 0.08.

the B(0) matrix. The quantity that is given at the right hand side of Eq. (C.4) is called the
continuous Kreiss constant. Using the curves y; 234 that are given in Eq. (C.3), we can calculate

the pseudospectral abscissa. The result is

_ €la—10
“© 2/|abl |a + | (D.5)
e = /€2 — |ab] + €la+b]  otherwise

In Fig. D.3 we present the quantity «a.(B)/e as a function of €. Notice that the quantity /e is
constant up to a value of € (that is equal to € = 2|ab|/|a + b|) and after that it drops. Therefore,

this quantity shows a plateau for small values of € as it was the case in Fig. 4.6(b) in Chapter 4.

1.46

Qe
1.44 +

1.42+
14+t

1.38

1.36

Figure D.3:  Once more, we used the set of parameters (6, ¢q) that we also used in Fig. D.1(a).
Shown here is the quantity «.(B)/e as a function of . The max [a.(B)/¢] is the continuous Kreiss

constant and is a bound for the max |[eB©7]|.
T
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ITepiAndm

H ahAAnAem{Bpaon Temv xUUETWY Ye UECU TTOU BLUUETOLY YWEIXES 1) /%o Ypovixéc SLaXUUAVOELS oornyel
OE EVOLPELOUTU (PoUVOUEVOLOY(a. e auTd To TAUCO, TN ToEoVCY SLUTESY UEAETWVTOL TEGCEQ!
HUPOTIXG ouvopeva: 800 Tou eugavilovion ot yweixd UeToforloueva uéoa xon 600 OE YPOVIiXd UETO-
BohhOuevo UECL. BUYHEXPWEVAL:

Y10 xe@dhono 1 Blepeuvolue TNV avIEXTIXOTNTA TWV CUVTOVIOU®Y TAREOUC OLEAEUCTC TOU UT-
octnpilovtal oe éva TePLodd GUCTNUN OXEBAUOTC UE HOVPETTING CUUUETEXE XEALY, OF ACUUUETOES
olatapayés. ¢ mpmto Brue, utoloylloude T SLOEYwon oTOUG XUATIXOUS dEIUOUE TWV TEOOTIT-
TOVTIOV XUUATWY TOU AVTIOTOLY 00V GTOUS GUVTOVIGUOUG TAHP0US OLEAEUCTS (og Ten TN T8N Yewplog
BLoToEay V). 2TN CUVEYELN, UEAETAUE Utor Btortaparyh) Tou amoteheiton and oxedaotéc Dirac xou dely-
VOUUE TS GUVTOVIGUOL TApoug BiéAcuomg eupavi{ovTon xou UTO T Topoucior Blatapoy g Tou €yEL
xatdAAnAo oyedlaotel. Téhog, amoxoAdTTOUUE Ular GUVOEST) UETOEY 500 QPoUVOUEVIX AVEESOTNTOY GUV-
TOVIOUGMY TATEOUS BLEAEUOTC TOU W1 DLOTOQUYUEVOU CUGTAUATOC OXEBUOTG, 1) oTolo ogelleTon oty
XUTOTTELXY) CUUUETELO TV XENOV.

Y10 xe@dhono 2 unoloyilouue To U X0 EVIOTIOUOU TWV TOTOAOYIXE EVIOTIOUEVOY XATUCTICEWDY
Tou urooTtnpilovion oe o duept| aAucida udlac-ehatnplouv 1 omola €yel TUYUIES BIXUUAVOELS OTIC
otadepéc Twv ehatnplwy Tne. Amoucio dlatopay @y, 1 diuepr) ahuoida Tou Yewplue dladéTel yelpa-
Ay GUUPETELO o U1 TETPUIUEVOL TOTOAOYIXY Yapax TR Td. T o TNV mapouacio oy Lenc YERUAXNS
OLULTUPAY S TO UAXOC EVTOTIOUOU TV TOTOAOYIXA EVIOTIOUEVODY XATACTICEWY UTOXALVEL, UTOVOOVY-
ToG OTL Utar TOTOAOY Y| oAAyY| pdong AauBdver yopa xan 1) omtola TEoXaAe(Ton ATOXAELGTIXG At TN
OLaToRoLy ).

To povtého Tou yENOWOTOVUE 0TO Xe@dhouo 3 eivon TaAL piar Suephc aAuoida udlac-ehatneion.
Yl auTd TO AEPIANO WGTOCO, YENOWOTOLOUUE AUTO To GUCTNUA OE EVal BLUPORETIXG TALGLO, xaddg
0 OTOYOC oG €0 €lvol Vo UETUPEPOUUE Lol TOTONOYIXY EVIOTUOUEVY] XUTACTACT, Umd TN Lol GXEN
e aAvoidoag oty dAAN. Tat vor emTOYOUPE ULor TETOW PETAPORE ETUTEEROUUE 0TI oTadepée TwV
ehotnplwv va petafdAlovia ue To Ypovo, xahoTwvTag €10t TNV ahucida ypovixd uetoBaihouevn (1
ahuoida TOU YENOWOTOUUE GTO XEPIAco 2 elvar oromxv']). Mo evdLapepet emlong Vo ETTUYOUUE TN
HETOPOREL YE1Y 0P X0 YLl TO OXOTIO UTO YENOWOTOOUUE Wit BEATIOTN u€V0d0 eAEYyoU. HeMEpVOVTIG
T0 adPBaTind 6plo, oYEOEICOUUE EVal TEWTOXOANO Yl TG Ypovixd UeTofurlopeves otadepés Twv
ehatnplwy mou €yel w¢ amoTéAEoua UL YRYoen xou avOEXTIX UETOPOEE XoL OXOUY) TEQIGOOTEQOD

odnyel oTNV eVioYUCT TNG UETAPEROUEVNS TOTOAOYIXHC XATAOTACTC.



[or vor xatavoioouUE TO QOUVOUEVO TNG EVIOYUOTC GE Lol YEOVIXS UETABUAAOUEVT] TAUTQORUA, GTO
xe@dhono 4 e&etdloupe TN B1dd0oT EVOS XOPATOC OE EVal UEGO UE YEOVIXE TERLOOWO BelxTn Sidhaong
xou e Suvouxy| Tou Siémetan and TNy e&lowon Mathieu. H e€iowon Mathieu dwodétel 1600 evotadeic
660 xou actadelc AVoEC xan BIEGEUVOUNE TNV ToEodXT| EVioyLoT TwV evoTaddY TN Aboewy. Avaln-
TOUUE TN HEYLOTY BUVITY| TaEodLXY| EVioyUoT BEATIOTOTOWWVTAS OTIC apytxéc cLVINXES xadde xaL oToV
apywbd yeoévo. Eetdlouue eniong apxetéc TooOTNTES TOU €-eUBOPACUATOS TOU UOVOBEOUOU TiVaXaL
— ToL Tivoxa Tou SLadidEL TIC dpyXéS cuVIXeS o Uin TeploBo — xan ToEEYOUUE oELIUNTLIXG BEBOUEVA
oL OelyVouv OTL 1) EYLoT BuvaTy evicyuon xodoplleTton uOVO amd TOV HOVODEOUO THvadL.
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Résumé

L’interaction des ondes avec des milieux possédant des fluctuations spatiales et/ou temporelles
conduit a une phénoménologie intéressante. Dans ce cadre, dans la présente these quatre phénomenes
ondulatoires sont étudiés: deux se produisant dans des milieux variant dans I’espace et deux dans
des milieux variant dans le temps. Spécifiquement:

Dans le chapitre 1, nous étudions la robustesse aux perturbations asymétriques des résonances
de transmission parfaite (PTRs) supportés dans un systéme de diffusion périodique fini construit a
partir d'une cellule a symétrie miroir. En premiere étape, nous calculons la correction aux nombres
d’onde des ondes incidentes qui correspondent a ces PTR (dans la théorie des perturbations du
premier ordre). Par la suite, nous considérons une perturbation constituée de diffuseurs de Dirac et
montrons comment des PTR pourraient encore apparaitre dans le cas perturbé avec une conception
appropriée de la perturbation. Enfin, nous révélons une connexion entre deux PTR apparemment
indépendants de la configuration non perturbée, qui réside dans la symétrie miroir des cellules.

Dans le chapitre 2, nous calculons la longueur de localisation des modes de bord topologiques
qui sont supportés dans une chaine mécanique masse-ressort possédant des fluctuations aléatoires
de ses parametres de rigidité. En ’absence de désordre, la chaine dimere que nous considérons
présente une symétrie chirale et des caractéristiques topologiques non triviales. En présence d’un
fort désordre chiral, la longueur de localisation diverge, ce qui implique une transition de phase
topologique induite uniquement par le désordre. Le modele que nous utilisons au chapitre 3 est
encore une fois une chaine masse-ressort dimere. Cependant, dans ce chapitre, nous utilisons cette
configuration sous un angle différent, puisque notre objectif ici est de transférer un état de bord a
travers la chaine. Pour réaliser un tel transfert, nous laissons les couplages des ressorts varier avec
le temps, rendant ainsi la chaine dépendante du temps (la chaine que nous utilisons au chapitre
2 est statique). Nous cherchons également a effectuer le transfert rapidement, et a cette fin, nous
utilisons une méthode de controle optimal. Au-dela de la limite adiabatique, nous concevons un
protocole pour les couplages variables dans le temps qui aboutit a un transfert rapide et robuste
et conduit encore plus a une amplification du mode de bord transféré.

Pour comprendre le phénomene d’amplification dans une plateforme variable dans le temps,
nous considérons au chapitre 4 la propagation d’une onde dans un milieu a indice de réfraction
périodique et dont la dynamique des ondes est régie par I’équation de Mathieu. L’équation de

Mathieu contient & la fois des solutions stables et instables et nous explorons les caractéristiques



d’amplification transitoire de ses solutions stables. Nous recherchons I'amplification transitoire
maximale possible en optimisant les conditions initiales ainsi que le démarrage initial du processus.
Nous utilisons également plusieurs quantités du e-pseudospectre de la matrice de monodromie —
la matrice qui propage les conditions initiales sur une période — et nous fournissons la preuve
numérique que les caractéristiques globales d’amplification sont fournies simplement par la matrice
de monodromie.

Enfin, dans le chapitre 5, nous résumons nos découvertes et discutons de nos perspectives
futures. Cette these est accompagnée de quatre annexes. Chacune de ces annexes correspond
a chacun des quatre chapitres. En particulier : dans ’annexe A, nous fournissons les preuves
analytiques de certaines relations données au chapitre 1. Dans I’annexe B, nous donnons quelques
détails concernant la méthode de matrice de transfert que nous utilisons au chapitre 2. Dans
I’Annexe C, nous prouvons — en utilisant la méthode WKB — que si les couplages de la chaine
dimere que nous considérons au chapitre 3 varient lentement dans le temps, alors le processus de
transfert s’effectue avec succeés. Enfin, dans I’Annexe D, nous fournissons des expressions sous

forme fermée qui nous aident a mieux comprendre certains résultats présentés au chapitre 4.
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conduit a une phénoménologie intéressante. Dans ce
cadre, dans la présente thése quatre phénoménes
ondulatoires sont étudiés: deux se produisant dans
des milieux variant dans I'espace et deux dans des
milieux variant dans le temps. Nous commengons par
explorer la diffusion des ondes par une configuration
spatialement périodique finie sujette a des
perturbations. Nous nous concentrons sur les
résonances de transmission parfaite (PTR) et nous
développons une méthode pour les préserver sous
des perturbations asymétriques. L'analyse effectuée
réveéle une connexion par paire entre les PTR d'une
configuration de diffusion spatialement périodique
avec des cellules a symétrie miroir. Dans le méme
contexte de milieux variant spatialement, nous
calculons la longueur de localisation des modes de
bord topologiques qui sont supportés dans une chaine
meécanique masse-ressort possédant des fluctuations
aléatoires de ses parameétres de rigidité. En présence
d'un fort désordre chiral, la longueur de localisation
diverge, ce qui impligue une transition de phase
topologique induite uniquement par le désordre.

Dans une prochaine étape, nous considérons le cas
ou les couplages de la chaine masse-ressort
mécanique varient avec le temps de maniére
déterministe. Ce systéme variable dans le temps
peut alors servir de plate-forme pour transférer un
mode de bord topologique. Au-dela de la limite
adiabatique, nous concevons un protocole pour les
couplages variables dans le temps qui aboutit a un
transfert rapide et robuste et conduit encore plus a
une amplification du mode de bord transféré. Pour
éclairer le phénoméne d'amplification dans une
plateforme variable dans le temps, nous explorons la
propagation d'une onde dans un milieu a indice de
réfraction périodique et dont la dynamique des ondes
est régie par I'équation de Mathieu. L'onde présente
une amplification transitoire en raison de la nature
non normale de la matrice de propagation et nous
fournissons la preuve numérique que les
caractéristiques  d'amplification  globales  sont
fournies simplement par la matrice de monodromie.
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Abstract : The interaction of waves with media
possessing spatial or/and temporal fluctuations leads
to interesting phenomenology. Within this
framework, in the present thesis four wave
phenomena are studied: two occurring in spatially-
varying media and two in time-varying media. We
begin by exploring wave scattering by a finite
spatially-periodic  setup that is subject to
perturbation. Our focus is on perfect transmission
resonances (PTRs) and we develop a method for
preserving them under asymmetric perturbations.
The performed analysis reveals a pairwise
connection between PTRs of a spatially-periodic
scattering setup with mirror symmetric cells. In the
same context of spatially varying media, we compute
the localization length of the topological edge modes
that are supported in a mechanical mass-spring
chain possessing random fluctuations of its stiffness
parameters. In the presence of strong chiral disorder
the localization length diverges, implying a
topological phase transition that is induced purely by
disorder.

As a next step we consider the case where the
couplings of the mechanical mass-spring chain vary
with time in a deterministic way. Then this time-
varying system can serve as a platform for
transferring a topological edge mode. Going beyond
the adiabatic limit, we design a protocol for the time-
varying couplings that results in a fast and robust
transfer and even more leads to amplification of the
transferred edge mode. To shed light into the
phenomenon of amplification in a time-varying
platform, we explore the propagation of a wave in a
medium with time-periodic refractive index and with
wave dynamics governed by the Mathieu equation.
The wave exhibits transient amplification due to the
non normal nature of the propagator matrix and we
provide numerical evidence that the global amplifying
features are provided merely by the monodromy
matrix.
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