
HAL Id: tel-04671509
https://theses.hal.science/tel-04671509v2

Submitted on 15 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative perception integrity for intelligent vehicles
Antoine Lima

To cite this version:
Antoine Lima. Cooperative perception integrity for intelligent vehicles. Robotics [cs.RO]. Université
de Technologie de Compiègne, 2023. English. �NNT : 2023COMP2752�. �tel-04671509v2�

https://theses.hal.science/tel-04671509v2
https://hal.archives-ouvertes.fr

 Par Antoine LIMA

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Cooperative perception integrity for intelligent vehicles

Soutenue le 3 mai 2023
Spécialité : Automatique et Robotique : Unité de recherche
Heudyasic (UMR-7253)

 D2752

Cooperative Perception Integrity
for Intelligent Vehicles

Antoine LIMA

PhD Thesis Prepared at the Heudiasyc Laboratory, UMR
UTC/CNRS 7253

Defended on the Third of May, 2023

Spécialité : Automatique & Robotique

Committee:

Reviewers Romuald Aufrère Univ. Clermont Auvergne

Rémi Boutteau Univ. de Rouen Normandie

Examiners Franck Davoine Univ. de Technologie de Compiègne

Joelle Hage Univ. de Technologie de Compiègne

Fawzi Nashashibi Inria Paris Rocquencourt

Clément Zinoune Renault

Supervisors Philippe Bonnifait Univ. de Technologie de Compiègne

Véronique Cherfaoui Univ. de Technologie de Compiègne

Contents

Acknowledgments 4

Abstract 5

1 General Introduction 11
1.1 Intelligent Vehicles . 11

1.1.1 Levels of Automation . 11
1.1.2 Autonomous Navigation Stack 12
1.1.3 Environment Perception 12
1.1.4 Cooperative Perception . 13

1.2 Integrity . 15
1.2.1 General Definition . 15
1.2.2 Localization Integrity . 16
1.2.3 Perception Integrity . 17

1.3 Objectives . 18
1.4 Manuscript Organization . 19

2 Methods and Tools for Decentralized Data Fusion 21
2.1 Introduction . 21
2.2 Symbolic Information and Belief Functions 22

2.2.1 Representation . 22
2.2.2 Combination of Mass Functions 26

2.2.2.1 Conjunctive Combination 26
2.2.2.2 Disjunctive Combination 27
2.2.2.3 Cautious Combination 28
2.2.2.4 Partially Overlapping Fusion 28

2.2.3 Discounting . 28
2.2.4 Conclusion . 29

2.3 Metric Representation and State Filtering 29
2.3.1 Random State Vectors . 29
2.3.2 State Filtering . 32

2.3.2.1 Kalman Filtering 32
2.3.2.2 Extensions to the Kalman Filter 35
2.3.2.3 Informational Filtering 36

2.3.3 Covariance Intersection Filtering 36
2.3.4 Split Covariance Intersection Filtering 39

2.4 Analysis of Covariance Intersection Filters 40

1

2 CONTENTS

2.4.1 CI Filtering Comparison with Kalman Filtering 41
2.4.2 Convergence Issues with Similarly Shaped Observation Co-

variances . 43
2.4.3 Slow Convergence with Partial Measurement 43
2.4.4 SCI Comparison with a Kalman-CI Combination 46
2.4.5 Tuning SCIF Evolution and Observation Models 47

2.5 Conclusion . 48

3 Sensor Processing and Tracking 51
3.1 Introduction . 51
3.2 Objects and Free Space Detection 51

3.2.1 Sensor Pre-Processing . 52
3.2.2 Model Based Object Detection 55
3.2.3 Deep Learning Based Object Detection 56
3.2.4 Free Space . 58

3.3 Multi-Object Tracking . 60
3.3.1 Data Association for Object Traking 60
3.3.2 Track Management . 62

3.4 Perception Evaluation . 64
3.4.1 Perception Ground Truth 64
3.4.2 Evaluation Metrics . 65

3.5 Description of the Perception System Used in this Work 69
3.5.1 Experimental Setup . 69

3.5.1.1 Hardware . 69
3.5.1.2 Software . 73

3.5.2 Cars and Traffic Signs Detection using LiDAR 74
3.5.2.1 Sensor Tracking 76
3.5.2.2 Track Management 77

3.6 Evaluation . 78
3.6.1 Evaluation of Sign Detection 78
3.6.2 Evaluation of Car Detection 80

3.7 Conclusion . 82

4 Cooperative Perception in a Trustworthy Network 83
4.1 Introduction . 83
4.2 Review of Cooperative Perception 84

4.2.1 Communication for Intelligent Transportation Systems . . 84
4.2.1.1 Medium . 84
4.2.1.2 Messages . 84
4.2.1.3 Contents of Cooperative Perception Messages . . 86
4.2.1.4 Security in Vehicular Networks 87

4.2.2 Cooperative Track-To-Track Fusion 87
4.2.2.1 Cooperative Fusion Architectures 87
4.2.2.2 Cooperative State Filtering 88
4.2.2.3 Spatial Alignment 89
4.2.2.4 Temporal Alignment 92
4.2.2.5 Out-Of-Sequence Observations 92

CONTENTS 3

4.2.3 Evaluation Methods for Cooperative Perception 94
4.3 Fusion of Multiple Points of View 95

4.3.1 Generic Fusion Architecture 96
4.3.2 Managing the Detectability of Multiple Sources 96

4.3.2.1 Definition of Detectability 97
4.3.2.2 Computation of Detectability 98
4.3.2.3 Fusion of Detectability Grids 99
4.3.2.4 Object Detectability 103

4.3.3 Similarity between Objects 103
4.3.4 Estimating the Existence of Tracked Objects 106

4.4 Evaluation of Cooperative Perception 108
4.4.1 Evaluation Methodology 108

4.4.1.1 Global and Local Evaluations 108
4.4.1.2 Datasets with Ground-Truth 108
4.4.1.3 Evaluation Metrics 109

4.4.2 Study of the Added-Value of Cooperative Perception . . . 114
4.4.3 Study of the Contribution of Detectability for Cooperative

Perception . 118
4.5 Conclusion . 119

5 Estimation of Trust in Cooperative Peers 121
5.1 Introduction . 121
5.2 Review of Trust in Intelligent Vehicles 121

5.2.1 Misbehavior Detection . 122
5.2.2 Aggregation . 123

5.3 Trust Estimation and Use for Data Fusion 124
5.3.1 Fusion Architecture with Trust Management 124
5.3.2 Evidential Estimation of Trust 124
5.3.3 Coherency . 125

5.3.3.1 Object Detectability 126
5.3.3.2 Attribute Coherency 126
5.3.3.3 Spatial Coherency 127

5.3.4 Consistency . 128
5.3.5 Confirmation . 129

5.3.5.1 Object Similarity 130
5.3.5.2 Object Dissimilarity 130
5.3.5.3 Object-Free-Space Inconsistency 131
5.3.5.4 Free-Space Similarity 131

5.3.6 Summary of Trust Parameters 133
5.3.7 Trust-Aware Tracking . 134

5.4 Experimental Evaluation . 135
5.4.1 Added Value of Trust in Nominal Cases 136
5.4.2 Trust Estimation and Perception Performance in Case of

Faults . 138
5.4.3 Impact of Trust Parameters 141

5.5 Conclusion . 145

4 CONTENTS

6 General Conclusion 147
6.1 Conclusion . 147
6.2 Contributions . 148
6.3 Perspectives . 149

List of Figures 151

List of Tables 158

A Developments 163
A.1 Datasets . 163
A.2 Perception . 163
A.3 Tracking . 164
A.4 Display . 165
A.5 Special Processing . 165

B Cooperative Datasets 167
B.1 Roundabout . 167
B.2 Intersection . 168
B.3 Overtaking . 168

C Cooperative Ground-Truth 169

D Study of the Combination Rule Used in Trust Estimation 171

E Study of Consensus Building in Trust Estimation 173

Bibliography 175

Acknowledgments

As an opening to this manuscript, I would like to thank all those who made it
possible.

First and foremost, I would like to thank Philippe Bonnifait and Véronique Cher-
faoui for supervising this thesis. Their guidance and the long and late but fruitful
discussion we had helped me grow and complete this massive undertaking.

Secondly, I would like to thank Romuald Aufrère and Rémi Boutteau for review-
ing this manuscript. The time they put into making sure this work was worth
reading and their remarks greatly improved it. Many thanks also goes to Franck
Davoine, Joelle Hage, Fawzi Nashashibi and Clément Zinoune for examining this
work and for the discussion we had. I am especially thankful to Joelle and Fawzi
that followed this thesis through the years. They helped me gain confidence in
my work and focus my ideas.

Thirdly, I would like to thanks my Heudiasyc colleagues and friends: Baptiste,
Rémy, Stéphane, Maxime&Maxime, Lyes, Anthony, Corentin, Jean-Benoist, Luca
and Romain. Talking about science, work and other stuff helped me keep my head
above the water. Also thanks to my ex-roommates Tobias and Adrien for their
energy and making sure I was not only working.

Finally, my deepest thanks goes to Roxane, my parents and my brothers for
emotionally supporting me for all these years, especially those last four.

5

Abstract

In order to navigate safely and comfortably, intelligent vehicles require highly
reliable perception of their environment. Since on-board sensors are necessarily
limited in range, and because their field of view can be obscured, an emerging
solution is cooperative perception: vehicles share their perception with other
vehicles via wireless communication.

Intelligent vehicles can thus communicate complex information over long dis-
tances. They see further and more completely than their sensors could ever
allow. However, information from external sources must be treated with cau-
tion, as misleading information can lead to a dangerous situation. The sources
of degradation of this information’s ”integrity” in the cooperative system must
therefore be kept to a minimum. In this thesis, we study these sources and pro-
pose suitable methods for managing them and avoiding their propagation. Our
work focuses in particular on the fusion of tracked objects, the representation of
areas covered by perception systems and the management of trust attributable
to other communicating agents.

In order to avoid underestimating the uncertainty linked to the state of perceived
objects, we are studying data fusion filters capable of handling the information
loops induced by exchanges. Our results on simulated data show that a split
covariance intersection filter is a suitable method for this problem. Coupled
with the parameter-tuning methodology we propose, this method also appears to
outperform more conventional methods.

Next, we introduce a formalism for representing the areas covered by each sensor
and the areas seen as free, in order to better merge the detected objects. This
is the concept of evidential detectability grids, based on the theory of belief
functions. These detectability grids make it possible to merge several points
of view to obtain a global representation of the environment, while explicitly
managing uncertainties.

Finally, we propose a method for each vehicle to elaborate a trust index on the
other cooperative agents. It is based on an evidential tree combining several
pieces of evidence, such as the consistency and concordance of the information
received. The confidence index is then used to ensure that each vehicle reliably
combines locally perceived information with that transmitted by other vehicles.

The performance of the global cooperative perception method is evaluated on real
data obtained using three experimental vehicles equipped with omnidirectional

7

8 CONTENTS

LiDAR sensors. The corresponding data sets are made available to the scientific
community.

Résumé

Afin de naviguer de manière sure et confortable, les véhicules intelligents nécessitent
une perception très fiable de leur environnement d’évolution. Les capteurs em-
barqués étant nécessairement limités en portée et leur champ de vue pouvant faire
l’objet d’occultations, une solution émergente est la perception coopérative : les
véhicules partagent leur perception avec les autres véhicules par des moyens de
communication sans-fil.

Les véhicules intelligents peuvent ainsi communiquer des informations complexes
à travers de longues distances. Ils voient plus loin et de manière plus complète
que ce que leurs capteurs leur permettent. Cependant, les informations provenant
d’une source extérieure doivent être considérées avec prudence car une perception
trompeuse peut entrâıner une situation dangereuse. Il convient donc de limiter
au maximum les sources de dégradation de l’intégrité de l’information dans le
système coopératif. Dans cette thèse, nous étudions ces sources et nous proposons
des méthodes adaptées pour les gérer et éviter leur propagation. Nos travaux se
concentrent en particulier sur la fusion d’objets pistés, la représentation des zones
couvertes par les systèmes de perception et la gestion de la confiance imputable
aux autres agents communicants.

Afin d’éviter de sous-estimer l’incertitude liée à l’état des objets perçus, nous
étudions des filtres de fusion de données capables de gérer les boucles d’information,
induites par les échanges. Nos résultats sur données simulées montrent qu’un filtre
à intersection de covariance partitionnée est une méthode adaptée à ce problème.
Couplée à la méthodologie de réglage des paramètres que nous proposons, cette
méthode peut également être plus performante que d’autres plus classiques.

Ensuite, nous présentons un formalisme permettant de représenter les zones cou-
vertes par chaque capteur et les zones vues comme libres afin de mieux fusionner
les objets détectés. C’est le concept de grilles de détectabilité évidentielles, basé
sur la théorie des fonctions de croyance. Ces grilles de détectabilité permettent
de fusionner plusieurs points de vue pour obtenir une représentation globale de
l’environnement tout en gérant explicitement les incertitudes.

Finalement, nous proposons une méthode pour que chaque véhicule élabore un
indice de confiance sur les autres agents coopératifs. Elle se base sur un arbre
évidentiel combinant plusieurs éléments de preuve comme la cohérence et la con-
cordance des informations reçues. L’indice de confiance est ensuite utilisé pour
que chaque véhicule combine de façon fiable les information perçues localement
avec celles transmises par les autres véhicules.

9

10 CONTENTS

Les performances de la méthode globale de perception coopérative sont évaluées
sur des données réelles obtenues à l’aide de trois véhicules expérimentaux équipés
de capteurs LiDAR omnidirectionnels. Les jeux de données correspondants sont
rendus publics à la communauté scientifique.

Chapter 1

General Introduction

Contents
1.1 Intelligent Vehicles . 11

1.2 Integrity . 15

1.3 Objectives . 18

1.4 Manuscript Organization . 19

1.1 Intelligent Vehicles

Transportation and mobility have become majors concern in modern societies.
Humans are becoming increasingly more reliant on being able to move rapidly on
a daily basis. At the same time, transportation is the cause of many accidents and
casualties every year. As road vehicles occupy a large portion of both mobility
and casualty aspects, intelligent road vehicles are seen as a good way to reduce the
number of accidents. In addition, delegating navigation tasks to computers might
simplify the use of private and public transportation, in particular to individuals
with limited mobility. These elements motivated the development of on-board
intelligence technologies, now allowing vehicles to be automated and potentially
be autonomous in the future.

1.1.1 Levels of Automation

The autonomy of intelligent vehicles depends on their level of automation, which
is classically defined by the Society of American Engineer (SAE) J3016 stan-
dard (SAE-J3016 2021) summarized in Table 1.1. The first group, Advanced
Driver-Assistance Systems (ADASs), aggregates lower levels of automation that
help human drivers in mundane driving tasks such as lane-keeping or Adaptive
Cruise Control (ACC). ADAS are already available to consumers with for exam-
ple Tesla’s Autopilot that is authorized in the United States of America (USA).
The second group is autonomous vehicles for levels in which road monitoring and
navigation are progressively deferred to autonomous systems and drivers are less
and less required. Several applications are being developed as of writing this

11

12 CHAPTER 1. GENERAL INTRODUCTION

manuscript, such as Zoox or Navia autonomous shuttles that can drive on prede-
termined paths. In Europe, the Mercedes Model S is currently L3-certified (level
3) and offers autonomous driving on German highways during traffic jams up to
60 km/h.

Table 1.1: 6 Levels of Automation as defined by the SAE.

0 1 2 3 4 5

No Driver ADAS Conditional High Full

Automation Assistance Automation Automation Automation

1.1.2 Autonomous Navigation Stack

The software architecture of autonomous vehicles is composed of several mod-
ules that are responsible for various navigation tasks, like localization or obstacle
avoidance. Figures 1.1 and 1.2 give two examples of architectures used at Ulm
University and Renault respectively. They provide an overview of the required
modules and their interactions with each other. Starting on the left with raw
sensors, modules progressively transform data to high level information and fi-
nally to low level control. In between is the brain of the vehicle that analyzes
and understands its environment before deciding what to do and how.

Low-Level Control

Motion Planning

Decision MakingSensors Perception & Scene Understanding

Sensors Sensors
Raw Data

Landmark
Extraction Landmarks

Landmark
Extraction Landmarks

Digital
Map

Pre-
Processing Hypotheses

Inverse
Sensor
Model

Grid Grid
Mapping

Grid
Map

Object
Tracking

Object
List

Localization

Digital
Map
With
Ego
Pose

Sensors Sensors
Raw Data

Sensors Sensors
Raw Data

C
om

bination

Environment
Model

Situation
Analysis

Prediction

Behavioral
Layer

Actuation

Trajectory
Level

Decision
Making

Maneuver
Permissions

Trajectory

Figure 1.1: Architecture used at Ulm University, adapted from (Taş et al. 2016).
Modules are regrouped in three main categories: input (sensors), processing (percep-
tion, scene understanding) and output (navigation, control). In the perception modules,
note that objects and space are both estimated.

1.1.3 Environment Perception

The first part of the brain is the focus of this manuscript. Perception is a term
encompassing everything that turns exteroceptive sensor data into information

1.1. INTELLIGENT VEHICLES 13

Cloud Connection

High-Level
Decision Making

Sensors Connected
Infrasctructure

Perception and SItuation Understanding

Low-Level Decision Making and Control

Cloud
Communication

Gateway

Supervisor
and

System
Health

Monitoring

GNSS

LiDARs Cameras Traffic Lights

Map and Localization

Perception World Model

Navigation and Decision Making

Lateral Control Longitudinal Control

Vehicle Interface

Figure 1.2: Architecture used at Renault during the Tornado project, adapted from
(Milanés et al. 2022). The same main categories are present, but note the presence of
communication with connected infrastructure and cloud connection.

that can be interpreted by situation understanding and motion planning modules.
These modules decide where and how to move for the next few seconds in order
to get closer to the goal while remaining safe. As such, the best information a
perception system could give to them is the state of every point in space around
the vehicle for the next few seconds. However, current technology and algorithms
cannot provide such levels of information in both space and time. The next best
solution is thus to split the problem in two and provide a dual information, as
illustrated in Figure 1.3. Perception information is split in sparse but predictable
objects and dense but instantaneous mappings. This separation stems from the
realization that the reciprocal of object presence is not necessarily their absence
but also that they have not been seen. That is why areas explicitly measured as
free are mapped and constitute the second aspect of perception. How these two
sides of the same coin are represented and processed will be discussed later.

1.1.4 Cooperative Perception

By using wireless communication, vehicles can exchange information and cooper-
ate with each others. This way, vehicles can cooperatively perceive their environ-
ment, by exchanging objects and free space. This is called Cooperative Perception
(CP), sometimes also called collective perception in the literature. Thanks to the
diversity of points of view, their estimation of the driving environment can be
improved and hidden zones can be reduced. Hidden areas or areas beyond the
range of the sensors are indeed important because as the vehicle cannot obtain
information at these locations its autonomous navigation capabilities, especially
at high speed, are reduced. As communication can have large ranges and can
pass through small obstructions, the perception of every vehicles can virtually be
extended further and behind obstacles.

Cooperation can be of several kinds, summarized in Figure 1.4. Centralized ap-

14 CHAPTER 1. GENERAL INTRODUCTION

Figure 1.3: Scene composed of two vehicles and a pedestrian. Perceived objects and
space considered free by the blue vehicle at the bottom are depicted in red and green
respectively. This example also illustrates that there are always hidden areas in a field
of perception.

(a) Centralized (b) Decentralized (c) Distributed

Figure 1.4: Common structures for communication and computation between mul-
tiple peers. Small blue nodes are sources of information. Orange nodes are where
computations are realized. Small orange nodes are both information sources and com-
puters.

proaches have a server at their center of operation. The central server gathers all
available information, processes it then dispatches the result. This solution is the
simplest to implement and can give optimal results but does not scale well. As
the number of participants increases, exponentially more and more computations
are required at a single point, which can become unfeasible and be less reliable
as there is a single point of failure. In addition, centralized approaches require a
constant connection to the internet, which is not yet possible everywhere nor nec-
essarily desirable for privacy and environmental concerns. Distributed approaches
propose to solve most of these issues by distributing the computation between
peers. However, this comes at the expense of more complex protocols, which can
be a significant issue for vehicular networks, that are already sufficiently complex
due to their high dynamics.

To prevent these issues, decentralized approaches can be used instead. In this
case, each participant is the center of its own partial world. Computation results
can be shared with each other but no guarantee can be made about its redun-
dancy between peers. Indeed, because each peer has a different point of view,

1.2. INTEGRITY 15

its knowledge of the environment might differ from peer to peer. This is not
a problem though, as vehicles are supposed to be independently responsible for
their own navigation tasks, and thus environment perception. A decentralized
approach is thus more adapted to CP as it allows for situations where vehicles
are not communicating or not cooperating.

Another common distinction depends on the type of task being realized. When
all peers work together towards a common goal, the task is said collective. When
all peers work independently but still share a common goal, the task is said
collaborative. Finally, if peers work independently on their own goal but help each
other, the task is said cooperative. Once again, because vehicles are supposed to
be independently responsible for their own navigation, cooperation is better fitted
to the problem at hand: vehicles can help each other but should be able to be
independent.

CP can be seen as a way to improve the quality of perception or each peer. How-
ever, defining what quality means requires the introduction of another concept:
integrity.

1.2 Integrity

1.2.1 General Definition

Integrity has an intuitive meaning in everyday life that is based on moral and
ethical values such as honesty, incorruptibility or wholeness. According to (N.
Zhu et al. 2018), the term integrity originates from the aeronautics field where
it is used to manage the trust that can be placed in a navigation solution. The
notion of integrity has since evolved towards more general concepts. For example,
(Boritz 2005) defines information integrity as a subset of information quality,
where the information is relevant, usable and reliable.

The idea has been progressively extended to the following set of characteristics
summarized by (Balakrishnan 2020) in the context of intelligent vehicle localiza-
tion:

• Correctness: Correspondence of the information with the physical reality
up to a known degree of accuracy. For example, the information should
be accurate, consistent in time and unaltered (whether intentionally or
not);

• Availability: Information is available when its extent and its quality are
sufficient to systems using it;

• Completeness: The available information faithfully represents the whole
situation without missing a part of it;

• Validity: The available information faithfully represents the conditions,
rules or relationships of the real world. For this, the information acqui-
sition process thus has to be understandable and verifiable.

16 CHAPTER 1. GENERAL INTRODUCTION

A good information in this sense is thus not the most accurate, but rather the
most faithful to real world or in other words, that which will mislead other systems
the least. Information is thus of high integrity as long as it is not misleading and
sufficiently qualitative for the task to perform.

Additionally, integrity is transitive: if every sub-system is provided with non-
misleading information and maintains that property throughout, then the whole
system is assumed to be safe. For example, (Reid et al. 2019) details the inter-
actions between modules in intelligent vehicles.

In the field of robotics and autonomous systems, integrity is particularly impor-
tant as significant injuries and casualties can be caused by misunderstanding.
The most critical modules in these are the localization and environment percep-
tion modules as a situation misunderstanding can result in hazardous behaviors.
As such, let us present how integrity is defined for these modules.

1.2.2 Localization Integrity

The concept of integrity has historically been introduced to intelligent vehicles
through the localization aspect (N. Zhu et al. 2018). Because localization refers
to vehicles that always exist, it is by definition valid and complete, leaving only
correctness to be monitored and availability to be evaluated. The worst situation
possible for a localization system is to provide an erroneous but very confident
pose to downstream systems. As such, its integrity mainly refers to correctness.

Localization integrity can be performed in real-time by computing protection lev-
els and comparing them to Alert Limits (ALs) to declare the localization system
available or not. In practice, the validation of a system that computes protection
levels is done in post-processing with a reference ground truth by checking if its
error is correctly bounded at all times.

Figure 1.5: Lateral position error and bounds of a localization system through time.
Taken from (Lima, Welte, et al. 2020).

Figure 1.5 illustrates such a problem, where a localization error and its bounds
are plotted on the same graph. If the error is above the associated bound for
more than a given percentage of the time, called Target Integrity Risk (TIR), the
system does not respect the integrity requirement. The specification of the TIR
is still a research topic, although some studies indicate that it should be between
10−4 and 10−7 per hour of critical operation (Reid et al. 2019).

Stanford diagrams are tools often used in aeronautics to evaluate integrity. They
plot the real error against an estimated upper bound (i.e. protection levels),
and define several zones to differentiate when the system is unavailable or not.

1.2. INTEGRITY 17

(a) (b)

Figure 1.6: Simplified Stanford diagram and example of usage for evaluating a
localization system taken from (Gottschalg et al. 2020). Dotted lines represent the
Alert Limit.

As illustrated in Figure 1.6, when the system is available, three areas are differ-
entiated: nominal, misleading or hazardously misleading. The protection level
is linked to the TIR, which can in that case be interpreted as a bound for the
risk of hazardously misleading information. The AL depends on the navigation
context and mission. For example, on a wide motorway, localization does not
have to be as accurate as in narrow city streets. Guaranteed scenarios and navi-
gation conditions (i.e: traffic, meteorological) can be described in what is called
an Operational Design Domain (ODD). The integrity analysis thus amounts to
evaluating the system under all situations it is designed for and making sure that
localization errors remains bounded.

1.2.3 Perception Integrity

As introduced in Section 1.1.3, the perception system is located before situation
understanding and decision making. As such, perception has to characterize space
that is free and detect road users in areas important for the ongoing navigation.
Following a top-down approach to characterize perception integrity, problematic
cases for perception systems are defined as:

1. Missing objects and considering space is free when it is not. This can lead
the navigation system to unknowingly go towards other road users and
colliding with them;

2. Estimating the position and velocities of objects with too much error. This
can lead the decision system to incorrectly predict the trajectory of other
road users which can lead to collisions and accidents;

3. Detecting objects that do not exist or considering space occupied when it
is not. While less risky than the two previous points, it can lead the vehicle
to either stop unnecessarily or issue false alarms to the driver.

18 CHAPTER 1. GENERAL INTRODUCTION

Example 1.1:

(a) Missed pedestrian (b) Bad pedestrian
estimation

(c) Ghost object in the
middle of the road

Figure 1.7: Misleading perception cases in the same situation as Figure 1.3. The
road, real objects and their motion are displayed in the background. Localization
error and estimated motion in red. The space perceived as free is in green.

Consider an intersection with two vehicles and a pedestrian as in Figure 1.7.
From the point of view of the bottom blue vehicle, the green vehicle is hidden
and the red pedestrian is about to cross. In Figure 1.7a, the green vehicle
is not detected though space beneath it is supposedly free. In Figure 1.7b,
the pose and motion of red pedestrian is badly estimated. In Figure 1.7c, a
red object is detected though nothing is here. The danger of these situations
resides in the fact that they will mislead later modules to think that respec-
tively nothing is on the right, a pedestrian is not trying to cross and that an
emergency braking is required.

Example 1.1 illustrates that a non-misleading perception system must be able
to correctly assess where it can see whether space is free or not, while correctly
estimating the position and velocity of perceived objects. Similarly to localiza-
tion, a good perception system depends on the driving situation and task to
be performed. For example, if the blue vehicle were to turn right, missing the
green vehicle would be less dangerous than turning left, or at least would be less
comfortable to the user.

Finally, although it is secondary to correctness, availability of the perception
system also has to be considered. Hidden areas, such as the building shadow in
Figure 1.7, are part of the nominal operation of perception but they reduce the
availability of autonomous navigation. This can lead the navigation system to be
overly cautious or even stop the vehicle. This is where perception sharing can be
most useful.

1.3 Objectives

In this work, we will study the problem of cooperatively perceiving the environ-
ment in the context of intelligent vehicles evolving on open roads. We place our-
selves in the scope of decentralized cooperative systems for previously mentioned
reasons with the goal of managing the integrity of the information provided by

1.4. MANUSCRIPT ORGANIZATION 19

the perception modules. For this, we must ensure that all processing carried out
in the perception module (i.e. detection and data fusion) maintains the integrity
of perceptual information.

As such, the problem of fusing on-board and cooperative information will be
central to this manuscript. It will lead us to study the detection of on-board
exteroceptive information and the fusion of multiple points of view to extend the
range of perception. In other words, the objective is to propose a cooperative
perception system capable of fusing data coming from on-board sensors and from
neighboring vehicles. In order to guarantee the data fusion quality, our approach
will focus on estimating the uncertainties associated with perceived and received
data as well as their coherency. Doing so, we will question the reliability of peers
and derive evaluation methodologies adapted to cooperative systems.

Another objective of this work is to experimentally evaluate our proposals and
implementations under realistic operating conditions on roads.

1.4 Manuscript Organization

This manuscript is split in four main chapters that respectively study four aspects
of cooperative perception.

In Chapter 2, we review how symbolic and metric information can be represented
and fused in cooperative systems. The concepts of belief functions and state
filtering are introduced and a study is conducted on the resiliency of several filters
to communication exchange loops when doing cooperation. We also propose
an interpretation to the parameters Split Covariance Intersection Filter (SCIF)
alongside a methodology to tune them.

In Chapter 3, we address how sensor data can be processed to detect objects and
free space. Our experimental platform is described and a study is conducted on
the detection capabilities of our experimental system based on evaluation metrics
that will be used throughout this work.

In Chapter 4, we review cooperative perception methods and propose an architec-
ture to fuse perception sources (either on-board sensor or other peers) when they
only partially share fields of view. To this end, we introduce the novel concept
of evidential detectability, a dense representation of the environment that com-
bines free space and field of view. Several studies based on real datasets recorded
for the occasion are conducted to illustrate the effectiveness of our method at
improving object and free space detection.

In Chapter 5, we review the problem of malicious or faithfully erroneous peers
and how they can be ignored. We then propose to manage the trust, a quantity
estimated over time to represent how much information from a given external
source can be trusted. Several experimental studies are conducted to evaluate
trust estimation and its impact on cooperative object detection.

Finally, in Chapter 6, a general conclusion to this manuscript is drawn and future
works are proposed.

Chapter 2

Methods and Tools for
Decentralized Data Fusion

Contents
2.1 Introduction . 21

2.2 Symbolic Information and Belief Functions 22

2.3 Metric Representation and State Filtering 29

2.4 Analysis of Covariance Intersection Filters 40

2.5 Conclusion . 48

2.1 Introduction

This manuscript studies the exchange of perception information between vehicles.
We chose to model this as a decentralized system, which raises several concerns.
For example, information loops, illustrated in Figure 2.1, may lead a vehicle to
count a same piece of information twice. To prevent this, robust methods must
be employed, which is the focus of this chapter.

We will consider two types of information: metric (continuous quantities such as
position or orientation) and symbolic (discrete characteristics such as the state of
a traffic light or whether an object exists or not). Because information is never
perfect in the real world, we will introduce how uncertain information can be
represented and fused in a decentralized system.

The framework of belief functions is first introduced to represent and manage
uncertain symbolic information. It will be used throughout this manuscript to
represent the existence of objects, the similarity between objects and the de-
tectability of objects in Chapter 4, then trustworthiness in cooperative peers in
Chapter 5.

Then, the concept of random state vector filtering is introduced to represent
uncertain metric information. A comparison of the performance of several filters
is then conducted to determine the most suitable filter for decentralized data

21

22
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

Figure 2.1: Information loop introduced between three vehicles. Follow the blue arrow
from the top that represents the initial piece of information sent by the blue vehicle.
It is augmented by the information of the red and green vehicle then comes back to
the blue vehicle. This means that the blue vehicle will receive its own information,
potentially thinking that the information is new.

fusion. These concepts will be used throughout this manuscript to estimate the
position and velocity of objects.

Finally, note that information will be assumed to be temporally and spatially
aligned in this chapter. Following chapters address this point.

2.2 Symbolic Information and Belief Functions

The traditional way of modeling uncertain symbolic information is with proba-
bilities. However with probabilities, having less information about hypothesis H1

than about hypothesis H2 means that H2 is more likely. When this is not the
case (i.e. because H1 and H2 are not linked in that way), then belief functions
can instead be used. This section introduces the basic concepts of this theory.

2.2.1 Representation

In their simplest form, belief functions are an extension of Bayesian probabilities
to set theory. That is, a classic Bayesian probability between 0 and 1 can be
distributed among several facets of a problem at once. It is particularly useful
to represent the information expressed heterogeneous sources. Let us take an
example to illustrate this property.

Example 2.1:

Consider an algorithm that is able to find cats, ducks or platypuses in im-
ages based on several characteristics. By detecting a beak, it might be 90%
sure that either a duck or platypus is in the image, but cannot differentiate
between the two. By detecting fur, it might be 90% sure that there is either

2.2. SYMBOLIC INFORMATION AND BELIEF FUNCTIONS 23

a cat or platypus. With classical probabilities, one would tend to model the
ambiguity by splitting probabilities in two, resulting in:

p(cat) = pbeak(cat) · pfur(cat) = 0 · 0.45 = 0

p(duck) = pbeak(duck) · pfur(duck) = 0.45 · 0 = 0

p(plat) = pbeak(plat) · pfur(plat) = 0.45 · 0.45 = 0.2025

which yields sub-optimal results caused by the algorithm ambiguities. In
addition, information that there still might be a cat or duck in the image is
lost, ignoring the uncertainties of the algorithm. This is due to the inability
of Bayesian probabilities to model that 1− p(x) is not always p(�x).

This sort of limitations are lifted by belief functions. Introduced by (Dempster
1967) and refined in (Shafer 1976) then (Philippe Smets and Kennes 1994), they
form a theory that bears many names, including Dempster-Shafer Theory (DST),
theory of evidence, evidential framework or Transferable Belief Model (TBM).

(a) (b)

Figure 2.2: Sets composing Ω = {ω1, ω2, ω3} and subset A = {ω2, ω3}

The building blocks of this framework are mass functions, mappings m : 2Ω →
[0, 1] where Ω = {ω1, ω2, . . . } is the finite set of answers to the question asked to
m, called frame of discernment. There exists multiple interpretation as to what
Ω should contain and what the values of m mean. However, in this manuscript
we only consider the evidential interpretation where Ω is composed of mutually
exclusive basic hypotheses and m describes the evidence held about any permu-
tation of these hypotheses (subsets of Ω). Following the closed-world assumption,
hypotheses are considered exhaustive.

These permutations are defined as the powerset 2Ω = {∅, {ω1}, {ω2}, {ω1, ω2}, . . . ,Ω}.
Accessing an element of a mass function is noted m (A) where A is an element of
2Ω. m(A) is the proportion of evidence attributed to A specifically and no other
subset, meaning the information contributing to tell that the real answer w ∈ A
and ω 6∈ ��A. To keep their probabilistic nature, mass functions should always
observe the constraint that 1 =

∑
A∈2Ω m(A).

Example 2.2:

Getting back to the Example 2.1, the different hypotheses our detection

24
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

algorithm can answer are cat (C), duck (D) or platypus (P), thus Ω =
{C,D, P}. Beak detection can be expressed using a mass function:

{
m ({D,P}) = 0.9

m ({C,D, P}) = 0.1

where only non-zeros subsets are given. For the sake of clarity, another
notation will be used in this work with all subsets given:

mbeak =

[
∅ {C} {D} {C,D} {P} {C,P} {D,P} {C,D, P}
0 0 0 0 0 0 0.9 0.1

]

This means that 90% of the available evidence tends to indicate that ei-
ther a duck or platypus is in the image. This is different than saying
m ({D}) = m ({P}) = 0.9 as it would violate the 1-summed constraint or
that m ({D}) = m ({P}) = 0.45 which would not solve the problem of the
previous example.

Similarly, fur detection can be expressed with

mfur =

[
∅ {C} {D} {C,D} {P} {C,P} {D,P} {C,D, P}
0 0 0 0 0 0.9 0 0.1

]

There are specific interpretations and properties attached to mass functions. To
name a few

• m(Ω) is the degree of ignorance, also called the unknown set;

• m(∅) is the degree of conflict1;

• Subsets that have a positive mass are called focal sets;

• A mass function without mass on Ω is called dogmatic;

• A mass function whose only focal set is Ω is called vacuous;

• A mass function whose focal sets are all singletons is called Bayesian;

• A mass function with mass only on Ω and one other focal set is called
simple.

Mass is generally just the raw way of representing belief. It can be used in
Basic Belief Assignment (BBA) to turn other forms of information into belief,
for example to introduce belief in a sensor model. Once in the domain of belief,
other higher-level descriptions can be used, as represented in Figure 2.3:

1Conflict can arise when fusing two mass functions that disagree with each other. This can
mean that one source is mistaken, overly confident or that the closed-world assumption is not
respected, in which case the actual answer might be outside of what Ω covers.

2.2. SYMBOLIC INFORMATION AND BELIEF FUNCTIONS 25

(a) (b) (c)

Figure 2.3: Subsets used when computing Bel({ω2, ω3}) in (a), Pl({ω2}) in (b) and
BetP({ω2}) in (c).

• Belief, or credibility. It is the sum of all evidence supporting A, often
interpreted as the lower bound of the actual probability of A:

Bel(A) =
∑

B⊆A

m(B) (2.1)

• Plausibility. It is the sum of all evidence not contradicting A, often inter-
preted as the upper bound of the actual probability of A:

Pl(A) =
∑

B∩A 6=∅

m(B) (2.2)

When applied on a singleton ω, it is called the contour function:

pl(ω) = Pl(ω), |ω| = 1 (2.3)

• Commonality. It is the quantity of knowledge on A:

q(A) =
∑

B⊇A

m(B) (2.4)

• Weight:

w(A) =
∑

B⊇A

(−1)|B|−|A| ln q(B) (2.5)

• Pignistic. It transforms evidence into probabilistic distributions, losing am-
biguity and incompleteness information, but useful to make decisions:

BetP(A) =
∑

B⊆Ω

|A ∩B|
|B| · m(B)

1−m(∅) (2.6)

As mentioned earlier, belief functions are particularly useful to combine various
pieces of evidence. In the next section, we review several methods to combine
belief functions.

26
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

2.2.2 Combination of Mass Functions

The idea of combination is simply to take two mass functions m1 and m2 and
generate a third one that summarizes the information of the two others. How-
ever, depending on how the inputs are modeled and whether they are reliable
and independent, several combination rules can be used. The appropriate rule
depends on the situation at hand. Thus in this section, the most common rules
are reviewed based on the work of (Reineking 2014). Note that unless explicitly
denoted, combination rules require m1 and m2 to be defined on the same frame
of discernment.

2.2.2.1 Conjunctive Combination

The first combination rule, called conjunctive and introduced by (Dempster 1967)
combines intersecting sets in the Bayesian sense:

(m1 ©∩ m2) (A) =
∑

B∩C=A

m1(B) ·m2(C) (2.7)

It is commutative, associative and accepts the vacuous mass function as a neutral
element. However, this combination rule can lead to the generation of conflict if
there is non-intersecting masses. In many applications, conflict is best avoided,
which is why a normalized version of Equation (2.7) have been proposed, called
Dempster’s rule:

(m1 ©+ m2) (A) =

{
1

1−η (m1 ©∩ m2) (A) A 6= ∅, η =
∑

B∩C=∅m1(B) ·m2(C)

0 A = ∅
(2.8)

It is particularly useful when combining two reliable and independent sources, i.e:
both sources faithfully estimate their amount of evidence and are not statically
correlated with one another. This condition is important, as counter-intuitive
results can arise from combining two contradictory mass functions.

Example 2.3:

Take two mass functions defined on Ω = {A,B,C}. One believes strongly in
A and slightly in B while the second strongly believe in C and slightly in B.
The following tables summarizes their contents and Dempster’s combination
result:

m1

m2

m1 ©+ m2

∅ {A} {B} {A,B} {C} {A,C} {B,C} {A,B,C}
0 0.9 0.1 0 0 0 0 0

0 0 0.1 0 0.9 0 0 0

0 0 1 0 0 0 0 0

that is, combining two masses weakly confident in B yields a categorical
mass on B and nothing else. This is due to the inability of m1 and m2 to

2.2. SYMBOLIC INFORMATION AND BELIEF FUNCTIONS 27

correctly assess their evidence. They both overestimated their evidence in
contradictory information without expressing their uncertainties.

However, by modeling m1 and m2 to express evidence and not belief, this
should not happen as evidence may be uncertain but never contradictory.
Another way is to think of evidence is as belief constraints.

To get back to Example 2.2, beak and fur detection are modeled to express
evidence in a reliable and independent manner. As such they can be com-
bined using Dempster’s rule:

mbeak

mfur

mbeak ©+ mfur

∅ {C} {D} {C,D} {P} {C,P} {D,P} {C,D, P}
0 0 0 0 0 0 0.9 0.1

0 0 0 0 0 0.9 0 0.1

0 0 0 0 0.81 0.09 0.09 0.01

which properly models that detecting a beak and fur is strong evidence that
a platypus is in the image, while maintaining that it might be something else
due to detection errors.

There are also other methods to normalize conflict. While Dempster’s rule pro-
poses to distribute it across focal sets, Yager’s rule (Yager 1987) proposes to
transfer it on m(Ω):

(m1 ©Y m2)(A) =

(m1 ©∩ m2)(A) A ∈ 2Ω \ ∅,Ω
(m1 ©∩ m2)(Ω) + (m1 ©∩ m2)(∅) A = Ω

0 A = ∅
(2.9)

and Dubois & Prade’s rule (Dubois et al. 2008) proposes to assign it to the union
of corresponding focal sets:

(m1 ©DP m2)(A) =

(m1 ©∩ m2)(A) +
∑

B∩C=∅
B∪C=A

m1(B) ·m2(C) A ∈ 2Ω \ ∅

0 A = ∅
(2.10)

2.2.2.2 Disjunctive Combination

However, the last two rules are not associative and their use in data fusion is
limited. In these situations, and in particular when at least one source is reliable,
the disjunctive rule (Philippe Smets 1993) can be used:

(m1 ©∪ m2) (A) =
∑

B∪C=A

m1(B) ·m2(C) (2.11)

that is, multiply masses everywhere they are defined. This rule is interesting to
acknowledge but it will not be used in this manuscript as it is too cautious.

28
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

2.2.2.3 Cautious Combination

One of the major constraint with previous rules is that they assume sources to be
independent. In (Denœux 2008), a cautious conjunctive rule is proposed, that is
resilient to information redundancy and is even idempotent (comb(m,m) = m).
Its principle is to take the source with the least amount of information in the case
that this minimal information is shared between sources. For this, both mass
functions are transformed in the weight space using Equation (2.5) to combine
intermediary simple mass functions:

w1∧2 = min (w1(A), w2(A))

m1 ©∧ m2 = ©∩
A⊂Ω

[
{A} Ω

1− w1∧2 w1∧2

]
(2.12)

2.2.2.4 Partially Overlapping Fusion

In the next chapters, detectability information will be modeled as subjective to
a given point of view, represented by a dependency on the point of view in the
frame of discernment. For this reason, we introduce here the method of (P. Smets
2000) to combine partially overlapping functions. As long as |Ω1 ∩ Ω2| > 0,
this method can be used to combine m1 and m2 on Ω1 ∪ Ω2. It is based on
conjunctive combination, normalization weights and conditioning. As a reminder,
conditioning is defined as Dempster combination with the neutral element of
another frame of discernment.

Example 2.4:

Let m1 defined on Ω1. Conditioning m1 on Ω2 = {ω2
1, ω

2
2, . . . } is realized as

m1[Ω2] = m1 ©+
[
∅ {ω2

1} {ω2
2} {ω2

1, ω
2
2} . . . {ω2

1, ω
2
2, . . . }

0 0 0 0 . . . 1

]
(2.13)

Partially overlapping combination is defined for all A in 2Ω1∪Ω2 as

(m1 ©̀ m2)(A) =
m1(A1)

m1[Ω0](A0)

m2(A2)

m2[Ω0](A0)
(m1[Ω0] ©∩ m2[Ω0]) (A1 ∩ A2) (2.14)

with Ω0 = Ω1 ∩ Ω2, A0 = A ∪ Ω0, A1 = A ∪ Ω1, A2 = A ∪ Ω2.

2.2.3 Discounting

When a source is unreliable, its BBAs can be discounted. By moving a α propor-
tion of its focal sets to the unknown, the informativeness of a mass function m is
reduced. This operation is defined as

mα =

{
(1− α) ·m(A) A ∈ 2Ω \ Ω

(1− α) ·m(A) + α A = Ω
(2.15)

2.3. METRIC REPRESENTATION AND STATE FILTERING 29

with (1−α) representing the reliability of that source. Other forms of discounting
have been proposed such as the contextual discounting introduced in (Mercier et
al. 2005) where reliability is specified for each element as a vector α = {αA}A∈Ω

mα = m ©∪
(
©∪
A∈Ω

[
∅ A . . . Ω

1− αA αA 0 0

])
(2.16)

or temporal discounting (Kurdej et al. 2013), that applies a discounting whose
α depends on some elapsed time. The underlying idea is to imitate particle
physics where particle decay exponentially, which is modeled with a half-life time
parameter t1/2. The shorter the half-life, the quicker a belief function is thus
discounted:

Λ(∆t, t1/2) := e
− ln 2
t1/2

∆t
(2.17)

which has the advantage of being additive and associative

(
mΛ(∆t2)

)
Λ(∆t1)

=
(

mΛ(∆t1)

)
Λ(∆t2)

= mΛ(∆t1+∆t2) (2.18)

Discounting will be used in the rest of this manuscript to reduce the impact of
certain sources when cooperatively estimating quantities. In particular temporal
discounting will be used to filter belief, removing information as time passes.

2.2.4 Conclusion

As we saw in this section, belief functions are a mathematical tool that extends
Bayesian probabilities to combination of events. In doing so, it allows for explicit
representation of uncertainties, which is particularly useful in decentralized data
fusion where information can be partial between peers. In addition, it provides
fusion tools that are resilient to potentially correlated sources.

2.3 Metric Representation and State Filtering

We now focus on metric information, its representation with random state vectors
and its filtering.

2.3.1 Random State Vectors

Continuous quantities are usually represented using random state vectors, where
the state of an object is represented with a multidimensional Gaussian distribu-
tion2. This takes the form of a mean vector x and covariance matrix P whose
meaning is illustrated in the following example:

2Other probability distributions are possible, but they will not be covered in this
manuscript.

30
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

Example 2.5:

Consider a one-dimensional object represented by its position s. That posi-
tion is uncertain, which is encapsulated within the standard deviation of s,
σs. Its state and covariance are thus respectively

x =
[
s
]
, P =

[
σ2
s

]

This conveys that the most likely position is s but that the real position can
be somewhere else with a probability decreasing with distance to s. This is il-
lustrated in Figure 2.4 with a Gaussian probability distribution and as uncer-
tainty bounding with a 3σ domain.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
s

0.00

0.25

0.50

0.75

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
s

Figure 2.4: Gaussian probability distribution and 3σ domain of a one-
dimensional object with a mean s = 3 and standard deviation σs = 0.5.

Such a concept can be extended to vectors of higher dimensions. This will be
used to represent perceived objects in this manuscript.

Example 2.6:

Consider a 2-dimensional object. It is represented by its x and y position
and associated uncertainties as

x =

[
x

y

]
, P =

[
σxσx ησxσy

ησyσx σyσy

]

Here η is the correlation factor between σx and σy. Such a state is illustrated
in Figure 2.5 with a 2D Gaussian probability distribution and a 3σ bounding
ellipsoid.

2.3. METRIC REPRESENTATION AND STATE FILTERING 31

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

y

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

y

Figure 2.5: 2D Gaussian probability distribution and 3σ bound of a two dimen-
sional object with x = 1, y = 5, σx = 2, σs = 3 and η = 0.4.

Other continuous characteristics can also be represented using this formalism,
such as the speed or the heading of a vehicle. In these cases, the illustration is
different (an arrow for the speed and a cone for the heading) but the underlying
principle is the same: the most likely value is the mean, but other values are
possible with decreasing probability.

The state of multiple objects can be represented jointly or independently, mean-
ing that cross-covariances between objects can represented or ignored. In the
former, the state of the system is represented as a whole, whereas the latter only
represents the states of individual objects separately.

Example 2.7:

Consider a system with two objects o1 and o2. Their states and covariances
can be represented jointly as Equation (2.19) or independently as Equa-
tion (2.20).

x1

y1

x2

y2

 ,

σx1σx1 ηx1y1σx1σy1 ηx1x2σx1σx2 ηx1y2σx1σy2

ηx1y1σy1σx1 σy1σy1 ηx2y1σy1σx2 ηy1y2σy1σy2

ηx1x2σx2σx1 ηx2y1σx2σy1 σx2σx2 ηx2y2σx2σy2

ηx1y2σy2σx1 ηy1y2σy2σy1 ηx2y2σy2σx2 σy2σy2

 (2.19)

[
x1

y1

]

[
σx1σx1 ηx1y1σx1σy1

ηx1y1σy1σx1 σy1σy1

]

,

[
x2

y2

]

[
σx2σx2 ηx2y2σx2σy2

ηx2y2σy2σx2 σy2σy2

]

(2.20)

The main difference between both representations is that the former models the
statistical interdependence between object estimates, while the latter considers

32
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

that they are uncorrelated. However, as illustrated in the previous example, this
also means that in the joint case, the number of elements in the covariance matrix
grows exponentially with the number it represents, as compared the uncorrelated
case where growth is linear.

2.3.2 State Filtering

While random state vectors are useful to represent instantaneous information,
their main advantage is the capacity to be filtered, that is estimated through
time by periodically observing the system.

Filtering is based on the idea that a state x(t) can be used to represent a system
at a given moment. This state evolves in a predictable manner with an evolution
model described by a function f . Information about the system is acquired peri-
odically in the form of an observation vector y thanks to an observation model
described by a function h. However, due to modeling or sensor errors, knowledge
about the system is never perfect, which is modeled by α(t) for evolution model-
induced errors and β(t) for sensor-induced errors. They are both assumed to be
centered. The following state equations summarizes these ideas:

x(t+ 1) = f (x(t)) + α(t)

y(t) = h (x(t)) + β(t)
(2.21)

Note that this is a discretized model in the sense that it is sampled in time and
not a continuous differential equation. x(t+1) corresponds to the future sampling
time for a given period.

2.3.2.1 Kalman Filtering

The Kalman Filter (KF), introduced in (Kalman 1960) is the most common filter
in robotics and navigation. It recursively estimate states with two steps:

1. It predicts the state and its covariance using a linear evolution model F
and a covariance Q of the model noise α:

x(t+ 1|t) = Fx(t|t)
P(t+ 1|t) = FP(t|t)FT + Q

(2.22)

F describes how x and its covariance P evolve between two time steps. Q
models that the evolution model is imperfect (e.g: air and ground friction
not taken into account, acceleration not modeled, discretization of time,
...). It increases the state covariance to convey that the state becomes
more imprecise with time because of modeling incompleteness or external
disturbances. For the sake of clarity, notations used in the rest of this
manuscript will be shortened. The current state 〈x(t|t),P(t|t)〉 will be
noted 〈x,P〉 and the predicted state 〈x(t+ 1|t),P(t+ 1|t)〉 will be noted
〈x+,P+〉, such that Equation (2.22) becomes:

x+ = Fx

P+ = FPFT + Q
(2.23)

2.3. METRIC REPRESENTATION AND STATE FILTERING 33

2. It updates the state and its covariance using an observation. It is a M -
dimensional vector y associated with an observation noise covariance R that
describes the variance of β. Observations are linked to the state with an
observation model H, a matrix of size M ×N , that describes how observed
quantities are linked to the state.

K = P+HT
(
HP+HT + R

)−1

ε = y −Hx+

x = x+ + Kε

P = (I−KH) P+ (I−KH)T + KRKT

(2.24)

The uncertainties of P and R are combined to compute a Kalman gain K
that represents the influence of y and R on the resulting state. A possible
interpretation is that K is a weighing factor along all dimensions of the
filtered state and observation that takes the observation model and cross-
covariances between dimensions into account. An innovation ε is computed
to correct the state using through K. Note that Equation (2.24) is given in
the more numerically stable Joseph’s form.

Example 2.8:

Consider a dynamic object that has a x and y position moving with constant
velocities vx and vy.

Figure 2.6: 2D Object with its current and predicted state. Covariance is not
represented.

Its state is thus x =
[
x, y, vx, vy

]
and its evolution can be described with:

f(x) =

ẋ = vx

ẏ = vy

v̇x = 0

v̇y = 0

34
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

fl(x) =

x+ = x+ ∆t · vx
y+ = y + ∆t · vy
vx+ = vx

vy+ = vy

F =

1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1

where f is the continuous evolution model, fl is f discretized with time step
∆t and F is fl in matricial form. Uncertainties about velocity are propagated
to position as

σ+
x

2
= σ2

x + ∆t2 · σ2
vx + q2

x

σ+
y

2
= σ2

y + ∆t2 · σ2
vy + q2

y

with qx, qy the variance of the model noise covariance Q for x and y.

Thanks to a GNSS receiver and to an odometer, the system can observe the
whole state:

h(x) =

yx = x

yy = y

yvx = vx

yvy = vy

H =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 2.7: Update of a 2D object. Blue is the predicted state, green the ob-
servation and red the updated state. Covariance is not represented. Observation
error exaggerated for clarity.

It is also possible to only measure a subset of the state and yet estimate it
fully. This works as long as all quantities are even indirectly observable, with a
mechanism that is best explained with an example.

Example 2.9:

Consider the previous example, but now only a GNSS receiver is available:

h(x) =

{
yx = x

yy = y
H =

[
1 0 0 0

0 1 0 0

]

2.3. METRIC REPRESENTATION AND STATE FILTERING 35

When the state is predicted, non-diagonal terms of F propagate some uncer-
tainty from the velocity to the position, and in particular on non-diagonal
terms of P as a result of the correlation between the two quantities. When the
state is updated, the Kalman gain K of Equation (2.24) uses these correlated
terms to infer how to correct the velocity from a position error.

The KF is said optimal under certain conditions:

• States and observations are affected by noises and errors that follow Gaus-
sian distributions whose variance is known. Moreover, these distributions
must be zero-centred and white (i.e: uncorrelated in time);

• States evolve and are observed through linear equations.

2.3.2.2 Extensions to the Kalman Filter

Linear modelling is rarely met in practice. Evolution and observation models are
often non-linear (e.g: heading angle having a sinusoidal impact on the position).
For this, there are extensions of the KF that:

• Linearize locally the evolution and observation model using Jacobian ma-
trices, the Extended Kalman Filter (EKF) (Kalman 1960). In this case,
Equation (2.23) becomes

x+ = f(x)

F =
∂f

∂x
P+ = FPFT + QT

(2.25)

and Equation (2.24) gets modified with

H =
∂h

∂x
ε = y − h(x+)

(2.26)

• Apply the non-linear function to some representative points of the covari-
ance ellipsoid to propagate the uncertainty: this is the Unscented Kalman
Filter (UKF) (S. J. Julier et al. 1997b).

When noises affecting the system are biased or correlated, the KF might over-
converge on a given solution and might provide inconsistent estimates. For raw
sensor data, this assumption holds as long as a thorough work on their com-
putation ensures that observations are unbiased and uncorrelated, as explored
in Section 3.5. However, in decentralized data fusion, observation are already
filtered states, meaning that this assumption does not hold. This inspired a
plethora of other types of filter that are detailed in the following sections.

36
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

2.3.2.3 Informational Filtering

Information matrices are the dual of covariance matrices in the Gaussian case
(Al Hage et al. 2019; Durrant-Whyte et al. 2001). That is, an information matrix
noted I (not to be confused with I the identity matrix) is defined as the inverse
of the covariance I = P−1. This means that if the covariance matrix conveys
the uncertainty of a state, the information matrix conveys the certainties, or
information contained in the state.

The KF can be formulated using information matrices using the Woodburry
identity (Higham 2002). It is a common identity defined for arbitrary A,U,C, V
matrices as:

(A+ UCV)−1 = A−1 − A−1U
(
V A−1U + C−1

)−1
V A−1 (2.27)

As such, the covariance matrix update of Equation (2.24) can be written as:

P−1 = P+−1
+ HR−1HT (2.28)

which can be interpreted as the gain of information that the observation brings
to the state.

Depending on the dimensions of P and R, this form can be faster than the
covariance form. As a general rule, if P is of higher dimension than R, then the
traditional form (that inverses R) is more suited than the informational form
(that inverses P) and inversely.

The informational form of filtering is a good way to introduce more efficient
filtering methods for cooperative systems as we will see in the following.

2.3.3 Covariance Intersection Filtering

Covariance Intersection (CI), introduced in (S.J. Julier et al. 1997a) is a data
fusion algorithm robust to arbitrary amounts of correlation between its inputs.
It is very similar to the informational form of the KF (Equation (2.28)) but
includes a scalar ω that makes the operation a convex combination:

P−1 = ωP+−1
+ (1− ω)HTR−1H

x = P
(
ωP+−1

x+ + (1− ω)HTR−1y
) (2.29)

The algorithm guarantees that as long as P and R are consistent, any value
of ω will yield consistent results, as illustrated in Figure 2.8 (S.J. Julier et al.
1997a). This structural property of the covariance intersection is fundamental
for fusing data exchanged between cooperative agents and potentially combined
several times.

This includes completely ignoring one input or the other (ω = 0 or ω = 1) or
taking half of both (ω = 0.5). However, in practice optimizing ω for a particular
goal is preferred.

2.3. METRIC REPRESENTATION AND STATE FILTERING 37

5.0 2.5 0.0 2.5 5.0

4

2

0

2

4

5.0 2.5 0.0 2.5 5.0 5.0 2.5 0.0 2.5 5.0 0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.8: Covariance ellipsoid resulting from a CI fusion for multiple values of ω.

Volume Minimization ω is classically determined by minimizing the size of
the resulting covariance matrix, which can be done by minimizing the determinant
or trace of the resulting covariance matrix:

ω = argmin
ω̂

det
(
ω̂P+−1

+ (1− ω̂)HTR−1H
)−1

= argmin
ω̂

det−1
(
ω̂P+−1

+ (1− ω̂)HTR−1H
) (2.30)

Compared to the Kalman update, which intuitively finds the ellipsoid included
within the intersection, the CI finds the ellipsoid covering the intersection, as
illustrated in Figure 2.9.

4 2 0 2 4
(a)

4

2

0

2

4

4 2 0 2 4
(b)

x, P
y, R
KF
CI

4 2 0 2 4
(c)

Figure 2.9: Comparison of Kalman update with CI over three situations: a baseline
in which inputs are orthogonal and centred in (a), an edge case in which inputs are
orthogonal but non centred in (b) and an edge case in which inputs are aligned and
non centred in (c).

Several closed-form approximations of Equation (2.30) have been proposed and
many variants have been developed to make the calculations faster.

For simplification, let us suppose in the following that the observation model
matrix H is the identity and that P and R are the same size.

38
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

Fast CI (Niehsen 2002) introduced the Fast Covariance Intersection (FCI):

ω =
trace(P+)

trace(P+) + trace(R)
(2.31)

which is simple but does not approximate Equation (2.30) particularly well in
some cases, meaning that covariance of minimum volume is not always found.

Improved Fast CI To improve on the FCI, the Improved Fast CI (IFCI) have
then been proposed in (Franken et al. 2005):

ω =
det
(
P+−1

+ R−1
)
− det R−1 + det P+−1

2 · det
(
P+−1 + R−1

) (2.32)

which yields very similar results at the expense of more computation.

Information Theoretic CI Another method is the Information-Theoretic Co-
variance Intersection (ITCI) of (Yimin Wang et al. 2012) that aims at providing
consistent outputs over a larger number of situations:

ω =
D(x+,P+,y,R)

D(x+,P+,y,R) +D(y,R,x+,P+)
(2.33)

where D is the Kullback-Leibler divergence, which is defined for Gaussian distri-
butions as

D(x,P,y,R) =
1

2

[
ln

det R

det P
+ (x− y)TR−1(x− y) + tr(PR−1)− |x|

]
(2.34)

Inverse CI Other goals can also be targeted, such as the Inverse CI (ICI)
introduced (Noack et al. 2017) which aims at providing less pessimistic but still
consistent estimation. It uses the informational form (Equation (2.28)) to remove
the common information 〈γ,Γ〉 between 〈x, P 〉 and 〈y,R〉.
The common information is found by minimizing ω :

ω = argmin
ω̂

trace
(
P+−1

+ R−1 −
(
ω̂P+ + (1− ω̂)R

)−1
)−1

γ = ωx+ + (1− ω)y

Γ = ω̂P+ + (1− ω̂)R

P−1 = P+−1
+ R−1 − Γ−1

x = P
(
P+−1

x+ + R−1y − Γ−1γ
)

(2.35)

Kalman Form of the CI Finally, according to (Héry et al. 2021) the CIF can
be written in a Kalman form with an observation matrix H as:

K = P+

ω
HT

(
HP+

ω
HT + R

1−ω

)−1

ε = y −Hx+

x = x+ + Kε

P = (I−KH) P+

ω
(I−KH)T + K R

1−ωKT

(2.36)

2.3. METRIC REPRESENTATION AND STATE FILTERING 39

with ω 6= 0 6= 1 optimized with

ω = argmin
ω̂

det
(

(I−KH) P+

ω̂

)
(2.37)

Cases where ω = 0 or ω = 1 are handled separately to avoid divisions by zero.

4 2 0 2 4
(a)

4

2

0

2

4

4 2 0 2 4
(b)

x, P
y, R
CI
IFCI
ICI
ITCI

4 2 0 2 4
(c)

Figure 2.10: Comparison of CI, IFCI, ICI and ITCI over the three previous situations.

As it can be seen in Figure 2.10, all variants yield similar results in the nominal
situations but differ in behavior for edge cases. The ICI on the other hand is the
most different and can be seen as an intermediary between the Kalman update
lower bound and CI upper bound.

2.3.4 Split Covariance Intersection Filtering

The Split CI (SCI) algorithm have first been mentioned in early work on CI by
(Simon Julier et al. 2001) and have since been brought to the field of intelligent
vehicles by (Hao Li et al. 2013). It aims at combining the optimality of the
Kalman update and the consistency of the CI by splitting the error affecting the
state estimate 〈x,P〉 in two parts:

• A dependent (temporally or spatially correlated) error εd whose covariance
is characterized by matrix matrix Pd;

• An independent (perfectly uncorrelated) error εi whose covariance is char-
acterized by matrix Pi;

such that the covariance matrix of the total estimation error ε = εd + εi is:

P = Pd + Pi (2.38)

Intuitively, the SCIF applies the CI to the dependent part and the Kalman update
to the independent part (Pierre et al. 2018). Using a Kalman form, the prediction
step is:

x+ = Fx

P+
d = FPdF

T + Qd

P+
i = FPiF

T + Qi

(2.39)

40
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

and the update step is:

P+ =
P+
d

ω
+ P+

i

R = Rd

1−ω + Ri

K = P+HT
(
HP+HT + R

)−1

x = x+ + K
(
y −Hx+

)

P = (I−KH) P+ (I−KH)T + KRKT

Pi = (I−KH) P+
i (I−KH)T + KRiK

T

Pd = P−Pi

(2.40)

with ω optimized on:

ω = argmin
ω̂

det
(
(I−KH) P+

)
(2.41)

Where Qd and Qi are matrices characterizing the covariance of the evolution
model errors, and Rd and Ri characterize the covariance of the observation errors.
One of the main difficulty with the SCIF is to estimate which parts of Q and R
are dependent and which are not. This issue is discussed in Section 2.4.4.

2.4 Analysis of Covariance Intersection Filters

In this section, published in (Lima, Bonnifait, et al. 2021), we conduct a com-
parisons between the Kalman, CI and SCI filters in cooperative or standalone
situations. This will illustrate several limitations of the KF and CI filters. These
filters are compared in simulation using a simple multi-vehicle perception system.

Figure 2.11: Situation composed of three vehicles in one-dimension.

In this system, illustrated in Figure 2.11, three vehicles follow each other on a
one-dimensional line with constant velocity. The system is thus modeled with

O =
{

x1 =
[
s1 v1

]
,x2 =

[
s2 v2

]
,x3 =

[
s3 v3

]}
. Each vehicle estimates the

system state independently but they help each other by exchanging their percep-
tual information.

To do the data fusion, each vehicle loops over the following operations:

1. Standalone update of the ego state: The ego state is updated using
on-board sensors providing a position measurement (for instance a GNSS

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 41

receiver). Letting ΣGNSS be the variance of its measurement noise. This
observation is modeled as:

HGNSS =
[
1 0

]

RGNSS = ΣGNSS
(2.42)

2. Standalone update of other states: The state of the other two vehicles
is updated using on-board sensors providing relative position measurements
(for instance a LiDAR). These are first transformed in a common frame of
reference using the observer ego state, with the state uncertainty being
propagated onto the observation. As such, letting ΣLiDAR be the variance
of the measurement noise, this observation is modeled as:

HLiDAR =
[
1 0

]

RLiDAR = HLiDARPkH
LiDART + ΣLiDAR

(2.43)

3. Communication: Estimates and covariances are exchanged with each
other using wireless communication.

4. Cooperative update: The state of the other two vehicles is updated using
the received measurements.

In the following simulations, the observation noises ΣGNSS and ΣLiDAR have been
set to 0.12 and 0.22 respectively with the evolution noise set to 0.122. The spe-
cific simulation code have been published in (Lima, Bonnifait, et al. 2021) and
available online3.

2.4.1 CI Filtering Comparison with Kalman Filtering

In this first comparison, the estimation error of one vehicle about itself is plotted
in Figure 2.12 for three filtering combinations:

• In blue, a KF is used in both standalone and cooperative steps;

• In red, a CIF is used in both standalone and cooperative steps;

• In green, a KF is used in the standalone step and a CIF is used in the coop-
erative step. This combination is denoted Kalman-Covariance Intersection
Filter (K-CIF).

From these, it is clear that the KF and CIF yield similar results in terms of
accuracy when using standalone information (Figures 2.12a and 2.12c), but vary
significantly in confidence, with the CIF uncertainty bounds being far more cau-
tious. However, when using cooperative information, the KF over-converges on a
wrong velocity in Figure 2.12d, resulting in a rapidly increasing position error in

3https://gitlab.utc.fr/multiception/multiception/-/snippets/59

https://gitlab.utc.fr/multiception/multiception/-/snippets/59

42
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

(a) Position of the ego-vehicle estimated
using standalone information

(b) Position of the ego-vehicle estimated
using cooperative information

(c) Velocity of the ego-vehicle estimated
using standalone information

(d) Velocity of the ego-vehicle estimated
using cooperative information

Figure 2.12: Estimation errors and ±3σ uncertainty bounds. Estimate of the KF in
blue, CIF in red and K-CIF in green. In (a) and (c), estimates of the KF and K-CIF
are the same.

Figure 2.12b. At the same time, the CIF and K-CIF maintain an accurate and
confident estimation. This can be explained by the fact that the cooperative step
uses measurements with correlated errors, due to information loops introduces
by the state exchanges. In the case of the K-CIF, the standalone results are as
optimal as the KF by definition, and it can be seen that the CIF replicates the
best estimate in the cooperative step.

This illustrates the resiliency of the CIF to information affected by correlated
errors, but also highlights two of its limitations, further analyzed in Sections 2.4.2
and 2.4.3:

• The lack of convergence visible by the uncertainty bounds that are not
reducing over time in Figures 2.12a and 2.12b. This is due here to obser-
vations whose covariances are aligned ;

• The slow convergence of unobserved quantities as visible by the red curve
of Figure 2.12c between 0 and 2 seconds being very noisy.

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 43

2.4.2 Convergence Issues with Similarly Shaped
Observation Covariances

A common complaint about the CIF is that it can result in pessimistic estimates
and even loss of information in extreme cases (Seeliger et al. 2014). One of the
reasons behind this is the lack of convergence of the filter. To illustrate this,
consider a common filtering situation:

1. A single sensor provides similarly shaped observation covariances regularly.
Here, shape refers to the shape of the covariance matrix. For example in
Figure 2.10, covariances of (a) and (b) have different shapes while in (c)
they are similarly shaped, or quasi aligned ;

2. The first measurement initializes the state;

3. At the next time step, the state is predicted, which increases its covariance
matrix;

4. A new measurement with similar looking covariance is incorporated using
Equation (2.29). A predicted observation h(x+) is drawn from the predicted
state. As ω is found to minimize the resulting covariance volume, it will
naturally tend to ignore the predicted observation and focus on the mea-
surement. This is because the predicted observation covariance is broadly-
speaking an increased version of the past measurement covariance. Taking
any part of the filtered covariance cannot reduce the resulting covariance
by definition, and in most cases would even increase the resulting volume.
As such, the computed ω gives almost all the weight to the measurement.

In such cases, the CIF has a tendency to produce an output that closely resembles
the observation. As opposed to the intuitive result illustrated in Figure 2.13,
the CIF does not perform the intersection of two intervals as it uses only the
covariance and not the state estimate (Héry et al. 2017). As such, when fusing
covariances aligned with one another, no uncertainty reduction occurs. This
means that the CIF is best suited with orthogonal, or complementary sources, or
at least when inputs are already filtered.

2.4.3 Slow Convergence with Partial Measurement

In most literature about the CIF, the measurement model is rarely mentioned
and when it is, it is assumed complete (i.e. the state is completely observed)
(Hao Li et al. 2013; Pierre et al. 2018). However, while partial measurements
(i.e. H is not full rank) are well handled by the KF, the CIF and its convex
combination tends towards predicted states. This is because in order to integrate
a partial measurement, the optimization of Equation (2.30) or Equation (2.37)
has to balance between gaining information on the measured part and losing
information on the unmeasured part.

44
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

0 2 4 6 8
s

Intuition

Fusion With CI

New Observation

Predicted State

Figure 2.13: Illustration of CI in a simple one dimension case using state interval
representation of Figure 2.4. A blue predicted state is fused with an orange observation,
resulting in the green fusion. It is different from the intuition one might might have
about the ”intersection” of intervals represented in purple.

Example 2.10:

Consider a static two-dimensional object x =
[
x y

]
. Due to sensor limita-

tion, only its x coordinate is measured:

P =

[
2 0.1

0.1 2

]
R =

[
1
]

H =
[
1 0

]

The curves in Figure 2.14 correspond to the volume of resulting covariances,
which is what ω is optimized on. It can be seen that both information and
Kalman form give the same results, in particular that the volume tends to
infinity as ω gets close to 0.

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 45

0.0 0.2 0.4 0.6 0.8 1.0

ω

0

500

1000

1500

2000

d
et

0.4 0.6 0.8 1.0

4

6

8

det
(
ωP+−1

+ (1− ω)HTR−1H
)−1

det
(

(I−KH) P+

ω

)

Figure 2.14: Curve of the fused covariance matrix determinant for ω between
from 0 to 1 in the case of a partial measurement. The region between 0.25 and 1
is zoomed in.

More visually, on Figure 2.15, one can see that in order to improve the x
estimate, the y estimate must be worsened. A compromise is found close to
ignoring y because the measurement covariance is significantly smaller than
that of the estimate.

-2.50

1.17

4.83

8.50

0.00

Predicted State

Fusion

Measurement

0.10 0.20 0.30

-2.50

1.17

4.83

8.50

0.40 0.50 0.60 0.70

−5 0 5 10

-2.50

1.17

4.83

8.50

0.80

−5 0 5 10

0.90

−5 0 5 10

Auto (0.99)

−5 0 5 10

1.00

Figure 2.15: Fusion of a state (blue) and partial measurement (orange) for dif-
ferent values of ω. The optimal ω in the sense of Equation (2.30) is denoted auto
and equals 0.99.

In practice, this effect might be counteracted by the issue of similarly shaped ob-
servation covariances, such that the system is able to converge, although slowly.
As these issues do not appear when measurements are complete and complemen-
tary, we can conclude that the CIF is adapted to fuse complete states but not to
filter incompletely observed states. Combining a KF with a CIF as in Figure 2.12
thus seems to be a good solution. However, this requires an explicit separation

46
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

between standalone and cooperative data as well as having to manage update
functions manually to respect that separation. In the next section, we study how
the SCIF can be used to remove this requirement.

2.4.4 SCI Comparison with a Kalman-CI Combination

In order to assess the performance of the Split Covariance Intersection Filter
(SCIF), the same simulation as in Section 2.4.1 is used. Figure 2.16 summarizes
the results on a given vehicle and compares it to a combination of Kalman updates
for standalone data and CI for cooperative data.

(a) Position of the ego-vehicle estimated
using standalone information.

(b) Position of the ego-vehicle estimated
using cooperative information

(c) Position of another vehicle estimated
using standalone information

(d) Position of another vehicle estimated
using cooperative information

Figure 2.16: Estimation errors and ±3σ confidence domains. KF+CIF in green
and SCIF in red. Continuous lines are the total confidence domains and dashed the
independent part. In (a), curves are superimposed.

When a vehicle updates its state using only standalone information, the Fig-
ure 2.16a the SCIF yields quasi-identical results to the KF. This is expected, as
the SCIF resolves to a KF in the absence of dependent uncertainty. However, one
can see the apparition of a small amount of dependent uncertainty. This is due to
the evolution model that generates dependent uncertainty as Qd is not null. This
is particularly noticeable in Figure 2.16b, where the cooperative CIF copies the
standalone estimate that had a mean quadratic error of 0.30 m, while the split
CIF slightly improves it bringing the mean quadratic error to 0.25 m. This is due
to the remaining independent noise that is processed by the Kalman component
of the SCIF while consistency is maintained thanks to the dependent noise that is

2.4. ANALYSIS OF COVARIANCE INTERSECTION FILTERS 47

processed by the CI component. As mentioned in Section 2.4, pre-filtering inputs
resolves most CI shortcomings, which is in essence what the SCIF does. When
estimating the states of other vehicles, these conclusions still hold but another
effect is also visible. As the current ego-position is used to estimate the position
of another vehicle, the ego-position covariance is added as a source of dependent
observation noise. This introduces dependent noise in the filtered state that thus
produces more cautious estimates, as visible by the confidence bound being larger
than the KF. These curves do however bring an issue to our attention: the SCIF
can produce inconsistent estimates. This is because it resolves to a KF when
there is no dependent noise. If no dependent noise is introduced, either by the
evolution model or by the observations, the same issue of over-convergence as in
Figure 2.12 can appear.

These conclusions lead us to consider in the next section the tuning of the error
covariance matrices used by the SCI filter.

2.4.5 Tuning SCIF Evolution and Observation Models

As dependent noise is central to the consistency of the SCIF, its introduction
either through the evolution or observation model has to be well understood.
Existing work (Hao Li et al. 2013) and (Pierre et al. 2018) tend to interpret
dependent evolution noise as a way to model the temporal correlation of an
object, which is a good start but insufficient to tune a whole filtering scheme.

Let us define {
Qd = νQ

Qi = (1− ν)Q
, ν ∈ [0, 1] (2.44)

that is, tuning Equation (2.38) is reduced from two matrices to one matrix and
a scalar ν that works as a dependency factor. A situation where a subset of the
covariance matrix is dependent and another is independent is not common, in
particular in the field of perception.

In a SCIF, the independent evolution covariance Qi still characterizes the model-
introduced error as classically done in Kalman filtering. The dependent evolution
noise is used to represent the temporal correlation of a filtered state, but also to
model the part of the estimation error that has an unknown degree of correlation
with peers in a cooperative situation.

To tune them, we propose the following methodology:

1. Tune Q with ν = 1 until results are satisfying using classic metrics like
accuracy and consistency,

2. Progressively reduce ν towards 0 until consistency stop meeting the required
consistency performance.

48
CHAPTER 2. METHODS AND TOOLS FOR DECENTRALIZED DATA

FUSION

For the covariance matrix of the observation noise, let us define the following
tuning strategy with another real value γ to fix:

{
Rd = γR + Re

Ri = (1− γ)R
, γ ∈ [0, 1] (2.45)

Re represents the part of the observation noise that is not dependent on the value
of γ. When tuning, it is supposed known or given by an external computation.
It can model uncertain a priori information or pose uncertainty propagation.

When tuning the covariance matrix of a sensor, R can be obtained with classical
methods (e.g: error plotting or consistency evaluation as in Section 3.6).

The γ factor is useful the manage cross-correlation between errors but it can also
be used to manage temporal correlation due to the processing applied on sensor
data.

For example:

• The Mobileye smart camera contains a tracker that does not provide a
white observation noise. Because the part of dependent covariance cannot
be assessed since it is a black box, a cautious choice is to choose a model it
with a value of ν close to 1;

• A LiDAR point cloud processing stage can be modeled with a value of ν
close to 0 because two consecutive scans can be reasonably assumed to have
decorrelated measurement errors;

• A processing that uses multiple sensor outputs such as LiDAR buffering
(Lima, Welte, et al. 2020) or SLAM can be modeled with a value of ν
tuned to characterize multiple factors such as the number of outputs used
or how they are combined.

Fusing estimates provided by a cooperative peer does not require particular mea-
sures. Indeed, temporal and spatial statistical dependencies should be encapsu-
lated in Pd by each peer.

For example, let
(
xother,Pother

i ,Pother
d

)
be the communicated estimate. It can be

fused with the local estimate by applying:

y← xother

Rd ← Pother
d

Ri ← Pother
i

2.5 Conclusion

In this chapter, we have introduced several methods to decentralized data fusion
that will serve as a basis for the rest of this manuscript.

2.5. CONCLUSION 49

For symbolic information, we have reviewed belief functions, which provide a
general framework to the representation and data fusion of uncertain informa-
tion at the symbolic level. Several fusion operators have been presented which
will be useful to manage the existence of tracked objects and the trust in other
agents with which a vehicle cooperates to improve its perception. Among these
operators, the cautious rule seems promising thanks to its robustness to depen-
dency between the information sources. However, it is known to have a lack of
convergence in practice. We will therefore prefer to use the conjunctive rule in
the rest of this work. It is interesting to note this issue is, to some extent, sim-
ilar to that of the CIF which has to be combined with a KF in order to bring
more information on the estimated state. It could be interesting to derive a fu-
sion rule resembling the SCIF by splitting dependent and independent symbolic
information and combining a cautious and conjunctive rule.

For metric information, we have introduced Bayesian state estimation and filter-
ing. We have shown that the CIF or SCIF are especially adapted to decentralized
data fusion as they are resilient to arbitrary levels of correlation. In particular,
the SCIF can provide more accurate estimates while maintaining consistency in
the case of information redundancy. This is a powerful and generic data fusion
method, provided that one knows how to tune its parameters. We have proposed
a strategy to do so. SCIF will be the metric fusion method that will be used in
the rest of this work.

In the next chapter, these tools are used to represent several aspects of objects
detected using our experimental platform, such as the object states and existence
estimation.

Chapter 3

Sensor Processing and Tracking

Contents
3.1 Introduction . 51

3.2 Objects and Free Space Detection 51

3.3 Multi-Object Tracking . 60

3.4 Perception Evaluation . 64

3.5 Description of the Perception System Used in this Work . . . 69

3.6 Evaluation . 78

3.7 Conclusion . 82

3.1 Introduction

Perception is a key component of any autonomous robotic system. It makes
robots able to adapt to dynamic and opened environments. This is even more
important with autonomous vehicles, whose environment might contain Vulnera-
ble Road Users (VRU). The focus of this manuscript is decentralized multi-sensor
data fusion. However, due to restrictions on the communication medium dis-
cussed later, raw sensor data cannot communicated. Relevant perception must
thus first be extracted from raw data by each vehicle. This process is described
in this chapter, using LiDAR sensors as an illustration. First, we review algo-
rithms used in the literature to extract meaningful perceptual information (i.e:
objects, free space), track and evaluate it in Sections 3.2 to 3.4. We then present
our experimental setup and software implementation and experimental results in
Sections 3.5 and 3.6.

3.2 Objects and Free Space Detection

Sensors used for perception (e.g. cameras, LiDARs) provide complex data. Inter-
preting their content is called detection and starts with cleaning up that data for
downstream algorithms. This task is also called pre-processing and is described

51

52 CHAPTER 3. SENSOR PROCESSING AND TRACKING

in Section 3.2.1. Then several approaches for detecting objects and free-space
are introduced in Sections 3.2.2 to 3.2.4 and are illustrated using our sensors and
implementations. For additional literature on the subject, the reader may refer
to (Mao et al. 2022; Qian et al. 2022).

3.2.1 Sensor Pre-Processing

Raw sensor data often require several steps before they can really be processed.
For example, cameras use lenses to gather light, which distorts the resulting
image. For LiDAR sensors, pre-processing starts with coordinate change. Indeed,
as will be introduced later in Section 3.5.1.1, current automotive 3D LiDARs work
by rotating laser beams. The lightest and thus preferred way to retrieve point-
cloud information is a list of ranges. As it is easier to work in Cartesian space,
ranges are first transformed using the following:

x = ri · sin(θi) · cos(ψj)

y = ri · sin(θi) · sin(ψj)

z = ri · cos(θi)

(3.1)

with ri the i-th range measure associated with the i-th angle of the LiDAR head
θi and ψj the orientation of the j-th laser beam on the rotating head.

Figure 3.1: Several successive poses of a LiDAR head as it rotates while the vehicle
moves.

If the LiDAR is attached on a moving vehicle, the resulting point-cloud will be
distorted. This is due to the significant acquisition time of LiDAR measurements
that is in the order of 100 ms. During this time, the vehicle moves, as illustrated
in Figure 3.1, which results in points being projected in the wrong place up to
dozens of centimeters if vehicle motion is not compensated. A solution to this is
to keep track of the vehicle’s kinematics (ẋ, ẏ, θ̇) using an IMU and wheel speed
sensors, which is sampled at a much higher frequency. When a LiDAR rotation is
over, the time ti associated to each point i is retrieved. Assuming 2D motion, each
point pi can be undistorded by first estimating the LiDAR’s pose with respect to
the final one at time ti, 〈dxi, dyi, dθi〉 by back-integrating the motion between ti
and the point-cloud global time t0. By denoting ∆t the sampling period between
two beams, we can write:

dxi =
∑1

j=i ∆t
√
ẋ2
j + ẏ2

j · cos(θ̇j)

dyi =
∑1

j=i ∆t
√
ẋ2
j + ẏ2

j · sin(θ̇j)

dθi =
∑1

j=i ∆tθ̇j

(3.2)

3.2. OBJECTS AND FREE SPACE DETECTION 53

Points can then be transformed as

xi

yi

zi

1

undist

=

cos(dθi) − sin(dθi) 0 dxi

sin(dθi) cos(dθi) 0 dyi

0 0 1 0

0 0 0 1

xi

yi

zi

1

distor

(3.3)

which yields a list of undistorded Cartesian points P = {pi}i. For example, on
our vehicles, this effect results in blurry shapes and shifts that are best illustrated
when point-clouds are accumulated as the vehicle moves, as shown in Figure 3.2.

Figure 3.2: point-clouds accumulated over 5 seconds of moving in a roundabout. The
red point-cloud shows the distortion caused by the vehicle motion, and the blue point-
cloud are their undistorted counterpart. Note the car and sign duplication caused by
the varying point of view and the fuzziness of the left and right fences.

The next step is generally to filter the point-cloud to reduce its size (and thus its
complexity). Filtering can be applied as a function of range, height or intensity.
These filters are defined as keeping only points whose characteristics are within
a pre-defined range;

P \r = {pi}i∈P,rmin<‖pi‖<rmax

P \z = {pi}i∈P,zmin<zi<zmax

P \i = {pi}i∈P,imin<ii<imax

(3.4)

This can be used to reduce the area of interest as in Figure 3.3 or even highlight
features of the environment as in Figure 3.4.

More advanced approaches filter points belonging to the ground and others, such
as (Zermas et al. 2017) or (Jiménez et al. 2021). The first iteratively estimates
the ground plane and separates points based on their distance to that plane. The
second places a ground point below the sensor then recursively propagates the

54 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Figure 3.3: Reference point-cloud in red. P \rz filtered point-cloud in blue. Points
are cut above the sensor, below the ground and further than 150 m to limit the area
of focus. Both are accumulated over a second for the sake of clarity.

Figure 3.4: Original point-cloud in red and intensity filtered point-cloud in blue.
Notice how signs on the right are highlighted while those on the left are not. This is
because only one side of road signs is reflective.

3.2. OBJECTS AND FREE SPACE DETECTION 55

ground class to neighbors depending on their absolute height and relative slope.
The method of (Jiménez et al. 2021) provides better results for the same level of
complexity as (Zermas et al. 2017) and as such is the preferred method in this
work.

Figure 3.5: Reference point-cloud in red, ground point-cloud filtered with the method
of (Jiménez et al. 2021) in blue.

3.2.2 Model Based Object Detection

Clustering points is useful to exploit the spatial dependency of points. The
principle is that points close together must be a part of the same object. There
are varying degrees of complexity behind clustering algorithms. The simplest
one is Euclidean clustering where the distance between every point is computed,
and classes are propagated when distances are below a given threshold. More
complex algorithms can be used, in particular by replacing the distance with a
cost that accounts for many aspects. As an example, take Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) (Ester et al. 1996) that also
computes the number of neighbors before propagating a class, thus preventing
noise propagation through low density regions. Finally, it can be seen that these
algorithms are heavy (complexity of O(N2) for Euclidean clustering and O(N3)
for DBSCAN). This is because points are not considered to be organized and
thus all permutations must be computed. To limit the required computations,
there are methods to organize point-clouds, such as octrees (Meagher 1982) that
recursively split space in two, allowing for rapid binary tree searches. Clustering
algorithms can also be adapted to certain point-cloud organization, such as the
Scan Line Run (SLR) (Zermas et al. 2017) that clusters along rings then merges
classes between rings.

Clusters correspond to a given shape that can be represented in many ways, but
the more generic one is the bounding box. In 3D, it is composed of a position
x, y, z, orientation ϕ, ψ, θ and size l, w, h. As we focus on 2D terrestrial navigation,

56 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Figure 3.6: Reference point-cloud in red and clustered point on top, where different
colors mean different clusters.

Algorithm 1 Bounding Box Fitting

Input: Cluster P
Output: Position x, y, z, heading θ and dimensions l, w, h
x̆, y̆, z̆ ← PCA(P) . Sorted principal component vector of P
θ ← atan2(y̆, x̆) . atan taking quadrant into account
Pθ ← rotate (θ, P) . Rotates points of P by θ[
x y z

]
←
[
xmax+xmin

2
ymax+ymin

2
zmax+zmin

2

]
[
l w h

]
← rotate

(
−θ,

[
xmax
θ − xmin

θ ymax
θ − ymin

θ zmax
θ − zmin

θ

])

ϕ and ψ can be ignored. The procedure to fit a bounding box over a cluster P l,
given in Algorithm 1, is to find its main orientation through Principal Component
Analysis (PCA), aligning with that orientation, computing the size as the distance
between the maximum and minimum points in the x, y, z axes then transforming
the size back in the original orientation.

However this method gives unaligned boxes as depicted in Figure 3.7. This is due
to the PCA yielding an erroneous orientation depending on the observed shape.
This problem is better understood when illustrated, as in Figure 3.8.

3.2.3 Deep Learning Based Object Detection

When something is too complex to properly be modeled, machine learning meth-
ods that learn what to detect can be used. Neural networks have been used more
and more in recent years as they can process highly complex data in exchange
for massive amounts of training data. It is hard to keep track of every advances
in the field, in particular for cameras whose state-of-the-art results are rapidly
improving. Because of this, only generic approaches will be reviewed here.

3.2. OBJECTS AND FREE SPACE DETECTION 57

Figure 3.7: Accumulated reference point-cloud in red. Snapshot bounding boxes are
fitted over each cluster using Algorithm 1 . Only objects close to the road are shown
here. One can notice the bad alignment of the green bounding box here because the
vehicle is partially seen from the side.

(a) Points (b) Ideal (c) PCA (d) Partial PCA

Figure 3.8: Bird eye view of a particular cluster point-cloud, heading and bounding
boxes. The ideal heading and bounding boxes differs from what the PCA yields due
to the principal component being across the car width and length. This issue is worse
when a car is only one side is seen.

In the camera world, the best generic and fast deep-learning algorithm is YOLO,
that exists in many versions, the latest at the moment of writing being the sixth
(C. Li et al. 2022). The basic principle behind them is to divide the image in cells
in which a Convolutional Neural Network (CNN) is ran to detect and classify
shapes. The network output is a list of bounding boxes in image coordinates
associated with class probabilities.

For LiDARs, early approaches used cylindrical projection (Milioto et al. 2019;
Yuan Wang et al. 2018) or Bird Eye View (BEV) (Ku et al. 2018) to transform
the point-cloud into an image with w, y, z, depth and intensity channels in order
to reuse existing 2D CNN architectures. The output of such networks are 3D
bounding boxes associated with class probabilities. The main issue with those
methods is that they do not adapt well to new sensors and require re-training.
This limitation is starting to be lifted with networks such as Cylinder3D (X.
Zhu et al. 2021) that applies a CNN on a cylindrical voxel before propagating

58 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Figure 3.9: Image with bounding boxes classified by YOLOv5. Results obtained
within the Tornado project taking place in the city of Rambouillet.

voxel classes to points within, (Deng et al. 2021) that applies a recursive CNN to
Cartesian voxels or (Lang et al. 2019) that uses vertical columns to organize the
point-cloud. Here, the output is a class probability associated with each point.
The results of such a network on our LiDAR data is illustrated in Figure 3.10.
Finally, it is possible to tightly couple images and point-clouds before detection,
as in (X. Wu et al. 2022; Zhang et al. 2021) where the authors project a point-
cloud into a camera image and apply a deep learning detection algorithm in the
image to fuse the form and distance information. In most instances, networks
are trained on the Kitty dataset (Behley et al. 2019; Geiger et al. 2012) and as
such are particularly good at detecting and classifying cars.

3.2.4 Free Space

In most approaches reviewed previously, objects are detected as bounding boxes,
which can only express where objects have been seen. However for planning and
maneuvering, it is where objects are not present that is important. Naively con-
sidering that everywhere an object is not explicitly seen must be free is erroneous
as objects can simply be missed, and thus a complementary representation of
what is measured as free is mandatory.

Most approaches rely on deep neural networks to detect road from camera or
point-clouds (Z. Chen et al. 2019) though LiDAR-based methods can take advan-
tage of the strong geometric information. For example, the approach of (Capellier
et al. 2018) is to classify point-clouds as ground and non-ground (see Section 3.2.1)
and considers that areas where the incident laser beam was low enough are driv-
able. When free/non-free segmentation is done in the image plane, the result can
be transformed in 3D space by back-projecting the image plane using an homog-
raphy. This process, called Inverse Perspective Mapping (IPM) approximates a
Bird Eye View as long as the road is planar.

3.2. OBJECTS AND FREE SPACE DETECTION 59

Figure 3.10: Accumulated points classified by Cylinder3D. In pink are point classified
as cars, road in cyan, signs in red, vegetation in orange and infrastructure in green.
Results obtained in the city of Compiègne.

Free areas can be represented either sparsely or densely. Sparse representations
(sometimes also called parametric representations) use polygons and describe the
2D boundaries of free areas as viewed from the top. A good example of this
is (Luthardt et al. 2017) where vertices encode where and free space stops and
whether the transition is caused by an obstacle or simply getting out of field of
view. In addition, they provide a method to fuse such polygons from different
points of view. Dense representations include grids, where the ground plane is
discretized with cells of fixed size that encode the state of space at a particular
point.

Figure 3.11: Point-cloud and measured free space polygon. As the polygon is com-
puted from the vehicle position, the vehicle is depicted in grey.

60 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Originally, Bayesian grids have been proposed by (Elfes 1989) with cells contain-
ing the probability of an object occupying it. This has since been extended to
evidential occupancy grids in which each cell contain a mass function defined on
{Free,Occupied} (Capellier et al. 2018; Moras et al. 2011; Nuss et al. 2018; Yu
et al. 2014), which provides the advantage of explicitly representing unobserved
areas. In a more planning-oriented manner, grids have been used in (Laconte
et al. 2021) to represent a spatial hazard in each cell. The collision risk of a path
is computed through a function that accounts for objects mass and speed.

3.3 Multi-Object Tracking

Once raw data has been processed from sensors, it can be combined with other
sensors. To do so requires a common world in the form of a Local Dynamic Map
(LDM). A LDM is usually realized through tracking, where the states of multi-
ple objects are filtered using the methods described in Section 2.3.2. However,
there are more tasks to handle in a tracker than only estimating states and their
covariances. First, there are multiple objects to track, meaning that the right
observations must be matched with the right tracks. This will be presented in
Section 3.3.1. In addition, because objects are not always in view or relevant
and because sensors are not necessarily reliable, the lifespan of tracks must be
managed, as studied in Section 3.3.2.

3.3.1 Data Association for Object Traking

The problem of association deals with the matching of N objects with M observa-
tions. Indeed, as the observed objects might differ from the LDM either because
of their dynamics or because of sensor noise, the correspondence between the two
views must be realized. We suppose here that the two are synchronized and in
the same frame of reference. As reviewed in (Vo et al. 2015), there are multiple
ways to match tracks with observations that can be categorized in two families:
hard and soft decision. The first decides a 1-to-1 matching between objects of the
two views such that filtering can do a single update, while soft decisions delays
the 1-to-1 matching or even does N -to-M matching on all objects of both views.

Hard Decisions The basic methodology in hard decision is to compute an as-
sociation cost between all tracks and all observations then finding the association
that yields the smallest overall cost. More formally, let d be the cost function
that can be more or less complex depending on the dynamics of the scene being
tracked. The simplest form simply measures the geometric distance between the
track 〈x,P〉 and the observation 〈y,R〉:

deuc(x,y) := |x− y| (3.5)

A finer form uses the Mahalanobis distance, a distance normalized by the co-
variance, which provides better results when the covariance matrices P and R is
significant. Assuming that both vectors share dimensions, it is defined as:

dmah(x,y) :=

√
(x− y)T (P + R)−1 (x− y) (3.6)

3.3. MULTI-OBJECT TRACKING 61

Other non-metric quantities can be compared in the cost computation. (Du-
raisamy et al. 2015) proposed to use Negative Log Likelihood Ratio (NLLR) to
incorporate attributes such as the classification or dimensions in the cost com-
putation. Another way to take the class associated with two objects xc and yc
into account is using a confusion matrix C that describes the cost of associating
a class with another. For example, associating a car with a small truck is less
surprising and thus less costly than associating it with a pedestrian, which is
represented by a higher cost at C(car, small truck) than C(car, pedestrian). The
association cost can thus be written as:

dcon(x,y) := dmah(x,y) + C(xc,yc) (3.7)

Finally, (N. Zoghby et al. 2013) proposed a generic framework to compare two ob-
jects and derive their associativeness. It uses belief functions defined on {Aij,��Aij}
being ”objects i and j correspond or do not”. The idea is to calculate mass func-
tions for the different properties and combine them using the conjunctive rule
as

m = mp ©∩ mv ©∩ mc (3.8)

Here, the mass functions refer to:

• Position, with αp the degree of confidence, λp an arbitrary positive coeffi-
cient and dp,ij the Mahalanobis distance of the position

mp({Aij}) = αp · e−λpdp,ij
mp({��Aij}) = αp ·

(
1− e−λpdp,ij

)

mp({Aij,��Aij}) = 1− αp
(3.9)

• Velocity, with αv the degree of confidence, λv an arbitrary positive coeffi-
cient and dv,ij the Mahalanobis distance of the velocity:

{
mv({��Aij}) = αv ·

(
1− e−λvdv,ij

)

mv({Aij,��Aij}) = 1− αv ·
(
1− e−λvdv,ij

) (3.10)

• Class with c the belief function for classification on Ω = {Car,Bicycle, . . . }.
Two objects with the same class are not necessarily the same, but two
objects with different classes are likely not the same:

{
mc({��Aij}) =

∑
A
⋂
B 6=∅

im(A) jm(B)

mc({Aij,��Aij}) = 1−∑A
⋂
B 6=∅

im(A) jm(B)
(3.11)

In any case, a first step called gating can be realized to save on computations,
where obvious non-associations are excluded using simple distance metrics such
as the Euclidean or Mahalanobis distance.

The previous methods are used to fill a cost matrix C which is used to find the best
assignment using various algorithms. The most basic one is the Global Nearest

62 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Neighbors (GNN) that applies optimization algorithms such as the Hungarian
algorithm to the following problem

min
∑

i

∑

j

Ci,jXi,j (3.12)

where X is a boolean matrix such that Xi,j = 1 if and only if row i is assigned
to column j. By doing so, the GNN finds the lowest overall cost.

Soft Decision Hard decision algorithms are vulnerable to cross trajectories be-
tween objects, as the cost computation can always be incomplete and minimizing
it can lead to mis-associations in close situations. (Houenou et al. 2012) pro-
posed to consider track history to decrease this effect but that approach can be
computationally expensive. Another possibility is to avoid making ambiguous as-
sociations. In the Joint Probabilistic Data Association (JPDA) and Joint-JPDA
family of approaches (Yaakov Bar-Shalom et al. 2009), all observations impact all
tracks with a weighting factor that denotes the similarity between the two. The
resulting state is thus conceptually a weighted sum of all its inputs. In the Mul-
tiple Hypothesis Tracking (MHT) family of approaches, the choice of association
is delayed. Likely associations duplicate the LDM similar to parallel universes.
When ambiguities are lifted and some universes are more likely than others, the
less likely are pruned to maintain computation requirements low.

3.3.2 Track Management

Autonomous navigation takes place in highly dynamic environments where ob-
jects constantly get in and out of view and change relevance in the navigation
task. To maintain the quality of objects in the LDM while keeping relatively
low computation times, the lifespan of tracks must be managed, that is create,
maintain and delete them. In general, this is done through a track attribute that
gets updated and used to determine what to do with the track.

Standalone Existence Estimation In (Aeberhard 2017; Aeberhard et al.
2011), the existence of objects is done at two levels, sensor and fusion. At the
sensor level, existence is represented by a Bayesian probability p(∃x). It is up-
dated by first predicting the previous probability

{
p(∃x)+ = ppersist(x) · p(∃x)− + pbirth(x) · p(��∃x)−

p(��∃x)+ =
(
1− ppersist(x) · p(∃x)−

)
+
(
1− pbirth(x) · p(��∃x)−

) (3.13)

where p(·)− are the prior probabilities and p(·)+ are the predicted probabilities.
It uses a birth probability pbirth that models how likely a new object is to appear
and a persistence probability ppersist that models how much an object detected at
time t should still be detected at time t+ 1. The latter is defined as:

ppersist(x(t)) = pfov(x(t)) · pocc(x(t)|O(t)) (3.14)

where

3.3. MULTI-OBJECT TRACKING 63

• pfov models how likely an object is to be detected given the sensors specifi-
cations (e.g: range, opening);

• pocc models how likely an object is to be hidden by another.

The existence probability is then updated as:

{
p(∃x) = ηpdetect(x) · p(∃x)+

p(��∃x) = ηpclutter(x) · p(��∃x)+
(3.15)

using normalizing factor η and a probability of detection modeled as:

pdetect(x(t)) = pfov(x(t|t− 1)) · pmeas(y(t|t− 1)) · pquality(x(t)) (3.16)

where

• pmeas models how likely a track is to correspond to a real object. It can for
example use the classification quality or prior information;

• pquality models the track quality, for example using the successive innova-
tions.

The probabilities of birth pbirth and clutter pclutter are determined by analyzing
the sensor.

At the fusion level, existence is represented with belief functions. The frame of
discernment used is Ω = {∃,��∃} and combinations are realized with the conjunc-
tive rule. Belief functions are predicted using discounting

m(t+ 1|t) = λm(t|t) (3.17)

and can be corrected two ways. Either a track is associated, in which case a trust
and visibility probabilities are used:

jm(∃x) = ptrust(j) · jppersist(x) · jp(∃x)
j
m(��∃x) = ptrust(j) · jppersist(x) · [1− jp(∃x)]
j
m(∃x,��∃x) = 1− ptrust(j) · jppersist(x)

(3.18)

or it is not associated, in which case

jm(∃x) = 0
j
m(��∃x) = ptrust(j) · jppersist(x)
j
m(∃x,��∃x) = 1− ptrust(j) · jppersist(x)

(3.19)

The trust probability ptrust is used as a weighting factor meant to fill in the
discrepancies between sensors, and in their case was derived from a ROC curve.

Finally, tracks are deleted, confirmed or un-confirmed using thresholds τd, τc and
τuc as illustrated in Figure 3.12.

64 CHAPTER 3. SENSOR PROCESSING AND TRACKING

Figure 3.12: Object existence stages in track management (from (Aeberhard 2017)).
Four zones are defined: scheduled for deletion in red, unconfirmed in orange and con-
firmed in green. The yellow zone is an hysteresis to let object that fell below confirmed
to still be maintained.

Cooperative Existence Estimation On the other hand, in (N. E. Zoghby
et al. 2014) objects are managed directly using belief functions on the frame
Ω = {Object,NonObject}. They are first created using the object age a, a sensor
reliability factor β and an arbitrary positive coefficient k

jm(Object) = β ·
(
1− e−ka

)
jm(NonObject) = β ·

(
e−ka

)
jm(Object,NonObject) = 1− β

(3.20)

The fusion of multiple sensors is realized by discounting objects from other peers
with a constant, predicting them using timely discount

m(t|t− 1) = e−∆tm(t− 1|t− 1) (3.21)

and correcting based on whether tracks were associated or not

m = jm ©∧ jm if associated

m = i
λm if track io is not associated

m = jm if observation jo is not associated

(3.22)

Here, the cautious rule of combination is used when the system is cooperative
and the conjunctive otherwise.

3.4 Perception Evaluation

Once a perception system has been built, it needs to be evaluated. A good percep-
tion system have low missed-detection and false-detection rates while providing
accurate objects localization. To evaluate perception performance, a ground truth
must first be acquired, a process reviewed in Section 3.4.1. On-line perception
is then compared to that ground truth in order to compute some metrics that
measure the perception quality, as reviewed in Section 3.4.2.

3.4.1 Perception Ground Truth

Ground truth are manually (or sometimes semi-manually) labeled sensor data.
There exist as many types of ground truth as there are perception tasks. For
low-level sensor detection, we can for example cite the COCO dataset (Lin et al.

3.4. PERCEPTION EVALUATION 65

(a) Classification (b) Localization (c) Segmentation (d) Instances

Figure 3.13: Types of information usually found in perception ground truth images.
Taken from (Lin et al. 2014).

2014) that provides pixel-level segmentation and classification over 80 classes and
330k images.

In the field of automotive perception, the nuScenes (Caesar et al. 2020) is one
of the biggest dataset with fifteen hours of labeled 3D bounding boxes. Before
that, the Kitti vision benchmark (Geiger et al. 2012) was one of the most widely
used dataset. It provides multiple forms of ground truths over various driving
situations, including 2D and 3D bounding boxes, pixel-wise segmentation and
recently started including track ground truths. On a related matter, Waymo
provides a data set on motion prediction which is based on perception in (Ettinger
et al. 2021) where they provide tracked 3D bounding boxes.

3.4.2 Evaluation Metrics

The generic tool to evaluate a binary classifier is to consider a world composed
of two classes: positive and negative (e.g. sick or not sick, object or not object).
A classifier is tasked with separating data points in this world in the right class,
as illustrated in Figure 3.14.

Figure 3.14: Illustration of terms associated to the evaluation of binary classifiers.

Table 3.1: Terms associated to the evaluation of binary classifiers.

Real positive Real negative

Predicted positive True Positive (TP) False Positive (FP)

Predicted negative False Negative (FN) True Negative (TN)

The classification is compared to a ground truth, yielding the four quantities
summarized in Table 3.1 depending on whether the classification is correct or

66 CHAPTER 3. SENSOR PROCESSING AND TRACKING

not. The number of correct predictions is compared to the number of incorrect
predictions using several ratios summarized in Table 3.2.

Table 3.2: Ratios used in binary evaluation and their meanings.

TP Rate
Recall

TN Rate FP Rate FN Rate Precision

TP

TP + FN

TN

TN + FP

FP

FP + TN

FN

FN + TP

TP

TP + FP

However, there is generally a trade-off between the number of False Positives
(FPs) and False Negatives (FNs) with binary classifiers. They can be more or
less cautious in their classification by setting the entry bar higher or lower. This
is generally controlled by a threshold on some classification probability. To repre-
sent this ambiguity, tools such as the Receiver Operating Characteristics (ROC)
curve have been developed. This curve, exemplified in Figure 3.15, is constructed
by computing the FPR and TPR for different thresholds. To summarize the
model in a single value, the ROC area under the curve can be used. Follow-
ing the same idea, another useful tool is the Precision-Recall (PR) curve, where
the precision and recall are computed for various thresholds, as illustrated in
Figure 3.15. These curves can be summarized with scalars such as the f1-score

F1 =
2 · Recall · Precision

Recall + Precision
(3.23)

There are other types of metrics specific to perception tasks. We can for example
cite the Intersection over Union (IoU), mainly used in the field of machine vision
to compare detected bounding boxes. It is defined for two polygons A and B as

IoU(A,B) =
|A ∩B|
|A ∪B| (3.24)

Other metrics can be used to measure the difference between two images, most
of which are summarized in (Ashraf et al. 2017).

In general, the metric error of matched objects is computed in the working frame
(i.e. 2D or 3D position) or even in the complete state vectors (e.g: pose, ve-
locities). In these cases, the classical method is to compute the Normalized

3.4. PERCEPTION EVALUATION 67

Figure 3.15: Comparison of four models using ROC and PR curves, with the best
model being dark blue and worst being red.

Figure 3.16: Example of IoU.

Estimation Error Squared (NEES) (another name for the Mahalanobis distance
of Equation (3.6)) or the Root Mean Square Error (RMSE) for all times:

RMSE(t) =

√
1

|TP |
∑

〈i,j〉∈ψ(t)

‖Gi(t)−Oj(t)‖2 (3.25)

with G the set of ground truth objects, O the set of perceived objects and ψ the
set of index couples matching G and O. This is for example done in (Ambrosin,
Alvarez, et al. 2019) by computing an average over all the matched objects.

There are also metrics quantifying the quality of tracks, such as trajectory-based
metrics introduced in (B. Wu et al. 2006) or the Multi-Object Tracking Accuracy
(MOTA) and Multi-Object Tracking Precision (MOTP) introduced in (Bernardin
et al. 2008). MOTA quantifies the tracking quality in terms of misdetections and
track switching ID while MOTP quantifies the average distance between matched
pairs of ground truth and tracks:

MOTA = 1−
∑

t (FP (t) + FN(t) + ID(t))∑
t (TP (t) + FN(t))

(3.26)

MOTP =

∑
t

∑
〈i,j〉∈ψ (‖Gi(t)−Oj(t)‖)∑

t TP (t)
(3.27)

However as noted in (Milan et al. 2013), this kind of metric assumes equal weight
between all types of errors (FP , FN , ID, distance). Reflecting that some errors

68 CHAPTER 3. SENSOR PROCESSING AND TRACKING

are worse than others requires manual tuning of weights, which is a complicated
task.

To simplify this, the Optimal Sub-Pattern Assignment (OSPA) metric has been
introduced in (Schuhmacher et al. 2008) to combine precision and accuracy fo-
cused metrics with just two parameters. Here, |O| is the number of perceived
objects, c is the cut-off distance in the association procedure and p is a weighting
factor between the precision and accuracy parts:

OSPA =

 1

|O|

Association Error︷ ︸︸ ︷
cp · (|O| − |G|) +

Metric Error︷ ︸︸ ︷∑

〈i,j〉∈ψ

min
(
c, dmaha (Oi,Gj)

)p

1
p

(3.28)

Several tracking approaches make use of this metric such as (Vasic et al. 2016;
Yoon et al. 2022).

OSPA has been refined in (Barrios et al. 2017) with COLA to account for false
alarms and missed detection more equally and preventing saturation to c when
most objects are too far from one another:

COLA =

(|G| − |O|) +

∑

〈i,j〉∈ψ

(
min

(
c, dmaha (Oi,Gj)

)

c

)p

1
p

(3.29)

As summarized in (Hoss et al. 2022; Yan Song et al. 2022), there is a plethora of
tracking evaluation metrics that put more or less emphasis on either association
or precision. As a result, the Higher Order Tracking Accuracy (HOTA) have
been proposed in (Luiten et al. 2021) to provide a neutral but global metric. It is
defined as a measure of trajectory matching penalized by unmatched detections:

HOTA =

∫ 1

0

√ ∑
〈i,j〉∈ψ(α)A(i, j)

|TPα|+ |FNα|+ |FPα|
dα

A(i, j) =
TPA(i, j)

TPA(i, j) + FNA(i, j) + FPA(i, j)

(3.30)

with

• TPA(i, j) the number of times the path of Oi matched with the path of Gj
• FPA(i, j) the number of times the path of Oi did not match with the path

of Gj
• FNA(i, j) the number of times the path of Gi did not match with the path

of Oj

as illustrated in Figure 3.17.

Finally, some approaches focus on the impact of perception on the navigation and
thus develop navigation-centric metrics, such as (Kim et al. 2015) which adapts

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 69

Figure 3.17: Principle of HOTA A(c) calculation, taken from (Luiten et al. 2021).
Here two tracks (grey and black) are associated for each time step with their ground
truth (respectively light and dark blue). Starting from the point indicated by red and
orange arrows, the number of correct or incorrect associations is accumulated.

the TTC, (Miucic et al. 2018) which compares timing of several V2X applications.
In (Philion et al. 2020), perception quality is measured as a divergence from a
reference trajectory and in (Schiegg et al. 2021) awareness about the environment
is measured.

Despite its capacity to capture various aspects of perception, HOTA will not be
used in the rest of this manuscript as it is too oriented towards tracking and
not perception integrity. Instead, simpler metrics will be used to evaluate several
aspects separately, such as the PR-curve for free space detection, PR-curve for
object detection or RMSE for object accuracy.

3.5 Description of the Perception System Used

in this Work

In this section, we describe how the experimental data used in the following
chapters is retrieved. We first introduce the laboratory experimental platform.
Then we present how we implemented car and traffic sign detection and tracking
using LiDAR sensors and methods introduced in the literature review. In parallel,
a free space detector that provides free space polygons have been implemented
following the method of (Yu et al. 2014), illustrated in Section 3.2.4.

3.5.1 Experimental Setup

3.5.1.1 Hardware

The Heudiasyc laboratory owns three Renault Zoe embedded with sensors. They
are depicted in Figure 3.18 and are named after their color: zoeblue, zoegrey
and zoewhite. Two of them, zoegrey and zoewhite are robotized and can be
controlled by software, while zoeblue is mainly used to record datasets. The

70 CHAPTER 3. SENSOR PROCESSING AND TRACKING

three cars are equipped with various sensors, that can be classified in two main
families: proprioceptive (measuring the vehicle’s own state) and exteroceptive
(measuring outside elements).

Figure 3.18: The three Renault Zoe used at the Heudiasyc laboratory.

GNSS receiver Global Navigation Satellite System (GNSS) is a technology
providing global positions and times to terrestrial vehicles thanks to satellite sig-
nals. A receiver is necessary to access GNSS signals or even compute a pose.
The one embedded in our vehicles is a Septentrio AsteRx SB Pro Connect (Fig-
ure 3.19b). It can receive signals coming from several constellations: GPS con-
trolled by the United States of America (USA), GLONASS by Russia, Galileo by
Europe and BeiDou by China. However, GNSS suffers from disturbances such as
urban canyons or multi-paths (Zabalegui et al. 2020; N. Zhu et al. 2018) in ur-
ban configurations and currently only achieve meter-level positioning. Upcoming
GNSS technologies such as Real Time Kinematics (RTK) or Precise Point Posi-
tioning (PPP) are expected to bring more accurate positions (Du et al. 2021).

(a) GNSS antenna (b) Septentrio AsteRx SB (c) NovAtel SPAN-CPT

Figure 3.19: GNSS-based sensors used at the Heudiasyc laboratory.

Inertial Measurement Units Inertial Measurement Units (IMUs) measure
the accelerations and kinematics of the vehicle, that is to say the vx, vy and vz

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 71

velocities, and the roll ϕ̇, pitch ψ̇ and yaw θ̇ angular velocities. It is generally
composed of six sub-sensors, three accelerometers and three gyrometers, each for
the three axes x, y and z. Other sources can also be used to retrieve these, such
as wheel tops used to measure a linear velocity by counting the number of wheel
turns in a given period of time. Our vehicles are equipped with a NovAtel SPAN-
CPT (Figure 3.19c) that combines IMUs with GNSS receivers. This combination
allows a centimeter-level position when post-processed with PPK, which is why
they are used as ground-truth for vehicle localization.

LiDAR To measure their surroundings, the vehicles are equipped with Light
Detection And Ranging sensors. This type of sensor works by firing infrared
laser beams and measuring the time they takes to bounce back to compute dis-
tances. This makes LiDARs excellent at measuring distances, generally providing
centimeter-level measurements. In addition LiDARs work in most lighting con-
ditions as they produce their own light. Finally, as the returned signal depends
on what it bounced back on, the reflectivity of surrounding surfaces can also be
measured.

Figure 3.20: Simplified view of a LiDAR firing a laser beam.

Stacking multiple layers of LiDAR and pointing at varying angles makes a multi-
layer LiDAR that can measure distances along a vertical slice. Rotating a stack
of LiDAR layers around an axis makes a rotating LiDAR that can scan along
horizontal slices, called rings. Calculating Cartesian coordinates from distances
returned during a full rotation makes a point-cloud. LiDAR sensors currently
used in the automotive field generally produce 360 degree FoVs up to 150 or
200 m with an horizontal resolution a thousand points across 32 to 64 rings.

The experimental vehicles are equipped with two LiDARS: a 32-ring Velodyne
VLP-32C (Figure 3.21a) and a Hesai Pandora (Figure 3.21c) composed of five
cameras and a 40-ring Pandar 40P. In addition, a Velodyne 128-ring VLS-128
(Figure 3.21b) lent by Renault has been used as a static road side unit during
some experiments. Their respective point-clouds are illustrated in Figure 3.22.

Despite their accuracy, LiDAR sensors suffer several issues that prevent them
from wider use. They are vulnerable to fog, snow or rain as laser beams can
be reflected or refracted by snowflakes and raindrops. They are sparse, as rings
placed a few degrees of one another can end up meters apart when far away from
the sensor. They are costly, heavy and hard to integrate on vehicles. Finally,

72 CHAPTER 3. SENSOR PROCESSING AND TRACKING

(a) VLP-32C (b) VLS-128 (c) Pandora
(d) Mobileye

Figure 3.21: LiDAR sensors and cameras used in this research.

they lack reliability, as they are made of precise optics and electronics built upon
a rapidly moving part. There are upcoming variations to help with some of
these issues, such as the solid-state LiDARs that replace rotation with a series of
electromagnetic interference (Y. Li et al. 2022), which removes any moving parts
and is more compact.

(a) VLP-32C (b) Pandora (c) VLS-128

Figure 3.22: Example of point-clouds produced by previously mentioned LiDARs.
Colors represent the material reflectivity from purple absorbing to red highly reflective.
Notice how the point-cloud is composed of rings stretching outwards from the origin,
how dense the Pandora is compared to the VLP32C and the VLS128 to the Pandora.

Camera Cameras are sensors that mimic Human eyes by capturing ambient
light reflected back at it. As such, they provide dense images of the environ-
ment with color information. Their fields of view are narrower and shorter than
LiDARs due to physical limitations of their photoelectric sensors. In addition,
they can only provide 2D information as light-rays are projected on the surface
of the photoelectric sensor. Finally, they depend on lighting conditions, cannot
work at night and can be blinded by sunlight. However, because they are easy
to manufacture, cost-effective and easy to integrate in a vehicle, cameras have
become the preferred sensor in the automotive field.

The vehicles are equipped with two kinds of cameras. The Hesai Pandora (Fig-
ure 3.21c) provide four grey-scale cameras on each side and a front-facing color
camera, as in Figure 3.23. The second is a Mobileye Smart Camera (Figure 3.21d)
that does not provide images but the result of perception algorithms (e.g: pedes-
trian, car, sign, free space detection).

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 73

Figure 3.23: Images returned by the Hesai Pandora cameras.

New types of cameras are being researched to overcome the mentioned issues.
For example, stereo-cameras aim at measuring distances by comparing image
returned by two parallel cameras. Infrared cameras (Y. Li et al. 2022) sense
infrared radiated by living beings and can thus see them without visible light.
Event cameras (Brebion et al. 2022) are another kind of upcoming sensor whose
pixels report brightness changes independently and instantaneously, instead of
reporting all at once periodically. This makes event cameras capable of wider
dynamic ranges and shorter reaction times.

3.5.1.2 Software

In addition to cars and sensors, a series of software libraries have been developed
at the Heudiasyc laboratory. They are all based on the Robotic Operating System
(ROS) and as such are organized as packages and independent nodes. The main
ones that were developed and contributed to in the context of this PhD are:

Table 3.3: ROS packages developed and contributed to in the context of this PhD.
Some are private for intellectual property reasons.

lidar utils Algorithms for detection in LiDAR point-clouds

perception utils Higher-level detection algorithms

grid map Occupancy grids

map server Management of an HD map

datasets Recording and management of datasets

multiception Data fusion and cooperative algorithms

As noted by the variety of modules, a significant effort has been made to make
the implementations of this PhD reusable to other lab members. In particular,
the detection modules have been used in the Tornado project and several past
thesis.

Finally, an HD map is used to provide context and apply environment specific
algorithms (i.e: filtering objects on the road). It is composed of precisely located
features (i.e: road center and border, road signs, traffic lights, crosswalks) and of
their semantic interactions.

https://gitlab.utc.fr/hds_vehint/lidar_utils
https://gitlab.utc.fr/limaanto/perception_utils
https://gitlab.utc.fr/limaanto/grid_map
https://gitlab.utc.fr/hds_vehint/map_server
https://gitlab.utc.fr/hds_vehint/datasets
https://gitlab.utc.fr/multiception

74 CHAPTER 3. SENSOR PROCESSING AND TRACKING

3.5.2 Cars and Traffic Signs Detection using LiDAR

In order to study the fusion of perception, one must first be able to perceive.
As a proof of concept, simple LiDAR model-based car, road sign and free space
detectors have been developed. This covers most common situations found near
roads while being sufficiently easy to implement and interpret.

The overall architecture is presented in Figure 3.24. The motion compensation
and cylindrical filtering are common processing steps implemented as defined in
Section 3.2.1.

Signs CarsFree Space

Height & Range Filtering

Intensity Filtering

Clustering

Ground Removal

Bounding Box

Clustering

Hull

Road Filtering

Associate class & uncertainties

Motion Compensation

IMU/DR LiDAR

Bounding Box

HD Map

Delimitation

Transform in working frame

Tracker

Polar
Organization

Polygon Tracks

Figure 3.24: LiDAR processing pipeline.

Road signs are covered with a highly retro-reflective material and as illustrated in
Figure 3.4 are easily detected using a LiDAR’s reflectivity measurement. Points
that remain after filtering on intensity are mainly sign-points, though there can
remain some false positives (rain, leaves, license plates). These are removed
by clustering high-intensity points with DBSCAN and ensuring clusters have a

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 75

minimal number of points in them. A bounding box can then be fitted on clusters
with Algorithm 1.

For car detection, the idea is that a cluster of points above the road is most
certainly a car. To achieve this, the approach of (Jiménez et al. 2021) is used to
remove ground points from the point-cloud to clearly separate clusters from one
another in the following step. Bounding boxes are then fitted on car clusters,
keeping only those above the road. To do this, the convex hulls of clusters are
computed and compared to the road polygon extracted from the High Definition
(HD) map.

Cars and signs are represented using bounding boxes that describe the center x
and y, heading θ and length, width, height l, w, h of an object. In the case of
signs, θ is the normal to the sign surface.

A bounding box is defined by:

b = 〈x, y, θ, l, w, h〉 (3.31)

A given sensor j provides two sensor referenced bounding box lists at time t as

Bj,j car(t) =
{

bj,j , . . .
}
, Bj,j sign(t) =

{
bj,j , . . .

}
(3.32)

where the ·j,j notation means · from the point of view of j and whose frame of
reference is also attached to j.

Bounding boxes are then turned into proper objects, which are the basis for
tracking and communication afterwards, defined as:

o =
〈
x,Pi,Pd, I, c, Z,m∃

〉
(3.33)

where x =
[
x, y, θ, v, θ̇

]
is the object state (position, heading, linear and angular

velocities), Pi and Pd its associated independent and dependent covariance ma-
trix, I = 〈l, w, h〉 is the object size (length, width and height),c ∈ {car, sign, ...}
is the object class, Z is an arbitrary set of characteristics (e.g: color, license
plate number) and m∃ represents an estimation of object existence (as described
in Section 4.3.4). Unknown values are initialized with a large covariance. For
example for cars, this process is

xj,j
o = xj,j

b

yj,j
o = yj,j

b

θj,j
o = θj,j

o

vj,j
o = 0

θ̇j,j
o = 0

mj,j ∃
o = m∃j

cj,j
o = car

zj,j
o = ∅

Pj,j θ,θ
o = σθjσ

θ
j

H =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 (3.34)

Because a sensor uncertainty makes more sense being expressed in polar coordi-
nate rather than euclidean coordinates1, covariance matrices are aligned with the

1i.e: a camera is ”imprecise in depth but good at estimating angles”, not ”precise in front
and less on its sides”

76 CHAPTER 3. SENSOR PROCESSING AND TRACKING

line of sight between the sensor and object. For this, the range and angle preci-
sion σr and σrad form an intermediary polar covariance matrix that is rotated by
the angle between sensor j and object o, radjo = atan2(yo, xo):

[
Pj,j x,x Pj,j x,y

Pj,j y,x Pj,j y,y

]

o

= Rradjo ·
[
σrσr 0

0 σradσrad

]
(3.35)

σrj , σ
rad
j , σθj , νj and m∃j are parameters that have to be adapted for a given sensor

and its associated detection algorithm j. As a reminder from Section 2.4.5, ν is
the dependency factor that distributes observation noise between dependent and
independent for later SCI-tracking. Considering the aforementioned processing,
detected objects can be considered independent from each other both in time and
space and a νj close to 0 can be fixed. On the other hand, when detection algo-
rithms introduce correlated errors (e.g: buffering, filtering or prior information),
this can be represented with νj close to 1.

Car and sign objects are then grouped, transformed in the working frame (ac-
counting for transformation uncertainty, see Section 4.2.2.3) and sent to a tracker.

Oj = Tj ·
(
{o, . . . }j,j

car ∪ {o, . . . }j,j
sign

)
(3.36)

3.5.2.1 Sensor Tracking

Because some sensors only provide already tracked information, such as the Mo-
bileye, other sensor are also tracked in order to have standardized outputs to
other modules. Thus, the final step of our LiDAR processing is to track per-
ceived objects. Such sensor-level trackers only interact with a single sensor, and
as such do not require alignment or complex existence estimation. For example,
given a particular LiDAR j, the prediction, association and update are performed
once a new detection list Oj (t) is received. Objects are filtered using a SCIF and
independently from one another because the evolution model depends on the ob-
ject class. Three models are considered, based on (Khan 2019; Sandblom et al.
2014). For cars and other wheeled objects, a constant turn model is used:

fCT(x) =

ẋ = v · cos θ

ẏ = v · sin θ
θ̇ = θ̇

v̇ = 0

θ̈ = 0

, QCT
d =

σCT
x

2
0 0 0 0

0 σCT
y

2
0 0 0

0 0 σCT
θ

2
0 0

0 0 0 σCT
v

2
0

0 0 0 0 σCT
θ̇

2

(3.37)

For road signs and other static objects, as static evolution model is used:

fST(x) =

ẋ = 0

ẏ = 0

θ̇ = 0

, QST
d =

σST
x

2
0 0

0 σST
y

2
0

0 0 σST
θ

2

 (3.38)

3.5. DESCRIPTION OF THE PERCEPTION SYSTEM USED IN THIS
WORK 77

Finally, for non-wheeled or static objects (e.g: pedestrians), a constant velocity
model is applied:

fCV(x) =

ẋ = vx

ẏ = vy

v̇x = 0

v̇y = 0

, QCV
d =

σCV
x

2
0 0 0

0 σCV
y

2
0 0

0 0 σCV
v x

2
0

0 0 0 σCV
v y

2

 (3.39)

Every σ in Equations (3.37) to (3.39) is left as a tuning parameter. Predicted
tracks are then noted Oj (t|t− 1).

Association is done using a GNN assignment and the cost function of Equa-
tion (3.7), based on Mahalanobis distances and class discrepancies. This as-
signment function noted A yields a mapping ψ between predicted tracks and
observations:

ψ = A
(
o(t|t− 1), oj (t)

)
(3.40)

Associated tracks get independently updated using Equation (2.40) by replacing
〈x,Pi,Pd〉 with updated tracks Oj (t|t−1) and 〈y,Ri,Rd〉 by observations Oj (t),
yielding a list of updated tracks Oj (t|t). Non-associated observations create new
tracks as detailed in next section.

3.5.2.2 Track Management

Table 3.4: Summary of state and existence tracking parameters

Notation Domain Description

σCT
∗ R+∗ Dependent evolution noise for constant turn tracks

σCV
∗ R+∗ Dependent evolution noise for constant velocity tracks

σST
∗ R+∗ Dependent evolution noise for static tracks

Ebirth [0, 1] Birth evidence of existence

Eforget [0, 1] Delete tracks whose information is below this

t∃1/2 R+∗ Time to losing half a track existence information

Eupdt [0, 1] Increase in existence when associated

In parallel to state filtering, tracks have to be created and deleted. There are
two levels of management complexity in this manuscript. The first one, sensor-
level is detailed in the following, while more advanced fusion-level is detailed in
Section 4.3.4. Existence is managed with belief functions m∃o associated with each
track o. It is defined on Ω∃ = {E,��E} to express evidence supporting that the
object is relevant and really exists E or is certainly clutter ��E.

Similar to (Aeberhard et al. 2011) and as shown on Figure 3.12, tracks are created
from un-associated observations with a birth existence m∃birth:

m∃birth =

[
∅ {∃} {��∃} {∃,��∃}
0 Ebirth 0 1− Ebirth

]
(3.41)

78 CHAPTER 3. SENSOR PROCESSING AND TRACKING

where Ebirth is a scalar parameter controlling how likely new objects are.

They are then deleted when not enough evidence of their existence is left:

m∃o(Ω
∃) > Eforget (3.42)

where Eforget is a scalar parameter controlling how soon to delete unlikely tracks.

When tracks are predicted, their existence is decayed according to Equation (2.17)
to account for the timeliness of evidence about existence.

m∃o(t|t− 1) = m∃Λ(∆t,t∃
1/2

) o(t− 1|t− 1) (3.43)

where t∃1/2 is a scalar duration parameter controlling how quickly existence de-
creases.

Finally, existence is increased when tracks are associated. For this, the predicted
existence is combined with a constant existence increase

m∃o(t|t) = m∃o(t|t− 1) ©+
[
∅ {∃} {��∃} {∃,��∃}
0 Eupdt 0 1− Eupdt

]
(3.44)

where Eupdt is a scalar parameter controlling the existence increase.

Afterwards, tracks from all embedded sensors are fused at the ego-level, as will
be explained in Chapter 4. However, we first focus on the evaluation of tracks at
the sensor-level.

3.6 Evaluation

In this section, we apply the approaches detailed in Section 3.4 to evaluate both
a Mobileye smart camera and our LiDAR detector on cars and road-signs detec-
tions.

3.6.1 Evaluation of Sign Detection

For road sign detection, a car equipped with both sensors has been driven around
the city of Compiègne for 2 km. The path taken while recording, ground truth
road signs and accumulated detections are depicted in Figure 3.25.

The ground truth for signs has been extracted from an HD map. They are associ-
ated with sign detections using a GNN and a class dependent cost Equation (3.7).
A gate of 4 m has been chosen for the LiDAR and 20 m for the Mobileye. Their
matching error is plotted in Figure 3.26 aligned with the vehicle.

In Figure 3.26a, one can see that the detector is not significantly biased in both
directions with a mean error of 0.01 and −0.02 m and has a good accuracy with
a RMSE of 0.36 m for a variance of 0.09 m. On the other hand, in Figure 3.26b
one can see that the Mobileye suffers from a significant bias towards the vehicle
of −1.13 and 0.39 m. In addition, while the accuracy is correct in the lateral

3.6. EVALUATION 79

0 500 1000 1500 2000
−200

−100

0

100

200

300

400

Figure 3.25: Trajectory and data used in sign detection. In blue are the road borders
described in an HD map, in red are the ground-truth road-signs and in green the car
trajectory.

−4−2024

Lateral error (m)

−4

−3

−2

−1

0

1

2

3

4

L
on

gi
tu

d
in

al
er

ro
r

(m
)

(a) LiDAR.

−20−1001020

Lateral error (m)

−20

−15

−10

−5

0

5

10

15

20

L
on

gi
tu

d
in

al
er

ro
r

(m
)

(b) Mobileye.

Figure 3.26: Ego-aligned association error between LiDAR/Mobileye road-sign de-
tection and ground-truth.

direction (2.37 m of lateral RMSE) it is particularly inaccurate in the longitudinal
direction (5.99 m of longitudinal RMSE). This provides a global accuracy of
3.60 m for a variance of 13.13 m (see Table 3.5), certainly due to projection
errors, which makes the Mobileye too inaccurate to be considered for some tasks.

However, there are discrepancies between road-signs stored in the HD map and
reality, because some have been moved, added or removed since mapping. This
is not an issue for evaluating the accuracy, as a manual verification for obvious
false positives has been realized. However this means that detection rates cannot
be properly evaluated. Additionally, our Mobileye and LiDAR detectors do not
provide a confidence score that could be used to construct a precision-recall curve.

Table 3.5: Evaluation of sign detection for a total of 560 signs on the trajectory

Mean x error (m) Mean y error (m) RMSE (m) RMSE variance (m2) TPR (%)

Mobileye −1.13 −0.39 3.60 13.13 24

LiDAR 0.01 −0.02 0.36 0.09 33

80 CHAPTER 3. SENSOR PROCESSING AND TRACKING

3.6.2 Evaluation of Car Detection

For car detection, a car equipped with both sensors has been driven around a
roundabout for several turns. Two other cars equipped with a NovAtel SPAN-
CPT were used as ground-truth.

(a)

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

(b)

Figure 3.27: Scene and trajectories used in car detection. In grey are the road borders
described in the HD map. The three vehicle trajectories are plotted in blue, green and
red.

Detected and ground-truth signs are associated using a GNN and a class depen-
dent cost Equation (3.7). Their matching error is plotted in Figure 3.28 aligned
with the vehicle.

−0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Lateral error (m)

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

L
on

gi
tu

d
in

al
er

ro
r

(m
)

(a) LiDAR.

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

Lateral error (m)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

L
on

gi
tu

d
in

al
er

ro
r

(m
)

(b) Mobileye.

Figure 3.28: Ego-aligned association error between LiDAR/Mobileye car detection
and ground-truth.

3.6. EVALUATION 81

In Figure 3.28a and Table 3.6, one can see that the LiDAR detector is not signifi-
cantly biased with a mean error of 0.15 and 0.06 m and has a good accuracy with
a RMSE of 0.40 m for a variance of 0.10 m. On the other hand in Figure 3.28b,
one can see that the Mobileye suffers from a significant bias away from the vehicle
of 1.61 and 2.36 m. In addition, it has a global accuracy of 4.95 m for a variance of
6.12 m, certainly due to projection errors, which makes the Mobileye too inaccu-
rate to be seriously considered for this task. Once again, a complete ground-truth
is not available as other vehicles were present in the scene. Thus false positives
cannot be evaluated and precision-recall curves cannot be constructed. Results
are provided in Table 3.6.

Table 3.6: Evaluation of car detection

Mean x error (m) Mean y error (m) RMSE (m) RMSE variance (m2) TPR (%)

Mobileye 1.68 2.43 4.80 5.56 0.42

LiDAR 0.24 0.13 0.48 0.14 0.72

Finally, the estimated size of the detected cars has an impact on their position
and it is clearly a weak point of our LiDAR car detector. In Figure 3.29, the size
error of detected objects are compared on both sensors. One can see that the
Mobileye has predefined values that tends to be underestimated, with a RMSE
of 0.88 m for a variance of 0.09 m. The same underestimation appears on the
LiDAR detections, with a RMSE of 0.75 m for a variance of 0.11 m. In particular
a strong bias in both length and width of 0.5 m can be observed. This can
mainly be explained by an effect introduced in Figure 3.7. When vehicles are only
partially seen, detected bounding boxes only cover part of the object, resulting
in underestimated sized. The analyzed sequence being a roundabout, vehicles
always only see one corner of their neighbors well, resulting in this bias.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Length error (m)

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

W
id

th
er

ro
r

(m
)

(a) LiDAR.

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Length error (m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W
id

th
er

ro
r

(m
)

(b) Mobileye.

Figure 3.29: Size error between LiDAR/Mobileye car detection and ground-truth.

82 CHAPTER 3. SENSOR PROCESSING AND TRACKING

3.7 Conclusion

In this chapter, we have introduced methods to extract objects and free-space
from sensor data. We have presented our methods and algorithms to extract cars,
road-signs and free-space from LiDAR point clouds. Then, we have described how
object detections are tracked using a classical strategy for the track management
in order to provide predictable tracks to the downstream fusion module in charge
of the cooperative perception.

An experimental evaluation has illustrated that LiDAR tracks are metrically ac-
curate and consistent, while Mobileye tracks are not. As such, the Mobileye
will be ignored in the rest of this manuscript. LiDAR object detection is func-
tional but can be improved. In particular, incorrect car size estimation can cause
miss-associations with detections coming from other points of view which can be
an issue for cooperative perception. Using size priors, corner-based tracking or
machine-learning-based detection could improve this aspect. Secondly, sensor-
level tracking might profit from more advanced algorithms such as Multiple Hy-
pothesis Tracking (MHT) to reduce association errors or Interacting Multiple
Model (IMM) to adapt the evolution model based object classes. Track manage-
ment could also be adapted to object classes (e.g. static object can remain longer
than dynamic). Finally, the evaluation detection rates for objects and free-space
has not be done in this chapter. It will be addressed in the next chapter using
particular methodologies that will be introduced.

Chapter 4

Cooperative Perception in a
Trustworthy Network

Contents

4.1 Introduction . 83

4.2 Review of Cooperative Perception 84

4.3 Fusion of Multiple Points of View 95

4.4 Evaluation of Cooperative Perception 108

4.5 Conclusion . 119

4.1 Introduction

A single sensor is generally insufficient to cover a whole scene and leveraging
the complementarities of multiple sensors is often the solution. In the previous
chapter, sensor-centric perception has been presented. In the present chapter,
the perception of multiple sensors are fused. By modeling cooperative peers as
deported sensors, we propose an architecture capable of fusing standalone or
cooperative perception in a generic way.

In this chapter, the cooperative perception problem is first presented with a lit-
erature review in Section 4.2. We then propose a generic architecture to fuse the
perception of multiple points of view in Section 4.3. It is based on an object simi-
larity metric, an improved object existence estimator and evidential detectability.
Detectability is used to represent where sensors or peers are capable of detecting
objects. Using an evidential formulation, free space can jointly be represented,
providing a convenient tool to track objects accross fields of view. Finally, ex-
perimental results obtained with three vehicles are presented and analyzed in
Section 4.4.

83

84
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

4.2 Review of Cooperative Perception

Thanks to advances in communication technologies, machines can exchange wire-
lessly further and faster than ever before. This idea is being investigated in several
fields of robotics such as localization, control or the topic at hand: perception.
By exchanging perception vehicles can see further and behind obstacles, greatly
improving their knowledge of the environment. This last aspect is particularly
useful at the decision level.

The following is a review of how perception sharing is realized in the literature.

4.2.1 Communication for Intelligent Transportation
Systems

In order to communicate, computers require a common language in the form of
standards. There are numerous standards, each with advantages and limitations.
They are reviewed in this first section.

4.2.1.1 Medium

For the communication medium, which consists in radio waves and low-level
networking, there are two standards. The oldest one, called Dedicated Short
Range Communication (DSRC), is based on a type of WiFi adapted to outdoor
communications (IEEE 802.11p) and is mostly supported by north-American and
European regulation agencies. Its newer competitor, called Cellular V2X (C-
V2X), is based on the upcoming 5G cellular network, and is mostly supported in
the Asian market. Both promise millisecond-level latency and up to a kilometer
of range (Keysight 2018), though C-V2X and its multi-frequency is less likely
to drop packets in dense areas (Nguyen et al. 2017; Ko-PER Project 2014). C-
V2X also has the advantage of using existing equipment for both peer-to-peer
communication and internet access, whereas DSRC requires dedicated On-Board
Units (OBUs) and Road Side Units (RSUs).

C-V2X thus seems more promising than DSRC but was not available at the time
of carrying out experiments. As it does not change what data is exchanged and
how it is used, the rest of this manuscript will assume use of DSRC.

4.2.1.2 Messages

What is exchanged over the medium heavily depends on the use case. We will
focus on Intelligent Transportation Systems (ITS) oriented messages. There are
two main families of message definition. The north American side, backed by
the Society of American Engineer (SAE), developed the SAE J2735 (SAE-J2735
2022) specification, that defines the following messages:

• Basic Safety Message (BSM): information about the sending vehicle such
as pose, speed, size or light states ;

4.2. REVIEW OF COOPERATIVE PERCEPTION 85

• MAP/ (SPaT) messages: local mapping and timings for traffic lights, stop
or right-of-way signs.

The European side, backed by the European Telecommunications Standards In-
stitute (ETSI) developed the 102 894-2, 302 637-2 and 302 637-3 specifications
(see ETSI 2019), that defines various messages, summarized in Figure 4.1:

• The Cooperative Awareness Message (CAM), which is similar to the BSM
as it provides information about the ego vehicle pose and intentions ;

• The Decentralized Environment Notification Message (DENM), which pro-
vides information about local events (accident, roadworks, etc), their cause
and who is concerned ;

• The Collective Perception Message (CPM), which provides information
about on-board sensors and perceived objects (pose, size, class) ;

• The MAP/SPaT, which is an adaptation of the SAE MAP/SPaT messages.

Figure 4.1: Summary of ETSI messages between two communicating cars.

In the rest of this manuscript, the CPM will be considered as the standard sup-
porting our research. It is widely studied (Caillot et al. 2022) and fulfills most
needs of CP. As such, the content of CPMs is here detailed to introduce what
is available to CP algorithms. As summarized in Figure 4.2, the CPM specifies
several characteristics about the sender such as its identifier, pose, size, type
(vehicle, pedestrian, infrastructure) and velocities. Then, on-board sensors are
listed through their type (e.g: mono/stereo camera, LiDAR, RADAR) and Field
of View (FoV) (range, opening, polygon). Two aspects of perception are then
exposed: measured free space as a polygon and a list of perceived objects. As

86
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

Cooperative Perception Message

Header Emitter Data Perception Data

Sensors Objects [1-128] FS [1-128]

M
es

sa
ge

 T
yp

e

R
ef

er
en

ce
 P

os
iti

on

C
er

tif
ic

at
e

Si
gn

at
ur

e

St
at

io
n

Ty
pe

 &
 S

ta
te

Se
ns

or
 ID

 &
 T

yp
e

Security

RSU

M
A

P
M

es
sa

ge

Se
gm

en
t I

D

R
el

at
iv

e
Po

si
tio

n

Pe
rc

ep
tio

n
A

re
a

O
bj

ec
t I

D

M
ea

ss
. T

im
e

Po
si

tio
n

State

Ve
lo

ci
tie

s

A
cc

el
er

at
io

ns

A
ng

le
s

Se
ns

or
 ID

Fr
ee

 S
pa

ce

C
on

fid
en

ce

C
on

fid
en

ce

D
im

en
si

on
s

M
es

sa
ge

 ID
 &

 T
im

e

Figure 4.2: Summary of fields in the Collective Perception Message. Adapted from
(Ansari et al. 2021).

summarized in Figure 4.2, objects are defined by an identifier, time of measure-
ment, confidence, classification, state and size.

To limit the size of exchanged messages, fields are limited in precision and most
are optional. According to (Allig and Wanielik 2019a; Thandavarayan et al. 2019;
Zhou et al. 2022), the size CPMs vary from 100 to 1000 bytes depending on the
complexity of exchanged information.

4.2.1.3 Contents of Cooperative Perception Messages

How to fill the aforementioned fields is still relatively open. (Günther et al.
2016) argues that non-tracked, raw sensor data is preferable but the rest of the
community seems to use tracked data (Allig and Wanielik 2019a; Caillot et al.
2022). There are also more and more interest in active cooperative perception,
where not all objects are sent all the time. For example, in (Thandavarayan et al.
2019) rules based on object type, position change ∆x, velocity change ∆v and last
time sent ∆t are defined to reduce the number of objects sent (see Figure 4.3).
This system demonstrated reduced communications without significant loss in
awareness. In (Zhou et al. 2022), redundant objects are not sent by computing

Object

Send

WaitNew Vulnerable
Road UserNoNo No NoNo

Yes

Figure 4.3: Generation rules defined by (Thandavarayan et al. 2019) for sending an
object or not.

the awareness increase brought by each object and by deciding whether to send
an object based on this. More works are reviewed in (Delooz et al. 2022).

Finally, CPMs are meant to be broadcasted to surrounding peers without addi-
tional hops or geo-casting, contrary to other messages such as the DENM.

4.2. REVIEW OF COOPERATIVE PERCEPTION 87

4.2.1.4 Security in Vehicular Networks

As communications take place in an open network, computers and the vehicle they
control are open to attacks. As such, security measures are mandatory in order
to limit the attack surface. Contrary to most cases, encryption is not the solution
here, as messages are meant to be readable by anyone. However, they should not
be written by anyone, and for this a Public Key Infrastructure (PKI) can be used.
The principle of a PKI, summarized in Figure 4.4 is to supply private/public key
pairs such that any receiving peer can cryptographically verify the identity of a
sender (Chowdhury et al. 2017; Madl 2021). However, this architecture makes
tracking a peer at a global scale very easy, which is why sub-keys (or pseudonyms)
can be used to locally change identity.

Verification AuthorityCertification Authority

Registration
Authority

ReceiverSender

Signed Data

Public Key

Private Key

Figure 4.4: Example of Public Key Infrastructure (PKI). Adapted from (Danquah
et al. 2020).

In this chapter, we will consider these measures sufficient to ensure that we are in
a trusted network, though as explored in the next chapter, other methods should
be used to verify this hypothesis. Indeed, it is still possible for determined attack-
ers to find ways around this authentication or simply for peers to be faithfully
mistaken.

4.2.2 Cooperative Track-To-Track Fusion

4.2.2.1 Cooperative Fusion Architectures

Now that vehicles can communicate with each other, let us review how exchanged
information is typically fused. As summarized in works as early as (Herpel et al.
2008), fusion can happen at several points in the sensor processing stack:

Exchanging and fusing early information amounts to exchanging raw sensor data
and realizing normal sensor detection methods in the extended data. For ex-
ample, in (H. Li et al. 2011) and (Kim et al. 2015) images from cameras are
exchanged between following vehicles and used to approximate see-through with

88
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

Objects TracksSensor
Data

Early Middle Late

Figure 4.5: Illustration of early to late fusion in sensor processing.

leading vehicles. In (Sridhar et al. 2019), images are exchanged to infer the
depth of objects thanks to the difference of point of view and common features.
Similarly, (Q. Chen et al. 2019) exchange point clouds and detect objects in
the concatenated point cloud. However, while images can be sent as a video
stream thanks to efficient compression algorithms, LiDAR point clouds are more
difficult to compress and thus new methods have been derived. For example, in
(T.-H. Wang et al. 2020), a neural network is used to find features in point clouds
and compress them. Then it is sent and fused by accumulation on the receiver
side. However, despite these efforts, raw data is still too heavy to be tractable
in dense situations. A lighter alternative is thus to apply detection algorithms
and exchange their results. Object detections are lighter while still representing
most of the important information contained in raw data. These objects are
communicated as instantaneous measurements (i.e: not tracked) bounding boxes
according to the CPM standard (Günther et al. 2016). However, because they
are raw information, these objects have to be exchanged as often as possible for
a receiver to properly track them, which is against generation rules described in
Section 4.2.1.3. To reduce communication and tracking-related loads, already-
tracked objects can instead be exchanged. This requires less frequent exchanges
while maintaining predictability and seems to be the current consensus (Allig and
Wanielik 2019a; Gabb et al. 2019; Rauch et al. 2012). According to (Allig and
Wanielik 2019b), exchanging variance and acceleration information drastically
improves the tracking accuracy on the receiver side, but exchanging covariance
(non-diagonal variance) have negligible impact.

Another common distinction depends on whether approaches are centralized or
decentralized. In (Gabb et al. 2019) for example, infrastructure sensors are fused
on a centralized server before being sent to vehicles. Most tracking approaches
separate what they locally and cooperatively perceived as illustrated in Figure 4.6
for (Allig and Wanielik 2019a; Günther et al. 2016; Rauch et al. 2012).

4.2.2.2 Cooperative State Filtering

In terms of data fusion, while certain approaches are geometry based, such as
(Z. Song et al. 2022), cooperative objects are generally fused by filtering their
state vectors. Several filters introduced in Section 2.3.2 have been compared in
the literature over the same contexts. For example in (Ambrosin, Alvarez, et
al. 2019), a Covariance Intersection Filter (CIF) is used. (Seeliger et al. 2014)
compared several variants of the CIF and found that the improved-fast-CI was the
best compromise between performance and accuracy. Later, (Gabb et al. 2019)
found that the IMF performed too closely to the CIF to justify the requirement for

4.2. REVIEW OF COOPERATIVE PERCEPTION 89

(a)
(b)

(c)

Figure 4.6: Fusion architectures used in a) Rauch et al. 2012, b) (Allig and Wanielik
2019a) and c) (Günther et al. 2016).

additional knowledge about inter-dependence. Finally, there is a significant part
of the research community that focuses on the use of the Probability Hypothesis
Density (PHD) for this type of application (Nuss et al. 2018; Vasic et al. 2016).

Up to this point, tracks and observations were considered aligned in space and
time. However in practice, sensors have different points of view, and work at
different rates. The next sections address these differences.

4.2.2.3 Spatial Alignment

An observation, track or any other type of information is always referenced
against a certain origin in space, called frame of reference. In the case of au-
tonomous navigation, we often use four standard frames (Allig and Wanielik
2019a):

1. Earth frame E: Reference system used for example by a Global Naviga-
tion Satellite System (GNSS) generally expressed in the form of geographic
coordinates (longitude L, latitude l, altitude a) relative to the center of
Earth as specified by WGS841. It can also be given in Earth-Centered

1https://wiki.gis.com/wiki/index.php/WGS84

https://wiki.gis.com/wiki/index.php/WGS84

90
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

Earth-Fixed (ECEF), a Cartesian reference system centered on the Earth.
While global, these systems are not adapted to terrestrial navigation;

2. Working frame W : Cartesian frame defined from a plane tangential to
the Earth’s curvature at a given reference point. The x, y and z axes
are respectively defined as East-North-Up (ENU). Reliable only around the
reference point but more adapted to terrestrial navigation as it allows 2D
projections. This is generally the common frame between multiple vehicles;

3. Mobile frame Mi: Cartesian frame attached to vehicle vi as it moves;

4. Sensor frame Sj: Cartesian frame attached to sensor sj of a vehicle.

Figure 4.7 summaries these four frames and how they are connected to each other.
The frame F in which a state x is referenced is noted Fx. F is generally omitted
for the sake of readability when x is referenced to the working frame.

Figure 4.7: Four main frames of reference used in terrestrial navigation. Arrows rep-
resent the transformation from one frame to the next. A detected point x is referenced
here in the sensor frame.

The transformation from FE to FW can be done as follows. Let us define a refer-
ence point pr with known Cartesian coordinates in ECEF ECEFpr and geographic
WGS84 coordinates WGS84pr = [Lr, lr, ar]. It can then be used to transform an
arbitrary point p between ECEF ECEFp and ENU ENUp with

ENUp =

− sin (Lr) cos (Lr) 0

− sin (lr) cos (Lr) − sin (lr) sin (Lr) cos (lr)

cos (lr) cos (Lr) cos (lr) sin (Lr) sin (lr)

×

(
ECEFp− ECEFpr

)

(4.1)

Later transformations (i.e: from FW to FM and FM to FS) are affine (composi-
tion of a θ-rotation around the z axis Rθ and translation t) and as such can be
represented using matrix multiplications on homogeneous coordinates.

Example 4.1:

Let A and B two reference frames. In two-dimensions, the homogeneous

4.2. REVIEW OF COOPERATIVE PERCEPTION 91

transformation ATB expressing the frame B in A and is defined as:

ATB =

[
Rθ t

0 1

]
=

cos
(
AθB

)
− sin

(
AθB

)
AxB

sin
(
AθB

)
cos
(
AθB

)
AyB

0 0 1

The transformation of one (or many) points is done by a single matrix mul-
tiplication:

A

x1 x2 . . .

y1 y2 . . .

1 1 . . .

 = ATB ×

B

x1 x2 . . .

y1 y2 . . .

1 1 . . .

Applying the inverse transformation can be done by inverting the forward
transformation:

BTA = AT−1
B

which can be done efficiently by taking advantage of the matrix construction
as:

AT−1
B =

[
R−θ −R−θt

0 1

]

Finally, thanks to the nature of homogeneous matrices, multiple transforma-
tions can be applied at once by multiplying their matrices in advance:

ATZ = ATB × BTC × · · · × Y TZ

Angles can also be transformed. In 2D, an addition is sufficient.

Bθ = AθB + Bθ

It is also clear that for velocities, movement should be compensated from one
frame to another. To do so the same formalism as with positions can be used.

Let v =
[
vx vy

]
=
[
v · cos(θ) v · sin(θ)

]
a velocity vector. The transformation

of such vectors from frame B to A is defined as

vx

vy

1

A

=

cos
(
θA B

)
− sin

(
θA B

)
vxA

B

sin
(
θA B

)
cos
(
θA B

)
vyA

B

0 0 1

×

vx

vy

1

B

(4.2)

Finally, as points and transformations can be uncertain, (Smith et al. 1986)
proposed a compound operator that transform covariances while accounting for
the transformation uncertainty. Let P be a covariance matrix defined as

P =

σx,x σx,y σx,θ

σy,x σy,y σx,θ

σθ,x σθ,y σθ,θ

92
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

Considering that the transformation errors are independent from each other, the
transformation of a covariance matrix PB expressed in frame B to a frame A is
done, knowing the uncertainty matrix PA B between the two frames, as:

J1 =

1 0 yA B − yB

0 1 xB − xA B

0 0 1

 J2 =

cos
(
θA B

)
− sin

(
θA B

)
0

sin
(
θA B

)
cos
(
θA B

)
0

0 0 1

PA = J1 PA BJT1 + J2 PB JT2

(4.3)

This can for example be used to transform a relative position measurement 〈y,R〉
from a sensor frame into the working frame using the vehicle pose estimation of
〈x,P〉.

4.2.2.4 Temporal Alignment

In real tracking scenarios, sensors have different refresh rates (e.g: 30 Hz for
cameras, 10 Hz for LiDARs), which can lead to inconsistencies if not properly
managed. If observations arrive in the right order, the tracker naturally provides
a mechanism to incorporate them appropriately, by iteratively predicting tracks
to observation times and correcting them.

Example 4.2:

Let s1 and s2 be two sensors. On a given period of time, s1 produces five
observations and s2 produces four. Upon reception of the first observation,
here from s1, a track is initialized. Upon reception of a second observation,
this time from s2, the track is predicted to the observation time before being
updated.

Figure 4.8: Simple asynchronous tracking with two sensors.

4.2.2.5 Out-Of-Sequence Observations

In certain tracking scenarios with several sensors, observations can be received
Out-Of-Sequence (OOS) due to important processing time or communication
delays.

4.2. REVIEW OF COOPERATIVE PERCEPTION 93

Example 4.3:

Let s1 and s2 two sensors. Both of them have delay but that of s2 is longer
than tracking steps, as illustrated in Figure 4.9.

Figure 4.9: Example of out-of-sequence observations with two sensors

This time, it is not handled naturally by trackers and, according to (Muntzinger
et al. 2010), several methods exist to handle OOS observations:

1. Ignore: When delays are short enough, the ∆t between track and observa-
tion time can be ignored without significant impact.

2. Delayed: If the application is not real-time and OOS are known, in-sequence
observations can be buffered until the OOS is received. However, this causes
lags and increased covariance.

3. Observation forward prediction: When observations are tracks (such as with
T2TF), they contain information necessary to be extrapolated by definition.
A solution, illustrated in Figure 4.10, can thus be to predict the OOS track
up to current time before incorporating it (Allig and Wanielik 2019a). The
issue is that prediction is a lossy operation due to evolution models that
are imprecise and extend covariance. Using this solution is thus lightweight
but sub-optimal.

Figure 4.10: OOS integration using observation forward prediction.

94
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

4. Reprocess: Observations and tracks are be buffered. When a OOS is re-
ceived, tracks after the emission time are dropped, the OOS is processed
then observations received after the OOS are processed sequentially, as in
Figure 4.11. This method is exact since no information is lost, but heavy
because past tracks and observations must be stored and every tracking
step between OOS emission and reception must be redone.

Figure 4.11: OOS integration using reprocess

5. Track backward prediction (retrodiction): The current track is predicted
with negative time steps down to OOS time. The OOS is incorporated then
the track is predicted back to its original time as in Figure 4.12. There exists
an important literature on this aspect because of the strong correlation
between backward and forward process noise, with optimal (Nettleton et
al. 2001) or sub-optimal (Y. Bar-Shalom 2002) proposals. In any case, the
application to non-linear systems over long delays is not expected to yield
satisfactory results.

Figure 4.12: OOS integration using retrodiction

6. Forward-Prediction Fusion and Decorrelation (FPFD) from (Rheaume et al.
2008): This method creates a pseudo-observation by predicting the OOS
tracks with and without first updating using the OOS observation. By
removing the common information between both versions of the track, a de-
correlated pseudo-observation containing the information gained by fusing
is obtained. It can then be combined with the current track, as depicted in
Figure 4.13. It has been shown to be optimal with delays up to one tracking
step but sub-optimal above.

4.2.3 Evaluation Methods for Cooperative Perception

As noted in (Hurl et al. 2020), there is a lack of common methodologies and data
sets to evaluate cooperative perception systems. Indeed, there does not seem

4.3. FUSION OF MULTIPLE POINTS OF VIEW 95

Figure 4.13: OOS integration using FPFD

to exist a real data set covering cooperative perception situations but there are
simulated data sets such as OPV2V (Xu et al. 2022) and standalone data sets
where cooperation is simulated such as (Q. Chen et al. 2019) with Kitti. There
is however the LUMPI dataset (Busch et al. 2022) illustrated in Figure 4.14,
composed of multiple points of view from static road side units.

Figure 4.14: Ground truth labels over raw point clouds from (Busch et al. 2022).

To evaluate cooperative perception, classical tools such as those introduced in
Section 3.4.2 are generally used (Seeliger et al. 2014). To our knowledge, an
evaluation methodology that accounts for the cooperative nature of perception
has not yet been proposed.

4.3 Fusion of Multiple Points of View

The problem of fusing cooperative sensors can be handled as a traditional sensor
fusion process. By considering peers as remote sensors, a generic architecture can
be derived to work with both standalone and cooperative information. In this
section, we introduce our architecture. It is based on several novel concepts: an
evidential representation of source detectability, an object-similarity metric and
an improved object-existence estimator.

96
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

4.3.1 Generic Fusion Architecture

As reviewed in Section 4.2.2, a classical approach is to separate locally and co-
operatively perceived object lists for security reasons. However, the question of
object or track level fusion is still up to debate. In this work, the chosen solution
is a track-level fusion because some sensors internally track or filter their raw
data (e.g: smart cameras or GNSS receivers). Moreover, tracks are by definition
predictable over time and can be communicated at lower rates than raw objects.
Additionally, cooperative perception can be computationally intensive as it re-
quires the fusion of many objects perceived by many sensors attached to many
cooperative vehicles. A layered approach, where raw information is progressively
tracked toward higher and more complete track lists can be used to alleviate
this issue, as illustrated in Figure 4.15. The architecture we propose is thus a
compromise between computation requirements and data completeness.

Localization

Sensor Objects

Sensor Tracks

Sensor Objects

Sensor Tracks

Cooperative Tracks

...

Standalone Tracks

Standalone Tracks

Sensor
FOV

&
FS

Sensor
FOV

&
FS

FOVs
&

FSs
...

...

Standalone Tracks

FOVs
&

FSs
...

Figure 4.15: Multi-Vehicle (or peer) architecture used in this manuscript. Sensors
are all tracked independently before being fused in both a standalone and cooperative
tracker. Another peer sends its standalone tracks which are fused in the cooperative
tracker.

Having sensor trackers allows sensor-specific behaviors and heuristics close to
sensors themselves, isolating these specificities from the rest of the system. The
standalone and cooperative trackers can thus do generic Track-To-Track Fusion
(T2TF) without distinction between remote and local sources. In particular,
peers can be considered as deported sensors for these trackers and received infor-
mation can be fused without additional precautions. The term source will thus
be used in the rest of this manuscript when the distinction between local sensor
and remote peer is not relevant.

Sensor trackers have been described in Section 3.5.2.1 and the standalone and
cooperative tracker will be described in Section 4.3.4. They are all based on
the Split Covariance Intersection Filter (SCIF) that, as has been studied in Sec-
tion 2.4.4, is able to manage unknown levels of correlation while providing good
filtering performance.

4.3.2 Managing the Detectability of Multiple Sources

When multiple points of view are considered, it is useful to account for the area
covered by each source. This idea has been introduced in (Aeberhard et al. 2011)

4.3. FUSION OF MULTIPLE POINTS OF VIEW 97

where a persistence probability (illustrated in Figure 4.16a) is derived from the
field of view (range and openings) of each sensor. This probability is used to
discount an existence-nonexistence belief function while fusing multiple sensors.
The idea has then been extended in (Allig, Leinmüller, et al. 2019) to also account
for obstructions caused by objects and used to detect discrepancies between over-
lapping areas. Both approaches can be summarized as applying a 2D probability
function that decreases with distance and proximity to a polygon boundaries.

(a)
(b)

Figure 4.16: Persistence or detectability probabilities based on sensor range and
opening (a, from (Aeberhard et al. 2011)) and obstacles (b, from (Allig, Leinmüller,
et al. 2019)).

In this section, we introduce the concept of evidential detectability. Using belief
functions, the idea of managing a detectability probability is extended to also
express impossibility to detect an object, typically using a free-space measure-
ment. After describing how it is computed for a given sensor, the combination of
multiple sources is studied. Finally, we present how detectability is used to track
objects across fields of view.

4.3.2.1 Definition of Detectability

(a) Ray casts stopping on
static obstructions, forming
the F fov polygon in blue

(b) F free
j in red, F dete

j in green

and F unkn
j in grey

(c) Detectability field:
mD

j (D) in blue, mD
j (��D) in red

and mD
j (ΩD) in grey

Figure 4.17: Steps to build the detectability of a sensor j.

Similar to (Aeberhard et al. 2011; Allig, Leinmüller, et al. 2019), the process
starts by deriving the detection polygon from sensor characteristics (range and
openings) and obstructions. A theoretical FOV polygon is built from characteris-
tics and gets limited by obstructions by casting 2D virtual rays originating from

98
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

the sensor, as in Figure 4.17a. That way, an area hidden behind an obstruction
will not be considered detectable. However, in our case we consider that only cer-
tain static objects (e.g: buildings, poles) occult view. Such objects are considered
mapped and can be retrieved either from a standard or high definition (SD, HD)
map such as Open Street Map (OSM). Moving objects are intentionally ignored
because the shadow they cast cannot be properly modeled. As they are described
in two dimensions as seen from above, it is not possible to capture that sensors
placed high above the ground can see behind a small object. In addition, the size
and position of perceived and tracked objects are highly uncertain in practice
(due to the sparsity of LiDARs, projection errors of cameras or simply tracking
errors). This effect cannot be ignored as it would mean that detectability would
be inconsistent between points of view and even successive time steps. Until
these issues can be properly modeled (with a three dimensional representation of
uncertain obstructions), the best course of action is to ignore what causes them.
The result of this process is thus a polygon F fov

j for each sensor j.

In parallel, sensors measure areas that are explicitly free as described in Sec-
tion 3.2.4. This produces a polygon F free

j for each sensor j that should be con-
tained entirely within F fov

j . A third polygon F dete
j = F fov

j \ F free
j defines where

objects can be detected, as they are in view but not where space is measured as
free. Finally, everything outside of F fov

j is considered unknown F unkn
j as summa-

rized in Figure 4.17b.

The detectability of a sensor j is a belief function

mj D
p : 2 Ωj D → [0, 1], Ωj D = { Dj ,��D} (4.4)

that expresses the evidence that for a given point in space p = [x, y], sensor j is
able to detect an object (Dj) or that nobody should be able to (��D).

Is should be noted that detectability is defined on a frame of discernment that
depends on the source. This is because detectability is subjective: it does not
describe a physical reality but rather a potential that depends on the point of
view. Undetectability on the other hand is an objective physical reality, as it
describes space explicitly measured as free.

Although this difference in nature better captures the reality of sensor detectabil-
ity, it requires special care when combining points of view, as it will be detailed
in Section 4.3.2.3.

4.3.2.2 Computation of Detectability

Using the polygons described above, detectability is derived by following the idea
that evidence decreases with distance from the sensor and near polygon borders.

For this, a distance function is first defined as

dj fov
ι,κ(p, F) :=

(
1− e−‖p,F‖ ln 2

ι

)
e−‖p− pj 0‖

ln 2
κ (4.5)

where p and F are the point and the polygon at hand, pj 0 is the origin of sensor j.
ι and κ are two parameters describing how fast evidence should fade with respect

4.3. FUSION OF MULTIPLE POINTS OF VIEW 99

to boundary proximity and distance from the sensor respectively. Exponential
functions are used to generate smooth boundaries, as illustrated in Figure 4.18.

Figure 4.18: Example of detectability in one dimension with pj 0 = 0, F free = 5,
F dete = 15, ι = 0.1 and κ = 8.

A detectability mass is constructed by applying Equation (4.5) with respect to
either the FS or FoV polygon. If the point is outside of either polygon, a fully
unknown mass is attributed to it. This can be summarized with:

mj D
p =

∅ {D} {��D} {D,��D}

0 0 dj fov
ι,κ

(
p, F free

j

)
1− dj fov

ι,κ

(
p, F free

j

)

0 dj fov
ι,κ

(
p, F dete

j

)
0 1− dj fov

ι,κ

(
p, F dete

j

)

0 0 0 1

p ∈ F free

p ∈ F dete

otherwise

(4.6)

Finally, detectability is discretized in the form of a grid to save computations
downstream and to help with visualizing multiple sources. To do this, Equa-
tion (4.6) is uniformly sampled across the ground plane such that all the j-FoV is
covered. Letting p be the center of each cell falling in the FoV, the detectability
grid of j is called mj D and is defined as:

mj D = { mj D
p }p∈F fov

j
(4.7)

A grid generated by this process is illustrated in Figure 4.19. It is computed
using real LiDAR data. Free space is measured following the method described
in the previous chapter, and the LiDAR FoV is limited by buildings retrieved
from OpenStreetMaps.

4.3.2.3 Fusion of Detectability Grids

In the next sections, detectability grids will be used to estimate the existence
of objects and evaluate the coherency between objects and free space. When
multiple field of view of sensors or peers overlap, performing these actions itera-
tively for each source can be impractical. Instead, one can combine detectability
grids in advance and use the combined results. We consider that in the stan-
dalone case, each sensor computes its own detectability grid, leaving only the

100
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

(a) Top view of the detectability grid.

(b) Contextual view. A red car is visible on the left side, a grey car in the middle and a van
on the right.

Figure 4.19: Real driving situation and example of detectability grid computed using
LiDAR data. The LiDAR is attached to the grey car in the center of both images.
Red cells correspond to space measured as free by the sensor, green cells to its field
of view and white cells to unobserved or ambiguous areas. Notice that the red area
is naturally stopped by dynamic objects (a red car in front of the grey car and a van
behind it) and that the green area is limited by static objects (buildings on the grey
car right side). In addition, notice how the intensity of green and red cells fades with
distance and near the free space border.

task of combining them. However, in the cooperative case, exchanging grids can
be unfeasible due to bandwidth limitations. Instead, poses, fields of view and
measured free space can be exchanged, meaning that detectability grids have to
be reconstructed and combined on the receiving side.

Because detectability is subjective, its combination requires special care. As illus-
trated in Example 4.4, a naive combination such as the conjunctive rule generates
conflict when two sources disagree. In the case of detectability, disagreement is
not a sign of conflict but a natural consequence of source subjectivity.

Example 4.4:

Consider the situation depicted in Figure 4.20. Two vehicles v1 and v2 have

4.3. FUSION OF MULTIPLE POINTS OF VIEW 101

their free space stopped by a third vehicle v3. Because v3 is a dynamic object,
it does not stop their FoV but does stop their free space, producing a de-
tectable zone in its shadow (green polygons in Figure 4.20a and Figure 4.20b
respectively). However, due to the different points of view, the detectability
of one is the free space of the other, which results in conflict (blue polygon
in Figure 4.20c). The real expected state is represented in Figure 4.20d.

(a) mv1 D (b) mv2 D (c) Conjunctive
combination

(d) Expected result

Figure 4.20: Example of naive detectability grid combination. Green is de-
tectability, red is non-detectability (free) and blue conflict.

One method to prevent this undue conflict is to use the method described in
Section 2.2.2.4 (page 28) to combine partially-overlapping frames. Indeed, with
our formulation, undetectability is common to all frames of discernment, meaning
that they intersect in at least one element. Let p the point or cell of interest, and
J the set of sensors to combine. Our proposition works in two steps.

In the first step, Smets rule (©̀) is used to combine masses on the union of all
frames ΩDJ = ©∪

j∈J
Ωj D as

mJ D
p = ©̀

j∈J
mj D
p (4.8)

In the second step, the combined mass mJ D
p is projected onto ΩD = {D,��D}. D is

defined as the objective detectability. It is approached by combining subjective
detectabilities DJ = { Dj }j∈J . On the other hand, because undetectability comes
from direct free space measurements, it is not approached, and as such it will take
precedence in the combination.

These operations can be summarized as

mDp =

∅ {D} {��D} {D,��D}

0 BelJ D
p (DJ) PlJ D

p (��D)− mJ D
p (ΩDJ) mJ D

p (ΩDJ)

 (4.9)

Example 4.5:

Consider a given point p seen by two sensors J = {i, j}. The global frame of

102
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

discernment is therefore:

ΩDJ = { Di , Dj ,��D}

If both sensor agree that p is detectable, the results of the conjunctive and
Smets combinations are illustrated in the following example:

mi D
p =

mj D
p =

m
©∩ D

p =

mJ D
p =

∅ {Di} {Dj} {Di, Dj} {��D} {Di,��D} {Dj,��D} {Di, Dj,��D}

0 0.5 0 0 0 0.5 0 0

0 0 0.5 0 0 0 0.5 0

0.75 0 0 0 0.25 0 0 0

0 0 0 0.75 0 0 0 0.25

If the sensors disagree (here i considers it is detectable and j undetectable),
the results are:

mi D
p =

mj D
p =

m
©∩ D

p =

mJ D
p =

∅ {Di} {Dj} {Di, Dj} {��D} {Di,��D} {Dj,��D} {Di, Dj,��D}

0 0.5 0 0 0 0.5 0 0

0 0 0 0 0.5 0 0.5 0

0.5 0 0 0 0 0.5 0 0

0 0 0 0 0 0.5 0 0.5

Notice how the conjunctive combination produces conflict in both cases.
Afterwards, the combined masses are projected onto ΩD following Equa-
tion (4.9). In the first case, this gives

[
∅ {D} {��D} {D,��D}
0 0.75 0 0.25

]

and in the second [
∅ {D} {��D} {D,��D}
0 0 0.5 0.5

]

Notice how in the first case, the mass of D is increased because both sources
agree, while in the second, the mass of��D does not change as nothing confirms
it.

Assuming that grids are in the same frame of reference (i.e. transformed in a
global reference frame) and aligned, they can be combined by applying Equa-
tion (4.9) over every cell independently. Asynchronicity is managed by discount-
ing cells of older grid. Because detectability grids convey dynamic information

4.3. FUSION OF MULTIPLE POINTS OF VIEW 103

that cannot properly be predicted (a common issue of using grids), it is as if they
were losing information as time passes and so a discounting is applied:

mj D(t|t− 1) = mj D
Λ
(

∆t,tD
1/2

) (4.10)

4.3.2.4 Object Detectability

Finally, as the goal of detectability is to identify detectable or non-detectable
objects, it is defined for an object as mDo being the maximum detectability across
that object. For this, the object 2D bounding box is computed from its position
and size as defined in Equation (3.33). Key points co of the bounding box are
taken to approximate its shape, such as its center and corners:

mDo = max
〈x,y〉∈co

mDx,y (4.11)

and maximum detectability is defined based on the following relation order:

mD1 > mD2 ⇔ mD1 (D) > mD2 (D) (4.12)

4.3.3 Similarity between Objects

As reviewed in Section 3.3.1 (page 60), the distance between objects or tracks is
generally used to denote the difference between objects. This implicitly assumes
that close objects are the same which can sometimes lead to mis-associations.
It can thus be useful to add comparisons on other characteristics, such as what
(N. Zoghby et al. 2013) proposed. In this work belief functions are used to
combine the similarity of characteristics such as position, kinematics and class.
What is particularly interesting is the distinction that some characteristics can
provide similarity (i.e. position) while other can only provide dissimilarity (i.e.
kinematics, class).

In this section, similarity is extended to other characteristics and adapted to use
a sigmoid function Φ. Φ constructs a mass function on Ω = {H,��H} from a scalar
value to model that as the value increases, it supports an arbitrary hypothesis H
then nothing then the opposite hypothesis ��H, as depicted in Figure 4.21.

0 1 2 3 4 5 6
x

0.0

0.5

1.0

Φ
(x

)

µ
µ + 2σ µ + 2σ + δ

m(T)

m(6 T)

m(ΩT)

(a) Φ with parameters chosen to model sup-
port, unknown then disapproval

0 1 2 3 4 5 6
x

0.0

0.5

1.0

Φ
(x

)

µ + 2σ + δ

m(T)

m(6 T)

m(ΩT)

(b) Φ with parameters chosen to model un-
known then disapproval

Figure 4.21: Sigmoids of two different mass functions.

104
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

It is defined as

ΦH(x, µ, σ, δ) :=

[
∅ {H} {��H} {H,��H}
0 L

(
−2(x−2σ−µ)

σ

)
L
(

2(x−2σ−µ−δ)
σ

)
1−m({H})−m({��H})

]

(4.13)
where L is the logistic function, µ, σ and δ are three scalar parameters respectively
describing the positive tipping point (i.e. whereH starts losing evidence), the rate
of change and the negative tipping point (i.e. where ��H start gaining evidence).

The similarity between two objects o and o is defined as a belief function mSo,o
defined on frame ΩS = {S,��S} expressing that o and o either correspond to the
same relevant physical object or not. It is constructed as a combination of sub-
similarities:

mS = mpos ©∩ mkine ©∩ msize ©∩ mclass ©∩ mchara (4.14)

That compare several aspects of objects. As a reminder, objects have been defined

in Equation (3.33) as a state x =
〈
x, y, θ, v, θ̇

〉
(composed of a x and y position,

heading θ, velocity v and rotational velocity θ̇), a covariance P, a size I = 〈l, w, h〉
(composed of a length l, width w and height h) a class c and a set of characteristics
Z. As such, similarity of two objects i and j is defined by:

• mpos the position similarity. It can be computed using the Mahalanobis
distance (or Normalized Estimation Error Squared (NEES)) between the
two objects. Different poses imply different objects and similar poses imply
similar objects. As such, letting µpos, σpos and δpos describe the shape of
the pose sigmoid, pose similarity is defined as:

εpos =

[
xi − xj
yi − yj

]
· (Pi+ Pj)−1 ·

[
xi − xj yi − yj

]

mpos = Φ(εpos, µpos, σpos, δpos)

(4.15)

• mkine the kinematic vectors similarity. It can be computed using the Ma-
halanobis distance between the two vectors. Two similar kinematics do
not mean similar objects, but different kinematics means different objects.
As such, letting µkine, σkine and δkine describe the shape of the kinematic
sigmoid, kinematic similarity is defined as:

εkine =

θi − θj
vi − vj
ωi − ωj

 · (Pi+ Pj)−1 ·

[
θi − θj vi − vj ωi − ωj

]

mkine = Φ(εkine, µkine, σkine, δkine)

(4.16)

• msize the size similarity. It can be computed using the difference of volume
of both objects. Two similar sizes do not imply similar objects, but different
sizes imply different objects. As such, letting µsizel, σsizel, δsizel, µsizew, σsizew,

4.3. FUSION OF MULTIPLE POINTS OF VIEW 105

δsizew, µsizeh, σsizeh and δsizeh describe the shape of the length, width and
height sigmoids, size similarity is defined as:

msize =Φ(|li − lj|, µsizel, σsizel, δsizel)

©∩ Φ(|wi − wj|, µsizew, σsizew, δsizew)

©∩ Φ(|hi − hj|, µsizeh, σsizeh, δsizeh)

(4.17)

These parameters can be fixed by studying the capacity of sensor detectors
at providing accurate sizes. This study has been conducted in the previous
chapter and has shown that our detectors were not accurate. As such, size
parameters are fixed to large values so that it is not too discriminating.

• mclass the class similarity. It can be computed using a confusion matrix D2.
Two identical classes do not imply identical objects, but different classes
imply different objects:

mclass = {0, 0, D(ci, cj), 1−D(ci, cj)} (4.18)

• mchara the characteristics similarity. This can be for example plate numbers
or traffic light color. Some similar characteristics will imply similar objects
but not all.

Table 4.1 summarizes the different tuning parameters of similarity:

Table 4.1: Summary of similarity parameters.

Notation Domain Description

µpos R+ Position NEES from which two objects stop being similar

σpos R+ How quickly a rising NEES decreases similarity

δpos R+ NEES from which two objects are considered dissimilar

µkine R− Kinematic NEES from which two objects stop being similar

σkine R+ How quickly a rising NEES decreases similarity

δkine R+ NEES from which two objects are considered dissimilar

µsize R− Volume from which two objects stop being similar

σsize R+ How quickly a diverging volume decreases similarity

δsize R+ Volume from which two objects are considered dissimilar

D R+ Cost of confusing a class for another

2Matrix introduced in Equation (3.7) describing the cost of associating two classes. Small
for semantically close classes (e.g. stop and yield sign) and large for semantically far classes
(e.g. pedestrian and truck).

106
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

4.3.4 Estimating the Existence of Tracked Objects

Tracks are managed using a belief function on their existence. The estimation of
track existence at sensor-level (detailed in Section 3.5.2.2 on page 77) is extended
here to multiple points of view with the idea that the estimation of object exis-
tences should be limited by the detectability of the source at hand. For example,
a front-facing camera should not interfere with the existence of rear-facing objects
since their fields of view do not overlap.

Birth and prediction are still defined based on two parameters mbirth and t∃1/2
summarized in Table 4.2 on page 107, but update and deletion are modified to
account for detectabilities and similarities.

For this, a tracker i computes the detectability of a source mj D upon reception and
maintains a consensus grid mJ D that combines the detectability of all recently
received sources J = {j, . . . }. The order of operations is thus:

1. Compute the detectability grid of j mj D with Equation (4.7)

2. Predict the previous consensus grid mJ D with Equation (4.10)

3. Predict the existence of tracks Oi with Equation (3.43)

4. Update the consensus grid mJ D with mj D and Equation (4.9)

5. Update the existence of tracks Oi with Equation (4.19) or Equation (4.21)

6. Manage tracks based on their existence with Equation (4.22).

While in earlier sensor-level existence estimation, existence increased with a con-
stant value, it is now dependent on the existence of observation o. However,
several constraints have to be added to prevent mis-associations from biasing the
existence estimation and to account for the potentially differing points of view
between the sensor and consensus:

• The similarity of the associated track and observation mSo,o ensures that
both tracks correspond to the same physical object. The value of this term
is close to 1 when detectable and 0 otherwise;

• The consensus plausibility of detection PlJ D
o (D) ensures that all sources

agree that the object could be visible (i.e: not explicitly in their free-space).
It is close to 1 in such cases and drops to 0 when more and more sources
disagree. This forbids objects from being estimated in free-space;

• The source belief in detection Belj D
o (D) ensures that the updating source

can detect its track and is not extrapolating it. Here Bel is used instead
of Pl as the nature of this constraint is different. While the previous term
expressed a non-impossibility to detect objects, this one expresses the pos-
sibility of detecting one.

4.3. FUSION OF MULTIPLE POINTS OF VIEW 107

Update in the case of association The product of these three terms is a
discounting factor applied to the observation existence m∃o(t). It can then be
combined with the predicted track existence m∃o(t|t− 1) using Dempster’s rule:

αupdt = mSo,o(S) · Belj D
o (D) · PlJ D

o (D)

m∃o(t|t) = m∃o(t|t− 1) ©+ m∃αupdt o(t)
(4.19)

Update in the absence of association Conversely when tracks are not as-
sociated (i.e. not observed), detectability can be used to estimate non-existence.
The underlying idea is that detectable tracks should be observed again. As such,
unobserved tracks are likely to be clutter. This is expressed similarly to Equa-
tion (4.19) by combining the estimated track existence with another discounted

existence. Here, the other existence m�∃ is constant and based on a parameter
E��updt that controls how much unobserved tracks are considered clutter:

m�∃ =

[
∅ {∃} {��∃} {∃,��∃}
0 0 E��updt 1− E��updt

]
(4.20)

As out-of-range tracks should not be penalized for not being detected, the de-
tectability of the updating source Belj D

o (D) is used to discount the penalty m�∃:

α�
�updt = Belj D

o (D)

m∃o(t|t) = m∃o(t|t− 1) ©+ m�∃
α��updt

(4.21)

Track management By introducing non-detectability in the estimation, a sec-
ond condition can be added to delete tracks if too much evidence points to the
track being clutter:

m∃o(Ω
∃) > Eforget ∧m∃o(��E) > Eclutter (4.22)

Compared to existing methods (Aeberhard et al. 2011) that would decay track
existence based on their detectability, this explicitly models that detectable ob-
jects should be detected. This model adds two parameters to those summarized
in Table 3.4 at page 77. The complete summary of existence parameters is thus
given in Table 4.2.

Table 4.2: Summary of existence tracking parameters.

Notation Domain Description

Ebirth [0, 1] Birth evidence of existence

Eforget [0, 1] Delete tracks whose information is below this threshold

t∃1/2 R+∗ Time to losing half a track existence information

E��updt [0, 1] How much unassociated tracks are considered clutter

Eclutter [0, 1] Delete tracks whose clutter evidence is above this

108
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

4.4 Evaluation of Cooperative Perception

4.4.1 Evaluation Methodology

Evaluating perception with real data is a difficult task, as mentioned in Sec-
tion 3.4. We explain here the methodology we followed.

4.4.1.1 Global and Local Evaluations

With single PoV datasets, any annotated ground-truth object should be detected
by the perception system, and any missed or additional object is an error. How-
ever, when multiple PoVs are considered, objects perceived by one PoV can be
hidden or out of reach to another, while still functioning nominally. In single-PoV
such as (Ettinger et al. 2021), tracks disappear and reappear when they get in
and out of Field of View (FoV). In multi-PoV situations, the real visibility of all
peers in the scene should be modeled and labeled, which is hard and sometimes
impossible.

To address this issue, we have identified two evaluation methods:

• Global evaluation: Ground-truth contains all the information held by
all peers at all times. It represents the maximal amount of information
in the considered system. This evaluation method is useful for making
comparisons between perception systems as the global information is the
same for all systems. It is however not adapted to evaluate the integrity
of each perception system in the sense given in the general introduction.
Indeed, the global ground-truth does not account for the task being realized
by every vehicle. As such it will provide pessimistic evaluations that do not
represent the actual integrity level of each perception system, especially in
terms of miss-detections.

• Local evaluation: Here the ground-truth information is only composed of
the information relevant to the task at hand for a given perception system.
The electronic horizon of a navigation system can for example be used to
limit the ground-truth in areas that will interact with the vehicle path. This
method is useful to evaluate the integrity of a particular perception system
but cannot be used to compare several systems. Indeed, because the task
at hand changes from one vehicle to another, local ground-truths thus have
to be different.

In the following studies, we will compare several systems. The global method
will thus be used, but note that vehicle-specific integrity evaluation should use
the local method.

4.4.1.2 Datasets with Ground-Truth

To evaluate cooperative perception systems, a ground-truth is necessary. Un-
fortunately, a ground-truth is rarely provided with cooperative datasets. The

4.4. EVALUATION OF COOPERATIVE PERCEPTION 109

existing datasets are either not based on real data or not based on moving vehi-
cles, which is why we recorded our own. Several scenarios have been recorded,
but as only one of them has been used for evaluation in this manuscript, they are
described in Appendix B.

The dataset used for comparison is based on a complex overtaking scenario. As
understanding the sequence of events will be important to interpret results, it is
first introduced in the following.

As illustrated in Figure 4.22, the sequence is composed of five vehicles: three
are perceiving vehicles (v1, v2 and v3) and two are controlled but not perceiving
vehicles (v4 and v5). The dataset has been recorded on open roads, and other
road users were also present. In particular, there was a vehicle in front of v1 and
behind v2.

The sequence can be split into five sub-sequences:

1. At first, between t = 0 and 10 (time is expressed in seconds), two groups of
two (v3 and v5) and three (v1, v2 and v4) vehicles start on opposite sides of
the road. Only v1, v2 and v3 are equipped with sensors and communication.
v3 perceives v5 for the whole sequence while v1 and v2 can both see v4 but
not each other.

2. Secondly, between t = 10 and t = 20, all vehicles start moving. During this
period v1 and v2 can see each other.

3. Between t = 20 and t = 36, both groups approach each other on a straight
line.

4. Between t = 36 and t = 44, v4 stops, forcing v1 to also stop.

5. Finally, between t = 44 and t = 55, v1 overtakes v4.

A ground truth has been manually labeled for this dataset. Though a method
has been proposed to help with the labeling process, it has not been used for
producing the results of this work because this method was not finalized in time.
It is thus described in Appendix C.

The following describes the manual labeling process. Point clouds from all vehi-
cles are projected in a common 2D plane, as illustrated in Figure 4.23a. Helped
by context images, bounding boxes are drawn by a human annotator for key
time stamps. Bounding boxes are then manually linked between time stamps to
provide interpolable tracks. The annotator guarantees that all objects in certain
areas (i.e. the road) are annotated. Outside of that area, some can be missed.
This is used to form the free space grid as the absence of objects in that area as
illustrated in Figure 4.23b.

4.4.1.3 Evaluation Metrics

To evaluate and compare perception systems studied in this manuscript, a com-
mon set of metrics has been defined. The three main characteristics of a percep-
tion system are evaluated. They are described hereafter.

110
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

(a) Vehicles start moving between t = 0 and t = 10

(b) Vehicles engage on the main road between t = 10 and t = 20

(c) Vehicles drive towards each other between t = 20 and t = 36

(d) v1 and v4 are stopped between t = 36 and t = 44

(e) v1 overtakes v4 between t = 44 and t = 55

Figure 4.22: Schematic representation of the sequence of events of the overtaking
scenario.

4.4. EVALUATION OF COOPERATIVE PERCEPTION 111

(a) Point cloud from four LiDARs projected on a common plane. Annotated bounding boxes
are delimited by 4 red points and links between time steps are represented by blue lines.

(b) Ground truth in the form of a grid. White pixels are occupied cells, black pixels are free
cells and grey are unknown cells.

Figure 4.23: Example of ground truth generation for a given time step.

a) Object Existence To evaluate the object detection rates, ground truth
objects G are retrieved and synchronized with time-stamps of the perception
system.

The objects to be evaluated are denoted O. They are separated for each time
t ∈ T in several object lists whose existence is above given thresholds τ ∈ T :

O(t, τ) = {o}o∈O(t), Bel∃o (E)>τ (4.23)

They are then associated to ground truth objects G using a Global Nearest Neigh-
bors (GNN) algorithm with Mahalanobis distances. This gives sets of associated
objects ψ(t, τ). Associations are then used to form True Positives (TPs), False
Positives (FPs) and False Negatives (FNs) as:

TPO(τ) = {Oi(t, τ)}〈i,j〉∈ψ(t,τ), t∈T

TPG(τ) = {Gj(t)}〈i,j〉∈ψ(t,τ), t∈T

FP (τ) = O(t, τ) \ TPO(τ)

FN(τ) = G(t) \ TPG(τ)

(4.24)

As illustrated in Figure 4.24, TPO(τ) is the set of perceived objects that have
been associated ground truth. TPG(τ) is the set of ground truth objects that
have been associated with perceived objects. FP (τ) is the set of perceived objects
that have not been associated, corresponding to ghost objects that do not actually

112
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

Figure 4.24: Sets used in the association process of object evaluation.

exist. FN(τ) is the set of ground truth objects that have not been associated,
corresponding to missed detection of real objects.

Note that True Negatives (TNs) cannot be computed because enumerating every-
where objects are not does not make sense in a world that is infinite. Evaluation
metrics relevant to this problem are therefore the precision, recall and F1-score,
whose definitions have been given in Table 3.2, at page 66. A precision-recall
curve can be constructed by plotting precision against recall for various thresh-
olds τ .

Figure 4.25: Error and uncertainty computation of two estimates i and k when
compared to the ground truth j. Here, k and i are at the same distance of j, but only
i is consistent (within σij). k is not because its error is higher than σkj .

b) Object Accuracy and Consistency To evaluate the accuracy and con-
sistency of tracked object state estimates, the association ψ(t, τ) is reused. The
error vector eij is computed for each pair 〈i, j〉 ∈ ψ(t, τ) of object indices. Then
the absolute 2D error εij and its associated uncertainty σij are computed. As il-
lustrated in Figure 4.25, σij corresponds to the uncertainty along the error vector,
according to the method of (Tao et al. 2016):

eij =

[
xi − xj
yi − yj

]
εij = ‖eij‖ σij =

√√√√
1

eij
εij

T

·P−1
i ·

eij
εij

(4.25)

4.4. EVALUATION OF COOPERATIVE PERCEPTION 113

where P is the covariance matrix.

Error plots or Stanford diagrams (see Section 1.2.2 at page 16) can then be
constructed by plotting all εij against their associated estimated uncertainty σij
for all times t ∈ T and a given threshold τ . Note however that due to the large
number of objects considered in this scenario, Stanford diagrams are too hard to
interpret.

Instead, we plot the average RMSE and standard deviation across all objects
for each time step. The mean RMSE ε̂ and the mean standard deviation σ̂ are
computed as:

ε̂ =

∑
t∈T
∑
〈i,j〉∈ψ(t,τ) ε

i
j∑

t∈T |ψ(t, τ)| , σ̂ =

∑
t∈T
∑
〈i,j〉∈ψ(t,τ) σ

i
j∑

t∈T |ψ(t, τ)| (4.26)

for a threshold τ fixed at 0.50.

An interesting metric to evaluate the consistency ζ is the percentage of times the
error is included in a chosen confidence domain. In the following example, 3σ
confidence domains have been chosen which corresponds to a consistency level of
99% for a χ2 law with two degrees of freedom:

ζ(τ) =

∑
t∈T
∑
〈i,j〉∈ψ(t,τ)

{
1 εij ≤ 3 · σij
0 εij > 3 · σij∑

t∈T
∑
〈i,j〉∈ψ(t,τ) 1

(4.27)

c) Free-Space To evaluate the quality of free space detection, ground-truth
grids mG are retrieved, synchronized (by finding their closest detectability grids
in terms of time) and compared to detectability grids mD elaborated by the per-
ception system for each time steps t. Similarly to objects, cells of the detectability
grids are separated using a threshold τ :

C�D(t, τ) = {c}c∈mD(t), BelDc (�D)>τ (4.28)

However, because the opposite of ”free” is ”occupied” and not just ”not free”,
areas where information is not available are ignored:

CD(t, τ) = {c}c∈mD(t), mDc (ΩD)<1, BelDc (�D)≤τ (4.29)

Then, assuming that both grids are temporally and spatially aligned, cells are
compared one to one following Table 4.3.

Note that this formulation is not complete because detectability is a potential
and not a description (i.e. detectable cells are not necessarily occupied, though
occupancy should only appear in detectable cells). As such, free cells identified as
detectable are not necessarily FNs but occupied cells identified as detectable are
indeed TNs. This effect can falsely degrade results but is a first approximation.
A better modeling would be to restrict detectability under perceived objects, but
this begs for a joint estimation methodology between objects and free-space. This
is a possible improvement.

114
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

Table 4.3: Cell-wise evaluation of perceived free space by ground truth grids.

mG = F mG = O

C�D(t, τ) TP FP

CD(t, τ) FN TN

4.4.2 Study of the Added-Value of Cooperative
Perception

In this first evaluation, the points of view of three vehicles are tracked cooper-
atively according to Section 4.3.1. The outputs of standalone and cooperative
trackers are compared for the three vehicles with metrics introduced in the pre-
vious section. Those are the mean RMSE, standard deviation and consistency of
object positions, maximal F1-score and PR-Area Under Curve (AUC) for object
detection and ROC-AUC for free space. They are given in Tables 4.4 to 4.6 and
illustrated in Figures 4.26 to 4.28.

One can see that cooperative perception significantly improves object detection
for all vehicles compared to standalone perception, with a max F1-score and AUC
improved between 0.10 and 0.15. This is also visible in Figure 4.26 for example
with the cooperative (orange) curve going twice as far as the standalone (blue)
one. It is here doubled as v1 receives information from v3 which is at the other
side of the road for a majority of the dataset.

The contribution is not so clear for other aspects. For example, detection accuracy
is sometimes better, sometimes worse depending on the car. This can be explained
by the metric used (the mean RMSE of all objects) meaning that inaccurate
objects from one vehicle are propagated to all, worsening their mean. This is
particularly visible in Figure 4.28a. Between t = 00 and t = 10, only two well
observed objects were visible in standalone. In cooperative, objects from the
other side of the scene get visible but they are not as well observed and thus the
mean RMSE increases.

Similarly for free space detection, the contribution of cooperation is not clear. It
is however clear that including more points of view should improve the detection
of free space, leading us to believe that the evaluation methodology is the cul-
prit. Possible causes can be cells mis-alignment or Equation (4.29) that does not
produce the expected result. Nevertheless, a slight improvement in TPR can be
observed, at the expense of a shorter range of FPR, which is still an improvement.

Table 4.4: Comparison of standalone and cooperative perception for v1.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Standalone 1.28 1.02 0.88 0.32 0.16 0.61

Cooperative 1.52 0.86 0.90 0.47 0.23 0.61

4.4. EVALUATION OF COOPERATIVE PERCEPTION 115

Table 4.5: Comparison of standalone and cooperative perception for v2.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Standalone 1.82 0.84 0.72 0.31 0.14 0.67

Cooperative 1.40 0.92 0.93 0.47 0.23 0.61

Table 4.6: Comparison of standalone and cooperative perception for v3.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Standalone 0.80 1.03 0.93 0.23 0.10 0.57

Cooperative 1.53 0.89 0.91 0.47 0.23 0.61

0 10 20 30 40 50
Time (s)

0

2

4

6

8

10

E
rr

or
(m

)

Standalone

Cooperative

(a) Object 2D errors (continuous) and 3σ confidence bounds (dashed)

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Standalone

Cooperative

(b) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Standalone

Cooperative

(c) Free-Space ROC Curves

Figure 4.26: Comparison of standalone and cooperative perception for v1. Blue
curves are standalone perception and orange cooperative.

116
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

0 10 20 30 40 50
Time (s)

0

2

4

6

8

10

E
rr

or
(m

)

Standalone

Cooperative

(a) Object 2D errors (continuous lines) and covariances (dashed lines)

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Standalone

Cooperative

(b) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Standalone

Cooperative

(c) Free-Space ROC Curves

Figure 4.27: Comparison of standalone and cooperative perception for v2. Blue
curves are standalone perception and orange cooperative.

4.4. EVALUATION OF COOPERATIVE PERCEPTION 117

0 10 20 30 40 50
Time (s)

0

2

4

6

8

10

E
rr

or
(m

)

Standalone

Cooperative

(a) Object 2D errors (continuous lines) and covariances (dashed lines)

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Standalone

Cooperative

(b) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Standalone

Cooperative

(c) Free-Space ROC Curves

Figure 4.28: Comparison of standalone and cooperative perception for v3. Blue
curves are standalone perception and orange cooperative.

118
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

4.4.3 Study of the Contribution of Detectability for
Cooperative Perception

The second evaluation is about the contribution of detectability to the estimation
of object existence for a cooperative perception system. The same methodology
as before is used but only one vehicle will be shown for the sake of clarity. For
this, three variants have been run on the three vehicles:

1. Without detectability (i.e. all objects are considered fully detectable when
estimating their existence);

2. With detectability used only in the cooperative tracker;

3. With detectability in both standalone and cooperative trackers.

The evaluation of the cooperative perception for these three variants is provided in
Table 4.7 and illustrated in Figure 4.29. In these, the contribution of detectabilty
is clear. Objects are significantly better detected when passing from a system
without detectability to one that uses it. A slight improvement can be observed
when passing from a system where detectability is used only when cooperating
to a system where it is used everywhere. This is expected as our vehicles only
possess one sensor, so the standalone detectability does not have a significant
impact. Detectability thus improves the capacity of the tracker to estimate the
existence of objects. Correct objects are maintained for longer periods of time
in the case of multiple PoVs, and erroneous objects are removed sooner thanks
to the inclusion of undetectability. This is visible for example on Figure 4.29a
at t = 32 where tracks are erroneously duplicated, leading to large covariances
being estimated. Without detectability, this effect spans several seconds until the
erroneous tracks are removed due to not being observed for a long time. With
detectability, duplicates diverge quickly into free space and are thus removed
sooner. This reduced the mean error on the whole sequence, with for example
the RMSE and variance that get improved as well. Free space detection on the
other hand is not impacted by this comparison and thus provides the same results
in all variants.

Table 4.7: Comparison of no detectability, cooperative detectability and full de-
tectability.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Without Detectability 1.97 1.27 0.91 0.48 0.10 0.61

Coop Only Detectability 1.55 0.90 0.92 0.46 0.23 0.61

With Detectability 1.52 0.86 0.90 0.47 0.23 0.61

4.5. CONCLUSION 119

0 10 20 30 40 50
Time (s)

0

2

4

6

8

10

E
rr

or
(m

)

Without Detectability

Coop Only Detectability

With Detectability

(a) Object 2D errors (continuous lines) and covariances (dashed lines)

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Without Detectability

Coop Only Detectability

With Detectability

(b) Object existence PR Curves

Figure 4.29: Comparison of no detectability (blue curves), cooperative detectability
(orange curves) and full detectability (green curves) for an arbitrary vehicle v1.

4.5 Conclusion

In this chapter, we have introduced a generic architecture to combine the per-
ception of several points of view. This is proposed to solve the problem of data
fusion in cooperative perception by seeing other vehicles as additional points of
view. Note that we believe this architecture to be beneficial to multi-sensor per-
ception for standalone perception as well. This architecture is based on a generic
interface composed of a list of objects, free space polygons and fields of view.
Three aspects have been studied: Track-To-Track Fusion (T2TF), the represen-
tation of source Points of View (PoVs) and the estimation of object existence.
T2TF is realized with the SCIF and has shown to be an effective tool for the
task. Representation of a source point of view is realized with detectability, a
concept that has been introduced to combine FoV and free space in a joint and
discretized representation. It is complex to manipulate as detectability is a po-
tential while undetectability is a description of physical reality, meaning that its
fusion and evaluation are not straightforward and must be managed with care.

120
CHAPTER 4. COOPERATIVE PERCEPTION IN A TRUSTWORTHY

NETWORK

We have proposed solutions to solve these problems. Despite these limitations,
it has been shown to be effective in helping cooperative trackers to improve their
object detection. We believe that this representation should be useful to scene
understanding modules as it gives a cooperative estimation of areas that have
been covered. Finally, for the estimation of object existence, we have introduced
a formulation that includes the similarity between track and observation and both
of their detectabilities.

Together, these concepts and methods provide an improvement in the detection of
object and free space but evidence is lacking regarding the improvement of object
accuracy. Further analysis is required on this aspect, for example by computing
errors object-wise and on track predictions to verify their predictability. Other
analyses could also be carried out further, such as accounting for the fact that
certain areas of the road are more important to properly perceive than others
(and how this impacts the availability of the perception module). Accounting
for dynamic objects in the definition of detectability is also another interesting
point to study further, in particular to represent situations where a vehicle hides
perception behind it. Finally, an important work that remains is to derive a joint
evaluation metric for the three aspects of perception (accuracy, object and free
space detection). They have been studied separately but are all tied (i.e. object
accuracies depends on their detection, free space and object detection are two
sides of the same coin). Double counting might happen in this case, making the
tuning process harder to interpret.

Chapter 5

Estimation of Trust in
Cooperative Peers

Contents
5.1 Introduction . 121

5.2 Review of Trust in Intelligent Vehicles 121

5.3 Trust Estimation and Use for Data Fusion 124

5.4 Experimental Evaluation . 135

5.5 Conclusion . 145

5.1 Introduction

Up to this chapter, peers were considered trustworthy and reliable. Each agent
receiving information from the others integrated and merged it with confidence
to improve and expand its perception of the environment. In practice, this as-
sumption cannot be guaranteed on open roads as erroneous or even malicious
peers can be present in the cooperative network.

In this chapter, we introduce the concept of trust, a quantity estimated over
time that represents how much a peer (and thus the information it sends) can
be trusted. After reviewing how this aspect is considered in the literature in
Section 5.2, we formulate our model of trust, its computation and its use in the
data fusion process in Section 5.3. The approach is then evaluated on hybrid real
and simulated data in Section 5.4.

5.2 Review of Trust in Intelligent Vehicles

According to (van der Heijden et al. 2019), the attacker model in Cooperative
Intelligent Transportation Systems (cITS) is a peer sending erroneous informa-
tion. (Ansari et al. 2021) details several attacks and how they can be mitigated
using information contained in CPMs. The distinction between malicious or not

121

122 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

is irrelevant as the attacker has limited presence in the network due to its limited
range of communication. The assumption of honest majority is credible due to
security measures introduced in Section 4.2.1.4.

To do this, most approaches estimate a quantity between 0 and 1 representing
the trustworthiness of received data. For example in (Ambrosin, Yang, et al.
2019), it is the probability of a peer being trustworthy that is estimated, while
in (Allig, Leinmüller, et al. 2019) it is the confidence in correctness of received
data. In other approaches, un-trustworthiness is explicitly estimated as well,
with for example (Hurl et al. 2020) extending the estimate range to [0, 1]∪ {−1}
and (Schmidt et al. 2008) to [−2, 1], from untrustworthy through unknown to
trustworthy.

5.2.1 Misbehavior Detection

Trust estimation relies on misbehavior detectors, functions that compare what is
received with other sources of information (prior, ego or cooperative information
for example). These are extensively reviewed in (van der Heijden et al. 2019)
where the authors differentiate three types of detectors: node-centric, plausi-
bility checks and consistency checks depending on which type of information is
compared.

Node-centric checks focus on the information outside of exchanged messages such
as a peer’s respect of protocol and timings. Plausibility checks compare received
and ego information. For example, in (Obst et al. 2014) a received position is
compared to the receiver own perception to detect ghost objects. In (Bißmeyer
et al. 2013), the position of a peer is checked against sudden jumps by predicting
previously received positions. Similarly, in (Yavvari et al. 2017), the velocity of a
peer is compared to its previously received velocities and constrained in curvature
base on the peer size. Finally, in (Ambrosin, Yang, et al. 2019), authors define
four levels of anomalies that summarize previous detectors:

• Message level: peers are in communication range, their objects are reported
once, do not suddenly appear and their characteristics are within predefined
ranges;

• Model level: received objects follow a plausible trajectory;

• Perception level: received objects overlap with the receiver perception;

• System level: received objects overlap with the perception of others.

The last level (system level) is a coherency check as it uses external information.
This idea is also developed in (Allig, Leinmüller, et al. 2019) with two situations
depicted in Figure 5.1: a peer can be validated by observing common objects
or by observing another trusted peer. In this approach, consistency of perceived
objects is checked for pairs of peers and fused using Bayesian filtering.

5.2. REVIEW OF TRUST IN INTELLIGENT VEHICLES 123

(a) (b)

Figure 5.1: Validation situations in (Allig, Leinmüller, et al. 2019). In (a), i trusts
j because they each observe a third object k. In (b), i trusts j because it observed a
verified object k.

In (Hurl et al. 2020) trust is defined for each object o as its average observability
from all peers j ∈ V weighted by the actual detection:

T (o) =

∑
j∈V Φj(o) · ej(o)∑

j∈V Φj(o)
(5.1)

where ej(o) is the overlapping score based on bounding box Intersection over
Union (IoU) and Φ(o) the observability score based on LiDAR projections. Fi-
nally, in (Liu et al. 2021) objects are a joint object-grid consistency check is
proposed.

5.2.2 Aggregation

Once trusts are computed, how they are used is conditioned to whether they are
exchanged or not. Several approaches produce reports about a peer when it is
deemed untrustworthy. Reports can be aggregated in a global or decentralized
manner to ignore or evict untrusted peers. To avoid reporting abuse, (Zhuo
et al. 2009) proposed a suicide-based reporting where the reporting node also
evicts itself from the network. To help with the decision of evicting reported
peers, (Ambrosin, Yang, et al. 2019) defines two notions: unobservability and
undecidability. An area is unobservable by a particular peer if its sensors do not
cover that area, and objects are undecidable by a particular peer if they are in
an unobservable area or do not match with any of their objects. In (Schmidt et
al. 2008) on the other hand, recommendations are sent about trustworthy peers
instead of misbehavior reports. When the aggregation is decentralized, simple
counting methods can be sufficient (Allig, Leinmüller, et al. 2019), but more
advanced methods can be reused from other fields. For example, (Zacharia et al.
2000) proposes to represent reputation as a graph. Two algorithms can be used
to compute trust between two agents: HISTOS, that finds a path between them
by breadth-first search and computes their trust as the product of that path, and
SPORAS that recursively applies a complex expression combining reputations
and ratings. The first is particularly adapted to densely connected networks,
while the second is more adapted to sparse networks.

124 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

5.3 Trust Estimation and Use for Data Fusion

5.3.1 Fusion Architecture with Trust Management

Based on the review of existing methods, it can be said that the general goal
of trust is to prevent erroneous peers from propagating erroneous information to
other vehicles.

Centralizing the information on a global server raises privacy issues as well as
networking challenges, whereas a decentralized approach only suffers from a lim-
ited view. This is not necessarily a problem, as trusting other can be a cautious
process especially when considering the problem of information integrity. As co-
operative perception is mainly a way of extending the range of perception, it is
preferable to underestimate trust that to overestimate it. Underestimating trust
reduces the availability of downstream navigation systems (because the vehicle
will have less information to anticipate) but overestimating it might allow mis-
leading information to reach the navigation system and cause the vehicle to make
hazardous decisions.

In the architecture of the previous chapter, peers were modeled as remote sensors.
Following this logic, trust can be seen as a reliability check applied to remote
sensors and used to bring the information quality on the same level as local
sensors. As such, a trust module is added onto Figure 4.15 between remote peers
and the cooperative tracking module in Figure 5.2.

Localization

Sensor Objects

Sensor Tracks

Sensor Objects

Sensor Tracks

Cooperative Tracks

...

Standalone Tracks

Standalone Tracks

Sensor
FOV

&
FS

Sensor
FOV

&
FS

FOVs
&

FSs
...

...

Standalone Tracks

FOVs
&

FSs
...

Trust

Figure 5.2: Trust augmented multi-peer data fusion architecture. Peer perception go
through a trust module before being fused in the cooperative tracking module.

In this formulation, trust between Humans is imitated. It is estimated indepen-
dently about other peers and used to take information communicated by peers
more or less cautiously. It starts with a mostly unknown prior, increases or de-
creases with new elements based on comparisons with a-priori, internal or external
information.

5.3.2 Evidential Estimation of Trust

The process of estimating trust in others is based on negative and positive feed-
back that we will be presenting in the following. Note that this work has been
published in (Lima, Cherfaoui, et al. 2022).

5.3. TRUST ESTIMATION AND USE FOR DATA FUSION 125

To convey both aspects under the same formalism, belief functions are used. They
will also ultimately be useful to provide nuance when using trust. Trust is defined
as a belief function mi T

j on ΩT = {T,��T} denoting that a peer is trustworthy or
untrustworthy (i.e. its information can be taken without further considerations
or should be considered with care). For the sake of clarity, we consider the point
of view of i and will ignore the prefixed upper script in mi T

j when unambiguous.

It is estimated through time using a prediction-update estimator similar to state
filtering:

mTj (t|t) = mTΛ∆t j (t−∆t|t−∆t) ©+ mTj (t) (5.2)

where mTj (t − ∆t|t − ∆t) is the trust of previous time step and ∆t the elapsed
time between two steps. The prediction is implemented with the time-discounting
operator Λ∆t presented in Equation (2.17) on page 29 and the update is done
by fusing the predicted trust with an observation mTj (t) using Dempster’s rule
(©+). Revision operators (Ma et al. 2011) were considered but add too much
complexity for little added benefit as the frame of discernment only contains two
elements.

The trust observation is constructed by fusing several Basic Belief Assignments
(BBAs) that represent basic checks. They are combined in the form of a tree,
which is depicted in Figure 5.3. In that tree, vertices are conjunctive combina-
tions. Edges are discounted by a fixed amount that is not noted for the sake of
clarity.

Current Trust ...

ConfirmationCoherency Consistency

Object
Detectability

HistoryAttribute
Coherency

Spatial
Coherency

Object
Similarity

Object
Dissimilarity

FS
Similarity

Object - FS
Inconsistency

Previous Trust

Figure 5.3: Evidential tree for trust estimation. Trust of BBAs on the bottom, their
combination in the middle and the resulting filtering for time t on the top. Red arrows
only convey untrustworthiness, green trustworthiness, and orange both.

BBAs express non-idiomatic and simple constraints on ΩT . BBAs are first
grouped thematically within three groups:

mTj (t) = mcohe
j ©+ mcons

j ©+ mconf
j (5.3)

In the following, we describe how they are evaluated.

5.3.3 Coherency

mcohe models that the information contained in a message has to be coherent
within itself.

mcohe
j = mobd

j ©+ matc
j ©+ mspc

j (5.4)

126 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

5.3.3.1 Object Detectability

mobd
j expresses that received objects should be in the detectability area of the

emitting source. For this, the object detectability mj D
o from the point of view of

j is used (see the previous chapter at page 103). A constant threshold Dmin is
used to detect objects with low detectabilities (mass on Dj) as this means that
they are either unknown (Ωj D) or even in free space (��D).

An untrustworthiness mass parameterized with a constant βpen is generated for
each object whose detectability is too low:

mobd
j = ©+

o∈Oj
mj D
o (D)<Dmin

[
∅ {T} {��T} {T,��T}
0 0 βpen 1− βpen

]
(5.5)

Example 5.1:

For example, received objects that are in the received FS are by definition
undetectable and their detectability will be low. Similarly objects outside the
FoV are unknown and will have a low detectability.

Figure 5.4: Received object and detectability grid. Green is detectable, red
undetectable and grey unknown. On the left is a normal situation, a car is fully
included in the detectable and nothing is outside. On the right is an abnormal
situation with cars outside of the detectable areas, which can be a track spoofing.

5.3.3.2 Attribute Coherency

matc
j expresses that object attributes Zo (e.g. velocity, size or covariance) have

to be likely with predefined rules.

For each attribute zo in Zo, m
atc
j is defined as

matc
j = ©+

o∈Oj
©+
z∈Z

Φ(zo,−κ, σz, δz + κ) (5.6)

with Φ the scalar sigmoid function introduced in Section 4.3.3. Here κ is a large
value (e.g. 1000) fixed to ensure that Φ can only provide negative trust, while
reducing the number of parameters to two (σ and δ).

5.3. TRUST ESTIMATION AND USE FOR DATA FUSION 127

Example 5.2:

For example, a car should have a length l within typical lengths range:

Figure 5.5: Received car. On the left its length is normal (within predefined
ranges) while on the right its length is abnormal (too small or large). This can be
track spoofing.

This can be expressed with σl = 0.5 and δl = 5 which gives Figure 5.6.

0 2 4 6 8
l (m)

0.0

0.5

1.0

Φ
(l

)

m(T)

m(6 T)

m(ΩT)

Figure 5.6: Sigmoid used for the detection of car length faults. σl = 0.5 and
δl = 5.

Another example is that an object velocity v has to be coherent with a nor-
mal behaviour. This can be done by reflecting speed limits with σv = 1 and
δv = 15 which gives Figure 5.7.

0 5 10 15 20 25
l (m)

0.0

0.5

1.0

Φ
(l

)

m(T)

m(6 T)

m(ΩT)

Figure 5.7: Sigmoid used for speed fault detection. σv = 1 and δv = 15.

5.3.3.3 Spatial Coherency

mspc
j expresses that objects have to be spatially coherent, that is be distinct from

one another and be where they are expected. These constraints can be expressed
as sigmoids Φ on distances D between objects and areas.

mspc
j = ©+

d∈D
Φ(δd − d,−κ, σd, δd − κ) (5.7)

128 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

Example 5.3:

D can for example be composed of:

• Inter-object distances, computed for all pairs of objects 〈o1, o2〉 in the
received object list Oj as ‖o1, o2‖;

• Car-road distances, computed for all cars o ∈ Oj as ‖R, o‖ with R a
polygon describing the shape of the road.

Figure 5.8: Received objects. On the left is a normal spacial distribution (objects
are well separated and placed logically. On the right is an abnormal spatial distri-
bution (objects are on top of each other and cars are inside buildings or outside
the road), which can be a sign of track spoofing.

0 1 2 3 4 5
d (m)

0.0

0.5

1.0

Φ
(d

)

m(T)

m(6 T)

m(ΩT)

Figure 5.9: Sigmoid used for the detection of abnormal distances. σd = 4 and
δd = 20.

5.3.4 Consistency

The second group of checks is consistency, or the temporal coherency of objects
received from a given peer. mcons models that objects must follow coherent tra-
jectories in time and not change their dynamics in unpredictable ways

Example 5.4:

For example, a track should not jump position between two messages as in
Figure 5.10.

5.3. TRUST ESTIMATION AND USE FOR DATA FUSION 129

Figure 5.10: Received track across three time steps. On the left it follows a
predictable trajectory. On the right it move outside of what the model can predict,
which can be a track duplication for example.

For this, received objects are stored. Upon reception of a new object list, previous
objects are predicted Oj(t|t− 1) and associated with new objects Oj(t) using an
assignment function noted A as in Equation (3.40). The similarity mass function
mS from Section 4.3.3 is used to compare objects. It is then projected onto trust
such that consistent objects are silent but those that do not match with their
past generate untrustworthiness.

ψ = A (Oj(t|t− 1), Oj(t))

mSOj = ©+
o1,o2∈ψ

mSo1,o2

mcons
j =

[
∅ {T} {��T} {T,��T}
0 0 mSOj(��S) 1−mSOj(��S)

] (5.8)

5.3.5 Confirmation

Previous sections described how errors can be detected. However this can only
increase distrust and another mechanism must be derived in order to also increase
trust. The proposed mechanism called confirmation compares received objects
and free space against a personal consensus. Here, consensus refers to the fusion
of all the information trusted by the ego vehicle. This can be for example the
fusion objects and detectability grids from all sources trusted by the ego-vehicle,
including cooperative peers. This aspect will be studied further in Appendix E.
The general idea of confirmation is to generate trustworthiness when objects
or free space are commonly perceived as it means that both understanding of
the scene supports one another. On the other hand, when they mis-match, un-
trustworthiness can also be generated. Doing this, detectability of the receiving
and sending peers are used to represent that comparisons cannot be made on
non-overlapping areas. This implements the unobservability and undecidability
concepts introduced in (Ambrosin, Yang, et al. 2019).

mconf
j is defined as:

mconf
j = mosi

j ©+ modi
j ©+ mofi

j ©+ mfsi
j (5.9)

130 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

5.3.5.1 Object Similarity

First, mosi
j models that trustworthy information should match with the local

one. Received objects Oj are associated with consensus objects, resulting in
ψ = {〈o, o〉 , . . . } the set of associated objects. Associated objects are compared
using the similarity function mS of Section 4.3.3. The plausibility of detecting of
object o, introduced in Section 4.3.2.4, is used to discount non-detectable object.

The confirmation BBA can be written as:

mosi
Oj = ©+

〈o,o〉∈ψ
mS[PlDo (�D)] o,o

mosi
j =

[
∅ {T} {��T} {T,��T}
0 mosi

Oj(S) 0 1−mosi
Oj(S)

]
(5.10)

This is done to only compare objects that are detectable by the consensus, as
illustrated in Figure 5.11.

Figure 5.11: Comparison of a consensus object (green car) and received object (blue
car). On the left, both objects match and are detectable (green cells) so the objects are
similar and trust will be increased. On the right, the received object is not detectable
(unknown grey cells or orange undetectable cells), so trust will not increase.

5.3.5.2 Object Dissimilarity

Conversely, modi
j models that received objects must not mis-match local ones.

For this, objects are also associated, resulting in ψ the set of assignments. As
illustrated in Figure 5.12, unassigned objects create non-trust depending on how
detectable they are, modeling that they should have been. For this, the object
detectability from the point of view of the consensus (mDo) and from the point of
view of j (mj D

o) is used as:

modi
Oj = ©+

o∈Oj ,o 6∈ψ
mj D

[PlDo (�D] o

modi
j =

[
∅ {T} {��T} {T,��T}
0 0 modi

Oj (D) 1−modi
Oj (D)

]
(5.11)

5.3. TRUST ESTIMATION AND USE FOR DATA FUSION 131

Figure 5.12: Comparison of a consensus object (green car) and received object (blue
car). On the left is the same neutral situation as object similarity: objects do not
match but due to the lack of detectability, non-trust is not increased. On the right,
objects do not match both are both detectable by their sources (green and cyan cells
for consensus and received respectively). Objects are dissimilar and detectable so non-
trust is increased.

5.3.5.3 Object-Free-Space Inconsistency

mofi
j models that received objects must not be inconsistent with the consensus

detectability. For this, the object detectability from the point of view of the
consensus mDo is used. Objects falling in undetectable areas (i.e free space) thus
produce distrust:

mofi
j = ©+

o∈ Oj

[
∅ {T} {��T} {T,��T}
0 0 mDo (��D) 1−mDo (��D)

]
(5.12)

5.3.5.4 Free-Space Similarity

mfsi
j models that received Free Space (FS) must match with the consensus. For

this, the detectability over all cells p from the point of view of j (mj D
p) is compared

to the consensus (mDp). First, the number of cells where the consensus supports
the free space (undetectability) measured by j is computed.

Support can be defined using metrics such as Jousselme Distance or Song-Deng
divergence (Jousselme et al. 2001; Yutong Song et al. 2019). However, these
metrics consider consonant belief (i.e. same focal sets but different amounts of
information in each) to be divergent. In addition, they do not account for the
total amount of information. This can be seen in Figure 5.13 with the fact that
undetectable cells (blue pixels) are considered divergent to unknown cells (white
pixels).

To address these issues, we propose the following support function. For a given
cell p, it computes the distance between mDp and mj D

p , weighted by the quantity
of information contained in mDp . In other words, cells where the reference is
uncertain will not discriminate received cells even if their value differ significantly.
Let σD be a tuning parameter describing how quickly support increases, support

132 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

is defined as:

Dsupport(mDp , m
j D

p) := erf

(
mj D
p (��D)−mDp (��D) + 2σD

(1−mDp (��D))σD
√

2

)
mDp (��D) (5.13)

(a) Consensus Detectability (b) Received Detectability

(c) Jousselme distance (d) Song-Deng divergence (e) Proposed Function

Figure 5.13: Result from several support functions. Top row are the consensus and
reference detectability grids, with white pixels being unknown ΩD, blue pixels being
undetectable ��D and green pixels being detectable D. Bottom row are the cell-wise
results of applying the Jousselme distance, Song-Deng divergence and Equation (5.13)
respectively.

The theoretical output of this function is illustrated in Figure 5.14 over all possible
inputs. It is also illustrated in Figure 5.13e on a real case, where it can be seen
that:

• Overlapping areas of same class generate positive support;

• Overlapping areas of opposite classes generate negative support;

• Non-overlapping areas do not generate either.

However, in the current definition of detectability, two sources can have opposite
detectabilities and yet both be correct (see Section 4.3.2.3). For this reason, only
positive support is considered. Cell-wise support is then turned into a single BBA
by integrating positive support over all cells p as:

τDj =

∫

c

DΣ(mDp , m
j D

p) (5.14)

5.3. TRUST ESTIMATION AND USE FOR DATA FUSION 133

0.00 0.25 0.50 0.75 1.00
Consensus mDp (6 D)

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

ei
ve

d
j
m
D p

(6D
)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.14: Output of the support function Dsupport for all input values and σD =
200.

and using the sigmoid function Φ in reverse such that only positive trust can be
estimated:

mfsi
j = Φ

(
−τDj , −δfsi − 4σfsi, σfsi, κ

)
(5.15)

0 200 400 600 800 1000 1200 1400
τDj

0.0

0.5

1.0

Φ
(τ

)

m(T)

m(6 T)

m(ΩT)

Figure 5.15: Sigmoid function used in free-space confirmation with δfsi = 500 cells
and σfsi = 200.

δfsi controls how much supported area is needed to confirm j and σfsi how fast to
confirm, as depicted in Figure 5.15.

5.3.6 Summary of Trust Parameters

The aforementioned method to estimate trust in others is composed of many
parameters. Most of them reflect a physical reality but tuning this system remains
a complex task. Table 5.1 summarizes parameters used to estimate trust with
their interpretation.

134 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

Table 5.1: Summary of Trust Parameters.

Notation Domain Description

Λ∆t R+∗ Time it takes to lose half information about trust

1-α∗ [0, 1] How much BBAs ∗ should impact upper levels

Dmin [0, 1] Minimal object detectability to consider objects incoherent

βpen [0, 1] How much to penalize an incoherent detectability

δz R+∗ Value at which zo starts becoming incoherent

σz R+∗ How quickly values of zo above δz produce non-trust

δd R+∗ Distance under which object are incoherently close

σd R+∗ How quickly values of zo above δz produce non-trust

δfsi R+∗ Minimal support area to confirm detectability

σfsi R+∗ How quickly areas above δfsi produce trust

ιx R+∗ x coordinates dilution of untrustworthy objects

ιy R+∗ y coordinates dilution of untrustworthy objects

5.3.7 Trust-Aware Tracking

The goal of trust is to ignore the information of untrustworthy peers in the
cooperative tracker. This can be done by setting a trust threshold under which
information is simply ignored. However, in some contexts, having ambiguous
information is better than not having information at all, such as hidden areas
where only non-trusted peers have seen. Due to this, fixing a constant threshold
might be complex.

To account for this fact and in order to smooth transitions, we propose to dilute
objects and FS based on how untrustworthy their source is, as in Figure 5.16.

Figure 5.16: Example of perception dilution. The more untrustworthy a source is,
the more transparent and enlarged objects become.

Let α ∈ [0, 1] be a scalar representing how much to dilute the perception infor-

5.4. EXPERIMENTAL EVALUATION 135

mation received from a peer based on how trusted the peer is. Dilution is defined
as discounting detectability as mDα , discounting object existences and increasing
object covariances as:

oα =
〈
x,P + Pα, m

∃
α , . . .

〉
(5.16)

where Pα is a penalty matrix function of α and maximal penalties ιx, ιy . . . of
the form

Pα =

αιx . . .

αιy
...

. . .

 (5.17)

That way, untrustworthy sources have less impact on the final fusion result. Dis-
counting the existence based on a trust parameter has already been proposed
in several works such as (Aeberhard 2017) but that parameter was considered
constant. On the other hand, increasing covariance have not yet been proposed,
to our knowledge. This is done because our tracking system (GNN association
then SCI update) does not account for the object existence while updating states.
This means that even low-existence objects can significantly impact tracks, and
to reduce that effect, object states are also diluted.

In the results shown afterwards, this diluting factor α is defined as the plausibility
of a source being untrustworthy (PlT (��T)). Other metrics could also be adapted,
such as the pignistic.

5.4 Experimental Evaluation

In this section, the impact of trust and several parameters used for its estimation
are analyzed. The methodology described in Section 4.4, based on an overtaking
scenario, is applied on the output of v1’s cooperative tracker. In addition, trust
estimated at each time step is also recorded and is plotted as summarized in
Figure 5.17. With this display, non-trust (mT (��T)) is plotted accumulated on top
of trust (mT (T)), showing how information is distributed between 0 and 1.

Figure 5.17: Example of trust plotting used in the following curves. Green area and
curve is mT (T), in red mT (�T) and grey mT (ΩT).

Although no dedicated study has been conducted, a step of trust estimation takes
in the order of 1 s to complete, which is slower than what the cooperative per-
ception standard specifies (exchanges between 1 and 10 Hz). While curves shown

136 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

afterwards were computed off-line with 10 Hz data, trust estimation qualitatively
runs at a maximum of 1 Hz on current computers. This is not necessarily an
issue though, considering that trust can be estimated asynchronously from data
exchange and object tracking.

In the following evaluation all vehicles start with an initial value of trust of 0.8
to ensure quick convergence.

5.4.1 Added Value of Trust in Nominal Cases

In this first analysis, the behavior of trust and its impact on perception is studied
in the nominal case, that is to say without the addition of faulty objects.

In Table 5.2 and Figure 5.18, one can see an improvement in the detection of
objects and free space, with a gain in Area Under Curves (AUCs) of 0.03 and 0.05
respectively. This is also visible with the orange curve being slightly over the blue
one in Figure 5.18c and going slightly further on the FPR axis in Figure 5.18d.
The accuracy and consistency on the other hand are degraded, possibly due to
the averaging effect described in Section 4.4.2 or to the dilution process described
in Section 5.3.7 that can lead objects to be less accurate.

In addition, one can see in Figure 5.18a that trust is relatively constant over time
for v1 and v2 that partially share FoV. Three negative spikes can nevertheless be
seen at t = 7, t = 22 and t = 40. They are due to naturally occurring tracking
errors that lead false objects to be created on v1. Trust thus effectively detected
these faults and reduced their impacts. v3, which is on the other side of the road
between t = 2 and t = 30 can trust v1 and v2 without sharing FoV with them
as they both start with a high trust and confirm each other in the eyes of v3

afterwards. On the other hand, v1 and v2 cannot trust v3 and progressively lose
information until they start sharing FoV at t = 30. Note though that estimating
distrust does not requires sharing points of view, as can be seen in the estimation
of v3 about v1 that still contains the negative spikes.

Table 5.2: Comparison with and without trust on a nominal situation for vehicle v1.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Without Trust 1.52 0.86 0.90 0.47 0.23 0.61

With Trust 1.66 0.91 0.83 0.48 0.26 0.66

5.4. EXPERIMENTAL EVALUATION 137

0.5

1.0

T
ru

st
(m
T

)
Trust of v1 in v2 Trust of v1 in v3

0.5

1.0

T
ru

st
(m
T

)

Trust of v2 in v1 Trust of v2 in v3

0 10 20 30 40 50
Time (s)

0.5

1.0

T
ru

st
(m
T

)

Trust of v3 in v1

0 10 20 30 40 50
Time (s)

Trust of v3 in v2

(a) Evolution of trust (continuous lines) and distrust (dashed lines) over time.

0 10 20 30 40 50
Time (s)

0

2

4

6

8

10

E
rr

or
(m

)

Without Trust

With Trust

(b) Object 2D errors (continuous lines) and covariances (dashed lines)

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Without Trust

With Trust

(c) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Without Trust

With Trust

(d) Free-Space ROC Curves

Figure 5.18: Comparison without trust (blue curves) and with trust (orange curves)
on a nominal situation for vehicle v1.

138 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

5.4.2 Trust Estimation and Perception Performance in
Case of Faults

In this analysis, the behavior of trust and its impact on perception is studied in
the case of faulty information. For this, hybrid data combining real perception
data and simulated objects and errors have been used. More specifically, faults
have been artificially added to the output of v2 standalone tracker by

• Removing detected objects on certain parts of the road;

• Adding ghosts objects that follow the road with constant speed where there
are no real objects;

• Adding white noise to some tracked objects poses and sizes.

This is indicated at various points in time denoted by grey bars in the following
curves. v2 is thus not impacted by these faults, only v1 and v3 are.

Similarly to the previous study, an improvement in object and free space detection
can be observed in Table 5.3 and Figure 5.19, with a gain in Area Under Curves
(AUCs) of 0.03 and 0.04 respectively. Object accuracy and consistency also seems
degraded.

However, looking at Figure 5.19a, one can see untrustworthiness is correctly es-
timated when errors are added. In particular, v3 distrusts v2 until they start
sharing FoV and faults get lighter. The same pattern can be observed in the dis-
trust of v1 in v2 that is strong when faults are numerous at t = 10 but decreases
when faults are scarcer at t = 20.

Table 5.3: Comparison with and without trust on a faulty situation on vehicle v1.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Without Trust 1.57 0.91 0.87 0.42 0.20 0.61

With Trust 1.67 0.99 0.83 0.43 0.23 0.65

Another interesting property to notice is the impact of one’s fault on trust es-
timated about others. To study this effect, trusts in the presence and absence
of faults are conjointly plotted in Figure 5.20a. In this plot, one can see that
trusts is similar until faults are added at t = 7, at which point the trust of v1 and
v3 about v2 starts diverging, while trusts of v2 are not impacted in this study.
However, notice how the trust of v1 and v3 about each other change, due to their
consensus being different. Indeed, because v1 stops listening to v2, it cannot
trust v3 before seeing it itself. This effect is even more visible in the trust v3 es-
timates about v1, where it initially distrusts v1 because v1’s perception does not
match its consensus, solely composed of v2’s perception at that point in space. v3

rapidly understands that v2 is the one at fault and stops listening to it at t = 10.
From that point and until t = 40, v3 cannot confirm v1 because there is no other
redundant and trusted source.

5.4. EXPERIMENTAL EVALUATION 139

0

1
T

ru
st

(m
T

)
Trust of v1 in v2 Trust of v1 in v3

0

1

T
ru

st
(m
T

)

Trust of v2 in v1 Trust of v2 in v3

0 10 20 30 40 50
Time (s)

0

1

T
ru

st
(m
T

)

Trust of v3 in v1

0 10 20 30 40 50
Time (s)

Trust of v3 in v2

(a) Evolution of trust (continuous lines) and distrust (dashed lines) over time. Grey bars are
when faults are added. The more opaque, the more faults were added at the same time.

0 10 20 30 40 50
Time (s)

0

2

4

6

8

10

E
rr

or
(m

)

Without Trust

With Trust

(b) Object 2D errors (continuous lines) and covariances (dashed lines)

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Without Trust

With Trust

(c) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Without Trust

With Trust

(d) Free-Space ROC Curves

Figure 5.19: Comparison without trust (blue curves) and with trust (orange curves)
on a faulty situation for vehicle v1.

140 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

Additionally, Figure 5.20b and Table 5.4 illustrate that in terms of object and
free space detection, trust is efficient at bringing faulty cooperation closer to the
nominal situation. This is visible in particular with the nominal without trust
and faulty with trust variants that share the same object-AUC.

Table 5.4: Comparison with and without trust on faulty and nominal situations for
vehicle v1.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Nominal w/o Trust 1.52 0.86 0.90 0.47 0.23 0.61

Nominal w/ Trust 1.66 0.91 0.83 0.48 0.26 0.66

Faulty w/o Trust 1.57 0.91 0.87 0.42 0.20 0.61

Faulty w/ Trust 1.67 0.99 0.83 0.43 0.23 0.65

5.4. EXPERIMENTAL EVALUATION 141

0

1

T
ru

st
(m
T

)

Trust of v1 in v2 Trust of v1 in v3

Nominal

Faulty

0

1

T
ru

st
(m
T

)

Trust of v2 in v1 Trust of v2 in v3

0 10 20 30 40 50
Time (s)

0

1

T
ru

st
(m
T

)

Trust of v3 in v1

0 10 20 30 40 50
Time (s)

Trust of v3 in v2

(a) Evolution of trust (continuous lines) and distrust (dashed lines) over time. Grey bars are
when faults are added. The more opaque, the more faults were added at the same time.

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Nominal Without Trust

Nominal With Trust

Faulty Without Trust

Faulty With Trust

(b) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
T

ru
e

P
os

it
iv

e
R

at
e

Nominal Without Trust

Nominal With Trust

Faulty Without Trust

Faulty With Trust

(c) Free-Space ROC Curves

Figure 5.20: Comparison with and without trust on faulty and nominal situations
for vehicle v1.

5.4.3 Impact of Trust Parameters

Finally, in order to evaluate the impact of several parameters used in the estima-
tion of trust, the fact that trust is expressed in the form of a tree can be used.
Figure 5.21 is a tree in the same form as Figure 5.3 but provides the values at
each nodes over time. Hence, the contribution of each node to the final estimate
can be analyzed and explained separately.

In Figure 5.21, one can see that the main sources of distrust from v1 towards v2 is
due to consistency (cons), attribute coherency (cohe-atc) and dissimilarities be-
tween consensus and received objects (conf-odi-rc). Distrust is thus estimated
despite the creation of trust in the object similarity node (conf-osi). On the
other hand, valleys in trust that were visible in Figure 5.18a can be explained
by looking at the bottom Basic Belief Assignments (BBAs) of Figure 5.22 that

142 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

Figure 5.21: Evolution of BBAs in the estimation of trust over time in the form of
a tree. Trust estimated by v1 on v2 in the case where v2 is adding faults. Despite
trust (green curves) being created in conf-osi and conf-fsi, non-trust (red curves
accumulated on top of trust) takes precedence.

generate strong distrust at those moments (t = 7, t = 20 and t = 40).

Figure 5.22: Evolution of BBAs in the estimation of trust over time in the form of
a tree. Trust estimated by v2 on v1 in the the nominal case. Notice how distrust (red
curves) estimated in leaves (cohe-spc-ro and conf-odi-rc) rise to the top to create
valeys in trust (green curves) in hist.

With this in mind, three parameter sets have been tested and are compared
to further illustrate the behavior of trust estimation. Those sets are given in
Table 5.5 with respective goals behind them:

5.4. EXPERIMENTAL EVALUATION 143

• Cautious, with high negative weights, low positive weights and strong for-
getting factors. This variant illustrates cautious trust systems that prefer
ignoring others rather than risking the integration of erroneous information;

• Credulous, with low negative weights, high positive weights and weak for-
getting factors. This variant illustrates confident trust systems that are
quick to trust others at the expense of a reduced safety margin;

• Moderate, with middle-range weights for everything.

Table 5.5: Sets of parameters used in the following comparison.

Parameter Cautious Moderate Credulous

αpast 0.95 1.0 1.0

αcohe 0.35 0.25 0.15

αcohe,atc 0.9 0.9 0.6

αcohe,obd 0.2 0.1 0.1

αcohe,spc 0.35 0.25 0

αcohe,spc,bu 1.0 1.0 0

αcohe,spc,ro 1.0 1.0 0

αcons 0.75 0.5 0.4

αconf 0.9 0.75 0.9

αconf,osi 0.8 0.8 0.9

αconf,fsi 0.8 0.8 0.9

αconf,ofi 0.2 0 0

αconf,odi 0.9 0.8 0.6

αconf,odi,rc 0.6 0.5 0.4

αconf,odi,cr 0.9 0.3 0.2

Λ∆t 3 5 10

βpen 0.1 0.05 0.01

In Figure 5.23 and Table 5.6, one can see that the credulous tuning improves
its object detectability by more easily trusting others. It however comes at the
expense of degrading object accuracies as more low-quality objects are integrated.
In Figure 5.23a, the cause is this effect is clearly visible. As the credulous estimate
is slow to lose information and fast to gain positive information, it is often more
optimistic than the other two variants, even when not relevant such as at time
t = 19. On the other hand, the cautious estimate is almost always distrustful,
which might lead to pessimism during cooperation. Indeed, if the only moments
where sources are trusted is when a large FoV is shared with them, the benefit
of cooperation is reduced.

144 CHAPTER 5. ESTIMATION OF TRUST IN COOPERATIVE PEERS

0

1

T
ru

st
(m
T

)

Trust of v1 in v2 Trust of v1 in v3

Cautious

Moderate

Credulous

0

1

T
ru

st
(m
T

)

Trust of v2 in v1 Trust of v2 in v3

0 10 20 30 40 50
Time (s)

0

1

T
ru

st
(m
T

)

Trust of v3 in v1

0 10 20 30 40 50
Time (s)

Trust of v3 in v2

(a) Evolution of trust (continuous lines) and distrust (dashed lines) over time.

0.0 0.5 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Cautious

Moderate

Credulous

(b) Object existence PR Curves

0.0 0.5 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Cautious

Moderate

Credulous

(c) Free-Space ROC Curves

Figure 5.23: Comparison of several parameters tuning under erroneous information
on vehicle v1: cautious in blue, moderate in orange and credulous in green.

Table 5.6: Comparison of several parameters tuning under erroneous information for
v1.

Mean RMSE (m) Mean Std (m) Consistency (%) Obj Max F1 Obj AUC FS AUC

Cautious 1.34 0.92 0.88 0.37 0.18 0.65

Moderate 1.36 0.97 0.88 0.40 0.21 0.65

Credulous 1.67 0.99 0.83 0.43 0.23 0.65

5.5. CONCLUSION 145

Other parameters such as the combination rule or consensus building mode have
been studied. They are presented in Appendices D and E as they did not show
significant differences with results presented previously.

5.5 Conclusion

In this chapter, we have introduced and studied the concept of trust in an open
network where vehicles interact for a few moments without knowing a priori if
they can trust others. The method we have proposed allows, from a certain point
of view, to combine fault detection and confirmation methods in a novel tree
representation using belief functions. This allows for a finer representation of
uncertainty, leaving more information to downstream decision modules. Addi-
tionally, representing sources of trust or distrust as an evidential tree allows for
an easier explainability.

Conducted studies illustrate that trust can be effective at removing information
from erroneous peers while keeping information from valid peers. Detection,
tracking or localization errors are thus naturally handled by our formulation.
Although it is composed of numerous parameters, making it hard to tune, we
have shown that parameters mostly follow physical or logical rules that makes
them interpretable.

The main limitation of trust is that peers are trusted based on how similar their
perception is to the truster’s. This assumes that the truster’s perception is faith-
ful to the real world, hence any matching perception must be faithful as well.
However, in practice an attacker could simply repeat the perception it received
and be trusted. This issue might be a physical limitation but several solutions
can be implemented to temper it. For example, imitating how map or dictionary
makers detect plagiarism, faults could intentionally be added to verify if they are
repeated.

Other aspects could also be studied further. In particular, the initial trust is
currently set to the same value for all peers, it might be interesting to vary it
based on the peer type (i.e. trust infrastructure or public services more at first)
or even based on reputation. Considering that peers also communicate their
trust, a combination of received trust could be used as a prior. In addition, trust
could be used to dilute objects in a more advanced manner. The current method
is relatively naive but using trust in conjunction with a JPDA would be more
adapted to smooth transitions between trusted or distrusted in trackers.

Finally, the application of trust to local sensors could be studied further. As
illustrated in the nominal situation, trust improves perception even without the
addition of faults and works as a sort of error detector for local sensors. Trust
could probably be used as a reliability factor even on standalone-multi-PoV sys-
tems.

Chapter 6

General Conclusion

6.1 Conclusion

In this manuscript, we have studied cooperative perception in the context of in-
telligent vehicles navigating on open roads. By exchanging perception, intelligent
vehicles can better understand their surrounding, especially beyond the range of
their on-board sensors, and make safer and more efficient decisions.

As discussed, a decentralized approach in which each vehicle takes care of building
its perception information on its own is the most relevant approach. It favors the
scalability of this technology while ensuring that privacy is preserved. However,
the decentralized nature of these exchanges raises several problems, one of the
most delicate being the management of trust in other peers that transmit their
perception information. As a consequence, controlling the information integrity
(either for autonomous navigation or driver assistance) is a more complex task.

Representing cooperative peers as remote sensors is an effective solution to the
decentralized cooperative perception problem, provided that exchanged informa-
tion is well defined and that resilient data fusion tools are used. The basic idea
when approaching this question is to exchange perceived objects after having lo-
calized them in a global frame of reference thanks to localization information but,
very quickly, the exchange of free spaces appears as an essential information. In
this work, we have extended this concept with evidential detectability grids that
manage the field of view and quantify the information in these areas.

In this work, much effort has been made to conduct real experiments with
equipped vehicles on open roads. Although additional experiments should be
conducted to confirm them, this allows us to draw some interesting conclusions.

Firstly, the fusion of multiple cooperative points of view has a significant positive
impact on object detection rates, which clearly shows that cooperative percep-
tion allows vehicles to perceive the environment further than they can with their
own sensors. We believe the same applies to free space detection but our results
showed marginal differences that we believe are due to limitations in the eval-
uation methodology. In order to obtain good results, the field of view and the
measured free space of each source must be clearly represented.

147

148 CHAPTER 6. GENERAL CONCLUSION

Secondly, the added-value of cooperation for increasing the quality of object states
estimation (in terms of position and speed for instance) is not clear. Due to the
combined effect of perception errors, localization errors, out-of-sequence observa-
tions caused by communication latency, objects estimated by external sources do
not improve the overall accuracy of objects perceived locally.

For the reasons cited above, we can conclude that the integrity of perception
can be affected both positively and negatively by cooperative perception. Our
results show that cooperation improves perception completeness. However, re-
garding correctness (i.e. accuracy and consistency) fusing information from re-
mote sources in a decentralized manner has almost no positive impact. This
is because decentralized data fusion methods have to be resilient and cautious,
which reduces the contribution of received information compared to on-board
sensor for dynamic objects state estimation. Finally, the integrity of cooperative
perception can be significantly perturbed by data from erroneous peers, whether
intentional or not. The trust management method that we have proposed is able
to quickly detect and ignore such peers, which is essential to deal with highly
dynamic information.

6.2 Contributions

Decentralized data fusion for tracking and state estimation introduces informa-
tion loops in classical data fusion schemes. To address this issue, we have stud-
ied Kalman-based estimation and covariance intersection methods. The use of
the split covariance intersection filter in the context of cooperative perception
is particularly relevant. We have derived interpretations and proposed tuning
methodologies for the filter.

The data fusion of tracking systems across different points of view requires a
particular care. We have proposed evidential detectability grids as a tool to
combine multiple free space measurements and to track objects across fields of
view. The proposed architecture can fuse perceptions from on-board sensors and
cooperative peer in a generic manner. This allows to manage the existence of
tracks with belief functions.

Finally, as peers are outside of our sphere of control, we have proposed a system
to estimate the trust about other peers. It is computed through belief functions
and an evidential network that performs fault detection and confirmation through
redundancy. Thanks to this estimation of trust, unreliable peers are ignored in
the perception task.

This work has been evaluated with real data. Datasets were recorded and all the
necessary perception algorithms were implemented in the context of this PhD.
The developed perception algorithms have also been used in other works, such
as the Tornado demonstration in July 2021 and other research work. Finally,
we have proposed a global evaluation methodology using ground truth that was
carried out by hand.

6.3. PERSPECTIVES 149

6.3 Perspectives

Several aspects of the proposed approaches remain to study.

A global evaluation metric summarizing the three aspects of perception (object
and free space detection rates and object state accuracy and consistency) could
be derived. It would be interesting to compare several perception systems and
different strategies for tuning parameters in a consistent and global manner.

Other object tracking methods could also be studied. A joint state formula-
tion could also improve the state estimation performance. Corner-based track-
ing might also provide better performance than the current bounding-box-based
tracking. In addition, trust could be integrated in state filtering more tightly, for
example by modifying the state update equations to add a weighting factor on
the residual based on how trusted its source is.

It could also be interesting to study the use of cooperative perception to reduce
the number of sensors necessary to ensure the integrity of intelligent navigation.

The methods described in this manuscript use significant amounts of parameters
to work. This has been done to avoid having hidden parameters, and to clearly
expose all the key parameters. While this makes the overall system difficult to
tune and understand for a novice or non-expert, this opens the possibility to ap-
ply semi-automatic tuning methods. Gradient descent or similar methods could
be used in conjunction with the global metric introduced in the previous para-
graph to automatically find the best parameter sets across various experimental
situations.

The trust estimation scheme proposed in this work has only been applied to
remote peers. It could be interesting, for the sake of generality, to apply it the
output of on-board sensors. Based on the added value of trust seen in the nominal
case, we believe that applying trust to on-board sensors could also improve the
standalone perception capabilities of a vehicle. This could also be used to detect
faulty sensors in trustworthy network sensors. However, more research is needed
to study the capacity of trust to detect and isolate sources that have minor errors.
Indeed, tuning the sensibility of trust to detect slight errors would certainly result
in pessimistic estimates. While pessimistic trust estimation is not an issue in
cooperative perception (as vehicle are independently capable of navigating), it
might be in more critical systems.

In this work, we showed that trust is able to detect errors in both nominal and
malicious situations. However, certifying that it will always be able to do so is
not necessarily possible. New types of faults could be found, subtle enough to
remain hidden but impactful to navigation systems.

Finally, a proper evaluation of the integrity remains to be done. In this work,
we illustrated the relative gain in terms of performance of our methods. We
have not shown the absolute capacities of our perception system to provide non-
misleading, complete and available information to navigation modules. For this,
several navigation use cases should be derived in order to evaluate perception
against task-specific ground truths.

150 CHAPTER 6. GENERAL CONCLUSION

As a more general note to these perspectives, we believe that more research needs
to be conducted on the joint representation of dense and predictable information
for the integrity of perception. In this work, we used separate representations
for objects and free space then linked the two afterwards (e.g. tracked objects
stop existing inside free space, coherency checks of the two). A proper joint
representation would simplify these aspects and make its evaluation simpler.

List of Figures

1.1 Architecture used at Ulm University, adapted from (Taş et al. 2016).
Modules are regrouped in three main categories: input (sensors),
processing (perception, scene understanding) and output (navigation,
control). In the perception modules, note that objects and space are
both estimated. 12

1.2 Architecture used at Renault during the Tornado project, adapted
from (Milanés et al. 2022). The same main categories are present, but
note the presence of communication with connected infrastructure and
cloud connection. 13

1.3 Scene composed of two vehicles and a pedestrian. Perceived objects
and space considered free by the blue vehicle at the bottom are de-
picted in red and green respectively. This example also illustrates that
there are always hidden areas in a field of perception. 14

1.4 Common structures for communication and computation between mul-
tiple peers. Small blue nodes are sources of information. Orange nodes
are where computations are realized. Small orange nodes are both in-
formation sources and computers. 14

1.5 Lateral position error and bounds of a localization system through
time. Taken from (Lima, Welte, et al. 2020). 16

1.6 Simplified Stanford diagram and example of usage for evaluating a
localization system taken from (Gottschalg et al. 2020). Dotted lines
represent the Alert Limit. 17

1.7 Misleading perception cases in the same situation as Figure 1.3. The
road, real objects and their motion are displayed in the background.
Localization error and estimated motion in red. The space perceived
as free is in green. 18

2.1 Information loop introduced between three vehicles. Follow the blue
arrow from the top that represents the initial piece of information sent
by the blue vehicle. It is augmented by the information of the red and
green vehicle then comes back to the blue vehicle. This means that
the blue vehicle will receive its own information, potentially thinking
that the information is new. 22

2.2 Sets composing Ω = {ω1, ω2, ω3} and subset A = {ω2, ω3} 23
2.3 Subsets used when computing Bel({ω2, ω3}) in (a), Pl({ω2}) in (b)

and BetP({ω2}) in (c). 25
2.4 Gaussian probability distribution and 3σ domain of a one-dimensional

object with a mean s = 3 and standard deviation σs = 0.5. 30

151

152 LIST OF FIGURES

2.5 2D Gaussian probability distribution and 3σ bound of a two dimen-
sional object with x = 1, y = 5, σx = 2, σs = 3 and η = 0.4. 31

2.6 2D Object with its current and predicted state. Covariance is not
represented. 33

2.7 Update of a 2D object. Blue is the predicted state, green the ob-
servation and red the updated state. Covariance is not represented.
Observation error exaggerated for clarity. 34

2.8 Covariance ellipsoid resulting from a CI fusion for multiple values of ω. 37

2.9 Comparison of Kalman update with CI over three situations: a base-
line in which inputs are orthogonal and centred in (a), an edge case in
which inputs are orthogonal but non centred in (b) and an edge case
in which inputs are aligned and non centred in (c). 37

2.10 Comparison of CI, IFCI, ICI and ITCI over the three previous situations. 39

2.11 Situation composed of three vehicles in one-dimension. 40

2.12 Estimation errors and ±3σ uncertainty bounds. Estimate of the KF
in blue, CIF in red and K-CIF in green. In (a) and (c), estimates of
the KF and K-CIF are the same. 42

2.13 Illustration of CI in a simple one dimension case using state interval
representation of Figure 2.4. A blue predicted state is fused with
an orange observation, resulting in the green fusion. It is different
from the intuition one might might have about the ”intersection” of
intervals represented in purple. 44

2.14 Curve of the fused covariance matrix determinant for ω between from
0 to 1 in the case of a partial measurement. The region between 0.25
and 1 is zoomed in. 45

2.15 Fusion of a state (blue) and partial measurement (orange) for different
values of ω. The optimal ω in the sense of Equation (2.30) is denoted
auto and equals 0.99. 45

2.16 Estimation errors and ±3σ confidence domains. KF+CIF in green
and SCIF in red. Continuous lines are the total confidence domains
and dashed the independent part. In (a), curves are superimposed. . 46

3.1 Several successive poses of a LiDAR head as it rotates while the vehicle
moves. 52

3.2 point-clouds accumulated over 5 seconds of moving in a roundabout.
The red point-cloud shows the distortion caused by the vehicle motion,
and the blue point-cloud are their undistorted counterpart. Note the
car and sign duplication caused by the varying point of view and the
fuzziness of the left and right fences. 53

3.3 Reference point-cloud in red. P \rz filtered point-cloud in blue. Points
are cut above the sensor, below the ground and further than 150 m to
limit the area of focus. Both are accumulated over a second for the
sake of clarity. 54

3.4 Original point-cloud in red and intensity filtered point-cloud in blue.
Notice how signs on the right are highlighted while those on the left
are not. This is because only one side of road signs is reflective. . . . 54

LIST OF FIGURES 153

3.5 Reference point-cloud in red, ground point-cloud filtered with the
method of (Jiménez et al. 2021) in blue. 55

3.6 Reference point-cloud in red and clustered point on top, where differ-
ent colors mean different clusters. 56

3.7 Accumulated reference point-cloud in red. Snapshot bounding boxes
are fitted over each cluster using Algorithm 1 . Only objects close to
the road are shown here. One can notice the bad alignment of the
green bounding box here because the vehicle is partially seen from the
side. 57

3.8 Bird eye view of a particular cluster point-cloud, heading and bound-
ing boxes. The ideal heading and bounding boxes differs from what
the PCA yields due to the principal component being across the car
width and length. This issue is worse when a car is only one side is
seen. 57

3.9 Image with bounding boxes classified by YOLOv5. Results obtained
within the Tornado project taking place in the city of Rambouillet. . 58

3.10 Accumulated points classified by Cylinder3D. In pink are point clas-
sified as cars, road in cyan, signs in red, vegetation in orange and
infrastructure in green. Results obtained in the city of Compiègne. . 59

3.11 Point-cloud and measured free space polygon. As the polygon is com-
puted from the vehicle position, the vehicle is depicted in grey. 59

3.12 Object existence stages in track management (from (Aeberhard 2017)).
Four zones are defined: scheduled for deletion in red, unconfirmed in
orange and confirmed in green. The yellow zone is an hysteresis to let
object that fell below confirmed to still be maintained. 64

3.13 Types of information usually found in perception ground truth images.
Taken from (Lin et al. 2014). 65

3.14 Illustration of terms associated to the evaluation of binary classifiers. 65
3.15 Comparison of four models using ROC and PR curves, with the best

model being dark blue and worst being red. 67
3.16 Example of IoU. 67
3.17 Principle of HOTA A(c) calculation, taken from (Luiten et al. 2021).

Here two tracks (grey and black) are associated for each time step
with their ground truth (respectively light and dark blue). Starting
from the point indicated by red and orange arrows, the number of
correct or incorrect associations is accumulated. 69

3.18 The three Renault Zoe used at the Heudiasyc laboratory. 70
3.19 GNSS-based sensors used at the Heudiasyc laboratory. 70
3.20 Simplified view of a LiDAR firing a laser beam. 71
3.21 LiDAR sensors and cameras used in this research. 72
3.22 Example of point-clouds produced by previously mentioned LiDARs.

Colors represent the material reflectivity from purple absorbing to red
highly reflective. Notice how the point-cloud is composed of rings
stretching outwards from the origin, how dense the Pandora is com-
pared to the VLP32C and the VLS128 to the Pandora. 72

3.23 Images returned by the Hesai Pandora cameras. 73
3.24 LiDAR processing pipeline. 74

154 LIST OF FIGURES

3.25 Trajectory and data used in sign detection. In blue are the road
borders described in an HD map, in red are the ground-truth road-
signs and in green the car trajectory. 79

3.26 Ego-aligned association error between LiDAR/Mobileye road-sign de-
tection and ground-truth. 79

3.27 Scene and trajectories used in car detection. In grey are the road
borders described in the HD map. The three vehicle trajectories are
plotted in blue, green and red. 80

3.28 Ego-aligned association error between LiDAR/Mobileye car detection
and ground-truth. 80

3.29 Size error between LiDAR/Mobileye car detection and ground-truth. 81

4.1 Summary of ETSI messages between two communicating cars. 85

4.2 Summary of fields in the Collective Perception Message. Adapted
from (Ansari et al. 2021). 86

4.3 Generation rules defined by (Thandavarayan et al. 2019) for sending
an object or not. 86

4.4 Example of Public Key Infrastructure (PKI). Adapted from (Danquah
et al. 2020). 87

4.5 Illustration of early to late fusion in sensor processing. 88

4.6 Fusion architectures used in a) Rauch et al. 2012, b) (Allig and Wanielik
2019a) and c) (Günther et al. 2016). 89

4.7 Four main frames of reference used in terrestrial navigation. Arrows
represent the transformation from one frame to the next. A detected
point x is referenced here in the sensor frame. 90

4.8 Simple asynchronous tracking with two sensors. 92

4.9 Example of out-of-sequence observations with two sensors 93

4.10 OOS integration using observation forward prediction. 93

4.11 OOS integration using reprocess . 94

4.12 OOS integration using retrodiction 94

4.13 OOS integration using FPFD . 95

4.14 Ground truth labels over raw point clouds from (Busch et al. 2022). . 95

4.15 Multi-Vehicle (or peer) architecture used in this manuscript. Sensors
are all tracked independently before being fused in both a standalone
and cooperative tracker. Another peer sends its standalone tracks
which are fused in the cooperative tracker. 96

4.16 Persistence or detectability probabilities based on sensor range and
opening (a, from (Aeberhard et al. 2011)) and obstacles (b, from (Al-
lig, Leinmüller, et al. 2019)). 97

4.17 Steps to build the detectability of a sensor j. 97

4.18 Example of detectability in one dimension with pj 0 = 0, F free = 5,
F dete = 15, ι = 0.1 and κ = 8. 99

LIST OF FIGURES 155

4.19 Real driving situation and example of detectability grid computed
using LiDAR data. The LiDAR is attached to the grey car in the
center of both images. Red cells correspond to space measured as
free by the sensor, green cells to its field of view and white cells to
unobserved or ambiguous areas. Notice that the red area is naturally
stopped by dynamic objects (a red car in front of the grey car and
a van behind it) and that the green area is limited by static objects
(buildings on the grey car right side). In addition, notice how the
intensity of green and red cells fades with distance and near the free
space border. 100

4.20 Example of naive detectability grid combination. Green is detectabil-
ity, red is non-detectability (free) and blue conflict. 101

4.21 Sigmoids of two different mass functions. 103

4.22 Schematic representation of the sequence of events of the overtaking
scenario. 110

4.23 Example of ground truth generation for a given time step. 111

4.24 Sets used in the association process of object evaluation. 112

4.25 Error and uncertainty computation of two estimates i and k when
compared to the ground truth j. Here, k and i are at the same distance
of j, but only i is consistent (within σij). k is not because its error is
higher than σkj . 112

4.26 Comparison of standalone and cooperative perception for v1. Blue
curves are standalone perception and orange cooperative. 115

4.27 Comparison of standalone and cooperative perception for v2. Blue
curves are standalone perception and orange cooperative. 116

4.28 Comparison of standalone and cooperative perception for v3. Blue
curves are standalone perception and orange cooperative. 117

4.29 Comparison of no detectability (blue curves), cooperative detectability
(orange curves) and full detectability (green curves) for an arbitrary
vehicle v1. 119

5.1 Validation situations in (Allig, Leinmüller, et al. 2019). In (a), i trusts
j because they each observe a third object k. In (b), i trusts j because
it observed a verified object k. 123

5.2 Trust augmented multi-peer data fusion architecture. Peer percep-
tion go through a trust module before being fused in the cooperative
tracking module. 124

5.3 Evidential tree for trust estimation. Trust of BBAs on the bottom,
their combination in the middle and the resulting filtering for time t
on the top. Red arrows only convey untrustworthiness, green trust-
worthiness, and orange both. 125

5.4 Received object and detectability grid. Green is detectable, red unde-
tectable and grey unknown. On the left is a normal situation, a car is
fully included in the detectable and nothing is outside. On the right is
an abnormal situation with cars outside of the detectable areas, which
can be a track spoofing. 126

156 LIST OF FIGURES

5.5 Received car. On the left its length is normal (within predefined
ranges) while on the right its length is abnormal (too small or large).
This can be track spoofing. 127

5.6 Sigmoid used for the detection of car length faults. σl = 0.5 and δl = 5.127

5.7 Sigmoid used for speed fault detection. σv = 1 and δv = 15. 127

5.8 Received objects. On the left is a normal spacial distribution (objects
are well separated and placed logically. On the right is an abnormal
spatial distribution (objects are on top of each other and cars are
inside buildings or outside the road), which can be a sign of track
spoofing. 128

5.9 Sigmoid used for the detection of abnormal distances. σd = 4 and
δd = 20. 128

5.10 Received track across three time steps. On the left it follows a pre-
dictable trajectory. On the right it move outside of what the model
can predict, which can be a track duplication for example. 129

5.11 Comparison of a consensus object (green car) and received object (blue
car). On the left, both objects match and are detectable (green cells)
so the objects are similar and trust will be increased. On the right,
the received object is not detectable (unknown grey cells or orange
undetectable cells), so trust will not increase. 130

5.12 Comparison of a consensus object (green car) and received object (blue
car). On the left is the same neutral situation as object similarity:
objects do not match but due to the lack of detectability, non-trust
is not increased. On the right, objects do not match both are both
detectable by their sources (green and cyan cells for consensus and
received respectively). Objects are dissimilar and detectable so non-
trust is increased. 131

5.13 Result from several support functions. Top row are the consensus and
reference detectability grids, with white pixels being unknown ΩD,
blue pixels being undetectable ��D and green pixels being detectable
D. Bottom row are the cell-wise results of applying the Jousselme
distance, Song-Deng divergence and Equation (5.13) respectively. . . 132

5.14 Output of the support function Dsupport for all input values and σD =
200. 133

5.15 Sigmoid function used in free-space confirmation with δfsi = 500 cells
and σfsi = 200. 133

5.16 Example of perception dilution. The more untrustworthy a source is,
the more transparent and enlarged objects become. 134

5.17 Example of trust plotting used in the following curves. Green area
and curve is mT (T), in red mT (��T) and grey mT (ΩT). 135

5.18 Comparison without trust (blue curves) and with trust (orange curves)
on a nominal situation for vehicle v1. 137

5.19 Comparison without trust (blue curves) and with trust (orange curves)
on a faulty situation for vehicle v1. 139

5.20 Comparison with and without trust on faulty and nominal situations
for vehicle v1. 141

LIST OF FIGURES 157

5.21 Evolution of BBAs in the estimation of trust over time in the form
of a tree. Trust estimated by v1 on v2 in the case where v2 is adding
faults. Despite trust (green curves) being created in conf-osi and
conf-fsi, non-trust (red curves accumulated on top of trust) takes
precedence. 142

5.22 Evolution of BBAs in the estimation of trust over time in the form
of a tree. Trust estimated by v2 on v1 in the the nominal case. No-
tice how distrust (red curves) estimated in leaves (cohe-spc-ro and
conf-odi-rc) rise to the top to create valeys in trust (green curves)
in hist. 142

5.23 Comparison of several parameters tuning under erroneous information
on vehicle v1: cautious in blue, moderate in orange and credulous in
green. 144

B.1 Overview of the Roundabout dataset with the trajectory of the three
vehicles. The red vehicle starts in the center, then joined by the green
vehicle then joined by the blue vehicle. 167

B.2 Overview of the Intersection dataset with the trajectory of the three
vehicles and the VLS-128 position (purple dot). 168

B.3 Overview of the Overtaking dataset with the trajectory of the five
vehicles and the VLS-128 position (purple dot). The yellow vehicle
stops as vehicles pass by each other and blue overtakes it. 168

C.1 Fusion of background grid map and snapshot observation grids of the
three vehicles at a particular time of the overtaking dataset. Colors
are white for unknown, orange for static S, blue for dynamic D, red
for immobile I, green for free F and cyan for passable P 170

D.1 Trust estimated by three vehicles about each others using several
combination rules. Continuous lines are trustworthiness mT (T) and
dashed lines are untrustworthiness mT (��T) stacked on top of trustwor-
thiness. Blue curves use Dempster’s rule and orange Yager’s. 171

E.1 Trust estimated by three vehicles about each others using several con-
sensus building methods. Continuous lines are trustworthiness mT (T)
and dashed lines are untrustworthiness mT (��T) stacked on top of trust-
worthiness. Blue is for the global, orange for fused for fused and green
for sequential. Note that the because the three methods produce re-
sults close to one another, curves are superimposed. 174

List of Tables

1.1 6 Levels of Automation as defined by the SAE. 12

3.1 Terms associated to the evaluation of binary classifiers. 65
3.2 Ratios used in binary evaluation and their meanings. 66
3.3 ROS packages developed and contributed to in the context of this

PhD. Some are private for intellectual property reasons. 73
3.4 Summary of state and existence tracking parameters 77
3.5 Evaluation of sign detection for a total of 560 signs on the trajectory 79
3.6 Evaluation of car detection . 81

4.1 Summary of similarity parameters. 105
4.2 Summary of existence tracking parameters. 107
4.3 Cell-wise evaluation of perceived free space by ground truth grids. . . 114
4.4 Comparison of standalone and cooperative perception for v1. 114
4.5 Comparison of standalone and cooperative perception for v2. 115
4.6 Comparison of standalone and cooperative perception for v3. 115
4.7 Comparison of no detectability, cooperative detectability and full de-

tectability. 118

5.1 Summary of Trust Parameters. 134
5.2 Comparison with and without trust on a nominal situation for vehicle

v1. 136
5.3 Comparison with and without trust on a faulty situation on vehicle v1. 138
5.4 Comparison with and without trust on faulty and nominal situations

for vehicle v1. 140
5.5 Sets of parameters used in the following comparison. 143
5.6 Comparison of several parameters tuning under erroneous information

for v1. 144

C.1 Evaluation of the automatic ground-truth method in comparison with
a manual ground-truth. 170

158

Acronyms

ACC Adaptive Cruise Control. 11

ADAS Advanced Driver-Assistance System. 11

AL Alert Limit. 16, 17, 151

AUC Area Under Curve. 114, 136, 138, 140

BBA Basic Belief Assignment. 24, 28, 125, 130, 132, 134, 141, 155

BEV Bird Eye View. 57, 58

BSM Basic Safety Message. 84, 85

C-V2X Cellular V2X. 84

CAM Cooperative Awareness Message. 85

CI Covariance Intersection. 36, 37, 39, 44, 88, 152

CIF Covariance Intersection Filter. 38, 41–43, 45, 49, 88, 152

cITS Cooperative Intelligent Transportation Systems. 121

CNN Convolutional Neural Network. 57, 58

COLA Cardinalized Optimal Linear Assignment. 68

CP Cooperative Perception. 13, 15, 85

CPM Collective Perception Message. 85, 86, 88, 121

DBSCAN Density-Based Spatial Clustering of Applications with Noise. 55, 74

DENM Decentralized Environment Notification Message. 85, 86

DSRC Dedicated Short Range Communication. 84

DST Dempster-Shafer Theory. 23

ECEF Earth-Centered Earth-Fixed. 89, 90

EKF Extended Kalman Filter. 35

159

160 ACRONYMS

ENU East-North-Up. 90

ETSI European Telecommunications Standards Institute. 85, 154

FCI Fast Covariance Intersection. 38

FN False Negative. 65, 66, 111, 113, 114

FoV Field of View. 71, 85, 99, 101, 108, 119, 126, 136, 138, 143, 164

FP False Positive. 65, 66, 111, 114

FPFD Forward-Prediction Fusion and Decorrelation. 94

FPR False Positive Rate. 114, 136

FS Free Space. 99, 126, 131, 134

GNN Global Nearest Neighbors. 61, 62, 77, 78, 80, 111, 135

GNSS Global Navigation Satellite System. 70, 71, 89

HD High Definition. 75

HOTA Higher Order Tracking Accuracy. 68, 69

ICI Inverse CI. 38, 39, 152

IFCI Improved Fast Covariance Intersection. 38, 39, 152

IMF Information Matrix Fusion. 88

IMM Interacting Multiple Model. 82

IMU Inertial Measurement Unit. 52, 70, 71

IoU Intersection over Union. 66, 123

IPM Inverse Perspective Mapping. 58

ITCI Information-Theoretic Covariance Intersection. 38, 39, 152

ITS Intelligent Transportation Systems. 84

JIT Just In Time. 165

JPDA Joint Probabilistic Data Association. 62, 145

K-CIF Kalman-Covariance Intersection Filter. 41, 42, 152

KF Kalman Filter. 32, 36, 41–43, 45, 46, 49, 152

LDM Local Dynamic Map. 60, 62

ACRONYMS 161

LiDAR Light Detection And Ranging. 41, 51, 52, 57, 69, 71–74, 92, 99, 100,
155, 169

MAP . 85

MHT Multiple Hypothesis Tracking. 62, 82

MOTA Multi-Object Tracking Accuracy. 67

MOTP Multi-Object Tracking Precision. 67

NEES Normalized Estimation Error Squared. 66, 104, 105

NLLR Negative Log Likelihood Ratio. 61

OBU On-Board Unit. 84

ODD Operational Design Domain. 17

OOS Out-Of-Sequence. 92–94

OSM Open Street Map. 98

OSPA Optimal Sub-Pattern Assignment. 68

PCA Principal Component Analysis. 56

PHD Probability Hypothesis Density. 89

PKI Public Key Infrastructure. 87, 154

PoV Point of View. 108, 118, 119, 145, 169

PPK Post-Processing Kinematics. 71, 169

PPP Precise Point Positioning. 70

PR Precision-Recall. 66, 69, 114

RMSE Root Mean Square Error. 67, 69, 78, 79, 81, 113, 114, 118

ROC Receiver Operating Characteristics. 66, 114

ROS Robotic Operating System. 73, 163–165, 167

RSU Road Side Unit. 84

RTK Real Time Kinematics. 70

SAE Society of American Engineer. 11, 12, 84, 85, 158

SCI Split CI. 39, 76, 135

162 ACRONYMS

SCIF Split Covariance Intersection Filter. 19, 39, 40, 46, 47, 49, 76, 96, 119,
152

SIMD Single Instruction Multiple Data. 163

SLAM Simultaneous Localization And Mapping. 48

SLR Scan Line Run. 55, 164

SPaT . 85

T2TF Track-To-Track Fusion. 93, 96, 119

TBM Transferable Belief Model. 23

TIR Target Integrity Risk. 16, 17

TN True Negative. 65, 112–114

TP True Positive. 65, 111, 114

TPR True Positive Rate. 114

TTC Time To Collision. 69

UKF Unscented Kalman Filter. 35

USA United States of America. 11, 70

VRU Vulnerable Road Users. 51

WGS84 World Geodesic System 1984. 89, 90

Appendix A

Developments

This work relies on a significant amount of software development, the detail of
which is given in this annex.

The Robotic Operating System (ROS) middle-ware1 have been extensively used
to facilitate communication between components and to provide a framework
of tools and libraries. The version used in the thesis is ROS noetic. As a rapid
reminder, ROS imposes that processing is done as simple tasks separated in nodes,
which can communicate with each other using topics.

A.1 Datasets

Unless specified, all data in this thesis have been recorded in real life. To facilitate
the process of recording, a series of Python scripts, configurations and tools
for live-recording, live-monitoring, post-processing and organization have been
developed2. They aim at standardizing how datasets are recorded, stored and
processed at Heudiasyc.

A.2 Perception

The perception stack that serves as the basis for cooperation is based on a LiDAR
cars and sign detector developed jointly with other PhD students. It is written
in C++ in the form of a LiDAR processing library lidar utils3. Point-clouds are
represented as N ×M Eigen matrices4 and operations on them are done using
parallel processing (Single Instruction Multiple Data) as much as possible. Real-
time processing is easily attained on modern CPUs but a possible improvement
could be to use GPU oriented libraries or study the Eigen-Cuda interfacing.

For example for car-detection, the order of operations is:

1. Untwist the point cloud
1https://www.ros.org/
2https://gitlab.utc.fr/hds_vehint/datasets
3https://gitlab.utc.fr/hds_vehint/lidar_utils
4https://eigen.tuxfamily.org

163

https://www.ros.org/
https://gitlab.utc.fr/hds_vehint/datasets
https://gitlab.utc.fr/hds_vehint/lidar_utils
https://eigen.tuxfamily.org

164 APPENDIX A. DEVELOPMENTS

2. Separate ground and non-ground points

3. Cluster non-ground points

4. Determine cluster 2D convex hull

5. Filter out clusters outside the road using polygon operations

6. Determine cluster bounding-box

Processing steps are chained together using ROS nodelets, lightweight nodes that
limit communication overheads. To keep a common interface between students,
these nodelets implement multiple methods (e.g. clustering can either be eu-
clidean or Scan Line Run), and a particular method can be chosen at run-time
using dynamic parameters5 along with method-specific parameters. This sim-
plifies development and testing as it makes qualitative evaluation and tuning
quicker.

To facilitate handling from other students, this package is automatically built
when pushed on the git repository using Gitlab CI6. Code is checked for errors,
tested, compiled and exported as an installable Debian package using a custom
facilitator package7.

Another example of perception processing is how detectability grids are com-
puted. They are represented with a community-developped library: grid map8.
They rely on Eigen matrices and provide higher-level functions to access cells.
In particular, it is possible to access all cells within a polygon, which is used to
project the free-space and FoV polygons in a grid.

A.3 Tracking

Higher level operations such as tracking or trust evaluation are implemented
in Python9. Tracks are stored in dictionaries sorted by time step using the
sortedcontainers library 10 and belief functions using a modified version of
pyds11. Here again the specific methods to use (e.g. Kalman, CI or SCI) are
specified and can be changed at runtime along with other parameters. To help
understand and debug trackers, live display of their inner objects have been im-
plemented using pyqtgraph12 along with a debugging mode that outputs large
amounts of information about operations that take place.

While Python is adapted to rapid prototyping, it lacks in performance. To keep
the best of the two worlds, performance critical functions have been implemented
using one of two techniques:

5http://wiki.ros.org/dynamic_reconfigure
6https://docs.gitlab.com/ee/ci/
7https://gitlab.utc.fr/hds_vehint/gitlab_ci
8https://github.com/ANYbotics/grid_map
9https://gitlab.utc.fr/multiception/multiception

10https://github.com/grantjenks/python-sortedcontainers
11https://github.com/reineking/pyds
12https://github.com/pyqtgraph/pyqtgraph

http://wiki.ros.org/dynamic_reconfigure
https://docs.gitlab.com/ee/ci/
https://gitlab.utc.fr/hds_vehint/gitlab_ci
https://github.com/ANYbotics/grid_map
https://gitlab.utc.fr/multiception/multiception
https://github.com/grantjenks/python-sortedcontainers
https://github.com/reineking/pyds
https://github.com/pyqtgraph/pyqtgraph

A.4. DISPLAY 165

• Compile Python code Just In Time (JIT) using numba13

• Implement in C++ and bind to Python using pybind1114. In particular,
this approach have been applied to grid maps to link numpy arrays with
Eigen matrices. This have been made available to the community through
an open-source pull request15.

Tracking and trust building functions are interfaced with the rest of the system
as ROS nodes that communicate using custom messages.

A.4 Display

To visualize the output of previously mentionned nodes, the integrated ROS
visualizer rviz is used. Built-in types (e.g. point clouds, polygons) can natively
be displayed in it and plugins can be implemented to display custom types. In
our case, plugins for object and detectability grids have been implemented16.

A.5 Special Processing

To evaluate an algorithm, recorded data have to be played back in post-processing.
ROS provides bags as a way to post-process data in an online fashion. However,
because data originates from three vehicles, it is particularly heavy to post-process
on a single desktop computer. After a successful but sub-optimal attempt at dis-
tributing computations amongst multiple desktop computers using SSH, the best
solution have been found in offline post-processing. It required refactoring pre-
vious modules to accept either online messages or offline batches but yield the
best performance and reproducibility. Using these properties, a docker image
have been used to perform the computations on a 80 cores / 512Go memory
server from Heudiasyc. This allowed for the concurrent evaluation of multiple
parameter sets in a reasonable time.

13https://github.com/numba/numba
14https://github.com/pybind/pybind11
15https://github.com/ANYbotics/grid_map/pull/335
16https://gitlab.utc.fr/multiception/rviz_multiception

https://github.com/numba/numba
https://github.com/pybind/pybind11
https://github.com/ANYbotics/grid_map/pull/335
https://gitlab.utc.fr/multiception/rviz_multiception

Appendix B

Cooperative Datasets

This work has be done in Rémy Huet master internship, that has been published
in (Huet et al. 2023)..

Three data-sets have been recorded, using the experimental setup described in
Section 3.5.1. They each cover a particular cooperative scenario and have been
recorded on open and busy roads. Datasets are available on the Heudiasyc dataset
portal1. They are provided in ROS bag format or exported as videos, zip and
csv files along with the ground truth outputted from the method detailed in
Appendix C.

B.1 Roundabout

Three vehicles driving around a roundabout as depicted in Figure B.1. One starts
inside the roundabout with the other two progressively entering, for 4 minutes.

Figure B.1: Overview of the Roundabout dataset with the trajectory of the three
vehicles. The red vehicle starts in the center, then joined by the green vehicle then
joined by the blue vehicle.

1https://datasets.hds.utc.fr/project/12

167

https://datasets.hds.utc.fr/project/12

168 APPENDIX B. COOPERATIVE DATASETS

B.2 Intersection

Three vehicles driving near an intersection as depicted in Figure B.2. They pass
in front of a VLS-128 stationed on the curb and cross each other paths regularly
over a duration of 25 minutes.

Figure B.2: Overview of the Intersection dataset with the trajectory of the three
vehicles and the VLS-128 position (purple dot).

B.3 Overtaking

Five vehicles driving on a straight road as depicted in Figure B.3. Three are on
the opposite lane from the other two while a VLS-128 is stationed on the curb.
One vehicle stops as they pass by each other, then is overtaken by another vehicle
in a scenario that lasts 1 minute.

Figure B.3: Overview of the Overtaking dataset with the trajectory of the five vehicles
and the VLS-128 position (purple dot). The yellow vehicle stops as vehicles pass by
each other and blue overtakes it.

Appendix C

Cooperative Ground-Truth

To facilitate the process of labeling cooperative datasets, raw data (LiDAR point
clouds and the PPK poses) are automatically processed to extract candidate
labels using a method described in (Huet 2022; Huet et al. 2023). Offline post-
processing allows for the use of heavy and non-causal processes. As such, because
the accuracy of objects is not the focus but mainly their existence, grid-based
approaches are a good solution to fuse multiple points of view. In particular,
because PoVs are incomplete, an evidential representation has been used. The
resulting grid contains information about free-space and objects. To potentially
implement tracking, object information is split in three categories: immovable
(buildings, road signs or vegetation), static (movable objects but stopped for the
whole dataset such as parked cars) and dynamic (non-parked cars, pedestrians).
As such, the following frame of discernment is defined:

Θ = {F, I, S,D} (C.1)

with F free-space, I immovable, S static object and D dynamic object. For
convenience, three subsets are also defined: M = {S,D} for unspecified movable
objects, O = {I, S,D} for unspecified occupancy and P = {F,D} for passable
areas that can either be free of dynamically occupied through time (Steyer et al.
2020).

In this approach, global measurement grids are generated from sensor measure-
ments. First, a grid comprised of dynamic mass is generated below each vehicle
using their PPK poses and sizes. LiDAR points are first classified using Cylin-
der3D (see Section 3.2.3) and then propagated to three subsets: free, immovable
or unspecified movable. Using these measurement grids, a background mapping,
depicted in Figure C.1 is first realized to highlight passable, immovable and static
areas. It is used as a prior while fusing measurement grids and predicting (i.e.
discounting) the fused grid.

A pass of clustering and filtering is also applied on the successive fused grids to
generate tracks. When compared to a manual ground truth, the approach yields
promising results that are described in Table C.1. Most of the error in these
results can be explained by the naive nature of track generation. As such and
due to lack of time, the manual ground truth is the one used for the rest of this

169

170 APPENDIX C. COOPERATIVE GROUND-TRUTH

Figure C.1: Fusion of background grid map and snapshot observation grids of the
three vehicles at a particular time of the overtaking dataset. Colors are white for
unknown, orange for static S, blue for dynamic D, red for immobile I, green for free
F and cyan for passable P .

manuscript. The semi-automatic method yields few erroneous objects but still
requires a lengthy manual pass to filter them.

Table C.1: Evaluation of the automatic ground-truth method in comparison with a
manual ground-truth.

Precision Recall F1-score

0.95 0.97 0.96

Appendix D

Study of the Combination Rule
Used in Trust Estimation

When computing trust, Dempster’s rule is used to combine all nodes of the trust
tree, which can raise several issues. For example, Dempster’s rule is known to
yield counter-intuitive results in the presence of strong conflict (Zadeh 1979). A
possible solution is to change how conflict is managed, such as with Yager’s rule
that normalize conflict on the uncertainty. Because every term in trust estimation
contains a degree of uncertainty (e.g. weights between nodes, sigmoid functions),
counter-intuitive results should not appear. To confirm this hypothesis, the trust
estimated usig Dempster’s and Yager’s rule have been compared in Figure D.1.
One can see that outside of short instances (around t = 35 for the trust v1 esti-
mates about v2), the two methods produce exactly the same results. Dempster’s
rule is thus not an issue with this formulation.

0

1

T
ru

st
(m
T

)

Trust of v1 in v2 Trust of v1 in v3

Dempster

Yager

0

1

T
ru

st
(m
T

)

Trust of v2 in v1 Trust of v2 in v3

0 10 20 30 40 50
Time (s)

0

1

T
ru

st
(m
T

)

Trust of v3 in v1

0 10 20 30 40 50
Time (s)

Trust of v3 in v2

Figure D.1: Trust estimated by three vehicles about each others using several com-
bination rules. Continuous lines are trustworthiness mT (T) and dashed lines are un-
trustworthiness mT (�T) stacked on top of trustworthiness. Blue curves use Dempster’s
rule and orange Yager’s.

171

Appendix E

Study of Consensus Building in
Trust Estimation

When computing trust, the received perception is compared against a consensus.
In this appendix, we study how it can be defined. There are three possible
definitions.

The first, denoted global uses the output from the cooperative tracker. It natu-
rally accounts for past trusts and contains the most complete information avail-
able, while not requiring additional computation. However, it can lead to self-
confirmation when there is not enough redundancy. In areas that no other sources
perceived, a source will confirm its own information, leading to over-confidence
in trust. This could probably be prevented by using a cautious rule (Equa-
tion (2.12)) when confirming but due to its over-cautious nature, another solution
is preferred.

The second possible definition, denoted fused consists in maintaining another
tracker in parallel that does not include the source being confirmed. Its output
can then be used as a consensus. Letting n be the number of sources to confirm,
this means n trackers fusing n − 1 sources, which is computationally heavy but
certifies that no trust-loops are introduced.

A third definition, denoted sequential reduces the amount of computation by
confirming against each other sources separately. This means that Equation (5.9)
is computed for n− 1 sources and their results are fused.

The main issue with the two last definitions is that in absence of redundancy,
no confirmation can occur, leading to trust being lost over time. A mechanism
to discount as a function of potential confirmation could be derived, though it is
not included in this work.

In practice, the difference is not as significant as expected as illustrated in Fig-
ure E.1. Outside of several short instances where the global consensus differs
from the other two (such as t = 35 in the trust v1 estimates in v2 or at t = 40
between v3 and v1), the estimated trusts are very similar. In particular, the se-
quential methods yields the same values as the fused on, for a portion of the
computational cost, and as such is the preferred method.

173

174
APPENDIX E. STUDY OF CONSENSUS BUILDING IN TRUST

ESTIMATION

0

1

T
ru

st
(m
T

)

Trust of v1 in v2 Trust of v1 in v3

Global

Fused

Sequential

0

1

T
ru

st
(m
T

)

Trust of v2 in v1 Trust of v2 in v3

0 10 20 30 40 50
Time (s)

0

1

T
ru

st
(m
T

)

Trust of v3 in v1

0 10 20 30 40 50
Time (s)

Trust of v3 in v2

Figure E.1: Trust estimated by three vehicles about each others using several consen-
sus building methods. Continuous lines are trustworthiness mT (T) and dashed lines
are untrustworthiness mT (�T) stacked on top of trustworthiness. Blue is for the global,
orange for fused for fused and green for sequential. Note that the because the three
methods produce results close to one another, curves are superimposed.

Bibliography

Aeberhard, Michael (2017). “Object-Level Fusion for Surround Environment Per-
ception in Automated Driving Applications”. Faculty of Electrical Engineering
and Information Technology Of Dortmund (cit. on pp. 62, 64, 135).

Aeberhard, Michael, Sascha Paul, Nico Kaempchen, and Torsten Bertram (June
2011). “Object Existence Probability Fusion Using Dempster-Shafer Theory in
a High-Level Sensor Data Fusion Architecture”. In: IEEE Intelligent Vehicles
Symposium. doi: 10.1109/IVS.2011.5940430 (cit. on pp. 62, 77, 96, 97, 107).

Al Hage, Joelle, Stefano Mafrica, Maan El Badaoui El Najjar, and Franck Ruffier
(Aug. 2019). “Informational Framework for Minimalistic Visual Odometry on
Outdoor Robot”. In: IEEE Transactions on Instrumentation and Measurement.
doi: 10.1109/TIM.2018.2871228 (cit. on p. 36).

Allig, Christoph, Tim Leinmüller, Prachi Mittal, and Gerd Wanielik (Dec. 2019).
“Trustworthiness Estimation of Entities within Collective Perception”. In: IEEE
Vehicular Networking Conference. doi: 10.1109/VNC48660.2019.9062796

(cit. on pp. 97, 122, 123).
Allig, Christoph and Gerd Wanielik (June 2019a). “Alignment of Perception In-

formation for Cooperative Perception”. In: IEEE Intelligent Vehicles Sympo-
sium. doi: 10.1109/IVS.2019.8814108 (cit. on pp. 86, 88, 89, 93).

Allig, Christoph and Gerd Wanielik (Oct. 2019b). “Dynamic Dissemination Method
for Collective Perception”. In: IEEE Intelligent Transportation Systems Con-
ference. doi: 10.1109/ITSC.2019.8917266 (cit. on p. 88).

Ambrosin, Moreno, Ignacio J Alvarez, Cornelius Buerkle, Lily L Yang, Fabian
Oboril, Manoj R Sastry, and Kathiravetpillai Sivanesan (Oct. 2019). “Object-
Level Perception Sharing Among Connected Vehicles”. In: IEEE Intelligent
Transportation Systems Conference. doi: 10.1109/ITSC.2019.8916837 (cit.
on pp. 67, 88).

Ambrosin, Moreno, Lily L Yang, Xiruo Liu, Manoj R Sastry, and Ignacio J Al-
varez (Oct. 2019). “Design of a Misbehavior Detection System for Objects
Based Shared Perception V2X Applications”. In: IEEE Intelligent Transporta-
tion Systems Conference. doi: 10.1109/ITSC.2019.8917066 (cit. on pp. 122,
123, 129).

Ansari, Mohammad Raashid, Jean-Philippe Monteuuis, Jonathan Petit, and Cong
Chen (Dec. 2021). “V2X Misbehavior and Collective Perception Service: Con-
siderations for Standardization”. In: IEEE Conference on Standards for Com-
munications and Networking. doi: 10.1109/CSCN53733.2021.9686156 (cit.
on pp. 86, 121).

175

https://doi.org/10.1109/IVS.2011.5940430
https://doi.org/10.1109/TIM.2018.2871228
https://doi.org/10.1109/VNC48660.2019.9062796
https://doi.org/10.1109/IVS.2019.8814108
https://doi.org/10.1109/ITSC.2019.8917266
https://doi.org/10.1109/ITSC.2019.8916837
https://doi.org/10.1109/ITSC.2019.8917066
https://doi.org/10.1109/CSCN53733.2021.9686156

176 BIBLIOGRAPHY

Ashraf, Imran, Soojung Hur, and Yongwan Park (2017). “An Investigation of
Interpolation Techniques to Generate 2D Intensity Image From LIDAR Data”.
In: IEEE Access. doi: 10.1109/ACCESS.2017.2699686 (cit. on p. 66).

Balakrishnan, Arjun (Dec. 2020). “Integrity Analysis of Data Sources in Multi-
modal Localization System” (cit. on p. 15).

Bar-Shalom, Y. (July 2002). “Update with Out-of-Sequence Measurements in
Tracking: Exact Solution”. In: IEEE Transactions on Aerospace and Electronic
Systems. doi: 10.1109/TAES.2002.1039398 (cit. on p. 94).

Bar-Shalom, Yaakov, Fred Daum, and Jim Huang (Dec. 2009). “The Probabilistic
Data Association Filter”. In: IEEE Control Systems Magazine. doi: 10.1109/
MCS.2009.934469 (cit. on p. 62).

Barrios, Pablo, Martin Adams, Keith Leung, Felipe Inostroza, Ghayur Naqvi,
and Marcos E. Orchard (Feb. 2017). “Metrics for Evaluating Feature-Based
Mapping Performance”. In: IEEE Transactions on Robotics. doi: 10.1109/
TRO.2016.2627027 (cit. on p. 68).

Behley, Jens, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill
Stachniss, and Jürgen Gall (Oct. 2019). “SemanticKITTI: A Dataset for Se-
mantic Scene Understanding of LiDAR Sequences”. In: IEEE/CVF Interna-
tional Conference on Computer Vision. doi: 10.1109/ICCV.2019.00939 (cit.
on p. 58).

Bernardin, Keni and Rainer Stiefelhagen (Dec. 2008). “Evaluating Multiple Ob-
ject Tracking Performance: The CLEAR MOT Metrics”. In: Journal on Image
and Video Processing. doi: 10.1155/2008/246309 (cit. on p. 67).

Bißmeyer, Norbert, Klaus Henrik Schröder, Jonathan Petit, Sebastian Mauthofer,
and Kpatcha M. Bayarou (Dec. 2013). “Experimental Analysis of Misbehavior
Detection and Prevention in VANETs”. In: 2013 IEEE Vehicular Networking
Conference. doi: 10.1109/VNC.2013.6737612 (cit. on p. 122).

Boritz, J. Efrim (Dec. 1, 2005). “IS Practitioners’ Views on Core Concepts of
Information Integrity”. In: International Journal of Accounting Information
Systems. doi: 10.1016/j.accinf.2005.07.001 (cit. on p. 15).

Brebion, Vincent, Julien Moreau, and Franck Davoine (Sept. 2022). “Real-Time
Optical Flow for Vehicular Perception With Low- and High-Resolution Event
Cameras”. In: IEEE Transactions on Intelligent Transportation Systems. doi:
10.1109/TITS.2021.3136358 (cit. on p. 73).

Busch, Steffen, Christian Koetsier, Jeldrik Axmann, and Claus Brenner (June
2022). “LUMPI: The Leibniz University Multi-Perspective Intersection Dataset”.
In: IEEE Intelligent Vehicles Symposium. doi: 10 . 1109 / IV51971 . 2022 .

9827157 (cit. on p. 95).
Caesar, Holger, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong,

Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom
(June 2020). “nuScenes: A Multimodal Dataset for Autonomous Driving”. In:
IEEE/CVF Conference on Computer Vision and Pattern Recognition. doi:
10.1109/CVPR42600.2020.01164 (cit. on p. 65).

Caillot, Antoine, Safa Ouerghi, Pascal Vasseur, Rémi Boutteau, and Yohan Dupuis
(2022). “Survey on Cooperative Perception in an Automotive Context”. In:
IEEE Transactions on Intelligent Transportation Systems. doi: 10 . 1109 /

TITS.2022.3153815 (cit. on pp. 85, 86).

https://doi.org/10.1109/ACCESS.2017.2699686
https://doi.org/10.1109/TAES.2002.1039398
https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/MCS.2009.934469
https://doi.org/10.1109/TRO.2016.2627027
https://doi.org/10.1109/TRO.2016.2627027
https://doi.org/10.1109/ICCV.2019.00939
https://doi.org/10.1155/2008/246309
https://doi.org/10.1109/VNC.2013.6737612
https://doi.org/10.1016/j.accinf.2005.07.001
https://doi.org/10.1109/TITS.2021.3136358
https://doi.org/10.1109/IV51971.2022.9827157
https://doi.org/10.1109/IV51971.2022.9827157
https://doi.org/10.1109/CVPR42600.2020.01164
https://doi.org/10.1109/TITS.2022.3153815
https://doi.org/10.1109/TITS.2022.3153815

BIBLIOGRAPHY 177

Capellier, Edouard, Franck Davoine, Vincent Fremont, Javier Ibanez-Guzman,
and You Li (Nov. 2018). “Evidential Grid Mapping, from Asynchronous LIDAR
Scans and RGB Images, for Autonomous Driving”. In: IEEE International
Conference on Intelligent Transportation Systems. doi: 10.1109/ITSC.2018.
8569710 (cit. on pp. 58, 60).

Chen, Qi, Sihai Tang, Qing Yang, and Song Fu (July 2019). “Cooper: Cooperative
Perception for Connected Autonomous Vehicles Based on 3D Point Clouds”.
In: IEEE International Conference on Distributed Computing Systems. doi:
10.1109/ICDCS.2019.00058 (cit. on pp. 88, 95).

Chen, Zhe, Jing Zhang, and Dacheng Tao (May 2019). “Progressive LiDAR Adap-
tation for Road Detection”. In: IEEE/CAA Journal of Automatica Sinica. doi:
10.1109/JAS.2019.1911459 (cit. on p. 58).

Chowdhury, Muktadir, Ashlesh Gawande, and Lan Wang (Apr. 18, 2017). “Secure
Information Sharing among Autonomous Vehicles in NDN”. In: International
Conference on Internet-of-Things Design and Implementation. doi: 10.1145/
3054977.3054994 (cit. on p. 87).

Danquah, Paul and Henoch Kwabena-Adade (Aug. 21, 2020). “Public Key In-
frastructure: An Enhanced Validation Framework”. In: Journal of Information
Security. doi: 10.4236/jis.2020.114016 (cit. on p. 87).

Delooz, Quentin, Alexander Willecke, Keno Garlichs, Andreas-Christian Hagau,
Lars Wolf, Alexey Vinel, and Andreas Festag (2022). “Analysis and Evaluation
of Information Redundancy Mitigation for V2X Collective Perception”. In:
IEEE Access. doi: 10.1109/ACCESS.2022.3170029 (cit. on p. 86).

Dempster, A. P. (Apr. 1967). “Upper and Lower Probabilities Induced by a Mul-
tivalued Mapping”. In: The Annals of Mathematical Statistics. doi: 10.1214/
aoms/1177698950 (cit. on pp. 23, 26).

Deng, Jiajun, Shaoshuai Shi, Peiwei Li, Wengang Zhou, Yanyong Zhang, and
Houqiang Li (May 18, 2021). “Voxel R-CNN: Towards High Performance Voxel-
based 3D Object Detection”. In: Proceedings of the AAAI Conference on Ar-
tificial Intelligence. doi: 10.1609/aaai.v35i2.16207 (cit. on p. 58).

Denœux, Thierry (Feb. 1, 2008). “Conjunctive and Disjunctive Combination of
Belief Functions Induced by Nondistinct Bodies of Evidence”. In: Artificial
Intelligence. doi: 10.1016/j.artint.2007.05.008 (cit. on p. 28).

Du, Yujun, Jinling Wang, Chris Rizos, and Ahmed El-Mowafy (Dec. 1, 2021).
“Vulnerabilities and Integrity of Precise Point Positioning for Intelligent Trans-
port Systems: Overview and Analysis”. In: Satellite Navigation. doi: 10.1186/
s43020-020-00034-8 (cit. on p. 70).

Dubois, Didier and Henri Prade (2008). “A Set-Theoretic View of Belief Func-
tions”. In: Classic Works of the Dempster-Shafer Theory of Belief Functions.
doi: 10.1007/978-3-540-44792-4_14 (cit. on p. 27).

Duraisamy, Bharanidhar and Tilo Schwarz (Sept. 2015). “Combi-Tor: Track-to-
Track Association Framework for Automotive Sensor Fusion”. In: IEEE In-
ternational Conference on Intelligent Transportation Systems. doi: 10.1109/
ITSC.2015.263 (cit. on p. 61).

Durrant-Whyte, H. and M. Stevens (2001). “Data Fusion in Decentralised Sensing
Networks”. In: International Conference on Information Fusion (cit. on p. 36).

https://doi.org/10.1109/ITSC.2018.8569710
https://doi.org/10.1109/ITSC.2018.8569710
https://doi.org/10.1109/ICDCS.2019.00058
https://doi.org/10.1109/JAS.2019.1911459
https://doi.org/10.1145/3054977.3054994
https://doi.org/10.1145/3054977.3054994
https://doi.org/10.4236/jis.2020.114016
https://doi.org/10.1109/ACCESS.2022.3170029
https://doi.org/10.1214/aoms/1177698950
https://doi.org/10.1214/aoms/1177698950
https://doi.org/10.1609/aaai.v35i2.16207
https://doi.org/10.1016/j.artint.2007.05.008
https://doi.org/10.1186/s43020-020-00034-8
https://doi.org/10.1186/s43020-020-00034-8
https://doi.org/10.1007/978-3-540-44792-4_14
https://doi.org/10.1109/ITSC.2015.263
https://doi.org/10.1109/ITSC.2015.263

178 BIBLIOGRAPHY

Elfes, A. (June 1989). “Using Occupancy Grids for Mobile Robot Perception and
Navigation”. In: Computer. doi: 10.1109/2.30720 (cit. on p. 60).

Ester, Martin, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996). “A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise”. In: International Conference on Knowledge Discovery and Data
Mining (cit. on p. 55).

ETSI (2019). TR 103 562: Analysis of the Collective Perception Service (cit. on
p. 85).

Ettinger, Scott, Shuyang Cheng, Benjamin Caine, Chenxi Liu, Hang Zhao, Sabeek
Pradhan, Yuning Chai, Ben Sapp, Charles R. Qi, Yin Zhou, Zoey Yang, Aurélien
Chouard, Pei Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley,
Jonathon Shlens, and Dragomir Anguelov (2021). “Large Scale Interactive Mo-
tion Forecasting for Autonomous Driving: The Waymo Open Motion Dataset”.
In: (cit. on pp. 65, 108).

Franken, D. and A. Hupper (July 2005). “Improved Fast Covariance Intersection
for Distributed Data Fusion”. In: International Conference on Information Fu-
sion. doi: 10.1109/ICIF.2005.1591849 (cit. on p. 38).

Gabb, Michael, Holger Digel, Tobias Müller, and Rüdiger-Walter Henn (June
2019). “Infrastructure-Supported Perception and Track-level Fusion Using Edge
Computing”. In: IEEE Intelligent Vehicles Symposium. doi: 10.1109/IVS.
2019.8813886 (cit. on p. 88).

Geiger, Andreas, Philip Lenz, and Raquel Urtasun (June 2012). “Are We Ready
for Autonomous Driving? The KITTI Vision Benchmark Suite”. In: IEEE Con-
ference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.
2012.6248074 (cit. on pp. 58, 65).

Gottschalg, Grischa, Matthias Becker, and Stefan Leinen (Nov. 2020). “Integrity
Concept for Sensor Fusion Algorithms Used in a Prototype Vehicle for Auto-
mated Driving”. In: European Navigation Conference. doi: 10.23919/ENC48637.
2020.9317323 (cit. on p. 17).

Günther, Hendrik-Jörn, Björn Mennenga, Oliver Trauer, Raphael Riebl, and Lars
Wolf (Dec. 2016). “Realizing Collective Perception in a Vehicle”. In: IEEE
Vehicular Networking Conference. doi: 10.1109/VNC.2016.7835930 (cit. on
pp. 86, 88, 89).

Herpel, Thomas, Christoph Lauer, Reinhard German, and Johannes Salzberger
(Nov. 2008). “Multi-Sensor Data Fusion in Automotive Applications”. In: In-
ternational Conference on Sensing Technology. doi: 10.1109/ICSENST.2008.
4757100 (cit. on p. 87).

Héry, Elwan, Philippe Xu, and Philippe Bonnifait (May 9, 2017). “One-Dimensional
Cooperative Localization for Vehicles Equipped with Mono-Frequency GNSS
Receivers”. In: (cit. on p. 43).

Héry, Elwan, Philippe Xu, and Philippe Bonnifait (2021). “Consistent Decentral-
ized Cooperative Localization for Autonomous Vehicles Using LiDAR, GNSS
and HD Maps”. In: Journal of Field Robotics (cit. on p. 38).

Higham, Nicholas J. (Jan. 2002). Accuracy and Stability of Numerical Algorithms.
Second. doi: 10.1137/1.9780898718027 (cit. on p. 36).

https://doi.org/10.1109/2.30720
https://doi.org/10.1109/ICIF.2005.1591849
https://doi.org/10.1109/IVS.2019.8813886
https://doi.org/10.1109/IVS.2019.8813886
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.23919/ENC48637.2020.9317323
https://doi.org/10.23919/ENC48637.2020.9317323
https://doi.org/10.1109/VNC.2016.7835930
https://doi.org/10.1109/ICSENST.2008.4757100
https://doi.org/10.1109/ICSENST.2008.4757100
https://doi.org/10.1137/1.9780898718027

BIBLIOGRAPHY 179

Hoss, Michael, Maike Scholtes, and Lutz Eckstein (Aug. 1, 2022). “A Review of
Testing Object-Based Environment Perception for Safe Automated Driving”.
In: Automotive Innovation. doi: 10.1007/s42154-021-00172-y (cit. on p. 68).

Houenou, Adam, Philippe Bonnifait, Veronique Cherfaoui, and Jean-François
Boissou (June 2012). “A Track-to-Track Association Method for Automotive
Perception Systems”. In: IEEE Intelligent Vehicles Symposium. doi: 10.1109/
IVS.2012.6232261 (cit. on p. 62).

Huet, Rémy (2022). Perception Coopérative Pour Les Véhicules Autonomes :
Méthodes de Traitement Pour Jeux de Données. Master Internship Report (cit.
on p. 169).

Huet, Rémy, Antoine Lima, Philippe Xu, Philippe Bonnifait, and Veronique Cher-
faoui (Sept. 2023). “Collaborative Grid Mapping for Moving Object Tracking
Evaluation”. In: IEEE Intelligent Transportation Systems Conference (cit. on
pp. 167, 169).

Hurl, Braden, Robin Cohen, Krzysztof Czarnecki, and Steven Waslander (Oct.
2020). “TruPercept: Trust Modelling for Autonomous Vehicle Cooperative Per-
ception from Synthetic Data”. In: IEEE Intelligent Vehicles Symposium. doi:
10.1109/IV47402.2020.9304695 (cit. on pp. 94, 122, 123).

Jiménez, Vı́ctor, Jorge Godoy, Antonio Artuñedo, and Jorge Villagra (2021).
“Ground Segmentation Algorithm for Sloped Terrain and Sparse LiDAR Point
Cloud”. In: IEEE Access. doi: 10.1109/ACCESS.2021.3115664 (cit. on pp. 53,
55, 75).

Jousselme, Anne-Laure, Dominic Grenier, and Éloi Bossé (June 1, 2001). “A
New Distance between Two Bodies of Evidence”. In: Information Fusion. doi:
10.1016/S1566-2535(01)00026-4 (cit. on p. 131).

Julier, S.J. and J.K. Uhlmann (June 1997a). “A Non-Divergent Estimation Algo-
rithm in the Presence of Unknown Correlations”. In: American Control Con-
ference. doi: 10.1109/ACC.1997.609105 (cit. on p. 36).

Julier, Simon and Jeffrey Uhlmann (June 20, 2001). “General Decentralized Data
Fusion with Covariance Intersection (CI)”. In: Handbook of Multisensor Data
Fusion, Theroy and Practice. doi: 10.1201/9781420038545.ch12 (cit. on
p. 39).

Julier, Simon J. and Jeffrey K. Uhlmann (July 28, 1997b). “New Extension of
the Kalman Filter to Nonlinear Systems”. In: Signal Processing, Sensor Fusion,
and Target Recognition VI. doi: 10.1117/12.280797 (cit. on p. 35).

Kalman, Rudolph Emil (1960). “A New Approach to Linear Filtering and Predic-
tion Problems”. In: Transactions of the ASME–Journal of Basic Engineering
(cit. on pp. 32, 35).

Keysight (Aug. 31, 2018). Whitepaper: DSRC 802.11p Is Ready for Advanced
Driver Assistance Systems (ADAS) (cit. on p. 84).

Khan, Muhammad Altamash (Oct. 2019). “Comparison of Track to Track Fusion
Methods for Nonlinear Process and Measurement Models”. In: Sensor Data
Fusion: Trends, Solutions, Applications. doi: 10.1109/SDF.2019.8916652
(cit. on p. 76).

Kim, Seong-Woo, Wei Liu, Marcelo H. Ang, Emilio Frazzoli, and Daniela Rus
(Aut. 2015). “The Impact of Cooperative Perception on Decision Making and

https://doi.org/10.1007/s42154-021-00172-y
https://doi.org/10.1109/IVS.2012.6232261
https://doi.org/10.1109/IVS.2012.6232261
https://doi.org/10.1109/IV47402.2020.9304695
https://doi.org/10.1109/ACCESS.2021.3115664
https://doi.org/10.1016/S1566-2535(01)00026-4
https://doi.org/10.1109/ACC.1997.609105
https://doi.org/10.1201/9781420038545.ch12
https://doi.org/10.1117/12.280797
https://doi.org/10.1109/SDF.2019.8916652

180 BIBLIOGRAPHY

Planning of Autonomous Vehicles”. In: IEEE Intelligent Transportation Sys-
tems Magazine. doi: 10.1109/MITS.2015.2409883 (cit. on pp. 68, 87).

Ku, Jason, Melissa Mozifian, Jungwook Lee, Ali Harakeh, and Steven L. Waslan-
der (Oct. 2018). “Joint 3D Proposal Generation and Object Detection from
View Aggregation”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. doi: 10.1109/IROS.2018.8594049 (cit. on p. 57).

Kurdej, Marek and Véronique Cherfaoui (Dec. 19, 2013). “Conservative, Propor-
tional and Optimistic Contextual Discounting in the Belief Functions Theory”.
In: International Conference on Information Fusion (cit. on p. 29).

Laconte, Johann, Elie Randriamiarintsoa, Abderrahim Kasmi, François Pomer-
leau, Roland Chapuis, Christophe Debain, and Romuald Aufrère (Sept. 2021).
“Dynamic Lambda-Field: A Counterpart of the Bayesian Occupancy Grid
for Risk Assessment in Dynamic Environments”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. doi: 10.1109/IROS51168.

2021.9636804 (cit. on p. 60).
Lang, Alex H., Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar

Beijbom (June 2019). “PointPillars: Fast Encoders for Object Detection From
Point Clouds”. In: IEEE/CVF Conference on Computer Vision and Pattern
Recognition. doi: 10.1109/CVPR.2019.01298 (cit. on p. 58).

Li, Chuyi, Lulu Li, Hongliang Jiang, Kaiheng Weng, Yifei Geng, Liang Li, Zaidan
Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei Liang,
Linyuan Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, and Xiaolin
Wei (Sept. 7, 2022). YOLOv6: A Single-Stage Object Detection Framework for
Industrial Applications (cit. on p. 57).

Li, H. and F. Nashashibi (Oct. 2011). “Multi-Vehicle Cooperative Perception
and Augmented Reality for Driver Assistance: A Possibility to ‘See’ through
Front Vehicle”. In: IEEE Conference on Intelligent Transportation Systems.
doi: 10.1109/ITSC.2011.6083061 (cit. on p. 87).

Li, Hao, Fawzi Nashashibi, and Ming Yang (Dec. 2013). “Split Covariance Inter-
section Filter: Theory and Its Application to Vehicle Localization”. In: IEEE
Transactions on Intelligent Transportation Systems. doi: 10.1109/TITS.2013.
2267800 (cit. on pp. 39, 43, 47).

Li, You, Julien Moreau, and Javier Ibanez-Guzman (May 19, 2022). Unconven-
tional Visual Sensors for Autonomous Vehicles. doi: 10.48550/arXiv.2205.
09383 (cit. on pp. 72, 73).

Lima, Antoine, Philippe Bonnifait, Véronique Cherfaoui, and Joelle Al Hage
(Sept. 2021). “Data Fusion with Split Covariance Intersection for Coopera-
tive Perception”. In: IEEE International Intelligent Transportation Systems
Conference. doi: 10.1109/ITSC48978.2021.9564963 (cit. on pp. 40, 41).

Lima, Antoine, Véronique Cherfaoui, and Philippe Bonnifait (Oct. 26, 2022).
“Evidential Trustworthiness Estimation for Cooperative Perception”. In: In-
ternational Conference on Belief Functions (cit. on p. 124).

Lima, Antoine, Anthony Welte, Philippe Bonnifait, and Philippe Xu (Dec. 2020).
“LiDAR Observations by Motion Compensation and Scan Accumulation”. In:
International Conference on Control, Automation, Robotics and Vision. doi:
10.1109/ICARCV50220.2020.9305365 (cit. on pp. 16, 48).

https://doi.org/10.1109/MITS.2015.2409883
https://doi.org/10.1109/IROS.2018.8594049
https://doi.org/10.1109/IROS51168.2021.9636804
https://doi.org/10.1109/IROS51168.2021.9636804
https://doi.org/10.1109/CVPR.2019.01298
https://doi.org/10.1109/ITSC.2011.6083061
https://doi.org/10.1109/TITS.2013.2267800
https://doi.org/10.1109/TITS.2013.2267800
https://doi.org/10.48550/arXiv.2205.09383
https://doi.org/10.48550/arXiv.2205.09383
https://doi.org/10.1109/ITSC48978.2021.9564963
https://doi.org/10.1109/ICARCV50220.2020.9305365

BIBLIOGRAPHY 181

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C. Lawrence Zitnick (2014). “Microsoft COCO:
Common Objects in Context”. In: European Conference on Computer Vision.
doi: 10.1007/978-3-319-10602-1_48 (cit. on pp. 64, 65).

Liu, Xiruo, Lily Yang, Ignacio Alvarez, Kathiravetpillai Sivanesan, Arvind Mer-
waday, Fabian Oboril, Cornelius Buerkle, Manoj Sastry, and Leonardo Gomes
Baltar (July 2021). “MISO- V: Misbehavior Detection for Collective Perception
Services in Vehicular Communications”. In: IEEE Intelligent Vehicles Sympo-
sium. doi: 10.1109/IV48863.2021.9575970 (cit. on p. 123).

Luiten, Jonathon, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger,
Laura Leal-Taixé, and Bastian Leibe (Feb. 1, 2021). “HOTA: A Higher Or-
der Metric for Evaluating Multi-object Tracking”. In: International Journal of
Computer Vision. doi: 10.1007/s11263-020-01375-2 (cit. on pp. 68, 69).

Luthardt, Stefan, Chao Han, Volker Willert, and Matthias Schreier (June 2017).
“Efficient Graph-Based V2V Free Space Fusion”. In: IEEE Intelligent Vehicles
Symposium. doi: 10.1109/IVS.2017.7995843 (cit. on p. 59).

Ma, Jianbing, Weiru Liu, Didier Dubois, and Henri Prade (Aug. 2011). “Bridging
Jeffrey’s Rule, Agm Revision and Dempster Conditioning in the Theory of
Evidence”. In: International Journal on Artificial Intelligence Tools. doi: 10.
1142/S0218213011000401 (cit. on p. 125).

Madl, Tobias (July 2021). “Security Concept with Distributed Trust-Levels for
Autonomous Cooperative Vehicle Networks”. In: IEEE Intelligent Vehicles
Symposium. doi: 10.1109/IV48863.2021.9576024 (cit. on p. 87).

Mao, Jiageng, Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li (June 19, 2022).
3D Object Detection for Autonomous Driving: A Review and New Outlooks.
doi: 10.48550/arXiv.2206.09474 (cit. on p. 52).

Meagher, Donald (June 1, 1982). “Geometric Modeling Using Octree Encoding”.
In: Computer Graphics and Image Processing. doi: 10.1016/0146-664X(82)
90104-6 (cit. on p. 55).

Mercier, David, Benjamin Quost, and Thierry Denœux (2005). “Contextual Dis-
counting of Belief Functions”. In: Symbolic and Quantitative Approaches to
Reasoning with Uncertainty. doi: 10.1007/11518655_47 (cit. on p. 29).

Milan, Anton, Konrad Schindler, and Stefan Roth (June 2013). “Challenges of
Ground Truth Evaluation of Multi-target Tracking”. In: IEEE Conference on
Computer Vision and Pattern Recognition Workshops. doi: 10.1109/CVPRW.
2013.111 (cit. on p. 67).

Milanés, Vicente, David González, Francisco Navas, Imane Mahtout, Alexandre
Armand, Clément Zinoune, Arunkumar Ramaswamy, Farid Bekka, Nievsabel
Molina, Emmanuel Battesti, Yvon Kerdoncuff, Carlos Guindel, Jorge Beltrán,
Irene Cortés, Alejandro Barrera, and Fernando Garcia (July 2022). “The Tor-
nado Project: An Automated Driving Demonstration in Peri-Urban and Rural
Areas”. In: IEEE Intelligent Transportation Systems Magazine. doi: 10.1109/
MITS.2021.3068067 (cit. on p. 13).

Milioto, Andres, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss (Nov. 2019).
“RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation”. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems. doi: 10.1109/
IROS40897.2019.8967762 (cit. on p. 57).

https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/IV48863.2021.9575970
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1109/IVS.2017.7995843
https://doi.org/10.1142/S0218213011000401
https://doi.org/10.1142/S0218213011000401
https://doi.org/10.1109/IV48863.2021.9576024
https://doi.org/10.48550/arXiv.2206.09474
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1007/11518655_47
https://doi.org/10.1109/CVPRW.2013.111
https://doi.org/10.1109/CVPRW.2013.111
https://doi.org/10.1109/MITS.2021.3068067
https://doi.org/10.1109/MITS.2021.3068067
https://doi.org/10.1109/IROS40897.2019.8967762
https://doi.org/10.1109/IROS40897.2019.8967762

182 BIBLIOGRAPHY

Miucic, R., A. Sheikh, Z. Medenica, and R. Kunde (Aug. 2018). “V2X Applica-
tions Using Collaborative Perception”. In: IEEE Vehicular Technology Confer-
ence. doi: 10.1109/VTCFall.2018.8690818 (cit. on p. 69).

Moras, Julien, Véronique Cherfaoui, and Philippe Bonnifait (May 2011). “Credi-
bilist Occupancy Grids for Vehicle Perception in Dynamic Environments”. In:
IEEE International Conference on Robotics and Automation. doi: 10.1109/
ICRA.2011.5980298 (cit. on p. 60).

Muntzinger, Marc., Michael Aeberhard, Sebastian Zuther, Mirko Mählisch, Matthias
Schmid, Jürgen Dickmann, and Klaus Dietmayer (2010). “Reliable Automotive
Pre-Crash System with out-of-Sequence Measurement Processing”. In: IEEE
Intelligent Vehicles Symposium. doi: 10.1109/IVS.2010.5548149 (cit. on
p. 93).

Nettleton, Eric W. and Hugh F. Durrant-Whyte (Oct. 4, 2001). “Delayed and
Asequent Data in Decentralized Sensing Networks”. In: Sensor Fusion and
Decentralized Control in Robotic Systems IV. doi: 10.1117/12.444148 (cit.
on p. 94).

Nguyen, Tien Viet, Patil Shailesh, Baghel Sudhir, Gulati Kapil, Libin Jiang,
Zhibin Wu, Durga Malladi, and Junyi Li (Nov. 2017). “A Comparison of Cel-
lular Vehicle-to-Everything and Dedicated Short Range Communication”. In:
IEEE Vehicular Networking Conference. doi: 10.1109/VNC.2017.8275618
(cit. on p. 84).

Niehsen, W. (July 2002). “Information Fusion Based on Fast Covariance Inter-
section Filtering”. In: International Conference on Information Fusion. doi:
10.1109/ICIF.2002.1020907 (cit. on p. 38).

Noack, Benjamin, Joris Sijs, Marc Reinhardt, and Uwe D. Hanebeck (May 1,
2017). “Decentralized Data Fusion with Inverse Covariance Intersection”. In:
Automatica. doi: 10.1016/j.automatica.2017.01.019 (cit. on p. 38).

Nuss, D., S. Reuter, M. Thom, T. Yuan, G. Krehl, M. Maile, A. Gern, and K.
Dietmayer (2018). “A Random Finite Set Approach for Dynamic Occupancy
Grid Maps with Real-Time Application”. In: International Journal of Robotics
Research. doi: 10.1177/0278364918775523 (cit. on pp. 60, 89).

Obst, Marcus, Laurens Hobert, and Pierre Reisdorf (Dec. 2014). “Multi-Sensor
Data Fusion for Checking Plausibility of V2V Communications by Vision-Based
Multiple-Object Tracking”. In: IEEE Vehicular Networking Conference. doi:
10.1109/VNC.2014.7013333 (cit. on p. 122).

Ko-PER Project (2014). “Communication for Cooperative Perception” (cit. on
p. 84).

Philion, Jonah, Amlan Kar, and Sanja Fidler (June 2020). “Learning to Evaluate
Perception Models Using Planner-Centric Metrics”. In: IEEE/CVF Conference
on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR42600.2020.
01407 (cit. on p. 69).

Pierre, Cyrille, Roland Chapuis, Romuald Aufrère, Jean Laneurit, and Christo-
pher Debain (July 2018). “Range-Only Based Cooperative Localization for
Mobile Robots”. In: International Conference on Information Fusion. doi:
10.23919/ICIF.2018.8455692 (cit. on pp. 39, 43, 47).

https://doi.org/10.1109/VTCFall.2018.8690818
https://doi.org/10.1109/ICRA.2011.5980298
https://doi.org/10.1109/ICRA.2011.5980298
https://doi.org/10.1109/IVS.2010.5548149
https://doi.org/10.1117/12.444148
https://doi.org/10.1109/VNC.2017.8275618
https://doi.org/10.1109/ICIF.2002.1020907
https://doi.org/10.1016/j.automatica.2017.01.019
https://doi.org/10.1177/0278364918775523
https://doi.org/10.1109/VNC.2014.7013333
https://doi.org/10.1109/CVPR42600.2020.01407
https://doi.org/10.1109/CVPR42600.2020.01407
https://doi.org/10.23919/ICIF.2018.8455692

BIBLIOGRAPHY 183

Qian, Rui, Xin Lai, and Xirong Li (Oct. 1, 2022). “3D Object Detection for
Autonomous Driving: A Survey”. In: Pattern Recognition. doi: 10.1016/j.
patcog.2022.108796 (cit. on p. 52).

Rauch, Andreas, Felix Klanner, Ralph Rasshofer, and Klaus Dietmayer (June
2012). “Car2X-based Perception in a High-Level Fusion Architecture for Co-
operative Perception Systems”. In: IEEE Intelligent Vehicles Symposium. doi:
10.1109/IVS.2012.6232130 (cit. on pp. 88, 89).

Reid, Tyler G.R., Sarah E. Houts, Robert Cammarata, Graham Mills, Siddharth
Agarwal, Ankit Vora, and Gaurav Pandey (Sept. 24, 2019). “Localization Re-
quirements for Autonomous Vehicles”. In: SAE International Journal of Con-
nected and Automated Vehicles. doi: 10.4271/12-02-03-0012 (cit. on p. 16).

Reineking, Thomas (Mar. 24, 2014). “Belief Functions: Theory and Algorithms”.
Universität Bremen (cit. on p. 26).

Rheaume, Francois and Abder Rezak Benaskeur (Dec. 2008). “Forward Prediction-
Based Approach to Target-Tracking with Out-of-Sequence Measurements”. In:
IEEE Conference on Decision and Control. doi: 10.1109/CDC.2008.4738848
(cit. on p. 94).

SAE-J2735 (2022). J2735: V2X Communications Message Set Dictionary. Society
of Automotive Engineers (cit. on p. 84).

SAE-J3016 (2021). J3016: Taxonomy and Definitions for Terms Related to Driv-
ing Automation Systems for On-Road Motor Vehicles. Society of Automotive
Engineers (cit. on p. 11).

Sandblom, Fredrik and Joakim Sörstedt (June 2014). “Sensor Data Fusion for
Multiple Configurations”. In: IEEE Intelligent Vehicles Symposium Proceed-
ings. doi: 10.1109/IVS.2014.6856557 (cit. on p. 76).

Schiegg, Florian A., Ignacio Llatser, Daniel Bischoff, and Georg Volk (Jan. 2021).
“Collective Perception: A Safety Perspective”. In: Sensors. doi: 10.3390/

s21010159 (cit. on p. 69).
Schmidt, Robert K, Tim Leinmueller, Elmar Schoch, Albert Held, and Guenter

Schaefer (2008). “Vehicle Behavior Analysis to Enhance Security in VANETs”.
In: IEEE Vehicle-to-Vehicle Communications Workshop (cit. on pp. 122, 123).

Schuhmacher, Dominic, Ba-Tuong Vo, and Ba-Ngu Vo (Aug. 2008). “A Con-
sistent Metric for Performance Evaluation of Multi-Object Filters”. In: IEEE
Transactions on Signal Processing. doi: 10.1109/TSP.2008.920469 (cit. on
p. 68).

Seeliger, F. and K. Dietmayer (Oct. 2014). “Inter-Vehicle Information-Fusion with
Shared Perception Information”. In: IEEE Intelligent Transportation Systems
Conference. doi: 10.1109/ITSC.2014.6958011 (cit. on pp. 43, 88, 95).

Shafer, Glenn (1976). A Mathematical Theory of Evidence. doi: 10.2307/j.
ctv10vm1qb (cit. on p. 23).

Smets, P. (2000). “Data Fusion in the Transferable Belief Model”. In: Proceedings
of the Third International Conference on Information Fusion. doi: 10.1109/
IFIC.2000.862713 (cit. on p. 28).

Smets, Philippe (Aug. 1, 1993). “Belief Functions: The Disjunctive Rule of Com-
bination and the Generalized Bayesian Theorem”. In: International Journal of
Approximate Reasoning. doi: 10.1016/0888-613X(93)90005-X (cit. on p. 27).

https://doi.org/10.1016/j.patcog.2022.108796
https://doi.org/10.1016/j.patcog.2022.108796
https://doi.org/10.1109/IVS.2012.6232130
https://doi.org/10.4271/12-02-03-0012
https://doi.org/10.1109/CDC.2008.4738848
https://doi.org/10.1109/IVS.2014.6856557
https://doi.org/10.3390/s21010159
https://doi.org/10.3390/s21010159
https://doi.org/10.1109/TSP.2008.920469
https://doi.org/10.1109/ITSC.2014.6958011
https://doi.org/10.2307/j.ctv10vm1qb
https://doi.org/10.2307/j.ctv10vm1qb
https://doi.org/10.1109/IFIC.2000.862713
https://doi.org/10.1109/IFIC.2000.862713
https://doi.org/10.1016/0888-613X(93)90005-X

184 BIBLIOGRAPHY

Smets, Philippe and Robert Kennes (Apr. 1, 1994). “The Transferable Belief
Model”. In: Artificial Intelligence. doi: 10.1016/0004-3702(94)90026-4 (cit.
on p. 23).

Smith, Randall C. and Peter Cheeseman (Dec. 1, 1986). “On the Representa-
tion and Estimation of Spatial Uncertainty”. In: The International Journal of
Robotics Research. doi: 10.1177/027836498600500404 (cit. on p. 91).

Song, Yan, Zheng Hu, Tiancheng Li, and Hongqi Fan (Jan. 2022). “Performance
Evaluation Metrics and Approaches for Target Tracking: A Survey”. In: Sen-
sors. doi: 10.3390/s22030793 (cit. on p. 68).

Song, Yutong and Yong Deng (2019). “Divergence Measure of Belief Function
and Its Application in Data Fusion”. In: IEEE Access. doi: 10.1109/ACCESS.
2019.2932390 (cit. on p. 131).

Song, Zhiying, Fuxi Wen, Hailiang Zhang, and Jun Li (2022). An Efficient and
Robust Object-Level Cooperative Perception Framework for Connected and Au-
tomated Driving (cit. on p. 88).

Sridhar, Srivatsan and Azim Eskandarian (2019). “Cooperative Perception in Au-
tonomous Ground Vehicles Using a Mobile-Robot Testbed”. In: IET Intelligent
Transport Systems. doi: 10.1049/iet-its.2018.5607 (cit. on p. 88).

Steyer, Sascha, Christian Lenk, Dominik Kellner, Georg Tanzmeister, and Dirk
Wollherr (July 2020). “Grid-Based Object Tracking With Nonlinear Dynamic
State and Shape Estimation”. In: IEEE Transactions on Intelligent Trans-
portation Systems. doi: 10.1109/TITS.2019.2921248 (cit. on p. 169).

Tao, Z. and P. Bonnifait (Sept. 2016). “Sequential Data Fusion of GNSS Pseudor-
anges and Dopplers With Map-Based Vision Systems”. In: IEEE Transactions
on Intelligent Vehicles. doi: 10.1109/TIV.2017.2658185 (cit. on p. 112).

Taş, Ömer Şahin, Florian Kuhnt, J. Marius Zöllner, and Christoph Stiller (June
2016). “Functional System Architectures towards Fully Automated Driving”.
In: IEEE Intelligent Vehicles Symposium. doi: 10.1109/IVS.2016.7535402
(cit. on p. 12).

Thandavarayan, Gokulnath, Miguel Sepulcre, and Javier Gozalvez (June 2019).
“Analysis of Message Generation Rules for Collective Perception in Connected
and Automated Driving”. In: IEEE Intelligent Vehicles Symposium. doi: 10.
1109/IVS.2019.8813806 (cit. on p. 86).

Van der Heijden, Rens Wouter, Stefan Dietzel, Tim Leinmüller, and Frank Kargl
(2019). “Survey on Misbehavior Detection in Cooperative Intelligent Trans-
portation Systems”. In: IEEE Communications Surveys Tutorials. doi: 10.

1109/COMST.2018.2873088 (cit. on pp. 121, 122).
Vasic, Milos, David Mansolino, and Alcherio Martinoli (Oct. 2016). “A System

Implementation and Evaluation of a Cooperative Fusion and Tracking Algo-
rithm Based on a Gaussian Mixture PHD Filter”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. doi: 10.1109/IROS.2016.

7759614 (cit. on pp. 68, 89).
Vo, Ba-Ngu, Mahendra Mallick, and Yaakov Bar-Shalom (2015). “Multitarget

Tracking”. In: Wiley Encyclopedia of Electrical and Electronics Engineering
(cit. on p. 60).

Wang, Tsun-Hsuan, Sivabalan Manivasagam, Ming Liang, Bin Yang, Wenyuan
Zeng, and Raquel Urtasun (2020). “V2VNet: Vehicle-to-Vehicle Communica-

https://doi.org/10.1016/0004-3702(94)90026-4
https://doi.org/10.1177/027836498600500404
https://doi.org/10.3390/s22030793
https://doi.org/10.1109/ACCESS.2019.2932390
https://doi.org/10.1109/ACCESS.2019.2932390
https://doi.org/10.1049/iet-its.2018.5607
https://doi.org/10.1109/TITS.2019.2921248
https://doi.org/10.1109/TIV.2017.2658185
https://doi.org/10.1109/IVS.2016.7535402
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/IVS.2019.8813806
https://doi.org/10.1109/COMST.2018.2873088
https://doi.org/10.1109/COMST.2018.2873088
https://doi.org/10.1109/IROS.2016.7759614
https://doi.org/10.1109/IROS.2016.7759614

BIBLIOGRAPHY 185

tion for Joint Perception and Prediction”. In: European Conference on Com-
puter Vision. doi: 10.1007/978-3-030-58536-5_36 (cit. on p. 88).

Wang, Yimin and X. Rong Li (Jan. 2012). “Distributed Estimation Fusion with
Unavailable Cross-Correlation”. In: IEEE Transactions on Aerospace and Elec-
tronic Systems. doi: 10.1109/TAES.2012.6129634 (cit. on p. 38).

Wang, Yuan, Tianyue Shi, Peng Yun, Lei Tai, and Ming Liu (Sept. 25, 2018).
PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud.
doi: 10.48550/arXiv.1807.06288 (cit. on p. 57).

Wu, Bo and R. Nevatia (June 2006). “Tracking of Multiple, Partially Occluded
Humans Based on Static Body Part Detection”. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. doi: 10.1109/CVPR.
2006.312 (cit. on p. 67).

Wu, Xiaopei, Liang Peng, Honghui Yang, Liang Xie, Chenxi Huang, Chengqi
Deng, Haifeng Liu, and Deng Cai (July 4, 2022). “Sparse Fuse Dense: Towards
High Quality 3D Detection with Depth Completion”. In: Computer Vision and
Pattern Recognition Conference. doi: 10.48550/arXiv.2203.09780 (cit. on
p. 58).

Xu, Runsheng, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, and Jiaqi Ma (May
2022). “OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Per-
ception with Vehicle-to-Vehicle Communication”. In: International Conference
on Robotics and Automation. doi: 10.1109/ICRA46639.2022.9812038 (cit. on
p. 95).

Yager, Ronald R. (Mar. 1, 1987). “On the Dempster-Shafer Framework and New
Combination Rules”. In: Information Sciences. doi: 10.1016/0020-0255(87)
90007-7 (cit. on p. 27).

Yavvari, Chaitanya, Zoran Duric, and Duminda Wijesekera (Oct. 2017). “Vehicu-
lar Dynamics Based Plausibility Checking”. In: IEEE International Conference
on Intelligent Transportation Systems. doi: 10.1109/ITSC.2017.8317883 (cit.
on p. 122).

Yoon, DoHyun Daniel, Beshah Ayalew, and G. G. Md. Nawaz Ali (July 2022).
“Performance of Decentralized Cooperative Perception in V2V Connected Traf-
fic”. In: IEEE Transactions on Intelligent Transportation Systems. doi: 10.
1109/TITS.2021.3063107 (cit. on p. 68).

Yu, Chunlei, Véronique Cherfaoui, and Philippe Bonnifait (Dec. 2014). “An Ev-
idential Sensor Model for Velodyne Scan Grids”. In: International Conference
on Control Automation Robotics Vision. doi: 10.1109/ICARCV.2014.7064369
(cit. on pp. 60, 69).

Zabalegui, Paul, Gorka De Miguel, Alejandro Pérez, Jaizki Mendizabal, Jon Goya,
and Iñigo Adin (2020). “A Review of the Evolution of the Integrity Methods
Applied in GNSS”. In: IEEE Access. doi: 10.1109/ACCESS.2020.2977455
(cit. on p. 70).

Zacharia, Giorgos and Pattie Maes (Oct. 2000). “Trust Management through
Reputation Mechanisms”. In: Applied Artificial Intelligence. doi: 10.1080/
08839510050144868 (cit. on p. 123).

Zadeh, Lofti (1979). On the Validity of Dempster’s Rule of Combination of Evi-
dence (cit. on p. 171).

https://doi.org/10.1007/978-3-030-58536-5_36
https://doi.org/10.1109/TAES.2012.6129634
https://doi.org/10.48550/arXiv.1807.06288
https://doi.org/10.1109/CVPR.2006.312
https://doi.org/10.1109/CVPR.2006.312
https://doi.org/10.48550/arXiv.2203.09780
https://doi.org/10.1109/ICRA46639.2022.9812038
https://doi.org/10.1016/0020-0255(87)90007-7
https://doi.org/10.1016/0020-0255(87)90007-7
https://doi.org/10.1109/ITSC.2017.8317883
https://doi.org/10.1109/TITS.2021.3063107
https://doi.org/10.1109/TITS.2021.3063107
https://doi.org/10.1109/ICARCV.2014.7064369
https://doi.org/10.1109/ACCESS.2020.2977455
https://doi.org/10.1080/08839510050144868
https://doi.org/10.1080/08839510050144868

186 BIBLIOGRAPHY

Zermas, D., I. Izzat, and N. Papanikolopoulos (May 2017). “Fast Segmentation
of 3D Point Clouds: A Paradigm on LiDAR Data for Autonomous Vehicle
Applications”. In: IEEE International Conference on Robotics and Automation.
doi: 10.1109/ICRA.2017.7989591 (cit. on pp. 53, 55).

Zhang, Haolin, Dongfang Yang, Ekim Yurtsever, Keith A. Redmill, and Ümit
Özgüner (Sept. 2021). “Faraway-Frustum: Dealing with Lidar Sparsity for 3D
Object Detection Using Fusion”. In: IEEE International Intelligent Transporta-
tion Systems Conference. doi: 10.1109/ITSC48978.2021.9564990 (cit. on
p. 58).

Zhou, Pengyuan, Pranvera Kortoçi, Yui-Pan Yau, Benjamin Finley, Xiujun Wang,
Tristan Braud, Lik-Hang Lee, Sasu Tarkoma, Jussi Kangasharju, and Pan Hui
(2022). “AICP: Augmented Informative Cooperative Perception”. In: IEEE
Transactions on Intelligent Transportation Systems. doi: 10.1109/TITS.2022.
3155175 (cit. on p. 86).

Zhu, Ni, Juliette Marais, David Bétaille, and Marion Berbineau (Sept. 2018).
“GNSS Position Integrity in Urban Environments: A Review of Literature”.
In: IEEE Transactions on Intelligent Transportation Systems. doi: 10.1109/
TITS.2017.2766768 (cit. on pp. 15, 16, 70).

Zhu, Xinge, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng
Li, and Dahua Lin (June 2021). “Cylindrical and Asymmetrical 3D Convolution
Networks for LiDAR Segmentation”. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition. doi: 10.1109/CVPR46437.2021.00981 (cit.
on p. 57).

Zhuo, Xuejun, Jianguo Hao, Duo Liu, and Yiqi Dai (Oct. 26, 2009). “Removal
of Misbehaving Insiders in Anonymous VANETs”. In: Proceedings of the 12th
ACM International Conference on Modeling, Analysis and Simulation of Wire-
less and Mobile Systems. doi: 10.1145/1641804.1641824 (cit. on p. 123).

Zoghby, Nicole, Véronique Cherfaoui, and Thierry Denœux (July 9, 2013). “Op-
timal Object Association from Pairwise Evidential Mass Functions”. In: Inter-
national Conference on Information Fusion (cit. on pp. 61, 103).

Zoghby, Nicole El, Véronique Cherfaoui, and Thierry Denoeux (June 2014). “Ev-
idential Distributed Dynamic Map for Cooperative Perception in VANets”. In:
IEEE Intelligent Vehicles Symposium. doi: 10.1109/IVS.2014.6856550 (cit.
on p. 64).

2023-07-30

https://doi.org/10.1109/ICRA.2017.7989591
https://doi.org/10.1109/ITSC48978.2021.9564990
https://doi.org/10.1109/TITS.2022.3155175
https://doi.org/10.1109/TITS.2022.3155175
https://doi.org/10.1109/TITS.2017.2766768
https://doi.org/10.1109/TITS.2017.2766768
https://doi.org/10.1109/CVPR46437.2021.00981
https://doi.org/10.1145/1641804.1641824
https://doi.org/10.1109/IVS.2014.6856550

	PDT LIMA333 Antoine
	Soutenue le 3 mai 2023

	LIMA thèse_final
	Acknowledgments
	Abstract
	General Introduction
	Intelligent Vehicles
	Levels of Automation
	Autonomous Navigation Stack
	Environment Perception
	Cooperative Perception

	Integrity
	General Definition
	Localization Integrity
	Perception Integrity

	Objectives
	Manuscript Organization

	Methods and Tools for Decentralized Data Fusion
	Introduction
	Symbolic Information and Belief Functions
	Representation
	Combination of Mass Functions
	Conjunctive Combination
	Disjunctive Combination
	Cautious Combination
	Partially Overlapping Fusion

	Discounting
	Conclusion

	Metric Representation and State Filtering
	Random State Vectors
	State Filtering
	Kalman Filtering
	Extensions to the Kalman Filter
	Informational Filtering

	Covariance Intersection Filtering
	Split Covariance Intersection Filtering

	Analysis of Covariance Intersection Filters
	CI Filtering Comparison with Kalman Filtering
	Convergence Issues with Similarly Shaped Observation Covariances
	Slow Convergence with Partial Measurement
	SCI Comparison with a Kalman-CI Combination
	Tuning SCIF Evolution and Observation Models

	Conclusion

	Sensor Processing and Tracking
	Introduction
	Objects and Free Space Detection
	Sensor Pre-Processing
	Model Based Object Detection
	Deep Learning Based Object Detection
	Free Space

	Multi-Object Tracking
	Data Association for Object Traking
	Track Management

	Perception Evaluation
	Perception Ground Truth
	Evaluation Metrics

	Description of the Perception System Used in this Work
	Experimental Setup
	Hardware
	Software

	Cars and Traffic Signs Detection using LiDAR
	Sensor Tracking
	Track Management

	Evaluation
	Evaluation of Sign Detection
	Evaluation of Car Detection

	Conclusion

	Cooperative Perception in a Trustworthy Network
	Introduction
	Review of Cooperative Perception
	Communication for Intelligent Transportation Systems
	Medium
	Messages
	Contents of Cooperative Perception Messages
	Security in Vehicular Networks

	Cooperative Track-To-Track Fusion
	Cooperative Fusion Architectures
	Cooperative State Filtering
	Spatial Alignment
	Temporal Alignment
	Out-Of-Sequence Observations

	Evaluation Methods for Cooperative Perception

	Fusion of Multiple Points of View
	Generic Fusion Architecture
	Managing the Detectability of Multiple Sources
	Definition of Detectability
	Computation of Detectability
	Fusion of Detectability Grids
	Object Detectability

	Similarity between Objects
	Estimating the Existence of Tracked Objects

	Evaluation of Cooperative Perception
	Evaluation Methodology
	Global and Local Evaluations
	Datasets with Ground-Truth
	Evaluation Metrics

	Study of the Added-Value of Cooperative Perception
	Study of the Contribution of Detectability for Cooperative Perception

	Conclusion

	Estimation of Trust in Cooperative Peers
	Introduction
	Review of Trust in Intelligent Vehicles
	Misbehavior Detection
	Aggregation

	Trust Estimation and Use for Data Fusion
	Fusion Architecture with Trust Management
	Evidential Estimation of Trust
	Coherency
	Object Detectability
	Attribute Coherency
	Spatial Coherency

	Consistency
	Confirmation
	Object Similarity
	Object Dissimilarity
	Object-Free-Space Inconsistency
	Free-Space Similarity

	Summary of Trust Parameters
	Trust-Aware Tracking

	Experimental Evaluation
	Added Value of Trust in Nominal Cases
	Trust Estimation and Perception Performance in Case of Faults
	Impact of Trust Parameters

	Conclusion

	General Conclusion
	Conclusion
	Contributions
	Perspectives

	List of Figures
	List of Tables
	Developments
	Datasets
	Perception
	Tracking
	Display
	Special Processing

	Cooperative Datasets
	Roundabout
	Intersection
	Overtaking

	Cooperative Ground-Truth
	Study of the Combination Rule Used in Trust Estimation
	Study of Consensus Building in Trust Estimation
	Bibliography

