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INTRODUCTION

The field of robotics, as defined in [Siciliano et al., 2009], revolves around the intelligent
interplay between perception and action. The accuracy of a robot actions is profoundly
influenced by the precision with which it estimates its state relative to the surrounding
environment based on available measurements. Moreover, given that robots are inherently
nonlinear systems in practical scenarios, the converse is also true, actions affect perception,
as demonstrated in both natural beings [Gibson, 1962] and robotic systems [Bajcsy, 1988].

Perception, rather than being a passive reception of information, is an active and
exploratory process characterized by probing and searching, as opposed to merely waiting
for relevant information to be captured by sensors. This realization forms the basis of
the concept of active sensing. In the realm of robotics, active sensing involves control
strategies applied to the data acquisition process, which adapt based on the current
state of data interpretation and the main goal or task of the system, as articulated in
[Bajcsy, 1988]. Another perspective, offered in [Sontag et al., 2022], describes active
sensing as the purposeful expenditure of energy, often through movement, to enhance
sensing capabilities.

Building upon this notion, the theory discussed in [Sontag et al., 2022] suggests that
active sensing is, at least in part, a response to the demands of nonlinear state estima-
tion. The hypothesis is that animals, through active sensing, generate time-varying motor
commands that continuously stimulate their sensory receptors. This dynamic stimulation
allows the system states to be estimated with satisfactory error bounds from the sensor
measurements. In essence, these movements are designed to maintain the observability
of the system, providing valuable insights into the intricate relationship between motion,
perception, and state estimation in both natural and robotic systems.

In many sensor-based robot applications, the state of a robot with respect to the envi-
ronment is only partially accessible through on-board sensors. For instance, a robot may
be equipped with a sensor able to measure only a certain function of the state, such as
relative distance or direction (i.e., the bearing) with respect to known landmarks. State
estimation schemes become essential in such scenarios, enabling the online recovery of
’missing information’, subsequently employed by planners/motion controllers as substi-
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Introduction

tutes for unmeasurable states. However, in addressing non-trivial cases, state estimation
must cope with nonlinear sensor mappings from the observed environment to the sensor
space. The impact of these nonlinearities on estimation convergence and accuracy is sig-
nificant, with the trajectory followed by the robot/sensor playing a crucial role in ensuring
a sufficient level of excitation during motion.

We also wish to highlight the insightful observations made in [Sontag et al., 2022]. In
conventional control systems engineering, a prevalent paradigm involves designing state
feedback and state estimation as independent components. This separation principle,
for linear plants affected by Gaussian noise, dictates that separately designing state es-
timation and task-level control design is not only effective but it is the optimal solution.
However, as it is well known, the separation principle does not apply to general nonlin-
ear systems, for this reason active sensing adopts the opposite approach. Here, control
inputs are intentionally crafted to ’excite’ the system, aligning with the needs of the state
estimator. This departure from the separation principle highlights the unique and pur-
poseful integration of perception and action, providing a novel perspective on the interplay
between motion control and active sensing.

A specific scenario requiring robots to extract accurate information from partial mea-
surements, given by onboard sensors, arises when multiple robots need to cooperate and,
consequently, be localized relative to each other with high precision. The past decades
have witnessed a surge in interest in multi-robot applications, spanning cooperative ma-
nipulation, mapping, surveillance, disaster response, exploration, border security, and
patrol missions [Aggravi et al., 2021; Murphy et al., 2011; Schranz et al., 2020]. To
accomplish such tasks, a crucial aspect is each robot ability to sense and communicate
with a limited subset of the entire group, commonly referred to as the neighbors of the
considered robot. Robots should localize themselves with respect to their neighbors and
make decisions based solely on local information. Distributed solutions have a crucial role
in multi-robot (and, more broadly, multi-agent) applications, allowing for scalable algo-
rithms in terms of computational and communicational loads, particularly concerning the
group size.

In summary, it is desirable for a group of robots to produce actions involving infor-
mation about their state relative to other robots in the group rather than to a global
reference frame. Examples of relative measurements include relative distances, bearings,
or positions, which can be directly obtained from onboard sensors such as cameras and
ultra-wideband sensors. Employing such sensors frees from the need for centralized local-
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ization systems like motion capture or global positioning systems, which is particularly
relevant in all those scenarios where these systems are unavailable, such as indoor, under-
water, or deep-space missions.

In scenarios where robots collaboratively localize themselves within a shared (implicit)
frame based on partial measurements of the relative state, the trajectory followed by
the robots significantly influences estimation convergence. This impact becomes more
pronounced in practical situations where sensing limitations, such as limited range and
field of view, are present. Therefore, a key motivation driving this thesis is the formulation
and development of distributed active sensing control strategies tailored to the localization
of multi-robot systems. These strategies aim to address the challenges posed by real-world
sensing constraints, thereby enhancing the accuracy and efficiency of the cooperative
localization process while concurrently achieving primary mission objectives.

Topic of the thesis

In light of these considerations, this thesis aims at advancing the state-of-the-art in sensor
based cooperative control and (active and not) cooperative localization for multi-robot
systems. We address the design of fully distributed active sensing control laws, specifically
tackling the challenges posed by cooperative localization based on relative bearing and
distance measurements, as well as target tracking using multi-robot systems. The inter-
play between active perception/localization and action/control to achieve a specific task
is "mediated" using a quadratic program formulation and the control barrier functions
and control Lyapunov functions formalism.

Control barrier functions (CBFs) recently emerged as a valuable alternative to constraint-
handling control design methods such as classical optimal control, model predictive control
(MPC) [Rawlings et al., 2017], or barrier Lyapunov functions (BLFs) [Tee et al., 2009].
Despite the significant progress made in recent years on control barrier functions [Ames
et al., 2019; Garg et al., 2023], with contributions extending to their application in multi-
agent systems [Lindemann & Dimarogonas, 2020; Tan & Dimarogonas, 2021; Wang et al.,
2017], certain limitations persist, particularly in the context of multi-agent systems. This
thesis tackles one such limitation, aiming to enhance the versatility of distributed CBFs
by extending their application to a broader class of constraints.

Moreover, we delve into the challenges related to the observer design for cooperative
localization of multi-robot systems in a common frame, specifically focusing on relative
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body-frame position measurements. This involves the development of an adaptive observer
designed to extract relative orientations among the robots. Estimating the robots state
in a common frame allows the robots to exchange information initially captured in their
local frames and to effectively coordinate to achieve a common task.

Structure of the thesis

This thesis is organized into five main parts. Part I provides essential preliminaries on
nonlinear observability, multi-robot systems, and control barrier functions, laying the
foundations for a comprehensive understanding of the subsequent chapters. The original
contributions of this thesis are then illustrated over Part II, Part III, and Part IV, with
each Part dedicated to a specific contribution. Finally, Part V draws the conclusions and
outlines potential future research directions. Below is a summary of each part.

Outline of Part I

This part comprises three chapters that delve into fundamental concepts crucial for com-
prehending the core of the thesis:

• Chapter 1 introduces relevant concepts related to nonlinear observability, observ-
ability measures, and their application in active sensing control.

• Chapter 2 covers basic concepts of multi-robot systems, spanning graph theory,
static and dynamic consensus, and the challenges of cooperative localization and
infinitesimal rigidity.

• Chapter 3 provides an introduction to control barrier functions (CBFs) and control
Lyapunov functions (CLFs), along with the CBF-CLF-QP formulation which is at
the basis of the subsequent contributions. The chapter then explores extensions for
high-order systems and distributed systems.

Outline of Part II

This part includes a single chapter (Chapter 4) covering works on trajectory optimization
for active sensing control in cooperative localization in presence of sensing limitations.
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Outline of Part III

This part comprises three chapters exploring the integration of active sensing with a de-
sired task through QP-based formulations using CBFs and CLFs along with a contribution
on the implementation of distributed CBFs:

• Chapter 5 presents an active sensing control strategy for cooperative localization
from relative bearing measurements, integrating an additional higher-priority task
through CLFs as well as a connectivity maintenance constraint through CBFs.

• Chapter 6 introduces an active sensing control strategy for the localization of mul-
tiple moving targets using flying robots with down-looking cameras. The strategy
imposes a constraint on acquiring a minimum prescribed level of information (re-
quired for the convergence of the employed observer) while maximizing the achieve-
ment of another task.

• Chapter 7 outlines an algorithm for distributed control barrier functions converg-
ing to centralized optimality. The algorithm is then applied to the constraint of
connectivity maintenance in the presence of limited range and field of view.

Outline of Part IV

This part features a single chapter (Chapter 8) presenting an observer for cooperative
localization in a common frame based on body-frame position measurements of a group
of robots.
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RÉSUMÉ ÉTENDU EN FRANÇAIS

Le domaine de la robotique, tel que défini par [Siciliano et al., 2009], repose sur l’interaction
intelligente entre perception et action. La précision des actions d’un robot est pro-
fondément influencée par la précision avec laquelle il estime son état par rapport à
l’environnement en se basant sur les mesures disponibles. De plus, étant donné que
les robots sont intrinsèquement des systèmes non linéaires dans des scénarios pratiques,
l’inverse est également vrai : les actions influencent la perception, comme le montrent
tant les êtres naturels [Gibson, 1962] que les systèmes robotiques [Bajcsy, 1988].

La perception, plutôt que d’être une réception passive d’informations, est un processus
actif et exploratoire caractérisé par des sondages et des recherches, par opposition à une
simple attente de capture d’informations pertinentes par les capteurs. Cette réalisation
forme la base du concept de sensation active. Dans le domaine de la robotique, la sensation
active implique des stratégies de contrôle appliquées au processus d’acquisition de données,
qui s’adaptent en fonction de l’état actuel de l’interprétation des données et de l’objectif
principal du système, comme articulé dans [Bajcsy, 1988]. Une autre perspective, offerte
dans [Sontag et al., 2022], décrit la sensation active comme la dépense intentionnelle
d’énergie, souvent par le mouvement, pour améliorer les capacités de détection.

S’appuyant sur cette notion, la théorie discutée dans [Sontag et al., 2022] suggère que
la sensation active est, au moins en partie, une réponse aux exigences de l’estimation
d’état non linéaire. L’hypothèse est que les animaux, par le biais de la sensation active,
génèrent des commandes motrices variables dans le temps qui stimulent continuellement
leurs récepteurs sensoriels. Cette stimulation dynamique permet d’estimer les états du
système avec des marges d’erreur satisfaisantes à partir des mesures des capteurs. En
essence, ces mouvements sont conçus pour maintenir l’observabilité du système, four-
nissant des informations précieuses sur la relation complexe entre mouvement, perception
et estimation d’état dans les systèmes naturels et robotiques.

Dans de nombreuses applications robotiques basées sur des capteurs, l’état d’un robot
par rapport à l’environnement n’est que partiellement accessible par les capteurs embar-
qués. Par exemple, un robot peut être équipé d’un capteur capable de mesurer unique-
ment une certaine fonction de l’état, telle que la distance relative ou la direction (c’est-
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à-dire, le relèvement) par rapport à des repères connus. Les schémas d’estimation d’état
deviennent essentiels dans de tels scénarios, permettant la récupération en ligne des «
informations manquantes », ensuite utilisées par les planificateurs/contrôleurs de mouve-
ment comme substituts pour les états non mesurables. Cependant, pour aborder des cas
non triviaux, l’estimation d’état doit faire face à des mappages non linéaires de capteurs
de l’environnement observé à l’espace des capteurs. L’impact de ces non-linéarités sur
la convergence et la précision de l’estimation est significatif, la trajectoire suivie par le
robot/capteur jouant un rôle crucial pour garantir un niveau suffisant d’excitation pen-
dant le mouvement.

Nous souhaitons également souligner les observations perspicaces faites dans [Sontag
et al., 2022]. Dans le génie des systèmes de contrôle conventionnel, un paradigme préva-
lent implique la conception de la rétroaction d’état et de l’estimation d’état comme des
composants indépendants. Ce principe de séparation, pour les plantes linéaires affectées
par le bruit gaussien, dicte que concevoir séparément l’estimation d’état et la conception
de contrôle au niveau de la tâche n’est pas seulement efficace, mais aussi optimal. Cepen-
dant, comme il est bien connu, le principe de séparation ne s’applique pas aux systèmes
non linéaires généraux, c’est pourquoi la sensation active adopte l’approche opposée. Ici,
les entrées de contrôle sont intentionnellement conçues pour « exciter » le système, en
alignement avec les besoins de l’estimateur d’état. Cet écart par rapport au principe de
séparation met en évidence l’intégration unique et intentionnelle de la perception et de
l’action, offrant une nouvelle perspective sur l’interaction entre le contrôle de mouvement
et la sensation active.

Un scénario spécifique nécessitant que les robots extraient des informations précises
à partir de mesures partielles, fournies par des capteurs embarqués, se présente lorsque
plusieurs robots doivent coopérer et, par conséquent, être localisés les uns par rapport aux
autres avec une grande précision. Les dernières décennies ont connu un intérêt croissant
pour les applications multi-robots, couvrant la manipulation coopérative, la cartographie,
la surveillance, la réponse aux catastrophes, l’exploration, la sécurité des frontières et les
missions de patrouille [Aggravi et al., 2021; Murphy et al., 2011; Schranz et al., 2020].
Pour accomplir ces tâches, un aspect crucial est la capacité de chaque robot à détecter
et à communiquer avec un sous-ensemble limité du groupe entier, communément appelé
les voisins du robot considéré. Les robots doivent se localiser par rapport à leurs voisins
et prendre des décisions basées uniquement sur des informations locales. Les solutions
distribuées jouent un rôle crucial dans les applications multi-robots (et, plus largement,

16



Résumé étendu en Français

multi-agents), permettant des algorithmes évolutifs en termes de charges computation-
nelles et de communication, en particulier en ce qui concerne la taille du groupe.

En résumé, il est souhaitable qu’un groupe de robots produise des actions impliquant
des informations sur leur état relatif par rapport aux autres robots du groupe plutôt que
par rapport à un cadre de référence global. Des exemples de mesures relatives incluent les
distances relatives, les relèvements ou les positions, qui peuvent être directement obtenus
à partir de capteurs embarqués tels que les caméras et les capteurs ultra large bande.
L’utilisation de ces capteurs dispense de la nécessité de systèmes de localisation centralisés
comme la capture de mouvement ou les systèmes de positionnement global, ce qui est
particulièrement pertinent dans tous les scénarios où ces systèmes ne sont pas disponibles,
tels que les missions en intérieur, sous-marines ou dans l’espace profond.

Dans des scénarios où les robots se localisent de manière collaborative dans un cadre
partagé (implicite) basé sur des mesures partielles de l’état relatif, la trajectoire suivie par
les robots influence significativement la convergence de l’estimation. Cet impact devient
plus prononcé dans des situations pratiques où des limitations de détection, telles que
la portée limitée et le champ de vision, sont présentes. Par conséquent, une motivation
clé de cette thèse est la formulation et le développement de stratégies de contrôle de
la sensation active distribuée adaptées à la localisation des systèmes multi-robots. Ces
stratégies visent à relever les défis posés par les contraintes de détection réelles, améliorant
ainsi la précision et l’efficacité du processus de localisation coopérative tout en atteignant
simultanément les objectifs principaux de la mission.

Sujet de la thèse

À la lumière de ces considérations, cette thèse vise à faire progresser l’état de l’art dans
le contrôle coopératif basé sur des capteurs et la localisation coopérative (active et non
active) pour les systèmes multi-robots. Nous abordons la conception de lois de contrôle de
la sensation active entièrement distribuées, en traitant spécifiquement les défis posés par
la localisation coopérative basée sur des mesures de relèvement et de distance relatives,
ainsi que par le suivi de cibles utilisant des systèmes multi-robots. L’interaction entre la
perception/localisation active et l’action/contrôle pour accomplir une tâche spécifique est
"médiée" par une formulation de programme quadratique et le formalisme des fonctions
de barrière de contrôle et des fonctions de Lyapunov de contrôle.

Les fonctions de barrière de contrôle (CBF) ont récemment émergé comme une alter-
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native précieuse aux méthodes de conception de contrôle gérant les contraintes telles que
le contrôle optimal classique, le contrôle prédictif basé sur des modèles (MPC) [Rawlings
et al., 2017], ou les fonctions de Lyapunov de barrière (BLF) [Tee et al., 2009]. Mal-
gré les progrès significatifs réalisés ces dernières années sur les fonctions de barrière de
contrôle [Ames et al., 2019; Garg et al., 2023], avec des contributions s’étendant à leur
application dans les systèmes multi-agents [Lindemann & Dimarogonas, 2020; Tan & Di-
marogonas, 2021; Wang et al., 2017], certaines limitations persistent, en particulier dans
le contexte des systèmes multi-agents. Cette thèse s’attaque à l’une de ces limitations,
visant à améliorer la polyvalence des CBF distribuées en étendant leur application à une
classe plus large de contraintes.

De plus, nous nous penchons sur les défis liés à la conception d’observateurs pour la
localisation coopérative des systèmes multi-robots dans un cadre commun, en nous con-
centrant spécifiquement sur les mesures de position relative dans le cadre du corps. Cela
implique le développement d’un observateur adaptatif conçu pour extraire les orientations
relatives entre les robots. Estimer l’état des robots dans un cadre commun permet aux
robots d’échanger des informations initialement capturées dans leurs cadres locaux et de
se coordonner efficacement pour accomplir une tâche commune.

Structure de la thèse

Cette thèse est organisée en cinq parties principales. La Partie I fournit des préliminaires
essentiels sur l’observabilité non linéaire, les systèmes multi-robots et les fonctions de
barrière de contrôle, posant les bases pour une compréhension complète des chapitres
suivants. Les contributions originales de cette thèse sont ensuite illustrées dans la Partie II,
la Partie III, et la Partie IV, chaque Partie étant dédiée à une contribution spécifique.
Enfin, la Partie V tire les conclusions et expose les directions potentielles de recherches
futures. Voici un résumé de chaque partie.

Aperçu de la Partie I

Cette partie comprend trois chapitres qui approfondissent les concepts fondamentaux
cruciaux pour comprendre le cœur de la thèse :

• Chapitre 1 introduit les concepts pertinents liés à l’observabilité non linéaire, aux
mesures d’observabilité et à leur application dans le contrôle de la sensation active.
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• Chapitre 2 couvre les concepts de base des systèmes multi-robots, englobant la
théorie des graphes, le consensus statique et dynamique, ainsi que les défis de la
localisation coopérative et de la rigidité infinitésimale.

• Chapitre 3 fournit une introduction aux fonctions de barrière de contrôle (CBFs)
et aux fonctions de Lyapunov de contrôle (CLFs), ainsi qu’à la formulation CBF-
CLF-QP qui est à la base des contributions suivantes. Le chapitre explore ensuite
des extensions pour les systèmes de haut ordre et les systèmes distribués.

Aperçu de la Partie II

Cette partie comprend un seul chapitre (Chapitre 4) couvrant les travaux sur l’optimisation
de trajectoire pour le contrôle de la sensation active dans la localisation coopérative en
présence de limitations de détection.

Aperçu de la Partie III

Cette partie comprend trois chapitres explorant l’intégration de la sensation active avec
une tâche souhaitée par des formulations basées sur QP utilisant des CBFs et des CLFs
ainsi qu’une contribution sur la mise en œuvre des CBFs distribuées :

• Chapitre 5 présente une stratégie de contrôle de la sensation active pour la local-
isation coopérative à partir de mesures de relèvement relatives, intégrant une tâche
de priorité supérieure par le biais des CLFs ainsi qu’une contrainte de maintien de
la connectivité par le biais des CBFs.

• Chapitre 6 introduit une stratégie de contrôle de la sensation active pour la local-
isation de multiples cibles mobiles utilisant des robots volants équipés de caméras
orientées vers le bas. La stratégie impose une contrainte d’acquisition d’un niveau
minimum d’information prescrit (nécessaire à la convergence de l’observateur em-
ployé) tout en maximisant l’accomplissement d’une autre tâche.

• Chapitre 7 expose un algorithme pour les fonctions de barrière de contrôle dis-
tribuées convergeant vers l’optimalité centralisée. L’algorithme est ensuite appliqué
à la contrainte de maintien de la connectivité en présence de portée et de champ de
vision limités.
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Aperçu de la Partie IV

Cette partie comporte un seul chapitre (Chapitre 8) présentant un observateur pour la
localisation coopérative dans un cadre commun basé sur des mesures de position dans le
cadre du corps d’un groupe de robots.
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Chapter 1

OBSERVABILITY MEASURES

This chapter serves as a comprehensive overview of nonlinear observability, observabil-
ity measures, and their role in active sensing. We start this overview by introducing
two pivotal concepts: the observability matrix and the observability rank condition. The
observability rank condition serves as a decisive criterion, determining the system observ-
ability with a binary outcome – a system is either observable or not. It is crucial to note
that while this criterion provides a definitive answer regarding observability, it does not
quantify the degree of observability, i.e., how ‘close’ a system is to being unobservable.

Subsequently, we delve into the interconnection between the observability matrix and
the resultant estimation uncertainty derived from a least squares formulation of the state
estimation problem. Additionally, we aim to establish a quantitative measure to assess
the degree of observability inherent within a system.

Moving forward, we introduce two fundamental tools: the Observability Gramian (OG)
and the Constructability (also known as Determinability) Gramian (CG). Both gramians
are instrumental in quantifying the degree of local observability or unobservability within
a system. We then explore their intrinsic relationship with the Fisher Information Matrix
(FIM), which is widely used in Bayesian estimation and statistics.

Finally, we discuss the use of information measures, with particular emphasis on those
based on the OG, for active sensing problems, and we review the existing literature.

Throughout the thesis, we will make extensive use of the OG to quantify the ob-
servability of the system. In particular, we will consider the observability of the relative
positions between robots for cooperative localization as well as target tracking applica-
tions. In these tasks, the OG plays a crucial role in shaping robot trajectories to gather
sufficient information for localization purposes.

In the following, we establish various connections with related concepts which, al-
though not strictly needed for the core understanding of the thesis, can offer an interest-
ing and comprehensive perspective to the reader. Key references that have significantly
contributed to the development of these topics include [P. Bernard et al., 2022; Besançon,
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2007; Hinson, 2014; Krener & Ide, 2009].

1.1 Nonlinear observability and the observability rank
condition

This section considers the topic of nonlinear observability and introduces the crucial,
concept of the observability rank condition.

Consider a nonlinear control-affine dynamical system:

ẋ = f0(x) +
m∑
i=1
fi(x)ui

y = h(x)

x(0) = x0

(1.1)

with state x ∈ Rd, input u =
[
u1 ... um

]T
∈ Rm and measured output y ∈ Rp. Here,

f0 is the drift of the system while the fi with i ∈ {1, ...,m} are the control vector fields.
The system is observable over the interval [0, T ] if the mapping from the initial state x0

to the output trajectory y(0 : T ) is one to one, where we used the notation y(0 : T ) to
indicate the mapping t → y(t) for 0 ≤ t < T . It is locally observable over the interval
[0, T ] if this mapping is locally one to one. We indicate the Lie derivative of h(x) along
the flow of the vector field fi as:

Lfih(x) = ∂h

∂x
fi(x). (1.2)

This is the familiar notion of the derivative of h along the trajectories of the system
ẋ = f0(x) +∑m

i=1 fi(x)ui, i.e.:

ẏ = ∂h

∂x
ẋ = Lf0h(x) +

m∑
i=1

Lfih(x)ui. (1.3)

The notation when repeating the computation of the derivative with respect to the
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same vector field or a new one is the following [Khalil, 2014]:

Lfifjh(x) = ∂Lfih

∂x
fj(x)

L2
fi
h(x) = LfiLfih(x) = ∂Lfih

∂x
f(x)

...

Lkfih(x) = LfiL
k−1
fi
h(x) =

∂Lk−1
fi
h

∂x
f(x)

(1.4)

The Lie derivatives of the output y provide the mapping to the observation space
defined by:

O(x,u, u̇, ...,u(n−r−1))

=


h(x)

Lf0h(x) +
∑m

i=1 Lfih(x)ui
L2
f0
h(x) + Lf0

(∑m

i=1 Lfih(x)ui
)

+
∑m

i=1 Lfi
(
Lf0h(x) +

∑m

i=1 Lfih(x)ui
)
ui +

∑m

i=1 Lfih(x)u̇i
...

 (1.5)

where derivatives up to order d − 1 are considered and r is the relative degree of the
output. Let us define the (k + 1)p× d Jacobian:

∂O
∂x

=


∂h
∂x

∂(Lf0h(x)+
∑m

i=1 Lfih(x)ui)
∂x
...

 (1.6)

which will be referred to as the observability matrix. We now give some definitions which
are instrumental to the statement of a fundamental theorem for nonlinear observability
[Besançon, 2007].

Definition 1.1.1 (Indistinguishability). A pair (xa,xb) ∈ Rd × Rd is indistinguishable
for a system (1.1) if

∀u ∈ Rm, ∀t ≥ 0, h(ϕ(t,xa)) = h(ϕ(t,xb)) (1.7)

where we denote as ϕ(t,x0) the solution of the system dynamics when starting from initial
condition x0.

Definition 1.1.2 (Weak observability). System (1.1) is locally weakly observable at x0 if
there exists a neighborhood U of x0 such that for any neighborhood V of x0 contained in
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U , there is no indistinguishable state from x0 in V when considering time intervals for
which trajectories remain in V .

Definition 1.1.3 (Observability rank condition). A system (1.1) is said to satisfy the
observability rank condition at x0 if

rank
(
∂O
∂x0

(x)
)

= d. (1.8)

Theorem 1. A system satisfying the observability rank condition at x0 is locally weakly
differentially observable.

This means that locally the mapping from V to O is injective, i.e. from output and
inputs along with their derivatives we can locally uniquely retrieve the state.

In the case of a linear system ẋ = Ax+Bu, (1.8) becomes the classical observability
condition:

rank
([
C CA ... CAd−1

])
= d. (1.9)

Notice that, in this case, observability of a system is independent from the state trajectory
and inputs applied. However, the same is not true in the nonlinear case, where based on
the current state and inputs, condition (1.8) may or may not be satisfied and certain inputs
may destroy observability. This can also be seen by the state dependence of the control
vector fields in (1.1). The benefit of the observability rank condition is that it explicitly
accounts for this coupling and provides information about what control actuation, if any,
is required to obtain system observability.

The dependency of the observability of a state on the system trajectory and applied
inputs is a main motivation for the field of active sensing, which aims at actively select-
ing the inputs of a nonlinear system to follow informative/observable trajectories which
maximize the system observability.

1.1.1 Relationship between nonlinear observability and estima-
tion uncertainty

This section, adapted primarily from [Hinson, 2014], explores the relation between the
observability rank condition (1.8) and least squares estimation techniques.

Assuming the observability rank condition holds, with access to the output and its
derivatives, state estimation can be framed as a nonlinear least squares problem. Consider
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the vector containing the output and its derivatives

Y =


y

ẏ
...

y(d−1)

 = O(x,u, u̇, ...,u(n−r−1)). (1.10)

The residual r between Y and the observation vector obtained using an estimated state
x̂ is

r = Y −O(x̂,u, u̇, ...,u(n−r−1)) (1.11)

with x̂ being the state estimate. Consider a first-order Taylor series expansion of the
output derivatives around the point x̂:

Y ≈ O(x̂,u, u̇, ...,u(n−r−1)) + ∂O
∂x

(x̂)∆x (1.12)

Considering measurements Y with covariance R, one can formulate a weighted least
squares problem as

min
∆x

.
1
2

∥∥∥∥r − ∂O
∂x

(x̂)∆x
∥∥∥∥2

2
, (1.13)

whose solution is given by

∆x =
(
∂O
∂x

T

R−1∂O
∂x

)−1
∂O
∂x

T

R−1r. (1.14)

Under the assumption of independent and identically distributed noise (i.i.d.), the output
covariance simplifies to R = σI leading to the estimation covariance matrix P

P =
(
∂O
∂x

T

R−1∂O
∂x

)−1

= σ

(
∂O
∂x

T ∂O
∂x

)−1

. (1.15)

This highlights how the nonlinear observability matrix directly influences the estimation
uncertainty. Consequently, leveraging this matrix allows for strategic selection of the con-
trol and state trajectories and, thus, for the possibility of optimizing the state estimation
performance.
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1.1.2 Observability measures using the nonlinear observability
matrix

The interplay between the nonlinear observability matrix and estimation uncertainty in
a least squares estimator motivates the use of this matrix for obtaining quantitative mea-
sures of the system observability.

The singular values of the observability matrix (eigenvalues of ∂O
∂x

T ∂O
∂x

) serve as effec-
tive indicators of observability due to their connection with the estimation covariance.
This relationship mirrors the principles commonly employed in optimal experimental de-
sign (OED) literature [Boyd & Vandenberghe, 2004; Pukelsheim, 2006; Ucinski, 2004].
Specifically:

• The minimum singular value, σmin
(
∂O
∂x

)
, measures proximity to a singular matrix

(indicative of unobservability), inversely correlating with maximum estimation co-
variance.

• The maximum singular value, σmax
(
∂O
∂x

)
, measures the energy of the most observ-

able mode, inversely linked to minimum estimation covariance.

• The condition number, κ(∂O
∂x

) = σmax(∂O
∂x

)/σmin(∂O
∂x

), represents the energy ratio
between the most and least observable modes, shaping the estimation uncertainty
ellipsoid. A large condition number results in an elongated uncertainty ellipsoid,
while unity denotes uniform estimation uncertainty.

• The determinant of ∂O
∂x

T ∂O
∂x

yields the volume of the observation ellipsoid,
B = {∂O

∂x
ξ| ∥ξ∥ ≤ 1}, inversely related to the volume of the estimation uncertainty

ellipsoid.

While the least squares estimate presents a coherent link between estimation uncer-
tainty and the nonlinear observability matrix, it assumes the simultaneous measurement
of all output derivatives in a single step. In practice, this is avoided by relying on an
iterative estimator that does not require availability of all the derivatives. However, this
poses additional challenges for establishing a clear relationship between the uncertainty
of the employed state estimator and the observability matrix.
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1.2 Observability Gramian

While the observability matrix provides insights into the observability of a system at a
specific time t by considering the measured output, inputs, and all their higher-order
derivatives, it lacks consideration of the system past information history. Two additional
observability analysis tools, closely interlinked, are instead better suited for this purpose
and will be extensively used in this thesis. These tools are the Observability Gramian
(OG) and Constructability Gramian (CG), which are classical instruments for studying
the observability of linear time-varying systems. They are also frequently employed to
examine the local observability of nonlinear systems by considering a linear approximating
system around a nominal trajectory x0(t) [P. Bernard et al., 2020; Krener & Ide, 2009].
This approximation can be expressed as:

δẋ(t) = A(x0(t),u(t))δx(t)

δy(t) = C(x0(t))δx(t)
(1.16)

with δx(t) = x(t)− x0(t) and δy(t) = y(t)− y0(t) being small variations while

A(x0(t),u(t)) = ∂(f0(x) +∑m
i=1 fi(x)ui)

∂x

∣∣∣∣∣
x0(t)

C(x0(t)) = ∂C(x)
∂x

∣∣∣∣∣
x0(t)

. (1.17)

Definition 1.2.1 (Observability Gramian). For a given measured signal t → y(t), the
observability gramian associated to (1.1) evolves according to the dynamics

Ġo(t) = −A(t)TGo(t)−Go(t)A(t) +CT (t)C(t) (1.18)

and its solution on an interval [t0, t1] ⊂ [t0,+∞) is the positive semidefinite matrix defined
by

Go(t0, tf ) =
∫ tf

t0
ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0) dτ (1.19)

where Φ(τ, t0) is the state transition (or state sensitivity) matrix associated to the linear
dynamics in (1.16), namely the unique solution of

Φ̇(τ, t) = A(x0(τ),u(τ))Φ(τ, t)

Φ(t, t) = I
. (1.20)
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• It is never singular

• Φ−1(t1, t2) = Φ(t2, t1)

• Φ(t2, t1)Φ(t1, t0) = Φ(t2, t0) ∀ t0 ≤ t1 ≤ t2

• Φ(t1, t0) = ∂x(t1)
∂x(t0)

• For system (1.16), we have δx(t2) = Φ(t2, t1)δx(t1)
See also [Antsaklis & Michel, 1997].

Some useful properties of the state transition matrix

Before proceeding, we give a fundamental definition:

Definition 1.2.2 (Persistency of excitation). A positive semidefinite matrix-valued func-
tion Σ(t) ∈ Rd×d, is called persistently exciting (PE), if there exist T, µ > 0 such that for
all t ≥ 0 ∫ t+T

t
Σ(τ) dτ ⪰ µI (1.21)

Here, the symbol ’⪰’ indicates the Loewner partial ordering of positive semidefinite
matrices [Horn & Johnson, 2012, p.493], i.e. A ⪰ B =⇒ A−B ⪰ 0, that is A−B is
positive semidefinite.

Given a pair of sufficiently close solutions xa(t) and xb(t) of system (1.16) having the
same output y(t) for all t ∈ [0, T ] for some T > 0, their difference δx(t) = xa(t) − xb(t)
satisfies

δẋ(t) = A(xa(t),u(t))δx(t)

C(xa(t))δx(t) = 0

∀t ∈ [0, T ]

(1.22)

which implies

∥C(xa(t))δx(t)∥2 = δx(t)TC(xa(t))TC(xa(t))δx(t) = 0

∀t ∈ [0, T ]
. (1.23)
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Furthermore, notice that

δx(t) = Φ(t, 0)δx(0) = Φ(t, 0)(xa(0)− xb(0))

δy(t) = C(xa(t))δx(t) = C(xa(t))Φ(t, 0)δx(0).
(1.24)

From (1.23) and (1.24), it then follows

(xa(0)− xb(0))TGo(0, T )(xa(0)− xb(0)) = 0 (1.25)

implying that xa(0) = xb(0) and thus xa(t) = xb(t) ∀t ∈ [0, T ], if and only if Go(0, T )
is full-rank. We point out that this is again a local notion of observability, as it was the
case for the observability rank condition.

Assuming that the gramian is invertibile along any trajectory and assuming that A
is bounded, one has that Kalman’s well-known uniform complete observability (UCO) [B.
Anderson & Moore, 1969] is satisfied if there exist α1, α2, T > 0 such that

α1I ≤ Go ≤ α2I. (1.26)

In (1.26) the existence of a finite α2 is guaranteed as long as A and C are uniformly
bounded, while most importantly the existence of a positive α1 depends on the invertibility
of the OG and, therefore, constitutes a PE condition (see Definition 1.2.2). Furthermore,
assume that the design of a linear Kalman Filter (or more generally a Riccati observer
[Hamel & Samson, 2016]) estimating the state of the system is possible, then the scalar
α1 is also related to the worst case rate of convergence of the Kalman filter [Hamel &
Samson, 2016]. A similar result is also presented in [P. Bernard et al., 2020] for an
Extended Kalman-like observer. This link between the worst case rate of convergence of
the observer and the eigenvalues of the OG prompts the use of active sensing applied to
state estimation in robotics [Salaris et al., 2019].

When the time dependency of A and C is due to the linearization along the nom-
inal trajectory then the related observability property may depend on the input u of
the system. In this case, as already mentioned when discussing the observability matrix,
it becomes interesting to use the input for actively steering the system along observ-
able/informative trajectories.

We note that results analogous to the OG can be derived for the strictly related CG.
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This is defined as

Gc(t0, tf ) =
∫ tf

t0
ΦT (τ, tf )CT (τ)C(τ)Φ(τ, tf ) dτ (1.27)

where, compared to the OG, the time arguments of the state transition matrix are differ-
ent, since this matrix now corresponds to an integration backwards in time, which can be
computed using the properties of the state transition matrix. In this case, an equivalent
condition to (1.25) is given by

(xa(tf )− xb(tf ))TGc(t0, tf )(xa(tf )− xb(tf )) = 0, (1.28)

from which, again, we can characterize local observability of (1.1) from the invertibility of
the CG. Using the properties of the state-transition matrix, it can be shown that [Salaris
et al., 2019]

Gc(t0, tf ) = ΦT (t0, tf )Go(t0, tf )Φ(t0, tf ). (1.29)

Since ΦT (t0, tf ) is invertible, the OG and the CG are congruent. Hence, the Sylvester’s
law of inertia [Meyer & Stewart, 2023, p.563] establishes the fact that the two matrices
have the same inertia, i.e. same number of positive, negative and zero eigenvalues. In-
deed, in terms of observability analysis, these two matrices provide properties which are
qualitatively equivalent. However, when precise quantification of observability is neces-
sary, one matrix might be more suitable than the other one depending on the specific
context. For example, it has been shown in [P. Bernard, 2019; Salaris et al., 2019] that,
when interested in the reconstruction of the current state of the plant rather than of its
initial condition, the CG may be more suited than the OG. This will be made clearer
later on in Sect. 1.2.1.

Regarding the notation used for the OG or CG, we sometimes denote their dynamics
with a single time dependency, along with the associated initial conditions. In other
cases, we may explicit the time dependence using two time instances, such as t0 and tf ,
particularly when focusing solely on the information acquired within the specific time
interval [t0, tf ].

Furthermore, we note that the initial conditions of the OG at time t0 can be intended
as the prior information about the state of the system. For example, in some cases, when
computing the information acquired over a future horizon, if the employed state estimator
is an Extended Kalman Filter, one may use the inverse of the solution of the Riccati
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equation to represent the prior information about the system, i.e., using the initialization

Ġo(t) = −A(t)TGo(t)−Go(t)A(t) +CT (t)C(t)

Go(t0) = P (t0)−1.
(1.30)

In what follows, we will show how the OG can provide valuable measures of information
about the system.

1.2.1 Observability Gramian as a measure of information

This section, primarily derived from [Krener & Ide, 2009], mainly discuss the Observability
Gramian (OG) as a tool to quantify observability. Although the following discussion
focuses on the OG, equivalent conclusions also hold for the Constructability Gramian
(CG).

The linear approximating system defines a linear mapping from small changes in the
initial condition δx(0) to changes in the output δy(0 : T ), and this linear mapping is
tangent at x0 to the corresponding nonlinear mapping from x(0) to y(0 : T ) defined by
(1.1). The local singular values at x0 of the nonlinear mapping—defined by (1.1)—are
equivalent to the singular values of its tangent linear mapping—defined by (1.16). If these
local singular values at x0 are relatively large, it becomes easier to invert the mapping
from x0 to y(0 : T ) near x0. Essentially, it becomes easier to distinguish initial states
around x0 from their respective output trajectories.

Considering an estimation scheme that is exact in the absence of observation noise
— precisely inverting the map from x0 to y(0 : T ) — the smallest singular value of this
mapping becomes a measure of the difficulty in estimating the initial state x0 from the
output trajectory y(0 : T ). A larger reciprocal of this smallest singular value indicates
that observation noise could significantly impact the estimation error. In [Krener & Ide,
2009], this smallest singular value is termed the local unobservability index of the nonlinear
system (1.1).

Another metric proposed in [Krener & Ide, 2009] is the ratio between the largest
and smallest singular values, termed the local estimation condition number. A higher
value of this metric suggests that changes in output caused by small perturbations in one
direction could dominate changes from another direction. This scenario indicates that
the estimation problem is ill-conditioned in state space directions exhibiting a high local
estimation condition number.
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Some remarks on the observability Gramian

• The integrand ΦT (τ, 0)CT (τ)C(τ)Φ(τ, 0) within the OG is a Gram matrix,
ensuring positive semidefiniteness of the OG. Consequently, the local observ-
ability Gramian (and its eigenvalues) increases monotonically over the interval
[0, T ].

• Properly scaling the state coordinates x is crucial for meaningful numerical
interpretations of the OG eigenvalues

• The total local observability Gramian Go(0, T ) for two measured output vec-
tors y1 and y2 is the sum of separate local observability Gramians Go1(0, T )
and Go2(0, T ). Consequently, the changes in the local unobservability index
and the local estimation condition number illustrate the additional observ-
ability y2 brings to y1

• The computation of the entire local observability Gramian might not be nec-
essary; in some cases, one can only focus on significant state directions.

• It is possible to extend the local observability Gramian to measure the effect
of parameter changes on the output. Indeed, parameters can always be viewed
as additional states with time derivative zero.

More information about some properties of the OG are given in [Krener & Ide,
2009].

It is noteworthy, as highlighted in [Krener & Ide, 2009], that the local singular values
pertaining to the mapping from the initial state x0 to the output trajectory y(0 : T )
correspond to the square roots of the eigenvalues of the OG (1.19).

Another perspective on the relationship between the OG and the ease of inverting
the mapping from the initial state to the output trajectory is as follows. Imagine a
perturbation of the initial state δx(0), which propagates to the output along the trajectory,
causing a perturbation δy(t). The energy of this output perturbation along the trajectory
can be expressed as:

∥δy(t)∥2
L2

=
∫ T

0
δy(τ)T δy(τ) dτ = δxT (0)Go(0, T )δx(0), (1.31)
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where ∥·∥L2
indicates the L2 norm of a signal. Equation (1.31) highlights that when a

small perturbation in the initial state leads to a substantial energy change in the output,
it becomes easier to estimate the initial state perturbation from the output trajectory.
Using a unit norm perturbation δx(0), it is possible to define an observability ellipsoid
associated with the eigenpairs of the OG. Specifically, key observability indices such as
the minimum eigenvalue, condition number, and determinant of the OG exhibit a positive
correlation with distinct attributes of this ellipsoid: they respectively correspond to the
length of its minimum axis, its overall shape, and the enclosed volume

It is important to note that just as the OG measures how easy it is to invert the
mapping from the initial state to the output trajectory, the CG similarly quantifies the
ease of inverting the mapping, but this time from the final state to the output trajectory:

∥δy(t)∥2
L2

=
∫ T

0
δy(τ)T δy(τ) dτ = δxT (T )Gc(0, T )δx(T ). (1.32)

This distinction between the OG and CG provides two different perspectives on how easily
one can invert the mapping between the system states and the output trajectory, offering
insights for both initial and final state perturbations. This clarification emphasizes the
energy perspective of the OG and CG and highlights their dual role in measuring the
invertibility of mappings from initial and final states to the output trajectory.

Furthermore, it is possible to encode the confidence in the different measured output
as well as sensing constraints by suitably weighting the various outputs in the OG, i.e.

Go(t0, tf ) =
∫ tf

t0
ΦT (τ, t0)CT (τ)W (τ)C(τ)Φ(τ, t0) dτ , (1.33)

where W (τ) is a suitably designed block diagonal positive semidefinite matrix, in which
each block corresponds to a measured output. Throughout the thesis, this approach will
be frequently adopted for considering presence of sensing constraints.

1.2.2 The connection to the Fisher information matrix

The Fisher information measures the amount of information carried by a random variable,
e.g. y, regarding an unknown parameter—in our case, the system state x, on which the
probability of y depends [Kay, 1993]. Consider f(y;x), the probability density function
of y given a known x. If this function is sharply peaked with respect to changes in x, it
is easier to discern the "correct" x from the data. Conversely, if f is flat and dispersed,
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estimating the true x from samples of y becomes more challenging, implying the need of
studying some kind of variance with respect to x.

Let us first start by the scenario where x is a scalar (although we will represent it in
bold for generality) before extending to the vector case. The derivative of the logarithm
of the likelihood function with respect to x is termed the score. Under certain regularity
conditions, when x is the true state, the expected value of the score, evaluated at the true
x, equals 0:

E

[
∂

∂x
log f(y;x)

∣∣∣∣∣x
]

= 0. (1.34)

This property results from the fact that the logarithm, being a monotonic function, implies
that given the true x, y maximizes the probability density function f(y;x).

The Fisher information represents the variance of the score:

F(x) = E

( ∂

∂x
log f(y;x)

)2
∣∣∣∣∣∣x
 . (1.35)

For twice-differentiable f(y;x), the Fisher information is also represented as:

F(x) = −E
[
∂2

∂x2 log f(y;x)
∣∣∣∣∣x
]
. (1.36)

Thus, the Fisher information characterizes the curvature of the log-likelihood. Lower
Fisher information around the maximum likelihood estimate indicates a "blunt" maximum,
where nearby values exhibit similar log-likelihoods. Conversely, higher Fisher information
signifies a "sharper" maximum.

When x becomes a vector, the Fisher information becomes a matrix known as the
Fisher information matrix (FIM). The FIM is symmetric and positive semidefinite and
each of its elements is given by:

[F (x)]ij = E

[(
∂

∂xi
log f(y;x)

)(
∂

∂xj
log f(y;x)

)∣∣∣∣∣x
]

= E

[
∂2

∂xi∂xj
log f(y;x)

∣∣∣∣∣x
] . (1.37)

For the dynamical system (1.1), assuming a multivariate normal distribution, one
obtains the following important result: the FIM takes the form of a weighted OG (see
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Some interesting facts about the FIM

• Hessian of Kullback-Leibler Divergence: The FIM can be interpreted
as the Hessian matrix of the Kullback-Leibler divergence, which is widely
used in statistics and machine learning to measure the "distance" among two
probability distributions.

• Riemannian Metric & Fisher-Rao Geometry: In cases where the FIM
is positive-definite, it can serve as a Riemannian metric, contributing to the
Fisher-Rao geometry.

The implications of these two aspects in learning are quite remarkable. The FIM
is commonly employed as a Riemannian metric in the natural gradient algorithm,
renowned for significantly accelerating convergence compared to traditional gradient
descent methods [Amari, 1998].
The application of natural gradient descent has recently captured attention in the
control community, particularly in the domain of adaptive control, for estimating
physically consistent parameters [Boffi & Slotine, 2021; T. Lee et al., 2018; Wensing
& Slotine, 2020].

(1.33))
F =

∫ tf

t0
ΦT (τ, t0)CT (τ)R−1(τ)C(τ)Φ(τ, t0) dτ , (1.38)

whereR weights the measured outputs based on the correponding noise covariance matrix.
In absence of process noise, the classical formulation of the Kalman Filter uses as gain

matrix the covariance matrix R and the FIM F corresponds to the inverse of the solution
of the Riccati equation

Ṗ = AP + PAT −KRK, (1.39)

with K being the Kalman gain K = PCTR−1, further strengthening the connection
between the OG and the convergence properties of the Kalman Filter, as well as, the
covariance of the estimation error.

Furthermore, a very important fact about the FIM is that it provides a lower bound
on the variance which can be achieved by any unbiased estimate x̂ from measurements y
[Barfoot, 2017; Kay, 1993]

cov[x̂] ⪰ F −1. (1.40)
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This fundamental property motivates the widespread use of the FIM in optimal experi-
mental design, as it will be discussed in the next section, as it provides valuable informa-
tion on the error distribution.

1.3 Active sensing and optimal experimental design

Maximizing the information collected through sensor measurements is the subject of the
fields of active sensing and optimal experimental design. The term active sensing has
been typically used (mainly in the robotics community) for the problem of maximizing
the information collected from measurements about the state of the system by shaping
the system trajectory through a proper selection of the inputs. Instead, the term optimal
experimental design has been used across very diverse fields, commonly for the problem
of identifying the parameters of a system of interest, either by optimal sensor placement
or by optimally selecting the experiments to carry out or again by performing informative
trajectories.

To shape these informative trajectories or solve sensor placement problems, the general
strategy involves solving an optimization problem. The objective function to minimize
usually considers one of the following optimality criteria:

• A-criterion: JA = trace(I−1(x))

• D-criterion: JD = − log (det(I(x)))

• E-criterion: JE = −λmin(I(x))

where I(x) is an information matrix (e.g. FIM, OG or CG) and λmin(·) is the minimum
eigenvalue function. The same criteria could be redefined analogously for a dispersion or
covariance matrix P :

• A-criterion: JA = trace(P(x))

• D-criterion: JD = log (det(P(x)))

• E-criterion: JE = λmax(P(x))

However, it is important to note that while minimizing the trace of the inverse information
matrix is beneficial from an information perspective, the same does not always hold for
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the trace of the information matrix itself—more details on this subject in [Pukelsheim,
2006, p.138] and [Salaris et al., 2019].

These criteria closely relate to the eigenvalue interpretations discussed in Sections
1.1.2 and 1.2.1, considering functions of observability matrix and gramian eigenvalues.
Figure 1.1 shows the interpretation of the different criteria in terms of the level sets of a
dispersion ellipsoid.

Figure 1.1: Illustration of the geometric meaning of the different OED-criteria for a
two dimensional vector x. Minimizing the sum of the two semi-axis is the A-criterion,
minimizing the volume/area is the D-criterion, and minimizing the largest uncertainty
axis is the E-criterion.

In the field of robotics, various studies leverage optimization using either the ob-
servability or constructability gramian, the Fisher information matrix, or the covariance
matrix resulting from the solution to the Riccati equation. These have found applica-
tions in, e.g., enhancing single robot localization [Böhm et al., 2022; Lorussi et al., 2001;
Napolitano et al., 2021, 2022; Salaris et al., 2019; Salaris et al., 2017], self-calibration
[Böhm et al., 2020; Hausman et al., 2017; Preiss et al., 2018], source seeking/spatial field
reconstruction and sampling [Calkins et al., 2020; DeVries et al., 2013; Hinson et al., 2013;
Khodayi-mehr et al., 2019; Notomista et al., 2022; T. Zhang et al., 2022], localization of
one or multiple targets [Balandi et al., 2023; Chung et al., 2006; Freundlich et al., 2017;
Jacquet et al., 2022; Martinez & Bullo, 2006; Morbidi & Mariottini, 2012; Olfati-Saber,
2007; Zhou & Roumeliotis, 2011] and optimal cooperative localization [Cano & Le Ny,
2023; Cossette et al., 2022; Cristofaro & Martinelli, 2010; De Carli et al., 2021, 2023; S. Li
et al., 2022; Riz et al., 2023; Spica & Robuffo Giordano, 2016; W. Zhang et al., 2022].

Some other relevant works in the field of active sensing and optimal experimental de-
sign are the following: [Spica & Giordano, 2013; Spica et al., 2014; Spica et al., 2017]
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used active sensing for structure from motion in visual servoing tasks, [Besançon et al.,
2013] studies the problem of inputs in observer design for systems which are not uni-
formly observable, [Hinson & Morgansen, 2013] studies active sensing solution for the
control of non-holonomic systems, [Houska et al., 2015; Telen et al., 2013; Telen et al.,
2014] propose sequential semidefinite programming (SDP) based solutions for optimal ex-
perimental design with application to nonlinear dynamic (bio)chemical processes, [Qian
et al., 2017] studies an on-line model parameter identification approach for multivariable
systems with application to an unstable rolling delta wing, [Babar & Baglietto, 2021]
proposes an optimal feedback input design method for active parameter identification
of dynamic nonlinear systems through an NMPC approach, [Napolitano et al., 2023]
proposes a method to improve the quality of datasets employed in model learning by op-
timizing metrics based on the combination of exploration and active sensing measure and
[Freundlich et al., 2017] develops a distributed optimization based algorithm to optimally
estimate a certain hidden state using a sensor network.

In the following, we contextualize the contributions of this thesis within the existing
literature.

Contributions in active sensing for multi-robot systems

Coordinated teams of robots are finding more and more applications in critical domains,
including tasks such as mapping, surveillance, disaster response, exploration, border se-
curity, and patrol missions [Aggravi et al., 2021; Murphy et al., 2011; Schranz et al.,
2020]. Effective autonomous coordination in multi-robot systems relies on the possibility
to exchange information across the network and on the availability of accurate relative
localization in a shared coordinate frame. However, centralized infrastructures like the
Global Positioning System (GPS) may not always be available, motivating research on
the topic of sensor-based cooperative localization in a common frame using, e.g., onboard
cameras or Ultra Wideband (UWB) sensors [Cano & Le Ny, 2023; De Carli et al., 2021;
Schiano et al., 2016]. Particularly in scenarios where only partial information regarding
the relative state of robots is available, such as relative bearing (i.e., scale-free directional
information) or distances, and/or when sensing limitations, such as limited range and field
of view, are present, leveraging active sensing becomes crucial for resolving cooperative
localization challenges. This holds true even in cases where one or a group of robots is
assigned the task of localizing a potentially moving target.

Among the previous works on active sensing, only few consider a multi-robot scenario
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for cooperative localization, e.g. [Cano & Le Ny, 2023; Cossette et al., 2022; S. Li et al.,
2022; Morbidi & Mariottini, 2012; Spica & Robuffo Giordano, 2016], and even fewer ex-
plore distributed solutions for this purpose, e.g. [Cano & Le Ny, 2023; Spica & Robuffo
Giordano, 2016]. Much of the work presented in this thesis is devoted to achieving active
sensing for optimal cooperative localization in a distributed way. In comparison
to [Cano & Le Ny, 2023] and related works from the same group, e.g. [Cano & Le Ny,
2021; Cossette et al., 2022], our proposed solutions are designed to scale well with the
number of robots. Additionally, relying on the OG, we consider the information collected
in the past. In contrast, [Cano & Le Ny, 2023] only takes into account the information
acquired through current measurements, thereby optimizing solely the geometry of the
system and not the entire trajectory. Instead, in [Spica & Robuffo Giordano, 2016], a spe-
cialized solution was presented to maximize the convergence rate of nonlinear adaptive
observers for separately estimating relative distances associated to each edge in a forma-
tion of robots measuring relative bearings. This algorithm maximizes the information
gained only considering the current measurements and not the history of past measure-
ments. The solutions proposed in this thesis aim to provide algorithms which consider a
network perspective rather than separately considering each edge, meaning that informa-
tion coming from different measurements is fused and, furthermore, the past history of
collected information is fully considered.

Furthermore, only a handful of works, e.g. [Cano & Le Ny, 2023; Napolitano et al.,
2022; Qian et al., 2017], explores the inclusion of other tasks than active sensing. In
particular, in [Cano & Le Ny, 2023], some robots only perform their desired task while
others minimize a cost function which is a trade off between optimizing the localization
performance and maintaining connectivity. In [Spica et al., 2017], a large projector op-
erator-based approach was proposed to optimize the trajectory in the null-space of the
Jacobian of the total error norm. In [Qian et al., 2017], since the considered system is
open loop unstable, a control Lyapunov function (CLF) is defined to stabilize the system,
and the cost function is used for balancing between minimizing the Lyapunov function
and minimizing the condition number of the inverse of the FIM. In [Napolitano et al.,
2022], a CLF is used to encode the task achievement and its decrease is posed as a con-
straint in a Model Predictive Control (MPC) formulation. In this thesis, we also explore
the integration of a primary task that entails treating a CLF as a constraint. However,
we face the challenges of a distributed architecture with limited information availability,
thus motivating the design of a reactive control strategy as a viable solution. Moreover,
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we also explore the possibility of considering the information acquisition as a constraint
in a target tracking application. Many works have investigated the problem of active
sensing for target tracking in multi-robots systems [Balandi et al., 2023; Chung et al.,
2006; Freundlich et al., 2017; Jacquet et al., 2022; Martinez & Bullo, 2006; Morbidi &
Mariottini, 2012; Olfati-Saber, 2007; Zhou & Roumeliotis, 2011], usually with the objec-
tive of maximizing the collected information about the position of the target. Conversely,
in our work [Balandi et al., 2023], the robots are tasked with maintaining a minimum
level of persistency of excitation while utilizing the redundancy within the multi-robot
system to accomplish additional tasks whenever possible.
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Chapter 2

MULTI-ROBOT SYSTEMS: CONSENSUS,
FORMATION CONTROL AND

LOCALIZATION

This chapter serves as a foundation for understanding key concepts in multi-agent systems.
Initially, we introduce the typical notation commonly used in the field of multi-agent sys-
tems. Subsequently, we delve into fundamental concepts and definitions revolving around
graphs, algebraic graph theory and frameworks. Following this, we give a very basic in-
troduction of the consensus algorithm, which is central to any distributed algorithm in
multi-agent systems.

Towards the chapter conclusion, we provide an introduction to the frameworks of
distance and bearing rigidity. These notions are key in establishing conditions to uniquely
determine the geometric pattern of a group of not necessarily moving robots from relative
distance and bearing measurements. Additionally, we delve into how infinitesimal rigidity
connects with nonlinear observability and the Fisher information matrix.

Key references that have significantly contributed to the development of these sections
include [Bullo, 2020; de Marina Peinado, 2016; Mesbahi & Egerstedt, 2010; Restrepo,
2021].

2.1 Notation

This section introduces specialized notation frequently used in multi-agent systems. Through-
out this chapter, we may interchangeably use the terms agent and robot to encapsulate
the broader scope beyond robotics.

• Kronecker product: the Kronecker product, denoted by ⊗, of A ∈ Rn×m and
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B ∈ Rq×r is the nq ×mr matrix A⊗B defined as

A⊗B =


a11B . . . a1mB

... . . . ...
an1B . . . anmB

 (2.1)

For a matrix A ∈ RN×p, we employ Ad := A⊗ Id ∈ RNd×pd.

• Set cardinality: |P| denotes the cardinality of set P .

• Block-diagonal matrix: diag(Ai) represents a block diagonal matrix comprising
blocks Ai, i = 1, 2, ..., along the diagonal.

• All-ones and all-zeros: 1N and 0N denote vectors of all ones and all zeros, re-
spectively of dimension N .

• Stacked variables When addressing local variables xi ∈ Rd, we often refer to the
concatenated vector of local variables as x :=

[
xT1 . . . xN

]T
∈ RNd.

2.2 Graphs and frameworks

In analyzing multi-agent systems, one typically considers that each agent accesses only
partial system information via local interactions among neighboring agents, and these
interactions are often dictated by the constraints on the robot sensing and communica-
tion. In all cases, graph theory serves as a natural framework for modeling how these
interactions affect the flow of information across the group.

Graph Representation

• A graph, denoted as G := (V , E), comprises:

• V = {v1, ..., vN}, the set of vertices or nodes.

• E ⊆ V × V , the set of edges (|E| = M).

• Subgraph: H = (VH, EH) ⊂ G, a subset with VH ⊂ V and EH ⊂ E .

• Spanning Subgraph: Contains all nodes (V).
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Interaction Representation

• An edge ek := (i, j) ∈ E is an ordered pair representing a connection starting
from node i and ending at node j. The existence of an edge ek = (i, j) indicates
an interaction—either directed or undirected—between node i and node j. For
instance, node i might transmit information to node j, or node i might measure the
state of node j relative to its own. With a slight abuse of notation, we may refer to
variables related to the k-th edge as ek := (i, j) with a subscript k or ij.

• Neighbors: For node i, Ni := {j ∈ V|(i, j) ∈ E} defines its set of neighbors.

• Weights: each edge can be associated with a weight wk (in some cases even a matrix
weight Wk), increasing the representation power of graphs. In this thesis, we only
consider nonnegative weights wk ≥ 0 (Wk ⪰ 0). In this case, the graph is said to
be weighted.

• Directionality: In addition to denoting nodes interacting with each other, the edges
within a graph also encode the flow direction of interactions among the nodes. Based
on the type of interaction a graph could be

• Undirected: Bidirectional interactions (i, j) ∈ E imply (j, i) ∈ E ; edges are
unordered pairs ({i, j}).

• Directed: Indicates a single-directional interaction flow.

As it will be clearer later, for an undirected graph it is sometimes useful to define
an arbitrary orientation, consisting in the (arbitrary) assignment of directions to its
edges.

Graph Properties

• Completeness: A graph is complete if an undirected edge joins every agent pair
in the system. We denote the complete graph KN

• Paths and Connectivity:

• Directed Path: A sequence of edges in a directed graph.

• Undirected Path: A path in an undirected graph.
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• Strong Connectivity: Directed graph with a directed path between every node
pair.

• Connectivity: Undirected graph with a path between every pair of distinct
nodes.

• Trees, Spanning Trees, and Cycles:

• (Directed) Tree: A (directed) graph in which every node has one parent except
for the root.

• (Directed) Spanning Tree: A (directed) tree containing all nodes.

• (Directed) Cycle: A (directed) path where the initial and final nodes are the
same.

As mentioned above, graphs are a useful tool for illustrating relationships among
entities within a network. Besides their visual depiction using vertices and edges, graphs
also benefit from an alternative representation via matrices, thus increasing the versatility
of graph theory across various domains and applications. Some of these matrices will be
now introduced.

Some preliminaries on algebraic graph theory

• Adjacency matrix:

• The binary adjacency matrix A ∈ {0, 1}N×N is defined as

[A]ij =

 1 if (i, j) ∈ E

0 otherwise
. (2.2)

• The weighted adjacency matrix is defined as

[A]ij =

 wij if (i, j) ∈ E

0 otherwise
. (2.3)

• Degree of a given vertex, di, is the cardinality of the neighboring set Ni. For a
weighted undirected graph the weighted degree is given by di = ∑

j∈Ni
wij.

• Degree matrix:
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• The unweighted degree matrix is given by D = diag(|Ni|).

• The weighted degree matrix is given by D = diag(A1N) = diag(di) where A is
the corresponding weighted adjacency matrix.

• Incidence matrix: Given a graph with oriented edges, the incidence matrix E
associated to it has elements

[E]ik =


−1 if vi is the tail of ek
1 if vi is the head of ek
0 otherwise

. (2.4)

The incidence matrix has zero column-sum, i.e. 1TNE = 0N . The incidence matrixE
can be regarded as a map from edge-based variables in RM to node-based variables
in RN . Specifically, given an edge-based variable z ∈ RM and a node vi,

[Ez]i =
∑

k:i is the head of ek
zk −

∑
k:i is the tail of ek

zk. (2.5)

When the edge-based variables z are flows along edges, then [Ez]i is the algebraic
sum of the flows outgoing from node i. Similarly, the transpose of the incidence
matrix ET maps node-based variables in RN to edge-based variables in RM . Specif-
ically, given a node-based variable x ∈ RN and an edge ek of the form ek = (i, j),

[ETx]k = xj − xi. (2.6)

• Laplacian matrix (of an undirected graph): This matrix plays a fundamental role
in the analysis of continuous-time consensus algorithms. By definition

L = D −A ∈ RN×N , (2.7)

but it can also be written as:
L = EET . (2.8)

The Laplacian is a positive semidefinite matrix with zero row-sum (and zero column-
sum for an undirected graph), i.e. L1N = 1TNL = 0N . Its eigenvalues are 0 = λ1 ≤
λ2 ≤ ... ≤ λN . The zero eigenvalue λ1 is associated to the eigenvector v1 = 1N . The
second smallest eigenvalue λ2 is called connectivity (or Fiedler) eigenvalue and it is
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strictly greater than zero λ2 > 0 if and only if the undirected graph is connected.
The associated eigenvector v2 is known as Fiedler vector. For a weighted graph, the
Laplacian can be written as

L = EWET , (2.9)

where W = diag(wk) is a matrix of weights associated to each edge.

Frameworks

Let qi ∈ M denote the configuration of a robot in the considered space M, e.g. for a
robot evolving in R3 its configuration is simply given by its position pi. We also denote
q :=

[
qT1 . . . qN

]T
as the stacked vector of the robots configuration. A framework is

then defined by the pair (G, q), where q : V →M maps each vertex to a point in M.
Different assumptions can be made on the robot interaction and the corresponding

graphs. They could be constant or time-varying (e.g. depending on sensing constraints
such as limited range or field of view). The interaction graph can be either directed
or undirected and distinct graphs can exist, for instance, for representing separately the
sensing and the communication graphs. Indeed, in many cases of interest this distinc-
tion is needed since the communication graph is typically taken as undirected, while the
sensing graph can either be directed or undirected. In the following chapters the specific
assumptions considered for the sensing/communication graphs will be made clear.

2.3 Consensus

Consensus algorithms form the core of cooperative interactions in multi-agent systems.
At its essence, the consensus problem involves devising distributed dynamics that enable
all agents to converge to a shared value for a specific variable, using information from
only a subset of (neighboring) agents.

In continuous-time consensus, the pivotal component is the Laplacian matrix. In its
simplest formulation, assuming the graph is connected, the consensus problem is repre-
sented by the following Laplacian flow on RN :

ẋ = −Lx (2.10)
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or, equivalently for each agent component,

ẋi =
∑
j∈Ni

aij(xj − xi). (2.11)

Here, aij is the ij-element of the adjacency matrix. Let us assume the graph is undirected.
One way to assess the stability of the algorithm is by decomposing the state x in its
average x̄ = 1

N
1TNx and the disagreement vector x⊥ = x − 1

N
1N1TNx = Π1Nx, where

Π1N := I − 1
N

1N1TN is an orthogonal projector (i.e. Π1N = ΠT
1N and Π1NΠ1N = Π1N ).

The disagreement vector corresponds to x after subtracting the average x̄ from all its
components. It is easy to show that the average is an invariant of system (2.10):

˙̄x = 1
N

1TN ẋ = − 1
N

1TNLx = 0N , (2.12)

where we used the fact that for an undirected graph 1TNL = 0N (i.e. the Laplacian has
zero column sum). The dynamics of the disagreement vector are

ẋ⊥ = −Π1NLx = −LΠ1Nx = −Lx⊥, (2.13)

where we used the fact that Π1NL = LΠ1N [Bullo, 2020]. For this system, one can take
a simple quadratic Lyapunov function V = 1

2x
T
⊥x⊥, whose derivative along the system

trajectories is

V̇ = −xT⊥Lx⊥ ≤ −λ2x
T
⊥Π1Nx⊥ = −λ2x

T
⊥x⊥ = −λ2V, (2.14)

where we used the idempotence of the orthogonal projector i.e. Π1Nx⊥ = Π1NΠ1Nx =
Π1Nx = x⊥ and the fact that for a connected graphL ⪰ λ2Π1N [Bullo, 2020]. This implies
exponential stability of the consensus manifold S = {x ∈ RN : x1 = x2 = ... = xN}. This
proof relies on the graph being undirected; for directed graphs the proof is slightly more
involved, see [Moreau, 2004] and Sect. 3.2 in [Mesbahi & Egerstedt, 2010]. In this thesis,
the sensing graphs may be considered directed due to field of view limitations, which
naturally induce asymmetry. However, it is important to note that the communication
graph is always taken as undirected, thus ensuring the application of consensus algorithms
and similar Laplacian flows on an undirected graph.

In Fig.2.1, we show a simulation example depicting a Laplacian flow (2.10) involving
15 nodes which perform consensus over their initial states, which are sampled from a
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random distribution. All the states asymptotically converge to the average of the initial
states.
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Figure 2.1: Simulation of consensus over a graph with 15 nodes. On the left, we show the
graph G, on the right, the evolution of the nodes states. As explained the state of all the
nodes converge to their initial average value.

2.3.1 Dynamic average consensus

Consensus algorithms can be used to compute the average of local quantities. For exam-
ple, for an undirected graph, (2.10) could be used to compute the average of the initial
vector x(0). The algorithm in (2.10) falls under the category of static algorithms [Kia
et al., 2019]. In these algorithms, the reference signal is introduced as the initial condition
for the integrator state (see Fig. 2.2). However, because the reference signals act as ini-
tial conditions, static average consensus algorithms like (2.10) cannot track time-varying
signals.

Figure 2.2: Block scheme of the static consensus algorithm.

Consider a scenario where each agent possesses a local scalar reference signal ui(t),
the average of which needs to be tracked. This signal could represent an agent sensor
output or the output of another algorithm the agent is executing. The dynamic average
consensus problem involves designing an algorithm that enables individual agents to track
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the time-varying average of these reference signals:

ū(t) = 1
N

N∑
i=1

ui(t) (2.15)

Here, the reference inputs are introduced as external inputs into the system. Several
algorithms exist for this purpose [F. Chen et al., 2012; Kia et al., 2019; Montijano,
Montijano, et al., 2014; Zhu & Martınez, 2010], which are beyond the scope of this
thesis. For an extensive discussion on this subject we refer the reader to [Kia et al.,
2019]. Throughout the thesis, the dynamic average consensus used will primarily refer
to the discrete-time accelerated robust dynamic average consensus proposed in [Van Scoy
et al., 2015] and further detailed in [Kia et al., 2019]. We report below the corresponding
equations:


qik+1 = 2ρqik − ρ2qik−1 + kp

∑N
j=1 aij((xik − x

j
k) + (pik − p

j
k))

pik+1 = (1 + ρ2)pik − ρ2pik−1 + kI
∑N
j=1 aij(xik − x

j
k)

xik = uik − qik, pi0, q
i
0 ∈ R, i ∈ {1, ..., N}

(2.16)

where kp and kI are, respectively, proportional and integral gains and ρ is the convergence
rate to the average of the input signals ū [Kia et al., 2019]. Moreover, qik, qik−1, p

i
k, p

i
k−1

are internal state variables.

2.4 Distance and bearing rigidity

In this section, we explore the fundamental concepts of graph rigidity—a fundamental
property for multi-robot localization and formation control [Krick et al., 2009; Mao et al.,
2007; Zhao & Zelazo, 2019].

Traditional cooperative control assumes the agents being able to access relative posi-
tions of their neighbors, often obtained through either GPS or a Motion Capture (Mocap)
system and wireless communication. However, this approach fails in unstructured GPS-
denied environments or when high precision is required. Instead, onboard sensors like
cameras or Ultra Wideband Sensors (UWB) become crucial for agents to sense their
neighbors [Montijano et al., 2016].

Yet, sensors like cameras or UWB provide only partial information about robot rela-

51



Part I, Chapter 2 – Multi-Robot Systems: Consensus, Formation Control and Localization

tive poses, typically bearing-only1 or distance-only measurements. This prompts a critical
question: under which conditions is it possible to reconstruct the spatial geometric ar-
rangement of a network from the partial measurements of the onboard sensors? This is
where distance and bearing rigidity theories find a useful application in a multi-robot con-
text—they can be used to analyze when fixed edge distances or bearings (locally) uniquely
determine a network geometric arrangement.

In the multi-robot field, the notion of rigidity has originally been applied to the case
of relative distance measurements [B. D. Anderson et al., 2008; Krick et al., 2009; Oh
& Ahn, 2014]. However, rigidity concepts have now been extended to include robots
measuring relative bearings [Schiano et al., 2016; Zhao & Zelazo, 2019]. The goal of this
Section is to present the main ideas of (infinitesimal) distance and bearing rigidity in a
unified manner. The interested reader is referred to [Zhao & Zelazo, 2019] for delving
deeper into this topic.

Consider the framework (G, q) (see Sect. 2.2) where inter-neighbor distances and bear-
ings are respectively expressed as:

dk = dij = ∥pj − pi∥ k ∈ {1, ...,M} (2.17)

and (see also Fig. 2.3)

βk = βij = RT
i

pij
dij

= RT
i

pj − pi
∥pj − pi∥

k ∈ {1, ...,M}. (2.18)

In this thesis, we examine two cases: q ∈ R3 (i.e. the confiuration of the robot is

Figure 2.3: Relative bearing from the frame of robot i to the one of robot j.

1. In this Thesis the term bearing refers to a unit vector from the sensor to the target point.
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represented by its position) and q ∈ R3 × S1 (i.e. the confiuration of the robot is repre-
sented by both its position and yaw orientation). The former is relevant when all bearings
are expressed in a common frame, aligned with the world frame orientation, resulting in
Ri = I3. In this scenario, the underlying assumption is that the robots have access to
their yaw rotations in a common frame, such as through a Mocap system or using the
magnetometer, and no field of view constraints are considered. In contrast, the latter
case q ∈ R3 × S1 assumes that the bearings are measured in the individual robot body
frame Ri with Ri = Rz(ψi) ∈ SO(3) representing a yaw rotation about a vertical axis.
This case becomes relevant when robots either lack access to their yaw in a common
frame, for example when the magnetometer becomes unreliable (e.g., indoors), or when
the employed sensor has field of view limitations. The decision to not consider the pitch
and roll angles is justified by the typical reliability of roll/pitch estimation from onboard
Inertial Measurement Unit (IMU) measurements [Mahony et al., 2008]. Therefore, one
can ’derotate’ the measured bearings so that they are expressed in a ’flat’ frame, having
the xy-plane parallel to the world reference frame [Franchi et al., 2012]:

βij = Ry(θi)Rx(ϕi)Biβij, (2.19)

where Bi refers to the robot i body frame, including the roll and pitch angles, denoted as
ϕi and θi, respectively andRx(·),Ry(·) ∈ SO(3) are the canonical rotation matrices about
the x and y axis. Moreover, considering the relative bearing as a function of only position
and yaw is especially interesting for quadrotors, as these correspond to the flat outputs
of the systems. Consequently, quadrotors can track sufficiently smooth trajectories in
position and yaw. Also note that, when working within q ∈ R3 × S1, there are instances
where expressing bearings in the world frame becomes beneficial; in such cases, we denote
them as β̄k.

Define the distance fd : V → RM and bearing fb : V → R3M functions respectively as:

fd =
[
d2

1 . . . d
2
M

]T
(2.20)

fb =
[
βT1 . . .β

T
M

]T
(2.21)

The distance and bearing rigidity matrix are defined respectively as the Jacobian of the
distance and bearing functions

Rd = ∂fd
∂q

(2.22)
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Rb = ∂fb
∂q

(2.23)

We will now derive the expression of the rigidity matrix for the case q ∈ R3 × S1. To
reduce from R3 × S1 to R3, one can simply remove the last column of the rigidity matrix
and consider Ri = I.

It can be easily shown [Krick et al., 2009] that the distance rigidity matrix can be
expressed as

Rd =
[
diag(pTij)ET

3 | 0M×N

]
∈ RM×4N (2.24)

while the bearing rigidity matrix is

Rb =
[
diag

(
Πβij

dij
RT
i

)
ET

3 | −(IN ⊗ Se3)diag(βk)ET
⊗

]
∈ R3M×4N , (2.25)

where E3 = E ⊗ I3, while E⊗ is the out-incidence matrix, i.e.

[E⊗]ik =

 1 if node i is the tail of edge k

0 otherwise
. (2.26)

Furthermore, Se3 = [e3]×, with e3 =
[
0 0 1

]T
and Πβij = I − βijβTij is an orthogonal

projection matrix that geometrically projects any vector onto the orthogonal complement
of βij (see Fig. 2.4). Interestingly, using the fact that

Figure 2.4: The orthogonal projector Πβij projects any vector v onto the plane orthogonal
to the the bearing βij.

Se3βk = Se3R
T
i β̄k = RT

i Se3β̄k (2.27)
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The orthogonal projection matrix plays an important role in the
bearing rigidity theory and its applications. Here is a non-exaustive
list of its properties, see [Zhao & Zelazo, 2019] for further details.

• ΠT
βij

= Πβij (symmetric)

• ΠβijΠβij = Πβij (idempotent)

• ker(Πβij) = span(βij)

• Πβij ⪰ 0 (positive semidefinite)

• Πβij has one eigenvalue equal to zero associated to the eigen-
vector βij

• Any two vectors x,y ∈ Rd satisfy xTΠyx = yTΠxy

• For any nonzero vectors x1, ...,xM ∈ Rd with d ≥ 2, the
matrix ∑M

k=1 Πxk is nonsingular if and only if at least two of
x1, ...,xM are not collinear

Some useful properties of the orthogonal projector Πβij

and
ΠβkR

T
i = RT

i Πβ̄k
, (2.28)

one can show that Rb can also be written as:

Rb = diag(Ri)
[
diag

(Πβ̄ij

dij

)
ET

3 | −(IN ⊗ Se3)diag(β̄k)ET
⊗

]
∈ R3M×4N . (2.29)

This fact will be used later introducing the symmetric rigidity matrix.
We now introduce the concept of infinitesimal rigidity. Let δq ∈ Rd, where d = 3 if

q ∈ R3 and d = 4 if q ∈ R3 × S1, be a variation of the configuration q. If R∗(q)δq = 0,
with ∗ ∈ {d, b}, then δq is called an infinitesimal motion of (G, q). An infinitesimal motion
is said to be trivial if it would keep existing (as an infinitesimal motion) also in case of
a complete graph. For a distance formation, an infinitesimal distance motion is trivial if
it only corresponds to a translation and a rotation of the whole formation. While, for a
bearing formation, an infinitesimal bearing motion is trivial if it only corresponds to a
translation and a scaling of the whole formation. Furthermore, if q ∈ R3 × S1, then, a
coordinated rotation involving an angular rotation of each agent about its own body axis
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with a rigid-body rotation of the formation is also a trivial motion of the framework. We
highlight the fact that, if the robots do not move, although the formation is infinitesimally
bearing rigid, the scale of the formation (implying the inter robot distances as well) cannot
be retrieved (i.e. it is not observable).

Definition 2.4.1 (Infinitesimal rigidity). A network is infinitesimally distance (resp.
bearing) rigid at a configuration q0 if all the infinitesimal distance (resp. bearing) motions
are trivial when q = q0.

Infinitesimal rigidity of a framework can be characterized by the rank of the bearing
rigidity matrix.

Lemma 1. A framework (G, q) is infinitesimally distance (resp. bearing) rigid if and only
if rank(Rd) = 3N − τ (resp. rank(Rb) = 3N − τ), where τ is the number of independent
trivial motions.

Figure 2.5: The two figures show two formations (a) and (b). On the left, we consider
distance rigidity, while on the right we consider bearing rigidity. In both cases, formation
(a) is not infinitesimally rigid while formation (b) is. On the left, formation (a) is not
infinitesimally distance rigid because the node in the upper left corner is free to rotate
around the node in the lower left corner without changing any relative distance. While for
formation (b) no motion of the nodes is allowed without changing any relative distance
except for the trivial motions. On the right, formation (a) can be stretched, e.g. horizon-
tally as in the figure, without changing any relative bearing. Formation (b) instead being
bearing rigid can only translate or expand/contract.

Both the bearing rigidity matrix and the distance rigidity matrix are not, in general,
square matrices. Therefore, it is more convenient to express the rank condition in Lemma 1
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in terms of the eigenvalues of the so-called symmetric distance (resp. bearing) rigidity
matrix [Zelazo et al., 2015], which is the following symmetric and semipositive definite
matrix

Sd = RT
dRd (2.30)

for distance measurements and
Sb = RT

bRb (2.31)

for bearing measurements. Notice that rank(Sd) = rank(Rd) and analogously for bearings
rank(Sb) = rank(Rb). Hence, the rank condition of Lemma 1 can be equivalently stated
in terms of the eigenvalues of Sd and Sb. Denoting the eigenvalues of Sd and Sb as
λ1 ≤ λ2 ≤ ... ≤ λdN , we note that, infinitesimal rigidity is equivalent to λi = 0 for
i ∈ {1, 2, ..., τ} and λτ+1 > 0. Consequently, λτ+1 is denoted as the Rigidity Eigenvalue.
This fact was used in [Schiano & Giordano, 2017; Zelazo et al., 2015] along with perception
weights encoding sensing constraints to maintain infinitesimal rigidity of the graph.

An important remark is that, for both Sd and Sb, the block corresponding to the
positions (i.e. the upper-left block) is a matrix-weighted Laplacian. In fact, we can
decompose

Sd = RT
dRd =


E3diag(pij)

−
0M×N

 [diag(pTij)ET
3 | 0M×N

]
=

E3diag(pijpTij)ET
3 03N×N

0N×3N 0N×N


(2.32)

where the upper left block is associated to the position part of the configuration vector
q, while the lower right block is associated to the yaw. Notice that E3diag(pijpTij)ET

3

is a matrix-weighted Laplacian as in (2.9), with positive semidefinite weight matrix
W = diag(pijpTij), this fact will be used in the following chapter to study the unobservable
motions of distance formation.

Concerning the symmetric bearing rigidity matrix, instead, from (2.29) one has

Sb = RT
b Rb

=

 E3diag
(Πβ̄ij

dij

)
−

−E⊗diag(β̄Tk )(IN ⊗ STe3
)

diag(RT
i )diag(Ri)

[
diag

(Πβ̄ij

dij

)
ET

3 | −(IN ⊗ Se3)diag(β̄k)ET
⊗

]

=

 E3diag
(Πβ̄ij

d2
ij

)
ET

3 −E3diag
(
Se3 β̄ij
dij

)
ET

⊗

−E⊗diag
(
β̄TijS

T
e3

dij

)
ET

3 diag
(∑

j∈Nout
i

β̄2
ijx + β̄2

ijy

)


(2.33)
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where we used the idempotence of the orthogonal projector, the fact that, since Se3β̄k ⊥ β̄k,
then Πβ̄k

Se3β̄k = Se3β̄k and β̄Tk STe3Se3β̄k = β̄Tk (I3−e3e
T
3 )β̄k = β̄2

kx + β̄2
ky, with β̄kx (resp.

β̄ky) being the x (resp.y) component of the bearing β̄k. Also, notice that E⊗E
T
⊗ is the

out-degree matrix [Bullo, 2020].

Notice that, the matrix in the upper-left block E3diag
(Πβ̄ij

d2
ij

)
ET

3 is a matrix-weighted

Laplacian with positive semidefinite weights associated to each edge
Πβ̄ij

d2
ij

. This matrix-
weighted Laplacian will appear again in the subsequent chapters. An interesting (and
surprising) fact is that Sb does not depend on the rotation matrices Ri, which indeed
appears nowhere. In the following chapters, the orientation of the robots will become
important from an observability point of view only when considering field of view limita-
tions.

The following lemma for matrix-weighted Laplacians provides insights on the trivial
motions of the formation and it will be used in the following chapters.

Lemma 2. [Trinh et al., 2018] A matrix-weighted Laplacian L ∈ RNd×Nd with positive
semidefinite weightsWij is symmetric, positive semidefinite and has the nullspace N (L) =
span{(1N ⊗ Id), {v =

[
vT1 . . . vTN

]T
∈ RNd|(vj − vi) ∈ N (Wij), ∀(i, j) ∈ E}}.

For example, consider a framework with robot configuration q in R3. In this case,
Sd = E3diag(pijpTij)ET

3 is a matrix-weighted Laplacian. The nullspace of Sd is given by
1N ⊗ I3, spanning a common translation, and by p⊥ = (IN ⊗ Sek)p, spanning a common
rotation around the unit vector ek, with k ∈ {1, 2, 3}. In fact, one can verify this by
checking the condition in Lemma 2

(p⊥j − p⊥i) = (IN ⊗ Sek) (pj − pi) = (IN ⊗ Sek)pij (2.34)

and, since (IN ⊗ Sek) is skew symmetric,

Wij(p⊥j − p⊥i) = (pijpTij) (IN ⊗ Sek)pij = 0, (2.35)

i.e. it corresponds to the null space of Wij = pijp
T
ij, which is the matrix weight in Sd.

One can repeat a similar procedure for the block of the symmetric bearing rigidity matrix
corresponding to the positions of the robots to show that a scale expansion/contraction
is a trivial motion for a bearing formation.
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2.4.1 Exploring the connection between rigidity and observabil-
ity

Both distance and bearing rigidity theories tackle the common problem of determining
the unique geometric arrangement of a network. However, they differ in their focus:
bearing rigidity examines inter-neighbor bearings, while distance rigidity deals with inter-
neighbor distances. In bearing rigidity theory, the term ‘unique arrangement’ implies that
the network location can be established up to a translational and scaling factor (along
with a coordinated rotation if q ∈ R3×S1). Conversely, in distance rigidity theory, ‘unique
arrangement’ denotes determining the network up to translational and rotational factors.

Relation with the observability matrix

Infinitesimal rigidity can be viewed as an observability attribute of the network. Indeed,
the connection between infinitesimal bearing rigidity in R3× S1 and system observability
was explored in [Schiano & Tron, 2018].

As discussed in the previous chapter, when studying observability in a nonlinear sys-
tem, a common approach involves assessing the rank of the observability matrix, ∂O

∂x
,

which maps state, input, and input derivatives to the output and its derivatives. How-
ever, in the context of infinitesimal rigidity, we solely consider the mapping from the state
to the output without derivatives. The rank condition in Lemma 1 helps ascertain if the
robot poses are observable solely from current measurements, except for the subspaces
spanned by trivial motions. This stringent requirement enables the formation shape to
remain observable even when the robots are static, which is a more stringent criterion
than mere observability (which, in general, requires presence of a suitable robot motion
for allowing a successful estimation of the state). If the robots in a connected sensing
graph move so as to fulfill the observability rank condition (1.8), rigidity might no longer
be necessary to retrieve the formation shape from available measurements. Moreover,
additional information about the state such as the formation scale could also be retrieved
[Schiano & Tron, 2018; Spica & Robuffo Giordano, 2016].

Relation with the observability gramian

Another connection among infinitesimal rigidity and observability is related to the OG.
In fact, the symmetric rigidity matrices are the input terms in the OG (as well as in the
CG) dynamics (1.18). To illustrate this point, consider a scenario where q ∈ R3. Here,
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the robots are modeled as single integrators, leading to A(t) = ∂f
∂x

= 0, while, for distance
measurements, C(t) = Rd(t). Consequently, the OG dynamics becomes:

Ġo(t) = −A(t)TGo(t)−Go(t)A(t) +CT (t)C(t) = Rd(t)TRd(t) (2.36)

This implies that, in this case, the OG essentially is the integral of the symmetric rigidity
matrix over time.

Relation with the Fisher information matrix

Furthermore, as it was shown in [Cano & Le Ny, 2023], the FIM corresponding to the
information collected at time t is a weighted symmetric rigidity matrix, e.g. for distance
measurements one has

Fd = RT
dR

−1Rd (2.37)

where R is a diagonal matrix in which each element on the diagonal corresponds to the
covariance of the corresponding measurement. This connection accentuates the strong
relationship between the information obtained from measurements and the underlying
geometric structure encoded within the symmetric rigidity matrix.

Conservativeness of infinitesimal rigidity

Infinitesimal rigidity is mainly a condition on the sensing graph topology rather than
on the robots configuration, albeit with potential isolated singularities [Briot & Robuffo
Giordano, 2019; Erskine et al., 2023]. It is worth noting that different robot configu-
rations, representing various geometries of the formation, can impact the robustness to
perturbations in different estimation and control algorithms [Cano & Le Ny, 2023; Le Ny
& Chauvière, 2018]. While rigidity provides a useful framework to design simple control
and localization algorithms with guaranteed convergence, in practical scenarios, ensuring
infinitesimal rigidity might require a highly connected sensing graph. This can represent
a strong constraint for the robot motion, especially when sensors have limitations such as
field of view (FoV) and/or restricted range (see Fig. 2.6), and even more when considering
robots navigating in environments with obstacles. A part of this thesis will explore the
use of active sensing strategies that allow to localize the formation while greatly relaxing
the (more common) rigidity assumption. The sensing limitations will be included in the
active sensing control through suitable weight functions which are described below.
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2.4. Distance and bearing rigidity

Figure 2.6: The figure shows a drone with maximum field of view angle αmax and range
limits dmin and dmax

Sensing constraint and perception weights

In thesis, we will consider range constraints, expressed as dmin ≤ dij ≤ dmax, where dij =
∥pj − pi∥ and field of view constraints cij = βTijei ≥ cmin where βij is the relative body-
frame bearing and ei is the unit vector representing the robot axis to which the camera
is assumed to be aligned with. Notice that cij is the cosine of the angle αij between the
bearing and the camera axis. We consider weights wij = wdijwbij , where wdij (resp. wbij)
is a continuously differentiable weight which smoothly vary from 1 to 0 as the distance
(resp. FoV) limit of the sensor is being approached.

Throughout the thesis, these weights will be used in two cases: (i) to weight the
information acquired in the OG (see (1.33)) or (ii) weighting the graph Laplacian for
connectivity maintenance purposes (see (2.9)).

When weighting the acquired information, we consider weights that do not exactly
vanish at the sensing limit. This choice allows for a small but non-zero gradient out of
the sensing limits, which may be beneficial in some cases. Since we consider information
acquired over time, we do not require the robots to be within their relative sensing limits
at all times. Examples of such weight functions are

wdij =


e

−
(dij−dmin)2

2σdmin , if dij ≤ dmin

1, if dmin ≤ dij ≤ dmax

e
−

(dij−dmax)2

2σdmax , if dij ≥ dmax

wbij =


e

−
(cos(αmax)−βT

ij
ei)

2

2σb , if βTijei ≤ cos(αmax)

1, if βTijei ≥ cos(αmax)

(2.38)

are two bell-shaped functions, as shown in Fig. 2.7, and the σ∗ are standard deviations.
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Figure 2.7: Weight functions for sensing constraints. On the left distance weight and on
the right FoV weight (notice that cij ≤ 1). This functions does not exactly vanish at the
sensing limit.

Conversely, for connectivity maintenance, as we require at least a spanning tree of
robots within their relative sensing limits at all times, we consider weights that exactly
vanish as the limit is approached. In particular, we consider for wdij and wbij the following
smooth step functions. Consider the following two functions ζl(x, xmin, x

th
min) = (x −

xmin)/(xthmin − xmin) and ζu(x, xmax, x
th
max) = (x − xthmax)/(xmax − xthmax), the weights are

given by (see Fig. 2.8):

w (ζl, ζu) =



w = 0 if ζl < 0

w = 6ζ5
l − 15ζ4

l + 10ζ3
l if 0 < ζl < 1

w = 1 if ζl > 1 and ζu < 0

w = 1− 6ζ5
u + 15ζ4

u − 10ζ3
u if 0 < ζu < 1

w = 0 if ζu > 1

. (2.39)

These weights make the robots aware of the potential loss of connectivity with neigh-
boring robots. In this way, when it is necessary, they can prevent loosing the connection
employing, for example, control barrier functions, which will be discussed in the next
chapter and which allow to enforce satisfaction of state constraints.
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Figure 2.8: Weight functions for sensing constraints. On the left distance weight and on
the right FoV weight (notice that cij ≤ 1).
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Chapter 3

CONTROL LYAPUNOV FUNCTIONS AND

CONTROL BARRIER FUNCTIONS

This chapter serves as an introduction to Control Lyapunov Functions (CLFs) and Control
Barrier Functions (CBFs), two increasingly popular tools which allow to optimize system
performance while ensuring specific constraints [Ames et al., 2019; Garg et al., 2023;
Xiao et al., 2023]. While CLFs focus on enforcing stability of an equilibrium through the
decrease of an energy-like function encoding the task objective, CBFs are dedicated to
ensuring that the system state remains constrained within a prescribed set termed the
safe set.

We begin by exploring barrier functions and reciprocal barrier functions, which guaran-
tee constraint satisfaction by employing functions that approach infinity near the bound-
aries of a safe set and smoothly decrease within it. Originally utilized in optimization
to penalize constraint violation [Nocedal & Wright, 1999], these functions have found
widespread use in control and verification literature due to their natural alignment with
Lyapunov-like functions [Tee et al., 2009; Wieland & Allgöwer, 2007], their ability to
establish set invariance, and their relevance in multi-objective control scenarios [Panagou
et al., 2013; Restrepo et al., 2022; Robuffo Giordano et al., 2013].

Next, we introduce CBFs, more precisely termed zeroing control barrier functions
(ZCBFs), which have the property of also being well-defined outside the safe set. Notably,
ZCBFs not only enforce forward invariance but also demonstrate robustness against model
perturbations by ensuring the asymptotic stability of the safe set as well as input-to-state
stability [Jankovic, 2018; Kolathaya & Ames, 2018; Xu et al., 2015]. For systems which
are affine in the control, an input satisfying the CBF condition can be efficiently found
by solving a Quadratic Program (QP), thus facilitating consideration of multiple control
objectives.

Following this, we present CLFs leveraging Lyapunov functions with inequality con-
straints on their derivatives to devise classes of controllers stabilizing a system. Then,
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we show how one can also consider CBFs and CLFs in a unified QP, optimizing system
performance while ensuring the CBF inequality and respecting as much as possible the
prescribed CLF decrease. Lastly, we explore CBFs tailored to high-order and distributed
systems, extending their applicability in complex systems scenarios.

Extensive use of the concepts of CBFs and CLFs will be made throughout the thesis.
For example, they will be used to achieve a certain task while maximizing as much as
possible the information about the state of the system, or viceversa to maintain the
collected information above a certain threshold. Also, they will be used to preserve
connectivity of the graph as well as for collision avoidance.

Key references that have contributed to the general development of these sections
include [Ames et al., 2019; Xiao et al., 2023]. Works more specifically related to the
specific sections will be pointed out where relevant.

3.1 Barrier functions in constrained optimization

In the field of mathematics known as constrained optimization, a barrier function is a
continuous function whose value increases to infinity at the boundary of the feasible region
(i.e., the set of solutions that satisfy the constraints) in a given optimization problem
[Nocedal & Wright, 1999]. Consider the constrained optimization problem

min
x
. J(x)

s.t. h(x) ≤ 0
(3.1)

The inequality constraint in (3.1) makes the solution of the problem non differentiable,
because the constraint gets suddenly activated when h(x) = 0. We can approximate the
original optimization problem (3.1) as a continuously differentiable unconstrained problem

min
x
. J(x) + µc(h(x)) (3.2)

where the function c(·) is the barrier function. Several choices of c(x) are possible. A
very common one is the logarithmic barrier function c(x) = − log(−h(x)). The parameter
µ > 0 is a tuning parameter; smaller values of µ result in a closer approximation of the
original problem.
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3.2 Barrier functions for dynamical systems

Consider a nonlinear system of the form

ẋ = f(x,u) (3.3)

with x ∈ Rd and a safe set C defined by the superlevel set of a continuously differentiable
function h : Rd → R, i.e. (see also Fig. 3.1)

C = {x ∈ Rd|h(x) ≥ 0} (3.4)

∂C = {x ∈ Rd|h(x) = 0} (3.5)

Int(C) = {x ∈ Rd|h(x) > 0} (3.6)

Here, ∂C denotes the boundary and Int(C) the interior of C. We assume that ∂h
∂x
̸= 0 for

all x ∈ ∂C.

Figure 3.1: The figure shows an example of a compact safe set for a planar system.

The safety of system (3.3) is defined as:

Definition 3.2.1 (Forward invariance & safety). [Ames et al., 2019] The set C is forward
invariant if for every x0 ∈ C, x(t) ∈ C for x(0) = x0 and all t ≥ 0. The system (3.3) is
safe with respect to the set C if the set C is forward invariant (see also Fig. 3.2).

At this point, we introduce a fundamental result known as Nagumo’s theorem. It
states that if system (3.3) is initially safe, i.e., h(x(0)) ≥ 0, then it will always be safe,
i.e., h(x(t)) ≥ 0, ∀t ≥ 0, if and only if

h(x) = 0 =⇒ ḣ(x) ≥ 0 (3.7)
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Figure 3.2: The figure shows a safe planar system. The line inside the set represents the
system trajectory and the arrows along the line represent the time direction.

that is, the safe set C is forward invariant. If h(x) satisfies this condition, then we call
h(x) a barrier function for system (3.3).

However, this safety condition is only defined at the boundary of the safe set, poten-
tially creating discontinuities similar to those seen in the barrier function of optimization
problems. The question then is: how to explicitly find a safe controller satisfying the
conditions of Nagumo’s theorem? Approaches to address this include those relying on (i)
a function going to infinity (also known as reciprocal control barrier functions (RCBF))
[Bechlioulis & Rovithakis, 2008; Tee et al., 2009] or (ii) Control Barrier Function (CBF)
(also known as zeroing control barrier functions) [Ames et al., 2014]. Both offer safety
conditions that introduce some conservativeness, potentially limiting the system perfor-
mance while allowing the use of locally Lipschitz continuous controllers. The fundamental
concept behind reciprocal barrier functions is analogous to what is employed in optimiza-
tion. It entails the definition of an energy-like barrier function, which remains bounded
within the set and continuously increases towards infinity as it approaches the boundary
of the safe set. Constraint satisfaction follows by ensuring the boundedness of the barrier
function. For CBFs, given a constraint function whose zero super-level sets define the con-
strained set, the core concept involves limiting the rate of change of the barrier function
along system trajectories. This is achieved by employing a class K function associated
with the barrier function.

As a concluding remark, RCBF represent a more conservative approach in which the
system is actively repelled from the boundary, as opposed to being just slowed down in
its approach to the boundary [Krstic, 2023].
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Part I, Chapter 3 – Control Lyapunov Functions and Control Barrier Functions

3.2.1 Reciprocal barrier functions

Motivated by the barrier method in optimization, a similar approach has been adopted in
the control literature [Tee et al., 2009]. Consider, for example, the logarithmic candidate
barrier function shown in Fig. 3.3

B(x) = − log
(

h(x)
1 + h(x)

)
. (3.8)

This function satisfies the important properties
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Figure 3.3: Logarithmic barrier function.

inf
x∈Int(C)

B(x) ≥ 0 lim
x→∂C

B(x) = +∞ (3.9)

By ensuring boundedness of B, Nagumo’s condition is met. Trajectories starting inside
C will remain within, ensuring the system safety. To achieve the desired task, a viable
strategy might involve combining such a barrier function with a candidate Lyapunov
function such that their combination is positive definite around the desired equilibrium
(see also recentered barrier functions [Feller & Ebenbauer, 2015; Restrepo et al., 2022]).
Ensuring the negativity of the derivative of the composite Lyapunov function ensures
system stability while maintaining safety.

Limitations of such barrier functions include the fact that (i) they require large control
actions near the safety-set boundary, making them sensitive to noise, (ii) they are not
defined outside the set, thus preventing the possibility of approaching the safe set from
external regions.

3.2.2 Control barrier functions

We now introduce CBFs. We begin with the following definition
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Definition 3.2.2 ((Extended) Class K function). A continuous function α : [0, a) →
[0,∞), with a > 0, is a class K function if it is strictly increasing and α(0) = 0. Moreover,
α : (−b, a) → (−∞,∞), with a, b > 0 is an extended class K function if it is strictly
increasing and α(0) = 0.

We now limit our attention to control-affine systems:

ẋ = f(x) +G(x)u, (3.10)

with x ∈ Rd and u ∈ Rm, while f : Rd → Rd and G : Rd → Rd×m are locally Lipschitz
continuous functions.

Definition 3.2.3 (Control barrier function). [Ames et al., 2019] Let C be defined by (3.4).
h(x) is a control barrier function (CBF) for the system (3.10) if there exists a locally
Lipschitz extended class K function α such that:

sup
u∈Rm

[Lfh(x) + LGh(x)u+ α(h(x))] ≥ 0 ∀x ∈ Rn (3.11)

where Lf , LG denote the Lie derivatives along f and G, respectively. It is assumed that
LGh(x) ̸= 0 when h(x) = 0.

The assumption LGh(x) ̸= 0 ensures that the CBF is not subject to a singularity (i.e.,
LGh(x) = 0) at the boundary of the safe set. As long as this assumption holds, a control
u can be determined through (3.11) so as to preserve forward invariance in terms of C.

Theorem 2. [Ames et al., 2019] Given a CBF h(x) with the associated set C from (3.4),
any Lipschitz continuous controller u(t), ∀t ≥ 0, that satisfies (3.11) renders the set C
forward invariant for (3.10).

Remark 1. [Ames et al., 2019] It is important to stress that this result not only guarantees
that the safe set C is invariant, but makes the set C asymptotically stable. This has very
important consequences for what concerns practical implementations. Indeed, while a
system will not formally leave the safe set C, noise and modeling errors may make the
system leave this set. As a result of the main CBF theorem, controllers satisfying (3.11)
will then be able to drive the system back to the set C, thus adding a layer of robustness
to the CBF machinery.

Having established that control barrier functions give (necessary and sufficient) condi-
tions on safety, the question becomes: how does one synthesize controllers which achieve
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the desired task while preserving safety ? Importantly, the aim is to do so in a mini-
mally invasive fashion, i.e., by modifying an existing controller in a minimal way so as
to guarantee safety. This naturally leads to optimization-based control design. It is very
important to notice that the inequality (3.11) is linear in u. This is crucial, as it leads to
computationally efficient methods to find an input u satisfying the inequality (3.11) as
the solution of a QP.

Consider the scenario in which a Lipschitz continuous feedback controller u = k(x)
for the control system (3.10) is given, but k(x) does not meet the safety requirements.
In order to minimally modify this controller for ensuring safety, one can consider the
following QP-based optimization problem meant to find the smallest change on u that
can ensure safety

min
u∈Rm

.
1
2 ∥u− k(x)∥22

s.t. LGh(x)u+ Lfh(x) ≥ −α(h(x))
. (3.12)

The QP (3.12) is feasible (i.e. it admits a solution) as long as Lfh(x) + α(h(x)) >
0 whenever LGh(x) = 0. Hence, assuming the QP is feasible, the KKT optimality
conditions (3.15) imply that (see the Box in the next page for a basic introduction to
QPs)

u∗ = k(x) + λ∗LGh(x)T

LGh(x)u∗ + Lfh(x) ≥ −α(h(x))

λ = 0 if LGh(x)u∗ + Lfh(x) > −α(h(x))

λ∗ ≥ 0

(3.16)

where (u∗, λ∗) denotes the optimal solution. Also, we used the fact that the least squares
cost 1

2 ∥u− k(x)∥2
2 corresponds to a quadratic function with Q = I and c = −k(x).

If the constraint is not active, we have λ∗ = 0 and, hence, u∗ = k(x) which is the
nominal feedback. Otherwise, if the constraint is active, substituting the first equation of
the KKT into the second on (3.16) leads to

LGh(x)(k(x) + λ∗LGh(x)T ) + Lfh(x) = −α(h(x)) (3.17)

from which
λ∗ = −(LGh(x)k(x) + Lfh(x) + α(h(x)))

LGh(x)LGh(x)T . (3.18)

Notice that, by convention, LGh(x) is assumed to be a row vector, hence, counterin-
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Consider a QP:
min
u∈Rm

.
1
2x

TQx+ cTx

s.t. Ax ≤ b
(3.13)

with Q ≻ 0 ∈ Rn×n and A =
[
a1 ... am

]T
∈ Rm×n. The la-

grangian is given by:

L(x,λ) = 1
2x

TQx+ cTx+ λT (Ax− b) (3.14)

where λ is the vector of Lagrange multipliers. The
Karush–Kuhn–Tucker (KKT) optimality conditions are first order
necessary conditions for optimality of nonlinear programs taking
into account both equality and inequality constraints [Nocedal &
Wright, 1999]. For a QP, the KKT optimality conditions are:

∇xL = Qx+ c+ATλ = 0
Ax ≤ b
λ ≥ 0
λT (Ax− b) = 0

(3.15)

where the last constraint is a complementary slackness condition,
which states that if one of the constraints is inactive (i.e. at the
optimal solution x∗ strict inequality holds aTi x∗ < bi) then the
corresponding multiplier λi = 0. Notice that, since Q ≻ 0, the QP
is strictly convex and hence the optimal solution x∗ is unique and
the KKT conditions are a necessary and sufficient condition for
optimality.

Basic concepts in QP optimization
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tuitively, LGh(x)LGh(x)T is a scalar. Using (3.18) in the first equation of the KKT
conditions (3.16) gives

u∗ = k(x)− LGh(x)k(x) + Lfh(x) + α(h(x))
LGh(x)LGh(x)T LGh(x)T . (3.19)

The denominator in (3.19) is always positive (except for singular points), while the nu-
merator is positive when the constraint is satisfied by the nominal controller and it is
negative when the nominal controller violates the constraint. Thus, the complete analyt-
ical solution of the QP can be expressed as

u∗ = k(x)−min
(

0, LGh(x)k(x) + Lfh(x) + α(h(x))
LGh(x)LGh(x)T

)
LGh(x)T (3.20)

The resulting controller is locally Lipschitz continuous [Xu et al., 2015].

3.3 Control Lyapunov functions

A Control Barrier Function (CBF), as defined in Definition 3.2.3, is an extension of Control
Lyapunov Functions (CLFs), which enforce stability or state convergence requirements.

Definition 3.3.1 (Control Lyapunov function). [Khalil, 2014] A continuously differen-
tiable positive definite function V : Rd → R is a control Lyapunov function (CLF) for
system (3.10) if it satisfies:

inf
u∈Rm

{LfV (x) + LGV (x)u} ≤ −γ(V (x)) (3.21)

with γ of class K.

An intuitive idea about the difference between the conditions posed by CBFs and CLFs
is shown in Fig. 3.4, considering as an example a linear extended class K function. In the
case of CBFs, the derivative of the function h along the system trajectories must be higher
than a certain threshold dictated by an exponential decrease (due to the consideration of
a linear extended class K function). Conversely, for CLFs, the function V must decrease
faster than a specified exponential.

Theorem 3. [Sontag, 1989] Given a CLF V with the associated set C from (3.4), any
Lipschitz continuous controller u(t), ∀t ≥ 0, that satisfies (3.21) asymptotically stabilizes
the system (3.10) to the origin.
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Figure 3.4: This figure is meant to give an intuitive idea about the difference in the
conditions posed by CBF (on the left) and CLF (on the right) for the case of linear class
K functions (i.e. exponential stability). Although we only plot in dashed the exponential
corresponding to the given initial conditions, we remind the reader that the constraint on
the slope is pointwise.

Similar to CBFs, the affine inequality in u allows for computationally efficient QP-
based controllers.

The formulation of safety-critical controllers via QP suggests a way to unify safety
and stability. In fact, optimization-based controllers were initially utilized in the context
of CLFs to achieve multi-objective nonlinear control [Ames & Powell, 2013], such as
combining stability with input constraints [Galloway et al., 2015]. One such formulation
involves the following CLF-CBF-QP-based controller:

min
u∈Rm

.
1
2u

TQ(x)u+ cTu+ µδ2

s.t. LGh(x)u+ Lfh(x) ≥ −α(h(x))

LfV (x) + LGV (x)u ≤ −γ(V (x)) + δ

(3.22)

Here, Q(x) represents the positive definite Hessian of the cost function, and δ serves as
a relaxation/slack variable ensuring QP feasibility, penalized by a large scalar µ > 0 (to
guarantee the QP has a solution by relaxing the stability condition to ensure safety). This
formulation has been proven to yield a Lipschitz continuous controller [Ames et al., 2016].

3.4 High-order control barrier functions

CBFs define constraints on the state, which represent outputs of the system. Hence, when
considering the input-output relationship, they exhibit relative degrees. For instance, a
position constraint, like the relative distance between cars on a road, possesses a relative
degree of two concerning an idealized acceleration input for a car.
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The safety constraints have previously been assumed to be of relative degree of one,
meaning that the first time-derivative of the CBF must depend on the control input.
In fact, in cases where the system has a relative degree higher than one, meeting the
condition in Definition 3.2.3, which requires LGh(x) ̸= 0, at least on the border of the set,
becomes unattainable. However, this assumption is often too restrictive for many safety
constraints in robotic systems. Consequently, there is a need to establish a method for
enforcing safety constraints with arbitrarily high relative degrees.

Various works have studied the conditions on the higher order derivatives of con-
straint functions to guarantee set invariance for systems of high relative degree [Nguyen
& Sreenath, 2016; Tan et al., 2021; Xiao & Belta, 2019, 2021]. This section provides a
basic summary of some of the ideas in [Tan et al., 2021].

Let us start by defining the concept of relative degree for a given output function.

Definition 3.4.1 (Relative degree). [Khalil, 2014] The relative degree ϱ of a (sufficiently)
differentiable function h : Rd → R with respect to system (3.10) is the number of times one
needs to differentiate it along the dynamics of (3.10) until any component of the control
u explicitly appears. That is

LGL
i−1
f h(x) = 0, for i = 1, 2, ..., ϱ− 1; LGL

ϱ−1
f h(x) ̸= 0. (3.23)

Given a sufficiently differentiable function h : Rd → R and sufficiently smooth extended
class K functions α1(·), α2(·), ..., αρ(·), we define a series of functions as

ψ0(x) = h(x), ψk(x) =
(
d

dt
+ αk

)
ψk−1, 1 ≤ k ≤ ϱ (3.24)

with the corresponding sets Ck−1 = {x : ψk−1(x) ≥ 0}.

Definition 3.4.2 (High order control barrier function). [Tan et al., 2021] Function h(x)
is a high order control barrier function (HOCBF) of order ϱ for (3.10) if there exist ϱ
extended class K functions α1, . . . , αϱ and an open set D with C := ∩ϱk=1Ck−1 ⊂ D ⊂ Rd

such that
sup
u∈U

[Lfψϱ−1(x) + Lgψϱ−1(x)u +αϱ (ψϱ−1(x))] ≥ 0. (3.25)

This definition generalizes to higher relative degrees the classical CBF definition [Ames
et al., 2019] that only applies to constraints of relative degree ϱ = 1. Then, as usual, given
a Lipschitz continuous desired input ud (given by the nominal state feedback k(x)), one
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can define a minimally invasive controller by solving the following Quadratic Program
(QP):

min
u∈U

.
1
2

∥∥∥u− ud∥∥∥2

2

s.t. Lfψϱ−1(x) + LGψϱ−1(x)u+ αϱ(ψϱ−1(x)) ≥ 0.
(3.26)

In the upcoming chapters, we will employ HOCBFs, since, as demonstrated later, any
information measure obtained from the OG exhibits a relative degree of 2 for a velocity-
controlled robot.

3.5 Distributed control barrier functions

The extension of the CBF framework to multi-agent systems has been explored in various
works [Balandi et al., 2023; Y. Chen et al., 2020; Fernandez-Ayala et al., 2023; Lindemann
& Dimarogonas, 2020; Tan & Dimarogonas, 2021, 2022; Wang et al., 2017]. Some of
these works solve the CBF-induced quadratic program in a centralized manner [Capelli &
Sabattini, 2020], utilizing a central module with access to all agents states. This approach
yields optimal solutions at the price of high computational and communication costs as
well as computational delays.

Extensions of the CBF framework to a decentralized or distributed implementation
fall into three main strategies: (i) schemes pre-allocating the constraint [Balandi et al.,
2023; Lindemann & Dimarogonas, 2020; Wang et al., 2017], (ii) schemes asymptotically
tracking the centralized optimal solution [Tan & Dimarogonas, 2022], and (iii) distributed
optimization-based schemes [Fernandez-Ayala et al., 2023; Tan & Dimarogonas, 2021].

Strategy (i) typically sacrifices optimality, potentially resulting in overly conservative
solutions and leading to infeasibility. Strategy (ii) aims to closely track the centralized
optimal solution but without guaranteeing constraint satisfaction. Strategy (iii) allows
the recovery of the optimal solution while guaranteeing constraint satisfaction at the cost
of higher computation and communication costs.

In this section, we introduce all three methods. They will each be employed in the
subsequent chapters. Specifically, in Chapter 7, as a contribution of this thesis, we extend
the method based on distributed optimization presented in [Tan & Dimarogonas, 2021],
addressing a particular shortcoming of the approach.

Before delving into the distributed formulations, let us introduce the centralized prob-
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lem we aim to solve. Consider a multi-agent system in control-affine form:

ẋ = f(x) +G(x)u (3.27)

with state x =
[
xT1 . . . xTN

]T
∈ Rn and input u =

[
uT1 . . . uTN

]T
∈ Rm. The function

f(x) =
[
f1(x1)T . . . f(xN )T

]T
and G(x) := diag(Gi(xi)) is block-diagonal. The system

must be confined within a safe set

C = {x ∈ Rd|h(x) ≥ 0} (3.28)

which could represent, e.g. a collision free region h(x) = dobs − dmin ≥ 0, where dobs is
the distance from an obstacle and dmin the minimum allowed distance from the obstacle,
or it could represent the space in which the robot needs to move h(x) = Rmax − ∥x∥ ≥ 0
where Rmax is the maximum allowed distance from the origin. Similarly to the previous
sections, for h to be a CBF it must satisfy the condition:

sup
u∈Rm

[Lfh(x) + LGh(x)u+ α(h(x))] ≥ 0 ∀x ∈ Rn, (3.29)

which, for system (3.27), can be rewritten as a summation of local terms:

sup
u∈Rm

[
N∑
i=1

(Lfih(x) + LGih(x)ui) + α(h(x))
]
≥ 0 ∀x ∈ Rn. (3.30)

In the following subsections, we discuss the three possible solutions to design distributed
CBFs.

3.5.1 Pre-allocation based method

In this strategy, each agent individually addresses its decentralized control barrier function
condition, ensuring their collective conjunction satisfies (3.29). A straightforward idea is
to let each agent solve a QP with the following constraint

∂h

∂xi
(fi(xi) +Gi(xi)ui) ≥ −γiα(h(x)) ∀i ∈ {1, 2, ..., N} (3.31)

with γi = 1
N

, which distributes (3.29) equally among the agents. To see why this approach
provides a feasible solution, consider that if ∑N

i=1 γi = 1 is verified then, adding up all the
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inequalities (3.31), one obtains

N∑
i=1

(Lfih(x) + LGih(x)ui) ≥ −
N∑
i=1

(γi)α(h(x)) = −α(h(x)) (3.32)

which is the CBF inequality in (3.30). However, this approach may encounter situations
where for a specific agent i, ∂h

∂xi
= 0, while for another agent j, ∂h

∂xj
̸= 0. Consequently,

although the centralized problem remains feasible, the local QP to be solved by agent i
may become infeasible.

For instance, the inequality 0 ≥ −γiα(h(x)) cannot be satisfied if the system at time
t is outside the safe set (−γiα(h(x)) > 0), rendering the constraint unsatisfiable. This
critical situation might lead to ∥ui∥ → ∞ as ∂h

∂xi
→ 0.

To address this issue, alternative choices for γi exist as long as ∑N
i=1 γi = 1. One

suitable choice for γi is:

γi =

∥∥∥ ∂h
∂xi

∥∥∥p
p∑N

i=1

∥∥∥ ∂h
∂xi

∥∥∥p
p

(3.33)

with p = {1, 2}. This formulation ensures that as ∂h
∂xi
→ 0, γi → 0, preserving ∑N

i=1 γi = 1.
Moreover, if the number of agents N is known or estimated through consensus [Garin &
Schenato, 2010], γi can be computed in a distributed manner by tracking the average of∑N
i=1

∥∥∥ ∂h
∂xi

∥∥∥p
p

and multiplying it by N .
This method prevents constraint violations but may yield suboptimal solutions, po-

tentially overconstraining the system and hindering performance in practical scenarios.

3.5.2 Tracking the centralized optimal solution

This approach, detailed in [Tan & Dimarogonas, 2022], emphasizes tracking a centralized
optimal solution, a solution that may not ensure constraint satisfaction at all times but
allows for distributed solvability.

For the problem to be solvable in a distributed way, we make the following assumption
concerning h.

Assumption 1. The parameters in the CBF condition (3.29) are locally obtainable, i.e.,
the condition can be written in the form

N∑
i=1

(
aTi (xNi

i )ui + bi(xNi
i )
)
≤ 0 (3.34)
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where xNi
i =

[
xTi {xTj }j∈Ni

]T
, hence, the functions ai(xNi

i ), bi(xNi
i ) can be locally eval-

uated. Notice that, relating (3.34) to (3.29), one has aTi = −Lgih(x) while for bi different
choices are possible. One has to distribute the constraint as done for the pre-allocation
based method, but this time without discontinuity problems. Hence, the most reasonable
choice seems to use bi = − 1

N
(α(h(x)) + Lfih(x)).

Consider the analytical solution provided in (3.20). For each agent i, it can be written
as

u∗
i = ki(x)−min

(
0,
∑N
i=1 a

T
i ki(x) + bi∑N
i=1 a

T
i ai

)
ai. (3.35)

In this expression, the only terms which are not locally available are the two summations∑N
i=1 a

T
i ki(x)+bi and ∑N

i=1 a
T
i ai. Employing a dynamic average consensus algorithm [Kia

et al., 2019] enables tracking their averages, denoted µn and µd. The ratio µn
µd

allows the
recovery of the term:

µn
µd

=
∑N
i=1 a

T
i ki(x) + bi∑N
i=1 a

T
i ai

. (3.36)

In this way, we are able to asymptotically track the centralized optimal solution, but at
the cost of not ensuring constraint satisfaction at all times. The original algorithm [Tan
& Dimarogonas, 2022] involves employing a finite-time dynamic consensus algorithm [F.
Chen et al., 2012] to track the averages µn and µd.

3.5.3 Distributed optimization based method

Here, we summarize the solution presented in [Tan & Dimarogonas, 2021]. Although other
methods based on distributed optimization were introduced in [Y. Chen et al., 2020], they
do not ensure constraint satisfaction at all times.

Assumption 1 is considered to hold. The QP to be solved is as follows

min
u∈Rm

.
1
2

N∑
i=1

∥∥∥ui − udi ∥∥∥2

2

s.t.
N∑
i=1
aTi ui +

N∑
i=1

bi ≤ 0,
(3.37)

where we omitted the state dependency of ai and bi for the sake of readability. However, we
remind that these terms change over time as the state evolves along the system trajectories.

The QP depicted in (3.37) is centralized. The objective is to develop a distributed
algorithm that achieves asymptotic convergence to the time-varying centralized optimal
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solution of the QP while always enforcing the safety constraint. To achieve this objective,
we introduce the following equivalent QP

min
(u,y)∈Rm+N

1
2

N∑
i=1

∥∥∥ui − udi ∥∥∥2

2

s.t. aTi ui +
∑
j∈Ni

(yi − yj) + bi ≤ 0, ∀i ∈ V
(3.38)

where y =
[
y1, . . . yN

]T
∈ RN is an auxiliary variable, with the element yi associated to

robot i. The two QPs, (3.38) and the original QP, are equivalent (see the Box in the next
page). In particular, this implies that each solution (u′,y′) satisfying the constraint in
(3.38), also satisfies the constraint in the original QP (3.37) and viceversa.

The constraints in the previous QP (3.38) can be equivalently written in matrix form
as:

Āu+Ly + b ≤ 0 (3.39)

with Ā = diag(aTi ), L is the unweighted Laplacian matrix of the undirected graph and
b =

[
b1 . . . bN

]T
.

One may then formulate, for each agent i, the following QP

min
(ui,y)∈Rmi+N

1
2

∥∥∥ui − udi ∥∥∥2

2

s.t. aTi ui +
∑
j∈Ni

(yi − yj) + bi ≤ 0
. (3.44)

The challenge here is that consistency of y needs to be preserved across the agents, i.e. the
local copy yi of agent i needs to be equal to the local copy yj of agent j. For addressing this
point, one approach involves exploring the KKT optimality conditions of (3.38) to design
a distributed algorithm that updates y, aiming for convergence towards the optimal y∗

over time. Consequently, each robot tackles (3.44) using solely ui as a decision variable,
while maintaining y fixed within the QP. The optimal solution y∗, derived from the KKT
conditions, must meet the following criterion ∀i ∈ V :

 aTi u
d
i + lTi y∗ + bi ≤ 0, if āTud + b̄ ≤ 0

aTi u
d
i + lTi y∗ + bi = kaTi ai, if āTud + b̄ > 0

(3.45)

where li is the i-th row of L and

k = (āTud + b̄)/ ∥ā∥2
2 . (3.46)
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The equivalence between (3.37) and (3.38) is based on the fact that
1TL = 0. In fact, if we sum all the constraints we obtain

0 = 1TN0 ≥ 1TN
(
Āu+Ly + b

)
=

N∑
i=1
aTi ui + 1TNLy +

N∑
i=1

bi

=
N∑
i=1

(
aTi ui + bi

)
(3.40)

which is the expression in the original constraint. This implies that
given a tuple (u′,y′) satisfying (3.39), it also satisfies the original
constraint. Viceversa, given an input u′ satisfying the original con-
straint in (3.37), define v = Au′ + b and v̄ = 1TNv

N
as its average.

Since u′ is feasible

0 ≥
N∑
i=1

(
aTi u

′
i + bi

)
= 1TN

(
Āu′ + b

)
= 1TNv =

N∑
i=1

vi = Nv̄ (3.41)

which shows that v̄ ≤ 0. Furthermore, since Range(L) = {z ∈
RN |1TNz = 0}, there exists y′ such that

Ly′ + v = v̄1N . (3.42)

Hence, we have

Āu′ +Ly′ + b = v +Ly′ = v̄1N ≤ 0. (3.43)

This implies that (u′,y′) is feasible for (3.38). Noting that they
also share the same cost function, we conclude that the two QPs
are equivalent.

Showing equivalence of the QPs
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Since k ≤ 0 when āTud + b̄ ≤ 0, a sufficient condition for y∗ is simply to satisfy (3.45) as

aTi u
d
i + lTi y∗ + bi = kaTi ai ∀i ∈ V (3.47)

which can be rewritten in matrix form as

Ly∗ = k


aT1 a1

...
aTNaN

− Āud − b. (3.48)

Hereafter, the distinction arises in the method proposed in Chapter 7. In [Tan & Di-
marogonas, 2021], local variables are defined as

ki = 1
aTi ai

(aTi udi + lTi y∗ + bi) (3.49)

and it was shown that the optimal y∗ are such that ki = kj ∀(i, j) ∈ E then, finding
such vector y∗ condition (3.45) is satisfied. Consequently, it was proposed to update the
variables y according to the following finite-time modified dynamic consensus:

ẏ = −k0sign(Lk) (3.50)

with k =
[
k1 . . . kN

]T
. A crucial point is that, due to (3.49), this approach requires

∥ai(t)∥ > 0 ∀t, ∀i which, as also acknowledged in [Tan & Dimarogonas, 2021], can be quite
restrictive. Even small values of ∥ai(t)∥ could pose conditioning challenges. Furthermore,
this assumption is not verified in various applications of interest, such as connectivity
maintenance, as it will be extensively discussed in Chapter 7.

For this algorithm, convergence to the optimal solution in finite-time was shown in
[Tan & Dimarogonas, 2021]. Furthermore, since any solution (u′,y′) which is feasible for
(3.38) is also feasible for the original problem (3.37) independently from y′, it follows that
constraint satisfaction is always guaranteed also during transitories.

The solution presented here addresses the case in which a single CBF constraint is con-
sidered. However, multiple CBFs can be handled by employing a smooth approximation
of the minimum function [Fernandez-Ayala et al., 2023; Molnar & Ames, 2023].
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Chapter 4

ACTIVE SENSING FOR COOPERATIVE

LOCALIZATION

The previous chapters introduced the fundamental theoretical concepts that are necessary
for the understanding of the rest of this thesis. From this chapter on, we will instead focus
on the contributions of this thesis in the field of active sensing, control barrier functions
and observer design for multi-robot systems.

This chapter outlines the research conducted during the initial phase of the Ph.D.,
where we explored the adaptation of an active sensing methodology akin to the one de-
tailed in [Salaris et al., 2019], originally designed for single-robot scenarios, to address the
challenge of cooperative localization in multi-robot systems with sensing constraints. The
objective is to enable a fleet of quadrotors to localize their relative poses in a common
shared frame without imposing a rigidity requirement (which, as explained in Sect. 2.4,
would simplify the localization problem but also overconstrain the group spatial arrange-
ment and motion).

The problem of cooperative localization from relative bearing or relative distance mea-
surements is non uniformly observable, meaning that for some input trajectories the sys-
tem is not observable. Since we do not assume formation rigidity, it is necessary to actively
guarantee the observability of the system in a common frame, which w.l.o.g. we consider
to be the one of the robot identified as robot 1, denoted as anchor from now on. The
distributed Extended Kalman Filter presented in [Luft et al., 2016] is used to localize the
robots.

In order to guarantee the observability of the system, we extend an approach similar
to [Salaris et al., 2019], aiming at maximizing the information acquired over a future
horizon about the relative state of the robots, generating input trajectories which aim
at enforcing system observability and possibly improving the state estimation accuracy.
This approach involves formulating an optimal control problem, the objective of which
is to maximize the information acquired during the trajectory considering the minimum
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eigenvalue of the OG (E-criterion), which is related to the worst case uncertainty. This
problem cannot be directly solved in a distributed way, since it would require each robot
to know the future state trajectory of all the other robots in the group. It is however
possible to derive an alternative cost function which can be decomposed in a way that is
suitable for distributed optimization algorithms.

To generate trajectories that are aware of the sensing constraints, we weight the ac-
quired information by suitable weight functions. We exploit the fact that, for common
classes of models used for mobile robots, such as quadrotors in R3 × S1, unicycles and of
course simpler linear models as single or double integrators, the state sensitivity matrix
possesses a closed-form solution that avoids the need forward integration any differen-
tial equation. The OG is taken as the sum of the prior information, given by the EKF,
and the information acquired over the future horizon. Other constraints such as collision
avoidance and connectivity maintenance are also taken into account separately from the
optimal control problem (OCP) in order to limit the complexity of the problem. In par-
ticular, collision avoidance is discouraged using weights and safety can be guaranteed at
a lower level using Control Barrier Functions (CBFs) [Wang et al., 2017]. Connectivity
maintenance is enforced at low-level by employing the global connectivity maintenance
algorithm presented in [Robuffo Giordano et al., 2013].

The contributions of this work can then be summarized as follows: we analyze the
properties of the OG for the case of cooperative localization from either relative dis-
tance or relative bearing measurements. We propose a framework for the solution of
the active cooperative localization problem of non-uniformly observable formations which
is distributed and scalable. We do not rely on any particular assumption (e.g. exter-
nal beacons, multiple tags per robot, or formation rigidity), we assume availability of
only body-frame quantities. The main properties upon which we build the distributed
optimization algorithm are the following:

• the eigenvalues of the OG being indipendent of the reference frame, one can optimize
the optimality criteria in the most convenient frame which does not need to be the
same considered for the EKF;

• in a static frame, for the considered robot model, the state sensitivity matrix has a
closed-form solution, which avoids forward integration;

• the OG corresponding to a multi-robot system with relative measurements has a
sparse structure which is fully exploited for proposing an alternative cost function
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that makes the problem amenable to a partition-based distributed optimization
algorithm.

Part of this work was first published in [De Carli et al., 2021], focusing on scenarios
where relative distances are measured. This initial exploration covered a subset of the
framework detailed in this chapter, specifically delving into the structure of the OG and
demonstrating the potential for a distributed solution through appropriate coordinate
transformations, which will be elaborated upon later in this chapter. In this work, each
robot independently solved its optimization problem, with the current future prediction
of the neighbors trajectory held constant during optimization.

4.1 Related works

Few works have proposed a fully distributed solution to the active cooperative localization
problem. In [Cristofaro & Martinelli, 2010; Morbidi & Mariottini, 2012] algorithms based
on the covariance matrix solution of the Riccati differential equation have been proposed
but without considering the problem of arriving at a distributed implementation. Simi-
larly, in [S. Li et al., 2022] a centralized Nonlinear Model Predictive Control (NMPC) is
used to perform some multi-robot tasks (e.g. formation control) and at the same time
maximizing the determinant of the observability matrix.

In [Cano & Le Ny, 2023], the authors consider a group of robots in which some robots
are defined as anchors (considered as absolutely localized) and others are defined as tags
(which need to be localized). The robots measure relative distances among themselves and
they move in the gradient direction to maximize the usual optimality criteria considering
the constrained FIM. They are able to find an estimate of the centralized gradient direction
for the A- and D-criteria by computing the inverse of the FIM using the Richardson
iteration. The inverse estimation, although distributed, it is not scalable as it requires
each robot to estimate the corresponding full block of rows of the inverse FIM, which
has as many block of columns as the number of robots in the group. Furthermore, they
consider scalable optimization of the E-criterion using the well-known distributed power
iteration method. Differently from our work the authors consider only the information
acquired by the current measure in the FIM, thus disregarding the past history of the
system. In this way, they can only optimize the geometry of the formation with the
intent of increasing robustness to noise. This is possible because they assume that there
are enough exactly localized robots to be able to unambiguously solve the localization
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problem. Also, differently from our work, the authors do not consider sensing limitations
and, hence, the corresponding sensing graph is constant.

In [Cossette et al., 2022], again, an algorithm for active cooperative distance-based
localization using UWB is proposed. Here, the authors detail a framework that does not
require absolutely localized robots, but instead each robot is required to possess two tags:
this is equivalent to the rigidity assumption and makes the problem uniformly observable.
The authors do not consider the problem of computing the gradient in a distributed way
as they assume the graph to be always fully-connected and, again, they aim at optimizing
the geometry of the formation more than achieving PE, which is not necessary in their
case.

The present work differs from the previously mentioned ones as we propose a fully
distributed and scalable solution to the active cooperative localization problem and we
do not make any ad-hoc assumptions about the uniform observability of the system (e.g.
using absolutely localized robots, multiple tags on a single robot, or formation rigidity).
As a consequence, the robot trajectories are required to satisfy a suitable ‘excitation
condition’ for ensuring observability of their relative poses. Moreover, we consider robots
with only body-frame commands and measurements, so that the robots do not share
an exactly localized frame (just an estimated one) in which to express the exchanged
quantities. Finally, the interactions among the robots are dictated by a time-varying
graph which depends on realistic sensor limitations.

4.2 Multi-robot system model

In this section, we describe the modeling assumptions, beginning with the single robot
model. We consider quadrotors modeled in R3 × S1, whose dynamics are expressed in
a common static frame when simulating the dynamics over a future horizon. However,
during state estimation using a distributed EKF, the dynamics are expressed in the frame
of a specific robot, as will be elucidated in the subsequent section. Then, we describe the
measurement model and we conclude describing the whole group model.

4.2.1 Robot model

We consider a group of N robots with a particular focus on quadrotor UAVs because of
their popularity and widespread use in the community. However, the proposed method-
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ology would also apply to other kinds of mobile robots with minor modifications.
In line with prior works on formation control/localization for multiple quadrotors (e.g.,

[Franchi et al., 2012; Montijano, Zhou, et al., 2014; Schiano et al., 2016]), we simplify
the quadrotor state to a 3D position and a yaw angle qi = (pi, ψi) ∈ R3 × S1 which, as
well-known, are the quadrotor flat outputs [Fliess et al., 1995; Mellinger & Kumar, 2011].
As a consequence, any smooth enough trajectory qi(t) can then be tracked by existing
flight controllers for quadrotors (e.g., [T. Lee et al., 2010]).

We model the quadrotors as first-order kinematic systems with body-frame velocity
commands ṗi

ψ̇i

 =
Ri 0

0 1

vi
wi

 (4.1)

where vi and wi are respectively the commanded body-frame linear velocity and yaw rate,
and Ri = Rz(ψi) ∈ SO(3) denotes the rotation matrix about the z-axis of an angle ψi.
We also let ui = (vi, wi) collect the i-th robot commands. Notice that we skipped the
time dependency to make the notation lighter.

No global common frame is assumed directly available to the robots since they can only
obtain relative measurements w.r.t. each other and their velocity commands are in the
robot body frames. A common frame must, however, be implicitly or explicitly selected
for expressing the estimated robot poses. This could be an arbitrary ‘fixed’ frame (e.g.,
the initial pose of one particular robot in the group), or a ‘moving’ frame attached to
the formation. In this latter case, two natural choices seem possible: the robot poses are
expressed in the moving body frame of one particular robot (e.g., which we refer to as
anchor), or in a moving frame attached to the group barycenter. The barycentral frame
would seem a better choice since it does not require the selection of a ‘special robot’ in
the group. However, being the barycentral frame linearly dependent on the frames of the
robots in the formation, the associated change of coordinates would lead to a rank deficient
OG. Since an Extended Kalman Filter (EKF) is employed as observer, the consequence
of a rank deficient OG is that the covariance matrix of the EKF would grow unbounded
along certain state space directions.

Therefore, in this work we assume presence of an anchor robot, w.l.o.g. taken as
robot 1, whose body frame, which we indicate as R1, is taken as the common frame for
expressing the estimated poses of the other robots in the group. In view of the following
developments, it is then convenient to express the robot states and model in terms of
quantities relative to R1. Let 1Ri = RT

1Ri, 1pi = 1Ri(pi − p1) and 1ψi = ψi − ψ1 be the
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position and orientation of robot i in R1, and xi = (1pi,
1ψi) the i-th robot configuration

in R1. From (4.1) and standard kinematics one has

ẋi =
1ṗi

1ψ̇i

 =
1Ri 0

0 1

vi
wi

−
I Se3

1pi

0 1

v1

w1

 (4.2)

where Se3 = [e3]× and v1 and w1 are the control inputs of the anchor. Clearly, 1p1 = 1ṗ1 = 0
and 1ψ1 = 1ψ̇1 = 0. The dynamics (4.2) are the model considered by the employed state
estimator which, in our case, is the distributed EKF (dEKF) proposed in [Luft et al.,
2016, 2018].

In this thesis, we do not delve into details about the dEKF algorithm as it is not
part of the contribution of this thesis and, from an input-output point of view, it can
be considered as a traditional EKF. The only important details concerning the algorithm
within the scope of this thesis are the following. This dEKF only requires robot i to
communicate with a neighboring robot j when either i or j acquire a new measurement. To
achieve such a distributed solution, approximations in the update steps of the covariances
are made. In practice, the performances obtained are not much far from a centralized
implementation of the EKF.

We point out that, since the employed dEKF, providing the estimated state x̂(t)
and pseudo-covariance matrix P (t), is built on the ‘anchor-frame’ dynamics (4.2), the
implementation of the dEKF requires that each robot has access to the current anchor
velocity input u1(t). One possible way to address this issue is to assume presence of a
consensus-like algorithm, as the one used in [Franchi & Robuffo Giordano, 2018], i.e. each
robot maintain an estimate of the anchor velocity ûi1 as:

˙̂ui1 = −ku
∑
j∈Ni

(ûi1 − û
j
1)

û1
1 = u1

(4.3)

This obviously introduces a delay in the estimated velocity, which particularly affects
robots which are far (in terms of graph distance) from the anchor. However, by suitably
weighing the uncertainties on the robots dynamics, the effect on the relative pose estima-
tion is limited as neighboring robots are expected to have a similar estimate of the anchor
velocity.
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4.2.2 Sensing model

We considered both the case in which only relative distances are measured and the case in
which only relative bearings are measured. In the following we will treat them separately.

Relative distance measurements

The UAVs are assumed equipped with a sensor able to provide relative range measure-
ments corrupted by an additive normally distributed noise ν ∼ N (0, r) with zero mean
and variance r

dnij = ∥pj − pi∥2 + ν = hij(pj − pi) + ν. (4.4)

A robot pair (i, j) is assumed able to measure dnij when ∥pj − pi∥2 ≤ dmax, with dmax

being a maximum sensing range. Similarly, a robot pair (i, j) is also assumed able to
exchange information over a radio channel when within the sensing range dmax.

Because sensing constraints are considered the induced sensing graph is time-varying.
Moreover, since only the maximum range sensing constraint is considered, the induced
sensing graph is undirected.

Relative bearing measurements

The bearing from robot i to robot j expressed in the body frame Ri is defined as the 3D
unit vector:

βij = RT
i

pij
dij

(4.5)

where pij = pj − pi and dij = ||pij||2. Bearings are commonly used because they can be
quite accurately retrieved using inexpensive sensors such as cameras. A simplified model
for the noise affecting the measurements is the following:

βnij = RT
i

p̄ij +Riη̄ij
||p̄ij +Riη̄ij||2

(4.6)

where p̄ij ∈ R3 is the projection of pij onto the calibrated perspective plane of the camera
of the i-th robot and η̄ij =

[
0 ηTij

]T
with ηij ∼ N (0, Qij) models image noise. Notice

that the resulting measurement noise, being subject to a nonlinear transformation, is not
Gaussian. As in other works employing bearing measurements [Hamel & Samson, 2016],
the dEKF from [Luft et al., 2016] is then here considered as a deterministic observer
and the gain matrix representing the measurement confidence (usually the inverse of the
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4.2. Multi-robot system model

covariance matrix) is taken to be a constant positive definite matrix R = rI with r > 0.
The i-th robot is assumed able to measure the relative bearing w.r.t. the j-th robot βnij

when dmin ≤ dij ≤ dmax, with dmin and dmax being minimum and maximum sensing range
and the j-th robot is in the FoV of the i-th robot. This latter constraint is modeled as
the condition cij > cmin, where cij = eT1 βij is the cosine among the i-th robot x body axis
(which the camera is assumed to be aligned with) and the bearing (see Fig. 4.1), and cmin is
the minimum cosine allowed by the limited camera FoV (corresponding to the maximum
angle αmax). Because sensing constraints are considered the induced sensing graph is

Figure 4.1: Illustrations of the quantities involved in the sensing constraints.

time-varying. Moreover, since also FoV sensing constraints are considered, the induced
sensing graph is directed, while the communication graph corresponds to its undirected
counterpart.

4.2.3 Group model

Let d be the state dimension of one robot (d = 4 in our scenario). In view of the following
developments we let

x =
[

1pT1 . . . 1pTN
1ψ1 . . . 1ψN

]T
∈ (R3 × S1)N , (4.7)

Vector x represents the stack of N robot poses xi in R1, with a reordering for collecting
the positions and yaw angles into two partitions. Similarly, we also introduce the vector

q =
[
pT1 . . . pTN ψ1 . . . ψN

]T
∈ (R3 × S1)N

as the collection of reordered configurations qi for the robots in the global frame. The
anchor frame state x is the vector of poses which needs to be estimated (anchor excluded)
and represents the EKF state. We remind the reader that 1p1(t) = 0 and 1ψ1(t) = 0 for
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all t ≥ 0, thus they are not included in the state of the dEKF, ensuring a positive definite
gramian and, hence, boundedness of the covariance matrix [Pengov et al., 2001]. Vector
u = [uT1 , . . . , uTN ]T ∈ RdN is the stack of all robot inputs, while

y =


y1
...
y|E|

 =


hq1(q)

...
hq|E|(q)

 =


hx1(x)

...
hx|E|(x)

 (4.8)

is the stack of all the |E| measurements among robot pairs (either relative distances or
relative bearings).

Regrouping (4.2, 4.8) for all the N robots, the group dynamics in the anchor frame is
compactly expressed as

ẋ(t) = f(x(t),u(t)),

y(t) = hx(x(t))
(4.9)

Regrouping (4.1), we denote the complete group dynamics in the global frame as

q̇(t) = g(q(t),u(t)) (4.10)

This distinction between vectors x and q (and respective dynamics) may appear re-
dundant but it will be important in the next developments: indeed x represents the
‘anchor-frame’ robot poses that will be actually estimated by the employed filter (an
EKF in our case), whereas q represents the ‘fixed-frame’ robot poses that are forward
propagated by the robots at each optimization step for maximizing the future informa-
tion gain.

4.3 The multi-robot observability gramian

In this section, we will directly dive into the structure of the OG for the specific case at
hand. For more details about the properties of the OG refer to the chapters of Prelimi-
naries.

We consider a weighted OG given as

Go(t0, tf ) =
∫ tf

t0
ΦT (τ, t0)CT (τ)W (τ)C(τ)Φ(τ, t0) dτ (4.11)

In the following subsections, we start by showing that the OGs associated to the dynam-
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ics (4.9) and (4.10) are equivalent from the point of view of optimizing one of the the
optimality criteria (see Sect. 1.3). This allows to consider the dynamics (4.10) along the
future horizon, which do not require the knowledge of the anchor input. Then, we show
that, for the robot model (4.10), the state sensitivity matrix can be computed in closed
form, making it much cheaper to compute. Finally, we define the weighting function W ,
so that it takes into account the robots sensing limits.

4.3.1 Change of coordinates

An important property of the OG is that, given a differential change of bases

δq(t) = T (x(t))δx(t) (4.12)

and referring the OG in the two bases as G(x)
o (t0, tf ) and G(q)

o (t0, tf ), these are related as
follows:

G(q)
o (t0, tf ) = T (x(t0))G(x)

o (t0, tf )T T (x(t0)). (4.13)

Therefore, if the change of bases matrix T (x(t)) is orthogonal, this is a similarity trans-
formation and, since the optimality criteria can be expressed as eigenvalue functions,
optimizing some optimality criteria considering G(q)

o is equivalent to optimizing the cor-
responding optimality criteria for G(x)

o . Consider the change of coordinates from the
anchor-frame coordinates to some static common frame. The differential change of coor-
dinates is given as:

δq(t) = T (ψ1(t))δx(t) (4.14)

with
T (ψ1(t)) = IN ⊗ T1(ψ1(t)), T1(ψ1(t)) =

[
Rz(ψ1(t)) 03×1

01×3 1

]
. (4.15)

which is an orthogonal matrix. Hence, in light of (4.13), it follows that the OGs relative
to the states x (as in the EKF case) and q are similar matrices. The OG can then be
computed from the states q with the important advantage of not requiring each robot to
know the trajectory of the anchor along the predicted trajectory.

4.3.2 Multi quadrotor state sensitivity matrix

We now consider the state sensitivity matrix for the special case of a network of quadrotors
modeled as in (4.1) which, as we will show, has a closed-form expression.
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The state sensitivity matrix for a single robot Φi(t, t0) = ∂qi(t)
∂qi(t0) has the expression

Φi(t, t0) =


1 0 0 −yi(t) + yi(t0)
0 1 0 xi(t)− xi(t0)
0 0 1 0
0 0 0 1

 (4.16)

where xi and yi represent, respectively, the x- and y-component of the position of the i-th
robot expressed in a static frame. This can be seen by expliciting each component of the
state equations for the i-th robot



xi(t) = xi(t0) +
∫ t
t0

(cψi(t)vxi(t)− sψi(t)vyi(t)) dτ

yi(t) = yi(t0) +
∫ t
t0

(sψi(t)vxi(t) + cψi(t)vyi(t)) dτ

zi(t) = zi(t0) +
∫ t
t0
vzi(t) dτ

ψi(t) = ψi(t0) +
∫ t
t0
ωi(t) dτ

(4.17)

where we used the notation cos(ψi) := cψi , sin(ψi) := sψi and vi := [vxi, vyi, vzi], and then,
computing the jacobian and noticing that ∂xi(t)

∂ψi(t0) = −yi(t) + yi(t0) and similarly for ∂yi(t)
∂ψi(t0) .

Because of this result, when we will formulate an optimal control problem it will not be
necessary to forward integrate the dynamics of the state sensitivity matrix for obtaining
Φ(t, t0), which could otherwise be computationally heavy, particularly since each robot
also need to know the the one of its neighbors.

The resulting state sensitivity matrix Φ(t0, t) = ∂q(t)
∂q(t0) , because of the permutation

partitioning it in position and yaw components, has the following structure:

Φ(t, t0) =
I Φp×ψ(t, t0)

0 I

 (4.18)

where Φp×ψ is a block diagonal matrix

Φp×ψ(t, t0) = diag



−yi(t) + yi(t0)
xi(t)− xi(t0)

0


 = (IN ⊗ Se3) diag (pi(t)− pi(t0)) (4.19)
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4.3.3 Weights definition

As previously mentioned, we assume that the onboard sensors have a limited mini-
mum/maximum range and, for the case of bearing measurements, limited field of view.
These constraints can be taken into account by suitably weighting the information ac-
quired by the sensors along the predicted trajectory via some scalar differentiable state-
dependent weight function wij(qi(t), qj(t)) associated to each edge. In particular, we
consider the weights defined in (2.38), which vary in the range [0, 1] and are designed so
that when the i-th and j-th robots are approaching disconnection wij get close to zero,
meaning the associated information will get close to zero, but they do not exactly vanish
at the limit.

These weights enter the OG inside the weight matrix W = diag(r−1wijIp), where r
is the information gain in the EKF, as discussed in Section 4.2.2, and p = 1 for distance
measurements and p = 3 for bearing measurements. This can also be interpreted as
having a state-dependent output covariance (wijr−1Ip)−1 which tends to infinity when
the robots are approaching disconnection.

4.3.4 The multi-robot observability gramian: structure and prop-
erties

In this section, we analyze the structure of the OG, showing that, it has the same sparsity
structure as a Laplacian matrix, which is beneficial for distributed computations. We
remind that, the state sensitivity matrix up to the partitioning into position and yaw
has a block-diagonal structure (4.18), while the term CTC corresponds to the symmetric
rigidity matrix (see Section 2.4) which has a similar sparsity pattern as a Laplacian matrix
(i.e. every block (i, k), such that k /∈ Ni is equal to 0). Below, we recap the expression
of the symmetric rigidity matrix both for the case of distance and bearing measurements
as in Section 2.4, but also considering the weight matrix W .

Sd =

E3 diag(r−1wijpijp
T
ij)ET

3 03N×N

0N×3N 0N×N

 =

 Lpd 03N×N

0N×3N 0N×N

 (4.20)

Sb =

 E3 diag
(
r−1wij

Πβ̄ij

d2
ij

)
ET

3 −E3 diag
(
r−1wij

Se3 β̄ij
dij

)
ET

⊗

−E⊗ diag
(
r−1wij β̄

T
ijS

T
e3

dij

)
ET

3 diag
(
r−1wij

∑
j∈Nout

i
β̄2
ijx + β̄2

ijy

)


=
[
Lpb LTS⊗

LS⊗ D⊗

] (4.21)
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where Lp∗ , with ∗ = {’d’, ’p’} are weighted Laplacian matrices, LS⊗ is a directed weighted
Laplacian matrix asymmetrical in the dimensions and with sign indefinite rectangular
weight matrices and, finally, D⊗ is a weighted out-degree matrix. As a consequence, for
distance measurements

Gd
o(t0, tf ) =

 Gd
op GdT

op×ψ

Gd
op×ψ Gd

oψ

 =
∫ tf

t0
ΦT (τ, t0)CT (τ)W (τ)C(τ)Φ(τ, t0) dτ

=
∫ tf

t0

 Lpd ∗
ΦT
p×ψLpd ΦT

p×ψLpdΦp×ψ

 dτ
(4.22)

and for bearing measurements

Gb
o(t0, tf ) =

 Gb
op GbT

op×ψ

Gb
op×ψ Gb

oψ

 =
∫ tf

t0
ΦT (τ, t0)CT (τ)W (τ)C(τ)Φ(τ, t0) dτ

=
∫ tf

t0

 Lpb ∗
ΦT
p×ψLpb +LS⊗ ΦT

p×ψLpbΦp×ψ + ΦT
p×ψL

T
S⊗ +LS⊗Φp×ψ +D⊗

 dτ
(4.23)

where the ’∗’ symbol is used to indicate the symmetric term. Notice that the lower right
term preserves the sparsity structure of a Laplacian-like matrix, this is due to the block
diagonal structure of Φp×ψ. Moreover, the sparsity structure of the matrices involved is
preserved under the integral.

Next, we list some properties related to the observability and the OG for the considered
multi-robot system. We point out that this study is an original contribution of this thesis.

• The positions partition is a matrix-weighted Laplacian

The integral of the upper left term G∗
op =

∫ tf
t0 Lp∗ dτ both for distance and bearing

measurements remains a matrix weighted Laplacian matrix, i.e. it is still true that

[G∗
op](ii) =

∑
j∈Ni

[G∗
op](ij)

[G∗
op](ij) ⪯ 0

(4.24)

These two properties are straightforward to verify by expanding the integral in the
two cases (distance and bearing measurements) and considering the fact that the
sum of Laplacians is a Laplacian itself.
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Furthermore, we point out that:

Gd
op =

∫ tf

t0
E3 diag(

∫ tf

t0
r−1wijpijp

T
ij)ET

3 dτ = E3 diag
(∫ tf

t0
r−1wijpijp

T
ij dτ

)
ET

3

(4.25)
and

Gb
op =

∫ tf

t0
E3 diag

(
r−1wij

Πβ̄ij

d2
ij

)
ET

3 dτ = E3 diag
(∫ tf

t0
r−1wij

Πβ̄ij

d2
ij

dτ

)
ET

3

(4.26)
These two equations are fundamental as they show that, if an edge is PE then
the corresponding matrix weight in the Laplacian becomes positive definite. Many
classical results for traditional Laplacians straightforwardly extended to matrix-
weighted Laplacians with positive definite weights [Trinh et al., 2018]. For instance,
from Lemma 2 it follows that, if there exists a path of positive definite edges then,
the null space of the OG is spanned by N (G∗

op) = 1N ⊗ Id.

• Observability condition for a formation in R3 × S1

Let us first introduce an observability condition based on the OG for the case in
R3. We are concerned with the observability of the positions of the robots in a
common frame. Consider an ideal case in which each robot directly measures the
relative positions with respect to its neighbors with the graph being connected. The
measurement Jacobian in this case is nothing else than the incidence matrix E3 and,
analogously to Sd and Sb, we define the symmetric matrix Sp = E3E

T
3 = L3. In this

case, it is well-known that N (L3) = 1N ⊗ I3, implying that the only unobservable
motions are common translations in R3. Then, one can state the observability
conditions from distance and bearing measurements as:

G∗
op ⪰ µL3 (4.27)

with µ > 0, which shows that the robot positions are observable up to a common
translation.

Let us now repeat a similar reasoning for the case in R3×S1. This time, the baseline
is represented by each robot measuring the relative body-frame position and the
relative yaw with respect to its neighbors, which allows to localize the robots up
to a common translation and a coordinated rotation about the z-axis involving an
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angular rotation. Let us define the measurement vector

hq =
diag(RT

i )ETp

ETψ

 , (4.28)

the measurement Jacobian can be shown to be

Rq =
diag(RT

i )E3 − diag(RT
i )(IN ⊗ Se3) diag(pij)ET

⊗

0 E


=
diag(RT

i ) 0
0 IN

 E3 −(IN ⊗ Se3) diag(pij)ET
⊗

0 E

 (4.29)

and the corresponding symmetric matrix is

Sq =
 E3 0
−E⊗ diag(pij)(IN ⊗ STe3) E

E3 −(IN ⊗ Se3) diag(pij)ET
⊗

0 E


=
 L3 −E3(IN ⊗ Se3) diag(pij)ET

⊗

−E⊗ diag(pij)(IN ⊗ STe3)ET
3 diag

(∑
j∈N out

i
p̄2
ijx + p̄2

ijy

)
+L.

 (4.30)

Similarly to what done before, we can then state observability of the relative con-
figurations in R3 × S1 as

G∗
o ⪰ µSq(t0). (4.31)

It is worth noting that in this case, the LMI condition depends on the initial state
of the formation q(t0). In fact, we can expect that, at best, the formation could be
localized up to a common translation and an initial coordinated rotation about the
z-axis involving an angular rotation.

• A rigid translation is an unobservable motion

A rigid translation motion is spanned by 1N⊗I3. From the fact thatET
3 (1N ⊗ I3) = 0,

it follows that

Lp∗(1N ⊗ I3) = 0

LS⊗(1N ⊗ I3) = −E⊗ diag
(
r−1wijβ̄

T
k S

T
e3

dij

)
ET

3 (1N ⊗ I3) = 0
(4.32)
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This implies that a rigid translation is unobservable, i.e.,

G∗
op(1N ⊗ I3) =

∫ tf

t0
Lp∗(1N ⊗ I3) dτ = 0 (4.33)

G∗
op×ψ =

∫ tf

t0
(ΦT

p×ψLpb +LS⊗)(1N ⊗ I3) dτ = 0 (4.34)

Altogether, this shows that
G∗
o(1N ⊗ I3) = 0 (4.35)

i.e.
[
(1N ⊗ I3)T 0T

]T
, which is a bases for a rigid translation motion, is in the

null-space of the OG.

• A coordinated rotation about the z-axis involving an angular rotation is
unobservable for a distance formation

Define now the vectors p⊥ = (IN ⊗ Se3)p. A coordinated rotation about the z-axis
in R3 × S1 involving an angular rotation at time t0 is spanned by

[
p⊥(t0)T 1TN

]T
.

We now verify that this vector is in the null space of the OG.

Gd
o(t0, tf )

p⊥(t0)
1N

 =
∫ tf

t0

 Lpd ∗
ΦT
p×ψLpd ΦT

p×ψLpdΦp×ψ

p⊥(t0)
1N

 dτ
=
∫ tf

t0

 Lpdp⊥(t0) +LpdΦp×ψ1N
ΦT
p×ψ (Lpdp⊥(t0) +LpdΦp×ψ1N)

 dτ .
(4.36)

Notice that, using (4.19),

Lpd(t)p⊥(t0) +Lpd(t)Φp×ψ(t, t0)1N
= Lpd(t)p⊥(t0) +Lpd(t) (IN ⊗ Se3) diag (pi(t)− pi(0))1N
= Lpd(t)p⊥(t0) +Lpd(t) (IN ⊗ Se3) (p(t)− p(0))

= Lpd(t)p⊥(t)

(4.37)

where we used diag (pi(t)− pi(t0))1N = p(t)− p(t0). Moreover,

Lpdp⊥ = E3 diag(r−1wijpijp
T
ij)ET

3 p⊥

= E3 diag(r−1wijpijp
T
ij) (IM ⊗ Se3) stack(pj − pi)

= E3 diag(r−1wijpijp
T
ij) stack(Se3pij) = 0.

(4.38)
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This follows from the fact that, since Se3pij = e3 × pij is orthogonal to pij, it is
verified that pTijSe3pij = 0. This could have also be stated directly from Lemma 2,
as done in Sect. 2.4.

As a consequence,
[
pT⊥(t0) 1TN

]T
is in the null space of the OG and, hence, the

initial coordinated rotation of the group is unobservable for a distance formation.

Remark 2. An interesting difference emerges with respect to an infinitesimally rigid
static formation, for which any rigid rotation about any axis and not necessarily
involving an angular rotation is unobservable. Instead, if the trajectory is exciting,
only a coordinated rotation about the z-axis and necessarily involving an angular
rotation is unobservable.

• A coordinated rotation about the z-axis involving an angular rotation is
unobservable for a bearing formation in R3 × S1

A coordinated rotation in R3 × S1 involving an angular rotation is spanned by[
p⊥(t0)T 1TN

]T
. We now verify that this vector is in the null space of the OG.

Gb
o(t0, tf )

[
p⊥(t0)

1N

]

=
∫ tf

t0

[
Lpb ∗

ΦT
p×ψLpb +LS⊗ ΦT

p×ψLpbΦp×ψ + ΦT
p×ψL

T
S⊗ +LS⊗Φp×ψ +D⊗

][
p⊥(t0)

1N

]
dτ

=
∫ tf

t0

[
Lpbp⊥(t0) +LpbΦp×ψ1N +LTS⊗1N

(ΦT
p×ψLpb +LS⊗)p⊥(t0) + (ΦT

p×ψLpbΦp×ψ + ΦT
p×ψL

T
S⊗ +LS⊗Φp×ψ +D⊗)1N

]
dτ

=
∫ tf

t0

[
ξ

ΦT
p×ψξ +LS⊗p⊥(t0) +LS⊗Φp×ψ1N +D⊗1N

]
dτ

(4.39)

where we defined ξ = Lpbp⊥(t0) +LpbΦp×ψ1N +LTS⊗1N .

We consider now the two terms of the vector (resp. corresponding to position and
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orientation) separately. Expanding the first term and using (4.19), we have

ξ = Lpb (IN ⊗ Se3)p(t0) +Lpb (IN ⊗ Se3) diag (pi(t)− pi(t0))1N +LTS⊗1N

= Lpb (IN ⊗ Se3)p(t)−E3 diag
(
r−1wijSe3β̄ij

dij

)
ET

⊗1N

= E3 diag
(
r−1wij

Πβ̄ij

d2
ij

)
ET

3 (IN ⊗ Se3)p(t)−E3 stack
(
r−1wijSe3β̄ij

dij

)

= E3 diag
(
r−1wij

Πβ̄ij

d2
ij

)
(IM ⊗ Se3) stack (pj − pi)−E3 stack

(
r−1wijSe3β̄ij

dij

)

= E3 diag
(
r−1wij

Πβ̄ij

d2
ij

Se3

)
stack

(
dijβ̄ij

)
−E3 stack

(
r−1wijSe3β̄ij

dij

)

= E3 stack
(
r−1wij

Πβ̄ij

dij
Se3β̄ij

)
−E3 stack

(
r−1wijSe3β̄ij

dij

)
= 0

(4.40)

where we used the following facts: ET
⊗1N = 1M , with M being the cardinality of the

edge set |E|, diag (pi(t)− pi(t0))1N = p(t)−p(t0), ET
3 (IN ⊗ Se3) = (IM ⊗ Se3)ET

3

and pij = dijβ̄ij.

Expanding the second term, we have:

ΦT
p×ψξ +LS⊗p⊥(t0) +LS⊗Φp×ψ1N +D⊗1N

= LS⊗ (IN ⊗ Se3)p(t0) +LS⊗ (IN ⊗ Se3) (p(t)− p(0)) + stack

r−1wij
∑

j∈N out
i

β̄2
ijx + β̄2

ijy


= −E⊗ diag

(
r−1wijβ̄

T
ijS

T
e3

dij

)
ET

3 (IN ⊗ Se3)p(t) + stack

r−1wij
∑

j∈N out
i

β̄2
ijx + β̄2

ijy


= −E⊗ diag

(
r−1wijβ̄

T
ijS

T
e3

dij

)
(IM ⊗ Se3) stack(pj(t)− pi(t)) + stack

r−1wij
∑

j∈N out
i

β̄2
ijx + β̄2

ijy


= −E⊗ diag

(
r−1wijβ̄

T
ijS

T
e3Se3

dij

)
stack(dijβij) + stack

r−1wij
∑

j∈N out
i

β̄2
ijx + β̄2

ijy


= −E⊗ stack

(
r−1wijβ̄

T
ijS

T
e3Se3βij

)
+ stack

r−1wij
∑

j∈N out
i

β̄2
ijx + β̄2

ijy

 = 0

(4.41)
where we used β̄Tk STe3Se3β̄k = β̄Tk (I3 − e3e

T
3 )β̄k = β̄2

kx + β̄2
ky. This concludes the

proof that
[
p⊥(t0)T 1TN

]T
is in the null-space of the OG. Showing that, the initial

coordinated rotation of the group of robots is not observable for a bearing formation.
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• A scale variation could be observable for a bearing formation

A scale expansion or contraction is spanned by the vector
[
p(t0)T 0TN

]T
. Hence, it

is only necessary to check that, under persistency of excitation conditions, p(t0) is
not in the null space of

Gb
op =

∫ tf

t0
Lpb dτ = E3 diag

(∫ tf

t0
r−1wij

Πβ̄ij

d2
ij

dτ

)
ET

3 . (4.42)

Definition 4.3.1 (Persistently exciting direction). [Z. Tang et al., 2022] A direction
y(t) ∈ Sd−1, is called PE if the matrix Πy(t) = Id − y(t)y(t)T satisfies the PE
condition from Definition 1.2.2.

Lemma 3. [Z. Tang et al., 2022] Consider y(t) ∈ Sd−1 and assume ẏ(t) is uniformly
continuous, then Πy(t) being PE is equivalent to: ∀t ≥ 0, there exist T, ϵ > 0 and
τ ∈ [t, t+ T ] such that ∥ẏ(t)∥ ≥ ϵ.

Since Gb
op is a matrix-weighted Laplacian (4.24), then, we just need to use Lemma 2

to check that, under PE conditions, the scale expansion bases is not in the null space
of Gb

op.

Assume there is at least an edge ek = (i, j), such that the corresponding bearing
βij is PE. Then, for that edge, assuming that r−1wij(t) ̸= 0 ∀t, we have

Wij :=
∫ tf

t0
r−1wij(τ)

Πβ̄ij(τ)

d2
ij(τ) dτ ⪰ µI3. (4.43)

Hence, N (Wij) = ∅, i.e. there is no vector belonging to the null space of Wij, then,
the vector

[
p(t0)T 0TN

]T
does not satisfies the condition of Lemma 2. In fact one

can show that:∫ tf

t0
r−1wij(τ)

Πβ̄ij
(τ)

d2
ij(τ)

dτ(pj(t0)− pi(t0)) = dij(t0)
∫ tf

t0
r−1wij(τ)

Πβ̄ij
(τ)

d2
ij(τ)

βij(t0) dτ ̸= 0.

(4.44)
Since the bearing βij is PE, then, βij(τ) ∦ βij(t0) at least over some non-zero mea-
sure interval τ ∈ [t1, t2]. This conclude the proof that, under certain PE conditions,
the scale of the formation is observable.

• If one robot has private measurements of the full position w.r.t. the
world frame the common translation could become observable
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We assume the formation is observable in a common frame, i.e. condition (4.27) is
satisfied and that one robot in the group (w.l.o.g. robot 1) is acquiring a full-state
measurement with respect to the world frame.

A private full-state measurement enters S∗ as follows:

S∗ = Lp∗ +Dp (4.45)

where Dp = e1e
T
1 ⊗ Ip.We point out that the following analysis could be identically

repeated if PE partial measurements where collected w.r.t. the world frame instead
of direct state measurements.

Notice that
G∗
op =

∫ tf

t0
Lp∗ dτ + (tf − t0)Dp (4.46)

can be seen as a grounded Laplacian [Bullo, 2020; Dörfler et al., 2018] and by
assumption

∫ tf
t0 Lp∗ dτ ⪰ µL3 corresponds to a connected matrix-weighted graph,

therefore, Gd
op ⪰ µ1I, for some µ1 > 0. This shows that, for a PE formation in

R3 with full-position measurements w.r.t. the world frame, the full system state is
observable (common translation included).

• If one robot has private measurements of the full state w.r.t. the world
frame the common translation and orientation could become observable

We assume the formation is observable in a common frame, i.e. condition (4.31) is
satisfied and that one robot in the group (w.l.o.g. robot 1) is acquiring a full-state
measurement with respect to the world frame. Since, as explained in Sect. 1.2.1,
the total OG for two measured vectors is the sum of the two corresponding OGs,
we can study the observability of this case from

G∗
o + (tf − t0)

 Dp DpΦp×ψ

ΦT
p×ψDp Dψ

 ⪰ µSq + (tf − t0)
 Dp DpΦp×ψ

ΦT
p×ψDp Dψ

 (4.47)

where Dp = e1e
T
1 ⊗ Ip and Dψ = e1e

T
1 . We point out that the following analysis

could be identically repeated if PE partial measurements were collected w.r.t. the
world frame instead of direct state measurements.

Let us denote L̄pd = Lpd +Dp, the OG can then be written as

Gd
o(t0, tf ) =

∫ tf

t0

 L̄pd ∗
ΦT
p×ψL̄pd ΦT

p×ψL̄pdΦp×ψ +Dψ

 dτ . (4.48)
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Notice that
Gd
op =

∫ tf

t0
Lpd dτ + (tf − t0)Dp (4.49)

can be seen as a ground Laplacian [Bullo, 2020; Dörfler et al., 2018] and by assump-
tion

∫ tf
t0 Lpd dτ ⪰ µL3 corresponds to a connected matrix-weighted graph, therefore,

Gd
op ⪰ µ1I, for some µ1 > 0. This passage applies identically in the case of bear-

ing measurements and it shows that, for a PE formation in R3 with full-position
measurements w.r.t. the world frame, the full system state is observable (common
translation included). Then, we use the Schur complement to show that, the full
state in R3 × S1 is observable. We have shown that Gd

op ⪰ µ1I and now we show
that also its complement Gd

o/G
d
op ≥ µ2I. In fact, one has:

Gd
o/G

d
op =

∫ tf

t0
(ΦT

p×ψL̄pdΦp×ψ +Dψ) dτ −
∫ tf

t0
Lpd dτ

(∫ tf

t0
Lpd dτ

) ∫ tf

t0
Lpd dτ

(4.50)

As mentioned in Sect.(4.2.1), we solve the estimation problem in the frame R1. Con-
sequently the state of robot 1 is treated as exactly known (i.e. p1 = 0 and ψ1 = 0).
To ensure convergence of the dEKF, it is imperative to analyze the observability of the
system in the anchor frame. Therefore, within the OG, we remove the block of rows and
columns corresponding to the anchor, analogously as how the constrained FIM is defined
in [Cano & Le Ny, 2023]. In fact, this is equivalent to consider a group of N − 1 robots,
with measurements from and w.r.t. a beacon of known position and orientation, similarly
to what discussed in the last described property of the OG. Because of that, under PE
conditions, the resulting OG Ḡo is full rank.

4.4 Distributed optimal control problem

In this section, we formulate an optimal control problem (OCP), which needs to be solved
in a distributed way. We let each robot maximize the information collected at Nwp

waypoints equally spaced in time. The trajectory among two waypoints is locally interpo-
lated using Bezier curves [Biagiotti & Melchiorri, 2008], taking into account the required
smoothness of the curve.

The optimality criteria discussed in Sect.1.3 are functions of the eigenvalues of the OG.
Hence, they do not lend themselves to distributed computations over a future horizon, as
this would require knowledge of global quantities. For this reason, we find surrogates of
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4.4. Distributed optimal control problem

the classical optimality criteria which are computable in a distributed way, which we use
as cost function in our OCP.

This cost function is expressed as the summation of locally computable costs, which
makes it for distributed optimization algorithms.

4.4.1 The cost function

As a reminder, common cost functions to be considered in active sensing are the following
[Pukelsheim, 2006]:

• A-criterion : trace(G−1
o )

• D-criterion : − log (det(Go))

• E-criterion : −λmin(Go)

These functions are not computable in a distributed way over a future horizon since they
would require knowledge of the state and future trajectory of each robot.

In the following we will take as reference the E-criterion, which is linked to the least
observable mode and to the worst case rate of convergence of the EKF. From Sect. 4.3.4,
we know that, both for distance and bearing measurements, the null space of the OG
is at best of dimension 4 and it is spanned by a common translation and a coordinated
rotation about the z-axis. Hence, the E-criterion can be considered related to the first
nonzero eigenvalue of the OG, i.e. λ5. Using the Rayleigh quotient [Meyer & Stewart,
2023, p.530], λ5 can be expressed as

λ5 = vT5Gov5 = 1
2

N∑
i=1
vT5Ni

GoNi
v5Ni

(4.51)

where v5 is the unit norm eigenvector associated to the eigenvalue λ5. Moreover, GoNi
∈

R3|N +
i |×3|N +

i |, with N+
i = {i, j|j ∈ Ni}, contains the blocks of the OG associated to robot

i and its neighbors and v5Ni
∈ R3|N +

i | contains the corresponding components of the
eigenvector v5Ni

. We also point out that GoNi
can be seen as the OG corresponding to

the star subgraph Gi with center of the star given by the vertex i, hence, all the properties
of the OG discussed in Sect. 4.3.4 apply.

Notice that, λ5 > 0 if and only if there is at least one robot i such that

vT5Ni
GoNi

v5Ni
> 0 (4.52)
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and this is the case, if and only if

vT5Ni
GoNi

v5Ni
≥ ∥v5Ni

∥2 λ5Ni
> 0, (4.53)

where λ5Ni
is the 5th eigenvalue of GoNi

, which only depends on the trajectories of robot
i and its neighbors. Moreover, if the graph is connected and λ5Ni

> 0 ∀i then λ5 > 0.
Therefore, the active sensing term in the cost function is given as

Jas =
N∑
i=1

Jasi =
N∑
i=1
− log(λ5Ni

) (4.54)

where each robot i can compute its corresponding term. Notice that, the cost function
goes to +∞ as one of the λ5Ni

→ 0. Hence, if the cost function remains bounded, then
all the λ5i > 0 and, as a consequence, λ5 > 0.

Furthermore, important things to consider are that, as stated in [Krener & Ide, 2009]
and discussed in Sect. 1.2.1,

• computation of the entire local observability gramian might not be necessary; one
could focus on significant state directions

• properly scaling the state coordinates q is crucial for meaningful numerical inter-
pretations of the OG eigenvalues

These two considerations are important in light of the fact that, as shown in Sect.4.3.4,
in the OG, the upper left block is related to the collected information about the position,
while the lower right block is related to the information about the yaw orientations and
the off-diagonal blocks represent cross information. The problem is that, numerically,
positions and orientations can have very different scales and, as a consequence, hinder the
active sensing task. For this reason, we only consider the part of the OG relative to the
positions G∗

op.

Remark 3. One could include in the cost function a term which aims at generating PE
trajectories also directly aimed at improving the yaw estimation convergence by considering
the PE conditions for the convergence of an observer scheme similar to the one which will
be presented in Chapter 8.

Remark 4. As in previous works [Spica & Robuffo Giordano, 2016], we do not directly
consider the minimum eigenvalue, as the min(·) function is not differentiable when the
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order of the two minimum eigenvalues is swapped. Instead, we consider a smooth approx-
imation of the minimum function, e.g. consider a vector w =

[
w1 . . . wd

]T
and η > 0,

the log-sum-exp function is defined as [Boyd & Vandenberghe, 2004, p.72]

min(w) ≈ −1
η

ln
(

d∑
k=1

e−ηwk

)
(4.55)

where as η increases the approximation gets more accurate and for η → +∞ the approxi-
mation tends to the minimum function.

4.4.2 Problem formulation

In this section, we formulate the optimal control problem to be solved.

min
x̄
.
N∑
i=1

Jasi(x̄i, {x̄j}j∈N +
i

)

s.t. ∀k ∈ {0, 1, . . . , Nwp − 1}, ∀i ∈ {1, . . . , N}

q(k = 0) =
 0d
x̂(t)


GoNi

(k = 0) = PNi
(t)−1

∥pi(k)− pi(k − 1)∥2 ≤ vmax∆T

|ψi(k)⊖ ψi(k − 1)| ≤ ωmax∆T

(4.56)

where x̄ is used to indicate the stack of the waypoints along the future horizon. The
first two constraints concern the initial conditions, which are obtained from the EKF that
estimates the state of the group in the anchor frame x̂ (hence the zeros stacked on top
which are associated to the state of the anchor at the start of the prediction), as well as
PNi

which represents the blocks of the covariance matrix from the dEKF corresponding
to robot i and its neighbors. The other constraints are respectively the constraints on the
Cartesian velocity and the angular velocity, where ⊖ indicate a difference between two
angles.

Collision avoidance is discouraged by the perception weights (due to the minimum
sensing range) but only at the waypoints. Additional safety guarantees are added at a
lower level using CBFs [Wang et al., 2017]. Also, connectivity maintenance is required for
the convergence of the EKF and of the distributed optimization algorithm, but it is not
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guaranteed by our optimal control algorithm which discourages losing edges but it does
not prevent local disconnections and possible loss of global connectivity. Connectivity
maintenance is then added at a lower level analogously to previous works on this topic,
e.g., [Robuffo Giordano et al., 2013].We also point out that, due to sensing limitations, the
graph is time-varying but future new connections cannot be foreseen. Hence, the graph
is considered fixed during the future horizon.

In this work, we did not consider other tasks than active sensing, although normally
robots do not need to localize themselves for its own sake. Integrating another task could
be achieved through the use of control Lyapunov functions similarly to [Napolitano et
al., 2022]. This is particularly common in scenarios where an economic (performance)
objective is considered rather than a tracking objective. The resulting MPC is defined
Economic MPC and a control Lyapunov function-based condition is often included to
ensure stability of the control scheme. We plan to add such condition in future works.

Remark 5. One may wonder if the fact of using the estimated poses to compute the
OG in order to control the system to improve the estimation accuracy may represent an
undesirable loop, only necessary in absence of the true trajectory. Actually, it was shown
in [P. Bernard et al., 2020] that, the convergence of an EKF-like filter depends on the
Gramian along the estimated trajectory and not along the true trajectory. It is expected a
similar result to hold for the regular EKF since the lower-bound of the Riccati solution is
related to the same Gramian.

4.5 Distributed partition-based optimization

The problem formulated in (4.56), is in the following generic form:

min
xo

.
N∑
i=1

Ji({xoj}j∈N +
i

)

s.t. ai({xoj}j∈N +
i

) ≤ 0

bi(xoi) = 0

(4.57)

which can to be addressed with distributed optimization algorithms.
A problem with this kind of sparsity is common in robotics and usually referred to

in the literature as distributed partitioned optimization or separable variable optimization
[Chezhegov et al., 2022; Halsted et al., 2021]. For such problems, it is shown in [Chezhegov
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et al., 2022] that common distributed optimization algorithms can be easily modified in
order to take into account the fact that, in the consensus steps of the algorithm, a single
robot does not need to know the whole optimization vector, so that the algorithm can be
performed more efficiently [Chezhegov et al., 2022]. To obtain this result, the consensus
matrix Wp is specifically designed. In our case, given the N star subgraphs Gi associated
to each robot, the consensus matrix can be written as

Wp =
(

N∑
i=1
Wc(Gi)⊗ (eieTi )

)
⊗ Id (4.58)

where ei is the unit vector with entry 1 in the i-th position. We consider the consensus
matrix Wc(Gi) obtained using the Metropolis-Hastings weights (see [Nedić et al., 2018]
and [Bullo, 2020, p.74].

Remark 6. Some of the optimization variables are angles θ ∈ S1, for these quantities the
usual consensus is modified as [Bullo, 2020]:

θi[n+ 1] = θi[n]− ϵ
∑
j∈N +

i

sin(θi[n]− θj[n]). (4.59)

As many other optimization problems arising in multi-robot control, our problem is
non-convex. Contrarily to centralizated optimization algorithms for which convergence
to a local minima of the problem is, in general, guaranteed, the same does not hold for
distributed optimization algorithms. Hence, the employed algorithm needs to be chosen
with care.

As distributed optimization algorithm, we use NEXT [Di Lorenzo & Scutari, 2016],
which handles a cost function given by the sum of smooth possibly non-convex functions,
and it allows considering a time-varying graph. NEXT is composed mainly of three steps.
1) A local minimization problem, formulated using a convex surrogate function, is solved
and a temporary minimizer is obtained. 2) A partial step in the direction of this temporary
minimizer is taken. 3) The consensus on the optimization vector is performed along with
a dynamic consensus on the gradient of the total cost function. A surrogate of the local
cost function J̃i(xo,xo[n]) is considered, where xo[n] is the value of xo at iteration n. J̃i
has to be a convex, local, approximation of Ji. We take J̃i to be a linearization of Ji
around the value of the local copy x̄oi[n] of the optimization variables {xoj}j∈N +

i
with an

additional regularization term:
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J̃i(x̄oi, x̄oi[n]) = Ji(x̄oi[n]) +∇Ji(x̄oi)T (x̄oi − x̄oi[n])+

+ τip
2 ∥Ep(x̄oi − x̄oi[n])∥2

2 + τiψ
2 ∥Eψ(x̄oi − x̄oi[n])∥2

2

(4.60)

where we regularized differently a position variation w.r.t. a yaw variation, Ep (resp. Eψ)
is used to select the position (resp. yaw) components.

The local problem that each robot needs to solve is the following

x̃oi(x̄oi[n], π̃i[n]) ≜ argmin
x̄oi∈Xi

J̃i(x̄oi, x̄oi[n]) + π̃i[n]T (x̄oi − x̄oi[n]) (4.61)

where π̃i[n] is an estimation of πi(x̄oi[n]) ≜ ∑
j ̸=i∇x̄oiJj(x̄oj[n]), which is used to con-

sider a linearization of the rest of the cost function not including the local cost Ji, i.e.∑
j ̸=i Jj(xo[n]). π̃i[n] is obtained using dynamic average consensus to estimate the total

gradient and then subtracting the gradient of the local cost ∇x̄oiJi. Then, a partial step
is taken

zi[n] = xi[n] + α[n](x̃oi[n]− x̄oi[n]) (4.62)

with α[n] being the step-size. After this, a step of consensus is taken on the variables
zi[n] to obtain x̄oi[n + 1], as well as a step of dynamic consensus on the total gradient.
We notice that (4.61) admits an analytical solution as

x̃oi[n] = ΠX

(
xoi[n]−

−
(

1
τip
ET
p Ep + 1

τiψ
ET
ψEψ

)
(∇Ji(xoi[n]) + π̃i[n])

) (4.63)

where ΠX projects the solution onto the feasible set. We also perform line search based
on Armijo’s condition [Nocedal & Wright, 1999] by checking that actual improvements
across iterations take place by re-evaluating the local cost function.

For the online optimization, it is assumed that, the first time two robots become neigh-
bors, they will communicate the required current information to initialize their respective
optimization variables.

4.6 Results

In this chapter, we have unified our discussion to encompass both scenarios involving
distance measurements and bearing measurements. However, it is important to note
that our previous work, where active sensing was conducted solely from relative distance
measurements [De Carli et al., 2021], covered only a portion of the algorithm outlined
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here. Specifically, in that work, we did not employ distributed optimization techniques
and the cost function was not exactly the same.

Regarding the case of relative distance measurements, the results presented in this
chapter are the ones originally outlined in [De Carli et al., 2021], hence not including the
complete algorithm.

4.6.1 Relative distance measurements

For illustration purposes, we first consider a group of N = 3 robots that need to localize
themselves using relative distance measurements, and we implement the distributed EKF
algorithm from [Luft et al., 2016] for estimating the robot states in a distributed way. The
measured distances are affected by Gaussian noise with covariance rij = 0.3 · Tsm2 where
Ts is the sampling period of the EKF. The initial state estimation x̂(t0) is affected by a
Gaussian noise with covariance σ2

xyz0 = 0.4m2 on the position and σ2
ψ0 = 0.3rad2 on the

yaw orientation. The thresholds defining the weights wij (see Fig. 2.7) are Dl = 5m and
Du = 7m. The inputs are parameterized using B-Splines [Biagiotti & Melchiorri, 2008]
with N = 6 control points and their limits are set to ul = −1 and uu = 1. Thanks to
the B-spline parameterization, the robots can simulate the neighbors future trajectories
by exchanging only a limited amount of information (the B-Spline control points), and
they can also reduce the input constraints dimension considering the convex hull of the
control points.

Starting from 4 different fixed configurations, such that the initial sensing graph is
connected, we generated 10 random paths of equal duration tf taken as initial guesses
for the OCP. In this work, each robot was solving independently a local optimization
problem maximizing the minimum eigenvalue of the gramian block corresponding to its
own state Go(ii), indicated as SAME in the plots. Results were also compared to the
case in which the minimum nonzero eigenvalue of the full OG λ̃min was optimized in a
centralized way. Each trajectory (initial guess or optimized one) is executed 10 times
with a different initial condition for the EKF drawn from a Gaussian centered at the
true x(t0) with covariance P0. When executing the initial non-optimized trajectories, the
sensing graph is considered fully connected (all relative measurements always available to
the EKF) disregarding the sensing constraints, which are instead fully considered in the
optimized cases (thus, resulting in a time-varying sensing graph). The final configuration
xf is not fixed while the final time is fixed at tf = 15s.

The average of the maximum eigenvalue (corresponding to the maximum uncertainty)
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and of the trace (corresponding to the average uncertainty) of P (tf ), as well as the Root
Mean Square Error (RMSE) at tf obtained optimizing the different metrics are compared
and results are shown in Table 4.1. One can note how, in average, the optimized cases
perform better than the initial guesses.

One advantage of the proposed approach over a strategy based on instantaneous ob-
servability (like rigidity-based localization) is that the robot group has much more free-
dom in terms of mobility, which can be particularly useful when navigating in cluttered
environments. In this respect Table 4.2 shows the results of a single illustrative run dur-
ing which, for some optimized trajectories, the group does not remain rigid at all times
because of the sensing constraints (the rigidity eigenvalue, a common measure of rigid-
ity [Zelazo et al., 2015], is reported in Fig. 4.2). Despite the loss of rigidity, the group
is still able to successfully localize and achieve good performance in terms of estimation
accuracy (Table 4.2).
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Figure 4.2: An optimal trajectory which does not maintain the formation rigidity. On the
left, the rigidity eigenvalue is plotted. On the right the robot trajectories are shown, with
the frames in the initial positions (in blue is robot 1) and in dotted lines the estimated
trajectories.

The same simulations have also been performed by considering N = 8 robots and by
using rij = 0.1 · Tsm2 and N = 8. The results are shown in Table 4.3 and show the good
performance also in this case. The attached video allows to better appreciate the robot
trajectories and behavior of the estimation errors for this case study.
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Metric λmax(Ptf ) trace(Ptf ) RMSE
Random 0.091548 0.12742 0.1286
λ̃min 0.011747 0.017749 0.0362
SAME 0.019641 0.023787 0.0466

Table 4.1: Average of the maximum and average uncertainty and RMSE at tf for 3 robots

Metric λmax(Ptf ) trace(Ptf ) RMSE
Random 0.0198620 0.0270547 2.1273e-04
λ̃min 0.0002825 0.0014602 7.0901e-06
SAME 0.0024085 0.0073659 1.3127e-04
Trace 0.0512124 0.0550008 1.7742e-04

Table 4.2: Maximum and average uncertainty and RMSE at tf with SAME not preserving
rigidity

4.6.2 Relative bearing measurements

In case of relative bearing measurements, we validate the effectiveness of the approach
through a simulation campaign. We consider the results obtained using groups composed
by N = 8 quadrotors modeled as in (4.1). An initial random connected configuration
is generated along with the initial non-optimized waypoints. The initial waypoints are
generated such that the robots have the same relative positions as the initial configuration
simply translated in space in a direction randomly extracted by a conic region plus an
additional perturbation which makes the system observable along the trajectory, and
which is checked to preserve the connectivity of the group. This initial guess trajectory
is near to be unobservable along certain state directions. The interest of this initial guess
trajectory is that it represents a typical trajectory that would be performed in a formation
flight without considering additional state observability requirements.

The following sensing limitations are considered for the minimum distance dmin =
0.6m, maximum distance dmax = 5m and FoV αmax = 70◦. Measurements are acquired on
the image plane which are affected by an additive Gaussian noise ηij with variance Qij =
0.04I2. Also, we consider the system to be affected by actuation noise νij ∼ N (0, Nij)
with Nij = diag([0.01, 0.01, 0.008, 0.002]). The robots can fly up to 6m/s and rotate at a

Metric λmax(Ptf ) trace(Ptf ) RMSE
Random 0.028253 0.041103 0.0621
λ̃min 0.00082939 0.0027855 0.0052
SAME 0.0087442 0.015267 0.0249
Trace 0.023022 0.029117 0.0513

Table 4.3: Average of the maximum and average uncertainty and RMSE at tf for 8 robots
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speed up to 0.4rad/s. The state is estimated using the distributed EKF [Luft et al., 2016],
which also provides the covariance matrices Pi(t) used by the OCP. The measurement
confidence for the EKF has been tuned by trial and error as v = 3.3. The initial state
estimate is obtained adding Gaussian noise with standard deviation σp = 0.4 along each
axis for the position and σψ = 0.03 for the yaw. In the OCP we consider the trajectory
to be optimized over Nwp = 10 waypoints equally spaced in time at ∆T = 0.5s.

Starting from 10 different initial configurations, we generated 7 trajectories for each
configuration, each with different noise realizations (applied to the initial estimate as
well). We assess the performance of localization obtained along the following trajectories:

1. The initial guess trajectory.

2. The trajectory optimized with the proposed algorithm but only offline, with Niter =
500 iterations.

3. The trajectory previously optimized offline and then further optimized online.

4. The trajectory optimized in a centralized manner, with Niter = 150 iterations.

The results corresponding to these simulations are reported in Fig. 4.3, which shows on
the left the average and standard deviation across simulations of the maximum eigenvalue
of the matrix P given by the EKF. Notice that, for a deterministic EKF, this has not
anymore exactly the meaning of a covariance, but it is anyway representative of the
effect of the information acquired along the path. In the figure on the right, we show
the average and standard deviation across simulations of the Root Mean Square Error
(RMSE) achieved for the position and yaw estimation. The obtained results at the final
time are also summarized in Table.4.4.

The results show the improvement obtained by refining the trajectory online as newly
formed edges can be exploited to improve the information. Also, the results make it
evident how the estimation deteriorates in time for the case of a formation-like flight.
The plots also show quite surprising results when comparing the trajectories optimized in
a distributed way or in a centralized way. In fact, concerning the maximum eigenvalue of
P (t), the centralized approach obtains the best results (as expected). But, these results
do not correspond to better performance in RMSE compared to the distributed approach.
This can be explained by the fact that the matrix P does not capture the true confidence
in the measurements. Furthermore, λmax(P ) is linked to worst case convergence speed,
so no guarantees are given that a lower λmax will obtain faster convergence. The number
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4.6. Results

of iterations performed respectively by centralized and distributed optimization is chosen
s.t. the computational times for the offline optimization are similar, with the distributed
optimization running sequentially i.e. on a single laptop, while in the real world it would
run in parallel (but communication overhead would need to be considered). In this way,
the distributed approach is also penalized in this sense.
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Figure 4.3: Comparison of the average estimation results with plot of the standard de-
viation. The thick lines represent the average result, while the dashed lines are used for
the standard deviations. The upper (resp.lower) left figure is the maximum eigenvalue
of of the sub-block of P corresponding to the position (resp. yaw). On the right the
corresponding RMSEs are plotted.

Finally, we also analyze the results of the distributed optimization across iterations. In
Fig. 4.4, we show the average and standard deviation of the optimization results obtained
from 15 different initial configurations and initial guess trajectories. This time we consider
more iterations, Niter = 1000, of offline optimization using NEXT, and one can check that

115



Part II, Chapter 4 – Active Sensing for Cooperative Localization

Trajectory λmax(Ptf ) trace(Ptf ) MSEp MSEψ

Initial guess 0.12058 0.38001 1.6175 0.09792
Dist. Opt. Offline 0.073581 0.19767 0.1985 0.044637
Dist. Opt. Online 0.069562 0.18355 0.1894 0.043781
Centralized 0.032128 0.096087 0.2168 0.056383

Table 4.4: Comparison of average estimation results achieved at the end of the trajectory

at some point the objective stops growing also due to the term α[n] which is decreasing
during the iterations. On the left the objective function that we are actually maximizing
is reported, in the center image we report the individual objective functions associated
to each robot, and finally the plot on the right shows the corresponding evolution of the
minimum eigenvalue of the position sub-block of the full gramian, which is the objective we
are actually maximizing. This is increasing, showing that the chosen heuristic is actually
achieving the desired result. In the plot on the right we also compare the evolution of
the distributed optimization w.r.t. the result obtained by the centralized optimization
using Niter = 300 iterations, which has similar computational times to Niter = 1000 of
distributed optimization when performed on a single computer (not taking advantage of
the parallelization of distributed optimization). The significantly higher value obtained
by the 8-th robot seems to be related to the way in which we generate the initial random
formation. We sequentially add robots such that the generated robot is in the field of
view and in the range of the preceding robot (with the 8-th robot being the last added),
hence, this affect the average connectivity degree of each robot.

Concerning the computational times, each iteration of distributed optimization takes
in average 8ms with non-optimized code running on MATLAB on a Dell Latitude 7400. It
is important to consider that this result does not consider overhead due to communication
and the need for synchronization or packet losses, these remain challenging problems in
applying distributed optimization algorithms to real-world scenarios [Halsted et al., 2021].

4.7 Discussions

While the concept of incorporating a future horizon is undoubtedly enticing for active sens-
ing applications, it introduces several challenges, particularly concerning the optimization
of non-standard cost functions associated with the eigenvalues of nonlinear matrix func-
tions. Optimizing such functions is notoriously difficult, a challenge further compounded
by the necessity for distributed implementation of the optimization algorithm. Further-
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Figure 4.4: In the figure on the left, the total objective function which is distributedly
optimized, in the center the corresponding individual non-weighted objectives, on the
right a comparison among the optimal value got from centralized optimization and the
corresponding centralized objective obtained by distributed optimization. The plots are
obtained as average and, where patches are used, they represent the standard deviation.
Results are obtained from 15 different initial configurations.

more, a distributed optimization based approach to MPC comes with the requirement for
high communication loads among the robots. While recent advancements in distributed
optimization have made distributed MPC algorithms increasingly popular, as evidenced
by recent works [Lyu et al., 2019; Shorinwa & Schwager, 2023; W. Tang & Daoutidis,
2019], real-world implementations of such algorithms remain relatively scarce. For these
reasons, in the next chapters, we will always consider reactive control laws with no future
horizon.

4.8 Conclusions

In this chapter, we have shown that, for a multi-robot system even when only partial
measures of the relative states are available, such as relative distances or bearings (but
not limited to), and when the formation is not infinitesimally rigid, it is still possible to
achieve good localization performance by generating, in a distributed and scalable way,
optimized trajectories that satisfy certain PE conditions.

Our proposed framework addresses the active cooperative localization problem, lever-
aging a surrogate for the E-optimality criterion. While our primary objective was to
enhance localization performance, it is crucial to recognize that effective localization is a
necessary requirement for the successful and safe execution of any desired task but it is
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not (usually) the task itself. Looking ahead, future extensions of this work should explore
incorporating additional tasks into the framework. A potential approach could be based
on the formulation of a Lyapunov-based EMPC as in [Napolitano et al., 2022]. While, in
the next chapter, active sensing is performed with a reactive strategy and an additional
task is incorporated using a QP-based formulation relying on CLFs.
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Chapter 5

BEARING-BASED MULTI-ROBOT

COLLABORATION: BEYOND

INFINITESIMAL RIGIDITY

In this chapter, similarly to the previous one, we consider a group of quadrotors equipped
with sensors capable of measuring relative bearing. The objective is to enable the fleet
to localize their relative poses in a common shared frame without imposing a rigidity
requirement, all while executing a designated task reliant on inter-robot localization. To
attain this goal, we introduce a novel distributed active sensing control strategy, which
maximize the information acquisition without compromising task fulfillment.

In contrast to the previous chapter, this chapter introduces a new approach to dis-
tributed active sensing control, which is reactive and based on a gradient-based strategy.
This method not only simplifies computational and communication tasks but also inte-
grates more seamlessly with additional tasks. We achieve this integration using Control
Lyapunov Functions (CLFs) to ensure the successful completion of tasks. Specifically, we
are addressing a position-based formation control task concurrently, employing Quadratic
Program-based control with a CLF linear constraint.

The results show that the inclusion of active sensing in the formation control law
enhances the localization accuracy and, as a consequence, the precision of reaching the
desired formation. The improvement is especially important when the underlying graphs
are not Infinitesimally Bearing Rigid (IBR), as it can be expected.

As already discussed in the previous chapters, much of the previous work in the do-
main of cooperative localization from bearing measurements has been built around the
notion of infinitesimal bearing rigidity [Schiano et al., 2016; Zhao & Zelazo, 2019]. IBR
characterizes the conditions, primarily related to graph topology, under which a group of
drones measuring constant relative bearings can localize themselves up to a global trans-
lation and scaling factor. In case of constant bearings, to resolve the scale ambiguity, a
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distance measurement among a pair of robots is necessary.
Recently, in [Z. Tang et al., 2022; Z. Tang & Lorıa, 2022] the notion of Bearing

Persistently Exciting (BPE) formations has been introduced, where at least a subset of
the relative bearings is time-varying. By leveraging the concept of PE, this allows resolving
the scale ambiguity and to relax the IBR assumption. Additionally, a distributed observer
has been proposed to estimate relative positions in R3 from world frame relative bearing
measurements, demonstrating Uniform Exponential (UE) convergence under the BPE
formation condition [Z. Tang et al., 2022]. In this work, we use this observer to estimate
the positions of robots in a shared frame.

However, there remains the problem of how to ensure the Bearing Persistent Excitation
of the formation. Although a coordinated rotation was proposed as a reference trajectory
satisfying the BPE condition [Z. Tang et al., 2022], this strategy may not be desirable
in practical applications where more generic motions are needed. In such cases, active
sensing can be exploited for producing a group motion that can (i) actively satisfy the
necessary BPE conditions and (ii) be generic enough for fulfilling at the same time other
tasks of interest related to the particular mission.

A preliminary version of this work was previously published in [De Carli et al., 2023].
In this work, our focus was on a scenario with a fixed graph, without considering sensing
constraints, and where the robots states were represented solely by their positions in R3;
orientation was not yet taken into account. Subsequently, we expanded upon this initial
work by incorporating sensing constraints, specifically limited range and field of view,
which led to the graph becoming time-varying. While the core active sensing control law
remained largely unchanged, we made adjustments, such as introducing a gradient-based
active sensing action to control the robots yaw, addressing the limited field of view of the
cameras. Additionally, with the graph becoming state-dependent, the implementation of
a connectivity maintenance algorithm became essential. In this regard, we leveraged the
connectivity maintenance algorithm which is presented in Chapter 7 [De Carli, Salaris, &
Robuffo Giordano, 2024], which uses Control Barrier Functions (CBFs) to make minimal
adjustments to the desired input, derived, in this case, from the combination of active
sensing and other concurrent tasks.

In this chapter, we first describe the work presented in [De Carli et al., 2023] and then
we discuss its extension, which, at the moment of writing, is still under development.
Among the missing parts is the observer from body-frame bearing measurements extending
the one presented in [Z. Tang et al., 2022] to R3 × S1. We are working towards the
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formulation of such an observer, starting from ideas in [Z. Tang et al., 2022] and the
position-based observer presented in Chapter 8, but the work is still ongoing. In the
first part of the chapter, we first introduce the robot and sensing model in R3, then, we
describe the localization algorithm, discussing the conditions under which the algorithm
converges. Subsequently, we design a gradient-based active sensing control law which
drives the robots along informative trajectories. We add the task achievement to the active
sensing action in the form of a linear inequality constraint using the control Lyapunov
function formalism and we conclude the first part of the chapter showing the results. In
the second part of the chapter, after introducing the robot and sensing model in R3× S1,
we describe the extension of the active sensing control law actively considering sensing
limitations.

5.1 Formation model

As outlined in the introduction to this chapter, we address both scenarios: one utilizing
a simple single integrator model in R3 for the robots, described by:

ṗi = ui, (5.1)

and the other employing the robots model (4.1) in R3 × S1. The first part of the chapter
deals with the single integrator model, only later we delve into the extended case.

In this case, each drone is able to measure the world-frame relative bearing with respect
to its fixed neighbors, i.e.:

βij := pij
dij
∈ S2. (5.2)

In the next section, we present the observer from [Z. Tang et al., 2022], along with the
observability conditions under which it converges.

5.2 Localization of bearing formations

The matrix-valued Laplacian associated with classical position-based formation control,
as defined in [Pan et al., 2020], is denoted as L3 := E3E

T
3 [Cortes & Egerstedt, 2017].

If the graph is connected, then rank(L3) = 3N − 3, and the null-space is N (L3) = U ,
where U = 1N ⊗ I3 represents a basis for a common 3D translation of the formation.
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5.2. Localization of bearing formations

For bearing formations, the bearing Laplacian matrix is defined asLβ := E3 diag(Πβk)ET
3 .

As discussed in previous chapters, a bearing formation in R3 × S1 is infinitesimally bear-
ing rigid (IBR) if rank(Lβ) = 3N − 5 (see also Sect. 2.4). This IBR condition is both
necessary and sufficient for localizing the relative positions of the robots up to a scale
factor from constant bearing measurements. Moreover, the IBR condition can be relaxed
if the bearings are time-varying, i.e., certain PE conditions are satisfied, and the scale
ambiguity can be resolved (see Sect. 4.3.4).

We now give some necessary definitions before proceeding.

Definition 5.2.1 (Bearing persistently exciting). [Z. Tang et al., 2022] A formation in
R3 is defined bearing persistently exciting (BPE) if the graph G is connected and given
T > 0 and γ > 0 the following PE condition holds:

∫ t+T

t

Lβ(τ) dτ = E3 diag
(∫ t+T

t

Πβk(τ) dτ
)
ET

3 ⪰ γL3. (5.3)

Notice that, since N (L3) = U , this is a weaker condition than classical PE, i.e.

∫ t+T

t
Lβ(τ) dτ ⪰̸ γI3. (5.4)

We point out that the previous integral in (5.3) represents a weighted OG for the
position part of the state of the system. In fact, if we do not consider the perception
weight, Gb

op from the previous chapter is written as

Gb
op = E3 diag

(∫ tf

t0

Πβ̄k(τ)

d2
k(τ) dτ

)
ET

3 (5.5)

One can see that the only difference is that, in OG, the information associated to each
edge is weighted by the corresponding squared distance along the trajectory. Since the
scaling by the positive distances does not affect the rank of the matrix, it follows that the
formation being BPE is a local observability condition of the subspace orthogonal to the
common translation.

We now introduce the observer presented in [Z. Tang et al., 2022], which we use for
localizing the drones in a bearing formation. In [Z. Tang et al., 2022], it is shown that, if
the formation is BPE, the bearings are always well-defined (i.e. no collisions occur) and the
velocities are bounded, then the following distributed observer achieves UE convergence
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to the true state up to a common translation:

˙̂p(t) = u(t)− keLβ(p(t))p̂(t) (5.6)

where p̂ is the estimated position vector and ke > 0.
The convergence rate of this observer depends on the BPE parameter γ [Z. Tang et

al., 2022]. The aim of the following section is to then provide a control law that aims at
indirectly increasing the value of γ for ensuring a satisfactory observer performance even
for non-rigid bearing formations.

5.3 Active sensing control

In this section, we propose a gradient-based control law for actively collecting information
about the drone relative positions. Unlike the approach in the previous chapter, we do not
incorporate a prediction horizon here. Therefore, we do not project the OG into the future;
instead, we continuously integrate it over time to assimilate information gathered in the
past. In fact, to quantify the amount of collected information, we adopt the minimum
nonzero eigenvalue, specifically the fourth eigenvalue denoted as λ4, of the weighted OG
(5.3) but with an additional forgetting factor, that is, an OG with dynamics

Ġβ(t) = −ρGβ(t) +Lβ(t). (5.7)

The forgetting factor ρ > 0 ensures that the OG remains bounded, since otherwise the
term Lβ(t) ⪰ 0, ∀t ≥ 0 would make the OG grow unbounded over time. Notice that if
Gβ(t0) is a matrix-weighted Laplacian [Pan et al., 2020] associated to the graph G, then
this also holds for Gβ(t), ∀t ≥ t0. This can be simply shown by integrating the linear
ordinary differential equation (5.7) and verifying the following facts: (i) the required
definiteness pattern of the matrix weights (negative semidefinite off-diagonal terms) is
preserved:

[Gβ(t)](ij) = e−ρ(t−t0)[Gβ(t0)](ij) +
∫ t

t0

e−ρ(t−τ)[Lβ(τ)](ij) dτ

= e−ρ(t−t0)[Gβ(t0)](ij) −
∫ t

t0

e−ρ(t−τ)Πβij (τ) dτ ⪯ 0
(5.8)

where [Gβ(t0)](ij) ⪯ 0 is the ij-th block of Gβ(t0) and Πβij ⪰ 0; (ii) U ⊆ N (Gβ(t)):

Gβ(t)U = e−ρ(t−t0)Gβ(t0)U +
∫ t

t0

e−ρ(t−τ)Lβ(τ)U dτ = 03N×3N (5.9)

124



5.3. Active sensing control

and; (iii) if ij /∈ E then [Gβ(t)](ij) = 0 ∀t ≥ 0. These properties are used in the next
derivations. In particular, the preservation of the sparsity pattern allows for a distributed
implementation of the proposed control law.

Consider the state of the full system (i.e. including the current OG) ζ =
[
pT vec (Gβ)T

]T
,

where vec(·) is the vectorization operator. Then, the system dynamics can be written as:

ζ̇(t) = f(ζ) +Gu, (5.10)

where the system is control affine and has a cascade structure with f(ζ) =
[
0T3N vec

(
Ġβ

)T ]T
and G =

[
I3N 03N×(3N)2

]T
. Note that the first derivative of λ4 (our ‘information metric’)

depends on the positions of the drones, so that λ4 has relative degree 2 w.r.t. the drone
velocities (the available control inputs). This poses a challenge for direct control since the
drone positions are solely involved in the dynamics of λ4 within the orthogonal projector
Πβ. However, the derivative of λ4 can be more easily controlled. This has expression

λ̇4 = Lfλ4 = (v4 ⊗ v4)T vec(Ġβ) = vT4 Ġβv4

= −
∑

(i,j)∈E

(v4i − v4j)T [Ġβ(t)](ij)(v4i − v4j) = −
∑

(i,j)∈E

[(v4i − v4j)⊗ (v4i − v4j)]T vec
(
[Ġβ(t)](ij)

)
(5.11)

where Lfλ4 = ∂λ4
∂ζ
f(ζ) is the Lie derivative of λ4 along f (analogously we also define

Lgiλ4) and v4 =
[
v41 . . . v4N

]T
is the eigenvector associated to λ4. In (5.11), we used

the mixed Kronecker matrix-vector product, i.e.

(A⊗B) vec(V ) = vec(BV AT ), (5.12)

with A, B and V being matrices of appropriate size and, in the 4th equality, we used the
classical expression for a Laplacian potential function [Bullo, 2020, p.88]. For convenience,
let us define v4ij := v4i − v4j. The second order derivative of λ4 is then

λ̈4 =
N∑
i=1

LgiLfλ4ui + L2
fλ4

= −1
2

N∑
i=1

∑
j∈Ni

[v4ij ⊗ v4ij ]T
∂ vec([Ġβ ]ij)

∂pi

ui
+ vec(Ġβ)THλ vec(Ġβ)− ρ(v4 ⊗ v4)T vec(Ġβ)

(5.13)

where Hλ := ∂2λ4
∂ vec(Gβ) vec(Gβ)T is the hessian of λ4 with respect to the matrix entries

[Magnus, 1985]. The important point to note here is that (5.13) has a direct (affine)
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dependence on the control inputs ui, which can then be exploited for controlling the
quantity λ̇4, for instance by applying the gradient-based control law

ui = k (LgiLfλ4)T = −k
∑
j∈Ni

[v4ij ⊗ v4ij ]T
∂ vec([Ġβ]ij)

∂pi

T

. (5.14)

The control action (5.14) implements the sought active sensing since it aims at maximizing
λ̇4 that, indirectly, maximizes the eigenvalue λ4 itself (which is the metric we care about,
but which is less directly controllable by acting on the control inputs ui).

We note that the convergence rate of the observer (5.6) is directly influenced by the
behavior of the integral

∫ t+T
t Lβ(τ)dτ , rather than by λ4. However, there exists a cor-

relation between the two. The distinction lies in the fact that in Gβ, older information
is accorded less weight compared to more recent data. This weighting scheme is logical
considering that system noise affects the model in practice. Consequently, older informa-
tion integrated based on prior knowledge of system dynamics is deemed less reliable than
newer data. For similar reasons, the incorporation of a forgetting factor is a common
practice in adaptive control, particularly when dealing with slowly varying parameters
[Slotine, Li, et al., 1991, p.374].

We now discuss some properties of the control law (5.14).

Proposition 1. The gradient of λ̇4 associated to an edge eij is orthogonal to the corre-
sponding bearing βij, i.e.:

[v4ij ⊗ v4ij ]T
∂ vec([Ġβ ]ij)

∂pi
βij = 0 (5.15)

Proof. First of all, notice that [Ġβ](ij) = −ρ[Gβ](ij) − Πβij and the first term does not
depend on pi. Furthermore, using the properties of the Kronecker product, we have
vec(βijβTij) = βij ⊗ βij. It follows that:

∂ vec(Πβij )
∂pi

=
∂ vec(I − βijβTij)

∂pi
= −∂(βij ⊗ βij)

∂pi
= 1
dij

(
Πβij ⊗ βij + βij ⊗Πβij

)
(5.16)

One can then use the Kronecker product properties, such as the the mixed product prop-
erty [Bullo, 2020, p.122], and show that:(

Πβij ⊗ βij + βij ⊗Πβij

)
βij

=
(
Πβij ⊗ βij

)
(βij ⊗ 1) +

(
βij ⊗Πβij

)
(1⊗ βij)

=
(
Πβijβij ⊗ βij

)
+
(
βij ⊗Πβijβij

)
= 0.

(5.17)
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Proposition 2. Assuming that no collisions happen i.e. dij ≥ dmin > 0, ∀i, j ∈ {1, 2, ..., N},
then the resulting input ui is always bounded.

Proof. w.l.o.g. considering k = 2, from (5.14) and (5.16):

uTi =
∑
j∈Ni

[v4ij ⊗ v4ij ]T
1
dij

(
Πβij ⊗ βij + βij ⊗Πβij

)
(5.18)

and
∥ui∥2 ≤

∑
j∈Ni

∥v4ij ⊗ v4ij ]∥2
2

Dmin

∥∥Πβij ⊗ βij
∥∥

2

≤ 8
Dmin

|Ni|
(5.19)

where we used the subadditivity property of norms, the facts that ∥v4i∥2 ≤ ∥v4∥2 = 1,
∥X ⊗ Y ∥2 = ∥X∥2 · ∥Y ∥2, ∥Πβ∥2 = 1 and ∥βij∥2 = 1.

Finally, the active sensing gradient control (5.14) requires each robot i to only know
quantities which are locally available or communicated by neighboring robots, i.e.,

• v4i: the components of the eigenvector corresponding to the i-th robot itself, which
can be estimated in a distributed way by suitably modifying the distributed power
iteration method (see e.g. [Malli et al., 2021; Yang et al., 2010]) as done e.g. in
[Zelazo et al., 2015];

• v4j∀j ∈ Ni: which can be communicated by neighboring robots;

• dij: for which an estimate d̂ij can be computed from the estimated positions; p̂i,
locally available, and p̂j which can be communicated by the neighbors

• βij which is measured.

In the next section, we show how to embed the active sensing action (5.14) within a
primary task of formation control.

5.4 Including formation control through CLFs

We establish a hierarchical framework that prioritizes position-based formation control
over active sensing by using distributed QP-based Control Lyapunov Functions [Ames
et al., 2019] (see Sect. 3.3).

The position-based formation control task considered is defined based on the er-
ror associated with each edge, denoted as eij = pj − pi − pdij. Here, pdij represents the
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desired relative position between robot i and j. We also define the desired position
vector as pd =

[
(pd1)T ... (pdN )T

]T
, which relates to the relative desired position vector

pdE = stack(pdij) through pdE = ET
3 p

d. It is worth noting that pd is defined up to a com-
mon translation. Then, the position error is e = p− pd =

[
eT1 ... eTN

]T
with dynamics

ė = u− ṗd.
We consider the following Laplacian potential function:

V (e) = eTL3e = 1
2
∑

(i,j)∈E
∥ei − ej∥2

2 . (5.20)

We emphasize that, while this function is only positive semidefinite i.e. V (w) = 0 for
any vector w ∈ span(U) representing a common translation, it is positive definite with
respect to the desired equilibrium set {e1 = e2 = ... = eN}. For more flexibility in the
convergence requirements, one can consider as potential the following function

V (e) =
N∑
i=1

∑
j∈Ni

αij(Vij) =
N∑
i=1

∑
j∈Ni

αij(∥ei − ej∥2). (5.21)

with αij being class K functions.
Let us define ci(ζ) := (LgiLfλ4)T/ ∥LgiLfλ4∥2 if ∥LgiLfλ4∥2 ̸= 0 and ci(ζ) = 0 oth-

erwise (vector ci(ζ) is thus the unit-norm direction of the active sensing control (5.14)).
The centralized QP, including the active sensing task, is formulated as:

min
ui,i=1,...,N

.
1
2

N∑
i=1

[(
ci(ζ)T (ui − kci(ζ)

)
)2 + η ∥Πciui∥

2
2

]

s.t.
N∑
i=1


∑
j∈Ni

∂αij(Vij)
∂Vij

(ei − ej)
Vij

T

ui +
∑
j∈Ni

αij(∥ei − ej∥2)

 ≤ 0

(5.22)

where Πci = I3− cicTi is the orthogonal projector onto the plane perpendicular to ci and
η > 0. For future convenience we also define ēij := ∂αij(Vij)

∂Vij

(ei−ej)
Vij

.
The first term in the cost function aims at achieving the same information gain as the

one obtained by ui = kci(ζ) and, therefore, it represents the active sensing task. The sec-
ond (regularization) term in the cost function is meant to address two issues, namely (i)
avoiding excessive inputs in the direction orthogonal to the active sensing task due to con-
straint satisfaction, and (ii) obtaining a strongly convex cost function. Indeed, the Hessian
of the cost function in (5.22) is given by HQP := diag(HQP,i) = diag(cicTi + ηΠci) ≻ 0.
Furthermore, to avoid undesirable oscillatory behaviours close to convergence due to
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active sensing, one can define the gain k to be given by the product of two terms
k = kckσ(∑j∈Ni

αij(∥ei − ej∥2)): a constant term kc and, given a sigmoid function σ(·)
of the error, kσ = σ(∑j∈Ni

αij(∥ei − ej∥2)) so that the active sensing action goes to zero
when the task error is approaching zero.

Our objective now is to transform this problem into one that is suitable for distributed
implementation. Inspired by [Tan & Dimarogonas, 2022] (see also Sect. 3.5.2), we compute
the analytical expression for the solution of the QP. First, we define a =

[
aT1 ... aTN

]T
,

with ai := ∑
j∈Ni

ēij, and b = ∑N
i=1 bi, with bi := ∑

j∈Ni
αij(∥ei − ej∥2

2), so that the con-
straint can be written as ∑N

i=1(aTi ui + bi) ≤ 0. We point out that, in absence of input
limits, the constraint is always feasible, i.e. a = 0 implies b = 0, in which case the con-
straint is trivially satisfied. The analytical solution to the QP can be obtained by using
the Karush–Kuhn–Tucker (KKT) optimality conditions. Let us define the Lagrangian of
the problem

L := 1
2

N∑
i=1

[(
ci(ζ)T (ui − kci(ζ)

)2 + η ∥Πciui∥
2
2

]
+ λL(aTu+ b), (5.23)

with λL being the Lagrange multiplier. The resulting KKT conditions, using ∗ to indicate
the optimal solution, are:

∂L
∂ui

= (u∗
i − kci)T cicTi + η(u∗

i )TΠci + λ∗
La

T
i = 0 ∀i∑N

i=1(aTi u∗
i + bi) ≤ 0

λ∗
L ≥ 0

λ∗
L = 0 if

∑N
i=1(aTi u∗

i + bi) < 0

. (5.24)

From the first equation one obtains:

u∗
i = H−1

QP,i(kci − λ
∗
Lai) (5.25)

from which two cases are possible: 1) the constraint is not active at the unconstrained
solution kH−1

QP,ici, hence from the last condition one has λ∗
L = 0 and u∗

i = kH−1
QP,ici; 2) the

constraint is active, hence substituting (5.25) into the constraint equation with equality
yields

λ∗
L =

∑N
i=1(aTi H−1

QP,ikci + bi)∑N
i=1 a

T
i H

−1
QP,iai

. (5.26)

Substituting back in (5.25), one obtains the complete solution for the two cases as:

ui = kH−1
QP,ici −max

(
0,
∑N
i=1(kaTi H−1

QP,ici + bi)∑N
i=1 a

T
i H

−1
QP,iai

)
H−1
QP,iai. (5.27)

Since HQP,i ≻ 0, a zero denominator implies ai = 0 ∀i, that is, accomplishment of the
formation control task. Hence, in this case the input can be set to zero. Otherwise, the first
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term represents the solution to the unconstrained problem. The term in the numerator∑N
i=1(kaTi H−1

QP,ici + bi) is negative when the constraint is satisfied by the solution to the
unconstrained problem. Since the term at denominator is always greater than zero, then
the second term is different from zero only when the constraint is active and it acts to
correct the input in order to satisfy the constraint.

The two terms ∑N
i=1(kaTi H−1

QP,ici + bi) and ∑N
i=1 a

T
i H

−1
QP,iai are not locally available

but one can estimate their average through dynamic consensus, e.g. [Freeman et al.,
2006]. Finally notice that the terms ai and bi depend on the estimated positions of robot
i and its neighbors, which must then be estimated as accurately as possible to correctly
achieve the formation task. This is achieved by the gradient-based active sensing strategy
embedded in the cost function of (5.22).

5.5 Simulation results

In this section, we show the effectiveness of our approach through extensive numerical
simulations. We compare the results obtained applying the proposed control law (5.27),
which achieves the desired formation while performing active sensing against a control
law which only implements formation control by satisfying the constraint in (5.22) while
minimizing the input norm. For convenience, we refer to the two methods, respectively, as
AS and CLF-only. We consider a group of N = 7 drones, which can sense the neighboring
robots without any sensing constraints and three different graph topologies with different
levels of connectivity. We performed a set of 50 simulations starting from random initial
positions for each of the following graph topologies (ordered in increasing connectivity
level): line graph, cycle graph and 1-redundantly bearing rigid (RBR) graph [Trinh et
al., 2019] (Fig. 5.1). Notice that the first two graphs are not bearing rigid. The drones
initial estimated position is drawn from a Gaussian distribution centered around the real
position with standard deviation 0.8m2 along each axis. As desired formation, we chose
to have the drones equally spaced along a circle lying on a plane parallel to the x-y plane.

The decrease of the CLF imposed in the constraint is the same for CLF-only and
AS, hence, the converge speed of the formation is not of particular interest. We instead
focus on the (more relevant) evaluation of the steady state formation error at convergence,
and of the estimation error. In the simulations, we used the following parameters: the
observer gain is ke = 0.1, the forgetting factor is ρ = 0.04, the OG is initialized as a
matrix weighted Laplacian with matrix weights 0.5I3, the active sensing gain is k = 0.2,
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5.5. Simulation results

(a) Line graph (b) Cycle graph (c) 1-RBR graph

Figure 5.1: Graphs corresponding to the sets of simulations.

the regularization term is η = 0.01. We also implemented a control barrier function, which
filters the inputs provided by the proposed controller to ensure collision-free trajectories
[Wang et al., 2017].

We present the results for the line graph in Fig.5.2, the cycle graph in Fig.5.3, and
the 1-redundant bearing rigid graph in Fig. 5.4. In each case, the figures are arranged
from left to right to display: (a) the time evolution of λ4(t), (b) the estimation error,
(c) the formation error, (d) and (e) the violin plot respectively for the estimation and
formation error at the end of the trajectory. As a reminder, λ4(t) is the minimum non-
zero eigenvalue of the OG and it is a measure of the collected information which affects
the worst case convergence rate of the employed localization observer. The plots (a), (b)
and (c) show the average trajectories along with the standard deviation of the results
across simulations.

The results clearly show that the use of active sensing leads to higher acquired informa-
tion and, thus, a more accurate localization and, as a consequence, a better performance
for the formation control. The use of active sensing provides benefits, particularly in
scenarios where the connectivity is lower, as for the line and cycle graphs. In these cases,
the active sensing task reduces both the estimation and formation errors. Conversely, in
highly connected and rigid graphs like the 1-redundantly rigid graph, the improvement
margin is quite small. Indeed, in this case, rigidity of the graph greatly simplifies the lo-
calization task since the robot group becomes “instantaneously localizable” (up to a scale
factor). This is also evident from Fig.5.4(c), where the information growth is considerably
high even when active sensing is not used (CLF-only case).

An example of the trajectories followed using active sensing can be seen at the following
link.
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Figure 5.2: Line graph

0 50 100 150 200 250 300 350
t[s]

0

5

10

15

20

4

AS
CLF-only

(a) Trajectory of
λ4

0 50 100 150 200 250 300 350
t[s]

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

e[
m

]

AS
CLF-only

(b) Estimation er-
ror norm

0 50 100 150 200 250 300 350
t[s]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

e[
m

]

AS
CLF-only

(c) Formation er-
ror norm

AS CLF-only

0.4
0.6
0.8
1.0
1.2
1.4

e[
m

]

(d) Violin plot of
the estimation er-
ror norm at the fi-
nal time

AS CLF-only

0.2

0.4

0.6

0.8

1.0

e[
m

]

(e) Violin plot of
the formation er-
ror norm at the fi-
nal time

Figure 5.3: Cycle graph

5.6 Extension to R3 × S1

We now shift our focus to the scenario where the robots model is governed by (4.1) in
R3 × S1. In this case, each drone is able to measure the body-frame relative bearing with
respect to its neighbors, expressed as:

βij := RT
i

pij
dij
∈ S2 (5.28)

with Ri = Rz(ψi).
With the inclusion of sensing constraints in the R3 × S1 representation, each robot i

is assumed capable of measuring the relative bearing with respect to another robot j βnij
when dmin ≤ dij ≤ dmax, with dmin and dmax being minimum and maximum sensing range
and the j-th robot is in the FoV of the i-th robot. This latter constraint is modeled as
the condition cij > cmin, where cij = eT1 βij is the cosine among the i-th robot x body
axis (which the camera is assumed to be aligned with) and the bearing (see Fig. 4.1),
and cmin is the minimum cosine allowed by the limited camera FoV (corresponding to the
maximum angle αmax).
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Figure 5.4: 1-Redundantly Rigid Graph.

Given the incorporation of sensing constraints, the induced sensing graph becomes
state dependent. Moreover, since FoV sensing constraints are also accounted for, the
induced sensing graph becomes directed, while the communication graph corresponds to
its undirected counterpart.

5.7 Active sensing control in R3 × S1

In this section, we adapt the previously formulated gradient-based active sensing control
law (5.14) to accommodate body-frame bearing measurements and sensing limitations.
Similar to the preceding chapter, we concentrate on the position-based partition of the
OG, excluding the partitions involving yaw. Specifically, we define the following dynamics
for the OG:

Ġβ(t) = −ρGβ(t) +Lwβ(t), (5.29)

where
Lwβ := E3 diag(wijRiΠβijR

T
i )ET

3 (5.30)

and wij represents a scalar differentiable perception weight associated to each edge ac-
counting for sensing limitations as detailed in Sect. 2.4 and it is defined as (2.38). It
is worth noting that in the ideal case, RiΠβijR

T
i = Πβ̄ij

= Πβ̄ji
. However, since the

rotation matrix Ri is unknown, we substitute it with an estimate of it R̂i. To simplify
the notation used in the following, we will refer to Π̂β̄ij

= R̂iΠβijR̂
T
i and ˆ̄βij = R̂iβij.

The rest of the discussion in Sect. 5.3 remains unaltered, except for the computation
of the gradients of the weights and the inclusion of the same gradient law to control the
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yaw. The resulting input is given by:

vTi =
∑
j∈Ni

[v4ij ⊗ v4ij]T
[
wij
dij

(
Π̂β̄ij

⊗ ˆ̄βij + ˆ̄βij ⊗ Π̂β̄ij

)
+ vec(Π̂β̄ij

)∂wij
∂pi

+wji
dij

(
Π̂β̄ji

⊗ ˆ̄βji + ˆ̄βji ⊗ Π̂β̄ji

)
+ vec(Π̂β̄ji

)∂wji
∂pi

]
R̂i

wi = ∑
j∈Ni

[v4ij ⊗ v4ij]T
[
vec(Π̂β̄ij

)∂wij
∂ψi

+ vec(R̂i(Se3Πβij + ΠβijS
T
e3)R̂i

T )
] . (5.31)

The active sensing gradient control (5.31) requires each robot i to know only quantities
which are locally available or communicated by neighboring robots, i.e.,

• v4i: the components of the eigenvector corresponding to the i-th robot itself, which
can be estimated in a distributed way by suitably modifying the distributed power
iteration method;

• v4j∀j ∈ Ni: which can be communicated by neighboring robots;

• dij: for which an estimate d̂ij can be computed from the estimated positions; p̂i,
locally available, and p̂j whose estimate can be communicated by the neighbors

• ψj: whose estimate ψ̂j can be communicated by the neighboring robot.

• βij which is measured.

• βji which can be communicated.

5.8 Including an additional task through CLFs

Here, similar to Sect. 5.4, we introduce an additional task of formation control using
a CLF. This time, to reduce the communication burden we impose a local CLF con-
straint. Specifically, each robot must satisfy: Manca La rotation Gi

ND
(∑

j∈Ni
ēij
)T
ui +∑

j∈Ni
αij(∥ei − ej∥2) ≤ 0.(5.32)By summing all terms from the preceding inequality, we

ensure the original inequality is met, resulting in a more conservative yet less complex
solution that does not necessitate any dynamic consensus algorithm:

N∑
i=1

∑
j∈Ni

ēij

T ui +
N∑
i=1

∑
j∈Ni

αij(∥ei − ej∥2) ≤ 0 (5.33)
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For convenience, let us denote ēi = ∑
j∈Ni

ēij. The QP which needs to be solved is

min
ui,i=1,...,N

.
1
2

N∑
i=1

[(
ci(ζ)T (ui − kci(ζ)

)2 + η ∥Πciui∥
2
2

]
s.t. (ēi)T ui +

∑
j∈Ni

αij(∥ei − ej∥2) ≤ 0 ∀i ∈ {1, 2, ..., N}
(5.34)

which can be trivially solved in a decentralized way, with each robot solving a local
problem

min
ui

.
1
2

[(
ci(ζ)T (ui − kci(ζ)

)2 + η ∥Πciui∥
2
2

]
s.t. ēTi ui +

∑
j∈Ni

αij(∥ei − ej∥2) ≤ 0
(5.35)

It is important to highlight that, as in the previous chapter, although the active sensing
discourage edge loss, global graph connectivity can still be compromised, especially given
the higher priority of the formation control task. Therefore, we include the distributed
CBF presented in Chapter 3,which minimally adjusts the desired input derived from (5.35)
to maintain connectivity.

The resultant input, derived from a combination of active sensing and the formation
control task, prioritizes the latter. To ensure that the connectivity maintenance CBF
does not interfere with the higher priority task when not necessary, in the connectivity
CBF-QP, one can adjust the weight of the deviation from the desired input based on the
direction of deviation. Specifically, rather than employing the conventional unweighted
least squares cost:

J =
N∑
i=1

∥∥∥ui − udi ∥∥∥2
(5.36)

one can define the following weighted least square

J =
N∑
i=1

(ui − udi )T (γ1ēiē
T
i + γ2(I − ēiēTi ))(ui − udi ) (5.37)

with γ1 ≫ γ2.
It is important to note that this section is still under development, as we intend to

explore additional tasks beyond formation control. Ideally, we aim to consider tasks
that allow for more degrees of freedom in trajectory optimization, such as controlling a
leader within the group or a subset of robots, while leaving others free to optimize their
trajectories.
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5.9 Conclusions

In this chapter, we have presented a novel distributed control strategy for bearing for-
mations, designed to maximize information acquisition for cooperative localization. Our
active sensing strategy is based on the minimum nonzero eigenvalue of a weighted Ob-
servability Gramian with a forgetting factor as an information measure.

This active sensing strategy can be combined with other additional tasks of interest
(a position-based formation control task in our case) by making use of control Lyapunov
functions. This integration enables the execution of higher-level tasks while concurrently
enhancing the minimum level of "localizability" for the robot group, thereby improving
the overall task execution.

Numerical simulations over graphs with different levels of connectivity demonstrated
the benefits of the approach, in particular for non-rigid graphs.

Additionally, we extended the algorithm to accommodate the representation of robot
states in R3 × S1 while addressing sensing limitations. This extension necessitated the
implementation of a connectivity maintenance algorithm to safeguard against the loss of
global connectivity and the incorporation of a suitable observer. Although this extension
is still under development, our plans include integrating additional tasks beyond forma-
tion control and addressing challenges such as obstacles and the consequent occlusions.
Moreover, we envision conducting realistic simulations and experiments. We believe that
this framework holds significant potential to enhance the flexibility of robot formations
navigating environments based on camera feedback.
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Chapter 6

ACTIVE SENSING FOR MULTI-TARGET

TRACKING

This chapter considers the problem of persistently monitoring a set of moving targets
using a team of aerial vehicles. Each agent in the network is assumed equipped with a
down-looking camera with limited range and field of view (FoV) providing relative bearing
measurements and it implements an information consensus filter (ICF) to estimate the
state of the target(s) in a distributed way. We then propose a distributed control scheme
that allows maintaining a prescribed minimum PE level so as to ensure filter convergence.
At the same time, the agents in the group are also allowed to perform additional tasks of
interest while maintaining a collective observability of the target(s). In order to enforce
the observability constraint, we leverage two main tools: (i) the weighted observability
gramian with a forgetting factor as a measure of the cumulative acquired information,
and (ii) the use of high order control barrier functions (HOCBF) as a mean to maintain
a minimum level of observability for the targets.

Target tracking is a classical topic in the multi-robot community in which a group of
(possibly mobile) sensors needs to cooperatively track the position of a moving target.
Each sensor can obtain a measurement of the target and fuse it with the measurements
from the other sensors to obtain a better estimate [Battistelli & Chisci, 2014; Kamal
et al., 2013; Olfati-Saber, 2009]. Mobile sensors can also optimize their position/motion
so as to maximize the information collected about the target state [Jacquet et al., 2022;
Morbidi & Mariottini, 2012], thus improving the localization accuracy.

In this work, differently from many previous works on this subject (e.g., [Jacquet
et al., 2022; Morbidi & Mariottini, 2012]), we consider a situation in which the target
localization is not necessarily the only task for the robot group. This motivates to only
enforce maintenance of a minimum level of persistency of excitation for localizing the
moving target(s) so that the group can exploit its redundancy for realizing additional
tasks of interest.
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Most previous works on this subject define the active sensing task as an optimization
problem aimed at maximizing the collected information. A notable exception is the re-
cent paper [Coleman et al., 2024]. Similar to our approach, they employ CBFs to enforce
observability, thus aiding the convergence of the state estimate to the true state while
accommodating the original control objectives. Their focus lies on single-target tracking
using a single robot with distance measurements to the target. They express the observ-
ability constraint through the determinant of the Observability matrix, a quantity directly
influenced by inputs, necessitating the utilization of integral CBFs (iCBFs).

Similarly, we only require maintenance of a minimum level of information so as to
ensure a proper convergence of the filter used for estimating the target state. However,
we opt for the Observability Gramian (OG) due to its suitability for the task, providing
a measure of cumulative past information. Additionally, we extend our analysis to multi-
robot systems capable of tracking multiple moving targets and acquiring relative bearing
measurements rather than distances. A notable advantage of leveraging the OG is its
inherent structure, which facilitates distributed computations, as we will show.

Furthermore, another relevant work is [J. Li et al., 2022], which explores active target
tracking using a single drone against a malicious aerial vehicle using only bearing mea-
surements. They employed a pseudo-linear Kalman Filter similar to the one we extend to
the multi-agent scenario. Both approaches assume a constant velocity target model and
optimize the follower’s trajectory based on the Fisher Information Matrix (FIM).

The main contribution of this chapter is the design of a distributed control for the
multi-UAV system based on HOCBFs able to guarantee a minimum level of PE (which
is necessary for the ICF convergence) while also allowing the execution of other tasks of
interest. The rest of the chapter is structured as follows: in Section 6.1, the considered
system dynamics, multi-robot interaction and sensor model are introduced. The employed
ICF is presented in Section 6.2. In Section 6.3, we define the OG dynamics, then, in
Section 6.4, we describe the algorithm used to achieve the persistent monitoring task.
The results presented in Section 6.6 validate the approach, and conclusions are drawn in
Section 6.7.

This work was published in the "IEEE Robotics and Automation Letters" [Balandi
et al., 2023].
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6.1. Modeling

6.1 Modeling

We consider a group of N drones that need to localize M possibly moving target robots.
It is assumed that the drones are able to localize themselves in a common frame, whereas
the targets need to be localized by the drones using relative bearing measurements from
onboard sensors. For example, the targets could be a set of ground robots unable to
autonomously localize themselves because of limited sensing, cluttered environment, and
so forth. Each drone can only communicate with its neighbors according to a fixed,
undirected and connected communication graph G = (V , E), where V is the set of nodes
and E ⊆ V × V is the edge set. The set of neighbors of the i-th robot is denoted
as usual with Ni ≜ {j ∈ V : (i, j) ∈ E}. Since the communication is bidirectional
(i, j) ∈ E ⇐⇒ (j, i) ∈ E . The i-th drone is modeled as a single integrator with position
pi ∈ R3 and velocity input ui ∈ R3 such that

ṗi = ui i = 1, . . . , N. (6.1)

In the following, we will also refer to the aggregate drones positions as p =
[
pT1 . . . pTN

]T
and analogously for the inputs u =

[
uT1 . . . uTN

]T
. The r-th target position and velocity

are indicated respectively as ξr and µr, and their motion model need not be known by
the drones.

Each drone is assumed equipped with a down-looking onboard camera that can acquire
a relative bearing measurement

βir = pir
dir

∈ S2, (6.2)

with respect to the target(s) in the FoV, where pir = ξr − pi and dir = ∥ξr − pi∥.
The bearing is obtained by projecting the noisy image plane point p̄ir =

[
x̄ir ȳir 1

]T
onto the unit sphere. A bearing measurement βir with respect to the r-th target is
considered available if the r-th target is within a certain range w.r.t. the i-th drone,
i.e. dmin < dir < dmax, and inside the FoV of the i-th drone, i.e. −x̄M ≤ x̄ir ≤ x̄M and
−ȳM ≤ ȳir ≤ ȳM , where x̄M and ȳM are the FoV limits (see Fig. 6.1).

6.2 Information consensus filter

We base our estimation strategy for the target state on the ICF originally presented in
[Kamal et al., 2013], for which, contrarily to the classical Kalman Consensus Filter (KCF)
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Figure 6.1: The bearing βir is the unit vector from the drone to the target. In the figure
a camera with limited FoV is pointing in the negative z direction, represented by the unit
vector −e3.

[Olfati-Saber, 2009], only collective observability of the target(s) is required [Battistelli
& Chisci, 2014] (i.e., each robot is not required to individually measure the target). We
will show that the a virtual measurement equation can be defined which can be linearized
by output injection and that, thank to this, it is possible to obtain a uniformly globally
exponentially stable observer under suitable PE conditions for the nominal system.

Since we do not assume knowledge of the target motion model, a simple constant
velocity model is used for estimation purposes:

xr(k + 1) = Adxr(k) + γ(k) (6.3)

where xr =
[
ξr
T µr

T
]T

and Ad =
[
I ∆TI
0 I

]
, with ∆T being the discretization step,

while γ(k) ∈ N (0,Q) is Gaussian process noise with a positive definite covariance matrix
Q. The observer is not directly built on the expression (6.2) as output function but,
instead, as done also in other works [Hamel & Samson, 2016], we consider an output
equation linearized via output injection:

zir(k) = Πβir(k)ξr(k) = Cir(k)xr (6.4)

where Πβir := I3 − βirβTir is the orthogonal bearing projector and Cir(k) =
[
Πβir (k) 0

]
.

Also, although (6.4) is nonlinear, it only depends on a measured (nonlinear) function of
the state (the bearing βir).

As in [Hamel & Samson, 2016], the measurement confidence gain R−1 associated to
each measurement is simply taken as R−1 = r−1I, with r−1 > 0 being a tunable gain.
This is possible because, from the perspective of the filter stability, this matrix is simply
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Algorithm 1 - ICF at agent i relative to target r at time step k

Input: Prior state estimate x−
ir(k), prior information matrix W−

ir (k), observation matrix Cir(k), con-
sensus rate parameter ϵ, total consensus iterations Kc and process covariance Q.

1) If µir(k) = 1, get measurement vector zir and output information matrix R−1

2) Compute the local information matrix V̄ir(k) and vector v̄ir(k)

V̄ir(k)← 1
N
W−

ir (k) + r−1µir(k)
[
Πβir (k) 0

0 0

]
(6.6)

v̄ir(k)← 1
N
W−

ir (k)xt−ir (k) + r−1µir(k)
[
Πβir (k)

0

]
pi(k) (6.7)

3) Perform Kc round of dynamic average consensus on the information matrix and vector
Let V 0

ir(k) = V Kc
ir (k − 1) and v0

ir(k) = vKcir (k − 1)
for κ = 1 to Kc do

a) Send V κ−1
ir (k) and vκ−1

ir (k) to all neighbors j ∈ Ni
b) Receive V κ−1

ir (k) and vκ−1
ir (k) from all neighbors j ∈ Ni

c) Update the average consensus on V̄ir(k) and v̄ir(k)
end
4) Compute a posteriori state estimate and information matrix for time k

x+
ir ← (V Kc

ir )†vKcir (6.8)

W+
ir ← NV Kc

ir (6.9)

5) Predict for next time step (k + 1)

W−
ir (k + 1)← ((A−T

d W+
ir (k)A−1

d )† +Q)−1 (6.10)

x−
ir(k + 1)← Adx

+
ir(k) (6.11)

Output: State estimate x+
ir(k) and information matrix W+

ir (k).

required to be a positive semi-definite matrix. Notice that, in this case the information
associated to a single measurement is

Cir(k)TR−1Cir(k) =
r−1Πβir(k) 0

0 0

 (6.5)

where we used the idempotence (i.e. Πβir(k)Πβir(k) = Πβir(k)) and symmetry of the
orthogonal projector.

The algorithm is described in Algorithm. 1. The steps of the algorithm are as follows:
1) a new measurement zir(k) is obtained; 2) in (6.6) and (6.7), the local information
matrix V̄ir(k) and information vector v̄ir(k) are obtained from the prior information
matrix W−

ir and the local measurement information ; 3) Kc rounds of consensus on the
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information matrix and the information vector are performed; 4) in (6.8) and (6.9), the
updated state estimate x̂τ+

ir = (V Kc
ir )†vKcir , with † indicating the Moore-Penrose pseudo-

inverse, and information matrix W+
ir = NV Kc

ir are obtained and, finally; 5) in (6.11) and
(6.10), the usual prediction step is performed.

The use of the linear time-varying expression (6.4) in the ICF requires some care.
First, thanks to the orthogonal projector properties, one has

Πβir (k) (ξr(k)− pi(k)) = 0

=⇒ zir(k) = Πβir (k)ξr(k) = Πβir (k)pi(k).
(6.12)

The update step of the original ICF [Kamal et al., 2013], by using (6.12), can then be
modified for our case as

v0
ir = 1

N
W−

ir (k)x̂−
ir(k) + r−1µir(k)

[
Πβir (k)

0

]
zir(k)

= 1
N
W−

ir (k)x̂−
ir(k) + r−1µir(k)

[
Πβir (k)

0

]
Πβir (k)pi(k)

= 1
N
W−

ir (k)x̂−
ir(k) + r−1µir(k)

[
Πβir (k)

0

]
pi(k)

(6.13)

where x̂−
ir(k) is the prior state estimate and µir(k) = 1 if the robot i can sense the

target r, otherwise µir(k) = 0. Note that the final expression in (6.13) only depends on
known quantities, while zir(k) in (6.4) does not (thus showing the advantage of formula-
tion (6.13)).

The stability of the employed filter can then be shown under the following assumptions
(that will be discussed hereafter):

Assumption 2. No collision drone-target occurs, so that the bearing measurements are
always well-defined.

Assumption 3. The target state is collectively observable, i.e., the discrete-time Observ-
ability Gramian is full-rank

K∑
k=0

N∑
i=1

(
Ak
d

)T [Πβir (k) 0
0 0

]
Ak
d ⪰ µ1I (6.14)

for some µ1 > 0, which reduces to
K∑
k=0

N∑
i=1

Πβir (k) ⪰ µ2I (6.15)

for some K,µ2 > 0 (see Lemma 2.3 in [Hamel & Samson, 2016]).
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6.2. Information consensus filter

Remark 7. Assumption 3 is satisfied if there exists either a single persistently exciting
direction βir or at least two non-collinear directions βir and βjr [Hamel & Samson, 2016].

Assumption 4. The information matrix is initialized so that Wir(0) ⪰ µ3I for some
µ3 > 0, i = 1, . . . , N .

Under these assumptions, since the system became linear time-varying using output-
injection, the proof provided in [Battistelli & Chisci, 2014] can be used, stating that the
weighted squared error vector, whose i-th component is [Lr(k)]i = eir(k)TW−

ir (k)eir(k),
with eir(k) = xr(k)− x̂−

ir, converges to zero exponentially fast for the nominal (i.e. con-
stant velocity and noise free) system.

Then since, owing to Assumptions 3 and 4, the information matrices W−
ir are bounded

from below and from above, i.e. γ1I ⪯W−
ir ⪯ γ2I with γ1, γ2 ≥ 0, it follows that, also the

estimation error converges to zero exponentially fast, and thus the observer is uniformly
globally exponentially stable. We note that, in general, the real velocity of the target will
not be constant but, since the unknown acceleration enters the error dynamics linearly
and the observer is uniformly globally exponentially stable, the observer is input-to-state
stable with respect to perturbations in the velocity dynamics, hence bounded accelerations
will only cause bounded estimation errors (as expected and desired).

Remark 8. The state estimation process employs a second-order model to incorporate
target velocity estimation, a crucial aspect for subsequent control tasks, as elaborated upon
in the following section. Possible improvements in terms of estimation performance could
be obtained using a higher order model, e.g. constant acceleration. We selected the second-
order model due to its broad applicability and prevalence in target tracking scenarios, par-
ticularly when detailed information about target motion is lacking. Notably, our approach
does not presuppose knowledge of the exact motion model of the target. Should knowledge
of the target model become available, leveraging it directly could further enhance estimation
performance.

Remark 9. We point out that, for a generic double integrator system with unknown
acceleration, the position and velocity are unobservable from a single bearing measurement.
Hence, for the filter to have acceptable performance, one of the two following assumptions
needs to be verified: 1) the target has a small acceleration so that the ultimate bound of
the error system is small, or 2) at least two drones are measuring non collinear bearings
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w.r.t. the target, so that the position of the target is effectively measured and the target
state is observable.

We finally comment about the three Assumptions 2–4: Assumption 2 can be trivially
met by adding a constraint on the UAV/target minimum distance (as done in the case
study of this work); Assumption 3 is a Persistency of Excitation (PE) condition that is
enforced at runtime by the algorithm proposed in the following sections; Assumption 4 is
only an initialization condition.

6.3 Information measures

As previously mentioned, we aim at enforcing the satisfaction of the PE condition in
Assumption 3 necessary for the filter to converge in presence of sensing limitations. For
this purpose, in this section, we design the dynamics of the corresponding continuous-time
OG, keeping into account the sensing limitations by weighting the acquired information
through suitable perception weights which decrease approaching the sensing limits, as
done also in the previous chapters. Furthermore, to maintain the OG bounded and to
keep into account model uncertainties, we introduce a forgetting factor.

The OG representing the information acquired about a target position until time t,
indicated as Gor(t) ∈ R3×3, can be expressed as:

Gor(t) = Gor(t0) +
∫ t

t0

N∑
i=1

ΠT
βirΠβir dτ = Gor(t0) +

∫ t

t0

N∑
i=1

Πβir dτ (6.16)

where we used the orthogonal projector properties. Notice that this matrix is the continuous-
time analogous of the matrix appearing in (6.15). The OG is a positive semi-definite
matrix and it is invertible if and only if the position of the target is observable along the
trajectory. The minimum eigenvalue λ1r of the OG can then be taken as an observablity
metric: it quantifies how far is the target position from being unobservable [Krener & Ide,
2009].

The integrand of the OG is a positive semi-definite matrix and the OG is monotonically
increasing in time. Since, in this work, we are only concerned about maintaining λ1r above
a minimum threshold, we introduce a forgetting factor in the OG dynamics that makes
the information exponentially decaying in absence of new measurements. This also allows
to take into account the uncertainty on the model. To take into account the sensing limits
of the drones, we introduce weights on the information acquired at time t. The dynamics
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of the weighted OG with forgetting factor can then be written as:

Ġor = −ρGor + r−1
N∑
i=1

wirΠβir (6.17)

where ρ > 0 is the forgetting factor, wir ∈ [0, 1] is a differentiable weight function defined
in (2.38), used to encode sensing constraints in the information dynamics, and, as before,
r−1 is the information gain associated to the measurement. Note that, the OG first
derivative only depends on the drone positions and not on their velocities. Hence, any
function of the entries of the OG would need to be derived twice for the velocity of the
drones (i.e. the input of the system) to appear, i.e. it is a function of relative degree 2.

6.3.1 Perception Awareness

As mentioned in the previous section, the drone sensing limitations are taken into account
by weighting the OG. In (6.17), wir is a scalar differentiable quantity used by the i-th
drone to weight the information acquired about the r-th target. The weight wir smoothly
varies from 1, inside the sensing limit region, to 0, outside the sensing limit region. The
information artificially decreases in case the target approaches the maximum sensing range
or angle of the FoV. The weight wir = wDirwβir are designed to be non vanishing at the
sensing limits as defined in (2.38).

The weights wDir and wβir do not (purposely) vanish to zero when approaching the
sensing limits. The idea being to allow the drones temporarily losing a measurement
when enough information is available. The non-zero gradient of the weights can then be
exploited by the drones to possibly move back towards the targets for reacquiring infor-
mation. This choice also allows drones which are not currently acquiring measurements to
use the group-level knowledge about the target position, and their own weight gradient,
to obtain a measurement in the future.

6.4 Persistent target monitoring

In this section, we show how to enforce the maintenance of the unobservability index over
a certain threshold by using high order control barrier functions (HOCBF), see Sect. 3.4,
in order to achieve the persistent target monitoring task. We start by formulating the
general problem in a centralized form and we then discuss how it can be solved in a
distributed way.
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6.4.1 Centralized formulation

As previously mentioned, the goal is to enforce Assumption 3. This can be obtained by
ensuring that the minimum eigenvalue λ1r of the OG remains over a prescribed threshold.
For this purpose, we define the safe set (see Sect. 3.4) as

Cr0 = {ζ ∈ R3N+(3+9) : hr(ζ) = λ1r(ζ)− ϵψ ≥ 0} (6.18)

with ϵψ > 0. The state ζ consists of the stack of the drone positions, of the target position
and of the vectorized OG, i.e.,

ζ =
[
pT ξTr vec (Gor)T

]T
(6.19)

where vec(·) is the vectorization operator and p aggregates all the drones positions. The
corresponding system dynamics are

ζ̇(t) = f(ζ, t) +G(ζ)u (6.20)

with

f(ζ, t) =


03N

µ(t)
vec
(
−ρGor + b

∑N
i=1 wirΠβir

)
 (6.21)

where, with a slight abuse of notation, we only indicated the direct time dependency, and

G(ζ) =
[
(1N ⊗ I3)T 0T3×3N 0T9×3N

]T
. (6.22)

As previously mentioned, a function of the entries of the OG (such as hr(ζ) in our
case) has relative degree ϱ = 2 w.r.t. the system input u, hence the need to resort to
HOCBFs. In our case,

ψ0r(ζ) = λ1r(ζ)− ϵψ

ψ1r(ζ) = ∂λ1r(ζ)
∂(vec(Gor))

vec(Ġor) + αψ1 (λ1r(ζ)− ϵψ)
(6.23)

where we used a linear extended class K function with αψ1 > 0 and ∂λ1r
∂(vec(Gor)) = vT1r ⊗ vT1r,

with v1r being the eigenvector of the OG associated to λ1r.
The centralized QP that needs to be solved is

min
u∈U

1
2
∥∥u− ud∥∥2

2

s.t.
N∑
i=1

LGiψ1r(ζ)ui + Lfψ1r(ζ) + αψ2 ψ1r(ζ) ≥ 0
(6.24)
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where, again, we chose a linear extended class K function with αψ2 > 0. Also,

LGiψ1r(ζ) = r−1vT1r ⊗ vT1r
(

vec(Πβir )
∂wir
∂pi

+ wir
∂ vec(Πβir )

∂pi

)
(6.25)

and
Lfψ1r(ζ) =

(
vec(Ġor)THλr + (αψ1 − ρ)vT1r ⊗ vT1r

)
vec(Ġor)

+ r−1vT1r ⊗ vT1r
N∑
i=1

(
vec(Πβir )

∂wir
∂ξr

+ wir
∂ vec(Πβir )

∂ξr

)
µr

= cr(ζ) +
N∑
i=1

dir(ζ)

(6.26)

where
Hλr := ∂2λ1r

∂ vec(Gor) vec(Gor)T
= K3

(
Y †

1r ⊗ v1rv
T
1r + v1rv

T
1r ⊗ Y

†
1r

)
(6.27)

with Y1r := λ1rI −Gr, K3 being the commutation matrix [Magnus, 1985] and "†" be-
ing the Moore-Penrose pseudoinverse. Also, we split Lfψ1r(ζ) in the separable part∑N
i=1 dir(ζ) and the non-separable one cr(ζ) (the reason will be clearer later), defined as

follows:
cr(ζ) :=

(
vec(Ġor)THλr + (αψ1 − ρ)vT1r ⊗ vT1r

)
vec(Ġor) (6.28)

and
dir(ζ) := r−1vT1r ⊗ vT1r

(
vec(Πβir)

∂wir
∂ξr

+ wir
∂ vec(Πβir)

∂ξr

)
µr (6.29)

The QP problem in (6.24) is centralized. Our goal is to have each drone solving a local
QP using only local quantities, such that the collective solution of the local QPs results
in the satisfaction of the centralized constraint in (6.24). In the next subsection, we show
how to solve this problem in a distributed way.

We also point out that, as in Chapter 4, we use a smooth approximation of the
minimum function (see Remark 4).

6.4.2 Distributed persistent target monitoring

To guarantee satisfaction of the constraint in (6.24) first note that, from (6.26), Lfψ1r(ζ)
can be split in a part local to each robot, dir(ζ), and a part that is not already separated
cr(ζ). A possible strategy to satisfy the previous constraint is, for each drone, to consider
the following constraint in its local QP:

LGiψ1r(ζ)ui + dir(ζ) ≥ −ki(ζ)
(
cr(ζ) + αψ2 ψ1r(ζ)

)
(6.30)
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where the weights ki(ζ) need to sum up to 1, i.e. ∑ ki = 1 (see Sect. 3.5.1). Then, taking
the sum for each robot of the left hand side of the inequality in (6.30) yields

N∑
i=1

LGiψ1r(ζ)ui +
N∑
i=1

dir(ζ)

≥ −

(
N∑
i=1

ki(ζ)
)(

cr(ζ) + αψ2 ψ1r(ζ)
)

= −
(
cr(ζ) + αψ2 ψ1r(ζ)

) (6.31)

which satisfies the centralized constraint in (6.24). The most trivial choice for the weights
is ki(ζ) = 1

N
, which divides equally the constraint among the robots, but other choices

are also possible [Lindemann & Dimarogonas, 2020]. In the local constraint in (6.30),
some of the variables are not directly locally available but they can be estimated in a
decentralized way:

• ∑N
i=1 wirΠβir : this quantity appears in vec(Ġor) (see (6.17)) and can be computed

in a distributed way by dynamic average consensus [Kia et al., 2019] and multiplying
the average by the number of drones;

• Gor : Each drone has its own copy Goir of the information collected about the
target Gor, which is obtained by integrating (6.17). The matrices Goir starts from
the same initial conditions and have the same dynamics up to the consensus error on∑N
i=1 wirΠβir . In order to have consistency across the network we add a consensus

term to the OG dynamics:

Ġoir = −ρGoir +
N∑
i=1

bwirΠβir +
∑
j∈Ni

(Gojr −Goir) . (6.32)

Then, also the quantities λ1r and v1r are available to all the drones;

• ξ+
r , µ+

r : every drone has its own posterior estimate ξ̂+
ir and µ̂+

ir provided by the
ICF.

A direct implementation of (6.30) would imply that, when LGiψ1r(ζ) approaches zero,
the local QP may result infeasible. In order to solve this issue, considering the fact that
the constraint is not safety-critical, we add a slack variable to soften the constraint

min
ui∈Ui,δir

1
2
∥∥ui − udi ∥∥2

2 + 1
2Kδwirδ

2
ψir

s.t. LGiψ1r(ζ)ui + dir(ζ) + δψir ≥ −
1
N

(
cr(ζ) + αψ2 ψ1r(ζ)

)
r = 1, . . . ,M.

(6.33)
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Notice that the slack variable in the cost function is weighted by the product of a high gain
Kδ and the weight wir. The reason of this is two-fold: 1) to avoid numerical problems when
LGiψ1r(ζ) is very small (because of a very small weight wir); 2) to relax the constraint
for drones which are not very close to the target. This in practice means that if some
drones are already observing the target, the drones with very small weight will ignore the
constraint and only track the desired input (representative of any additional task).

For the formation to track multiple targets, we simply take the intersection of the
safe sets corresponding to each target, i.e. we add a linear inequality constraint for each
target and extend the state ζ with the other targets state. Notice that, with the proposed
formulation, if the collected information becomes high enough, since the constraint is
satisfied at the current time, the drones could stop following a target r and just track
the desired input. In fact, as in previous chapters, active sensing discourages loosing
connections but it does not prevent from loosing connectivity. In this situation, the
weight of each robot w.r.t. target r could become very small and it may happen that no
drone would then be able to reach the target again. In order to avoid this issue, we add
another CBF for ensuring that hwr := ∑N

i=1 wir− ϵw ≥ 0 for r = 1, ...,M and ϵw > 0. The
additional CBF constraint can be added to the local QP as in the previous case:

min
ui∈Ui,
δψir ,δwir

.
1
2
∥∥ui − udi ∥∥2

2 + Kδ

2

M∑
r=1

wirδ
2
ψir + Kδ

2

M∑
r=1

wirδ
2
wir

s.t. LGiψ1r(ζ)ui + dir(ζ) + δψir ≥ −
1
N

(
cr(ζ) + αψ2 ψ1r(ζ)

)
∂wir
∂pi

ui + ∂wir
∂ξr

µr + δwir ≥ −
αw1
N

(
N∑
i=1

wir − ϵw

)
r = 1, . . . ,M

(6.34)

where 1
N

∑N
i=1 wir is obtained through average consensus.

Remark 10. Depending on the design of the weights, this constraint does not necessar-
ily imply that one of the drones is forced to continuously observe the target. Rather, it
ensures that the drones remain close enough to the target so that they can exploit the gra-
dient information in the weights for approaching and measuring again the target whenever
necessary.
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6.5 Analysis of the proposed control law

In this section, we provide some analytical results regarding the proposed algorithm. To
simplify the analysis, we do not consider input saturations. First, we discuss the effect
of introducing the slack variables and we establish that the slack variable associated
with a certain constraint can attain a value of precisely zero if and only if the optimal
solution, excluding that particular constraint, remains feasible for the constraint itself.
This is a classical result in optimization theory, stemming from the smoothness of the cost
function when incorporating the slack variable in the cost function through its squared
norm [Kerrigan & Maciejowski, 2000].

We define the constraints imposed by the CBF as follows: the weight constraint (sec-
ond constraint in (6.34)) gwir(ζ,ui) ≤ 0 and the information constraint (first constraint in
(6.34)) gψir(ζ,ui) ≤ 0:

gwir(ζ,ui) := −∂wir
∂pi

(ui − µr)− δwir −
αw1
N

(
N∑
i=1

wir − ϵw) (6.35)

gψir(ζ,ui) := −Lgiψ1r(ζ)ui − δψir − dir(ζ)− 1
N

(cr(ζ) + αψ2 ψ1r(ζ)) =

= −b(vT1r ⊗ vT1r)
(

vec(Πβir )
∂wir
∂pi

+ wir
∂ vec(Πβir )

∂pi

)
(ui − µr)− δψir −

1
N

vec(Ġr)THλ1r vec(Ġr)−

− 1
N

(αψ1 α
ψ
2 − ρ)(vT1r ⊗ vT1r) vec(Ġr)−

αψ1 α
ψ
2

N
(λ1r − ϵψ)

(6.36)

Hereafter, we use δw/ψir to indicate that the equation must hold for both the slack
variables of the weight and the information constraints.

We define the Lagrangian associated to the QP as:

L = 1
2
∥∥∥ui − udi ∥∥∥2

+
M∑
r=1

[
Kδ

2 wir
(
δ2
wir

+ δ2
ψir

)
+ λwirg

w
ir + λψirg

ψ
ir

]
(6.37)

where λwir and λψir are Lagrange multipliers and, analogously to the slack variables, we
may use λw/ψir . The Karush–Kuhn–Tucker (KKT) optimality conditions associated to the
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QP are the following:

∂L
∂ui

(u∗
i , δ

∗
w/ψir

, λ
w/ψ∗
ir ) = 0

∂L
∂δw/ψir

(u∗
i , δ

∗
w/ψir

, λ
w/ψ∗
ir ) = 0

gwir(u∗
i , δ

∗
wir

) ≤ 0

gψir(u∗
i , δ

∗
ψir

) ≤ 0

λw∗
ir = 0 if gwir(u∗

i , δ
∗
wir

) < 0

λψ∗
ir = 0 if gψir(u∗

i , δ
∗
ψir

) < 0

∀r ∈ {1, ..,M}

(6.38)

where we use the ’∗’ symbol to indicate the value of the variable at the optimal solution
of the QP.

From the first condition, and using:

∂gwir
∂ui

= −∂wir
∂pi

∂gψir
∂ui

= −b(vT1r ⊗ vT1r)
(

vec(Πβir)
∂wir
∂pi

+ wir
∂ vec(Πβir)

∂pi

) (6.39)

we have:

u∗
i − udi =

N∑
r=1

(
λw∗
i

∂gwir
∂ui

+ λψ∗
i

∂gψir
∂ui

)T
=

=
M∑
r=1

[(
λw∗
ir + λψ∗

ir b(vT1r ⊗ vT1r) vec(Πβir)
) ∂wir
∂pi

+ λψ∗
ir b(vT1r ⊗ vT1r)wir

∂ vec(Πβir)
∂pi

]T
(6.40)

From the second KKT condition, we have:

λ
w/ψ∗
ir = Kδwirδ

∗
w/ψir

. (6.41)

Since the chosen weights are described by Gaussian functions, they only vanish asymp-
totically. To simplify the analysis, let us assume that the weights vanish precisely outside
the sensing range. Considering one of the constraints associated with a particular slack
variable δw/ψir , from (6.41), the slack variable can only be zero if λw/ψ∗

ir = 0. Thus, substi-
tuting λw/ψ∗

ir = 0 into (6.40), the slack variables can all be proven zero only if the desired
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input ud satisfies all constraints. For instance, if λwir > 0, implying wwir > 0 and δwir > 0,
and assuming there is only one target, then the slack variable δ∗

ψir
= 0 holds true if and

only if

u∗
i = udi + λw∗

ir

∂wir
∂pi

T

= udi +Kδwirδ
∗
wir

∂wir
∂pi

T

(6.42)

satisfies the inequality gψir ≤ 0.

In summary, unless the desired input satisfies all constraints, the constraints will
inevitably be slightly violated by a quantity that can be made arbitrarily small depending
on the value Kδ [Kerrigan & Maciejowski, 2000]. If ensuring the slack variable being
proven zero is crucial, one may consider incorporating the slack variable into the cost
function in terms of the 1-norm ∥·∥1. In practical terms, this implies adding the slack
variable to the cost function as a linear function associated with a constraint on the slack
variable being greater than zero. Below is an illustrative example:

min
ui∈Ui,δir

1
2
∥∥∥ui − udi ∥∥∥2

2
+Kδwirδir

s.t. Lgiψ1r(x)ui + di(x) + δir ≥ −
1
N

(c(x) + ψ1r(x))

δir ≥ 0.

(6.43)

In this scenario, if the constraint is feasible (and wir ̸= 0), then the slack variables will
provably be zero for an appropriate choice of the value of Kδ [Kerrigan & Maciejowski,
2000]. As a downside, we point out that, in this case the control law may not be Lipschitz
continuous anymore.

We also point out that deadlocks (i.e. an equilibrium of system dynamics that causes
robots to come to a standstill before reaching their goals) may occur. We consider sep-
arately different cases of interest in which there are two targets. The following analysis
is far from complete, since there exist cases which are too complex either to analyze in a
rigorous way or to provide interpretable conclusions.
CASE 1: The two weight constraints are active, i.e., gwir = 0, while the information
constraints gψir are inactive.

In this case, λw∗
ir > 0, which implies wir > 0 and δ∗

wir
> 0, for r = 1, 2. If wi1 = 1 and

0 < wi2 < 1, then ∂wi1
∂pi

= 0, which from (6.40) and substituting u∗
i = 0, a deadlock is

verified if:
λw∗
i2
∂wi2
∂pi

+ udi = Kδwi2δ
w∗
i2
∂wi2
∂pi

+ udi = 0. (6.44)
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Here, if for example udi = 0, and recalling that 0 < wi2 < 1, which implies ∂wi2
∂pi
̸= 0

and δw∗
i2 > 0, then the deadlock cannot occur. Practically speaking, this means that the

input will be used to satisfy the constraint. For udi ̸= 0, this cannot be verified if a
constraint on the desired input limits is considered and the value of Kδ is big enough. If
both 0 < wir < 1 for r = 1, 2, then from (6.40):

u∗
i =

2∑
r=1

λw∗
ir

∂wir
∂pi

T

+ udi . (6.45)

For a deadlock we have u∗
i = 0, then using (6.41):

Kδwi1δ
w∗
i1
∂wi1
∂pi

T

+ udi = −Kδwi2δ
w∗
i2
∂wi2
∂pi

T

. (6.46)

From the fact that the constraint gwir are active, it follows:

δ∗
wir

= −∂wir
∂pi

(u∗
i − µr)−

α1

N

(
N∑
i=1

wir − ϵw
)
. (6.47)

Plugging back in (6.46):

Kδwi1

[
∂wi1
∂pi

(µ1 − u∗
i )−

α1
N

(
N∑
i=1

wi1 − ϵw

)]
∂wi1
∂pi

+ udi

= −Kδwi2

[
∂wi2
∂pi

(µ2 − ui)−
α1
N

(
N∑
i=1

wi2 − ϵw

)]
∂wi2
∂pi

(6.48)

For example for udi = 0, from (6.46), this means:

wi1

[
∂wi1
∂pi

µ1 −
α1
N

(
N∑
i=1

wi1 − ϵw

)]
∂wi1
∂pi

= −wi2

[
∂wi2
∂pi

µ2 −
α1
N

(
N∑
i=1

wi2 − ϵw

)]
∂wi2
∂pi

(6.49)

Hence, to have a deadlock one needs ∂wi1
∂pi

and ∂wi2
∂pi

to be colinear (as one would expect)
and

wi1

∣∣∣∣∣
[
∂wi1
∂pi

µ1 −
α1

N

(
N∑
i=1

wi1 − ϵw
)]∣∣∣∣∣ = wi2

∣∣∣∣∣
[
∂wi2
∂pi

µ2 −
α1

N

(
N∑
i=1

wi2 − ϵw
)]∣∣∣∣∣ (6.50)

with proper sign, depending on ∂wir
∂pi

.
CASE 2: The two information constraints are active, while the weights constraints gwir
are inactive.
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In this case, λψ∗
ir > 0, which implies wir > 0 and δ∗

ψir
> 0, for r = 1, 2. If wi1 = 1 and

0 < wi2 < 1, then ∂wi1
∂pi

= 0, which from (6.40) and substituting u∗
i = 0, a deadlock is

verified if:

udi + b
2∑
r=1

λψ∗
ir (vT1r ⊗ vT1r)

[
vec(Πβir)

∂wir
∂pi

+ wir
∂ vec(Πβir)

∂pi

]T
=

= udi +Kδb
2∑
r=1

wirδ
∗
ψir

(vT1r ⊗ vT1r)
[
vec(Πβir)

∂wir
∂pi

+ wir
∂ vec(Πβir)

∂pi

]T
= 0

(6.51)

One may also use the fact that the constraint is active to remove the slack variable from
the expression, but the expression becomes very complex. If one considers the case udi = 0,
then for a deadlock to be possible it is required the existence of a α such that:

vec(Πβi1)∂wi1
∂pi

+ wi1
∂ vec(Πβi1)

∂pi
= α

[
vec(Πβi2)∂wi2

∂pi
+ wi2

∂ vec(Πβi2)
∂pi

]
. (6.52)

Analogously, one may consider the case of mixed information-weight active constraints.

6.6 Simulation results

In this section we validate the proposed approach via a series of simulations. We consider
N drones localized in a common frame (e.g., using GPS or by running a distributed local-
ization algorithm such as [Luft et al., 2018]). They have to estimate the positions of M
ground robots, which are unable to localize themselves, because of their limited sensing
capabilities and/or moving in a GPS-denied environment. In this case, the drones can
act as a mobile localization system for the ground robots and they can exploit the group
redundancy for optimizing their motion and achieving any other task of interest (e.g.
formation control). The drones communicate with each other according to a fixed, undi-
rected and connected communication graph, as explained in Section 6.1. The simulations
are implemented in Python and the solver used for the QP is OSQP [Stellato et al., 2020].
We show three representative scenarios: 1) a single target moving with non-constant ve-
locity, 2) the same target motion but with the drones having a secondary task of formation
control, 3) a multi-target scenario, with targets moving at non-constant velocity. For each
case, we perform 20 simulations, with the initial drone positions sampled from a uniform
distribution near the origin. Knowledge of the fact that the targets are moving on the
xy plane is never used by the algorithm (which indeed would also work for a generic 3D
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motion). For the problem to be feasible, the maximum velocity of the targets is smaller
than the maximum velocity of the drones. Each drone runs an ICF for each target and
solves the QP (6.34). For each case, we report the plots of average results for the CBFs
ψ0r, ψ1r, hwr and of the norm of the position estimation error ∥ep(t)∥2 across all drones
and all simulations. We also plot the minimum and maximum values at each time instant
showing a shadowed area between the two. Note that if the CBFs remain non-negative
then the corresponding constraints are satisfied. A red dashed line puts in evidence the
minimum threshold at zero. We check that at t = 0 each target is visible by at least 2
drones. The drones run a collision avoidance algorithm using CBFs as in [Wang et al.,
2017], but as the topology of the communication graph is fixed, it is not implemented in
a distributed way. The minimum inter-agent distance is set to 1.0 m, and the velocities
of the drones satisfy ∥ui∥ ∈ [−3, 3] m/s.
Other parameters common to all the simulations are the following: forgetting factor
ρ = 0.7, threshold ϵψ = 0.1, threshold ϵw = 1, slack variable weight Kδ = 105, number
of consensus iterations per step Kc = 1, information gain r−1 = 2. For all targets, we
initialize the estimated position ξ̂−

ir randomly and the velocity µ̂−
ir to zero, W−

ir to I3 and
Gr to ϵψI3. The system covariance Q is diag(0.01 · 13,13). The measurements acquired
by the drones are affected by Gaussian noise acting on the image plane with zero mean
and covariance R = 5 · 10−5I2. The reader can find attached to the paper a video with
representative simulations.

6.6.1 Case 1: Single target, no additional tasks

In this case, we consider N = 6 and M = 1. The drones do not have an additional task
besides the target estimation one (namely udi = 0 ∀i ∈ {1, . . . , 6}). The trajectory of
the target, starting from the origin, is the eight-shape (Figs. 6.2 and 6.3e) defined by
ξ1(t) = [A sin(ωt), A sin(ωt) cos(ωt), 0]T , with ω = 0.12 rad/s, A = 10 m. Notice that the
velocity is far from being constant: hence, two non-colinear bearings are necessary as per
Remarks 7 and 9. In each of the 20 realizations, the drones initial positions are generated
by uniformly sampling a box of sizes 8× 8× 1 m centered at [0, 0, 2]T m.

The results are reported in Fig. 6.3. Figures 6.3a, 6.3b and 6.3c depict the mean CBFs.
In these plots, three peaks are clearly visible: the first is due to initial conditions, since the
target starts at the origin where it can be sensed by the majority of the drones with high
weights wi1 (see Fig.6.3c, which shows the sum of the weights with offset given by ϵw),
and hence the information rapidly grows. The second and third peaks refer, respectively,
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to the target going back from the origin after half a period, where it is visible again by
the drones which did not follow it, and the target completing a period of its motion and
passing again through the origin. In between the peaks, the constraints are active and few
drones follow the target. The actual number of moving drones depends also on ϵw, which
can be tuned depending on the application. For example, in this case it can be used to
impose that at least two drones follow the target by choosing ϵw > 1. The trajectories
of drones and target at the final instant of one of the 20 simulations are depicted in Fig.
6.3e. As one can see, the CBFs have non-negative values, although some slight violations
may happen because of estimation noise and the use of slack variables. Fig. 6.3d depicts
the average of the norm of the position error with maximum and minimum values for each
time instant. In correspondence of the peaks in the CBFs plots, one can observe a slight
decrease of the error, because the target is being observed by more drones.

6.6.2 Case 2: single target, formation control task

In this case, we consider the same scenario as before, but adding as secondary task a
bearing-only formation control [Zhao & Zelazo, 2015], which does not constrain scale and
barycenter of the formation and which is used to provide the desired inputs udi . The
results are reported in Fig. 6.4, while Fig. 6.2 depicts the trajectories of a simulation
of case 2 at the final instant. From Figs. 6.4a, 6.4b and 6.4c, we can draw the same
considerations as in the previous case, with the CBFs having in general higher values.
This is because the drones observing the target tend to steer the formation closer to the
target. This is confirmed also by Fig. 6.4d, where we can see that the estimation error
remains lower than the previous case. When the target moves away from the origin, 2 or
3 drones follow it and the rest of the group implements the input given by the formation
control task. In Fig. 6.4e, we also show the average of the norm of the bearing errors
related to the formation task, with maximum and minimum values for each time t. The
bearing error initially rapidly decreases, and it then remains limited, although not zero
on average. The reason being that the formation control provides a desired input which is
then filtered by the CBFs. This is also due to the suboptimality of the distributed CBFs
here implemented w.r.t. the centralized QP.

6.6.3 Case 3: multi-target, no additional tasks

In this case, we consider N = 10 and M = 3 with udi = 0 ∀i ∈ {1, . . . , 10}. The
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Figure 6.2: Trajectories at the final instant of simulation examples of case 2 (left) and
case 3 (right). The blue ’X’ represent drones which are not sensing any target, the blue
thin lines represent the FoVs.

target initial positions are ξ1(0) = [1, 0, 0]Tm, ξ2(0) = [−0.5, 0.866, 0]Tm and ξ3(0) =
[−0.5,−0.866, 0]Tm, and they move with sinusoidal motion in the +x, +y, and −x direc-
tions respectively (see Fig.6.2). Hence, again, they do not satisfy the constant velocity
condition. The results are reported in Fig. 6.5, where in each subfigure the top plot refers
to target 1, the middle plot to target 2 and the bottom plot to target 3. Initially, the
targets are seen by the majority of the drones, hence the minimum eigenvalue of the OG
rapidly increases and the weights related to the targets are high, as it can be seen from
Figures 6.5a, 6.5b and 6.5c. After these initial peaks, the CBFs decrease approaching zero
without crossing it (slight exceptions are possible again due to estimation noise and the
use of slack variables). This phase corresponds to the situation in which the drones have
to “split” and move from their original positions to follow different targets. Also, in this
case the minimum number of drones required to estimate the state of a target respecting
the constraints is 2. The final time of a simulation is depicted in Fig. 6.2.

6.6.4 A problematic case

A limitation of the presented approach verifies when the drones need to split to track
different targets and the drones are centered w.r.t. the targets at the moment in which
both the constraints become active. Some undesirable oscillations may occur in the drone
motion, as the drones struggle to determine which target to pursue. This issue arises
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Figure 6.3: Case 1: mean, maximum and minimum values for each t.

because of the lack of centralized optimality of the employed distributed CBFs and could
be addressed by adopting the distributed CBF approach presented in Chapter 7, which
is able to track the centralized optimal solution.

To demonstrate this fact, we simulate 4 drones and 2 targets. All the drones at the
start of the simulation are in between the two targets. The parameters used in this
simulation are Dm = 0.5 m, Dth

m = 1 m, DM = 3 m, Dth
M = 2.5 m, σ2

DM
= 0.5m2,

σ2
Dm = 0.1m2, αM = 50 deg, αthM = 40 deg, σ2

β = 0.01 rad2, while the other parameters
are the same of the first simulation, except for ϵψ = 0.08, ϵw = 1.1. We do not considered
measurement noise in this case to obtain smoother plots and highlight better the main
results.

In Fig.6.6, we show the results obtained using the proposed distributed controller,
while in Fig.6.7 we report the results obtained by using a centralized controller which
solves the centralized QP. The initial conditions are the same in the two cases. In partic-
ular, in Fig.6.6a, the resulting 3D trajectory is shown, where it is visible that the targets
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move in opposite direction, while the drones start in the middle among the two. By the
plot of the weights (Fig.6.6b and Fig.6.6c), the targets are visible by all the drones with
relatively high weights. As shown in the plot of the input of drone 1 and 3 (Fig.6.6f), the
input becomes very discontinuous around t = 3s, when the constraints become active.
The impact of this situation on the inputs of the drones also highly depends on the speed
of the targets.

In the results obtained by using the centralized controller, starting from the same
initial conditions, we have that, again, around t = 3s, the constraints become active and
there is a peak in the inputs, but with limited oscillations. This can be explained by the
fact that the drones, in the centralized case, are aware that one of the two constraints
can also be satisfied by the other drone inputs. This simulation highlights a limitation of
the presented approach due to the subotimality of the employed distributed CBFs. This
fact, along with the distributed implementation of connectivity maintenance algorithms
(Chapter 7), pushed us to explore distributed CBFs formulations converging to centralized
optimality (Chapter 7).

6.6.5 Discussion

From the reported results, it emerged that the multi-target tracking cases still present
some limitations. Specifically, when the drones need to split to track different targets and
the drones are centered w.r.t. the targets at the moment in which the constraints become
active, some undesirable oscillations may occur in the drone motion. This issue arises
because each drone lacks knowledge of the inputs applied by the other drones: indeed, a
centralized implementation of the proposed strategy does not encounter the same problem.
Better performance, both in terms of constraint fulfillment and optimality of secondary
tasks, could be achieved by leveraging the solution for distributed CBFs described in
Chapter 7, which allows to track the centralized optimality and by combining the multiple
CBF constraints using a smooth minimum function as done in [Fernandez-Ayala et al.,
2023].

Another limitation of the approach is the influence of estimation errors on the fulfill-
ment of the constraints. While some robustness of the control law to noise in the model
is provided by CBFs [Xu et al., 2015], uncertainties in the estimation of the current es-
timated position could negatively impact constraint satisfaction. It would be interesting
to address this issue by adding robustifying terms in the CBF framework, considering the
current estimation uncertainty represented by the dispersion matrix (W+

ir )−1.
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Figure 6.6: Simulation example of a problematic case with the distributed controller.

Finally, recall that the drones have no information in advance about the real motion of
the targets. For this reason, the feasibility of a scenario cannot be stated a priori, since it
could happen a worst-case scenario, where all targets have diverging motions, as well as a
best-case scenario, in which all the targets move near to each other in the same direction
and they can be sensed by the minimum number of drones.
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Figure 6.7: Simulation example of a problematic case with the centralized controller.

6.7 Conclusions

In this chapter, we proposed a distributed persistent monitoring scheme for estimating
the state of one or multiple moving target(s) from bearing measurements by employing
an information consensus filter. The filter is uniformly globally exponentially stable if
a Persistency of Excitation condition is met. The main contribution of this work is to
guarantee that such a PE condition is met also in the presence of sensing constraints
while potentially achieving other tasks of interest. This is achieved by relying on two
main tools, namely the distributed High Order Control Barrier Functions, used to enforce
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the invariance of a set, and the weighted Observability Gramian with forgetting factor,
which is used to quantify the persistency of excitation. The approach has been validated
via numerical simulations. In addition to the discussion provided in Sect. 6.6.5, in the
future we plan to consider more complex secondary tasks, as well as a time-varying graph
topology with a connectivity maintenance constraint.
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Chapter 7

DISTRIBUTED CBFS WITH APPLICATION

TO CONNECTIVITY MAINTENANCE

In this chapter, we present a framework for the distributed implementation of QP-based
controllers, building upon and rectifying a significant limitation in a previously presented
approach [Tan & Dimarogonas, 2021]. The framework is primarily designed for the dis-
tributed implementation of Control Barrier Functions (CBFs). By improving over some
limitations in the current state-of-the-art, we allow their application to global connectivity
maintenance in the presence of communication and sensing constraints.

Communication and sensing interactions within robot teams are commonly modeled
using graph theory, and the connectivity of the interaction graph is vital for information
flow and for the convergence of cooperative algorithms, such as for localization. However,
real-world scenarios often involve limitations in communication and relative sensing due
to factors like maximum range, limited Field of View (FoV), and others. Consequently,
motion strategies unaware of these limitations can lead to graph disconnections and mis-
sion failure. This challenge has prompted extensive research on connectivity maintenance
to ensure mission fulfillment despite sensing and communication constraints [M. Bernard
et al., 2023; Capelli & Sabattini, 2020; Robuffo Giordano et al., 2013; Sabattini et al.,
2013; Trakas et al., 2022; Yang et al., 2010].

Connectivity maintenance strategies can be categorized as either local [Dimarogonas
& Johansson, 2008; Ji & Egerstedt, 2007; Restrepo et al., 2021] and global [M. Bernard
et al., 2023; Capelli & Sabattini, 2020; Robuffo Giordano et al., 2013; Sabattini et al.,
2013; Trakas et al., 2022]. Local approaches focus on maintaining all local connections
but can severely restrict robot mobility. In contrast, global approaches leverage algebraic
graph theory concepts, such as the connectivity (or Fiedler) eigenvalue, allowing robots
to create and lose edges dynamically while preserving global graph connectivity, offering
greater mobility at the expense of increased complexity.

Preserving connectivity in the sensing graph can be even more challenging due to
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stricter sensing constraints, sometimes resulting in a directed sensing graph. Therefore,
there is a demand for connectivity maintenance algorithms that minimally impact the
execution of higher-level missions. While most connectivity maintenance works rely on
gradient descent of potential functions [M. Bernard et al., 2023; Robuffo Giordano et al.,
2013; Sabattini et al., 2013; Trakas et al., 2022], recent works [Capelli & Sabattini, 2020;
Ong et al., 2023] have employed (centralized) Control Barrier Functions (CBFs) to intro-
duce minimal modifications to nominal controllers, ensuring both constraint satisfaction
and performance optimization [Ames et al., 2019]. Compared to methods based on poten-
tial functions, CBF-based approaches offer greater freedom of movement while respecting
constraints, which is a critical advantage in multi-robot coordination.

This work has been published in [De Carli, Salaris, & Robuffo Giordano, 2024].

7.1 Formation model

We consider a group of N quadrotor UAVs equipped with onboard Inertial Measurement
Units (IMUs), calibrated cameras and relative distance sensors, which are able to exchange
data over a radio communication channel. As in some of the previous chapters, we consider
a simplified kinematic model in R3× S1 for the i-th quadrotor with body-frame velocities
and yaw rate commands ui :=

[
vTi ωi

]T
:

ṗi
ψ̇i

 =
Ri 0

0 1

 vi
ωi

 = T (ψi)ui (7.1)

We denote the state of the i-th robot as qi =
[
pTi ψi

]T
. For convenience, we also denote

the stack of the state of each robot as q =
[
qT1 . . . qTN

]T
∈ (R3 × S1)N and analogously

for the input u. Then, the full dynamics can be written as

q̇ = T̄ (ψ)u, (7.2)

with T̄ (ψ) := diag(T (ψi)) being a block-diagonal matrix.

The robots are assumed to be equipped with a camera-like sensor with limited range
and FoV and a sensor providing relative distance measurements. In particular, when
robot j is visible by robot i, we assume that robot i can obtain a measurement of the
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relative position of robot j in its own body-frame, i.e.:

ipij = RT
i (pj − pi) (7.3)

From such measurements, assuming that the sensing graph remains weakly connected, the
robots are able to estimate their relative orientation, see e.g. Chapter 8 and [M. Bernard
et al., 2023]. This motivates the necessity for connectivity maintenance when sensing
constraints are present. We will discuss further about the relative yaw estimation from
body-frame position measurements in the next chapter. Because of field of view limita-
tions, the induced sensing graph is directed, while we assume bidirectional communication
among the robots, inducing an undirected communication graph.

7.2 Distributed control barrier functions

In this section, we describe our contribution concerning distributed CBFs, which extends
the approach presented in [Tan & Dimarogonas, 2021]. In particular, we are able to
lift the restrictive assumption concerning the local Lie derivative of the control barrier
function not vanishing [Tan & Dimarogonas, 2021] (see also Sect. 3.5.3). In the following,
we use the global connectivity maintenance task to show the importance of lifting such
assumption.

First, we give again a brief introduction to the problem formulation. For more details
refer to Sect. 3.5.3. Then, we describe the proposed algorithm. The first part of the
algorithm is the same as described in [Tan & Dimarogonas, 2021] and summarized in
Sect. 3.5.3. We will point out from which point on the two algorithms will differ.

7.2.1 Problem statement

Consider a system in control-affine form:

ẋ = f(x) + g(x)ξ (7.4)

with state x =
[
xT1 . . . xTN

]T
∈ Rn and input ξ =

[
ξT1 . . . ξTN

]T
∈ Rm, and dynamics

in the form of f(x) =
[
f1(x1)T . . . fN (xN )T

]T
and g(x) := diag(gi(xi)) block-diagonal.

Note that (7.2) belongs to this class of systems.
We consider a safe set C which is described by the zero superlevel set of a differentiable
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function h which we want to render forward invariant and attractive. For example, in the
connectivity maintenance case one wants to maintain λ2 ≥ ϵ with ϵ > 0 and λ2 being the
connectivity eigenvalue (see Sect. 2.2), hence, one can define h(x) := λ2(x)− ϵ.

The class of constraints that we consider is the same as those considered in [Tan &
Dimarogonas, 2021], that is, functions h(x) such that the CBF parameters of (3.11) are
locally obtainable, meaning that (3.11) can be expressed as:

N∑
i=1
aTi (xNi

i )ξi +
N∑
i=1

bi(xNi
i ) ≤ 0 (7.5)

where xNi
i :=

[
xTi {xTj }j∈Ni

]T
is the stack of the state of robot i itself and the one of its

neighbors. Notice that, aTi = −Lgih while, bi can vary based on the type of constraint
considered and design choice, with the general expression being bi = −κi(x)(α(h(x)) +
Lfih(x)). For connectivity maintenance of robots modeled as (7.1), one could consider
bi = −κi(x)α(h(x)), with κi(x) being any partition of the unity, i.e. ∑N

i=1 κi(x) = 1,
for example κi = 1

N
. Also, as shown in, e.g., [Yang et al., 2010], by estimating in a

distributed way the Fiedler eigenpair, the gradients for global connectivity maintenance
can be computed locally, as required by (7.5).

7.2.2 QP formulation

We assume that, a nominal controller provides a Lipschitz continuous desired input ξd

which does not need to satisfy the condition in (3.11). Then, the following Quadratic
Program (QP) is formulated in order to modify in a minimally invasive way the nominal
controller, so that condition (3.11) is always satisfied

min
ξ∈Rm

.
1
2

N∑
i=1

∥∥∥ξi − ξdi ∥∥∥2

2

s.t.
N∑
i=1
aTi ξi +

N∑
i=1

bi ≤ 0,
(7.6)

where we omitted the state dependency of ai and bi for the sake of readability. However,
we remind that these terms change over time as the state evolves along the system trajec-
tories. We also point out that, here, the problem is formulated as a least square problem
minimizing the control input for simplicity, but the extension to a more generic quadratic
cost function (still preserving the decoupling between the robot inputs) is straightforward.

Defining ā :=
[
aT1 . . . aTN

]T
and b̄ := ∑N

i=1 bi, we make the following assumption.
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Assumption 5. The QP (7.6) is feasible, i.e. b̄ ≤ 0 whenever ā = 0.

The QP problem in (7.6) is centralized. Our goal is to obtain a distributed algorithm
which asymptotically converges to the time-varying centralized optimal solution of the
QP while always enforcing the safety constraint. To accomplish this task, in [Tan &
Dimarogonas, 2021], the following QP was considered

min
(ξ,y)∈Rm+N

.
1
2

N∑
i=1

∥∥∥ξi − ξdi ∥∥∥2

2

s.t. aTi ξi +
∑
j∈Ni

(yi − yj) + bi ≤ 0, ∀i ∈ V
(7.7)

where y =
[
y1, . . . yN

]T
∈ RN is an auxiliary variable, with the element yi associated to

robot i. The equivalence among (7.7) and (7.6) was shown in [Tan & Dimarogonas, 2021]
and we discussed it in detail in Sect. 3.5.3. In particular, this implies that each solution
(ξ′,y′) satisfying the constraint in (7.7), also satisfies the constraint in the original QP
(7.6) and viceversa. The constraints in the previous QP can be equivalently written in
matrix form as:

Āξ +Ly + b ≤ 0 (7.8)

with Ā = diag(aTi ), L is the unweighted Laplacian matrix of the time-varying undirected
graph and b =

[
b1 . . . bN

]T
. One may, then, formulate the following QP

min
(ξi,y)∈Rmi+N

.
1
2

∥∥∥ξi − ξdi ∥∥∥2

2

s.t. aTi ξi +
∑
j∈Ni

(yi − yj) + bi ≤ 0
. (7.9)

The challenge here is that consistency of y needs to be preserved across the robots. To
solve this issue, in [Tan & Dimarogonas, 2021] the Karush-Kuhn-Tucker (KKT) optimality
conditions of the problem (7.7) were studied and a distributed adaptive law for updating
y was proposed so that y converges to the optimal y∗. Hence, each robot solves (7.9) but
with only ξi as decision variables, while y is fixed in the QP. Let li represent the i-th row
of the Laplacian L, the optimal solution y∗ from the KKT conditions needs to satisfy the
following condition ∀i ∈ V :

 aTi ξ
d
i + lTi y∗ + bi ≤ 0, if āTξd + b̄ ≤ 0

aTi ξ
d
i + lTi y∗ + bi = kaTi ai, if āTξd + b̄ > 0

(7.10)
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with
k = (āTξd + b̄)/ ∥ā∥2

2 . (7.11)

Since k ≤ 0 when āTξd + b̄ ≤ 0, a sufficient condition for y∗ is simply to satisfy (7.10) as

aTi ξ
d
i + lTi y∗ + bi = kaTi ai ∀i ∈ V , (7.12)

which can be rewritten in matrix form as

Ly∗ = k


aT1 a1

...
aTNaN

− Āξd − b. (7.13)

At this stage we can highlight the difference between what has been proposed in [Tan &
Dimarogonas, 2021] and our contribution. In [Tan & Dimarogonas, 2021], local variables
are defined as

ki = 1
aTi ai

(aTi ξdi + lTi y∗ + bi) (7.14)

and it was shown that if ki = kj, ∀(i, j) ∈ E , then condition (7.10) is satisfied. Hence it
was proposed to update the variables y according to the following finite time modified
consensus:

ẏ = −k0sign(Lk) (7.15)

with k =
[
k1 . . . kN

]T
. A crucial point is that, due to (7.14), this approach requires

∥ai(t)∥ > 0 ∀t, ∀i which, as also acknowledged in [Tan & Dimarogonas, 2021], can be
quite restrictive. Indeed, as it will be discussed in the next section, this assumption is
often not verified also for the standard problem of connectivity maintenance.

To cope with this issue, we propose the following solution. Each robot can estimate
k in (7.11) with two dynamic average consensus estimators, one for computing the nu-
merator average navg := 1/N ∑N

i=1(aiTξdi + bi) and one for computing the denominator
average davg := 1/N ∑N

i=1 ∥ai∥
2, from which each robot can obtain its estimate of k as

ki = navg/davg. Then, the only unknown left in (7.13) is y∗. While solving a linear system
in a distributed manner is generally challenging, leveraging the sparsity of the Laplacian
matrix and its positive semidefinite nature enables a distributed solution for finding y∗

in (7.13) through the simulation of the following dynamical system:

ẏ(t) = −ky (Ly(t)− r(t))− kavgȳ(t)1N (7.16)
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with

r := diag(ki)


aT1 a1

...
aTNaN

− Āξd − b (7.17)

and ȳ = 1
N

1TNy is the mean of y, which can be estimated with a dynamic average consensus
estimator. This system corresponds to the continuous-time version of the Richardson
iteration [Bertsekas & Tsitsiklis, 2015], which is used to solve linear systems in parallel
computing schemes where the matrix to be inverted is positive definite (in this case
L+1N1TN). An alternative, which potentially may lead to faster convergence is represented
by the Jacobi over-relaxation method [Bertsekas & Tsitsiklis, 2015]. We point out that
(7.16) is fully distributed, in fact, each robot implements:

ẏi = −ky

 ∑
j∈Ni(t)

(yi − yj)− kiaTi ai + aTi ξdi + bi

− kavgȳ. (7.18)

Notice that, the only equilibrium of this system is given by the minimum-norm solution
to (7.13). We also point out that, the average of y is not relevant as it has no effect on
the QP constraint since Lȳ1N = 0. We add the second term in (7.16) with the purpose
of guaranteeing boundedness of ȳ. We also point out that L1N ⊆ 1N for all t, meaning
that the consensus subspace is infinitesimally L-invariant [Bullo, 2023; De Pasquale et al.,
2023].

Let y⊥ := y− ȳ1N and analogously r⊥, and consider the error e⊥ := Ly⊥− r⊥, then:

ė⊥(t) = L (−ky(L(t)y⊥(t)− r⊥(t)))− ṙ⊥(t)

= −kyLe⊥ − ṙ⊥(t)

ẏavg(t) = −kavgȳ(t) + ky r̄(t)

. (7.19)

where in the first equation the average dynamics of ẏ⊥ are removed as they are in the
null space of L. Then, the error e⊥ is practically exponentially stable with rate c :=
ky minτ∈[t0,t] λ2(t) and y⊥ converges to a ball of size 1

c
supτ∈[t0,t] ||ṙ⊥|| centered in y∗

⊥ =
L†r, with † indicating the Moore-Penrose pseudoinverse, which gives the minimum-norm
solution to equation (7.13). The origin of the average ȳ is practically exponentially stable
as well and, in particular, what is of interest in this case is the fact that it remains bounded.
Also, notice that, with the proposed solution, it is not required to have ∥ai∥ > 0 ∀i. We
point out that, we did not consider the dynamics of the dynamic average consensus used
to estimate ȳ(t) in the previous analysis. In practice, since it is not required for y to be
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zero-mean, it simply needs to be bounded, then kavg can be chosen to be much smaller
than ky so that the effects of the disagreement in computing ȳ are negligible.

Remark 11. This approach can be extended to the case of multiple CBF constraints using
soft minimum functions as shown in [Fernandez-Ayala et al., 2023].

Interestingly, solving the QP (7.9) without auxiliary variables is equivalent to pre-
allocation schemes such as in [Balandi et al., 2023; Lindemann & Dimarogonas, 2020;
Wang et al., 2017], which maintains safety but leads to suboptimal solutions. The role of
the auxiliary variables is, in fact, to optimally allocate the constraint among the robots.

We also point out that, for simplicity of exposition, we considered a cost function
of the type ∑N

1=1

∥∥∥ξi − ξdi ∥∥∥2

2
. The extension to a more generic quadratic cost function∑N

i=1
1
2ξ

T
i Hiξ + wT

i ξi with Hi ≻ 0 is straightforward, see [De Carli et al., 2023] for the
expression of k in this case.

While, in [Tan & Dimarogonas, 2021], convergence in finite time to the time-varying
optimal solution was achieved, in the proposed solution, we only achieve practical expo-
nential stability of the optimal solution. But, as already mentioned, our method removes
any limitation concerning ∥ai∥.

7.3 Connectivity maintenance

As we stated in Sect. 2.2, a well-known result in graph theory is that an undirected graph
is connected if and only if λ2 > 0. When the connectivity of the graph depends on sensing
and communication constraints, e.g. limited range and field of view, a classical approach
to ensure connectivity is summarized below by considering several previous works on this
subject [M. Bernard et al., 2023; Capelli & Sabattini, 2020; Ong et al., 2023; Robuffo
Giordano et al., 2013; Sabattini et al., 2013; Trakas et al., 2022]:

• design a weighted adjacency matrix Aw = [aij], such that the weight aij smoothly
goes to zero when the edge between robot i and robot j approaches disconnection
(because of the sensing/communication constraints);

• estimate in a distributed way the Fiedler eigenpair, i.e. (λ2,v2) of the corresponding
weighted Laplacian matrix Lw [Malli et al., 2021; Yang et al., 2010];

• design a control strategy, e.g. based on potential functions [M. Bernard et al., 2023;
Robuffo Giordano et al., 2013; Sabattini et al., 2013; Trakas et al., 2022] or based
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on CBFs [Capelli & Sabattini, 2020; Ong et al., 2023], which ensures that λ2(t) ≥ ϵ

with ϵ > 0 ∀t.

A fundamental assumption is that, at the initial time t0, the undirected graph Gu is
connected, i.e., λ2(t0) > 0. We point out that an approach based on CBFs, as in the
present work, does not require λ2(t0) ≥ ϵ, in fact, the safe set can be shown to be
asymptotically stable under the effect of the CBF [Ames et al., 2019; Capelli & Sabattini,
2020]. In this work, we consider distance constraints, expressed as dmin ≤ dij ≤ dmax,
where dij = ∥pj − pi∥ and field of view constraints cij = βTije1 ≥ cmin where βij = ipij/dij

is the relative body-frame bearing and e1 =
[
1 0 0

]T
. We consider symmetric weights,

i.e. aij = aji, given by aij = āij + āji, with āij = wdijwbij , where wdij (resp. wbij) is a
continuously differentiable weight which smoothly vary from 1 to 0 as the distance (resp.
FoV) limit of the sensor is being approached. The weights used are the ones in (2.39).

Remark 12. While the field of view constraint results in a directed sensing graph, the
bidirectional communication allows to define aij = āij + āji. This approach makes possible
to perform connectivity maintenance on a undirected graph, ensuring weak connectivity of
the sensing graph.

Then, the gradient of the Fiedler eigenvalue with respect to the robots position can
be expressed as follows [Yang et al., 2010]:

∂λ2

∂qi
=
∑
j∈Ni

(v2j − v2i)2∂aij
∂qi

(7.20)

where v2i is the i-th component of the Fiedler eigenvector v2 and v2i as well as λ2 are
computed in a distributed way using the algorithm presented in [Malli et al., 2021] and a
discrete-time PI average consensus [Kia et al., 2019]. Then in order to maintain λ2 ≥ ϵ,
each robot solves the following QP:

min
ui∈R4

.
1
2
∥∥ui − udi ∥∥2

2

s.t. −
∑
j∈Ni

(
(v2j − v2i)2 ∂aij

∂qi

)
T (ψi)ui −

1
N
α0(λ2 − ϵ)3

+
∑
j∈Ni

(yi − yj) ≤ 0,

(7.21)

where we chose to use the extended class K function α(x) = α0x
3 with α0 > 0 and y is

computed according to (7.16). Notice that, as mentioned in Sec. 7.2, it can happen that

172



7.4. Simulation results

∂λ2
∂qi

= 0 but ∂λ2
∂q
̸= 0, for example when all the weights of the i-th robot are already at

their maximum or when v2i = v2j ∀j ∈ Ni. In this case, the global QP is still feasible
and the i-th robot can simply set ui = udi . Here, the assumption ai ̸= 0, made in [Tan &
Dimarogonas, 2021], as in many other applications, is not verified, hence, motivating the
alternative approach that we propose.

The algorithm requires the following quantities to be communicated:

• 7 scalar variables for the Power Iteration method [Malli et al., 2021] and related
consensus

• 4 scalar variables to estimate ki using two PI consensus

• 1 scalar variables to estimate y in (7.16) and its average.

Also, either N (which is used in (7.21)) is fixed and known by all robots, or it may
be estimated using consensus. As previously mentioned, other possibilities can be used
for κi(x), other than κi = 1/N , which may be computed using a consensus e.g. see
[Lindemann & Dimarogonas, 2020].

7.4 Simulation results

This section presents the results of a simulation of T = 80s with N = 6 quadrotors,
starting from a connected random configuration. The nominal input to the quadrotors
is provided by the active sensing controller proposed in [De Carli et al., 2023], which
generates trajectories that are exciting for the robot localization but unaware of the
sensing constraints. We point out that these trajectories are particularly challenging in
our context because the active sensing [De Carli et al., 2023] forces the relative positions
among the robots to change very rapidly and, as a consequence, the Laplacian entries
and eigenvalues, making it harder to estimate the Fiedler eigenpair and track the optimal
solution. The resulting input of each agent is filtered by the connectivity maintenance
CBF by solving (7.21) and updating yi according to (7.18). A lower-level safety layer
implements collision avoidance using another CBF. The connectivity maintenance runs
@25Hz, with the corresponding consensus running @150Hz, while the estimation of the
Fiedler eigenpair runs @250Hz and the corresponding consensus run @750Hz. A quadrotor
can sense its neighbors if they lie within the distance range [1, 4.5]m, with a maximum
FoV angle set at 60 degrees. The minimum threshold for the Fiedler eigenvalue λ2 is set
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to ϵ = 0.2 and α0 = 100. The norm of the desired input velocity is saturated at 1m/s and
the yaw-rate at 1rad/s. The parameters for the power iteration proposed in [Malli et al.,
2021] are set to β = 100 and γ = 40, while the consensus used is a discrete-time PI from
(31) in [Kia et al., 2019] with gains kp = 0.05, kI = 0.008 and ρ = 0.9. In (7.18), we use
ky = 50 and it runs @250Hz. The robots start to move after 1s for allowing the power
iteration to reach a satisfactory convergence before starting to move.

0 10 20 30 40 50 60 70 80

t[s]

0.0
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1.2 λ2

ε

λ̂2i

Figure 7.1: The plot represents λ2, the lower bound ϵ and the estimates of the Fiedler
eigenvalue λ̂2i for each robot (in dashed lines). Notice that for most of the time the
estimates are overlapping the real λ2.

In Fig. 7.1, we report the Fiedler eigenvalue λ2 along with, the lower bound ϵ and
the local estimations for each robot (in dashed lines). We point out that, when λ3 (and
possibly λ4) get close to λ2, the estimation becomes much less reliable (as well-known)
with the estimate v̂2 approaching the hyper-plane spanned by v2-v3 (and possibly v4).

We verify the tracking of the optimal y∗ in Fig. 7.2 by plotting y⊥ and the solution
L†r to Ly = r as ground truth.

In order to verify the convergence of the distributed solution to the centralized one, we
run in parallel the distributed CBFs (7.21) and the corresponding centralized one (7.6),
whose inputs are not applied and only used as a comparison. The comparative analysis of
the resulting inputs is presented in Fig. 7.3, where it can be noticed the optimal solution
is tracked very closely for most of the time.

7.5 Conclusions

We have presented a framework for a class of distributed QP-based controllers that typi-
cally arise when employing Control Barrier Functions, and we have addressed a significant
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limitation of the recent literature in this field. Each agent solves a local QP and locally
adapts an auxiliary variable. The solutions of the local QPs asymptotically converge
to a neighborhood of the centralized optimal solution. This improvement allows us to
apply distributed CBFs to the problem of global connectivity maintenance for quadro-
tor formations, accounting for distance and field of view constraints. The effectiveness
of the approach is shown by comparing the obtained inputs with the ones provided by
the corresponding centralized CBF. In future, we plan to perform experiments using the
proposed framework, possibly performing a comparison with the classical approach based
on potential functions.
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Chapter 8

COOPERATIVE LOCALIZATION FROM

DIRECTED BODY-FRAME POSITION

MEASUREMENTS

Cooperative control challenges often demand substantial coordination among robots, man-
dating a shared comprehension of specific physical quantities. This often entails estab-
lishing a consensus on a shared frame to facilitate the exchange of information initially
captured in local frames.

Absence of shared orientation necessitates either global orientation estimation [Boumal
et al., 2013; B.-H. Lee & Ahn, 2016a, 2016b; Zhao & Zelazo, 2015] or coordinate frame
alignment [Montijano, Zhou, et al., 2014; Oh & Ahn, 2013]. Previous studies primar-
ily address orientation estimation when relative orientation measurements are available
[Boumal et al., 2013; B.-H. Lee & Ahn, 2016a, 2016b; Van Tran & Ahn, 2020; Zhao &
Zelazo, 2015]. Fewer works, however, tackle scenarios where solely body-frame relative
position or bearing measurements are accessible [Leonardos et al., 2019; X. Li et al.,
2019; Schiano et al., 2016; Van Tran et al., 2018]. Typically, agents’ orientation can be
estimated uniquely up to a coordinated rotation. Estimating this unknown coordinated
rotation becomes feasible if at least one agent in the network measures its orientation
relative to the world frame.

In prior works [B.-H. Lee & Ahn, 2016a, 2016b; Van Tran & Ahn, 2020], algorithms
are proposed to estimate the global orientation of individual agents from relative orien-
tation measurements, demonstrating almost global convergence. These algorithms rely
on defining linear dynamics depending on a matrix which is shown to be similar to a
Laplacian matrix. The authors consider both the case in which the orientation belongs
to the unit sphere S1 [B.-H. Lee & Ahn, 2016b] and the case in which the orientation
belongs to SO(3) [B.-H. Lee & Ahn, 2016a; Van Tran & Ahn, 2020]. Addressing noise-
corrupted relative orientation measurements, [Boumal et al., 2013] introduces a locally
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optimal maximum likelihood estimator.
In another approach by [Schiano et al., 2016], an observer estimates the position and

yaw orientation of a group of robots in a shared frame using body-frame bearing mea-
surements. This method utilizes gradient descent for bearing rigid formations, exhibiting
local convergence. Meanwhile, works such as [X. Li et al., 2019; Van Tran et al., 2018],
present algorithms for estimating orientation in a shared frame from body-frame bear-
ing measurements, relying on an undirected sensing graph to recover relative orientations
among robots from reciprocal measurements.

In this chapter, we propose an observer to estimate in a common frame the position
and yaw orientation of a group of robots from body-frame relative position measurements.
The state of the robots is represented by their position and yaw orientation (R3 × S1).
The graph representing the sensing interaction among the robots is directed and it is only
required to be weakly connected in addition to satisfy certain persistency of excitation
conditions.

Our scheme comprises three distinct components:

1. An adaptive observer estimating relative yaw corresponding to persistently exciting
edges derived from body-frame relative position measurements.

2. Modification of the observer introduced in [B.-H. Lee & Ahn, 2016b] to estimate
yaw in a shared frame from the estimated relative yaws. Notably, our adaptation
accounts for varying orientation and imperfect measurements, unlike [B.-H. Lee &
Ahn, 2016b].

3. An observer estimating positions in a shared frame, utilizing estimated yaw orien-
tations and body-frame relative position measurements.

We point out that considering only planar orientation is justified by the fact that typ-
ically, the attitude of UAVs can be retrieved from Inertial Measurement Units (IMUs)
measurements using well-established observers such as [Mahony et al., 2008], while the
same is often not true for the yaw orientation, particularly indoors.

The proposed scheme assumes an undirected communication graph but, unlike previ-
ous works [X. Li et al., 2019; Van Tran et al., 2018], it does not require the assumption
of an undirected sensing graph. This relaxed assumption is crucial for practical robotic
applications, considering constraints posed by sensors with limited field of view (FoV).
Instead, we introduce a persistency of excitation (PE) condition, requiring the robots to
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have non-zero velocity on the x-y plane, which is a mild assumption in robotic applica-
tions.

This work has been published in [De Carli, Restrepo, et al., 2024].

8.1 System model

As in previous chapters, we consider a group of N UAVs modeled as simple first or-
der kinematic system with known body-frame velocities and yaw rate commands ui :=[
v⊤
i ωi

]⊤
∈ R4: ṗi

ψ̇i

 =

Ri 0
0 1

vi
ωi

 (8.1)

where pi ∈ R3 is the robot position, ψi ∈ (−π, π] is the yaw angle and Ri := Rz(ψi) ∈
SO(3) is the associated rotation matrix around the z-axis, with SO(3) := {R ∈ R3×3|R⊤R =
I3, det(R) = 1}. Additionally, we assume vi ∈ Υi ⊂ R3 (and ωi ∈ Wi ⊂ R), where Υi

(and Wi) is a compact set, and both vi and ωi are continuously differentiable.
Each robot is assumed to be capable of exchanging data over a communication channel

and to have a camera sensor and a sensor providing relative distance measurements (e.g.,
an RGB-D camera). These sensors combined provide the relative position of robot j in
the i-th robot body-frame:

ipij := R⊤
i (pj − pi) (8.2)

We model the interactions among the robots using a directed sensing graph Gs := (V , Es)
and an undirected communication graph Gc := (V , Ec), where V = {0, 1, ..., N − 1} is the
vertex set and E∗ ⊆ V×V is the edge set. A directed sensing edge esk = (i, j) ∈ Es implies
that robot i can sense robot j, the opposite is not necessarily true. This assumption is
motivated by the fact that employing a camera sensor naturally induces a directed sensing
graph due to FoV limitations. We consider the communication graph to correspond to the
undirected counterpart of the sensing graph, hence, if robot i can measure robot j then
the two robots can communicate in a bidirectional way and there exist both the edges
eck = (i, j) ∈ Ec and eck = (j, i) ∈ Ec.

8.2 Observer design

For robots to be able to cooperate, it is of paramount importance to be localized one
relative to the other. Furthermore, it is also highly desirable to share a common frame in
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which to express shared physical quantities to facilitate the exchange of locally available
information. In this section, we present a cascaded observer designed to estimate the
position and orientation of robots within a common frame.

The proposed observer is composed by the following three systems in cascade: (i) an
adaptive observer which is used to estimate the relative yaw orientation ψij := ψj − ψi,
among each couple of neighboring robots from the body-frame relative position measure-
ments, (ii) an observer which uses the estimated relative yaws to estimate the yaw ψi of
each robot in a common frame and (iii) an observer which uses the estimated yaw mea-
surements in a common frame and the body-frame position measurements to estimate the
position pi of each robot in a common frame. The stability of each observer and of their
interconnection is studied.

8.2.1 Relative state observer

In this section, we formulate the adaptive observer used to estimate the relative yaw
orientation among each pair of neighboring robots. First of all, we consider the relative
state among two robots given by (ipij, ψij) and we write down the relative state dynamics:

iṗij = −vi − Se3ωi
ipij + iRjvj

ψ̇ij = ωij
(8.3)

where Se3 := [e3]×1, iRj := R⊤
i Rj = Rz(ψij) and ωij := ωj − ωi.

We point out that ipij is directly measured, vj and ωj can be communicated, the
only unknown is ψij, which affects the dynamics of ipij. The idea is then to reformulate
the dynamics of ipij for the relative orientation to appear in a more convenient way by
changing parameterization so that we can formulate an adaptive observer. In particular,
we define :=

[
cos(ψij) sin(ψij)

]⊤
∈ S1, which is a representation of the relative orientation

among the two robots using sphere coordinates, with Sd := {x ∈ Rd+1| ∥x∥ = 1}.
We can now rewrite the relative position dynamics as:

iṗij = −vi − Se3ωi
ipij + vjze3 + V̄j (8.4)

with

V̄j(t) :=


vjx(t) −vjy(t)
vjy(t) vjx(t)

0 0

 (8.5)

1. [·]× is defined such that [x]×y = x× y is the vector cross product.
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and vjx, vjy and vjz representing respectively the x, y and z components of vj. It is worth
noting that, as V̄j is a linear transformation of vj, and given the compactness of Υj and
the continuous differentiability of vj, V̄j is uniformly bounded and globally Lipschitz over
Υj. Consequently, both

∥∥∥V̄j(t)∥∥∥ and
∥∥∥∥ ˙̄Vj(t)

∥∥∥∥ are uniformly bounded. Contrary to the
basic adaptive setup, the unknown is not constant, but its dynamics are given by

żψij =

−ωij sin(ωijt)
ωij cos(ωijt)

 = Ωij (8.6)

with skew-symmetric Ωij :=
 0 −ωij
ωij 0

.

Then, we formulate an adaptive observer as follows:

i ˙̂pij = −vi − Se3ωi
ipij + vjze3 + V̄j − kpeiepij

˙̂zψij = Ωij − kψV̄ ⊤
j
iepij

(8.7)

with iepij = ip̂ij − ipij and kpe, kψ > 0.
Moreover, if both the directed edges (i, j) and (j, i) exist, the update of the relative

yaw can benefit from both edges. One can consider that zψji = Z, with Z :=
1 0

0 −1

.

Then, the update for the bidirectional edges can be written as:

i ˙̂pij = −vi − Se3ωi
ipij + vjze3 + V̄j − kpeiepij

j ˙̂pji = −vj − Se3ωj
jpji + vize3 + V̄iZ − kpejepji

˙̂zψij = Ωij − kψ
(
V̄ ⊤
j
iepij +ZV̄ ⊤

i
jepji

) (8.8)

Remark 13. We point out that, from two reciprocal measurements, if pj − pj is not
aligned with the z-axis, it is also possible to algebraically compute the relative yaw among
the two robots. However, since, in practice, measurements are affected by noise, we avoid
the algebraic computation.

In the following stability analysis, we consider the case of a single directed edge, but
the proof for the bidirectional edge follows the same lines.

We define the yaw error eψij := −, where eψij is the chordal distance on S1. Then,
the error dynamics are described by the following linear time-varying system:iėpij

ėψij

 =

−kpeI3 V̄j

−kψV̄ ⊤
j 0

iepij
eψij

+

 0
Ωijeψij

 (8.9)
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Theorem 4. Since
∥∥∥V̄j(t)∥∥∥ and

∥∥∥∥ ˙̄Vj(t)
∥∥∥∥ are uniformly bounded and assuming that, there

exists T, µ > 0, such that V̄j(t), as given by (8.5), satisfies the persistency of excitation
condition ∫ t+T

t
V̄ ⊤
j (τ)V̄j(τ) dτ ⪰ µI2 ∀t ≥ 0, (8.10)

then, (epij , eψij) = (0,0) is a globally exponentially stable equilibrium point of (8.9).

Proof. The proof uses conventional adaptive control reasoning [Besançon, 2000; Marino,
1995]. We outline the main steps demonstrating that the dynamics of do not im-
pact the convergence proof. Consider the quadratic Lyapunov function V (iepij , eψij) :=
1
2
ie

⊤
pij

iepij + 1
2kψ
e⊤
ψij
eψij . Its derivative is given by

V̇ = ie
⊤
pij V̄jeψij − kpe

∥∥∥iepij∥∥∥2
− e⊤

ψij V̄
⊤
j
iepij

+ 1
kψ
e⊤
ψijΩijeψij = −kpe

∥∥∥iepij∥∥∥2
≤ 0

(8.11)

where we used the fact that Ωij is skew-symmetric. The negative semi-definiteness of
V̇ , implies uniform stability of the origin. Leveraging Barbalat’s lemma demonstrates
convergence to zero of epij . The PE condition (8.10) ensures convergence to zero of the
error eψij . Global exponential stability follows from the linear time-varying nature of the
system (see the Persistency of Excitation lemma in [Marino, 1995]).

Remark 14. Condition (8.10) is satisfied if the velocity on the xy-plane is non-zero for
a time interval of non-zero measure over each period T . In fact,

V̄j(t)⊤V̄j(t) =
v2

jx(t) + v2
jy(t) 0

0 v2
jx(t) + v2

jy(t)

, (8.12)

which is clearly positive definite if the velocity on the xy-plane is non-zero.

Remark 15. We point out that, given the update law (8.8) for , in presence of PE, the
error eψij will asymptotically go to zero, but the norm of will not necessarily be 1 at each
instant, meaning that it will not represent a valid orientation. One can, anyway, extract
the closest angle ψij representing the orientation after renormalizing .

8.2.2 Common Frame Yaw Observer

In the preceding section, we introduced an observer able to estimate the relative orienta-
tion among neighboring robots. While knowledge of their relative orientation allows for
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coordination between two robots, it often falls short, necessitating awareness of position
and orientation within a shared frame. Among its advantages, for instance, is the abil-
ity to adapt to a time-varying graph; upon the creation of a new edge, two robots can
initialize their relative orientation in an informed way.

To estimate the yaw orientations in a common frame, we leverage the algorithm pro-
posed in [B.-H. Lee & Ahn, 2016b], designed for estimating the yaw within a shared frame
based on relative yaw measurements. In our context, we substitute the relative yaw mea-
surements with estimated relative yaw orientations obtained using (8.8) and, moreover,
we consider time-varying orientations.

In the design of this observer, we represent the orientation of the i-th robot as a unit
complex number zi := eιψi ∈ C, where ι =

√
−1, and, similarly, the relative orientation

between two robots as zij := eιψij=
[
1 ι

]
zψij ∈ C. While equivalent to the representation

used in the previous section, we adopt this representation for analytical simplicity of the
proof and coherence with [B.-H. Lee & Ahn, 2016b].

The objective of the observer is articulated as follows: for a common complex value
α ∈ C and robot orientations zi(t), devise an estimation law such that ∠ẑi → ∠zi + ∠α

∀i as t→∞, i.e. the estimated robot orientations should converge to the real ones up to
a common rotation.

The proposed estimation law takes the form:

˙̂zi = ιωiẑi + kz
∑
j∈Ni

(z̄ij ẑj − ẑi) (8.13)

where kz > 0 and z̄ij represents the complex conjugate of zij. It differs with respect to
[B.-H. Lee & Ahn, 2016b] for the fact that the orientation of the robots is time-varying.
Defining ẑ :=

[
ẑ1, ..., ẑN

]⊤
and ω :=

[
ω1, ..., ωN

]⊤
, the observer dynamics can be written

in matrix form as:

˙̂z = ι diag(ω)ẑ − kzLcẑ = (ι diag(ω)− kzLc)ẑ (8.14)

where

(Lc)ij :=


|Ni| if i = j

−z̄ij if j ∈ Ni
0 otherwise

(8.15)

and |Ni| is the cardinality of the neighbors set of the i-th robot.
Now, we present the following Proposition, introduced in [B.-H. Lee & Ahn, 2016b]

and, to better understand the following developments, we provide a sketch of the proof.
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Proposition 3 ([B.-H. Lee & Ahn, 2016b]). Zero is a simple eigenvalue of Lc(t) with a
corresponding eigenvector z(t) if and only if the associated digraph has a spanning tree.
Moreover, every eigenvalue, except for the zero eigenvalue, has strictly negative real part.

Define the matrix Dz := diag(z1, ..., zN) ∈ CN×N 2. Notice that, since zi is a unit
complex number, then |zi| = 1. Moreover, Dz is a nonsingular matrix and its inverse is
D−1

z = DH
z , where we indicated with H the conjugate transpose. As Dz is a nonsingular

matrix, we define the similarity transformation L = DH
z LcDz. Since Dz is a diagonal

matrix, the off-diagonal entries of L are:

(L)ij =
(
DH
z

)
ii

(Lc)ij (Dz)jj = −e−ιψie−ιψijeιψj

= −eι(−ψi−ψij+ψj) = −eι0 = −1
. (8.16)

In contrast, the diagonal entries are invariant under this transformation (i.e. e−ιψi |Ni|eιψi =
|Ni|). This demonstrates that, L is the classical unweighted Laplacian matrix, which, as
well-known [Bullo, 2020; Mesbahi & Egerstedt, 2010], is positive semi-definite and if the
graph has a spanning tree, then 0 is a simple eigenvalue corresponding to the right eigen-
vector 1N =

[
1, ..., 1

]⊤
∈ RN . Since Lc and L are similar matrices, then zero is a simple

eigenvalue of Lc as well. Furthermore, since 0 = L1N = DH
z LcDz1N = DH

z Lcz, it
follows that, z is the right eigenvector associated to the zero eigenvalue.

Remark 16. From (8.8), each robot gets an estimate of the relative orientation with
respect to both the in- and out- neighboring robots in the directed graph Gs. Hence, the
Laplacian L corresponds to the undirected graph Gc and the condition for zero to be a
simple eigenvalue of Lc reduces to the graph Gc being connected.

The following theorem extends the one from [B.-H. Lee & Ahn, 2016b] to the case in
which the yawrate of the robots may be different from zero.

Theorem 5. The observer (8.14) globally exponentially converges to ẑ(t) = (zH(0)ẑ(0)/N)z(t),
if and only if the graph is connected.

Proof. Consider the change of coordinates ẑ = Dzy. Notice that, yi = z̄iẑi corresponds
to the rotation error on S1, where yi = 1 represents the identity rotation zi = ẑi. Unlike
[B.-H. Lee & Ahn, 2016b], we consider non-zero yaw rates for the robots, resulting in (i)

2. diag(·) represents a diagonal matrix of the input arguments and (·) represents a block diagonal
matrix of the input arguments

186



8.2. Observer design

an additional term in the dynamics (8.14) and (ii) a time-varying change-of-coordinates
matrix. Consequently:

˙̂z = Dzẏ + Ḋzy = Dzẏ + ι diag(ω) diag(z)y

= Dzẏ + ι diag(ω)Dzy
. (8.17)

From (8.17) and (8.14)

ẏ = −kzDH
z LcDzy + ιDH

z diag(ω)Dzy − ιDH
z diag(ω)Dzy

= −kzLy
(8.18)

for which the consensus subspace {y1 = y2 = ... = yN} is a globally exponentially sta-
ble equilibrium set [Moreau, 2004]. In particular, since L is a symmetric Laplacian,
y(t) → (1TNy(0)/N)1N , which corresponds to the same rotation error for each angle ẑi,
i.e. 1TNy(0)/N = α. By applying again the change of coordinates:

ẑ(t)→Dz(t)
( 1
N

1TNy(0)
)

1N

=
( 1
N

1TNDz(0)H ẑ(0)
)
Dz(t)1N =

( 1
N
zH(0)ẑ(0)

)
z(t)

(8.19)

We also note that, ẑ(t) = 0 is an undesired equilibrium of the system, as it does not
represent a valid orientation. But ẑ(t)→ 0 if and only if zH(0)ẑ(0) = 0.

The stability proof in Theorem 5 relies on Proposition 3, assuming perfect measure-
ments zij. However, using ẑij from (8.8) in place of zij may render the estimated relative
orientations unrealizable. Consequently, the existence of a z∗ :=

[
z∗

1 . . . z∗
N

]⊤
∈ N com-

patible with all estimated ẑij ∀(i, j) ∈ E is not guaranteed. Specifically, within a graph
containing cycles, while (8.16) may hold for edges within a spanning tree, this might not
hold for the remaining edges outside the spanning tree.

Let us denote L̂c as the matrix derived similarly to (8.15) but using the estimated ẑij
and L̂ := DH

z∗L̂cDz∗ , in which Dz∗ := diag(z∗
1 , ..., z

∗
N). For edges within cycles, instead

of (8.16), we might encounter
(
DH

z∗L̂cDz∗

)
ij

= −eιψ̃ij where ψ̃ij = ψ∗
j − ψ∗

i − ψ̂ij, with
ψ∗
i = ∠z∗

i and ψ∗
j = ∠z∗

j . Consequently,

(
L̂
)
ij

:=



|Ni| if i = j

−1 if (i, j) ∈ Gτ
−eιψ̃ij if (i, j) ∈ Gc
0 otherwise

(8.20)
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where we used Gτ and Gc to denote respectively a subgraph of Gc representing the
considered spanning tree and a subgraph representing the remaining cycle edges. As
eιψ̃ij = e−ιψ̃ji and |eιψ̃ij | = 1, L̂ emerges as a Hermitian weakly diagonally dominant
matrix with positive elements on the diagonal, establishing its positive semidefiniteness.
Consequently, (8.18), and hence (8.14), remain stable also using imperfect measurements
ẑij.

8.2.3 Position Observer

In this section, we design an observer for the position of each robot within a common
frame. This observer is added in cascade with respect to (8.14). The primary objective
of this observer can be defined as follows: for a common translation p̄ ∈ R3, a common
rotation Rα (where α ∈ C remains consistent with the preceding section), alongside the
real position pi and orientation ∠zi, the aim is to devise an estimation law ensuring that
p̂i → p̄+R⊤

αpi ∀i as t→∞
Each robot implements the following update law:

˙̂pi = R̂ivi − kp
[ ∑
j∈N out

i

(p̂i − p̂j + R̂i
ipij)

+
∑
j∈N in

i

(p̂i − p̂j − R̂j
jpji)

] (8.21)

where kp > 0, N in
i and N out

i represent the in- and out-neighbors of the i-th robot, while
R̂i and R̂j are obtained from observer (8.14) and the corresponding angle communicated
among neighboring robots.

Let us denote R̄ := ({Ri}Ni=1) ∈ R3N×3N and R̄E := ({Rk}|E|
k=1) ∈ R3|Es|×3|Es|, where

Rk is the rotation matrix corresponding to the initial node of the edge ek := (i, j) and we
use the ’hat’ to indicate the estimated counterpart. The dynamics of the observer can
be expressed in matrix form as follows:

˙̂p = ˆ̄
Rv − kpE3

(
E⊤

3 p̂−
ˆ̄
RE

bpE

)
(8.22)

where E3 := E ⊗ I3 is the incidence matrix of the directed sensing graph Gs, ⊗ is the
Kronecker product and bpE := R̄⊤

EE
⊤
3 p. Similarly, we define for later use pE := E⊤

3 p.
Notice that, after convergence of the yaw observer, it holds R̂i = R⊤

αRi and, by
denoting R̄α := IN ⊗Rα, it follows:

ˆ̄RE
bpE = R̄⊤

α R̄ER̄
⊤
E pE = R̄⊤

αE
⊤
3 p. (8.23)
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Before proceiding with the main theorem, we define some quantities which will be used
later. Let us denote L̄3 := L̄⊗I3 = E3E

⊤
3 , where the Laplacian matrix L̄ has components:

(
L̄
)
ij

:=



|N in
i |+ |N out

i | if i = j

2 if j ∈ N in
i ∧ j ∈ N out

i

1 if j ∈ N in
i ⊕ j ∈ N out

i

0 otherwise

(8.24)

with ⊕ denoting the exclusive disjunction. Also, define the yaw estimation error eψ :=
ẑψ − zαψ, with ẑψ :=

[
cos(ψ̂1), sin(ψ̂1), ..., cos(ψ̂N ), sin(ψ̂N )

]⊤
and

zαψ :=
[
cos(ψ1 − α), sin(ψ1 − α), ..., cos(ψN − α), sin(ψN − α)

]⊤
, as well as R̄αE := I|E| ⊗Rα.

Theorem 6. Consider the estimation error up to a common rotation ep := p̂− R̄⊤
αp and

the observer dynamics (8.22). Under the assumptions that Gc is connected and the inputs,
as well as the measurements (8.2), are uniformly bounded and continuously differentiable,
then, the set S := {ep|ep1 = ep2 = ... = epN} is input-to-state stable (ISS) with respect to
the yaw error eψ.

Proof. The error dynamics can be written as:

ėp = ( ˆ̄R− R̄⊤
α R̄)v − kpE3

(
E⊤

3 p̂−
ˆ̄RE

bpE
)

+ kpE3R̄
⊤
αER̄E

bpE − kpE3R̄
⊤
αER̄E

bpE

= −kpL̄3ep + ( ˆ̄R− R̄⊤
α R̄)v + kpE3

( ˆ̄RE − R̄⊤
αER̄E

)
bpE

= −kpL̄3ep +
(
{V̄i}+ kpE3{iP̄ij}E⊤

2⊗

)
eψ

= −kpL̄3ep +Beψ

(8.25)

where, in the second line, we added and subtracted kpE3R̄
⊤
αER̄E

bpE , in the third equality,
we used an analogous transformations to (8.5), i.e.

iP̄ij(t) :=


ipijx(t) −ipijy(t)
ipijy(t) ipijx(t)

0 0

 , (8.26)

to obtain linearly the orientation error eψ. Also, E2⊗ := E⊗ ⊗ I2, where

(E⊗)ik :=

 1 if node i is the head of edge ek
0 otherwise

(8.27)
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is the out-incidence matrix [Bullo, 2020]. In the last equality, we definedB(t) := {V̄i}(t)+
kpE3{iP̄ij}(t)E⊤

2⊗. Let us denote U := 1N ⊗ I3 and let e⊥
p := ep −UU⊤ep be the error

orthogonal to the consensus subspace S and ēp := U⊤ep be the average error (i.e. a
common translation). Then, the system dynamics can be written as:

ė⊥
p (t) = −kpL̄3e

⊥
p (t) + (I3N −UU⊤)B(t)eψ(t) (8.28)

˙̄ep(t) = U⊤B(t)eψ(t) (8.29)

where we used the fact that U⊤L̄3 = L̄3U = 0 for undirected graphs [Bullo, 2020].
The unforced system (8.28) (i.e. for eψ(t) = 0) is globally exponentially stable and since
B(t) is uniformly bounded and continuously differentiable, then (8.28) is ISS with respect
to eψ(t) (see [bullo2022contraction]). Furthermore, as shown in the previous section,
eψ(t) is bounded ∀t ≥ 0 and eψ(t)→ 0 as t→∞, implying that eψ(t) is integrable, and,
as a consequence, ēp(t) remains bounded.

8.3 Simulation Results

This section presents simulation results validating our theoretical findings using a group
of 8 quadrotors, whose sensing graph is depicted in Fig. 8.1. The quadrotors execute a
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5

Figure 8.1: Sensing graph

formation control task with a modified version of the control law from [B.-H. Lee & Ahn,
2016b] to suit a directed sensing graph,

vi = kckiµi (8.30)

with
µi :=

∑
j∈N in

i

(ipij − R̂⊤
i (p∗

j − p∗
i )) +

∑
j∈N out

i

(R̂⊤
j (p∗

i − p∗
j )− jpji), (8.31)

190



8.4. Conclusions

kc > 0 and ki = 1 if ∥µi∥ ≤ νmax, ki = νmax/ ∥µi∥ otherwise, where νmax is the maximum
velocity norm.

The yaw is controlled independently using a spline with random coefficients. The
initial estimated positions of the drones are drawn from a gaussian distribution centered
around the real position of the drones and with standard deviation of 1m, instead the
initial common frame yaw estimate ẑ is drawn from a uniform distribution in (−π, π].
The relative yaw estimates ẑψij are initialized based on the initial common frame yaw
estimate, ensuring consistency with the graph cycles. Consequently, Lc will be a similar
matrix to a Laplacian, with an eigenvalue exactly at 0.

The relative state observer (8.8) is run @200Hz with gains kpe = 20 and kψ = 600, the
common frame yaw observer (8.15) @100Hz with gain kz = 40 and the common frame
position observer (8.21) @50Hz with gain kp = 1. Results for the estimation of relative
yaw, yaw in a common frame, and position in a common frame, as well as the formation
error norm are depicted in Fig. 8.2.

8.4 Conclusions

This work presents a novel observer for robots to estimate their position and yaw in a
common frame from relative position measurements. We achieve this through a three-
part observer that leverages persistency of excitation, eliminating the need for restrictive
assumptions about the sensing graph. Future work will focus on extending this approach
to bearing measurements and exploring a single-observer implementation.
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Figure 8.2: The figures respectively illustrate the following: (a) the norm of the estimation
error on the relative yaw for each edge, (b) the norm of the estimation error on the yaw
in a common frame for each robot, (c) the norm of the estimation error on the position in
a common frame for each robot, and (d) the norm of the formation error for each robot.
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CONCLUSIONS AND FUTURE WORKS

In this last chapter, we wish to summarize the main contributions of this thesis highlight-
ing some of the issues that still remain unsolved and suggesting, whenever possible, some
directions for improvement and further investigation.

8.5 Summary and contributions

The initial objective of this thesis was to investigate the problem of distributed active
sensing for the cooperative localization of quadrotor formations. We set out to address
the challenges posed by incomplete relative measurements and the presence of sensing
constraints, all while avoiding the strict requirement of infinitesimal rigidity in the for-
mations, thereby granting the robots greater freedom of movement (Chapter 4).

While localization is a necessary condition to achieve a certain task, it is seldom the
sole mission objective. Coupling active sensing with the execution of a task of interest
is not trivial. Throughout this thesis, the concepts of Control Barrier Functions (CBFs)
and Control Lyapunov Functions (CLFs) emerged as effective tools for integrating active
sensing with other tasks. We explored the possibility of encoding the task to be accom-
plished, such as formation control, using a CLF and imposing the decrease of the CLF
as a constraint in a quadratic program. Simultaneously, the framework aimed to enhance
as much as possible the system’s localization performance by moving the robots along
informative trajectories (Chapter 5).

The exploration of such kind of framework, integrating active sensing with other tasks
using CLF and CBF, prompted us to investigate a somehow inverse problem. This sce-
nario involves persistently localizing multiple moving targets using a group of flying robots
equipped with down-looking cameras. The challenge is to ensure a minimum level of
information about the targets while optimizing the accomplishment of another task, ex-
emplified here by a formation control task (Chapter 6).

In the course of implementing persistent target monitoring and connectivity mainte-
nance using CBFs, we identified as a critical issue in certain scenarios the loss of optimality
compared to centralized solutions when implementing low-complexity distributed CBF-
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based controllers, such as those presented in [Lindemann & Dimarogonas, 2020; Wang
et al., 2017]. For example, a pair of flying robots observing two targets going in opposite
direction would not immediately take the most reasonable decision of splitting into two
groups to follow the two targets due to a sub-optimal approach in distributing the con-
straint. Two alternatives were proposed in [Tan & Dimarogonas, 2021, 2022], which allow
to converge to the optimal centralized solution, but they have limitations, either failing
to guarantee constraint satisfaction at all times or imposing overly restrictive constraints
on the local lie derivative LGi of the constraint. In this thesis, we introduce an approach
building upon [Tan & Dimarogonas, 2021] that overcomes the limitations related to LGi ,
providing a solution that ensures constraint satisfaction at all times and asymptotically
converges to the optimal centralized solution (Chapter 7).

For scenarios involving simple pairwise constraints, like collision avoidance, solutions
akin to [Lindemann & Dimarogonas, 2020; Wang et al., 2017] remain preferable due
to their simplicity and low communication requirements. However, when dealing with
constraints involving multiple robots, such as connectivity maintenance and target mon-
itoring, it becomes paramount to minimize conservativeness and achieve a solution that
closely tracks the centralized optimal solution.

More than active sensing, the foundational element of cooperative localization lies
in the localization algorithm. Few works have explored the estimation in a common
reference frame of both position and orientation of a group of robots from body-frame
measurements with provable stability. This motivated our investigation into the design
of such observers, starting with an observer estimating the yaw orientation and position
of a formation in a common frame from body-frame position measurements (Chapter 8).

To conclude, the novel contributions of this thesis include:

• The design of a predictive active sensing controller for optimal cooperative local-
ization based on distributed optimization and on a suitable cost function, which is
distributed and scalable with respect to the number of robots and it optimizes the
whole trajectory rather then only the geometry (Chapter 4).

• The design of a distributed reactive active sensing controller for optimal cooperative
localization which allows to integrate the active sensing action while ensuring the
decrease of a CLF encoding the accomplishment of the desired task (Chapter 5).

• The design of a controller which aims to ensure a minimum prescribed level of
information collected by a group of flying robots about the state of one or multiple
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moving targets while possibly achieving other tasks through the use of HOCBFs
(Chapter 6).

• The design of a distributed CBF approach which asymptotically converges to the
centralized optimal solution while always ensuring satisfaction of the constraints
overcoming a limitation which was present in [Tan & Dimarogonas, 2021] (Chap-
ter 7).

• The design of an observer to estimate in a common frame the position and yaw of
a group of robots from body-frame relative position measurements, whose stability
is rigorously established (Chapter 8).

8.6 Open issues and future perspectives

While the results presented in this thesis regarding active cooperative localization are
promising, there exist some limitations that impact the proposed approaches. Notably, our
evaluation was performed by simulations, and an experimental validation is still missing.

In the immediate future, we plan to conduct an experimental validation of the algo-
rithm introduced in Chapter 5 for camera-based cooperative localization of quadrotors in
the Fly-Crane system (Fig. 8.3) [Sanalitro et al., 2022], which I have actively contributed
to setting up in our team. In fact, we believe that the controller presented in Chapter 5

Figure 8.3: [Sanalitro et al., 2022] The Fly-Crane system is a robotic system composed
by three aerial vehicles attached to a rigid platform, each one by two cables. This system
allows to precisely control both the position and orientation of the platform for aerial
manipulation/assembly tasks.

is more suitable than the one presented in Chapter 4 for real-world applications since
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it better allows combining active sensing with another higher priority task, with lower
requirements in terms of communication.

We point out that, to really take advantage of the approach proposed in Chapter 5,
some redundancy with respect to the task is necessary; otherwise, the considered task
may not leave much space for optimization as the trajectory can only be optimized as
long as the task error (encoded by the Lyapunov function) decreases. Moreover, an
interesting idea for future works could be to use prescribed performance control (PPC)
[Bechlioulis & Rovithakis, 2008] instead of CLFs to enforce task satisfaction. In fact,
prescribed performance control upper bounds the evolution of the task error to lie below
a certain time-dependent but state-independent function. This would ensure that the task
is accomplished in a certain prescribed amount of time while allowing the task error to
locally increase, allowing to acquire more information. Furthermore, the work in Chapter 5
still needs to be finalized for the case with sensing constraints and we plan to test it
considering more diverse tasks than the sole formation control. Also, more importantly,
a provably stable observer to estimate the state of the robots in R3 × S1 from body-frame
relative bearing measurements is still missing. We are already working on it, combining
ideas from [Z. Tang et al., 2022] and from Chapter 8.

Regarding the work on persistent monitoring of moving targets (Chapter 6), potential
enhancements to the algorithm include utilizing a smooth minimum function approxima-
tion to combine multiple Control Barrier Functions (CBFs) [Fernandez-Ayala et al., 2023;
Molnar & Ames, 2023] and employing an optimal approach to distribute the CBFs, as
presented in Chapter 7, to allow smoother and more effective control of the system when
multiple targets are splitting. Additionally, the algorithm could benefit from considering
estimation uncertainty using robust CBFs [Nguyen & Sreenath, 2021; Singletary et al.,
2022] for example considering some estimate of the maximum error based on the Kalman
Filter covariance.

In the context of connectivity maintenance (Chapter 7) and information gradient es-
timation in Chapter 5, the distributed power iteration algorithm is employed to estimate
the minimum nonzero eigenvalue and its associated eigenvector. This algorithm requires
high frequency communication for the employed dynamic average consensus to track the
associated signals. While it has seen extensive use in simulation and experiments with-
out a real distributed setup [Malli et al., 2021; Robuffo Giordano et al., 2013; Sabattini
et al., 2013; Yang et al., 2010], up to the author’s knowledge, it has rarely (or not at all)
been applied in a real distributed setup. Hence, experimental studies are necessary to
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determine the limits of convergence when the robots do not move slowly.
The observer presented in Chapter 8 is split into three sub-components in cascade,

potentially impacting performance in two ways: (i) the adaptive observer providing esti-
mated relative yaw orientations, used as if they were measurements, is expected to be less
robust than directly updating the yaw estimate in a common frame. Unfortunately, also
due to the nonlinear nature of the S1, it is difficult to use the same idea of an adaptive
observer, considering directly an update the of the yaw in a common frame from the local
body frame position estimate associated to each edge; and (ii) considering the yaw ob-
server and the position observer as two systems in feedback, using the current estimated
positions in a common frame to improve the estimate of the yaw in the same frame, could
potentially enhance performance but necessitates further studies on the stability of the
feedback interconnection. It would be still more interesting to formulate a single observer,
integrating an adaptive term, able to estimate position and yaw orientation in a common
frame. Furthermore, as already mentioned, we plan to extend the ideas used for this ob-
server to the case of body-frame relative bearing measurements, where more complexities
arise to the necessity of persistency of excitation conditions associated also to the scale
retrieval.
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Titre : Perception active et localisation pour les systèmes multirobots

Mot clés : Systèmes multi-robots, localisation coopérative, détection active, perception active, fonc-

tions de barrière de contrôle

Résumé : Dans cette thèse, nous nous at-
taquons aux défis de la localisation des systèmes
multi-robots, en nous concentrant sur la localisa-
tion coopérative dans des formations non infini-
ment rigides avec des contraintes de détection.
Nos contributions introduisent un cadre dans
lequel les objectifs éventuellement conflictuels
du maintien de la connectivité, de l’exécution
des tâches et de l’acquisition d’informations sont
"médiés" à l’aide d’un programme quadratique et
des fonctions de barrière de contrôle et du for-
malisme de la fonction de Lyapunov de contrôle.
Une autre contribution de cette thèse concerne
la localisation active distribuée de cibles mobiles
multiples par un groupe de robots volants utilisant
des mesures basées sur des caméras, tout en
accommodant d’autres tâches si la redondance

du système le permet. Dans ce cas également,
la formulation du problème utilise un programme
quadratique et des fonctions de barrière de con-
trôle.
En nous appuyant sur la fonction de barrière de
contrôle et le cadre du programme quadratique,
nous identifions et abordons les limites de l’état
actuel de la technique, en particulier en ce qui
concerne les fonctions de barrière de contrôle
distribuées. Nos modifications aboutissent à un
contrôleur qui converge vers la solution optimale
centralisée.
Enfin, nous présentons une méthodologie
d’observation comme une nouvelle contribution,
facilitant la localisation coopérative d’un système
multi-robots dans un cadre commun en utilisant
des mesures relatives au cadre du corps.

Title: Active Perception and Localization for Multi-Robot Systems

Keywords: Multi-robot systems, cooperative localization, active sensing, active perception, control

barrier functions

Abstract: In this thesis, we tackle challenges in
the localization of multi-robot systems, focusing
on cooperative localization in non-infinitesimally
rigid formations with sensing constraints. Our
contributions introduce a framework in which the
possibly conflicting goals of connectivity mainte-
nance, task execution and the information acqui-
sition are "mediated" using a quadratic program
and the control barrier functions and control Lya-
punov function formalism.
Another contribution of this thesis addresses
distributed active localization of multiple mov-
ing targets by a group of flying robots using
camera-based measurements, while accommo-

dating other tasks if system redundancy permits.
Also in this case, the problem formulation utilizes
a quadratic program and control barrier functions.
Building on the control barrier function and
quadratic program framework, we identify and
address limitations in the existing state of the art,
particularly in distributed control barrier functions.
Our modifications result in a controller that con-
verges to the centralized optimal solution.
Lastly, we present an observer methodology as a
novel contribution, allowing cooperative localiza-
tion of a multi-robot system in a common frame
using body-frame relative measurements.
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