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“When artists create pictures and thinkers
search for laws and formulate thoughts, it
is in order to salvage something from the
great dance of death, to make something
last longer than we do.”

H. Hesse, Narcissus and Goldmund
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Abstract

Ageing and deterioration of reinforced concrete structures are ongoing prob-
lems of a main concern. The state of building materials is changing over
the service life of structures, thereby affecting the structural reliability and
durability.

Numerical models are a powerful tool for the assessment of safety and ser-
viceability of existing structures. However, regardless of the level of model
complexity, they are merely an approximation of the real systems. Hence,
any model prediction is characterised by a certain degree of uncertainty. To
improve the predictive capabilities, numerical models need to be enriched
with the description of uncertainties, which can further be reduced by gath-
ering the available information about the observed structure.

In this work, a probabilistic framework for parameter estimation in non-
linear mechanical models and a study on identifiability are proposed. The
parameter estimation is based on Bayesian inference, which combines both
the prior knowledge and information from experimental data to reduce the
uncertainty in the probabilistic description of uncertain model parameters.
Moreover, the goal is to find optimal experiments from the point of view of
parameter identifiability, ease of implementation and the associated costs.

Bayesian inference, in its filtering form, is applied for parameter estimation of
uncertain mechanical properties in both plain and reinforced concrete, with
the focus on fracture and bond parameters governing the crack propagation
and bond-slip. For that purpose, observational data (i.e. stress-deformation
curve, displacement field) from uniaxial tensile tests on reinforced concrete
beams and double shear experiments on mortar specimen are used. Issues
of parameter identifiability, shortcomings and challenges which arise due to
peculiarities of the experimental setup are addressed and alternative experi-
mental designs which increase the sensitivity with respect to parameters of
interest and subsequently, reduce the discrepancy between the computed and
observed quantities of interest, are proposed.

Reduction of the epistemic uncertainty via Bayesian inference leads to more
accurate estimates of the system parameters and state and thereby allows
more reliable predictions of the system’s future state. This matter is very
important from the point of view of structural durability and integrity.
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Zusammenfassung

Die Alterung und der Verfall von Stahlbetonkonstruktionen sind ein
ständiges Problem, das Anlass zu großer Sorge gibt. Der Zustand der Bau-
materialien ändert sich im Laufe der Lebensdauer der Bauwerke, was sich
auf die Zuverlässigkeit und Dauerhaftigkeit der Bauwerke auswirkt.

Numerische Modelle sind ein leistungsfähiges Instrument für die Bewertung
der Sicherheit und Gebrauchstauglichkeit bestehender Bauwerke. Unab-
hängig vom Grad der Modellkomplexität stellen sie jedoch lediglich eine
Annäherung an die realen Systeme dar. Daher ist jede Modellvorhersage
mit einem gewissen Grad an Unsicherheit behaftet. Um die Vorhersage-
fähigkeiten zu verbessern, müssen numerische Modelle mit der Beschreibung
von Unsicherheiten angereichert werden, die durch das Sammeln der verfüg-
baren Informationen über die beobachtete Struktur weiter reduziert werden
können.

In dieser Arbeit werden ein probabilistischer Rahmen für die Parameter-
schätzung in nichtlinearen mechanischen Modellen und eine Studie zur Identi-
fizierbarkeit vorgeschlagen. Die Parameterschätzung basiert auf Bayes’scher
Inferenz, die sowohl das Vorwissen als auch Informationen aus experimentel-
len Daten kombiniert, um die Unsicherheit in der probabilistischen
Beschreibung unsicherer Modellparameter zu reduzieren. Darüber hinaus
ist es das Ziel, optimale Experimente unter den Gesichtspunkten der Para-
meteridentifizierbarkeit, der einfachen Implementierung und der damit ver-
bundenen Kosten zu finden.

Die Bayes’sche Inferenz wird in ihrer Filterform für die Parameterschätzung
unsicherer mechanischer Eigenschaften sowohl in einfachem als auch in be-
wehrtem Beton angewandt, wobei der Schwerpunkt auf Bruch- und Ver-
bundparametern liegt, die die Rissausbreitung und den Verbundschlupf
bestimmen. Zu diesem Zweck werden Beobachtungsdaten (d.h. Spannungs-
Verformungs-Kurve, Verschiebungsfeld) aus einachsigen Zugversuchen an
Stahlbetonbalken und Doppelscherexperimenten an Mörtelproben verwen-
det. Fragen der Identifizierbarkeit von Parametern, Unzulänglichkeiten und
Herausforderungen, die sich aus den Besonderheiten des Versuchsaufbaus
ergeben, werden angesprochen, und es werden alternative Versuchspläne
vorgeschlagen, die die Empfindlichkeit in Bezug auf die interessierenden Para-
meter erhöhen und folglich die Diskrepanz zwischen den berechneten und den
beobachteten interessierenden Größen verringern.
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Die Verringerung der epistemischen Unsicherheit durch Bayes’sche Inferenz
führt zu genaueren Schätzungen der Systemparameter und des Systemzus-
tands und ermöglicht somit zuverlässigere Vorhersagen über den zukünftigen
Zustand des Systems. Dieser Aspekt ist unter dem Gesichtspunkt der struk-
turellen Dauerhaftigkeit und Integrität sehr wichtig.
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Résumé étendu

Le vieillissement et la détérioration des structures en béton armé sont des
problèmes permanents qui constituent une préoccupation majeure. L’état
des matériaux de construction évolue au cours de la durée de vie des struc-
tures, ce qui affecte la fiabilité et la durabilité des structures.

Les modèles numériques sont un outil puissant pour l’évaluation de la sécur-
ité et de l’aptitude au service des structures existantes. Cependant, quel que
soit le niveau de complexité du modèle, ils ne sont qu’une approximation des
systèmes réels. Par conséquent, toute prédiction de modèle est caractérisée
par un certain degré d’incertitude. Pour améliorer les capacités de prédiction,
les modèles numériques doivent être enrichis par la description des incerti-
tudes, qui peuvent être réduites en rassemblant les informations disponibles
sur la structure observée.

Dans ce travail, un cadre probabiliste pour l’estimation des paramètres dans
les modèles mécaniques non linéaires et une étude sur l’identifiabilité sont
proposés. L’estimation des paramètres est basée sur l’inférence bayésienne,
qui combine à la fois les connaissances préalables et les informations proven-
ant des données expérimentales pour réduire l’incertitude dans la description
probabiliste des paramètres incertains du modèle. En outre, l’objectif est de
trouver des expériences optimales du point de vue de l’identifiabilité des
paramètres, de la facilité de mise en uvre et des coûts associés.

L’inférence bayésienne, sous sa forme filtrante, est appliquée à l’estimation
des paramètres des propriétés mécaniques incertaines du béton et du béton
armé, en mettant l’accent sur les paramètres de rupture et de liaison régissant
la propagation des fissures et le glissement de liaison. À cette fin, des don-
nées d’observation (c’est-à-dire la courbe contrainte-déformation, le champ
de déplacement) provenant d’essais de traction uniaxiale sur des poutres en
béton armé et d’expériences de double cisaillement sur des spécimens de mor-
tier sont utilisées. Les questions d’identifiabilité des paramètres, les lacunes
et les défis qui surviennent en raison des particularités de la configuration
expérimentale sont abordés et des conceptions expérimentales alternatives
qui augmentent la sensibilité par rapport aux paramètres d’intérêt et, par
la suite, réduisent l’écart entre les quantités d’intérêt calculées et observées,
sont proposées.

La réduction de l’incertitude épistémique via l’inférence bayésienne conduit
à des estimations plus précises des paramètres et de l’état du système et
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permet ainsi des prédictions plus fiables de l’état futur du système. Cette
question est très importante du point de vue de la durabilité et de l’intégrité
des structures.
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Chapter 1

Introduction

Numerical models are extensively used for predicting and assessing the be-
haviour of real systems. In the context of structural durability, they are
powerful tools for the assessment of safety and serviceability of existing struc-
tures. Advances in computer technology facilitate the use of more complex
numerical models. However, regardless of the level of complexity, numerical
models are merely an approximation of complex multi-dimensional reality.
This stems from the fact that our understanding and knowledge about the
real-world phenomena is scarce and imprecise and computing resources are
rather limited. In regard to civil engineering structures, there is a signific-
ant amount of uncertainty associated with the design process, modelling and
construction. Namely, in real-world problems neither the strength of a struc-
ture, loads nor internal effects during the structure life-time can be predicted
accurately. Due to changes in usage, the actual loads may differ from the
predicted ones in magnitude and distribution. Moreover, 2D models which
are commonly used due to their simplicity are not an exact description of
real 3D structures and hence the predicted state may deviate from the ac-
tual one. The choice of material laws within the predictive models plays
an important role in results of numerical simulations. In the construction
process, reinforced concrete structures may have initial defects which are not
accounted for in the analysis and the strength of the material may differ
from the design strength or its magnitude may vary within structure itself.
In engineering practice, this is usually compensated implicitly by introducing
the safety factors.

Reinforced concrete structures are designed to withstand the external ac-
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Chapter 1. Introduction

tions throughout an expected service life of 50-100 years. This forecast holds
true under assumption of an ideal state of building materials and structural
members throughout the whole lifespan. In practice, however, state of the
material (e.g. its mechanical properties) changes over the period of use due
to ageing induced defects, which may impair the structural safety by causing
a decrease in resistance of structures to external impacts. As the mater-
ial is deteriorating due to ageing, once small discontinuities propagate and
become more prominent, leading to significant reduction of structural dur-
ability. Due to its low tensile strength, development of cracks in concrete is
inevitable. The first cracks may appear even prior to load application as a
result of restrained shrinkage. Formation of cracks further evolves at loads
substantially below the service limit, with an increase in loading followed by
the increase in number of cracks and their widths. Cracking in concrete is
affected by many different factors, among others by its highly heterogeneous
mesostructure, causing the crack patterns to significantly vary within a popu-
lation of structural members which share the same geometric and mechanical
characteristics.

Considering the aforementioned sources of uncertainty present in different
aspects of the structural life, from design and numerical analysis to construc-
tion and ageing, the choice of model input parameters and their values, as
well as modelling and measurement error cannot be specified with absolute
certainty. Correspondingly, numerical models may produce imperfect estim-
ates of the desired responses (e.g. deflections, crack widths) in the presence
of uncertainties. In order to improve their predictive capabilities, numer-
ical models need to be enriched with a proper description of uncertainties,
defining the so-called stochastic models.

The aim of stochastic models is to capture and quantify the uncertainty in
the model inputs and the respective outputs. In this regard, uncertain model
parameters are modelled as random variables (RV) or random fields (RF), the
probabilistic description of which reflects the lack of knowledge about their
true values. The uncertainty in the model inputs, and possibly boundary and
initial conditions, is further propagated through the computational model
defining the so-called stochastic forward problem, the aim of which is to
produce estimates of the measurements given model inputs. The stochastic
inverse problem, on the other hand, is tackled by comparing the measurement
forecast from the forward problem with the actual data. Inverse problems are
usually ill-posed as many different combinations of parameters may lead to
the same output, the input parameters may be sensitive to the observation or
an actual observation may be out of range of the observation operator, which
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Chapter 1. Introduction

leads to the observation operator being not invertible. Taking a Bayesian
viewpoint alleviates these issues and transforms an ill-posed inverse problem
into a well-posed one with a stochastic solution, where prior information acts
as a regularising term. The resulting posterior probability distributions may
be obtained either by the sampling-based Monte Carlo (MC) methods or
the highly efficient alternative combining filtering techniques and functional
approximations.

The choice of measurements used for Bayesian inference of uncertain model
parameters is conditioned by the parameters one seeks to identify. An op-
timal experiment provides the highest information gain from the data and
leads to accurate posterior estimates. The ability to correctly estimate the
model parameters from the observed data, known as the parameter identifiab-
ility, thus becomes an important aspect of parameter estimation. To achieve
the best possible estimates of the target parameters and subsequently min-
imise the discrepancy between the predicted and the observed quantities of
interest (QoI), sometimes requires integration of datasets from experiments of
a different type. For instance, dissipation and local quantities, such as crack
opening, may yield more information about the properties related to fracture.
On contrary, the global observations, such as the force-displacement curve,
may be more suitable for inference of elastic properties. Improved parameter
identifibility, ultimately resulting in more accurate estimates of the system
parameters and state, allows more reliable predictions of the system’s future
state, which is very important from the point of view of structural durability
and estimation of service life of structures.

1.1 State of the art

Parameter identification is a commonly used procedure, the intent of which
is to reduce the uncertainty in unknown model inputs, such that the discrep-
ancies between the predictions of the model output and actual structural
observations are minimised. The used methodology usually relies on two ma-
jor approaches: deterministic procedures which are based on mathematical
optimisation and probabilistic procedures relying on Bayes’ theorem.

In deterministic approach, a set of unknown model inputs is typically sought
by minimising a cost function defined as a spatial and temporal sum of the
difference between the model forecast and the actual observations. This ap-
proach often relies on a gradient-based or evolutionary algorithms. A number
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Chapter 1. Introduction

of works featuring the aforementioned approach in the context of structural
durability can be found in literature. Gajewski and Garbowski [48] calib-
rated the material parameters of concrete using a minimisation gradient-
based algorithm and observations from digital image correlation. Král et
al. [95, 94] have used the global optimisation procedure known as evolution-
ary algorithm and experimental data from a tensile test to find the optimal
parameters of a Continuous Surface Cap Model, a nonlinear material model
of concrete. Schnur and Zabaras [158] have estimated the elastic material
properties as well as position and size of the circular inclusions in a large-
deformation problem using a method which incorporates constrained optim-
isation and finite element analysis with automatic mesh generation. Sarhosis
and Sheng [152] have employed an optimisation procedure to calibrate the
masonry material parameters by minimising the discrepancy between the
responses measured from the large scale tests and their computationally ob-
tained counterparts. Similar work has been done by Morbiducci [119], using a
Levenberg-Marquardt based minimisation method to estimate parameters of
interface and continuum model for brick masonry using monotonic and cyclic
experimental data. Karimpour and Rahmatalla [89] performed a structural
model updating based on minimisation techniques to determine the system
parameters and boundary conditions for the structural health monitoring
applications. Kučerová et al. [98] have applied a combination of the radial
basis function network and an evolutionary algorithm GRADE to address
the identification of material parameters in a damage model using data from
a virtual uniaxial tensile test and a three-point bending test. Deterministic
approaches to parameter calibration are advantageous due to their straight-
forward implementation and low computational cost. However, they lack
the ability to account for the probabilistic aspects of the unknown model
parameters.

In contrast to deterministic approaches, which search for a single optimal
value of target parameters, stochastic parameter estimation describes a whole
ensemble of plausible values given experimental data. Hence, values of the
target parameters are given in terms of probability distributions, from which
one can deduce the relevant quantities, such as mean and confidence inter-
vals for the chosen quantities of interest. See e.g. [153] for an overview of
application of stochastic parameter estimation techniques to the practical
problems in mechanical systems.

Bayesian approach to parameter identification of the mechanical models
stems from the work of Isenberg [77], who proposed a procedure for iden-
tification of elastic parameters governing the behaviour of a linear elastic
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Chapter 1. Introduction

model. Subsequently, the proposed Bayesian identification framework has
been applied for estimation of elastic parameters in various linear problems.
Daghia et al. [31] have used the Bayesian and maximum variance estimat-
ors to identify the elastic constants of thick laminated composite plates in
a dynamic setting. Arnst et al. [9] have modelled the Young’s modulus of
an elastic and isotropic material as a random field using the spectral ap-
proximation and identified its posterior polynomial chaos coefficients by the
Markov chain Monte Carlo method. In a similar manner, Koutsourelakis [91]
identified the spatially varying elastic constants using the same estimation
method. Gogu et al. [55] have identified the elastic constants in a simple
three-bar truss example and shown the superior performance of the Bayesian
inference in comparison to the deterministic least-squares approach. Recurs-
ive identification of elastic constants of an anisotropic material by means of
the Kálmán filter was explored in the work of Furukawa and Pan [47].

In the last decade, the Bayesian approach has been extended to more com-
plex models accounting for the inelastic behaviour of civil engineering ma-
terials and composites, such as viscoelasticity, viscoplasticity, elastoplasticity
and damage models. Rappel et al. [140] employed the Markov chain Monte
Carlo method to estimate the parameters of a viscoelastic model using vir-
tual uniaxial tensile relaxation, constant strain-rate and creep tests. Adeli
et al. [3] identified parameters of a viscoplastic-damage model using differ-
ent Bayesian inference methods. Inference of elastoplastic material para-
meters of one-dimensional single spring is tackled in the works of Rappel et
al. [141, 142] using data from a virtual uniaxial tensile test and employing the
sampling-based Markov chain Monte Carlo method. Rosić et al. [145] have
applied the linear Bayesian update enhanced by functional approximations
for estimation of material parameters of an elastoplastic model. Damage
models have been addressed in the work of Waeytens and Rosić [182], where
Kálmán filter is employed for the identification of a moving load on a rein-
forced concrete beam and the detection of damage in concrete and steel bar
of the beam using observations stemming from strain sensors. In addition,
the authors compare the chosen probabilistic method against deterministic
Tikhonov based regularisation.

Bayesian approach has also been successfully applied to tackle the material
heterogeneities. Kučerová et al. [97] have applied the stochastic Galerkin
method to update the uncertainty in a coupled heat and moisture trans-
port model in heterogeneous materials. In [73], Ibrahimbegovic et al. have
identified spatially variable uncertain material parameters in an elastoplastic
multi-scale model in a Bayesian manner. The work provides a probabilistic
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interpretation of the size effect for dominant failure mechanism. More re-
cent developments in the same field include the works of Ibrahimbegovic
et al. [71] and Sarfaraz et al. [151], where Bayesian inference has been em-
ployed to provide the posterior probability distributions of the macro-scale
uncertain parameters of a nonlinear multi-scale model for concrete. These
contributions give two different interpretations of dealing with aleatoric un-
certainties.

All of the above listed references have in common the use of virtual obser-
vations, rather than real experimental data generated in a laboratory or
resulting from monitoring of existing structures.

Significantly smaller number of contributions relevant for the field of struc-
tural durability employs real experimental data to assess the current state
of material or its parameters. Wu et al. [190] have estimated mechanical
parameters of cement mortar by using Bayesian approach via incorporation
of the experimental data from a three-point bending test. In [64], Hinze et al.
have employed the experimental data from long-term creep tests on salt con-
crete to infer the parameters of a viscoelastic model. Kožar et al. [93] have
estimated the bond parameters in fibre-reinforced concrete using a stochastic
inverse model relying on the non-linear least squares approach with the help
of the experimental fibre pull-out curves. In the more recent contribution,
Kožar et al. [92] have taken a data-driven approach to recover the values of un-
known model parameters of fibre-reinforced concrete beams from three-point
bending tests. Similarly, Kučerová and Lepš [96] have applied an inverse
procedure based on cascade Artificial Neural Networks to infer the paramet-
ers of concrete described by the M4 model [13] given a representative set of
experimental data. A similar approach based on Artificial Neural Networks
is employed by Mareš et al. [107] to calibrate the parameters of the affin-
ity hydration model for concrete given simulated and experimental data. A
practical application of Bayesian inference exploiting the structural health
monitoring data is found in the works of Sevieri et al. [159, 160], where the
in-situ measurements on an existing concrete dam are utilised to identify the
elastic properties of concrete. Janouchová and Kučerová [79] have identified
material parameters of a viscoplastic model of copper alloy using real exper-
imental data from a series of cyclic loading test at high temperature. In [78],
Janouchová et al. have applied the sampling-based Bayesian inference to
estimate parameters of a lattice discrete particle model for concrete using
experimental data from an unconfined compression cube test and notched
three-point bending test. Another relevant contribution for understanding
of the behaviour of concrete is given by Balaji Rao [11], in which the author
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uses the alpha-stable distribution, characterised by heavy tails, to model
large fluctuations in surface strain at the level of steel. The parameters of
the proposed distribution are estimated from the four-point bending tests
using an optimisation procedure based on minimising the sum of squares.

Parameter estimation, especially in its probabilistic form, has gained a lot
of popularity in the last decades, with new research contributions emerging
daily. However, the field still lacks the application to more complex mechan-
ical models accounting for inelastic behaviour, such as damage or plasticity
and bond-slip. Moreover, the field lacks the comprehensive use of actual ex-
perimental data with proper addressing of challenges which may arise due to
peculiarities of the experimental setup (e.g. unknown boundary conditions).
Finally, there is a lack of systematic approach, which would fuse all the
stages, from the optimal experimental design and modelling to employing
the gathered data for parameter estimation, and provide a comprehensive
interpretation of the concept of parameter identifiability.

1.2 Scope and research relevance

Our knowledge about the characteristics and inner structure of building ma-
terials is rather incomplete. The state of materials is changing over the
service life of structures due to ageing induced defects and unfavourable ex-
ternal effects, thereby affecting the structural reliability and durability.

Nonlinear numerical models describing the complex behaviour of materials
are widely used for the study on structural durability, which is closely re-
lated to propagation of damage and cracking in structures. To improve the
predictive capabilities of numerical models and as a result, the prediction
of the service life of concrete structures, one has to properly address the
uncertainties arising in civil engineering systems.

Hence, the primary aims of this research work are:

• to investigate the presence of uncertainties in nonlinear numerical mod-
els describing the quasi-brittle fracture in concrete and bond-slip,

• to reduce the epistemic uncertainty pertaining to target model para-
meters via Bayesian inference,
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• to study the parameter identifiability given experimental data simulat-
ing the shear and tensile fracture in plain and reinforced concrete,

• to improve the parameter identifiability by proposing alternative ex-
periments, which show greater sensitivity with respect to target model
parameters, while bearing in mind the ease of implementation and lim-
itations of the testing facilities, and

• to give practical solutions to the problems, which may arise when the
experimental data stems from actual experiments.

In the focus of this research is the parameter identifiability, which is studied
in [59, 53, 52, 183, 104, 16, 178, 177]. However, so far there is a lack of
contributions which concern the nonlinear models of concrete.

1.3 Thesis outline

The thesis outline is summarised as follows:

Chapter 2 gives a general overview of the methods for modelling of uncertain-
ties and the approaches to solving the stochastic inverse problem of parameter
estimation. In focus is the Bayesian inference and its filtering formulation
based on the approximation of the conditional expectation.

Chapter 3 introduces different approaches to modelling of quasi-brittle frac-
ture in reinforced and plain concrete. In focus are the two types of numer-
ical models which are used for computing predictions of inelastic behaviour,
which are further used for uncertainty quantification and parameter estima-
tion. First to be introduced is a predictive meso-scale 2D damage model for
simulation of fracture in concrete based on embedded discontinuities, with
an appropriate description of bond-slip at the concrete-steel interface. That
is followed by a brief introduction to a 3D lattice model consisting of spatial
Timoshenko beams with embedded dicontinuities, able to model the fracture
mechanisms on a finer scale, taking into account heterogeneous mesostruc-
ture of concrete.

Chapter 4 presents the results of Bayesian inference of material parameters
of a damage model for reinforced concrete. Observations from different types
of experiments are combined and their influence on the posterior estimates
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is discussed. Chapter concludes with the main findings on the experiments
which improve the identifiability of the uncertain parameters of interest.

Chapter 5 focuses on the Bayesian inference of uncertain material parameters
and load. A novel approach for the sequential Bayesian inference which does
not require coupling of the computer program for stochastic analysis and the
finite element solver is described. The chapter tackles the issue of parameter
identifiability given real and virtual experimental data and suitability of the
proposed experiments for identification of the target parameters, as well as
issues stemming from the peculiarities of the experimental implementation,
such as uncertainty in the boundary and loading conditions.

Chapter 6 summarises the completed work and gives an outlook.
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Chapter 2

Stochastic parameter estim-
ation in a Bayesian setting

“We are far too willing to reject the belief
that much of what we see in life is
random.”

D. Kahneman, Thinking, Fast and Slow

Given a thorough description of a physical system, one can predict its beha-
viour for a chosen set of initial and boundary conditions. This defines the
so-called forward problem. The inverse problem [170], on the other hand, in-
volves the inference of parameters describing the underlying physical system
by exploiting the outcomes of a sequence of actual observations.

In deterministic setting, the forward problem has a unique solution, but
the same does not hold for its inverse counterpart. Namely, inverse prob-
lems are typically ill-posed [41] due to the fact that the observations do
not contain enough information to uniquely determine the dependence on
parameters. That can manifest itself in terms of the absence of a solution,
the existence of a non-unique solution or a solution which is very sensitive
with respect to the output or noise. In order to achieve the uniqueness of
the solution, additional information has to be provided. In an attempt to
avoid applying some regularisation procedure (e.g. Tikhonov regularisation,
see [173, 174]), a deterministic ill-posed problem in the sense of Hadamard
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may be placed in a probabilistic setting in order to eliminate the ill-posedness
by reformulating the inverse problem as a well-posed problem of Bayesian
inference [170, 86, 167] in a larger space of probability distributions. While
the classical regularisation produces solely single estimates of the desired
quantities, the probabilistic approach yields a collection of values or a distri-
bution.

Real-world problems are characterised by a high level of uncertainty, the
improper modelling of which results in discrepancies between the model pre-
dictions and empirical results deriving from the real processes. Identifying
and properly accounting for the sources of uncertainty can often be a challen-
ging task, considering that one does not always have a complete knowledge
about the relevant physical mechanisms and one cannot easily indicate the
most influential parameters. Moreover, the choice of the model parameters
characterising the underlying physical system is generally not unique. An-
other source of discrepancies in the results is the significant influence of both
modelling error (e.g. due to modelling assumptions and approximations) and
the inherent measurement noise.

In general, uncertainties in engineering systems are typically categorised
either as aleatoric or epistemic [35]. The former is referred to as an irredu-
cible, inherent randomness of a phenomenon, whereas the latter is perceived
as uncertainty due to lack of knowledge and can be reduced by gathering ad-
ditional information. As authors report in [35], in many applications there
is no strict distinction between these types of uncertainty, it mostly depends
on the context and peculiarities of the application. Moreover, the nature
of uncertainties is a reflection of the subjective interpretation of the analyst.
In this view, some material property can be considered both aleatoric and
epistemic, depending on whether a structure is already existing or yet to
be constructed [35]. In the former case, the uncertainty in the target ma-
terial properties can be reduced by gathering observations of the structural
behaviour.

In design and modelling of civil engineering systems, the main sources of
uncertainty [162, 169, 35] are summarised below:

• Model form uncertainty. The uncertainty attributed to the fact that
mathematical models are merely a reflection of reality, an approxima-
tion of the underlying physical problem. Often, the relations between
inputs and outputs are not straightforward and some variables are not
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considered due to simplifications or lack of information about the model
dependencies. Moreover, essentially nonlinear behaviour of the mater-
ials is usually approximated with different types of constitutive laws
(e.g. plasticity, damage) or in some cases with a linear form. The ex-
tent to which this impacts the predictions may be modelled through
the modelling error.

• Parametric uncertainty. This uncertainty pertains to the lack of know-
ledge about the actual values of the model parameters, such as material
properties, load or initial and boundary conditions. It is typically con-
sidered as epistemic uncertainty, as it can be significantly reduced with
considerable quantity and quality of observational data.

• Experimental uncertainty. This type of uncertainty is reflected in lim-
ited or incomplete experimental data and limitation in the accuracy of
the measuring devices. Often, carrying out measurements on actual
structures is not feasible, particularly in the case of massive structures
(e.g. bridges, dams). Instead, experimental validation is performed on
smaller-scale surrogate models or structural members which are easier
to set up in a testing facility. For a number of applications, where
experimental validation is ruled out, we rely solely on numerical mod-
els, the quality of which is also in a great manner affected by the lack
of experimental data. The limited accuracy of the measuring devices
is another aspect of the experimental uncertainty which is manifested
in terms of a measurement error, usually taken as mean-free Gaussian
noise.

In this contribution, both the epistemic uncertainty arising from the lack
of knowledge about the true values of mechanical properties of plain and
reinforced concrete and the aleatoric uncertainty, the effects of which are no-
ticeable through different outcomes of repeated measurements are explored.
The aim is to combine both our engineering knowledge and information from
data to produce more accurate estimates of the system’s state and para-
meters and thereby achieve more reliable predictions of the system’s future
states. The target parameters often cannot be observed directly, but only
through some system response quantities polluted with measurement noise.
The uncertain model parameters are probabilistically described through ran-
dom variables, q : Ω → Q, and their a posteriori distributions are inferred
from the observations generated by the observation operator YQ : Q → Y.
As already stated above, the observation operator YQ is usually not invert-
ible, which in deterministic setting leads to ill-posedness of the parameter
estimation problem.
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This chapter tackles the probabilistic approach to modelling uncertainties in
mechanical systems and the methodology concerning the parameter estima-
tion in a Bayesian setting. It starts by placing the chosen method for solving
the stochastic inverse problem of parameter estimation into a wider context
of available approaches. Afterwards, the basic notion of probability theory is
introduced and the stochastic model is set up in an abstract manner. This is
followed by Sections 2.3 and 2.4, which deal with the reduction of dimension-
ality and computational burden. Lastly, inverse problems are described from
the Bayesian viewpoint, focusing on the chosen approach for obtaining the
posterior estimates based on approximation of the conditional expectation
(CE).

2.1 An overview of numerical approaches for
solving stochastic inverse problems

The procedure of computing the posterior distribution may be approached
from two different perspectives, by computing either its estimates or its
samples. In most practical applications, knowledge about the full posterior
probability density function (PDF) is not required and one needs only some
specific estimates (e.g. the mean or expected value).

One of the most frequently used single-point estimation methods is the max-
imum likelihood estimator (MLE) [86, 90], where the unknown parameters
of interest are estimated with the help of observational data by maximising
the likelihood function, more precisely by maximising the conditional prob-
ability of observing the data. This method yields reliable estimates when
the sample size is fairly large and should be avoided otherwise. For the case
of uniform prior, the MLE is a special case of another commonly used es-
timator, the maximum a posteriori estimator (MAP) [86, 12]. Unlike the
MLE which belongs to the family of frequentist methods, MAP is essentially
a Bayesian method. Namely, the latter maximises the posterior density, thus
the likelihood is weighted by the prior. Another commonly used Bayesian
estimator is the minimum mean square estimator (MMSE) [90, 86], where
the loss function is of a quadratic type and the MMSE is thus given in terms
of the posterior mean.

One of the most widely used sampling-based approaches for computing the
posterior is the class of Markov chain Monte Carlo methods (MCMC) [62,
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172, 58], including the well known Metropolis-Hastings algorithm (MH) [115,
114, 62, 27] and the Gibbs sampler [51]. The method is based on constructing
a memory-less Markov chain, the equilibrium distribution of which is the
target posterior distribution sought through the random walk. As it is a pure
sampling procedure, it is characterised by a slow convergence and a burn-in
period. Moreover, it can be very demanding for the large-scale problems,
hence it is often used together with a proxy model instead of the high-fidelity
forward solver.

In various applications, the observational data is time-dependent, with ob-
servations at different time instances providing information about the state
of the system. For such nonstationary inverse problems, a suitable approach
for solving a stochastic inverse problem is via Bayesian filtering methods,
based on the approximation of the conditional expectation. Among these,
the most noted and commonly used is the Kálmán filter (KF) [87, 6, 28],
which approximates the CE with linear (affine) maps. In the classical sense,
the Kálmán filter assumes Gaussian random variables, a linear model oper-
ator and a linear measurement operator. It is formulated in terms of linear
transformations of the mean and covariance, which under the above condi-
tions preserve the Gaussianity of the posterior. It should be noted that this
statement holds only for linear problems [169], whereas in other cases it leads
to approximations and underestimation of the covariance. The Kálmán filter
can also be used for stationary Bayesian inverse problems, in which case it is
referred to as the Kálmán smoother. An extension to the nonlinear problems
is called the extended Kálmán filter (EKF) [81], which restates the linearity
of the model and measurement operators by means of a first order truncation
of a Taylor series expansion.

A sampling interpretation of the linear Kálmán filtering procedure is the
ensemble Kálmán filter (EnKF) [43, 44, 75], where all the quantities are
expressed in terms of Monte Carlo ensembles. In real-world applications,
though, the models are sometimes not given in a closed form, they may not
be differentiable or the linearisation of the model and measurement operator
is not feasible. In such a case, it is convenient to use the particle filters
(PF) [57, 103, 38, 54, 25], which successfully cope with the nonlinearities
of the system and sequentially estimate the posteriror densities in terms of
ensembles of Monte Carlo samples.

A generalisation of the classical Kálmán filter to nonlinear problems and
non-Gaussian random variables is the so-called Gauss-Markov-Kálmán filter
(GMKF) [111, 145, 108], which can further be accelerated by describing all
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random variables in terms of functional approximations [144, 109, 110, 136,
137, 42]. Alternatively, the CE can be approximated by the square-root
PCE-based GMKF (SRPCU) [138, 135]. The square-root approach shows
great efficiency in terms of memory and implementation requirements, as it
does not extend the polynomial basis upon gathering additional observations
in a sequential update setting.

Recently, data-driven approaches are increasingly gaining popularity in the
field of parameter estimation. Machine learning tools, such as Artificial
Neural Networks (ANN) [56], can be employed to estimate the parameters of
the underlying physical model by learning the mapping from data to paramet-
ers. That is done by training the neural network on a large number of model
realisations resulting from different sets of parameter values. The trained
neural network can then be applied to the actual observations to yield the
parameter estimates, alongside with the information regarding the statist-
ical accuracy [185]. Moreover, the parameter estimation using ANN can be
formulated from a viewpoint of a recursive Bayesian inference problem [19],
where Bayes rule is applied for each online learning step to approximate
the posterior of weights of the neural network (e.g. see [132, 188, 133, 128]).
Nevertheless, these methods require a large training dataset, which may be
prohibitive for large-scale problems. Alternatively, the parameter identifica-
tion problem may be formulated in terms of physics-informed neural networks
(PINN) [7], which includes both prior knowledge in terms of physical laws be-
hind the observations and noisy observational data. The respective method
is applicable to high dimensional problems.

2.2 Abstract model problem

The true value of the model parameters, collected in a random vector q, is
assumed to be unknown. The lack of knowledge about the model inputs is
modelled by random variables qf : Ω → Q, in which the index f denotes the
forecast. Random vector q lives in the probability space (Ω,F,P), where Ω
stands for the sample space of all possible outcomes, the set of events F is a
σ-algebra of subsets of Ω and P : F → [0, 1] is a probability measure. Both
the parameter space Q and the measurement space Y are considered to be
finite dimensional vector spaces equipped with an inner product ⟨q1, q2⟩Q
and induced norm ||q||Q =

√
q · q.
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A mathematical model of the studied physical system can symbolically be
written as

A (u, q) = f(q), (2.1)

where u is the state of the system assumed to belong to a vector space U ,
q ∈ Q are the uncertain model parameters and f(q) ∈ U∗ is the source
term (e.g. loading, initial conditions) placed in the dual space U∗, which
is the space of all linear forms over U . The term A represents a nonlinear
forward model describing the relationship between the model parameters and
the external influence, such that A : U → U∗. It is assumed that Eq. (2.1)
describes a well-posed problem such that there exists a unique solution u ∈ U ,
which is a function of the model parameters q and the external influence f(q)
and satisfies

u = S(q, f(q)), (2.2)

where S is a solution operator which relates u to q in an explicit manner.

It is assumed that neither the state nor the model parameters are directly
observable and one can only observe a function of them. Therefore, an
observation operator YQ relating the uncertain model parameters q to a set
of predicted observations y ∈ Y is defined, i.e. YQ : Q → Y , where Y
is a finite dimensional vector space Rm collecting the information from m
measurements. In reality, one cannot observe directly y, as it is characterised
by some measurement noise ε. The prediction of the observations yf ∈ Y is
defined as a sample of the observation operator and the noisy observations
zf are then expressed as

zf (ω, η) = yf (ω) + ε(η)

= YQ(q(ω), S(q(ω), f(q(ω)))) + ε(η),
(2.3)

in which ε(η) ∼ N (0, Cε) is a realisation of the measurement noise distrib-
uted according to zero-mean Gaussian distribution with covariance Cε. The
elements in ε are considered to be independent of the uncertainty in the
model parameters q.

2.3 Polynomial surrogate model

Numerical models describing complex behaviour of physical systems, such as
the ones introduced in Sections 3.2 and 3.3 modelling cracking and bond-slip
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in reinforced and plain concrete, respectively, often come with high compu-
tational burden. Hence, for the purpose of calculating the forward statistics,
performing the sensitivity analysis and solving the stochastic inverse problem,
the high-fidelity numerical models are replaced by computationally efficient
lower-fidelity surrogate or proxy models.

Surrogate models are an engineering method utilised in order to facilitate
evaluation of the complex systems. They mimic the behaviour of the under-
lying high-fidelity simulation model, retaining its accuracy and the essential
physics, while decreasing the computational burden. The internal character-
istics of the model, as well as the inner working of the simulation code does
not have to be precised, solely the relation between the input and output is
relevant.

A commonly used surrogate model is the polynomial surrogate model. It
is based on the notion that any random variable q(ω) ∈ L2(Ω) may be
represented as a linear combination of multivariate polynomials Ψα(θ(ω)) in
terms of uncorrelated and independent variables θ(ω)

∀α ∈ JM : q(θ(ω)) ≈
∑
α∈JM

q(α)Ψα(θ(ω)), (2.4)

where q(α) are the polynomial coefficients and α denotes a multi-index from
a finite multi-index set JM . The required number M of the polynomials
after which the expression in Eq. (2.4) is truncated may be computed from

M + 1 =
(Np +Nθ)!

Np!Nθ!
. (2.5)

The term Np in Eq. (2.5) denotes the maximal degree of polynomials and
Nθ is the number of random variables.

The functional approximation in Eq. (2.4) is known as the Wiener polynomial
chaos expansion (PCE) [186, 191]. It is based on the orthogonality relation

E[ΨiΨj ] =
∫
Ω

Ψi(θ)Ψj(θ)π(θ) dθ ∝ δij , (2.6)

stating that the polynomials are orthogonal with respect to the joint prob-
ability density function of the approximated random variables. Polynomi-
als satisfying the orthogonality relation are different for different probability
densities. For instance, for random variables which follow the Gaussian distri-
bution, the surrogate model is built by using the Hermite polynomials. The
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term δij in (2.6) denotes the Kronecker delta function with the following
properties

δij =

{
0; i ̸= j

1; i = j.
(2.7)

Polynomial coefficients q(α) may be determined by stochastic collocation,
projection, regression, stochastic Galerkin etc. In this work, coefficients are
evaluated by regression, i.e. by minimising the sum of squares of errors.

2.4 Sensitivity analysis

In practical applications, number of the model parameters may be quite large.
Nevertheless, not all of them are equally significant for the analysis. More
precisely, some random model parameters may not significantly contribute to
the variability of the output and hence can be fixed to nominal values. In this
regard, the dimensionality of the stochastic problem is considerably reduced
and the high-fidelity finite element (FE) solver is replaced by a proxy model,
which uses a lower-dimensional set of input variables [162]. This concept is
formalised in terms of global sensitivity analysis (SA) [163], which quantifies
to which extent the output depends upon variations of particular uncertain
model parameters and their combinations.

Sensitivity analysis is closely related to the analysis of variance (AN-
OVA) [65], which illustrates a variance-based decomposition of a func-
tion. Recalling the previously introduced notation, let qf (θ) be the Nθ-
dimensional vector of uncertain inputs expressed in terms of independ-
ent RVs θ and yf (qf (θ)) ∈ Y the model output given by yf (qf (θ)) =
YQ(qf,1(θ1), ..., qf,Nθ

(θNθ
)). For the sake of simplicity, variables qf (θ),

yf (qf (θ)), YQ and Nθ are abbreviated to q(θ), y(θ), Y and N , respectively.
Supposing that Y (θ) is a general square-integrable function defined on the
unit hypercube [0, 1]N , its elementary functional decomposition according
to [65] is defined as

Y (θ) = Y0 +

N∑
i=1

Ni(θi) +

N∑
i<j

Yi,j(θi, θj) + ...+ Y1,2,...,N (θ). (2.8)
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According to [163], the term Y0 in Eq. (2.8) is constant and the individual
terms can be calculated uniquely under the following condition∫ 1

0

Yi1,...,is(θi1 , ..., θis)dθik = 0, 1 ≤ k ≤ s, i1, ..., is ⊆ 1, ..., N, (2.9)

stating that all the terms in the functional decomposition in Eq. (2.9) are or-
thogonal and hence they can be expressed as conditional expected values [65].
Due to orthogonality, the output variance can be decomposed as

V ar(y) =

N∑
i=1

Di(y) +

N∑
i<j

Di,j(y) + ...+D1,2,...,N (y), (2.10)

where V ar(y) is the total variance and the partial variances are given by

Di(y) = V ar[E(y|θi)],
Di,j(y) = V ar[E(y|θi, θj)]−Di(y)−Dj(y).

(2.11)

Finally, one can define the Sobol indices [163], which quantify the contribu-
tion Di(y) of a particular input parameter θi in the output variance V ar(y)
as

Si =
Di(y)

V ar(y)
,

Si,j =
Di,j(y)

V ar(y)
,

(2.12)

where the terms Si denote the first-order Sobol sensitivity indices and Si,j
refer to the second-order Sobol sensitivity indices representing the influence
of interaction terms. Higher order Sobol indices are usually not examined
in practical problems. Large values of Sobol indices imply the parameters
which strongly influence the response variance.

The total impact of a particular parameter on the response can be quantified
using the total sensitivity indices [66]

STi = Si
∑
i<j

Si,j +
∑

j ̸=i,k ̸=i,j<k

Si,j,k + ... =
∑
l∈♯i

Sl, (2.13)

where ♯i are the subsets of 1, ..., N , including i.
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2.4.1 Calculation of Sobol indices from PCE coefficients

Recalling the polynomial chaos expansion, one can derive the expressions
for the Sobol indices directly from the PCE coefficients. The orthogonality
property of the polynomial chaos basis functions stated in Eq. (2.6) leads to
expressions for the expected value and partial variances defined as

µ0 = E(y) = y(0), (2.14)

Di = V ar(y) =
∑
α∈NN

α ̸=0

(y(α))2. (2.15)

Finally, the computation of the first-order Sobol indices from the PCE reads

Si =

∑
α∈Ai

(y(α))2∑
α ̸=0(y

(α))2
, (2.16)

where Ai = {α ∈ A|αi > 0, αj ̸=i = 0}.

Similarly, the total sensitivity indices can be obtained from

STi =

∑
α∈ATi

(y(α))2∑
α ̸=0(y

(α))2
, (2.17)

where ATi
= {α ∈ A|αi > 0}. Higher-order indices can be obtained in a

similar manner.

2.5 Bayesian approach to parameter estimation

Bayesian inference [170, 167, 42] is a probabilistic description of inverse prob-
lems based on Bayes’ theorem [99]. The lack of knowledge about the true
values of the model parameters is modelled by random variables collected in
a random vector q and described through prior probability density functions
π0(q). In a Bayesian setting, the latter represents the additional information
needed to solve the inverse problem in a unique sense. Knowledge about
the model parameters may be updated by conditioning on the observations,
hence changing the probabilistic description of unknown model parameters
to the posterior probability density functions by means of Bayes’ rule [99].
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Under the assumption that uncertain parameters q and observations ẑ have
a joint probability density function π(q, ẑ), Bayes’ rule may be used in its
density form as

π(q|ẑ) = π(ẑ|q)π0(q)
P (ẑ)

∝ L(q)π0(q), (2.18)

where π(q|ẑ) and π0(q) denote the posterior and prior probability density
functions, respectively, where ẑ are the noisy (actual) measurements defined
as ẑ := YQ(qtrue) + ε̂. The term L(q) = π(ẑ|q) refers to the likelihood
function which incorporates the information from the data into the updating
of the probability description of the uncertain parameters. The term in the
denominator, P (ẑ), specifies the normalising constant, also called evidence,
such that the joint posterior probability density function integrates to unity,
P (ẑ) =

∫
Ω
π(ẑ|q)π0(q)dq. Bayes’ rule in Eq. (2.18) may be extended in order

to accommodate the nonstationary problems. In that case, the posterior
density is sequentially updated for a set of m independent observations as

π(q|ẑ1, ..., ẑm) ∝ L(q|ẑm)π0(q|ẑ1, ..., ẑm−1). (2.19)

As the posterior probability density functions usually cannot be com-
puted analytically in practice, one has to employ some computational al-
gorithm. Sampling-based approaches such as the Markov-chain Monte Carlo
method [62, 172] are typically characterised by a slow convergence. Moreover,
practical applications often do not require knowledge about the full posterior
density, but only its estimates, among the most significant ones is the expec-
ted value. Hence, instead of computing the conditional posterior density
π(q|ẑ) one can evaluate the conditional expectation [109], which is quanti-
fied as

E(q|B) :=

∫
Q
qπ(q|ẑ)dq, (2.20)

where B := σ(YQ) is the Borel sub-σ-algebra, B ⊂ F, generated by the
measurement operator YQ. The expression in Eq. (2.20) holds under the as-
sumption that random variables contained in the random vector q have finite
variance, which implies that they belong to the Hilbert space S := L2(Ω,F,P).
In that case, conditional expectation may be viewed as an orthogonal pro-
jection PB : S → SB of q onto the closed subspace SB := L2 (Ω,B,P) of all
random variables consistent with the observations. Hence, the conditional
expectation minimises the difference between the random vector q and its
projection, which leads to a minimisation problem of finding an optimal q̃
for which the mean square error is minimised as

q̃MSE (ẑ) = E (q|ẑ) = argmin
q̃

E
(
(q − q̃)T (q − q̃) |ẑ

)
. (2.21)
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From Eq. (2.21) follows that the vector of uncertain parameters q can be
orthogonally decomposed into the projected qp := PBq and the orthogonal
qo = (I − PB)q component. Any new observation alters the projected part,
while the orthogonal part acts as the residual of the prior qf . Thus, the
decomposition reads

qa = E (qf |ẑ) + (qf − E (qf |zf )) , (2.22)

in which the first term represents the information coming from data and the
latter one the information coming from prior. The index a in qa indicates
the assimilated or a posteriori random variable. According to the Doob-
Dynkin lemma, anything that is learnt from a measurement is a function of
the measurement. Hence, the CE can be viewed as E(qf |zf ) := φ(zf ) and
Eq. (2.22) after rearranging the terms further modifies to

qa = qf + φ (ẑ)− φ (zf ) , (2.23)

which is a generalised Kálmán filter equation. The term φ in Eq. (2.23)
stands for a measurable map describing the mapping from an observation to
the parameter set, i.e. φ : Y → Q, and can be approximated either by linear
of higher order maps. From Eq. (2.23) and by assuming only linear (affine)
maps, one can build the Gauss-Markov-Kálmán filter [111, 144], described
in the following Section 2.5.1.

Although the Kálmán filter is mainly intended for strictly linear problems de-
scribed in terms of Gaussian random variables, it can be extended to nonlin-
ear operators, such as the one employed in the work herein, and non-Gaussian
random variables. In that case, the estimation of conditional expectation is
not exact, but merely an approximation containing an additional approxim-
ation error.

2.5.1 Gauss-Markov-Kálmán filter update via func-
tional approximations

Posterior of the target parameters is computed from Eq. (2.23) by introducing
the approximation of the conditional expectation in terms of linear maps as

E(qf |zf ) ≈ φ(zf ) :=Kzf + b, (2.24)

41



Chapter 2. Stochastic parameter estimation in a Bayesian setting

with coefficients K and b obtained from the minimisation of the orthogonal
component qo in the mean square error (MSE) sense as

argmin
K,b

E((||qf − E(qf |zf )||22) =

argmin
K,b

E((||qf −Kzf − b)||22).
(2.25)

This results in a linear Gauss-Markov-Kálmán filter equation taking the form
of

qa(ω, η) = qf (ω) +K(ẑ − zf (ω, η)), (2.26)

where (ẑ − zf (ω, η)) is the innovation and K is the Kálmán gain defined as

K = Cqf ,yf
(Cyf

+Cε)
†. (2.27)

In case of singularity, † in Eq. (2.27) denotes the pseudo-inverse and
Cqf ,yf

:= E (q̃f ⊗ ỹf ), Cyf
:= E (ỹf ⊗ ỹf ), Cε := E (ε⊗ ε) are the corres-

ponding covariances, in which q̃f and ỹf refer to the fluctuating part of ran-
dom variables q and yf obtained by subtracting the mean, i.e. q̃f := qf − q̄f .
For a more thorough derivation of the GMKF see, e.g. [111, 109, 108, 144].

Performance of the GMKF can be further accelerated by representing the
inputs in terms of functional approximations based on the polynomial chaos
expansion introduced in Section 2.3. By taking into account Eq. (2.4), the
uncertain model parameters may be expanded as

∀α ∈ JM : qf (θ (ω)) ≈
∑
α∈JM

q(α)Ψα (θ (ω)) , (2.28)

where q(α) are the polynomial coefficients and α denotes a multi-index from
a finite multi-index set JM .

The remaining terms in the filtering Eq. (2.26) can be written in the same
manner as in Eq. (2.28). Hence, the approximation of the observable yf
reads

∀α ∈ JM : yf (θ (ω)) ≈
∑
α∈JM

y(α)Ψα (θ (ω)) , (2.29)

while the functional approximation of the measurement error is defined as

∀β ∈ JE : ε (ξ (η)) ≈
∑
β∈JE

e(β)Ψβ (ξ (η)) . (2.30)
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The difference in the PCE basis in Eq. (2.28) and Eq. (2.30) implies the
independence of the measurement error ε from the uncertainty in the model
parameters q.

Measurements ẑ may also be expressed in terms of PCE, but being determ-
inistic quantities their PCE contains only the first term corresponding to the
zero-th polynomial Ψ0 (ξ (η)) = 1, such that

∀β ∈ JE : ẑ ≈
∑
β=0

z(0)Ψβ (ξ (η)) . (2.31)

By taking into account Eqs. (2.28)-(2.30), the GMKF formula given in
Eq. (2.26) can be expressed in terms of PCE representation as

∀γ ∈ JG :
∑
γ∈JG

q(γ)a Ψγ (θ, ξ) =
∑
γ∈JG

q
(γ)
f Ψγ (θ, ξ)+

+K

∑
γ=0

z(0)Ψγ (θ, ξ)−

∑
γ∈JG

y(γ)Ψγ (θ, ξ) +
∑
γ∈JG

e(γ)Ψγ (θ, ξ)

 ,

(2.32)
in which the PCE approximations are written in the extended basis Ψγ (θ, ξ),
containing all the basis functions used for the expansion of q, zf , ẑ and ε.

Exploiting the linearity property, the expansion in Eq. (2.32) may be rewrit-
ten in such manner that the assimilation is carried out directly for the PCE
coefficients as

∀γ ∈ JG : q(γ)a = q
(γ)
f +K

(
ẑ −

(
y(γ) + e(γ)

))
, (2.33)

The greatest advantage of the PCE based GMKF lies in the fact that
Eq. (2.23) becomes purely algebraic and the computation of the posterior
quantities straightforward.

2.5.2 The generalised ensemble Kálmán filter

Although the PCE formulation of the KF greatly reduces the computational
burden, the drawback of such representation is that in the case of high dimen-
sionality of the stochastic problem, it requires a large number of evaluations
of the high-fidelity model to be able to accurately compute the polynomial
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coefficients. In the problem considered herein, heterogeneous nature of con-
crete at finer scales results in a large number of input variables and consid-
ering the complexity of the numerical model, constructing a PCE approxim-
ation becomes prohibitive. As an alternative, a sampling-based generalised
ensemble Kálmán filter (EnGKF) is employed to compute the posterior es-
timates.

The ensemble Kálmán filter is a sampling interpretation of the classical
Kálmán filter, where all random variables are expressed in terms of Monte
Carlo ensembles. Filtering equation given in Eq. (2.23) can be rewritten in
matrix notation to accommodate the ensembles of random variables as

Qa = Qf +K
(
Ẑ − (Yf +E)

)
, (2.34)

in which Qf := [qf (ω1), ..., qf (ωN )], Yf := [yf (ω1), ...,yf (ωN )] and E :=
[ε(η1), ..., ε(ηN )] denote the ensembles of prior model input parameters, pre-
dicted observations and measurement error, respectively, composed of N
independent random samples. The Kálmán gain is denoted by K, while the
covariances are approximated by the Monte Carlo samples as

Cqf ,yf
≈ 1

N − 1

N∑
i=1

(qf (ωi)− q̄f ) (yf (ωi)− ȳf )T , (2.35)

Cyf
≈ 1

N − 1

N∑
i=1

(yf (ωi)− ȳf ) (yf (ωi)− ȳf )T , (2.36)

Cε ≈ 1

N − 1

N∑
i=1

(ε(ηi)− ε̄) (ε(ηi)− ε̄)T , (2.37)

where the bar over a variable denotes its sample mean, i.e. q̄f =
1
N

∑N
i=1 qf (ωi), ȳf = 1

N

∑N
i=1 yf (ωi), ε̄ =

1
N

∑N
i=1 ε(ηi).

2.5.3 Nonlinear formulation

Bayesian inference formulated as a linearised version of conditional expect-
ation may be inaccurate if the observation operator is highly nonlinear. It
can, however, be extended to a nonlinear formulation, where the conditional
expectation is approximated with higher order terms.
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If one assumes a quadratic map of the conditional expectation as

E(qf |zf ) ≈ φ(zf ) :=
2Hz2f +

1Hzf +
0H, (2.38)

in which 2H, 1H and 0H denote the coefficients derived from a minimisation
problem analogous to the one in Eq. (2.21).

The linear filtering Eq. (2.26) is now extended for the additional terms as

qa(ω, η) = qf (ω) +
2H(ẑ2 − z2f (ω, η)) + 1H(ẑ − zf (ω, η))

= qf (ω) + P : R−1(ẑ2 − z2f (ω, η)) + (K − P : R−1F )(ẑ − zf (ω, η)),
(2.39)

where K is the Kálmán gain from Eq. (2.27) and matrices F , P and R are
defined as

F = Cy2
f ,yf

(Cyf
+Cε)

†, (2.40)

P = Cqf ,y2
f
−Cqf ,yf

(Cyf
+Cε)

†Cyf ,y2
f
, (2.41)

R = Cy2
f
−Cy2

f ,yf
(Cyf

+Cε)
†Cyf ,y2

f
. (2.42)

A full derivation and comparison with the linear Bayesian update is given
in [102].

2.5.4 Sequential approach

Filtering approaches are well suited for sequential estimation of parameters
in time-dependent problems. Namely, immediately upon the first set of ob-
servations ẑ(k) at a discrete update step tk is available, an estimate of the
model parameters q(k)a is produced. The process is repeated for each update
step, altering the knowledge about the uncertain model parameters with each
new observation. The filtering Eq. (2.26) rewritten in a sequential form reads

∀k : q(k)a (ω, η) = q
(k)
f (ω) +K

(
ẑ(k) −

(
y(k)(ω) + e(k)(η)

))
, (2.43)

with the prediction of noisy observations taking the form of

∀k : z
(k)
f (ω, η) = YQ,∆t

(
q
(k)
f (ω) ,u

(k)
f (ω) ,∆t

)
+ ε(k) (η) . (2.44)

where the posterior from the previous step q(k−1)
a (ω, η) now becomes prior

q
(k)
f (ω, η) for the current step. Whenever a new set of observations is
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gathered and the probabilistic description of random parameters is updated,
the current state u(k)

f (ω) = u
(k−1)
a (ω) needs to be altered as well. In its

updated form, u(k)
a (ω), the state is further used for computing the predic-

tion of the observations y(k+1)
f (ω), resulting from the propagation of prior

uncertainty from the update step tk to tk+1.

The computational procedure of a sequential PCE-based GMKF is summar-
ised in Algorithm 1 for Nt update steps and N samples of random parameters.

Algorithm 1: Sequential PCE-based sampling-free GMKF
loop over discrete update steps
for t = tk−1, . . . , tk; k ∈ {1, . . . , Nt} do

• define prior densities of the uncertain model parameters
π (qf (tk)) = π (qa (tk−1))

loop over samples of prior distribution
for n = 1, . . . , N do

• run the FE solver wrt. samples of π (qf (tk))
yf (tk) = YQ,∆t (qf (tk) ,uf (tk) ,∆t) ; ∆t = tk − tk−1

end

• make PCE (in extended basis) of:

(a) predicted uncertain parameters
qf (tk,θ, ξ) ≈

∑
γ∈JG

q(γ)Ψγ (tk,θ, ξ),
(b) predicted observations

yf (tk,θ, ξ) ≈
∑
γ∈JG

y(γ)Ψγ (tk,θ, ξ),
(c) measurement error

ε (tk,θ, ξ) ≈
∑
γ∈JG

e(γ)Ψγ (tk,θ, ξ),
(d) actual observations

ẑ (tk,θ, ξ) ≈
∑
γ=0 z

(0)Ψγ (tk,θ, ξ)

• update PCE coeff. of the uncertain parameters by PCE-GMKF
q
(k,γ)
a = q

(k,γ)
f +K

(
ẑ −

(
y
(k,γ)
f + ε(k,γ)

))
• update the state: run the FE solver wrt. samples of π (qa (tk))

end
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Modelling of quasi-brittle
fracture in concrete

“A model is a good model if first it
interprets a wide range of observations in
terms of a simple and elegant model, and
second if the model makes definite
predictions that can be tested, and possibly
falsified, by observation.”

S. Hawking

Concrete is the most extensively used building material due to its many re-
markable properties, among which its ability to be cast into almost any shape,
its water and high-temperature resistance, while being economically efficient
and having low maintenance requirements. Though, its biggest drawback
is its low tensile strength which is only a small fraction (approximately 10
times) of its compressive strength.

The addition of steel bars into plain concrete significantly improves concrete’s
ability to withstand shear and tensile loads, making it a common choice for
design of massive structures for which durability plays an important role.
Although the appearance and propagation of damage in concrete is just a
matter of time, structures built of reinforced concrete typically do not fail,
as steel takes over carrying tensile forces upon cracking of concrete. While
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concrete softens, a properly designed reinforcement alleviates the brittleness
of plain concrete, leading to a more ductile response and more favourable
crack patterns.

When the tensile force in concrete is considerably below the ultimate load,
the composite behaves elastically, characterised by concrete and steel sharing
the same deformation. At moderate levels of load below the serviceability
limit, heterogeneities at the interface between aggregate and cement paste be-
come locations of the microscopic crack nucleation induced by tensile stresses.
A further increase in load causes the coalescence of the microscopic cracks,
forming a fracture process zone (FPZ) in the weakest region of a structural
member, indicating the start of material hardening. When the load is fur-
ther increased and stresses in concrete reach its tensile strength, the material
is subjected to a more prominent degradation characterised by the strain-
softening behaviour. Microscopic damage in the FPZ further evolves and
takes the form of a macroscopic crack, while the surrounding material un-
loads. Macroscopic crack propagates through the FPZ, eventually leading
to localised failure in concrete. At this stage, concrete ceases to contribute
to the carrying capacity of the member at the locations of macro-cracks, as
the stress transfer between the cracked parts of the cross section is no longer
possible and the entire amount of tensile force is carried by steel. At consid-
erably higher levels of load, tensile stresses in steel reach the yielding point,
causing the structural members to exhibit sizeable permanent (plastic) de-
formation under constant load. The latter scenario is not explored within
this work.

Another important aspect of the material behaviour in the presence of dam-
age is the quality of the bond between concrete and steel. Namely, once
concrete is cracked, bond plays a crucial role in stress redistribution by per-
mitting the transfer of stresses between concrete and steel even beyond crack-
ing in concrete taking place. Due to bond between concrete and steel, the
intact section of concrete between adjacent cracks carries a portion of tensile
force normal to the cracked plane and contributes to the overall stiffness of
the specimen, which is known as tension-stiffening property. Besides, effi-
cient bond provides a good resistance to slip of the steel bars with respect
to surrounding concrete, which also affects the crack patterns. It eventually
leads to a larger number of fine, narrow cracks, as opposed to bond with
a weaker grip leading to a small number of rather wide cracks. In general
practice, the quality of the bond is ensured by giving preference to ribbed
reinforcement bars over the smooth ones.
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3.1 An overview of numerical methods for frac-
ture simulation

The first attempts on modelling of propagation of fracture in materials stem
from the work of Griffith [60], one of the pioneers of the theory of linear elastic
fracture mechanics, which considers the initial defects as an inherent material
property. The propagation of these defects and formation of macroscopic
cracks is further governed by the energy release rate exceeding the critical
value.

Since then, two main trends in computational modelling of quasi-brittle frac-
ture in concrete have emerged: discrete crack concept and smeared crack
representations [32], extensively used within the finite element framework.
Noteworthy attempts on modelling fracture in concrete date back to 1960s
with the works of Ngo and Scordelis [121] and Rashid [143], introducing the
aforementioned fracture modelling concepts.

The latter work outlines the concept of the smeared crack approach, where a
cracked solid is assumed to be a continuum, with cracks being smeared over
a distinct region and represented in terms of narrow bands of high strains.
However, the assumption of the displacement continuity stands in the high
contrast with the notion of a crack as a geometrical discontinuity. The crack
bands in the smeared approach, though, might better support the idea of a
fracture process zone characterised by the appearance of many microscopic
discontinuities distributed within a region ahead of the tip of a macroscopic
crack. Moreover, this approach is superior for modelling of diffuse cracking,
e.g. in large-scale shear panels, where the scale of the specimen is significantly
larger than the scale of the crack spacing [146]. Mesh objectivity is in this
case ensured by regularisation of the constitutive models with respect to mesh
size and crack band width, thereby preserving the fracture energy. Details on
the implementation and applications can be found in [181, 180, 176, 15, 147,
33, 14] for a fixed orientation of cracks throughout the whole computation
and in [29, 187, 61], where the traditional concept is extended in order to
allow rotations of cracks alongside the principal strain axes.

The counterpart of the smeared crack approach is the discrete crack concept,
elaborated in [121, 127, 179, 76]. The respective approach is based on prin-
ciples of fracture mechanics, modelling a crack as a geometric entity by in-
troducing the displacement discontinuity. In contrast to the smeared crack
approach where material degradation is expressed by means of stress-strain
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relations within a crack band, here constitutive response is defined in terms
of a cohesive traction-separation law. In finite element setting, cracks are
usually resolved either by separating the edges of the finite elements or by in-
troducing the interface finite elements at the locations of discontinuities. The
biggest drawback of the method is the fact that the location of crack opening
and crack propagation path need to be predefined. Hence, unlike the smeared
crack approach which retains the initial topology of the finite element mesh,
the discrete approach often requires the use of adaptive remeshing techniques,
which makes its finite element implementation rather onerous. Although the
discrete crack approach is a preferred choice for modelling localised failure,
its complex implementation limits its widespread use in practice.

In recent decades, new methods for modelling quasi-brittle fracture have
emerged in order to alleviate the implementation shortcomings, while pro-
moting the favourable features of the aforementioned modelling concepts.
Of particular interest is the strong embedded discontinuity approach [161,
129, 84, 120, 131], based on enhancement of the classical theoretical for-
mulation of the finite elements by including the discontinuous displacement
modes. Propagation of macroscopic cracks is thereby modelled by displace-
ment jumps across the discontinuity surface. The strain field in this case
consists of a regular and a singular part. Depending on the character of
enrichment of the kinematics of standard finite elements, a distinction is
made between the embedded (strong) discontinuity finite element method
(ED-FEM) [82, 101, 72, 189] and the extended finite element method (X-
FEM) [17, 118, 117, 83, 18, 168] based on the notion of partition of unity
(PUFEM) [113, 10].

In ED-FEM, the enrichment of the displacement field is local, with additional
degrees of freedom along the discontinuity surface being condensed at the
element level. In X-FEM, on the other hand, the nature of the enrichment
is global, with additional degrees of freedom attached to the nodes of finite
elements located at the discontinuity surface. In that regard, the former
method acts as a localisation limiter and by stabilising the localised fracture
process zone it leads to a mesh-independent release of fracture energy [69].
It is able to capture the displacement jump across an arbitrary crack path,
which is in better accordance with the random nature of the cracking process.
Namely, crack paths can significantly vary within the same population of
specimens, subjected to the same loading and boundary conditions, due to
strong dependence of the crack propagation on the material mesostructure
and initial defects. The embedded discontinuity approach is employed in
various structural and solid applications involving modelling of mechanisms
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of inelastic material behaviour, see, e.g. [40, 4, 23, 39, 130, 8, 150, 123, 164,
165].

Unlike ED-FEM, the extended finite element method suffers from the cumber-
some implementation, as the additional degrees of freedom appear globally,
altering the dimensions of the stiffness matrix and residual throughout the
simulation. Nevertheless, the X-FEM method is preferred in cases where the
treated phenomena is indeed global, e.g. in the case of modelling of bond-slip
in reinforced concrete, where the additional degrees of freedom capturing the
slip at the concrete-steel interface need to stay connected [37, 70, 149].

More recent developments in modelling of fracture come in terms of a spe-
cial class of discrete models, the so-called lattice models [67, 63, 157, 156,
154, 155, 134, 126], which are able to capture the material mesostructure
and complex crack paths, including the crack branching and coalescence of
multiple cracks. The material mesostructure is mapped onto a lattice con-
sisting of an assembly of discrete one-dimensional elements, the properties of
which reflect the distinct phases of composite materials, e.g. cement matrix
and aggregate. Lattice models can be implemented together with classical
remeshing techniques [76] in order to simulate fracture or, following a more
refined approach, in the spirit of ED-FEM by embedding the discontinuities
in each beam member, see, e.g. [125, 124].

Another relatively recent addition to the class of models for fracture propaga-
tion are the energy minimisation based phase-field models stemming from the
Francfort and Marigo’s variational formulation [46]. These models, belong-
ing to the class of gradient damage models [34], are recently gaining a lot of
attention due to their ability to predict complex crack patterns by solving the
partial differential equations. The state of the material is described by means
of a continuous field variable, ranging from the intact to a fully damaged ma-
terial state, which provides a smooth transition between the fracture phases
and avoids explicit modelling of cracks as geometrical discontinuities [116, 5].

This work follows the approach introduced by Brancherie and Ibrahimbe-
govic [23], in which fracture in concrete is modelled by a combined cracking
model able to account for two distinct types of dissipation: a volume dissipa-
tion governed by the diffuse damage mechanisms at formation of the FPZ and
a surface dissipation corresponding to localised failure due to propagation of
a macroscopic crack. Cracks are modelled with the enhanced kinematics by
incorporating the embedded discontinuities, implemented in the spirit of in-
compatible modes [74], whereas the consequent relative slip between concrete
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and steel is modelled in terms of X-FEM, where all slips are connected along
a single reinforcement bar.

In the next stage, lattice model consisting of discrete beam elements en-
hanced by embedded discontinuities is employed to reproduce the geometry
obtained from the computed tomography scan and fracture pattern resulting
from a double shear test. Both of the chosen approaches are briefly intro-
duced in the following sections.

3.2 Predictive damage model for simulation of
fracture in reinforced concrete

Concrete is a heterogeneous, multi-scale material, the properties of which
are conditioned by the scale of the problem. On the scale of structural mem-
bers, here denoted as coarse-scale, it is considered to be homogeneous and
hence can be modelled as a continuum, following the principles of continuum
mechanics. Thus, on the coarse-scale composite consists of concrete, steel
reinforcement and the bond between them.

Cracking, as an essential part of tensile behaviour of concrete, ranges from
diffuse microscopic discontinuities nucleating in the fracture process zone
to their coalescence in the form of macroscopic cracks and localised failure.
Localised failure in quasi-brittle materials is typically accompanied by the
strain-softening phenomenon, characterised by a further increase of deform-
ations, while the surrounding material outside of the fracture process zone
experiences unloading. This behaviour is usually described by suitable mod-
els based on principles of nonlinear fracture mechanics, damage mechanics
or plasticity. A special care needs to be put into modelling of the post-peak
behaviour characterised by the total fracture energy, which can be visualised
as the area under the softening curve. In the context of this work, behaviour
of concrete is described by an elasto-damage model able to account for both
formation of microscopic damage in the bulk material and localised cracking.
Model derives from the work of Brancherie et al. (see [23, 22] and refer-
ences thereof). Total failure of a specimen and a complete pull-out of the
reinforcement bar is beyond the scope of this work, thus steel is modelled
with a simple linear elasticity. Bond-slip at the concrete-steel interface is
considered as an inelastic deformation and modelled with an elasto-plastic
law. Constitutive laws for all three ingredients of the composite are shown
in Fig. 3.1.
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Figure 3.1: Constitutive laws: a) concrete elasto-damage model with
hardening and softening; b) linear elastic model for steel; c) elasto-plastic

bond-slip model

In the following sections, both damage models describing different mechan-
isms of energy dissipation due to cracking are briefly introduced. Propagation
of macroscopic cracks in concrete leads to degradation of the bond, the res-
ult of which is the frictional slip of the reinforcement bar with respect to
surrounding concrete. The redistribution of stresses taking place upon crack-
ing in concrete ultimately determines the final crack spacing and opening.
Hence, an overview of the damage model for concrete is followed by a formu-
lation of the bond model capable of capturing the bond-slip at the concrete-
steel interface. Numerical model is originally developed by Rukavina et
al. [148, 149] (see also references of the earlier contributions to the topic,
e.g. [70, 21, 37, 36, 139]) and modified in the context of this thesis to cope
with the problem-specific peculiarities.

3.2.1 Continuum damage model for simulation of dif-
fuse fracture in concrete bulk

Concrete and steel have the same thermal expansion coefficient, which is mak-
ing them mutually constrained by sharing the same value of strain at their
undamaged state. Moreover, at relatively low stress levels, bond between
them is still intact, allowing the transfer of forces between concrete and steel
and thereby their mutual efforts in carrying the external loads. In this phase,
composite can be modelled as a linear elastic continuum following Hooke’s
law.

At levels of stress above the elasticity limit, the initial elastic response is
replaced by the inelastic effects in the concrete bulk. The formation of the
FPZ in the bulk material and progressive development of the microscopic
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cracks (Fig. 3.2) indicate the initiation of fracture in concrete. Evolution of
damage in the bulk is modelled by the isotropic damage model of Kachanov
with associated isotropic hardening (see, e.g. [69] for details of the formula-
tion) and represented in terms of two internal variables, tensor of damage
compliance D̄ and a scalar hardening variable ξ̄. The admissibility of stress
field is verified by the isotropic damage criterion expressed as

ϕ̄(σ, q̄(ξ̄)) =∥ σ ∥De − 1√
Ec

(σ̄f − q̄(ξ̄)) ≤ 0, (3.1)

where ϕ̄(σ, q̄(ξ̄)) < 0 denotes the elastic domain. The term D̄ = De in
Eq. (3.1) is the elastic compliance tensor for the bulk material, Ec is the
Young’s modulus for concrete and σ̄f is the elasticity limit. The term q̄(ξ̄)
denotes the stress-like hardening variable accounting for evolution of damage
threshold, here governed by a linear isotropic hardening law

q̄(ξ̄) = −K̄ξ̄, (3.2)

with K̄ being the hardening modulus. The elasticity limit and hardening
modulus govern the start and progression of damage propagation in the FPZ
and thus they are among the target parameters, which need to be identified
given experimental data.

fracture process
zone (FPZ)

micro-cracks
(continuum

damage)
cohesive

forces
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cr
ac

k
op

en
in

g

Figure 3.2: Diffuse and localised fracture
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3.2.2 Strong embedded discontinuity model for simula-
tion of localised failure in concrete

The increase of load is accompanied by the progression of damage and co-
alescence of microscopic cracks into a macroscopic one represented by a dis-
continuity surface. This results in surface dissipation and development of
a localisation zone. Once principal stress σpr reaches the tensile strength
of concrete, material exhibits strain-softening behaviour, which is modelled
by means of an anisotropic multi-surface damage model [100, 69]. The post-
peak softening response is characterised by a decrease in traction and an
increase in crack opening (Fig. 3.1(a)), as the crack surfaces across the crack
tip are gradually separated. That is known as the cohesive approach formu-
lated in terms of a traction-separation law, which relates the traction t at
the discontinuity and the crack opening αc as

t = ¯̄Q−1αc, (3.3)

where ¯̄Q denotes the damage compliance tensor at the discontinuity.

In this work, it is assumed that fracture in concrete can be realised either
as the crack opening due to tensile stress in normal direction (mode I) or as
sliding along the discontinuity surface due to shear stress in the tangential
direction (mode II) with respect to the discontinuity surface. Each of the
modes is taken into account separately by formulating two uncoupled damage
laws, one for each direction at the discontinuity surface, as

¯̄ϕ1(t, ¯̄q(
¯̄ξ)) = t · n− (¯̄σf − ¯̄q( ¯̄ξ)) ≤ 0, (3.4)

¯̄ϕ2(t, ¯̄q(
¯̄ξ)) = |t ·m| − (¯̄σs −

¯̄σs
¯̄σf

¯̄q( ¯̄ξ)) ≤ 0, (3.5)

where Eq. (3.4) takes into account fracture due to the normal component of
traction, n, and Eq. (3.5) models the shear effects introduced by the tangen-
tial counterpart, m. The ratio ¯̄σs

¯̄σf
in Eq. (3.5) relates the ultimate stress

in shear ¯̄σs to the ultimate stress in tension ¯̄σf . The term ¯̄q( ¯̄ξ) refers to
the traction-like softening variable which depends upon strain-like softening
variable ¯̄ξ that can incur either by mode I or mode II fracture process. Frac-
ture evolves under the assumption of exponential post-peak behaviour, which
takes the form of

¯̄q( ¯̄ξ) = ¯̄σf

[
1− exp

(
−

¯̄βc

¯̄σf
¯̄ξ

)]
, (3.6)
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in which ¯̄βc denotes the initial slope of the softening curve.

In discrete approximation, the zones of localisation of deformation are taken
into account through the introduction of strong discontinuities of the dis-
placement field. Once the maximum principal stress reaches the value of the
ultimate stress, a macro-crack perpendicular to the direction of the maximum
principal stress is embedded into the corresponding finite element. The crack
opening is taken into account through an incompatible mode function [72],
thus the total displacement field is a sum of the standard compatible and
the incompatible part such that

uc(x) =Ndc +Mαc, (3.7)

where dc are the nodal displacements for standard degrees of freedom,
whereas αc stands for the crack opening defined by means of the incom-
patible displacements. The theoretical framework for such enhancement of
kinematics is provided by the method of incompatible modes and Hu-Washizu
mixed variational formulation [161, 184]. The terms N and M refer to the
standard linear and incompatible shape functions [69], respectively. The
incompatible shape functions are defined as

M =MI; M = HΓ −
∑
a∈Ωe+

Na, (3.8)

where HΓ denotes the Heaviside function taking a unit value inside the sub-
domain Ωe+ and zero elsewhere.

As a result of introducing the strong discontinuity of the displacement field
in Eq. (3.7), the strain field is also enhanced in terms of incompatible modes
as

ϵc(x) = Bdc +Grα
c, (3.9)

where B and Gr are the derivatives of the standard and the incompatible
shape functions, respectively. The operatorGr can be additively decomposed
into a regular (bounded) Ḡr part and a singular part ¯̄Gr = nδΓs , where n
is the normal vector at the discontinuity and δΓs

is the Dirac delta function
centered at the crack discontinuity surface Γs.

Energy dissipation in reinforced concrete is a result of an irreversible dissip-
ative process in which energy introduced into the system by external loads is
converted to other forms (e.g. heat), followed by an increased production of
entropy. The corresponding free energy of Helmholtz ψ(ε,D, ξ) represents
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the thermodynamic potential of the chosen damage model and is formulated
such that it takes into account both hardening and softening contribution as

ψ(ε,D, ξ) =
1

2
εD̄−1ε+ Ξ̄(ξ̄)︸ ︷︷ ︸

ψ(ε,D̄,ξ̄)

+
1

2
αc ¯̄Q−1αc + ¯̄Ξ(¯̄ξ)︸ ︷︷ ︸

ψ(αc, ¯̄Q, ¯̄ξ)

δΓs ;

Ξ̄(ξ̄) = −q̄ξ̄; ¯̄Ξ( ¯̄ξ) = − ¯̄q ¯̄ξ,

(3.10)

where ε is total strain of concrete, D̄ and ¯̄Q are respectively the damage
compliance tensor for the bulk and damage compliance tensor at the discon-
tinuity and αc is the displacement jump or the crack opening. The terms ξ̄
and ¯̄ξ denote the internal variables which control hardening and softening,
respectively. As introduced in Eq. (3.10), the free energy upon opening of a
macro-crack is decomposed into a regular part ψ(ε, D̄, ξ̄), accounting for the
hardening in the fracture process zone, and the irregular part ψ(αc, ¯̄Q, ¯̄ξ),
accounting for the strain-softening at the crack localisation point which is
introduced by the Dirac delta δΓs

function. The physical nature of evolu-
tion of inelastic free energy is associated with particle rearrangement in the
composite [69].

In a purely mechanical framework, where the thermal effects are ignored, dis-
sipation of energy is governed by the evolution of internal variables employed
by the inelastic constitutive models (e.g. plastic deformation, damage compli-
ance, hardening and softening variables) [69]. Calculation of the total energy
dissipation rate follows directly from the non-local form of the second law of
thermodynamics, stating that the entropy production in a thermodynamic
process is non-negative [175, 105]. Applying the Legendre transform [69] to
represent the Helmholtz free energy in terms of its energy potential counter-
part defined through stresses, the total dissipation due to damage reads

0 < Ḋd(ε, D̄, ξ̄,αc, ¯̄Q, ¯̄ξ)

=

∫
Ωe

[
σ ε̇− ψ̇(ε, D̄, ξ̄)

]
dΩe +

∫
Γs

[
σ α̇c − ψ̇(αc, ¯̄Q, ¯̄ξ)

]
dΓs

=

∫
Ωe

1

2
σ ˙̄Dσ dΩe +

∫
Ωe

q̄ ˙̄ξdΩe +

∫
Γs

1

2
tΓs

˙̄̄
QtΓs dΓs +

∫
Γs

¯̄q
˙̄̄
ξ dΓs

(3.11)

where tΓs
= (σn)Γs

is the traction at the discontinuity defined in Eq. (3.3).

In addition to the surface dissipation, one may also define the energy needed
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to break the specimen or the fracture energy as

Gf =

∫
Γs

∫ ∞

tloc

tα̇c dt dΓs =
¯̄σ2
f lΓs

¯̄βc
, (3.12)

where lΓs
is the length of the discontinuity and tloc indicates the start of

localisation. Fracture energy, along with the ultimate stress, is essential in
the context of damage and cracking in concrete. While the opening of a
macroscopic crack is conditioned by the value of the ultimate stress, its post-
peak response is determined by the fracture energy. Hence, both of these
material parameters are considered as parameters of interest which need to
be inferred with the help of experimental data.

3.2.3 Bond-slip at the concrete-steel interface

Strength, durability and deformability of reinforced concrete, as well as the
resulting crack patterns, are conditioned not only by the properties of con-
crete and steel, but by the properties of the bond as well. The principal role
of the interface is to allow the redistribution of stresses between concrete and
steel, where the mechanism of force transfer mainly depends on chemical ad-
hesion, friction and mechanical interlocking produced by the reinforcement
ribs embedded into concrete [24, 2]. Another important aspect of the bond
is that it allows the transfer of tensile stresses from reinforcement to the
surrounding concrete between the adjacent crack surfaces, which thereby
contributes to the overall stiffness of the composite (tension-stiffening effect).
Hence, as the bond plays a substantial role in the behaviour of reinforced
concrete, a special attention needs to be payed to its modelling.

If concrete in the vicinity of the bond is well-confined with transverse rein-
forcement and sufficient concrete cover, the predominant type of bond failure
is the pull-out of the reinforcement bar with respect to surrounding concrete.
This type of bond failure is of a main concern for this work.

Due to the opening of macro-cracks, the compatibility between deformations
of the reinforcement bar and surrounding concrete is no longer valid. As a
result of the accumulation of strain differences, a relative displacement or
bond-slip appears at the concrete-steel interface. The mechanism of bond-
slip activation depends upon the energy balance condition. More precisely,
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bond-slip contributes to the total strain energy of reinforced concrete and its
contribution can be quantified as

ψ( ¯̄̄αbs,
¯̄̄
D,

¯̄̄
ξ) =

1

2
¯̄̄αbs

¯̄̄
D−1 ¯̄̄αbs +

¯̄̄
Ξ(

¯̄̄
ξ);

¯̄̄
Ξ(

¯̄̄
ξ) =

1

2
¯̄̄
ξ
¯̄̄
K

¯̄̄
ξ, (3.13)

where ¯̄̄αbs is the approximation of bond-slip and the quantities ¯̄̄
D, ¯̄̄

ξ and
¯̄̄
K denote the damage compliance, hardening displacement-like variable and
hardening modulus for bond-slip, respectively.

Behaviour of the bond is commonly described through a relationship between
the bond stress and corresponding relative slip of the reinforcement bar,
which is formulated in terms of a suitable bond-slip law (see [68] and refer-
ences thereof for an overview of recent trends in modelling of the bond). In
this work, the bond is modelled by hardening plasticity within the thermo-
dynamics framework, as proposed in [70] and [148]. The plastic slip is thus
regarded as an accumulated inelastic deformation localised at the concrete-
steel interface once the bond stress reaches the critical value denoted by
τy. The latter is considered as uncertain and identified from the available
experimental data.

The dissipation of energy due to bond-slip, induced by the fracture in con-
crete, takes place at the concrete-steel interface in the vicinity of macro-
cracks in concrete. Its contribution to the total dissipation is quantified as

0 < Ḋbs( ¯̄̄αbs,
¯̄̄
ξ) =

∫
Γbs

σbs ˙̄̄̄αbs dΓbs +

∫
Γbs

¯̄̄q
˙̄̄̄
ξ dΓbs, (3.14)

where ¯̄̄q(
¯̄̄
ξ) is the stress-like hardening variable for bond-slip and Γbs is the

surface where bond-slip takes place.

3.2.3.1 Kinematics of a finite element with bond-slip

The inelastic slip ¯̄̄
ξ remains as the permanent difference between concrete

and steel displacements. It is represented in discrete approximation with
the enhanced kinematics within the X-FEM. The core idea of applying the
X-FEM method relies upon enriching the conventional finite element basis
functions, Na(x), in order to describe a function ψ(x) on a given sub-domain
Ωe as

ψ(x) =

n∑
a=1

Na(x)Φ(x), (3.15)
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where the functions Na(x) satisfy the partition of unity,
∑n
a=1Na(x) = 1,

the term Φ(x) denotes a particular enrichment function and n stands for the
number of nodes per element.

In X-FEM, the finite element approximation of a discontinuous displacement
field can be partitioned into a sum of a standard and an enriched term as

u(x)|Ωe =

n∑
a=1

Na(x)d
c
a +

nbs∑
b=1

ψb(x)α
bs
b , (3.16)

where dca are the standard nodal finite element degrees of freedom, αbsb denote
the newly added nodal degrees of freedom imposed at each of the nbs nodes
to which a particular reinforcement bar is attached and u(x) is the resulting
displacement of a linear elastic reinforcement bar.

The enriched shape function basis ψb(x) with discontinuous features takes
the following form

ψb(x) =Na(x)H(f(x)), (3.17)

where H(f(x) = y) is the Heaviside step function with the following proper-
ties

H(y) =

{
1, y ≥ ȳ
0, y < ȳ,

(3.18)

in which ȳ is the location of the reinforcement bar indicating the discontinuity
surface, i.e. the discontinuity line in 2D. By taking into account the properties
of the Heaviside function given in Eq. (3.18), Eq. (3.16) can be rewritten as

u(x)|Ωe =

3∑
a=1

Na(x)d
c
a +

2∑
a=1

Na(x)α
bs
a , (3.19)

for the case when the reinforcement bar coincides with a finite element edge.

3.2.4 Variational formulation of the boundary value
problem

Let us consider a 2D solid discretised by Ne triangular (CST) finite elements,
each occupying a domain Ωe. Its first variational equation is formulated as

ANe
e=1(G

int,e −Gext,e) = 0, (3.20)
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where ANe
e=1 is the finite element assembly operator, whereas Gint,e and Gext,e

are the virtual work of the internal and external forces, respectively.

From Eq. (3.20), the weak from of the governing boundary value problem
(BVP) can be constructed as

ANe
e=1

(∫
Ωe

∇swσdΩe
)
− ANe

e=1

(∫
Ωe

wbdΩe +

∫
Γσ

wtΓσdΓσ

)
= 0, (3.21)

where σ is the stress field and vectors b and tΓσ
denote the body forces and

traction acting at the specimen’s boundary Γσ, respectively. The term w
denotes the virtual displacement field, which is a sum of both standard and
enhanced part as

w(x)|Ωe =

3∑
a=1

Na(x)w
c
a +

3∑
a=1

Na(x)w
bs
a , (3.22)

where wc
a and wbs

a are the virtual displacements of concrete and bond-slip,
respectively. By assuming that the load is applied solely through concrete,
the virtual displacements composing the virtual work of external forces in
Eq. (3.21) pertain to concrete displacements only. Taking this into consider-
ation, Eq. (3.21) can be rewritten as

ANe
e=1

(
3∑
a=1

wc
a f

cs,int
a +

3∑
a=1

wbs
a fsbs,inta

)
− ANe

e=1

(
3∑
a=1

wc
a f

ext
a

)
= 0,

(3.23)
where f cs,inta and fsbs,inta denote vectors of element internal nodal forces,
defined in the following manner

f cs,inta =

∫
Ωe

∇sNa(x)σ
cdΩe +

∫
Ωe

∇sNa(x)σ
sdΩe,

fsbs,inta =

∫
Ωe

∇sN bs
a (x)σsdΩe +

∫
Ωe

N bs
a (x)σbsdΩe,

(3.24)

and fexta is the vector of the external forces defined as

fexta =

∫
Ωe

Na(x) b dΩ
e +

∫
Γσ

Na(x)tdΓσ, (3.25)

where b are the body forces and t is traction imposed at the boundary Γσ.
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Considering that the components of the vector wc
a are kinematically admiss-

ible, the terms associated with the concrete displacements in Eq. (3.23) yield
the following set of equations

rcs = ANe
e=1

(
f c,inta + fs,inta − fexta

)
= 0, (3.26)

where the finite element assembly operator includes displacement boundary
conditions as well. Eq. (3.26) can be regarded as a global equilibrium equa-
tion, whereas the remaining term in Eq. (3.23) forms the local equilibrium
equation limited to the nodes to which the reinforcement bar is attached,
accounting for the redistribution of the slip along the bar as

rsbs = ANe
e=1

(
fs,inta + f bs,inta

)
= 0. (3.27)

For a more thorough interpretation of the numerical implementation
see [148].

3.3 Discrete lattice model for damage predic-
tion in concrete

On finer scales, heterogeneities in the concrete mesostructure can no longer
be neglected. In contrast to the coarse-scale at which the material is modelled
as homogeneous, at the finer scale, or the so-called meso-scale, behaviour of
the composite and its material properties are governed by the aggregate
distributed in a cement matrix, the interface transition zone (ITZ) between
them, water and the air voids. Hence, a more natural choice of modelling of
such mesostructures are the discrete lattice models. The model is built of an
assembly of spatial Timoshenko beams forming the cohesive links between the
Voronoi cells, the size of which is comparable to the size of heterogeneities.
The beam elements correspond to the edges of tetrahedrons generated by
the Delaunay triangulation and their properties are assigned based on the
common area between the two adjacent Voronoi cells [126].

As already pointed out, cracks in concrete are expected at the moderate load
levels. Initial material imperfections, air voids and weak interfaces between
aggregates and cement matrix weaken the fracture properties of the ma-
terial and hence become locations of nucleation and further propagation of
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macroscopic cracks leading to a brittle failure characteristic for plain con-
crete [50, 192]. The goal of the predictive model is thus to describe all
possible mechanisms leading to localised failure with respect to inherent ma-
terial heterogeneities. That is achievable by discretising the lattice in terms
of Timoshenko beams, which are capable to resolve a complete set of 3D
failure modes: bending failure (mode I), shear failure (modes II and III)
and the mixed modes thereof (see Fig. 3.3). Kinematic enhancements are
introduced in Timoshenko beams in a similar manner as shown for the solid
finite elements in Section 3.2.2, here extended to 3D space. The lack of mesh
objectivity and incorrect computation of the global fracture energy are allevi-
ated by introducing the embedded strong discontinuities, which ensure that
discontinuity remains localised inside a single beam element. The numerical
model is based on previous works of Nikolić et al. [125, 124, 122, 88]. Accord-
ing to this formulation, the process of opening, coalescence and propagation
of macroscopic cracks is evolving naturally and does not require implement-
ation of tracking algorithms (see, e.g. [166] for an overview of path-following
methods). The main ingredients of the 3D plasticity model with both harden-
ing and softening are given in the following.

y

z
z

z

y
y

x
x

x(a) (b) (c)

Figure 3.3: Failure modes of a Timoshenko beam: a) tensile crack-mouth
opening; b) in-plane shear sliding; c) out-of-plane shear sliding

3.3.1 Enhanced kinematics of a 3D lattice model

The enhancement of kinematics for a chosen Timoshenko beam element with
two nodes and a single Gauss integration point is implemented according
to the procedure elaborated in Section 3.2.2. Here the formulation from
Eq. (3.7) is extended to 3D space, with the beam nodal displacement vector
d = [u v w φ ψ θ]T collecting the displacements and the corresponding ro-
tations for all three coordinate directions, as shown in Fig. 3.4 (see, e.g. [106]
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for the standard kinematics of Timoshenko beams). In a similar manner, the
term αc in Eq. (3.7) now pertains to crack opening α = [αu αv αw 0 0 0]T

in all three fracture modes.

z

y

x

v1
ψ1

v2
ψ2

u1 u2

w1 w2

φ1 φ2

θ1 θ2

Figure 3.4: Timoshenko beam kinematics

3.3.2 Constitutive relations

Linear elasticity describes the behaviour of the material upon the initiation
of the inelastic behaviour. The latter is characterised by energy dissipation
due to plastification of beams upon reaching the yield stress in a particular
mode, i.e. σ̄f = [σyc τy1 τy2 0 0 0]T , where σyc , τy1 and τy2 denote the
yield stresses in mode I, II and III, respectively. Activation of plasticity with
isotropic linear hardening is defined through the yield functions expressed as

ϕ̄u(σ, q̄u(ξ̄u)) = |σ| − (σyc − q̄u(ξ̄u)) ≤ 0, (3.28)

ϕ̄v(τ1, q̄v(ξ̄v)) = |τ1| − (τy1 − q̄v(ξ̄v)) ≤ 0, (3.29)

ϕ̄w(τ2, q̄w(ξ̄w)) = |τ2| − (τy2 − q̄w(ξ̄w)) ≤ 0. (3.30)

in which the terms q̄u, q̄v and q̄w stand for the stress-like hardening variables
defined according to linear isotropic hardening law as q̄u = −Kcξ̄u, q̄v =
−Kτ1 ξ̄v and q̄w = −Kτ2 ξ̄w, where Kc, Kτ1 and Kτ2 are the hardening moduli
and ξ̄u, ξ̄v and ξ̄w are the internal hardening variables.

In the work herein, modelling of concrete mesostructure is limited to three dis-
tinct material phases: aggregate and cement paste and the interface between
them. In this case, fracture typically starts within the interface transition
zone, being the weakest part of the composite. Upon the time instance in
which the value of stress in the material reaches the value of the ultimate
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stress ¯̄σf , the affected beams fail at their weakest point and subsequently
activate the discontinuity embedded at the location of the Gauss integration
point of the beam. The values of the ultimate stresses for each failure mode
are collected in a vector ¯̄σf = [σut τu1 τu2 0 0 0]T , where σut , τu1 and τu2

denote the ultimate stresses in mode I, II and III, respectively. The typical
failure modes are specified by the multi-surface criteria as

¯̄ϕu(tu, ¯̄qu(
¯̄ξu)) = tu − (σut

− ¯̄qu(
¯̄ξu)) ≤ 0, (3.31)

¯̄ϕv(tv, ¯̄qv(
¯̄ξv)) = |tv| − (τu1 − ¯̄qv(

¯̄ξv)) ≤ 0, (3.32)
¯̄ϕw(tw, ¯̄qw(

¯̄ξw)) = |tw| − (τu2 − ¯̄qw(
¯̄ξw)) ≤ 0, (3.33)

where tu, tv and tw denote traction in mode I, II and III, respectively, local-
ised at the discontinuity surface.

In practice, failure often occurs in the combination of modes rather than
in a pure bending or pure shear mode. At this stage, material has entered
the softening phase, characterised by the progressive opening of macroscopic
cracks accompanied by unloading of the surrounding material. The terms
¯̄qu(

¯̄ξu), ¯̄qv( ¯̄ξv) and ¯̄qw(
¯̄ξw) in Eq. (3.31)-(3.33) refer to the stress-like softening

variables defined as

¯̄qu(
¯̄ξu) = σut

[
1− exp

(
− σut

¯̄Gft

¯̄ξu

)]
, (3.34)

¯̄qv(
¯̄ξv) = τu1

[
1− exp

(
− τu1

¯̄Gfτ1

¯̄ξv

)]
, (3.35)

¯̄qw(
¯̄ξw) = τu2

[
1− exp

(
− τu2

¯̄Gfτ2

¯̄ξw

)]
, (3.36)

where ¯̄Gft , ¯̄Gfτ1 and ¯̄Gfτ2 are the characteristic unit fracture energies for
softening in tension and shear directions. The amount of energy that the
material absorbs during failure in particular fracture mode is computed as

Gft =

∫ ∞

0

σut
exp

(
− σut

¯̄Gfτ1

¯̄ξu

)
d ¯̄ξu, (3.37)

Gfτ1 =

∫ ∞

0

τu1 exp

(
− τu1

¯̄Gfτ1

¯̄ξv

)
d ¯̄ξv, (3.38)

Gfτ2 =

∫ ∞

0

τu2 exp

(
− τu2

¯̄Gfτ2

¯̄ξw

)
d ¯̄ξw. (3.39)
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3.3.3 Solution of the boundary value problem

The solution of the boundary value problem is sought by solving the following
set of equations

r = ANel
e=1

(
f (e),int − fext

)
= 0, (3.40)

he =

∫ le

0

ḠTσdx+ t = 0, ∀e ∈ [1, Ne
el], (3.41)

where ANel
e=1 is the finite element assembly over Nel finite elements, f (e),int =∫ le

0
BTσdx is the vector of internal forces obtained from the internal stress

resultants, σ = [N V W Mx My Mz]
T , while the enhanced part he = 0 is

added for every element with an active failure mode, which satisfies the yield
condition given in Eqs. (3.31)-(3.33). From Eq. (3.41), it follows that the
traction vector at the discontinuity is expressed as

t = −
∫ le

0

ḠTσdx, (3.42)

where Ḡ denotes the regular part of the G operator. For details on the model
implementation and computational procedure see [125, 124, 122, 88].
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Chapter 4

Investigation of identifiabil-
ity of material parameters of
reinforced concrete

In this chapter, Bayesian approach is employed for solving the stochastic
inverse problem, as described in Chapter 2, to estimate unknown fracture
and bond parameters of a damage model for reinforced concrete introduced
in Section 3.2. The parameters of interest are identified with the help of
observations from tensile tests on concrete tie beams with embedded rein-
forcement bars and virtual experiments, in the absence of available data.
Moreover, the issue of identifiability of the target parameters is discussed.
Namely, a particular measured response is usually not equally sensitive with
respect to all target parameters. Hence, the aim is to identify the optimal ex-
periments for estimation of a particular uncertain parameter, from the point
of view of minimising the discrepancy between the computed and observed
quantities of interest and the ease of implementation in a testing facility.
Computationally efficient sequential Gauss-Markov-Kálmán filter based on
functional approximations, described in Section 2.5.1, is adopted for solving
the stochastic inverse problem. Quantities in the filtering equation are ex-
pressed in a compact manner by PCE of order 3. As the update step is equal
to the loading step, which is rather small, Bayesian update is based on a
linear approximation of the CE. Numerical simulations are carried out by
the computer program FEAP - Finite Element Analysis Program [171], with
a sample size of 1000.
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4.1 Experimental setup

Tensile test provides information about the strength and toughness of a ma-
terial as well as the final crack pattern, which makes it an obvious choice
for the estimation of parameters governing fracture and bond-slip in rein-
forced concrete. The considered experiments were carried out by Farra [45]
on concrete ties of dimensions 1150 × 100 × 100 mm3, cast with different
mixtures of concrete and different types and cross-sections of reinforcement
bars embedded in the middle of the specimen.

1000 100230230

10
0F F

1610
75 75

PVC sleeve

Figure 4.1: Experimental setup of a tension test and geometry of the
considered specimen in [mm]

Fig. 4.1 shows the experimental setup of a concrete tie subjected to a tensile
test. The experiment is carried out under force control. The applied force is
then translated into its displacement counterpart, taken as the average of the
values registered by two inductive sensors placed on the opposite sides of the
specimen, 500 mm from the midspan. The traction force is introduced into
the specimen at the ends of the reinforcement bar at the extension which
is not covered by concrete [45]. In order to minimise the effects of stress
concentration, the steel bar is unbonded and enveloped by a plastic sleeve
in the length of 75 mm measured from the edge of the specimen, as shown
in Fig. 4.1. For the purpose of numerical modelling, it is assumed that the
whole bar is bonded with concrete, but the bond is considerably weaker at
the ends to mimic the effects of the PVC sleeve.

Experiments are repeated three times for each particular configuration of
materials and geometry. Here we consider the case S32-20, consisting of
concrete of a class S32, where “S” indicates the sulphate-resisting cement,
and the percentage of reinforcement of 3.14%, corresponding to a steel bar
of diameter 20 mm. The type of steel used in the experiments is the high-
adherence structural steel denoted as S500.

The global behaviour of the RC beams is captured by means of a force-
displacement (or a stress-deformation) diagram. The curves obtained by ex-
periments on the specimens of configuration S32-20 are shown in Fig. 4.2(a).
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(a) (b)

(c)

Figure 4.2: Experimental results [45]: a) steel stress-imposed deformation
diagram; b) mean crack spacing; c) mean crack opening

Figure 4.3: Crack patterns from three experiments on beams of class S32-20
[45]
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In addition, the evolution of quantities describing the cracking of concrete,
i.e. the crack spacing and opening, is analysed and reported. The average of
the mean crack spacing and opening from the three tests on the RC beams of
configuration S32-20 are plotted in Fig. 4.2(b)–4.2(c), whereas the particular
crack patterns obtained in each of the tests are shown in Fig. 4.3.

4.2 Generalisation of the enriched finite ele-
ment to account for alternative load applic-
ations

To be able to computationally reproduce the above described tensile exper-
iment, the formulation of a finite element with embedded discontinuity and
bond-slip requires certain modifications. Namely, according to the formula-
tion of the numerical model given in Section 3.2.4, a direct application of the
load onto the reinforcement bar is not feasible, as the BVP is formulated un-
der the assumption that the load is applied solely through concrete. Hence,
an utilitary truss bar element is defined. The latter is connected to a 2D
solid CST element and transforms the truss bar displacements into the solid
element conjugates.

Firstly, vector of truss bar displacements is defined as

d̄ =

[
dsx,I
dsx,II

]
, (4.1)

where dsx,I and dsx,II denote the axial displacements of the bar at the left and
right node, respectively.

Displacements of a 2D solid CST element which are conjugate to the above
defined truss bar displacements are collected in a vector d, which can be
written as

d =


dcx,I
αbsx,I
dcx,II
αbsx,II

 , (4.2)

where superscripts c and bs refer to concrete displacements and bond-slip
at the concrete-steel interface, respectively. The truss bar displacements are
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dx,1
c αx,1

bs dx,2
c αx,2

bs dx,2
cαx,2

bs dx,4
c αx,4

bs

dy,1
c

αy,1
bs

dy,3
c

dy,2
c

αy,2
bs

dx,3
c

dx,4
s = dx,4

c

αx,4
bs = 0

dx,2
s = dx,2

c + αx,2
bs

Figure 4.4: Coupling between the displacement field of a solid CST element
and a truss bar element

further transformed into the CST solid ones by means of a transformation
matrix T. Taking into account Eq. (3.16), which states that the displace-
ments of the steel bar are obtained as a sum of the displacements of concrete
and bond-slip, such transformation matrix takes the form of

T =

[
1 1 0 0
0 0 1 1

]
. (4.3)

Having defined the transformation matrix, the element stiffness matrix and
internal force vector can be transformed from the truss bar quantities into
their solid element conjugates in the following manner

k = TT k̄T, (4.4)

f = TT f̄ , (4.5)

where k̄ =
∫
Ωe B

s,TCBsdΩe and f̄ =
∫
Ωe B

s,TσsAsdx denote the stiffness
matrix and the internal force vector of the truss bar, respectively.

4.3 Prior description of the material parameters

The choice of uncertain parameters pertains to material parameters govern-
ing fracture in concrete: hardening modulus Kh and elastic limit stress σ̄f
(hardening); ultimate stress ¯̄σf and fracture energy ¯̄Gf (softening), as well
as parameters governing the behaviour of the bond: critical bond stress τy
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(bond-slip). All the uncertain parameters are modelled as random variables,
which implies having homogenised properties within a particular compos-
ite constituent. In order to ensure that the prior values of parameters are
positive-definite, they are assumed to follow the lognormal probability distri-
bution. Moreover, the prior description results from preliminary numerical
studies that provide the closest possible estimates, in the lack of experts’ pro-
posed values. The prior mean values and corresponding standard deviations
are summarised in Table 4.1. Note that the standard deviation is assumed as
10% of the mean value, which implies a rather narrow prior. Due to the fact
that the mechanical model is highly nonlinear and sensitive with respect to
its input parameters, which are modelled as uncorrelated random variables,
a significant variability in inputs can lead to convergence issues.

Table 4.1: Prior probabilistic description: mean value and standard
deviation of uncertain material parameters

Property Mean Standard deviation
σ̄f 1.100 (MPa) 0.110 (MPa)
Kh 45000.000 (MPa) 4500.000 (MPa)
¯̄σf 2.200 (MPa) 0.220 (MPa)
¯̄Gf 0.220 (N/mm) 0.022 (N/mm)
τy 3.000 (MPa) 0.300 (MPa)

Samples of the above defined prior distributions are drawn by a Monte Carlo
simulation. A total of 1000 samples are generated and employed to carry out
the numerical predictions.

Parameters which do not influence fracture in concrete and bond-slip, e.g. the
elastic properties of concrete and steel: bulk K and shear G moduli of con-
crete and elastic modulus Es of steel, are considered as known. The elastic
bond modulus Kbs is introduced as a parameter which influences stability
and convergence of the solution and thus it is of no particular interest for
identification. In the regions where the steel bar in enveloped by a plastic
sleeve, the bond modulus Kbs is replaced by the modulus KPV C , the value of
which is smaller compared to the value of Kbs in order to reflect the weakened
bond. The reinforcement bar has a constant cross-section As, with bonded
area defined as Abs. The areas are here expressed per unit length of the
beam thickness. Values of the remaining, deterministic parameters are given
in Table 4.2.
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Table 4.2: Values of deterministic parameters

Property Value
K 19111.110 (MPa)
G 14333.330 (MPa)
Es 200000.000 (MPa)
As 3.142 (mm2/mm’)
Kbs 100.000 (MPa/mm’)
KPV C 80.000 (MPa/mm’)
Abs 0.628 (mm/mm’)

4.4 Uncertainty quantification

Repeated numerical simulations with different combinations of input para-
meters result in an ensemble of response curves. For each particular response,
prior statistics can be extracted, i.e. the mean curve and confidence bounds
(95% quantiles). It should be noted that numerical simulations are not per-
formed until complete fracture of the specimen due to the fact that the
estimates of target parameters can be obtained with satisfactory accuracy
even after registering only two successive macro-cracks. Fig. 4.5 depicts the
95% confidence bounds of the stress distribution along the specimen, com-
puted with prior description of uncertain material parameters. In the same
figure, one can also observe curves of some selected realisations.

(a)

(b)
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(c)

Figure 4.5: Prior quantiles and mean of stresses in: a) concrete; b) steel; c)
bond

From Fig. 4.3, it can be observed that repeated experiments with the same
material configuration and geometry can lead to significantly different crack
patterns. Due to the mechanism of stress transfer in a tensile test, the
first crack usually appears approximately in the middle of the beam and
successive cracks follow at the midspan of the cracked sections. Fig. 4.6
shows the distribution of both plastic and total bond-slip in terms of 95%
quantiles as well as some selected realisations. The largest values of bond-slip
coincide with the locations of macroscopic cracks.

(a)

(b)

Figure 4.6: Prior quantiles and mean of: a) bond-slip; b) plastic slip

The experimental stress-deformation curves plotted in Fig. 4.2(a) are em-
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ployed for parameter estimation. From the latter, one can observe that the
measured curves significantly vary with every successive crack. In order to
incorporate the scattering of the results within the population of beams, the
discrete points on the mean stress-deformation curve in Fig. 4.2(a) are con-
sidered as observations. The prior statistics within the considered range is
plotted in Fig. 4.7.

Figure 4.7: Prior statistics of the global stress-deformation curve and its
experimental (true) curve

4.5 Estimation of target parameters from the
stress-deformation curve

Upon reaching the elasticity limit, σ̄f , behaviour of the specimen enters
the inelastic regime. The influence of the parameters governing hardening
and softening thereby becomes more prominent. In total, there are four
parameters that need to be identified, namely the hardening modulus Kh,
limit stress σ̄f , ultimate stress ¯̄σf and fracture energy ¯̄Gf . According to
global sensitivity analysis, the results of which are plotted in Fig. 4.8 in
terms of partial variances and first order Sobol indices, it can be observed
that these parameters have a significant impact on the selected response.

The magnitude of the influence of a particular parameter changes over time,
as the material undergoes different stages of its behaviour: elasticity, harden-
ing and softening.
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(a) (b)

Figure 4.8: Global sensitivity with respect to stress-deformation evolution:
a) partial variances; b) first order Sobol indices

4.5.1 Parameters related to hardening of concrete

The first parameter to be identified is the concrete limit stress, which im-
plies the beginning of the hardening phase. Update is initiated immediately
upon gathering the first portion of data. The estimation is performed se-
quentially using the PCE-based GMKF and after each discrete update step
a new posterior is obtained. The measurement error is assumed to be inde-
pendent at each update step and modelled with the Gaussian distribution,
i.e. ε(η) ∼ N (0, Cε), with zero-mean and covariance Cε. Its standard devi-
ations are defined as 1% of the corresponding observed values. Modelling
errors are not considered in this study.

Recalling the evolution of partial variances and first order Sobol indices
shown in Fig. 4.8, one can deduce that the hardening phase takes place after
about 100 loading steps, when the limit stress starts contributing to the vari-
ability of the output. Around 300th step, the information gain from the data
starts to significantly alter the prior probability density of the limit stress,
which soon reaches its converged posterior at update step 350. While the
update is performed at each update step coinciding with a particular loading
step, only a selected few, at which the most significant changes in posterior
PDF are observed, are plotted in Fig. 4.9(a). As shown in Fig. 4.9(b), un-
certainty is visibly reduced, reflecting the improved confidence in the actual
value of the limit stress.
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(a) (b)

Figure 4.9: Sequential update of the limit stress: a) update steps imposed
on stress-deformation (σs − ϵ̄) curve; b) prior and posterior probability

density functions

(a) (b)

Figure 4.10: Sequential update of the hardening modulus: a) update steps
imposed on stress-deformation (σs − ϵ̄) curve; b) prior and posterior

probability density functions

The hardening modulus starts contributing to the mechanical response of
concrete around the update step 300, which coincides with an increase in
its partial variance and first order Sobol index depicted in Fig. 4.8. Its pos-
terior densities obtained at update steps plotted in Fig. 4.10(a) are shown in
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Fig. 4.10(b). From the latter, one can observe that by gaining new inform-
ation from the data, the posterior PDF continues to change until it finally
settles into a stationary distribution around 600th update step.

4.5.2 Parameters related to softening of concrete

A further increase in loading leads to more significant damage in concrete.
After around 600 update steps, the posterior PDF of the ultimate stress
starts to look significantly narrower, as shown in Fig. 4.11(b), which implies
the initiation of crack propagation accompanied by strain-softening. Obser-
vations registered in this phase of the experiment provide the most relevant
information for identifying the ultimate stress. The converged form of the
PDF is reached after 800 update steps and its shape is plotted in Fig. 4.11(b).

(a) (b)

Figure 4.11: Sequential update of the ultimate stress: a) update steps
imposed on stress-deformation (σs − ϵ̄) curve; b) prior and posterior

probability density functions

As shown in Fig. 4.8, the influence of the fracture energy becomes more sig-
nificant around 900th update step, which indicates the presence of softening
in particular regions of the specimen. The stationary posterior PDF of the
fracture energy is plotted in Fig. 4.12(b). The effect of shrinking of the
variance is not as evident as for some previously discussed parameters, the
reason being that the chosen quantity of interest does not contain enough
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information about this parameter. This issue and possible improvements are
addressed in Section 4.6.

(a) (b)

Figure 4.12: Sequential update of the fracture energy: a) update steps
imposed on stress-deformation (σs − ϵ̄) curve; b) prior and posterior

probability density functions

4.5.3 Bond properties

The main parameter governing the behaviour at the concrete-steel interface
is the critical bond stress τy, the significance of which is related to crack-
ing in concrete. Namely, upon appearance of a macro-crack in concrete, the
bond governs the stress redistribution between concrete and steel, which sub-
sequently induces the bond-slip at the concrete-steel interface. When bond
stress reaches the critical value, τy, the relative sliding of the reinforcement
bar with respect to surrounding concrete can no longer be considered elastic,
but rather an irreversible process, quantified in terms of a permanent (plastic)
slip αplbs. According to Fig. 4.8, critical bond stress has the greatest influence
on the response in the first 200 steps. Hence, its estimation is initiated im-
mediately upon gathering a first portion of observational data. However, in
theory, the behaviour of the composite in this phase should be purely elastic
and the reinforcement bar should still be perfectly bonded to the surrounding
concrete.

By inspecting the sequential update of the critical bond stress shown in
Fig. 4.13, one can conclude that the posterior sample set is not a subset
of prior and the posterior mean value is unusually small in comparison to
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the values from the literature [45]. That could indicate that the critical
bond stress is not identifiable from the chosen QoI and subsequently, the
experiment is not optimal for the estimation of this parameter.

(a) (b)

Figure 4.13: Sequential update of the critical bond stress: a) update steps
imposed on stress-deformation (σs − ϵ̄) curve; b) prior and posterior

probability density functions

Bond-slip is taking place in the vicinity of macro-cracks in concrete and hence,
in order to accurately infer the related mechanical properties, one needs
to consider not only global observations (e.g. the global stress-deformation
curve), but the local effects as well (e.g. crack opening of a particular crack).
This idea is further elaborated in the successive section, which investigates
whether the addition of observations reflecting the local effects can improve
the estimates of the critical bond stress.

Posterior estimates of the uncertain material parameters are validated by
comparing the experimental stress-deformation curve with the 95% quantiles
of the posterior predictive obtained by propagating the estimated material
parameters through the polynomial surrogate model. Fig. 4.14 illustrates
these quantities within the range of deformation considered for the estim-
ation, i.e. 0 < ϵ̄ ≤ 1.2 × 10−4. As shown in Fig. 4.14, the mean stress-
deformation curve coincides with the experimental one, which further means
that the estimated parameters are reliable. The 95% confidence region is
considerably narrower compared to the one plotted in Fig. 4.7, obtained by
propagating the prior uncertainty. Note that the model can predict well the
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behaviour up to opening of the first two macroscopic cracks, whereas the
predictions of the further cracks are considerably less accurate.

Figure 4.14: Posterior statistics of the global stress-deformation curve and
its experimental (true) curve

4.6 Improved estimates of target parameters by
including additional quantities of interest

This section explores whether the parameter identifiability can be improved
and discrepancies between the actual observations and model output reduced
by combining several quantities of interest which are significant for the con-
cerned problem. For that purpose, the inclusion of the following QoIs is
proposed: the total dissipation, number of cracks and crack opening. Note
that all considered QoIs have different units. In the context of the Kálmán
filter, this implies that QoIs of higher magnitudes are given preference when
calculating the posterior estimates. To alleviate this issue and ensure that
all observation are given the same weight, everything is expressed in terms
of energy-like quantities, i.e. instead of stress σs, the term σs/Es, instead of
number of cracks Nc, the term NcGf/lΓs

and instead the crack opening αc,
the term Esα

2
c lb/Vb, where lb and Vb denote the length and volume of the

beam, respectively. In this manner, all QoIs have the unit of energy density,
i.e. N/mm2, and their magnitudes are of the same order.

The criteria for choosing the relevant observations are twofold. Firstly, the
observations should be easily generated in testing facilities and secondly,
they should be meaningful considering the nature of the target paramet-
ers (e.g. local and global properties). In the following sections, the choice of
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a particular QoI is discussed and its influence on the parameter inference is
investigated.

4.6.1 Inclusion of the total dissipation

The concept of stored and dissipated energy is essential for the accurate
representation of the inelastic material behaviour. It is closely related to
the irreversible deformation taking place in concrete and at the concrete-
steel interface, ultimately leading to material failure. As already described
in Section 3.2, inelastic behaviour of concrete is accompanied by the volume
and surface dissipation due to nucleation and propagation of the cracks in the
fracture process zone. In addition to dissipative mechanisms in concrete, at
the locations of the macroscopic cracks, the dissipation of energy due to bond-
slip takes place. Computation of their contributions is straightforward by
employing Eq. (3.11) and Eq. (3.14). This task, however, becomes infeasible
in practice, where typically only the total dissipation can be attained.

Figure 4.15: Loading-unloading cycles of the repeated virtual experiments

The easiest approach to measure the total dissipation in a system is to design
an experiment which consists of loading the specimen under the displacement
control up to the opening of the first macroscopic crack and unloading it im-
mediately afterwards. The total dissipation is thereby regarded as the area
between the loading and unloading slopes. In the virtual experiment intro-
duced herein, the loading-unloading cycle is repeated once more upon ap-
pearance of the second macroscopic crack. Subsequent cracks are distinctive
property of each individual beam and as such are not relevant for identifica-
tion of the properties characteristic for the whole population of beams. The
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criteria employed for detection of a macroscopic crack in numerical simula-
tions is the amount of dissipated energy due to damage in concrete taking
the value larger than or equal to 95 % of the fracture energy. The resulting
loading-unloading cycles for a particular realisation are given in Fig. 4.15.

The virtual simulations are computed by perturbing the value of fracture
energy, whereas the values of the remaining parameters are fixed at their
mean values, as given in Table 4.1.

Bayesian inference of the uncertain parameters is performed separately for
each of the 50 realisations of the virtual experiment. Afterwards, the pos-
terior distributions resulting from the update using a particular virtual ex-
periment are summed up and divided by the number of samples in a Monte
Carlo fashion [71]. In this manner, the final posteriror PDFs, shown in
Fig. 4.16, have a larger variance and thereby capture not only the epistemic
uncertainty due to lack of knowledge about the uncertain properties, but the
aleatoric uncertainty inherent to the material as well.

Note that, as it is essentially a Monte Carlo method, it is meaningful only
if there are enough repetitions of the experiment. Otherwise, it is more suit-
able to use the mean response, as it has been done in Section 4.5, where
only 3 stress-deformation curves were available. The observed value of dis-
sipation is introduced into the update once the sequential update using the
observations of the stress-deformation curve is completed. Hence, the last re-
gistered posteriors from Section 4.5 are further altered by taking into account
the observations of dissipation. For the sake of simplicity and consistency
with the rest of the results, only the mean curve will be considered for the
identification shown below.

Dissipation is closely related to the fracture energy of concrete and sub-
sequently, to its ultimate stress. These two parameters are here considered
uncorrelated, but they are indeed dependent through Eq. (3.12). As shown
in Figs. 4.17(a)–4.17(c), parameters that are not activated during the soften-
ing regime, i.e. the hardening modulus, limit stress and critical bond stress,
show no significant alteration of the posterior PDFs after the addition of the
observed dissipation.
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(a) (b)

(c) (d)

(e)

Figure 4.16: Prior and posterior (Monte Carlo) probability density
functions after inclusion of the observed dissipation (D) for the: a)

hardening modulus; b) limit stress; c) ultimate stress; d) fracture energy; e)
critical bond stress
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(a) (b)

(c) (d)

(e)

Figure 4.17: Prior and posterior probability density functions after
inclusion of the observed dissipation (D) for the: a) hardening modulus; b)

limit stress; c) critical bond stress; d) ultimate stress; e) fracture energy
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On the other hand, the posterior PDFs of the fracture energy and ultimate
stress, plotted in Figs. 4.17(d)–4.17(e), are visibly altered. The latter leads
to significantly reduced discrepancies between the model and experimental
results (see Table 4.3 for the summary of the model outputs), while the stress-
deformation curve is still well approximated (see Fig. 4.24). Nevertheless, the
cracking quantities related to bond, e.g. the total number of cracks and crack
opening, still quite differ from the measured values and hence, for the reliable
estimation of the bond properties one needs to include additional QoIs.

4.6.2 Inclusion of the total dissipation & number of
cracks

The number of cracks is directly related to the strength of the bond, with
stronger bond leading to a more favourable crack pattern in terms of a lar-
ger number of fine, narrow cracks. Thus, this section explores whether the
addition of the observed number of cracks can bring more information about
the target parameter related to bond.

During tensile test introduced in Section 4.1, an average of 5 cracks opens up
to deformation of 4 × 10−4, which is the range considered in the numerical
simulations. Similarly to the previous case, when dissipation was included
as an additional QoI, the addition of the number of cracks causes no obvious
changes in the posterior PDFs of the hardening modulus and limit stress, see
Figs. 4.18(a)–4.18(b).

(a) (b)
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(c) (d)

(e)

Figure 4.18: Prior and posterior probability density functions after inclusion
of the observed number of cracks (Nc) for the: a) hardening modulus; b)
limit stress; c) ultimate stress; d) fracture energy; e) critical bond stress

On the other hand, changes in the posterior PDFs of the ultimate stress,
fracture energy and critical bond stress, shown in Figs. 4.18(c)–4.18(e), are
significant. From the summary in Table 4.3 and Fig. 4.24, one can deduce
the following: stress-deformation curve is still well approximated, as well
as dissipation, although the discrepancy between its computed and observed
value is slightly higher. The number of cracks, in spite of expectations, cannot
be well approximated, but the number is closer to the observed value in
comparison to the case when just the stress-deformation curve is considered
as a QoI.
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4.6.3 Inclusion of the total dissipation & crack opening

Crack opening of a particular crack is a local property and as such, it is
related to the bond-slip taking place in the vicinity of the macroscopic cracks.
This section explores whether the inclusion of the observed crack opening as
an additional QoI may be more suitable for estimation of the target properties
of the bond compared to previously considered cases. For that purpose, the
observed value of the opening of the first macro-crack at the time instance
corresponding to the opening of the successive macro-crack, taken from [45],
is considered. The latter is added as an additional observation that changes
the probabilistic description given in Section 4.6.1 and Fig. 4.19.

(a) (b)

(c) (d)
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(e)

Figure 4.19: Prior and posterior probability density functions after inclusion
of the observed crack opening (αc) for the: a) ultimate stress; b) fracture

energy; c) critical bond stress; d) hardening modulus; e) limit stress

From the results reported in Table 4.3, it is evident that by including the
crack opening as a QoI, the discrepancy between its computed and observed
value is significantly decreased. On contrary, the estimate of dissipation is the
most unfavourable considering all the cases investigated so far. Furthermore,
the number of cracks is now much closer to the experimental value and much
higher than in any other considered case, which also holds for the value of
the critical bond stress. This result affirms the fact that stronger bond leads
to higher number of cracks with smaller crack openings.

4.6.4 Inclusion of the total dissipation & number of
cracks & crack opening

In this case, all of the above considered QoIs, i.e. the stress-deformation curve,
total dissipation, number of cracks and crack opening of a particular macro-
crack, are employed together in an attempt to further improve the posterior
estimates. The new observations are added consecutively, which is reflected
in the final posterior PDFs, the shape of which differs based on the order of
the inclusion. The following subcases are considered: 1) σs−ϵ̄&D &Nc & αc;
2) σs− ϵ̄ & D & αc & Nc, where the QoIs are listed in the order of inclusion.

The resulting posterior PDFs are given in Fig. 4.20 and Fig. 4.21 for the
subcases 1) and 2), respectively. The posterior PDFs of the hardening mod-
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ulus and limit stress are here excluded, as it is already proved in the sections
above that they are not sensitive with respect to the newly added QoIs.

(a) (b)

(c)

Figure 4.20: Prior and posterior probability density functions obtained by
considering all QoIs (σs − ϵ̄ & D & Nc & αc) for the: a) ultimate stress; b)

fracture energy; c) critical bond stress

The assumption that the inclusion of all above considered QoIs yields the best
possible estimates of the target parameters is proved to be wrong. Namely,
from Table 4.3, one can deduce that both of the considered subcases fail to
successfully approximate the crack opening. Its value is the closest to the
observed value when the number of cracks is excluded from the list of QoIs.
On the other hand, the value of dissipation is the best approximated when
only the stress-deformation curve and the total dissipation are considered as
QoIs.
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(a) (b)

(c)

Figure 4.21: Prior and posterior probability density functions obtained by
considering all QoIs (σs − ϵ̄ & D & αc & Nc) for the: a) ultimate stress; b)

fracture energy; c) critical bond stress

4.7 Validation of the results

The investigation of the influence of different quantities of interest to the
outcome of Bayesian identification, results in the following conclusions:

• Stress-deformation curve shows sensitivity with respect to all target
parameters. All the posterior PDFs show a considerable reduction in
the uncertainty, with an exception of the fracture energy. Samples of
the posterior PDF of the critical bond stress are not a subset of the
prior and its posterior mean value is considerably smaller compared to
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the values from the literature. This further leads to a smaller number
of relatively wide cracks, which differs from the experiment. Thus, the
posterior estimate of the critical bond stress is deemed as unreliable.

• Inclusion of the total dissipation does not change the posterior estim-
ates of the hardening modulus, elasticity limit and critical bond stress,
but improves the estimates of the ultimate stress and fracture energy.
Discrepancy between the computed and observed value of dissipation
is highly reduced and is the smallest overall.

• Inclusion of both the total dissipation and number of cracks does not
significantly change the posterior estimates of the hardening modulus
and elasticity limit, but has an influence on the estimates of parameters
related to cracking: the ultimate stress, fracture energy and critical
bond stress. The most significant is the change in the PDF of the
critical bond stress, the posterior mean of which is now much larger.

• Inclusion of both the total dissipation and crack opening has no influ-
ence on the posterior of the hardening modulus and elasticity limit, but
changes the posterior estimates of the ultimate stress, fracture energy
and, in particular, critical bond stress. Addition of this QoI provides
the best match in both the value of crack opening and number of cracks.

• Inclusion of all the considered QoIs, i.e. the total dissipation, number
of cracks and crack opening, simultaneously, brings no meaningful im-
provement in the posterior estimates.

A summary of the resulting posterior densities of the target parameters (the
hardening modulus, limit stress, ultimate stress, fracture energy and critical
bond stress) obtained from the above considered cases is given in Fig. 4.22.

(a) (b)
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(c) (d)

(e)

Figure 4.22: Overview of posterior probability density functions for the: a)
hardening modulus; b) limit stress; c) ultimate stress; d) fracture energy; e)

critical bond stress

In summary, one can visualise the inferred PDFs in a grid of plots shown in
Fig. 4.23, where the univariate marginal distributions are plotted along the
diagonal, whereas the off-diagonal plots correspond to bi-variate scatter plots,
from which one can deduce the correlations between the pairs of parameters.

For validation purposes, realisations of the finite element solver are computed
with the posterior mean values of target parameters obtained in each of the
considered cases. The corresponding stress-deformation curves are plotted in
Fig. 4.24, whereas the computed values of the remaining QoIs are reported
in Table 4.3 and compared with their observed counterparts.
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Figure 4.23: Marginal distributions and correlations for the considered
QoIs: (σ − ϵ) shown in light blue, (σ − ϵ & D) shown in dark blue,

(σ − ϵ & D & Nc) shown in dark green, (σ − ϵ & D & αc) shown in light
green, (σ − ϵ & D & Nc & αc) shown in yellow, (σ − ϵ & D & αc & Nc)

shown in red. Prior PDF and samples are shown in grey.

Figure 4.24: Stress-deformation curve with posteriror description of
parameters
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Table 4.3: Comparison of quantities computed with posterior values of
parameters and the observed counterparts for given QoIs

Observations
Num. of cracks Crack opening Dissipation

Computed True Computed True Computed True
(−) (−) (mm) (mm) (Nmm) (Nmm)

σs − ϵ̄ 2 5 0.2069 0.0420 0.01630 0.0120
σs − ϵ̄ & D 3 5 0.1857 0.0420 0.01196 0.0120
σs − ϵ̄ & D & Nc 3 5 0.1261 0.0420 0.01170 0.0120
σs − ϵ̄ & D & αc 6 5 0.0376 0.0420 0.00440 0.0120
σs − ϵ̄ & D & Nc & αc 3 5 0.1087 0.0420 0.01070 0.0120
σs − ϵ̄ & D & αc & Nc 3 5 0.1224 0.0420 0.01140 0.0120

4.8 Concluding remarks

In this chapter, the following issues have been discussed:

• identifiability of material parameters of reinforced concrete given dif-
ferent quantities of interest,

• alternative experimental designs which show a greater sensitivity with
respect to parameters of interest,

• accommodating the nonlinearities of the finite element solver,

• computational efficiency in solving the stochastic inverse problems.

In this chapter, observational data from the actual tensile tests on RC tie
beams have been used to update the fracture and bond parameters of a dam-
age model for reinforced concrete. Experimental data reported in [45] and
used in the context of parameter estimation comprise the stress-deformation
curves, values of crack opening of each individual crack and number of cracks
obtained in three repeated experiments with the same geometry and material
composition. Additionally, an experiment with loading and unloading cycles,
which is very suitable for measuring the total dissipation, is proposed.

From the discussion above, one can conclude that combining different quant-
ities of interest can improve the identifiability of the target parameters and
reduce the discrepancy between the computed and measured responses. Some
combinations are particularly favourable, such as the stress-deformation
curve and dissipation for the estimation of the fracture properties of concrete
(σ̄f , Kh, ¯̄σf , ¯̄Gf ). On the other hand, properties governing the behaviour
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at the interface (τy) are well estimated when the cracking-related quantities,
such as the crack opening of a particular crack, are included. The combina-
tion of QoIs consisting of the stress-deformation curve, total dissipation and
crack opening leads to reduced discrepancy between the computed and ob-
served values of the number of cracks and the individual crack opening. The
latter affirms the fact that stronger bond leads to higher number of cracks
with smaller crack openings. From the results presented above, it is evident
that it is not possible to obtain the best possible match in stress-deformation
curve, dissipation, crack opening and number of cracks all at once. In some
cases the addition of a successive QoI results in an increase in difference
between the computed and measured value of some other QoI. Hence, ma-
terial parameters need to be calibrated with respect to QoIs which are the
most relevant for the considered problem. More precisely, in the study of the
seismic safety, it is essential to obtain a good match in dissipation. Likewise,
a good fit in stress-deformation curve is required for the analysis of the ma-
terial strength. For the serviceability limit state design of structures, on the
other hand, it is important to accurately compute the crack opening.

In general, there are two distinct approaches to parameter estimation via fil-
tering: parameter smoothing and sequential update. The former, also known
as the offline update, first carries out the prediction of the whole history and
afterwards updates the target parameters in a single update step by taking
into account the complete data history. The latter, referred to as the online
update, is more suitable for the time dependent problems as it estimates the
target parameters sequentially. In contrast to the offline update, the online
update is directly influenced by the size of the time increment chosen for up-
dating, with the update step close to zero yielding more accurate estimation
results. In this chapter, target parameters are identified by the sequential
GMKF enhanced with the PCE approximations. This approach is found to
perform well even for highly nonlinear problems such as the one considered
herein, as long as the size of the update step is kept quite small. For suf-
ficiently small update step, there is no need to build a nonlinear map for
the conditional expectation, as the problem becomes linear or quasi-linear
within a particular update step. This is especially important as the Kálmán
filter approaches are originally built for problems where both the observation
operator and the CE map are considered to be linear. Moreover, instead of
growing in time, the uncertainty is reduced as each successive loading step
is computed with the last known posterior of the uncertain parameters.

The online update can be quite expensive when performed directly on the
high fidelity model quantities. Thus, in the work herein the GMKF method
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is enhanced with functional approximations. Namely, all the quantities in
the filtering equation are expressed in terms of PCEs, which makes the com-
putation of the posterior purely algebraic and straightforward, as it is only re-
quired to calculate the posterior polynomial coefficients. Although it greatly
accelerates the GMKF update process, PCE based surrogate model has its
drawbacks as well, the main one being that its applicability is limited to
the problems with smaller number of uncertain parameters. If dimensional-
ity of the stochastic problem is fairly large, one requires a large number of
predictions to accurately build the surrogate model.
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Chapter 5

Investigation of identifiabil-
ity of material parameters of
mortar

This chapter 1 focuses on estimation of the material parameters of the mortar
mesostructure, i.e. hardened cement paste, aggregates and interface trans-
ition zone (ITZ). Geometry and the material mesostructure are based on
the micro computed tomography (µCT) scans of the actual mortar specimen
reinforced with externally bonded carbon fiber reinforced polymer (CFRP)
plates. Mortar is modelled through a discrete lattice model, introduced in
Section 3.3, consisting of spatial Timoshenko beams with embedded discon-
tinuities. For parameter estimation, once again a Bayesian approach is em-
ployed and uncertain parameters are estimated given observations of the
displacement field stemming either from digital image correlation (DIC) or
numerical simulations. Due to high dimensionality of the stochastic problem,

1The work in this chapter has been completed in collaboration with Matteo Lunardelli
(Institute of Building Materials, Concrete Construction and Fire Safety (iBMB), TU
Braunschweig), Dr. Mijo Nikolić (Faculty of Civil Engineering, Architecture and Geodesy,
University of Split, Croatia) and Prof. Dr.-Ing. Bojana Rosić (Applied Mechanics and
Data Analysis, University of Twente, The Netherlands). Matteo Lunardelli has conducted
the experimental investigation, the results of which are used for parameter estimation in
Section 5.2.7 and contributed to modelling. Dr. Mijo Nikolić has provided the lattice
model with embedded discontinuities, which is utilised to reproduce the experiment and
generate predictions of observations. Prof. Dr.-Ing. Bojana Rosić has provided the concept
of the research and guidance.

99



Chapter 5. Investigation of identifiability of material parameters of mortar

a sampling variant of the Kálmán filter, the ensemble generalised Kálmán
filter (EnGKF), is adopted as a method for parameter identification. To cope
with the nonlinearity of the concerned problem and technical requirements, a
novel sequential approach which does not require coupling between the finite
element solver and software for the stochastic analysis is proposed. Para-
meter identifiability is studied on two different shear experiments: actual
double shear test and virtual shear test.

5.1 A novel approach to sequential Bayesian in-
ference

Bearing in mind that the numerical lattice model is highly nonlinear, a fully
sequential update of the uncertain parameters is preferred to smoothing over
a certain time period. Sequential, or the so-called online update, consists
of gathering the observational data at discrete time instances tk and using
the recorded data Ẑ(k) to alter the probability description accordingly. For
the sake of simplicity, the update procedure is illustrated only for the linear
map of the conditional expectation. The ensemble generalised Kálmán filter
Eq. (2.34) is rewritten as

∀k : Q(k)
a = Q

(k)
f +K(k)

(
Ẑ(k) −

(
Y

(k)
f +E(k)

))
, (5.1)

to indicate the sequential nature of the update. At any update step tk>0,
the prior ensemble Q(k)

f in Eq. (5.1) equals the posterior ensemble from the
last update step, i.e. Q(k)

f = Q
(k−1)
a holds. The predicted observations are a

result of propagating the predicted values of the uncertain model parameters
given as a prior ensemble Q(k)

f from previous tk−1 to the current tk update
step by means of the observation operator, i.e. Y (k)

f = Y
(k)
Q (Q

(k)
f ). After each

update step, the state (e.g. internal variables of the plasticity model) needs
to be recomputed using the posterior ensemble Q(k)

a of the uncertain input
parameters at the current update step tk. It is evident that such proced-
ure requires coupling between the finite element solver and software for the
stochastic analysis, in this case between FEAP and Matlab. Often, however,
the coupling between the involved computer programs is not straightforward,
or even feasible, or they are not located at the same computer (e.g. costly
numerical simulations are often carried out on supercomputers or clusters).
Hence, the aim is to give an alternative perspective on the problem. Instead
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of recomputing the state with posterior description of the parameters dir-
ectly through the FE solver, the problem is treated as a Bayesian inference
problem. The predictions, i.e. realisations of the forward FE solver computed
with the ensemble of prior samples Q(0)

f , are computed in an offline manner
over the complete update interval of consideration, k = 0, ..., Nt, where Nt
is the number of update steps, such that

Z
(k)
fe = Y

(k)
fe + ε

(k)
f , Y

(k)
fe := YQ(Q

(0)
f , t0, tk), (5.2)

in which the subscript fe stands for the forecast of evolution.

The update, however, is performed online in three distinct stages:

1. correction of the prediction

Y
(k)
f = Y

(k)
fe +G(k)

(
Q(k−1)
a −

(
Q

(0)
f +E(k)

r

))
, (5.3)

where Y (k)
f is the ensemble of the corrected observation predictions,

whereas Y (k)
fe refers to the ensemble obtained from the FE predictions

computed with prior samples Q(0)
f . The term G(k) in Eq. (5.3) denotes

the pseudo-Kálmán gain for the state update relating Q(0)
f to Y (k)

fe at
the current update step tk. The ensemble of the posterior random para-
meters from the previous update step, Q(k−1)

a , is considered as prior in
the current step, i.e. Qa(tk−1) = Qf (tk). The ensemble of the uncer-
tain input parameters Q(0)

f corresponds to Monte Carlo samples with
which the FE observation predictions Y (k)

fe are calculated. The term
E

(k)
r denotes the pseudo-measurement error introduced for regularisa-

tion purpose.

2. parameter update

Q(k)
a = Q

(k)
f +K(k)

(
Ẑ(k) −

(
Y

(k)
f +E(k)

))
, (5.4)

in which Q(k)
a is the ensemble of the updated uncertain input paramet-

ers, K(k) is the Kálmán gain for parameter update, Ẑ(k) are the actual
(true) observations at the current step and Y (k)

f is the ensemble of the
corrected observation predictions obtained from Eq. (5.3).
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3. state update

Y (k)
a = Y

(k)
f +W (k)

(
Q(k)
a −

(
Q

(k)
f +E(k)

r

))
, (5.5)

with Y (k)
a = Y

(k+1)
f being the ensemble of the updated observation

predictions. The pseudo-Kálmán gain W (k) in this context relates
Q

(k)
f to Y (k)

f .

Note that the algorithm above is only valid for the linear approximation of
the conditional expectation. It can, however, be further generalised in order
to take into account the higher order maps by employing the formulation
derived in Section 2.5.3.

5.1.1 Method validation

The proposed approach is validated on an ordinary differential equation
(ODE) example with a single uncertain parameter A. Evolution equation
of such system can be defined as

y′ = At; y0 = 0. (5.6)

For validation purpose, uncertain parameter A is first estimated by a clas-
sical sequential EnGKF. In the classical approach, prediction of the state at
update step tk is computed by propagating the uncertainty through the high
fidelity model given in Eq. (5.6) from tk−1 to tk. In such a case, the uncer-
tain model parameter A takes values from the last known posterior, which
acts as prior in the current step. Its probabilistic description is updated by
considering the discrete points on the response evolution curve depicted in
Fig. 5.1(b) and denoted by “truth” as observations. The state update is com-
puted in an analogous manner as its prediction, by considering the samples
of A drawn from the posterior in the current step. This approach results in
posterior mean of parameter A which equals 2.0499.

Afterwards, the update is repeated by employing the novel approach, in
which the state prediction and state update are no longer computed by the
high fidelity model given in Eq. (5.6) itself, but rather by the expressions
given in Eq. (5.3) and Eq. (5.5), respectively. The resulting posterior mean
of A slightly differs from the value obtained by the classical approach and
equals 2.0406, whereas the assumed true value is equal to 2.0500.
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(a) (b)

Figure 5.1: Comparison of the classical and novel Bayesian update: a)
posterior probability density functions of A; b) updated state

Although the classical approach yields more accurate posterior estimate, the
difference between the posterior mean values is only 0.4537%, which is con-
sidered negligible. Fig. 5.1 compares the two different approaches described
above in terms of the resulting posterior densities and quantity of interest
computed with the corresponding posterior samples. Although the novel
approach is somewhat less accurate compared to the classical one, the differ-
ence between the QoI computed with the obtained posterior mean values are
negligible, see the overlapping resulting curves in Fig. 5.1(b).

5.2 Estimation of loading conditions and mater-
ial parameters of mortar given data from a
double shear test

This section introduces double shear experiment performed on a mortar spe-
cimen with externally bonded CFRP plates, discusses the peculiarities of the
experimental setup and collected experimental data and presents the results
of Bayesian parameter inference obtained by considering the observational
data acquired by the optical measurement system and digital image correla-
tion algorithms. A total of 5000 Monte Carlo samples of uncertain material
parameters and load curves are generated and used for computing realisa-
tions of the stochastic forward problem. The latter are carried out in an
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offline manner by the discrete lattice model with embedded discontinuities
using the computer program FEAP. Target parameters are updated sequen-
tially using the sampling based EnGKF, as described in Section 5.1. Elastic
properties are updated by a linear approximation of the conditional expect-
ation, whereas a nonlinear (quadratic) map is applied for the estimation of
parameters governing the inelastic behaviour of the composite.

In the previous study on cracking of the RC beams, elaborated in Chapter 4,
the loading increment is quite small, only 0.0002 mm. That means that the
originally nonlinear problem can be treated as linear or quasi-linear within a
single update step, which is equal to the loading step. In the example herein,
however, the size of the load increment is at least twice as large. Hence,
approximating the conditional expectation with a nonlinear map makes a
significant difference in the accuracy of the posterior estimates.

5.2.1 Experimental setup

Observational data stems from the far end supported (FES) double shear test
[193] performed on a specimen made of a crushed aggregate mortar prism
of dimensions 28 × 35 × 16 mm3. The substrate is cast by cementitious
mortar mixture and basalt aggregates of considerably smaller size (up to
4 mm) compared to aggregate in common concrete mixtures in order to
fit the specimen dimensions, while providing the same performance (and
same cement-to-aggregate ratio) as classical concrete of lower mechanical
properties. On each side of the mortar prism, a CFRP plate of width b =
7 mm and thickness t = 1.4 mm is bonded to mortar using a two component
epoxy resin. Fig. 5.2 depicts the specimen used in the experiment.
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Figure 5.2: Sketch of the specimen with dimensions in [mm]
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Note that the dimensions of the specimen are oddly small considering that
the test should simulate fracture and debonding in concrete. This is a dir-
ect consequence of a limitation of the machine utilised for producing the
tomographic scans of the material mesostructure. Due to small dimensions
of the specimen, the typical experimental procedure consisting of fixing the
specimen within the positioning frame and applying the tensile load simul-
taneously on both CFRP plates is ruled out. Instead, the mortar specimen is
enveloped by a CFRP sheet, as shown in Fig. 5.2. Such adjustment facilitates
the application of the load. The middle third of the specimen has somewhat
greater height, which results in two hollow spaces at the outer bottom thirds
of the specimen. For the sake of simplicity, in numerical simulations these
holes are considered occupied by the cement paste.

Specimen is placed into a testing machine DEBEN CT5000, such that the
free ends of the CFRP plates are clamped at the upper crosshead of the test-
ing machine and steel stems are placed into the empty slots at the bottom of
the specimen, as shown in Fig. 5.3. The test takes place under the displace-
ment control, with imposed displacement of a magnitude 0.5 mm/min being
applied directly on the stems and transferred accordingly to the CFRP sheet
and mortar substrate until debonding failure of one of the CFRP plates.

Figure 5.3: Experimental setup and boundary conditions (courtesy of
Matteo Lunardelli; iBMB, TU Braunschweig)

The optical measurement system consists of high resolution cameras placed
on both sides of the specimen, which aim to capture the surface displacements
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on the front and back face of the specimen where the CFRP plates are placed
and subsequently, their debonding and accompanying fracture in mortar.
The measured displacements are expressed with respect to displacements
obtained by averaging the measured values over the upper third surface (see
the blue region in Fig. 5.5) of the specimen faces. The latter are considered as
the reference surfaces in order to exclude the effect of the rigid body motion.

The primary goal of the experiment was to investigate the quality of the bond
between concrete and CFRP as well as possible debonding failure modes. The
behaviour of the bond is a key aspect for the assessment of the efficacy of the
strengthening of existing concrete structures with externally bonded CFRP
plates (see, e.g. [193, 30, 194]). Furthermore, the studies show that fracture
in such an experiment typically occurs in concrete underneath the adhesive
layer [26], which makes it highly dependent on the properties of concrete as
well. The research presented herein investigates whether the information gain
from the described double shear test is sufficient to update the knowledge
about the uncertain material parameters of mortar.

5.2.2 Experimental data

Data acquired from the above described double shear experiment consist of
the global force-slip curve (see Fig. 5.4(d)) and the surface displacements
measured both at the front and back face of the specimen as shown in
Figs. 5.4(a)–5.4(c).

(a) (b)
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(c) (d)

Figure 5.4: Experimental results: a) horizontal displacements; b) vertical
displacements; c) out-of-plane displacements; d) force-slip diagram

In the course of the experiment, one of the CFRP plates experiences debond-
ing, which is characterised by displacements of a larger magnitude, as shown
in Fig. 5.4. The specimen’s faces are thus denoted by “debonded” and “not-
debonded” (“bonded”) to distinguish between the surface which experiences
debonding of the CFRP plate and the surface at which the CFRP plate is
still attached even after cracking takes place.

(a) (b)

Figure 5.5: Observation points: a) debonded side; b) not-debonded side
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Depicted surface displacements are measured in the observation points
(marked in red) at specimen’s faces plotted in Fig. 5.5. They are chosen
such that there is no overlap with respect to nodes corresponding to the con-
tact area between the CFRP plates and mortar (dark grey points in Fig. 5.5)
or with respect to nodes which are used for the rigid body motion correction
(blue points in Fig. 5.5).

From Fig. 5.4, it is evident that all the displacement curves acquired by DIC
contain a significant amount of measurement noise, the presence of which is
inevitable, as reported in numerous works (see, e.g. [112, 49, 80]). Among
sources of uncertainty causing the noise in data, the most significant is the
camera noise resulting from temporal fluctuations of the grey levels perceived
by each pixel of the camera sensor, incorrect camera calibration or uninten-
ded camera movements during the experiment, light conditions, quality of
the speckle pattern etc. Magnitude of the measurement error is closely tied
to a specific experimental setup and environmental conditions and thus, the
error bounds need to be assessed independently for each DIC application. To
statistically study the measurement noise, authors in [49] propose taking a
series of static images of a specimen under the actual test conditions prior
to application of any load. Amplitude of the measurement noise can then be
determined by calculating the standard deviation at each measurement point.
Ideally, a perfect measurement would give a zero-displacement at all meas-
urement points and for all static images. In practice, however, that is usually
not the case. Authors in [49] show the recorded DIC measurement error for
a single static image and how averaging the results over more images leads
to smaller error bounds. As reported in [1], measurement noise-strain ra-
tio is particularly unfavourable for small-magnitude strains. This is directly
observable from the displacement curves in Fig. 5.4(c), in which the out-of
plane (z-direction) displacements having the smallest magnitude exhibit the
largest measurement noise.

Bayesian inference is able to provide posterior estimates using noisy meas-
urements. However, when the magnitude of the measurement noise is very
large with respect to the actual values of quantities of interest, as in the case
herein, it fails to produce precise estimates. Namely, as measurements are
deemed as unreliable and given a little weight via the Kálmán gain, there
is no significant information gain from data and the posterior uncertainty
mostly reflects the prior one. Moreover, if one uses the sequential approach,
large differences in the values of two successive measurements may impair
the convergence of the posterior. Hence, the noise in the raw data has to
be quantified and reduced by suitable filters prior to its use in parameter
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estimation. In the absence of pre-assessment of the measurement noise, the
results acquired by the DIC are assumed to describe the experiment only
qualitatively. For the purpose of parameter estimation, though, a single
realisation of the numerical model which closely resembles the noisy DIC
data is selected and the resulting displacement curves are approximated by
piecewise linear functions and treated as measurements. The comparison
between the DIC true displacements and their virtual counterparts is given
in Figs. 5.6(a)–5.6(f) and the true and virtual force-slip curves in Fig. 5.6(g).
Only the displacements in y-direction, which contain the least amount of
noise, are considered as measurements.

(a) (b)

(c) (d)
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(e) (f)

(g)

Figure 5.6: Experimental results: a) x-displacements at debonded side; b)
x-displacements at not-debonded side; c) y-displacements at debonded side;
d) y-displacements at not-debonded side; e) z-displacements at debonded
side; f) z-displacements at not-debonded side; g) actual and virtual true

force-slip curve

As a single realisation of a finite element solver which most closely resembles
the noisy DIC displacements is taken as truth, there is no measurement
error, but only a modelling one. Taking into account that the finite element
model is a sophisticated 3D lattice model able to appropriately describe
different stages in the material behaviour and their peculiarities and the
finite element mesh is relatively fine, the magnitude of the error is taken as
rather small (∼ 1% of the observed values of y-displacements), which reflects
the confidence in the accuracy of the numerical model.
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5.2.3 Finite element mesh and boundary conditions

The internal mesostructure of the composite is obtained from the computed
tomography scans. The distinct phases of the composite, i.e. the cement
matrix, aggregates and interface transition zone are extracted in the process
of segmentation, the aim of which is to partition the greyscale µCT image
into regions of a common brightness. The latter indicate regions of a com-
mon density. Each beam in the finite element mesh is thus assigned the
appropriate material phase according to the value contained in the segmen-
ted matrix, reflecting the density of a particular phase. Beams for which
one node is located within the aggregate and another within cement paste
are assigned the interface properties. Fig. 5.7 depicts the segmented image
of the real geometry and the corresponding finite element mesh. In Fig. 5.7,
beams marked with red represent the aggregate, the ones marked with blue
the interface transition zone and the remaining (grey) beams refer to cement
paste.

(a) (b)

Figure 5.7: Specimen geometry and mesostructure: a) segmented image
(courtesy of Matteo Lunardelli; iBMB, TU Braunschweig); b) finite element

mesh

Cross-sections of Timoshenko beams are calculated according to the Voronoi
tessellation. As observed in the work herein, the distribution of cross-sections
plays an important role in the quality of the results of numerical simulations.
The most favourable cases have a negligible portion of cross-sections being
very close to zero and the distribution of the values resembles a Gaussian
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distribution centred around 1.0 mm2. In that case, values of the material
properties of each individual beam are closer to values of the global proper-
ties of the specimen. The actual distribution of the cross-sections used in
numerical simulations is given in Fig. 5.8.

Figure 5.8: Distribution of the beam cross-sections

To reproduce the results of double shear experiment sketched in Fig. 5.3, the
boundary conditions are imposed such that they take into account the posi-
tioning of the specimen inside the testing machine, the effects of the CFRP
sheet enveloping mortar and of the CFRP plates glued to the specimen’s
faces.

uy = 0

ux = 0

uy = 0; uz = 0;
φ = 0;ψ = 0; θ = 0

y

x
z

u1

u2

u3

u4

u5 u6

ux = 0

u1
u2

u3

u4

u5 u6

Figure 5.9: Double shear test: boundary and loading conditions
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Fig. 5.9 summarises the imposed boundary conditions. The CFRP sheet
is not explicitly modelled, however, as it prevents the movements in the
directions orthogonal with respect to the CFRP sheet, the displacements in
the y-direction at both upper and bottom surface and displacements in x-
direction at the sides of the specimen are fixed. The bottom of the specimen
is fixed inside the jaws of the testing machine, hence both the vertical y- and
out-of-plane z-displacements, as well as rotations are restricted. Specimen is
subjected to imposed displacements of a varying magnitude, assigned to the
corresponding subdomains within the contact area, see Fig. 5.10.

5.2.4 Generation of imposed load curves with random
coefficients

Due to peculiarities of the experimental setup, the boundary conditions are
hard to reproduce. Namely, the load is applied through the steel stems which
are pulling the CFRP sheet and subsequently, the mortar specimen. This
attributes to the complexity of computational modelling of the experiment.
However, as the epoxy resin which binds the CFRP plates to mortar is found
to be fairly stiff, one can assume a perfect bond and refrain from modelling
of the CFRP plates and CFRP-mortar interface. Instead, the load is applied
in the form of imposed displacements directly onto the contact area.

The initial guess about the magnitude and shape of the imposed displacement
curves is adopted from the DIC measurements by considering the surface
displacements registered at the contact area as the imposed load. However,
displacements measured at these points are not the exact displacements of
mortar, but of the CFRP plates, as the DIC system can only measure the
surface displacements. The latter indicates that, in reality, the bond is not
perfect and magnitudes of the imposed load are indeed uncertain and require
a proper probabilistic interpretation.

Firstly, it is investigated whether the measured displacements share some
similarities in regards to magnitude and shape of the displacement evolution
curves in certain regions within the contact area. Accordingly, the contact
area is divided in several subdomains, the displacement history of each point
in a particular subdomain exhibiting a similar trend. The reason behind that
is twofold: the aim is to reduce the number of variables as the dimension of
the considered stochastic problem is already quite large and the other reason
being the improved convergence of the numerical simulations, as opposed
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to the case in which all the nodes within the contact area have the same
imposed load. The side of the specimen which experiences debonding and
the one at which the CFRP plate remains bonded to the mortar specimen
are considered separately and a set of imposed load curves is defined for each
of them. Fig. 5.10 illustrates both areas and their division into subdomains.
These areas preserve their shape throughout the entire experiment, as the
utilised epoxy resin is rather stiff.

(a) (b)

Figure 5.10: Imposed load domains: a) debonded side; b) not-debonded side

In the next step, the noisy displacement curves registered at the contact area,
which now play the role of imposed loading, are fitted using piecewise linear
functions. The experimental curves are divided into seven linear segments
based on recognised trend lines. For each fitted piecewise linear curve, the
interpolation coefficients by the piecewise linear regression can be calculated
as

ū = β0 + β1x+

n−1∑
j=1

βj+1(x−∆j)I(x−∆j), (5.7)

where n is the number of linear segments, β0 is the y-intercept, βj is the
slope of a particular segment, ∆j denotes the location of the slope change
between two successive segments and I(x−∆j) = 1 if x ≥ ∆j and 0 otherwise.
For each curve, the locations of the slope changes ∆j are considered to be
equal. In order to enforce the fact that no pre-stressing is taking place in
the specimen, the y-intercepts are set to be zero. Figs. 5.11–5.12 give an
overview of imposed load curves per domain (see Fig. 5.10) for the debonded
and not-debonded side of the specimen, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Deterministic imposed load curves at debonded side per
domain: a) domain 1; b) domain 2; c) domain 3; d) domain 4; e) domain 5;

f) domain 6
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(a) (b)

(c) (d)

(e)

Figure 5.12: Deterministic imposed load curves at not-debonded side per
domain: a) domain 2; b) domain 3; c) domain 4; d) domain 5; e) domain 6

116



Chapter 5. Investigation of identifiability of material parameters of mortar

As the magnitude of the imposed displacements is uncertain, coefficients of
the deterministic piecewise linear curves are modelled as random variables.
They are first normalised such that each individual interpolation coefficient
is divided by the mean value. The resulting scaling factors are then utilised
for calculation of the bounds [a, b] of the uniform distribution U(a, b), the
samples of which are used for defining realisations of the interpolation coeffi-
cients, i.e. c(ω) = (a+(b− a)u(ω))β̄, where u(ω) ∼ U(0, 1) are samples from
the standard uniform distribution and β̄ is the mean of the deterministic inter-
polation coefficients, applied for removing the normalisation. Different seeds
are used for the debonded and not-debonded side, making the load curves
at both specimen’s faces uncorrelated. With the newly obtained samples of
interpolation coefficients c, one can generate an arbitrary number of imposed
displacement curves.

(a) (b)

(c) (d)
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(e) (f)

Figure 5.13: Random realisations of imposed load curves at debonded side
per domain: a) domain 1; b) domain 2; c) domain 3; d) domain 4; e)

domain 5; f) domain 6

Fig. 5.13 and Fig. 5.14 depict the deterministic piecewise linear curves and
5000 realisations with the random interpolation coefficients, used in the nu-
merical simulations, for both debonded and not-debonded side of the speci-
men.

(a) (b)
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(c) (d)

(e)

Figure 5.14: Random realisations of imposed load curves at not-debonded
side per domain: a) domain 2; b) domain 3; c) domain 4; d) domain 5; e)

domain 6

5.2.5 Identification of the uncertain load curves

The aim is to identify 11 imposed displacement curves (6 at the debonded
and 5 at the not-debonded side), for each subdomain within the contact
area between the CFRP and mortar (see Fig. 5.10). Bayesian inference is
carried out as described in Section 5.1. The stochastic problem now contains
11 random variables corresponding to uncertain interpolation coefficients c
introduced in Section 5.2.4, which are identified given DIC observations of
the displacement field, or rather a realisation of the finite element solver
which resembles the DIC observations, in the observation points shown in
Fig. 5.5.

119



Chapter 5. Investigation of identifiability of material parameters of mortar

(a) (b)

(c) (d)

(e) (f)

Figure 5.15: Prior realisations and posterior mean and quantiles of imposed
load curves at debonded side per domain: a) domain 1; b) domain 2; c)

domain 3; d) domain 4; e) domain 5; f) domain 6
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(a) (b)

(c) (d)

(e)

Figure 5.16: Prior realisations and posterior mean and quantiles of imposed
load curves at not-debonded side per domain: a) domain 2; b) domain 3; c)

domain 4; d) domain 5; e) domain 6

121



Chapter 5. Investigation of identifiability of material parameters of mortar

Bayesian inference results in posterior load curves given per each load sub-
domain, the mean and posterior quantiles of which are plotted in Fig. 5.15
for the debonded side of the specimen and in Fig. 5.16 for the not-debonded
side. All of the resulting posterior curves lie within the region of sampled load
curves. The 95% quantiles of the posterior load curves shown in Figs. 5.15–
5.16 are considerably narrow, which implies a significant reduction of uncer-
tainty in the loading conditions. For a comparison, realisations of the prior
loading curves, plotted in colour in Figs. 5.13–5.14, are marked in blue and
denoted as “prior” in Figs. 5.15–5.16.

5.2.6 Prior description of material parameters

In addition to 11 load curves defined per each subdomain of the contact
area, the aim is to estimate a total of 34 material parameters pertaining
to different stages in the behaviour of the composite: elasticity, material
hardening and the post-peak softening behaviour. Mortar is modelled as
a heterogeneous material consisting of three distinct phases: the cement
matrix, aggregate and interface transition zone between them. Thus, the
posterior of the following material properties modelled as random variables is
sought: bulk K and shear G moduli (elasticity); yield stresses in compression
σyc , shear direction I or mode II τy1 and shear direction II or mode III
τy2 , hardening moduli in compression Kc, shear direction I Kτ1 and II Kτ2

(hardening); ultimate stresses in mode I (tension) σut
, compression σuc

, mode
II (shear) τu1

and III (shear) τu2
, fracture energy in mode I (tension) Gft ,

compression Gfc , mode II (shear) Gfτ1 and mode III (shear) Gfτ2 (softening).
Elastic properties are sought for all three constituting materials, whereas the
fracture properties only for cement matrix and interface, as aggregate almost
never breaks.

Table 5.1: Prior probabilistic description: mean value and standard
deviation of the uncertain elastic parameters of mortar

Property Mean Standard deviation
Kcm 10666.67 (MPa) 853.33 (MPa)
Gcm 6400.00 (MPa) 512.00 (MPa)
Kitz 4000.00 (MPa) 320.67 (MPa)
Gitz 2400.00 (MPa) 192.00 (MPa)
Ka 33333.33 (MPa) 2666.67 (MPa)
Ga 20000.00 (MPa) 1600.00 (MPa)
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Table 5.2: Prior probabilistic description: mean value and standard
deviation of the uncertain hardening parameters of mortar

Property Mean Standard deviation
σyc,cm 4.00 (MPa) 0.40 (MPa)
τy1,cm 1.80 (MPa) 0.18 (MPa)
τy2,cm 1.80 (MPa) 0.18 (MPa)
Kc,cm 0.60 (MPa) 0.06 (MPa)
Kτ1,cm 0.60 (MPa) 0.06 (MPa)
Kτ2,cm 0.60 (MPa) 0.06 (MPa)

σyc,itz 1.70 (MPa) 0.17 (MPa)
τy1,itz 0.90 (MPa) 0.09 (MPa)
τy2,itz 0.90 (MPa) 0.09 (MPa)
Kc,itz 0.50 (MPa) 0.05 (MPa)
Kτ1,itz 0.50 (MPa) 0.05 (MPa)
Kτ2,itz 0.50 (MPa) 0.05 (MPa)

Table 5.3: Prior probabilistic description: mean value and standard
deviation of the uncertain softening parameters of mortar

Property Mean Standard deviation
σut,cm 7.80 (MPa) 0.78 (MPa)
σuc,cm 16.80 (MPa) 1.68 (MPa)
τu1,cm 6.30 (MPa) 0.63 (MPa)
τu2,cm 6.30 (MPa) 0.63 (MPa)
¯̄Gft,cm 0.80 (N/mm) 0.08 (N/mm)
¯̄Gfc,cm 1.20 (N/mm) 0.12 (N/mm)
¯̄Gfτ1 ,cm 0.80 (N/mm) 0.08 (N/mm)
¯̄Gfτ2 ,cm 0.80 (N/mm) 0.08 (N/mm)

σut,itz 3.10 (MPa) 0.31 (MPa)
σuc,itz 7.30 (MPa) 0.73 (MPa)
τu1,itz 2.60 (MPa) 0.26 (MPa)
τu2,itz 2.60 (MPa) 0.26 (MPa)
¯̄Gft,itz 0.50 (N/mm) 0.05 (N/mm)
¯̄Gfc,itz 0.90 (N/mm) 0.09 (N/mm)
¯̄Gfτ1 ,itz 0.50 (N/mm) 0.05 (N/mm)
¯̄Gfτ2 ,itz 0.50 (N/mm) 0.05 (N/mm)

Material properties described above are positive definite, hence they can only
take positive values. That is reflected in the choice of the prior distribution.
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Accordingly, it is assumed that all random variables follow the lognormal
distribution, q ∼ lN (µq, Cq), where µq and Cq denote mean and covari-
ance, respectively. The prior mean values are selected based on the available
experimental data on material property testing and preliminary numerical
simulations. A standard deviation of 8% of the mean value µq is imposed on
elastic uncertain parameters and a slightly higher value, 10%µq is assumed
for the parameters governing the inelastic behaviour. Moreover, all random
variables pertaining to material properties are considered as uncorrelated.
Summary of prior description of the properties of individual Timoshenko
beams (mean value and standard deviation) is given in Tables 5.1–5.3, in
which index cm denotes cement matrix properties, itz interface transition
zone and a aggregate.

5.2.7 Estimation of material parameters of mortar

In this section, the results of Bayesian inference of material parameters of
mortar given DIC observations of the displacement field is presented. Numer-
ical simulations are computed by assuming the imposed load curves described
in Section 5.2.4. Bayesian inference is carried out in the same manner as the
inference of the uncertain load curves, according to the procedure outlined
in Section 5.1.

5.2.7.1 Estimation of elastic parameters

Immediately upon gathering a first portion of observations, parameters to
be identified are the bulk K and shear G moduli. Namely, in the first few
update steps mechanical behaviour of the composite is governed merely by
its elastic constants and the remaining material parameters contribute to the
response only later, when the elastic behaviour of the material is substituted
by the inelastic phase.

Fig. 5.17 shows both prior and posterior PDFs of elastic constants of ce-
ment paste, interface transition zone and aggregate, respectively. Posterior
is plotted in terms of several update steps to show that with every new ob-
servation, the posterior PDF becomes more narrow and converges towards
the parameter true value.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.17: Prior and posterior PDFs of the elastic parameters: a) bulk
modulus of cement paste; b) shear modulus of cement paste; c) bulk

modulus of ITZ; d) shear modulus of ITZ; e) bulk modulus of aggregate; f)
shear modulus of aggregate
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In the elastic regime, only around 12 steps are needed to achieve an almost
perfect match between the posterior mean and true value, with visibly de-
creased variance and subsequently, notably reduced uncertainty. In the later
update steps, the PDFs of bulk and shear moduli remain centered around
the converged value, exhibiting no further reduction in variance.

Table 5.4 gives an overview of prior and posterior values of elastic parameters
and a comparison with regards to their true values. Comparing the standard
deviation of prior and posterior, one can observe a slightly greater (around
2%) reduction of uncertainty in the posterior description of shear moduli
compared to bulk moduli. The latter is in agreement with the shear nature
of the experiment and confirms that the considered double shear experiment
brings a higher information gain about the shear parameters.

Table 5.4: Prior and posterior probabilistic description of local properties:
mean value and standard deviation of the uncertain elastic parameters

estimated from double shear experiment

Property
Prior Posterior True

Mean Std. dev. Mean Std. dev.
Kcm [MPa] 10666.67 853.33 10949.50 68.19 10918.90
Gcm [MPa] 6400.00 512.00 5898.53 33.84 5896.70
Kitz [MPa] 4000.00 320.67 4318.05 29.71 4323.47
Gitz [MPa] 2400.00 192.00 2434.67 13.97 2434.32
Ka [MPa] 33333.33 2666.67 31293.82 222.03 31267.35
Ga [MPa] 20000.00 1600.00 20049.55 114.97 20036.39

5.2.7.2 Estimation of parameters related to hardening

After few initial update steps, the influence of inelastic parameters governing
the hardening behaviour becomes apparent. While PDFs of elastic properties
remain stationary, PDFs of the yield stresses σyc , τy1 , τy2 are visibly changing.
In Figs. 5.18(a)–5.18(c) for properties of the cement paste and Figs. 5.18(d)–
5.18(f) for the properties of the interface transition zone, one can notice a shift
in the posterior mean towards the true value, accompanied by a reduction
in variance. Information gain from the newly attained data causes further
reduction in the uncertainty and around the update step 20, PDFs of yield
stresses reach their final shape. The resulting posterior PDFs have a slightly
higher variance compared to the posterior of the elastic properties, implying
lower confidence about their actual values.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: Prior and posterior PDFs of the yield stresses in: a)
compression (cement); b) mode II (cement); c) mode III (cement); d)

compression (ITZ); e) mode II (ITZ); f) mode III (ITZ)
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As nonlinearities become more prominent, the reduction of variance is not
as drastic as in the case of elastic parameters and yield stresses. That is
directly observable in the posterior PDFs of the hardening moduli Kc, Kτ1 ,
Kτ2 , shown in Fig. 5.19. As soon as the initial linear response is replaced
by the inelastic one, PDFs of the hardening moduli start fluctuating, with
more prominent changes visible around update step 20. Thereafter, around
20 update steps are needed for the posterior mean and variance to reach
their stationary values. From Fig. 5.19, one can note that all the posterior
mean values of the hardening moduli are converging towards the true value,
except the mean value of the hardening modulus for the interface in mode II,
Kτ1,itz. This can be either due to lack of sensitivity of Kτ1,itz with respect to
the displacement field or the fact that the experiment does not bring enough
information about this particular parameter (e.g. fracture is not realised in
mode II).

(a) (b)

(c) (d)
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(e) (f)

Figure 5.19: Prior and posterior PDFs of the hardening moduli in: a)
compression (cement); b) mode II (cement); c) mode III (cement); d)

compression (ITZ); e) mode II (ITZ); f) mode III (ITZ)

Table 5.5 summarises the prior and posterior description (i.e. the mean value
and standard deviation) of the parameters related to hardening in comparison
to their true values.

Table 5.5: Prior and posterior probabilistic description of local properties:
mean value and standard deviation of the uncertain hardening parameters

estimated from double shear experiment

Property
Prior Posterior True

Mean Std. dev. Mean Std. dev.
σyc,cm [MPa] 4.00 0.40 4.42 0.028 4.41
τy1,cm [MPa] 1.80 0.18 1.64 0.022 1.66
τy2,cm [MPa] 1.80 0.18 1.86 0.024 1.88
Kc,cm [MPa] 0.60 0.06 0.54 0.036 0.53
Kτ1,cm [MPa] 0.60 0.06 0.62 0.040 0.62
Kτ2,cm [MPa] 0.60 0.06 0.64 0.052 0.63

σyc,itz [MPa] 1.70 0.17 1.53 0.012 1.54
τy1,itz [MPa] 0.90 0.09 0.98 0.033 0.98
τy2,itz [MPa] 0.90 0.09 0.90 0.040 0.91
Kc,itz [MPa] 0.50 0.05 0.53 0.030 0.52
Kτ1,itz [MPa] 0.50 0.05 0.51 0.026 0.48
Kτ2,itz [MPa] 0.50 0.05 0.45 0.035 0.48
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5.2.7.3 Estimation of parameters related to softening

In the last stage of the parameter estimation, the goal is to identify para-
meters related to the softening part of the response, i.e. the ultimate stresses
σut

, σuc
, τu1

, τu2
and fracture energies ¯̄Gft , ¯̄Gfc , ¯̄Gfτ1 , ¯̄Gfτ2 in tension, com-

pression and both shear modes, respectively. Both of these quantities are
essential for the description of fracture in the material. Principal stress in
specimen reaching the value of ultimate stress implies the appearance of a
macroscopic crack, which can either represent a mode I, mode II or mode III
fracture. The accompanying energy release in terms of fracture energies is
also defined for each fracture mode independently. The results of Bayesian
inference of these parameters are given in Figs. 5.20–5.21 for both cement
paste and the interface transition zone.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 5.20: Prior and posterior PDFs of the ultimate stresses in: a)
tension (cement); b) compression (cement); c) mode II (cement); d) mode
III (cement); e) tension (ITZ); f) compression (ITZ); g) mode II (ITZ); h)

mode III (ITZ)

In this phase, behaviour of the composite is quite nonlinear and the dis-
crepancy between the computed and observed response is more significant
compared to discrepancies in elastic and hardening phase. This is directly
reflected in the quality of the updates, resulting in larger variance of the pos-
terior or the posterior failing to converge towards the true value. Comparing
the estimation of the cement paste and interface properties, there is a visible
difference in the quality of the updates. Namely, while all posterior PDFs of
the cement paste properties, with larger or smaller variance reduction, are
shifted in the direction of their true values, the same does not hold for all
the values of the interface properties (see Fig. 5.20(g) for which the posterior
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is shifted in the opposite direction with respect to the true value).

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 5.21: Prior and posterior PDFs of fracture energies in: a) tension
(cement); b) compression (cement); c) mode II (cement); d) mode III
(cement); e) tension (ITZ); f) compression (ITZ); g) mode II (ITZ); h)

mode III (ITZ)

Table 5.6: Prior and posterior probabilistic description of local properties:
mean value and standard deviation of the uncertain softening parameters

estimated from double shear experiment

Property
Prior Posterior True

Mean Std. dev. Mean Std. dev.
σut,cm [MPa] 7.80 0.78 8.15 0.135 7.968
σuc,cm [MPa] 16.80 1.68 17.44 0.479 17.850
τu1,cm [MPa] 6.30 0.63 6.56 0.203 7.028
τu2,cm [MPa] 6.30 0.63 5.93 0.179 5.685
¯̄Gft,cm [N/mm] 0.80 0.08 0.76 0.027 0.777
¯̄Gfc,cm [N/mm] 1.20 0.12 1.06 0.041 1.154
¯̄Gfτ1 ,cm [N/mm] 0.80 0.08 0.81 0.034 0.815
¯̄Gfτ2 ,cm [N/mm] 0.80 0.08 0.82 0.034 0.772

σut,itz [MPa] 3.10 0.31 3.45 0.066 3.319
σuc,itz [MPa] 7.30 0.73 7.78 0.488 8.543
τu1,itz [MPa] 2.60 0.26 2.39 0.073 2.819
τu2,itz [MPa] 2.60 0.26 2.36 0.106 2.469
¯̄Gft,itz [N/mm] 0.50 0.05 0.56 0.021 0.560
¯̄Gfc,itz [N/mm] 0.90 0.09 0.86 0.038 0.814
¯̄Gfτ1 ,itz [N/mm] 0.50 0.05 0.56 0.020 0.535
¯̄Gfτ2 ,itz [N/mm] 0.50 0.05 0.48 0.021 0.500
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Considering the results of Bayesian update shown in Figs. 5.20–5.21, one can
conclude that no fracture mode stands out, which indicates that fracture is
not purely a shear one, but rather a mixed-type fracture combining several
modes. The latter is a result of the experimental design, which assumes that
the mortar specimen is enveloped with a CFRP sheet (see Section 5.2.1).
Such setup influences the fracture pattern of mortar. Detailed description
of the prior and posterior for the parameters related to softening is given in
Table 5.6.

5.2.8 Validation of the results

Results of Bayesian inference are validated by computing realisations of the fi-
nite element solver with the posterior mean values of parameters and imposed
load curves and comparing them against the displacement field obtained
by the piecewise linear approximation of the actual displacement curves re-
gistered by the optical measuring system. Inference can be deemed as suc-
cessful if measured quantities are accurately reproduced with the posterior
description of parameters. Fig. 5.22 shows a good agreement between the
observed surface displacements and the ones computed with the posterior
mean of the uncertain parameters.

(a) (b)

Figure 5.22: Comparison between the true virtual y-displacements and
model displacements computed with the posterior mean values of

parameters in observation points at: a) debonded side; b) not-debonded
side
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Although posterior of some of the parameters has not converged, i.e. Kτ1,itz

and τu1,itz, computed displacements still closely follow the true displacement
curves, which implies that the displacement field is not sensitive to these
particular parameters.

In addition, it is explored whether the fracture pattern from a double shear
experiment can be reproduced by the lattice model. In the actual experiment,
macroscopic cracks are located around the area where CFRP plates are glued
to the mortar specimen, as shown in Fig. 5.23(a). The side view of a µCT
scan of the cracked specimen, depicted in Fig. 5.23(b), gives a better insight
into the crack pattern. CFRP plate at the left side of the specimen is still
bonded despite fracture taking place within mortar, whereas the one at the
right side (front side in Fig. 5.23(a)) is completely debonded from the mortar
specimen.

(a) (b)

Figure 5.23: Fracture in far end supported double shear experiment: a)
front view; b) side view (courtesy of Matteo Lunardelli; iBMB, TU

Braunschweig)

Fig. 5.24 illustrates the fracture pattern obtained by the finite element sim-
ulation with posterior description of the identified parameters in all three
fracture modes. Only the debonded side of the specimen is plotted, where
the cracks are the most prominent. Both the experimental and numerical
analysis results in similar fracture pattern, with macroscopic cracks located
around the glue area and largest crack opening in the bottom portion of
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cracked beams.

(a) (b)

(c)

Figure 5.24: Crack opening in the last loading step in: a) mode I; b) mode
II; c) mode III
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Moreover, from Fig. 5.24 one can observe a portion of cracked beams located
within the glue area, which is in good agreement with the experiment as
the debonding takes place at this side of the specimen (see Fig. 5.23(b) for
comparison).

5.3 Estimation of material parameters of mortar
given data from a virtual shear test

In Section 5.2, the results of Bayesian inference of uncertain material para-
meters of mortar given experimental data from a far end double shear test
are presented. Although the experiment was initially designed for the pur-
pose of investigating the bond behaviour of the externally bonded CFRP
plates, the posterior values are in good agreement with the virtual truth and
only a handful of parameters are not converging. However, the previously
described experiment is not ideal for investigation of fracture in mortar, as
the CFRP sheet prevents any movements at the enveloped surfaces, thus in-
fluencing the composite’s fracture pattern. This is reflected in the posterior
PDFs of fracture parameters exhibiting a relatively high variance. Hence,
this section explores whether the identifiability of the parameters of interest
can be improved by an alternative experimental setup.

(a) (b)

Figure 5.25: Observation points: a) front side; b) back side
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Target material parameters of mortar are estimated in the same manner
as in Section 5.2, by a sequential version of EnGKF combining the offline
prediction and online update. Numerical simulations are computed using
the computer program FEAP with a sample size of 1000. Prior description
of uncertain model parameters is given in Tables 5.1–5.3. Observational
data stems from the virtual shear experiment described in Section 5.3.1 and
consists of displacements measured at discrete points at both front and back
faces of the specimen, as shown in Fig. 5.25. Observation points are located
at the shear failure planes, where shear fracture takes place, to maximise the
information gain about the fracture parameters.

5.3.1 Experimental setup

Geometry of the mortar specimen introduced in Section 5.2.1 is retained,
i.e. the substrate is cast by cementitious mortar mixture and basalt aggreg-
ates in the form of a prism of dimensions 28×35×16mm3. The CPRF plates
and CFRP sheet are excluded in the present example, as only the properties
of mortar are interesting in this context.

u

ux = 0; uy = 0; uz = 0;
φ = 0;ψ = 0; θ = 0

y

x
z

Figure 5.26: Virtual shear test: boundary and loading conditions

Boundary and loading conditions resemble the ones in a direct shear test [85],
i.e. similar as in [20, 195]. Specimen is supported on two rigid blocks placed
at the outer thirds of the span, whereas the load is applied uniformly at the
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middle third of the upper surface, as shown in Fig. 5.26. The test is carried
out under controlled displacement at the rate of ∆ū = 0.0004 mm/s.

5.3.2 Estimation of elastic parameters

Fig. 5.27 illustrates the posterior PDFs of the elastic material properties,
i.e. the bulk and shear moduli, whereas the detailed posterior descriprion and
comparison with respect to the virtual truth is given in Table 5.7. Note that,
although the target parameters are estimated using a sequential EnGKF, only
the final posterior PDFs are plotted in Fig. 5.27 along with the final PDFs
obtained in Section 5.2.7.1 by exploiting the data from a double shear test.
This allows a direct comparison between the posterior estimates resulting
from Bayesian inference using data from two different shear experiments and
thus facilitates drawing conclusions about the parameter identifiability.

(a) (b)

(c) (d)
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(e) (f)

Figure 5.27: Comparison of posterior PDFs estimated from double shear
test and virtual shear test. Prior and posterior PDFs of the elastic

properties: a) bulk modulus of cement paste; b) shear modulus of cement
paste; c) bulk modulus of ITZ; d) shear modulus of ITZ; e) bulk modulus

of aggregate; f) shear modulus of aggregate

Table 5.7: Prior and posterior probabilistic description of local properties:
mean value and standard deviation of the uncertain elastic parameters

estimated from virtual shear experiment

Property
Prior Posterior True

Mean Std. dev. Mean Std. dev.
Kcm [MPa] 10666.67 853.33 10962.56 50.53 10918.90
Gcm [MPa] 6400.00 512.00 5908.64 23.46 5896.70
Kitz [MPa] 4000.00 320.67 4316.39 18.71 4323.47
Gitz [MPa] 2400.00 192.00 2439.90 9.69 2434.32
Ka [MPa] 33333.33 2666.67 31448.20 156.67 31267.35
Ga [MPa] 20000.00 1600.00 20072.63 79.59 20036.39

Results of Bayesian inference of parameters in the elastic regime are very
similar to the ones reported in Section 5.2.7.1. In both cases, the resulting
posterior PDFs are very narrow, reflecting the improved confidence in the
parameters’ actual values. There are slight differences, though, when com-
paring values from the Tables 5.4 and 5.7. The posterior PDFs are closer to
the true value when observations are taken from double shear test, but the
difference in the posterior mean values is up to 0.4%, which can be deemed as
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negligible. The displacement field from the virtual shear experiment shows
greater sensitivity with respect to elastic parameters, as the variance reduc-
tion is more apparent. In conclusion, both double shear experiment and
virtual shear experiment can bring enough information in order to identify
the elastic parameters with satisfactory accuracy.

5.3.3 Estimation of parameters related to hardening

Figs. 5.28–5.29 depict the posterior PDFs of the yield stresses and hardening
moduli obtained from a virtual shear test. The posterior PDFs in Figs. 5.28–
5.29 stem from the final update step and are plotted together with the final
PDFs obtained in Section 5.2.7.2. A comparison between the posterior es-
timates and corresponding true values is given in Table 5.8.

When the material starts exhibiting nonlinear behaviour, the differences
between the updates obtained from double shear test and virtual shear test
become more obvious. Comparing the posterior PDFs of the hardening quant-
ities given in Tables 5.5 and 5.8, one can notice a much greater reduction in
variance when using the data from the virtual shear experiment.

Observations from the virtual shear test show a significant sensitivity with
respect to yield stresses in all three fracture modes. The respective posterior
PDFs become so narrow that the results are almost deterministic, as shown
in Figs. 5.28 and 5.29. Posterior estimates pertaining to properties of the
interface transition zone, see Figs. 5.28(d)–5.28(f), turn out to be more exact
and converge faster, compared to estimates pertaining to properties of the
cement paste, see Figs. 5.28(a)–5.28(c).

(a) (b)
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(c) (d)

(e) (f)

Figure 5.28: Comparison of posterior PDFs estimated from double shear
test and virtual shear test. Prior and posterior PDFs of the yield stresses

in: a) compression (cement); b) mode II (cement); c) mode III (cement); d)
compression (ITZ); e) mode II (ITZ); f) mode III (ITZ)

Estimation of the hardening moduli, governing the hardening behaviour of
the composite, shows significant improvements with respect to results presen-
ted in Section 5.2.7.2. Namely, the variance of the posterior PDFs is visibly
reduced and posterior mean values are closer to the true values, see Tables 5.5
and 5.8. This holds for all hardening moduli, except for the hardening modu-
lus in compression for cement paste (see the blue curve in Fig. 5.29(a)), which
is better estimated in the previous case (see the red curve in Fig. 5.29(a)).
The hardening modulus in mode III for the interface, which was previously
not converging towards the true value, is now more accurately estimated (see
Fig. 5.29(f)).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.29: Comparison of posterior PDFs estimated from double shear
test and virtual shear test. Prior and posterior PDFs of the hardening
moduli in: a) compression (cement); b) mode II (cement); c) mode III
(cement); d) compression (ITZ); e) mode II (ITZ); f) mode III (ITZ)
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Overall, the estimates in hardening regime are more accurate when one con-
siders observations from the virtual shear test. The latter particularly holds
for the parameters describing the shear properties of the composite.

Table 5.8: Prior and posterior probabilistic description of local properties:
mean value and standard deviation of the uncertain hardening parameters

estimated from virtual shear experiment

Property
Prior Posterior True

Mean Std. dev. Mean Std. dev.
σyc,cm [MPa] 4.00 0.40 4.42 0.003 4.41
τy1,cm [MPa] 1.80 0.18 1.67 0.011 1.66
τy2,cm [MPa] 1.80 0.18 1.89 0.011 1.88
Kc,cm [MPa] 0.60 0.06 0.65 0.019 0.53
Kτ1,cm [MPa] 0.60 0.06 0.62 0.010 0.62
Kτ2,cm [MPa] 0.60 0.06 0.60 0.014 0.63

σyc,itz [MPa] 1.70 0.17 1.54 0.001 1.54
τy1,itz [MPa] 0.90 0.09 0.97 0.006 0.98
τy2,itz [MPa] 0.90 0.09 0.92 0.010 0.91
Kc,itz [MPa] 0.50 0.05 0.52 0.016 0.52
Kτ1,itz [MPa] 0.50 0.05 0.48 0.012 0.48
Kτ2,itz [MPa] 0.50 0.05 0.49 0.012 0.48

5.3.4 Estimation of parameters related to softening

As nonlinearities become more prominent and the material experiences strain-
softening behaviour, differences in the posterior estimates become even more
evident. Examining the final posterior PDFs of the ultimate stresses plotted
in Fig. 5.30, one can immediately notice a significant improvement in the
accuracy of the estimates, compared to the PDFs from Section 5.2.7.3 plotted
in Fig. 5.20. Namely, the posterior mean values are closer to the true values
and variance is significantly smaller when data stems from the virtual shear
experiment. Moreover, in the case of double shear test all target parameters
are updated equally well, which does not hold for the case of a virtual shear
test. The latter results in very good estimates of the parameters related
to shear, while the ultimate stresses in tension cannot be updated, as the
posterior PDFs advance in the opposite direction with respect to the true
values, see Fig. 5.30(a) and Fig. 5.30(e). This can be explained by the fact
that fracture in double shear experiment is not purely in shear, but rather
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of a mixed type, whereas in virtual shear experiment fracture predominantly
occurs in mode II.

(a) (b)

(c) (d)

(e) (f)
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(g) (h)

Figure 5.30: Comparison of posterior PDFs estimated from double shear
test and virtual shear test. Prior and posterior PDFs of the ultimate
stresses in: a) mode I (cement); b) compression (cement); c) mode II

(cement); d) mode III (cement); e) mode I (ITZ); f) compression (ITZ); g)
mode II (ITZ); h) mode III (ITZ)

Furthermore, by comparing Figs. 5.30(a)–5.30(d) with Figs. 5.30(e)–5.30(h),
one can note that the posterior estimates of the interface properties are more
exact than their cement paste counterparts. Namely, the interface transition
zone is typically the weakest part of the composite and hence, it is a part
which is most prone to cracking. As the macroscopic cracks usually nucleate
and propagate over the interface between the aggregate and the surrounding
cement paste, it is expected that the observations are more sensitive to the
interface parameters, leading to more accurate posterior quantities.

(a) (b)
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(c) (d)

(e) (f)

(g) (h)

Figure 5.31: Comparison of posterior PDFs estimated from double shear
test and virtual shear test. Prior and posterior PDFs of fracture energies in:

a) mode I (cement); b) compression (cement); c) mode II (cement); d)
mode III (cement); e) mode I (ITZ); f) compression (ITZ); g) mode II

(ITZ); h) mode III (ITZ)
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Everything that is stated above regarding the estimates of the ultimate
stresses, holds for the estimates of the fracture energies as well. Fracture
energies in mode II and III are very sensitive with respect to observations,
which is reflected in very accurate estimates for these particular parameters,
as shown in Fig. 5.31. Moreover, a very narrow posterior PDF of the fracture
energy in mode II for the ITZ confirms that fracture is indeed a shear frac-
ture, with dominant mode II and crack propagation through the interface
transition zone.

Table 5.9: Prior and posterior probabilistic description of local properties:
mean value and standard deviation of the uncertain softening parameters

estimated from virtual shear experiment

Property
Prior Posterior True

Mean Std. dev. Mean Std. dev.
σut,cm [MPa] 7.80 0.78 7.30 0.182 7.968
σuc,cm [MPa] 16.80 1.68 18.24 0.163 17.850
τu1,cm [MPa] 6.30 0.63 7.08 0.083 7.028
τu2,cm [MPa] 6.30 0.63 5.70 0.088 5.685
¯̄Gft,cm [N/mm] 0.80 0.08 0.80 0.021 0.777
¯̄Gfc,cm [N/mm] 1.20 0.12 1.15 0.031 1.154
¯̄Gfτ1 ,cm [N/mm] 0.80 0.08 0.81 0.020 0.815
¯̄Gfτ2 ,cm [N/mm] 0.80 0.08 0.77 0.020 0.772

σut,itz [MPa] 3.10 0.31 2.94 0.077 3.319
σuc,itz [MPa] 7.30 0.73 8.53 0.096 8.543
τu1,itz [MPa] 2.60 0.26 2.76 0.029 2.819
τu2,itz [MPa] 2.60 0.26 2.49 0.067 2.469
¯̄Gft,itz [N/mm] 0.50 0.05 0.49 0.013 0.560
¯̄Gfc,itz [N/mm] 0.90 0.09 0.84 0.022 0.814
¯̄Gfτ1 ,itz [N/mm] 0.50 0.05 0.53 0.005 0.535
¯̄Gfτ2 ,itz [N/mm] 0.50 0.05 0.51 0.012 0.500

Finally, one can conclude that the proposed virtual shear experiment leads
to quite accurate posterior estimates of the fracture properties pertaining to
mode II and mode III and the identifiability of the target parameters is sig-
nificantly improved with respect to double shear experiment with externally
bonded CFRP plates.
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5.4 Concluding remarks

The aim of the work described in this chapter was to tackle the following
issues:

• suitability of the far end supported double shear test with externally
bonded CFRP plates for identification of the material parameters of
mortar,

• uncertain boundary conditions resulting from the implementation of
the actual experiment,

• high dimensionality of the stochastic inverse problem,

• coupling of the finite element solver and the computer program for
stochastic analysis in sequential Bayesian inference,

• design of the experiment which improves the identifiability of the para-
meters of interest.

Double shear experiment introduced in this chapter was originally designed to
investigate the bond between mortar and CFRP. Nevertheless, the available
experimental data is here employed beyond its initial purpose for estimation
of material parameters of mortar. The obtained results are in good agree-
ment with the observational data. Moreover, the fracture pattern from the
experiment can be reproduced with the employed lattice model.

Actual experiments often require certain arrangements to facilitate their im-
plementation in testing facilities, such as the addition of a CFRP sheet in
the example herein. These arrangements, however, may limit the usability
of the experimental data, especially if one wants to use the generated exper-
imental data beyond its initial purpose. The latter often becomes apparent
in hindsight, after the experiment takes place. In order to ensure that the
experiment meets the requirements of its potential applications, it should
be simulated virtually beforehand. Namely, virtual experiments are a great
tool for identifying weak aspects of the experimental design and they give
an insight into many potential applications for which the data could be used.
Moreover, they can be used for validation of the implementation of meth-
ods for stochastic parameter identification. Hence, a good practice would be
to always adopt the virtual experiments as a first step in the experimental
design, prior to investing time and resources into an experiment which has
very limited usage.
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Despite the shortcomings of the considered experimental setup, i.e. influence
of the CFRP sheet on computational reproducibility, this chapter illustrates
how loading conditions of a simplified experimental setup can be successfully
identified using Bayesian inference methods and exploiting the indirect ob-
servations. As a result, the simplified experiment, which does not require
modelling of the CFRP plates and sheet, is able to produce a response com-
parable to the one in the actual test.

Another limiting factor for using actual experimental data from the pro-
posed experiment was the lack of measurement error assessment of the
DIC. No amount of postprocessing was able to produce meaningful filtered
curves without the knowledge about the magnitude of the measurement noise.
Hence, the experimental data was only used qualitatively, whereas the quant-
itative representation was adopted from numerical simulations of the finite
element model.

In the example considered in this chapter, posterior estimates of 34 material
parameters and 11 uncertain load curves were sought, which leads to high
dimensionality of the stochastic inverse problem. In this case, the use of PCE-
based surrogate model was ruled out, as it would require a very high number
of numerical simulations to accurately calculate coefficients of the expansion.
A combination of EnGKF and the proposed sequential procedure combining
offline prediction and online update has shown a good performance not only
in terms of accuracy of the posterior estimates, but in terms of computational
costs as well.

Most of the meaningful mechanical models are essentially nonlinear and as
such they require either implementation of nonlinear Bayesian methods or
incremental approach, which gathers one observation or a smaller portion
of observations at discrete update steps. If the update steps are sufficiently
small, one can achieve linearity (or quasi-linearity) within a particular up-
date step. The implementation of such sequential procedures, however, can
often be quite tedious, as it requires coupling of the finite element solver and
the code for stochastic analysis. Namely, at each loading step, samples of un-
certain input parameters are used for computing corresponding realisations
of the finite element model. The resulting data needs to be imported in the
software in which the procedure for solving the stochastic inverse problem
is implemented. There one carries out the update of the input parameters.
As the current state was computed with the prior description of model input
parameters, before proceeding to the successive loading step, one needs to
recompute the current step with the posterior distribution of the uncertain
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model parameters. Only then, one can compute the response at the success-
ive loading step. Such sequential update methods often require the use of
restart procedures, which complicate the implementation. In some cases, it
is not possible to have both the finite element analysis software and software
for stochastic analysis at the same location (e.g. costly numerical simulations
are often computed on clusters, compute servers or supercomputers) or the
coupling between required computer programs is infeasible. Hence, an al-
ternative method which preserves the sequential nature of the update, while
allowing the complete independence between the computer programs for fi-
nite element and stochastic analysis is proposed. The obtained results show
a good agreement with the observational data.

Lastly, the issue of parameter identifiability given experimental data from
two distinct shear experiments has been investigated. One would expect that
fracture in double shear experiment with externally bonded CFRP plates is
purely a mode II shear sliding. However, the results of Bayesian inference
show that observations are sensitive to the majority of parameters, which
indicates that fracture is rather of a mixed type. While most of the target
parameters are found to converge towards their true values, variance of the
posterior distributions is still relatively high in the inelastic region, especially
for the fracture energies. On contrary, employing the data from a virtual
experiment resembling standard direct shear test, one cannot estimate all
target parameters (e.g. parameters pertaining to tension), but the posterior
estimates of the fracture parameters pertaining to shear fracture (mode II
and III) are found to be more accurate. The dominant fracture mode in
the virtual shear experiment is mode II, which is directly reflected in very
accurate estimates of the corresponding parameters with increased variance
reduction. If one aims to estimate tensile or compression properties as well,
better results could be achieved by incorporating the observational data from
a tensile or compression test, respectively.
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Chapter 6

Concluding remarks and
outlook

This chapter summarises the completed work, emphasises the most important
findings and gives an outlook on future research.

6.1 Conclusions

This research work studies the concept of identifiability of uncertain para-
meters in nonlinear mechanical models describing the cracking behaviour of
concrete and mortar. The issue of parameter identifiability has been tackled
within the framework of Bayesian inference, through experiments simulating
the two distinct types of fracture in concrete: tensile and shear fracture.

The former case concerns the investigation of identifiability of material para-
meters of reinforced concrete given data from a tensile test. The study shows
that in order to achieve better posterior estimates of the parameters of in-
terest, observations of a different type need to be included. The choice of
the quantities of interest relies upon the following considerations: the ex-
periment needs to be easy to implement in a testing facility at reasonable
costs and needs to be in accordance with the nature of a particular target
parameter. While the hardening modulus and elasticity limit are well estim-
ated only from a stress-deformation curve, not all target parameters can be
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retrieved from a single measurement type. Improvements in the posterior
estimates of the ultimate stress and fracture energy are observed once one
considers the observations of dissipation due to a particular crack. On the
other hand, parameters such as the critical bond stress, which are closely
related to the local phenomena, e.g. opening of a particular crack, tend to
be more accurately estimated when observations of this type are included.
Due to imperfections of the numerical model and the fact that the linear
Bayesian update is adopted, the quantities of interest computed with the
posterior values of parameters will not match perfectly all of the observed
values at once. Hence, it is up to the modeller to evaluate which observations
are relevant for the considered engineering problem, e.g. dissipation for the
study on seismic safety or stress-deformation curve for the analysis of the
material strength.

In the successive example, the identifiability of the material parameters of
mortar mesostructure is explored by comparing two shear experiments: a
double shear experiment with externally bonded CFRP plates and a virtual
shear experiment. The steps that have been taken in order to facilitate the
implementation of a double shear test in a testing facility have resulted in
a mixed-type fracture rather than a pure shear fracture as one would ex-
pect. This caused the observations being sensitive to the majority of the
target parameters. On contrary, the virtual shear experiment shows greater
sensitivity with respect to shear properties of the material and subsequently,
improves their identifiability. In addition, difficulties arising from peculiarit-
ies of the experimental setup, e.g. uncertain loading or boundary conditions,
are reported and possible solution approaches are given.

Other topics that are tackled within this thesis are the Bayesian estimation of
parameters in highly nonlinear mechanical models, computational efficiency
in solving the stochastic inverse problems and dealing with high dimension-
ality of the stochastic problems.

For time dependent nonlinear problems such as the ones analysed in this work,
it is highly beneficial to adopt the sequential scheme for parameter estimation.
The step-wise approach, with estimates of the uncertain parameters produced
at each update step, leads to quasi-linearity within a particular update step,
under the assumption that the chosen step size is sufficiently small. This
alleviates the need for implementation of the nonlinear filters. Furthermore,
a novel approach to sequential update, which fully decouples the computation
of model predictions and the online parameter updates, while preserving
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the accuracy of the posterior estimates, is proposed and its performance is
validated in Chapter 5.

Bayesian update, especially its sequential version, is found to be computation-
ally exhaustive. Nevertheless, it can be accelerated by the use of functional
approximations, e.g. via polynomial chaos expansion. The use of PCE ap-
proximations, however, may be limiting in case of high dimensionality of a
stochastic problem as it requires many simulations of the FE solver to ac-
curately compute the polynomial coefficients. In that case, a more natural
choice are sampling methods, such as MCMC or EnKF, the latter being more
favourable from the point of view of computational efficiency.

6.2 Outlook

In order to obtain better numerical predictions and posterior estimates of
the parameters of interest, possible improvements within the field of compu-
tational modelling and parameter estimation can be implemented. Moreover,
possible extensions of the mechanical models may lead to a broader range of
practical applications.

The 2D model of reinforced concrete introduced in Section 3.2 could be im-
proved by extending it to the 3D space. This would allow a more realistic
representation of bond-slip as a full slip field, which is in 2D case reduced
merely to a line.

One could model the uncertain model parameters by means of spatially vary-
ing random fields instead of random variables utilised herein. Random fields
could better capture heterogeneities of the inner structure of concrete, as
well as the local bond effects. However, if one desires to update the random
fields, many repetitions of the tensile tests would be required in order to
obtain meaningful results.

Lattice model introduced in Section 3.3 could be extended to reinforced con-
crete by implementing the steel bars and modelling the bond between the re-
inforcement and surrounding concrete. All civil engineering structures made
of concrete contain some kind of reinforcement, typically either the classical
steel bars or fibres. Modelling of reinforcement would result in a wider prac-
tical applicability of the numerical model, especially in the domain of study
of structural durability.
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In this work, the lattice model was employed for studying the shear behaviour
of mortar. However, one could also model the CFRP plates and the bond in
order to study the bond behaviour, for which purpose the experiment was
intended. One could then identify the bond properties, which would enrich
the research on this relatively recent method for repairing existing structures.

The studied problem could also be observed over multiple scales and depend-
ing on the research application, the parameters of interest could be either
upscaled (e.g. to obtain the homogenised properties of large-scale structures)
or downscaled (e.g. to obtain the properties of a single aggregate), in the
framework of multi-scale analysis.

As concrete is highly heterogeneous material, to improve the reliability of
the parameter estimates one should consider observations from repeated ex-
periments. Testing facilities typically have a limited capability, they are
constrained either by the size of specimens or by the number of repetitions
of a particular experiment. Hence, one could use the computed tomography
scans of different specimens, from which the features could be extracted
and classified by the artificial neural networks. In the process of unsuper-
vised learning, many different random mesostructures could be generated
and thus, one could perform many repeated experiments. From the per-
spective of cracking behaviour, such experiments would yield more reliable
results compared to virtual experiments with artificially introduced spatial
variability.

On a general note, in the context of reliability of parameter identification
schemes and following the new initiative of the German Research Found-
ation (DFG) for long-term storage and management of valuable research
data, a recent research challenge pertains to a more comprehensive use of
experimental data. A considerable amount of repeated experiments would
certainly benefit the field of Bayesian parameter identification, as well as the
practical application of it to the study of structural durability. Nevertheless,
the question of combining measurements from different testing facilities and
overcoming their dependence on the environmental conditions in a particular
lab, yet remains unresolved.
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