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Abstract

The encapsulation of car engines by porous screens is a technology that reduces the noise they radiate
into their environment. Currently, their use relies mostly on their ability to absorb sound when
placed inside the engine compartment, at a distance from the engine, but a new configuration that
positions them directly in contact with the engine offers several advantages. Notably, this allows
a reduction in mass and raw materials needed, but significantly alters their acoustic behaviour. In
particular, the engine temperature, applied preload, and the amount of contact between the engine
and the screen influence the acoustic behaviour of the system. This thesis aims to characterize the
porous encapsulation materials and study their acoustic behaviour in their new configuration, in
contact with a radiating surface representing the engine. This work is part of an industrial project
called SEMPAE (Simulation of engine encapsulation for external acoustics, from 2020 to 2024), which
is a collaboration between Trèves Group, an automotive equipment supplier, Renault Group, an
automotive manufacturer, ESI Group, a software publisher, and the Roberval research laboratory at
UTC.

First, various encapsulation materials, including polymer foams and fibrous materials, are charac-
terized to obtain their properties that serve as input for poroelastic models. Various characterization
methods are compared and applied. Special attention is given to the characterization of mechanical
properties, for which there are still many uncertainties.

Next, the stiffness of melamine foam compressed against a rigid surface is studied. Its relax-
ation over time is observed and modelled, highlighting the complex rheology of porous materials. Its
nonlinearity as a function of strain is accounted for, revealing the interaction between the intrinsic
nonlinearity of the material and the shape nonlinearity of a sample with a pyramidal geometry. Since
the compression stiffness of an asperity made from a porous material can be modelled, the contact
stiffness of a porous material with a rough surface can be predicted.

Finally, the reduction of the acoustic power radiated by a plate covered with a screen consisting
of a porous layer and a heavy sheet is studied. The mass-spring behaviour of the screen significantly
reduces the radiated power beyond the resonance of the system. Experimental results reveal that
by reducing the contact ratio between the screen and the plate, the resonance is shifted towards
lower frequencies, which improves the acoustic insulation of the covering. Partial contact is created
experimentally by cutting grooves into the screens, and is modelled using the parallel transfer matrix
method.
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Résumé

L’encapsulage de moteurs automobiles par des écrans poreux est une solution technologique qui sert
à réduire le bruit qu’ils rayonnent dans l’environnement. L’utilisation actuelle de ces écrans repose
principalement sur leur capacité à absorber le son lorsqu’ils sont placés à distance du moteur dans
son compartiment, mais une nouvelle configuration qui les place directement au contact du moteur
apporte plusieurs avantages. Ceci permet notamment un gain de masse et de matière première, mais
modifie significativement leur comportement acoustique. En particulier, la température du moteur,
la précontrainte appliquée, et la proportion de contact entre le moteur et l’écran pilotent le com-
portement acoustique du système. Cette thèse a pour objectif de caractériser les matériaux poreux
d’encapsulage et d’étudier leur comportement acoustique dans leur nouvelle configuration au contact
d’une surface rayonnante représentant le moteur. Ce travail s’inscrit dans un projet industriel appelé
SEMPAE (Simulation de l’Encapsulage Moteur Pour l’Acoustique Externe, de 2020 à 2024), mené
en collaboration entre le groupe Trèves, équipementier automobile, le groupe Renault, constructeur
automobile, le groupe ESI, éditeur de logiciel, et le laboratoire de recherche Roberval de l’UTC.

Dans un premier temps, plusieurs matériaux d’encapsulage, dont des mousses polymères et
des matériaux fibreux, sont caractérisés pour obtenir leurs propriétés et alimenter une modélisation
poroélastique. Les diverses méthodes de caractérisation sont comparées entre elles et appliquées. Une
attention particulière est portée à la caractérisation des propriétés mécaniques, pour lesquelles il reste
à ce jour beaucoup d’incertitudes.

Ensuite, la raideur d’une mousse en mélamine comprimée par une surface rigide est étudiée. Sa
relaxation au cours du temps est observée et modélisée, mettant en lumière la rhéologie complexe des
matériaux poreux. Sa non-linéarité en fonction de la déformation est prise en compte, permettant
de comprendre l’interaction entre la non-linéarité intrinsèque du matériau et la non-linéarité due à
la forme d’un échantillon à géométrie pyramidale. Puisque la raideur de compression d’une aspérité
composée d’un matériau poreux peut être modélisée, la raideur de contact d’un matériau poreux à
surface rugueuse peut être prédite.

La dernière partie porte sur la réduction de la puissance acoustique rayonnée par une plaque
recouverte d’un écran constitué d’une couche poreuse et d’une masse lourde. Le comportement masse-
ressort de l’écran permet une réduction significative de la puissance rayonnée au-delà de la résonance
du système. L’expérience montre qu’en réduisant la surface de contact entre l’écran et la plaque, la
résonance se déplace vers les basses fréquences, améliorant donc l’isolation acoustique de l’écran. Le
contact partiel est créé expérimentalement en rainurant les écrans et peut être modélisé par la méthode
des matrices de transfert en parallèle.
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Abbreviations

PBN Pass-By Noise
SPL Sound Pressure Level
TL Transmission Loss
IL Insertion Loss
ABIL AirBorne Insertion Loss
SBIL Solid-Borne Insertion Loss
TMM Transfer Matrix Method
PTMM Parallel Transfer Matrix Method
FEM Finite Elements Method
RVE Representative Volume Element
PUC Periodic Unit Cell
DBM Delany-Bazley-Miki model
JCA Johnson-Champoux-Allard model
JCAL Johnson-Champoux-Allard-Lafarge model
JCAPL Johnson-Champoux-Allard-Pride-Lafarge model
FSI Frame Stiffness Influence criterion
TTS Time-Temperature Superposition
WLF William-Landel-Ferry law
SEM Scanning Electron Microscope
CI Confidence Interval

Symbols

Constants and air properties

T0 Ambient temperature: T0 = 18°C= 291.2 K
P0 Atmospheric pressure: P0 = 101.3 kPa
R Ideal gas constant: R = 8.314 J K−1 mol−1

Rspecific Specific gas constant of dry air: Rspecific = 287.0 J K−1 mol−1

Pr Prandtl number: Pr = µ0cp

κ0
= 0.7107

cp Specific heat at constant pressure: cp = 1002.3 J kg−1 K−1

cv Specific heat at constant volume: cv = cp − Rspecific = 715.3 J kg−1 K−1

γ0 Heat capacity ratio of air: γ = cp

cv
= 1.401

ρ0 Air density: ρ0 = P0
RT = 1.212 kg m−3

c0 Speed of sound in air: c0 =
√

K0
ρ0

=
√

γ0RT = 342.2 m s−1

K0 Isostatic bulk modulus in air: K0 = γ0P0 = ρ0c2
0 = 1.42 × 105 Pa

Z0 Characteristic impedance of air: Z0 = ρ0c0 = 414.9 kg s−1 m−2

µ0 Dynamic viscosity: µ0 = 1.84 × 10−5kgm−1 s−1 or N s m−2
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ν0 Kinematic viscosity of air: ν0 = µ0
ρ0

= 1.518 × 10−5 m2 s−1

κ0 Thermal conductivity of air: κ0 = 0.256 W m−1K−1

δ0 Thickness of a fluid’s viscous boundary layer, which is frequency-dependant: δ0 =√
2µ0
ωρ0

(m)
δ′

0 Thickness of a fluid’s thermal boundary layer which is frequency-dependant: δ′
0 =

δ0√
Pr =

√
2K0

ωρ0cp
.

General symbols

∇ Gradient operator
∇· Divergence operator
∇2 Laplacian operator
N Number of terms used in a model
i, j Indices, when used as subscripts
j Imaginary number (j2 = −1)
f Frequency (Hz)
ω Angular frequency (rad s−1)
A Amplitude of a periodic signal or wave
θ Angle (°, rad)
p Pressure of a wave propagating in a fluid (Pa)
v Velocity of a wave propagating in a fluid (m s−1)
u Displacement of a wave propagating in a fluid (m)
k Wavenumber inside a fluid (m−1)
c Wave velocity inside a fluid (m s−1)
K Bulk modulus of a fluid (Pa)
ρ Density of a fluid (kg m−3)
Y (t) Heaviside step function
J Cost function in an optimization problem
β Set of several parameters used in a minimization problem

Transfer Matrix dimensions

α Absorption coefficient (-)
αd Diffuse field absorption coefficient (-)
R Reflection coefficient of a system (-)
T Transmission coefficient of a system (-)
Zs Surface impedance at the surface of a system (kg s−1 m−2)
vn Normal velocity of a wave at the surface of a system (m s−1)
Zt Transfer impedance at the surface of a system (kg s−1 m−2)
vp Velocity of a radiating surface (m s−1)
σr Radiation efficiency of a system (-)
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{V } State vector inside a medium in TMM
[Ti] Transfer matrix relating the state vector at the start and at the end of a medium
[Iij ] Interface matrix relating the state vectors between two media, corresponding to the

medium downstream from the propagation
[Jij ] Interface matrix relating the state vectors between two media, corresponding to the

medium upstream of the propagation
[D] Matrix representing the complete TMM system, without boundary conditions
[D′] Matrix representing the complete TMM system, with boundary conditions

Transport parameters and equivalent fluid properties

ρ̃eq Equivalent density of a fluid occupying the volume of the pores of a porous medium
(kg m−3)

K̃eq Equivalent bulk modulus of a fluid occupying the volume of the pores of a porous
medium (Pa)

ρ̃f Equivalent density of a fluid occupies the entire volume of a biphasic porous medium
(kg m−3)

K̃f Equivalent bulk modulus of a fluid occupies the entire volume of a biphasic porous
medium (Pa)

c̃eq Equivalent wave velocity in an equiavlent fluid (m s−1)
k̃eq Equivalent spatial wavenumber in an equiavlent fluid (m−1)
Z̃eq Equivalent impedance of an equiavlent fluid (kg s−1 m−2)
α̃ω Dynamic tortuosity of an equivalent fluid (-)
ϕ Open porosity (-)
α∞ High frequency limit of the tortuosity, or geometric tortuosity (-)
σ Viscous airflow resistivity (N s m−4)
q0 Viscous airflow permeability (m2)
R Airflow resistance (N s m−3)
Λ Viscous characteristic length (m)
Λ′ Thermal characteristic length (m)
q′

0 Static thermal permeability (m2)
α0 Static viscous tortuosity (-)
α′

0 Static thermal tortuosity (-)
M Viscous shape factor of the pores (-)
r Porous material pore radius (m)
σs Average pore radius when assuming a log-normal size distribution (m)
s̄ Pore radius standard deviation when assuming a log-normal size distribution (m)
f0 Transition frequency between low frequency and high frequency viscous effects, based

on pore dimensions (Hz)
f ′

0 Transition frequency between low frequency and high frequency thermal effects, based
on pore dimensions (Hz)
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fv Transition frequency between low frequency and high frequency viscous effects, inde-
pendently of pore dimensions (Hz)

ft Transition frequency between low frequency and high frequency thermal effects, inde-
pendently of pore dimensions (Hz)

General mechanical properties

E Young’s modulus (Pa)
Ẽ Complex and frequency dependant modulus (Pa)
E′ Storage modulus (Pa)
E′′ Loss modulus (Pa)
G̃, Ñ Complex and frequency dependant shear modulus (Pa)
G′ Shear storage modulus (Pa)
G′′ Shear loss modulus (Pa)
E∗ Effective elastic modulus (Pa)
φ Loss angle, or phase lag, between stress and strain (rad, °)
η Loss factor (-)
τ Material exponential decay relaxation time (s)
ν, ν̃ Poisson ratio (-)
fr Quarter-wavelength frequency inside a poroelastic layer (Hz)
Jel Elastic volume ratio (-)
Esec Secant modulus, defined as the ratio of stress over strain (Pa)
Etan Tangent modulus, defined as the derivative of stress with respect to strain (Pa)
Es Energy absorption efficiency (-)

Viscoelasticity parameters

Ei Modulus of index i in the rheological representation of a viscoelastic model (Pa)
ηi Viscosity of index i in the rheological representation of a viscoelastic model (-)
τi Relaxation time of index i in the rheological representation of a viscoelastic model (s)
Tg Glass transition tempearature of a medium (K, °C)
aT Frequency multiplication coefficient when performing TTS
TR Reference temperature when performing TTS (K, °C)
T0 Target temperature to which to shift frequency-dependant data when performing TTS,

or measurement temperature (K, °C)
C1, C2 WLF coefficients
Ea Material activation energy for flow (J mol−1)
Ed Energy dissipated by a viscoelastic material during a cyclical loading period (J)
a Ageing parameter of the ageing model (-)
r Rejuvenation parameter of the ageing model (-)
f Fluidity term of the ageing model (s−1)
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αi, µi, νi Hyperfoam parameters of index i ≥ 1 (-, Pa, -)

Biot properties

ρ1 Material skeleton density, also known as the true bulk density, equal to the porous
material density in vacuo (kg m−3)

ρs Density of the solid phase of the material (kg m−3)
ρ̃limp Equivalent fluid density when using the limp approximation (kg m−3)
ρ̃t Apparent density of the fluid phase with the limp hypothesis (kg m−3)
vs

x Velocity of the compression wave in the solid phase of a poroelastic medium (m s−1)
vs

y Velocity of the shear wave in the solid phase of a poroelastic medium (m s−1)
vf

x Velocity of the compression wave in the fluid phase of a poroelastic medium (m s−1)
σs

x Stress of the compression wave in the solid phase of a poroelastic medium (Pa)
σxys Stress of the shear wave in the solid phase of a poroelastic medium (Pa)
σf

x Stress of the compression wave in the fluid phase of a poroelastic medium (Pa)
σt Total stress tensor in a biphasic porous medium
σf Stress tensor in the fluid phase of a biphasic porous medium
σs Stress tensor in the solid phase of a biphasic porous medium
εf Strain tensor inside the fluid phase
εs Strain tensor inside the solid phase
uf Displacement vector in the fluid phase (m)
us Displacement vector in the solid phase (m)
[H̃E ] Elasticity matrix of the skeleton
[H̃R] Elasticity matrix of the fluid
[H̃Q] Strain coupling matrix between the solid and fluid phases
K̃b Bulk modulus of the porous material (Pa)
K̃s Bulk modulus of material constituting the skeleton (Pa)
K̃c Bulk modulus of the skeleton in vacuo (Pa)
ρ12 Apparent density caused by the added inertia due to the material tortuosity (kg m−3)
ρ11 Apparent density of the solid phase of the material (kg m−3)
ρ22 Apparent density of the fluid phase of the material (kg m−3)
δ1, δ2 Wavenumbers of the compression waves 1 and 2 (m−1)
δ3 Wavenumber of the shear wave 3 (m−1)
ξ1, ξ2 Velocity ratio of the fluid over the velocity of the frame for the Biot compression waves

1 and 2 (sometimes written µ1 and µ2 in the literature) (-)
ξ3 Velocity ratio of the fluid over the velocity of the frame for the Biot shear wave 3

(sometimes written µ3 in the literature) (-)
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Material dimensions

h Material sample height or width (m)
S Sample cross-section area (m2)
D Diameter of a cylindrical sample, and diameter of the impedance tube (m)
l Porous cell strut length (m)
w Porous cell strut width (m)
t Porous cell strut average thickness (m)
h0 Porous material cell height (m)
Spyr Pyramid cross-section area throughout its height (m2)
w Length of the side of the cross-section area of a pyramid throughout its height
w0 Length of the side of the flat surface area at the tip of a pyramid
Rasp Curvature radius of spherical asperities in the Greenwood-Williamson surface roughness

model (m)
Nasp Number of asperities on a rough surface in the Greenwood-Williamson surface rough-

ness model
ms Surface mass density of a heavy layer(kg m−2)

Characterization bench and measurement setup related properties

L Length of the impedance tube (m)
s Spacing between the two microphones placed upstream from a sample in an impedance

tube (m)
Hij Transfer function between microphones i and j (-)
Vsample Total volume of a porous sample (m3)
Vf Fluid phase volume of a porous sample (m3)
Vs Solid phase volume of a porous sample (m3)
Vt Volume of a porosity measurement tank (m3)
Mn Slope of the squared refractive index of a porous medium as a function of f− 1

2

Dp Penetration depth of an acoustic wave inside a porous material (wave amplitude divided
by a factor 20) (m)

m Slope of Σ = ϕ
ρ0

[Re(ρ̃eq) + Im(ρ̃eq)] as a funcion of ω−3/2

fmin, ωmin Minimum frequency / angular frequency required to perform a high-frequency asymp-
totic approximation on Σ = ϕ

ρ0
[Re(ρ̃eq) + Im(ρ̃eq)] (Hz, rad s−1)

Q Volumetric flow rate of a fluid (m3 s−1)
∆P Difference in air pressure upstream and downstream from a porous sample obstructing

a flow (Pa)
∆Pc Difference in air pressure upstream and downstream from a calibrated airflow resistance

sample obstructing a flow (Pa)
Rc Airflow resistance of a calibrated airflow resistance sample obstructing a flow (N s m−3)
H(ν) Function relating a sample’s stiffness to its shape, its modulus and its Poisson ratio (-)
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s Sample shape factor, equal to the ratio of its diameter over its height (-)
Sp Surface area of a radiating surface (m2)
Πvib Vibrational power of a plate (W)
Πrad Radiated acoustic power (W)
Πinj Injected power into a system (W)
vibIL Insertion Loss at constant vibrational power
F Measured force (N)
δ Compression distance of a sample (m)
δerr Error on the compression distance of a sample stemming from the wrong determination

of its height (m)

Time convention e−jωt is used.
Variables written with the tilde diacritic˜are complex and frequency dependant.
Tensors are written in boldface.
Some numerical values have been hidden from the published version of this document for confidentiality
reasons.
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Preamble

Context

Vehicle noise constitutes a significant source of annoyance in densely populated urban areas. In the
Île-de-France region in France, which encompasses Paris, a 2021 survey [1] revealed that road noise
represents the biggest source of annoyance for 47 % of residents, followed by pedestrian behaviour for
20 % of the population. When residents are at home, it becomes the predominant source of annoyance
for 30 % of people, followed by neighbourhood noises for 25 % of people. Exposure to excessive noise
levels is harmful to human health, and is associated with greater risks of developing cardio-metabolic
diseases such cardiac disorders, diabetes, hypertension, and heart attacks. According to the noise
observatory Bruitparif, residents of the Île-de-France region lose 7 months of healthy life due to noise
pollution from transportation, which leads to stress, hypertension, sleep disorders, and cardiovascular
issues [2]. Furthermore, noise was identified as the second most harmful environmental factor after air
pollution by the OMS [3], and causes 12 000 premature deaths every year in Europe, while exposing
around 20 % of its population to harmful levels.

Consequently, the economic toll associated with noise pollution is substantial. In France, the cost
of noise to society was estimated at 147.1 billion euros [4]. This cost incorporates non-merchant as-
pects, such as the impact on individuals such as annoyance, sleep deprivation, psychological illnesses,
and learning difficulties. It also incorporates merchant costs, which include productivity loss, indem-
nities, hospitalizations, medicine, real estate depreciation, and costs of noise fighting programmes. A
breakdown of these costs is shown in Figure 1.

Many standardization organizations and governing bodies have instituted regulations addressing
the sound levels of vehicles, such as ISO standards, SAE standards, and others [5]. The United Nations
Economic Commission for Europe (UNECE) has established European regulation 51, concerning the
Pass-By Noise (PBN) of four-wheeled vehicles, as a measure to combat against excessive road traffic
noise. Over time, this regulation has been revised, leading to a reduction of the maximum allowed
pass-by noise level from 82 dBA in 1970 to 68 dBA in 2024 [6, 7], as illustrated in Figure 2. In practical
terms, this is equivalent to a single car in 1970 being allowed the noise level of thirty cars in 2024.
Furthermore, this regulation was recently reviewed to improve the urban soundscape by changing the
measurement procedure and reducing the allowed PBN from 72 dBA in 2016 to 68 dBA in 2024. The
new regulation, denoted as 51.3, supersedes its predecessor 51.2, by modifying the PBN measurement
protocol and reducing the maximum allowed level. As a consequence, the automotive industry is
consistently seeking innovative and efficient ways to diminish the acoustic emissions of their vehicles.

| 1
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Figure 1. Yearly cost of noise to society in France, from reference [4].

Engine encapsulation

Cars contain several noise sources that can be addressed to reduce their overall noise radiation. Tyre
noise is a major source of noise, especially as a car’s speed increases. It can be radiated outwards from
the vibration of the tyre sidewalls, or be transmitted into the cabin through solid-borne propagation.
Reducing tyre noise is a challenging task because it often has adverse effects on fuel consumption
and driving safety. Exhaust noise is another significant source of noise, yet thanks to advancements
in exhaust silencers, it is quite well controlled in modern vehicles. Aerodynamic noises become pre-
dominant as a car’s speed increases, and present a major difficulty to be controlled. Finally, engine
noise is predominant at low car speeds, and serves as the focal point of this research project. Some
car noise sources are illustrated in Figure 3, and the contribution of different noises for varying car
speeds is shown in Figure 4. Generally, it is accepted that tyre rolling noise is the predominant noise
source in pass-by noise tests, representing the majority of the radiated noise. Consequently, due to
the ongoing difficulty of reducing tyre rolling noise, strong constrains are placed on reducing the other
noise sources. Altogether, it is important to keep in mind that due to the masking effect of sound,
each of these noise sources should be targeted independently to achieve an overall reduction of the
noise level.

The reduction of combustion engine noise can be achieved through encapsulation with poroelastic
materials. These materials have many practical applications thanks to their high porosity, flexibil-
ity, and damping, and are used as a passive solution in many industries, including the construction,
aeronautic, and automotive industries. They have demonstrated their efficacy in shock absorption in
packaging [10, 11] and impact damping [12, 13], possibly associated with a structure [14, 15]. Fur-
ther, as components of multilayer panels, they contribute significantly to vibration reduction [16] and
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acoustic insulation [17, 18, 19, 20, 21]. Porous screens are also used to provide radiation attenuation
of vibroacoustic sources [22, 23, 24, 25].

The ECoBEx project, acronym for "Optimized screens for external noise" (or "ÉCrans optimisés
pour le Bruit Extérieur"), and run from 2014 to 2017, demonstrated the effectiveness of porous screens
in reducing the noise radiated by engines [26]. Porous screens have two main acoustic roles in en-
gine encapsulation. First, they absorb the energy of impinging sound waves thanks to their internal
dissipation properties. Second, they create an insulation barrier between the acoustic source and the
outside environment, by taking advantage of the mass or of the spring-mass-like behaviour. For high
cover rates of the porous screens around the acoustic source (above 50 % approximately [27]), it much
more advantageous to exploit the insulating behaviour of the screens rather than their absorbing prop-
erties. The ECoBEx project studied the case of thermocompressed screens of varying thickness placed
around the engine bay, such as hood liners and dashboard insulators, which leveraged the absorption
performance of these porous screens. A thermocompressed porous hood liner and dashboard insulator
are pictured in Figure 5.

An alternative setup to the solutions proposed by the ECoBEx project involves placing the porous
screens in direct contact with the engine, which offers several advantages. First, the reduced surface
area to cover reduces the required volume of screens, which reduces manufacturing costs and primary
goods consumption. Second, the reduced volume of the screens contributes to weight reduction and
positively impacts fuel consumption. Third, positioning the screens closer to the acoustic source and
the ability to achieve very high cover rates of the engine reduce the risks of acoustic leaks. Some
examples of porous encapsulation screens are presented in Figure 6. These screens are mounted
around various parts of the engine and have the ability to follow their geometry closely, resulting in
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Figure 5. ECoBEx poroelastic screens used for automotive applications, from reference [26]. (a) A
hood liner, and (a) a dashboard insulator.

high contact areas. They are often held in place by tuckers, which are solid pieces that clip onto the
engine and compress the porous screens in place.

This new configuration offers several advantages, however it also changes the acoustic behaviour
of the screens. Instead of being driven by their absorption capabilities, the screens’ behaviour is now
driven by their acoustic insulating capabilities, where a mass-spring behaviour can be taken advantage
of. Furthermore, the acoustic behaviour of the screens is significantly altered by the direct transmission
of solid-borne engine vibrational waves. The SEMPAE project, acronym for "Simulation of engine en-
capsulation for exterior acoustics" (or "Simulation d’Encapsulage Moteur Pour l’Acoustique Externe"),
focuses on studying and enhancing engine encapsulation technology for encapsulation materials placed
directly in contact with the engine. This project was run from 2020 to 2024, and its ultimate goal is
to produce a numerical prediction of the pass-by noise level contribution of a car engine encapsulated
by porous screens. As a note, although this project was conceived mostly to treat combustion engine
noise, acoustic encapsulation is also applited to electric vehicle motors, due to higher frequency tonal
electric noise and mechanical noise sources from the gear motor.
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Figure 6. Possible encapsulation components of a car engine using poroelastic screens [28].

Framework of the SEMPAE project

The SEMPAE project is a collaboration between three companies, Renault Group, ESI Group, and
Trèves Group, and the Roberval research laboratory. Renault Group is a leading car manufacturer
with expertise in measuring and characterizing the acoustic radiation of bare and encapsulated engine
components. Additionally, they are equipped to perform standardized PBN measurements on real
vehicles. Trèves Group is an automotive supplier specializing in manufacturing underbody, boot,
engine and car interior trim porous materials, including encapsulation screens. Furthermore, as head
coordinator of the SEMPAE project, they provided the technical specifications for the experimental
and numerical investigations. They measured the sound radiation of a real engine casing part to
evaluate the impact of the screens, and correlated the findings with a full numerical model of the
experimental setup. ESI Group is a software publisher specializing in mechanical, acoustic, and crash
test numerical simulations. Their objective was to numerically predict the radiated noise of the
encapsulated engine. However, they withdrew from the project midway, and the numerical modelling
was resumed by Trèves Group. As a result, part of the thesis work was redirected to a more academic
investigation about compression of porous material with asperities in collaboration with colleagues
from the ISAE-Supméca Quartz laboratory.

Finally, the Université de technologie de Compiègne (UTC) Roberval research laboratory performs
numerical and experimental multi-physics work, with proficiency in acoustics, vibrations, material be-
haviour and computational mechanics. The PhD work presented in this dissertation was hosted by
the Roberval laboratory, and its research was focused on characterizing and modelling of the encapsu-
lation materials. The objectives of this thesis were to synthesize and challenge porous characterization
methods to apply them to the encapsulation materials, and to identify the modelling approaches that
best capture material behaviour. The initial project organization is illustrated in Figure 7.
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Figure 7. Diagram of the initial organization of the SEMPAE project.

Objectives of the thesis and structure of the document

The focus of PhD research conducted within the SEMPAE project centred on the characterization
and the modelling of engine encapsulation materials placed in contact with the engine. While many
methods are available to characterize porous materials, the absence of robust methods for certain
properties, notably mechanical properties, poses a challenge, and the characterization of some encap-
sulation materials can be particularly tricky, because of their inhomogeneity and high resistivity for
example. Moreover, the placement of the porous screens in contact with the engine raises questions
about their behaviour. For instance, the mechanical preload applied onto the material also affects its
mechanical properties and the amount of contact it has with the engine, which is crucial in determining
the acoustic insulation efficiency. This partial contact can arise due to the complex engine geometry
and to the uneven surface of the encapsulation material. These are some of the subjects that needed
to be explored to meet the objectives of the SEMPAE project.

This document is structured as follows. First, an overview of the state of the art of porous
materials modelling is given in Chapter 1. Next, porous material characterization methods are inves-
tigated and applied to encapsulation materials in Chapter 2, in order to determine the capabilities
and limits of existing methods and the conditions for obtaining the best results on real non-ideal ma-
terials. Equivalent fluid transport parameters as well as mechanical parameters are obtained. Then,
the partial contact due to the compression of macroscopic asperities of a rough porous surface, as
well as material nonlinearity and relaxation, are studied in detail in Chapter 3. This sheds light on
the influence of the static preload on the material’s mechanical behaviour, notably for small displace-
ments where the roughness asperities are compressed before the bulk material behaviour. Finally, the
reduction of the noise level of a radiating plate covered by a porous screen with partial contact is
investigated in Chapter 4. Conclusions and perspectives are given at the end of this document in the
General conclusion.



Chapter 1. State of the art of porous media
modelling

1 | Introduction

Porous media have a complex microstructure which gives them interesting characteristics. Due to
this biphasic nature, composed in part of a solid phase, and in part of a fluid phase saturating the
material’s pores, simplifying assumptions about the way waves propagate within them are made to
model their behaviour. In this chapter, a bibliography of models and methods used to predict the
acoustic behaviour of porous media is presented. These bibliographical elements and methods are
commonly used when studying porous materials.

Predicting the acoustic behaviour of a porous medium is done using the biphasic Biot model,
which accounts for waves propagating in its solid and fluid phases, and is presented in Section 2. The
Biot model couples the behaviour of these two distinct phases which each contribute to dissipating
energy through damping. The solid phase can thus be modelled using a viscoelastic model, as explained
in Section 3, and the fluid phase using an equivalent fluid model, as presented in Section 4. To quickly
predict the acoustic behaviour of one-dimensional arrays of porous layers by incorporating the Biot
model, a simple solution called the transfer matrix method is presented in Section 5, and is used
to showcase the differences between the existing models in Section 6. Finally, a common method to
experimentally measure the behaviour of porous materials is presented using an impedance tube is
presented in Section 7.

2 | Wave propagation in poroelastic media

2.1 | Biphasic nature of porous media

A porous material consists of two phases: a solid phase, also known as the skeleton or the frame, and
a fluid phase filling the pores, composed of air in our case. These are shown in Figure 1.1(a). Among
porous materials, we can distinguish foams with a polymer skeleton, such as polyurethane foam and
melamine foam for instance, fibrous materials composed of tangled fibres, such as glass wool, rock
wool, and biomaterials, and granular materials consisting of particles in contact, such as sand and
powders.

The propagation of an impinging acoustic wave through a porous media results in viscous and
thermal energy dissipation effects. A first source of dissipation is the skeleton’s viscoelastic behaviour
which mechanically dissipates energy during loading-unloading cycles, which is the strongest around
the skeleton’s resonance frequencies [29]. Another source of dissipation is the viscosity of the fluid
moving inside the pores rubbing against the skeleton. The final source of dissipation is the thermal
gradient created by the pressure wave exchanging thermal energy with the skeleton. The dissipative
behaviour of porous materials combined with their light weight and flexibility makes them highly
attractive for many applications.

| 7
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Solid phase Fluid phase

Closed porosity Open porosity(a) (b)
λ

RVE
Figure 1.1. (a) Representation of the biphasic nature of a porous material. (b) The Representative

Volume Element (RVE) must be much smaller than the wavelength.

The propagation of waves through a porous medium can be modelled at varying levels of com-
plexity, from modelling only the acoustic wave in the fluid phase to accounting for the multiple waves
propagating through the fluid and the skeleton. The hypothesis of material homogeneity is commonly
assumed for their modelling. This is done by estimating the Representative Volume Element (RVE)
of the material, which is the smallest volume in which the material properties can be considered ho-
mogeneous and representative of the entire medium. The homogeneity hypothesis postulates that the
wavelength of the waves is much larger than the RVE, for both the skeleton and the fluid filling the
pores, as shown in Figure 1.1(b). This allows the homogenization principle to be applied. It is also
required that the RVE be statistically representative of the material as a whole. For example, Nguyen
et al. [30] find that this is valid when the RVE contains more than approximately 10 pore diameters.
Models used in this work to model porous materials presented below are based on this homogenization
hypothesis.

2.2 | Poroelastic Biot-Allard Model

2.2.1 |Origins and base formulation

The question of acoustic wave propagation in porous media was studied by Beranek in 1947 [31] and
Zwikker and Kosten in 1949 [32]. The models they proposed were limited in material types, frequency
range and geometry. Then, Biot proposed a model in 1956 [33, 34, 35], which was initially developed
for geological applications and oil prospection. It caused some controversy when it was published, first
because the theory of homogenization had not been invented yet [36], and second because the slow
compression wave it predicted had been too difficult to measure in low and high frequencies until 1980
[37]. Lakes [38] examines the validity of classical elasticity when applied to porous media, finding that
Cosserat elasticity may give better predictions. Biot’s theory was then applied to acoustics by Allard
in 1993 [39] by integrating the work done by Johnson [40], Champoux and Allard [41], and Lafarge
[42] into the Biot model, into what is sometimes called the Biot-Allard theory.

The Biot model considers the biphasic medium as the superposition of two coupled media oc-
cupying the volume, which are the viscoelastic solid and the fluid phases. The observation scale is
considered much larger relative to the RVE, so the observed dimensions are statistically averaged over
the RVE, a condition required for the stress-strain relations to be valid [43]. The Biot model relies
on continuous media mechanics formalism with a small strains hypothesis and a linear stress-strain
relationship.

The Biot model expresses the total stress tensor σt as the sum of the stress tensor in the fluid
σf and the skeleton σs:

σt = σf + σs. (1.1)
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The fluid stress tensor σf contains only compressive pressures and is related to the fluid pressure p,
whereas the skeleton stress tensor σs contains shear and compressive stresses. They are given by

σf =




−ϕp 0 0
0 −ϕp 0
0 0 −ϕp


 , σs =




σs
11 σs

12 σs
13

σs
21 σs

22 σs
23

σs
31 σs

32 σs
33


 . (1.2)

The porosity ϕ represents the ratio of fluid volume to the total porous material volume [44]:

ϕ = Vair

Vt
. (1.3)

In the fluid and the skeleton, the compressive strain εii and shear strain εij are related to the
displacement u by

εii = ∂ui

∂xi
, εij = 1

2

(
∂ui

∂xj
+ ∂uj

∂xj

)
. (1.4)

Because the stress tensors are symmetric, they can be written using Voigt notation:

{σs} = (σs
11, σs

22, σs
33, σs

12, σs
23, σs

31)T , {σf } = (−ϕp, − ϕp, − ϕp, 0, 0, 0)T . (1.5)

Voigt notation is also used for strain tensor representation

{εs} =





εs
11

εs
22

εs
33

2εs
12

2εs
23

2εs
31





=




∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
0 ∂

∂x3
∂

∂x2
∂

∂x3
0 ∂

∂x1








us
1

us
2

us
3





, {εf } =





εs
11

εs
22

εs
33

2εs
12

2εs
23

2εs
31





=




∂
∂x1

0 0
0 ∂

∂x2
0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0
0 ∂

∂x3
∂

∂x2
∂

∂x3
0 ∂

∂x1








uf
1

uf
2

uf
3





. (1.6)

Next, the stress-strain relationship in Biot’s theory is given as:




{σs} = [H̃E ]{εs} + [H̃Q]{εf }
{σf } = [H̃Q]{εs} + [H̃R]{εf },

(1.7)

where [H̃E ] is the elasticity matrix of the skeleton, [H̃R] the elasticity matrix of the fluid and [H̃Q] is
strain coupling matrix between the phases. When the material is isotropic, they are expressed as

[H̃R] =




R̃ R̃ R̃ 0 0 0
R̃ R̃ R̃ 0 0 0
R̃ R̃ R̃ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, [H̃Q] =




Q̃ Q̃ Q̃ 0 0 0
Q̃ Q̃ Q̃ 0 0 0
Q̃ Q̃ Q̃ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




. (1.8)

Biot performed two thought experiments ("gedanken" experiments) to find expressions for the elastic
coefficient R̃ and the coupling coefficient Q̃. When the bulk modulus of the porous material K̃b is
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much smaller than the bulk modulus of the elastic material of the skeleton K̃s, R̃ and Q̃ are given as

R̃ = ϕ2K̃eq, (1.9)

Q̃ = (1 − ϕ)ϕK̃eq, (1.10)

where K̃eq is the fluid phase’s equivalent bulk modulus, which is complex and frequency dependant
representing its dissipative properties. Next, the elasticity matrix of the skeleton [H̃E ] is

[H̃E ] =




P̃ Ã Ã 0 0 0
Ã P̃ Ã 0 0 0
Ã Ã P̃ 0 0 0
0 0 0 Ñ 0 0
0 0 0 0 Ñ 0
0 0 0 0 0 Ñ




=




Ã Ã Ã 0 0 0
Ã Ã Ã 0 0 0
Ã Ã Ã 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




+




2Ñ 0 0 0 0 0
0 2Ñ 0 0 0 0
0 0 2Ñ 0 0 0
0 0 0 Ñ 0 0
0 0 0 0 Ñ 0
0 0 0 0 0 Ñ,




(1.11)

where the elastic coefficient P̃ is related to Ã and Ñ by

P̃ = Ã + 2Ñ. (1.12)

By performing a third thought experiment, Biot shows that Ñ corresponds to the shear modulus G̃

of the solid phase, also sometimes called the second Lamé coefficient µ in the literature:

Ñ = Ẽ

2(1 + ν) . (1.13)

It is related to the bulk modulus by K̃b = 2Ñ(1+ν)
3(1−2ν) . Ã corresponds to the first Lamé coefficient, also

written λ in the literature:
Ã = νẼ

(1 + ν)(1 − 2ν) + Q̃2

R̃
. (1.14)

In these expressions, ν is the Poisson ratio and Ẽ is the elastic Young’s modulus, which can
be complex and frequency dependant. By using Lagrange’s equation and by introducing a viscous
dissipation function, Biot finds the following equation of motion





∇ · σ̃s = ρ11
∂2{us}

∂t2 + ρ12
∂2{uf }

∂t2 + b̃
(

∂{us}
∂t − ∂{uf }

∂t

)

∇ · σ̃f = ρ12
∂2{us}

∂t2 + ρ22
∂2{uf }

∂t2 + b̃
(

∂{uf }
∂t − ∂{us}

∂t

) , (1.15)

where ∇· is the divergence and t is the time variable. The apparent density ρ12 is the added inertia due
to tortuosity, and ρ11 and ρ22 are the apparent densities of the solid and fluid phases of the material.

ρ12 = −ϕρ0(α∞ − 1), (1.16)

ρ11 = ρ1 − ρ12, (1.17)

ρ22 = ϕρ0 − ρ12, (1.18)

where ρ0 is the density of the surrounding fluid and ρ1 is the bulk density of the porous material in
vacuo, also known as the true bulk density:

ρ1 = (1 − ϕ)ρs, (1.19)
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where ρs is the density of solid phase of the material.
Finally, by combining the equations of motion with the stress-strain relationship, the Biot model

equations are found:




−ω2ρ̃11{us} − ω2ρ̃12{uf } = Ñ∇2{us} + (P̃ − Ñ)∇2 · {us} + Q̃∇2 · {uf }
−ω2ρ̃12{us} − ω2ρ̃22{uf } = Q̃∇2 · {us} + R̃∇2 · {uf }.

(1.20)

The apparent Biot densities are enriched with the viscous dissipative effects through the coefficient b̃,
yielding the inertial coefficients ρ̃11 for the solid phase, ρ̃22 for the fluid phase, and ρ̃12 for the coupling:

ρ̃11 = ρ11 − j
b̃

ω
, (1.21)

ρ̃22 = ρ22 − j
b̃

ω
, (1.22)

ρ̃12 = ρ12 + j
b̃

ω
, (1.23)

Additionally, the viscous damping coefficient b̃, which was initially chosen as a real constant by
Biot, can be given a frequency dependant expression using an equivalent fluid model that represents
the dissipation inside the fluid phase. For example, using the parameters of the JCA motionless
skeleton equivalent fluid model described in Section 4.3.3, b̃ can be expressed as

b̃ = ϕ2σ

√
1 + jω

M

2
α∞ρf

ϕσ
, (1.24)

where the shape factor M is given by
M = 8α∞µ

σϕΛ2 . (1.79)

α∞ is the high frequency limit of the tortuosity, σ is the airflow resistivity, and Λ is the viscous
characteristic length described in Section 4.2. The ratio of the velocity of the fluid over that of the
frame for the compression waves, ξ1 and ξ2, and the for the shear wave, ξ3, are

ξ1 = P̃ δ2
1 − ρ̃11ω2

ρ̃12ω2 − Q̃δ2
1

, (1.25)

ξ2 = P̃ δ2
2 − ρ̃11ω2

ρ̃12ω2 − Q̃δ2
2

, (1.26)

ξ3 = Nδ2
3 − ω2ρ̃11
ω2ρ̃22

. (1.27)

The complex wavenumbers of the two compression waves δ1 and δ2, and the wavenumbers of the shear
wave δ3 are

δ1 =
√

ω2

2(P̃ R̃ − Q̃2)

(
P̃ ρ̃22 + R̃ρ̃11 − 2Q̃ρ̃12 −

√
ξ
)
, (1.28)

δ2 =
√

ω2

2(P̃ R̃ − Q̃2)

(
P̃ ρ̃22 + R̃ρ̃11 − 2Q̃ρ̃12 +

√
ξ
)
, (1.29)

δ3 =
√

ω2

Ñ

ρ̃11ρ̃22 − ρ̃2
12

ρ̃22
, (1.30)
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where
ξ =

((
P̃ ρ̃22 + R̃ρ̃11 − 2Q̃ρ̃12

)2
− 4

(
P̃ R̃ − Q̃2

) (
ρ̃11ρ̃22 − ρ̃2

12
))

. (1.31)

As a result of Equation 1.20, the Biot model describes three coupled waves propagating within a
homogenized biphasic medium: two compression waves, one which propagates mostly in the skeleton
and one which propagates mostly in the fluid, and a shear wave. For normal incidence waves, no shear
wave propagates in the medium.

2.2.2 |Different formulations

Different formulations of the Biot model exist. The formulation in Equation 1.20 starts with the solid
and fluid phase stress tensors σs and σf to obtain a state vector containing the three solid phase
displacements {us} and three fluid phase displacements {uf }. Biot suggested a new formulation in
1962 [45] starting from the total stress tensor σt and the fluid pressure p to obtain a state vector
containing {us} and {w} = ϕ

(
{uf } − {us}

)
. A formulation by Dazel et al. [46] obtains a state vector

containing the total displacement {ut} and the skeleton displacement {us}, resulting in simplified
equations without any further assumptions.

Another commonly used formulation consists in using a state vector containing the solid phase
displacement {us} and the fluid pressure p [47, 48]. As a result of this formulation, only four degrees
of freedom are used instead of six, which is advantageous for accelerating FEM computations [49].
This formulation gives the following equations:





∇ · σ̂({us}) + ω2ρ̃{us} + γ̃∇p = 0
∇2p + ω2 ρ̃22

R̃
p − ω2γ̃ ρ̃22

ϕ2 ∇ · {us} = 0,
(1.32)

where the fluid phase equivalent properties ρ̃eq and K̃eq are related to ρ̃22 and R̃ by

ρ̃22 = ϕ2ρ̃eq, (1.33)

R̃ = ϕ2K̃eq. (1.34)

σ̂ is the stress tensor of the skeleton in vacuum, and

γ̃ = ϕ

(
ρ̃12
ρ̃22

− R̃

Q̃

)
, (1.35)

ρ̃ = ρ̃11 − ρ̃2
12

ρ̃22
. (1.36)

The implementation of the Biot model in a FEM model can be quite expensive numerically.
[19, 50, 51, 52] discuss FEM meshing criteria needed for numerical convergence, finding that up to
12 elements per the smallest wavelength are required. The implementation of the Biot model using the
Transfer Matrix Method (TMM) is described by Brouard et al. [53], and is explained in Section 5.2.
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2.2.3 |Material parameters used by the Biot model and anisotropy

The Biot model incorporates an equivalent fluid model for the fluid phase and viscoelastic properties
for the solid phase. The equivalent fluid model is contained inside the fluid’s complex and frequency
dependant density ρ̃eq and bulk modulus K̃eq. The mechanical viscoelastic parameters needed are
presented here.

The Young’s modulus Ẽ (Pa) is required, which is complex and frequency-dependant: Ẽ =
E′ + jE′′ = E′(1 + jη). E′ is called the storage modulus and E′′ is called the loss modulus. The shear
modulus G̃ is also complex and frequency dependant: G̃ = G′ + jG′′ = G′(1 + jη). Second, the loss
factor η (-) is the ratio of the loss modulus over the storage modulus: η = G′′

G′ = E′′

E′ = tan φ, where φ

is the loss angle, or phase lag, between stress and strain, with 0 < φ < π/2. The Poisson ratio ν (-)
which relates the Young’s modulus and the shear modulus is also complex and frequency dependant:
ν̃ = ν ′ + jν ′′. It is often close to ν = 0 for fibrous media, and closer to 0.44 for polymer foams due to
their microstructure [54, 55, 56], while it is close to 0.3 for the polymer material itself.

A summary of Poisson ratio values for a wide range of materials can be found in [57]. In reality,
its value depends on material microstructure, nonlinearity, time-dependent relaxation, inhomogeneous
strain field, and amplitude and frequency of excitation (or strain rate) undergone by the material.
For example, numerical computations of the Young’s modulus on cellular structures find that they are
nearly incompressible (ν ≈ 0.5) at small strains [54], however the cell struts begin to buckle as the strain
increases which modifies the Poisson effect. Mott and Roland [58] show that, in classical elasticity,
most materials contain ν in the range of 0.2 to 0.5, which includes pure elements, engineering alloys,
polymers, and ceramics, whereas it can take any value between −1 and 0.5 for porous materials due to
their unique microstructure. Porous materials’ auxetic behaviour (ν < 0) has often been reported, as
in [59, 60, 61, 62] for example. Some compression measurements at large deformations appear to reveal
an auxetic behaviour for a melamine foam for example, shown in Figure 1.2. Nonetheless, a constant
real value of ν is often used for simplicity’s sake, and because it is consistent with real observations of
porous materials subjected to small strains.

Figure 1.2. Cylindrical sample of melamine foam compressed to 80 % strain.

When the material is anisotropic, the number of independent emchanical parameters increases
with the degree of anisotropy. When the material is isotropic, there are two independent parameters:
Ẽ and ν̃, related by G̃ = Ẽ

2(1+ν̃) . When the material is assumed transversely isotropic around axis
x3, 5 parameters are necessary: Ẽ1 = Ẽ2, Ẽ3, ν̃12, ν̃13 = ν̃23, and G̃13 = G̃23. This is typical of
polymer foams due to the polymerization foaming process and the effect of gravity [63, 64, 65], where
the pores are elongated and the stiffness is higher in the growth direction. It is also often the case
for fibrous materials which are created by layering fibres in the horizontal plane such as glass wool
[66, 67, 68, 69, 70]. When the material is assumed orthotropic, as studied for example in references
[63, 68, 71, 72, 73, 74], 9 parameters are required: Ẽ1, Ẽ2, Ẽ3, ν̃1, ν̃2, ν̃3, G̃23, G̃13, and G̃12.
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2.3 | Limp approximation model

The limp model can be used to account for the inertia of the solid phase of the porous material while
completely neglecting its stiffness, which simplifies the Biot model into an equivalent fluid model.
In 1947, Beranek suggests a model for soft blankets where the bulk modulus of the frame is much
smaller than the bulk modulus of the fluid [31]. In 1981, Ingard compares the limp hypothesis to rigid
skeleton model [75]. Other limp models have been proposed by Ingard [76], Katragadda et al. [77] and
Panneton [78].

The limp hypothesis consists in neglecting the stiffness of the frame. This is possible when the
bulk modulus of the frame in vacuo K̃c is much smaller than the bulk modulus of the fluid in the
pores K̃eq. By setting σ̂ ≈ 0 in Equation 1.32, the system of equation of the (u, p) Biot formulation
can be simplified to [39, 78]

∆p + ρ̃limp

K̃eq
ω2p = 0, (1.37)

where the limp equivalent density ρ̃limp is

ρ̃limp = ρ̃ρ̃eq

ρ̃ + ρ̃eqγ̃2 . (1.38)

When the bulk modulus of the frame Kb is much smaller than the bulk modulus of its constitutive
material, the limp equivalent density can be approximated by [78, 79]

ρ̃limp ≈ ρtρ̃eq − ρ2
0

ρt + ρ̃eq − 2ρ0
, (1.39)

when the bulk modulus of the frame K̃b is much smaller than the bulk modulus of the elastic material
of the frame K̃s, which is often the case for porous materials. ρt = ρ1 + ϕρ0 is the apparent density
of the equivalent fluid limp medium.

In other words, the limp hypothesis turns the poroelastic model into an equivalent fluid model,
where the relative movement between the fluid and solid phases affects the dissipated energy, especially
in low frequencies. When compared to a motionless equivalent fluid notation, the limp hypothesis
brings differences mostly at low frequencies, since they have different low-frequency asymptotes. For
high material density, the limp modulus resembles the rigid frame modulus.

Beranek in 1947 [31] suggests that the limp approximation is valid when the bulk modulus of the
frame in vacuum K̃c = 2Ñ 1−ν

1−2ν is much smaller than the bulk modulus of the fluid in the pores K̃eq:
∣∣∣∣∣

K̃c

ϕK̃eq

∣∣∣∣∣ < 0.05. (1.40)

Alternatively, Doutres in 2007 proposes a Frame Stiffness Influence (FSI) criterion [70] to assess the
validity of the limp hypothesis:

FSI = ρ̃limp

ρ̃c

K̃c

ϕK̃eq
, (1.41)

where ρ̃c = ρ1 − ρ̃12
ϕ . The FSI is frequency dependant, and so its limit for using the limp model is set

to 0.2, which is less strict than Beranek’s criterion. In air, by saying K̃eq ≈ P0, the FSI simplifies to

FSI < 0.2 ⇔
∣∣∣K̃c

∣∣∣ < 20 kPa, (1.42)

The limp model is well-suited when the material exhibits rigid body motion or when the skeleton
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deforms with negligible stiffness. For example, some glass wools are well represented by this model.
It is also well adapted to applications where the skeleton is prone to moving, such as transmission loss
measurements with an air gap or when the material is placed on a vibrating structure. The validity
of the limp model depends on the material parameters, but also on the setup and the frequency range
of interest. For example, Ingard [76] shows that the prediction of the absorption of a porous layer
against a rigid wall using the limp approximation is inaccurate in low frequencies, below the resonance
frequency of the skeleton. On the other hand, Göransson [47, 80] finds the limp model is adapted to
aircraft double wall transmission problems in the frequency range of interest.

3 | Viscoelastic models

3.1 | Typical viscoelastic behaviour

Poroelastic materials have a behaviour that is typically considered as viscoelastic, which is a combi-
nation of an elastic and a viscous component. The elastic component is responsible for a stress which
is instantaneous and proportional to the strain undergone by the material. This can be likened to
a spring’s behaviour. The viscous component is responsible for a stress which is proportional to the
strain rate undergone by the material, and can be likened to a dashpot’s behaviour.

The viscous component causes energy dissipation within the material as it is deformed. Viscoelas-
tic models are useful for describing a wide range of materials, including polymers such as rubbers and
plastics, some high temperature metals, some viscous fluids such as some paints or inks, bituminous
materials, and poroelastic materials. A viscoelastic material is often represented using a rheological
model, which is an assembly of springs Ei and dashpots ηi. These relate the strain ε and the stress σ

within the material. A review of viscoelastic models can be found in references [81, 82, 83, 84]. The
resulting complex and frequency-dependant modulus Ẽ represents this viscoelastic behaviour. An
example of a typical E′ and η as a function of frequency is given in Figure 1.3.
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Figure 1.3. Typical storage modulus E′ and loss factor η as a function of frequency for a simple
viscoelastic material described by a Zener model.

An example of a typical response of a viscoelastic material shown in Figure 1.3. The modulus E′

which increases monotonically from a low frequency asymptote to a high frequency asymptote, and
during the rapid transition zone, the loss factor η exhibits a peak of high dissipation. This can be
explained by a glass transition within the material, where the structure of the material rearranges itself
from a viscous rubbery state to a brittle glassy state. It is related to the glass transition temperature Tg

of the material. This transition occurs at a specific frequency range that depends on the composition
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and the temperature of the material. At different temperatures, this frequency range is shifted, due
to a time-temperature equivalence, explained further below in Section 3.4.

The stress-strain curves resulting from viscoelastic models during cyclic loading do not always
follow the same path during loading ε̇ > 0 and unloading ε̇ < 0. This, the energy dissipated over a
cycle is of a cyclical loading of period 2π/ω and of amplitude A is [83, 85]

Ed =
∫ 2π/ω

0
σε̇dt =

∫ 2π/ω

0
Ẽ′εε̇dt = πA2ηE′ = πA2E′′. (1.43)

3.2 | Common rheological models: Maxwell and Kelvin-Voigt

The simplest rheological models are the Maxwell model [86], which is a spring and a dashpot in series,
and the Kelvin-Voigt model, which is a spring and a dashpot in parallel. They are represented on
Figure 1.4.

εσ
E0 η0

(a)
εσ

E0

η0

(b)

Figure 1.4. Schematic representation of the springs and dashpots in (a) a Maxwell and (b) a Kelvin-
Voigt models.

The Maxwell representation is well adapted for representing the stress relaxation of fluid-like
materials, due to an irreversible strain component and a stress which tends to zero at long durations
in the absence of strain. The Maxwell model relates the stress and strain as

σ̇

E0
+ σ

η0
= ε̇. (1.44)

Stress relaxation refers to the evolution of the stress σ when the strain ε is kept constant. However,
it does not capture strain creep, which refers to the evolution of the strain ε when the stress σ is kept
constant. In contrast, the Kelvin-Voigt model is well adapted for representing strain creep but not
stress relaxation, and represents solid-like materials because its deformation is entirely reversible. It
relates the stress and strain as

σ = E0ε + η0ε̇. (1.45)

The dynamic modulus Ẽ for the Maxwell and for the Kelvin-Voigt models respectively are

Ẽ = E0η2
0ω2 + jωE2

0η0
η2

0ω2 + E2
0

, (1.46)

Ẽ = E0

(
1 + jω

E0
η0

)
. (1.47)

To characterize the stress response of a viscoelastic material or strain, the relaxation function
H(t) can be used, which is the stress response of the material subjected to a strain Heaviside step
defined by

Y (t) =





1 if t ≥ 0,

0 if t < 0.
(1.48)
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For a Maxwell representation, the relaxation function is

H(t) = E0 e− E0
η0

t
Y (t). (1.49)

Alternatively, for rheological models that have no instantaneous elasticity, such as the Kelvin-Voigt
model, the creep function C(t) is used instead of the relaxation function, which is the strain response
to a stress Heaviside step Y (t). For a Kelvin-Voigt representation, the creep function is

C(t) = 1
E0

(
1 − e− E0

η0
t
)

Y (t). (1.50)

As can be seen from the relaxation function in Equation 1.49 and the creep function in Equation 1.50,
the stress and strain decay of these models is exponential. The characteristic relaxation time τ0 of the
decay is

τ0 = E0
η0

. (1.51)

The material time-dependant response can be formulated by applying the Boltzmann superposi-
tion principle, which stipulates that the stress caused by the sum of several strains over time is equal
to the sum of the stresses caused by each strain [81]. Consequently, the stress response σ(t) in response
to an arbitrary time dependant strain ε(t) is

σ(t) = H(0)ε(t) +
∫ t

−∞
ε(τ) Ḣ(t − τ)dτ. (1.52)

3.3 | More advanced rheological models: Zener and generalized Maxwell

To describe more complex material behaviours, there are some more advanced rheological models.
One that is often used is the Zener model, also called Standard Linear Solid model, which adds a long
term spring E0 in parallel to a Maxwell model. Its rheological representation is shown in Figure 1.5.
This has the advantage of representing the relaxation like a Maxwell model, with a non-zero stress
asymptote as time goes to infinity, as well as the creep behaviour of the Kelvin-Voigt model. Its stress
decay corresponds to the stress decay of a Maxwell model offset by the long term stiffness E0, which
is more accurate for modelling many materials. The Zener model’s relaxation function is given by

H(t) =
(

E0 + E1e− E1
η1

t
)

Y (t). (1.53)

The dynamic modulus Ẽ for the Zener model is

Ẽ = E0 + E1
ω2τ2

1
1 + ω2τ2

1
+ jE1

ωτ1
1 + ω2τ2

1
. (1.54)

Another commonly used model is the generalized Maxwell model [87, 88]. This representation
contains a static spring E0 in series with N Maxwell models. Its stress decay corresponds to the sum
of the decay of the N Maxwell models offset by the long term stiffness E0. Hence, it is capable of
representing the effective behaviour of complex materials with multiple relaxation times. Its rheological
representation is shown in Figure 1.5(a), and its relaxation function is given by

H(t) =
(

E0 +
N∑

i=1
Eie

− Ei
ηi

t

)
Y (t). (1.55)



18 State of the art of porous media modelling

The dynamic modulus Ẽ for the generalized Maxwell model can be represented as a Prony series as

Ẽ = E0 +
N∑

i=1
Ei

ω2τ2
i

1 + ω2τ2
i

+ jEi
ωτi

1 + ω2τ2
i

. (1.56)

εσ

E0

η1E1

(a) εσ

E0

η1E1

ηNEN

...

(b)

Figure 1.5. Schematic representation of the springs and dashpots for the (a) Zener and the (b)
Generalized Maxwell models.

3.4 | Time-temperature superposition principle

A characteristic feature of viscoelastic materials is that they exhibit a time-temperature equivalence.
This means that an increase in temperature causes the material to behave according to its lower fre-
quency behaviour, and a decrease in temperature causes it to behave according to its higher frequency
behaviour. Equivalently, a shift in the frequency of the material’s behaviour is equivalent to keeping
the frequency the same but shifting its temperature. Applying this principle allows the creation of
a master curve, spanning a large frequency range at a given temperature. Sperling [89] offers a re-
view of polymer viscoelasticity for sound and vibration energy absorption, and their time-temperature
equivalence principle. The creation process of a master curve is shown on Figure 1.6.
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Figure 1.6. Illustration of the time-temperature principle. (a) The storage modulus E′ is measured
over the same frequency range at temperatures between 8°C and 35°C. (a) The frequency
of each curve is translated relative to the reference temperature Tref = 12°C to obtain
a obtain master curve.

Two commonly used time-temperature superposition are the Arrhenius [90, 91] and the William-
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Landel-Ferry (WLF) [92] laws. This equivalence can be exploited to predict the material behaviour
over a different range of temperatures, or to extend the frequency range of material characterization
when measurement range is limited for example. The WLF law relates the temperature and frequency
dependence of the modulus Ẽ through

log10 (aT ) = −C1 (T0 − TR)
C2 + (T0 − TR) , (1.57)

where aT is the coefficient by which to multiply the frequencies of the modulus at reference temperature
TR to obtain its new frequencies abscissa at temperature T0, and C1 and C2 are material-specific
coefficients. The WLF equation is valid for temperatures T0 close to and greater than Tg: Tg < T0 <

Tg +100 K. Any temperature can be used for TR, although William, Landel and Ferry [92] recommend
using TR ≈ Tg + 50 K.

Alternatively, the Arrhenius law computes aT through

log10 (aT ) = Ea

2.303R

( 1
T0

− 1
TR

)
, (1.58)

where Ea is the material’s activation energy for flow, and R is the ideal gas constant. Arrhenius’
equation is valid in the glassy region, for temperatures T0 < Tg.

4 | Motionless skeleton equivalent fluid models

4.1 | General case of an equivalent fluid

The simplest way of modelling a porous medium is the equivalent fluid approach, with an equivalent
bulk modulus K̃eq and an equivalent density ρ̃eq. The tilde diacritic denotes complex and frequency de-
pendant quantities, representing the energy dissipation of the acoustic wave traversing the medium. In
1949, Zwikker and Kosten [32] were the first to represent the propagation of sound in a porous medium
as an equivalent fluid by considering pores as straight cylinders. Several equivalent fluid models were
developed over the years with increasing complexity, able to capture more physical phenomena.

Reducing the porous medium to an equivalent fluid requires the hypothesis of a rigid skeleton,
which means that the frame has no displacement and no deformation, except for the limp model which
takes into account the skeleton displacement when it has no stiffness. Rigid skeleton equivalent fluid
models are not suitable when the skeleton deforms or exhibits rigid body motion. No waves propagating
through the skeleton are modelled for equivalent fluid representations. The only compression wave
propagating in the medium behaves according to the Helmholtz equation:

1
ω2ρ̃eq

∆p + 1
K̃eq

p = 0. (1.59)

The skeleton can be assumed decoupled from the fluid and immobile beyond the decoupling
frequency fd [32]:

fd = 1
2π

σϕ2

ρ1
. (1.60)

Above the frequency, the visco-inertial coupling between the solid and fluid phases is low enough that
the acoustic wave propagating in the fluid does not generate a wave in the skeleton.

The fluid properties of the equivalent fluid also have complex values, and are related to K̃eq and
ρ̃eq. The wave velocity c̃eq is given by

c̃eq =
√

K̃eq

ρ̃eq
. (1.61)
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The wavenumber k̃eq is written as
k̃eq = ω

c̃eq
. (1.62)

The equivalent characteristic impedance of the medium Z̃eq is expressed as

Z̃eq = ρ̃eq c̃eq =
√

ρ̃eqK̃eq. (1.63)

For time notation e−jωt, Im(k̃eq)
Re(k̃eq) > 0, otherwise Im(k̃eq)

Re(k̃eq) < 0, which guarantees that the wave amplitude
to decrease as it propagates.

4.2 | Transport parameters of equivalent fluid models

4.2.1 |The porosity ϕ

The porosity represents the ratio of fluid volume to the total volume of the material

ϕ = Vair

Vt
. (1.3)

The open porosity refers to the volume of fluid inside the porous material that is accessible to the
ambient fluid. The open porosity is usually used to model porous materials. In contrast, air bubbles
trapped inside hermetic pockets within the material are referred to as the closed porosity.

4.2.2 |The airflow resistivity σ

The air flow resistivity σ is a parameter describing viscous phenomena at low frequency, expressed in
N s m−4. The air flow resistivity corresponds to the airflow resistance R (N s m−3) of a material per
unit length. The resistance of a sample of thickness h (m) obstructing an airflow is related to the
pressure difference upstream and downstream from the sample:

R = ∆P

Q
= σh, (1.64)

where S is the cross-section area of the specimen (m2), Q is the volumetric flow rate (m3 s−1), and
∆P = P2 − P1 is the pressure difference upstream and downstream of the sample, as shown in
Figure 1.7. The resistivity is the resistance per unit length:

σ = ∆PS

Qh
, (1.65)

which comes from Darcy’s law [93]
σϕ−→v = −−→▽p, (1.66)

where −→▽p is the pressure gradient inside the material and −→v is the fluid velocity. The airflow resistivity
is a low-frequency viscous parameter, which can be expressed independently of the saturating fluid
through the static viscous permeability q0 (m2) :

q0 = µ0
σ

, (1.67)

where µ0 is the viscosity of the surrounding air.
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Figure 1.7. Schematic of the air flow resistivity.

For cylindrical pores of radius r and inclined at an angle θ (see Figure 1.9), σ can be expressed
as [40]

σ = 8µ0
ϕr2 cos2 θ

. (1.68)

Material airflow resistivity can depend on the direction of measurement. For fibrous materials where
the fibres are stacked in the horizontal plane, the airflow resistivity is usually greater in the direction
normal to the fibres. Further, for polymer foams that are created through a foaming process, the
direction of growth creates an anisotropy in the cell structure which causes a different air airflow
resistivity in different directions.

4.2.3 |The high-frequency limit of the dynamic viscous tortuosity α∞

The dynamic tortuosity α̃ω (-) is a complex frequency dependant parameter, which indicates the
viscous energy dissipation between the fluid and the structure, as well as the inertial effects caused by
the complex path taken by the sound waves inside the porous medium. It can be seen as an added
inertia to the fluid inside the porous medium, giving access to an effective density ρ̃eq [39]

ρ̃eq = α̃ωρ0. (1.69)

Viscous dissipations are strongest within the viscous skin limit δ0 from the surfaces of the pores,
shown in Figure 1.8. This viscous skin depth δ0 approaches 0 at high frequencies:

δ0 =
√

2µ0
ωρ0

→ 0 when ω → ∞. (1.70)

At high frequencies, for a viscous skin layer that tends to 0, the dynamic tortuosity α̃ω tends to
the geometric tortuosity α∞ [40]

α̃∞ = lim
ω→∞ α̃ω ∼ α∞. (1.71)

α∞ is called the high frequency limit of the tortuosity, or simply the geometric tortuosity or tortuosity,
and is computed exactly as [40]

α∞ =
1
V

∫
V v2dV

(
1
V

∫
V

−→v dV
)2 , (1.72)

where −→v is the velocity of inviscid fluid particles at high frequency, and V is the homogenization
volume. The viscous tortuosity α∞ is a geometric parameter that indicates the added length travelled
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Figure 1.8. Velocity profile of a fluid inside a cylinder of radius R = 100 µm for different frequencies,
and corresponding viscous skin depth δ0.

by waves propagating through the porous medium, due to obstacles and a winding path. It corresponds
to the squared ratio of the tortuous path length Ltortuous over that of a straight path Lstraight:

α∞ =
(

Ltortuous

Lstraight

)2

. (1.73)

In the general case, the tortuosity must always verify α∞ ≥ 1. For fibrous material, the tortuosity
can be approximated from the porosity as α∞ ≈ ϕ−1 [94]. For a model with straight non-inclined
cylindrical pores, tortuosity is α∞ = 1. For cylindrical pores inclined at an angle θ, the tortuosity
becomes α∞ = 1

(cos θ)2 . Some simplified cylindrical pore geometries and their tortuosity are presented
in Figure 1.9.

α∞ = 1(a) α∞ = 1
(cos θ)2(b)

θ

α∞ > 1(c)

Figure 1.9. Different pore models and their corresponding tortuosity, for (b) straight cylindrical
pores, (a) inclined cylindrical pores, and (c) randomly shaped pores.
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4.2.4 |The viscous and thermal characteristic lengths Λ and Λ′

The viscous characteristic length Λ (m) is a viscous parameter at high frequencies. It is connected to
viscous effects at high frequencies in the dynamic tortuosity α̃ω:

lim
ω→∞ α̃ω = α∞

(
1 + (1 + j)δ0

Λ

)
. (1.74)

It represents twice the volume-to-surface ratio of the pores, weighted by local fluid velocity [40, 95]

Λ = 2
∫

V |v|2 dV
∫

S |v|2 dS
, (1.75)

where V is the homogenization volume and S is the surface area of the walls of the pores.
The thermal characteristic length Λ′ is a thermal parameter at high frequencies and corresponds

to twice the volume-to-surface ratio of the pores, without velocity weighting [41]:

Λ′ = 2
∫

V dV∫
S dS

. (1.76)

Λ′ can also be written
Λ′ = 2ϕ

Scontact
, (1.77)

where Scontact is the contact area between the fluid and the skeleton phases per unit volume. In
practice, Λ is close to the radius of the smallest pores, because this is where the viscous boundary
layer most affects flow velocity, and Λ′ is close to the radius of the largest pores, as shown in Figure 1.10.
By definition, the inequality Λ′ > Λ is always satisfied.

≈ 2Λ ≈ 2Λ′

skeleton

fluid

Figure 1.10. Λ can be assimilated to the radius of the smallest pores, Λ′ to the radius of the largest
pores.

Λ can also be expressed as [39, 95]

Λ =
√

8µ0α∞
σϕ

1
c

, (1.78)

where c ≈ 1. Additionally, simplified expressions of Λ and Λ′ can be found by making an assumption
of cylindrical pores with radius r [40]. In this case, the shape factor M is equal to 1:

M = 8α∞µ

ϕΛ2σ
= 1. (1.79)

Thus, the simplified expressions of the characteristic lengths are

Λ2 = 8µ

ϕσ
, (1.80)
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Λ = Λ′ = r. (1.81)

For fibrous media where fibres are perpendicular to the flow direction, 2Λ ≈ Λ′ [39].

4.2.5 |The thermal permeability q′
0

The thermal permeability is an indicator of thermal exchanges between the solid and fluid phases at
low frequencies. It is obtained as a thermal analogy of the viscous permeability q0. For cylindrical
pores, the expression of q′

0 can be simplified to

q′
0 = ϕΛ′2

8 . (1.82)

4.3 | Common models

Commonly used motionless skeleton equivalent fluid models are presented in this section in order of
chronology and increasing complexity.

4.3.1 |Delany-Bazley model

The empirical Delany-Bazley model, published in 1970, provides an estimation of the wavenumber
k̃eq and the characteristic impedance Z̃eq of materials as a function of frequency [96]. This empirical
model was established from a dataset of measurements on highly porous (ϕ ∼ 1) fibrous materials to
fit empirical coefficients. The model assumes that the porous material contains inclined cylindrical
pores and requires only one parameter, the resistivity σ, and writes

Z̃eq = ρ0c0
(
1 + 0.051X−0.75 − j0.087X−0.73

)
, (1.83)

k̃eq = 2πf

c0

(
1 + 0.175X−0.59 − j0.086X−0.70

)
, (1.84)

where X = f
σ must be within the range 0.01 to 1, corresponding to the domain where the model

has been validated. This model is easy to use as it requires only one parameter, but it lacks a physical
basis as it may yield negative values for the real part of the surface impedance at low frequencies.
Several authors have suggested different coefficients for Z̃eq and k̃eq, such as [97] and [98].

4.3.2 |Delany-Bazley-Miki model

The Delany-Bazley-Miki model, published by Miki in 1990, improves upon the Delany-Bazley model
with new coefficients obtained from the same measurement dataset as Delany and Bazley [98]. This
model is preferable to the previous one as it is valid over a slightly broader frequency range, and
addresses the issue of negative values for the real part of the surface impedance:

Z̃eq = ρ0c0
(
1 + 0.070X−0.632 − j0.107X−0.632

)
, (1.85)

k̃eq = 2πf

c0

(
1 + 0.109X−0.618 − j0.160X−0.618

)
, (1.86)

where, once again, X = f
σ is within the range 0.01 to 1.
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4.3.3 |JCA model

Following Zwikker’s work which dealt with straight cylindrical pores, Johnson, Koplik and Dashen
developed a semi-phenomenological model which can compute the equivalent density ρ̃eq for pores of
arbitrary cross-sections, published in 1987 [40]. This formulation accounts for the visco-inertial effects
in the medium by using four material parameters.

The model is based on equations that establish the asymptotic behaviour of the material’s equiv-
alent quantities at low and high frequencies, and links them by the simplest possible function. It does
so by relating the equivalent density of the fluid inside the pores to the density of the air through a
dynamic tortuosity α̃ω (see Equation 1.69). Johnson’s equivalent density is calculated as

ρ̃eq(ω) = ρ0α∞
ϕ


1 + ϕσ

jωα∞ρ0

√
1 + jω

4α2∞µ0ρ0
σ2Λ2ϕ2


 . (1.87)

Its low and high frequency asymptotes are:

lim
ω→0

ρ̃eq = ρ0α∞

(
1 + 2α∞µ0

Λ2ϕσ

)
, (1.88)

lim
ω→∞ ρ̃eq = ρ0α∞

(
1 + (1 + j)δ0

Λ

)
. (1.89)

In 1991, Champoux and Allard proposed a model to include thermal dissipation effects in the
equivalent density Keq by introducing Λ′ similarly as Λ had been proposed for viscous effects [41]. The
thermal dissipation effects come from the energy exchange between the fluid and the frame resulting
from the temperature gradient induced by the acoustic pressure wave. The resulting equivalent bulk
modulus is

K̃eq(ω) = γ0P0
ϕ


γ0 − (γ0 − 1)


1 + 8κ0

jωΛ′2cpρ0

√
1 + jω

Λ′2cpρ0
16κ0




−1



−1

. (1.90)

Its low and high frequency asymptotes are

lim
f→∞

K̃eq = γP0, and lim
f→0

K̃eq = P0. (1.91)

The resulting Johnson-Champoux-Allard (JCA) model is composed of an equivalent density ρ̃eq

and an equivalent bulk modulus K̃eq. Note that these equations are considered inside the fluid ho-
mogenized to take up the entire volume of the porous material, not just the volume saturating the
pores of the medium. Consequently, the equivalent fluid parameters taking up the whole volume of
the porous material can be obtained by multiplying ρ̃eq and K̃eq by the porosity ϕ, and are noted ρ̃f

and K̃f

ϕρ̃eq = ρ̃f , ϕK̃eq = K̃f . (1.92)

The JCA model is inaccurate, notably at low frequencies. First, the limit of the bulk modulus
K̃eq as the frequency approaches 0 depends on the thermal characteristic length Λ′, which is a high-
frequency parameter. This is due to the simplified expression of the thermal characteristic length q′

0,
a low-frequency thermal parameter, which is assigned the value q′

0 = ϕΛ′2

8 which corresponds to an
assumption of cylindrical pores. The significance of the thermal characteristic length is addressed in
the JCAL model by Lafarge in 1997 Lafarge et al. [99], as explained below in Section 4.3.4. Second,
the limit of the real part of the equivalent density ρ̃eq as the frequency tends to 0 is inaccurate. For
example, for cylindrical pores, the low-frequency limit of Re(ρ̃eq) is 1.25 ρ0 instead of 1.33 ρ0 [39].
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ρ̃eq, K̃eq

(a)

ρ̃f , K̃f

(b)

Figure 1.11. (a) Porosity not integrated (ρ̃eq and K̃eq), and (b) porosity integrated (ρ̃f and K̃f ).

Further, it should not depend on the high frequency parameter Λ. This is improved in the Pride
model, explained below in Section 4.3.5.

4.3.4 |JCAL model

Due to the absence of a low frequency thermal parameter the JCA model equations, Lafarge [99]
introduces the thermal permeability q′

0. It was suggested by performing an analogy with the viscous
permeability described previously by Johnson et al. [40]. The thermal permeability improves the
model’s behaviour at low frequencies. In the JCA model, q′

0 was expressed as q′
0 = ϕΛ′2

8 , corresponding
to an assumption of cylindrical pores. In the JCAL model, this parameter is independent of the others
and the new bulk modulus is expressed as

K̃eq(ω) = γ0P0
ϕ


γ0 − (γ0 − 1)


1 + ϕκ0

jωq′
0cpρ0

√
1 + jω

4q′2
0 cpρ0

κ0Λ′2ϕ2




−1



−1

. (1.90)

4.3.5 |Pride-Lafarge model JCAPL

The JCA model was modified by Pride in 1993 [100], and then corrected by Lafarge the same year
[42], to improve its accuracy and take into account possible pore constrictions. The viscous effects are
introduced into the dynamic tortuosity [42, 100]:

α̃ω = α∞

(
1 + 1

jω̃
F̃ (ω)

)
, (1.93)

and the thermal effects are introduced into the bulk modulus [99]:

K̃eq = γ0P0

(
γ0 − (γ0 − 1)

(
1 + 1

jω̄′ F̃
′(ω)

)−1
)−1

, (1.94)

The analogy between viscous and thermal effects allows equivalent parameters to be expressed
for both phenomena. The geometric functions F̃ and F̃ ′ are defined as

F̃ = 1 − b + b

√
1 + M

2b2 jω̄, F̃ ′ = 1 − b′ + b′
√

1 + M ′

2b′2 jω̄′, (1.95)

with
ω̃ = ωρ0q0α∞

µ0ϕ
, ω̃′ = ωρ0cpq′

0
κ0ϕ

, (1.96)
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the viscous and thermal shape factors are written as

M = 8q0α∞
ϕΛ2 , M ′ = 8q′

0
ϕΛ′2 , (1.97)

and the geometric terms b and b′ (sometimes called P or β in the literature) are written as

b = M

4
(

α0
α∞

− 1
) , b′ = M ′

4 (α′
0 − 1) . (1.98)

α0 and α′
0 (-) are two new material parameters called the static viscous tortuosity and static thermal

tortuosity. Lafarge [101] proposes the following simplified expression for the dynamic tortuosity using
b:

α̃ω = α∞ + σϕ

jωρ0


1 − b + b

(
1 +

(2α∞µ0
bϕΛσ

)2 jωρ0
µ

)1/2

 . (1.99)

The static viscous tortuosity α0 and the static thermal tortuosity α′
0 are the two additional

terms in the Pride-Lafarge model compared to the JCAL model, which allow it to be accurate at low
frequencies. However, even though the new parameters introduced improve the model’s quality, they
are not well known, and their experimental determination is not easy [102], meaning this model is
rarely used in practice. The only existing methods to estimate these new parameters are micro-macro
numerical simulation methods [103, 104, 105, 106]. The Johnson model of K̃eq (Equation 1.90) can be
obtained from the Pride-Lafarge model by setting a value of 1 to the geometric term b [39]. The JCA
and JCAL models can also be obtained from the Pride-Lafarge model by setting the values of M , b,
M ′ and b′ to 1 [107].

4.3.6 |Simplification of models to limit the number of parameters

Various models have added more and more parameters to describe the internal behaviour of porous
materials, however recent efforts have been made to clarify how many of these parameters are really
necessary and sufficient. Horoshenkov et al. [108] show that there is a clear dependence between Λ and
Λ′, since both are related to pore dimensions. For non-uniform cylindrical pores with a log-normal
size distribution, of average radius s̄ with a standard deviation σs which are 2 new parameters, the
JCAL transport parameters can be expressed as [108, 109, 110]

α∞ = e(σslog2), (1.100)

σ = 8µ0α∞
s̄2ϕ

e6(σslog2)2
, (1.101)

Λ = s̄e−5/2 (σslog2)2
, (1.102)

Λ′ = s̄e3/2 (σslog2)2
, (1.103)

q′
0 = s̄2ϕ

8α∞
e6(σslog2)2

. (1.104)

In short, only 3 directly measurable parameters ϕ, s̄ and σs are required instead of 6 for the JCAL
model.
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5 | Modelling wave propagation in porous medium layers

The propagation of acoustic plane waves of pressure p inside an isotropic medium of arbitrary wavenum-
ber k is governed by the Helmholtz wave equation [32]:

∆p + k2p = 0, (1.59)

where the spatial wave number k2 = ω2

c2 and c2 = K
ρ . The time and space dependence of the prop-

agating acoustic wave of pressure p, displacement u, and the velocity v in a one dimensional space
are

p(x, t) = Aej(kx−ωt), (1.105)

u(x, t) = j
Ak

ρω2 ej(kx−ωt), (1.106)

v(x, t) = Ak

ρω
ej(kx−ωt), (1.107)

where A is the amplitude of the pressure wave. The pressure p and velocity v are related by

v(x, t) = 1
Z

p(x, t), (1.108)

where Z is the characteristic acoustic impedance of the medium:

Z =
√

ρK = ρc. (1.109)

In the case of air, k = k0, ρ = ρ0, c = c0, and Z = Z0. In the case of a dissipative equivalent fluid,
k = k̃eq, ρ = ρ̃eq, c = c̃eq, and Z = Z̃eq are complex numbers denoting dissipation inside the medium.

5.1 | Absorption and transmission problems

When a plane acoustic wave impinges on a layer, part of the acoustic wave energy is reflected at the
surface of the layer, part is transmitted through the layer, and part is dissipated by the layer. The
sum of the reflected, transmitted and absorbed energy are equal to the impinging wave’s energy.

θ

Z̃eq, k̃eq

h

1

R

Z0, k0

vn(0)

x

h0

p(0)

di
ss

ip
at

ed

1

v = 0

(a)

θ

Z̃eq, k̃eq

h

1

R

Z0, k0

vn(0)

x

h0

T

p(0)

di
ss

ip
at

ed

1

(b)

Figure 1.12. Illustration of a plane acoustic wave impinging onto a porous layer. (a) Absorption
problem, (b) transmission problem.
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The impinging wave arrives at an incidence angle θ relative to the surface normal. The reflection
coefficient R is the amplitude of the reflected wave p−

0 over the amplitude of the incident wave p+
0 at

the surface of the layer. It can be written [39]

R = Zs cos θ − Z0
Zs cos θ + Z0

, (1.110)

where Zs is the surface impedance, the ratio of pressure to velocity at the material surface:

Zs = p(0)
vn(0) = 1

cos θ
Z0

1 + R

1 − R
. (1.111)

For example, for a rigid-backed porous layer of thickness h, with characteristic impedance Z̃eq,
wavenumber k̃eq, and porosity ϕ, as shown in Figure 1.12(a), its surface impedance Zs is given by

Zs = −j
Z̃eq

ϕ cos θ
cot
(
k̃eqh

)
. (1.112)

The absorption coefficient α (-) is often used to characterize how effective a layer is at absorbing,
i.e. not reflecting, sound waves. It is defined as

α = 1 − |R|2 . (1.113)

In diffuse field incidence, the diffuse field absorption coefficient αd is computed as

αd =
∫ θmax

θmin
α(θ) cos θ sin θ dθ

∫ θmax
θmin

cos θ sin θ dθ
, (1.114)

where θmin = 0° and θmax < 90°.
Moreover, for a transmission problem, where the wave propagates into a semi-infinite fluid beyond

the layer, as shown in Figure 1.12(b), the transmission coefficient T represents the amplitude of the
wave transmitted beyond the layer over the amplitude of the incident wave. The Transmission Loss
TL (dB) is computed as

TL = 10 log
∣∣∣∣

1
T 2

∣∣∣∣ . (1.115)

The radiation efficiency factor σr of a multilayer placed on a vibrating surface of vibrational
power Πvib corresponds to ratio of the radiated acoustic power Πrad over the vibrational power Πvib.
The vibrational power Πvib is also equal to the radiated acoustic power of a piston with the same
vibrational energy, which has a velocity vp and surface area Sp. It is written

σr = Πrad

Πvib
= Πrad

1
2ρ0c0Sp |vp|2

. (1.116)

When computing the radiation efficiency of a multilayer backed by a vibrating rigid wall, Doutres
et al. [24] show that using a transfer impedance Zt which accounts for the velocity vp of the backing
is more accurate than using the surface impedance Zs. The transfer impedance is given as

Zt = p0
vp − v0

. (1.117)

The radiation efficiency is then expressed as [111]

σr =
∣∣∣∣

Zt

Zt + Z0

∣∣∣∣
2

. (1.118)
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In the case of a rigid motionless wall backing, vp = 0, which incurs Zt = Zs.

5.2 | Transfer Matrix Method

The Transfer Matrix Method (TMM) is based on plane wave propagation inside laterally infinite
layers, as shown in Figure 1.13. It relies on describing the evolution of a state vector V , containing
pressure p and velocity v information for example, throughout each layer and each interface of a
multilayer system. This method allows for the calculation of wave propagation through any number
of superimposed media [39, 53, 112].
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Figure 1.13. Diagram showing the methodology of the Transfer Matrix Method (TMM).

Within the ith layer Mi, the transfer matrix [Ti] relates state vector V between the start and the
end of the layer by

V (Mi,start) = [Ti]V (Mi,end). (1.119)

For a fluid or an equivalent fluid the state vector containing the pressure and velocity variables is

V (Mi) =





p(Mi)
vx(Mi)



 , (1.120)

and [T ] is given by

[T ] =


 cos(kxh) jωρ

kx
sin(kxh)

jkx

ωρ sin(kxh) cos(kxh)


 , (1.121)

where kx is the wavenumber of the medium k projected in the direction x that the layers are stacked
in:

kx = k cos θ. (1.122)

For a biphasic poroelastic Biot medium, there are six degrees of freedom in the general case, though
this can be simplified to four degrees of freedom in normal incidence since there is no shear wave in
the skeleton, or when using the (u, p) formulation. Consequently, in the general case, the state vector
is

V =
(
vs

y vs
x vf

x σs
x σs

xy σf
x

)T
. (1.123)
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The transfer matrix [T ] is a six by six matrix, whose first three columns are

[T ](: , 1 : 3) =




ωky cos(k1xx3) −jωky sin(k1xx3) ωky cos(k2xx3)
−jωk1x sin(k1xx3) ωk1x cos(k1xx3) −jωk2x sin(k2xx3)

−jωk1xξ1 sin(k1xx3) ωξ1k1x cos(k1xx3) −jωk2xξ2 sin(k2xx3)
−D1 cos(k1xx3) jD1 sin(k1xx3) −D2 cos(k2xx3)

j2Nkyk1x sin(k1xx3) −2Nkyk1x cos(k1xx3) j2Nkyk2x sin(k2xx3)
−E1 cos(k1xx3) jE1 sin(k1xx3) −E2 cos(k2xx3)




, (1.124)

and the last three columns of [T ] are

[T ](: , 4 : 6) =




−jωky sin(k2xx3) jωk3x sin(k3xx3) −ωk3x cos(k3xx3)
ωk2x cos(k2xx3) ωky cos(k3xx3) −jωky sin(k3xx3)

ωξ2k2x cos(k2xx3) ωkyξ3 cos(k3xx3) −jωkyξ3 sin(k3xx3)
jD2 sin(k2xx3) j2Nk3xky sin(k3xx3) −2Nk3xky cos(k3xx3)

−2Nkyk2x cos(k2xx3) N
(
(k2

3x − k2
y

)
cos(k3xx3) −jN

(
k2

3x − k2
y

)
sin(k3xx3)

jE2 sin(k2xx3) 0 0




.

(1.125)
where, for i = 1, 2:

Di = (P + Qµi)(k2
y + k2

i3) − 2Nk2
y, (1.126)

Ei = (Rµi + Q)(k2
y + k2

i3). (1.127)

The x component of the wavenumbers of the two compression waves k1x and k2x, and of the shear
wave k3x, are

kix =
(
δ2

i − k2
y

)1/2
, (1.128)

where the square root ()1/2 symbol denotes the square root that yields a positive real part, and ky is
the transverse y component of the wavenumber for each wave:

ky = k sin θ. (1.129)

At the interface between the ith and the (i + 1)th layer, the interface matrix [Ii i+1] relates the
state vector before and after the interface by

[Ii i+1]V (Mi,end) + [Ji i+1]V (Mi+1,start) = 0. (1.130)

The matrix [I] depends on the two connected media. Some common examples of interfaces matrices
are given below:

• Between two fluids

[Ii i+1] =


1 0

0 ϕi
ϕi+1


 , [Ji i+1] = −


1 0

0 1


 . (1.131)
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• Between two fluids connected by an impermeable interface of surface density ms

[Ii i+1] =


1 −jωmsϕi

0 ϕi


 , [Ji i+1] = −


1 0

0 ϕi+1


 . (1.132)

• Between a fluid and a biphasic poroelastic Biot layer

[Ii i+1] =




0 −ϕi

1 − ϕi+1 0
0 0

ϕi+1 0




, [Ji i+1] =




0 1 − ϕi+1 ϕi+1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




. (1.133)

• Between two biphasic Biot layers

[Ii i+1] =




1 0 0 0 0 0
0 1 0 0 0 0
0 −ϕi ϕi 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

ϕi




, [Ji i+1] = −




1 0 0 0 0 0
0 1 0 0 0 0
0 −ϕi+1 ϕi+1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 1

ϕi+1




. (1.134)

Furthermore, when the acoustic wave impinges on an interface at angle θ, the wave is refracted
at a different angle depending on the frequency and the media’s refractive indices nr,i according to
Snell’s law:

nr,1 sin(θ1) = nr,2 sin(θ2). (1.135)

The overall system can be solved by assembling all matrices relating V (M0) to V (MN ). In the
case where the last layer is a(n equivalent) fluid medium, this can be written simply as

V (M0) =


a b

c d


V (MN ). (1.136)

If there is a rigid wall boundary condition behind the materials, then vx(MN ) = 0, and




p(M1)
vx(M1)



 =


a b

c d







p(Mi)
0



 =





a p(Mi)
c p(Mi)



 . (1.137)

In this case, the surface impedance Zs of the multilayer system is expressed simply as

Zs = p(M1)
vx(M1) = a p(Mi)

c p(Mi)
= a

c
. (1.138)

The system of equations is then written as
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[D] {V } =




[I01] [J01][T1] [0] . . . [0] [0]
[0] [I12] [J12][T2] . . . [0] [0]
...

...
...

...
...

[0] [0] [0] . . . [IN−1 N ] [JN−1 N ][TN ]








V (M0)
V (M1)

...
V (MN )





=





0
0
...
0





. (1.139)

To solve the system of equations, the boundary conditions must be added. First, the surface impedance
Zs of the multilayer can be added to [D] as

p (M0) − Zsvn (M0) = 0. (1.140)

Next, if the multilayer ends with a fluid, there is still one equation missing, and if the multilayer ends
with a biphasic medium, there are still three equations missing. In the case of a rigid backing, when
the last layer is a fluid, the velocity of the fluid is equal to 0:

vx (MN ) = 0. (1.141)

Or in the case of a rigid backed biphasic medium, the velocities of the frame-borne waves and of the
velocity of the fluid are equal to 0:

vs
x (MN ) = 0, (1.142)

vs
y (MN ) = 0, (1.143)

vf
x (MN ) = 0. (1.144)

In the case of a free-field semi-infinite fluid of impedance Z0 behind the multilayer, the impedance
of the wave must equal Z0. This corresponds to adding a fluid medium at the end of the multilayer,
connected to the Nth layer by an interface matrix [IN N+1] and [JN N+1], and then setting

p (MN+1) = Z0vx (MN+1) (1.145)

When adding the boundary conditions equations to [D], a new matrix [D′] is obtained. The
surface impedance can be computed easily as the determinant of [D′] without its first column over the
determinant of [D′] without its second column:

Zs = − det [D′(:, 2 : end)]
det [D′(:, [1, 3 : end])] . (1.146)

The reflection coefficient R is computed from Equation 1.110. When the multilayer is backed by a
semi-infinite fluid, the transmission coefficient T is computed from [39]

T = (1 + R)det [D′(:, [1 : end − 1, end])]
det [D′(:, 2 : end)] . (1.147)

To compute the radiation efficiency σr, the rigid backing is given a velocity vp. When the last
layer is a fluid or an equivalent fluid, its velocity is

vx (MN ) = vp. (1.148)

When the last layer is a biphasic medium, the velocity of the frame and the velocity of the fluid are
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equal to vp, and the shear velocity of the frame is set to 0 assuming only normal displacement:

vs
x (MN ) = vp, (1.149)

vs
y (MN ) = 0, (1.150)

vf
x (MN ) = vp. (1.151)

Solving the system for p0 and v0 allows the computation of the transfer impedance Zt from Equa-
tion 1.117. The final result for σr is independent of the value of vp.

The TMM is limited in higher frequencies, or for large layer thicknesses, because it becomes
unstable. Dazel later suggested a more stable TMM implementation of the Biot model in 2007 [46],
and in 2013 suggests a more general formulation using a proxy "information vector" to bypass this
problem [113]. Moreover, since the TMM uses a plane wave approximation, it is also less accurate for
very low frequencies [114].

6 | Comparison of models

6.1 | Summary of parameters used by different models

The various parameters required for different behaviour models are summarized in Table 1.1.

Table 1.1. Quantities used by different behaviour models.

Transport parameters Skeleton parameters
σ ϕ α∞ Λ Λ′ q′

0 α0 α′
0 ρ1 E η ν

Nsm−4 - - m m m2 - - kg/m3 Pa - -
DBM

JCA
JCAL

JCAPL
limp

Biot

6.2 | Rigid skeleton versus limp

The difference between the limp and the motionless skeleton equivalent fluid behaviours is predominant
in low frequencies. At low frequencies, for the limp behaviour, the imaginary part of the density ρ̃limp

tends to −∞, whereas for the rigid skeleton behaviour it tends to 0. This is shown in Figure 1.14.

6.3 | Parameter zones of influence

Some of the parameters in Table 1.1 are low frequency parameters and some are high frequency
parameters, whereas some have an influence everywhere. When computing an acoustic indicator, such
as the absorption coefficient α for a rigid backed layer of porous material, the sensitivity ∆ of the
absorption coefficient α to any parameter β can be computed as

∆α(β) = ∂α

∂β
. (1.152)
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Figure 1.14. Real and imaginary parts of the equivalent fluid for rigid skeleton model (JCAL) and
limp model, computed for a melamine foam material.

At low frequency (f ∼ 0), the absorption coefficient gets close to 0, so this sensitivity can be
normalized by the value of α to bring out the sensitivity of parameters in low frequencies. Further,
the different parameters are expressed in different orders of magnitude (σ is in the order of 104 N s m−4,
and q′

0 is in the order of 10−9 m2). To correct for this, the sensitivity can also be normalized by the
value of β, to express the sensitivity to a relative change in the parameter. The normalized sensitivity
is then

∆nα(β) = β

α

∂α

∂β
. (1.153)

The sensitivity of the absorption coefficient of a rigid-backed layer of melamine foam to transport
and mechanical properties is shown in Figure 1.15. The results are computed numerically using sym-
bolic expressions in Matlab. In regard to the transport parameters in Figure 1.15, this reveals how
σ and q′

0 dictate the low-frequency limit of the behaviour. α∞, Λ and Λ′ are more high-frequency
parameters. The porosity ϕ influences all frequencies. Interestingly, at the quarter-wavelength res-
onance frequency of the skeleton fr, the influence of α∞ and of viscous parameters σ and Λ drops,
whereas the influence of ϕ and of thermal parameters Λ′ and q′

0 increases. In regard to the mechanical
parameters in Figure 1.15(d), their influence is limited to the quarter-wavelength resonance frequency
of the skeleton fr and its harmonics. The influence of the loss factor η is relatively small, especially
compared to the influence of the Poisson ratio ν for instance, which could be because it is quite small,
at η = 4 %. The storage modulus E′ and the Poisson ratio ν have a very strong effect near the
resonance frequency since they shift the resonance frequency, causing the peak with a high dynamic
range to translate left and right.

It is worth noting that the transition between low and high frequencies is not very clear. The
transition for viscous and thermal effects can be estimated using the viscous and thermal skin depths
and the radius of the pores r. The viscous skin depth δ0 corresponds to the penetration depth of
rotational viscous movements, whereas the thermal skin depth δ′

0 = δ0√
Pr is the penetration depth of

isothermal movement. These depths are thinner at higher frequencies. For a pore of characteristic
radius r, the transition between low and high frequencies can be set when the viscous and thermal
skins are equal to r/2, that is to say for frequencies f0 and f ′

0 [42]

f0 = 1
2π

8µ0
ρ0r2 , f ′

0 = 1
2π

8κ0
ρ0cpr2 . (1.154)
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Figure 1.15. Normalized sensitivity ∆n of the absorption coefficient α to (a) ϕ and α∞, (b) viscous
transport parameters σ and Λ, (c) thermal transport parameters Λ′ and q′

0, and (d)
mechanical material parameters using a Biot JCAL model. The black dashed line
represents the absorption coefficient α.

Additionally, the low and high frequency behaviours can be identified independently of the pore
dimensions from the characteristic frequencies fv for viscous effects [115] and ft for thermal effects
[116]

fv = 1
2π

ϕσ

ρ0α∞
, ft = 1

2π

ϕµ0
q′

0ρ0Pr . (1.155)

For a melamine foam, the characteristic frequencies are fv = 1 684 Hz and ft = 1 057 Hz, as illustrated
in Figure 1.15(b) and Figure 1.15(c).

6.4 | Comparison of Absorption Coefficients

The absorption coefficient for several rigid-backed materials are plotted in Figure 1.16, using prop-
erties from Table 1.2 and TMM. These properties are representative of a stiff melamine foam, a
dense polyurethane (PU) foam, and a glass wool. The absorption coefficient for the melamine in
Figure 1.16(a) using the DBM, JCA, JCAL, limp and Biot models reveal the differences between the
models. The DBM model is quite different from the other models. The difference between the JCA
model (q′

0 = 9.0 10−9 m2 with cylindrical pores hypothesis) and the JCAL model (q′
0 = 3.0 10−9 m2) is

notable. The limp and Biot models are computed using the JCAL model. The difference between the
JCAL and limp models is quite small. The Biot model adds a significant resonance around 1880 Hz
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which is not present in the other models. The FSI criterion is computed for several materials, averaged
between 1 Hz and 800 Hz and shown in Table 1.2. The FSI of the melamine is 0.87, which is higher
than the limit of 0.2. This explains the difference between the limp and the Biot representations.

The predictions from the JCAL, limp and Biot models are also represented for a dense polyurethane
foam, called PU250, in Figure 1.16(b) and the glass wool in Figure 1.16(c). In both cases, the JCAL
model is quite different from the limp and Biot models, especially in low frequencies. For the PU250,
the Biot and limp models are quite different, whereas for the glass wool they are very close. This is
because the FSI of the PU250 is 1.7, which makes it unadapted to the limp representation. Conversely,
the FSI of the glass wool is 7.7 10−3 which makes the limp representation sufficient in capturing its
behaviour.
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Figure 1.16. Absorption coefficient α using different models for (a) melamine, (b) PU250, (c) glass
wool.

Table 1.2. Material properties and validity of the FSI for the materials whose absorption coefficient
is plotted in Figure 1.16.

h σ ϕ α∞ Λ Λ′ q′
0 ρ1 E η ν FSI

mm kNsm−4 - - µm µm 10−9m2 kg m−3 kPa % - -

Melamine 29.1 13.8 0.94 1.01 135.8 277.4 3.0 9.58 140 4 0.44 0.87
PU 20.9 0.79 2.45 17.9 170.2 16.2 242.5 300 18 0.44 1.70
Glass wool 20.0 105.0 0.95 1.00 35.1 105.3 1.31 17.0 1.4 3 0.0 0.008

7 | Impedance tube measurements

7.1 | Impedance tube properties and limits

Acoustic measurements in an impedance tube are often used to measure a material’s behaviour. This
relies on measuring the absorption coefficient α, the equivalent density ρ̃eq and bulk modulus K̃eq of
a sample using two or three microphones for instance. The setup requirements are given by standard
protocols [117, 118]. The setup of an impedance tube and its dimensions are indicated on the schematic
representation in Figure 1.17.
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x1 x2 0 h x3

hsl L

D p1 p2

Microphone 1 Microphone 2

Microphone 3
Sample

Figure 1.17. Measurement principle with a tube with 3 microphones.

The impedance tube measurements assume a plane wave hypothesis within the duct, which is
valid below the propagation frequency of the first transverse mode. For a cylindrical duct of diameter
D, this frequency is

fmax,1 <
1.84
πD

c0 ≈ 0.586c0
D

, (1.156)

Moreover, there should be at most half a wavelength between two microphones to avoid indeterminate
results:

fmax,2 = 0.45c0
s

. (1.157)

To separate the incident and reflected waves, two microphones are required. If the microphones are
too close, it becomes impossible to distinguish between their measured pressures for long wavelengths,
i.e. for low frequencies. An empirical rule states that the distance s between the microphones should
be at least a certain percentage of the longest wavelength, for instance 1.5 % [119]:

fmin,1 = 0.015c0
s

, (1.158)

Further, the tube must be longer than half a wavelength to obtain a standing wave [120]:

fmin,2 = 0.5c0
L

, (1.159)

The length of the tube L is recommended to be at least three times the diameter in [118]:

L > 3D, (1.160)

though in practice it is better to have a length greater than 10 or 15 diameters [121]. Moreover, it is
recommended to place the microphones at a distance l from the speaker that is at least three times
the diameter of the tube, so that non-planar evanescent waves have disappeared:

l > 3D, (1.161)

They should also be placed at least half a diameter (for non-structured materials) or two diameters
(for asymmetrical material samples) away from the sample due the proximity distortion to the acoustic
fields:

|x2| > 2D. (1.162)
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7.2 | Two microphone method (reflection)

Let there be a sample in the impedance tube of reflection coefficient R. Upstream from the sample in
the tube, at a distance x < 0 from the sample, the acoustic wave corresponds to the superposition of
a forward wave and a backward propagating waves, written with a normalized amplitude:

p(x) = ejk0x + Re−jk0x. (1.163)

By using 2 microphones at positions x1 and x2 = x1 + s, the forward and backward waves can be
separated by calculating the transfer function between the two microphones H12

H12 = p2
p1

= ejk0x2 + Re−jk0x2

ejk0x1 + Re−jk0x1
. (1.164)

The reflection coefficient is then expressed as

R = ejk0s − H12
H12 − ejk0s

ej2k0x1 . (1.165)

The absorption coefficient α and the surface impedance Zs of the sample can be deduced:

α = 1 − |R|2, (1.113)

Zs = Z0
1 + R

1 − R
. (1.111)

7.3 | 3 microphone method (reflection and transmission)

To access the transmission behaviour and the intrinsic properties of the sample, it is necessary to
add a new measurement. This can be done with 2 microphones and 2 cavities [122], 3 microphones
with one downstream from the sample [123], or 4 microphones with two downstream from the sample
[124, 125]. Salissou [102] then Doutres et al. [126] propose more easily implemented 3 microphone
methods. A three-microphone and two cavity method is used here [126, 127].

Speaker

Microphone 1 Microphone 2

Porous sample Microphone 3

Figure 1.18. 100 mm diameter impedance tube used for acoustic measurements.

The measurement process is performed for two different cavity sizes in the case of asymmetric
samples, which have different behaviours in different directions. The cavity represents the depth of
the air gap (x3 − h) behind the sample. The measurement can be simplified to a single cavity if the
sample is symmetric. The third microphone is placed at the end of the duct, flush with the rigid ending
of the tube, at position x3. The first measurement involves a cavity of depth x

(1)
3 , and the second

one involves a cavity of depth x
(2)
3 . Upstream in the tube (i.e. x < 0), for each cavity configuration

i = 1, 2, the pressure and velocity are given by
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p(i)(x) = ejk0x + R(i)e−jk0x, (1.166)

v(i)(x) = 1
Z

(i)
s

(
ejk0x + R(i)e−jk0x

)
. (1.167)

Downstream in the tube (x > h)

p(i)(x) = 2A(i)ejk0x
(i)
3 cos

(
−k0

(
x − x

(i)
3

))
, (1.168)

v(i)(x) = −j2A(i)

Z
(i)
s

ejk0x
(i)
3 sin

(
−k0

(
x − x

(i)
3

))
, (1.169)

where A(i) is the amplitude of the acoustic wave downstream from the sample computed from the
transfer function H13

H
(i)
13 = p3

p1
= 2A(i)ejk0x

(i)
3

ejk0x1 + R(i)e−jk0x1
, (1.170)

therefore,

A(i) = H
(i)
13

ejk0x1 + R(i)e−jk0x1

2ejk0x
(i)
3

. (1.171)

On either side of the sample, pressure and velocity are related by the transfer matrix [T ] of the
sample: 




p(0)
v(0)



 = [T ]





p(h)
v(h)



 =


T11 T12

T21 T22







p(h)
v(h)



 , (1.172)

with

[T ] = 1
p(1)(h)v(2)(h) − p(2)(0)v(1)(h)


p(1)(0)v(2)(h) − p(2)(0)v(1)(h) p(2)(0)p(1)(h) − p(1)(0)p(2)(h)

v(1)(0)v(2)(h) − v(2)(0)v(1)(h) p(2)(h)v(2)(0) − p(2)(h)v(1)(0)


 ,

(1.173)
where

p(i)(0) = −j2ek0x2 H
(i)
12 sin(k0x1) − sin(k0x2)

H
(i)
12 ejk0s − 1

, (1.174)

v(i)(0) = j2ejk0x2

Z
(i)
s

H
(i)
12 cos(k0x1) − cos(k0x2)

H
(i)
12 ejk0s − 1

, (1.175)

p(i)(h) = −j2ejk0x2
H

(i)
12 sin(k0s) cos

(
−k0x

(i)
3

)

H
(i)
12 ejk0s − 1

, (1.176)

v(i)(h) = j2ejk0x2

Z
(i)
s

H
(i)
13 sin(k0s) sin

(
−k0x

(i)
3

)

H
(i)
12 ejk0s − 1

. (1.177)

If the material sample is symmetric, i.e. its acoustic behaviour is identical in both mounting
directions in the tube, then the reciprocity and uniformity of the solution lead to

det([T ]) = T11T22 − T21T12 = 1. (1.178)

In this case, the measurement with a single cavity configuration i = 1 is sufficient, so [T ] can be
simplified with T11 = T22 to
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[T ] = 1
p(1)(0)v(2)(h) + v(1)(0)p(1)(h)


p(1)(h)v(1)(h) + p(1)(0)v(1)(0) p(1)(0)2 − p(1)(h)2

v(1)(0)2 − v(1)(h)2 p(1)(h)v(1)(h) + p(1)(0)v(1)(0)


 .

(1.179)
The absorption coefficient α of the sample is found from the transfer matrix [T ] as [128]

α = 1 −
∣∣∣∣
T11 − T21Z0
T11 + T21Z0

∣∣∣∣
2

, (1.180)

and the normal incidence sound transmission loss TL (in dB) is calculated as

TL = 20 log10

(1
2

∣∣∣∣T11 + T22 + T12
Z0

+ T21Z0

∣∣∣∣
)

. (1.181)

All in all, the equivalent properties K̃eq and ρ̃eq of the material are related to the transfer matrix [T ]

[T ] =


cos

(
k̃eqh

)
j sin

(
k̃eqh

)
Z0

j sin(k̃eqh)
Z0

cos
(
k̃eqh

)


 , (1.182)

therefore
k̃eq = 1

h
cos−1

( 1 + R

e−jk0x2 + Rejk0x2
H32

)
, (1.183)

Z̃eq = −jZ0 tan
(
k̃eqh

)
. (1.184)

In accordance with Equation 1.62 and Equation 1.63, the material’s equivalent properties are then
obtained as

ρ̃eq = Z̃eqk̃eq

ω
, (1.185)

K̃eq =
Z̃2

eq

ρ̃eq
. (1.186)

It should be noted that there is a singularity when cos
(
k0x

(1)
3

)
sin
(
k0x

(2)
3

)
= cos

(
k0x

(2)
3

)
sin
(
k0x

(1)
3

)
,

in which case [T ] is not determined. As a consequence, it is necessary for the difference between the
two cavity depths to satisfy ∣∣∣x(1)
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where fmax is given in Equation 1.156. Moreover, microphones are calibrated in amplitude using a
pistonphone, as well as in phase with one another using the microphone swapping technique described
in [117, 125].

It can be noted that the reproducibility of impedance tube measurements can vary depending
on the laboratory, the method used and the material, according to the round-robin study in [129].
This study shows that impedance tube results depend on sample preparation, number of samples used,
chosen sample size, mounting conditions, excitation signal, and method used to merge data from tubes
of different diameters. When all laboratories are given the same set of samples, and therefore material
inhomogeneity is eliminated, there is still a poor reproducibility of results due to sample mounting
conditions, especially for resistive materials and granular materials with a rigid frame [130].
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8 | Conclusion

Due to their biphasic nature, the modelling of porous materials can be done at different levels of
complexity, depending on their internal structure and their usage conditions. When the material’s
skeleton is immobile, an equivalent fluid model is enough to represent the dissipative propagation in
the fluid. Equivalent fluid models are quite easy to implement as they only require two complex and
frequency dependant values, for instance an equivalent density ρ̃eq and an equivalent bulk modulus
K̃eq. The JCAL model provides a good compromise between modelling accuracy and simplicity,
and, consequently, it is used as the equivalent fluid model of choice throughout this work. The
characterization of the JCAL parameters is explored in the next chapter.

When the skeleton exhibits a rigid body movement, or when it moves but has a negligible stiffness,
a limp model is well adapted to represent the extra dissipation caused by the added movement of the
solid phase. This model differs mostly from the immobile rigid skeleton models at low frequencies.

When the material skeleton moves and transmits solid-borne waves, a full poroelastic Biot model
is required. This model requires more parameters, is more complicated to implement due to increased
degrees of freedom over an equivalent fluid model, however it gives the most accurate representation
of porous behaviours in configurations where solid-borne waves cannot be neglected. The Biot model
uses an equivalent fluid model, representing the dissipation within the fluid phase, as well as complex
and frequency dependant viscoelastic mechanical properties, representing the dissipation within the
solid phase.

The mechanical parameters can be estimated using different viscoelastic models, which represent
their frequency dependence, as well as their temperature dependence through the time-temperature
equivalence principle. The Transfer Matrix Method (TMM) is a simple way of implementing these
models to predict the behaviour of a multilayer. Using these models to predict the behaviour of a
porous medium requires the knowledge of material properties. In the next chapter, the methods used
to characterize the materials and obtain these properties are described and applied.



Chapter 2. Experimental characterization of
poroelastic materials

1 | Introduction

In this chapter, characterization methods for porous materials are presented and applied to materials
studied within the SEMPAE project. There are two main objectives of this chapter. The first is to
give an extensive review of characterization methods and assess their validity when applied to real,
non-ideal materials used in the industry. For example, some materials are difficult to characterize
due to their high mechanical stiffness, high airflow resistivity, high inhomogeneity, high variability, or
low thickness. This will shed light on their practical limitations and how they can be overcome. The
second objective is to accurately obtain the properties of the materials used for acoustic applications
within the SEMPAE project, in order to model their behaviour and optimize their implementation.
As such, various characterization methods are presented, their pros and cons are given, and they are
compared to each other. Some of these methods are applied to characterize six studied materials.

The six studied materials are described in Section 2, to explain how they are made, what makes
them unusual and why they can be difficult to characterize. The direct measurement methods for
the transport parameters are presented Section 3. Inverse methods for the transport parameters are
presented in Section 4, which include numerical iterative global optimization methods in Section 4.1,
micro-macro approaches in Section 4.2, and the analytic indirect method in Section 4.3. At last, the
direct mechanical characterization of porous materials is presented in Section 5, with a focus on the
quasi-static method. This experimental method has many uncertainties caused by external factors
and measurement conditions, such as preload, relaxation, and material surface roughness, which are
analysed. In the end, the final material properties are given by combining the results from various
methods in Section 6, and their computed absorption coefficient is compared to absorption coefficient
measurements for validation.

2 | Materials studied and sample preparation

This section presents the six materials studied in this chapter, their manufacturing processes, and
their features which make them unique and difficult to characterize. They are shown in Figure 2.1.
The melamine foam in Figure 2.1(a) is chosen because it is often studied in the literature, and it
is easy to cut into various shapes which is exploited in the following chapters. The other materials
are tied to the SEMPAE project and are manufactured by Trèves Group. The Polyfiber material
in Figure 2.1(d) and the polyurethane foams in Figure 2.1(b)-(c) are under-hood materials used for
engine encapsulation, while the Greenflocks material in Figure 2.1(e) is a passenger compartment trim
material.

| 43
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(a) Melamine (b) PU60 (c) PU250 (d) Polyfiber (e) Greenflocks

Figure 2.1. Images of encapsulating materials. All cylindrical samples have a diameter of 44.5 mm.

2.1 | Materials description
Melamine foam

The melamine foam shown in Figure 2.1(a) is a standard polymer foam that is often studied in
literature. It is a lightweight and highly porous foam with a rigid skeleton. It is easy to manufacture
and cut into various shapes, making it ideal for prototyping and testing. For instance, melamine foam
can easily be given a geometric pattern on its surface through a convolution process, where sheets are
passed through rollers with the desired pattern and cut by a blade. Convoluted melamine foam, also
called corrugated foam, with pyramidal and spherical patterns on their surface are shown in Figure 2.2.
Nonetheless, melamine is fragile as its skeleton is sensitive to plastic damage and long-term stress.
This material is not used in car trims, although it is still exploited in this work to create architected
geometries in Chapter 3 and Chapter 4 thanks to its ease of cutting. Additionally, it is often studied
in the literature and its properties are well known. For these reasons, it is studied in addition to the
other SEMPAE materials.

(a) (b)

Figure 2.2. Convoluted foam in the shape of (a) spheres and (b) pyramids.

Polyurethane foams

Polyurethane foams of density 60 kg m−3 (PU60) and 250 kg m−3 (PU250), shown in Figure 2.1(b)
and Figure 2.1(c) respectively are used in acoustic screens applications. Thanks to its low stiffness,
the PU60 is often used as a soft spring in combination with another denser material, such as dual layer
PU60 and PU250 in Figure 2.3(a) or dual layer PU60 and Polyfiber in Figure 2.3(b). Polyurethane
foam is created by mixing polyols, isocyanates, and some additives into a mould. The mixture takes
a few minutes to react and creates a porous network due to CO2 gas creation. The density of the
material can be adjusted by the amount of reactants injected, and the porosity can be controlled by
the amount of water used. The ratio of isocyanates to polyols also determines the rigidity of the foam.

The reactants enter the mould through one or several injection points. Often, the mould is laid
horizontally with the injection points above the cavity, as shown in Figure 2.4(a). An image of the
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(a) (b)

Figure 2.3. Bi-layer materials with (a) PU60 and PU250, and (b) PU60 and Polyfiber.

mould is shown in Figure 2.4(b). The moulds are filled at ambient pressure and vents let the excess
gas escape. The mould is also heated and sprayed with wax, to facilitate foam demoulding without
sticking. This causes the foam to have a smooth layer on its surface with closed pores. It is possible
to create complex geometries with this technique, however it can be difficult to fill the corners of the
mould, resulting in less dense regions in the final porous screen.

Mixing head

Injection point

Gas vents

Polyols + isocyanates + additives

Lower mould

Upper
mould

(a) −→g

(b)

Figure 2.4. (a) Diagram and (b) image of a mould for creating a polyurethane foam screens.

Images of the microstructure of the PU60 and PU250 foams are shown in Figure 2.5. Their cells
have visibly different geometries due to their different densities. The PU60 is less dense and more
porous than the PU250, and their networks are connected by mostly open pores, meaning that there
are no membranes closing off the openings connecting the pores. Foams with no such membranes
are called reticulated foams. Further, their pores resemble Kelvin cells, also called tetrakaidecahedra
[131].
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0.5 mm

(a)

0.5 mm

(b)

Figure 2.5. Microscopic view of a cross-section of (a) PU60 and (b) PU250 foams under SEM.

Polyfiber

Next, the Polyfiber, shown in Figure 2.1(d), is a stiff fibrous material made from polypropylene,
glass fibre, and polyethylene terephthalate. It is highly resistive and thin (only 4.6 mm thick), meaning
it can be used as a resistive film on a multilayer to create a mass-spring behaviour. It is sometimes
used in conjunction with PU60, which is foamed directly on the Polyfiber, to create a bi-layer sheet
used as an acoustic screen, shown in Figure 2.3.

Greenflocks

Finally, the Greenflocks shown in Figure 2.1(e) is a soft material used in car interior trims, and it
is made from recycled polyurethane mattress flocks mixed with a binder. The recycled polyurethane
mattresses are disinfected, shredded, and then mixed with CoPET bi-component fibres, as shown in
Figure 2.6(a). The result is then airlay carded, thermofixed, calendared, die cut into slabs and then
thermoformed to give them their final shape [132, 133]. Greenflocks sheets compressed to nominal
thicknesses of 20 mm and 25 mm were studied. The Greenflocks material is highly porous, lightweight
and soft. It is very heterogeneous due to its manufacturing process, as flocks from different origins
are mixed together. The size of these flocks varies, but they are in the order of magnitude of the
centimetre. Consequently, relative to the usual size of studied samples, this inhomogeneity is not
always negligible. Moreover, the flocks can cause empty areas within the material where the airflow
is unrestricted, and also result in a rough and uneven surface, visible in Figure 2.6(b).

2.2 | Sample preparation

Material samples adapted to the characterization setups must be created from the manufactured
materials sheets. As the first step in the characterization process, sample preparation has a trickle-
down effect on results, so it must be performed precautiously. The large material sheets obtained
after manufacturing have dimensions indicated in Table 2.1. The characterization setups often require
cylindrical samples of diameters 29 mm, 44.5 mm, or 100 mm. It is also possible to use cubic geometries
for certain applications, though this is less common and is not used in this work.

The measurement of the thickness h of the materials is done with a caliper on several samples and
on different locations on each sample. Measured samples are compressed between the caliper jaws,
and the caliper jaws are opened until the sample falls under the effect of gravity, which yields the
sample’s thickness. Results vary due to measurement error and material inhomogeneity. The 95 %
confidence interval on the measured thickness indicated in Table 2.1 is quite large for the Polyfiber,
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(a)

3 cm

(b)

Figure 2.6. (a) Greenflocks manufacturing process, where the CoPET bi-component fibres (white)
are mixed with the recycled PU mattress flocks (yellow). Photo courtesy of Trèves
Group. (b) Greenflocks sheet with an uneven surface due to flocks inhomogeneity.

due to its low thickness, and for the Greenflocks material, due to its inhomogeneity.

Table 2.1. Thickness and approximate lateral dimensions of foam sheets. The 95 % relative confi-
dence interval is given. For the melamine, it is computed for 29.1 mm thick samples.

Sheet dimensions h (mm) CI (±%) Lateral dimensions (mm)

Melamine 18.9, 29.1, 47.7 0.4 1000 × 500
PU60 20.1 1.5 800 × 500
PU250 21.6 1.7 800 × 500
Polyfiber 4.6 8.2 1100 × 950
Greenflocks 20 mm 20.6 2.5 1000 × 800
Greenflocks 25 mm 24.9 4.6 1000 × 800

Several cutting methods exist, as presented and compared in Table 2.2. It is challenging to create
samples with the perfect desired geometry, since for every cutting method, the efforts applied by the
cutting agent to the porous sheet deform it significantly. It is common to obtain misshapen, skewed
or ripped samples as a result of cutting, as shown in Figure 2.7. Samples could be frozen to ease
the cutting process, however due to the low glass transition temperature of the polyurethane foams
studied, they are not much easier to cut or shatter when frozen. The sample cut with the water
jet method in Figure 2.7(b) has a visibly concave generatrix. The sample cut with a hole saw in
Figure 2.7(a) seems more uniform, even though there are still cutting imperfections near the top and
bottom for instance. Consequently, the hole saw method is used in this work.

(a) (b)

Figure 2.7. Comparison between cylindrical PU250 samples cut with (b) a hole saw and (a) a wa-
terjet.
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Table 2.2. Comparison of sample cutting methods.

Punch
cutting

Method A circular punch cutter is placed on the material sheet, and a normal force
is applied to cut the samples.

Pros Easy and quick to perform. Does not require much equipment.

Cons Does not work well on dense materials. Applies a compressive force which
deforms the material. Can lack precision in the cut.

Hole
saw

Method A hole saw mounted on a column drill is lowered into the material. A dry
lubricant can help reduce friction.

Pros The rotation facilitates cutting and reduces compressive forces on the mate-
rial. The process is quick.

Cons

The saw’s rotation generates torque that can deform the samples. Samples
obtained are not perfectly cylindrical, with a variable diameter throughout
their height and an oblique axis. Requires expensive, well-maintained, and
sharpened hole saws. A powerful column drill is required for dense materials.

Waterjet Method A high-pressure water jet cuts cylinders in the sheet.

Pros Precise cutting shape.

Cons
Requires expensive, heavy and voluminous equipment. The material is de-
formed under the water jet’s load. The water jet loses precision for increased
thickness, causing shape defects.

Furthermore, the PU60 and PU250 materials have a skin characterized by closed pores on their
surface, which results from the wax used in the manufacturing process for demoulding. This skin is
very thin and located on both sides of the samples. It has a higher air resistivity and lower porosity
than the core of the materials, and therefore acts like a resistive screen. Indeed, airflow resistivity
measurements have revealed that these resistive skins represent up to 91 % of the total resistivity of
the entire sample. Consequently, in order to characterize the homogeneous and uniform cores of the
materials, the samples studied in this work are without skin. It can be noted that these skins are
present in the real final products, and can be modelled as simple thin resistive layers when necessary.

The resistive skins can be removed by manual abrasion using sandpaper. This works for the less-
dense PU60, but it is too time-consuming and damaging for the PU250. Alternatively, the resistive
skin can be removed by milling for the PU250. This results in flat and parallel opposite faces with a
uniformly removed resistive skin. Images of PU60 and PU250 samples with and without resistive skin
are shown in Figure 2.8 and Figure 2.9. Close-up SEM images of the cross-sections of these materials
in Figure 2.8(c) and Figure 2.9(c) reveal the contrast between the core of the material and the surface
skin. Subsequently, the PU60 is manually abraded and the PU250 is machined before characterization.

Moreover, it can be noted that the PU250 contains abnormally large pores close to the side facing
up in the mould. These macropores are shown for different milling depths in Figure 2.10(a), and
are shown in the SEM image in Figure 2.10(b). They decrease in size and number deeper into the
material. The macropores are not considered in the characterization and modelling of these materials,
and the PU250 foam is machined to a depth of 2 mm before characterization to limit influence of these
macropores.
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(a) (b)

0.5 mm Material core

(c)

Surface skin

Figure 2.8. PU60 foam (a) with and (b) without resistive skin, removed by manual abrasion. (c)
SEM image of a PU60 slice near its surface, with its skin still intact.

(a) (b)

0.5 mm
Material core

(c)

Surface skin

Figure 2.9. PU250 foam (a) with and (b) without resistive skin, removed by milling. (c) SEM image
of a PU250 slice near its surface, with its skin still intact.

3 | Direct measurement of transport parameters

Methods to directly measure the transport parameters are discussed in this section. Transport param-
eters are related to the fluid saturating the pores of the porous material. The six transport parameters
used by the JCAL model, described in Section 4.3.4, are the porosity ϕ (-), the tortuosity α∞ (-),
the resistivity σ (Nsm−4), the viscous and thermal characteristic lengths Λ′ (m) and Λ (m), and the
thermal permeability q′

0 (m2). Throughout this chapter, the 95 % confidence interval (CI) is given
alongside results where possible. This confidence interval is computed ideally from the results of four
to six different samples, depending on measurement requirements and conditions.

3.1 | Porosity

3.1.1 |Measurement methods

The open porosity ϕ can be measured in many ways. As the closed porosity is not considered for
acoustic modelling, only the open porosity is discussed. Traditionally, an air pycnometer could be
used [134] to measure the porosity of any material. Mercury porosimetry is another common method,
which involves saturating the porous sample with mercury, increasing the pressure and measuring the
volume variation as the mercury is forced into the gaps of the pores [135, 136, 137]. Some more recent
methods for porous acoustic materials were developed, such as Panneton and Gros’ [138] method based
on the measurement of the material’s mass in air and in a vacuum, using Archimede’s principle to
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Milling depth

0 mm

1 mm 2 mm
3 mm

4 mm

(a)

1 mm

Large pores

(b)

1 mm

Figure 2.10. (a) PU250 sample milled at different depths on the side facing up during the moulding,
revealing macropores near the surface. (b) Cross-sectional view of a PU250 sample
under SEM. Macro-pores are visible on the left.

relate the difference in mass to the porosity. The porosity can also be computed from the measurement
of the reflected and transmitted waves through a porous sample, as described by Groby et al. [139],
at the same time as the tortuosity α∞ and characteristic lengths Λ and Λ′. A method for measuring
it from the low frequency ultrasound waves reflection coefficient of a sample (40 kHz) was proposed
by Parmentier et al. [140], however this method requires a priori knowledge of α∞ and Λ, which can
be impractical. Jaouen and Bécot [141] suggest a method adapted to perforated screens based on
standing wave tube measurements.

Two other commonly used methods to measure the porosity are presented in detail here. The
first is a volume variation method which originated in the 1940s [32, 44, 142]. This method was then
modified in 1991 by Champoux et al. [143] to avoid using liquids to measure a volume variation, and
a variant by Leclaire et al. [144] relies on comparing the pressure with that of an empty reference
chamber. This method involves placing the porous material in a tank which undergoes a volume
variation, shown in Figure 2.11. The resulting pressure variation is measured, and using Boyle-
Mariotte’s law which states that the pressure P times the volume V of an ideal gas at iso-temperature
is constant, the volumes and pressures before and after the variation are related by

P0(Vf + Vext) = (P0 + ∆P )(Vf + Vext + ∆V ), (2.1)

where Vext is the fluid volume in the tank and outside the porous material, and Vf is the volume of
the fluid phase. ∆P is the pressure change caused by the volume change ∆V . The porosity is then
derived from the measurement through

ϕ = Vf

Vsample
, Vf = P0Vext − (P0 + ∆P ) (Vext + ∆V )

∆P
, (2.2)

where Vsample = Vs + Vf is the total volume taken by the sample, with Vs the volume of the solid
phase.

The Boyle-Mariotte law is only valid at constant temperature, making the method highly tem-
perature sensitive. Champoux et al. [143] suggests placing a massive brass cylinder around the sample
holder as a heat sink, and wrapping the tank in an insulating material to limit the sensitivity to
external temperature variations. Each sample measurement can take about twenty minutes to allow
the temperature to stabilize after the pressure variation. This method works best for materials with
low porosity.
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∆V

Vext∆P

P0
Vsample

= Vs + Vf

Figure 2.11. Porosity measurement bench of the volume variation method proposed by Beranek [44].

The second method presented in detail for measuring the porosity is the pressure-mass method
by Salissou and Panneton [145], which will be applied to the materials studied in this project. In this
method, the pressure within a tank and its mass are measured with and without the sample inside,
in vacuum and under pressure of a heavy gas (such as argon). The four configurations are shown in
Figure 2.12(b). The pressures Pi and masses Mi in these configurations, combined with the ideal gas
law PV = nRT are related to the material’s porosity:

ϕ = 1 − Vf

Vsample
= 1 − RT0

Vsample

(
M2 − M1
P2 − P1

− M4 − M3
P4 − P3

)
. (2.3)

This method also provides access to the bulk density of the material in vacuo ρ1:

ρ1 = 1
Vsample

(
M3 − M1 + 1

RT0
((P1 − P3) Vt + P3Vs)

)
, (2.4)

Vs = RT0

(
M2 − M1
P2 − P1

− M4 − M3
P4 − P3

)
, Vt = RT0

M2 − M1
P2 − P1

, (2.5)

with Vt is the total volume of the tank.

Vacuum pump

Argon tank
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Sample

(a)
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P4

Vt-Vsample

M3

Heavy gas
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(b)

Figure 2.12. Porosity measurement with the pressure-mass method. (a) Diagram of the setup, (b)
configurations of recorded mass and pressure.

The uncertainties tied to this method mainly come from the mass and pressure measurement
errors. To minimize the measurement error, the tank should be filled with as big a volume of the
measured porous material as possible to maximize the mass variation. The measurement uncertainty
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due to the pressure and mass readings is highest for materials with low porosity and small volume
[145]. Further, when recording the pressure variation in the tank, it is important to ensure that the
temperature remains constant. Consequently, each measurement takes upwards of 5 minutes.

3.1.2 |Application and results

The pressure-mass method [145] is used to perform porosity measurements, using an Open Poros-
ity/Density Meter Model PHI by Mecanum shown in Figure 2.13. This method is reliable and can be
performed without any particular difficulty on the studied materials. The porosity of the melamine is
measured at ϕ = 0.94, which is slightly lower than what can be found in the literature, which is closer
to ϕ = 0.99 [146, 147, 148, 149]. To minimize the uncertainty, the tank must be filled as much as
possible for the highly porous materials which is difficult to obtain a large volume for thin materials
such as the Polyfiber, which has a height of h = 4.6 mm while the tank is 125 mm tall, which means
many samples are required. Further, the macroporosity near the surface of the PU250 foam, shown in
Figure 2.9, contributes to its overall porosity because the materials are considered homogeneous. The
final results for the porosity ϕ and the density ρ1 are presented in Table 2.3, and the narrow 95 %
confidence interval found for the results attests to the reliability of this measurement procedure.

Argon tank

Scale Tank Vacuum pump

Barometer

Figure 2.13. Open Porosity/Density Meter Model PHI 2011 by Mecanum.

Table 2.3. Measured porosity ϕ and in vacuo density ρ1 for the studied foams. The relative 95 %
Confidence Interval (CI) is given.

Porosity ϕ (-) CI (±%) ρ1 (kg m−3) CI (±%)

Melamine 0.94 1.45 9.58 0.82
PU60 0.94 0.84 54.8 0.18
PU250 0.79 1.00 242.5 0.008
Polyfiber 0.99 0.59 275.5 -
Greenflocks 20 mm 0.94 1.90 65.6 3.70
Greenflocks 25 mm 0.95 0.22 55.3 7.31
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3.2 | Tortuosity

3.2.1 |Measurement methods

The tortuosity α∞ can be measured directly with several methods. A first method consists in satu-
rating the porous material with a conductive fluid, and computing the tortuosity from [150, 151]

α∞ = ϕ
rs

rf
, (2.6)

where rs is the resistivity of the material skeleton and rf is the resistivity of the saturating fluid. The
porosity ϕ is required for this method. Another method described by Groby et al. [139] consists in
computing the tortuosity from the simultaneous measurement of the reflected and transmitted wave
through a porous sample. Alternatively, ultrasonic wave measurement methods exist, using either a
transmission or a reflection setup, which are described in detail in the following.

The transmission method [152, 153, 154] consists in placing an ultrasonic transmitter and receiver
face to face. The measurement bench is shown in Figure 2.15(b). The transmitter emits a pulse that is
measured by the receiver. Then, a porous sample is placed between the transmitter and the receiver,
and the pulse is emitted again. The time lag ∆t in the reception of the pulse induced by the presence
of the material is recorded, as schematized in Figure 2.14. The time lag ∆t is frequency dependant,
and its high frequency asymptote is related to the tortuosity and the refractive index nr, which is
written

nr(f) = 1 + c0
∆t(f)

h
. (2.7)

The high frequency asymptote of n2
r can be written

n2
r(f) = α∞ + Mn√

f
−−−→
f→∞

α∞. (2.8)

Ultrasound
emitter

Ultrasound
receiver

Porous
sample

(a)

Time

Received signal
∆t

(b)

Figure 2.14. Tortuosity measurement principle by transmission. (a) Configuration of the ultrasound
emitter and receiver, (b) received signal with and without sample.

In other words, Equation 2.8 describes a line with y-intercept α∞ and slope Mn, as a function of
f−1/2. α∞ is therefore found from a linear regression of n2

r when f → ∞, as shown in Figure 2.15(a).
Additionally, Mn can be related to the viscous and thermal characteristic lengths Λ and Λ′, which is
explained in Section 3.4. For this transmission method to work well, the waves must pass through and
exit the sample for the ultrasound receiver to pick up the emitted wave. It is therefore recommended
having a sample at most half as thick as the penetration depth of the acoustic wave Dp, which is the
distance from which the acoustic wave is nearly completely dissipated [155]. Dp can be computed as
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f−1/2

n2
r(f) = Mnf−1/2 + α∞

α∞

(a)
(b)

Sample
holder

Emitter

Receiver

Figure 2.15. Tortuosity measurement with reflection setup. (a) How the linear regression on the
refractive index n2

r leads to tortuosity, (b) measurement bench with the emitter and
the receiver.

the distance where the acoustic wave’s amplitude is divided by a factor 20 (i.e. −26 dB). Using only
the airflow resistivity σ, the simple equivalent fluid Delany-Bazley-Miki model [98] can be used :

Dp(f) = ln(20)
0.160

c0
2πf

(
f

σ

)0.618
. (2.9)

When materials are too thick and dissipative to use the transmission method, the alternative
reflection method [156] can be used. It consists in sending an oblique ultrasonic wave onto the
material’s surface and measuring its reflection coefficient, obtained relative to a perfectly reflective
surface. The reflection coefficient r(ω, θ) is calculated for different incident angles θ, and the tortuosity
α∞ is computed from

α∞ = z2

2


1 +

√√√√
(

1 −
(2

z
sin(θ)

)2
)
 , (2.10)

where z = 1+r(ω,θ)
1−r(ω,θ)

ϕ
cos θ , and the porosity ϕ must be known beforehand. This principle is shown in

Figure 2.16, and the measurement setup is shown in Figure 2.17.
The reflection coefficient can be computed for different incident angles θ and frequencies f . Ide-

ally, all angles θ return the same tortuosity value, but this is not the case in practice. It has been
observed during measurements that unusually high tortuosity values are obtained for angles greater
than approximately 60°. For most materials, it is appropriate to use angles between 20° and 45° at
frequencies between 80 kHz and 120 kHz [157]. This method requires materials to behave with a
motionless skeleton, which is often true in this frequency range. However, some materials may require
higher frequencies for satisfactory results. Further, it is recommended to take measurements for at
least four different angles to obtain statistical data on the results. For both the transmission and
reflection tortuosity measurement methods, the error on the sample thickness propagates proportion-
ally to the computed tortuosity value. Overall, the transmission method is more reliable than the
reflection method when it is applicable.
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Figure 2.16. Tortuosity measurement by reflection. (a) Measurement configurations with the ultra-
sound emitter and receiver, (b) received signals.
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Figure 2.17. Tortuosity measurement experimental setup with the reflection method. (a) Top view,
(b) side view.

3.2.2 |Application and results

Both transmission and reflection methods are applied with Mecanum’s TOR Transmission and TOR
Reflection tortuosity meters. Ultrasonic waves can be sent between 60 kHz and 180 kHz. Material
ultrasonic wave penetration depths Dp at 180 kHz are presented in Table 2.4. Ideally Dp must exceed
double the thickness of the material to apply the transmission method, which means that the PU250,
and the PU60 and Polyfiber to a lesser extent, are not suitable for the transmission method. For these
materials, it is preferable to perform the reflection measurement.

The measurement results for the tortuosity are presented in Table 2.5. The tortuosity of the
melamine foam is very close 1, which is coherent with values found in the literature [146, 147, 148, 149].
The confidence interval indicates how reliable each method is for each material. For example, the
transmission method is not well adapted to the PU250 (tortuosity confidence interval of ±48.14) but
works better through reflection (tortuosity confidence interval of ±1.02). This is because the PU250
material is too opaque for the ultrasound waves to pass through it, as found in Table 2.4. The
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Table 2.4. Acoustic wave penetration depth Dp of ultrasonic waves in materials and their thickness.
Values in italics indicate penetration depths that are too small compared to the thickness
of each material. The applicability of the transmission method is indicated in the final
column.

Penetration depth Dp at 180 kHz (mm) Thickness (mm) Transmission usable?

Melamine 28.5 19.0 ✓
PU60 20.6 20.1 Uncertain ∼
PU250 1.2 20.2 ×
Polyfiber 4.9 4.6 Uncertain ∼
Greenflocks 20 mm 24.6 20.6 ✓
Greenflocks 25 mm 31.5 24.9 ✓

tortuosity of the PU60 foam is 1.25, which can be considered quite high for an open cell foam. This
indicates that the size of the cell openings are smaller, relative to the cell size, and the cell struts are
thicker than for a melamine foam for example. The Polyfiber has a low standard deviation for both
transmission and reflection, but the result obtained from the transmission method seems too high for
this fibrous material (3.11 ± 0.53). Therefore, the reflection method (1.49 ± 0.12) is preferred for the
Polyfiber. The Greenflocks was not characterized with the tortuosity meter, but its tortuosity was
estimated at 1.03 for the GF 20 mm and at 1.01 for the GF 25 mm by the manufacturer Trèves Group
using an inverse method.

Table 2.5. Geometric tortuosity α∞ (-) obtained through transmission and reflection methods. The
values in italics are subject to caution, due to large confidence intervals or insufficient
penetration depth Dp of the ultrasound waves.

Tortuosity α∞ (-) Transmission CI (±) Reflection CI (±) Inverse method

Melamine 1.01 0.02 - - -
PU60 1.58 3.18 1.25 0.20 -
PU250 14.20 48.14 2.45 1.02 -
Polyfiber 3.11 0.53 1.49 0.12 -
Greenflocks 20 mm - - - - 1.03
Greenflocks 25 mm - - - - 1.01

3.3 | Airflow resistivity

3.3.1 |Measurement methods

The airflow resistivity σ is measured as the pressure difference across a sample of thickness h when an
air flow is applied:

σ = ∆PS

Qh
, (1.64)

where S is the sample cross-section area, Q is the volumetric flow rate crossing the sample, and ∆P is
the pressure difference upstream and downstream from the sample. Measurement methods applied to
porous acoustic materials are described by ISO standard 9053 [158, 159] and ASTM standard C 522
[160]. Methods using either static laminar airflow or alternating airflow exist. A static laminar airflow
is used here, with a measurement principle illustrated in Figure 2.18. By using a calibrated resistance
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Rc that causes a pressure drop ∆Pc

Q = ∆Pc

Rc
, (2.11)

the resistivity of the sample is computed as [161, 162]

σ = Rc
∆PS

∆Pch
. (2.12)

∆Pc

Rc

h

Q

P2 P1

Rs = σh

∆P

S

Figure 2.18. Principle of resistivity measurement with a calibrated resistance Rc.

Any error on the sample thickness propagates proportionally to the resistivity result. Further,
samples are considered homogeneous and isotropic for this measurement, so an equivalent resistivity is
computed for inhomogeneous materials, but this anisotropy can be evaluated by measuring the airflow
resistivity in different directions. Since the air viscosity increases with temperature [163], the airflow
resistivity also increases with temperature [164]. Schiavi et al. [165] show that this effect is very small
in practice at ambient temperatures (approximately 0-30°C), though at much higher temperatures
(approximately 800°C) its effect is more important [166].

3.3.2 |Application and results

Resistivity measurements are performed with a Mecanum Static Airflow Resistivity Meter Model
SIG2011 resistivity meter, shown in Figure 2.19. The samples are mounted inside a cylindrical sample
holder. The measurement error is high for samples with low resistivity, due to the relative reading
error on the pressure ∆P . Furthermore, samples that are too resistive can saturate the pressure
sensors. Nonetheless, airflow resistances of up to at least 500 000 Nsm−3 can be measured. Samples
of varying diameter and thickness can be chosen to improve measurement accuracy accordingly.

This setup is sensitive to sample mounting conditions in the sample holder, because air leaks
around the sample can drastically reduce the measured resistivity, especially for resistive materials.
In addition, highly inhomogeneous materials like the Greenflocks may contain intrinsic airflow path-
way leaks that are challenging to control. An example of an air leak around a sample is shown in
Figure 2.20(a). To reduce the effect of air leaks around the sample, the sample contour can be sealed
with vacuum grease, however this permanently penetrates inside the samples and makes them un-
usable for subsequent measurements. Alternatively, the sample edge can be surrounded with a thin
resistive strip. A fabric strip is placed around the samples in this work to prevent leaks, shown in
Figure 2.20(b).

The measurement results with this method are presented in Table 2.6. The resistivity of the
melamine foam is found at 13 838 Nsm−4, which is close to values which can be found in the literature
which are between 9 000 Nsm−4 and 15 000 Nsm−4 [146, 147, 148, 149]. The resistivity measured with
this method can vary significantly from one sample to another depending on their mounting. The
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Figure 2.20. (a) PU60 foam sample mounted in the sample holder with a leak along its contour, (b)
strip used to surround the sample to prevent the leak.

largest confidence interval is ±37.6 % for the PU250. This foam is highly resistive, so any air leak is
likely to greatly modify the measured resistivity. In contrast, the Greenflocks 25 mm has a very low
resistivity and is very inhomogeneous, which causes a large relative confidence interval of ±22.5 %.
The confidence interval for other materials is less than 17.8 %, indicating fairly reliable and exploitable
measurements.

3.4 | Characteristic lengths Λ and Λ′

The viscous and thermal characteristic lengths Λ and Λ′ are difficult to measure directly. Conse-
quently, no direct measurements of these parameters are performed on the six studied materials.
Groby et al. [139] suggest a method to compute them from the reflected and transmitted waves sent
onto a porous sample. Alternatively, the thermal characteristic length Λ′ can be obtained by BET
adsorption measurements, as described by Lemarinier et al. [167]. It is written

Λ′ = 2ϕ

Scontact
, (2.13)

where Scontact is the contact area between the fluid and the frame per fluid unit volume. The charac-
teristic lengths are also related to the equivalent length Leq of the path taken by a wave to cross the
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Table 2.6. Measured airflow resistivity values for different materials. The absolute and relative 95 %
confidence intervals are indicated.

Resistivity σ (Nsm−4) CI (±%) CI (±Nsm−4)

Melamine 13 838 3.9 539
PU60 17.8
PU250 37.6
Polyfiber 228 728 11.6 26 344
Greenflocks 20 mm 15.3
Greenflocks 25 mm 22.5

material, so they can be retrieved from the ultrasonic transmission measurements described for the
tortuosity in Section 3.2.1. The slope Mn of the squared refraction index n2

r as a function of f−1/2 is
related to Λ and Λ′ through [39, 152, 153, 154]

Leq = h

c0Mn

√
α∞ν0

2 =
( 1

Λ + γ0 − 1
Λ′√Pr

)−1
. (2.14)

Combined with the BET measurement for Λ′, both characteristic lengths can be retrieved, as
performed by Brown et al. [168]. Otherwise, by performing this measurement in two different fluids (for
example, in air and helium), it is possible to obtain Λ and Λ′ from the slopes Mn of the measurements,
as proposed by Leclaire et al. [153, 154]. This experimental setup requires immersing the tortuosity-
meter measurement bench in a gas different from air, which can be more difficult to implement in
practice.

4 | Inverse methods for transport parameters

Some material parameters are difficult or impossible to measure directly, such as the thermal charac-
teristic length Λ′ and the thermal permeability q′

0. In this case, inverse methods can be used to infer
their values through the material’s behaviour. Iterative global optimization algorithms, presented in
Section 4.1, rely on a least squares method for parameter calibration, and make assumptions about
a model accuracy at representing an experimentally observed behaviour. Micro-macro approaches,
presented in Section 4.2, make use of the micro-geometry of materials to compute macroscopic prop-
erties, and make assumptions about the geometric structure of the materials. Finally, the so-called
indirect method, presented in Section 4.3, relies on analytically flipping measurement results to deduce
material properties. This method makes strong assumptions about the material’s motionless skeleton
behaviour over a given frequency range. These three inverse methods are presented and applied to
the six studied materials, with a focus on the transport parameters.
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4.1 | Iterative inverse methods

The principle of iterative global optimization inverse methods and some commonly used algorithms
are presented in this section.

4.1.1 |General methodology

Iterative global inverse characterization methods rely on fitting a set of sought parameters through
an iterative optimization algorithm. The material properties are guessed by matching the modelled
behaviour of a porous material to its measured behaviour. These methods can theoretically be applied
to any measurement of a material’s behaviour, as long as its parameters contribute significantly to
the investigated response. The quality of a set of parameters β used as input parameters in the
model is evaluated by a cost function J , which has to be minimized. This cost function can be the
RMS difference between the computed and measured curves for instance. At each iteration of the
algorithm, the parameter set β is adjusted to minimize J . Between iteration steps i and i + 1, the set
of parameters βi is altered based on a set of rules determined by the algorithm used. The principle of
this iterative process is presented in Figure 2.21.

Start

Starting values β0

Compute cost function J(β)

Objective met?

Optimized solution βN

End

Modify parameters β

(algorithm dependent)

Yes

No

Figure 2.21. Principle of an optimization problem to be solved for inverse methods.

Iterative global inverse methods have been applied in many ways to porous materials, as shown
in the review by Bonfiglio and Pompoli [169]. Some applications are tailored towards mechanical
parameters [149, 170, 171] or damping properties [85, 172]. Terroir et al. [173] suggest a method for
fully anisotropic equivalent fluid materials. The application of inverse methods to impedance tube
measurements was suggested by Atalla et al. [174, 175] for coupling parameters, and by Sellen [176]
for mechanical parameters.
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4.1.2 |Common minimization algorithms

Several algorithms exist to solve minimization problems. Some common algorithms are presented here
with their pros and cons. First, gradient search algorithms are a deterministic method which relies on
computing the gradient of the cost function J with respect to the parameters β to find the direction in
which β should evolve to reduce it. Gradient-based algorithms are fast but require a smooth gradient,
which is not always guaranteed. Moreover, gradient methods have the drawback of often converging
to a local minimum without efficiently searching for the global minimum in the parameter space. A
local minimum is achieved by a set of parameters β that locally minimizes the cost function J , in
opposition to the global minimum, which minimizes J over the entire parameter space.

Next, nonlinear best fit algorithms, such as the Nelder-Mead simplex algorithm [177] or the
interior-point algorithm [178], are deterministic algorithms. These algorithms follow a set of rules, to
modify the set parameters β to converge to a minimum. These deterministic algorithm also often run
the risk of converging to local minima. Since these are deterministic algorithms that always converge
to the same result for a given initial guess β0, performing the minimization from different starting
conditions, known as multi-start, can help find the global minimum.

Then, there are are heuristic probabilistic algorithms. Atalla [174] explores a differential evolution
algorithm which proves to be an effective global search algorithm. There are also genetic algorithms are
probabilistic algorithms based on the modification of populations of sets of parameters β. The sets of
parameters are modified through selection, crossover, and mutation steps, mimicking genetic mutation
and natural survival to heuristically select the best sets of parameters. Genetic algorithms contain
several hyperparameters (crossover rate, mutation rate, etc.), and finding the right hyperparameters is
time-consuming and tricky, requiring expertise and experience. They may require numerous iterations
if poorly configured. Moreover, they often need to be combined with a local solver to finalize the
convergence to a local minimum with a tighter tolerance.

Finally, the optimization process can be driven by a Bayesian process, which is a probabilistic
method. The minimization results in a probability density function of the parameters β rather than
a single value. This method makes use of the probabilistic nature of the experiments through the
measurement uncertainty. On top of this, the Bayesian method incorporates an a priori distribution
on the values of β, which allows the user to give information about the likely values of β based on
experience and prior knowledge, which can help accelerate its convergence. Its application to a porous
material in an impedance tube is described in [148, 179, 180].

4.1.3 |Practical considerations

Even though minimization inverse methods can theoretically fit any number of parameters, the more
parameters there are and the less constrained they are, the more difficult it can be for the iterative
process to converge. Consequently, placing constraints on parameter values is preferable to restrict
the search range and accelerate the convergence. On top of this, parameters which are already known
through direct measurements should be excluded from the minimization. When the inverse process
is performed using impedance tube measurements, the high sensitivity of the measurements to the
sample mounting conditions in the tube, caused by the preload which shifts the frame resonance, makes
obtaining their true values from the minimization process unreliable. After all, even if measurements
are performed perfectly, the numerical minimization process may not always converge properly, causing
unreliable results.

Further, the parameters resulting from the optimization only have physical significance if the
model used can accurately capture the response of the measurement setup. For example, trying to fit
a motionless skeleton model to measurements where the frame resonance is strong will lead to a set of
parameters that gives a good mathematical fit, but which is not truly representative of the motionless
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skeleton material. Similarly, a parameter can only be found accurately if the model is sensitive to
this parameter. Since each parameter is expressed more or less in different frequency ranges, it is
recommended to analyse a wide range of different frequencies. For example, the influence ranges of
the JCAL and Biot parameters for different frequencies are shown for melamine foam in Figure 1.15.
For more information on this subject, other sensitivity graphs are given in Appendix A.

To improve the sensitivity of the cost function to every parameter, Cuenca et al. [181] suggest
minimizing over several measurement procedures, using an impedance tube with a rigid backing and
with a resonant expansion chamber. Cuenca [182] also suggests combining audible frequency range
and ultrasonic measurements to fit both low and high frequency parameters. In this case, when
performing a fit on several curves at once, it is possible to weight each curve or different frequency
ranges differently [148]. Further, some authors recommend a multistep minimization process [56, 183],
in which some parameters are fit using simpler models first, then with progressively more advanced
models involving more parameters.

4.2 | Micro-macro approaches

In what follows, an overview of the state of the art of the main categories of micro-macro charac-
terization approaches with their pros and cons is given. Then, simple analytic micro-macro formulas
are applied to polyurethane foams based on microstructural information gathered from microscopic
images.

4.2.1 |General methodology

Micro-macro, also called multiscale or bottom-up, approaches rely on modelling a material’s mi-
crostructure to compute its macroscopic properties. The microstructure is often assumed to have an
ideal geometry, such as Kelvin cells for foams or a network of beams for fibrous materials, the di-
mensions of which can be obtained from microscopic images or 3D X-ray computer tomography. The
first micro-macro approaches were mainly empirical relations relating microstructural features, such
as cell size or fibre width, to macroscopic material properties. Empirical relations have been devel-
oped to predict the mechanical properties of compressed fibres [184, 185, 186, 187], and the transport
properties of porous materials for acoustic applications [161, 188, 189, 190].

Nonetheless, numerical and analytic methods can be more accurate than empirical relations.
These methods rely on analysing a Periodic Unit Cell (PUC) for foams, or building a Representative
Volume Element (RVE) for fibrous networks, and performing a homogenization to obtain macroscopic
properties. Many types of materials have been analysed with a micro-macro approach, and a bench-
mark of existing numerical methods is given by Zielinski et al. [106]. In regard to fibrous media, their
transport parameters have been studied in [191, 192, 193, 194, 195, 196] and [197, 198, 199] for metallic
fibres. Their mechanical parameters have also been analysed in [200, 201]. The biggest difficulty in
modelling fibrous networks is finding an adequate RVE, which tends to be gigantic due to its structure
[202, 203], making the creation of the microstructure geometry difficult and the computation time
long.

In regard to polymer foams, their transport properties have been analysed for cubic cells [204],
polyhedral cells [205], a full 3D scanned geometry [206], partially reticulated cells [30, 207, 208], and
partially reticulated Kelvin cells for polyurethane foams [207, 209, 210, 211, 212]. The sensitivity
of these models to microstructural parameters is studied by Doutres et al. [213]. Their mechanical
parameters have also been studied numerically in [214, 215, 216]. Novel metamaterials have also
been investigated using micro-macro approaches, such as double-porosity media which can improve
low-frequency absorption [217, 218, 219, 220], and 3D-printed materials which allow the creation of
an ideal material geometry [221, 222, 223, 224, 225]. All in all, micro-macro approaches can be
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used in a feedback loop to improve material behaviour by controlling the microstructure through the
manufacturing process, as explored in [226, 227, 228].

Overall, micro-macro approaches are powerful and can be used to obtain many material param-
eters, including the thermal permeability q′

0 and the static tortuosities α0 and α′
0 of the Pride model

which cannot be measured directly. Further, they are capable of predicting the impact of microscopic
properties such as membranes blocking pore openings, which can help guide manufacturing processes.
However, the biggest difficulty lies in finding an RVE that is representative of the homogenized mate-
rial. Fibrous media RVEs can be very large [203], and polydisperse foams with variable cell dimensions
require additional considerations [30]. Additionally, micro-macro methods require accurate knowledge
of the microstructural geometry of the geometry, and deviations of the real material from the ideal
modelled structure due to inhomogeneity, unreliable manufacturing process, damage or ageing are a
large source of uncertainty.

4.2.2 |Application example

In this section, SEM images are used to measure the dimensions of the microstructural cells of the
PU60 and PU250 polyurethane foams, and simple analytic formulas relating them to the transport
parameters are applied. These formulas are applied to highly porous polyurethane foams composed
of Kelvin cells by Doutres et al. [209], and the objective is to assess if they can be applied directly
to the studied materials. The cell dimensions, notably the strut length l and strut edge width w, are
measured from SEM images using ImageJ software, as shown in Figure 2.22.

nodes are at 1mm

(a)

0.5 mm

(b)

0.5 mm
Strut lengths l

(c)

0.5 mm
Strut edge widths w

Figure 2.22. (a) SEM image of the PU60 microstructure. Measurement markings of (b) the strut
lengths l, and (c) the strut edge widths w.

For fully reticulated materials, meaning that there are no membranes blocking the openings
between the cells, which is the case of the studied foam, the porosity is given by [229]

ϕ = 1 − ρ1
ρs

= 1 − ρr, (2.15)

where ρr is the relative density which can be expressed as ρr = Cρ
(

t
l

)2, with l the average strut length
and t the average strut thickness. For materials with high porosity and low tortuosity, the resistivity
is given by [230, 231]

σ = Cσ

t2 ρ2
r = Cσ

(
Cρ t

l2

)2
, (2.16)

where the parameter Cσ is given by Cσ = 128α∞
µ0
c2

g
, and cg is a constant that depends on pore shape.

The assumption of cylindrical pores can be made to obtain cg = 1. The viscous characteristic length
is given by [39]

Λ = t

4ρr
, (2.17)
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and the thermal characteristic length by [232]

Λ′ = D1
l2

t
− D2t. (2.18)

These formulas rely on the average strut length l and thickness t. For triangular strut cross-
sections, the strut thickness t is related to the measured strut edge width w by t = a

√
3

2 . As seen on
the broken off struts in Figure 2.22, their cross-section is triangular and concave. Cρ, D1 and D2 are
constants that depends on the cell shape, and their values depending on strut cross-section shape are
given in Table 2.7. Doutres et al. [209] find that concave triangular strut cross-sections give the best
results for the highly porous polyurethane foams they studied.

Table 2.7. Kelvin cell constants Cρ, D1 and D2 for triangular and concave triangular strut cross-
sections [209].

Strut cross-
section shape Triangular Concave triangular

Cρ √
3/2

√
2

(
2
√

3 − π
)
/
√

2

D1 2
√

2/3
√

3 2
√

6/3π

D2 1/3
(

12 − 2π
√

3
)
/3π

Equation 2.15-2.18 are applied to the PU60 foam, using dimensions t = 36.7 µm (±27.2 %) and
l = 142.2 µm (±41.3 %) computed from SEM images. The measured value of the tortuosity α∞ = 1.25
is used instead of the assumption α∞ ≈ 1. The resulting values of the transport parameters are
presented in Table 2.8.

Table 2.8. Results of the micro-macro analytic approach for Kelvin cells applied to the PU60 foam.

Micro-macro results α∞ (-) ϕ (%) σ (Nsm−4) Λ (µm) Λ′ (µm)

Triangular struts - 95.9 3 634 225 300
Concave triangular struts - 98.5 504 604 287
Measured values 1.25 94.0 - -

These results show that the concave triangular struts give better results than regular triangular
struts, since the latter yield Λ′ < Λ. The computed porosity overestimates the true measured porosity,
which means that some additional parameters would be needed in these formulas to account for the
lower porosity of the material. Further, the resistivity computed for concave triangular struts is
σ = 3 634 Nsm−4, which is much lower than the measured resistivity σ = Nsm−4. Overall,
these results reveal that these analytic formulations are not adapted to the PU60 foam, which is
understandable because the hypotheses of high porosity and low tortuosity are not valid. Therefore,
micro-macro formulations specifically adapted to the studied materials would be required to predict
their transport parameters accurately.

Furthermore, the dimensions of the pores obtained from SEM images can be used to grossly
approximate the characteristic lengths. Indeed, Λ′ is approximately the radius of the largest pores,
and Λ is approximately the radius of the smallest pores. These dimensions are found from SEM
images, as shown for PU60 in Figure 2.23. Many measurements on SEM images are performed to
obtain average cell sizes. This approximation of the characteristic lengths is performed for PU60 and
PU250 foams, with results shown in Table 2.9.

The results found seem consistent with expected values. The ratio Λ′/Λ is equal to 2.9 for PU60
and 4.7 for PU250, which is quite high, indicating that the pore openings are quite small compared to
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Figure 2.23. Measurement of microstructural cell dimensions from SEM images, for (a) the size of
the largest pores, and (b) the size of the smallest pore openings.

Table 2.9. Approximated values of Λ and Λ′ from the radii of the largest and of the smallest pore
openings.

Λ (µm) CI (±%) Λ′ (µm) CI (±%) Λ′/Λ

PU60 60.5 69.9 175.7 98.6 2.9
PU250 20.5 95.4 96.0 125.1 4.7

cell size, which makes sense because the PU250 is a dense low-porosity material. The large confidence
interval also indicates that there is a large dispersion of the pore sizes throughout the materials. All
in all, this method is a gross approximation of Λ and Λ′ and does not constitute a reliable evaluation
of their values.

4.3 | Indirect method for transport parameters

The indirect characterization method relies on deducing the transport parameters by measuring the
material’s behaviour and analytically manipulating results to isolate the sought-after properties. No-
tably, the material density ρ̃eq and bulk modulus K̃eq, obtained from 3-microphone impedance tube
measurements for example, can be used to compute transport parameters. This method has the ad-
vantage of not requiring a specific bench for each material property, since only a common impedance
tube is required. The method is presented in Section 4.3.1 and applied to the six studied materials in
Section 4.3.2. Its practical limitations and the validity conditions are examined in Section 4.3.3.

4.3.1 |Principle of the indirect method

The indirect method is an analytic inversion of the equivalent density ρ̃eq and bulk modulus K̃eq of
the material, which can be obtained from 3-microphone impedance tube measurements. It was first
presented by Panneton and Olny [115] for viscous parameters (σ, Λ, α∞), and by Olny and Panneton
[116] for thermal parameters (Λ′, q′

0). This method is especially helpful for computing parameters
which can be difficult to measure directly, such as Λ, Λ′, and q′

0. By knowing the porosity ϕ of the
material, the other transport parameters are computed from

σ = − 1
ϕ

lim
f→0

Im(ωρ̃eq), (2.19)

α∞ = ϕ

ρ0


Re(ρ̃eq) −

√

Im(ρ̃eq)2 −
(

σ

ω

)2

 , (2.20)
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Λ = α∞

√
2ρ0µ0

ωϕ Im(ρ̃eq)(ρ0α∞ − ϕ Re(ρ̃eq)) , (2.21)
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√

2


− Im





 1 − K̃eq

K0

1 − γK̃eq

K0




2





−1/2

, (2.22)

q′
0 = ϕδ′
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. (2.23)

The resistivity σ is computed from a low frequency asymptote extrapolation, whereas the other
parameters are found from mid-frequency results. Alternatively, the tortuosity α∞ and the viscous
characteristic length Λ, which are high frequency parameters, can also be computed from a high
frequency asymptote extrapolation. To do so, the high frequency asymptotic behaviour of Σ is ap-
proximated by a linear function of ω−3/2 as

Σ = ϕ

ρ0
[Re(ρ̃eq) + Im(ρ̃eq)] ≃ mω−3/2 + b, (2.24)

where m is the slope and b is the y-intercept of the linear regression of Σ. These are related to the
high frequency parameters by

α∞ = b, (2.25)

Λ = −mα∞

√
8µ0ρ3

0
σ4ϕ4 . (2.26)

This asymptotic approximation is only valid in high frequencies, when

ωmin >
3√

m2. (2.27)

This inequality means that generally more resistive materials require information at higher frequencies
to apply the indirect method. Additionally, the porosity can be obtained from low and high frequency
asymptotes of the equivalent bulk modulus K̃eq [233]

lim
ω→0

Re
(
K̃eq

)
= P0

ϕ
, (2.28)

lim
ω→∞ Re

(
K̃eq

)
= γ0P0

ϕ
. (2.29)

Nevertheless, it can be difficult to obtain accurate low frequency information with an impedance tube
due to measurement error. It can also be difficult to obtain the high frequency behaviour of materials,
since this requires narrow tubes in which samples are no longer homogeneous and representative of
the material.

Overall, since the indirect method is applied to impedance tube measurements, the results are
strongly dependent on sample mounting conditions, leakages, and skeleton resonances within the
impedance tube. Precautions must be taken when installing samples to ensure repeatability and reli-
ability of results. Furthermore, the indirect method is applicable to materials behaving as motionless
frame JCAL equivalent fluids, which means frame resonances can cause invalid results. The difference
between motionless frame and limp frame behaviours can be assessed by limf→0 Im (ρ̃eq), which tends
−∞ for a rigid frame and ρt for a limp frame, as shown in Figure 1.14. At last, the indirect method
Equations 2.19-2.21 make use of previous parameter values to compute the next, which means that
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any error on ϕ, σ and α∞ has a trickle-down effect on the values of σ, α∞ and Λ respectively. Conse-
quently, to avoid accumulating error through the estimation of each parameter, it is preferable to use
the reliably measured values of ϕ, σ and α∞ where possible.

4.3.2 |Application and results

The indirect method is applied to the six materials studied in this work. Because the indirect method
relies on a motionless frame hypothesis, Panneton and Olny [115] suggest introducing needles into
samples to reduce the skeleton’s displacement. To investigate this, melamine samples are characterized
with and without needles, in order to evaluate the impact of the frame displacement on the results.
The melamine sample with needles is shown in Figure 2.24(a). It can be seen on the absorption
coefficient in Figure 2.24(b) that when more needles are added, the frame resonance magnitude is
reduced and it is shifted to lower frequencies.
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Figure 2.24. (a) Melamine sample with needles to reduce the effect of the frame. (b) Absorption
coefficient of melamine sample with varying number of needles.

Determination of the porosity ϕ

First, the porosity is obtained from low frequency or high frequency asymptotic regression of the
equivalent modulus Re

(
K̃eq

)
. The low and high frequency regressions are shown in Figure 2.25. The

shaded zone indicates the frequency range that the linear regression is computed on, chosen manually.
It can be seen that this frequency range must be chosen wisely to obtain realistic porosity values, and
the noisy low frequency information and the high frequency frame resonance must be excluded from
the regression range. Results obtained from the indirect method are compared to directly measured
values in Table 2.10. Overall, even though the indirect method yields results close to the measured
values for the melamine foam, the results for the other materials are unreliable and even have non-
physical values that do not respect 0 < ϕ < 1. Since the porosity is most often contained within the
range 0.90-0.99, a small error on the linear regression can quickly lead to a value that is outside the
plausible range. Errors on the linear regressions can be caused by noisy low frequency information for
the low frequency asymptote, and from frame resonances at high frequencies.
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Figure 2.25. Application of the indirect method to obtain the porosity ϕ of a melamine sample,
pierced by 20 needles and backed by an air gap, from the (a) low frequency and (b)
high frequency asymptotes. The shaded zone represents the manually chosen frequency
range used to compute the linear regression to find ϕ.

Determination of the resistivity σ

Next, the resistivity σ is computed from a linear regression at low frequencies, which is shown
in Figure 2.26. It can be seen that the linear regression used to determine σ can be inaccurate at
low frequencies due to measurement noise. The resistivity results for all materials are presented and
compared to measured values in Table 2.11. The results show that the indirect method works quite
well for low-resistivity materials, such as the melamine and the Greenflocks materials. The difference is
larger for more resistive materials, which could be partly due to the difficulty in accurately measuring
their resistivity due to air leaks in the measurement bench. Placing a cavity behind the material
improves the results for the highly resistive and thin Polyfiber material, because the air gap allows
more airflow through the material and allows the low-frequency behaviour and the resistivity to be
expressed. Adding an air gap does not improve results so much for the melamine or the PU60.
Furthermore, adding needles to the melamine foam does not seem to improve results consistently.
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Figure 2.26. Curves used to obtain the resistivity with the indirect method for a melamine foam
pierced by 20 needles. The shaded zone represents the manually chosen frequency range
used to compute the linear regression to find σ.
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Table 2.10. Comparison of porosity results ϕ (%) using the indirect method from the low frequency
(LF) and high frequency (HF) asymptotes, and the measured value using a porosimeter.
Results in italics indicate non-physical or unlikely values.

Porosity ϕ (%) Air gap Measurement Indirect LF Indirect HF

Melamine, no needles 94 100 94
Melamine, no needles 20 mm 94 163 99
Melamine, 12 needles 20 mm 94 99 95
Melamine, 20 needles 20 mm 94 91 98
PU60 94 144 142
PU60 20 mm 94 106 400 -1 800
PU250 79 162 -251
Polyfiber 99 240 153
Polyfiber 5 mm 99 -26 87
Greenflocks 20 mm 93 135 118
Greenflocks 25 mm 95 57 103

Table 2.11. Results obtained for resistivity σ (Nsm−4), from direct measurement and from the indi-
rect method. The relative difference between the indirect method and the direct mea-
surement ∆ is computed. Results in italics represent non-physical or unlikely values.

Resistivity σ (Nsm−4) Air gap Measurement Indirect ∆ (%)

Melamine, no needles 13 838 15 802 14.2
Melamine, no needles 20 mm 13 838 10 267 25.8
Melamine, 12 needles 20 mm 13 838 9 054 34.6
Melamine, 20 needles 20 mm 13 838 13 323 3.7
PU60 50.0
PU60 20 mm 58.1
PU250 54.7
Polyfiber 228 728 -105 885 146.3
Polyfiber 5 mm 228 728 318 642 39.3
Greenflocks 20 mm 1.0
Greenflocks 25 mm 30.1

Determination of the tortuosity α∞

The tortuosity α∞ computed with Equation 2.20 yields a frequency dependant function, which
is supposed to be constant, real, and physical (α∞ ≥ 1) in the validity range of the motionless frame
equivalent fluid model. However, the computed curve is actually complex and frequency dependant,
so user input is required to select a frequency range of validity. This requires human expertise and
introduces a bias in the results. It is also a sign that the measured equivalent density ρ̃eq is not
representative of the motionless frame JCAL model. Moreover, the expected value of the tortuosity
is often very close to 1 but can never be less than 1, which creates a tight tolerance of valid values for
α∞.

An example of the frequency dependant tortuosity for the melamine foam is given in Fig-
ure 2.27(a). A strong variation of the tortuosity with the frequency is visible, and the result is
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not exploitable over a large frequency range, especially in low frequencies. The results of the tortu-
osity for all materials with the indirect method are reported in Table 2.12. The tortuosity obtained
for the PU250 foam is α∞ = 9.77, which is an unrealistically high value, and the tortuosity for the
Polyfiber with a cavity is α∞ = −0.22, which is not physical. Overall, the Polyfiber and the PU60
and PU250 foams indirect results are very different from the measured results, but the melamine and
the Greenflocks materials, which have a tortuosity much closer to 1, give believable results. Increasing
the number of needles in the melamine foam brings the indirect method value closer to the measured
value, however it also increases the confidence interval, which means the results are less reliable. The
tortuosity values computed from the high-frequency asymptote of Σ are also given, however this results
in unrealistic and non-physical values, so the high frequency asymptote method is not recommended
for the tortuosity.

Determination of the other parameters: Λ, Λ′, and q′
0

The indirect method also gives frequency dependant curves for Λ, Λ′, and q′
0. These results yield

complex and frequency dependant curves, which should be constant and real in the frequency range of
validity of the indirect method. As a consequence, their average is computed over a frequency range
selected by the user. The results for Λ are shown in Table 2.13, and compared to simplified value
computed for cylindrical pores and with the 3-parameter model given by Horoshenkov et al. [109] in
Equation 1.102. This model assumes log-normally distributed pore sizes and expresses all transport
parameters as a function of the porosity ϕ, the median pore size s̄, and the pore size standard deviation
σs. Consequently, the experimental knowledge of ϕ, σ and α∞ can be used to compute Λ, Λ′ and
q′

0. It can be noted that there is a strong similarity between the values found with the cylindrical
pores hypothesis and Horoshenkov’s 3-parameter model, except for the highly resistive materials, the
PU250 and the Polyfiber. The value of Λ is also computed from the high frequency asymptote of
Σ, which gives very different results from the indirect method. Considering that the high-frequency
asymptote method was found to be unreliable for the tortuosity, it can also be discarded for Λ. The
value Λ = 135.8 µm obtained for the melamine without needles is coherent with values found in the
literature, mostly found around 100 µm to 116 µm [146, 147, 148, 149].

1 000 2 000 3 000 4 0000

0.5

1

1.5

2

α∞,indirect = 1.03
α∞,meas = 1.01

Frequency (Hz)

α
∞

(-
)

(a)

1 000 2 000 3 000 4 0000

200

400

600

Λindirect = 114.1 µm

Frequency (Hz)

Λ
(µ

m
)

(b)

Figure 2.27. Application of the indirect method to obtain (a) the tortuosity α∞ and (b) the viscous
characteristic length Λ. The shaded zone represents the frequency range used to average
α∞ and Λ, chosen manually.

The frequency-dependant curve for Λ′ is shown in Figure 2.28(a), and its values for all materials
are in Table 2.14, along with the value computed from Horoshenkov’s 3 parameter model. The
frequency dependant curve shows that there is no frequency range which gives constant values for Λ′,
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Table 2.12. Results obtained for tortuosity α∞ (-). The 95 % Confidence Interval (CI) indicates the
dispersion of the value over the frequency range of computation. The relative difference
between the indirect method and the direct measurement ∆ is computed. Results in
italics represent unlikely values.

Tortuosity α∞ (-) Air gap Measurement Indirect CI (±%) ∆ (%) Indirect HF

Melamine, no needles 1.01 1.18 2.1 16.8 1.06
Melamine, no needles 20 mm 1.01 1.11 2.8 9.5 0.40
Melamine, 12 needles 20 mm 1.01 1.11 2.6 10.3 0.78
Melamine, 20 needles 20 mm 1.01 1.03 5.1 2.3 0.59
PU60 1.25 2.36 19.7 89.0 2.82
PU60 20 mm 1.25 2.16 9.6 73.2 1.91
PU250 2.45 9.77 0.8 298.8 6.44
Polyfiber 1.49 2.39 19.1 60.5 -1.44
Polyfiber 5 mm 1.49 -0.22 51.6 115.0 -2.01
Greenflocks 20 mm 1.03 1.15 40.6 12.1 2.06
Greenflocks 25 mm 1.01 1.01 3.7 0.2 1.82

Table 2.13. Results obtained for viscous characteristic length Λ (µm). The simplifying assumption
of nearly straight cylindrical pores gives Λ ≈

√
8µα∞

ϕσ [39]. The simplified 3-parameter
model by Horoshenkov et al. [109], and the value is computed from the measured porosity,
resistivity and tortuosity. Results in italics represent unlikely values.

Λ (µm) Air gap Indirect CI (±%) Cyl. pores Horoshenkov Indirect HF

Melamine, no needles 135.8 2.25 106.1 106.6 93.5
Melamine, no needles 20 mm 100.7 19.1 106.1 106.6 37.9
Melamine, 12 needles 20 mm 168.9 3.0 106.1 106.6 18.6
Melamine, 20 needles 20 mm 114.1 18.1 106.1 106.6 57
PU60 29.0 23.9 80.2 91.9 52.8
PU60 20 mm 36.0 14.9 80.2 91.9 34.9
PU250 7.8 26.1 19.4 45.2 -8.4
Polyfiber 22.7 16.6 25.4 33.6 7.9
Polyfiber 5 mm 12.5 7.0 25.4 33.6 5.6
Greenflocks 20 mm 48.5 4.7 121.9 123.7 448.3
Greenflocks 25 mm 65.6 3.0 139.2 139.9 660
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Table 2.14. Results obtained for thermal characteristic length Λ′ (µm). The simplified 3-parameter
model by Horoshenkov et al. [109] is described by Equation 1.103, and the value is com-
puted from the measured porosity, resistivity and tortuosity. Results in italics represent
unlikely values.

Λ′ (µm) Air gap Indirect CI (±%) Λ′/Λ Horoshenkov

Melamine, no needles 277.4 33.5 2.04 106.7
Melamine, no needles 20 mm 179.5 64.6 1.78 106.7
Melamine, 12 needles 20 mm 223.4 55.8 1.32 106.7
Melamine, 20 needles 20 mm 181.9 33.8 1.59 106.7
PU60 258.0 72.0 8.9 112.2
PU60 20 mm 211.9 83.5 5.89 112.2
PU250 170.2 50.9 21.9 1127.6
Polyfiber 22.3 13.5 0.98 63.5
Polyfiber 5 mm 22.5 54.9 1.8 63.5
Greenflocks 20 mm 125.2 8.9 2.58 124.1
Greenflocks 25 mm 241.4 8.0 3.68 140.0

Table 2.15. Results obtained for thermal permeability q′
0 (10−9m2). The simplifying assumption

of cylindrical pores is given by q′
0 = ϕΛ′2

8 . The simplified 3-parameter model by
Horoshenkov et al. [109] is described by Equation 1.104, and the value is computed
from the measured porosity, resistivity and tortuosity. Results in italics represent un-
likely values.

q′
0 (10−9 m2) Air gap Indirect CI (±%) Cyl. pores Horoshenkov

Melamine, no needles 3.0 4.4 9.0 1.3
Melamine, no needles 20 mm 4.9 28.1 3.8 1.3
Melamine, 12 needles 20 mm 3.2 5.5 5.9 1.3
Melamine, 20 needles 20 mm 6.0 16.2 3.9 1.3
PU60 3.4 7.6 7.8 1.4
PU60 20 mm 11.4 9.3 5.3 1.4
PU250 16.2 59.3 2.9 569.9
Polyfiber 0.6 14.7 0.06 0.5
Polyfiber 5 mm 0.4 14.6 0.06 0.5
Greenflocks 20 mm 1.2 25.1 1.82 1.7
Greenflocks 25 mm 1.5 8.6 6.92 2.3
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which is reflected in the large confidence interval computed, and indicates fairly unreliable results.
The ratio Λ′/Λ is also computed, and it presents a high variability from material to material. Notably
the fibrous Polyfiber material has Λ′/Λ close to 1, but the polyurethane PU60 and PU250 foams have
a much higher ratio of 9 and 22. Consequently, it does not seem possible to select a general value
of Λ′/Λ to predict Λ′ from Λ for any material. The value Λ′ = 277.4 µm obtained for the melamine
without needles is slightly higher than values found in the literature, which are mostly around 200 µm
to 256 µm [146, 147, 148, 149].
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Figure 2.28. Application of the indirect method to obtain (b) the thermal characteristic length Λ′

and (a) thermal permeability q′
0. The shaded zone represents the frequency range used

to average Λ′ and q′
0, chosen manually.

The frequency-dependant curve for q′
0 is shown in Figure 2.28(b), and its values for all materials are

in Table 2.15, along with the value computed from Horoshenkov’s 3 parameter model. The confidence
interval for q′

0 is also quite large, indicating that it is difficult to compute it reliably using the inverse
method. Furthermore, the value of q′

0 is computed from the simplified assumption of cylindrical pores,
which gives results quite different from the indirect method. This highlights that the assumption of
cylindrical pores does not work well with the studied materials. Additionally, the 3-parameter model
by Horoshenkov et al. [109] finds unrealistic values of Λ′ and q′

0 for the PU250, due in part to its high
tortuosity of α∞ = 2.45, which indicates that this model is not applicable to all materials. The value
q′

0 = 3.0 10−9 m2 obtained for the melamine without needles is coherent with values found of the
literature between 2.8 10−9 m2 to 4.0 10−9 m2 [146, 148, 149].

4.3.3 |Validity of results and frequency range

The high frequency asymptote of Σ, which can be used to compute α∞ and Λ, is only exploitable
above a minimum frequency fmin. This frequency can be computed from the slope of Σ according to
Equation 2.27. Nevertheless, the experimental regression on Σ is error-prone due to measurement error
and frame resonances, so an ideal equivalent fluid model is created from each material’s properties
from Table 2.21 to compute their theoretical value of fmin. The values of fmin found experimentally
and computed theoretically from a modelled JCAL behaviour using their parameters are presented in
Table 2.16. Overall, there are large differences between the experimentally computed values of fmin and
its theoretical values, so the latter are considered. For an impedance tube of diameter 44.5 mm which
goes up to 4323 Hz, the high frequency asymptote method can be applied for all materials except the
highly resistive Polyfiber and PU250. However, having sufficiently high frequency experimental data
does not guarantee that the high frequency asymptote method is exploitable, due to frame resonances
and measurement uncertainties.
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Table 2.16. Minimum frequency required for exploiting the high-frequency asymptote of Σ, used to
compute α∞ and Λ, based on the criterion in Equation 2.27, for each material. The
experimental value is computed from impedance tube measurements of ρ̃eq, and the
theoretical value is computed analytically from material properties.

Min. frequency fmin (Hz) Air gap Experimental Theoretical

Melamine, no needles 1 553 1 864
Melamine, no needles 20 mm 850 1 864
Melamine, 12 needles 20 mm 530 1 864
Melamine, 20 needles 20 mm 1 117 1 864
PU60 1 942 1 301
PU60 20 mm 1 473 1 301
PU250 15 920 15 155
Polyfiber 10 402 16 876
Polyfiber 5 mm 8 246 16 876
Greenflocks 20 mm 3 012 684
Greenflocks 25 mm 8 246 594

Further, each transport parameter is expressed strongly in different frequency ranges. For ex-
ample, σ is a low frequency viscous parameter, Λ is a high frequency viscous parameter, q′

0 is a low
frequency thermal parameter, and Λ′ is a high frequency thermal parameter. Consequently, their zones
of influence are separated by the viscous and thermal characteristic frequencies. These are computed
from Equation 1.155, and their values for each material are presented in Table 2.17. This reveals that
for the highly resistive PU250 and Polyfiber materials, the viscous transition frequency fv is greater
than the high frequency limit of the impedance tube (44.5 mm, 4 323 Hz). As a consequence, their
high frequency viscous behaviour, defined by f ≫ fv, is not strongly expressed experimentally. This
causes results to have a low sensitivity to Λ. Furthermore, the thermal frequency ft for the PU250
foam is at 164 Hz, which is too low to be measured accurately in the impedance tube. Therefore,
measurement results for the PU250 foam are not sensitive to q′

0, which deteriorates its computation
with the indirect method.

fv = 1
2π

ϕσ

ρ0α∞
, ft = 1

2π

ϕµ0
q′

0ρ0Pr . (1.155)

Table 2.17. Viscous and thermal transition frequencies for each material. Material properties from
Table 2.21 are used.

Transition frequency fv (Hz) ft (Hz)

Melamine 1 638 1 057
PU60 932
PU250 164
Polyfiber 19 869 5 564
Greenflocks 20 mm 2 136
Greenflocks 25 mm 2 613

In summary, the indirect method succeeds in retrieving the resistivity σ of a material, but the
other parameters, which include the porosity ϕ, the tortuosity α∞, the thermal permeability q′

0, and
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the characteristic lengths Λ′ and Λ, are frequency dependant and require user input to choose an
exploitable frequency range. The high frequency asymptote method for computing Λ and α∞ has
shown to be unreliable due to the difficulty of predicting the high frequency behaviour experimentally
and due to frame resonances. Consequently, it is preferable to obtain ϕ, α∞ and σ from direct
measurements. Acceptable results are found with the indirect method for Λ, however there are large
uncertainties for Λ′ and q′

0. In short, even though the indirect method works in theory for an ideal
material, it does not work as well with real experimental results, due to measurement error and low
sensitivity to certain parameters in certain frequency ranges. Adding an air gap behind the thin
and resistive Polyfiber samples slightly improves the determination of σ, although there is no clear
improvement of results for the other parameters or for other materials. Further, adding needles into
the melamine does not seem to eliminate frame resonances, but rather displace them due to their
added inertia. A possible improvement would be to fix the needles to the rigid backing to reduce
their movement further. The indirect method suffers from all the same uncertainties as impedance
tube measurements. A sensitivity analysis could be performed to estimate the validity of the results
obtained with the indirect method. Moreover, relying on user input to select a frequency range to
compute average parameter values adds a subjective bias into the results.

5 | Mechanical parameters direct measurement

Predicting the acoustic behaviour of porous layers requires modelling the waves propagating inside
their solid frame. The biphasic Biot model, which accounts for these solid-borne waves, requires the
mechanical properties related to the material’s solid phase. These notably include the storage modulus
E′, the loss factor η, and the Poisson ratio ν. An overview of mechanical characterization methods to
obtain these properties is given in Section 5.1. A particular attention is then given to the quasistatic
compression method, which has unique advantages over other methods. This quasistatic method is
then applied to the six studied materials in Section 5.2. Its limits and sources of error are explored in
detail.

5.1 | State of the art

5.1.1 |Overview of characterization methods

Many types of setups exist to measure the mechanical properties of porous materials, which involve
different types of excitations. The general principle consists in exciting the material with a mechanical
or an acoustic source, and measuring its response to identify a Young’s modulus Ẽ, a shear modulus
G̃, and/or a Poisson ratio ν. The storage modulus E′ or G′ and the loss factor η can be retrieved
from the complex moduli Ẽ or G̃. Even though ν is in fact complex and frequency dependent,
characterization results often find real values, with very small variation with frequency [65, 234, 235],
so the assumption of a constant real Poisson ratio is often made. An in-depth review of several
mechanical characterization setups is given by Jaouen et al. [234]. The principal, strengths and limits
of several methods are presented in this section.

A first category consists in exciting a material sample acoustically. Sellen [176] excites a material
inside an impedance tube and fits Ẽ and ν to match the skeleton resonance observed experimentally.
This method is sensitive to mounting conditions which strongly shift resonance frequency. Allard
et al. [236] induces a shear wave on a thin rigid-backed porous layer with an acoustic source at a near
grazing angle to identify G̃. This method requires large samples and cannot identify ν. Generally,
it can be more difficult to excite the material skeleton with an acoustic excitation, especially for low
airflow resistivity materials.
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Consequently, a second category of resonant methods rely on a direct mechanical excitation by
contact with the skeleton. Pritz [237] describes a porous beam excited longitudinally to find its stiffness
from the resonances, from which Ẽ and ν must then be extracted. The method is applicable from
100-1000 Hz, and requires materials with very low or very high resistivity because the fluid phase is
not accounted for. To reduce the viscous effects of the fluid, Sfaoui et al. [238, 239] apply this method
in a vacuum, and uses the Time-Temperature Superposition (TTS) principle to extend the frequency
range. Alternatively, a transverse displacement can be applied to a porous beam, known as the Oberst
method, described in standard ASTM E 756 [240], and improved for porous materials by Wojtowicki
et al. [241] by exciting the beam in its centre. The porous beam is usually glued to a metal beam,
but it can also be sandwiched between two metal beams to increase the damping caused by shear,
which improves results for materials with a low modulus. The beam properties are then obtained
from an iterative global minimization inverse resolution with a numerical simulation, which allows for
modelling the fluid phase of the medium. This method is very powerful, however it requires heavy
numerical simulations and computations. This method does not work in very low frequencies where
the induced damping is negligible.

Resonant methods also exist for mechanically excited plates. A setup with a clamped porous
plate is described by Etchessahar et al. [65, 242], and its properties are obtained from an iterative
global minimization process. Since applying a point force on a porous plate is difficult, Jaouen et al.
[243] glue the porous plate onto a metal plate which is excited mechanically. In all methods where glue
is used between a porous layer and another material, the impact of the glue on experimental results
and how it should be modelled poses many questions. This method assumes material isotropy. Next,
Allard et al. [244] determines G̃ from structure-borne surface Rayleigh waves (2000-4000 Hz), Boeckx
et al. [245] uses the phase velocities computed from spatial Fourier Transforms of the surface waves
to fit G̃ and ν as a function of frequency (200-1300 Hz), and Geslain et al. [246] analyses the spatial
Laplace transform instead of the Fourier Transform, which is capable of separating the contribution
of overlapping modes (200-4000 Hz). Bonfiglio et al. [247] excites a sample mechanically and uses a
transfer matrix to compute the complex longitudinal wavenumbers and find Ẽ in the range of around
100-1500 Hz.

Resonant characterization can be performed by exciting smaller cubic or a cylindrical sample. By
placing a mass on a porous sample, the mass-spring resonance of the system can be used to compute
the sample’s stiffness. This method has the advantage of controlling the static preload applied to the
material before characterization, which is very helpful for obtaining in situ material properties when
a preload is required. However, this method only works at the resonance frequencies of the sample
and mass system. As a consequence, it does not give access to low frequency information, and it
can be unreliable when other resonances close to the target resonance are excited at the same time.
Moreover, it is not possible to separate the preload from the frequency of characterization.

At last, to control the static preload and the characterization frequency independently, non-
resonant quasistatic methods can be used. Quasistatic methods are distinguished by a much lower
frequency range than resonant methods, since they work below the resonance frequencies of charac-
terized samples. Quasistatic characterization can be done in torsion to obtain G̃ [248], which keeps
the sample volume constant. This has the advantage of allowing the viscous effects of the air to be
neglected, however it also means that ν cannot be determined. Quasistatic torsion measurements
are quite quick and efficient, and measurement benches called rheometers already exist commonly in
laboratories. Similarly to torsion, pure shear measurements can also be performed [69, 248] to obtain
G̃. Torsion and shear measurements work well in very low frequencies, such as 0.01-10 Hz.

To obtain Ẽ and ν from quasistatic measurements, a tension-compression measurement setup
can be used [71, 249]. The method to obtain Ẽ and ν from QMA measurements is explained in
Section 5.1.2. This method is performed using a Quasistatic Mechanical Analyser (QMA), which is
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equivalent to a Dynamic Mechanical Analyser (DMA), classically used for viscoelastic materials, that
has been adapted to low frequencies and to soft materials. Quasistatic methods work over a range of
frequencies with an upper bound limited by the first resonance frequency of the sample and the viscous
effect of air which is neglected in the quasistatic regime. Consequently, the tension-compression method
works best around 1-100 Hz. Furthermore, it can be noted that the frequency range of characterization
can be extended with Time-Temperature Superposition. However, this should be done with care,
because increasing the temperature decreases the modulus and therefore the resonance frequency of
the material, which could end up inside the frequency range of measurement. In addition, the air’s
viscosity increases with temperature, so the viscous effects of the fluid phase become more important.
Atalla [174] shows that the variation of air properties varies by less than 1 % between -20 °C and
80 °C, so this effect is only important at much higher temperatures.

Overall, despite the multitude of existing mechanical characterization methods, large uncertainties
exist around the results they provide. As shown by round-robins studies on these methods [250, 251],
different laboratories using various methods on the same materials find significantly different results.
These uncertainties stem from the inhomogeneity and anisotropy of the samples, boundary conditions
along the sample surfaces, imperfect sample shapes, and varying ambient temperature. In the absence
of a greatly-needed standard for measuring viscoelastic properties of porous materials, all of these
measurement conditions should be specified during measurements since they could strongly affect
results.

5.1.2 |Description of the quasistatic tension-compression method

The quasistatic tension-compression method is done with a Quasistatic Mechanical Analyser (QMA)
[71, 249]. It is performed at frequencies much lower than the first resonance frequency of the char-
acterized sample in order to neglect its inertia. The viscous effects tied to the ambient air are also
neglected. It also allows for easy control of the preload of the material to simulate in situ conditions.
A uniaxial tension-compression QMA is shown in Figure 2.29. This method can be performed with
cubic samples to characterize the sample in different directions and evaluate material anisotropy [252].
Cylindrical samples can also be used [253, 254], assuming material isotropy, as performed in this work
due to their quick and repeatable cutting process using a hole saw.

The measurement process consists in placing a porous sample between two plates, and applying
a very small dynamic displacement δd, chosen to ensure a linear material response. The reaction force
F̃ of the sample is recorded at different angular frequencies ω. However, if the sample is not glued to
the two plates, then there is a departure from contact at each cycle. To ensure constant contact, a
static compression displacement δs is applied preemptively. Moreover, this static displacement serves
to represent the initial loading condition of the material in real conditions. The total displacement
can therefore be considered in the form δ(t) = δs + δd sin ωt. The dynamic stiffness k̃, in the frequency
domain, is obtained as

k̃ = F̃

δ̃
. (2.30)

The material mechanical parameters are computed from the stiffness k̃. First, the loss factor η is
obtained from

η(ω) = Im(k̃)
Re(k̃)

. (2.31)

Further, the stiffness contains the information about the Young’s modulus Ẽ and the bulging phe-
nomenon of the Poisson effect with the Poisson ratio ν, shown in Figure 2.30(a). They are related
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Figure 2.29. (a) Picture of the QMA, (b) elements of the QMA and measurement principle.

through

k̃ = h
Ẽ(1 − ν)

H(ν) , (2.32)

where h is the sample height, and H(ν) is the function relating the sample’s shape and modulus to
its stiffness, which can be computed numerically. To separate the contributions of Ẽ and ν from the
stiffness, Sim and Kim [255] suggest measuring two samples with a very small and very large shape
factor and using an inverse numerical method to fit the parameters, and Langlois et al. [253] suggests
using precomputed polynomial relations to predict the Poisson effect for different sample shape factors.
Sahraoui et al. [252] suggest correlating the lateral displacement measured with a laser vibrometer with
numerical simulations, and Sahraoui et al. [256] suggest stacking samples to compute a normalized
stiffness ratio. The lateral displacement can also be measured using digital image correlation, which
could work quite well on these porous materials. For glass wools, Tarnow [257] suggests neglecting the
Poisson effect (ν = 0) to compute Ẽ from the stiffness. Examples of H(ν) for different sample shapes
are given in Figure 2.30(b).

Since measuring the lateral displacement with a vibrometer can be difficult on porous materials,
two samples with different shape factors are measured to isolate the contributions of Ẽ and ν. Sahraoui
et al. [256] define the sample shape factor s as s = D

h , where D is the diameter of the cylindrical
sample. The stiffness k̃s of a sample of shape factor s can be normalized by its dimensions, yielding
its normalized stiffness

k̃s,norm = D

sẼS
k̃s, (2.33)

with S the cross-section area of the sample. The ratio of normalized stiffnesses k̃s,norm

k̃2s,norm
= 2k̃s

k̃2s
is Poisson

ratio dependant and can be compared with numerical simulations to find the value of ν. Furthermore,
this process can be generalized to any two shape factors s1 and s2 with

k̃s1

k̃s2

= h1Hs2(ν)
h2Hs1(ν) . (2.34)
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Figure 2.30. (a) Visualization of the Poisson effect on the compressed sample deformation for dif-
ferent sample geometries, (b) H as a function of ν for different sample geometries. The
shape factor of a cylinder is s = D

h .

Once ν is known, Ẽ can be computed from Equation 2.32. It can be noted that, with this method,
the error on the Poisson ratio propagates into the estimation of the Young’s modulus.

5.1.3 |Limits of the tension-compression QMA method

There are many sources of error with mechanical characterization methods, including material inho-
mogeneity and anisotropy, poorly controlled boundary conditions, imperfect sample shape and varying
ambient temperature. With a QMA setup, material anisotropy can be estimated using cubic samples,
although cylindrical samples are considered in this work. Further, the quasistatic hypothesis only
holds before the sample’s first resonance frequency. The quarter wavelength resonance frequency fr

of the six studied materials is computed in Table 2.18 using Equation 2.35 and their properties from
Table 2.21.

fr ≈ 1
4h

√√√√E′ 1−ν
(1+ν)(1−2ν)

ρ1
. (2.35)

Table 2.18. First quarter-wavelength resonance frequency of the frame for the studied materials.

First frame
resonance frequency fr (Hz)

Melamine 1 613
PU60 494
PU250 711
Polyfiber 1 238
Greenflocks 20 mm 208
Greenflocks 25 mm 213

This reveals that the Greenflocks materials have resonance frequencies of 208 Hz and 213 Hz,
which constitutes a restrictive upper limit for the measurements. Indeed, common practice consists
in setting an upper frequency limit at about a third of the first resonance frequency. The PU60
has a resonance at 494 Hz and the PU250 at 711 Hz, which are also quite low. In practice, using
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less thick samples increases the quarter wavelength resonance frequency, but it also increases the
viscous effects of the air being pushed out of the sides of the sample when it is compressed, which
constitutes yet another high-frequency limit. In addition, the resonance frequency of the QMA bench
itself limits the high frequency measurement range. The QMA used in this work was designed to have
high a resonance frequency, which is located above 400 Hz. Moreover, the low-frequency limit of the
acquisition hardware is 0.5 Hz, giving a total exploitable range of around 0.5 − 400 Hz. The actuator
allows a dynamic amplitude of up to the order of magnitude of 15 µm at 400 Hz, measured using the
displacement gauge.

5.2 | Application, results, and influencing factors

5.2.1 |Result example

An example of E′ and η results obtained on the PU250 is shown in Figure 2.31. It can be seen that
E′ increases from 238 kPa at 1 Hz to 397 kPa at 300 Hz. η increases from 10 % at 1 Hz to 22 % at
300 Hz. At 400 Hz, a resonance appears and causes E′ to rapidly increase and a peak for η. Beyond
this resonance, the confidence interval increases, making the results unreliable at higher frequencies.
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Figure 2.31. Typical QMA results of (a) the storage modulus E and (b) the loss factor η for a
PU250 sample at εs = −1 % compressive strain, between 1 Hz and 550 Hz, with 95 %
confidence interval.

Further, the Poisson ratio ν is computed by measuring the stiffness ratio of PU250 samples with
different shape factors s = 1.34 and s = 2.06. Their stiffnesses are measured and averaged between
30 Hz and 100 Hz. The ratio of their stiffnesses is plotted in Figure 2.32, and the value of ν is obtained
from where they intersect the numerically computed ratio of their H(ν) functions. The results show
that ν depends on the static strain, as a static strain εs = −0.3 % gives ν = 0.24, εs = −0.5 % gives
ν = 0.30, and εs = −0.7 % gives ν = 0.32. These different Poisson ratios are found for stiffness ratios
varying between 2.41 and 2.47, which means that a small error on the stiffness measurement can lead
to a large difference in the estimation of ν. Using samples with very different shape factors can help
improve the quality of this determination. As pointed out by Bonfiglio et al. [250], the estimation
of the Poisson ratio depends strongly on the characterization method used and the preload applied.
These experimental results shed light on the large uncertainties when trying to determine the Poisson
ratio.

Additionally, Making an error on the estimation of ν propagates an error in the determination
of E′. The values of E′ computed from different values of ν are shown in Appendix B for cylindrical
samples of diameter 29 mm. The variation of E′ between ν = 0 and ν = 0.44 is around 20 % for the
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Figure 2.32. Ratio of H(ν) computed numerically for two sample shape factors in black. Horizontal
lines correspond to the measured stiffness ratios for different static strains.

Greenflocks materials, with a height of around 20 mm. For the melamine and PU250 foam samples of
height around 20 mm, E′ varies by only 5 % and 10 % when ν varies between 0.30 and 0.44. However,
the Polyfiber sample, which has a height of 4.6 mm and is much more sensitive to the Poisson effect,
and exhibits a 77 % variation on E′ between ν = 0 and ν = 0.44. As a consequence, for wide samples
that are sensitive to the Poisson effect, the error on ν can have a big impact on the computed Young’s
modulus, but for more realistic differences of ν and samples with aspect ratios closer to s ≈ 1, the
variation of E′ is much smaller.

Table 2.19. Difference on the estimation of E based on the value chosen for ν.

ν (-) E′ (kPa) ν (-) E′ (kPa) Difference in E′ (%)

Melamine 0.44 104 0.3 110 5
PU250 0.44 265 0.3 296 11
PU60 0.44 26 0.3 30 12
Polyfiber 0 144 0.44 64 77
Greenflocks 20 mm 0 19 0.44 16 20
Greenflocks 25 mm 0 25 0.44 21 16

The QMA characterization results of all six materials with a null prestrain ε = 0 % are shown
in Figure 2.33 for E′ and in Figure 2.34 for η. No confidence interval is presented on these results,
however since a large part of the error comes from the compression of the samples due to relaxation and
material nonlinearity, and these measurements are performed at null prestrain, the confidence interval
can be considered quite small until 400 Hz at least, after which the confidence interval increases,
similarly to Figure 2.31. Due to the difficulty to measure the Poisson ratio experimentally, it is given
a typical value based on the material type (foam or fibrous). A value of 0.44 is chosen for melamine,
due to the Kelvin-cell like microstructure. Langlois et al. [253] find ν = 0.45 and Jaouen et al. [234]
find ν = 0.44 at 2 % strain for the melamine foam, which is coherent with the expected value for
polymer foams with this microstructure. A value of 0.3 is chosen for the PU60 and PU250 foams,
which are common values for these types of materials [250]. Fibrous materials are given a Poisson’s
ratio ν = 0 due to horizontal fibre orientation.

The frequency dependence of E′ is highest for the PU60, PU250, and Polyfiber materials, which
have relatively high loss factors of 10 %, 12 %, and 38 % respectively. This supports the finding
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Figure 2.33. Storage modulus E′ as a function of frequency measured for the six studied materials
on a QMA, at zero prestrain ε = 0 %.
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Figure 2.34. Loss factor η as a function of frequency measured for the six studied materials on a
QMA, at zero prestrain ε = 0 %.
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by Pritz [258] that the frequency variation of mechanical properties are highest for polymers with
high loss factors. The studied materials are assumed to be isotropic in these results. Nevertheless,
the anisotropy of melamine foam has been highlighted in the literature. For example, Guastavino
[259] finds E′ between 170 kPa and 300 kPa, and Jaouen et al. [234] finds E′ between 180 kPa and
340 kPa, depending on the direction of anisotropy. From our measurements, E′ is around 104 kPa for
the melamine, which is in the same order of magnitude but slightly less than the results found in the
literature. Jaouen et al. [234] also find η around 10 % ±6 % for a static strain of 2 %, which is slightly
higher than the results found here of 4.6 %. Overall, the QMA results become unreliable after 100 Hz,
possibly due to the resonance of the samples or the bench itself which causes non-physical values for
the E′ and η. The averaged storage modulus and loss factor results between 0.5 Hz and 100 Hz are
reported in Table 2.21.

5.2.2 | Influence of the static preload

The static preload δs applied to a sample before characterization has an important effect on sample
stiffness. The nonlinear nature of porous cellular materials and their strain-dependant stiffness is
caused by their microstructure, which is historically well documented [60, 229, 234, 254, 260, 261, 262,
263]. When compressing a porous sample, several compression stiffness regions can be observed. They
are schematized in Figure 2.35. First, for very small strains, the sample experiences partial contact.
In this case, the cells or fibres near the surface are not yet fully in contact with the plate. The stiffness
increases rapidly with the strain. Second, once all strands of the sample are in contact, there is a linear
behaviour of the material for small strains. In practice, this region is very small or even inexistent,
since the material quickly enters the buckling regime for foams, or the densification regime for fibrous
materials. This is the ideal region to perform QMA measurements in. Third, the material cells or
fibres buckle. In this region, the material stiffness decreases strongly, and the stress increases slowly
with the strain. The buckling phenomenon can begin even for small strains. This large buckling
zone is what grants porous materials high energy absorption characteristics during impacts [13]. For
fibrous materials with horizontal fibres, the buckling region can be very small or inexistent, because
their compression increases the number of contact points between fibres which causes a densification
behaviour [201]. Fourth, the solid phase experiences densification. The cells and fibres of the skeleton
come into contact with one another and cannot be compressed further, leading to a rapid increase of
the stiffness.
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Figure 2.35. Regimes of a porous material subjected to compression.

For best results, the material should be characterized with the same preload as its final use.
Chevillotte et al. [251] recommend that the static compression strain εs be less than 2 % for foams
and 5 % for fibrous materials, and that the dynamic strain εd should be an order of magnitude lower
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than the static strain of the material in its final use. The dynamic strain amplitude should be high
enough to reduce measurement noise as much as possible, however it should be lower than about 0.1 %
sample strain to stay in its linear regime [254]. When it is not possible to characterize the material for
the same static strain as its final use, it is suggested to measure its properties for different static strains
and extrapolate the results to the sought static strain [251, 264]. However, this can be time-consuming
and inaccurate due to material nonlinearity. It is also difficult to identify the stress-free position when
the sample has an uneven or non-flat surface.

On top of this, the material surface roughness and bonding conditions with the QMA’s plates
change the measured stiffness for small strains. Sample shape defects due to sample cutting, resulting
in a material surface that is uneven (non-planar) and non-parallel to the opposite surface contribute
to this error. Chevillotte et al. [251] recommend a static strain of at least 0.5 % to bypass surface
irregularity effects. If the sample is glued, the error due to sample surface roughness can be reduced
at small strains. However, it adds an extra parameter as a source of uncertainty to the measurement
procedure, and destroys the samples when they are removed, making them unusable for further mea-
surements. The boundary conditions that can be obtained for different preloads in Figure 2.36(a). If
the sample is not glued, then the position of the top plate without preload, i.e. ε = 0 %, is chosen
as the first contact of the tallest strands of the sample with the top plate. When the sample is glued
to the top plate, full contact can be obtained for any strain, however this results in a non-uniform
stress throughout the sample, meaning that part of the sample can be in compression and part of the
sample in tension for example. All in all, the uneven surface of samples makes it difficult to identify
the position where δs = 0.

The effect of the uneven surface is shown in Figure 2.36(b), which plots the stiffness of a PU250
sample as a function of static strain. When the sample is simply placed without glue between the QMA
plates, its stiffness gets close to zero when the strain varies from −2 % to 0 %, due to the reduction
of the contact surface between the upper plate and the sample. For taped and glued samples, the
stiffness instead keeps increasing as the compression strain approaches zero and becomes positive, i.e.
when the sample is in tension. Overall, both glue and double-sided tape give similar results. For larger
compressive strains, there is little difference between glueing the sample or leaving it simply installed.
Delgado-Sánchez et al. [265] report that glueing is necessary to determine the elastic modulus for stiff
and brittle foams, which is not the case for the studied materials.

Some authors consider that the material properties under no preload are found where the stiffness
reaches a maximum as a function of preload [264], which corresponds to a static strain of ε = −2 %
in Figure 2.36(b). This position likely corresponds to the smallest strain where there is full contact
between the plate and the sample, after which the measured stiffness decreases due to buckling.
However, the results in Figure 2.36(b) indicate that when full contact is maintained for a glued
sample, the stiffness keeps increasing for strains between −2 % and 0 %. This suggests that the
material begins to buckle for very small strains, even when the contact is partial, and that samples
should be glued to accurately obtain its properties without preload.
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Figure 2.36. (a) Non-uniform contact between the porous material and the QMA plates, (b) Average
stiffness between 100 Hz and 200 Hz for PU250 as a function of applied static strain.

5.2.3 | Influence of relaxation

When a sample is compressed to a given strain εs, its internal stress changes over time, due to the
viscous relaxation within the material. As a consequence, the measured dynamic stiffness k̃ and loss
factor η change over time, as shown in Figure 2.37. In these measurements, a melamine sample is
compressed to εs = −5 % strain and its dynamic stiffness is measured multiple times over 4 days. In
these results, the stiffness increases by 5 % after 30 minutes, by 10 % after 1 day, and by 13 % after
4 days. It is difficult to assess the effect of sample relaxation on QMA results, because the measurement
process itself is not instantaneous, meaning that relaxation occurs within each measurement, and that
it is impossible to measure the material’s instantaneous response. Nonetheless, the effect of relaxation
becomes significant at long durations, and accounting for it could help improve the accuracy of QMA
measurements. Alternatively, performing measurements quickly after compressing the sample can help
improve result repeatability. Recent results in the literature observe this phenomenon too, for instance
in [266], although relaxation is not suggested as an explanation. The relaxation is observed in the
dynamic regime here, however a more detailed analysis and prediction are proposed in Chapter 3 for
the relaxation in the static regime.
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Figure 2.37. Variation of (a) stiffness and (b) loss factor η for QMA measurements of melamine
foam with static strain εs = −5 % between 20 Hz and 100 Hz.
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5.2.4 | Influence of the coupling with the surrounding air

The quasistatic hypothesis requires that the viscous coupling of the porous material with the surround-
ing air be negligible. However, for material samples which are highly resistive and have a wide aspect
ratio s = D

h , the viscous effects of the air might not be negligible, even in relatively low frequencies
[267]. Etchessahar [65] reports that, for a cubic sample of width 20 mm and modulus 100 kPa, the
influence of air appears around 1 Hz for σ = 107 Nsm−4, 10 Hz for σ = 106 Nsm−4, and 100 Hz for
σ = 105 Nsm−4. The materials studied in this work are in the order of magnitude σ = 104 Nsm−4,
except for the Polyfiber and the PU250 which are in the order of magnitude σ = 105 Nsm−4. For these
two materials, especially the Polyfiber which is very thin (h = 4.6 mm), the viscous effect of air might
not be completely negligible. To check if the effect of air is negligible on QMA measurements of the six
studied materials, they were characterized at atmospheric pressure and in a vacuum chamber at 1 % of
the atmospheric pressure. Results are not reported here directly, but are presented in Appendix B due
potentially unreliable results, caused by a sensor which is not graded for the vacuum. However, these
results show that there is no frequency dependence of the results between the atmospheric pressure
and the vacuum, indicating that the viscous coupling with the surrounding air can likely be neglected
for the studied materials.

6 | Characterization results summary

6.1 | Validity of each characterization method

The various characterization methods for porous materials, which can be categorized into direct and
inverse approaches, have distinct advantages and disadvantages over each other. A summary of how
well each characterization method works for the sought-after material properties for poroelastic mod-
elling is shown in Table 2.20. Direct methods provide a directly measured value of parameters and
can be highly effective when measurement conditions are well-controlled. Each measurement method
has sources of error which must be controlled appropriately. For the transport parameters ϕ, σ, and
α∞, direct measurements give the most reliable and trustworthy results.

Inverse methods regroup iterative global minimization methods, micro-macro approaches, and
analytic inverse methods. Iterative minimization methods are powerful because they can be used
to obtain many parameters at once from a measurement. However, robust parameter adjustment
requires a strong sensitivity to these parameters, and it provides no guarantee of finding the physical
value of the parameters instead of a mathematical local minimum. Micro-macro methods can be used
to relate macroscopic material properties by observing and modelling the material microstructure.
These methods have a lot of potential because all material properties can be computed from its
known microscopic geometry. However, this is also the weak point of this method, since material
microstructure can be polydisperse or require very large RVE simulations. Overall, the microgeometry
varies from material to material, which requires a tailored micro-macro methodology for each material.
At last, analytic inverse methods can be used to analytically derive some parameters from acoustic
measurements. They are helpful for easily measuring properties that cannot be measured directly
otherwise, and are therefore commonly used for this purpose. However, they rely on motionless frame
material behaviour which is a strong assumption and not always the case in practice.

For the mechanical parameters E′, η, and ν, direct measurements are also recommended. The
quasistatic method using a QMA has the advantage of giving access to material properties for all
frequencies below the sample’s first resonance frequency, as well as allowing easy control over the
static preload applied to the material before characterization. There are many factors that influence
QMA results which require precautions, notably the nonlinearity of the results with respect to the
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static strain, the variation of properties over time due to relaxation, and the viscous effects of ambient
air and its temperature. Moreover, the determination of the Poisson ratio ν can be unreliable, and can
propagate a large error to the determination of the modulus E′ for samples that are thin and wide.

Table 2.20. Characterization methods and their reliability for finding poroelastic material proper-
ties. ✓: reliable characterization method, ∼: method can be less reliable and requires
expertise, ×: method that exists but gives unreliable results in practice.

Transport parameters Skeleton parameters
σ ϕ α∞ Λ Λ′ q′

0 ρ1 E η ν

Direct methods

Porosimeter ✓ ✓
Tortuosity meter ✓
Resistivity meter ✓
QMA ✓ ✓ ∼

Inverse methods
Indirect ✓ × ∼ ✓ ∼ ∼
Minimization ∼ ∼ ∼ ∼ ∼ ∼ × × × ×
Micro-macro ∼ ∼ ∼ ∼ ∼ ∼ ∼

Simplifying assumptions ∼ ∼ × × × ∼

The material properties obtained from a combination of the different characterization methods
for the six studied materials are presented in Table 2.21. The most reliable method for each parameter
is kept. Chevillotte et al. [251] explain that common practice in the industry consists in the direct
measurement of the mechanical parameters, the porosity, and the resistivity, followed by the analytic
or minimization inverse methods for the tortuosity, the characteristic lengths, and the thermal perme-
ability. Their results show that the inverse computation of the tortuosity, the thermal characteristic
length and the thermal permeability are not always reliable, which is in accordance with the results
found in this chapter. Thus, resistivity σ, porosity ϕ, tortuosity α∞, and density ρ1 are obtained
through direct measurements. Viscous and thermal characteristic lengths Λ and Λ′, along with ther-
mal permeability q′

0, are obtained through an indirect method. Mechanical properties, which include
the storage modulus E′, the loss factor η are measured directly. E′ and η values are averaged over the
range [0.5 Hz, 100 Hz].

Table 2.21. Studied materials’ properties.

Final results h
mm

ϕ
%

α∞
-

σ
Nsm−4

Λ
µm

Λ′

µm
q′

0
10−9m2

ρ1
kg m−3

E′

kPa
η
%

ν
-

Melamine 29.07 94 1.01 13 838 135.8 277.4 3.0 9.58 104 4.6 0.44
PU60 19.85 94 1.25 29.0 258.0 3.4 54.8 30 10 0.3
PU250 20.93 79 2.45 7.8 170.2 16.2 242.5 296 12 0.3
Polyfiber 4.6 99 1.49 228 728 22.7 22.7 0.6 275.5 143 38 0
GF 20 mm 20.6 94 1.03 48.5 125.2 1.2 65.6 19 6 0
GF 25 mm 24.9 95 1.01 65.6 241.1 1.5 55.3 25 6 0
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6.2 | Comparison between predictions from models and measurements

The absorption coefficient of these materials is computed using the transfer matrix method and com-
pared to measurements in an impedance tube in Figure 2.38. It can be noted that absorption coeffi-
cients are compared instead of radiation efficiencies, which would better represent the use case of of
these materials as acoustic screens. This is due to the experimental difficulties in accurately measur-
ing the radiation efficiency of a porous layer for comparison with a one-dimensional Transfer Matrix
model, as explained later in Chapter 4. Thus absorption coefficient measurements allow good control
over the measured acoustic behaviour of the materials to validate models.

The agreement between measurements and simulations is quite good, which gives confidence in
the validity of the obtained parameters. The prediction of the PU250 foam’s absorption coefficient is
not very accurate, which highlights the difficulty in properly characterizing this dense and resistive
material. Moreover, a frame resonance is observed experimentally for the melamine and the Polyfiber
backed by an air gap, but not predicted by the transfer matrix model, which suggests that this
resonance originates from the sample mounting condition in the tube. Similarly, the large confidence
interval on the PU60 measurements are due to the absorption coefficient being shifted to lower or
higher frequencies depending on the sample mounting conditions.
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Figure 2.38. Absorption coefficient of the studied materials on a rigid background.
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7 | Conclusion

There is a wide range of methods that can be used to characterize porous materials. The various
characterization methods were applied in combination with each other to obtain material properties
presented in Table 2.21. Their advantages and limits were showcased by applying them to real non-
ideal materials. The material properties obtained can be used to model their acoustic behaviour for
automotive applications within the SEMPAE project, and the recommendations provided to accu-
rately characterize them can help improve the reliability of future characterization of transport and
mechanical parameters.

Some of the transport parameters can be accurately measured through direct methods, however
these are not applicable to every transport parameter and sometimes require expertise to minimize
uncertainties. Inverse methods can therefore be used to obtain these missing transport parameters.
Iterative global minimization methods can be used to find any number of material properties, however
they make a strong assumption on the material’s behaviour, and they are less likely to result in accurate
physical material properties when prior knowledge about material properties is scarce. Micro-macro
approaches are powerful but requires reliable knowledge about the material microstructure. The
indirect approach, performed from the analytic inversion of impedance tube measurements, is useful
to obtain properties that cannot be measured directly, however it requires user expertise to select valid
frequency ranges and is unreliable for some of the transport parameters.

Furthermore, a particular effort was put into accurately characterizing the mechanical properties
of the materials, and into identifying the sources of error. In particular, applying a preload to the
material modifies its stiffness. For this reason, material mechanical properties at small or zero preload
are often sought, which requires glueing samples to overcome the effect of surface irregularities. On
top of this, the influence of material relaxation affects results increasingly over time, which means
that measurements should be performed quickly after compression and within a short time frame to
improve repeatability. Material nonlinearity and relaxation are studied in more detail in the static
regime in Chapter 3. Relaxation seems to be a major source of uncertainty which is not accounted for in
QMA measurements, and modelling it would significantly improve the characterization of compressed
samples. The determination of the Poisson ratio is also difficult to perform reliably on porous materials,
which is a promising direction to improve the mechanical characterization of porous materials.
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Key findings

• Porosity ϕ, airflow resistivity σ, tortuosity α∞ and density ρ1 can be measured directly. Char-
acteristic lengths Λ, Λ′ and thermal permeability q′

0 are computed from inverse acoustical
measurements in duct. The analytic indirect method can be used on a restricted frequency
range to compute σ and Λ, but is less reliable to compute α∞, Λ′ and q′

0.

• Making simplifying hypotheses to compute some transport parameters from other known trans-
port parameters, such as assuming cylindrical pores or using a simplified 3-parameter model
instead of the 6-parameter JCAL model, does not result in a reliable prediction for a wide range
of materials, such as materials with high tortuosity, high resistivity and low porosity.

• The quasistatic method for the characterization of E′, η and ν allows control over the static
preload applied to the material and works in the low-frequency range (approximately 0.5 Hz
to 100 Hz), as long as the ambient air’s viscosity can be neglected.

• The storage modulus E′ and the Poisson ratio ν need to be extracted from the stiffness measured
with a QMA. Because ν is often real and frequency independent in practice, and determining it
experimentally can be difficult, we can assume a simplified value, however care must be taken
for thin and wide samples which are sensitive to the Poisson effect could propagate a large error
to the determination of E′.

• Porous material behaviour is intrinsically nonlinear, as its stiffness changes with the static
strain. Its experimental measurement is further affected by uneven sample surfaces. Determin-
ing the position where static strain is null is difficult, or impossible, when the characterized
sample has a rough uneven surface. Samples should be glued to obtain properties under no
preload.

• Material stiffness changes over time when it is compressed due to viscous relaxation. Measure-
ments should be performed quickly to improve repeatability.



Chapter 3. Contact stiffness of a rough surface

This chapter studies the impact of macroscopic asperities on the contact stiffness of porous materials,
and is derived from an article published in the International Journal of Solids and Structures [268]. This
work is a continuation of the article by Hentati et al. [269], which studies the quasi-static stiffness of
spherical asperities of melamine foam and found a good correlation with Hertz’ law, which is normally
applicable to continuous media. In this new work, larger static strains are applied to pyramidal
asperities, and nonlinearity and relaxation are accounted for. Further, numerical simulations of the
compressed asperities are performed, which require expertise and custom tools. For this reason, this
work was performed in collaboration with Jean-Philippe Crété and Stéphane Job from the Quartz
laboratory (ISAE Supméca, Saint-Ouen-sur-Seine, France). The numerical model of an indented
asperity represented by a network of Kelvin cells in Section 3.3, and by a continuous medium in
Section 4.2, was performed by Jean-Philippe Crété. The ageing model described in Section 2.4 and
Section 2.5 was elaborated with the help of Stéphane Job.

The article published in the International Journal of Solids and Structures was adapted to this
dissertation with additional work performed within the context of the SEMPAE project. Amongst the
additions not in the original article submission, a comparison between discrete and continuous surface
roughness descriptions is performed in Section 5.2. The application to a real Greenflocks material
with a rough surface is added in Section 5.4. This chapter is also complemented by an experimental
measurement of the relaxation of SEMPAE materials over time in Appendix C.

1 | Introduction

The surface of porous materials is often uneven. This causes difficulties in predicting the behaviour
of the foam at small strains, since this relies on the accurate mechanical properties, and the uneven
preload due to surface asperities is often ignored. This surface roughness can exist at different scales,
and can result from uneven cutting in Figure 3.1(a) and Figure 3.1(b), manufacturing processes in
Figure 3.1(c) or intentional design in Figure 3.1(d). The analysis of these surface asperities is a key
to improve our understanding of the compression stiffness of porous materials.

The surface roughness found on the surface of many porous materials is a source of error and
difficulty for their mechanical characterization, and probably contributes to the low reliability of these
methods found by the round-robin study performed by Bonfiglio et al. [250], in which the characterized
modulus can sometimes span several orders of magnitude depending on the laboratory and the method
used. Further, material characterization without preload is often sought, but there is no widely
accepted procedure to do so, and extrapolation methods suggested by [251, 264] can be difficult to
implement because of material nonlinearity, surface roughness, and the difficulty of identifying the
strain-free position when the sample has an uneven or non-flat surface. For these reasons, highly
inhomogeneous materials such as the Greenflocks in Figure 3.1(c) are difficult to characterize using
a Quasistatic Mechanical analyser (QMA) or a Dynamic Mechanical analyser (DMA), for example.
Furthermore, the surface roughness influences the prediction of the mechanical behaviour of porous
materials when they are installed against rigid walls, which is often the case. This is because the
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Figure 3.1. Examples of uneven porous material surfaces, due to (a) uneven cutting on an open-cell
material (microscopic scale), (b) uneven cutting on a closed-cell material (microscopic
scale), (c) industrial manufacturing process (mesoscopic scale) and (d) intentional design
for acoustic absorption and aesthetic reasons (macroscopic scale).

inherently irregular surface of porous materials results in partial contact and inhomogeneous preload,
which affect the material’s effective stiffness in the contact region. Further, the partial contact can
be caused by the surface that the materials are placed on, for instance the complex geometry of a car
engine being encapsulated.

In short, the mechanical stiffness of a porous material at its contact boundary must be understood
to improve its modelling. Guastavino and Göransson [270] observe a soft boundary layer at the contact
boundaries of foam samples using 3D image correlation. Dauchez et al. [254] theorize that such a zone
could be caused by damaged cells at the surface of the sample when it is cut into shape. Mao et al.
[271] model this phenomenon by damaging the struts of the cells composing the material near the
sample’s boundaries by disconnecting their extremities, to mimic the damage experienced by the
material sample when it is cut. However, this method does not account for intrinsic material surface
roughness. Marchetti and Chevillotte [272] analyse the stiffness of uniaxially compressed corrugated
foam, and observe that the presence of the bumps on the surface modifies the apparent Young’s
modulus, before transitioning to the bulk behaviour of the material once they are all compressed.

How can the prediction of the compression stiffness of porous materials at small strains be im-
proved by accounting for their surface roughness? The aim of this work is to predict the compression
stiffness of macroscopic surface asperities of a rough open-cell material’s surface, by accounting for ma-
terial nonlinearity, relaxation, and asperity geometry. The mesoscopic and macroscopic scales, shown
in Figure 3.1(c) and Figure 3.1(d), are considered in this work, and not the microscopic irregularities
due to lone strands.

The first step is to evaluate the material’s nonlinearity and time dependence, to establish its
constitutive laws in Section 2. The nonlinear behaviour can be modelled using a nonlinear constitutive
behaviour model, such as a hyperelastic model. The stress relaxation undergone by porous materials
over time while under constant strain leads to a significant error over a long duration, and can be
modelled using an adapted viscoelastic or an ageing model. The creation of a hyperelastic and the
fitting of a novel ageing model allows the determination of the conditions under which the material
behaves following its instantaneous response. In this chapter, compression ramps are performed,
in which the ramp response of the material is examined and not its dynamic mechanical behaviour.
Further, isolated surface asperities are studied in order to disregard the transition to the bulk material
behaviour below the asperities.

Then, the prediction of the stiffness of a single ideal pyramidal asperity of melamine foam is per-
formed analytically and numerically and compared with experimental results in Section 3. The validity
of a continuous description of the pyramidal geometry is verified. Next, the material nonlinearity is
combined with the pyramidal geometry, to study how they interact in Section 4. A single equivalent
modulus is found that can be used instead of the real strain-dependent modulus of the material to
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obtain satisfying results. In the end, a surface of multiple pyramidal asperities of different heights
and a real material with an uneven surface are modelled in Section 5, using a multi-asperity surface
roughness model inspired by the Greenwood-Williamson model [273, 274]. The validity of this surface
roughness model for an ideal surface composed of a discrete number of asperities is assessed. Its
application at small strains to a real Greenflocks material reveals information about the distribution
of the asperities on the surface.

2 | Material nonlinearity and relaxation

In this section, the material’s constitutive behaviour is examined and modelled. A compression ramp
is applied to a cylindrical sample of the studied material to obtain a force-displacement curve, which is
turned into a stress-strain curve, in which the material’s intrinsic nonlinear and viscous behaviour can
be expressed. The stress-strain nonlinearity is modelled using a hyperfoam model. The time-dependant
behaviour of the foam reveals a relaxation time that increases with time when the material is at rest.
This is well described by an ageing model, which is combined with the hyperelastic behaviour to create
an original hyperelastic ageing model. This model is exploited to show that under the right conditions,
the material behaves according to its instantaneous response, and therefore its time dependence can
be neglected.

2.1 | Compression experimental setup

Experimental compression measurements are performed on an Anton Paar MCR 502 rheometer. Cylin-
drical foam samples of melamine are placed between two plates, as pictured in Figure 3.2. The top
plate compresses the sample, up to around 80 % strain of its initial height h = 19.3 mm. The top
plate’s position relative to the bottom plate and its compression force are measured over time. The
temperature is also tracked to ensure stability with respect to thermal dilation and mechanical prop-
erties, for instance. The cylindrical sample is taped to the plate so that all the cells at the interface
(about 42 000 cells within the 29 mm in diameter cross-section) are in contact with it. Taping the
sample rules out effect of surface irregularities, allowing interpreting the deformation of the sample
as an effect of its bulk properties only, and avoids any contact detection protocol to determine the
reference deformation.
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Porous
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plate

29.0 mm

δ
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ε h
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Figure 3.2. Experimental setup to measure the compression force and the compression distance over
time. (a) Cylindrical melamine foam sample between the plates of the rheometer. (b)
Diagram of a cylindrical sample being indented in uniaxial compression.
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2.2 | Material nonlinearity

The relationship between stress and strain is obtained from the measurements to model the material’s
nonlinearity. The schematic of the uniaxial compression is presented in Figure 3.2(b). The strain is
supposed uniform, and nominal stress and strain are used. The axial nominal strain is expressed as

ε = δ

h
, (3.1)

and the axial nominal stress is expressed as

TL = F

S
. (3.2)

δ is the compression distance, h is the height of the cylinder, F is the measured compression force
and S is the original cross-section area of the cylinder. Stress-strain measurement results, averaged
over 5 samples, are shown in Figure 3.3(a), revealing the nonlinearity between stress and strain. The
usual compression regimes of porous materials, as reported by many authors [60, 229, 234, 254, 260,
261, 262, 263], can be identified: the linear bending of the surface strands between 0 % and 2 % strain,
the buckling of the cell walls between 2 % and 20 % strain, and lastly the densification of the cell
struts above 20 % strain, which becomes much more significant above 60 % strain. The inhomogeneous
strain field caused by damaged struts found by Guastavino and Göransson [270] is not accounted for
here. It is thus worth noting that defining an elastic modulus from the stress-strain relation relies on
an effective feature at the scale of the sample itself.
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Figure 3.3. Nonlinear regimes of compressed foam averaged over five measurements. (a) Stress versus
strain (b) Tangent modulus Etan and secant modulus Esec as a function of strain, and
inflexion modulus EI location.

From these results, several moduli can be identified. The tangent modulus of the material Etan

is the slope of the stress-strain curve at a given position, and is obtained as

Etan (εx) = ∂TL

∂ε

∣∣∣∣
ε=εx

. (3.3)

The secant modulus Esec is defined as the ratio of the stress TL over the strain ε:

Esec (εx) = TL

εx
= 1

εx

∫ εx

0
Etan(ε)dε. (3.4)

The tangent modulus Etan and the secant modulus Esec are different, as shown in Figure 3.3(b).
Indeed, between 0 % and 20 % strain, the tangent modulus Etan decreases from 290 kPa to 12 kPa
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due to cell buckling. It then climbs slowly to 35 kPa at 50 % strain, and then rises sharply to 436 kPa
at 80 % strain due to cell densification. Meanwhile, the secant modulus Esec is close to 290 kPa for
strains less than 1 %, then drops to below 50 kPa at 25 % strain and 34.7 kPa at 50 % strain, as a
consequence of buckling. Then, due to densification, it increases and reaches 72 kPa at 80 % strain.

It is worth noting that quasistatic compression ramps are performed here to obtain the tangent
modulus Etan, which can be different from the dynamic tangent modulus, obtained with a QMA for
example. This has been shown by some authors [275, 276], as well as some of our measurements which
are not presented in this work.

These moduli can help identify the different compression regimes of the material. The inflexion
point I at strain εI = 20 % represents the minimum of the tangent modulus Etan, i.e. ∂Etan

∂ϵ = 0, and
marks the end of buckling and the beginning of densification. It is sometimes called the crush strain
in the literature [55, 277]. The secant modulus computed at the inflexion point is EI = Esec(εI) =
58.0 kPa, and will be used as an average equivalent modulus to model the material. Furthermore, the
minimum of the secant modulus Esec, i.e. ∂Esec

∂ϵ = 0, indicates what is sometimes called the strain of
densification [55, 278], though this strain of densification can have different definitions, as explained
by Li et al. [55]. It is found at ε = 50.2 %, and corresponds to the point where the energy absorption
efficiency Es defined by Equation 3.5 [279] starts to increase.

Es(εx) = 1
TL(εx)

∫ εx

0
TL(ε)dε, (3.5)

The nonlinear behaviour of the material can be predicted with a hyperelastic model [280, 281, 282]
that is adapted to polymer foams subject to large strains, called the hyperfoam model [283, 284, 285].
It is derived from Ogden’s hyperelastic model [286], and it is adapted for these materials because,
unlike other hyperelastic models, it predicts a Poisson ratio that stays constant at large strains [287].
It relates the stress and strain through

TL = 2
λ

N∑

i=1

µi

αi
(λαi − J−αiβi

el ), (3.6)

where N represents the number of terms of the model, βi = νi
1−2νi

with νi the ith Poisson ratio,
λ = 1 + ε the stretch in the compression direction, and Jel the elastic volume ratio. For uniaxial
strain and assuming a linear relationship between axial and lateral displacement, Jel = λ(1 − νε1)2.
Increasing the number of terms N in the hyperfoam model can help improve the fit over the measured
data range. An example of fitting the hyperfoam model to a measurement is shown in Figure 3.4, for
model orders N = 1 and N = 2. This shows that using an order N = 2 is better at predicting the
overall nonlinear behaviour than an order N = 1. However, increasing N also increases the risk of
failing the Drucker stability condition for different strain values and strain modes, such as uniaxial,
equibiaxial, shear or volumetric strains [288]. Since only uniaxial compression is studied here, N = 1
is reliable.
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Figure 3.4. Fit of the hyperelastic model on the stress-strain response of a cylindrical sample of
melamine, compressed from 0 % to 80 % strain over 26 s. Model orders N = 1 and
N = 2 are compared.

2.3 | Material relaxation

The objective of this section is to predict the time dependence of the material, and find the right
conditions to isolate its instantaneous response. When a foam sample is kept at a constant strain,
its compression force drops over time. This decay is shown in Figure 3.5 for a sample compressed
from 0 % strain to 30 % strain in 12 seconds, after which the strain is kept constant at 30 % strain.
The compression force drops by 14.1 % after 1 minute, 20.0 % after 5 minutes, and 40.0 % after 24
hours. Ignoring material relaxation when performing measurements over time can therefore lead to a
significant error.
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Figure 3.5. Stress relaxation of a compressed cylindrical melamine sample at 30 % strain during (a)
the first minute and (b) 26 hours. The vertical dotted line indicates when the stress
relaxation at constant strain begins.

Standard protocols to measure the compression stiffness of rubber [289], flexible cellular materials
[290], and certain foams in the industry [291] define a sequence of compressions and decompression
cycles before taking measurements, resulting in values that incorporate the material’s hysteresis. In
contrast, our interest lies obtaining material properties which are independent of its loading history.
If measurements are performed quickly enough, the instantaneous time response of the material can
be captured and its relaxation can be neglected. This is ideal because it is impractical to measure the
long-term response of the material due to very long wait times.

However, the stress decay is fastest immediately following compression ramp, which can be seen
in Figure 3.5, since the compression force varies as much during the first 5 minutes following the
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compression than during the following 26 hours. This is also confirmed by the typical relaxation time
of the material τ = −F/Ḟ in the relaxation phase, shown in Figure 3.6(a)-(c), which is in the order
of 60 s immediately after the compression ramp, and then increases up to 120 hours after 6 hours
of relaxation. This suggests that during the compression ramps, the relaxation time might be very
short, which makes it more difficult to assert whether the material’s instantaneous response cannot
be measured experimentally. Furthermore, this relaxation also occurs for different types of porous
materials, as presented for the other SEMPAE project materials in Appendix C. It can also be noted
that these other material also exhibit a relaxation time that increases with time at constant strain.
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Figure 3.6. The relaxation time τ = −F/Ḟ increases linearly with time with a constant slope a = τ̇
at (a) early, (b) intermediate, and (c) long-terms. The dashed guideline in (a), τ = at
with arbitrary a = 21, relies on a power law dependency, F (t) ∝ t−1/a.

A first verification can be performed experimentally, by performing compression measurements
at different time scales. When compression measurements are performed for different strain rates, a
variation in the measured stress can be observed. This is shown in Figure 3.7, in which cylindrical
samples are compressed experimentally for strain rates going from 3.0 % s−1 to 3.7×10−3 % s−1. This
corresponds to compression ramps lasting between approximately 26 s and 6 hours (or 21 600 s). The
variation in the results can be explained by the viscous relaxation of the material. These measurements
reveal that the effect of relaxation on the measured stress can be observed for compression ramps longer
than 106 s, whereas compression ramps shorter than 106 s are very similar. Consequently, from these
experimental results it is concluded that the instantaneous response can be achieved for compression
rates greater than or equal to 1.5 % s−1, and in these cases the effect of relaxation can be neglected. In
the following, a model to predict the material relaxation is proposed to verify that the measurement
conditions allow for it to be neglected.

2.4 | Material relaxation model

Several existing models have been proposed in the literature to encompass the nonlinear stress-strain
relationship and the viscous effects of porous materials. Stress relaxation is usually represented using
a viscoelastic model. Some authors consider the total stress as the sum of a viscous stress and a
hyperelastic stress [292, 293], whereas others combine the two into a rheological model [294, 295]. The
material nonlinearity is either represented using a hyperelastic [172, 295, 296, 297] or a polynomial
[298] model. The relaxation is either represented on the basis of the generalized Maxwell model
[295, 296, 298], a fractional derivative model [172], K-BKZ theory [299] or an empirical time-shift
method [300].

However, a typical viscoelastic representation does not seem adapted to this material’s observed
behaviour. For example, despite an apparent convergence of the time response of the compressed
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Figure 3.7. Cylindrical sample compression results at different strain rates, resulting in ramps of
different durations.

melamine sample to an asymptotic behaviour within one minute of measurement in Figure 3.5(a),
it does not reveal an asymptotic limit even over an entire day of measurement in Figure 3.5(b).
Further, the typical relaxation time of the material τ = −F/Ḟ in the relaxation phase, shown in
Figure 3.6(a)-(c), differs noticeably from common viscoelastic models, since the relaxation time is not
an intrinsic constant but time-dependent, as for ageing mechanisms [301]. The observed behaviour
does not reveal a classical exponential decay as a function time, F (t) ∝ e−t/τ , but instead a power law
F (t) ∝ tn with some exponent n, as shown in Figure 3.5(b). Such a behaviour is characteristic of an
ageing mechanism, which can be thought of as a linearly increasing relaxation time, τ ∝ t. The main
concern with such mechanisms is determining the dynamics at short times, during which the material
is fresh and highly reactive, that is to say τ ∼ 0 when t ∼ 0.

A model adapted to the studied foam must be chosen, and these observations can be linked to
ageing mechanisms that describe a continuously time varying decay rate. For instance, the ageing
model described by Derec et al. [302] relates the stress rate ṪL to the strain rate ε̇ by introducing a
history-dependent fluidity term f . Espíndola et al. [303] suggest a simplified expression of the fluidity
f resulting in





ṪL = −fTL + E0 ε̇

ḟ = −af2 + r ε̇2,
(3.7)

where E0 is an elastic modulus, a is a parameter representing material ageing (decrease in f , or increase
in relaxation time over time) and r is a parameter representing material rejuvenation (increase in f ,
or decrease of relaxation time over time). In the case where f = E0

η0
= const, this model is equivalent

to a Maxwell model with a constant relaxation time, where η0 stands for the viscosity of the Maxwell
model’s dashpot. The second line of Equation 3.7 is the evolution equation of the fluidity f , which is
the inverse of a relaxation time, τ = 1

f , and holds information related to the memory of the system.
When the strain rate ε̇ is null, the relaxation time increases linearly with time proportionally to the
ageing parameter a, τ ∝ at, which is in close agreement with observations shown in Figure 3.5. When
the material is being deformed, that is to say ε̇ ̸= 0, the relaxation time τ decreases according to
rejuvenation parameter r.

Considering the fact that the instantaneous response of the foam is hyperelastic, the hyperelastic
component is integrated into the ageing model described by Espíndola et al. [303] by replacing the
constant modulus E0 with the strain-dependant secant modulus Esec. This results in an ageing
hyperelastic model, described by Equation 3.8, with a rheological representation sketched in Figure 3.8.
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ṪL = −fTL + Esec ε̇

ḟ = −af2 + r ε̇2,
(3.8)

εTL
Esec η(a, r)

Figure 3.8. Schematic representation of the ageing model. The nonlinear dashpot represents the
nonlinear time dependence of the ageing model, and the nonlinear spring represents the
hyperelastic response of the material.

2.5 | Application of the ageing hyperelastic model

The new ageing hyperelastic model described by Equation 3.8 is applied in this section, and its
parameters are determined from the experimental data. First, the parameter a can be obtained when
the strain rate ε̇ is null in Equation 3.7, in which case the relaxation time increases linearly with slope
a:

τ = 1
f

= at + cste = −TL

ṪL

, (3.9)

where the constant is irrelevant at this stage and represents the initial relaxation time τ when the
relaxation begins. In short, a is computed as the slope of −TL

ṪL
when the strain rate is null, as shown

in Figure 3.6(a)-(c) for instance.
Second, the hyperelastic parameters are obtained from the instantaneous response of the material,

that is to say when the compression rate ε̇ is high enough, for instance from the fastest ramp of 26 s,
which is considered as an instantaneous response. The hyperelastic parameters (α1, µ1, ν1) are
obtained by a least squares curve fitting on the experimental stress-strain curve.

Third, the remaining parameter r can be found from compression ramps of different durations, as
those shown in Figure 3.7. These compression ramps must last long enough for the effect of relaxation
to be visible during the compression ramp. Compression ramps from 0 % to 80 % strain lasting between
26 s and 21 600 s were used to fit the parameter r. The parameters obtained for the hyperelastic ageing
model are presented in Table 3.1. It is interesting to note that the Poisson ratio found is close to 0,
indicating that the overall Poisson effect is small. Similar results for foams undergoing large strain can
be found in the literature [57, 263, 292], even though the Poisson ratio is strain dependant in reality
[304, 305].

Table 3.1. Parameter values obtained for the hyperelastic ageing model used to represent the studied
material’s behaviour, averaged over several measurements. The 95 % confidence intervals
obtained from fitting the results on several measurements are given.

Hyperelastic parameters

α1 µ1 (kPa) ν1

104.8 122.8 0.020
±36.6 ±48.0 ±0.009

Ageing parameters

a r

17.8 3.42
±7.0 ±3.39

The predictions from the hyperelastic ageing model are compared to a measurement in Figure 3.9,
for the fastest ramp of 26 s. The strain ramp over time is shown in Figure 3.9(a), and the measured
stress is shown in Figure 3.9(c), which displays a nonlinear behaviour during the loading and stress
relaxation when the strain is held constant. The modelled stress response, shown in Figure 3.9(c),
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exhibits a similar behaviour to the measured response. Notably, both the nonlinear behaviour and the
time-dependent relaxation of the material are captured by the proposed hyperelastic ageing model.
The difference between the measurement and the model can be due to the heterogeneity between
samples, since the hyperelastic ageing model is fitted on the average behaviour of several samples and
compared with the measurement on a single sample. It can also be explained by the difficulty to obtain
a good fit of the hyperelastic behaviour on a wide strain range, since the fit yields a good average
behaviour, but can be different from the measurement at the extremity at high strains. Overall, the
goal of this model is to encompass the hyperelastic behaviour of the material as well as the continuously
varying relaxation time observed experimentally, but not necessarily to predict the stress in response
to a given strain over time quantitavely.

The instantaneous response computed from the ageing hyperelastic model is also plotted, which
reveals that it is quite close to the predicted time-dependent for this 26 s compression ramp. The
mechanical relaxation time (inverse of the fluidity f) of the material is plotted in Figure 3.9(b), which
shows that the minimum value it reaches is around τ = 104 s, which is greater than the duration of the
ramp of 26 s. This indicates that the material relaxation has a weak effect during the compression phase
at this strain rate. In conclusion, material relaxation can be safely neglected when the compression
ramp is fast enough, which is the case for this 26 s long, or 3.2 % s−1, strain ramp, which confirms
experimental results shown in Figure 3.7.
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Figure 3.9. Comparison of the ageing model with measurements for a compression ramp of 0 %
to 80 % strain over 26 seconds. (a) Strain applied over time. (b) Modelled material
relaxation time over time, compared with the characteristic time of the compression
ramp. (c) Measured and predicted stress over time. The modelled instant response is
also shown. Average parameters from Table 3.1 are used, except for r = 2.49 which is
obtained from a 26 s ramp measurement.

2.6 | Comparison with a hyperviscoelastic model

A classical viscoelastic model to predict the relaxation of the material is explored in this section. A
Prony series is used in combination with the hyperfoam model to showcase its capabilities and its
limits. A slightly different approach than before is used to fit a hyperfoam model. The Poisson ratio
is enforced to be ν = 0, due to its value close to 0 found above. Consequently, a higher number of
terms N = 3 is used for the hyperfoam model, instead of N = 1, which improves the prediction of
the stress-strain relationship when the value of the Poisson ratio is fixed, despite increasing the risk
of obtaining a numerically unstable model.

Next, the hyperfoam model can be fit either from the instantaneous response of the material,
meaning the sum of all springs∑N

i=1 Ei in the generalized Maxwell rheological model (see Figure 1.5(b))
is hyperelastic, or from the long term response of the material, meaning only the long term spring E0 is
hyperelastic. The difference between these two hypotheses is whether the viscoelastic time-dependant



2 | Material nonlinearity and relaxation 101

part of the material depends on the hyperelasticity of the material (hyperelastic instantaneous re-
sponse) or not (hyperelastic long term response). This distinction is not explored in detail in this
work, and both hypotheses are tested.

2.6.1 |Viscohyperelastic prediction using the instantaneous material reponse

First, the hyperelastic model is fitted based on the instantaneous response of the material from a
26 s ramp. The result of this fit is shown in Figure 3.10(a). The hyperfoam fits the measurements
much better for N = 3 than N = 1 or N = 2. The parameter values of this hyperfoam model are
shown in Table 3.2. Next, a viscoelastic Prony series is fitted to measurements to predict the time-
dependant behaviour of the material. The compression of a cylinder of melamine foam is modelled
using finite elements, to match the experimental compression distance over time at different strain
rates. A viscoelastic material described by a Prony series with N = 5 terms is applied to the cylinder,
which is commonly used for porous media in the literature. The instantaneous time response of the
material is characterized by the instantaneous modulus Ginst = G0 + ∑N

i=1 Gi. The terms of the
hyperfoam model obtained from the material’s instantaneous response are shown in Table 3.2.

Table 3.2. Parameters used in the 3-term hyperfoam model obtained from the material’s instanta-
neous response, and parameters of the 5-term Prony series obtained for a wide range of
deformations.

Hyperfoam model

αi (-) 20.1 25.0 -5.2
µi (kPa) -20.0 36.2 4.86 × 10−3

νi (-) 0 0 0

Prony series terms

Ginst (kPa) 160
Gi (kPa) 0.288 15.729 18.561 0.073 14.208
τi (s) 0.0966 54.0 579.8 21.1 853.9

The compression force of the cylinder computed numerically is compared with experimental results
in Figure 3.10(b), for compression ramps lasting between 26 s and 6 hours from 0 % to 80 % strain.
The difference between the predicted and measured stresses is due in large part to the heterogeneity
between samples. The results show that it is possible to predict both the time dependant and nonlinear
behaviour of the compressed melamine material by combining a hyperfoam model with a viscoelastic
Prony series.
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Figure 3.10. (a) Hyperfoam model fit to the measured instantaneous stress-strain relationship ob-
tained for a 26 s long compression ramp, with N = 1 to N = 3 terms and ν = 0. (b)
Hyperfoam Prony series model which combines the nonlinear stress-strain relationship
with the relaxation, fit between 0 % and 80 % strain.
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2.6.2 |Comparison with QMA results using the long-term material reponse

The viscoelastic Prony series model is fitted on experimental results which give information on a
restricted time or frequency range. It would be interesting to see if it is possible to extrapolate
this data outside of the experimental time or frequency range. To evaluate this hypothesis, the
Prony series is analysed in the frequency domain, in which it can be compared with QMA results
on the same material. A focus on small strains ε less than 20 % is therefore made in this section.
Consequently, the hyperfoam model is fitted from the long term response of the material for the 6-
hour-long compression ramp, since this long term response gives a better prediction of the stress than
the instantaneous response does in the small strain range ε < 20 %. The resulting hyperfoam and
Prony series parameters are given in Table 3.3, and the comparison with experimental stress-strain
relationships are shown in Figure 3.11.

Table 3.3. Parameters used in the 3-term hyperfoam model obtained from the material’s long-term
response, and parameters of the 5-term Prony series obtained for a small strains of less
than 20 %.

Hyperfoam model

αi (-) 10.2 13.5 -2.9
µi (kPa) -91.5 161.7 45.5
νi (-) 0 0 0

Prony series terms

Ginst (kPa) 242.7
Gi (kPa) 136.9 23.38 9.102 0.421 2.660
τi (s) 0.2307 9.194 291.5 120.4 1714.6
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Figure 3.11. (a) 3-term hyperfoam model fit to the measured long-term stress-strain relationship
obtained for a 6-hour-long compression ramp, with ν = 0. (b) Hyperfoam Prony series
model which combines the nonlinear stress-strain relationship with the relaxation, fit
between 0 % and 20 % strain.

The frequency-dependant storage modulus E′ and the loss factor η of the melamine foam are then
computed as a function of frequency. This is done by computing the storage shear modulus G′ and
the loss shear modulus G′′ from [288, 306]

G′ = Ginst −
N∑

i=1
Gi

(
1 + τ2

i ω2

1 + τiω2

)
, (3.10)

G′′ =
N∑

i=1

Giτiω
2

1 + τ2
i ω2 . (3.11)
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The storage and loss moduli E′ and E′′ are computed from Ẽ = 2G̃ (1 + ν). The results are plotted
in Figure 3.12.
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Figure 3.12. Storage modulus E′ and loss factor η as a function of frequency computed from the
hyperfoam Prony series.

At 100 Hz, the storage modulus computed from the Prony series is E′ = 485.5 kPa, and the loss
factor is η = 0.39 %. The storage modulus found this way overestimates the storage modulus found
experimentally, which is in the order of 100−200 kPa. Conversely, the Prony series underestimates the
loss factor of the melamine foam, which is around η = 5 %. This can be understood by noticing that the
damping peaks in Figure 3.12 are located for frequencies lower than the QMA frequency range around
100 Hz. This indicates that the relaxation times of the Prony series τi are too high, which makes sense
because the Prony series was fitted on measurements lasting between 26 s and 21 600 hours, whereas
the 100 Hz range corresponds to times of 10−2 s. This explains the overestimated storage modulus E′

and underestimated loss factor η at 100 Hz.
In short, this illustrates how the viscoelastic behaviour computed by fitting a Prony series over

the static compression ramps performed in this work, which are ramps of 0 % to 80 % strain within
time range of 26 s to 6 hours, cannot be directly extrapolated to the dynamic regime, as characterized
with a QMA. This is because they represent two very different time or frequency ranges.

3 | Compression stiffness of a pyramidal geometry

The behaviour of a single pyramidal asperity is analysed in this section. First, the open-cell mi-
crostructure of the porous material is modelled and compared with the expected analytic results for
a pyramidal geometry. Then, the material hyperelasticity is combined with the pyramidal geometry
to shed light on the interaction between the shape and the material nonlinearities.

3.1 | Description of the pyramids obtained experimentally

Pyramidal asperities are compressed experimentally to obtain the relation between force and com-
pression distance for a single asperity. The same compression measurement setup is used as for the
cylindrical samples described in Section 2.1. Square-base pyramidal asperities are used because they
allow for easy and repeatable creation in high numbers from a sheet of melamine foam, whereas there
are no practical methods to create several spherical asperities as studied by Hentati et al. [269]. Pyra-
mid samples are compressed with strain rates high enough that the material’s response is considered
instantaneous, and can be represented with a hyperfoam model.
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The pyramid tips are supposed to be pointy, however due to imperfections in the cutting process
and the microstructure of the material, there is an uncertainty on the tip width w0 in the same order of
magnitude as the foam’s cell size h0 and ligament length l: w0 ∼ h0 ∼ l. Since this bias is at the edge
of a continuous description of the pyramids, it is assumed to have a negligible effect at the macroscopic
scale, such that w0 = 0. The cell size h0 for melamine foam is found between 0.10 mm and 0.15 mm
by Kino and Ueno [147], and between 0.1 mm and 0.2 mm by Hentati et al. [269], both estimations
being obtained from independent scanning electron microscopy measurements. In the frame of our
study, we chose h0 = 0.125 mm as a fair value lying in both intervals, to identify the effects related to
the cell size of melamine foam in dimensionless quantities.

δ
h0

θ

w(δ)
z

w0

(a)

10.4 mm

(b)

Figure 3.13. (a) Diagram of a truncated pyramid being indented. (b) Picture of a pyramid being
tested.

3.2 | Analytic representation

The expected tendency of the compression force of an indented continuous pyramid can be approxi-
mated using geometrical considerations. Using geometrical arguments only, Hooke’s law states that
the pyramid’s compression force F per unit of contact area Spyr(δ), is proportional to an elastic
modulus E and the strain ε(δ):

F (δ)
Spyr(δ) ∝ E ε(δ). (3.12)

The cross-section area Spyr(δ) of the pyramid at compression distance δ is computed as

Spyr(δ) = w2(δ), (3.13)

where w(δ) is the length of the sides of the cross-section :

w(δ) = w0 + 2δ

tan(θ) , (3.14)

where w0 is assumed negligible in our case. Further, the strain ε is proportional to the compression
distance δ:

ε ∝ δ. (3.15)

Therefore, combining Equation 3.12 to Equation 3.15 provides a tendency of the compression force
for the pyramid as

F ∝ E

tan θ
δ2. (3.16)

In this case, the force F increases quadratically with the compression distance δ, which confirms
findings by several authors that pyramidal indenters behave similarly to cones in contact mechanics,
which also behave as F ∝ δ2, up to a small correction factor [307, 308]. This model is oversimplified
since it only accounts for the geometry of the pyramid. Nonetheless, iterestingly, this naive geometric
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model provided agrees with the exact prediction of the compression force F of a pyramid being indented
by a rigid plane by an amount δ [309, 310]

F = 4
π

√
π

E∗

tan θ
δ2, (3.17)

where E∗ = E
(1−ν2) is the effective elastic modulus of the material and ν is its Poisson ratio. In other

words, the resulting force is expected to evolve quadratically with the compression distance δ, and its
magnitude is driven by a prefactor E

tan θ which is proportional to a material modulus E and inversely
proportional to the pyramid angle tan θ.

3.3 | Numerical open-cell microstructural model

A finite elements model is created to accurately represent the 3D stress and strain undergone by an
indented pyramidal sample made from an open-cell material. This model represents the microstructure
of the porous network using Kelvin cells. It attempts to capture the nonlinear phenomena of the
material through its microgeometry, such as the initial contacts with an indenting plate, involving the
progressive recruitment of a finite number of free ligaments and struts near the foam’s surface and
their buckling at large strains. The mesh of the microstructure for a pyramidal asperity is shown in
Figure 3.14.

(a) (b) (c)

Figure 3.14. Meshes of the numerical model of the pyramid with a microstructure of Kelvin cells.
Quarter-pyramids are modelled by exploiting the problem’s symmetry. (a) Slice of the
FEM model composed of approximately 1 185 Kelvin cells. (b) Deformation of the
Kelvin cell FEM pyramid at δ = 1 mm, i.e. δ/h0 = 1.7 and approximately 15 cells in
contact, and (c) δ = 4 mm, i.e. δ/h0 = 7.0 and approximately 247 cells in contact.

The open-cell microstructure is modelled using distorted Kelvin cells [229], composed of beam
elements with circular sections, using the same modelling approach as Hentati et al. [269]. Material
parameters and cell properties are presented in Table 3.4. The cell height is the same as the M7
polyurethane foam in reference [209] and the strut length and radius are from references [211, 311].
The aim of this numerical model is to be qualitative. Consequently, its specifications (cell size,
elasticity) describe a typical open-cell foam but do not match the melamine foam used in this study
quantitatively, and the results are examined as dimensionless relative to the cell size. Matching
quantitatively the parameters of this model to the specifications of the sample is a matter of adjusting
a prefactor, it thus brings less understanding than analysing the trends qualitatively.

Rayleigh damping (αR, βR) = (0, τR) is introduced in the beams’ response to improve computation
convergence. A viscous relaxation time, τR = 10−4 s, relying on the beam material is imparted by
adding a viscous-like damping stress tensor σd = τRDε̇ to the elastic tensor, with ε̇ the strain rate
tensor and D the elastic constitutive tensor. The value of τR is chosen much smaller than the loading



106 3 | Contact stiffness of a rough surface

duration of the sample (τL > 10 s), such that the damping has no other effect than accelerating the
numerical convergence, by filtering spurious and unphysical high-frequency artefacts (e.g. when light
and stiff submillimetric edge ligaments go into resonance). Each strut is composed of two aligned B32
Timoshenko beam elements. A uniformly distributed random displacement, ranging within ±7.5 %
of the strut lengths, i.e. ±15.2 µm, is applied to each node’s position. No contact between beams
is considered, meaning that the densification of the material is not represented at large strains. An
implicit numerical time integration scheme is used.

Table 3.4. Parameters used in the microstructural Kelvin cell FEM model.

Avg. cell height h0 0.574 mm
Avg. beam length l 0.203 mm
Beam radius r0 0.021 mm

Elastic modulus E 3000 MPa
Poisson ratio ν 0.38
Mass density ρ 1300 kg m−3

Mass damping αR 0
Stiffness damping βR 1.10−4

The pyramidal shape is created by intersecting a wide parallelepipedic lattice of Kelvin cells with
a pyramidal geometry of total height h = 10.0 mm and of side angle θ = 50 ◦ using a Python routine.
An angle θ = 50 ◦ is used in the FEM model, instead of 45 ◦ for the pyramids created experimentally,
to break up the symmetry stemming from the repetition of the Kelvin cells pattern along the side of
the pyramid at 45 ◦. The resulting pyramid of Kelvin cells is indented against a rigid plane by an
amount δ = 5 mm. The frictionless contact between the cell struts and the rigid plane is handled by
Abaqus software. Finally, only a quarter of the pyramid is created by exploiting the symmetry of the
geometry and of the loading.

3.4 | Comparison between predictions and measurements

In this section, the results for the measurements, the analytic quadratic tendency predicted from
Equation 3.16, and the Kelvin cell numerical simulation are compared to each other. The compression
distance δ is normalized by the cell height h0, in order to compare the qualitative features of the
numerical model with the experiment. The magnitude of the numerical predictions are not compared
quantitatively to the experimental results because the numerical Kelvin cells are not quantitatively
equal to the cells of the melamine foam, so the attention is focused on the qualitative tendency. A
key question is the validity of a continuum mechanics description in the context of an inherently
inhomogeneous porous material made of finite-size cells.

The contact detection protocol to determine the accurate location of the tip of the undeformed
pyramid is performed by translating the indenting plate by 0.1 mm increments until sensing at least a
0.01 N force, where 0.01 N is the reading threshold of the built-in sensor display. Then, extrapolating
the force F - displacement δ relationship above 0.01 N with the behaviour determined in Equation 3.16,
F ∝ (δ−δerr)2, allows determining the contact origin offset δerr ≃ 0.23 mm, with an error likely bound
well below the cell size. In addition, the error δerr on the pyramid heights causes a relative error which
is larger at small deformations and becomes negligible at large deformations, due to the F ∝ (δ−δerr)2

nature of the force. This is visible in Figure 3.15(a).
The measured and predicted results are shown in Figure 3.15(b). As predicted analytically, both

the measured pyramid and the numerical model forces seem to increase quadratically with the com-
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Figure 3.15. (a) Visualization of the error on the predicted force F when an error on the height
of the pyramids δerr = 0.23 mm is performed. The relative error is larger for small
deformations than large deformations. (b) Force and compression distance relationship
for a single pyramid, obtained experimentally and with the Kelvin cell FEM model.
The standard deviation measured over 5 repetitions is given. The expected quadratic
tendency is plotted. The vertical line indicates the compression distance where the
pyramid cross-section area Spyr is equal to the surface area of 20 cells.

pression distance. This is shown by the black dashed line, which is without amplitude and represents
the quadratic tendency between the compression force and the compression distance. Curves parallel
to this dashed line on this log-log axis represent a quadratic relationship between compression force
and compression distance. Nonetheless, for small strains (i.e. δ/h0 ≈ 2, or fewer than 20 cells in
contact with the indenting plane), the experimental stress does not follow the expected quadratic ten-
dency with the compression distance. This can be explained by the imperfectly cut tip of the pyramid
and by the fact that the material cannot be considered as a continuous medium at the scale of the
cell size.

These phenomena are also exhibited by the Kelvin cell FEM model, which does not follow the
quadratic tendency for small strains. This corroborates previous results by Hentati et al. [269] that
material homogeneity is valid once enough material strands are in contact with the rigid indenting
plane, which is a few tens of strands. As a reminder, the objective of the Kelvin cell numerical model
is not to quantitatively predict the reaction force of the pyramid, but to capture the tendency of the
reaction force due to the cellular structure of the material.

For large compression distances, around δ/h0 ≈ 50, the measured force diverges from the expected
quadratic tendency because the strain field inside the pyramid reaches the rigid plate below the
pyramid. This phenomenon can be understood thanks to the numerical simulation: for small strains
in Figure 3.14(b), the strain field does not extend much into the pyramid, whereas for larger strains
in Figure 3.14(c), the strain field extends further and spherically into the pyramid, until it reaches the
plate below the pyramid. This increases its apparent rigidity since the problem is not a single contact
behaviour any more.

In summary, the analytic model of a pyramid works for the pyramids of melamine foam as
long as more than approximately 10 cells of the material are in contact with the indenting plane,
and if the compression distance is small enough that the strain field is contained within the finite
dimension of the pyramid. Finally, in a non-trivial way, the nonlinearity of the material does not
appear in the experimental compression results shown in Figure 3.15. This can be surprising because
the modulus in Equation 3.17 is actually strongly strain-dependent modulus. In the following section,
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the material nonlinearity is included in models of a pyramid to understand how it interacts with the
shape nonlinearity.

4 | Integration of hyperelasticity into the pyramid models

In this section, the hyperelastic model is integrated with the pyramidal geometry, to understand how
the material nonlinearity and the shape nonlinearity interact. This reveals how the shape nonlinearity
takes precedence over the material nonlinearity, meaning that a constant modulus can be used instead
of a hyperelastic strain-dependent modulus without deteriorating the predictions. Interestingly, the
equivalent modulus is found to be different from the tangent modulus at small strains which would
be use for acoustic applications.

4.1 | Slices model

An analytic model accounting for varying strain and modulus throughout the height of the pyramid is
investigated. This model consists in studying horizontal slices throughout the height of the pyramid,
in which the strain is considered constant. Considering a constant force F transmitted throughout
the height of the pyramid, the local stress-strain relationship in a thin horizontal slice at distance z

from the pyramid tip gives
F = Spyr(z) Esec(ε(z)) ε(z), (3.18)

where S(z) is the local cross-section area computed from Equation 3.13, and where the Poisson effect
is neglected because the Poisson ratio was found small in Table 3.5. The strain ε(z) in each horizontal
slice is computed from Equation 3.18, and then the total compression distance δ is

δ =
∫ h

0
ε(z)dz, (3.19)

which yields the relationship between the force F and the compression distance δ.
Using this model, the strain throughout the height of the pyramid can be estimated for a given

force F , as shown in Figure 3.16(a). Near the tip of the pyramid, the local strain is close to 100 %,
meaning that the material is completely crushed: its contribution to the apparent stiffness disappears.
Beyond this region, in the centre of the pyramid, the strain and the modulus evolve quickly: this
region mainly drives the relationship between applied force and the total compression distance of the
pyramid. Near the base of the pyramid, the strain is close to 0 %, unless a very large force is applied
to the pyramid (see for instance F = 8 N). In this zone, the pyramid has a high modulus and a high
surface area: it hardly deforms and its contribution to the apparent stiffness is also small. Only the
zone in the centre of the pyramid undergoes high strain and has a low modulus due to buckling, which
could explain why the nonlinearity of the modulus is hidden for a pyramidal geometry.

4.2 | Solid FEM model

To obtain a more accurate 3D representation of the strain inside a pyramidal asperity made of a
hyperelastic material, a pyramid made of a continuous solid hyperelastic material is simulated with
FEM under the same conditions. The model mesh is shown in Figure 3.16(b). Linear tetrahedral
elements (C3D4) of average size 0.2 mm are used, ensuring results which are independent of the
element size. The material behaviour is described by a hyperfoam model using parameters from
Table 3.1.
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Figure 3.16. (a) Strain throughout the height of the pyramid obtained from the analytic slices model
for different values of the compression force F applied. (b) Model of a quarter of a
pyramid with continuous solid elements composed of approximately 353 553 elements.

Table 3.5. Parameter values obtained for the hyperelastic model to represent that material’s instan-
taneous response. 95 % confidence intervals are given.

α1 µ1 ν1

(-) (kPa) (-)

49.8 189.1 0.0047
±16.1 ±55.5 ±0.0037

4.3 | Results and interpretation

The hyperelastic FEM model and the analytic slices model are compared to measurements in Fig-
ure 3.17. The black dashed line once again represents the quadratic relationship between force and
displacement, without amplitude. Both models follow the same tendency as a quadratic law, despite
the hyperfoam material behaviour used. The slices model overestimates the compression force, which
could be due to the hypothesis of constant strain within each horizontal slice, since Figure 3.14(c)
shows that the strain field front in fact extends spherically into the pyramid. The force predicted by
the hyperelastic FEM model matches the quadratic tendency of the experiment accurately once the
experimental compression distance provides a few tens of cells of contact, to bypass surface effects and
the error on the height determination of the pyramids.

Using Equation 3.17, the equivalent modulus fit to the hyperelastic FEM results is E = 65.3 kPa
and the modulus fit to the experimental results is E = 60.2 kPa. These similar results validate the
hyperfoam model in Table 3.5 for the pyramidal geometry. The constant prefactor modulus fit to
experimental results is chosen to represent the quadratic tendency of a single pyramidal asperity, by
simplifying the strain-dependent modulus with an equivalent value, providing a reasonable prediction
of experimental results within the whole range of probed deformations past the effect of the surface
cells. This raises the question of how to determine the value of an equivalent modulus to approximate
the material’s nonlinear behaviour.
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Figure 3.17. Measured and simulated compression force versus compression distance for the mea-
sured pyramid, the FEM model with solid elements and the analytic slices model. The
quadratic slope is also represented.

4.4 | Estimation of an equivalent modulus

The aim of this section is to determine an appropriate constant modulus to approximate the hy-
perelastic law. This will shed light on which effective modulus drives the behaviour of the asperity
amongst the multiple definitions and their strain dependence. Three hypotheses are proposed. A
first option is to use the secant modulus at small strains, which is equal to the tangent modulus at
small strains Etan(ε = 0) = 300 kPa, as shown in Figure 3.3(b). A second option is to consider the
pyramid as a sum of stiffnesses in series, in which case the overall stiffness is driven by the lowest
stiffness. This means the overall stiffness can be approximated by the minimum value of the secant
modulus Emin = min(Esec) = 35 kPa, found for ε = −50 %. As explained in Section 2.2, this cor-
responds to the strain of densification, where the material energy absorption efficiency (defined in
Equation 3.5) starts increasing. A third option is to consider the secant modulus at the inflexion
point EI = Esec(I) = 58.0 kPa, found for ε = −20 %, where the tangent modulus transitions from
buckling to densification.

The compression force of a pyramid using the slices model and the hyperelastic law Esec(ε) is
shown in Figure 3.18. It is compared to models using the three proposed hypotheses Etan(ε = 0), Emin

and EI . The small strain modulus Etan(ε = 0 %) overestimates the material stiffness, whereas the
minimum of the secant modulus Emin underestimates the material stiffness. Using the secant modulus
at the inflexion point EI , shown in Figure 3.3(b), gives a prediction that is close to the full strain-
dependent secant modulus Esec(ε). Indeed, EI = 58.0 kPa is a good approximation of the prefactor
found by the FEM hyperelastic model E = 65.3 kPa for a pyramidal geometry in Figure 3.17.

In summary, the analytic formula of a compressed pyramid predicts a reaction force that increases
quadratically with the compression distance. Experiments and numerical simulations incorporating
the microstructure find that this holds for more than a few tens of cells in contact with the indenting
plane, and before the strain field reaches the other end of the pyramid. When the hyperelastic
behaviour is implemented in a continuous pyramidal medium, a quadratic tendency is also found.
This reveals that the shape nonlinearity that causes the quadratic evolution of the compression force
is predominant over the material nonlinearity. Consequently, a constant modulus can be used instead
of the strain dependant modulus to give satisfying results. This equivalent modulus is not equal to
the tangent modulus at small strains, as measured by a QMA for instance, and which would be used
to model a material for acoustic applications. The equivalent modulus found is largely surrounded by
the tangent modulus at small strains Etan(ε = 0) and the minimum of the secant modulus caused by
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Figure 3.18. Comparison of the analytic slices model for different prefactors, using the strain depen-
dent modulus Esec(ε), the small strain tangent modulus Etan(ε = 0), the minimum of
the secant modulus Emin, and the secant modulus at the inflexion point EI .

buckling min(Esec), but can be fairly well approximated by the secant buckling modulus Esec(I).

5 | Application to a multi-asperity rough surface

After analysing a single asperity, a real rough surface of multiple asperities is now studied through
a surface roughness model. A Greenwood-Williamson-like surface roughness model is applied to an
ideal surface of pyramids of varying heights. The equivalence between the continuous Greenwood-
Williamson model description and a finite surface created from a finite number of asperities is verified.
Then, the surface of a Greenflocks material, made from shredded polyurethane flocks, is analysed.
The surface roughness model is applied and compared with experimental compression results.

5.1 | Description of the Greenwood-Williamson model

The first major surface roughness model is the Greenwood-Williamson and Williamson model [273, 274]
which assumes that a rough surface is made up of spherical asperities of radius of curvature Rasp, and
with tip heights that follow a probability density function ϕ(z). The stiffness of the spherical asperities
is based on the mechanics of sphere-to-plane contact described by Hertz [312], valid for linear elasticity
in small deformation, for a size of the contact region and an overlap between bodies much smaller
than the dimensions of the bodies themselves, for spherical shapes, and by neglecting contact surface
friction and adhesion. The medium is assumed to be isotropic and bulk behaviour is neglected, since
each asperity behaves independently of the others. Strain hardening, yielding, and thermal effects are
neglected.

Asperity height distribution ϕ(z) often follows a Gaussian distribution in practice [274, 313],
though any probability density function can be used. Furthermore, the Greenwood-Williamson model
uses spherical asperities, although asperities can be of different geometries. For example, Hisakado
[314] takes into account asperity radius of curvature distribution, Bush [315] approximates the summits
of the rough surface by paraboloids to obtain curvature radius and Persson et al. [316] consider the
case of self-affine fractal rough surfaces. Ultimately, the Greenwood-Williamson model predicts the
load F required to compress a rough surface with a rigid plane by an amount δ as

F (δ) = Nasp
4
3R

1
2
aspE∗

∫ δ

−∞
(z − δ)

3
2 ϕ(z)dz, (3.20)
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where Nasp is the total number of asperities on the rough surface. The prefactor 4
3R

1
2
aspE∗, and the

force that increases as δ
3
2 , result from using hemispherical asperities, although asperities can be of

different shapes.
When using pyramidal asperities, with compression force given by Equation 3.17, the Greenwood-

Williamson model becomes

F (δ) = Nasp
4

π
√

π

E∗

tan θ

∫ δ

−∞
(z − δ)2ϕ(z)dz. (3.21)

In this case the prefactor is 4
π

√
π

E∗

tan θ and the force increases as δ2.
The Greenwood-Williamson model relies on a continuous description of the statistical distribution

of the asperity heights ϕ(z), and it is equivalent to summing the individual reaction forces of a discrete
number of Nasp asperities of known heights. The sketch of the surface roughness model composed of
pyramids and the corresponding experiment are shown in Figure 3.19. The reference plane is chosen
at the tip of the tallest pyramid, which means that the tallest pyramid is expected to contribute to
the force quadratically with the total compression distance.

Indentation
plane

δ

z

δ1δ2

Reference plane

(a)

(b)

Figure 3.19. Rough surface represented by pyramidal asperities coming into contact with a rigid
plane. (a) Greenwood-Williamson surface roughness model representation. (b) Exper-
imental setup representing a rough surface made up of pyramidal asperities of varying
heights.

5.2 | Similarity between discrete and continuous descriptions

The similarity between a continuous statistical description of asperity heights ϕ(z) and a discrete
description of Nasp asperities of known heights is studied in this section. The error generated by
considering only Nasp pyramidal asperities in a surface roughness model is shown in Figure 3.20, and
is computed for a uniform distribution and a normal distribution of the tip heights ϕ(z). The statistical
distributions are bounded by z = 0 and z = h, where z = 0 is the position of the tallest pyramid,
and the normal law is centred around the middle of the interval z = 0.5h with a standard deviation
of 3 mm.

The results reveal that the error decreases as the number of asperities Nasp increases, which is
expected. For instance, for a normal distribution, a relative error of 10.5 % is obtained for Nasp = 10
asperities, which drops to 5.1 % for Nasp = 25 asperities. The results also show that using a discrete
number of asperities gives results closer to the continuous distribution for a uniform distribution than
for a normal distribution. For a uniform distribution of Nasp = 13 pyramids, which is the configuration
studied here, the error relative to a continuous statistical Greenwood-Williamson model is about 3.9 %.
Therefore, we can consider with a minimal error that the results obtained for a rough surface of 13
asperities can be considered representative of a statistically continuous model.
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Figure 3.20. Mean relative error (%) on the estimated force for a discrete number of Nasp pyramidal
asperities compared to a continuous statistical model.

5.3 | Application to a surface of multiple pyramids

An ideal surface of 13 pyramidal asperities is created, each with a different height, as shown on Fig-
ure 3.19(b), and the Greenwood-Williamson surface roughness model is applied to it. The pyramids
are placed on supports to obtain different heights, and the height of each pyramid is measured indi-
vidually. The asperity tip heights are uniformly distributed over a range of 6 mm, meaning that the
average height difference between two neighbouring pyramid tips is 0.5 mm for 13 pyramids. A uniform
distribution was chosen because, compared to a normal distribution for example, it is more feasible to
create experimentally and allows for more accurate control over the asperity heights relative to each
other. The pyramids are compressed by up to 8.7 mm from the position of the highest pyramid, such
that it is compressed by 83.6 % of its initial height. A single set of pyramids is characterized this
way, considering the averaging effect of compressing 13 pyramids at once and the good measurement
repeatability found for single pyramids.
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Figure 3.21. Compression force and compression distance relationship for an ideal surface of 13 pyra-
mids of different heights. Experimental results and predictions using a Greenwood-
Williamson like multi-asperity description are plotted. The quadratic tendency ex-
pected for a single pyramid is also represented.

The compression force and the compression distance are measured and compared to predictions
in Figure 3.21. It can be seen that the force resulting from the compression of several pyramids of
different heights diverges from the quadratic slope which represents the behaviour of a single pyramid.
The reaction force is predicted by using the experimental force and displacement relationship from
Figure 3.15(b). This relationship provides a robust prediction of the compression force of the multi-
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asperity surface, from small to large deformations. The analytic prediction is obtained by applying the
modulus of E = 60.2 kPa, found experimentally in Section 4.3, to Equation 3.17. The analytic solution
converges to the prediction from the experimental force and displacement relationship, because of the
good fit it provides for a single pyramid.

For very large compression distances δ > 7.5 mm, the analytic model does not predict the force
increase caused by the finite size of the pyramids, as observed for a single pyramid in Section 4.3.
Nonetheless, for intermediary compression distances, this Greenwood-Williamson-like model is adapted
to predicting the compression force of this ideal surface of asperities.

In short, extrapolating the behaviour of a single pyramid to a surface of several pyramids of varying
heights is reliable to predict the compression stiffness of this surface. This prediction is performed on a
surface with a finite number of asperities, and can be extended equivalently to a continuous distribution
of asperities as described by the Greenwood-Williamson model. This is promising for predicting the
compression stiffness of a rough porous material characterized statistically by a 3D surface scan, for
example. The ideal surface of pyramids studied is composed solely of asperities, so the transition to
the bulk stiffness of the material underneath the asperities does not appear, though this would be the
case for a real material undergoing large compression distances relative to the asperity size.

5.4 | Application to a material with macroscopic asperities

In this section, a real material with a rough surface is analysed using a 3D surface scan, and the
Greenwood-Williamson surface model is applied to it. Applying the Greenwood-Williamson model to
a real material raises two difficulties. The first is that the real material smoothly transitions to its bulk
behaviour when the compression distance is large enough that the asperities are strongly compressed.
The second is that the geometrical shape and height distribution of the asperities is unknown. These
issues are addressed in this section.

The first issue lies with the transition to the bulk stiffness of the material once the asperities are
strongly compressed. Samples of Greenflocks of nominal heights 20 mm and 25 mm are compressed
to observe this transition, and their compression force is shown in Figure 3.22. The results reveal the
regions of partial contacts, buckling zone, and densification. The transition from the partial contacts
to the bulk behaviour appears at 7.85 % strain for the Greenflocks 20 mm and 7.86 % strain for
the Greenflocks 25 mm, marked by the first inflexion point in the force-compression distance curve.
Consequently, it is assumed that the hypothesis of partial contact is valid below this strain. The
transition to the bulk behaviour beyond is not modelled here. Note that because the material has a
rough surface on both sides (top and bottom), the partial contact identified here corresponds to the
contribution of the roughness of both of the sample’s sides.

The second issue lies in obtaining the statistical properties of the asperities. The Greenflocks of
nominal height 20 mm is analysed in the following. Its surface, pictured in Figure 3.1(c), was scanned
to obtain a 3D point scatter of the surface, shown in Figure 3.23(a). This scan reveals the roughness
on the surface material at a mesoscopic scale. The distribution in the elevation of the material surface
is plotted in Figure 3.23(b), which resembles a Gaussian distribution with a standard deviation of
0.48 mm, and a skewness and a kurtosis. The distribution of the radii of curvature is plotted in
Figure 3.23(c), which is inversely proportional to the radius.

The information from the 3D surface scan could be analysed to compute statistical information
about the distribution of the asperity heights and their geometry. However, care must be taken because
the distribution of the height of the entire profile in Figure 3.23(b) is not equal to the distribution
of the asperity tip heights. To access the statistical information of the asperity tip heights, further
processing of the surface scan would be required, which is not performed in this work. Instead, two
distributions are tested and compared, which are a uniform distribution which distributes the asperity
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Figure 3.22. Compression of a Greenflocks material sample. (a) compression force versus compres-
sion distance for samples of nominal heights 20 mm and 25 mm. (b) Image of the
experimental setup.

tips evenly across different heights, and a Dirac distributions which places all asperity tips at the same
height. The uniform distribution spans the entire range of the partial contact, that is to say between
0 % strain and 7.85 % strain, and the Dirac distribution places all asperity tips at z = 0 mm. Similarly,
lacking the prior knowledge of the shapes of the asperities, both spherical and pyramidal geometries
are tested. Additionally, the number of asperities Nasp distributed over the surface is not known,
so the prefactor of the Greenwood-Williamson compression force cannot be determined. Therefore,
the predicted force is normalized by the measured compression force at the inflexion point at 7.85 %
strain.

The tendency of the force over the partial contact zone can be compared with the tendency of the
measurement, when using uniform or Dirac distributions, and for pyramidal or spherical asperities,
is shown in Figure 3.24. The vertical line represents to the transition to the bulk behaviour at the
inflexion point at 7.85 % strain, i.e. at δ = 1.72 mm. The results show that the Dirac distribution fits
the tendency of the measured force better than the uniform distribution, for both the spheres and the
pyramids. This suggests that most asperity tips are probably located at the surface of the material,
and do not have different heights. This would make sense considering the manufacturing process of
this material, which is calendared and thermoformed [132, 133], leading to a uniform height of the
asperities. Further, the measured force is between the force predicted for pyramids and for spheres,
suggesting the real geometry of the asperities has an average power law contained between F ∝ δ

3
2

and F ∝ δ2.
To improve results, the surface scan could be analysed further to determine the shape and the

distribution in height and geometry of the asperities. Additionally, a model accounting for the tran-
sition to the bulk behaviour of the material once all the asperities are compressed could provide the
full prediction of the compression stiffness of a material, from small to large deformations.
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Figure 3.23. Surface scan of a Greenflocks material. (a) surface point scatter, (b) height distribution
with normal distribution with the same standard deviation overlaid, and (c) radius
curvature distribution with power law overlaid.

6 | Conclusion

The compression stiffness of macroscopic asperities of porous materials has been studied. The influence
of material nonlinearity and relaxation have been evaluated in the context of the macroscopic asperities,
allowing for a simple prediction of the compression stiffness of a multi-pyramidal surface of a cellular
material.

To begin with, the nonlinearity was accounted for with a hyperfoam model. The material relax-
ation was estimated using an ageing relaxation model. This model predicts how the melamine foam
studied continues to relax at very long time scales, which is also the case for other porous materials,
as shown in Appendix C. This long term relaxation is often not taken into consideration when mod-
elling their behaviour, and raises concerns about the validity of QMA characterization results when
the relaxation is not taken into account. It was shown that this relaxation can be neglected when the
loading time is short compared to the material relaxation time, that is to say at compression rates
higher than 1.5 % per second.

Then, the effect of the pyramidal geometry was studied using models of varying complexity. The
prediction from a simple continuous elastic model is satisfactory over several orders of magnitude,
except for very small strains, typically below a few tens of cells in contact, and very large strains,
typically above 90 % of the total pyramid height. Overall, numerical and analytic models find the
same quadratic evolution of the force with the compression distance as experimental results, despite
the intrinsic material nonlinearity. This signifies that the combination of the material hyperelasticity
with the pyramidal shape nonlinearity results in force that is mostly driven by the pyramidal shape.
Moreover, this means that the strain-dependant modulus can be approximated by an equivalent con-
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Figure 3.24. Comparison of the compression force of a compressed surface of Greenflocks material
for a measurement and for the Greenwood-Williamson model. Spherical and pyramidal
asperities, and uniform and Dirac distributions, are compared. The vertical line rep-
resents the inflexion point that marks the transition from partial contacts to the bulk
behaviour.

stant modulus. The equivalent modulus is different from the tangent modulus at small strains, which
would be used for acoustical applications, and is found close to the secant modulus at the inflexion
point located between the buckling and densification zones.

Finally, the proposed surface roughness model has shown good agreement with experimental
results for an ideal multi-pyramidal material. This surface roughness model was applied to a real
inhomogeneous Greenflocks material, on which the zone of partial contact was identified. The statis-
tical height and geometry of the asperities is not known, however tested configurations reveal that the
variability of the asperity heights is quite limited.
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Key findings

• The studied melamine’s stress-strain relationship is strongly nonlinear, which is modelled with
a hyperfoam model.

• It is also time-dependant, with a relaxation time which increases with time and spans several
orders of magnitude. A custom ageing hyperfoam model predicts both nonlinearity and time-
dependance, showing that the instantaneous response is approached for strain rates greater
than 1.5 % per second.

• Macroscopic pyramidal asperities of melamine are found to have a compression force that
increases quadratically with the compression distance, which is validated experimentally and
numerically once the indenting plane is in contact with more than a few tens of cells of the
material. This tendency is caused by the shape effect of the pyramid, which overrides the
material nonlinearity.

• A Greenwood-Williamson-like surface model applied to a Greenflocks material suggests that
asperity tips are all located at approximately the same height on the material surface.



Chapter 4. Reduction of the acoustic radiation
of a source by exploiting partial con-
tact

1 | Introduction

The objective of the SEMPAE project is to predict the effectiveness of acoustic screens at reducing
the noise radiated by car engine, by placing the porous screens in direct contact with the engine. Due
to the complex engine geometry and the rough surface of the screens, the contact between the two is
partial, and air gaps occupy the zones without contact. This partial contact has an important effect on
the acoustic behaviour of the system, and can be exploited to improve the effectiveness of the screens.
No simple modelling approaches to estimate the acoustic behaviour of partial contact are suggested
in the literature. In this chapter, the improvement of the Transmission Loss achieved by introducing
partial contact surface area between a radiating plate and a porous screen is examined. The partial
contact is created experimentally by architecting a porous layer of melamine foam by cutting triangular
grooves into it, and it is modelled using the Parallel Transfer Matrix Method (PTMM).

2 | Description of the measurement setup

2.1 | Measurement principle

A measurement setup is devised to examine how much a porous screen placed in contact with a
radiating surface reduces its radiated noise level. The setup involves measuring the acoustic power
radiated by a plate into a reception semi-anechoic chamber, using a sound intensity probe. The
reduction in acoustic power level radiated by a plate when it is covered by a screen can be evaluated
by its Insertion Loss (IL). The IL is the difference between the radiated acoustic power level of the
bare plate Πbare

rad and that of the covered plate Πcovered
rad :

IL = 10 log
(

Πbare
rad

Πcovered
rad

)
. (4.1)

The plate is placed at the boundary between two decoupled rooms, and is excited from the emission
room on the other side. It can be excited acoustically using an air-borne noise, which requires the
emission room to be a reverberant chamber. In this case, the injected acoustic power can be measured
with a microphone. The plate can also be excited mechanically using a shaker, in which case the
injected power is measured using an impedance head. The vibrational power of the plate can also be
measured using a laser vibrometer which measures the velocity along a mesh of points on the surface
of the plate. Since the radiated acoustic power depends on the power injected into the plate, the IL
has to be normalized by a reference power. This can be the airborne injected power Πac

inj , which gives
access to the Air-Borne Transmission Loss (ABIL), or the solid-borne injected power Πmech

inj , which
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gives access to the Solid-Borne Insertion Loss (SBIL) [39, 317].

ABIL = 10 log
(

Πcovered
inj,ac

Πcovered
rad

)
− 10 log

(
Πbare

inj,ac

Πbare
rad

)
, (4.2)

SBIL = 10 log
(

Πcovered
inj,mech

Πcovered
rad

)
− 10 log

(
Πbare

inj,mech

Πbare
rad

)
. (4.3)

Alternatively, instead of normalizing the radiated power by the power injected into the plate, it can
be normalized by its vibrational power Πvib, which can be measured with a laser vibrometer:

vibIL = 10 log
(

Πcovered
vib

Πcovered
rad

)
− 10 log

(
Πbare

vib

Πbare
rad

)
. (4.4)

Several standards describe measurement procedures to estimate the sound insulation of building
partition elements from airborne excitation, such as ISO 15186-1, ISO 140.3 ASTM E90-09, and ISO
140-5 [318, 319, 320, 321]. Weber et al. [322] compares some of these standard protocols with each
other, and find that they give similar results within a ±2 dB range. Using an airborne excitation has
the advantage of exciting the plate homogeneously on its entire surface with a diffuse field. Moreover, it
normalizes the radiated power by the incident acoustic power, and not on the injected acoustic power,
which makes it independant of the structural damping. However, an airborne excitation requires a
large reverberant chamber to access low frequencies, and it can be difficult to obtain grazing angles.
It can also require high sound pressure levels to create a sufficient signal amplitude. This is why in
the following, a shaker is used to inject mechanical energy into the system.

Bertolini and Ruggeri [323] compare SBIL and ABIL, and find that the SBIL can be averaged over
several excitation points to find similar results as the ABIL, except around the frequency range of the
mass-spring resonance. They also find a strong dependence of the SBIL on the structural damping. As
a consequence, Bertolini et al. [323, 324] propose a method to excite the entire plate boundary, which
is closer to the types of excitations that automotive panels are subjected to. Nevertheless, this method
requires a specific mounting chassis to excite the plate boundaries. The objective of this chapter is
to use an experimental Insertion Loss criterion which is comparable to the radiation efficiency σr

computed theoretically, which is defined at constant vibrational power:

σr = Πrad

Πvib
. (4.5)

Therefore, the vibIL definition given in Equation 4.4 seems to be the most adapted criterion to
compare the measurement results with the predictions.

2.2 | Experimental setup

The diagram of the measurement setup is shown in Figure 4.1, and images of the real setup are shown
in Figure 4.2 and Figure 4.3. A shaker is connected to the metal plate with cyanoacrylate glue, in
a position that avoids nodes and antinodes. Sweep signals lasting 1 s between 20 Hz and 1600 Hz
are sent. A single measurement position is tested, although for improved results, measurements
should be performed at several excitation points. The plate connecting the two rooms has dimensions
673 mm × 970 mm, and is made of 4 mm thick aluminium. It is held in place inside a tunnel, and
placed on top of soft window sealing strips to avoid direct contact with the tunnel. Further, the plate
edges are sealed with aluminium tape to prevent acoustic leaks.
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Figure 4.1. Diagram of the measurement setup.
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Figure 4.2. Measurement setup in the emission room.

Laser vibrometer Shaker Plate Screen Sound probe

Figure 4.3. Close-up images of the elements involved in the experimental setup.

The porous screens are covered with a heavy layer to induce a mass-spring-like behaviour of the
system, which is a configuration often exploited in acoustic insulation applications. The heavy layer
used is a dense cardboard material of thickness 3 mm and surface density 1.86 kg m2. The layer of
cardboard is glued on the plane side of the melamine sheets.

Melamine sheets of thickness 19.0 mm are used for the porous layer, because it is easy to cut
using cutter blades for example. This allows the sheets to be easily cut and shaped to enforce the
amount of sought-after partial contact with the metal plate. To do so, grooves are cut into the porous
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sheets, such that only a small percentage of the surface is in contact with the plate. The grooves
were cut using cutter blades at a 45° angle. This results in triangular or pyramidal shapes with a flat
surface. By cutting grooves in one direction, 16.7 % contact is achieved, and by cutting grooves in both
directions, 2.8 % contact is achieved. The cut samples are shown in Figure 4.4. The melamine sheets
with partial contact are glued to the metal plate with neoprene glue. As little preload as possible is
applied to the melamine sheets while the glue dries to avoid artificially increasing the contact area by
compressing the surface asperities. The glue ensures continuity of the displacement between the plate
and the porous layer.

(a) (b) (c)

Figure 4.4. Melamine sheets with partial contact. (a) Original melamine plate. (b) Grooves in one
direction give 16 % contact. (c) Grooves in two directions give 2.8 % contact.

3 | Modelling of the Insertion Loss and of the partial contact

3.1 | Insertion Loss computation from TMM

Some examples of Insertion Losses computed using TMM are presented in this section. The Insertion
Loss (dB) is computed from the radiation efficiency as IL = −10 log10 (σr). This corresponds to how
much the radiated acoustic power level of a piston is reduced by adding a covering compared to a bare
piston, at constant vibrational power.

The IL of a single layer of melamine foam of thickness h = 19.0 mm covered by a heavy layer
of surface density ms = 1.86 kg m2 is shown in Figure 4.5. The modulus E of the melamine foam is
multiplied and divided by 2 to showcase the effect of the stiffness on the insertion loss. Full contact
between the melamine sheet and the vibrating surface is enforced in Figure 4.5(a), whereas a shallow
1 mm air gap is enforced in Figure 4.5(b).

In low frequencies, the IL is close to 0 dB meaning that the covered plate radiates as much as
the bare plate. A decrease in the IL caused by a resonance inside the system can be observed, which
causes the covered system to radiate better than the bare plate with a negative IL. When there is
full contact between the porous layer and the vibrating surface, this resonance frequency is driven by
the modulus of the porous layer. However, when a shallow 1 mm air gap of thickness is introduced,
the boundary conditions are changed, and the modulus has no effect on the location of this resonance
frequency. This provides insight into how strongly the solid-borne waves affect the acoustic radiation
when contact between the radiating surface and the porous screen is ensured.

Moreover, after the resonance frequency, the IL increases with the frequency. As a consequence,
the lower the resonance frequency is located, the higher the IL is at higher frequencies. When an air
gap is added behind the porous layer, the resonance is moved to lower frequencies, since it is found at
558 Hz without an air gap and 260 Hz with an air gap. In short, the IL can be improved by reducing
the resonance frequency of the system, which can be achieved by reducing the modulus of the porous
screen and by adding an air gap between the porous screen and the vibrating surface. This raises the
question of how partial air gaps can be exploited to improve the IL of acoustic coverings.
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Figure 4.5. IL computed from TMM for melamine foam covered by a heavy layer. Its sensitivity
to the foam’s modulus E is evaluated by disturbing the value of E. (a) Full contact
between the foam and backing is ensured, and (b) the foam is backed by a 1 mm air gap.

3.2 | Description of the Parallel Transfer Matrix Method

A simple model is sought to account for the partial contact between the melamine sheets and the metal
plate within the Transfer Matrix Method. Chevillotte et al. [325] propose mixing laws to homogenize
equivalent fluids occupying a volume, each with a ratio ϕM,i. These are given for equivalent fluids,
and not poroelastic media:

ρ̃eq =
(

N∑

i=1

ϕM,i

ρ̃eq,i

)−1

, (4.6)

K̃eq =
(

N∑

i=1

ϕM,i

K̃eq,i

)−1

. (4.7)

Alternatively, the Parallel Transfer Matrix Method (PTMM) can be used to represent layers
of different nature in parallel, such as air layers and porous layers side by side. The width of the
layers placed in parallel can be changed to control the amount of partial contact in the model. The
PTMM is described by Verdière et al. [326]. It is similar to the Admittance Sum Method (ASM),
which states that the total admittance at the surface of parallel media is the sum of their admittances.
Nevertheless, the PTMM is capable of simulating more complex configurations than the ASM, notably
by reconnecting parallel layers after they have been split, and by giving access to a layer’s Transmission
Loss [327]. However, these methods cannot take into account the pressure diffusion from one parallel
layer to another, since they are considered independent of each other, which is problematic for oblique
incidence on thick layers. Further, they rely on the hypothesis that the elementary layers in parallel
are much smaller than the wavelength, in order to apply homogenization.

The PTMM relies on the coupling equations at the boundaries of the parallel media to construct
an equivalent transfer matrix. Verdière et al. [326] provide the coupling equations for two by two
transfer matrices of fluid media. The coupling equations are extended to biphasic porous layers in this
section. Let’s consider a porous medium of state vector V0 and porosity ϕ0, placed in contact with N

parallel porous media of state vectors Vi and porosity ϕi, where i = 1 to N , with

V0 =
(
vs

y,0 vs
x,0 vf

x,0 σs
x,0 σs

xy,0 σf
x,0

)T
, Vi =

(
vs

y,i vs
x,i vf

x,i σs
x,i σs

xy,i σf
x,i

)T
. (4.8)

Each parallel layer takes up a ratio ϕM,i of the total parallel assembly, as shown in Figure 4.6(a).
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Figure 4.6. (a) Representation of the parallel layers used for PTMM, (b) schematic representation
of the partial contact.

The interface conditions between all the layers provide the equality of velocities in the solid phases:

vs
x,0 = vs

x,i, (4.9)

vs
y,0 = vs

y,i. (4.10)

The continuity of pressure in the fluid gives:

σf
x,0
ϕ

=
σf

x,i

ϕiϕM,i
, (4.11)

and the continuity of stresses gives:

σs
x,0 + σf

x,0 =
∑

i

ϕM,i(σs
x,i + σf

x,i), (4.12)

σs
xy,0 =

∑

i

ϕM,iσ
s
xy,i. (4.13)

Finally, the continuity of total flow gives:

ϕ(vf
x − vs

x) =
∑

i

ϕM,i ϕi

(
vf

x,i − vs
x,i

)
. (4.14)

Equations 4.9 to 4.14 can be integrated into the transfer matrix system to solve the whole problem,
for example by adding them to the matrix D defined in Equation 1.139.

This model with parallel layers can be applied to the architected sheets of melamine foam obtained
experimentally. The partial contact is achieved by creating triangular grooves in the melamine sheets,
as shown in Figure 4.4(b), which can be represented in PTMM using the configuration shown in
Figure 4.6(b). A porous layer represents the contact of the porous screen with the vibrating plate,
and is placed in parallel with porous layers backed by and air gap of different depths. The PTMM
relies on the hypothesis that the parallel media have a small size relative to the smallest wavelength.
In this case, at 1600 Hz which is the highest frequency of interest for this experiment, the wavelength
of acoustic waves in the air is around 212.5 mm, and the shortest solid-borne compression wavelength
in the melamine foam is 81.9 mm. The pyramids have a base of width 24 mm, and a contact with the
vibrating plate of width 4 mm, so the hypothesis that the parallel media are homogenizeable compared
to the wavelengths is valid. The compression of the surface geometries of the porous sheet in contact
with the metal plate is not considered in this chapter, and the nominal flat contact surface area is
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considered.

4 | Comparison with experimental results

A structure-borne excitation of the plate is performed using a shaker. The injected mechanical power
level is measured via an impedance head as 20 log10

(Πinj,mech

Π0

)
, where Π0 = 10−12 W and Πinj,mech =

1
2 Re (F ∗v). The ∗ notation denotes the complex conjugate. In practice, this is computed using the
cross-power spectrum between the force F and acceleration spectra, measured by the impedance head.
The velocity spectrum v is obtained by time integrating the acceleration by dividing it by jω. The
injected mechanical power is plotted in Figure 4.7 for the different contact ratio coverings. This reveals
that the injected power varies slightly depending on the covering. Further, less energy is injected into
the system as the frequency increases.
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Figure 4.7. Injected mechanical power into the metal plate via the shaker.

The vibrational power level of the plate is computed as 20 log10
(

Πvib
Π0

)
, with Πvib = 1

2ρ0c0Sp |vp|2
and Sp the surface area of the plate. The average velocity spectrum of the plate vp is measured via
a laser vibrometer. The vibrational power level of the plate is shown in Figure 4.8(a). Similarly to
the injected power, the vibrational power decreases with the frequency. Peaks of vibrational power
can be found on the vibration power spectrum which are not on the injected power spectrum, due to
the vibration modes of the plate. The frequency and amplitude of these modes are affected by the
covering, as exemplified by the strong decrease in vibrational energy at 566 Hz in the case of 100 %
contact between the screen and the plate. Moreover, the laser vibrometer measures the velocity at
several locations along the plate, which allows us to see the vibration shapes of the plate, such as the
first mode of the plate found at f = 30 Hz in Figure 4.8(b).

The radiated acoustical intensity is measured via a sound intensity probe. The radiated acoustic
power level is computed as 10 log10

(
Πrad
Π0

)
, where Πrad is the radiated power computed by integrating

the radiated intensity over the radiation surface area. The radiated acoustic power level for the
different configurations are shown in Figure 4.9.

The experimental IL is obtained experimentally from the vibIL defined in Equation 4.4 and
computed using PTMM. No estimator could be used between the injected power and the output
acoustic intensity, due to acquisition setup limitations, however using a statistical estimator might
give better results. The results are plotted in Figure 4.10. It can be seen that for 100 % contact, the
resonance frequency is at 570 Hz. This frequency drops to around 422 HZ for 16.7 % contact and
408 Hz for 2.8 % contact. When there is a full air gap (0 % contact), the resonance drops to 202 Hz.
The resonance frequencies predicted by PTMM are found at 620 Hz for 100 % contact, 579 Hz for
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Figure 4.8. (a) Vibrational power spectra of the plate for different covering configurations. (b) First
vibration mode of the plate at 30 Hz obtained from laser vibrometer measurements.
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Figure 4.9. Radiated acoustic power level spectra for the different configurations.

16.7 % contact, 449 Hz for 2.8 % contact, and 225 Hz for a 10 mm air gap. These resonance frequencies
are summarized in Table 4.1. Overall, this results confirm that as the amount of contact decreases, so
does the resonance frequency, and consequently the decoupling occurs earlier which is advantageous
for increasing the IL of the screens.

Table 4.1. Frequencies of the first peak of resonance in the measurement and in the models.

First resonance freq. Measurement (Hz) Model (Hz) Difference (%)

100 % contact 570 557 2.3
16.7 % contact 422 418 1.0
2.8 % contact 408 316 33.6
0 % contact 202 225 10.8

When analysing the results in more detail, for full contact and for a 10 mm air gap, there is a fairly
good correlation between the experimental and the modelled resonance frequencies. Furthermore, the
resonance frequency with partial contact at However, the resonance frequency found experimentally
for 2.8 % contact is very close to the resonance frequency for 16.7 % contact. This causes a large
relative difference between the prediction and the measurement for the case of 2.8 % contact. Indeed,
PTMM predicts a clear separation between these two configurations, which is a logical result.

There are several possible reasons why the result found experimentally for 2.8 % contact does
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Figure 4.10. Insertion Losses of the acoustic screen for different contact ratios, indicated in the
legend. (a) Experimental results, (b) predictions from PTMM.
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Figure 4.11. (a) Surface of the metal plate on which the porous sheet with 2.8 % contact was glued.
The leftover pieces of foam are indicative of where displacement continuity was ensured.
(b) Effect of an uncertainty of ±1 % of the partial contact on the average computed IL
using PTMM.

not match expectations exactly. We can observe that damping found experimentally is much higher
than the damping found in the prediction, where the resonance peaks are much more pronounced.
To begin with, this could be due to a contact surface area that is greater than intended, due to
preload during the glueing process. Moreover, the contact area of the individual truncated pyramids
contains an experimental variation, as shown in Figure 4.11(a). The averaging effect of asperities
with a different amount of contact results in a smoothed resonance peak as shown in Figure 4.11(b).
Further, the small contact area of the pyramidal geometry for the 2.8 % contact case could give rise to
larger displacements of the porous layer, and unforeseen nonlinear effects might appear. At last, the
geometry is different between the 16 % contact case, which is composed of one-dimensional triangular
grooves, and the 2.8 % contact case, which is composed of truncated pyramids. Consequently, their
behaviour might be different due the Poisson effect for example, since in the 2.8 % contact case, the
pyramids are free to deform in lateral directions without being constrained as in the 16 % contact
case.

Further, the predictions performed with TMM and PTMM suppose the uniform displacement
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of a piston-like surface, whereas the measurements are performed on a finite two-dimensional plate.
As a consequence, the modal behaviour of the plate, its boundary conditions, and the lateral wave
propagation effects are not modelled. To fully capture the behaviour of the studied configurations,
a more complete model should be created, for instance using FEM to recreate the shape of the
grooves and to model the lateral diffusion that occurs between layers that are considered parallel and
independent in PTMM. Additionally, several excitation positions should be tested and averaged, and a
statistical estimator could be used to compute the radiation efficiency to obtain more reliable results.

In summary, it was found that adding an air gap, even a partial one, helped decrease the first
resonance frequency of the porous screen and heavy layer system, which is advantageous for improving
the IL at low frequencies. This was found experimentally and numerically, by modelling the partial
contact using PTMM. A good agreement is found for a partial contact of 16 %, achieved with 45°
grooves. The configuration with 2.8 % contact, obtained by creating truncated pyramids on the surface
of the porous screen, resulted in a resonance frequency that did not match the PTMM prediction
exactly. A more accurate 3D representation of this configuration might help encompass the more
complex phenomena occurring in this case.

5 | Conclusion

In this chapter, the Insertion Loss indicator of a porous multilayer was explored in different config-
urations, in order to evaluate how efficient the covering is at reducing the radiated acoustic power
of a vibrating surface. An experiment measuring the IL efficiency of screens with different contact
ratios was performed and compared to predictions computed using the Transfer Matrix Method. The
experiment and the models showed that the less contact there is between the porous screen and the
vibrating and radiating surface, the more effective the screen is at reducing the radiated noise level.
This includes partial contact, which can often be found in real configurations, and which was created
by cutting grooves into the porous screens.

The partial contact was modelled using Parallel Transfer Matrices, which is capable of predicting
the continuous transition between 100 % to 0 % contact, and gives a good agreement with experimental
results for a 16 % contact ratio. However, a disparity between experimental results and predictions
was found for 2.8 % contact, which corresponds to a configuration with truncated pyramids, and
which can be explained by the finiteness of the plate in the experimental setup and the lateral wave
propagations which are not accounted for in the PTMM model. To improve the modelling of the
partial contact in this configuration, a 3D model could be created using FEM for example. Despite
this, the Parallel Transfer Matrix Method has been proposed as a method to quickly estimate the
effect of partial contact surface area of a multilayer. This configuration has not been considered in
the literature.

Additionally, indicators about the damping induced by the porous screen on the plate could be
computed to further characterize the effects of the covering on the radiating surface. The induced
damping can be estimated using Statistical Energy Analysis methods such as the Power Input Method
(PIM) [328], the Decay Rate Method (DRM) [329] or Inhomogeneous Wave Correlation (IWC) [330].
This can also be done using the Force Analysis Technique (FAT) [331, 332] for example.
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Key findings

• When a porous screen covered by a heavy layer is placed on a radiating surface, the decou-
pling that occurs after the resonance frequency of the system significantly reduces the radiated
acoustic power. The resonance frequency can be lowered by reducing the modulus of the porous
layer or by adding an air gap between the porous screen and the vibrating surface.

• Partial contact between the porous screen and the radiating surface results in a behaviour
that is intermediary between full contact and no contact at all. This behaviour is obtained
experimentally by cutting grooves in the porous screen, and is modelled using the Parallel
Transfer Matrices approach.

• The Transfer Matrix approach is able to predict the configurations with 100 %, 16.7 % and 0 %
contact fairly well.





General conclusions and perspectives

In this work, the modelling and the characterization of porous screens placed in contact with a radiating
surface was studied. This work was performed within the context of the SEMPAE industrial project
studying the encapsulation of car engines, in which the porous screens are placed directly in contact
with the engine. Predicting the behaviour of this configuration requires accurate knowledge of the
material properties, and especially of their mechanical properties, due to the strong contribution of
solid-borne waves. Further, material surface roughness and its effect on the apparent stiffness of a
porous layer is an important parameter to take into account to improve models. Material ageing
and how it affects the material properties over time when pressed against a rigid surface is another
important aspect in understanding encapsulation material effectiveness over long durations. At last,
the screens’ surface roughness and the engine’s complex geometry cause partial contact between the
two, which has a significant effect on their acoustic behaviour. These three subjects were studied in
detail within this work.

The characterization of porous materials was performed in Chapter 2. Material transport prop-
erties can be measured directly for good accuracy, whereas properties obtained from inverse methods
require more expertise and precaution to be applied effectively. Currently, it is difficult or impossible
to directly measure certain material parameters, such as the thermal permeability q′

0 for example. In
the future, it could be helpful to have cheap, easy and reliable methods to directly measure all missing
parameters.

The measurement of the mechanical properties is crucial for accurately modelling the encapsula-
tion materials, and yet existing characterization methods contain many uncertainties. The influence
of the temperature, the ambient air viscosity, the preload, and the relaxation were highlighted. The
effect of the static strain applied to samples was explored, and the interpretation of mechanical char-
acterization results for samples with uneven surface was clarified. Furthermore, the effect of material
relaxation on the measured dynamic stiffness of a porous sample has been observed but is poorly
understood. It has a significant effect and should be accounted for when samples are compressed.
This problem is encountered but rarely explained in the literature. It would be useful to predict
how the dynamic stiffness varies when a sample is compressed over a long duration, to improve the
accuracy of characterization results as well as material long-term behaviour in situ. On top of this,
the measurement of the Poisson ratio is difficult to perform accurately, since it is sensitive to many
factors, and has significant effect on the determination of the elastic modulus. Thus, it would be useful
to investigate a more thorough technique to characterize its value. All in all, melamine foam and five
SEMPAE materials were characterized using the proposed methods, providing accurate predictions of
the measured absorption coefficient.

The surface roughness of porous materials was studied in Chapter 3. The constitutive behaviour of
melamine foam was studied, and its nonlinear stress-strain relationship was modelled with a hyperfoam
model. Moreover, the stress of the material varies over time when kept at constant strain, and this
was described with an ageing model predicting a relaxation time that increases linearly with time,
indicating that the material relaxation occurs over very long durations.

Next, a rough surface was represented by a sum of macroscopic pyramidal asperities of foam.
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Compressing these asperities reveal that they behave similarly to continuous elastic pyramidal ge-
ometries. This reveals that porous material asperities can be considered as continuous media once
a few tens of cells are compressed. Further, the nonlinear strain-dependant modulus was masked by
the shape geometry of the pyramid, suggesting that a constant equivalent modulus can be used for
simplicity’s sake. Notably, this equivalent modulus was different from the tangent modulus at small
strains, which is the modulus sought after for acoustic applications. It would be interesting to develop
a method to determine the equivalent modulus of a nonlinear material based on its strain dependant
modulus and its geometry.

A surface roughness model was compared to compression measurements of a Greenflocks mate-
rial, which is highly inhomogeneous due to its composition and manufacturing process. The resulting
tendency suggests that the asperities on the Greenflocks’ surface all have approximately the same
height. To push the analysis of the Greenflocks’ surface roughness further, the 3D scan of the mate-
rial’s surface could be exploited to extrapolate the geometry and height distribution of its asperities.
Additionally, the surface roughness model developed is valid for isolated asperities, without any tran-
sition to the bulk behaviour of the material once all the asperities are compressed. Modelling the
transition between the behaviour of the asperities and the bulk behaviour of the material would be
useful to relate the dynamic stiffness of a sample to its modulus, as a function of compression amount.
Furthermore, it would be interesting to establish a satisfying link between the modulus obtained from
a static compression ramp and quasistatic QMA measurements. This might require adapting the
strain rate of the compression ramp to get close to the strain rates obtained with the QMA, though
this is not guaranteed to succeed due to the different natures of the static compression and quasistatic
oscillatory modes.

The radiation of a plate covered by a porous screen with partial contact was studied in Chapter 4.
The porous sheet is covered by a heavy layer, causing a strong resonance which increases the radiated
acoustic power, and which is followed by a decoupling causing the radiated noise to decrease strongly
with frequency. Partial contact between the porous screen and the radiating metal plate was controlled
to simulate real configurations. The partial contact was obtained experimentally by cutting triangular
grooves into sheets of melamine foam one or both directions. A simple implementation using the
Parallel Transfer Matrix Method allows a rapid prediction of the effect of partial contact behaviour.
Overall, both experiments and predictions find that the less contact there is between the screen and
the radiating plate, the lower the resonance frequency is found, and the more the covering is efficient
at reducing the radiated noise.

To improve the similarity between the configurations with 16 % contact and 2.8 % contact,
the grooves should be cut the same way in both configurations, that is to say the grooves should
all be made in only one direction or in two dimensions in both cases. Additionally, to facilitate the
integration of partial contact into established FEM codes, it would be helpful to formulate an equivalent
transfer matrix of the homogenized poroelastic medium instead of representing it with parallel transfer
matrices. To improve the accuracy of the model’s predictions of the resonance frequencies, a more
complete three-dimensional representation of the partial contact should be explored. Finally, the
contact area between the porous sheet and the radiating surface was controlled, but the materials are
also compressed in real configurations. It would be interesting to create an interface layer, between the
porous sheet and the radiating surface, that takes into consideration the compression of the material
near the interface with a varying modulus and with a varying contact surface area.

Overall, the observations highlighted in this work can help improve the reliable characterization
and the accurate modelling of porous engine encapsulation screens. Moreover, the work performed by
the industrial partners within the SEMPAE project also resulted in fruitful outcomes. For example,
PBN noise measurements were performed and analysed by Renault Group. Furthermore, the radiated
power of a bare and covered real engine casing part were measured by Trèves Group, and were
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correlated with a complete numerical model of the experimental setup.





Appendix A: Sensitivity of measured quantities
to material parameters

The sensitivity of a porous medium’s acoustic behaviour is influenced more or less by different param-
eters as a function of frequency. Knowing the influence range of each parameter can help guide inverse
minimization procedures, by knowing in which frequency range each parameter is strongly expressed.
This appendix shows examples of the sensitivity of several indicators to porous material properties.
As a reminder, the sensitivity ∆ and the normalized sensitivity ∆n of the absorption coefficient α to
a material parameter β are computed from

∆α (β) = ∂α

∂β
, ∆nα (β) = β

α

∂α

∂β
. (A.1)

The normalized sensitivity of the melamine foam using an equivalent fluid JCAL model is shown
in Figure A.1.
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Figure A.1. Normalized sensitivity ∆nα of the absorption coefficient α for melamine foam with an
equivalent fluid JCAL model to transport parameters. The black dashed line represents
the value of α.

The sensitivity to material parameters can also be computed on the transfer function H̃12 between
the two microphones upstream from the characterized sample in impedance tube measurements. In
this case, the sensitivity ∆ of the transfer function H̃12 to a parameter β is only normalized by the
magnitude of β

β∆ H̃12 (β) = β
∂H̃12
∂β

. (A.2)

The sensitivity β∆ H̃12 (β) of the real and imaginary parts of H̃12 are plotted in Figure A.2.
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Figure A.2. Sensitivity of the real and imaginary parts of the microphone transfer function H̃12 to
material parameters β, normalized by the value of the parameter β: β∆ H̃12 (β) . The
sensitivity is computed for a melamine sample using the Biot model, and with the real
microphone positions from the impedance tube shown in Figure 1.18. The black dashed
line represents the value of H̃12. The sensitivity is computed for the real part of H̃12 to
(a) transport parameters, and (b) mechanical parameters, and for the imaginary part
of H̃12 to (c) transport parameters, and (d) mechanical parameters.
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Figure A.3. Normalized sensitivity ∆n of the absorption coefficient α to material parameters β.
The sensitivity is computed for a PU250 foam using the Biot model. The black dashed
line represents the value of α. Sensitivity is computed for (a) ϕ and α∞, (b) viscous
transport parameters σ and Λ, (c) thermal transport parameters Λ′ and q′

0, and (d)
mechanical material parameters using a Biot JCAL model.





Appendix B: QMA measurements in vacuo

The quasistatic characterization of the mechanical properties of a porous material is done using a
QMA device and assumes the hypothesis that the viscous effects of the air saturating the porous
material has a negligible impact on measured stiffness. To verify this hypothesis, six studied materials
are characterized on a QMA bench at atmospheric pressure and under vacuum. To do so, the QMA
bench was placed inside a vacuum chamber, shown in Figure B.1.

Figure B.1. QMA placed in the vacuum chamber.

The measured storage modulus E′ at atmospheric pressure and in vacuo are shown in Figure B.2,
and the measured loss factor η is shown in Figure B.3. The results show that the measured modulus
increases and the loss factor decreases inside a vacuum. This can be attributed to two additional
factors other than the vacuum. First, the relaxation can account for a variation of measurement
results over time. Second, the strain gauge used to measure the displacement of the sample is not
rated for low pressures. These two factors make it more difficult to conclude decisively on the effect
of the surrounding air on the QMA results. Since there does not seem to be a strong frequency
dependence of the variation of E′ and η at atmospheric pressure and in vacuo, it can be assumed
conservatively that material characterization can be performed with a QMA for these materials at
atmospheric pressure with a negligible bias due to ambient air pressure.
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Figure B.2. Storage modulus E′ measured on a QMA at atmospheric pressure (blue) and in a vacuum
(red) for each material at 0 % strain.
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Figure B.3. eta measured on a QMA at atmospheric pressure (blue) and in a vacuum (red).



Appendix C: Relaxation and nonlinearity of dif-
ferent materials

The nonlinearity and the relaxation of a melamine foam is studied in Chapter 3. The behaviour that is
found for the melamine foam also applies to different materials, as demonstrated here. The nonlinear
stress-strain response of the PU60, PU250, and Greenflocks of nominal thicknesses 20 mm and 25 mm
are shown in Figure C.1. This reveals that the typical nonlinearity of porous materials can be found
for materials with different compositions and different microstructures.
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Figure C.1. Nonlinear stress-strain curve obtained for different materials being compressed.

Further, the stress relaxation of these foams behaves similarly to that for melamine foam, in
that the stress continues to evolve at very long time scales with a relaxation time that increases.
This is shown in Figure C.2, which plots the variation of the stress over time relative to the stress
immediately following the compression ramp. The different materials are compressed at different
strains ε. After 10 hours, the stress for the PU250 has varied by 19.2 %, by 33.8 % for the PU60, by
33.0 % for the Greenflocks 20 mm, and by 27.5 % for the Greenflocks 25 mm. Additionally, the PU60
was compressed to 15 % strain for 16.8 days, after which the stress had decreased by 46.9 %. These
results strengthen the argument that taking into account the time relaxation of these materials when
performing measurements at long durations is necessary.
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Characterization and modelling of porous automotive engine
encapsulation materials for external acoustics
Alexandre Wilkinson

Thesis submitted for the degree of Doctor of Philosophy in Vibration and Acoustics

The encapsulation of car engines by porous screens is a technology that reduces the noise
they radiate into their environment. Currently, their use relies mostly on their ability to absorb
sound when placed inside the engine compartment, at a distance from the engine, but a new
configuration that positions them directly in contact with the engine offers several advantages.
Notably, this allows a reduction in mass and raw materials needed, but significantly alters their
acoustic behaviour. In particular, the engine temperature, applied preload, and the amount
of contact between the engine and the screen influence the acoustic behaviour of the system.
This thesis aims to characterize the porous encapsulation materials and study their acoustic
behaviour in their new configuration, in contact with a radiating surface representing the engine.
This work is part of an industrial project called SEMPAE (Simulation of engine encapsulation
for external acoustics, from 2020 to 2024), which is a collaboration between Trèves Group, an
automotive equipment supplier, Renault Group, an automotive manufacturer, ESI Group, a
software publisher, and the Roberval research laboratory at UTC.

First, various encapsulation materials, including polymer foams and fibrous materials, are
characterized to obtain their properties that serve as input for poroelastic models. Various
characterization methods are compared and applied. Special attention is given to the charac-
terization of mechanical properties, for which there are still many uncertainties.

Next, the stiffness of melamine foam compressed against a rigid surface is studied. Its
relaxation over time is observed and modelled, highlighting the complex rheology of porous
materials. Its nonlinearity as a function of strain is accounted for, revealing the interaction
between the intrinsic nonlinearity of the material and the shape nonlinearity of a sample with
a pyramidal geometry. Since the compression stiffness of an asperity made from a porous
material can be modelled, the contact stiffness of a porous material with a rough surface can
be predicted.

Finally, the reduction of the acoustic power radiated by a plate covered with a screen con-
sisting of a porous layer and a heavy sheet is studied. The mass-spring behaviour of the screen
significantly reduces the radiated power beyond the resonance of the system. Experimental re-
sults reveal that by reducing the contact ratio between the screen and the plate, the resonance
is shifted towards lower frequencies, which improves the acoustic insulation of the covering.
Partial contact is created experimentally by cutting grooves into the screens, and is modelled
using the parallel transfer matrix method.
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