
HAL Id: tel-04668588
https://theses.hal.science/tel-04668588v1

Submitted on 7 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multimodal estimation of movement and depth based on
events for scene analysis

Vincent Brebion

To cite this version:
Vincent Brebion. Multimodal estimation of movement and depth based on events for scene analysis.
Computer Vision and Pattern Recognition [cs.CV]. Université de Technologie de Compiègne, 2024.
English. �NNT : 2024COMP2795�. �tel-04668588�

https://theses.hal.science/tel-04668588v1
https://hal.archives-ouvertes.fr

 Par Vincent BREBION

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Multimodal estimation of movement and depth
based on events for scene analysis

Soutenue le 11 janvier 2024
Spécialité : Sciences et Technologies de l'Information et des
Systèmes : Unité de recherche Heudyasic (UMR-7253)

 D2795

THESE de DOCTORAT

M U LT I M O D A L E S T I M AT I O N O F M O V E M E N T
A N D D E P T H B A S E D O N E V E N T S

FOR S C E N E A N A LY S I S

 Par Vincent B R E B I O N

Spécialité :
Sciences et Technologies de l'Information et des Systèmes

Université de Technologie de Compiègne
Heudiasyc Lab, UMR CNRS 7253

Soutenue le 11 janvier 2024

Jury :

reviewers Guillermo Gallego TU Berlin
Vincent Lepetit École des Ponts ParisTech

examiners Rémi Boutteau Univ. de Rouen Normandie
Véronique Cherfaoui Univ. de Technologie de Compiègne
Jean Martinet Univ. Nice Sophia Antipolis

supervisors Franck Davoine CNRS
Julien Moreau Univ. de Technologie de Compiègne

Copyright © 2024 Vincent Brebion

This document is published under the Creative Commons Attri-
bution (CC BY) 4.0 International license.

The Smart Thesis template used in this document was written by
Jan Philip Göpfert and Andreas Stöckel, and was inspired by the
Classic Thesis template developed by André Miede.

The source code of this document is available at
https://vbrebion.github.io/PHD.

This work was supported in part by the Hauts-de-France Region
and in part by the SIVALab Joint Laboratory (Renault Group -
UTC - CNRS).

https://vbrebion.github.io/PHD

The night is long
And the path is dark
Look to the sky
For one day soon
The dawn will come

— excerpt from “the dawn will come”
by trevor morris

abstract

With their asynchrony and independence to illumination conditions, event
cameras open new perception capabilities. They allow for the analysis of highly
dynamic scenes with complex lighting, a situation in which traditional frame-
based cameras show their limits. In the context of this thesis, two low-level
perception tasks were examined in particular, as they constitute the foundation
of many higher level tasks required for scene analysis: (1) optical flow and
(2) depth estimation.

In the case of optical flow, an optimization-based approach was developed,
allowing for the estimation of optical flow in real-time with a single high-
resolution event camera. Short temporal windows of events are converted into
frame-like representations, with denoising and with a novel negated exponential
densification applied. A state-of-the-art low-latency frame-based optical flow
method is then used to compute the final optical flow. This heuristic approach
provides accurate results, and is still to this day the only event-based optical
flow method working in real-time with high-resolution event cameras.

As for the depth estimation, a learning-based data-fusion method between a
LiDAR and an event camera was proposed for estimating dense depth maps.
For that purpose, a convolutional neural network was proposed, named ALED.
It is composed of two separate asynchronous encoding branches for the LiDAR
point clouds and for the events, central memory units where the asynchronous
fusions are applied, and a final decoding branch. A novel notion of “two depths
per event” was also proposed, with a theoretical analysis as to why this notion
is fundamental given the change-based nature of events. A simulated dataset
was finally proposed, containing high-resolution LiDAR and event data, as well
as perfect depth maps used as ground truth. Compared to the state of the art,
an error reduction of up to 61% was achieved, demonstrating the quality of the
network and the benefits brought by the use of our novel dataset.

An extension to this depth estimation work was also proposed, this time using
an attention-based network for a better modeling of the spatial and temporal
relations between the LiDAR and the event data. Initial experiments were
conducted on a fully sparse network, able to directly output the two depths
for each event without relying on a dense representation, but both theoretical
and technical limitations were met. A subsequent rework of the method, this
time on dense inputs and outputs, allowed us to overcome these limitations.
The proposed network, DELTA, is both recurrent and attention-based. It is
composed of two encoding branches for the LiDAR point clouds and the events,
a propagation mechanism for inferring LiDAR data at a higher rate, a central
memory unit where the fusion between the two modalities is applied, and a
final decoding branch. Compared to ALED, DELTA is able to improve results
across all metrics, and especially for short ranges (which are the most critical
for robotic applications), where the average error is reduced up to four times.

v

résumé

Grâce à leurs propriétés uniques en termes d’asynchronisme et d’indépendance
aux conditions de luminosités, les caméras à évènements ouvrent aujourd’hui
de nouvelles portes dans le monde de la perception. Elles rendent possible
l’analyse de scènes hautement dynamiques et avec un éclairage complexe, des
situations pour lesquelles les caméras traditionnelles reposant sur des images
montrent leurs limites. Dans le cadre de cette thèse, deux tâches de perception
bas niveau ont été considérées en particulier, car constituant la fondation de
nombreuses tâches de plus haut niveau requises pour l’analyse de scènes : (1) le
flot optique et (2) l’estimation de profondeur.

En ce qui concerne le flot optique, une approche basée optimisation a été
développée, permettant l’estimation de flot optique en temps réel avec une
unique caméra à évènements haute définition. Pour cela, de courtes fenêtres
temporelles d’évènements sont converties vers une représentation dense basée
image, après application d’une étape de débruitage, et d’une densification
inversement exponentielle proposée dans le cadre de ce travail. Une méthode
de flot optique de l’état de l’art basée images est ensuite appliquée afin de
calculer le flot optique final avec une latence basse. Cette approche heuristique
permet de fournir des résultats justes, et est à ce jour la seule méthode de flot
optique basée évènements capable d’opérer en temps réel avec des caméras à
évènements haute définition.

Pour ce qui est de l’estimation de profondeur, une méthode basée apprentissage
pour de la fusion de données a été proposée, permettant de combiner les infor-
mations provenant d’un LiDAR et d’une caméra à évènements afin d’estimer des
cartes de profondeur denses. Dans le cadre de ce travail, un réseau de neurones
à convolution, appelé ALED, a été proposé. Il est composé de deux branches
d’encodage asynchrones pour les nuages de points LiDAR et les évènements,
de mémoires centrales où la fusion asynchrone des deux types de données est
réalisée, et d’une branche de décodage. En particulier, une nouvelle notion de
“deux profondeurs par évènement” a également été proposée, accompagnée
d’une analyse théorique sur l’importance fondamentale de cette notion à cause
du fait que les évènements soient indicatifs d’un changement. Enfin, un jeu
de données enregistré en simulation a également été proposé, contenant des
données LiDAR et évènements haute définition, ainsi que des cartes de profon-
deur servant de vérité terrain. En comparaison avec l’état de l’art, une réduction
jusqu’à 61% de l’erreur moyenne a pu être atteinte, démontrant la qualité de
notre réseau et des bénéfices apportés par l’utilisation de notre nouveau jeu de
données.

Une extension de ce travail sur l’estimation de profondeur a également été
proposée, utilisant cette fois-ci un réseau de neurones basé attention pour
une meilleure modélisation des relations spatiales et temporelles entre les
données LiDAR et évènements. Des expérimentations ont été menées dans un
premier temps dans l’objectif de proposer un réseau entièrement épars, capable
d’associer directement à chaque évènement ses deux profondeurs, sans avoir
besoin de passer par des représentations denses. À cause de limitations à la
fois théoriques et techniques, une refonte de cette méthode a été proposée,
cette fois-ci sur des entrées et sorties denses, afin de pouvoir s’affranchir de

vii

ces limitations. Le réseau final proposé dans le cadre de ce travail, DELTA,
combine à la fois un aspect récurrent et une approche basée attention. Il est
composé de deux branches d’encodage pour les nuages de points LiDAR et les
évènements, d’un mécanisme de propagation afin d’être capable d’inférer les
données LiDAR a une plus haute fréquence que celle d’entrée, d’une unique
mémoire centrale pour la fusion des modalités, et d’une branche de décodage.
En comparaison avec ALED, DELTA améliore les résultats pour l’ensemble des
métriques considérées. Cette amélioration est particulièrement prononcée pour
les distances courtes (qui constituent les distances les plus critiques pour des
applications robotiques), avec une erreur moyenne jusqu’à quatre fois moins
importante.

viii

acknowledgements

Before diving into the main content of this thesis, I would like to thank all the
people who have made this work flourish and become what it is today.

First and foremost, I would like to thank Franck and Julien for supervising this
thesis, and for guiding me as they have done over the past three and a half years.
Our theoretical and technical discussions, as well as our numerous drawings
on whiteboards during our weekly meetings have been the main contributing
factors of this thesis.

Secondly, I would like to thank Guillermo Gallego and Vincent Lepetit for
reviewing this thesis, and for sending me their precious comments to improve
it. I would also like to thank Rémi Boutteau, Véronique Cherfaoui, and Jean
Martinet for examining this work, as well as Pascal Vasseur and Philippe Xu for
providing an external view on my work across these three years.

Thirdly, I would like to thank all the fellow PhD students at Heudiasyc I have
had the privilege of working with during all my time at the lab: Maxime
& Maxime, Ali, Antoine, Matthieu, Rémy, Loïc, and Michaël. I would also
like to thank Thierry and Stéphane, for their precious technical assistance and
availability. More generally, I would like to thank all the members and personnel
of Heudiasyc, SIVALab, and UTC, whom it has always been a pleasure to work
with.

Finally, I would like to thank from the bottom of my heart my parents and
my brother Benoît, for constantly giving me precious advices, strength, and
emotional support over all these years.

ix

contents

C O N T E N T S

Abstract v

Résumé vii

Acknowledgements ix

Contents xi

1 General Introduction 1
1.1 Context . 1
1.2 Objectives and Overview of the Thesis 4
1.3 Thesis Overview . 5

2 Event Cameras 7
2.1 Introduction . 7
2.2 Core Principle . 7
2.3 Advantages and Challenges . 10
2.4 Application to Intelligent Robotics . 12
2.5 Review of the State of the Art . 12
2.6 Popular Event Camera Models . 16
2.7 Datasets . 17

3 Real-Time Event-Based Optical Flow 21
3.1 Introduction . 21
3.2 Problem Formulation . 22
3.3 Related Work . 22
3.4 Our Orientation: Densifying Events 24
3.5 Method . 25
3.6 Evaluation . 33
3.7 Conclusion and Discussions . 47

4 Event- and LiDAR-Based Depth Estimation using a Convolutional Net-
work 49
4.1 Introduction . 49
4.2 Related Work . 50
4.3 Depth Change Map: Two Depths per Event 51
4.4 Method . 53
4.5 The SLED Dataset . 57
4.6 Evaluation . 59
4.7 Conclusion and Discussions . 66

5 Event- and LiDAR-Based Depth Estimation using an Attention-Based
Network 69

xi

contents

5.1 Introduction . 69
5.2 An Introduction to the Transformer and Attention 70
5.3 Related Work . 73
5.4 Predicting Sparse Depths with Transformers 74
5.5 Dense DELTA Method . 80
5.6 Evaluation . 83
5.7 Conclusion and Discussions . 93

6 General Conclusion 95
6.1 Conclusion . 95
6.2 Contributions . 96
6.3 Discussions and Perspectives . 98

A Additional Experiments 101
A.1 Acquisition of Real-World Data . 101
A.2 Extensions to the SLED Dataset . 105

B Additional Results for Chapter 4 109
B.1 Detailed Results on our SLED Dataset 109
B.2 Additional Dense Depths Results on our SLED Dataset 109
B.3 Additional Dense Depths Results on the MVSEC Dataset 109
B.4 Additional Depth Change Maps Results on our SLED Dataset 109

C Additional Results for Chapter 5 119
C.1 Detailed Results on our SLED Dataset 119
C.2 Additional Visual Results on the SLED Dataset 119
C.3 Additional Visual Results on the MVSEC Dataset 119
C.4 Additional Visual Results on the M3ED Dataset 119

Glossary 129

Acronyms 131

Bibliography 133

xii

1G E N E R A L I N T R O D U C T I O N

1 .1 context

1 .1 .1 General Context

From the simplest robotic vacuum cleaner to the Perseverance rover on Mars, scene
analysis is one of the most fundamental requirements in robotics. In the traditional
robotic pipeline illustrated in Fig. 1.1, perception constitutes the very first module,
dedicated to sensing, analyzing, and understanding the world for navigating safely.

Sensors

Perception Planning Control

Actuators

Figure 1.1 – The traditional robotic pipeline, from sensors to actuators.

In that sense, motion understanding is critical for perceiving how every element of
the scene evolves. This motion understanding actually includes two components:
(1) the ego-motion, whose extraction is critical for asserting the ego-position in
applications like visual odometry and SLAM, and (2) the motion of every other
mobile object in the scene, which in most cases are potential obstacles, that should
therefore be avoided; knowing their motion allows for the anticipation of their
actions and future state, and therefore for the avoidance of future collisions by
taking preventive actions.

However, for evolving in dynamic scenes, motion is of limited use without any
knowledge of depth. Being able to determine that a given object is moving every
second by a certain amount of pixels in a given direction is interesting information,
but without a three-dimensional metric equivalence, taking adequate preventive
actions is complex. A simple example of this phenomenon is shown in Fig. 1.2:
while in the top row, both cubes appear to be moving at the same speed towards the
center of the image, the 3D view in the bottom row actually shows that the green
cube is actually positioned closer to the camera, and that it should therefore be
given priority for the following “planning” and “control” modules of the pipeline.

In the context of this thesis, we are therefore interested in the estimation of both
motion and depth. For that purpose, the event camera constitutes an interesting
starting point, as it naturally encodes changes in the scene it observes, changes
which are mostly caused by motion in dynamic scenes. Yet, while a single event
camera might suffice for this estimation of motion, the addition of a second modality
is a requirement for lifting any ambiguity related to the depth as shown in Fig. 1.2.
Therefore, as part of this thesis, we will also consider the LiDAR sensor, for providing
sparse but accurate measurements of the depth of the scene. By using both the

1

general introduction

Figure 1.2 – Illustration of the importance of depth for scene analysis. Top row: two cubes
moving towards the center of the image, with the same apparent velocity. Bottom row: the
very same scene, this time viewed from a higher point of view; both cubes are in reality far
from each other, with the green cube being closer, much smaller, floating above ground, and
moving towards the center at a slower pace than the blue cube.

event camera and the LiDAR, we aim to exploit and combine the unique capabilities
of both sensors, and cancel out their weaknesses: in case of the event camera, a
very-high-speed low-latency sensing of the scene, but with a vision of only textures
and edges of objects with relative motion, and in the case of the LiDAR, very precise
depth measurements, but at a low-rate and in a sparse way with few points at the
edges of objects.

1 .1 .2 The Event Camera

Initially proposed in 1991 by Mahowald and Mead [1, 2], the event camera has since
grown and is slowly becoming more recognized in the field of computer vision.
Compared to a traditional camera which accumulates light during short periods
of time to create images, event camera only detect instantaneous changes of light
for each pixel asynchronously, and transmits them as spikes of information with a
minimal latency. This novel sensing principle constitutes a fundamental change of
paradigm, as it allows for very-high-frequency observations with a high dynamic
range and a low-latency, and therefore opens new perception opportunities that
were never thought of due to the limitations of more traditional cameras. This new
paradigm, however, comes with a fundamental drawback: the need to rethink the
whole bibliography, for adapting it to this novel sensor.

As of today, event cameras have found their way in numerous and diverse domains.
At the lowest, micrometer scale, event cameras have been applied for controlling
micro-robots to manipulate cells [3]: the event camera gives the manipulator a
finer control of the robot, and allows for a better measurement of interaction forces
that can be fed back to the operator. Event cameras are also expected to make a
breakthrough in the smartphone domain: their low energy consumption, their high
dynamic range, and their high speed makes them perfect candidates for handheld
photography and video recording. At the human scale, event cameras are mainly

2

1 .1 context

applied for industrial automation (fault detection [4], fast object counting [5]),
autonomous driving [6], and more specific applications like the measurement of
fluid flows [7]. Finally, at the highest scale, event cameras are also used in the space
domain, for either tracking stars from the ground [8], or for detecting debris in Earth
orbit thanks to an event camera launched in space in 2021 [9].

Due to their central position in this thesis, Chapter 2 is dedicated to an in-depth
explanation of the working principles and specificities of the event cameras.

1 .1 .3 Application to the Automotive Domain

One of the field of application of our methods that will be of special interest to
us in this thesis is the automotive domain. As transportation remains at the heart
of our daily lives, and despite progress on legislation, road safety, and vehicle
standards, approximately 1.3 million people still die every year due to a road traffic
crash [10]. Intelligent road vehicles aim to reduce this number of crashes by reducing
or completely eliminating the human factor.

However, autonomous driving in open environments calls for deep understanding
abilities from the intelligent vehicle to make it able to navigate safely. While recent
progress has been made on that topic, most of the results from the literature were
achieved in favorable conditions (adequate lighting and weather, clearly visible ob-
jects), which only represent a fraction of the real-life situations a driver is confronted
with. Recent studies have particularly shown the limits of these approaches in more
complex conditions (at dawn/dusk, when the object to detect is partially occluded
or very close to the ego-vehicle, . . .), raising multiple safety questions [11, 12].

In that context, the use of a multimodal sensing system appears to be a critical com-
ponent for proposing a safe autonomous navigation in all environmental conditions.
As described in Section 1.1.2, the event camera constitutes an interesting candidate
for supplementing traditional RGB cameras, but even more so in the automotive
context. Being able to output similarly-looking information in broad daylight and
during night, and not being dazzled by sudden changes of lighting (such as at the
entrance or exit of a tunnel), are both critical components for ensuring the operabil-
ity of the perception module of the vehicle in a wider range of conditions. Their
low-latency also constitutes an appealing argument in their favor, as being able to
detect and identify obstacles more quickly gives the “planning” and “control” blocks
of the robotic pipeline more time to adjust the trajectory of the vehicle accordingly.
Our use of the LiDAR is also linked to this automotive context: while an RGB-D
camera for instance would provide denser depth measurements, its use would be
restricted to indoor situations. In comparison, a LiDAR can operate independently
both indoor and outdoor and can sense the world with a long range, and constitutes
therefore a common sensor used in intelligent vehicles.

3

general introduction

1 .2 objectives and overview of the thesis

As noted in Section 1.1, the subject of this thesis is composed of a dual objective:
the estimation of motion and the estimation of depth. For proposing answers to
these issues, two specific problems are of particular interest to us: (1) optical flow
and (2) dense depth maps prediction.

Optical flow constitutes a widely explored subject in computer vision. While mostly
solved for frame-based vision, it remains a challenging topic in event-based vision.
When this thesis began in 2020, event-based optical flow accuracy was still limited,
with learning-based methods only starting to become the state of the art. One
limitation that interested us in particular was the lack of any real-time1 event-based
optical flow method for high-resolution cameras. These cameras, like the Prophesee
Gen4 [13], were slowly becoming available, but all the state-of-the-art optical flow
methods we tested were painstakingly slow and were producing mostly inaccurate
results due to the changes in resolution and camera specificities. Therefore, the first
year of the thesis was spent on proposing a novel method for treating events, in
order to be able to estimate an accurate event-based optical flow in real-time and
with a low latency.

As an alternative to 2D optical flow, 3D scene flow could have been treated for
motion estimation instead. As a main advantage, scene flow would have solved
the ambiguities a more simple 2D optical flow can present, as illustrated before in
Fig. 1.2. But this approach would have already required more than a single event
camera, and would have been a complex subject to undertake especially given the
lack of event-based datasets on that subject.

As for dense depth maps prediction, being able to obtain a dense view of the depth
of all objects in a scene is precious when evolving in said scene. This problem
has already been explored with frame-based and event-based cameras (either in
a monocular or stereo manner), and with LiDARs (with a LiDAR alone or with
frames acting as a densification guide). When our thesis work started on this depth
estimation problem in mid-2021, only a single work [14] had explored the fusion of
LiDAR point clouds and events, with several limitations (only sparse depths were
estimated, limited to the vertical range of the LiDAR sensor, and evaluation was
only conducted on a private dataset). The idea of estimating dense depth maps
from LiDAR and event data had not been treated until that point, and presented a
valuable research opportunity. Therefore, the second and third year of the thesis
were spent on proposing two novel methods for fusing LiDAR and event data,
in order to be able to estimate dense depth maps at a high rate and with a high
accuracy.

It should also be noted that, as part of this thesis, a collaboration between the
Heudiasyc laboratory and Prophesee has been put in place, for deeper exchanges
both on the theoretical and technical points of view.

1 Throughout this document, we will use the term “real-time” for any event-based method that verifies
the two following criterions: (1) being able to process all incoming events from a live camera even
under a high throughput without discarding any of them, and (2) if events are accumulated over a
time window ∆t, being able to process them in a time lower than ∆t.

4

1 .3 thesis overview

1 .3 thesis overview

This thesis is split in four main chapters, which cover the work conducted over the
three years of this thesis.

In Chapter 2, we begin by giving an overview of the event camera. Due to its central
position in this thesis, and due to some concepts needing a formal introduction as
they are fundamentally different from those of frame-based cameras, we give in
this chapter a detailed description of its working principle, its advantages and its
challenges, and offer a quick review of the state of the art, the camera models, and
the datasets.

In Chapter 3, we describe our first work, on the “motion” aspect of the thesis, by
proposing a fully event-based and model-based optical flow method. We describe
a pipeline architecture, able in real-time and with a low latency to process events,
transform them into a dense frame-based intermediate representation, and compute
optical flow using a state-of-the-art frame-based method. We show in particular that
our intermediate representation is critical for improving the accuracy of the optical
flow results for both low-, mid-, and high-resolution event-based sensors, thanks to
the use of a proposed negated exponential distance transform formulation.

In Chapter 4, we describe our second work, this time on the “depth” aspect of the
thesis. We investigate in this fourth chapter the fusion of high-rate events with
low-rate LiDAR point clouds, in order to estimate high-rate dense depth maps
of the observed scene. We propose here a convolutional-based neural network,
the Asynchronous LiDAR and Events Depths densification network (ALED), able
to conduct this task with high accuracy. Compared to the event-based state of
the art, we show that ALED is the best performing method, offering significant
improvements, especially on complex automotive scenarios.

In Chapter 5, we describe our extensions to this work on depth estimation. We
investigate especially how attention-based networks can better represent the relations
between the LiDAR- and event-based data, and how they can improve the results
obtained with ALED. An in-depth analysis on fusing fully sparse LiDAR points and
events for estimating sparse depths is first conducted, with theoretical and technical
limitations of attention-based networks being highlighted. A dense attention-based
network, DELTA, is then proposed. We show that DELTA further improves the
results of ALED, especially for close ranges.

Finally, in Chapter 6, we draw some general conclusions to this thesis, and discuss
potential extensions to our work.

5

2E V E N T C A M E R A S

2 .1 introduction

Event cameras — also known as neuromorphic cameras, dynamic vision sensors, or
silicon retinas — are novel, biologically-inspired sensors. Compared to traditional
cameras, the specific architecture of the event cameras allows them to perceive
highly dynamic scenes with low latency and with high dynamic range. Thanks
to these properties, they represent a sensor of interest to answer the limitations
encountered by the use of more traditional sensors in complex conditions.

Even though the first concept of an event camera was proposed over 30 years ago [1,
2], this sensor has gained traction within the scientific community over the past
decade. This rise in popularity is especially due to their easier access, with the
arrival of commercial sensors (especially all-in-one frame- and event-based sensors
like the DAVIS [15]), and with a growing number of software and development kits.

Due to their central position, this first chapter of the thesis is dedicated to an in-
depth review of the event camera. We explain here its core concepts, describe its
advantages and challenges, and quickly review the state of the art.

2 .2 core principle

In a traditional camera, an image is captured by accumulating light during a short
period of time (the exposure time). Each pixel is then assigned an intensity value
based on the amount of light received. All pixels are synchronously controlled by
a single global clock, and images are outputted at a predefined frame rate (e.g.,
30FPS).

In opposition, in an event camera, all pixels are independent units. Each pixel
responds to changes in the log-irradiance (or “brightness”) it receives. More specifi-
cally, if we note the brightness L .

= log(E) (where E is the irradiance), then an event
e .
= (x, t, p) is triggered at a pixel x .

= (x, y) and at time t if the brightness difference
since the last event at that pixel, i.e., if

∆L(x, t) .
= L(x, t)− L(x, t− ∆t) (2.1)

crosses a threshold δ, i.e.,

|∆L(x, t)| ≥ δ (2.2)

where δ > 0, and where ∆t is the amount of time since the last event at that
pixel. The polarity p of the event can then be defined as the sign of the brightness
difference, i.e.,

7

event cameras

Time

log(E)

-δ
0
δ

Time

∆(log(E))

-

+

Time

Events

Figure 2.1 – Internal working of a single pixel of an event camera, for sample brightness
values. From top to bottom: brightness received by the pixel along time; brightness difference
(reset every time the threshold is hit); corresponding events fired by the pixel (positive
events are in red, negative ones in blue). Figure inspired by [16].

p .
= sgn(∆L(x, t)) (2.3)

For an easier understanding, an illustration of these equations is given in Fig. 2.1.

Due to these formulations, events can be triggered by two highly different reasons:
(1) lighting changes in the observed scene or (2) relative motion between the camera
and the objects in the scene. If both the event camera and the observed scene are
fully static, then events can only be triggered by lighting changes (1), generated
for instance by blinking lights. On the contrary, in the more interesting case where
the event camera moves or where the observed scene is dynamic (or both), then
events can still be generated by lighting changes (1), but also and mostly by relative
motion between the camera and objects in the scene (2). In case (2), as shown in
Fig. 2.2, only the edges and the textures of the objects will trigger events, as they are
the places where the brightness values change. In contrast, untextured areas have
nearly constant brightness values across them, and thus do not trigger events.

Furthermore, the output rate of a pixel (and therefore, of the whole event camera)
is highly variable. In case of no or very few changes in the scene, the brightness
values will remain almost constant, and thus little to no events will be fired. On the
contrary, under highly varying light conditions or for highly dynamic scenes, the
brightness values will vary greatly, leading to many events being fired.

A comparison between frames and events for a same scene is given in Fig. 2.3,
demonstrating all these principles for a practical example.

8

2 .2 core principle

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(a) Black rectangle on the left side

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(b) Black rectangle on the right side

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(c) Events from (a) to (b)

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(d) Events from (b) to (a)

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(e) White rectangle on the left side

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(f) White rectangle on the right side

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(g) Events from (e) to (f)

1 2 3 4 5 6 7 8 9 10
a

b
c

d
e

f
g

(h) Events from (f) to (e)

Figure 2.2 – Simple “moving rectangle” example. Each cell in the four grids represents a
pixel. (a) A simple black rectangle on a white background, with an oblique line in its center.
(b) The same rectangle, one pixel to the right. (c) The events generated due to internal
motion and/or camera motion, from the (a) to the (b) situation (positive events are in red,
negative ones in blue); notice how only the central oblique line and the left and right edges
trigger events, as they are the only places where brightness values changed. (d) Like (c), but
for the inverse motion; notice how the polarities have been inverted. (e) to (h): like (a) to (d),
but for the inverse colors; notice how the the polarities have been inverted once again.

9

event cameras

10

8.3333

6.6667

t (ms)

5

3.3333

1.6667

0

720

320

360

y
(p

x)

640
x (px)

0

0

960 1280

(a)

10

8.3333

6.6667

t (ms)

5

3.3333

1.6667

0

720

320

360

y
(p

x)

640
x (px)

0

0

960 1280

(b)

0 320 640 960 1280
x (px)

0

360

720

y
(p

x)

(c)

Figure 2.3 – Comparison between frames and events for a simple “Rotating fan” sequence.
(a) Even with a 300FPS camera, only four frames are captured over the course of 10ms,
all showcasing motion blur and motion discontinuity for the blades, as well as redundant
background information. (b) In comparison, with an event camera, the full motion of the
blades can be acquired: each dot is an event, color-coded according to its timestamp for a
better visualization. (c) A front view of (b) is given to better showcase the motion continuity
property of the event camera in a frame-like visualization.

2 .3 advantages and challenges

Due to their unique working principle, event cameras have many advantages when
compared to more traditional sensors, but they also come with some notable draw-
backs.

2 .3 .1 Advantages

Asynchrony The main advantage of event cameras compared to their frame-based
counterpart is that they do not rely on a synchronous sampling of the scene. Instead,
brightness changes are detected and transmitted as soon as they happen. This way,
the information of what is happening in the scene can be known with a very low
latency. In addition, the problems of motion blur and of under-/over-exposure are

10

2 .3 advantages and challenges

eliminated, since they are both consequences of the light accumulation process in
frame-based cameras.

High Dynamic Range (HDR) Whereas most frame-based cameras are restricted
to a dynamic range of 40 to 60dB, event cameras can reach a dynamic range of more
than 120dB [13]. This is due to the two intrinsic properties of the event camera:
working in the logarithmic framework, and not being limited by exposure issues
since they do not rely on an accumulation process. This high dynamic range makes
them able to see under very dark or very bright conditions, e.g., during nighttime
or in broad daylight.

Low Energy Consumption As they only capture and transmit brightness changes,
i.e., non-redundant information, most event cameras have a power consumption of
under 100mW (20 times less than comparable frame-based cameras), making them
particularly suited for low-power embedded systems.

2 .3 .2 Challenges

Change of Paradigm The main challenge with event cameras is that they propose
a completely novel paradigm. As such, most of the frame-based literature and
algorithms proposed over the past decades have to be entirely revamped. In addition,
computers and GPUs are better suited to process synchronous dense matrix-based
data like frames, rather than sparse and asynchronous event-based data.

Noise Since event cameras do not rely on a temporal accumulation process, they
are much more sensitive to noise than frame-based cameras. This will result in
events being triggered without a corresponding brightness change, or on the contrary,
events being missed. This noise comes from different sources: shot noise, internal
circuits noise, hot pixels, etc.

Output Rates As noted earlier, the output rate of an event camera is highly variable.
While the output rate of a frame-based camera is predetermined (up to 300FPS
for high-speed cameras), event cameras can reach output rates of up to millions
of events per sec for HD sensors. Designing methods able to handle such rates in
real-time is one of the most critical issues with event cameras.

Lack of Absolute Brightness Values As shown in Eqs. (2.1) and (2.2), events
only provide information about relative brightness changes. No reference absolute
brightness value is available, meaning that some problems like frame reconstruction
from events alone are particularly difficult. To circumvent this issue, some camera
models offer both the frame and event modalities in a single sensor [15, 17]. However,
adding this frame modality is currently limited to low- or mid-resolution cameras,
and it results in a more noisy event stream due to electrical interferences between
both circuits.

11

event cameras

2 .4 application to intelligent robotics

As noted in the introduction to this thesis (Section 1.1), intelligent robotic systems
operating in open environments are in a critical need of novel sensors and methods
able to work even in the most complex conditions. Intelligent vehicles are particularly
concerned, as for instance they should be able to quickly detect a pedestrian at night
even on non-illuminated roads. As such, event cameras may represent a sensor of
choice, as they provide answers to the most predominant issues encountered with
frame-based cameras.

Independence to Lighting Conditions The high dynamic range of the event cam-
eras allows them to observe scenes even with low or with very high illumination.
In the case of intelligent vehicles, these conditions are typically met when driving
during night, or when the sun is facing the windshield at dawn and dusk. A mixture
of both low and high illumination can also be encountered, for instance at the exit
of a tunnel, and frame-based cameras are notorious for producing bad results under
these conditions.

Low Reaction Times Their asynchronous response to brightness changes and their
low latency allows for the design of novel methods with very low reaction times.
Such reaction times are particularly critical when operating in open environments, as
external vulnerable users may always appear unexpectedly, requiring quick evasive
maneuvering.

Absence of Motion Blur The lack of any motion blur is also critical, as the ego-
motion of the robot or the motion of the objects in the scene does not introduce
additional noise, and therefore makes their detection and identification easier.

2 .5 review of the state of the art

We give in this section a quick review of the current state of the art. The objective is
not to be exhaustive, but rather to give the reader an overview of the work achieved
so far using event cameras. More detailed reviews of the state of the art will be
given in each of the following chapters of this thesis for the corresponding issues.
Yet, if the reader is interested, a complete review of the domain published in 2020 is
available in [16], and a more recent deep-learning-centered survey on event-based
vision is available in [18].

2 .5 .1 Representations

One of the main questions in the literature is about how to represent events to treat
them efficiently. We list here some of the most common representations.

12

2 .5 review of the state of the art

Raw Stream Some authors (for instance, [19, 20, 21]) use directly the raw stream
of events, and treat each of them individually, allowing for a fully event-based
processing philosophy. This approach is the most conservative, as no information is
lost by converting to another representation. However, it is also highly inefficient,
due to the sparsity of the event data.

Time Surface The Time Surface [22, 23] is a simple representation of events as a 2D
image. Constructed over a short temporal window of events, each pixel of the Time
Surface is given the timestamp of the most recent event. This formulation allows
for a simple conversion of event-based problems into a frame-based equivalent.
However, the Time Surface is a lossy representation, as only the most recent event
for each pixel is kept.

Event Volume The Event Volume [24, 25] keeps both the spatial and temporal
information of events by storing them as a 3D tensor, especially adapted for learning-
based approaches. While the full spatial resolution of the events is kept, timestamps
are interpolated to place them in the adequate channels of the tensor, at the expense
of some precision loss. In the original version of Zhu et al. [24], events of negative
and positive polarities are added together, leading to some additional information
loss. The formulation of Perot et al. [25] splits them in separate channels to avoid
this issue, but results in a heavier representation.

Learned Representation More recently, some authors [26, 27] have started advo-
cating for the learning of the event-based representation itself. The intrinsic idea is
that, even though the Time Surface or the Event Volume are easily understandable
by humans, they might not be the most adapted for neural networks. Optimizing
automatically the event-based formulation allows for task-specific representations to
appear, which only keep the required data. While these representations are harder to
interpret, they have been proven to improve state-of-the-art performance in several
tasks.

Reconstructed Images Finally, some authors [28, 29, 30] reconstruct full images
from the event stream. While this process is highly inefficient, it allows for the reuse
of proven methods from the frame-based state of the art, yielding accurate results in
numerous tasks.

2 .5 .2 Processing Strategies

Three main strategies are used across the literature to process events: filter-based,
geometry-based, and learning-based methods.

Filter-Based Methods In the spirit of keeping a fully event-based processing
methodology, some authors use individual events to update a central state us-
ing a filter-based approach. This strategy allows for a fully asynchronous processing
of the event stream, and is particularly well-suited to the low amount of information

13

event cameras

each event can bring. In the case of [28], a filter-based approach is used for recon-
structing images at a high rate: images from a DAVIS [15] camera are used as an
optional state initialization, and events from the same camera are used to update
this state to recreate subsequent images.

Model-Based Methods Model-based approaches aim at finding an optimal solu-
tion to a theoretical model of the considered problem which could be explained by
the input data. In the case of event data, model-based methods are often applied
on 2D images of events, using classical image processing algorithms, or directly on
spatio-temporal 3D point clouds of events, using 3D-geometry-based or graph-based
algorithms. For instance, Benosman et al. [31] used a 3D plane-fitting algorithm to
estimate the motion of events with respect to time.

Learning-Based Methods As in numerous other domains, learning-based methods
have revolutionized event-based computer vision. Their natural capacity of learning
from data directly allows them to provide accurate results even for the most complex
tasks, and allows them to circumvent limitations with more traditional model-based
methods (noise, missing or ambiguous data, . . .). Network architectures originally
developed for frame-based computing have been proven to be also efficient for
event-based tasks [32, 33], at the expense of requiring event data to be accumulated
in a frame- or tensor-like representation. Spiking Neural Networks (SNNs) are
an alternative approach [34, 35], which allow for a sparse processing of the event
data, but which require specific hardware to be trained efficiently. More recently,
Graph Neural Networks (GNNs) have started to be used with events [36, 37], as
they represent explicitly relations between events while keeping their sparsity, and
as they can be trained on standard GPUs.

2 .5 .3 Applications

More than 30 years after their inception [1, 2], event cameras have been applied to
virtually every domain in computer vision. We list here some of their most popular
applications.

Optical Flow Information encoded by an event camera is intrinsically linked to
motion, as only the parts of the scenes which change along time due to motion of
objects in the scene or of the camera itself create events. Therefore, optical flow
constitutes one of the most explored issues in the event-based literature. While
initial works were focused on sparse, per-event optical flow on limited motions [31,
38], most recent works are able to compute dense optical flow maps in all types of
scenes [39, 40].

Disparity / Depth Estimation As with frame-based cameras, disparity / depth
estimation is a very popular topic with event cameras. While many works use a
stereo pair of event cameras [41, 42, 43], other works have tried to estimate depth

14

2 .5 review of the state of the art

from the fusion of events with a different secondary modality (RGB [33], RGB-D [44],
LiDAR [14, 45]), or from a single monocular event camera [24, 46, 47].

High Framerate HDR Video Since event cameras are able to provide relative
brightness change information at a very rate and with a high dynamic range, it is
technically possible to “revert” the event generation process to recreate images at a
very high framerate and in HDR. While early methods [28] still required images as
initial absolute brightness references, more recent methods [48, 49, 50] have been
able to circumvent this requirement by using learning-based approaches.

Object Detection and Tracking Thanks to their high frequency and low latency,
event cameras are a sensor of choice for detecting and tracking objects in dynamic
scenes. While initial works were focused on the recognition of simple shapes [51,
52], more recent works are able to harness the power of learning-based methods to
detect complex objects like vehicles or pedestrians [25, 53, 54].

2 .5 .4 State-of-the-Art Datasets

Datasets are an important requirement, both for popularizing the event camera and
making recordings available to the greatest number, and for providing benchmarks
for evaluating event-based methods. In this era of dominance of neural networks,
large datasets are also a critical need for training these networks efficiently. We
list here the three main categories of event-based datasets: real-life, simulated, and
converted frame-based datasets.

Converted Frame-Based Datasets Early works [55, 56] with event cameras tried
to exploit the large amount of frame-based datasets available in the literature. To
do so, an event camera was placed in front of a screen, where the videos or images
from these datasets were displayed. In case of static images, the event camera
was manually shaken to still display events. More recent works [57, 58, 59] have
tried to convert directly frame-based videos into their event-based equivalent, by
extracting brightness changes along time. This method however requires a temporal
upsampling of the video for more realistic timestamps, but results in the introduction
of artifacts and errors compared to a real event camera.

Real-Life Datasets Following the wider availability of event cameras, numerous
real-life datasets were recorded and published during the past decade. While early
works were focused on simple and specific tasks (identification of playing cards [60],
recognition of gestures [61], . . .), more recent works have started to build long,
complex, multitask datasets. Automotive datasets [25, 62, 63, 64] are especially
popular, as they can showcase highly varying environmental conditions (lighting,
weather, traffic, . . .), and offer a wide range of problems to solve (sensor fusion, pose
estimation, optical flow, object detection and recognition, semantic segmentation,
. . .).

15

event cameras

Simulated Datasets While real-life datasets are particularly useful, they often have
limitations: partial and/or approximate ground truths, difficulties to synchronize
and calibrate the sensors, lack of variety, few edge cases, etc. In comparison, fully
simulated datasets can have a perfect ground truth, synchronization, and calibration,
and can place the event camera in a wider range of situations. Several simulators [65,
66, 67] were proposed along the years, relying on the frame-to-event methods, but
generating traditional frames at a high rate so that no temporal upsampling of the
frame-based data is required. A model of the event camera was especially included
in the automotive CARLA simulator [68], based on the work of Rebecq et al. [67].

2 .6 popular event camera models

In this thesis, we will consider mainly three event camera models, which were used
as part of the datasets of the thesis: the DAVIS346, Prophesee Gen3.1, and Prophesee
Gen4 cameras.

2 .6 .1 DAVIS346

The DAVIS [15] camera was initially released in 2014. Designed by iniVation1, this
camera is one of the first event-based sensor prototype which was made available to
the public (after the DVS128 [69] in 2008). In its DAVIS346 version, this sensor only
has a resolution of 346px× 260px, but is able of a high dynamic range of 120dB, a
temporal resolution of 1µs, a typical latency under 1ms, and it is able to produce at
most 12MEPS.

In addition to the event-based modality, the DAVIS346 camera also embarks a frame-
based sensor, sharing the same pixels than the event-based sensor. Despite only
being able to produce grayscale frames at the same low resolution of 346px× 260px
and with only a maximum frame rate of 40FPS, this secondary modality was an
achievement at the time. It allowed for the first comparisons of frame-based and
event-based methods, for a better comprehension of the strengths and weaknesses
of the event-based modality, and for the apparition of novel methods based on the
fusion of frames and events.

2 .6 .2 Prophesee Gen3.1

The Prophesee Gen3.1 sensor was released in early 2020. Designed by Prophesee2,
it has a resolution of 640px× 480px (VGA), a high dynamic range of above 120dB, a
typical latency of 200µs, and can output at most 50MEPS.

While it does not embark a frame-based modality, the Prophesee Gen3.1 camera
constituted an interesting upgrade in terms of resolution from the DAVIS cameras.
As such, it was included in multiple datasets, like DSEC [63] and EVIMO2 [70].

1 https://inivation.com
2 https://www.prophesee.ai

16

https://inivation.com
https://www.prophesee.ai

2 .7 datasets

2 .6 .3 Prophesee Gen4

The Prophesee Gen4 [13] camera was released in mid-2020. Also designed by
Prophesee, this camera is one of the first high definition event sensor, with a
resolution of 1280px× 720px. Similarly to the DAVIS346 and Prophesee Gen3.1
cameras, the Prophesee Gen4 has a high dynamic range (above 124dB), a high
bandwidth (up to 1066MEPS), and a low latency (between 20 and 150µs).

As will be shown in the following sections of this thesis, the availability of high
definition event sensor was becoming a critical need. Events from low- and mid-
resolution sensors lack detail, leading to low performances for applications which
rely on precise object edges and/or textures (e.g., object recognition), but remain
popular for low-power embedded systems (like the Prophesee GenX320 sensor [71]
for AR/VR). However, the higher level of details of high definition event cameras
brings new issues, in particular a much higher event throughput which becomes
harder to treat in real time.

2 .7 datasets

As noted in Section 2.5.4, datasets including the event-based modality have been
an increasing need over the past decade. This need has been further reinforced
with the arrival of learning-based methods, which require large amounts of data to
be trained. In this section, we give a more detailed focus on three datasets of the
state of the art, which were used throughout the thesis: the MVSEC [62], DSEC [63],
and M3ED [64] datasets. A summary of the content of these datasets is given in
Table 2.1.

MVSEC DSEC M3ED

Year 2018 2021 2023

Event data 2× DAVIS346 2× Prophesee Gen3.1 2× Prophesee Gen4
(346×260) (640×480) (1280×720)

Images

2× DAVIS346
(346×260) 2× FLIR Blackfly S OVC 3b (3 cameras)

2× VI-Sensor (1440×1080, 20Hz) (1280×800)
(752×480, 20Hz)

LiDAR data
Velodyne VLP-16 Velodyne VLP-16 Ouster OS1-64U

(16 channels, 100m range, (16 channels, 100m range, (64 channels, 120m range,
20Hz, 30° vertical FOV) 10Hz, 30° vertical FOV) 10Hz, 45° vertical FOV)

Types of scene Drone, handheld, Car Drone, car,
car, motorcycle legged robot

Day and night Yes Yes Yes

Ground truth data Pose, semi-dense depth, Pose, semi-dense disparity, semi-dense optical flow, Pose, sparse depth,
semi-dense optical flow dense semantic maps, 2D bounding boxes dense semantic maps, 3D bounding boxes

Total duration 1 hour 53 hours 200 hours

Train/val/test sets? No Yes Yes

Table 2.1 – Comparison of the state-of-the-art datasets used throughout the thesis.

17

event cameras

2 .7 .1 MVSEC

The Multivehicle Stereo Event Camera (MVSEC) dataset [62] was recorded in 2018.
It contains data from multiple sensors: low-resolution (346×260) events and images
from two DAVIS346 cameras, higher-resolution (752×480) images from two VI-
Sensor cameras, IMU measurements from both the DAVIS346 and VI-sensor cameras,
point clouds from a 16-channel Velodyne LiDAR, and GPS data from a UBlox receiver.
In total, the MVSEC dataset is composed of four types of sequences, for more than
1 hour of data: 6 short flying sequences, 2 handheld sequences, 5 long outdoor
driving sequences, and a single long motorcycle riding sequence.

This dataset was originally intended for depth and pose estimation, as its authors
offer semi-dense ground truth depth maps and groud truth reference poses. Yet,
following subsequent work [32], they were also able to compute semi-dense ground
truth optical flow maps, by using the depth maps and the poses.

However, as highlighted by its authors [62], this dataset suffers from multiple flaws:
the data is loosely synchronized, the biases of the event cameras were not adjusted,
the calibration is approximate, and moving objects in the scene create errors in
the ground truth data. For this last point in particular, the authors of MVSEC
accumulate consecutive point clouds to construct a dense view of the scene, which
is then reprojected in 2D to construct the ground truth depth maps. However, if
an element moves in the scene during the accumulation period, then it will appear
“blurry” in the accumulated view, leading to errors in both the ground truth depth
maps and optical flow maps. This issue is particularly critical, as the driving
sequences contain many moving vehicles and pedestrians. Yet, MVSEC remains
the most popular dataset for both depth estimation and optical flow, and as such
constitutes an interesting benchmark for the thesis work.

2 .7 .2 DSEC

The Stereo Event Camera Dataset for Driving Scenarios (DSEC) [63] was recorded
in 2021. It contains data from mid-resolution (640×480) events from two Prophesee
Gen3.1 cameras, high-definition (1440×1080) images from two FLIR Backfly S cam-
eras, point clouds from a 16-channel Velodyne LiDAR, and GPS data from a UBlox
receiver. In total, the DSEC dataset is composed of 53 sequences of day and night
driving, for more than 53 hours of data.

This dataset was originally intended for disparity and depth estimation, as its
authors offer semi-dense ground truth disparity maps. However, the DSEC dataset
received several extensions, and now offers ground truth semi-dense optical flow
maps [39], dense semantic segmentation maps [72], and 2D bounding boxes for
pedestrians and vehicles [73].

18

2 .7 datasets

2 .7 .3 M3ED

The Multi-Robot, Multi-Sensor, Multi-Environment Event Dataset (M3ED) [64] was
recorded in 2023, and acts as an informal successor to the MVSEC dataset. It
contains data from high-definition (1280×720) events from two Prophesee Gen4
cameras, high-definition (1280×800) images from three cameras mounted on an
OVC 3b platform, point clouds from a 64-channel Ouster LiDAR, and GPS data
from a UBlox receiver. In total, the M3ED dataset is composed of three types of
sequences, for more than 200 hours of data: 40 indoor and outdoor sequences filmed
with an UAV and with a legged robot, and 17 outdoor driving sequences.

Like the MVSEC dataset, M3ED is mainly intended for depth and pose estimation,
as its authors offer sparse ground truth depth maps and ground truth reference
poses. However, following the extensions of the DSEC dataset, they also offer dense
2D semantic maps, as well as 3D bounding boxes for pedestrians, buildings, cars,
and trees.

One of the key elements of the M3ED dataset is that its authors have fixed the issue
of the incorrect depths for the moving objects of the MVSEC dataset, by identify-
ing them and discarding erroneous values automatically. Yet, their conservative
approach also tends to discard correct data, resulting in very sparse ground truth
depth maps.

19

3R E A L - T I M E E V E N T- B A S E D O P T I C A L F L O W

Following the focus on event cameras, we describe in this second chapter of the
thesis how we proposed to solve the “motion” part of the subject of the thesis.
Beyond allowing for a comprehension of how the ego-platform and external objects
are moving in a scene, motion is an essential component for describing the current
status of the observed scene, as well as for anticipating its future states. As such, we
propose here a real-time optical flow method, which only relies on events from a
single camera.

The presented method and the associated results of this chapter were initially
published as a journal article in IEEE Transactions on Intelligent Transportation
Systems in December 2021 [74], and were then slightly refined and presented as
part of a French national conference (RFIAP) in July 2022 [75]. A project page is
also available at https://vbrebion.github.io/RTEF/, and contains the links to the
original article, the source code, the dataset, and videos associated to this work.

3 .1 introduction

By estimating the displacement of each pixel in a camera along time, optical flow
describes in 2D the motion field of the observed scene. Optical flow is a key enabler
for many major applications, such as object detection and tracking [76], motion
estimation [77], visual odometry [78], and image segmentation [79]. In the context of
intelligent robotics, optical flow constitutes one of the fundamental building bricks
of the perception pipeline, especially implied in the detection of moving objects like
vulnerable external users.

Optical flow literature is highly abundant for frame-based cameras. However, as
discussed in Section 2.3.2, there is no direct translation for frame-based optical flow
algorithms to event cameras. The sparse and asynchronous nature of their output
constitutes a major paradigm shift. In this chapter, we describe the work conducted
over the first year of the thesis, dedicated to this problem. In particular, we describe
here our proposition: a novel optimized framework for computing real-time event-
based optical flow (EBOF, in short) for both low- and high-resolution event cameras,
using a frame-based approach. We call our method RTEF, for “Real-Time Event-based
Flow”.

We first give a formal description of the problem in Section 3.2. Then, in Sections 3.3
and 3.4, we review the state of the art of both the frame-based and event-based
optical flow methods, and discuss our choice of using a frame-based approach for
computing EBOF. Finally, we present our pipeline-based method and evaluate it in
Sections 3.5 and 3.6, before drawing some conclusions in Section 3.7.

21

https://vbrebion.github.io/RTEF/

real-time event-based optical flow

3 .2 problem formulation

The objective of optical flow is to estimate the two-dimensional displacement of
intensity patterns [80]. More specifically, in its frame-based formulation, optical flow
describes the apparent motion field of pixels between consecutive images, caused
by the relative motion between the camera and the elements in the observed scene.

If we note I(x, y, t) the intensity of a pixel at location (x, y) and at time t, if this
pixel moves by ∆x and ∆y pixels over a period ∆t (∆t being the time between two
consecutive frames), and if we consider that brightness remains constant over that
period, then we have the following equality:

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) (3.1)

By linearizing this equation using Taylor expansion, it can then be shown [81] that:

Ixu + Iyv + It = 0 (3.2)

where Ix, Iy, and It are respectively the spatial and temporal derivatives (gradients)
of the image at coordinates (x, y) and at time t, and where u and v are the x and y
components of the optical flow.

The objective of the optical flow problem is therefore to determine these u and v
components for every pixel of each pair of consecutive images, in the form of dense
motion fields.

3 .3 related work

3 .3 .1 Frame-Based Optical Flow

In Eq. (3.2), the two components u and v of the optical flow are unknown, but
since only one equation is available, the system is underdetermined (this is the
so-called aperture problem). To solve this issue, researchers have proposed to add
supplementary constraints. In 1981, Horn and Schunck [81] proposed a global
smooth flow constraint, where flow differences should be minimal for adjacent pixels
in the whole image. The same year, Lucas and Kanade [82] proposed a local constant
flow constraint, where optical flow components should be the same for every pixel
of a local neighborhood.

More recent approaches have proposed extensions to these methods. Since the
Horn-Schunck and the Lucas-Kanade methods are restricted to small motions,
Meinhardt et al. [83] and Bouguet [84] proposed pyramidal-based approaches to
compute optical flow at multiple scales. To also prevent the oversmoothing of the
Horn-Schunck method, Black and Anandan [85] and Sun et al. [86] proposed to add
regularization terms, making it more robust.

22

3 .3 related work

In the past few years however, a paradigm shift has started appearing, with the
transition from geometry-based approaches to learning-based approaches. Neural
networks are especially notorious for their capability of learning from data to
generalize even in presence of noise and inconsistencies, which is a clear advantage
when trying to estimate optical flow on real scenes. Networks like FlowNet [87] or
UnFlow [88] stood as state of the art over the past few years. However, as proposed
by Teed and Deng with RAFT [89], the reintroduction of geometry-based concepts
in networks has proven to be an efficient approach.

More recently, unified models able to solve multiple tasks at once have gained
popularity, as interactions between these tasks lead to a better understanding of the
scene and a better generalization of learned models. The GMFlow network of Xu et
al. [90] is a perfect example of this trend, as it can compute optical flow, disparity,
and depth maps, and as it defines the current state of the art on optical flow.

3 .3 .2 Event-Based Optical Flow (EBOF)

As noted in Chapter 2, previously listed frame-based methods can not be directly
applied to solve the optical flow problem for event cameras. We describe here
the various approaches proposed so far in the state of the art, which either try to
reformulate the optical flow problem for event-based cameras, or try instead to
leverage the frame-based state of the art by converting the event-based optical flow
problem into a frame-based problem.

Pure Events In order to compute event-based optical flow, some authors use the
events and all their properties without accumulation into frame-based representa-
tions. Such a frameless approach was proposed by Benosman et al. [31], by using
a plane-fitting method on short temporal windows of events to determine their
motion in the visual scene. Other works [38, 91, 92, 93, 94] proposed contrast
maximization schemes as proxies for computing optical flow, by evaluating the
sharpness of motion-compensated images of accumulated events. More recently,
Paredes-Vallés et al. [34, 95] and Cuadrado et al. [96] proposed to exploit Spiking
Neural Networks (SNNs) for a fully biologically-inspired EBOF estimation.

Reconstructed Frames Due to the great advances on optical flow estimation with
traditional cameras, other authors have proposed to build image-like representations
from the events, in order to use them as input for these state-of-the-art methods.
Almatrafi et al. [97] proposed to accumulate events in short temporal windows, to
construct a binary image from them, and then to use the distance transform to create
stable dense images designed to be used with any frame-based optical flow method.
Zhu et al. [98] also proposed to create images of accumulated events, but they instead
compute a sparse optical flow by extracting visual features through the use of the
Harris corner detector [99], and they track them using an expectation maximization
algorithm. An alternative approach was proposed by Nagata et al. [100], as they use
a surface matching approach on short time-shifted images of accumulated events
(time surfaces) to evaluate their displacement.

23

real-time event-based optical flow

Learning-Based Recent works have also adapted proven neural network architec-
tures for a use with images of events; [32, 101] proposed FlowNet-inspired [87]
networks for inferring EBOF, while Gehrig et al. [39] proposed a RAFT-inspired [89]
one. Some authors also proposed novel types of networks, designed specifically for
the characteristics of event cameras. Paredes-Vallés et al. [48] proposed a light and
real-time network based on event warping, called FireFlowNet. More recently, Liu
et al. [40] designed a network able to incorporate the notion of temporal continuity
of event data, to compute temporally fine-grained EBOF.

Additional Modalities Some methods also exploit the capacity of certain neu-
romorphic sensors to produce more than events, such as frames or inertial mea-
surements. Pan et al. [102] used the flow of events as a deblurring tool for the
frames of the DAVIS camera in highly dynamic scenes, allowing for a better optical
flow estimation. Rueckauer et al. [103] used the IMU integrated in the DAVIS240C
camera to determine an exact optical flow estimation for pure rotational movements.
Finally, Lee et al. [104] extended their FlowNet-inspired network [101] by adding the
grayscale images from the DAVIS camera as a secondary input.

3 .4 our orientation : densifying events

None of the methods presented in Section 3.3.2 has considered the issue of com-
puting optical flow with a high-definition event camera. Furthermore, very few of
them ([48, 92, 103, 105]) have been able to achieve real-time compatibility even for
low-resolution inputs. In this section, we analyze why both these constraints are
difficult to hold, and how we propose to solve them.

First of all, approaches relying on pure events are by definition more complex to
develop, as they can not reuse the frame-based state of the art. While they might
make the most sense in terms of exploiting the novel event-based paradigm to its
full potential, these approaches are especially heavy, slow, and hard to optimize.
Furthermore, they have mostly been applied so far to simple scenes with limited
motions, and have difficulties scaling to scenes of higher complexity.

Learning-based approaches appear as more promising, as they currently hold state-
of-the-art results. However, neural networks always come with a trade-off between
the quality of the results and the time it takes for their inference; reaching our
objective of real-time performances with a high-resolution input would require
sacrificing the quality greatly. Learning-based methods also require a high amount
of training data, which is still quite limited to this day for high-resolution sensors.
Finally, the quality of the results on never-seen-before scenes is hard to predict,
as generalization of the network is not guaranteed, and as it highly relies on the
training data, the training procedure, the camera settings, . . .

As such, frame-based approaches are of particular interest to us1. Sure, accumulating

1 We insist here that we do not aim at fully reconstructing “real” images of the scenes like the ones
that would be captured by a traditional camera. Instead, we aim at creating pseudo-images, i.e.,
representations of the event stream as frames which should then be optimized for a use with
traditional frame-based optical flow methods.

24

3 .5 method

Event
camera

Events accumulation Denoising & filling Negated exponential
distance transform

Real-time frame-based
optical flow computation

CPU-only CPU and GPU

Figure 3.1 – Our event-based optical flow (EBOF) computation architecture, RTEF, able to run
in real-time with low- and high-resolution event cameras. Due to the pipeline architecture,
all four blocks are independent parallel processes. Each block depicts the result it produces,
for a sample driving sequence.

events to construct pseudo-frames does lead to the loss of the asynchrony property
of the event camera, it can lead to losing some precision in the information, and
it can reintroduce frame-related problems like motion blur. However, in return,
this pseudo-frame construction (1) allows for the reuse of frame-based methods
which have been developed and optimized over the past decades, (2) allows for
the exploitation of computer architectures to their full potential, especially GPUs,
(3) can be exploited with traditional geometry-based optical flow approaches, which
do not rely on specific training dataset and training procedures, making the quality
of results in theory independent of the type of scene observed. Furthermore, we
underline here that not all properties of the event cameras are lost, and that they are
still more interesting than frame-based cameras: the HDR capacity is still present
(so the optical flow should compute similarly during daytime or under low-light),
and the event accumulation process can be adjusted on the fly, allowing for a fine
control over the level of information that should be kept in a pseudo-frame and the
overall responsiveness of the system.

3 .5 method

Following the problem formulation and the reason for the use of a dense representa-
tion to reach real-time performances, we detail in this section the novel framework
(RTEF) we developed for computing real-time EBOF. In order to optimize com-
putational time and reach real-time performances, we propose to parallelize tasks
through the use of a pipeline architecture [106]. An illustration of this framework
with example results for each step is available in Fig. 3.1. The following subsections
will detail how each block contributes towards obtaining the real-time EBOF.

3 .5 .1 Accumulation for Edge Images

As discussed in Section 3.4, the very first step needed in our case to ultimately
compute optical flow is to accumulate events in the form of a pseudo-image. The
first component of our architecture is therefore responsible for receiving and accu-
mulating the events from the camera in short temporal windows, to form “edge
images”. These binary matrices indicate whether each pixel produced at least one

25

real-time event-based optical flow

event during the accumulation time ∆t. More formally, if we note E(x, t) the content
of the pixel at coordinates x in the edge image E produced at time t, then:{

E(x, t) = 1 if ∃e = (xe, te, pe), xe = x, t ≤ te < t + ∆t
E(x, t) = 0 otherwise. (3.3)

By doing so, each edge image depicts a binary representation of the main edges
of the objects with relative motion in the visual scene, which can be used as a first
stable medium for computing optical flow. For notation simplicity, when the notion
of time is not important, we will simply denote the content of a pixel of an edge
image as E(x) in the rest of this chapter.

As can be noted through Eq. (3.3), these edge images do not take into account
the polarity of the events. As argued by Almatrafi et al. [97], and as we have
experimented, both positive and negative events represent similarly the edges of
the objects in the visual scene. In addition, and as was shown through Fig. 2.2,
polarities are dependent on the orientation of the motion and on their relative
color to the background: introducing polarities into the edge images would mean
that appearance of objects would change during motion. We want to avoid this
phenomenon at all cost if we want to reuse traditional frame-based optical flow
methods, which require images to be as stable as possible.

The choice of ∆t is also important and linked to the application: taking a ∆t too short
will lead to edge images with too few events, resulting in an unstable appearance,
while taking a ∆t too long will fail to capture clearly the movement of the objects by
introducing blur.

Compared to other dense formulations from the literature (time surface [22, 23, 100],
motion-compensated images [91], reconstructed images [29]), our formulation has
the benefit of keeping only the information required for frame-based optical flow
estimation. Computationally speaking, this makes this solution extremely efficient,
as each packet of events received from the camera only needs to be appended to a
buffer. In parallel, a second thread, triggered when the time window has expired,
is responsible for collecting all the events from the buffer and creating the edge
image, which is then sent for further processing. As such, due to its simplicity, this
component runs solely on the CPU, as it would not benefit from the parallelization
capabilities of the GPU.

3 .5 .2 Denoising and Filling

Event cameras generate a significant amount of noise, impacting the quality and
stability of the edge images, which in return would affect the final optical flow
computation if left untreated.

A solution could be to use one of the state-of-the-art denoising solutions of the
literature [22, 107] during the accumulation step, that is, before creating the edge
image. However, doing so would be computationally expensive, as the sparse and
asynchronous nature of the events at that step makes it hard to look for neighbor

26

3 .5 method

pixels states. Furthermore, many of these solutions were designed for low-resolution
sensors, and translate difficultly to higher definition ones.

To circumvent this issue, we propose in this work a novel, fast yet efficient, method
for discarding incorrect events. Our approach relies on applying denoising after
the edge image creation. Proposed process is computed in two steps — denoising
and filling — and is similar to applying morphological erosion and dilatation
(morphological opening) on the edge image. In the denoising step, described in
Algorithm 1, erroneous edge pixels are sought to be eliminated, by removing isolated
events. On the contrary, the filling step described in Algorithm 2 aims at filling
locations where an edge pixel is missing, but should have been produced by the
camera, in order to help to stabilize the edge images. An illustration of both these
steps on a real scene is given in Fig. 3.2.

Algorithm 1: Denoising
Inputs : An edge image E

The denoising threshold Nd
Output: The denoised edge image Ed
Ed ← E;
foreach pixel index x ∈ E do

if E(x) = 1 then // E(x) is an edge pixel
nd ← count of edge pixels among the 4 direct neighbor pixels of x in

E;
if nd < Nd then

Ed(x)← 0 ; // Ed(x) is not an edge pixel anymore

Algorithm 2: Filling
Inputs : A denoised edge image Ed

The filling threshold N f
Output: The denoised and filled edge image Ed f
Ed f ← Ed;
foreach pixel index x ∈ Ed do

if Ed(x) = 0 then // Ed(x) is not an edge pixel
n f ← count of edge pixels among the 4 direct neighbor pixels of x in

Ed;
if n f ≥ N f then

Ed f (x)← 1 ; // Ed f (x) becomes an edge pixel

We underline here the importance of computing denoising and filling separately in
this order, to avoid creating inconsistencies. Indeed, if the filling step was processed
simultaneously with the denoising, then pixels that would later be discarded as
noise could contribute to creating incorrect filling pixels, thus introducing new
noise.

27

real-time event-based optical flow

(a) (b) (c) (d)

Figure 3.2 – Steps of the denoising and filling process, for a noisy edge image. A zoomed
view of the streetlamp (squared in yellow) is also provided for better visibility. (a) The
original noisy edge image. (b) The same image with edge pixels identified as noise in red
(Nd = 2). (c) The denoised edge image with the newly added pixels for the filling in green
(N f = 3). (d) The final denoised and filled edge image.

Denoising and filling thresholds Nd and N f depend on the event camera configura-
tion, as each camera may give a different noise profile. The aim of the denoising
is to discard isolated pixels, that is, pixels with very few neighbors: Nd = 1 or 2
appear therefore as the best options. As can be seen in Algorithm 1, setting Nd = 0
disables the denoising. Then, the goal of the filling is to slightly stabilize the ap-
pearance of the edge images, by adding edge pixels in locations where there are
enough neighboring edge pixels to be confident that an edge pixel should have been
produced: values of N f = 4 or 3 are therefore the best compromise to add such
pixels. As can be seen in Algorithm 2, setting N f = 5 disables the filling. A general
advice is to select Nd < N f . A sensitivity analysis on Nd and N f is conducted in
Section 3.6.10.

Finally, while this formulation tends to remove small details from the edge images
by considering them as noise (as can be seen for instance for the buildings on the
right side of the edge images of Fig. 3.2), it actually helps to obtain more stable
images, by extracting the main edges from the scene, and discarding superfluous
textures.

Another advantage of this formulation lies in its simple and parallelizable formula-
tion, as the computation for each pixel is independent of the one of its neighbors.
Therefore, we implemented it on the GPU, to exploit its capabilities, and to relieve
the CPU so that it can undertake other complex tasks.

3 .5 .3 The Negated Exponential Distance Surface

Even after denoising and filling, the edge images are only binary matrices. As such,
they can hardly be used for computing optical flow with traditional frame-based
algorithms: as shown in Eq. (3.2), these methods require image gradients, which
would be discontinuous for our binary edge images. In order to make them viable

28

3 .5 method

for frame-based optical flow computation, densifying them through the use of the
distance transform, as proposed by Almatrafi et al. [97], is an interesting baseline for
introducing smooth variations in the images, and therefore having smooth gradients.

In their approach, they consider a set of edge pixels Φ, which is defined in our case
after denoising and filling as:

Φ .
= {xi | Ed f (xi) = 1} (3.4)

Then, they compute a distance surface D (which is of the same size as the edge
image), by giving to each pixel x of D its distance to the closest edge pixel in Φ.
Formally, it can be written as follows:

D(x) .
= min

xi∈Φ
d(x, xi) (3.5)

where d is the L2 distance function:

d(x1, x2)
.
=
√
(x1 − x2)(x1 − x2)T (3.6)

In order to obtain an actual 8-bit image, a final normalization is applied to contain
the values of the distance surface as integers between 0 and 255:

Dnormalized(x)
.
=

⌊
255× D(x)

max(D)

⌉
(3.7)

However, this approach has the main drawback of needing a near-perfect denoising,
as a single noisy event can disrupt the appearance of the whole distance surface, as
shown in the second row of Fig. 3.3. The computed distances do not have an upper
bound, meaning that the area of influence of each edge pixel can be infinite, and
depends on the presence of other close neighbors. In addition, as shown in Eq. (3.7),
the image representation of the distance surface depends on its maximum value,
and the appearance of objects can therefore vary greatly based on their position. An
example of this behavior is shown in the third row of Fig. 3.3: the inside part of
the square appears darker when it is in the bottom right of the image, due to the
maximum distance increasing. An answer to these problems could be to limit the
computed distances to a maximal value, restricting the influence of an edge pixel
to a fixed neighborhood. This solution, however, would introduce a non-smooth
transition in the distance transform function. It can become an issue for the gradient
computation on distance surfaces, often used as part of the optical flow estimation.

Another issue of the approach of Almatrafi et al. also appears when distinct objects
come close to each other: their edges tend to merge together in the resulting distance
surface, making the individual objects indistinguishable, such as in the last row
of Fig. 3.3. This phenomenon can lead to incorrect optical flow results, especially
when a block-matching or image warping formulation is employed, due to the lack
of texture on the produced image. Giving more emphasis to the pixels directly
surrounding the edge pixels would help to create distance surfaces with more
prominent object edges, limiting this merging issue. A solution could be to employ
a function with a logarithmic shape.

29

real-time event-based optical flow

Edge image Distance surface Our negated exp. Gaussian blur
(Almatrafi et al. [97]) distance surface

M
is

si
ng

px
ls

N
oi

se
Po

si
ti

on
R

ea
ls

ce
ne

Figure 3.3 – Comparison between the original distance surface, proposed negated exponential
distance one (with α = 8 for a good visibility), and a simple Gaussian blur (with σ = 3px).
From top to bottom: a simulated square with 50% of its pixels randomly removed; the same
square with a single pixel of noise added (circled in red); the same square in the bottom
right of the image; and an indoor flying scene from the MVSEC dataset [62].

To solve jointly both these issues, we propose in this work to replace the distance
surface D with a novel negated exponential distance surface Dexp, formulated as
follows:

Dexp(x)
.
= min

xi∈Φ
dexp(x, xi) (3.8)

where dexp is a negated exponential distance function:

dexp(x1, x2)
.
= 1− exp

(
−d(x1, x2)

α

)
(3.9)

where α is a spreading parameter. Figure 3.4 compares the aforementioned functions
over the distance to the closest edge pixel. As can be seen through the plot, the
main advantage of our negated exponential formulation is that, while close to a
logarithmic formulation, each edge pixel also has a restricted influence area, after
which the values saturate to a value of 1. Therefore, the normalized 8-bit image
version can then be re-written as:

Dexp_normalized(x)
.
=
⌊
255× Dexp(x)

⌉
(3.10)

30

3 .5 method

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

Euclidean distance to the closest edge pixel

V
al

ue
of

th
e

co
ns

id
er

ed
pi

xe
l

y = Id(x)
y = min(x, 3)
y = ln(x + 1)
y = 1− exp(−x)
y = 1− exp(−x/2)

Figure 3.4 – Values of the distance transform as a function of the distance to the closest
edge pixel. In the order of the legend, the curves represent the original distance transform,
the same with an upper bound set to 3px, the natural logarithm version, and our negated
exponential formulation, with α set to 1 and 2 respectively.

where the dependence on the maximum distance is removed.

The spreading parameter α can be used to determine the size of the neighborhood
influenced by each edge pixel. This parameter conditions the appearance of the
distance surface, and regulates the remaining imperfections of the edge images. A
low value for α restricts the area of influence of each edge pixel to only its close
neighbors. It limits the influence of the noise on its appearance, but makes the
distance surface less stable and more prone to variations. On the contrary, selecting
a higher value for α has the opposite effect: variations of the appearance of the
various objects in the scene are well compensated, but noisy events have a more
important effect.

In addition, α can be rewritten from Eq. (3.9) as a function of the wanted distance of
saturation for d, which we will name here dsat (we remove the function parameters
for more simplicity in the notations):

α = − dsat

ln(ε)
(3.11)

with
ε

.
= 1− dexp (3.12)

where by definition ε > 0. ε is formulated so as to represent the gap between dexp
and the saturation value of 1. Saturation is therefore reached when this gap ε is as
small as possible, i.e., ε→ 0. Since we work in the discrete 8-bit domain, saturation
is reached when ε < 1/255. Integrating this value in Eq. (3.11) results in the final
formulation of α as a function of dsat:

α = − dsat

ln(1/255)
≈ dsat

5.541
. (3.13)

31

real-time event-based optical flow

The sensitivity of dsat is studied in the analysis Section 3.6.10.

The interest of our negated exponential distance surface formulation is illustrated
in Fig. 3.3 as a side-by-side visual comparison with the original distance surface.
As expected, our negated exponential formulation compensates the missing pixels
similarly to the original distance surface, while limiting the impact of noisy edge
pixels. As seen in the third row, the appearance of objects also remains the same
independently of their position, due to the removal of the dependence on the
maximum distance in the image normalization process. Finally, this formulation
displays more distinct edges and keeps objects texture, especially visible in the real
complex scene represented in the last row (note how the board and the barrel keep
a clear appearance using negated exponential formulation, while they are hardly
distinguishable with the original distance surface).

In addition, while at first glance a simple Gaussian blur could be considered to have
similar effects to our formulation for a lower computational cost, we showcase in
Fig. 3.3 that this is not really the case. Missing pixels are much less compensated
as seen in the first row, while areas with more edge pixels appear darker in the
last row. Both these phenomenons are due to the use of a kernel for blurring the
image: the more edge pixels fall into the kernel centered around a given pixel, the
higher the value of this pixel will be, meaning that the value of a pixel depends on
its close neighbors. This is something we want to avoid at all cost, since we want to
make objects as similar-looking as possible through time for a good computation of
optical flow.

Regarding the implementation of the distance transform, we employed the fast
solution described by Coeurjolly et al. [108]. The choice of this method was especially
motivated by its optimized formulation, allowing for large parallelization, and by
the little amount of modifications required to incorporate our negated exponential
formulation. This block of our pipeline was therefore also implemented on GPU, to
exploit its parallelization capabilities.

3 .5 .4 Frame-Based Optical Flow

The final block of our architecture is the computation of the optical flow itself. Since
the previous steps led to dense image-like structures from the flow of events, any
state-of-the-art frame-based optical flow method could be used here.

As part of this work, we selected the “flow filter” approach of Adarve and Ma-
hony [109]. Their method is based on an update-prediction architecture, similar
to the one of Black [110], which predicts optical flow using an image warping pro-
cess, and temporally propagates the optical flow estimations using an incremental
framework. Multiple update-prediction loops are stacked as a pyramidal structure,
enabling the capture of both large and fine displacements in the images. Their
method was designed for a fast and accurate estimation of the optical flow field,
and is implemented on GPU.

The choice of this method as our optical flow computation solution was mainly
guided by their use of a predictive filter-based formulation, which, beyond enabling

32

3 .6 evaluation

real-time compatibility on GPU, allows for a temporal smoothing of the flow. This
property brings stability and robustness to the overall optical flow thanks to its
memory effect, which is beneficial given the sometimes unstable nature of events.

Finally, while this method returns a dense optical flow covering the whole surface
of the image, we restrict it to the edge pixels of the denoised and filled edge image.
Indeed, by nature, events encode sparse information, detailing the pixels for which
a change in luminosity was observed. The densification produced by the use of the
negated exponential distance transform differs from an inference of missing data: it
is only intended for creating texture and smooth transitions, which are necessary to
determine the optical flow.

3 .6 evaluation

3 .6 .1 Datasets

As part of the evaluation of the proposed methods, five datasets are going to be used
in the following subsections. The first one is the low-resolution MVSEC dataset [32,
62], which was the first event vision dataset with real data that included a ground
truth optical flow. However, as noted in Section 2.7, the MVSEC dataset suffers
from several limitations (lack of physical synchronization, approximate calibration,
. . .). While it remains an interesting baseline, its use starts to decline now that more
recent datasets have been published. As such, we will also evaluate our method on
the mid-resolution DSEC dataset [63], which constitutes a more stable benchmark.
Both will serve as the basis for comparison with other state-of-the-art methods.
For high-definition data, three complementary datasets are used: the 1 Megapixel
Automotive Detection Dataset [25], for a deep evaluation on daily driving sequences;
a 20-minute-long driving sequence recorded by Prophesee, for visual comparison
with the current frame-based state of the art; and a novel high-speed high-definition
event-based indoor dataset we recorded as part of this thesis, to demonstrate the
accuracy of RTEF even under large motions. A summary of these datasets is given
in Table 3.1.

Resolution Scenes Ground truth? Frames? Conditions

MVSEC 346× 240 (low) Indoor & Vehicular Semi-dense Yes Day, night
DSEC 640× 480 (mid) Vehicular Semi-dense Yes Day, night
1 Megapixel Automotive Detection 1280× 720 (HD) Vehicular No No Day, varying lighting and weather
20-minute-long driving sequence 1280× 720 (HD) Vehicular No Yes Day, single long sequence
Our high-speed event dataset 1280× 720 (HD) Indoor No No Very fast and erratic motions

Table 3.1 – Comparison of the event-based datasets used for the evaluation of our optical
flow method RTEF.

3 .6 .2 Setup

The implementation of our method was made using ROS Noetic, in C++11 and CUDA
12.2, combined with the use of the OpenCV 4.2 library. Both the implementation

33

real-time event-based optical flow

and the evaluation phases were conducted on an HP ZBook 17 G6 laptop, with an
Intel i9-9880H CPU, an NVIDIA Quadro RTX 5000 GPU, 64 GB of RAM, and using
Ubuntu 20.04.

Regarding the parameters, three configurations were used, respectively for low-,
mid-, and high-resolution input data.

For the low-resolution data (346× 260) of the MVSEC dataset [32, 62], we were
restricted to use a temporal window of size ∆t = 1 frame2 for a fair comparison
with the other state-of-the-art methods using this time window [24, 32, 34, 39, 48,
101, 105, 111]. For the denoising and filling, we set Nd = 1 and N f = 4, due to the
high noise in these recordings. The negated exponential distance transform was
configured with α = 1.08 (so that dsat = 6px, see Eq. (3.11)). Finally, the “flow filter”
method of Adarve and Mahony [109] was configured with 3 pyramidal layers, with
their regularization weights set respectively to 50.0, 250.0, and 500.0, and with 50,
25, and 5 smooth iterations per layer.

For the mid-resolution data (640× 480) of the DSEC dataset [63], we used a temporal
window of size ∆t = 20ms, instead of the intended ∆t = 100ms one (more discussion
on that topic is given in Section 3.6.6). No denoising nor filling was used on this
dataset (Nd = 0, N f = 5), due to the low amount of noise in these recordings.
Similarly to the low-resolution data, α was set to a value of 1.08 (dsat = 6px), and the
“flow filter” method was configured with 3 layers, with their regularization weights
set respectively to 5.0, 150.0, and 200.0, and with 200, 150, and 7 smooth iterations
per layer.

For the high-resolution data (1280× 720), finally, a temporal window ∆t = 15ms
was used, to better capture the movements. Nd = 2 and N f = 3 were empirically
chosen, as the best compromise between removing noise and keeping the main
edges. α = 1.08 (dsat = 6px) also proved to be the more adequate, allowing to
keep the scene details, while compensating potential imperfections. The “flow filter”
method was configured with 3 layers, with regularization weights all set to 500.0,
and with 20 smooth iterations per layer.

Finally, in the EBOF illustrations and videos in the following subsections, the pixels
where no event was received are colored in medium gray.

3 .6 .3 Evaluation Metrics

In order to evaluate the quality of our optical flow results, three metrics are used as
part of this chapter.

The first two ones, the percentage of outliers and the Average Endpoint Error (AEE),
are traditional optical flow metrics, used for instance in the KITTI benchmark [112].
The percentage of outliers reports the number of pixels for which the error is above

2 In MVSEC, ∆t = 1 frame ' 32ms for “Indoor flying” sequences, ' 22ms for “Outdoor day” se-
quences, and ' 97ms for “Outdoor night” sequences.

34

3 .6 evaluation

3px and 5% of the magnitude of the flow vector. The AEE is a raw error measurement
on both orientation and magnitude of the flow, computed as following:

AEE =
1
N

N

∑
i=1
| fi − f̂i| (3.14)

where N is the total number of flow vectors, fi the ith estimated flow vector, and f̂i
its ground truth equivalent.

However, still as of the writing of this thesis, no complex high-resolution event-based
dataset with a ground truth for optical flow exists. In order to still leverage high-
resolution datasets, for instance Prophesee’s 1 Megapixel Automotive Detection
dataset [25], and to provide a quantitative evaluation of our EBOF results, we
adopt the Flow Warping Loss (FWL) metric proposed by Stoffregen et al. [111]. The
principle is to compensate the motion of each raw event (considering its polarity
and timestamp) through its computed optical flow, in order to accumulate them in
an image of compensated events at a reference time t. If the optical flow is accurate,
compensated events superimpose in the same pixel position, producing sharp edges.
The FWL then evaluates the sharpness of the produced image, compared to the one
where events are not compensated:

FWL =
σ2(Icomp)

σ2(Iuncomp)
(3.15)

where σ2 is the image variance function, Icomp the flow-compensated image of
events, and Iuncomp the original uncompensated image. By doing so, a final FWL
value greater than 1 is sought to be obtained, as it indicates that the computed flow
is better than the “zero flow” (uncompensated) reference, as the compensated image
is more sharp.

While the FWL metric allows for comparison on datasets without a ground truth,
it suffers from several issues. One such issue is the “event collapse” highlighted
by Shiba et al. [93]: high FWL scores are obtained if the motion of all events is
compensated such that they fall in the same pixel, resulting in images with a
maximal sharpness. While such an issue was not observed in our case, results
presented with this metric should therefore still be taken with a grain of salt.

3 .6 .4 Ablation Studies

To show the validity of our contributions, we also conducted evaluations with
ablations or distance surface alternatives:

• RTEFNDF, the full proposition without denoising and filling;

• RTEFDS_L, with the linear distance transform, y = Id(x);

• RTEFDS_LB, with the upper-bound distance transform (set to 6px, equal to
the used dsat value with proposed negated exponential formulation), y =
min(x, 6);

35

real-time event-based optical flow

• RTEFDS_Log, with the logarithmic distance transform, y = loge(x + 1).

As a reminder, Fig. 3.4 illustrates the shape of these variants.

3 .6 .5 Evaluation on the MVSEC Dataset

We first evaluate our EBOF method on the low-resolution (346× 260) MVSEC dataset
proposed by Zhu et al. [32, 62]. Despite several shortcomings highlighted by its au-
thors — namely, errors created by moving objects, an approximate synchronization,
an approximate calibration, and the use of default biases for the event camera —
this dataset remains the main reference for evaluating EBOF results on complex
real-life sequences. Therefore, we present in Table 3.2 our error measurements on
this dataset, compared to other reference methods from the literature (both non
real-time and real-time capable). We also compare them to a “zero flow” reference,
i.e., error measurements when the estimated optical flow is set to a null vector field.
Note that, similarly to other authors such as [32, 111], for outdoor sequences, we
ignored the pixels where the hood of the car is visible, as the ground truth values
for these pixels are incorrect in the MVSEC dataset.

indoor_flying_1 indoor_flying_2 indoor_flying_3 outdoor_day_1 outdoor_day_2 outdoor_night_1 outdoor_night_2 outdoor_night_3

AEE ↓ % outl. ↓ AEE ↓ % outl. ↓ AEE ↓ % outl. ↓ AEE ↓ % outl. ↓ AEE ↓ % outl. ↓ AEE ↓ % outl. ↓ AEE ↓ % outl. ↓ AEE ↓ % outl. ↓

Zero flow 1.71 8.9 3.03 40.2 2.53 29.1 1.46 5.1 1.70 13.0 5.41 63.8 6.62 73.7 7.20 77.1

Non Real-Time
EV-FlowNetMVSEC

* [32] 0.85 0.9 1.29 7.5 1.13 5.3 0.56 0.4 - - 1.90 18.6 2.26 21.9 2.13 20.4
Zhu et al. [24] 0.58 0.0 1.02 4.0 0.87 3.0 0.32 0.0 - - - - - - - -
EV-FlowNetHQF [111] 0.56 - 0.66 - 0.59 - 0.68 - 0.82 - - - - - - -
Spike-FlowNet [101] 0.84 - 1.28 - 0.87 - 0.49 - - - - - - - - -
Spiking EV-FlowNet [34] 0.60 0.5 1.17 8.1 0.93 5.6 0.47 0.2 - - - - - - - -
E-RAFT [39] 1.10 5.7 1.94 30.8 1.66 25.2 0.24 0.0 - - - - - - - -
Fusion-FlowNet [104] 0.56 - 0.95 - 0.76 - 0.59 - - - - - - - - -
MultiCM [93] 0.42 0.1 0.60 0.6 0.50 0.3 0.30 0.1 - - - - - -
OF_EV_SNN [96] 0.58 - 0.72 - 0.67 - - - - - - - - - - -
TMA [40] 1.06 3.6 1.81 27.2 1.58 23.2 0.25 0.1 - - - - - - - -
ADM-FlowD [113] 0.48 0.1 0.56 0.4 0.47 0.0 0.52 0.0 - - - - - -
TamingCM [94] 0.44 0.0 0.88 4.5 0.70 2.4 0.27 0.1 - - - - - -

Real-Time
Akolkar et al. [105] 1.52 - 1.59 - 1.89 - 2.75 - - - 4.47 - - - - -
FireFlowNet [48] 0.97 2.6 1.67 15.3 1.43 11.0 1.06 6.6 - - - - - - - -
RTEF 0.52 0.1 0.98 5.5 0.71 2.1 0.53 0.2 0.74 1.2 2.91 30.6 3.45 39.1 3.62 39.8
RTEFNDF 0.49 0.1 0.92 4.6 0.68 1.6 0.54 0.4 0.75 1.3 2.99 31.8 3.56 40.4 3.70 40.9
RTEFDS_L 1.81 16.4 2.54 26.4 1.95 18.2 2.12 21.7 1.30 8.7 4.04 45.8 4.78 55.6 5.10 58.7
RTEFDS_LB 0.62 0.3 1.02 5.6 0.79 1.8 0.64 0.5 0.79 1.3 3.05 32.5 3.68 41.8 3.90 43.4
RTEFDS_Log 0.70 1.4 1.07 6.5 0.82 2.4 0.69 1.6 0.79 1.9 3.08 33.0 3.70 42.1 3.93 43.8

*The authors of EV-FlowNet provide an updated version of their model (https://github.com/daniilidis-group/EV-FlowNet/), which we recomputed their results with.

Table 3.2 – Results on the MVSEC dataset. Best results for non real-time and real-time
versions are indicated separately.

From these results, we obtain AEEs in the order of one pixel, except for nighttime
sequences, where the longer accumulation time of ∆t ' 97 ms and the presence
of flickering lights result in greater magnitudes of errors. Our AEE results are
remarkably always close to or even better than all the non-real-time state-of-the-art
approaches (MultiCM [93] and EV-FlowNetHQF [111] notably). We display vastly
better results than FireFlowNet [48], which is our main comparison point when it
comes to fast EBOF methods.

Outlier percentages are also very low, only increasing for the nighttime driving
scenes. However, as noted by Ye et al. [114], MVSEC ground truth flow is valid only
for static world; the moving objects, numerous in the nighttime scenes, could not be
kept in the reference, creating errors in the ground truth.

36

https://github.com/daniilidis-group/EV-FlowNet/

3 .6 evaluation

When compared to the ablated versions of our method, it can be seen that the
“No denoising” version RTEFNDF performs slightly better for the indoor sequences,
where the lighting of the scene is controlled, and the noise therefore less prominent.
In that case, the denoising and filling step will tend to eliminate small texture
details from the scene, which could in reality be kept to improve the stability of its
appearance. On the outdoor sequences, on the contrary, enabling our denoising
allows for slightly better results, as the noise generated by the environment becomes
much more essential to discard to obtain accurate optical flow results. Regarding
the distance surface alternatives, they all display worse results than the proposed
negated exponential formulation, both for indoor and outdoor sequences; the origi-
nal linear distance surface RTEFDS_L, notably, displays here the worst results, even
worse than the zero flow baseline in some sequences.

Despite the presence of a ground truth in MVSEC dataset, we also computed the
FWL metric, in Table 3.3. Our results consistently surpass the value of 1, indicating
an optical flow estimation better than the zero flow reference. Most importantly,
they surpass those of EV-FlowNetMVSEC [32] and EV-FlowNetHQF [111] in most
of the sequences. While these results may sometimes slightly contrast with those
presented in Table 3.2, they actually further underline the inconsistencies in the
ground truth flow of the MVSEC dataset. Learning-based methods will tend to
mimic these inconsistencies, resulting in better AEE values overall on the dataset,
but will in reality yield more incorrect optical flow values, hence the lower FWL
results.

indoor_flying_1* indoor_flying_2* indoor_flying_3* outdoor_day_1* outdoor_day_2* outdoor_night_1 outdoor_night_2 outdoor_night_3

FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑ FWL ↑
EV-FlowNetMVSEC [32]† 1.02 1.13 1.06 1.15 1.21 - - -
EV-FlowNetHQF [111] 1.14 1.36 1.23 1.27 1.20 - - -
RTEF 1.21 1.41 1.37 1.17 1.17 1.35 1.45 1.42
RTEFNDF 1.16 1.34 1.29 1.15 1.14 1.28 1.37 1.34
RTEFDS_L 1.16 1.29 1.27 1.13 1.12 1.21 1.28 1.25
RTEFDS_LB 1.20 1.41 1.35 1.16 1.17 1.34 1.43 1.39
RTEFDS_Log 1.21 1.39 1.36 1.16 1.16 1.32 1.41 1.38

*Stoffregen et al. [111] selected cuts from these sequences to evaluate their method; we use the same extracts here.
†As computed by Stoffregen et al. [111].

Table 3.3 – FWL results on the MVSEC dataset.

Regarding the FWL comparison with the alternative methods, proposed denoised
negated exponential formulation displays the best results for all sequences. The
RTEFNDF version consistently performs worse, as the small details in the scene, not
discarded as noise here, compensate more difficultly than the main edges and lower
the results yielded by the FWL metric. Once again, the alternative distance surface
formulations all provide worse results than the negated exponential one. However, it
should be underlined here that the “linear-bound” RTEFDS_LB and the “logarithmic”
RTEFDS_Log methods both display results closer to the negated exponential distance
surface than anticipated.

Finally, we present in Fig. 3.5 qualitative optical flow results for sequences from
the MVSEC dataset. It can be seen that our EBOF is visually close to the reference.
Limitations in the ground truth of the dataset can also be observed: the hood of
the car is not taken into account in the ground truth of the outdoor sequences
(second and third rows), and the moving vehicle at the right of the car in the last
row is associated with an incorrectly smoothed ground truth flow. If the reader

37

real-time event-based optical flow

Grayscale Image Edge Image GT Flow Our Flow

Figure 3.5 – Qualitative results on MVSEC dataset. Sequences, from top to bottom:
indoor_flying_1, outdoor_day_1, and outdoor_night_1. Best viewed in color.

is interested, complete video results for the indoor_flying_1, outdoor_day_1, and
outdoor_night_1 sequences are available through the project page link given at the
very beginning of this chapter (Page 21).

3 .6 .6 Evaluation on the DSEC Dataset

To complete the results obtained on the low-resolution data of the MVSEC dataset,
we also evaluate our method on the mid-resolution (640× 480) DSEC dataset of
Gehrig et al. [63].

While this dataset does not have the same issues of approximate calibration, syn-
chronization, and erroneous ground truth data the MVSEC dataset has, it still has
one main limitation: its ground truth optical flow maps are given for temporal
windows of events of ∆t = 100 ms. As noted by Gehrig et al. [39], this means that
their dataset contains ground truth optical flow magnitudes of up to 240px, and as
noted by Shiba et al. [93], 20% of the ground truth optical flow magnitudes are over
22px.

As we observed for the night sequences of the MVSEC dataset (∆t ' 97 ms),
high accumulation times yield bad performances for our method, as noted in
Table 3.2. Therefore, when we first tested our method on the DSEC dataset with the
original accumulation time of ∆t = 100 ms, the results were disastrous, due to the
combination of a very high amount of events and large motions, resulting in a lot of
motion blur in the edge images, and therefore a very bad optical flow estimation. It

38

3 .6 evaluation

should also be noted that the “flow filter” method used for computing our optical
flow tends to converge towards correct results only after several images, so the high
accumulation times are once again not beneficial in our case.

Therefore, we decided to compute the optical flow over ∆t = 20 ms of accumulation
time instead, yielding clearer edge images, and therefore better optical flow results.
To compensate for the time difference, we multiply obtained optical flow vectors
by a factor of 5, to obtain an equivalent optical flow over 100ms. We acknowledge
that this procedure is highly criticizable; as noted by Shiba et al. [93], over 100ms,
the very high magnitudes of the ground truth optical flow indicate that the classical
assumption of scene points flowing along linear trajectories does not hold, and that
therefore optical flow over 20ms is not actually 1/5 of the optical flow over 100ms.

An alternative solution would have been to still estimate optical flow over 20ms,
but instead of multiplying the estimations by a factor of 5, to rather concatenate
corresponding optical flow vectors over 5 successive estimations to result in one
final estimation over a time of 100ms. This procedure would take into account
the non-linear trajectories of the points in the scene, which would be more correct.
However, accumulating optical flow vectors is a complex procedure, as these vectors
contain floating point values: while they originate from the center of a pixel, they
do not point at the center of one destination pixel, but rather in-between multiple
pixels. In addition, small errors in each estimation of the optical flow would be
accumulated, resulting in the end in a potentially erroneous accumulation procedure,
and therefore even larger errors.

This is why the “multiplication by a factor of 5” procedure was chosen: it makes
the evaluation and the analysis of errors simpler, while considering that the DSEC
dataset may not actually be the most adapted for our use case (but to this day, it
remains the only dataset with mid-resolution events and ground truth optical flow
data available).

Another issue with this dataset should also be noted: dense optical flow results are
expected during evaluation, whereas our method was initially designed for sparse
results, as explained in Section 3.5.4. Therefore, we had to remove the final mask
we apply on the optical flow results, and adapt subsequently the configuration
of the “flow filter” method for having smoother results over the whole image
(hence the high number of smoothing iterations for the two first layers, as noted in
Section 3.6.2).

We report in Table 3.4 our results, compared with those from other state-of-the-art
methods. While we reuse the AEE metric described for the MVSEC dataset in
Eq. (3.14), as well as the percentage of outliers considering maximal acceptable
errors of 1, 2, and 3px, we also give here a measure of the Average Angular Error
(AAE), defined as follows:

AAE =
1
N

N

∑
i=1

arccos(fi · f̂i) (3.16)

From these results, it can be noted that the AEE and percentage of outliers are
similar to those obtained on the night sequences of the MVSEC dataset for a similar

39

real-time event-based optical flow

accumulation time. We display overall the worst results, but as noted before, our
method was never thought nor adapted for very high magnitudes or dense flow
estimation, and our evaluation protocol is very error-prone. It can also be noted
that the best results on this dataset are obtained by learning-based methods, which
are by nature more suited for this complex 100ms case, as they are able to mimic
what they learned on the training data, and do not rely on traditional optical flow
equations which are not adapted for this case.

Learning-based? AEE ↓ AAE ↓ % outliers (1px) ↓ % outliers (2px) ↓ % outliers (3px) ↓
TMA [40] Yes 0.74 2.68 10.86 3.97 2.30
E-Flowformer [115] Yes 0.76 2.68 11.23 4.10 2.45
E-RAFT [39] Yes 0.79 2.85 12.74 4.74 2.68
OF_EV_SNN [96] Yes 1.71 6.34 53.67 20.24 10.31
TamingCM [94] Yes (self-sup.) 2.33 10.56 68.29 33.48 17.77
MultiCM [93] No 3.47 13.98 76.57 48.48 30.86
RTEF No 4.88 10.82 82.81 57.90 41.95

Table 3.4 – Overall results on the DSEC dataset.

Following the intuition of Shiba et al. [93], we also report in Table 3.5 the FWL
results on the test sequences of the DSEC dataset. Surprisingly, despite having
the worst AEE, AAE, and percentage of outliers, our method achieves much better
FWL results on all test sequences by a large margin. We are unsure as to why FWL
values computed by Shiba et al. [93] for both E-RAFT and MultiCM are so low, as
uncompensated images of events accumulated over 100ms are very blurry (as shown
in Fig. 3.6), and as they display good compensation results in their article (but for
accumulation times smaller than 100ms).

All interlaken_00_b interlaken_01_a thun_01_a

AEE ↓ % out ↓ FWL ↑ AEE ↓ % out ↓ FWL ↑ AEE ↓ % out ↓ FWL ↑ AEE ↓ % out ↓ FWL ↑
E-RAFT [39] 0.79 2.68 1.29* 1.39 6.19 1.32* 0.90 3.91 1.42* 0.65 1.87 1.20*

MultiCM [93] 3.47 30.86 1.37 5.74 38.93 1.50 3.74 31.37 1.51 2.12 17.68 1.24
RTEF 4.88 41.95 2.51 8.59 59.84 2.89 5.94 47.33 2.92 3.01 29.70 2.39

thun_01_b zurich_city_12_a zurich_city_14_c zurich_city_15_a

AEE ↓ % out ↓ FWL ↑ AEE ↓ % out ↓ FWL ↑ AEE ↓ % out ↓ FWL ↑ AEE ↓ % out ↓ FWL ↑
E-RAFT [39] 0.58 1.52 1.18* 0.61 1.06 1.12* 0.71 1.91 1.47* 0.59 1.30 1.34*

MultiCM [93] 2.48 23.56 1.24 3.86 43.96 1.14 2.72 30.53 1.50 2.35 20.99 1.41
RTEF 3.91 34.69 2.48 3.14 34.08 1.42 4.00 45.67 2.67 3.78 37.99 2.82

*As computed by Shiba et al. [93].

Table 3.5 – FWL results on the DSEC dataset.

Despite it all, we can still highlight the fact that E-RAFT [39] displays the worst FWL
results, even though it has the lowest AEE and the lowest percentage of outliers by a
large margin. As noted during the evaluation on the MVSEC dataset in Section 3.6.5,
this might once again indicate that the ground truth optical flow values in the DSEC
dataset are imperfect, and that learning-based methods like E-RAFT will learn to
replicate these errors, resulting in lower FWL values.

Finally, we show in Fig. 3.6 some qualitative results. As can be seen, in all three
cases shown, the events are well compensated by the optical flow, allowing for sharp
images of warped events. This is especially the case for the text on the ground in the

40

3 .6 evaluation

Events (100ms) Warped events Our Flow

Figure 3.6 – Qualitative results on the DSEC dataset. Sequences, from top to bottom:
interlaken_00_b, thun_01_b, zurich_city_15_a. Best viewed in color.

second row, or the pedestrian and the cyclist in the third row. As for the optical flow
itself, it describes well visually the movement in the scene. However, limitations can
still be highlighted for the optical flow maps: they have a very smooth appearance,
lacking precision for small details, and by construction of our method, incorrect
flow estimations can be seen in the parts where no input event is available. These
limitations contribute to the high errors of our method described in Table 3.4.

3 .6 .7 Evaluation on the 1 Megapixel Automotive Detection Dataset

The increasing availability of high-resolution neuromorphic cameras means that
a more thorough evaluation including these new sensors has to be conducted. In
the context of this work, the 1 Megapixel Automotive Detection dataset [25] from
Prophesee — while initially intended for automotive object recognition purposes
— appears as the most complete, publicly available high-definition baseline for
conducting our evaluation. Given its density (1.2 TB, 14 hours of data), we settled
on the use of only its “test” sequences for the evaluation, which account for a total
of 2 hours of raw data.

We initially tried to adapt the codes of the low-resolution EV-FlowNet methods
proposed by Zhu et al. [32] and Stoffregen et al. [111], to provide the same compar-

41

real-time event-based optical flow

isons as on the MVSEC dataset. However, the results they yielded were catastrophic,
as their neural-network-based approaches were not designed nor trained for high-
resolution input data. The most apparent and limiting issues are the computation
times (the code was not optimized for high-resolution data), and the absence of
denoising (it created large artifacts in the optical flow results).

Jan.30 Feb.15 Feb.18 Feb.19 Feb.21 Feb.22 Apr.12 Apr.18 Jun.11 Jun.14 Jun.17 Jun.19 Jun.21 Jun.26 Global

RTEF 1.63 1.47 1.34 1.64 1.36 1.51 1.14 1.54 1.80 1.35 1.46 1.38 1.54 1.56 1.46
RTEFNDF 1.43 1.37 1.25 1.52 1.28 1.41 1.08 1.43 1.63 1.27 1.35 1.31 1.46 1.46 1.37
RTEFDS_L 1.44 1.40 1.32 1.41 1.29 1.38 1.21 1.27 1.50 1.28 1.27 1.30 1.32 1.42 1.34
RTEFDS_LB 1.63 1.48 1.33 1.63 1.35 1.49 1.14 1.55 1.78 1.34 1.43 1.37 1.52 1.57 1.45
RTEFDS_Log 1.60 1.47 1.33 1.60 1.34 1.47 1.14 1.54 1.75 1.33 1.41 1.38 1.51 1.56 1.43

Table 3.6 – FWL results on Prophesee’s 1 Megapixel Automotive Detection dataset.

We therefore present our FWL results on this dataset (since it does not contain
any ground truth for optical flow) in Table 3.6, split between each recording day.
Similarly to what was observed for low-resolution data, our method always yields
FWL values greatly superior to 1, indicating an accurate optical flow. Compared
to the ablation alternatives, it can also be observed that our final version displays
the best global result, and the best results in all sequences but four (Feb.15, Apr.12,
Apr.18, and Jun.26, where it is the second best alternative), showing once again
the importance of the denoising and of our negated exponential distance surface.
Also, similarly to what was observed on the MVSEC dataset, both the RTEFDS_LB
and RTEFDS_Log variants offer surprisingly good FWL results.

3 .6 .8 Complementary Evaluation on a 20-minute-long High-Resolution Driving Sequence

While Prophesee’s 1 Megapixel Automotive Detection dataset allows for a repro-
ducible evaluation of EBOF methods with the FWL, it contains only event recordings,
preventing the comparison with frame-based state-of-the-art methods. In order to
complete our evaluation, we make use in this subsection of a twenty-minute-long
driving sequence, containing both the output from high-definition frame-based and
event-based cameras. This sequence presents a wide diversity of driving situations
(urban/rural roads, highway, roundabouts, many other vehicles, pedestrians, . . .). It
has been recorded by and graciously shared with us by Prophesee.

Village Side Road Highway Suburban Urban Full sequence
(0’00 - 4’00) (4’00 - 7’00) (7’00 - 11’00) (11’00 - 14’30) (14’30 - 20’45) (0’00 - 20’45)

1.70 1.45 1.67 1.62 1.43 1.56

Table 3.7 – FWL results on the 20-minute-long driving sequence.

The FWL results of this evaluation are presented in Table 3.7, split between each
period of the sequence. An overall FWL result on the complete sequence is also
presented. It can be observed that our FWL results are greatly satisfying, by
remaining largely over the value of 1.

The main advantage of this sequence, however, lies in the possibility to compare
our EBOF results to frame-based ones. For this prospect, we used RAFT [89] as the

42

3 .6 evaluation

Reference Image Image-based Flow (RAFT) Our Flow

Figure 3.7 – Qualitative results on the 20-minute-long driving sequence. Extracts used, from
top to bottom: a village street, a motorcycle overtaking, a highway, and an intersection. Best
viewed in color.

frame-based reference, as it currently stands as one of the state-of-the-art optical flow
methods. Due to the lack of calibration between the two sensors, only a qualitative
evaluation can be presented. Therefore, several visual optical flow results are given
in Fig. 3.7. Results on the full sequence can also be viewed in video format, through
the link of the project page given at the very beginning of this chapter (Page 21). It
can be seen that, similarly to when a low-resolution input is used, our optical flow
remains visually very close to the reference. Also, compared to RAFT, our method
does not suffer from the lack of texture of some areas, like the road for instance.

3 .6 .9 Evaluation on our High-Speed High-Definition Event-Based Indoor Dataset

For high-resolution event-based sequences, most of our optical flow results are
restricted to a few pixels, due to the low accumulation time of ∆t = 15ms we used
throughout this work, in accordance to movements speed. In order to show how
our method is able to handle movements of higher magnitudes in various situations,
we recorded a high-speed high-definition event-based dataset, using a Prophesee

43

real-time event-based optical flow

Figure 3.8 – Edge images of our high-speed high-definition event-based indoor dataset
sequences. From left to right: Checkerboard, Desk, Office, Fan.

Figure 3.9 – Sample EBOF results for the Fan sequence of our high-speed dataset, with
∆t = 15ms (left) and ∆t = 5ms (right). Notice how the blades of the fan are merged together
in the first case, while they appear clearly in the second one, leading to improved optical
flow results.

Gen4 camera. This dataset is composed of four indoor sequences taken in an office
environment (namely, Checkerboard, Desk, Office, and Fan). The first three of them
were recorded by manually shaking the camera, while for the last one, the camera
was fixed in front of a high-speed fan. An illustration of these sequences is given in
Fig. 3.8.

Checkerboard Desk Office Fan

∆t = 15ms 1.49 1.71 1.74 1.05
∆t = 5ms 1.75 1.66 1.84 1.53

Table 3.8 – FWL results on our high-speed high-definition event-based indoor dataset.

This evaluation relies also on the FWL metric, to compare ourselves to the “zero
flow” reference. The results are presented in Table 3.8. It can be seen here that we
always obtain a FWL greater than 1, underlining once again the accuracy of our
optical flow results, even under larger apparent motions. However, apart for the
Desk recording, all recordings display better FWL results when a lower accumulation
time of ∆t = 5ms is employed (which is non real-time, see Section 3.6.11). This is
due to the fact that, at such high motion speeds, the edge images become slightly
too blurry to provide the best optical flow results when the accumulation time of
∆t = 15ms is employed. Lowering accumulation time helps to obtain sharper edge
images, and in return, more accurate optical flow and FWL results. This remark
is especially true for the Fan sequence, where the very high speed of the blades
leads them to appear too blurry for a correct optical flow to be computed when
∆t = 15ms is used; an illustration is given in Fig. 3.9.

44

3 .6 evaluation

1

2

3

4

5 = dis.

0 = dis. 1 2 3 4

N
f

Nd

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

AEE

dsat = 3px
dsat = 6px
dsat = 9px
dsat = 12px

Figure 3.10 – Sensitivity analysis of our EBOF method, using the AEE on the outdoor_day_1
sequence from the MVSEC dataset, along the Nd, N f , and dsat parameters. Lowest AEE
(blue) is the best.

3 .6 .10 Sensitivity Analysis

In this subsection, we analyze the sensitivity of Nd, N f and dsat parameters on our
EBOF results. As a reminder, Nd and N f define denoising and filling thresholds
(Section 3.5.2), while dsat defines the saturation value for the computation of the
negated exponential distance surface (Section 3.5.3). For that purpose, we use the
outdoor_day_1 sequence from the MVSEC dataset with the AEE metric. We display
in Fig. 3.10 these results for Nd ∈ {0 = “disabled”, 1, 2, 3, 4}, N f ∈ {1, 2, 3, 4, 5 =
“disabled”}, and dsat ∈ {3, 6, 9, 12} pixels.

From this plot, it can first be noted that the denoising should not be too strong, that
is, Nd ≤ 2. In the same time, the filling threshold should also remain reasonable,
i.e., N f ≥ 3. Overall best dsat value is incontestably dsat = 6px, and it is the most
sensitive parameter. From this analysis, the best set of parameters is {Nd = 1, N f =
4, dsat = 6}, with the corresponding minimal AEE of 0.53px. The worst set of
parameters is {Nd = 4, N f = 1, dsat = 12}, with a corresponding AEE of 0.78px,
increasing by 47% compared to the set of the best parameters. This shows the
importance of the choice of parameters to guarantee adequate optical flow results.

3 .6 .11 Real-Time Compliance

To finally demonstrate the real-time compliance of our approach for both low-, mid-,
and high-resolution input data, we used respectively the indoor_flying_1 sequence
from the MVSEC dataset, the thun_01_b sequence from the DSEC dataset, and the
Jan.30 test sequence from Prophesee’s 1 Megapixel Automotive Detection dataset.
The execution time for each block was not evaluated separately, but simultaneously,

45

real-time event-based optical flow

as the full pipeline should be able to run on a single computer. In order to also
underline the benefits brought by the use of the GPU, we ran the evaluation on both
the CPU-only and the CPU+GPU versions of our code.

Edge image (after accumulation)* Denoising & filling Inv. exp. distance transform Optical flow† Total

Low-resolution (346× 260)
CPU-only 0.07±0.02 0.76±0.16 1.62±0.85 2.81±0.08 5.27±0.93
CPU & GPU 0.15±0.05 0.42±0.02 1.29±0.08 3.46±0.12 5.31±0.20

Mid-resolution (640× 480)
CPU-only 0.82±1.25 0.30±0.03 13.00±7.46 16.41±3.27 30.59±9.31
CPU & GPU 0.42±0.16 0.33±0.57 1.15±0.79 15.38±0.94 17.28±2.02

High-resolution (1280× 720)
CPU-only 0.64±0.43 5.00±0.63 22.54±3.03 12.77±0.62 40.96±3.27
CPU & GPU 0.47±0.04 0.66±0.06 2.69±0.45 10.41±0.85 14.21±1.22

*This module uses only the CPU.
†The optical flow library provided by Adarve et al. [109] does not contain a CPU-only version. The CPU-only experiments
therefore use the GPU for optical flow computation, hence the similar results between the “CPU-only” and “CPU & GPU”
lines for this column.

Table 3.9 – Average execution times and standard deviation of each step of our RTEF method
for low-, mid-, and high-resolution inputs, in milliseconds.

These results are presented in Table 3.9. From them, considering the worst cases, it
can be seen on one hand that the GPU-aided version can achieve real-time perfor-
mances for both low-, mid-, and high-resolution input data, if their accumulation
times are set to at least 4ms, 17ms, and 12ms respectively (the limiting factor being
the optical flow module). The values for ∆t used throughout this article, therefore,
respect the real-time constraint. The CPU-only version, on the other hand, can
achieve real-time performances for both low- and high-resolution data when the
accumulation time is of at least 3ms, 21ms, and 26ms respectively (the limiting factor
being here the optical flow module for low-resolution, and the distance transform
module for mid- and high-resolution). As noted in Table 3.9, however, the optical
flow can only be computed on GPU due to the use of the library of Adarve et
al. [109], and transferring this computation to the CPU would likely make these
execution times greatly increase.

From the results of Table 3.9 and from the previous conclusions, using our RTEF
architecture, the best performances that can be reached for a low-resolution input
is therefore a 250Hz flow with a latency of 10ms (for the minimal ∆t = 4ms of
accumulation time, including it in the computation of the latency). For a mid-
resolution input, a 59Hz flow with a latency of 34ms can be achieved (including
∆t = 17ms of accumulation time). For a high-resolution input, a 83Hz flow with
a latency of 27ms can be achieved (including ∆t = 12ms of accumulation time).
An important note on the higher times for mid-resolution data is that they were
computed with the configuration used on the DSEC dataset (see Sections 3.6.2
and 3.6.6), which requires more smoothing iterations in the optical flow method to
achieve correct dense results, thus putting more burden on the GPU.

As a fast algorithm, FireFlowNet [48] displays a theoretical inference frequency
up to 262Hz for a low-resolution (346× 260) input, similar to ours. For a higher
definition (1280× 720), however, our approach achieves frame rates nearly 3-times
better than them, as their method can only reach 29Hz. The GPU they use ranks

46

3 .7 conclusion and discussions

similarly to ours in popular benchmarks. In addition, we ran EV-FlowNet [32]
on low- (346× 260) and on high-resolution (1280× 720) data. While EV-FlowNet
inference achieved a 125Hz flow on low-definition data, it showed its limits on
high-resolution input with a 12.5Hz flow output. These frequencies consider only
inference process, full latency is unknown and should include events accumulation
time and specific dense representation creation.

To finally compare with a state-of-the-art frame-based optical flow algorithm, we
used RAFT [89], and measured a 12.5Hz output on low-resolution images, and a
2Hz one on high-definition images.

3 .7 conclusion and discussions

Throughout this chapter, a complete pipeline for real-time computation of Event-
Based Optical Flow from both low-, mid-, and high-resolution event cameras has
been proposed. It includes optimized algorithmic choices as well as a novel negated
exponential distance surface representation. Several evaluations have been con-
ducted to show the relevance of our contributions. Resulting accuracies surpass or
are close to the non-real-time state of the art for low-definition recordings, as well
as on high-definition sequences. Results on the mid-resolution sequences of the
DSEC dataset are more contrasted, but we highlight the limitations of the dataset
in our case. Frame rates of respectively 250Hz, 59Hz, and 83Hz for resolutions of
346× 260, 640× 480, and 1280× 720 were also achieved, making it, to the best of our
knowledge, the most accurate EBOF method for low- and especially high-resolution
event cameras that could be deployed in the wild.

To complete the observations formulated in this chapter, deep learning dominates
EBOF estimation when looking for accuracy at the cost of real-time ability. The
TMA [40] architecture is a perfect example of this trend, as shown in Table 3.4. On
the contrary, when real-time running is needed, this is currently our proposition,
which is not a neural network, that provides the overall best results. As our method
is not based on machine learning, it is independent of a training process involving
specific datasets and loss functions. In other words, the results are expected to
be similar to the ones presented here for all types of scenes. This can be seen as
an advantage, compared for example to TMA, which goes from being the state
of the art on the outdoor driving sequences of MVSEC, to being one of the worst
performing methods for the indoor flying scenes of the very same dataset, as shown
in Table 3.2.

In hindsight, several improvements could be brought to the current method. (1) Re-
garding the event accumulation process, relying on a predetermined fixed accu-
mulation time ∆t, which highly depends on the appearance and dynamics of the
visual scene, can indeed lead to instabilities in the appearance of the edge images
if not chosen carefully. Introducing an adaptive method to dynamically determine
the correct accumulation time to use, as proposed by Liu and Delbrück [116] for
instance, could allow for obtaining clear edge images independently of the scene
evolution, but would also certainly make the real-time constraint harder to achieve.

47

real-time event-based optical flow

(2) Our architecture could also benefit from a more optimized implementation on
specialized hardware (FPGA for instance, eliminating the need for an energy-in-
tensive GPU), which could also allow for even higher frame rates by lowering the
minimum accumulation times. (3) Applying our EBOF to complex automotive-re-
lated applications, such as proposed by Jung and Park [117], could also be addressed
by future work, for instance for improving the pose estimation of the vehicle.

Event-based optical flow is a fast-growing area of research. At ICCV 2023 alone, 5
articles were published on that topic: [40, 94, 113, 118, 119]. While our approach of
opting for real-time compatibility at the expense of some accuracy made sense for an
application to the real-world, it limited us in exploiting it further as part of this thesis.
In particular, several attempts were made to extract independently moving objects
using the optical flow during the early months of the second year of the thesis, but
each time the lack of precision of our optical flow maps limited our accuracy. We
believe and hope that future works in the domain will be able to combine both
the precision of the recently published method and real-time compatibility, with
contrast-maximization-based approaches looking especially promising on that topic.

Nonetheless, a final topic of discussion for this work could be on the intrinsic sense
of computing optical flow from events the way we did. To clarify this question, let
us go back to the initial definition of events and optical flow. As shown in Eq. (2.1),
events are a description of changes (i.e., the temporal derivative of the brightness
information). But as shown in Eq. (3.1), optical flow is also a description of changes
(i.e., the motion of pixels between two instants of time). As such, describing the
optical flow of events is describing changes of changes themselves, which does not
really make sense. To answer this issue, in this chapter, we introduced a temporal
integration process to compensate for the “derivative-based” nature of events. We
then considered that the images of integrated events are similar to an edge map
(i.e., a spatial derivative) of the objects in the scene, on which computing a change
along time makes more sense. Yet, our images are not really edge maps, they are
merely accumulated changes; in the case of a fully static scene for instance, no
event is produced and our “edge images” are empty, while a real edge map would
still be able to describe the contours of the objects. Therefore, our formulation of
the event-based optical flow problem is probably ill-posed, and it could be argued
that this is also the case for the other works in the domain which rely on events to
describe edges. In that regard, it could be argued that the approach of Pan et al. [102]
for instance makes a better use of the event camera, as they acknowledge that events
are only fine-grained temporal changes: they use them only for deblurring frames,
and they compute optical flow on these deblurred frames. Nonetheless, this first
work on optical flow was fundamental for giving us a better understanding of the
unique problems posed by event cameras, and despite not being exploited further,
it laid the groundwork for the following works of the thesis.

48

4E V E N T- A N D L I D A R - B A S E D D E P T H E S T I M AT I O N
U S I N G A C O N V O L U T I O N A L N E T W O R K

As noted in the conclusion of Chapter 3, despite our good optical flow results, our
experiments showed that their slight lack of precision was a critical issue if we
wanted to exploit them further. In an objective to solve the “depth” part of the
subject of the thesis, we started investigating the fusion of events with LiDAR data,
in order to be able to estimate dense depth maps. Our approach also fundamentally
changed: while the real-time, geometry-based approach for computing optical flow
was an interesting problem to solve, we realized that it limited us in terms of
accuracy, and that our results were starting to be difficult to defend compared to the
most recent learning-based methods. The characteristics of the problem we aim to
solve (detailed in Section 4.3) also require a good understanding of the scene, which
would be difficult to model with a purely geometry-based method. Therefore, we
describe in this chapter an offline, learning-based approach for estimating dense
depth maps from the fusion of LiDAR and event data.

The presented method and the associated results of this chapter were published as
part of the 22nd Scandinavian Conference on Image Analysis in April 2023 [120]. A
project page is also available at https://vbrebion.github.io/ALED/, and contains
the links to the original article, the source code, the dataset, and videos associated
to this work.

4 .1 introduction

LiDAR sensors offer accurate but sparse 3D information of their surrounding envi-
ronment. As noted in Chapter 1, they are a key component for intelligent robotic and
autonomous navigation, helping to solve multiple problems, e.g., obstacle detection
and tracking, SLAM, scene flow, etc. Yet, the sparsity of their point clouds often
constitutes a limiting factor. While 64- or 128-channel LiDARs are starting to be
commercialized, they come at a significantly high cost, and are still not as dense as
cameras.

In this chapter, we focus on the fusion of LiDAR and event data, which we consider
as a dual problem: (1) LiDAR depths densification and (2) events-depths association.
Regarding problem (1), we are interested in densifying the LiDAR data using the
events as a guide. As a result, dense depth maps are obtained, which allow for a
dense 3D perception of the observed scene. As for problem (2), we are interested in
associating a depth to each event. By doing so, each event can be projected in 3D,
and then even be backprojected in 2D in another vision sensor. For a fully calibrated
and synced setup, this process would allow for the superimposition of events and
RGB images from two different cameras for instance.

Estimating dense depth maps from sparse LiDAR data is a well-regarded problem
as it solves the sparsity drawback of the LiDAR while keeping its metric scale.

49

https://vbrebion.github.io/ALED/

event- and lidar-based depth estimation using a convolutional

network

However, using events to densify depth maps (i.e., problem (1)) might inaccurately
be seen as a task that inherently includes problem (2), where corresponding depths
for the events could be taken from the dense depth map. We argue in this chapter
that, as each event represents a change in illumination, it might also represent a
change in depth. As such, two depths should be associated to each event, and we
will therefore compute two depth maps: one before the events happen, and one
after they happen.

As an answer to these issues, we propose in this chapter a learning-based fusion
method for estimating pairs of dense depth maps from events and sparse LiDAR
data. For that purpose, we propose a novel convolutional network, the Asynchronous
LiDAR and Events Depths densification network (ALED), able to fuse asynchronous
events and LiDAR data, and to estimate the two dense depth maps from them,
while surpassing state-of-the-art accuracy. We also build a high-definition simulated
dataset, the Synthetic LiDAR Events Depths (SLED) dataset, used as part of the
training of the network and its evaluation.

This chapter is structured as follows. We first give an overview of the state of the
art in Section 4.2. We then examine the duality of the problem and the issue of
associating a single depth to each event in Section 4.3. We give a detailed description
of our ALED network and of our SLED dataset in Sections 4.4 and 4.5 respectively.
We finally conduct our evaluation in Section 4.6, before drawing some conclusions
in Section 4.7.

4 .2 related work

4 .2 .1 LiDAR Densification

Point clouds produced by LiDAR sensors are sparse, which is challenging for
numerous applications (3D reconstruction, object detection, SLAM, etc). As a
consequence, LiDAR depth completion is a subject that has been widely studied in
the literature.

Some authors try to obtain dense depth maps while only relying on the sparse data
from the LiDAR. These methods either use machine learning [121, 122, 123] or
traditional image processing operations [124].

The most successful approaches use a secondary modality as a guide for the den-
sification process. While most of these approaches employ an RGB camera as the
secondary sensor [123, 125, 126, 127], other authors have proposed using alternative
modalities, such as stereo cameras [128] or more recently event cameras [45].

4 .2 .2 Fusion of Events and Other Modalities

Due to their relative youth, the literature on the fusion of data from event cameras
with other sensors is quite sparse.

50

4 .3 depth change map : two depths per event

Most of the investigations focused on the fusion of events and frames, thanks to
sensors offering both modalities like the DAVIS camera [15]. These works include
frame interpolation and deblurring [28, 129, 130], feature tracking [131, 132], object
detection [133, 134, 135], or even steering prediction [136].

In the past few years, a few authors have started investigating the fusion of events
and LiDAR data. Explored issues concern primarily calibration [137, 138, 139] and
dataset construction [62, 63, 64]. More recently, some works have been done on
point clouds enhancement with events [14], LiDAR densification [45], and human
tracking in adversarial lighting conditions [140].

4 .2 .3 Depth Estimation with Events

Several approaches have been proposed in order to estimate sparse or dense depth
maps by using a single event camera. Kim et al. [46] used probabilistic filters to
simultaneously estimate the motion of the camera, reconstruct a log intensity image
of the observed scene, and construct a sparse inverse depth map. Zhu et al. [24]
used a convolutional network to jointly predict depth and ego-motion, by trying to
minimize the amount of motion blur in the accumulated events. Hidalgo-Carrió et
al. [47] were the first to estimate dense depth maps, through the use of a recurrent
convolutional network.

In parallel, other authors have advocated for the use of a secondary sensor to help
the depth estimation. Schraml et al. [41, 42] and Nam et al. [43] used two event
cameras, and estimated depths by creating images of accumulated events for each
camera and applying stereo matching. While [41, 42] used traditional model-based
approaches, [43] entirely relied on learning-based networks: an attention-based
network to construct detailed events representations, then a convolutional network
for depth map inference. Other authors have also combined the event camera
with an RGB sensor; Gehrig et al. [33] for instance designed a recurrent network
to fuse asynchronous data and estimate dense depths from them. Finally, some
authors have also used depth sensors in direct combination with event cameras.
Weikersdorfer et al. [44] used an RGB-D camera to obtain dense depths, and used
the depth-augmented events to perform SLAM. Li et al. [14] used a LiDAR sensor
to associate a depth to each event through the use of a Voronoi diagram and a set of
heuristic rules. Cui et al. [45] also employed a LiDAR, to derive dense depth maps
by using 3D geometric information.

4 .3 depth change map : two depths per event

In this chapter, we are interested in the fusion of LiDAR and event data. This
problem is actually made of two complementary objectives: (1) obtaining dense
depth maps from events and sparse LiDAR data, and (2) assigning a depth to
each event. While objective (1) can be interpreted as a LiDAR densification method
guided by the events, we argue here for objective (2) that associating a single depth
to an event is inadequate.

51

event- and lidar-based depth estimation using a convolutional

network

(a) Ground truth for Dbf (b) Ground truth for Daf

Thresholds:

daf − dbf < −1m

daf − dbf ∈ [−1m,+1m]

daf − dbf > +1m

(c) Thresholded depth change map, using the events as a mask

Figure 4.1 – Example of the importance of the depth change map for each event on the
Town01_00 sequence from our SLED dataset. Notice how simple thresholds on this depth
difference help distinguishing the events linked to the contour of real objects from the events
corresponding to the texture of the road, the halo from the streetlamp, or even the noisy
events in the sky.

By definition, an event represents a significant change in illumination observed by
a given pixel. Under motion, observed events can either originate from (a) texture
changes inside an object; or from (b) the contour of an object. In case (a), associating
a single depth to these events can be coherent, as depth inside an object should
be subject to little variation. However, doing so in case (b) is erroneous, as events
happening at contours of objects are likely to denote also a depth change. This
reflection is analogous to the one described in the conclusion of the chapter on
optical flow (Section 3.7): we want here to take into account the “change-based”
nature of events, and not reproduce the common error of merely considering them
as a snapshot of the texture and edges of the objects in the scene.

Therefore, we propose here to always associate two depths to each event to take
into account this potential change of depth: the depth of the pixel before the event
(the change) occurred, and the depth of the pixel after the event occurred. Associ-
ating directly a single “depth change” value to each event could be viewed as an
alternative, but we argue that absolute depth values are much more important, as
they are required in numerous applications. As we are interested in solving both
objective (1) and (2) simultaneously, we estimate here two dense depth maps: one
before the events occur, which we will denote Dbf in the rest of this chapter, and one
after the events occur, which we will denote Daf. We can then formulate the depth
change map as ∆D .

= Daf − Dbf and compare the depth change ∆d .
= daf − dbf for

52

4 .4 method

each pixel. Three meaningful cases can be distinguished:

1. ∆d ≈ 0: the pixel is located in an area where depths do not vary much, i.e.,
inside an object;

2. ∆d� 0: the pixel was at the edge of an object, and is now on an object further
away;

3. ∆d � 0: the pixel was located on a far object, and is now at the edge of a
closer object.

The depth difference information given by the depth change map can especially
help to process events to differentiate real object edges from textures or artifacts
such as shadows and even noise. An illustration of some possibilities offered by the
depth change map on events is given in Fig. 4.1. Other applications could also take
advantage of the pair of depth maps Dbf and Daf: ego-motion and speed estimation,
objects clustering, scene flow, etc.

4 .4 method

4 .4 .1 The ALED Network

Inspired by the Recurrent Asynchronous Multimodal Network (RAMNet) archi-
tecture of Gehrig et al. [33] for RGB and events fusion, we propose here a fully
convolutional recurrent network to estimate dense depth maps from asynchronous
LiDAR and events data. We call it ALED, for Asynchronous LiDAR and Events
Depths densification network.

ALED can be decomposed in two main parts: an encoder, tasked with fusing
asynchronous events and LiDAR features at different scales, and a decoder, tasked
with interpreting the fused features for estimating dense depths. Both of them are
illustrated in Figs. 4.2 and 4.3.

Data Encoding In the encoder part, illustrated in Fig. 4.2, the LiDAR and events
inputs are fed independently. Both of them go through an encoding head, computing
a first feature map of 32 channels while keeping their original height and width.
Convolutional encoders (in the form of ResNet Basic Blocks [141]) are then used to
compute feature maps at scales 1/2, 1/4, and 1/8, doubling the number of channels
every time.

States Update Each feature map is used as the input of convolutional Gated
Recurrent Unit (convGRU) blocks [142], updating the state at its corresponding scale.
These states share a double purpose: (1) they act as memories, making the network
able to produce correct depth maps even in the case where the event camera would
become static and thus not produce any event anymore, and (2) since they are shared
between the LiDAR and events encoders, both parts of the network can update them
independently, allowing for an asynchronous fusion of the two modalities.

53

event- and lidar-based depth estimation using a convolutional

network

LiDAR

1 32 64 128 256

Events

10 32 64 128 256

1/1 1/2 1/4 1/8

32+
32

64+
64

128+
128 256

32+
32

64+
64

128+
128 256

LiDAR head

Events head

LiDAR/Events
encoder

convGRU

S
convGRU state
(scale S)

Figure 4.2 – The encoder part of the network. The numbers along the connections indicate
the number of channels of the corresponding data.

1/8

C

1/4

C

1/2

C

1/1 Dense depths
Dbf and Daf

256

256 256

128

128

128 256 128

64

64

64 128 64

32

32

32 64 32 2

S
convGRU state
(scale S) Residual block Convex upsampling

C Concatenation Convolution Prediction head

Figure 4.3 – The decoder part of the network. The numbers along the connections indicate
the number of channels of the corresponding data.

54

4 .4 method

Decoding In its decoder part, illustrated in Fig. 4.3, the convGRU state at the
lowest scale first goes through two residual blocks. Then, for each following scale,
the decoded feature map from the previous scale is upscaled by using convex
upsampling [89]. While a simple bilinear upsampling was used in RAMNet [33],
convex upsampling allows our network to learn how to upscale features from a
lower scale, using information from a higher scale. We propose to design the
convGRU such that the first half of its state (in purple in Figs. 4.2 and 4.3) guides
the convex upsampling. Fusion of the upsampled decoded features and the state
from the current scale is then performed by concatenating the output of the convex
upsampling block with the remaining half of the convGRU state (in green in Figs. 4.2
and 4.3), and by applying a convolution to reduce the number of channels. After the
last scale, a prediction head is used to obtain the two final depth maps, Dbf and Daf,
in the form of a two-channel tensor, at the same full resolution as the events input.

4 .4 .2 Implementation

Regarding the implementation of ALED, both encoding heads use a kernel size
of 5. LiDAR and events encoders use a kernel size of 5, with stride 2. Both the
convGRU and residual blocks use a kernel size of 3. The convolutions in the convex
upsampling blocks use a kernel size of 5, while the convolutions following the
concatenations use a kernel size of 1. Finally, the prediction layer also uses a kernel
size of 1. Convolutions are followed by a PReLU activation function [143], and
instance normalization is used in the ResNet encoders as proposed by Pan et al. [144].
In total, the network contains 26 million trainable parameters.

4 .4 .3 Data Representation

Events We use the Event Volume [24] as the input representation for the events.
We follow here the formulation of Perot et al. [25], where, for input events {ei =
(xi, pi, ti)}N

i=1, the content of the Event Volume V for the pixel x, the polarity p, and
the bin b is defined as:

V(x, p, b) .
= ∑
{ei|xi=x,pi=p}

max(0, 1− |b− t∗i |), (4.1)

where t∗i is defined as:

t∗i
.
= (B− 1)

ti − t1

tN − t1
(4.2)

and where B is the number of temporal bins to split the timestamps of the events.

In our experiments, we set B = 5 bins, and concatenate the negative and positive
polarity bins along the first dimension, resulting in a 3D tensor of shape (10, H, W).

LiDAR and Depths LiDAR data is fed to the network as a 1-channel depth image.
To do so, each LiDAR point cloud is projected onto the image plane of the event
camera. Pixels where one or more LiDAR points fall into are given as value the

55

event- and lidar-based depth estimation using a convolutional

network

lowest depth. Pixels without any LiDAR point are given a value of 0. For an easier
learning, the LiDAR projection and ground truth images are normalized between 0
and 1 based on the maximum LiDAR range (200m in the case of our synthetic SLED
dataset, 100m in the case of the MVSEC dataset [62]).

4 .4 .4 Loss Functions

To train our network, we combine the use of two losses: a pixel-wise `1 loss Lpw,
and a multiscale gradient matching loss Lmsg.

The pixel-wise `1 loss operates as the main supervision loss, applied on both the
“before” and the “after” depth maps, and is defined as follows:

Lpw = ∑
x

∥∥D(x)− D̂(x)
∥∥

1 (4.3)

where D and D̂ are respectively the estimated and ground truth depth maps.

However, when supervised by the `1 loss alone, the network tends to produce blurry
and non-smooth depth images. To solve this issue, we use here a multiscale gradient
matching loss inspired by [145], also applied on both the “before” and the “after”
depth maps, and defined as

Lmsg = ∑
h∈{1,2,4,8,16}

∑
x

∥∥g[D](x, h)− g[D̂](x, h)
∥∥

2 (4.4)

with the discrete gradient function g of an image f defined as

g[f](x, y, h) =
(

f (x + h, y)− f (x, y)
f (x, y + h)− f (x, y)

)
(4.5)

This loss helps to regulate the depth results, by making depth discontinuities more
prominent, and by smoothing homogeneous regions.

Our total loss L for a sequence of length T is finally defined as

L =
T

∑
t=1

∑
bf,af

(Lt
pw + αLt

msg) (4.6)

where α is a weight parameter for the multiscale gradient matching loss.

In our experiments, we observed that giving too much importance to the multiscale
gradient matching loss early in the training makes the network unable to derive
correct depth estimates. Therefore, we always set α = 0.1 during the first epoch of
training, to force the network to use mainly the `1 loss and converge towards good
initial depth estimates. For the remaining epochs, we set α = 1.

56

4 .5 the sled dataset

4 .5 the sled dataset

In order to train and evaluate the proposed ALED network, we require a dataset
containing both events, LiDAR point clouds, and a dense ground truth on depths.
While we can use the MVSEC dataset [62] for low-resolution cameras, its ground
truth is constructed by accumulating point clouds from a LiDAR sensor, a solution
which introduces errors in case of moving objects, as noted in Section 2.7.1. In
high-resolution, the DSEC dataset [63] would have been a perfect candidate, but its
ground truth depth maps are given at the timestamps of the RGB frames and not
those of the LiDAR point clouds1, making these depth maps incompatible with the
training and evaluation procedures of our network.

For these reasons, we use the CARLA simulator [68] (version 0.9.14) to generate
a dataset with perfect synchronization and calibration of the sensors, and perfect
ground truth depth. We call it SLED, for Synthetic LiDAR Events Depths dataset. It
is composed of 160 sequences of 10 seconds each, for a total of more than 20 minutes
of data. These sequences are recorded on the Town01 to Town07 and Town10 maps of
the simulator (20 sequences for each map), each sequence starting from a different
geographic location. By doing so, a wide range of environments is represented
within the dataset, as detailed in Table 4.1.

Set Environment Features Night seq. Day seq.

Town01 Test Town Small buildings, bridges, distant forests and mountains, palm trees 4 16
Town02 Train Town Small buildings, plazas, forest road 4 16
Town03 Test City Tall and small buildings, roundabouts, tunnel, aerial railway 4 16
Town04 Val. Town Small buildings, highway, parking, lake, forests and mountains 4 16
Town05 Train City Tall buildings, parking, aerial beltway and railway 4 16
Town06 Train Suburban Small buildings, U-turns, distant hills 4 16
Town07 Train Countryside Barns, grain silos, fields, mountain road 4 16
Town10 Train City Buildings, monuments and sculptures, playgrounds, seaside 4 16

Table 4.1 – Detailed content of our SLED dataset containing 160 sequences of 10 seconds
each.

Each sequence contains a 1280×720 event camera, a 40-channel LiDAR, and a
1280×720 depth camera which is perfectly aligned with the event camera. Both
the event data and the depth images are recorded at 200Hz, while the LiDAR is
configured to run at 10Hz. RGB images (1280×720) are also provided at a 30Hz
rate, aligned with the event-based sensor. The LiDAR sensor is configured with a
maximum range of 200 meters. For realism and diversity purposes, AI-controlled
vehicles and pedestrians are added to the simulation. Sun altitude also varies,
resulting for each map in 4 night recordings, and the other 16 recordings ranging
from early morning (where the sun can be directly in front of the camera) to midday
(where the sun is at its apogee). Varying cloudiness conditions are also used, adding
more or less texture to the sky, and making shadows more diverse.

We also configured the event camera in CARLA to use a linear intensity scale rather
than the default logarithmic one, making the events produced by the simulator more

1 For more details, see the following comment made by the authors of the DSEC dataset: https:
//github.com/uzh-rpg/DSEC/issues/7#issuecomment-1416776152

57

https://github.com/uzh-rpg/DSEC/issues/7#issuecomment-1416776152
https://github.com/uzh-rpg/DSEC/issues/7#issuecomment-1416776152

event- and lidar-based depth estimation using a convolutional

network

0 50 100 150 200 250

−6

−4

−2

0

Pixel intensity

Lo
g.

in
te

ns
it

y

0 50 100 150 200 250
0

100

200

Pixel intensity

Li
ne

ar
in

te
ns

it
y

Figure 4.4 – Comparison of the triggering of events when the logarithmic and the linear
scales are used. The logarithmic intensity in CARLA is computed as ln(I/255 + 0.001),
where I is the pixel intensity. Each red vertical line denotes the triggering of an event, with
thresholds set to 0.3 for the logarithmic scale, and 10 for the linear scale.

(a) Generated RGB image

(b) Events generated with log. scale (c) Events generated with linear scale

Figure 4.5 – Visual comparison of the triggering of events when the logarithmic and the
linear scales are used for a urban scene in CARLA. With the logarithmic scale, notice
how the dark building on the right generates a high amount of events compared to the
other buildings, and how details such as road markings or shadows are mostly lost. In
comparison, with the linear scale, notice how the events are better distributed in the image,
looking more like what an actual event camera would produce.

58

4 .6 evaluation

RGB Depth Map Events LiDAR

0m 100m 200m

Figure 4.6 – Example data from the Town01_04 (top) and Town07_00 (bottom) sequences
from our SLED dataset. A color scale is also provided for a better comprehension of the
depth values.

realistic. We argue here that the logarithmic scale amplifies too much the creation of
events in the dark areas of the image, as a very slight change in the intensity results
in a large logarithmic intensity change, thus triggering an event. On the contrary,
in the clearer areas, little to no events are produced, as a large intensity change
is necessary to generate a logarithmic difference sufficient to trigger an event. An
illustration of this phenomenon is given in Figs. 4.4 and 4.5.

LiDAR data also had to be corrected, due to incorrect values being reported by
CARLA in specific cases2. For that purpose, the depth of all LiDAR points was
extracted from the corresponding pixels in the ground truth depth maps, instead of
using the values given by the sensor.

Finally, we give in Fig. 4.6 an overview of the data contained in the dataset. In
particular, we display here illustrations from two very different recordings: one on
Town01 during daytime, and a second one on Town07 during nighttime.

4 .6 evaluation

We split our evaluation to cover the various use cases of our method: estimating
dense depth maps, associating two depths to each event, and computing depth
change maps.

4 .6 .1 Training Details

For training on all datasets, we use the Adam optimizer [146] with a batch size of 4.
When training from scratch on the SLED and the MVSEC datasets, 50 epochs are

2 Some objects in CARLA lack the necessary collisions for them to be seen by the LiDAR sensor.
For more details, see the following issue, which is still not fully solved despite having been closed:
https://github.com/carla-simulator/carla/issues/5732

59

https://github.com/carla-simulator/carla/issues/5732

event- and lidar-based depth estimation using a convolutional

network

used, with a fixed learning rate of 10−4. When finetuning on the MVSEC dataset, 5
epochs are used, with a learning rate of 10−5.

To augment the input data for the SLED dataset, we randomly crop it to 608× 608,
and apply random horizontal flipping. For the MVSEC dataset, we crop it to
256× 256 (due to the lower resolution), and also apply random horizontal flipping.

4 .6 .2 Evaluation of the Dense Depths

On the SLED Dataset

We begin by training ALED solely on the SLED dataset, and denote it ALEDSL.
Numerical results of ALEDSL on the testing set of the SLED dataset are presented
in the “Dense depths errors” column of Table 4.2. Evaluations are conducted
on Town01 and Town03 maps, which contain challenging environments with many
unique features (bridges, tunnels, . . .) that are not present in the training maps.
For the max range of 200 meters, ALEDSL estimates depth maps with an average
absolute error slightly over 4.5 meters for Town01, and around 5 meters for Town03.
The respective absolute relative error is around 19% for Town01, and around 22% for
Town03.

Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Mean (m)
Correctly classified events (%)

Mean (m) AbsRel Mean (m) AbsRel NN (m) ALEDSL (m) NN (m) ALEDSL (m) (with a threshold of ±1m)

Town01

10m 1.24 0.201 1.37 0.236 1.32 1.46 2.24 1.79 2.11 90.27
20m 2.08 0.231 2.27 0.255 1.51 1.84 2.53 2.15 3.18 85.07
30m 2.72 0.238 2.92 0.260 1.71 2.37 2.83 2.67 3.88 81.68

100m 4.25 0.240 4.51 0.261 2.40 3.48 3.91 3.95 5.12 77.48
200m 4.53 0.172 4.81 0.187 7.86 5.44 9.76 6.23 7.36 75.54

Town03

10m 2.00 0.289 2.09 0.301 0.47 0.56 0.67 0.66 1.14 93.70
20m 2.85 0.299 2.97 0.311 0.64 0.75 1.12 0.87 2.54 87.16
30m 3.33 0.291 3.45 0.302 0.92 1.11 1.61 1.26 3.23 83.71

100m 4.60 0.274 4.77 0.284 1.88 2.55 3.17 2.88 4.47 78.50
200m 4.86 0.215 5.03 0.223 4.43 3.60 5.93 4.10 6.20 77.23

Table 4.2 – Errors on the testing set of the SLED dataset for various cutoff depth distances.
From left to right: average absolute and relative depth errors on both the “before” Dbf and
“after” Daf depth maps; average absolute depth errors when associating a depth to each
event; average absolute depth difference errors and percentage of correctly classified events
based on this depth difference.

A first element that can explain these errors is that the LiDAR has a small vertical
coverage of the image: close ground objects or the top of close buildings are not
reached by the LiDAR, meaning that accurate depth estimations for these objects
are complex to achieve. In opposition, sky pixels (for which ALEDSL produces good
results) are only accounted for at the full 200m cutoff. These observations can be
correlated to the larger relative errors observed for close cutoff distances than for the
full 200m cutoff. It can also be observed that errors on the “after” depth maps are
slightly higher. This is to be expected, as the network has to make use of the events
to estimate the movement and propagate the depths accordingly. If the reader is
interested, results for each sequence of the testing set are given in Appendix B.1.

Qualitative results are given in Fig. 4.7. They showcase the ability of the network to
estimate accurate depths for the whole image, by using events as a guide for the

60

4 .6 evaluation

Ev
en

ts
Li

D
A

R
Pr

ed
ic

te
d

D
bf

Pr
ed

ic
te

d
D

af
G

ro
un

d
tr

ut
h

(D
bf

)

0m 100m 200m

Figure 4.7 – Two qualitative results on our synthetic SLED dataset, on Town01 (left) and
Town03 (right). From top to bottom: events, LiDAR, predicted depth maps (Dbf and Daf),
ground truth (Dbf only, Daf being visually similar), color scale.

61

event- and lidar-based depth estimation using a convolutional

network

areas the LiDAR sensor can not reach. This is particularly visible for the trees and
the light pole for the left column, or the ceiling of the tunnel for the right column. If
the reader is interested, more visual results are given in Appendix B.2 and in the
videos accessible through the link of the project page given at the very beginning of
this chapter (Page 49).

On the MVSEC Dataset

In order to be able to compare our results with the other approaches in the literature,
we also train and evaluate ALED on the MVSEC dataset [62]. We conduct our
evaluation under three different sets of weights from different training setups
described below:

• ALEDSL: we reuse the weights trained on proposed SLED dataset;

• ALEDMV: we train a new set of weights on the MVSEC dataset;

• ALEDSL→MV: we reuse the weights trained on SLED and finetune them on the
MVSEC dataset.

Cutoff Events (stereo) Events & Frames Events & LiDAR

StereoSpike [35] RAMNet [33] EvT+ [147] Cui et al. [45] ALEDSL ALEDMV ALEDSL→MV

outdoor_day_1

10m 0.79 1.39 1.24 1.24 1.54 0.91 0.50
20m 1.47 2.17 1.91 1.28 2.55 1.22 0.80
30m 1.92 2.76 2.36 4.87 3.18 1.43 1.02
50m - - - - 3.79 1.67 1.31

100m 3.17 - - - 4.08 1.96 1.60

outdoor_night_1

10m 1.38 2.50 1.45 2.26 2.24 1.75 1.52
20m 2.26 3.19 2.10 2.19 3.32 2.10 1.81
30m 2.97 3.82 2.88 4.50 3.82 2.25 1.95
50m - - - - 4.31 2.44 2.20

100m 4.82 - - - 4.62 2.73 2.54

outdoor_night_2

10m - 1.21 1.48 1.88 1.94 1.19 1.09
20m - 2.31 2.13 2.14 2.82 1.65 1.49
30m - 3.28 2.90 4.67 3.22 1.81 1.64
50m - - - - 3.58 1.95 1.80

100m - - - - 3.78 2.11 1.97

outdoor_night_3

10m - 1.01 1.38 1.78 1.76 0.85 0.81
20m - 2.34 2.03 1.93 2.43 1.25 1.16
30m - 3.43 2.77 4.55 2.78 1.42 1.33
50m - - - - 3.12 1.57 1.51

100m - - - - 3.31 1.73 1.66

Table 4.3 – Average absolute depth errors (in meters) on the MVSEC dataset for various
cutoff depth distances. This evaluation is performed on the “before” depth map Dbf, to be
consistent with the methods we compare ourselves to.

Numerical results of all three variants are given in Table 4.3. Comparing them,
it appears clearly that training on synthetic data before finetuning the network
on the MVSEC dataset (ALEDSL→MV) produces the best results. Training from
zero on the MVSEC dataset (ALEDMV) is not as good as the ALEDSL→MV variant
due to the limited data available for training. Finally, training solely on the SLED
dataset (ALEDSL) produces the worst results, due to the large differences in terms

62

4 .6 evaluation

(a) Reference image (b) Events input (c) LiDAR input

(d) ALEDSL (e) ALEDMV (f) ALEDSL→MV

(g) RAMNet [33] (h) Ground truth

0m 50m 100m

(i) Scale

Figure 4.8 – Qualitative results on the outdoor_day_1 sequence from the MVSEC dataset.

of resolution and LiDAR models between the two datasets, and as simulation is not
a perfect reproduction of real data.

Our ALEDSL→MV network greatly outperforms all the other approaches of the state
of the art. Most impressive results are obtained with distant cutoff depths, where
fewer LiDAR points are available; our network is still able to infer accurate depths,
while reference methods show large errors:

• compared to the stereo events StereoSpike method of Rançon et al. [35], for the
20m and 30m cutoff distances respectively, we improve the error by 19.9% and
34.3% in the worst case, and by 45.6% and 46.9% in the best case;

• compared to the frames & events EvT+ method of Sabater et al. [147], this
improvement is of 13.8% and 32.3% in the worst case and of 58.1% and 56.8%
in the best case at maximum;

• compared to the LiDAR & events method of Cui et al. [45], this improvement is
of 17.4% and 56.7% in the worst case and of 39.9% and 79.1% in the best case.

Qualitative results are presented in Fig. 4.8. All three ALED variants produce results
which are visually close to the ground truth for ground objects. Since the MVSEC
dataset lacks ground truth depth for the sky, and since the rare elements to have a
ground truth for this part of the image are close buildings, close trees, or power lines,
the network cannot learn to derive correct depth estimations for the corresponding

63

event- and lidar-based depth estimation using a convolutional

network

pixels, leading to the purple blobs in the upper parts of Figs. 4.8e and 4.8f. Only
the ALEDSL variant is able to predict accurate values for sky areas (as our SLED
dataset contains valid ground truth depths for all pixels), but has more difficulties for
ground objects due to the lack of finetuning. Between the ALEDMV and ALEDSL→MV
variants, improvement can still be seen, for instance for the edges of the objects of
Figs. 4.8e and 4.8f, which are less uneven for the ALEDSL→MV variant. Finally, when
comparing our results to RAMNet, we can clearly observe that our method provides
in all cases more accurate depth maps, where object boundaries are more prominent,
and where estimated depths are closer to the ground truth. This observation further
demonstrates that the use of a LiDAR input — even if very sparse — is of great help
for obtaining accurate dense depth maps.

If the reader is interested, qualitative results for each of the sequences of the MVSEC
dataset are given in Appendix B.3. Full results are also available in video format
through the link of the project page given at the very beginning of this chapter
(Page 49).

4 .6 .3 Evaluation of the Sparse Depths

As stated in Sections 4.1 and 4.3, our goal is not only to estimate dense depth maps,
but also to associate two depths to each event, allowing for their 3D reprojection
and depth difference analysis. Evaluation of the depth association to each event on
proposed SLED dataset is given in the “Sparse depths errors” column of Table 4.2.

The sparse event-LiDAR fusion literature is limited to the method of Li et al. [14].
However, their approach only considers one depth per event, and is intended for a
Road Side Unit (RSU) application (i.e., their event camera is fixed and evaluation
is conducted on a specific dataset). Therefore, we decided to compare ourselves to
a more naive (and faster) baseline: the Nearest Neighbor (NN) approach, where
each event is given the depth of its closest LiDAR point. As the Nearest Neighbor
approach can not infer correct depths for events which are too far from a LiDAR
scan, and so as to provide a fair comparison, we only consider the events between
the bottom and top LiDAR scans.

As displayed in Table 4.2, in the “before” Dbf case, depending on the map and the
cutoff distance, best results are shared between the NN approach and our ALEDSL
network. These results can be explained by the fact that our network is more
likely to commit large errors for events at the boundary of close objects, as it might
estimate that they should be given the depth of the more distant background. On
the contrary, the NN approach will always attribute the depth of the closest LiDAR
point, and will therefore commit more frequent but smaller errors. In the “after”
Daf case, despite this potential source of error, our network ALEDSL nearly always
obtains the best results, as it has correctly learned the temporal propagation of the
depths, a task which cannot be completed natively with the NN approach. We also
remind here that these results are given for the parts of the image where LiDAR
data is available: the NN method would not be able to derive correct estimations for
the other parts of the image. If the reader is interested, numerical results for each
sequence of the testing set are given in Appendix B.1.

64

4 .6 evaluation

Predicted depth change map Ground truth

daf − dbf < −1m
daf − dbf ∈ [−1m,+1m]

daf − dbf > +1m

Figure 4.9 – Thresholded depth change maps from the Town_01 and Town_03 sequences of
the SLED dataset, using the events as a mask.

4 .6 .4 Evaluation of the Depth Change Maps

We finally estimate the quality of our “two depths per event” approach through
the depth change map, as presented in Section 4.3. We perform two evaluations
on our SLED dataset: (1) the average error on the depth change map Daf − Dbf
compared to the true depth changes, and (2) the percentage of correctly classified
events when using a difference threshold of 1m on the depth change map. Results
of these evaluations are given in the “Depth change map errors” column of Table 4.2.
If the reader is interested, numerical results for each sequence of the testing set are
given in Appendix B.1.

We can observe here that, despite a significant absolute error on the depth change
maps, events can still be classified correctly, with a rate of success over 75% on
Town01, and over 77% on Town03. We remind here that the ALED network is not
trained on these depth change map and classification tasks. As such, we believe that,
while even more accurate individual depth maps could improve both the depth
change map and classification errors, further improvements could be brought by
designing a network specifically dedicated to these tasks.

We show in Fig. 4.9 qualitative results for the thresholded depth change maps, for
the same sequences as in Fig. 4.7. These results visually corroborate the overall

65

event- and lidar-based depth estimation using a convolutional

network

accurate classification of the events observed during the numerical analysis. Some
errors can still be seen, especially for the lower parts of the objects: as they are
closer to the ground, the depth difference is less significant, and errors on the depth
change map become therefore more critical. More qualitative results are given in
Appendix B.4.

4 .7 conclusion and discussions

Throughout this chapter, a novel learning-based approach for estimating dense
depth maps from asynchronous LiDAR and event-based data has been proposed. A
novel “two depths per event” notion has also been proposed, to solve the issue of
events possibly representing a change of depth. A synthetic multimodal dataset has
also been recorded, to train and evaluate our method. Multiple evaluations on our
synthetic and a real driving datasets have been performed to show the relevance of
our contributions. In particular, on the MVSEC dataset, an improvement of up to
79.1% compared to the current LiDAR-and-events state of the art has been achieved,
on complex daytime and nighttime recordings.

In hindsight, further improvements could be brought to the method. (1) Making
the network predict directly sparse depths for each event could potentially provide
better results for the depth to event inference. This could be achieved by using
sparse convolutional networks [148] for instance, and could be subject to future work.
(2) The use of the Event Volume with a fixed time window as the input representation
for the events in our network could also be revised, as it can become ill-suited under
large motions. A solution could be to use an alternative representation, such as
TORE Volumes [149], or to use adaptive accumulation times using methods such as
the one proposed by Liu and Delbrück [116]. (3) The SLED dataset was recorded so
that the ego-vehicle would not get stuck in traffic or in front of traffic lights, to avoid
having fully static sequences (as a reminder, sequences last 10 seconds in SLED),
because the dense depth estimation would be impossible for these sequences due
to a lack of events. However, this means that the ego-vehicle almost never stops
across the whole dataset, which is also an issue. An update to SLED could therefore
be published in the future, for ensuring that the vehicle makes short stops in some
sequences, for more diversity. (4) Finally, the recording of a real dataset with a
high-definition event camera could also be considered, to complete the possibilities
offered by the low-resolution MVSEC dataset.

One of the highlights of this work is how visually impressive the results are, espe-
cially given the sparsity of the input data to the network (as shown for instance in
Fig. 4.7). In the case of our SLED dataset, the segmentation between the sky and
other objects is also an important highlight, even in the case of Fig. B.2 where a
suspended railway is above the vehicle. Our network also displays good results
on the night sequences of the MVSEC dataset, meaning that it is able to perform
well even in the presence of noisy events. Yet, looking back at Tables 4.2 and 4.3,
our method seems to have more difficulties for short ranges, where the errors are
relatively high. If we consider an application to intelligent robotics, this becomes
an important issue: the precision of the depth of close objects should be favored

66

4 .7 conclusion and discussions

compared to the more distant ones, as we primarily want to avoid collisions with
objects surrounding the robot.

Therefore, to extend this work on depth estimation, we will look in the following
chapter into a more refined method, by making use of the Transformer architec-
ture [150] and especially its concept of self- and cross-attention. Our idea is that
attention-based networks provide state-of-the-art results in numerous vision-based
applications, and could further improve the fusion of the event and LiDAR modali-
ties.

67

5E V E N T- A N D L I D A R - B A S E D D E P T H E S T I M AT I O N
U S I N G A N AT T E N T I O N - B A S E D N E T W O R K

As noted in the conclusion of Chapter 4, our ALED network has two main issues:
(1) it shows large errors for close distances, something we want to avoid for robotic
applications, and (2) it can only predict dense depth maps, from which we can
associate depths to each event, but at the cost of some accuracy. In this chapter,
we aim at exploring these two issues and seeing how they could be solved using
an attention-based network, which should allow for a better understanding of
interactions between event and LiDAR data, and could theoretically allow for a
sparse depth estimation without needing any dense frame-based representation.

The presented method and the associated results of this chapter were submitted
as part of the ECCV 2024 conference. Since ECCV is a double-blind conference,
a public project page is not yet available at the time of writing of this thesis, but
a private playlist of videos showcasing some results is available at https://www.
youtube.com/playlist?list=PLLL0eWAd6OXBKmvfUNCR21iq2C4Ck8-B4.

5 .1 introduction

Attention-based networks like the Transformer [150] are particularly powerful when
it comes to representing interactions between elements of a sequence, like words
in a sentence. While originally intended for Natural Language Processing (NLP),
they have since become the standard architecture in numerous domains, including
computer vision, and have shown impressive capabilities for multimodal data
fusion [151, 152].

Therefore, in this chapter, we still aim at fusing sparse LiDAR and event data
available at different rates, but doing it with an attention-based network. As will
be described in the following sections, while our initial goal was to accomplish
this fusion directly on sparse inputs and outputs, several theoretical and technical
limitations were met. Therefore, we returned to denser representations, and pro-
pose here a novel attention-based network which we call DELTA, able to combine
information from low-rate projected LiDAR point clouds with higher-rate small
temporal windows of events, in order to derive accurate dense depth maps.

Thanks to its attention- and recurrence-based design, we show that this network is
able to extract the most relevant spatial and temporal features within and in-between
the event and LiDAR data. The introduction of a propagation memory for fusion
at the highest input rate and of a central memory acting as a main recurrence both
allow us to outperform the state of the art, and are critical contributions as shown
through an ablation study.

As for previous chapters, an extensive evaluation of DELTA is conducted on multiple
automotive datasets, where LiDAR and event sensors are most commonly used

69

https://www.youtube.com/playlist?list=PLLL0eWAd6OXBKmvfUNCR21iq2C4Ck8-B4
https://www.youtube.com/playlist?list=PLLL0eWAd6OXBKmvfUNCR21iq2C4Ck8-B4

event- and lidar-based depth estimation using an

attention-based network

together. We show here that DELTA is able to offer a clear improvement from ALED
and the rest of the state of the art, in particular for close objects (which was the main
limitation of ALED), where the average error is reduced up to four times.

This chapter is structured as follows. We first give an introduction to how the
Transformer model and especially its attention mechanism work in Section 5.2. We
then give an overview of the state of the art in Section 5.3. We describe our attempts
at estimating directly sparse depths and the issues we faced in Section 5.4, and our
final dense solution in Section 5.5. We finally conduct our evaluation in Section 5.6,
before drawing some conclusions in Section 5.7.

5 .2 an introduction to the transformer and attention

Before going into the details of the work conducted in this chapter, we must take
some time to explain how the Transformer architecture works, and especially its
attention module.

5 .2 .1 Overview of the Transformer Architecture

The Transformer [150] is a novel neural network model proposed in 2017, originally
intended for Natural Language Processing (NLP). The objective of this model
was to answer the limitations met by former recurrence-based networks (such as
LSTMs): a tendency to forget context for long input sequences, and slow training
and inference times due to their one-by-one processing of words. To solve these
issues, the Transformer is able to treat the full input sequence in parallel at once,
i.e., without splitting it into word-by-word inputs, and by explicitly modeling the
relations between each word.

To do so, as illustrated in Fig. 5.1a, each input word is converted into a token, i.e.,
a fixed-size vector representation of this word. As the Transformer is an order
independent architecture, a positional encoding is added to each token, representing
its position in the input sequence. This list of tokens is then given to an attention-
based encoder-decoder which we will describe in the next paragraphs. The decoder
also takes as input the previously predicted output tokens. A final linear+softmax
layer is used to give probabilities over the full dictionary of words, with the word
with the best probability being added as the next word to the previously predicted
words. This process is repeated until the network predicts a special End of Sentence
(EOS) token.

Regarding the encoder itself, it is composed of N successive blocks, each composed
of a self-attention block (illustrated in Fig. 5.1b, tasked with representing the relations
within the tokens, as will be explained in Section 5.2.2) and a feed-forward block
(illustrated in Fig. 5.1d, tasked with refining the output of the self-attention block).

As for the decoder, it is also composed of N successive blocks, each composed of
a self-attention block, a cross-attention block (illustrated in Fig. 5.1c, tasked with

70

5 .2 an introduction to the transformer and attention

Inputs

Input
Embedding

+Positional
Encoding

Self-
Attention

Feed-Forward
Block

N×

Self-
Attention

Cross-
Attention

Feed-Forward
Block

×N

+

Output
Embedding

Positional
Encoding

Previous
Outputs

Linear +
Softmax

Output
Probabilities

Q

K/V

(a) Simplified view of the Transformer architecture.

Multi-Head
Attention

Add & Norm

Q K V

(b) Detailed Self-
Attention block

Multi-Head
Attention

Add & Norm

Q K V

(c) Detailed Cross-
Attention block

Feed-Forward
Layer

Add & Norm

(d) Detailed Feed-
Forward block

Figure 5.1 – Overview of the Transformer architecture. Illustration inspired by [150].

representing the relations between the previously predicted tokens and the encoded
input tokens, as will also be explained in Section 5.2.2), and a feed-forward block.

In the following parts of this chapter, for simplicity of notation and of representation,
we will note “self-attention module” the block composed of a self-attention block (▪)
followed by a feed-forward block (▪), and “cross-attention module” the block composed
of a cross-attention block (▪) followed by a feed-forward block (▪).

5 .2 .2 Full Attention

As noted before, the core element of the Transformer is its concept of attention, for
representing explicitly relations within elements of a single sequence, or in-between
elements of two sequences. This notion is particularly important typically (but not
only) for NLP: in a simple sentence like “The cat could not eat its meal because it
was ill.”, understanding that the word “it” refers to the cat rather than to the meal is
non-trivial for a machine; being able to represent this relation explicitly is therefore
important for a good learning.

While the concept of attention is not new (we can cite here the articles of Nadaraya
and of Watson [153, 154] both published in 1964, or the more recent article of

71

event- and lidar-based depth estimation using an

attention-based network

Bahdanau et al. [155]), the Transformer was the first to propose a fully parallelizable
formulation of attention, particularly suited for learning on large sequences. In their
formulation, they consider three input matrices: a matrix of queries Q of shape
(NQ, D), a matrix of keys K of shape (NKV , D), and a matrix of values V of shape
(NKV , D), where NQ and NKV are respectively the number of vectors of queries and
keys/values, and D is the dimensionality (i.e., the length) of the vectors.

They first compute a matrix of attention scores S by putting in relation the queries
and the keys, i.e., by determining how the queries “match” the keys:

S = softmax
(

QKT
√

D

)
(5.1)

where S is of shape (NQ, NKV). By using the softmax, each of the NQ rows contains
a score for each of the keys, summing to 1. This matrix of attention scores is finally
applied on the matrix of values, to obtain the final matrix of values after receiving
attention A:

A = SV (5.2)

where A is of the same shape as the queries, i.e., (NQ, D).

In practice, in case of self-attention, the three matrices Q, K, and V are obtained by
multiplying the single input matrix I by matrices of learned weights WQ, WK, and
WV :

Q = IWQ

K = IWK (5.3)
V = IWV

In case of cross-attention, two input matrices are used, I1 and I2, and the Q, K, and
V matrices are computed as:

Q = I1WQ

K = I2WK (5.4)
V = I2WV

Therefore, self-attention is just a special case of cross-attention, where I1 = I2.

5 .2 .3 Linearized Attention

As shown in Eq. (5.1), the matrix of attention scores S is of shape (NQ, NKV) (due to
the multiplication of Q and KT). Therefore, and since NQ � D and NKV � D, the
space complexity of the attention process is of

O(NQ × NKV + NQ × D) ' O(N2) (5.5)

i.e., it grows quadratically. In case of long input sequences, this memory requirement
can quickly become a limitation. Therefore, several authors have proposed linearized

72

5 .3 related work

versions of the attention process. We describe here the two formulations that we
tested as part of our work, that both rely on the same core idea: reducing the space
complexity by carrying out the multiplication of KT and V first.

As shown by Katharopoulos et al. [156], Eqs. (5.1) and (5.2) can be generalized and
rewritten as (

φ(Q)φ(K)T
)

V = φ(Q)
(

φ(K)TV
)

(5.6)

where φ(·) is a feature map. Using the second formulation, the multiplication
between KT and V is applied first, resulting in a space complexity for the attention
process of

O(D× D + NQ × D) ' O(N) (5.7)

i.e., a memory usage which grows linearly.

In their article, Katharopoulos et al. [156] use the exponential linear unit func-
tion [157] elu(·) as their feature map:

φ(x) = elu(x) + 1 (5.8)

Comparatively, Kamal et al. [158] use the softmax activation function as their feature
map:

φ(x) = softmax(x) (5.9)

However, as investigated by [159, 160], linear attention limits the ability of networks
to train efficiently, reducing their maximum theoretical accuracy.

5 .3 related work

5 .3 .1 Transformers for Event-Based Data

The Transformer [150] has become the state-of-the-art architecture in numerous
domains. Its attention mechanism models explicitly the relations between relevant
elements in a sequence, making it able to understand structures. For computer
vision, the arrival of the Vision Transformer [161] has been a notable landmark, by
outperforming more traditional convolution-based networks. As such, researchers
have started investigating how the Transformer architecture could be adapted to
event-based cameras. Two philosophies have emerged over the years. (1) Some
authors use directly the raw stream of events (without any pre-processing) as the
input sequence to their network, and use the Transformer architecture to process
it. This approach is particularly complex, as each event contains little information,
making the modeling of their relations difficult for the Transformer. To contain
enough context, sequences of events should also be of consequent size, whereas
the Transformer was designed for smaller sequences. As such, this method has
only been applied to the task of classification [158, 162], where the event data can
be highly compressed by the network, as the final representation is only a small
vector. (2) To circumvent these issues, most authors instead accumulate events
in a frame-like representation, and process it using a mixture of convolutional

73

event- and lidar-based depth estimation using an

attention-based network

layers and of Transformer blocks. Investigated tasks include object detection [54],
classification [147, 163, 164], depth estimation [147], optical flow [165], and video
reconstruction [166].

5 .3 .2 Fusion of Events and LiDAR

As seen throughout Chapter 4, to this day, most works using both the LiDAR and
event-based modalities address the problem of extrinsic calibration [137, 138, 139],
or use them as part of the construction of a dataset [62, 63, 64]. Recently, authors
have started investigating the issues of enhancing point clouds with event-based
data [14], of estimating dense depth maps from event and LiDAR data [45], and of
human tracking in adversarial lighting conditions [140].

5 .3 .3 Depth Estimation using Events

The idea of estimating sparse or dense depth maps from events has been actively ex-
plored over the past decade. Three main approaches can be distinguished. (1) Some
authors estimate depths in a monocular fashion, using only events from a single
event camera [24, 35, 46, 47, 167, 168], or using events and frames [33, 147] from a
DAVIS camera [15]. These approaches are particularly challenging, as they lack any
three dimensional information, and tend to result in overall lower performances.
(2) Some authors have tried to estimate depth in a stereo fashion, by using a pair of
event cameras [35, 41, 42, 43, 169, 170], with [169] and [35] achieving notably good
results. (3) Finally, some authors prefer to use directly a depth sensor, and use the
stream of event as a mean to densify and/or to temporally upsample the depth data.
This depth sensor can either be an RGB-D camera [44] or a LiDAR [14, 45, 120], with
our work described in the previous chapter [120] being the current state of the art
on several datasets. While methods from all other authors estimate a single depth
per event, we will reuse in this chapter the concept of estimating two depths per
event, as explained in the previous chapter (Section 4.3).

5 .4 predicting sparse depths with transformers

Our initial objective was to be able to use a Transformer-like architecture to directly
associate the sparse LiDAR points and the sparse events, and output sparse depths
for each event. This idea relied on the basis that, as seen in Section 4.6.3, a simple
Nearest Neighbor (NN) approach for associating LiDAR points and events works
already quite well, and that the ability of the Transformer to model explicitly relations
between elements would lead to even better performances (especially for the higher
and lower parts of the image where no LiDAR data is available). Therefore, we
tried to apply this idea with several network architectures, the two main ones being
represented in Figs. 5.2 and 5.3, and described in Sections 5.4.1 and 5.4.2.

74

5 .4 predicting sparse depths with transformers

Input LiDAR
x
y

2D pos.
encoder

Linear
layerd

C SAL1 CAL SAL2

Cent.
mem.

CAE SAE2SAE1C2D pos.
encoder

Linear
layer

x
y

t
p

Input Events

+

+

CAD SAD
Linear
layer

dbf
daf

Output Depths

(NL, 2)

(NL, 1)

(NE, 2)

(NE, 2)

(NL, D/2)

(NL, D/2)

(NE, D/2)

(NE, D/2)

(NL, D)

(NE, D)

(NL, D) K/V

(NE, D) K/V

(M, D)

Q

(M, D)

Q

(M, D)

(M, D)

(M, D) K/V

(NE, D)

Q

(NE, D) (NE, D) (NE, 2)

Figure 5.2 – The first version of our sparse attention-based network design. “CA” are
cross-attention modules, “SA” are self-attention modules. The size of the data at each step is
indicated above the arrows, where “NL” is the number of LiDAR points, “NE” is the number
of events, “M” is the memory size, and “D” is the dimensionality.

5 .4 .1 The First Version

In its first version, shown in Fig. 5.2, we follow the design of our previous ALED
network, with two independent encoding branches for the LiDAR and event data,
a central memory for fusion, and a single decoding branch. As shown, no dense
representation is used: the LiDAR and event data are given as a sequence (i.e., a
list) of points to the network, and its output is a sequence of depths.

Encoding On the LiDAR side, the x and y positions of the NL projected points
are encoded with the use of a fixed 2-dimensional positional encoder, following
the formulation of Carion et al. [171], while the depth of the points are encoded
by a linear layer, before being concatenated back into a single sequence of shape
(NL, D). The same operation is applied on the events side: the x and y positions of
the NE events are encoded with the use of the same 2D positional encoder, and the
timestamps and polarities are encoded by a linear layer, before being concatenated
back into a single sequence of shape (NE, D). A self-attention module (SAL1/SAE1
in Fig. 5.2) is then used on both branches, to encode the internal relations between
the LiDAR points and events respectively.

Memory Update Using the encoded input, a memory update is then generated.
This process is the same for both the LiDAR and events side. A cross-attention
module (CAL/CAE) is first used to generate an updated representation, where
the current state of the memory (of shape (M, D)) is used as the queries (i.e.,
the elements composing the memory “ask” how they should be updated) and
where the encoded LiDAR or event input is used as the keys/values (i.e., they
provide the values for the update). At the output of the cross-attention module, an
update of shape (M, D) is generated, which is refined by a self-attention module
(SAL2/SAE2). The current state of the memory is finally updated by a summation
and normalization with the refined update.

Decoding Since we want to estimate depths for each event individually, our de-
coding branch must be connected in some way to the input events. To do so, we use

75

event- and lidar-based depth estimation using an

attention-based network

Input LiDAR
x
y

2D pos.
encoder

Linear
layerd

C SA SA

SASAC2D pos.
encoder

Linear
layer

x
y

t
p

Input Events

CA SA + SA + Linear
layer

dbf
daf

Output Depths

(NL, 2)

(NL, 1)

(NE, 2)

(NE, 2)

(NL, D/2)

(NL, D/2)

(NE, D/2)

(NE, D/2)

(NL, D)

(NE, D)

(NL, D)

(NE, D)

(NL, D)

K/V

(NE, D)

Q

(NE, D) (NE, D) (NE, D) (NE, D) (NE, D) (NE, 2)

Figure 5.3 – The second version of our sparse attention-based network design, without a
memory. “CA” are cross-attention modules, “SA” are self-attention modules. The size of the
data at each step is indicated above the arrows, where “NL” is the number of LiDAR points,
“NE” is the number of events, “M” is the memory size, and “D” is the dimensionality. Skip
connections are in gray.

a cross-attention module (CAD), where this time the encoded events are used the
queries (i.e., they “ask” what should their depths be), and the memory is used as the
keys/values (i.e., it provides the values for the current state of the fused LiDAR and
event data), generating an output of shape (NE, D). A final self-attention module
(SAD) is used to refine the decoded values, before a final linear layer is used to
reduce the dimensionality of the data, to reach an output of shape (NE, 2) (i.e., a list
where each element is associated to its corresponding input event, and contains just
the two predicted depths, dbf and daf).

5 .4 .2 The Second Version

In the first version of the network, the LiDAR points and events never interact
directly, they only do so indirectly through the central memory. Therefore, in its
second version illustrated in Fig. 5.3, we removed this memory, and fused directly
the LiDAR and event data through a single central cross-attention module.

Encoding The data encoding process remains mostly the same as the one of the
first version of the network: LiDAR and event inputs are still sequences of points,
and are fed in two separate branches. Two main changes can still be highlighted:
(1) two self-attention modules are used in each encoding branch, to better represent
the internal relations between the LiDAR points and events respectively, and (2) due
to the absence of a memory, the two input branches are not independent anymore:
LiDAR and event data must be fed synchronously.

Data Fusion The fusion between the LiDAR and event data is made through a
single cross-attention module, where the NE encoded events are the queries (i.e.,
they “ask” what should their depths be), and where the NL encoded LiDAR points
are the keys/values (i.e., they provide their depth values for the events). Since the
events are the queries in the fusion process, the output is directly of shape (NE, D).

Decoding For the decoding, to mirror the encoding process, two self-attention
modules are used to refine the decoding of the data. Compared to the first version

76

5 .4 predicting sparse depths with transformers

of the network, skip connections with the input event data are also added for a
better learning process. A final linear layer is used to reduce the dimensionality of
the data, resulting as for the first network in an output of shape (NE, 2).

5 .4 .3 Issues

Unfortunately, both versions of the network suffered from major issues, making
them ultimately unusable or producing results with low accuracy. We give in the
following paragraph a rundown of all these issues.

Memory Usage Both versions of the network had to be simplified as much as
possible, due to initially requiring too much computer memory. This issue is mostly
due to the use of the Transformer architecture: as noted in Eq. (5.5), in its base
variant, the Transformer has a space complexity of O(N2). In our case, we have as
input thousands of LiDAR points, and up to a million of events for the most dynamic
scenes, making the memory requirement explode. To counter this issue, we limited
the number of input events by randomly cropping the inputs to smaller regions
of size (400× 400), by using the linearized attention methods of Katharopoulos et
al. [156] and of Kamal et al. [158], and by reducing as much as possible the number of
self- and cross-attention modules as shown in Figs. 5.2 and 5.3. However, even after
all these simplifications, the first version of the network was never fully functional:
because of the central memory, and as recurrence is especially heavy during the
training phase, the memory requirement was still often too high.

Granularity of Data The objective of the self- and cross-attention modules in our
networks is to encode the relations within and in-between the LiDAR points and the
events. However, a single event or a single LiDAR point carries very little amount
of data (respectively, a depth for a single pixel, and a change in illumination also for
a single pixel). Therefore, representing relations between such small data points is
especially complex, as they do not carry an intrinsic meaning. Compared to words in
a sentence for instance, nouns, adjectives, and verbs all carry specific meaning, and
their relations can be more easily interpreted and modeled by the Transformer; in
our case, this would be similar to applying the Transformer on letters independently
instead of on complete words.

Lack of Structure When LiDAR points and events are positioned in image format,
temporal and spatial relations, structures, and patterns appear immediately: build-
ings, vehicles, trees, . . . can be identified with ease. However, in a raw sequence
format, this identification becomes a much more complex issue: two LiDAR points
or events might have close spatial coordinates, close depths, or close timestamps,
but it does not necessarily mean that they both belong to the same object in the
scene. Their order in the sequence also does not carry any specific information: the
order of two LiDAR points or two events can be inverted without changing their
meaning. Once again, if we compare to words in a sentence, their order matters and
is crucial for determining their relations and the overall meaning of the sentence

77

event- and lidar-based depth estimation using an

attention-based network

(a) LiDAR projection (b) Events

(c) Prediction of the network (d) Prediction of the NN method

(e) Ground truth

Figure 5.4 – Results for the second version of our sparse network, for the previous depths
dbf. As a reminder, the output of the network and of the NN method is just a sequence of
depths; we place them here in an image format for a better visualization.

(e.g., “I know what I like” is vastly different from “I like what I know”, despite only
two words being inverted).

Nearest-Neighbor-Like Behavior We display in Fig. 5.4 example results achieved
by the second version of the network after a complete training on our SLED dataset.
As can be seen, while the depth association in Fig. 5.4c is not catastrophic, it remains
far from the ground truth: individual trees are not well separated, weird vertical
artifacts appear (especially visible for the tree on the left), and events belonging
to the sky (i.e., at the maximum distance, in pale yellow in the ground truth) are
never identified as such. Actually, when observing the results produced by the
simple Nearest Neighbor (NN) method in Fig. 5.4d, the exact same issues appear,
and the overall image looks strangely similar. This would indicate that our sparse
attention-based network is only able to relate events and LiDAR points based on

78

5 .4 predicting sparse depths with transformers

their spatial position like the NN method, and that it has no real understanding of
the content of the scene to correctly assign the depths.

Loss on Cross-Attention Several attempts were made to improve the results of
the network. The first main one was introducing a loss on the cross-attention
during the training. The idea here was that supervising how events and LiDAR
points are put in relation by the network would force it to stop going for the simple
Nearest-Neighbor-like behavior, and instead force it to recognize patterns. However,
this additional loss did not bring any improvement, as it only converged a little
before the network reached its usual Nearest-Neighbor-like behavior, at which point
it stopped converging. Attempts were made to give more importance to this loss,
but always resulted in the divergence of the training process.

Maximum Distance Token Another element that was tested for improving the
results was the introduction of a special “maximum distance” value, to fix the issue
of events belonging to the sky never being identified as such. For the implementation,
for each predicted depth, a secondary binary output was added, where the network
would have to say whether or not the event should be placed at the maximum
distance (and if so, the predicted depth would not be considered). Two different
behaviors were observed here: (1) in most cases, the network would mark all
events as not being at the maximum distance, and would continue having the
Nearest-Neighbor-like behavior as presented before; (2) but in some cases, the
network would consider that all events above a certain y value belonged to the
sky, which while more interesting, still does not show a good understanding of the
content of the scene, as this y value would not change during the full duration of a
sequence, and as some objects like the top of the trees would be included in the sky.

5 .4 .4 Additional Experiments

All the experiments described so far on a sparse depth estimation only constitute
a fraction of all the tests that were conducted in the first part of the third year of
thesis. Among all the other tests, we can list

• a purely self-attention-based version of the network, where events and LiDAR
points are concatenated as a single sequence directly after the encoding heads
(with a different embedding added to each modality to allow the network to
recognize them);

• a U-Net version of the network, where the event and LiDAR data would be
progressively compressed during the encoding, and decompressed (with skip
connections) during the decoding, allowing for more attention modules while
decreasing memory usage;

• the test of more complex encoding and decoding heads;

79

event- and lidar-based depth estimation using an

attention-based network

• the addition of a special “maximum range” token to the LiDAR points, with
a supervision of the cross-attention to force the events at maximum range to
have a high attention score when associated to this token;

• the transformation of the maximum distance of the SLED dataset from 200m to
100m, meaning that more events are at that maximum distance in the ground
truth, in the hope that the network would better learn about this special case.

Yet, none of these changes brought any improvement to the results presented in
Fig. 5.4.

5 .5 dense delta method

5 .5 .1 Switching to a Patch-Based Approach

As shown in the previous section, the fully sparse version of the attention-based
depth estimation network never yielded compelling results. Therefore, an important
decision was taken: switching from this sparse depth estimation approach, for
which the Transformer does not seem to be able to produce correct results, to a
dense depth estimation approach, as in Chapter 4, where we expect the Transformer
to be more suited.

For that purpose, we will reuse the concept of patches, as initially introduced by
Dosovitskiy et al. in their work on the Vision Transformer [161], where their goal was
to apply the Transformer on images. Their idea was to split each image into NP small
(16× 16) patches, linearly project each patch as a single vector of dimensionality D,
add a positional encoding to differentiate each vector based on the position of the
patch in the image, and use these vectors as the input sequence of shape (NP, D)
to the Transformer. Compared to our sparse approach, each patch contains much
more data than a single LiDAR point or a single event, conserves the local spatial
and temporal structures of the data it contains, and results in a much more compact
input representation of fixed size (from up to a million of events to only a few
thousands of patches for HD input), making the relations within and in-between
the patches more simple for the network to learn.

While several iterations were required to achieve accurate results, we will only
describe here the final version of the network for more clarity. Therefore, we
propose in this chapter a novel attention-based recurrent network to estimate dense
depth maps from LiDAR and event data. We call it DELTA, for Dense depths from
Events and LiDAR using Transformer’s Attention.

5 .5 .2 Architecture

As illustrated in Fig. 5.5, our network is based on a U-Net architecture [172], with
two input branches for frame-like representations of the LiDAR and accumulated
event data, a central memory state, and a decoding branch. In total, DELTA contains
180.9 million of trainable parameters.

80

5 .5 dense delta method

Input LiDAR

+ CAP2 SA SA

Input Events

+

CAP1

Prop.
mem.

SA SA

CAF GRU Cent.
mem.

SASA

Output Depth Maps

+ +

+ +

(B, H, W, 1) Q

K/V

(B, H, W, 4)
K/V

Q
Q

(B, 128, D) (B, 128, D)

K/V (B, 128, D)

(B, H, W, 2)

Legend

Convolutional
encoding heads

Convolutional
decoding head

CA Cross-attention
module

SA Self-attention
module

Positional
embedding

GRU Gated Recurrent
Unit module

Prop.
mem.

Propagation
memory

Cent.
mem.

Central
memory

Skip
connections

Decoding
guide

Figure 5.5 – The complete architecture of our DELTA network. Unless noted, data is of
shape (B, NP, D), where B is the batch size, NP is the number of patches, and D is the
dimensionality.

Encoding heads As explained earlier, the event and LiDAR data (both of shape
(H, W, C), where C is the number of channels) are first split into small patches of
size P× P, as originally proposed by Dosovitskiy et al. [161]. This process is done
through stacked 5× 5 convolutional layers, and results in data of shape (NP, D),
where NP is the number of patches, and D = P × P × C the dimensionality of
each patch. These encoded patches are then summed with a fixed 2-dimensional
positional embedding, following the formulation of Carion et al. [171]. This way,
each patch has its own unique signature, making the network able to distinguish
them.

Data encoding and fusion Both the event and LiDAR patches each go through two
self-attention modules, to encode the internal relations between their own patches.
A cross-attention module (CAF in Fig. 5.5) is then used to encode the cross-relations
of both the event and LiDAR patches, with the encoded events being the queries
and the encoded LiDAR being the keys/values (as we want in the end to obtain
depth maps, similarly to the sparse network of Fig. 5.3).

LiDAR propagation Due to the use of this cross-attention module, contrary to
the work proposed in Chapter 4, our LiDAR and event branches can not be totally
decorrelated, as both LiDAR and event data are necessary at each time step. On the
basis that event data might be more frequently available than LiDAR point clouds,
unless new LiDAR data is available, we propagate at each time step the previous

81

event- and lidar-based depth estimation using an

attention-based network

LiDAR data using the incoming events. To do so, the events are used to update
a small (Section 5.6.2) propagation memory via a cross-attention module (CAP1
in Fig. 5.5). As before, the memory is the queries (i.e., it “asks” how its values
should be updated), and the events are the keys/values (i.e., the events provide
the new propagation model). This propagation memory is then used in a second
cross-attention module (CAP2), where the previous LiDAR data is the queries, and
where the propagation memory serves as the keys/values, in order to output an
updated LiDAR representation.

Memory update Considering the case where the event camera and the LiDAR are
placed on a dynamic platform (e.g., a road vehicle), then if that platform was to
come to a halt (e.g., at an intersection or in a traffic jam), few to no event would be
produced by the camera. As such, densifying the LiDAR would become a difficult
task, as the events would not be able to provide the guiding information required.
To solve this issue, given the sequential nature of the inputs, we add a central state,
whose role is to give a memory effect to the network. This way, even if the event
camera and LiDAR become static, the network can still exploit the memory of the
previous information from these sensors to derive accurate predictions. Additionally,
the use of this memory state has the benefit of stabilizing the output of the network.
Regarding the implementation, the fused LiDAR and event data are given to a Gated
Recurrent Unit (GRU) module, which updates this central memory.

Decoding To obtain the final depth maps, the data from the central memory first
passes through two self-attention modules, each followed by a skip connection
with the corresponding summed and normalized LiDAR and event data from the
encoding branch. To be able to have an image-like output, a final decoding head is
used to regroup the decoded patches and reshape the data to its original size. This
decoding head is composed of stacked convex upsampling modules [89], where the
upsampling is guided by the corresponding data from the events encoding head.
The output is of shape (H, W, 2), where the “before” depth map Dbf is in the first
channel, and the “after” depth map Daf is in the second channel.

5 .5 .3 Loss Functions

To train DELTA, we use the exact same two complementary losses as in Chapter 4,
Section 4.4.4: the pixel-wise `1 loss Lpw, and the multiscale gradient-matching loss
Lmsg. Both losses are applied here with the same weights, as we did not observe
any improvement by giving more importance to one or the other. Our final loss L is
therefore a summation of both these losses over a full sequence of predictions of
length T:

L =
T

∑
t=1

∑
bf,af

(Lt
pw + Lt

msg). (5.10)

82

5 .6 evaluation

5 .6 evaluation

5 .6 .1 Datasets

To conduct the training and evaluation of DELTA, we use in this chapter both our
SLED dataset and the MVSEC dataset [62], as in the previous chapter. For a more
complete evaluation, we also use the M3ED dataset [64]. However, due to its size,
and since its authors do not provide any LiDAR data for the test set, we can not use
it as is. To still be able to provide insightful results, we subsampled the dataset and
redefined the train/validation/test sets as shown in Table 5.1.

Redefined set Recordings Total length

Train penno_small_loop_day; rittenhouse_day; penno_small_loop_night 8m02s
Val horse_day; ucity_small_loop_night 8m59s
Test city_hall_day; city_hall_night 9m43s

Table 5.1 – M3ED sets used within this chapter.

5 .6 .2 Implementation Details

Data representation The event data is split in temporal windows of fixed size ∆t,
based on the rate of the ground truth of each dataset (∆t = 50ms for SLED and
MVSEC, ∆t = 100ms for M3ED). The events in each window are then accumulated
into an Event Volume of shape (H, W, 4), following the formulation of Zhu et
al. [24]. Compared to ALED, where the formulation of Perot et al. [25] was used, the
formulation of Zhu et al. is more compact, by not separating the polarities of the
events, allowing for their data to be fully kept by our network while limiting the
memory usage, as will be explained in the next paragraph. As for the LiDAR point
clouds, they are represented as their projection on the event camera’s image plane.
Pixels without any depth value are set to 0. Both the LiDAR projections and ground
truth depth maps are normalized between 0 and 1, where 1 is the maximum LiDAR
range in the dataset in use.

Data size To reach a patch size P of 16 pixels, we use five convolutional layers in
the encoding heads, and four convex upsampling modules in the decoding head.
To be able to keep all data intact, we chose to use D = 1024, as each patch from the
event data contains 16× 16× 4 = 1024 elements (patch size × number of channels of
an Event Volume), and as using greater values of D would raise the memory usage
too high. During training, data is randomly cropped to a size of 512× 512 pixels
for the high-resolution SLED and M3ED datasets, and to 256× 256 pixels for the
low-resolution MVSEC dataset.

Memories size and initialization Since the role of the central memory is to con-
dense past data, its shape must be the same as the rest of the data in the network,

83

event- and lidar-based depth estimation using an

attention-based network

i.e., (N, D). On the contrary, the propagation memory is only a parametric repre-
sentation of how the LiDAR data should be propagated to match the current events.
While its dimensionality is still constrained to D, its number of elements N can be
tuned: we empirically chose a size of 128 in this work. As for their initialization,
the central memory is initialized with a copy of the two-dimensional positional
embedding, while the initial state of the propagation memory is learned.

Training details For training on all datasets, we use the Adam optimizer [146]
with a batch size B = 4. When training from scratch on the SLED and the M3ED
datasets, 50 epochs are used, the initial learning rate is set to 10−4, and it is decayed
by 0.011/49 after each epoch (in order to reach a learning rate of 10−6 at the last
epoch). When training from scratch on the MVSEC dataset, 20 epochs are used, and
the learning rate is set to a constant value of 10−4. When finetuning on MVSEC or
M3ED, 3 epochs are used, and the learning rate is set to 10−5.

Evaluation metrics For all datasets, we use the same metrics for dense and sparse
evaluation as in Chapter 4. Following the convention on the MVSEC dataset [62],
results in the following subsections will also be presented with various cutoff
distances (10m, 20m, 30m, half the maximum range, and the maximum range). As
for ALED, DELTA is trained on the full depth maps, i.e., at the maximum range,
and these cutoffs are only applied at test time.

5 .6 .3 Results on the SLED Dataset

We begin by training the network solely on the SLED dataset, and denote this
version DELTASL. Results of DELTASL on the testing set of SLED are presented in
Table 5.2, compared with those of ALEDSL originally given in Table 4.2.

Compared to the results of ALEDSL, a clear improvement can be seen across all
metrics. Improvement is particularly important for the close objects, as the average
raw errors at the 10m cutoff is divided by 2 and by 4 for the Town01 and Town03
maps respectively. Improvement is less significant at longer ranges, but as noted in
the conclusion of Chapter 4 (Section 4.7), close surroundings of the robot are more
important when operating than distant objects.

Errors on sparse depths (i.e., depths given to each event) are also much better than
those of ALEDSL. Despite only being trained on dense data, these errors often
surpass those of the simpler Nearest Neighbor (NN) approach, which was not the
case for ALEDSL on the “before” depth maps Dbf.

Errors between the Dbf and the Daf depth maps are also more consistent. Regarding
the depth change maps, errors are often better than those of ALEDSL, and the
classification of events based on them (whether or not they belong to the edge of
an object) is better for all cutoff distances. All these observations indicate that our
network has an overall better learning of the temporal propagation of the depths.

Visual results are also presented in Fig. 5.6. Looking at the predicted depth maps,
our network is able to infer accurate results, close to the ground truth, but with

84

5 .6 evaluation

G
ro

un
d

tr
ut

h
A

LE
D

SL
D

EL
TA

SL
Er

ro
rs

A
LE

D
SL

Er
ro

rs
D

EL
TA

SL

Figure 5.6 – Results on the Town01_08 (left) and Town03_19 (right) sequences of our SLED
dataset, for the “before” depth map Dbf. From top to bottom: ground truth depth map;
result from ALEDSL; result from DELTASL; error maps of both methods, where pixels with
an error inferior to 0.5m are in white.

85

event- and lidar-based depth estimation using an

attention-based network
A

LE
D

SL

Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Mean (m)
Correctly classified events (%)

Mean (m) AbsRel Mean (m) AbsRel NN (m) ALEDSL (m) NN (m) ALEDSL (m) (with a threshold of ±1m)

Town01

10m 1.24 0.201 1.37 0.236 1.32 1.46 2.24 1.79 2.11 90.27
20m 2.08 0.231 2.27 0.255 1.51 1.84 2.53 2.15 3.18 85.07
30m 2.72 0.238 2.92 0.260 1.71 2.37 2.83 2.67 3.88 81.68
100m 4.25 0.240 4.51 0.261 2.40 3.48 3.91 3.95 5.12 77.48
200m 4.53 0.172 4.81 0.187 7.86 5.44 9.76 6.23 7.36 75.54

Town03

10m 2.00 0.289 2.09 0.301 0.47 0.56 0.67 0.66 1.14 93.70
20m 2.85 0.299 2.97 0.311 0.64 0.75 1.12 0.87 2.54 87.16
30m 3.33 0.291 3.45 0.302 0.92 1.11 1.61 1.26 3.23 83.71
100m 4.60 0.274 4.77 0.284 1.88 2.55 3.17 2.88 4.47 78.50
200m 4.86 0.215 5.03 0.223 4.43 3.60 5.93 4.10 6.20 77.23

D
EL

TA
SL

Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Mean (m)
Correctly classified events (%)

Mean (m) AbsRel Mean (m) AbsRel NN (m) DELTASL (m) NN (m) DELTASL (m) (with a threshold of ±1m)

Town01

10m 0.64 0.101 0.67 0.105 1.32 1.14 2.24 1.25 2.19 91.81
20m 1.45 0.138 1.50 0.144 1.51 1.62 2.53 1.74 3.17 87.81
30m 2.11 0.155 2.17 0.161 1.71 2.03 2.83 2.15 3.88 84.45
100m 3.80 0.174 3.89 0.179 2.40 3.05 3.91 3.24 5.14 79.86
200m 5.37 0.133 5.42 0.136 7.86 6.04 9.76 6.24 7.94 77.47

Town03

10m 0.49 0.081 0.50 0.082 0.47 0.36 0.56 0.40 0.76 97.35
20m 1.15 0.107 1.18 0.109 0.64 0.58 1.12 0.64 2.31 91.84
30m 1.72 0.121 1.77 0.124 0.92 0.90 1.61 0.98 3.06 88.35
100m 3.12 0.133 3.18 0.136 1.88 2.25 3.17 2.38 4.30 82.88
200m 4.81 0.114 4.81 0.116 4.43 3.54 5.93 3.72 6.69 81.18

Table 5.2 – Errors of ALEDSL (top) and of DELTASL (bottom) on our SLED dataset for various
cutoff depth distances. From left to right: dense depth errors (absolute and relative) on the
full Dbf and Daf depth maps; sparse depth errors (only pixels with events are considered);
absolute depth change maps (Daf − Dbf) errors and percentage of correctly classified events
based on this depth difference.

edges looking less sharp than the ones of ALED. Looking at the error maps, they
confirm the observations made on the quantitative results: we commit very small
errors at close ranges (especially for the ground) and larger errors at longer ranges,
and ALED commits small errors over the whole depth map.

If the reader is interested, the full numerical results for each sequence of the testing
set and more visual results are both given in Appendices C.1 and C.2 respectively,
and results in video format are available through the link given at the very beginning
of this chapter (Page 69).

5 .6 .4 Results on the MVSEC Dataset

As for ALED, to evaluate our network on the MVSEC dataset, we follow two distinct
strategies:

• we only train it on MVSEC, noted as DELTAMV, and

• we reuse the weights trained on the SLED dataset, DELTASL, and finetune
them on the MVSEC dataset: we denote it as DELTASL→MV.

The results of both versions are given in Table 5.3, in addition to the results of other
methods of the state of the art.

Compared to the results of StereoSpike [35], RAMNet [33], EvT+ [147], and Cui et
al. [45], our method yields consistently better results, especially with pre-training on

86

5 .6 evaluation

Recording Cutoff
Events (stereo) Events & Frames Events & LiDAR

StereoSpike [35] RAMNet [33] EvT+ [147] Cui et al. [45] ALEDMV DELTAMV ALEDSL→MV DELTASL→MV

outdoor_day_1

10m 0.79 1.39 1.24 1.24 0.91 0.74 0.50 0.59
20m 1.47 2.17 1.91 1.28 1.22 1.10 0.80 0.93
30m 1.92 2.76 2.36 4.87 1.43 1.34 1.02 1.17
50m - - - - 1.67 1.65 1.31 1.46
100m 3.17 - - - 1.96 1.98 1.60 1.79

outdoor_night_1

10m 1.38 2.50 1.45 2.26 1.75 1.52 1.52 1.54
20m 2.26 3.19 2.10 2.19 2.10 1.93 1.81 2.00
30m 2.97 3.82 2.88 4.50 2.25 2.17 1.95 2.25
50m - - - - 2.44 2.44 2.20 2.48
100m 4.82 - - - 2.73 2.81 2.54 2.87

outdoor_night_2

10m - 1.21 1.48 1.88 1.19 1.17 1.09 1.01
20m - 2.31 2.13 2.14 1.65 1.60 1.49 1.50
30m - 3.28 2.90 4.67 1.81 1.79 1.64 1.74
50m - - - - 1.95 1.97 1.80 1.91
100m - - - - 2.11 2.17 1.97 2.13

outdoor_night_3

10m - 1.01 1.38 1.78 0.85 0.94 0.81 0.78
20m - 2.34 2.03 1.93 1.25 1.37 1.16 1.26
30m - 3.43 2.77 4.55 1.42 1.60 1.33 1.53
50m - - - - 1.57 1.80 1.51 1.74
100m - - - - 1.73 1.99 1.66 1.95

Table 5.3 – Absolute depth errors (in meters) on the MVSEC dataset for various cutoff depth
distances (for the “before” depth maps Dbf).

the SLED dataset. Compared to ALEDMV and ALEDSL→MV, the results of DELTAMV
and DELTASL→MV remain relatively close, often achieving first or second place in
the case of DELTASL→MV. Why the clear improvement from ALED observed on
the SLED dataset (Section 5.6.3) is not replicated here is most probably because
of the large change in resolution between the SLED and MVSEC datasets, as the
information contained in the 16× 16 patches becomes quite different on the low-
resolution data of MVSEC. The position of the patches also differs between the two
datasets: a patch located at the bottom of an image from MVSEC has the position of
a patch located at the middle of an image from SLED, meaning that the network
must re-learn the link between the positional encoding and the information in the
patches. Both these elements make the finetuning more complex for an attention-
based network like DELTA than for a convolutional-based network like ALED, hence
the results of Table 5.3.

Visual results are also presented in Fig. 5.7, comparing them with those of Cui
et al. [45] and of ALEDSL→MV. While the method of Cui et al. allows for a better
conservation of the edges of the objects, it fails at producing smooth depth gradients
(especially on the ground, where clear delimitations are visible), and it is limited
to the vertical range of the LiDAR data. Comparing the results of DELTASL→MV
to those of ALEDSL→MV, the visualizations reflect the observations made during
the quantitative evaluation: the depth maps have a good accuracy, but are slightly
less sharp than those of ALEDSL→MV, and lack some small details. As noted in
Chapter 4 for ALED, DELTA also suffers from the lack of ground truth data for the
sky, resulting in the purple blobs in the upper areas of all predictions.

If the reader is interested, more qualitative results are given in Appendix C.3, and
results in video format are available through the link given at the very beginning of
this chapter (Page 69).

87

event- and lidar-based depth estimation using an

attention-based network

Ev
en

ts
Li

D
A

R
pr

oj
.

G
ro

un
d

tr
ut

h
C

ui
et

al
.[

45
]

A
LE

D
SL
→

M
V

D
EL

TA
SL
→

M
V

Figure 5.7 – Qualitative results on the MVSEC dataset. From top to bottom: events; LiDAR
projection (with size of points increased for a better visibility); ground truth; results from
Cui et al. [45]; results from ALEDSL→MV; results from DELTASL→MV. Sequences shown, from
left to right: outdoor_day_1; outdoor_night_1; outdoor_night_2.

88

5 .6 evaluation

5 .6 .5 Results on the M3ED Dataset

Like the evaluation on the MVSEC dataset, we follow two distinct strategies when
evaluating on the M3ED dataset:

• we only train it on M3ED, noted as DELTAM3, and

• we reuse the weights trained on the SLED dataset, DELTASL, and finetune
them on the M3ED dataset: we denote it DELTASL→M3.

Both the results of DELTAM3 and of DELTASL→M3 are given in Table 5.4.

Recording Cutoff DELTAM3 DELTASL→M3

city_hall_day

10m 0.30 0.58
20m 0.45 0.71
30m 0.60 0.85
60m 0.92 1.07

120m 1.02 1.19

city_hall_night

10m 0.26 0.55
20m 0.39 0.67
30m 0.49 0.79
60m 0.69 1.02

120m 0.81 1.21

Table 5.4 – Absolute depth errors (in meters) on the M3ED dataset for various cutoff depth
distances (for the “before” depth maps Dbf).

Again, the errors remain very low on both sequences, with the error at the maximum
cutoff distance being close to or under 1m. Yet, results here differ from those on
the SLED and MVSEC datasets, as better errors are obtained when training directly
on the M3ED dataset than when pre-training on the SLED dataset. This apparent
discrepancy can be explained when observing the visual results given in Fig. 5.8.
As shown, the ground truth depth maps of the M3ED dataset are very sparse, and
due to the process used for building them, ground truth values are concentrated in
the center of the objects, with very few values at their edges. As such, by being only
trained on this dataset, DELTAM3 outputs good numerical errors, but poor-looking
depth maps with large blobs and a scanline effect following the outline of LiDAR
points projection, making the identification of objects difficult. On the contrary,
the pre-training on the SLED dataset allows DELTASL→M3 to output depth maps
where objects appear more clearly (for instance, the lamp post in the top-left part of
Fig. 5.8). However, by doing so, the output depth maps are more rough. Another
element which could explain why the finetuning is difficult is that network inputs
when using M3ED are intrinsically different from those of SLED, with events being
accumulated over 100ms instead of 50ms (see Section 5.6.2), and with the LiDAR
data covering the whole vertical range of the image.

If the reader is interested, more qualitative results are given in Appendix C.4, and
results in video format are available through the link given at the very beginning of
this chapter (Page 69).

89

event- and lidar-based depth estimation using an

attention-based network

Ev
en

ts
Li

D
A

R
pr

oj
.

G
ro

un
d

tr
ut

h
D

EL
TA

M
3

D
EL

TA
SL
→

M
3

Figure 5.8 – Qualitative results for the city_hall_day sequence from M3ED. The size
of points for both the LiDAR projection and the ground truth was increased for a better
visibility. Zoom on numerical version is required to see the scanline effect on DELTAM3.

90

5 .6 evaluation

5 .6 .6 Ablation Study

In this final subsection, we investigate the importance of the two memories in the
network, as well as the role of the central cross-attention module CA1. For that
purpose, we propose three variants of DELTA:

• DELTANPM, with no propagation memory;

• DELTANCM, with no central memory;

• DELTANCA, with no central cross-attention module, and with a GRU module
for each encoding branch.

We give an overview of the shape of these modified networks in Figs. 5.9 to 5.11.
For the evaluation, as was done for Section 5.6.3, we trained these modified versions
of DELTA on the SLED dataset, allowing for comparison with the proposed version
of the network. The choice of doing this analysis on SLED was motivated by the
fact that both the MVSEC and the M3ED datasets suffer from shortcomings in their
respective ground truth, which could alter this ablation study.

Cutoff
DELTASL DELTASL

NPM DELTASL
NCM DELTASL

NCA

Dbf Daf Dbf (rel.) Daf (rel.) Dbf (rel.) Daf (rel.) Dbf (rel.) Daf (rel.)

10m 0.57 0.58 0.85 (+0.28) 0.86 (+0.28) 0.91 (+0.34) 0.91 (+0.33) 0.95 (+0.38) 0.94 (+0.36)
20m 1.29 1.33 1.64 (+0.35) 1.66 (+0.33) 1.71 (+0.42) 1.70 (+0.37) 1.80 (+0.51) 1.79 (+0.46)
30m 1.91 1.96 2.24 (+0.33) 2.28 (+0.32) 2.21 (+0.30) 2.22 (+0.26) 2.40 (+0.49) 2.41 (+0.45)

100m 3.44 3.52 3.73 (+0.29) 3.78 (+0.26) 3.53 (+0.09) 3.56 (+0.04) 3.85 (+0.41) 3.89 (+0.37)
200m 5.09 5.11 5.01 (-0.08) 5.02 (-0.09) 4.49 (-0.60) 4.52 (-0.59) 5.03 (-0.06) 5.10 (-0.01)

Table 5.5 – Absolute and relative depth errors (in meters) on the full testing set of the SLED
dataset, for alternative versions of DELTA (No Propagation Memory, No Central Memory,
No Cross-Attention).

Results are presented in Table 5.5. The base variant DELTASL produces the best
results, except for the maximum 200m cutoff range, where it is beaten by the
three other variants. The version without a propagation memory DELTASL

NPM has a
constant additional error of around 0.3m (except at the 200m range, where the errors
are similar), highlighting the importance of temporally propagating the LiDAR data
with the events. The version without the central memory DELTASL

NCM also performs
worse, albeit with an additional error that reduces the greater the cutoff distance is,
beating DELTASL by 0.6m at the maximum cutoff range. It should be noted however
that the car which the sensors are mounted on in the SLED dataset rarely stops, and
if it does, it is for very short periods of time. As explained in Section 5.5.2, since the
main role of the central memory is to still provide accurate results in these cases, it
only serves here its secondary role of being a stabilization medium, which is still
valuable at close range given the numerical results. Finally, the version without
the central cross-attention module DELTASL

NCA is the worst performing variant, as it
has the largest error across all cutoff ranges, only slightly beating DELTASL at the
200m cutoff. As such, the central cross-attention module CA1 is crucial for encoding

91

event- and lidar-based depth estimation using an

attention-based network

Input LiDAR

+ SA SA

Input Events

+ SA SA

CAF GRU Cent.
mem.

SASA

Output Depth Maps

+ +

+ +

(B, H, W, 1)

K/V

(B, H, W, 4)

Q

(B, H, W, 2)

Figure 5.9 – The alternative architecture without propagation memory, DELTANPM.

Input LiDAR

+ CAP2 SA SA

Input Events

+

CAP1

Prop.
mem.

SA SA

CAF

SASA

Output Depth Maps

+ +

+ +

(B, H, W, 1) Q

K/V

(B, H, W, 4)
K/V

Q
Q

(B, 128, D) (B, 128, D)

K/V (B, 128, D)

(B, H, W, 2)

Figure 5.10 – The alternative architecture without central memory, DELTANCM.

Input LiDAR

+ CAP2 SA SA

Input Events

+

CAP1

Prop.
mem.

SA SA

GRU

GRU

Cent.
mem.

SASA

Output Depth Maps

+ +

+ +

(B, H, W, 1) Q

(B, H, W, 4)
K/V

Q
(B, 128, D) (B, 128, D)

K/V (B, 128, D)

(B, H, W, 2)

Figure 5.11 – The alternative architecture without the central cross-attention, DELTANCA.

92

5 .7 conclusion and discussions

the cross-relations between the encoded LiDAR and event data before updating the
central memory.

5 .7 conclusion and discussions

Throughout this chapter, a study on the estimation of sparse depths from sparse
inputs was conducted, and a new attention-based network for fusing LiDAR and
event data to construct dense depth maps was proposed, DELTA. Thanks to the
introduction of a propagation memory between cross-attentions, DELTA is able to
extrapolate LiDAR with events at higher rate for an optimal fusion. A GRU is also
added between the encoding and decoding stages, allowing for a short-term central
memory and more robust outputs. As ALED in Chapter 4, our DELTA network
predicts 2 depths: before and after the events occur, allowing for depth change map
computation and for richer analysis of the scene dynamics. A thorough evaluation
including an ablation study was conducted on three datasets of the state of the art
to demonstrate the relevance of these propositions. On our synthetic SLED dataset,
a significant improvement was achieved for short ranges, with the average error
being reduced up to four times when compared to ALED. On the real MVSEC
and the M3ED datasets, DELTA remains competitive, with low errors across all
cutoff ranges. This work is an increment for event and LiDAR processing using
Transformers, still hard to apply well on these sparse modalities. We believe that
the proposed architecture can serve as a basis for other applications or for fusion
with other sensors.

In hindsight, further modifications could be brought to this work in order to improve
its overall performance. (1) As shown in Section 5.6, the improvement of errors over
short ranges is done at the cost of lower precision at longer ranges. Adapting the
training procedure by introducing variable weights for every cutoff distance could
be a solution to make sure all of them are optimized equally. (2) Also, as noted in
Section 5.5.2, DELTA is a relatively large network, with over 180 million parameters.
In comparison, ALED is composed of 26 million parameters. If required, further
analysis could probably allow for a reduction in the number of parameters in our
network, while retaining a similar accuracy. (3) As for ALED, the choice of the
input representations could also be re-examined. While the Event Volume [24] is a
compact and standard representation of event-based data, it can lead to information
being lost under fast motion or rapidly changing lighting conditions. As proposed
by Zubić et al. [27], automatically optimizing the input event representation could
allow for a better conservation of data. As for the LiDAR data, projecting it in the
frame of the event camera also leads to a loss of information. While making the
LiDAR densification problem more simple by already having the event and LiDAR
data in the same frame of reference, more than half of the point cloud is discarded,
even though it could provide precious information about the structure of the scene.
Working with a different representation of the LiDAR data, or working directly in
the 3D space as advocated by Cui et al. [45], could both be solutions to this issue.
(4) Finally, we regret the lack of a real-life dataset with dense and high-resolution

93

event- and lidar-based depth estimation using an

attention-based network

ground truth depth maps. Such a dataset would allow for a better training and a
better baseline for comparison than the currently existing datasets.

Looking back at our initial goals described at the beginning of this chapter, improving
the accuracy for close ranges has been successfully achieved, but the fully sparse
aspect has remained unsuccessful. We believe that, in its current state, a fully sparse
attention-based architecture is ill-suited for such a complex problem, especially
due to the memory requirements even for small networks. Comparatively, a dense
attention-based architecture relying on patches like DELTA seems much more
adapted in the general case, at the expense of the sparsity of data. One axis of
improvement we did not have time to treat as part of the thesis but that we would
like to explore further on was the idea of still keeping dense patch-based inputs, but
having a sparse output. This way, the spatial and temporal patterns which are not
easily identifiable in sparse inputs would still be recognized, with sparsity being
introduced at decoding time. In the case of DELTA, this approach would either
require (1) the addition of a small third encoding branch (for the sparse events), of a
cross-attention module for making these encoded events query the central memory,
and of a second sparse decoding branch (as still predicting also dense results would
probably make the training easier); or (2) a more in-depth redesign of the network.

94

6G E N E R A L C O N C L U S I O N

6 .1 conclusion

Throughout this thesis, the issues of motion and depth for scene analysis were
studied. In particular, event cameras of both low-, mid-, and high-resolution were
used for solving both problems, and the introduction of a LiDAR sensor was also
critical in the case of the depth estimation.

In the case of motion estimation, a real-time optical flow method was proposed,
relying on a single event camera. A pipeline-based computation was proposed, for
allowing parallelism of the tasks. In particular, a 4-step method was proposed here,
for temporally accumulating events as binary edge images, denoising and correcting
them, converting them in a dense frame-based representation, and computing the
final optical flow using a state-of-the-art frame-based method.

In the case of depth estimation, a convolutional-based network was first proposed,
relying on both high-rate data from a single event camera, and on lower-rate point
clouds from a single LiDAR sensor. This network is composed of two separate
encoding branches for processing both inputs asynchronously, of central memory
states for recurrence and for fusing the two modalities, and of a single decoding
branch for estimating the final dense depth maps. A notion of “two depths per
event” was also proposed, for taking into account the change-based nature of events,
and a simulated dataset was recorded and released for improving the training and
evaluation of our network.

Finally, an attention-based network was also proposed, for improving the fusion
of the LiDAR and event data. This network is composed of two separate encoding
branches for processing both inputs, of a propagation memory for temporally
upsampling the LiDAR data, a central cross-attention module for fusing the two
modalities, a single central memory for recurrence, and a decoding branch for
estimating the final dense depth maps.

Both theoretical and practical analysis were conducted to demonstrate the relevance
of the contributions. For optical flow, accuracies close to the state of the art were
obtained, but for much faster computation times (250Hz and 83Hz for low- and
high-resolution inputs respectively) and with a low latency (10ms and 27ms for low-
and high-resolution inputs respectively). For the depth estimation, the convolutional-
based network set first a new state-of-the-art reference, with an error reduction of up
to 61% compared to the previous LiDAR-and-event state-of-the-art. The attention-
based network then refined these results, by allowing for an error reduction for
close ranges, dividing the errors of the convolutional network up to four times.

As a general conclusion, we have seen throughout this thesis that motion and depth
estimation are critical components for scene analysis. By nature, the event camera
constitutes a fitting sensor for these problems, due to its innate motion-related

95

general conclusion

encoding of data. The LiDAR sensor also complements surprisingly well the event
camera for a multimodal depth estimation. While the robotic field was considered
here, as being the one where scene analysis is the most important and where the
combination of event cameras and LiDARs is the most likely to be used, we believe
that our research could be extended to other fields, from biology to industrial
automation.

6 .2 contributions

Across this thesis work, several major contributions were made, which we summarize
here.

Optical Flow (RTEF) The first and main contribution of the work on event-based
optical flow was proposing a real-time method. While some works had already
been done in that sense [48, 105], they lacked accuracy, and hardly scaled to a
high-resolution input. On the contrary, our work was directed from the start
with the multi-resolution aspect in mind, and our method is therefore able of a
good accuracy for both low-, mid-, and high-resolution event cameras. Another
contribution of this work was our “negated exponential distance transform”, which
was especially critical for improving the accuracy results by giving us the ability to
use a proven frame-based optical flow method. While only used in the context of
optical flow estimation here, we believe that this dense representation could also
provide interesting results for other applications where real-time is required. Finally,
a high-speed high-definition event-based indoor dataset was recorded and shared,
for allowing the evaluation of our optical flow method on complex and fast motions,
a feature which is missing from most state-of-the-art datasets.

Depth Estimation (ALED) Regarding the work on depth estimation using a con-
volutional network, the very first contribution was the idea itself of combining a
LiDAR and an event camera for estimating dense depth maps, which had not been
explored previously in the literature. As showed throughout Chapters 4 and 5,
despite their apparent incompatibilities (different type of data and of sparsity, vastly
different output rates), these two sensors actually complement each other perfectly
in the context of this problem. Another fundamental contribution of this work was
the idea of associating two depths to each event, which is the only method that
takes into account the change-based nature of events while still allowing for their
reprojection in the 3D world. One of the main contribution of this work also lies in
the ALED network itself. While originally inspired by the RAMNet architecture of
Gehrig et al. [33], ALED is refined in several ways (more encoding scales, the use of
convex upsampling during decoding), largely improving the accuracy of the depth
maps. Finally, the recording and sharing of the simulated SLED dataset is also a
major contribution, for allowing the training and evaluation of depth estimation
methods with dense ground truth data, a feature that is missing from the state-of-
the-art real-world datasets. SLED was also made in a modular way, meaning that it
could be extended for introducing further tasks (optical flow, semantic segmentation,
object detection and recognition, . . .).

96

6 .2 contributions

Depth Estimation (DELTA) As for the second work on depth estimation, our
first contribution is on the concept itself of using an attention-based network for
fusing LiDAR and event data. Even if they were not successful, we believe that
our tests on a fully sparse version of this network are valuable, as they allowed
for a better understanding of the Transformer and the attention mechanism, their
limitations, and as they highlight the current need for a dense, patched-based
representation. Of course, our main contribution here is the DELTA network itself,
which is a fully novel recurrent network architecture relying on self- and cross-
attention modules. As shown in the ablation study of Chapter 5, Section 5.6.6,
the most critical contributions are the propagation memory, allowing for a better
temporal upsampling of the LiDAR data, the central memory and its GRU-based
update, allowing for the introduction of recurrence, solving the cases where few
events are available and offering more stability overall, and the central cross-attention
module, for modeling the interactions between the LiDAR and event data.

Open Science A significant emphasis during these three years has also been put
on ensuring that our work was as accessible and as exploitable by the community
as possible. All preprints of the published articles were made available on arXiv
and/or HAL. Dedicated project pages were also created, for giving a quick overview
of each work:

• https://vbrebion.github.io/RTEF/

• https://vbrebion.github.io/ALED/

All the source codes of the published methods were open-sourced, published in a
clean version, and properly documented:

• https://github.com/heudiasyc/rt_of_low_high_res_event_cameras

• https://github.com/heudiasyc/ALED

• https://github.com/heudiasyc/SLED

Finally, datasets were also made publicly available, through the platform of the
laboratory:

• https://datasets.hds.utc.fr/project/7

• https://datasets.hds.utc.fr/project/9

Community Source Codes Several contributions were also made to improve other
source codes and repositories of the community, and are briefly listed here:

• https://github.com/astuff/avt_vimba_camera/pull/22

• https://github.com/prophesee-ai/prophesee_ros_wrapper/pull/29

97

https://vbrebion.github.io/RTEF/
https://vbrebion.github.io/ALED/
https://github.com/heudiasyc/rt_of_low_high_res_event_cameras
https://github.com/heudiasyc/ALED
https://github.com/heudiasyc/SLED
https://datasets.hds.utc.fr/project/7
https://datasets.hds.utc.fr/project/9
https://github.com/astuff/avt_vimba_camera/pull/22
https://github.com/prophesee-ai/prophesee_ros_wrapper/pull/29

general conclusion

• https://github.com/uzh-rpg/rpg_dvs_ros/pull/111

• https://github.com/uzh-rpg/event-based_vision_resources/pull/150

• https://github.com/uzh-rpg/event-based_vision_resources/pull/213

• https://github.com/carla-simulator/carla/issues/5367

• https://github.com/carla-simulator/carla/issues/5732

• https://github.com/carla-simulator/carla/issues/6103

• https://github.com/carla-simulator/carla/issues/6552

• https://github.com/AlbertoSabater/EventTransformerPlus/issues/1

6 .3 discussions and perspectives

As discussed throughout the chapters of this thesis, several improvements, reworks,
and future works could be proposed to improve the contributions proposed as part
of this thesis.

Regarding our optical flow method first, RTEF, one of the main limits to highlight is
its inability to produce accurate results in case of large motions over short periods of
time. This limitation mainly comes from our use of a frame-based approach, which
discards the timestamps. One solution is to reduce the accumulation time for these
cases, but it implies disregarding the real-time constraint. By construction, learning-
based and contrast-maximization-based methods perform better on these cases, but
their real-time compatibility remains an open question. Similarly, while our method
had state-of-the-art performances when it was published in 2021 [74], optical flow
has since become one of the most researched subjects in event-based vision, and
learning-based and contrast-maximization-based methods have particularly risen as
clear favorites, with impressive accuracy. Finally, a theoretical limitation that was
highlighted in the concluding remarks of Chapter 3 was on the intrinsic sense of
computing optical flow on events the way we did, that is, computing motion of
changes themselves. This remains an open question, and we believe that an in-depth
theoretical analysis on this issue may be required for making sure that event cameras
are exploited correctly.

Regarding our two depth estimation methods, ALED and DELTA, both could also
be improved in several ways. As discussed, the choice of the Event Volume as
the input representation for the events could be revised. While it was chosen
at the time as a compact representation of the event data that still kept a nearly
maximal amount of information, more recent works [27] have shown that having a
learned representation could also be beneficial, by only keeping the required data
in an even more compact form factor. Both our convolutional and attention-based
networks are also not real-time compatible. The emphasis was never set on this
specific point during these works, as we observed through our work on optical
flow that this constraint limited our final accuracy, and that it should not be a
priority considering that we were among the firsts to examine the fusion of the

98

https://github.com/uzh-rpg/rpg_dvs_ros/pull/111
https://github.com/uzh-rpg/event-based_vision_resources/pull/150
https://github.com/uzh-rpg/event-based_vision_resources/pull/213
https://github.com/carla-simulator/carla/issues/5367
https://github.com/carla-simulator/carla/issues/5732
https://github.com/carla-simulator/carla/issues/6103
https://github.com/carla-simulator/carla/issues/6552
https://github.com/AlbertoSabater/EventTransformerPlus/issues/1

6 .3 discussions and perspectives

LiDAR and event modalities. However, for an implementation on a real robotic
system, some revisions would have to be brought to our networks, in an effort
to make them faster while retaining most of their accuracy. This could be done
through quantized low-precision methods for instance, like 4-bit networks [173, 174].
Despite our best efforts, we were also unable to make the fully sparse version of
the attention-based network produce adequate results. We believe that one of the
biggest limitations was the small size of these networks, which limited their learning
ability on such a complex task. With the popularity of the Transformer architecture,
however, more optimized implementations of the attention calculation process are
starting to be integrated in popular libraries, which could be of great help in the
future for building bigger attention-based networks with less memory restrictions.
Finally, we believe that a real-world dataset with dense ground truth depth maps
would be of great help for training and evaluating more accurately the current and
future event-based depth estimation methods. Several sub-works in that direction
were conducted during the thesis, as described in Appendix A, but several technical
issues and an overall lack of time ultimately led us to the recording of the simulated
SLED dataset.

More generally, as discussed earlier, one of the main extensions of this work could
be on 3D scene flow, which could be obtained in our case by combining both the
2D optical flow data and the depth estimations. Scene flow is slowly rising and
becoming an important issue in computer vision, but it remains to this day a rather
unexplored issue with event cameras [175, 176], and could therefore constitute an
interesting subject to explore.

Further work could also be conducted on the interactions with the “planning” and
“control” modules of the robotic pipeline shown in Page 1 of this thesis. The work
conducted during these three years was purely centered on a perception aspect, but
being able to apply the optical flow and depth estimation methods on a real robot
would probably pose interesting questions as to how they could be used further
down the pipeline, and as to the level of accuracy needed for accomplishing desired
tasks.

As a more general conclusion to these perspectives, we believe that, while the event
camera is an intriguing and fascinating sensor, large amounts of work remain to be
done to level them with their traditional frame-based counterparts, and to exploit
their unique properties to their best. As such, this thesis constitutes only a small
contribution towards that goal, but we hope that both our theoretical and technical
works will be able to guide and inspire other authors.

99

AA D D I T I O N A L E X P E R I M E N T S

In this first appendix, we describe some of the experiments that were conducted
during the three year of thesis, but that were not included in the main part of thesis
for diverse reasons.

a .1 acquisition of real-world data

a .1 .1 For Optical Flow

Before making use of the Flow Warping Loss (FWL) metric in order to evaluate
the quality of our optical flow results on high-resolution data, we initially tried to
find an event-based dataset with a high-resolution camera and with a ground truth
for optical flow. This research being unsuccessful, we decided to record our own
dataset.

To do so, as illustrated in Fig. A.1, we used a Parrot Jumping Sumo minidrone
as a moving object, and placed our event cameras (Prophesee Gen4 [13] and
DAVIS240C [15]) directly above it, looking downwards. In order to generate the
ground truth, we also added a high-resolution RGB camera (Allied Vision Mako G-
192C) between the two event cameras, also looking downwards. Since the robot was
evolving on the ground, and since its height was negligible compared to the height
at which the cameras were positioned, an approximation of the robot moving on
the ground being equivalent to a flat shape moving on a plane could be made. With
this approximation, and with adequate calibration and synchronization between the
cameras, a simple homography could then be applied to superimpose data from
various cameras, as shown in Fig. A.2. Finally, by using a state-of-the-art optical
flow method on the frames (RAFT [89]), and by applying our optical flow method
on the events, a quantitative and qualitative comparison could then be made.

Five sequences were recorded, where the robot was following various patterns under
the cameras: moving in a straight line, slaloming, drawing a circle, drawing a square,
and moving in a straight line with a second robot coming from the opposite direction.
An example of results is shown in Fig. A.3, and a playlist of videos is available at
https://www.youtube.com/playlist?list=PLLL0eWAd6OXBdeFOWaNMw3d24qW4EhM5f.

In the end, this dataset was not used as part of the evaluation of the final work,
due to its simplicity and due to the FWL metric allowing for an evaluation on any
event-based dataset. Yet, it was a useful tool for initially designing, tweaking, and
verifying the performances of our method on simple scenarios.

101

https://www.youtube.com/playlist?list=PLLL0eWAd6OXBdeFOWaNMw3d24qW4EhM5f

additional experiments

Figure A.1 – Setup used for the recording of the optical flow dataset. The Parrot Jumping
Sumo minidrone is visible in the center, and a zoomed view of the cameras (Prophesee Gen4
/ Allied Vision Mako G-192C / DAVIS240C) is given at the bottom right.

Figure A.2 – Superimposed frame from the Mako camera (in grayscale) and events from the
Prophesee camera (in green).

Figure A.3 – Example results on the dataset. Left is the view from the RGB camera (after
applying the homography), top right is the frame-based optical flow from RAFT, and bottom
right is our event-based optical flow.

102

a .1 acquisition of real-world data

Figure A.4 – Left: detailed view of the back-illuminated calibration board, with the ChArUco
pattern. Right: larger view, showing the board positioned in front of the Zoe car, with the
mechanical arm used for manipulating it.

a .1 .2 For Depth Estimation

As described in Section 6.3, one of the parallel works of the thesis was conducted
on the potential recording of a dataset using the robotized Renault Zoe cars of the
lab, for depth estimation. Such a dataset was never actually recorded in the end,
but we describe here the works conducted on calibration and synchronization.

Calibration

One of the first issues that we encountered while trying to record sequences was on
the projection of LiDAR points into the frame of the event camera. Doing so required
a calibration between the two sensors, an issue which had not been explored in
details in the literature at the time (only a single method was available [137] but with
moderate accuracy, more works on that topic have been published since [138, 139]).
Fortunately, the Hesai Pandora LiDAR that we used also contained five cameras as
an all-in-one sensor, with all modalities being factory-calibrated both intrinsically
and extrinsically. Therefore, our problem was simplified to a frame- to event-based
calibration (while keeping in mind that this event-to-frames-to-LiDAR solution
might be less precise than a direct LiDAR-to-event calibration).

However, this problem remains quite difficult: frame-based calibration often relies
on a static pattern (e.g., a chessboard) being detected, but such a static pattern
would not be visible for the event camera, making the calibration impossible. Also,
for automotive applications, the focus of the camera is set further away than for
more traditional indoor applications, meaning that a larger calibration board is
required for its accurate detection. In order to solve these issues, we manufactured
here a large, back-illuminated calibration board, with a ChArUco pattern on it. This
calibration board is illustrated in Fig. A.4.

The main advantage of this setup is that, by making the back-light of the board blink
at a high frequency, the event camera is able to detect this blinking for the white
areas only, and therefore reconstruct an image of the board without any motion. As

103

additional experiments

Figure A.5 – Left: superimposed event and LiDAR data following the calibration process.
Right: reference RGB view of the scene, given for a better understanding.

for the frame-based camera, this blinking is invisible due to its high frequency, and
therefore does not disturb the board recognition. The choice of using a ChArUco
pattern was also motivated by the fact that calibration can still be conducted even
when the board is not fully visible for both cameras (which happened often in
the configuration illustrated in Fig. A.4) thanks to the unique tags, and by the
ability of the Prophesee Gen4 camera to detect these tags perfectly thanks to its
high-resolution.

Post-calibration results are shown in Fig. A.5, where the event and LiDAR data
appear to be adequately superimposed.

Synchronization

For the recording of the dataset, four main sensors were intended to be used. In
addition to the Prophesee camera and the Pandora LiDAR described in the previous
paragraphs, two high-speed RGB cameras were also planned to be used, for being
able to construct dense stereo-based ground truth depth maps, as well as for making
comparisons possible between event-based and frame-based methods on the same
scenes. However, for both these purposes, an accurate synchronization of the sensors
was necessary.

While the Pandora LiDAR and the RGB cameras were all PTP (IEEE-1588) com-
patible, the Prophesee Gen4 camera transmits its data through USB, and can only
be synchronized via external triggers. Therefore, as illustrated in Fig. A.6, while
both the RGB and LiDAR sensors were synchronized through PTP, the left RGB
camera was physically connected to the Prophesee camera, and was configured to
send a signal on this link every time a frame was captured. Upon reception, the
Prophesee camera would mark this signal as a special “trigger” event, which could
be easily identified. Following recording, a post-processing step was applied, to
associate each trigger event to its corresponding image, and therefore its correspond-
ing timestamp (as images are PTP-timestamped). A simple interpolation was finally
needed, to correct the timestamp of each individual event to its corresponding PTP
timestamp.

The main issue of this method is that, in case of missing data (images or trigger
events not being recorded), discrepancies in the timestamps would have been

104

a .2 extensions to the sled dataset

RGB camera
(left)

Prophesee
camera

Pandora
LiDAR

RGB camera
(right)

Computer

Ethernet (data and PTP)

USB (data)

Physical link (triggers)

Figure A.6 – The synchronization system between the four sensors and the computer (which
collects data and acts as the PTP master).

introduced, making the synchronization incorrect. During the tests we conducted,
this case was often observed, with the recording containing a few more trigger
events than images. However, a finer analysis showed that the additional triggers
were always located at the very end of the sequence, and were in reality due to the
RGB camera continuing to capture a few frames after being told to stop recording
(and thus sending trigger signals), but not actually transmitting these frames.

a .2 extensions to the sled dataset

a .2 .1 Ground Truth for Instance Segmentation

During our tests for making the sparse attention-based depth estimation networks
work in Chapter 5, we tried among other ideas to add a supervision loss on attention
values (as described in Section 5.4.3). The idea here was that, if we would be able
to force the network to put in relation events and LiDAR points belonging to the
same object, then it would learn how to group them, and produce better depth
estimations (especially for the sky, which was never recognized as being a special
entity).

For that purpose, we tried adding a ground truth instance segmentation to the SLED
dataset, for being able to identify independent objects, and therefore regroup events
and LiDAR points correctly for the supervision loss. However, as shown in Fig. A.7,
the instance segmentation maps in CARLA suffer from several issues (invisible

105

additional experiments

Figure A.7 – Illustration of the segmentation issue in CARLA. Top: RGB view of the
scene. Bottom: corresponding segmentation map; note how the hills on the left and right
extremities are missing in this segmentation map, making objects behind them appear, and
how rough the segmentation is for the leaves of the trees.

objects, lack of precision for dynamic objects), and therefore they could not be used
as part of this work.

As an alternative, we tried computing instance segmentation by using external tools
like the Segment Anything method from Meta [177] on the RGB images of the
dataset, but this approach yielded suboptimal results, due to a lack of temporal
stability of the segmented areas, and due to a lack of precision at the edges of the
objects.

106

a .2 extensions to the sled dataset

Figure A.8 – Overview of the Town12 map. A residential area can be seen on the left, a large
body of water on the right, and buildings can be seen at the back.

a .2 .2 Additional Maps

As noted in Chapter 4 (Table 4.1), our SLED dataset was built from data collected in
the Town01 to Town07 and Town10 maps of CARLA (Town08 and Town09 being unseen
maps used as part of the evaluation of CARLA’s autonomous driving leaderboard1).
However, following the initial publication of our dataset, several maps have been
added to CARLA, namely, Town12 (in beta in version 0.9.14, and officially released
in version 0.9.15), and Town13 and \verbTown15 (in beta in version 0.9.15). These
three maps (and especially Town12 and Town13) offer new, large environments, with
some novel unique features, as illustrated in Fig. A.8. Being able to integrate them
in SLED would allow for a more complete and a more diverse dataset, and could
allow for a better training and evaluation.

However, as of the writing of this thesis, these maps still suffer from technical issues,
and have not been integrated in SLED yet. One such issue, for instance, is the
inability to have any pedestrian in Town12, as no spawn location has been provided
for them (https://github.com/carla-simulator/carla/issues/6552). Therefore,
like for the instance segmentation, we are waiting for fixes to these issues to be
published, in order to upgrade the dataset in the future.

1 https://leaderboard.carla.org

107

https://github.com/carla-simulator/carla/issues/6552
https://leaderboard.carla.org

BA D D I T I O N A L R E S U LT S F O R C H A P T E R 4

In this second appendix, we give some additional quantitative and qualitative results
for the Chapter 4 of this thesis.

b .1 detailed results on our sled dataset

As a complement to the summarized results shown in Table 4.2 on our SLED dataset,
we provide here the full results of ALEDSL for every recording on both maps of
the testing set of SLED, Town01 and Town03. These results are given in Tables B.1
and B.2 respectively.

b .2 additional dense depths results on our sled dataset

We give in Figs. B.1 to B.4 additional visualizations of the results of ALEDSL on the
SLED dataset. We showcase in Figs. B.1 and B.2 scenes with accurate estimations,
but also some failure cases in Figs. B.3 and B.4.

b .3 additional dense depths results on the mvsec dataset

We showcase in Fig. B.5 some additional qualitative results on the MVSEC dataset
for ALEDSL→MV. We show here that, despite the low amount of LiDAR points and
the sparse and/or noisy event input, we are still able to predict dense depth maps
accurately.

b .4 additional depth change maps results on our sled dataset

We present in Fig. B.6 additional qualitative results for the thresholded depth change
maps.

109

additional results for chapter 4

Sequence Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Absolute error
Correctly classified events

Raw AbsRel Raw AbsRel NN ALEDSL NN ALEDSL (with a threshold of ±1m)

Town01_00

10m 1.13m 22.35% 1.23m 24.58% 1.00m 1.02m 1.73m 1.15m 1.35m 94.84%
20m 3.58m 34.69% 3.82m 37.37% 1.46m 1.44m 2.62m 1.63m 3.55m 87.88%
30m 4.47m 36.48% 4.77m 39.26% 1.66m 1.75m 2.97m 2.02m 4.30m 85.19%

100m 5.37m 34.57% 5.85m 37.37% 2.42m 3.08m 4.54m 3.82m 5.33m 82.03%
200m 6.09m 23.39% 6.59m 25.28% 7.14m 4.17m 9.71m 5.35m 7.08m 80.31%

Town01_01

10m 0.85m 12.58% 0.82m 12.27% 1.58m 1.27m 2.45m 1.43m 1.68m 94.23%
20m 2.50m 23.27% 2.74m 24.94% 4.94m 5.82m 6.68m 6.50m 4.69m 89.96%
30m 3.24m 25.24% 3.53m 27.05% 4.73m 6.67m 6.36m 7.45m 5.04m 88.35%

100m 9.87m 34.86% 10.25m 36.56% 4.69m 6.62m 6.34m 7.36m 5.33m 86.03%
200m 8.23m 22.50% 8.55m 23.61% 13.74m 9.88m 16.33m 11.39m 8.00m 79.91%

Town01_02

10m 0.51m 9.52% 0.53m 9.69% 0.48m 0.51m 0.72m 0.61m 0.73m 93.64%
20m 1.00m 10.34% 1.04m 10.65% 0.47m 0.65m 0.80m 0.71m 1.48m 90.29%
30m 1.96m 12.73% 2.03m 13.14% 0.57m 0.92m 0.98m 0.99m 2.54m 85.05%

100m 4.23m 15.80% 4.30m 16.14% 1.05m 1.76m 1.61m 1.84m 4.13m 79.08%
200m 5.40m 14.54% 5.47m 14.84% 1.57m 2.09m 2.17m 2.19m 6.11m 78.12%

Town01_03

10m 0.66m 10.23% 0.69m 11.09% 0.66m 0.53m 0.98m 0.64m 0.59m 94.96%
20m 1.16m 11.44% 1.22m 12.21% 0.76m 0.62m 1.34m 0.75m 1.46m 91.42%
30m 1.69m 12.79% 1.73m 13.44% 0.86m 0.75m 1.54m 0.89m 2.71m 87.88%

100m 2.70m 12.15% 2.80m 12.73% 1.39m 1.47m 2.51m 1.70m 4.01m 82.84%
200m 2.85m 9.13% 2.93m 9.55% 2.47m 1.90m 3.84m 2.16m 6.05m 81.50%

Town01_04

10m 0.95m 17.55% 1.17m 22.09% 0.94m 0.96m 1.85m 1.40m 2.22m 84.93%
20m 1.29m 16.70% 1.56m 20.64% 1.28m 1.35m 2.37m 1.74m 2.80m 80.03%
30m 1.54m 16.58% 1.82m 20.28% 1.44m 1.64m 2.62m 2.03m 2.98m 78.99%

100m 2.14m 16.60% 2.45m 20.07% 2.04m 2.37m 3.45m 2.82m 3.44m 77.08%
200m 2.05m 10.38% 2.25m 12.48% 4.01m 3.15m 5.63m 3.63m 4.94m 75.44%

Town01_05

10m 0.42m 7.40% 0.52m 9.83% 0.96m 0.78m 1.93m 1.15m 0.99m 93.63%
20m 0.88m 8.85% 0.96m 10.61% 0.79m 1.13m 1.51m 1.33m 1.41m 88.30%
30m 1.55m 10.45% 1.59m 11.77% 0.84m 1.44m 1.61m 1.60m 2.15m 80.29%

100m 3.41m 12.68% 3.49m 13.74% 1.76m 2.64m 2.94m 2.92m 4.59m 71.36%
200m 3.67m 10.88% 3.87m 11.84% 4.76m 4.02m 6.17m 4.79m 6.35m 70.24%

Town01_06

10m 0.53m 8.25% 0.63m 10.33% 0.72m 0.89m 1.44m 1.25m 1.95m 90.47%
20m 1.02m 10.18% 1.17m 12.19% 0.84m 1.28m 1.64m 1.64m 2.94m 85.40%
30m 1.53m 11.33% 1.69m 13.19% 0.98m 1.91m 1.91m 2.26m 3.78m 80.78%

100m 2.96m 13.01% 3.24m 14.88% 1.66m 3.85m 3.07m 4.48m 5.64m 76.59%
200m 3.49m 8.83% 3.79m 10.06% 12.55m 7.46m 13.97m 8.47m 9.00m 74.50%

Town01_07

10m 0.99m 16.01% 1.11m 17.89% 0.41m 0.74m 0.76m 0.90m 1.32m 86.15%
20m 1.76m 18.57% 1.93m 20.61% 0.55m 0.93m 1.00m 1.06m 2.61m 80.28%
30m 2.02m 18.45% 2.19m 20.31% 0.77m 1.27m 1.30m 1.40m 3.16m 78.14%

100m 2.72m 18.43% 2.92m 20.17% 1.32m 2.12m 2.06m 2.31m 4.06m 75.73%
200m 2.45m 13.42% 2.64m 14.67% 3.11m 2.67m 4.13m 2.94m 5.28m 75.12%

Town01_08

10m 1.06m 17.74% 1.25m 20.76% 0.85m 0.90m 1.84m 1.21m 3.66m 88.92%
20m 1.69m 19.34% 1.90m 22.09% 1.04m 1.45m 2.13m 1.80m 5.79m 80.47%
30m 2.17m 19.47% 2.39m 21.96% 1.23m 2.05m 2.46m 2.41m 6.51m 76.56%

100m 3.48m 19.63% 3.77m 21.92% 2.05m 4.06m 3.80m 4.69m 8.25m 72.25%
200m 4.50m 14.57% 4.79m 16.20% 11.21m 8.22m 13.02m 9.16m 12.81m 70.12%

Town01_09

10m 0.58m 11.49% 0.68m 14.03% 1.61m 1.26m 3.53m 1.71m 2.23m 87.48%
20m 1.15m 12.58% 1.30m 14.83% 3.03m 2.45m 4.80m 2.92m 4.46m 80.01%
30m 1.92m 14.38% 2.05m 16.28% 4.99m 3.81m 6.96m 4.22m 6.74m 70.78%

100m 2.69m 14.98% 2.84m 16.72% 6.69m 5.57m 8.88m 6.03m 8.07m 67.77%
200m 4.20m 10.91% 4.38m 12.04% 10.05m 8.53m 12.91m 9.29m 10.19m 62.17%

Town01_10

10m 3.24m 47.08% 3.29m 47.53% 0.66m 0.68m 0.98m 0.78m 1.96m 94.32%
20m 6.01m 61.31% 6.14m 62.28% 0.73m 0.87m 1.17m 0.97m 3.94m 92.32%
30m 6.99m 60.05% 7.15m 61.07% 0.83m 1.06m 1.37m 1.19m 4.17m 91.54%

100m 11.98m 61.20% 12.18m 62.20% 1.25m 1.83m 2.04m 2.00m 4.58m 89.85%
200m 10.98m 44.63% 11.14m 45.36% 3.93m 2.46m 4.82m 2.70m 6.01m 88.36%

Town01_11

10m 0.96m 13.78% 1.07m 15.43% 1.72m 1.31m 2.19m 1.40m 1.64m 93.85%
20m 3.95m 30.55% 4.31m 33.37% 2.07m 1.79m 2.80m 1.94m 2.65m 89.14%
30m 6.32m 37.96% 6.88m 41.40% 2.41m 2.38m 3.45m 2.60m 3.87m 85.82%

100m 7.36m 37.58% 8.05m 41.06% 3.34m 3.45m 5.07m 4.02m 4.96m 83.09%
200m 9.51m 28.98% 10.46m 31.71% 8.61m 5.50m 11.29m 6.93m 6.89m 81.48%

Town01_12

10m 2.22m 40.37% 2.58m 47.49% 0.50m 0.98m 0.99m 1.23m 1.62m 84.69%
20m 2.99m 39.47% 3.30m 45.12% 1.56m 2.58m 2.58m 2.93m 2.64m 81.92%
30m 3.48m 39.46% 3.78m 44.69% 2.01m 3.83m 3.28m 4.16m 3.32m 80.22%

100m 3.82m 38.13% 4.11m 43.02% 2.39m 4.40m 3.81m 4.71m 3.74m 79.38%
200m 3.48m 28.58% 3.77m 32.24% 8.63m 5.92m 10.74m 6.56m 5.18m 78.55%

Town01_13

10m 1.81m 29.12% 1.99m 32.24% 4.31m 3.96m 6.71m 4.61m 3.00m 92.10%
20m 2.80m 30.46% 3.02m 33.27% 3.59m 3.85m 5.92m 4.41m 4.42m 82.45%
30m 3.50m 30.39% 3.73m 32.91% 3.75m 4.49m 6.22m 4.98m 5.27m 77.92%

100m 4.26m 28.98% 4.56m 31.38% 4.42m 5.55m 7.46m 6.19m 6.54m 73.83%
200m 4.43m 21.75% 4.83m 23.62% 13.17m 7.64m 17.04m 9.09m 8.72m 72.78%

Town01_14

10m 1.09m 17.97% 1.28m 21.84% 0.90m 1.09m 1.91m 1.37m 1.92m 91.20%
20m 1.42m 17.89% 1.62m 21.19% 1.33m 1.40m 2.63m 1.68m 2.65m 88.08%
30m 1.51m 17.72% 1.71m 20.91% 1.53m 1.58m 2.92m 1.88m 2.89m 87.25%

100m 2.27m 16.25% 2.51m 18.99% 2.58m 3.03m 4.49m 3.45m 3.79m 83.32%
200m 2.16m 10.10% 2.34m 11.74% 6.32m 4.65m 8.85m 5.17m 5.57m 80.79%

Town01_15

10m 1.01m 20.03% 1.10m 21.58% 0.92m 1.23m 1.72m 1.49m 1.25m 91.74%
20m 1.34m 19.14% 1.45m 20.60% 1.39m 1.62m 2.51m 1.91m 2.28m 86.31%
30m 1.67m 19.04% 1.82m 20.55% 1.43m 1.75m 2.62m 2.05m 2.60m 84.81%

100m 2.40m 18.03% 2.61m 19.46% 2.15m 2.71m 3.66m 3.16m 3.42m 81.41%
200m 2.13m 11.60% 2.31m 12.53% 4.32m 3.39m 6.02m 3.93m 4.81m 80.28%

Town01_16

10m 0.51m 8.67% 0.58m 10.18% 0.96m 1.00m 1.81m 1.37m 1.50m 88.09%
20m 0.87m 9.42% 0.99m 10.94% 0.99m 1.11m 1.82m 1.40m 2.25m 84.43%
30m 1.14m 9.72% 1.26m 11.13% 1.13m 1.38m 2.11m 1.68m 2.71m 81.61%

100m 2.34m 10.97% 2.51m 12.27% 1.95m 2.82m 3.26m 3.15m 5.41m 76.30%
200m 2.19m 7.28% 2.33m 8.12% 4.89m 3.60m 6.46m 4.03m 7.75m 75.00%

Town01_17

10m 3.84m 66.60% 4.07m 71.45% 8.69m 12.36m 12.83m 14.03m 13.05m 87.20%
20m 3.80m 57.35% 4.02m 61.41% 5.08m 9.33m 7.61m 10.43m 10.31m 83.69%
30m 4.48m 56.21% 4.71m 60.01% 4.21m 11.31m 6.38m 12.28m 9.93m 81.53%

100m 5.18m 54.61% 5.43m 58.23% 4.00m 12.38m 6.06m 13.31m 9.75m 80.13%
200m 7.00m 32.38% 7.39m 34.51% 37.01m 20.46m 39.95m 22.17m 14.48m 72.83%

Town01_18

10m 0.93m 17.13% 1.15m 21.68% 1.61m 1.20m 3.35m 1.83m 3.60m 81.59%
20m 1.10m 15.39% 1.32m 19.13% 1.78m 1.34m 3.44m 1.85m 3.93m 78.11%
30m 1.27m 15.00% 1.49m 18.46% 1.86m 1.48m 3.52m 1.99m 4.18m 76.12%

100m 3.09m 15.07% 3.47m 17.96% 3.02m 3.26m 5.47m 4.62m 6.45m 67.96%
200m 3.35m 11.42% 3.79m 13.58% 5.04m 4.87m 7.86m 6.93m 9.06m 67.02%

Town01_19

10m 0.37m 6.11% 0.41m 6.94% 0.77m 0.74m 1.33m 1.02m 1.18m 90.21%
20m 0.96m 8.47% 1.02m 9.25% 0.68m 0.90m 1.16m 1.05m 2.33m 78.79%
30m 1.57m 10.21% 1.66m 10.98% 0.82m 1.35m 1.38m 1.51m 3.32m 75.04%

100m 2.59m 11.56% 2.70m 12.29% 1.27m 2.31m 1.94m 2.49m 4.39m 71.75%
200m 2.40m 8.63% 2.50m 9.18% 2.64m 2.79m 3.26m 2.98m 5.84m 71.37%

Table B.1 – Detailed results of ALEDSL for the SLED dataset (on Town01).

110

b .4 additional depth change maps results on our sled dataset

Sequence Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Absolute error
Correctly classified events

Raw AbsRel Raw AbsRel NN ALEDSL NN ALEDSL (with a threshold of ±1m)

Town03_00

10m 0.63m 11.61% 0.71m 13.23% 0.45m 0.25m 0.45m 0.30m 0.14m 99.93%
20m 3.27m 26.39% 3.31m 27.51% 0.45m 0.32m 0.49m 0.40m 0.22m 99.76%
30m 4.87m 31.32% 4.91m 32.29% 0.48m 0.36m 0.54m 0.44m 0.30m 99.62%

100m 8.39m 35.65% 8.53m 36.67% 0.87m 0.89m 1.01m 0.99m 0.73m 98.06%
200m 10.28m 25.56% 10.29m 26.17% 3.90m 2.51m 4.14m 2.66m 1.32m 92.99%

Town03_01

10m 0.59m 11.69% 0.63m 12.29% 0.44m 0.43m 0.45m 0.49m 0.14m 99.65%
20m 1.60m 15.63% 1.68m 16.43% 0.60m 0.62m 0.77m 0.66m 1.76m 97.13%
30m 3.19m 21.06% 3.34m 22.05% 0.88m 1.02m 1.22m 1.07m 2.94m 94.33%

100m 5.29m 22.74% 5.67m 24.01% 1.87m 2.40m 2.96m 2.81m 4.71m 88.91%
200m 7.08m 16.06% 7.41m 16.92% 5.15m 3.91m 6.91m 4.82m 7.17m 85.29%

Town03_02

10m 0.29m 4.45% 0.33m 4.99% 0.72m 0.41m 1.17m 0.59m 1.03m 96.81%
20m 0.65m 6.10% 0.73m 6.81% 1.06m 0.65m 2.08m 0.88m 2.80m 91.20%
30m 0.95m 6.95% 1.09m 7.86% 1.74m 1.10m 3.26m 1.43m 3.61m 87.28%

100m 1.83m 7.45% 2.07m 8.37% 2.93m 2.72m 5.36m 3.48m 4.97m 75.93%
200m 1.75m 5.37% 2.00m 6.05% 4.62m 3.47m 7.31m 4.49m 6.40m 75.65%

Town03_03

10m 0.31m 4.41% 0.38m 5.46% 0.63m 0.38m 0.95m 0.46m 1.12m 96.29%
20m 1.88m 13.42% 2.08m 15.21% 0.70m 0.63m 1.36m 0.79m 3.83m 79.65%
30m 2.62m 14.96% 2.79m 16.40% 0.82m 1.03m 1.58m 1.17m 3.83m 76.22%

100m 3.54m 15.53% 3.71m 16.76% 1.65m 2.35m 2.75m 2.53m 4.03m 73.98%
200m 4.35m 14.96% 4.53m 16.10% 2.48m 2.89m 3.63m 3.10m 5.16m 73.74%

Town03_04

10m 0.41m 5.77% 0.43m 6.19% 0.41m 0.45m 0.66m 0.54m 1.22m 93.05%
20m 1.01m 9.11% 1.06m 9.67% 0.87m 0.75m 1.43m 0.83m 4.22m 83.42%
30m 1.56m 10.42% 1.62m 10.97% 1.12m 1.27m 1.88m 1.35m 5.44m 79.69%

100m 2.95m 12.15% 3.05m 12.70% 1.98m 2.67m 3.14m 2.78m 6.74m 76.06%
200m 4.18m 10.13% 4.28m 10.56% 4.91m 4.23m 6.30m 4.44m 10.73m 74.61%

Town03_05

10m 7.05m 87.16% 7.20m 88.34% 0.34m 0.55m 0.43m 0.65m 1.82m 93.59%
20m 10.10m 99.82% 10.32m 101.69% 0.35m 0.83m 0.67m 1.01m 3.30m 88.19%
30m 10.02m 93.36% 10.19m 94.98% 0.72m 1.48m 1.40m 1.66m 3.87m 84.79%

100m 11.15m 83.69% 11.36m 85.20% 1.73m 2.87m 3.06m 3.32m 4.94m 76.94%
200m 12.16m 74.37% 12.37m 75.77% 2.16m 3.41m 3.65m 4.00m 5.99m 74.93%

Town03_06

10m 0.22m 3.59% 0.22m 3.62% 0.57m 0.30m 0.70m 0.39m 0.34m 97.94%
20m 0.53m 4.90% 0.57m 5.20% 0.72m 0.61m 1.38m 0.79m 1.62m 89.39%
30m 1.49m 8.00% 1.56m 8.36% 0.87m 1.04m 1.77m 1.22m 2.45m 83.98%

100m 3.34m 10.69% 3.41m 10.97% 1.95m 3.39m 3.40m 3.57m 4.64m 76.50%
200m 3.07m 8.51% 3.15m 8.74% 5.86m 4.67m 7.66m 4.92m 6.17m 75.07%

Town03_07

10m 0.30m 4.61% 0.33m 5.10% 0.73m 0.47m 1.37m 0.56m 0.97m 94.43%
20m 0.69m 6.37% 0.80m 7.29% 1.27m 0.73m 2.69m 0.95m 2.47m 86.80%
30m 1.42m 8.72% 1.57m 9.77% 1.94m 1.18m 3.87m 1.51m 3.84m 77.83%

100m 3.14m 10.72% 3.49m 11.91% 3.57m 3.51m 6.50m 4.56m 5.40m 68.94%
200m 3.07m 8.42% 3.46m 9.39% 5.38m 4.37m 8.57m 5.60m 6.86m 68.81%

Town03_08

10m 0.85m 12.67% 1.15m 16.72% 0.06m 0.57m 0.07m 0.55m 1.95m 74.38%
20m 1.19m 13.53% 1.50m 17.21% 0.17m 0.66m 0.33m 0.67m 2.11m 74.90%
30m 1.32m 13.41% 1.61m 16.87% 0.52m 0.89m 0.85m 0.95m 2.38m 75.08%

100m 1.86m 13.22% 2.16m 16.35% 1.57m 2.15m 2.32m 2.31m 3.05m 73.89%
200m 2.07m 9.82% 2.32m 12.05% 6.36m 3.56m 7.22m 3.73m 3.89m 72.38%

Town03_09

10m 3.27m 60.78% 3.46m 64.64% 0.17m 1.30m 0.56m 1.54m 1.82m 86.29%
20m 3.07m 45.57% 3.20m 48.14% 0.16m 1.22m 0.56m 1.38m 1.57m 83.64%
30m 3.18m 42.72% 3.29m 45.01% 0.27m 1.52m 0.71m 1.68m 1.63m 83.39%

100m 3.50m 40.82% 3.62m 42.98% 0.38m 1.93m 0.85m 2.09m 2.00m 82.62%
200m 3.23m 35.29% 3.32m 37.20% 0.53m 1.96m 0.93m 2.12m 2.44m 82.49%

Town03_10

10m 2.50m 30.96% 2.60m 32.49% 0.65m 0.66m 0.85m 0.77m 1.16m 91.32%
20m 2.71m 27.29% 2.80m 28.47% 0.49m 0.68m 0.73m 0.77m 1.41m 91.30%
30m 3.63m 29.05% 3.73m 30.17% 0.60m 1.00m 1.02m 1.11m 2.02m 89.91%

100m 7.85m 33.13% 7.99m 34.18% 1.44m 2.67m 2.51m 2.92m 3.87m 84.03%
200m 7.38m 26.17% 7.52m 27.03% 4.53m 3.43m 5.85m 3.96m 5.33m 81.81%

Town03_11

10m 0.43m 6.06% 0.47m 6.62% 0.67m 0.43m 0.89m 0.45m 0.99m 98.51%
20m 2.24m 15.59% 2.38m 16.64% 0.98m 0.66m 1.51m 0.68m 3.07m 89.26%
30m 4.19m 22.65% 4.38m 23.84% 1.30m 0.94m 1.96m 1.00m 3.90m 81.62%

100m 4.81m 21.35% 5.04m 22.46% 2.43m 2.64m 3.63m 2.82m 4.49m 76.78%
200m 3.86m 15.19% 4.03m 15.98% 5.02m 3.41m 6.61m 3.75m 5.43m 75.71%

Town03_12

10m 0.29m 4.44% 0.32m 4.92% 0.61m 0.26m 0.67m 0.30m 0.65m 98.45%
20m 0.60m 5.64% 0.69m 6.40% 0.65m 0.53m 1.00m 0.65m 1.67m 89.75%
30m 1.00m 6.72% 1.07m 7.40% 1.14m 0.85m 1.91m 1.03m 2.50m 85.92%

100m 2.02m 7.93% 2.14m 8.58% 2.75m 2.55m 4.05m 2.81m 3.42m 79.38%
200m 1.97m 5.65% 2.10m 6.12% 4.65m 3.40m 6.22m 3.78m 4.48m 78.09%

Town03_13

10m 0.30m 4.86% 0.36m 5.71% 0.56m 0.35m 0.82m 0.51m 0.86m 95.75%
20m 1.68m 12.08% 1.87m 13.72% 0.61m 0.56m 1.21m 0.77m 3.00m 80.59%
30m 2.54m 14.42% 2.71m 15.75% 0.75m 0.95m 1.49m 1.13m 3.67m 76.82%

100m 3.43m 15.21% 3.58m 16.36% 1.58m 2.44m 2.50m 2.61m 4.41m 74.22%
200m 4.02m 14.06% 4.14m 15.08% 3.05m 2.94m 4.05m 3.13m 6.02m 73.78%

Town03_14

10m 0.65m 12.46% 0.64m 11.99% 0.80m 0.57m 1.06m 0.62m 0.87m 98.33%
20m 1.76m 17.26% 1.75m 16.98% 1.24m 1.16m 2.00m 1.27m 4.09m 88.79%
30m 2.25m 17.83% 2.27m 17.70% 1.61m 1.73m 2.62m 1.94m 5.83m 82.77%

100m 3.89m 18.38% 4.00m 18.47% 2.85m 3.90m 4.68m 4.33m 8.77m 76.20%
200m 5.40m 14.13% 5.62m 14.26% 8.66m 6.74m 10.78m 7.58m 14.13m 74.72%

Town03_15

10m 0.79m 18.94% 0.80m 18.87% 0.52m 0.52m 0.86m 0.60m 0.74m 97.04%
20m 1.94m 22.27% 2.13m 23.34% 0.92m 0.77m 2.06m 0.93m 2.90m 90.03%
30m 2.32m 22.17% 2.55m 23.36% 1.26m 1.04m 2.69m 1.28m 3.62m 85.86%

100m 3.83m 19.45% 4.19m 20.63% 2.37m 2.90m 4.88m 3.66m 6.04m 75.59%
200m 3.77m 15.36% 4.17m 16.35% 5.29m 3.77m 8.18m 4.96m 8.06m 74.93%

Town03_16

10m 0.42m 6.33% 0.50m 7.64% 0.86m 0.68m 1.46m 0.92m 1.81m 91.42%
20m 1.02m 9.35% 1.13m 10.61% 1.06m 0.92m 1.90m 1.12m 4.97m 80.90%
30m 1.45m 10.35% 1.54m 11.43% 1.50m 1.20m 2.43m 1.39m 6.10m 78.03%

100m 2.41m 10.50% 2.51m 11.34% 2.28m 2.73m 3.49m 2.93m 6.62m 75.20%
200m 3.02m 8.29% 3.11m 8.91% 4.76m 3.72m 6.01m 3.95m 9.95m 74.01%

Town03_17

10m 0.34m 6.59% 0.37m 7.17% 0.45m 0.46m 0.72m 0.48m 0.33m 98.56%
20m 0.51m 6.38% 0.55m 6.91% 0.96m 0.92m 1.95m 1.10m 2.65m 89.09%
30m 0.97m 7.36% 1.03m 7.89% 0.98m 1.16m 2.13m 1.36m 3.13m 83.00%

100m 1.65m 7.86% 1.72m 8.32% 1.61m 2.44m 3.13m 2.67m 3.48m 79.44%
200m 2.14m 6.02% 2.21m 6.34% 6.77m 3.89m 8.50m 4.20m 4.68m 77.12%

Town03_18

10m 0.38m 5.52% 0.48m 6.80% 0.37m 0.42m 0.45m 0.48m 1.15m 92.67%
20m 0.76m 7.12% 0.86m 8.19% 0.49m 0.86m 0.84m 0.94m 1.88m 85.87%
30m 1.02m 7.57% 1.13m 8.56% 0.86m 1.22m 1.47m 1.35m 2.12m 82.31%

100m 4.09m 12.24% 4.16m 12.93% 1.68m 2.39m 3.10m 2.75m 4.08m 73.94%
200m 4.49m 10.76% 4.69m 11.40% 4.01m 3.34m 5.60m 4.19m 5.34m 73.31%

Town03_19

10m 13.25m 180.69% 13.33m 181.88% 0.28m 1.24m 0.49m 1.44m 2.87m 89.69%
20m 12.80m 150.50% 12.77m 150.61% 0.35m 1.26m 0.70m 1.39m 2.82m 85.70%
30m 11.72m 133.06% 11.68m 133.11% 0.51m 1.73m 0.89m 1.83m 2.68m 84.81%

100m 11.19m 120.74% 11.17m 120.93% 0.73m 2.32m 1.36m 2.45m 2.74m 83.57%
200m 9.94m 105.93% 9.94m 106.27% 0.82m 2.34m 1.40m 2.47m 3.23m 83.49%

Table B.2 – Detailed results of ALEDSL for the SLED dataset (on Town03).

111

additional results for chapter 4

Figure B.1 – Additional dense depths results on the SLED dataset, on sequences Town01_03
and Town01_05. From top to bottom: events, LiDAR, our prediction (ALEDSL), ground truth.

112

b .4 additional depth change maps results on our sled dataset

Figure B.2 – Additional dense depths results on the SLED dataset, on sequences Town01_18
and Town03_13. From top to bottom: events, LiDAR, our prediction (ALEDSL), ground truth.

113

additional results for chapter 4

Figure B.3 – Additional dense depths results on the SLED dataset, on sequences Town03_02
and Town03_06. From top to bottom: events, LiDAR, our prediction (ALEDSL), ground truth.
Shown here on the right is a failure case, where the side of the building got mistaken with
the sky.

114

b .4 additional depth change maps results on our sled dataset

Figure B.4 – Additional dense depths results on the SLED dataset, on sequences Town01_08
and Town01_11. From top to bottom: events, LiDAR, our prediction (ALEDSL), ground truth.
Illustrated here are two failure cases. Left: due to a sharp turn at high speed, accumulated
events become too blurry, resulting in an incorrect prediction for distant objects. Right:
night scene, where the trees on the right side are too dark to be seen even by the event
camera, resulting in a partially blurry prediction.

115

additional results for chapter 4

Figure B.5 – Additional dense depths results on the MVSEC dataset. From left to right:
outdoor_day_1, outdoor_night_1, outdoor_night_2, outdoor_night_3. From top to bot-
tom: grayscale reference, events, LiDAR, our prediction (ALEDSL→MV), ground truth.

116

b .4 additional depth change maps results on our sled dataset

daf − dbf < −1m
daf − dbf ∈ [−1m, 1m]

daf − dbf > 1m

Figure B.6 – Additional thresholded depth change map results on SLED, using the events as
a mask. Left: prediction (ALEDSL). Right: ground truth.

117

CA D D I T I O N A L R E S U LT S F O R C H A P T E R 5

We give here some additional quantitative and qualitative results for Chapter 5.

c .1 detailed results on our sled dataset

As a complement to the summarized results shown in Table 5.2 on our SLED dataset,
we provide here the full results of DELTASL for every recording on both maps of
the testing set of SLED, Town01 and Town03, in Tables C.1 and C.2 respectively.

In addition to the results of Chapter 5, some additional elements can be noted,
which are not visible when only looking at the average results shown in Table 5.2:

• as observed on the MVSEC dataset, DELTASL appears to struggle slightly more on the
night sequences (sequences finishing by _00, _01, _02, _10, _11, and _12) than ALED,
especially for long cutoff distances; once again, this behavior is probably due to the
higher noise profile, but also because of the limitations of the event camera simulation
in the CARLA simulator, as shown in Fig. C.4;

• results at the max cutoff range are especially worse when compared to ALEDSL on
sequences Town01_13, Town01_17, and Town03_12:

– for Town01_13 and Town01_17, this is explained by the presence of a wire fence
alongside the road, which creates difficult patterns in the event stream, in the
LiDAR data, and in the ground truth depth maps;

– as for Town03_12, this is due to a bad initial propagation of the depths, leading
to some incorrect depth values in the sky;

• on the contrary, DELTASL has much better results than ALEDSL on sequences Town03_05,
Town03_09, and Town03_19, as they all showcase a tunnel section, which ALEDSL
clearly appears to struggle with.

c .2 additional visual results on the sled dataset

Additional qualitative results on SLED are given in Figs. C.1 to C.4: scenes with
accurate estimations in Figs. C.1 and C.2, and some failure cases in Figs. C.3 and C.4.

c .3 additional visual results on the mvsec dataset

Additional qualitative results on the MVSEC dataset are given in Fig. C.5.

c .4 additional visual results on the m3ed dataset

Additional qualitative results on the M3ED dataset are given in Figs. C.6 and C.7.

119

additional results for chapter 5

Sequence Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Absolute error
Correctly classified events

Raw AbsRel Raw AbsRel NN DELTASL NN DELTASL (with a threshold of ±1m)

Town01_00

10m 0.54m 9.03% 0.55m 9.76% 1.00m 0.68m 1.73m 0.71m 1.13m 95.55%
20m 3.06m 23.99% 3.10m 24.61% 1.46m 1.24m 1.63m 1.36m 2.84m 89.40%
30m 4.59m 29.30% 4.69m 30.13% 1.66m 1.58m 2.97m 1.77m 3.71m 86.55%

100m 5.50m 28.54% 5.70m 29.48% 2.42m 2.67m 4.54m 3.07m 4.65m 83.92%
200m 6.71m 19.83% 6.86m 20.44% 7.14m 3.90m 9.71m 4.52m 6.64m 82.09%

Town01_01

10m 0.48m 6.69% 0.51m 6.92% 1.58m 1.01m 2.45m 1.20m 1.76m 94.95%
20m 2.36m 20.19% 2.50m 21.31% 4.94m 4.80m 6.68m 5.16m 4.08m 90.74%
30m 2.97m 21.83% 3.14m 23.00% 4.73m 5.49m 6.36m 5.87m 4.52m 89.03%

100m 13.80m 42.50% 13.95m 43.46% 4.69m 5.54m 6.34m 5.86m 4.90m 86.95%
200m 11.35m 27.57% 11.49m 28.20% 13.74m 10.26m 16.33m 10.86m 7.47m 81.96%

Town01_02

10m 0.15m 2.54% 0.16m 2.62% 0.48m 0.29m 0.72m 0.32m 0.49m 94.33%
20m 0.43m 3.79% 0.44m 3.92% 0.47m 0.39m 0.80m 0.42m 1.27m 91.46%
30m 1.28m 6.71% 1.31m 6.86% 0.57m 0.50m 0.98m 0.53m 2.38m 86.36%

100m 3.43m 10.59% 3.44m 10.69% 1.05m 1.13m 1.61m 1.13m 3.97m 80.79%
200m 5.65m 10.52% 5.64m 10.60% 1.57m 1.58m 2.17m 1.60m 6.20m 79.64%

Town01_03

10m 0.26m 4.11% 0.28m 4.36% 0.66m 0.36m 0.98m 0.40m 0.55m 95.53%
20m 0.68m 6.01% 0.70m 6.17% 0.76m 0.55m 1.34m 0.59m 1.56m 91.94%
30m 1.32m 8.20% 1.33m 8.33% 0.86m 0.69m 1.54m 0.75m 3.03m 88.29%

100m 2.54m 9.04% 2.59m 9.22% 1.39m 1.55m 2.51m 1.69m 4.47m 82.79%
200m 3.14m 7.15% 3.15m 7.26% 2.47m 2.17m 3.84m 2.32m 6.98m 81.20%

Town01_04

10m 0.64m 11.31% 0.67m 11.74% 0.94m 0.80m 1.85m 0.90m 2.42m 85.27%
20m 1.02m 11.92% 1.10m 12.63% 1.28m 1.29m 2.37m 1.42m 2.92m 82.20%
30m 1.29m 12.25% 1.38m 12.96% 1.44m 1.62m 2.62m 1.74m 3.15m 81.17%

100m 2.01m 12.77% 2.11m 13.46% 2.04m 2.56m 3.45m 2.71m 3.62m 78.94%
200m 2.18m 8.20% 2.22m 8.61% 4.01m 3.49m 5.63m 3.64m 5.47m 77.05%

Town01_05

10m 0.29m 5.95% 0.34m 6.95% 0.96m 0.66m 1.93m 0.80m 1.17m 93.52%
20m 0.60m 6.57% 0.65m 7.36% 0.79m 0.67m 1.51m 0.77m 1.42m 88.38%
30m 1.23m 8.21% 1.29m 8.93% 0.84m 0.79m 1.61m 0.90m 2.11m 80.55%

100m 3.13m 11.00% 3.16m 11.49% 1.76m 1.99m 2.94m 2.16m 4.74m 70.85%
200m 4.04m 9.82% 4.11m 10.25% 4.76m 4.05m 6.17m 4.32m 6.90m 69.87%

Town01_06

10m 0.40m 6.24% 0.41m 6.31% 0.72m 0.69m 1.44m 0.74m 2.13m 92.13%
20m 0.76m 7.67% 0.80m 7.98% 0.84m 1.17m 1.64m 1.28m 3.16m 87.43%
30m 1.16m 8.61% 1.23m 9.00% 0.98m 1.62m 1.91m 1.77m 4.07m 83.30%

100m 2.17m 9.68% 2.29m 10.14% 1.66m 3.07m 3.07m 3.37m 5.93m 78.83%
200m 5.19m 7.88% 5.23m 8.15% 12.55m 8.28m 13.97m 8.50m 10.01m 75.31%

Town01_07

10m 0.46m 7.18% 0.47m 7.36% 0.41m 0.51m 0.76m 0.52m 1.05m 90.76%
20m 0.91m 8.95% 0.95m 9.33% 0.55m 0.68m 1.00m 0.71m 2.02m 87.19%
30m 1.20m 9.57% 1.24m 9.94% 0.77m 0.93m 1.30m 0.97m 2.73m 84.29%

100m 1.88m 10.25% 1.96m 10.65% 1.32m 1.75m 2.06m 1.85m 3.78m 81.11%
200m 2.21m 7.78% 2.24m 8.04% 3.11m 2.53m 4.13m 2.68m 5.48m 79.91%

Town01_08

10m 0.55m 8.38% 0.58m 8.79% 0.85m 0.74m 1.84m 0.82m 3.78m 90.76%
20m 1.16m 11.45% 1.24m 12.12% 1.04m 1.44m 2.13m 1.62m 6.28m 83.06%
30m 1.68m 12.55% 1.76m 13.20% 1.23m 1.90m 2.46m 2.11m 7.09m 79.42%

100m 2.89m 13.58% 3.01m 14.23% 2.05m 3.58m 3.80m 3.95m 8.82m 74.39%
200m 4.93m 10.84% 4.99m 11.28% 11.21m 8.08m 13.02m 8.39m 14.22m 71.74%

Town01_09

10m 0.25m 4.78% 0.27m 5.34% 1.61m 1.07m 3.53m 1.30m 2.14m 89.06%
20m 0.94m 7.98% 0.97m 8.48% 3.03m 3.10m 4.80m 3.28m 4.36m 82.51%
30m 1.99m 11.56% 2.04m 12.06% 4.99m 4.99m 6.96m 5.22m 6.64m 74.69%

100m 2.93m 12.98% 3.01m 13.50% 6.69m 6.76m 8.88m 7.08m 8.05m 70.85%
200m 4.46m 9.68% 4.52m 9.99% 10.05m 9.30m 12.91m 9.68m 10.42m 64.91%

Town01_10

10m 1.57m 20.95% 1.59m 21.35% 0.66m 0.33m 0.98m 0.35m 1.46m 94.80%
20m 3.99m 35.26% 4.05m 35.99% 0.73m 0.50m 1.17m 0.54m 2.96m 93.16%
30m 4.78m 35.72% 4.84m 36.36% 0.83m 0.65m 1.37m 0.72m 3.22m 92.51%

100m 9.33m 40.21% 9.39m 40.76% 1.25m 1.31m 2.04m 1.39m 3.68m 91.09%
200m 12.79m 31.61% 12.81m 32.00% 3.93m 2.10m 4.82m 2.19m 5.31m 89.58%

Town01_11

10m 0.73m 10.50% 0.77m 10.95% 1.72m 1.28m 2.19m 1.26m 1.49m 94.76%
20m 3.86m 28.16% 3.95m 28.97% 2.07m 1.67m 2.80m 1.70m 2.34m 91.43%
30m 6.90m 38.64% 7.00m 39.39% 2.41m 2.18m 3.45m 2.19m 3.25m 88.42%

100m 8.20m 39.18% 8.37m 40.01% 3.34m 3.18m 5.07m 3.32m 4.21m 85.43%
200m 10.84m 30.48% 11.13m 31.18% 8.61m 5.07m 11.29m 5.42m 6.45m 83.44%

Town01_12

10m 0.50m 9.26% 0.52m 9.67% 0.50m 0.54m 0.99m 0.64m 0.70m 89.67%
20m 1.18m 12.78% 1.24m 13.38% 1.56m 2.28m 2.58m 2.52m 2.13m 87.66%
30m 1.67m 14.21% 1.74m 14.85% 2.01m 3.45m 3.28m 3.75m 2.95m 85.62%

100m 2.08m 14.41% 2.16m 15.03% 2.39m 4.07m 3.81m 4.37m 3.45m 84.51%
200m 2.92m 11.44% 2.95m 11.88% 8.63m 6.78m 10.74m 7.03m 5.43m 83.06%

Town01_13

10m 1.09m 15.73% 1.18m 17.20% 4.31m 3.57m 6.71m 4.10m 3.70m 93.63%
20m 1.53m 16.05% 1.60m 17.13% 3.59m 3.73m 5.92m 4.06m 4.31m 88.49%
30m 1.89m 16.00% 1.98m 17.01% 3.75m 4.16m 6.22m 4.45m 4.83m 83.86%

100m 2.51m 15.61% 2.63m 16.58% 4.42m 5.10m 7.46m 5.40m 5.80m 79.89%
200m 7.53m 14.33% 7.55m 15.01% 13.17m 9.82m 17.04m 10.14m 9.20m 77.60%

Town01_14

10m 0.43m 7.87% 0.49m 9.24% 0.90m 0.72m 1.91m 0.92m 1.77m 93.80%
20m 0.84m 9.55% 0.89m 10.61% 1.33m 1.21m 2.63m 1.36m 2.59m 90.81%
30m 1.00m 9.95% 1.05m 10.95% 1.53m 1.53m 2.92m 1.67m 2.87m 89.66%

100m 1.99m 10.07% 2.06m 10.93% 2.58m 3.11m 4.49m 3.30m 3.84m 85.43%
200m 2.49m 6.72% 2.52m 7.22% 6.32m 5.41m 8.85m 5.58m 6.08m 82.34%

Town01_15

10m 0.38m 6.61% 0.43m 7.48% 0.92m 0.79m 1.72m 0.99m 1.40m 92.09%
20m 0.79m 8.58% 0.87m 9.53% 1.39m 1.39m 2.51m 1.60m 2.45m 88.16%
30m 1.16m 9.54% 1.25m 10.47% 1.43m 1.57m 2.62m 1.77m 2.73m 86.85%

100m 2.04m 10.09% 2.15m 10.95% 2.15m 2.65m 3.66m 2.86m 3.55m 83.22%
200m 2.30m 6.86% 2.33m 7.38% 4.32m 3.60m 6.02m 3.82m 5.29m 81.84%

Town01_16

10m 0.38m 6.64% 0.39m 6.65% 0.96m 0.88m 1.81m 0.98m 1.66m 89.29%
20m 0.72m 7.65% 0.76m 7.89% 0.99m 1.21m 1.82m 1.32m 2.21m 86.82%
30m 1.00m 8.16% 1.03m 8.38% 1.13m 1.49m 2.11m 1.59m 2.58m 84.92%

100m 2.10m 9.40% 2.16m 9.65% 1.95m 2.85m 3.26m 2.96m 5.59m 78.89%
200m 2.71m 6.64% 2.72m 6.78% 4.89m 4.19m 6.46m 4.30m 8.54m 76.81%

Town01_17

10m 2.48m 36.50% 2.48m 36.58% 8.69m 9.95m 12.83m 9.85m 17.60m 87.55%
20m 2.60m 33.19% 2.58m 33.12% 5.08m 7.66m 7.61m 7.52m 14.62m 86.83%
30m 2.74m 31.66% 2.72m 31.55% 4.21m 7.40m 6.38m 7.20m 13.20m 85.30%

100m 3.02m 30.46% 3.02m 30.42% 4.00m 7.50m 6.06m 7.35m 12.60m 83.51%
200m 10.31m 21.37% 10.12m 21.26% 37.01m 29.56m 39.95m 28.39m 19.78m 75.36%

Town01_18

10m 0.74m 13.55% 0.74m 13.30% 1.61m 1.12m 3.35m 1.31m 4.24m 84.36%
20m 0.97m 12.89% 1.00m 12.92% 1.78m 1.46m 3.44m 1.64m 4.43m 82.14%
30m 1.20m 12.88% 1.24m 12.98% 1.86m 1.67m 3.52m 1.85m 4.64m 79.90%

100m 2.91m 13.54% 3.02m 13.75% 3.02m 3.12m 5.47m 3.53m 6.56m 71.26%
200m 3.32m 10.35% 3.43m 10.52% 5.04m 4.31m 7.86m 4.91m 9.18m 70.03%

Town01_19

10m 0.19m 3.16% 0.20m 3.25% 0.77m 0.63m 1.33m 0.67m 1.25m 90.72%
20m 0.64m 5.32% 0.66m 5.44% 0.68m 0.74m 1.16m 0.78m 2.14m 82.66%
30m 1.15m 6.93% 1.18m 7.10% 0.82m 0.93m 1.38m 0.98m 3.16m 78.91%

100m 1.98m 8.17% 2.01m 8.33% 1.27m 1.57m 1.94m 1.63m 4.36m 74.88%
200m 2.34m 6.38% 2.34m 6.49% 2.64m 2.26m 3.26m 2.29m 6.36m 73.90%

Table C.1 – Detailed results of DELTASL for the SLED dataset (on Town01).

120

c .4 additional visual results on the m3ed dataset

Sequence Cutoff

Dense depths errors Sparse depths errors Depth change map errors

On Dbf On Daf On Dbf On Daf Absolute error
Correctly classified events

Raw AbsRel Raw AbsRel NN DELTASL NN DELTASL (with a threshold of ±1m)

Town03_00

10m 0.17m 2.43% 0.17m 2.51% 0.45m 0.07m 0.45m 0.07m 0.03m 99.96%
20m 3.06m 21.17% 3.00m 20.85% 0.45m 0.18m 0.49m 0.20m 0.12m 99.74%
30m 4.68m 26.65% 4.61m 26.30% 0.48m 0.25m 0.54m 0.27m 0.19m 99.60%
100m 7.05m 28.67% 7.01m 28.41% 0.87m 0.92m 1.01m 0.97m 0.66m 97.80%
200m 12.06m 22.40% 12.01m 22.21% 3.90m 2.70m 4.14m 2.78m 1.16m 94.27%

Town03_01

10m 0.09m 1.83% 0.10m 1.86% 0.44m 0.09m 0.45m 0.09m 0.03m 99.93%
20m 0.70m 5.15% 0.76m 5.50% 0.60m 0.28m 0.77m 0.32m 1.33m 98.32%
30m 2.05m 10.35% 2.25m 11.29% 0.88m 0.65m 1.22m 0.75m 2.28m 96.18%
100m 4.10m 13.42% 4.47m 14.63% 1.87m 1.94m 2.96m 2.19m 3.77m 91.54%
200m 5.64m 9.97% 5.82m 10.70% 5.15m 3.52m 6.91m 3.87m 6.20m 88.55%

Town03_02

10m 0.22m 3.08% 0.23m 3.15% 0.72m 0.32m 1.17m 0.49m 1.21m 97.05%
20m 0.62m 5.35% 0.67m 5.63% 1.06m 0.69m 2.08m 0.82m 3.40m 92.58%
30m 0.89m 6.12% 0.97m 6.57% 1.74m 1.35m 3.26m 1.54m 4.29m 88.89%
100m 1.87m 6.90% 1.94m 7.22% 2.93m 3.13m 5.36m 3.40m 5.43m 78.24%
200m 2.86m 5.55% 2.80m 5.72% 4.62m 3.99m 7.31m 4.32m 7.80m 76.92%

Town03_03

10m 0.18m 2.39% 0.17m 2.29% 0.63m 0.32m 0.95m 0.33m 1.10m 97.10%
20m 1.52m 9.97% 1.57m 10.18% 0.70m 0.59m 1.36m 0.63m 3.54m 84.01%
30m 2.42m 12.73% 2.49m 13.04% 0.82m 0.79m 1.58m 0.82m 3.60m 81.45%
100m 3.13m 13.16% 3.19m 13.43% 1.65m 1.79m 2.75m 1.84m 3.77m 79.52%
200m 6.40m 13.97% 6.38m 14.19% 2.48m 2.53m 3.63m 2.59m 5.81m 78.95%

Town03_04

10m 0.30m 3.76% 0.29m 3.62% 0.41m 0.38m 0.66m 0.40m 1.73m 93.18%
20m 0.88m 7.39% 0.89m 7.41% 0.87m 0.74m 1.43m 0.76m 5.63m 84.12%
30m 1.35m 8.63% 1.38m 8.72% 1.12m 1.16m 1.88m 1.22m 6.83m 80.92%
100m 2.70m 10.39% 2.76m 10.54% 1.98m 2.46m 3.14m 2.55m 8.15m 76.49%
200m 5.01m 9.32% 5.00m 9.41% 4.91m 4.57m 6.30m 4.70m 13.09m 74.54%

Town03_05

10m 1.45m 18.43% 1.47m 18.68% 0.34m 0.21m 0.43m 0.27m 1.05m 98.57%
20m 2.02m 20.05% 2.15m 21.14% 0.35m 0.34m 0.67m 0.48m 1.90m 94.40%
30m 2.31m 19.93% 2.46m 21.06% 0.72m 0.74m 1.40m 0.91m 2.42m 90.72%
100m 4.49m 21.79% 4.65m 22.78% 1.73m 1.85m 3.06m 2.16m 3.59m 83.54%
200m 9.60m 22.33% 9.66m 23.18% 2.16m 2.42m 3.65m 2.82m 5.36m 80.96%

Town03_06

10m 0.10m 1.67% 0.10m 1.59% 0.57m 0.19m 0.70m 0.19m 0.17m 98.77%
20m 0.28m 2.49% 0.28m 2.47% 0.72m 0.60m 1.38m 0.61m 1.09m 93.93%
30m 0.54m 3.23% 0.54m 3.23% 0.87m 0.94m 1.77m 0.96m 1.68m 91.09%
100m 2.04m 5.48% 2.05m 5.50% 1.95m 2.97m 3.40m 3.02m 3.99m 83.82%
200m 2.48m 4.72% 2.50m 4.74% 5.86m 4.79m 7.66m 4.82m 5.87m 81.48%

Town03_07

10m 0.25m 3.94% 0.26m 4.03% 0.73m 0.39m 1.37m 0.44m 1.11m 96.82%
20m 0.78m 6.62% 0.80m 6.80% 1.27m 0.73m 2.69m 0.85m 2.91m 87.48%
30m 1.75m 9.98% 1.78m 10.17% 1.94m 1.28m 3.87m 1.48m 4.01m 78.46%
100m 3.89m 12.87% 3.94m 13.03% 3.57m 3.42m 6.50m 3.78m 5.05m 71.74%
200m 4.09m 10.27% 4.10m 10.40% 5.38m 4.54m 8.57m 4.92m 7.15m 71.14%

Town03_08

10m 0.16m 2.28% 0.14m 2.04% 0.06m 0.20m 0.07m 0.20m 0.35m 97.83%
20m 0.29m 2.84% 0.27m 2.64% 0.17m 0.31m 0.33m 0.33m 0.76m 96.68%
30m 0.42m 3.25% 0.41m 3.08% 0.52m 0.56m 0.85m 0.61m 1.19m 95.68%
100m 1.00m 4.18% 0.99m 4.03% 1.57m 2.01m 2.32m 2.07m 2.10m 92.29%
200m 1.89m 3.63% 1.89m 3.52% 6.36m 3.60m 7.22m 3.61m 3.31m 89.41%

Town03_09

10m 1.36m 28.68% 1.39m 29.22% 0.17m 1.24m 0.56m 1.43m 0.45m 95.98%
20m 1.42m 22.08% 1.45m 22.50% 0.16m 0.85m 0.56m 1.00m 0.49m 95.75%
30m 1.47m 20.65% 1.50m 21.04% 0.27m 0.91m 0.71m 1.08m 0.61m 95.31%
100m 1.64m 19.76% 1.67m 20.14% 0.38m 1.01m 0.85m 1.17m 1.15m 94.03%
200m 1.92m 17.28% 1.89m 17.61% 0.53m 1.07m 0.93m 1.21m 1.91m 93.70%

Town03_10

10m 0.98m 11.93% 1.02m 12.62% 0.65m 0.44m 0.85m 0.48m 0.62m 96.05%
20m 1.04m 10.15% 1.08m 10.67% 0.49m 0.43m 0.73m 0.47m 0.90m 95.75%
30m 1.75m 12.22% 1.80m 12.77% 0.60m 0.65m 1.02m 0.67m 1.42m 94.18%
100m 6.13m 19.19% 6.22m 19.78% 1.44m 1.77m 2.51m 1.82m 2.88m 88.31%
200m 7.03m 15.96% 7.10m 16.43% 4.53m 2.69m 5.85m 2.80m 4.33m 85.74%

Town03_11

10m 0.27m 3.67% 0.26m 3.51% 0.67m 0.35m 0.89m 0.32m 0.81m 98.77%
20m 2.56m 16.28% 2.61m 16.55% 0.98m 0.64m 1.51m 0.55m 2.79m 91.72%
30m 4.31m 22.59% 4.39m 22.93% 1.30m 1.03m 1.96m 0.96m 3.60m 85.27%
100m 5.51m 22.86% 5.58m 23.19% 2.43m 2.78m 3.63m 2.74m 4.31m 81.05%
200m 4.71m 16.44% 4.73m 16.65% 5.02m 3.74m 6.61m 3.78m 5.42m 79.85%

Town03_12

10m 0.17m 2.50% 0.17m 2.47% 0.61m 0.13m 0.67m 0.13m 0.77m 98.73%
20m 0.39m 3.40% 0.40m 3.48% 0.65m 0.49m 1.00m 0.51m 1.84m 91.70%
30m 0.85m 4.93% 0.87m 5.04% 1.14m 0.86m 1.91m 0.90m 2.63m 87.62%
100m 2.19m 7.18% 2.20m 7.26% 2.75m 2.96m 4.05m 2.99m 3.57m 81.65%
200m 5.51m 6.88% 5.40m 6.88% 4.65m 4.03m 6.22m 4.11m 5.68m 80.11%

Town03_13

10m 0.15m 2.26% 0.14m 2.13% 0.56m 0.23m 0.82m 0.26m 0.67m 95.78%
20m 1.45m 9.53% 1.49m 9.70% 0.61m 0.50m 1.21m 0.55m 2.65m 85.34%
30m 2.41m 12.61% 2.48m 12.91% 0.75m 0.71m 1.49m 0.76m 3.61m 81.08%
100m 3.32m 13.76% 3.39m 14.06% 1.58m 2.14m 2.50m 2.17m 4.41m 78.21%
200m 5.29m 13.46% 5.23m 13.66% 3.05m 2.95m 4.05m 2.96m 6.78m 77.37%

Town03_14

10m 0.15m 2.14% 0.15m 2.20% 0.80m 0.28m 1.06m 0.31m 1.11m 98.77%
20m 0.82m 6.19% 0.85m 6.40% 1.24m 1.29m 2.00m 1.40m 5.51m 89.25%
30m 1.34m 7.90% 1.37m 8.15% 1.61m 1.89m 2.62m 2.01m 7.45m 83.52%
100m 2.82m 9.68% 2.88m 9.94% 2.85m 3.53m 4.68m 3.72m 10.36m 76.37%
200m 5.69m 8.63% 5.71m 8.79% 8.66m 7.09m 10.78m 7.33m 17.14m 74.35%

Town03_15

10m 0.28m 6.81% 0.27m 6.74% 0.52m 0.23m 0.86m 0.24m 0.79m 98.22%
20m 0.65m 7.95% 0.69m 8.17% 0.92m 0.68m 2.06m 0.74m 2.24m 93.02%
30m 0.94m 8.53% 1.00m 8.79% 1.26m 1.04m 2.69m 1.16m 2.79m 89.62%
100m 2.36m 9.09% 2.48m 9.44% 2.37m 2.67m 4.88m 2.97m 5.32m 79.43%
200m 3.36m 7.79% 3.38m 8.03% 5.29m 3.78m 8.18m 4.23m 8.09m 77.99%

Town03_16

10m 0.33m 4.85% 0.34m 4.94% 0.86m 0.63m 1.46m 0.71m 2.08m 92.95%
20m 0.96m 8.37% 0.99m 8.62% 1.06m 0.94m 1.90m 1.01m 5.67m 83.91%
30m 1.35m 9.34% 1.38m 9.56% 1.50m 1.28m 2.43m 1.34m 6.78m 80.75%
100m 2.13m 9.30% 2.14m 9.43% 2.28m 2.49m 3.49m 2.56m 7.09m 77.62%
200m 3.74m 7.88% 3.70m 7.96% 4.76m 3.96m 6.01m 4.00m 11.49m 75.74%

Town03_17

10m 0.06m 1.08% 0.06m 1.08% 0.45m 0.23m 0.72m 0.22m 0.25m 98.88%
20m 0.25m 2.02% 0.25m 2.04% 0.96m 0.83m 1.95m 0.83m 2.79m 92.46%
30m 0.56m 3.05% 0.58m 3.16% 0.98m 1.03m 2.13m 1.03m 3.07m 90.86%
100m 1.33m 4.46% 1.36m 4.56% 1.61m 2.36m 3.13m 2.37m 3.55m 85.97%
200m 2.25m 3.82% 2.23m 3.87% 6.77m 4.16m 8.50m 4.14m 5.18m 82.52%

Town03_18

10m 0.17m 2.53% 0.17m 2.56% 0.37m 0.22m 0.45m 0.23m 0.58m 97.26%
20m 0.42m 3.71% 0.45m 3.93% 0.49m 0.42m 0.84m 0.46m 1.56m 91.31%
30m 0.59m 4.13% 0.64m 4.42% 0.86m 0.66m 1.47m 0.75m 1.79m 87.73%
100m 3.02m 8.05% 3.09m 8.33% 1.68m 1.71m 3.10m 1.99m 3.60m 79.12%
200m 4.36m 7.69% 4.38m 7.90% 4.01m 2.94m 5.60m 3.37m 5.32m 78.08%

Town03_19

10m 1.85m 33.56% 1.88m 33.86% 0.28m 0.77m 0.49m 0.84m 0.75m 96.35%
20m 1.98m 27.41% 2.02m 27.80% 0.35m 0.70m 0.70m 0.79m 0.92m 94.49%
30m 1.97m 24.81% 2.01m 25.15% 0.51m 0.87m 0.89m 0.94m 1.05m 93.58%
100m 2.10m 22.98% 2.14m 23.31% 0.73m 1.06m 1.36m 1.15m 1.29m 91.99%
200m 2.25m 20.35% 2.22m 20.64% 0.82m 1.10m 1.40m 1.17m 2.24m 91.68%

Table C.2 – Detailed results of DELTASL for the SLED dataset (on Town03).

121

additional results for chapter 5

Figure C.1 – Additional results on the SLED dataset, on sequences Town01_03 and Town01_05.
From top to bottom: events, LiDAR projection, ground truth, our predictions (DELTASL).

122

c .4 additional visual results on the m3ed dataset

Figure C.2 – Additional results on the SLED dataset, on sequences Town03_02 and Town03_06.
From top to bottom: events, LiDAR projection, ground truth, our predictions (DELTASL).

123

additional results for chapter 5

Figure C.3 – Additional results on the SLED dataset, on sequences Town01_18 and Town03_13.
From top to bottom: events, LiDAR projection, ground truth, our predictions (DELTASL).
Shown here are two cases where DELTASL displays moderate errors for objects in the upper
part of the depth maps, like the trees on the left and on the top right for the left column,
and the suspended railway on the top for the right column.

124

c .4 additional visual results on the m3ed dataset

Figure C.4 – Additional results on the SLED dataset, on sequences Town01_08 and Town01_11.
From top to bottom: events, LiDAR projection, ground truth, our predictions (DELTASL).
Shown here are two failure cases where DELTASL displays large errors. Left: due to a
high-speed sharp turn, a very high quantity of events is produced in the time window of
accumulation, leading to information being lost due to the formulation of the event volume,
and thus leading to an inaccurate depth estimation. Right: due to the limitations of the
event camera in the CARLA simulator, dark objects in a night scene like the trees in the
middle and on the right of the scene are not captured in the event stream of the SLED
dataset, resulting in an incorrect depth estimation.

125

additional results for chapter 5

Figure C.5 – Additional results on the MVSEC dataset. Sequences shown, from left to right:
outdoor_day_1; outdoor_night_1; outdoor_night_2; outdoor_night_3\Verb|.From| top
to bottom: reference image of the scene; events; LiDAR projection (with size of points
increased for a better visibility); ground truth; our results (DELTASL→MV).

126

c .4 additional visual results on the m3ed dataset

Figure C.6 – Additional results on the M3ED dataset, for the city_hall_day sequence. From
top to bottom: events, LiDAR projection, ground truth, our results (DELTAM3, DELTASL→M3).

127

additional results for chapter 5

Figure C.7 – Additional results on the M3ED dataset, for the city_hall_night sequence.
From top to bottom: events, LiDAR projection, ground truth, our results (DELTAM3,
DELTASL→M3).

128

glossary

G L O S S A RY

hot pixel broken pixel in an event camera which constantly detects events. 11

shot noise in optics, noise originating from the fluctuations of the number of
photons detected by the sensor. 11

129

acronyms

A C R O N Y M S

AAE Average Angular Error. 39, 40

AEE Average Endpoint Error. 34–37, 39, 40, 45

ALED Asynchronous LiDAR and Events Depths densification network. v, vii, viii,
5, 50, 53, 55, 57, 60, 62, 63, 69, 70, 75, 83, 84, 86, 87, 93, 96, 98

AR Augmented Reality. 17

CPU Central Processing Unit. 25, 26, 28, 46

DELTA Dense depths from Events and LiDAR using Transformer’s Attention. v,
viii, 5, 69, 70, 80–84, 87, 91, 93, 94, 97, 98

EBOF Event-Based Optical Flow. 21, 23–25, 34–37, 42, 44, 45, 47, 48

EOS End of Sentence. 70

FPGA Field-Programmable Gate Array. 48

FPS Frames Per Second. 7, 10, 11, 16

FWL Flow Warping Loss. 35, 37, 40, 42, 44, 101

GNN Graph Neural Network. 14

GPU Graphics Processing Unit. 11, 14, 25, 26, 28, 32, 33, 46, 48

GRU Gated Recurrent Unit. 82, 93

GT Ground Truth. 38

HD High Definition. 11, 33, 80

HDR High Dynamic Range. 11, 15, 25

LSTM Long Short-Term Memory. 70

MEPS Millions of Events Per Second. 16, 17

NLP Natural Language Processing. 69–71

NN Nearest Neighbor. 60, 64, 74, 78, 79

PTP Precision Time Protocol. 104, 105

131

acronyms

RSU Road Side Unit. 64

RTEF Real-Time Event-based Flow. 21, 25, 33, 40, 46, 98

SLAM Simultaneous Localization and Mapping. 50, 51

SLED Synthetic LiDAR Events Depths. 50, 52, 56, 57, 59–62, 64–66, 78, 80, 83–87,
89, 91, 93, 96, 99, 105, 107, 109, 119

SNN Spiking Neural Network. 14, 23

UAV Unmanned Aerial Vehicle. 19

VR Virtual Reality. 17

132

bibliography

B I B L I O G R A P H Y

[1] Misha A. Mahowald and Carver A. Mead. “The silicon retina.” In: Scientific
American 264 5 (1991), pp. 76–82.

[2] Misha A. Mahowald. “VLSI analogs of neuronal visual processing: A syn-
thesis of form and function”. PhD thesis. California Institute of Technology,
1992.

[3] Edison Gerena. “6-DoF Optical-driven Micro-robots with Force Feedback Ca-
pabilities for Interactive Bio-manipulation”. PhD thesis. Sorbonne Université,
2020.

[4] Xiang Li et al. “Intelligent Machinery Fault Diagnosis With Event-Based
Camera”. In: IEEE Transactions on Industrial Informatics (2023).

[5] Kamil Bialik et al. “Fast Object Counting with an Event Camera”. In: Pomiary
Automatyka Robotyka (2023).

[6] Guang Chen et al. “Event-Based Neuromorphic Vision for Autonomous
Driving: A Paradigm Shift for Bio-Inspired Visual Sensing and Perception”.
In: IEEE Signal Processing Magazine 37 (2020), pp. 34–49.

[7] Christian E. Willert and Joachim Klinner. “Event-based imaging velocimetry:
an assessment of event-based cameras for the measurement of fluid flows”.
In: Experiments in Fluids 63 (2022).

[8] Tat-Jun Chin et al. “Star Tracking Using an Event Camera”. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(2019), pp. 1646–1655.

[9] Western Sydney University. World first technology led by Western now in
orbit. 2021. url: https://www.westernsydney.edu.au/newscentre/news_
centre/story_archive/2021/world_first_technology_led_by_western_
now_in_orbit (visited on 11/14/2023).

[10] World Heath Organization. Global Status Report on Road Safety. World Health
Organization, 2018. isbn: 9789241565684.

[11] Barry A. T. Brown and E. Laurier. “The Trouble with Autopilots: Assisted
and Autonomous Driving on the Social Road”. In: Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (2017).

[12] Tabitha S. Combs et al. “Automated Vehicles and Pedestrian Safety: Explor-
ing the Promise and Limits of Pedestrian Detection.” In: American journal of
preventive medicine 56 1 (2019), pp. 1–7.

[13] T. Finateu et al. “A 1280x720 Back-Illuminated Stacked Temporal Con-
trast Event-Based Vision Sensor with 4.86µm Pixels, 1.066GEPS Readout,
Programmable Event-Rate Controller and Compressive Data-Formatting
Pipeline”. In: ISSCC (2020), pp. 112–114.

133

https://www.westernsydney.edu.au/newscentre/news_centre/story_archive/2021/world_first_technology_led_by_western_now_in_orbit
https://www.westernsydney.edu.au/newscentre/news_centre/story_archive/2021/world_first_technology_led_by_western_now_in_orbit
https://www.westernsydney.edu.au/newscentre/news_centre/story_archive/2021/world_first_technology_led_by_western_now_in_orbit

bibliography

[14] Boyang Li et al. “Enhancing 3-D LiDAR Point Clouds With Event-Based
Camera”. In: IEEE Transactions on Instrumentation and Measurement 70 (2021),
pp. 1–12.

[15] Christian Brandli et al. “A 240×180 130dB 3µs Latency Global Shutter Spa-
tiotemporal Vision Sensor”. In: IEEE Journal of Solid-State Circuits 49 (2014),
pp. 2333–2341.

[16] Guillermo Gallego et al. “Event-based Vision: A Survey”. In: IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI) (2020).

[17] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. “A QVGA 143
dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level
Video Compression and Time-Domain CDS”. In: IEEE Journal of Solid-State
Circuits 46 (2011), pp. 259–275.

[18] Xueye Zheng et al. “Deep Learning for Event-based Vision: A Comprehensive
Survey and Benchmarks”. In: ArXiv abs/2302.08890 (2023).

[19] David Weikersdorfer and Jörg Conradt. “Event-based particle filtering for
robot self-localization”. In: 2012 IEEE International Conference on Robotics and
Biomimetics (ROBIO) (2012), pp. 866–870.

[20] Guillermo Gallego et al. “Event-Based, 6-DOF Camera Tracking from Photo-
metric Depth Maps”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 40 (2016), pp. 2402–2412.

[21] Amélie Gruel et al. “Neuromorphic Event-Based Spatio-temporal Attention
using Adaptive Mechanisms”. In: 2022 IEEE 4th International Conference on
Artificial Intelligence Circuits and Systems (AICAS) (2022), pp. 379–382.

[22] Tobias Delbrück. “Frame-free dynamic digital vision”. In: Proceedings of
the International Symposium on Secure-Life Electronics, Advanced Electronics for
Quality Life and Society (2008), pp. 21–26.

[23] Xavier Lagorce et al. “HOTS: A Hierarchy of Event-Based Time-Surfaces for
Pattern Recognition”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 39 (2017), pp. 1346–1359.

[24] A. Z. Zhu et al. “Unsupervised Event-Based Learning of Optical Flow, Depth,
and Egomotion”. In: CVPR (2019), pp. 989–997.

[25] E. Perot et al. “Learning to Detect Objects with a 1 Megapixel Event Camera”.
In: 34th Conference on Neural Information Processing Systems (NeurIPS 2020)
(2020).

[26] Daniel Gehrig et al. “End-to-End Learning of Representations for Asyn-
chronous Event-Based Data”. In: ICCV (2019), pp. 5632–5642.

[27] Nikola Zubi’c et al. “From Chaos Comes Order: Ordering Event Representa-
tions for Object Recognition and Detection”. In: ICCV (2023).

[28] Cedric Scheerlinck, Nick Barnes, and Robert E. Mahony. “Continuous-time
Intensity Estimation Using Event Cameras”. In: Asian Conference on Computer
Vision. 2018, pp. 308–324.

134

bibliography

[29] Henri Rebecq et al. “High Speed and High Dynamic Range Video with
an Event Camera”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 43 (2021), pp. 1964–1980.

[30] Daniel Dauner. “Image Reconstruction from Event Cameras for Autonomous
Driving”. In: International Conference on Learning Representations (ICLR) (2023).

[31] R. Benosman et al. “Event-Based Visual Flow”. In: IEEE Transactions on
Neural Networks and Learning Systems 25 (2014), pp. 407–417.

[32] A. Z. Zhu et al. “EV-FlowNet: Self-Supervised Optical Flow Estimation for
Event-based Cameras”. In: Proceedings of Robotics: Science and Systems. 2018.

[33] Daniel Gehrig et al. “Combining Events and Frames Using Recurrent Asyn-
chronous Multimodal Networks for Monocular Depth Prediction”. In: IEEE
Robotics and Automation Letters 6 (2021), pp. 2822–2829.

[34] F. Paredes-Vallés, Jesse J. Hagenaars, and Guido C.H.E. de Croon. “Self-
Supervised Learning of Event-Based Optical Flow with Spiking Neural Net-
works”. In: Neural Information Processing Systems. 2021.

[35] Ulysse Rançon et al. “StereoSpike: Depth Learning With a Spiking Neural
Network”. In: IEEE Access 10 (2021), pp. 127428–127439.

[36] Yusra Alkendi et al. “Neuromorphic Camera Denoising using Graph Neural
Network-driven Transformers”. In: IEEE transactions on neural networks and
learning systems PP (2021).

[37] Simon Thomas Schaefer, Daniel Gehrig, and Davide Scaramuzza. “AEGNN:
Asynchronous Event-based Graph Neural Networks”. In: CVPR (2022),
pp. 12361–12371.

[38] Timo Stoffregen and L. Kleeman. “Simultaneous Optical Flow and Segmen-
tation (SOFAS) using Dynamic Vision Sensor”. In: Australasian Conference on
Robotics and Automation (ACRA) (2017).

[39] Mathias Gehrig et al. “E-RAFT: Dense Optical Flow from Event Cameras”.
In: International Conference on 3D Vision (3DV). 2021.

[40] Haotian Liu et al. “TMA: Temporal Motion Aggregation for Event-based
Optical Flow”. In: ICCV (2023).

[41] Stephan Schraml et al. “Dynamic stereo vision system for real-time tracking”.
In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems
(2010), pp. 1409–1412.

[42] Stephan Schraml, Ahmed Nabil Belbachir, and Horst Bischof. “An Event-
Driven Stereo System for Real-Time 3-D 360° Panoramic Vision”. In: IEEE
Transactions on Industrial Electronics 63 (2016), pp. 418–428.

[43] Yeongwoo Nam et al. “Stereo Depth from Events Cameras: Concentrate and
Focus on the Future”. In: CVPR (2022), pp. 6104–6113.

[44] David Weikersdorfer et al. “Event-based 3D SLAM with a depth-augmented
dynamic vision sensor”. In: 2014 IEEE International Conference on Robotics and
Automation (ICRA) (2014), pp. 359–364.

135

bibliography

[45] Mingyue Cui et al. “Dense Depth-Map Estimation Based on Fusion of Event
Camera and Sparse LiDAR”. In: IEEE Transactions on Instrumentation and
Measurement 71 (2022), pp. 1–11.

[46] Hanme Kim, Stefan Leutenegger, and Andrew J. Davison. “Real-Time 3D
Reconstruction and 6-DoF Tracking with an Event Camera”. In: European
Conference on Computer Vision. 2016.

[47] Javier Hidalgo-Carrió, Daniel Gehrig, and Davide Scaramuzza. “Learning
Monocular Dense Depth from Events”. In: 2020 International Conference on
3D Vision (3DV) (2020), pp. 534–542.

[48] F. Paredes-Vallés and G. D. Croon. “Back to Event Basics: Self-Supervised
Learning of Image Reconstruction for Event Cameras via Photometric Con-
stancy”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (2021), pp. 3446–3455.

[49] Lei Yu et al. “Learning to See Through With Events”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 45 (2022), pp. 8660–8678.

[50] Burak Ercan et al. “HyperE2VID: Improving Event-Based Video Reconstruc-
tion via Hypernetworks”. In: ArXiv abs/2305.06382 (2023).

[51] Rafael Serrano-Gotarredona et al. “CAVIAR: A 45k Neuron, 5M Synapse,
12G Connects/s AER Hardware Sensory-Processing-Learning-Actuating Sys-
tem for High-Speed Visual Object Recognition and Tracking”. In: IEEE
Transactions on Neural Networks 20 (2009), pp. 1417–1438.

[52] Georg Wiesmann et al. “Event-driven embodied system for feature extraction
and object recognition in robotic applications”. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshops (2012), pp. 76–
82.

[53] Amos Sironi et al. “HATS: Histograms of Averaged Time Surfaces for Robust
Event-Based Object Classification”. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2018), pp. 1731–1740.

[54] Mathias Gehrig and Davide Scaramuzza. “Recurrent Vision Transformers for
Object Detection with Event Cameras”. In: CVPR (2022), pp. 13884–13893.

[55] G. Orchard et al. “Converting Static Image Datasets to Spiking Neuromorphic
Datasets Using Saccades”. In: Frontiers in Neuroscience 9 (2015).

[56] Cheston Tan, Stéphane Lallée, and G. Orchard. “Benchmarking neuromor-
phic vision: lessons learnt from computer vision”. In: Frontiers in Neuroscience
9 (2015).

[57] Daniel Gehrig et al. “Video to Events: Recycling Video Datasets for Event
Cameras”. In: CVPR (2019), pp. 3583–3592.

[58] Yuhuang Hu, Shih-Chii Liu, and Tobi Delbrück. “v2e: From Video Frames
to Realistic DVS Events”. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW) (2021), pp. 1312–1321.

[59] Damien Joubert et al. “Event Camera Simulator Improvements via Charac-
terized Parameters”. In: Frontiers in Neuroscience 15 (2021).

136

bibliography

[60] Teresa Serrano-Gotarredona and Bernabé Linares-Barranco. “Poker-DVS and
MNIST-DVS. Their History, How They Were Made, and Other Details”. In:
Frontiers in Neuroscience 9 (2015).

[61] Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition
System”. In: CVPR (2017), pp. 7388–7397.

[62] A. Z. Zhu et al. “The Multivehicle Stereo Event Camera Dataset: An Event
Camera Dataset for 3D Perception”. In: IEEE Robotics and Automation Letters
(RA-L) 3 (2018), pp. 2032–2039.

[63] Mathias Gehrig et al. “DSEC: A Stereo Event Camera Dataset for Driving
Scenarios”. In: IEEE Robotics and Automation Letters 6 (2021), pp. 4947–4954.

[64] Kenneth Chaney et al. “M3ED: Multi-Robot, Multi-Sensor, Multi-Environment
Event Dataset”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition Workshops (CVPRW) (2023), pp. 4016–4023.

[65] Elias Mueggler et al. “The event-camera dataset and simulator: Event-based
data for pose estimation, visual odometry, and SLAM”. In: The International
Journal of Robotics Research 36 (2016), pp. 142–149.

[66] Wenbin Li et al. “InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor
Scenes Dataset”. In: BMVC. 2018.

[67] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. “ESIM: an Open
Event Camera Simulator”. In: Conference on Robot Learning. 2018.

[68] Alexey Dosovitskiy et al. “CARLA: An Open Urban Driving Simulator”. In:
Proceedings of the 1st Annual Conference on Robot Learning. 2017, pp. 1–16.

[69] Patrick Lichtsteiner, Christoph Posch, and Tobi Delbrück. “A 128x128 120dB
15µs Latency Asynchronous Temporal Contrast Vision Sensor”. In: IEEE
Journal of Solid-State Circuits 43 (2008), pp. 566–576.

[70] Levi Burner et al. “EVIMO2: An Event Camera Dataset for Motion Segmen-
tation, Optical Flow, Structure from Motion, and Visual Inertial Odometry in
Indoor Scenes with Monocular or Stereo Algorithms”. In: ArXiv (2022).

[71] Prophesee. Introducing the world’s smallest and most power-efficient Event-based
Vision sensor ever released. 2023. url: https://www.prophesee.ai/event-
based-sensor-genx320/ (visited on 11/16/2023).

[72] Zhaoning Sun et al. “ESS: Learning Event-based Semantic Segmentation
from Still Images”. In: ECCV. 2022.

[73] Daniel Gehrig and Davide Scaramuzza. “Pushing the Limits of Asyn-
chronous Graph-based Object Detection with Event Cameras”. In: ArXiv
(2022).

[74] Vincent Brebion, Julien Moreau, and Franck Davoine. “Real-Time Optical
Flow for Vehicular Perception With Low- and High-Resolution Event Cam-
eras”. In: IEEE Transactions on Intelligent Transportation Systems 23.9 (2022),
pp. 15066–15078.

137

https://www.prophesee.ai/event-based-sensor-genx320/
https://www.prophesee.ai/event-based-sensor-genx320/

bibliography

[75] Vincent Brebion, Julien Moreau, and Franck Davoine. “Estimation de flot
optique basé évènements en temps réel”. In: Congrès Reconnaissance des
Formes, Image, Apprentissage et Perception (RFIAP 2022). Vannes, France, July
2022.

[76] C. Braillon et al. “Real-time moving obstacle detection using optical flow
models”. In: IEEE Intelligent Vehicles Symposium (2006), pp. 466–471.

[77] Muhammad Kamal Hossen and Sabrina Hoque Tuli. “A surveillance system
based on motion detection and motion estimation using optical flow”. In:
5th International Conference on Informatics, Electronics and Vision (ICIEV). 2016,
pp. 646–651.

[78] Cheng Chuanqi et al. “Monocular visual odometry based on optical flow and
feature matching”. In: 29th Chinese Control And Decision Conference (CCDC)
(2017), pp. 4554–4558.

[79] S. Galic and S. Lončarić. “Spatio-temporal image segmentation using optical
flow and clustering algorithm”. In: Proceedings of the First IWISPA (2000),
pp. 63–68.

[80] Denis Fortun, Patrick Bouthemy, and Charles Kervrann. “Optical flow mod-
eling and computation: A survey”. In: Computer Vision and Image Understing
134 (2015), pp. 1–21.

[81] Berthold K. P. Horn and Brian G. Schunck. “Determining Optical Flow”. In:
Artificial Intelligence 17 (1981), pp. 185–203.

[82] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration Tech-
nique with an Application to Stereo Vision”. In: International Joint Conference
on Artificial Intelligence. 1981.

[83] E. Meinhardt, J. Pérez, and D. Kondermann. “Horn-Schunck Optical Flow
with a Multi-Scale Strategy”. In: Image Processing On Line 3 (2013), pp. 151–
172.

[84] J.-Y. Bouguet. Pyramidal implementation of the Lucas Kanade feature tracker.
Tech. rep. Intel Corporation, Microprocessor Research Labs, 1999.

[85] Michael J. Black and P. Anandan. “The Robust Estimation of Multiple
Motions: Parametric and Piecewise-Smooth Flow Fields”. In: Computer Vision
and Image Understanding 63 (1996), pp. 75–104.

[86] Deqing Sun, S. Roth, and Michael J. Black. “A Quantitative Analysis of
Current Practices in Optical Flow Estimation and the Principles Behind
Them”. In: International Journal of Computer Vision 106 (2013), pp. 115–137.

[87] A. Dosovitskiy et al. “FlowNet: Learning Optical Flow with Convolutional
Networks”. In: ICCV (2015), pp. 2758–2766.

[88] S. Meister, Junhwa Hur, and S. Roth. “UnFlow: Unsupervised Learning
of Optical Flow with a Bidirectional Census Loss”. In: Thirty-Second AAAI
Conference on Artificial Intelligence. 2018.

[89] Zachary Teed and Jun Deng. “RAFT: Recurrent All-Pairs Field Transforms
for Optical Flow”. In: ECCV. 2020, pp. 402–419.

138

bibliography

[90] Haofei Xu et al. “Unifying Flow, Stereo and Depth Estimation”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 45 (2022), pp. 13941–
13958.

[91] Guillermo Gallego, Henri Rebecq, and D. Scaramuzza. “A Unifying Contrast
Maximization Framework for Event Cameras, with Applications to Motion,
Depth, and Optical Flow Estimation”. In: CVPR (2018), pp. 3867–3876.

[92] Daqi Liu, Álvaro Parra Bustos, and Tat-Jun Chin. “Globally Optimal Con-
trast Maximisation for Event-Based Motion Estimation”. In: CVPR (2020),
pp. 6348–6357.

[93] Shintaro Shiba, Yoshimitsu Aoki, and Guillermo Gallego. “Secrets of Event-
Based Optical Flow”. In: European Conference on Computer Vision. 2022.

[94] F. Paredes-Vallés et al. “Taming Contrast Maximization for Learning Sequen-
tial, Low-latency, Event-based Optical Flow”. In: ICCV (2023).

[95] F. Paredes-Vallés, Kirk Y. W. Scheper, and G. de Croon. “Unsupervised
Learning of a Hierarchical Spiking Neural Network for Optical Flow Estima-
tion: From Events to Global Motion Perception”. In: IEEE TPAMI 42 (2020),
pp. 2051–2064.

[96] Javier Cuadrado et al. “Optical flow estimation from event-based cameras
and spiking neural networks”. In: Frontiers in Neuroscience 17 (2023).

[97] M. Almatrafi et al. “Distance Surface for Event-Based Optical Flow”. In:
IEEE TPAMI 42 (2020), pp. 1547–1556.

[98] A. Z. Zhu, N. Atanasov, and Kostas Daniilidis. “Event-based feature tracking
with probabilistic data association”. In: ICRA (2017), pp. 4465–4470.

[99] C. G. Harris and M. Stephens. “A Combined Corner and Edge Detector”. In:
Alvey Vision Conference. 1988.

[100] Jun Nagata, Yusuke Sekikawa, and Y. Aoki. “Optical Flow Estimation by
Matching Time Surface with Event-Based Cameras”. In: Sensors 21 (2021).

[101] Chankyu Lee et al. “Spike-FlowNet: Event-based Optical Flow Estimation
with Energy-Efficient Hybrid Neural Networks”. In: ECCV. 2020.

[102] Liyuan Pan, Miaomiao Liu, and R. Hartley. “Single Image Optical Flow
Estimation With an Event Camera”. In: CVPR (2020), pp. 1669–1678.

[103] Bodo Rueckauer and Tobi Delbruck. “Evaluation of Event-Based Algorithms
for Optical Flow with Ground-Truth from Inertial Measurement Sensor”. In:
Frontiers in Neuroscience 10 (2016).

[104] Chankyu Lee, Adarsh Kumar Kosta, and Kaushik Roy. “Fusion-FlowNet:
Energy-Efficient Optical Flow Estimation using Sensor Fusion and Deep
Fused Spiking-Analog Network Architectures”. In: 2022 International Confer-
ence on Robotics and Automation (ICRA) (2021), pp. 6504–6510.

[105] H. Akolkar, S. Ieng, and R. Benosman. “See before you see: Real-time high
speed motion prediction using fast aperture-robust event-driven visual flow”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

139

bibliography

[106] C. Ramamoorthy and H. F. Li. “Pipeline Architecture”. In: ACM Computing
Surveys 9 (1977), pp. 61–102.

[107] Yang Feng et al. “Event Density Based Denoising Method for Dynamic Vision
Sensor”. In: Applied Sciences 10 (2020), p. 2024.

[108] D. Coeurjolly, A. Montanvert, and J. Chassery. “Distances discrètes”. In:
Géométrie discrète et images numériques. Hermès Paris, 2007. Chap. 5, pp. 123–
145.

[109] J. Adarve and R. Mahony. “A Filter Formulation for Computing Real Time
Optical Flow”. In: IEEE Robotics and Automation Letters (RA-L) 1 (2016),
pp. 1192–1199.

[110] Michael J. Black. “Robust incremental optical flow”. PhD thesis. Yale
University, 1992.

[111] Timo Stoffregen et al. “Reducing the Sim-to-Real Gap for Event Cameras”.
In: ECCV. 2020.

[112] Andreas Geiger, Philip Lenz, and R. Urtasun. “Are we ready for autonomous
driving? The KITTI vision benchmark suite”. In: CVPR (2012), pp. 3354–3361.

[113] Xinglong Luo et al. “Learning Optical Flow from Event Camera with Ren-
dered Dataset”. In: ICCV (2023).

[114] Chengxi Ye et al. “Unsupervised Learning of Dense Optical Flow, Depth and
Egomotion with Event-Based Sensors”. In: IROS (2020), pp. 5831–5838.

[115] Yijin Li et al. “BlinkFlow: A Dataset to Push the Limits of Event-based
Optical Flow Estimation”. In: ArXiv (2023).

[116] M. Liu and T. Delbrück. “Adaptive Time-Slice Block-Matching Optical Flow
Algorithm for Dynamic Vision Sensors”. In: BMVC. 2018.

[117] Jae Hyung Jung and Chan Gook Park. “Constrained Filtering-based Fusion
of Images, Events, and Inertial Measurements for Pose Estimation”. In: ICRA
(2020), pp. 644–650.

[118] Wachirawit Ponghiran, Chamika M. Liyanagedera, and Kaushik Roy. “Event-
based Temporally Dense Optical Flow Estimation with Sequential Learning”.
In: ICCV (2023).

[119] Zhexiong Wan et al. “RPEFlow: Multimodal Fusion of RGB-PointCloud-
Event for Joint Optical Flow and Scene Flow Estimation”. In: ICCV (2023).

[120] Vincent Brebion, Julien Moreau, and Franck Davoine. “Learning to Estimate
Two Dense Depths from LiDAR and Event Data”. In: Image Analysis -
22nd Scandinavian Conference, SCIA 2023, Sirkka, Finland, April 18-21, 2023,
Proceedings, Part II. Vol. 13886. Lecture Notes in Computer Science. Springer,
2023, pp. 517–533.

[121] Jonas Uhrig et al. “Sparsity Invariant CNNs”. In: 2017 International Conference
on 3D Vision (3DV) (2017), pp. 11–20.

[122] Nathaniel Chodosh, Chaoyang Wang, and Simon Lucey. “Deep Convo-
lutional Compressed Sensing for LiDAR Depth Completion”. In: Asian
Conference on Computer Vision. 2018, pp. 499–513.

140

bibliography

[123] Zixuan Huang et al. “HMS-Net: Hierarchical Multi-Scale Sparsity-Invariant
Network for Sparse Depth Completion”. In: IEEE Transactions on Image
Processing 29 (2020), pp. 3429–3441.

[124] Jason Ku, Ali Harakeh, and Steven L. Waslander. “In Defense of Classical
Image Processing: Fast Depth Completion on the CPU”. In: 2018 15th
Conference on Computer and Robot Vision (CRV) (2018), pp. 16–22.

[125] Maximilian Jaritz et al. “Sparse and Dense Data with CNNs: Depth Com-
pletion and Semantic Segmentation”. In: 2018 International Conference on 3D
Vision (3DV) (2018), pp. 52–60.

[126] Wouter Van Gansbeke et al. “Sparse and Noisy LiDAR Completion with
RGB Guidance and Uncertainty”. In: 2019 16th International Conference on
Machine Vision Applications (MVA) (2019), pp. 1–6.

[127] Yan Xu et al. “Depth Completion From Sparse LiDAR Data With Depth-
Normal Constraints”. In: 2019 IEEE/CVF International Conference on Computer
Vision (ICCV) (2019), pp. 2811–2820.

[128] William P. Maddern and Paul Newman. “Real-time probabilistic fusion
of sparse 3D LIDAR and dense stereo”. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2016), pp. 2181–2188.

[129] Liyuan Pan et al. “Bringing a Blurry Frame Alive at High Frame-Rate With
an Event Camera”. In: CVPR (2019), pp. 6813–6822.

[130] Genady Paikin et al. “EFI-Net: Video Frame Interpolation from Fusion of
Events and Frames”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (2021), pp. 1291–1301.

[131] Beat Kueng et al. “Low-latency visual odometry using event-based feature
tracks”. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (2016), pp. 16–23.

[132] Daniel Gehrig et al. “EKLT: Asynchronous Photometric Feature Tracking
Using Events and Frames”. In: International Journal of Computer Vision 128
(2019), pp. 601–618.

[133] Zhuangyi Jiang et al. “Mixed Frame-/Event-Driven Fast Pedestrian Detec-
tion”. In: 2019 International Conference on Robotics and Automation (ICRA)
(2019), pp. 8332–8338.

[134] Hu Cao et al. “Fusion-Based Feature Attention Gate Component for Vehicle
Detection Based on Event Camera”. In: IEEE Sensors Journal 21 (2021),
pp. 24540–24548.

[135] Abhishek Tomy et al. “Fusing Event-based and RGB camera for Robust
Object Detection in Adverse Conditions”. In: 2022 International Conference on
Robotics and Automation (ICRA) (2022), pp. 933–939.

[136] Yuhuang Hu et al. “DDD20 End-to-End Event Camera Driving Dataset:
Fusing Frames and Events with Deep Learning for Improved Steering Predic-
tion”. In: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC) (2020), pp. 1–6.

141

bibliography

[137] Rihui Song et al. “Calibration of Event-based Camera and 3D LiDAR”. In:
2018 WRC Symposium on Advanced Robotics and Automation (WRC SARA)
(2018), pp. 289–295.

[138] Kevin Ta et al. “L2E: Lasers to Events for 6-DoF Extrinsic Calibration of
Lidars and Event Cameras”. In: ArXiv (2022).

[139] Jianhao Jiao et al. “LCE-Calib: Automatic LiDAR-Frame/Event Camera Ex-
trinsic Calibration With A Globally Optimal Solution”. In: ArXiv abs/2303.09825
(2023).

[140] Mario A. V. Saucedo et al. “Event Camera and LiDAR based Human Tracking
for Adverse Lighting Conditions in Subterranean Environments”. In: ArXiv
abs/2304.08908 (2023).

[141] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In:
CVPR (2016), pp. 770–778.

[142] Mennatullah Siam et al. “Convolutional gated recurrent networks for video
segmentation”. In: IEEE International Conference on Image Processing (ICIP)
(2017), pp. 3090–3094.

[143] Kaiming He et al. “Delving Deep into Rectifiers: Surpassing Human-Level
Performance on ImageNet Classification”. In: 2015 IEEE International Confer-
ence on Computer Vision (ICCV) (2015), pp. 1026–1034.

[144] Xingang Pan et al. “Two at Once: Enhancing Learning and Generalization
Capacities via IBN-Net”. In: European Conference on Computer Vision. 2018.

[145] Benjamin Ummenhofer et al. “DeMoN: Depth and Motion Network for
Learning Monocular Stereo”. In: CVPR (2017), pp. 5622–5631.

[146] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic Op-
timization”. In: International Conference on Learning Representations (ICLR)
(2015).

[147] Alberto Sabater, Luis Montesano, and Ana Cristina Murillo. “Event Trans-
former+. A multi-purpose solution for efficient event data processing”. In:
ArXiv abs/2211.12222 (2022).

[148] Nico Messikommer et al. “Event-based Asynchronous Sparse Convolutional
Networks”. In: European Conference on Computer Vision. 2020.

[149] R. W. Baldwin et al. “Time-Ordered Recent Event (TORE) Volumes for Event
Cameras”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
45 (2021), pp. 2519–2532.

[150] Ashish Vaswani et al. “Attention is All you Need”. In: Neural Information
Processing Systems. 2017.

[151] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. “Multi-Modal Fu-
sion Transformer for End-to-End Autonomous Driving”. In: CVPR (2021),
pp. 7073–7083.

[152] Kashyap Chitta et al. “TransFuser: Imitation With Transformer-Based Sensor
Fusion for Autonomous Driving”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 45 (2022), pp. 12878–12895.

142

bibliography

[153] Elizbar Nadaraya. “On Estimating Regression”. In: Theory of Probability and
Its Applications 9 (1964), pp. 141–142.

[154] Geoffrey Stuart Watson. “Smooth regression analysis”. In: Sankhyā: The
Indian Journal of Statistics. Vol. 26. 4. 1964, pp. 359–372.

[155] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: International
Conference on Learning Representations (ICLR) (2014).

[156] Angelos Katharopoulos et al. “Transformers are RNNs: Fast Autoregressive
Transformers with Linear Attention”. In: International Conference on Machine
Learning. 2020.

[157] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs)”. In:
International Conference on Learning Representations (ICLR). 2016.

[158] Uday Kamal, Saurabh Dash, and S. Mukhopadhyay. “Associative Mem-
ory Augmented Asynchronous Spatiotemporal Representation Learning for
Event-based Perception”. In: International Conference on Learning Representa-
tions (ICLR). 2023.

[159] Sharan Narang et al. “Do Transformer Modifications Transfer Across Imple-
mentations and Applications?” In: ArXiv abs/2102.11972 (2021).

[160] Yi Tay et al. “Scaling Laws vs Model Architectures: How does Inductive Bias
Influence Scaling?” In: ArXiv abs/2207.10551 (2022).

[161] Alexey Dosovitskiy et al. “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale”. In: International Conference on Learning
Representations (ICLR). 2021.

[162] Zhihao Li, M. Salman Asif, and Zhan Ma. “Event Transformer”. In: ArXiv
abs/2204.05172 (2022).

[163] Zuowen Wang, Yuhuang Hu, and Shih-Chii Liu. “Exploiting Spatial Spar-
sity for Event Cameras with Visual Transformers”. In: IEEE International
Conference on Image Processing (ICIP) (2022), pp. 411–415.

[164] Alberto Sabater, Luis Montesano, and Ana Cristina Murillo. “Event Trans-
former. A sparse-aware solution for efficient event data processing”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW) (2022), pp. 2676–2685.

[165] Yi Tian and J. Andrade-Cetto. “Event Transformer FlowNet for optical flow
estimation”. In: BMVC. 2022.

[166] Wenming Weng, Yueyi Zhang, and Zhiwei Xiong. “Event-based Video
Reconstruction Using Transformer”. In: ICCV (2021), pp. 2543–2552.

[167] Stefano Chiavazza, Svea Marie Meyer, and Yulia Sandamirskaya. “Low-
latency monocular depth estimation using event timing on neuromorphic
hardware”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (2023), pp. 4071–4080.

143

bibliography

[168] Urbano Miguel Nunes, Laurent Udo Perrinet, and Sio-Hoi Ieng. “Time-to-
Contact Map by Joint Estimation of Up-to-Scale Inverse Depth and Global
Motion using a Single Event Camera”. In: ICCV (2023).

[169] Hoonhee Cho, Jegyeong Cho, and Kuk-Jin Yoon. “Learning Adaptive Dense
Event Stereo from the Image Domain”. In: CVPR (2023), pp. 17797–17807.

[170] Suman Ghosh and Guillermo Gallego. “Multi-Event-Camera Depth Esti-
mation and Outlier Rejection by Refocused Events Fusion”. In: Advanced
Intelligent Systems 4 (2022).

[171] Nicolas Carion et al. “End-to-End Object Detection with Transformers”. In:
ECCV. 2020.

[172] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional
Networks for Biomedical Image Segmentation”. In: Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015. Springer International
Publishing, 2015, pp. 234–241.

[173] Anton Trusov et al. “Fast Implementation of 4-bit Convolutional Neural
Networks for Mobile Devices”. In: 25th International Conference on Pattern
Recognition (ICPR) (2020), pp. 9897–9903.

[174] Tim Dettmers et al. “QLoRA: Efficient Finetuning of Quantized LLMs”. In:
ArXiv abs/2305.14314 (2023).

[175] Amaro Da Costa Luz Carneiro. “Asynchronous Event-Based 3D vision”.
PhD thesis. Université Pierre et Marie Curie, 2014.

[176] Sio-Hoi Ieng, João Carneiro, and Ryad B. Benosman. “Event-Based 3D
Motion Flow Estimation Using 4D Spatio Temporal Subspaces Properties”.
In: Frontiers in Neuroscience 10 (2017).

[177] Alexander Kirillov et al. “Segment Anything”. In: ArXiv abs/2304.02643
(2023).

144

	PDT BREBION Vincent
	Soutenue le 11 janvier 2024
	Spécialité : Sciences et Technologies de l'Information et des Systèmes : Unité de recherche Heudyasic (UMR-7253)

	thesis_brebion_vincent_final
	Abstract
	Résumé
	Acknowledgements
	Contents
	General Introduction
	Context
	Objectives and Overview of the Thesis
	Thesis Overview

	Event Cameras
	Introduction
	Core Principle
	Advantages and Challenges
	Application to Intelligent Robotics
	Review of the State of the Art
	Popular Event Camera Models
	Datasets

	Real-Time Event-Based Optical Flow
	Introduction
	Problem Formulation
	Related Work
	Our Orientation: Densifying Events
	Method
	Evaluation
	Conclusion and Discussions

	Event- and LiDAR-Based Depth Estimation using a Convolutional Network
	Introduction
	Related Work
	Depth Change Map: Two Depths per Event
	Method
	The SLED Dataset
	Evaluation
	Conclusion and Discussions

	Event- and LiDAR-Based Depth Estimation using an Attention-Based Network
	Introduction
	An Introduction to the Transformer and Attention
	Related Work
	Predicting Sparse Depths with Transformers
	Dense DELTA Method
	Evaluation
	Conclusion and Discussions

	General Conclusion
	Conclusion
	Contributions
	Discussions and Perspectives

	Additional Experiments
	Acquisition of Real-World Data
	Extensions to the SLED Dataset

	Additional Results for Chapter 4
	Detailed Results on our SLED Dataset
	Additional Dense Depths Results on our SLED Dataset
	Additional Dense Depths Results on the MVSEC Dataset
	Additional Depth Change Maps Results on our SLED Dataset

	Additional Results for Chapter 5
	Detailed Results on our SLED Dataset
	Additional Visual Results on the SLED Dataset
	Additional Visual Results on the MVSEC Dataset
	Additional Visual Results on the M3ED Dataset

	Glossary
	Acronyms
	Bibliography

