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Abstract: Understanding the importance of de-
fense strategies against adversarial attacks has be-
come paramount in ensuring the trustworthiness
and resilience of neural networks. While traditional
security measures focused on protecting data and
software from external threats, the unique challenge
posed by adversarial attacks lies in their ability to
exploit the inherent vulnerabilities of the underlying
machine learning algorithms themselves.

The first part of the thesis proposes new con-
strained learning strategies that ensure robustness
against adversarial perturbations by controlling the
Lipschitz constant of a classifier. We focus on
nonnegative neural networks for which accurate
Lipschitz bounds can be derived, and we propose
different spectral norm constraints offering robust-
ness guarantees from a theoretical viewpoint. We
validate our solution in the context of gesture recog-
nition based on Surface Electromyographic (sEMG)
signals.

In the second part of the thesis, we propose a
new class of neural networks (ACNN) which can
be viewed as establishing a link between fully con-
nected and convolutional networks, and we propose
an iterative algorithm to control their robustness
during training. Next, we extend our solution to
the complex plane and address the problem of de-
signing robust complex-valued neural networks by
proposing a new architecture (RCFF-Net) for which
we derive tight Lipschitz constant bounds. Both
solutions are validated for audio denoising.

In the last part, we introduce ABBA Networks,
a novel class of (almost) non-negative neural net-
works, which we show to be universal approximators.
We derive tight Lipschitz bounds for both linear
and convolutional layers, and we propose an algo-
rithm to train robust ABBA networks. We show
the effectiveness of the proposed approach in the
context of image classification.

Titre: Méthodes robustes d’apprentissage profond inspirées d’algorithmes de traitement du signal
Mots clés: Optimisation robuste, stabilité Lipschitz, réseaux de neurones

Résumé: Comprendre l’importance des straté-
gies de défense contre les attaques adverses est
devenu primordial pour garantir la fiabilité et la
résilience des réseaux de neurones. Alors que les
mesures de sécurité traditionnelles se focalisent sur
la protection des données et des logiciels contre
les menaces externes, le défi unique posé par les
attaques adverses réside dans leur capacité à ex-
ploiter les vulnérabilités inhérentes aux algorithmes
d’apprentissage automatique.

Dans la première partie de la thèse, nous pro-
posons de nouvelles stratégies d’apprentissage con-
traint qui garantissent la robustesse vis-à-vis des
perturbations adverses, en contrôlant la constante
de Lipschitz d’un classifeur. Nous concentrons
notre attention sur les réseaux de neurones positifs
pour lesquels des bornes de Lipschitz précises peu-
vent être déduites, et nous proposons différentes
contraintes de norme spectrale offrant des garanties
de robustesse, d’un point de vue théorique. Nous
validons notre solution dans le contexte de la re-
connaissance de gestes basée sur des signaux élec-
tromyographiques de surface (sEMG).

Dans la deuxième partie de la thèse, nous pro-
posons une nouvelle classe de réseaux de neurones
(ACNN) qui peut être considérée comme un inter-
médiaire entre les réseaux entièrement connectés
et ceux convolutionnels. Nous proposons un algo-
rithme itératif pour contrôler la robustesse pendant
l’apprentissage. Ensuite, nous étendons notre solu-
tion au plan complexe et abordons le problème de
la conception de réseaux de neurones robustes à
valeurs complexes, en proposant une nouvelle archi-
tecture (RCFF-Net) pour laquelle nous obtenons
des bornes fines de la constante de Lipschitz. Les
deux solutions sont validées en débruitage audio.

Dans la dernière partie, nous introduisons les
réseaux ABBA, une nouvelle classe de réseaux de
neurones (presque) positifs, dont nous démontrons
les propriétés d’approximation universelle. Nous
déduisons des bornes fines de Lipschitz pour les
couches linéaires ou convolutionnelles, et nous pro-
posons un algorithme pour entraîner des réseaux
ABBA robustes. Nous démontrons l’efficacité de
l’approche proposée dans le contexte de la classifi-
cation d’images.
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Abstract

In the ever-evolving landscape of artificial intelligence, neural networks have
emerged as a formidable tool for solving complex tasks, ranging from image recogni-
tion and natural language processing to autonomous driving and medical diagnostics.
These powerful approaches have revolutionized various industrial areas, providing
unprecedented levels of accuracy and efficiency. However, with their growing signif-
icance and prevalence, they have also become a prime target for malicious actors
seeking to exploit their vulnerabilities.

Adversarial attacks, a class of techniques designed to deceive and manipulate
neural networks, pose a significant threat to the integrity and reliability of AI systems.
These attacks involve the intentional introduction of imperceptible perturbations
into input data, causing neural networks to misclassify or produce erroneous outputs.
By exploiting these weaknesses, adversaries can undermine the functionality of AI
models, leading to potentially catastrophic consequences in critical applications
such as cybersecurity, autonomous vehicles, and healthcare. Adversarial noise can
also be the result of non-intended actions.

To safeguard the reliability of neural networks, researchers and engineers have
delved into developing robust defense mechanisms that can withstand and mitigate
the impact of adversarial attacks. This thesis contributes to the development of a
new and efficient defense mechanism to guarantee the robustness of feed-forward
neural networks against adversarial attacks.

Chapter 3 shows a novel method for constructing a robust Automatic Gesture
Recognition system using forearm-level Surface Electromyographic (sEMG) signals.
By modulating the Lipschitz constant of the classifier, we propose new constrained
learning strategies that ensure robustness against adversarial perturbations. We
concentrate on nonnegative neural networks for which precise Lipschitz bounds
can be derived, and we propose various spectral norm constraints that provide
theoretical guarantees of robustness. The experimental results on publicly accessible
datasets demonstrate that a satisfactory balance between accuracy and stability
is obtained. Moreover, the robustness of our proposed solution is supported by a
real-life scenario experiment.

The second contribution of this thesis, described in Chapter 4, introduces two
new neural network architectures. The first one (ACNN) generalizes the concept of
the convolutional kernel by imposing a certain band-structure on linear layers, while
the second one (RCFF-Net) is inspired by CapsuleNets and operates in the complex
space. For both networks, we derive tight Lipschitz bounds. In the complex case,
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our analysis is grounded on new theoretical results on Lipschitzian nonlinear systems.
We propose constrained training algorithms to control the robustness of the models.
We experiment on a regression task, namely denoising audio clips corrupted by
Gaussian noise, showing that our strategy to ensure the stability of neural networks
is not limited to classification problems.

Finally, in Chapter 5, starting from linear algebra considerations, we present
ABBA neural networks, a novel class of (almost) non-negative neural networks
offering a panel of desirable properties. In particular, we show that these networks
are universal approximators while retaining the benefits of non-negative weighted
networks. In the fully connected and convolutional cases, we derive tight Lipschitz
bounds. By precisely controlling the Lipschitz constant of the network during the
training phase, we propose a method for designing ABBA networks that are resilient
to adversarial perturbations. We demonstrate that our method outperforms other
state-of-the-art white-box adversary defenses. On four benchmark datasets, image
classification experiments are conducted.
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Résumé

Dans le paysage en constante évolution de l’intelligence artificielle, les réseaux
de neurones apparaissent comme un outil formidable pour résoudre des tâches
complexes, allant de la reconnaissance d’images et du traitement du langage na-
turel à la conduite autonome et au diagnostic médical. Ces puissantes approches
ont révolutionné divers secteurs d’activité en offrant des niveaux de précision et
d’efficacité sans précédent. Cependant, en raison de leur importance croissante et
de leur prévalence, ils sont également devenus une cible de choix pour des entités
malveillantes cherchant à exploiter leurs vulnérabilités.

Les attaques adverses, une catégorie de techniques conçues pour tromper et
manipuler les réseaux de neurones, posent une menace certaine pour l’intégrité et la
fiabilité des systèmes d’IA. Ces attaques consistent à introduire intentionnellement
des perturbations imperceptibles dans les données d’entrée, ce qui entraîne une
mauvaise classification ou des sorties erronées des réseaux de neurones. En ex-
ploitant ces faiblesses, les adversaires peuvent compromettre le fonctionnement des
modèles d’IA, entraînant des conséquences potentiellement catastrophiques dans des
applications critiques telles que la cybersécurité, les véhicules autonomes et le do-
maine de la santé. Les bruits adverses peuvent aussi advenir de manière accidentelle.

Pour garantir la fiabilité des réseaux de neurones, les chercheurs et ingénieurs
se sont penchés sur le développement de mécanismes de défense robustes capables
de résister ou d’atténuer l’impact des attaques adverses. Cette thèse contribue
au développement de nouveaux mécanismes de défense efficaces pour garantir la
robustesse des réseaux de neurones face aux attaques adverses.

Le Chapitre 3 présente une nouvelle méthode pour construire un système
robuste de reconnaissance automatique de gestes en utilisant des signaux élec-
tromyographiques de surface (sEMG) au niveau de l’avant-bras. En modulant
la constante de Lipschitz du classifieur, nous proposons de nouvelles stratégies
d’apprentissage contraint qui garantissent la robustesse vis-à-vis des perturbations
adverses. Nous nous focalisons sur les réseaux de neurones positifs pour lesquels des
bornes de Lipschitz précises peuvent être déduites, et nous proposons différentes
contraintes de norme spectrale offrant des garanties théoriques de robustesse. Les
résultats expérimentaux sur des ensembles de données publiquement accessibles
aboutissent à un compromis satisfaisant entre précision et stabilité. De plus, la
robustesse de la solution proposée est étayée par une expérimentation en situation
réelle.
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La deuxième contribution de cette thèse, exposée dans le Chapitre 4, présente
deux nouvelles architectures de réseaux de neurones. La première (ACNN) généralise
le concept de noyau convolutif en imposant une certaine structure bande aux couches
linéaires, tandis que la seconde (RCFF-Net) est inspirée par les CapsuleNets et opère
dans le domaine complexe. Pour les deux réseaux, nous calculons des bornes de
Lipschitz fines. Dans le cas complexe, notre analyse est basée sur de nouveaux résul-
tats théoriques concernant les systèmes non linéaires lipschitzien. Nous proposons
des algorithmes d’apprentissage contraint pour contrôler la robustesse des modèles.
Des expériences sont menées sur une tâche de régression, à savoir le débruitage de
clips audio corrompus par un bruit gaussien, démontrant ainsi que notre stratégie de
stabilisation des réseaux de neurones n’est pas limitée aux problèmes de classification.

Enfin, dans le Chapitre 5, partant de considérations d’algèbre linéaire, nous
présentons les réseaux ABBA, une nouvelle classe de réseaux de neurones (presque)
positifs vérifiant un ensemble de propriétés désirables. En particulier, nous montrons
que ces réseaux sont des approximateurs universels préservant les avantages des
réseaux à poids positifs. Dans les cas entièrement connecté et convolutionnel, nous
obtenons des bornes de Lipschitz fines. En contrôlant précisément la constante de
Lipschitz du réseau pendant la phase d’apprentissage, nous proposons une méthode
pour concevoir des réseaux ABBA résistant aux attaques adverses. Nous démontrons
que notre méthode surpasse d’autres défenses de l’état de l’art, contrant les
perturbations adversaires de type “boîte blanche". Des expériences de classification
d’images sont menées sur quatre ensembles de données de référence.
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Chapter 1 – Introduction

1.1 . Context

Recently, machine learning methods have become ubiquitous tools in a wide
range of tasks, because of their ability to solve a great variety of problems, ranging
from simple regressions to complex multi-modal classification. These methods
stand at the very core of Artificial Intelligence (AI). AI represents the marvel of
nowadays technology and is used successfully in an ever-increasing number of areas
impacting our lives, e.g. medicine [3], autonomous driving [4], natural language
processing [5], human-computer interaction (HCI) [6], etc. However, deep neural
networks, which are probably the most powerful methods, raise challenges in terms
of implementation heaviness during the learning phase. Moreover, they appear
as black boxes whose robustness is not always well-controlled [7, 8]. Developing
trustworthy AI is essential to ensure that intelligent systems can be relied upon
for critical decision-making without compromising ethical standards. To reach this
goal, a critical issue to be addressed when developing real-life applications using
neural networks is the correct evaluation and control of their robustness against
possible adversarial attacks.

Adversarial inputs represent malicious input data that can fool machine learning
models. The concept was highlighted in [9], where the authors showed that slightly
altering data inputs that were correctly classified by the network can lead to a
wrong classification [10, 11, 12, 13].
For example, [11] shows how voice interfaces can be fooled by creating carefully
crafted artificial audio inputs of unintelligible voice that are miss-classified as spe-
cific vocal commands by the system. Also, [14] introduces several methods for
generating adversarial examples on ImageNet that are so close to the original data
that differences are indistinguishable for the human eye.

It must be emphasized that adversarial inputs are not necessarily artificially
created with the intention to sabotage the system. They can also occur innately
under different forms and can seriously flaw the performance of real-life applications
based on pre-trained models [15]. Here are a few ways in which adversarial
perturbations can arise naturally:

(i) Sensor Noise: Sensors used to collect data can introduce noise or small
variations due to factors such as environmental conditions, calibration issues,
or manufacturing imperfections. These variations can cause a model to
misinterpret the input.
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(ii) Ambiguity in Data: Natural data can sometimes be inherently ambiguous,
leading to different interpretations. A slight change in how an object is
presented might lead to a model making incorrect decisions. The problem is
often emphasized when the number of available training data is limited.

(iii) Occlusions and Transformations: Objects in the real world can undergo
occlusions, deformations, and transformations that alter their appearance.
These changes might be minor to human perception, but can significantly
impact the performance of a machine learning model.

(iv) Unforeseen Context: Context matters in understanding data, and slight
changes in context can lead to different interpretations. A model trained
to recognize an object in one context might fail when the context changes
unexpectedly.

(v) Human Perception Differences: Human perception is not perfect and can
vary. What appears obvious to one person might be unclear to another.
These differences can lead to unexpected variations in labeling and input
data.

(vi) Adversarial Intent in Real World : In some cases, there might be genuine
adversarial intent in the data itself. For example, camouflage in nature could
be seen as an adversarial strategy where an organism uses its appearance to
deceive predators or prey.

(vii) System Limitations: Imperfections in data collection, transmission, or pre-
processing stages can introduce subtle changes that may not be initially
apparent but can affect the model behavior.

A better analysis of the stability properties of neural networks can be viewed
as the first step towards a better understanding of the mathematical principles
governing their functionalities.

The main goal of this thesis is to design new methods for training safe yet high-
performance neural networks. Recent mathematical results show that it becomes
easier to control the stability of neural networks by introducing suitable constraints
on their weights. Nevertheless, this requires the management of constraints that
are not necessarily convex in the training phase of the neural network. To this
end, we designed carefully crafted constraints that we later used in the training
process, to ensure the robustness of the neural network. As highlighted in [14], the
Lipschitz behaviour of the network is tightly correlated with its robustness against
adversarial attacks. This constant allows us to upper bound the output perturbation
knowing the magnitude of the input one, for a given metric [16]. Controlling this
constant leads to a feasible solution to assess the effect of adversarial attacks
if accurately computed. However, computing the exact Lipschitz constant even
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for a shallow neural network is a non-polynomial NP-hard problem. So the main
difficulty is to find ways of approximating it as tightly as possible. Lately, several
methods have been proposed to train Lipschitzian networks, which fall into two
main categories. Regularization approaches include double backpropagation [17] or
applying penalization on the network Jacobian [18], which imposes local Lipschitz
constraints, but do not enforce the constraint globally on the network. Another
approach consists of imposing some constraints on the architecture of the network,
so as to constrain the spectral norm of each layer [12] [19]. At the expense of
computation complexity, these methods ensure a Lipschitzian network. In [20],
novel results leading to accurate approximations to the Lipschitz constant of posi-
tive feed-forward neural networks were proposed. These preliminary results served
as a starting point for proposing efficient methods for designing safe neural networks.

After establishing all the mathematical backbone, we next focus on building
new neural network architectures based on the aforementioned philosophy. An
important part of the work presented in this thesis consists in developing efficient
optimization methods for supervised learning of neural networks. We look at the
possible choices for the structure of the network, given the different classes of
existing iterative optimization algorithms. To handle stability constraints, particular
attention is paid to proximal methods which offer powerful tools for optimization
in a large-scale context. We study how ensuring robustness affects the overall
performance of the learning systems, and try to reach a good robustness-accuracy
trade-off.

A very important aspect in all exploratory research is the validation of the
theoretical results in a real application context. Some of the models trained with
stability guarantees are tested in real-life contexts to show the versatility of the
designed solutions. We then measure the influence on the system performance and
compare the obtained results with those generated with classical architectures, as
well as other defense strategies.

1.2 . Impact and applicability

Artificial neural networks have become the workhorse of many advances in
artificial intelligence in the last years. Sophisticated inference tasks such as auto-
matic medical diagnosis from 3D radiology images or monitoring social networks
for preventing terrorist acts have become possible with a good accuracy thanks
to deep learning. A large community of enthusiastic researchers and engineers is
continuously working on building larger training databases and proposing more
effective architectures to widen the scope of these powerful methods. However, it
turns out that for domains where safety is a critical issue such as automatic driving,
air-flight control, digital forensics, or surgery applications, neural networks offer
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few guarantees in terms of certifiability. The main reason for this limitation is the
potential lack of robustness to adversarial perturbations. This weakness reveals
that neural networks are grounded on underlying mechanisms that are not fully
understood from a mathematical viewpoint. They often appear as black boxes
whose behaviour may be unpredictable. Analyzing neural networks is not an easy
task since they constitute complex systems with intricate nonlinear behaviour.

This thesis contributes to the field of machine learning by trying to give an
answer to the fundamental question:

How safe neural networks are?

The objective is to provide mathematically proven robustness guarantees, de-
velop the associated software, and make it publicly available. Another important
aspect of this thesis is the focus on applications based on audio and physiological
signals which have direct use in the development of innovative technologies and
can directly benefit a variety of consumer products.

More generally, by approaching the concept of Safe Neural Networks, this thesis
contributes to the state of knowledge in artificial intelligence, leveraging on the
latest research results in the field of optimization. Developing new methods that
can be used to make learning systems more robust and explainable will open new
perspectives in terms of safe and controlled technological progress.

1.3 . Main contributions

The first contributions of the thesis appear in Chapter 3:

(i) We propose a robust real-time Automatic Gesture Recognition system based
on sEMG signals. The robustness is ensured by using a novel learning
algorithm for training feedforward neural networks.

(ii) We show that a good accuracy-robustness balance can be reached. To do
so, we train the system under carefully crafted spectral norm constraints,
allowing us to finely control its Lipschitz constant. A tight Lipschitz constant
is efficiently estimated by focusing on neural networks with nonnegative
weights, as in [21].

(iii) We demonstrate the performance of the final architecture in real-life experi-
ments, where we show that the proposed robust model outperforms those
trained conventionally.

(iv) We analyze how our system behaves when the input is affected by different
noise levels, simulating perturbations that may occur in real scenarios.
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(v) We show the validity of our solution by experimenting on several publicly
available sEMG gesture datasets.

Chapter 4 includes the following main contributions.

(i) Inspired by MIMO filters, we introduce a new class of neural networks, which
can be seen as an intermediate solution between CNNs and FCNs.

(ii) We propose a constrained training strategy, which allows us to control
the Lipschitz constant of the network in order to secure its robustness to
adversarial noise.

(iii) We present a new architecture (RCFF-Net), which operates in the complex-
valued domain, for which we derive tight Lipschitz constant bounds.

(iv) We develop a constrained learning strategy to train the proposed structure
while controlling its global Lipschitz constant.

(v) Both architectures ACNN and RCFF are evaluated in audio signal denoising
tasks, proving that our solution is not limited to classification problems.

The contributions from Chapter 5 are mentioned below.

(i) We introduce ABBA networks, a novel class of (almost) non-negative neural
networks, which are shown to possess a series of appealing properties.

(ii) We show that we can put any arbitrary signed network in an ABBA form. We
show that this property holds for fully connected as well as for convolutional
neural networks.

(iii) Universal approximation theorems are derived for networks featuring non-
negatively weighted layers.

(iv) We present a method for effectively controlling the Lipschitz constant of
ABBA networks. This control strategy applies to both fully connected and
convolutional cases.

(v) Numerical experiments conducted on standard image datasets showcase
the excellent performance of ABBA networks for small models. Notably,
they exhibit substantial improvements in both performance and robustness
compared to networks with exclusively non-negative weights. Moreover, we
demonstrate that ABBA networks are competitive with robust networks
featuring arbitrarily signed weights, trained using state-of-the-art techniques.
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1.4 . Publications

Submitted journal articles

• A. Neacs,u, J.-C. Pesquet, V. Vasilescu and C.Burileanu, "ABBA Neural
Networks: Coping with Positivity, Expressivity, and Robustness", submitted
to SIAM Journal on Mathematics of Data Science (SIMODS), 2023.

Accepted or published journal articles

• A. Neacs,u, J.-C. Pesquet and C.Burileanu, "EMG-Based Automatic Gesture
Recognition Using Lipschitz-Regularized Neural Networks", accepted for
publication in ACM Transactions on Intelligent Systems and Technology
(TIST), 2023.

• N Lassau, S. Ammari, E. Chouzenoux, A. Neacs,u et al. “Integrating deep
learning CT-scan model, biological and clinical variables to predict severity
of COVID-19 patients”,in Nature Communication 12, 634 (2021), https:
//doi.org/10.1038/s41467-020-20657-4

Conference Proceedings

• C. Andronache, M. Negru, I. Bădiţoiu, G. Cioroiu, A. Neacsu and C. Burileanu,
"Automatic Gesture Recognition Framework Based on Forearm EMG Ac-
tivity", in Proc. 45th International Conference on Telecommunications and
Signal Processing (TSP), Prague, Czech Republic, 2022, pp. 284-288, doi:
10.1109/TSP55681.2022.9851314.

• A. Neacşu, R. Ciubotaru, J. -C. Pesquet and C. Burileanu, "Design of
Robust Complex-Valued Feed- Forward Neural Networks", in Proc. 30th
European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 2022,
pp. 1596-1600, doi: 10.23919/EUSIPCO55093.2022.9909696.

• A. Neacs,u, K. Gupta, J. -C. Pesquet and C. Burileanu, "Signal Denoising
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pp. 1492-1496, doi: 10.23919/Eusipco47968.2020.9287630.

• V. Vasilescu, A. Neacşu, E. Chouzenoux, J. -C. Pesquet and C. Burileanu,
"A Deep Learning Approach For Improved Segmentation Of Lesions Re-
lated To Covid-19 Chest CT Scans", in Proc. IEEE 18th Int. Sym.
on Biomedical Imaging (ISBI), Nice, France, 2021, pp. 635-639, doi:
10.1109/ISBI48211.2021.9434139.

• A. Neacs,u, J.-C. Pesquet, and C. Burileanu, "Accuracy-robustness trade-
off for positively weighted neural networks", in Proc. IEEE International
Conference on Acoustics and Speech Signal Process. (pp. 8389–8393).
Barcelona, Spain, 2020, doi: 10.1109/ICASSP40776.2020.9053803.
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• C. Andronache, M. Negru, A. Neacsu, G. Cioroiu, A. Radoi and C. Burileanu,
"Towards extending real-time EMG-based gesture recognition system", in
Proc. 43rd International Conference on Telecommunications and Signal
Processing (TSP), Milan, Italy, 2020, pp. 301-304,
doi: 10.1109/TSP49548.2020.9163481.

1.5 . Co-tutelle thesis

Collaboration lies at the heart of scientific progress and innovation. In today’s
interconnected world, the significance of collaborative efforts cannot be overstated,
particularly in the field of academic research. This thesis is the result of a co-tutelle
collaboration, between University Politehnica of Bucharest and CentraleSupélec,
Graduate School of Engineering Sciences of University Paris Saclay. This thesis has
provided a remarkable opportunity to foster cooperation and exchange knowledge
between these two distinguished institutions.

By bringing together the expertise and perspectives from both universities, this
thesis embodies the spirit of collaboration within EU, transcending geographical
boundaries and cultural differences. The shared intellectual environment, research
projects, and joint supervision have facilitated a rich learning experience, allowing
for the synthesis of diverse ideas and methodologies. This collaborative endeavor
has not only broadened the horizons of the research presented in this work but
has also cultivated a sense of global scientific community and mutual understanding.

During the unprecedented challenges posed by the COVID-19 pandemic, our
work took on a dual significance. Beyond the purview of our academic pursuits,
we understood the importance of contributing to the global endeavour to combat
the pandemic. As part of our commitment, we developed an algorithm for the
automatic segmentation of the lungs. This led to two publications.

1.6 . Outline

The rest of the thesis is organized as follows. In Chapter 2, we present an
overview of existing attacks and defenses. In Section 2.1 we establish the concept
of robustness in the context of neural networks, while in Section 2.2 we introduce
the mathematical notation used throughout the chapter. We present the most used
scenarios of threat models (Section 2.3) and then we describe both white-box and
black-box attack mechanisms in Section 2.4. We end the chapter by emphasising
different defense strategies in Section 2.5.

In Chapter 3 we present a robust mechanism for training non-negative neural
networks in the context of automatic gesture recognition based on sEMG signals.
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In Section 3.1 we lay the foundational understanding of electromyography and
emphasize its relevance in the context of gesture recognition. Following this, in
Section 3.2 we introduce innovative approaches to enhance the robustness of fully
connected neural networks. Section 3.3 then details the optimization techniques
crucial to our proposed methods, variants of which will be used in the rest of
this work. Transitioning to practical implementation, Section 3.4 provides insights
into the experimental framework considered for our task. The chapter culminates
with Section 3.5 where we extensively validate the robustness of our proposed
models. Finally, we conclude this chapter by summarizing our key findings and their
implications in Section 3.6.

In Chapter 4 we embark on a journey to enhance signal denoising through
innovative robust neural network architectures. Starting with Section 4.1 we in-
troduce the first novel architecture we propose in this thesis. We then explore, in
Section 4.1.1, a critical step in bridging the gap between these powerful neural net-
work paradigms: the use of fully connected and convolutional layers. Section 4.1.2
delves into the optimization strategies employed for training our proposed models,
shedding light on the core of our methodology. Our practical applications developed
in Section 4.1.3 provide an in-depth examination of our model performance in
signal denoising scenarios. The second part of the chapter, starting with Section
4.2 introduce a new class of networks (RCFF) operating in the complex domain.
Theoretical foundations and insights are presented in Sections 4.2.1-4.2.3 where we
elucidate the mathematical underpinnings of our robust training mechanisms, and
then we detail its implementation in Section 4.2.4. Then, we showcase the empirical
outcomes of applying our RCFF-Net to audio denoising problems in Section 4.2.5.
Ultimately, we conclude this chapter by summarizing our key findings and their
implications in Section 4.3.

In Chapter 5, we introduce a groundbreaking class of neural networks known as
ABBA Neural Networks, engineered to grapple with issues of positivity, expressivity,
and robustness. We start with Section 5.1 offering an overview of the challenges
that our novel ABBA networks aim to address. We provide context in Section 5.2,
examining the existing landscape of neural network solutions and underscoring the
unique contributions of ABBA networks. The core of our chapter unfolds with
Section 5.3 where we describe the architectural foundations and key attributes
of this innovative neural network class. Subsequently, in Section 5.4, we extend
the applicability of ABBA networks to the convolutional case, highlighting the
adaptability of this approach across diverse network architectures. An in-depth look
into the training methods and techniques ensuring Lipschitz stability is presented
in Section 5.5. Section 5.6 serves as the empirical heart of this chapter, where we
conduct comprehensive evaluations to validate the performance and effectiveness
of ABBA networks across various classification scenarios. In Section 5.7, we sum
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up our key findings, insights, and implications of our research.

Finally, in Chapter 6, we draw the final remarks of this thesis, followed by a
brief description of some envisioned perspectives.
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Chapter 2 – Overview of adversarial attacks
and defenses

This chapter presents an overview of the current advancements in the domain
of the robustness of neural networks against adversarial perturbations. We will
define the concept of adversarial attacks and explain the insights of the most
efficient attack strategies. Studying deliberately crafted attacks in machine learning
is crucial because it allows to identify the vulnerabilities of models and enhances
their robustness. These attacks involve intentionally perturbing input data in subtle
ways that can lead machine learning models to misclassify or produce erroneous
outputs. While these attacks are often designed on purpose, they sometimes mimic
variations that can naturally occur in real-world data. By analyzing these attacks,
researchers gain a deeper understanding in the weaknesses of their models and
can develop more robust algorithms that are better able to handle unexpected
variations in input data. Next, we will present the main mechanisms for defense,
which constitutes a challenging research topic.

2.1 . Robustness of neural networks

Neural networks (NNs) have emerged as effective tools for a variety of applica-
tions, including image recognition, natural language processing, and decision-making
systems. Despite these accomplishments, numerous fundamental features of deep
neural networks remain unknown and have been the focus of significant research in
recent years. Due to its importance when applied to visual data, the robustness of
deep networks to various types of disturbances has garnered increasing attention.
This line of research was largely inspired by the demonstration of the intriguing
properties of deep networks, first reported by [9]. Concerns have been expressed

Figure 2.1: Example of adversarial example. It can be observed that by addinga small perturbation, which is imperceptible to the human eye, the modelchanges drastically its prediction.
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regarding neural network dependability and security due to their susceptibility to
adversarial inputs, also known as adversarial examples. Adversarial inputs are small
perturbations, deliberately designed to trick neural networks, resulting in inaccurate
predictions or misclassifications. Figure 2.1 shows the effect of adding a very small,
carefully crafted perturbation field over the original image. Considering an image
classification problem, Shamir et al.[22] presents a framework to monitor how the
decision boundary between different classes evolves during the training process,
showing some interesting insight into why adversarial perturbations are so effective.
Adversarial examples are not limited to digital images, they can be present in
the physical world as well [10, 23]. In [24] several real-life adversarial examples
are presented to highlight the impact and potential risks of adversarial attacks
in practical settings. These examples demonstrate the vulnerability of machine
learning systems to subtle manipulations and the potential consequences in various
domains. A few notable examples are:

(i) Physical Adversarial Examples – Eykholt et al.[25] demonstrate how physical
modifications can deceive object detection systems. By placing stickers on a
stop sign or altering traffic signs with carefully designed patterns, they show
that the modified signs can be misclassified by the object detection models,
potentially leading to dangerous consequences on the road.

(ii) Textual Adversarial Examples – In the context of natural language processing,
the work in [26] presents adversarial examples for sentiment analysis. By
making small changes to the text, such as replacing or adding specific words,
they demonstrate that sentiment analysis models can be manipulated to
produce incorrect classifications or alter the predicted sentiment.

(iii) Printed Image Attacks – The authors of [25] investigate attacks using
printed images that are designed to deceive deep learning models. By placing
specially crafted images in the environment, i.e. on posters or billboards,
they demonstrate how these images can cause misclassifications or trigger
specific target classifications, even from a distance.

(iv) Adversarial Examples in Recommender Systems – Xu et al.[27] discuss
how adversarial examples can impact recommender systems. By carefully
crafting user profiles or manipulating item features, attackers can influence
the recommendations made by the system. This can have implications in
personalized advertising or content curation, where malicious actors may try
to exploit the system for their own benefit or to spread misinformation.

Recent years of research have been devoted to comprehending and enhancing
the resilience of neural networks to such adversarial inputs. The rest of this
chapter investigates the concept of robustness in neural networks, explains how
such perturbations are created, and discusses techniques used to limit their effects.

12



Figure 2.2: Representation of a NN as a composition of operators

2.2 . Definitions and notation

A neural network withm layers can be viewed as a function T , admitting an input
x ∈ RN0 and delivering an output T (x) ∈ RNm , where (Ni)0⩽i⩽m ∈ (N \ {0})m+1

is the number of neurons on each layer. In classification scenarios, Nm is the total
number of classes.

Model 2.2.1 Any feedforward neural network is obtained by cascading m

layers associated with operators (Ti)1⩽i⩽m. The neural network can thus be
expressed as the following composition of operators:

T = Tm ◦ · · · ◦ T1. (2.1)
Each layer i ∈ {1, . . . ,m} has a real-valued vector input xi of dimension Ni−1

which is mapped to
Ti(xi) = Ri(Wixi + bi), (2.2)

where Wi ∈ RNi×Ni−1 , bi ∈ RNi are the weight matrix and bias parameter,
respectively. Ri : RNi → RNi constitutes a non-linear activation operator which
is applied component-wise (e.g., ReLU or Sigmoid) or globally (e.g, Softmax).
Figure 2.2 shows a graphical representation of this concept.

Usually, for multiclass problems, the output of such systems is the result of a Softmax
operator, which produces a vector that can be viewed as a discrete probability
distribution. In other words, the output could be interpreted as the probability that
the input x belongs to each class i. The inputs of the softmax operator are known
as logits and represent the confidence of the classifier. To obtain the predicted label
T (x), we select the maximum argument of the components of T (x). Considering
a small perturbation z ∈ RN0 , an adversarial example is defined as

x̃ = x+ z. (2.3)
The perturbations can have a given form, e.g. in the case of images they can
be the result of some geometric (affine) transforms or can be random additive
perturbations, created using different algorithms which will be later explored. A key
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insight to consider when generating adversarial perturbations is that the original
input x and its adversarial x̃ should be as close as possible given a similarity measure.
The minimal perturbation required to achieve an adversarial example is usually
formulated as the minimization of a distance metric.

Consider the model T from Model 2.2.1, and (x, y) ∈ RN0 × N a pair of input
and the associated label examples. The minimal adversarial perturbation associated
to this pair is:

zmin = argminz ∥z∥ s.t. T (x+ z) ̸= y, (2.4)
where ∥ · ∥ is usually chosen an ℓp norm. We recall that the ℓp norm with

p ∈ [1,+∞[ of a vector ϕ = (ϕi)1⩽i⩽n ∈ Rn is

∥ϕ∥p =

(
n∑
i=1

|ϕi|p
)1/p

, (2.5)

and the associated ℓp distance between ϕ and a vector ϕ = (ϕi)1⩽i⩽n is given by
∥ϕ− ϕ∥p. Standard choices for p are 0, 2 and ∞, as briefly described below.

• ℓ0 distance (which not associated with a norm but a pseudo-norm) counts
the number of indices i for which ϕi ̸= ϕi. In the context of image processing
tasks, where n corresponds to the image size, ℓ0 distance is the number of
altered pixels in the original image.

• ℓ2 distance corresponds to the classic Euclidean distance and it is the most
used distance in adversarial settings.

• ℓ∞ distance measures the greatest variation in any of the components, defined
as

∥ϕ− ϕ∥+∞ = max(| ϕ1 − ϕ1 |, . . . , | ϕn − ϕn |).

If vector x corresponds to an image luminance, it is common to impose a
maximum budget, which determines the maximum allowable perturbation
for each pixel.

The minimal perturbation can identify the adversarial instance that most closely
resembles the original input in a given vector space. However, it is important to
note that no distance metric is a precise measure of human perceptual similarity,
and there is no determination regarding the optimal distance metric. Constructing
and evaluating an effective distance metric is a crucial research question that is the
topic of ongoing investigation.

In this context, the robustness of input x given the model T can be formulated
as

r(x, T ) = ∥zmin∥, (2.6)
14



where zmin is the minimum norm perturbation that have been identified.
We can further extend this definition to the input set S, defining the global

robustness of T as
r = E

x∼N
r(x, T ), (2.7)

where E is the expected value, computed with respect to a probability distribution
N supported on S.

Naturally, as r and r increase, the adversary is required to sacrifice similarity
in order to generate a more efficient attack. Consequently, we can infer that the
model exhibits greater robustness in such scenarios. Thus, we can now formulate
the concept of most adversarial example as the one which has the largest loss value
in a ϵ-radius ball around x̃:

x̃adv = argmaxx̃ L(η, x̃, y, T ) s.t. ∥x̃− x∥ ⩽ ϵ. (2.8)
Here-above, L is the considered loss, η is a vector including all the model parameters,
and ϵ represents the norm of the highest perturbation allowed. The adversarial loss
associated with this example is

Ladv(x) = L(η, x̃adv, y, T ). (2.9)
The model is all the more robust as the loss Ladv(x) is small. Calculating the
expectation over N yields the global adversarial loss

Ladv = E
x∼N

Ladv(x). (2.10)
Table 2.1 summarizes the notation used throughout the chapter.

2.3 . Threat models

Adversarial attacks are mainly studied in the context of classification tasks. In a
recent work, Gupta et al. [28] proposed an attacker suited for regression problems,
based on the properties of the network Jacobian, but the research in this particular
direction is limited. Since the main focus in the literature is on studying attacks
and defenses for neural models trained as classifiers, the remainder of this chapter
will focus on this topic.

The optimization problem introduced in (2.4) is non-convex, since the constraint
relies on the classification model T , which may be quite complex, depending on its
architecture. Lately, several (mostly iterative) algorithms have been proposed in the
literature to approximate adversarial perturbations. Depending on their objective
and level of access to the original model, they can fall in several categories, as
explained next.
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Notation Short description
x : original input sample, x ∈ RN0

x̃ : adversarial input sample, x̃ ∈ RN0

z : perturbation z ∈ RN0

Bp(x̃, ϵ) : ℓp ball with center x̃ and radius ϵ
ϵ : the maximum norm of the perturbation z

|| · ||p : ℓp norm
N0 : input data dimension
N : original data distribution
y : ground truth label associated to x,
t : target label

Nm : the total number of classes
L : the loss function employed during training
m : the total number of layers
T ∗ : anm-layer neural-network model having logits as output (before the softmax operator)
T : anm-layer neural-network model having a score-vector output i.e. T (x) ∈ [0, 1]Nm

T : anm-layer neural-network model having a label as output
Ri : activation operator at layer i
η : parameter vector associated to Model T
θ : Lipschitz constant associated to Network T

Table 2.1: Mathematical notation

2.3.1 . Adversary’s objective
Targeted and untargeted attacks.
We consider an input x ∈ RN0 , y its associated label, which is normally

correctly classified by the model. Let t be a target such that t ̸= y. The adversary
strives to find a similar input x̃ (according to some distance metric), for which the
classification is incorrect. In this case, x̃ is considered as a targeted adversarial
example. There are different strategies for selecting the target class t. The main
scenarios are:

• Best-case scenario – attack all incorrect classes and select the target class
that was least challenging to attack.

• Worst-case scenario – attack all incorrect classes and select the target class
that was the most difficult to attack.

• Mean-case scenario – choose the target class at random from among the
misclassified labels.

It is also possible to create untargeted adversarial examples, where we do not
impose a given target class, but we strive to find an adversarial input x such that
T (x) ̸= y, while the similarity between x and x is maintained. Usually, targeted
attacks require higher perturbations than untargeted ones.

Poison and evasion attacks.
Poisoning attacks imply that the attacker can modify the dataset on which

the model T is trained on, by introducing fake samples. In real scenarios, a lot of
web-based repositories actively collect data for training malware detection models,
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Figure 2.3: Adversary wearing adversarial glasses fools face recognitionmodel. By creating fine-crafted perturbations the attacker is able to confusethe model to say with high probability that the input image contains the faceof the actress Milla Jovovich. [1]

which offers an open door for adversaries to deliberately poison the data. Boggio
et. al. [29] showed that, by employing an incremental learning scheme for SVMs,
it is possible to create fake input samples which leads to poor classification results.
Although this procedure was successful in fooling SVM models, it is quite chal-
lenging to find the influence of the training samples in the context of deep neural
models. Some steps were made in this direction by [30], where the authors tried to
answer a particularly difficult question, namely How would the model’s predictions
change if a training sample was modified?

Another notable work introduces poison frogs [31], a mechanism that implies
inserting in the training set some adversarial images having a true label associated,
which leads the trained model to misclassify the original test samples.

On the other hand, in the context of evasion attacks, the models are already
trained and they usually have good performance on standard test examples. The
adversaries strive to create some fake examples, to evade detection by the classifiers.
For example, in [1] they show that it is possible to mislead state-of-the-art face recog-
nition systems, by creating adversarial glasses. Figure 2.3 depicts such an example,
where the model predicted that the adversary is a well-known actress, Milla Jovovich.

2.3.2 . Adversary’s level of access

Depending on the adversary’s knowledge, there are three main categories of
attacks.

White-box attacks – In this environment, the adversary can access all the target
neural network information, such as its weights, hyperparameters, and gradients.
Thus, the adversary can aggregate all this information and use it to create custom
adversarial samples. The exposure of the model architecture and parameters allows
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users to explicitly understand the vulnerabilities of deep neural network (DNN)
models. As a result, white-box attacks have been extensively researched Additionally,
these attacks may be examined mathematically and may offer some clues about
the representations learned by the model [32]. Hence, security against white-box
attackers is of crucial importance.

Black-box attacks [33] – In this set-up, the adversary cannot access the inner
configuration of the model. He can only study how the model behaves when facing
different inputs and query the outputs, trying to figure out some of the model’s
weaknesses. Although black-box attacks are less powerful than white-box ones,
they are more realistic from the attacker’s viewpoint.

Gray-box attacks – Also known as semi-white attacks, gray-box attacks rep-
resent a nuanced approach, lying between white box and black box attacks. One
possible approach found in the literature is the following one. Consider a victim
model T , the adversary designs a generative model, consisting in a generator G and
a discriminator D. The generator aims to create a perturbation G(x) which will
be added over the clean input x. x+ G(x) is then fed to the discriminator, which
has the task of encouraging G to create perturbations close to the original data. In
order to achieve the objective of deceiving a learning model, the initial step involves
running a white-box assault, on the target model. The victim model T accepts an
input of x+ G(x) and produces a loss value Ladv, which quantifies the discrepancy
between the predicted class and the target class t in the case of a targeted attack,
or the inverse of the discrepancy between the predicted class and the true class in
the case of an untargeted attack, and it is used as a part of the total loss function
used to train G. After this model is fully trained, the attacker no longer needs to
access the victim model, so it can generate adversarial perturbations in a black-box
setting. Some of the most efficient gray-box attackers are presented in [34, 35].

2.4 . Attack mechanisms

Next, we detail the main algorithms for generating adversarial samples in all
three contexts. We consider mainly evasion methods since they are more common.

2.4.1 . White-box attacks
Consider the model T and a pair of input-output (x, y). In a white-box setting,

the goal of the adversary can be formulated as

find x̃ satisfying

{
∥x̃− x∥p ⩽ ϵ

T (x̃) ̸= y,
(2.11)

where ϵ is a positive constant. Variants of this formulation will be considered
hereafter. Biggio et al. [36] were the first to introduce such kind of examples to
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fool image classification models based on SVMs and shallow convolutional networks.

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) – The
first attack for deep learning models was introduced by Szegedy et al.[9], where the
optimal adversarial example was sought by introducing the following optimization
problem:

min ∥x̃− x∥22 s.t. T (x̃) = t and x̃ ∈ [0, 1]N0 . (2.12)
They reduced the complexity of the problem, by introducing the following penalized
problem

minimize
x̃

c∥x̃− x∥22 + L(η, x̃, t, T ) s.t. x̃ ∈ [0, 1]N0 , (2.13)
where c ⩾ 0 is a constant that can be adapted. The solution they propose to find
the optimal x̃ relies on an instance of L-BFGS algorithm [37].

Fast-gradient sign method (FGSM) – This method, introduced by Goodfellow
et al. [14], shows a way to generate fast adversarial examples using a one-step
method, for both targeted and untargeted settings. The proposed solution is based
on the following formulation:

x̃ = x+ ϵsgn(∇xL(η, x, y, T )), non-target (2.14)
x̃ = x− ϵsgn(∇xL(η, x, t, T )), target on t. (2.15)

In the case of untargeted attacks, the algorithm tries to maximize the loss between
the predicted output and the ground truth label class. In a targeted attack context,
this can be viewed as one-step of gradient descent aiming to solve the following
optimization problem:

minimize
x̃

L(η, x̃, t, T ) s.t. || x̃− x ||∞⩽ ϵ. (2.16)
This means that the algorithm searches the point that is most likely to fool the
model, which is where the loss value of the target label t is minimum in the
neighborhood of an ϵ-ball around x̃.

While time-efficient, this method yields only a coarse approximation to the
optimization problem defined in Eq. (2.11) for the case when p = +∞.

DeepFool [38] – DeepFool strategy investigates the decision boundary of T
with respect to an input example x. It aims to find a path that enables moving
outside the decision boundary. This is done iteratively, to find the optimal point
where the classifier will assign a false class for x. This can be viewed as the
linearization of the constraint defined in Eq. (2.11).

Suppose we want to attack a sample x, to change its label from class k to class
i. The decision boundary between the two classes can be mathematically modeled
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as Fk,i = {z | Tk(x) = Ti(x)}. At each iteration, the attack linearizes the decision
boundary using a first-order Taylor series expansion, as follows:

F̃k,i = {x | ζ(x) ∼ ζ(x) + (∇xζ(x))
⊤(x− x) = 0},

where ζ(x) = Tk(x) − Ti(x), and computes the orthogonal projection of x onto
the hyperplane Fk,i. The adversarial example is then found along the projection
error vector.

The results show that this method is very effective, especially for image classi-
fication tasks, where usually the test samples are close to the decision boundary [38].

Jacobian-based saliency map attack (JSMA) [39] – This algorithm im-
plies creating the saliency map of the model T , based on its Jacobian matrix
JT (x) =

∂T (x)
∂x⊤

. JT (x) is used to compute the change of the model T output in
relation to changes of the input x. At a macroscopic level, the attack employs
a greedy algorithm that sequentially selects individual components of the input
vector to change, so incrementally enhancing the target classification with each
repetition. The saliency map serves as a representation of the influence that each
individual component exerts on the final classification outcome. A high numerical
value suggests that modifying it will considerably enhance the probability of the
model categorizing the input as the desired class t. Based on the saliency map, the
algorithm selects the input component with the highest importance and adjusts
its value in order to enhance the probability of belonging to t. This process is
iteratively performed until either the number of modified components exceeds a
predetermined threshold, rendering the attack identifiable, or the attack successfully
changes the prediction of the victim model. A variant of this method, adapted for
regression problems, was developed in [28].

Projected gradient descent (PGD) [10] – This method introduced by Kurakin
et al. represents an iterative version of the FGSM attacker. At iteration n ⩾ 0 the
algorithm reads

xn+1 = PB∞(x,ϵ)(xn + α∇xL(η, xn, y, T )), (2.17)
where PB∞(x,ϵ) represents the projection onto the ball B∞(x, ϵ) = {x̃ | ∥x̃−x∥∞ ⩽
ϵ} and α ∈]0,∞[ is the step-size.

Carlini and Wagner (C&W) [40] – Carlini and Wagner’s attack is also inspired
by the L-BFGS strategy from [9], the main difference being that C&W cleverly
define the margin loss f(x, t), which allows them to minimize the distance between
the input x and the associated adversarial sample x̃.

They reformulate the objective from Eq. (2.11) as follows:

minimize
x̃

∥x− x̃∥22 + cf(x̃, t) s. t. x̃ ∈ [0, 1]N0 , (2.18)
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where f(x̃, t) = [max
i ̸=t

T ∗
i (x̃)− T ∗

t (x̃)]
+, [x]+ denotes max(x, 0) calculated com-

ponentwise, and c a positive constant that is determined via a line search algorithm.
This method has proven to be effective against defensive distillation techniques
[41].

Other attacks – Decoupling direction norm (DDN) [42] and Fast minimum
norm (FMN) [43] attacks fall into the category of projected-gradient methods,
using iterative updates of the perturbation vector towards the minimization of its
magnitude. FMN extends the DDN attack by adapting to other distance metrics
and providing several improvements from an optimization viewpoint. Augmented
Lagrangian method for adversarial (ALMA) [44] propose the use of Augmented La-
grangian algorithms to create minimally perturbed adversarial samples. It combines
the versatility of penalty methods with the computational efficiency of distance-
customized algorithms. This approach can be easily applied to a variety of distance
metrics.

2.4.2 . Black-box attacks

Substitute model – In the context where the adversary has no access to the
parameters of the victim model, a pioneer work was introduced by Papernot et al.
[45], where they showed an interesting property of adversarial examples, namely
transferability. They show that they can efficiently fool DNN-based classifiers by
training a substitute model T ′ that has a similar structure to the original one. They
show that adversarial samples crafted on T ′ using some white-box mechanisms can
be also efficient in fooling the original model T .

Query-based methods –Several research efforts have focused on making the
process of producing black-box adversarial instances using a finite amount of queries
more efficient. The authors of [46] presented a method that is more effective in
estimating the gradient information based on the model outputs. They make use of
natural evolutionary strategies proposed in [47], which involve taking a sample of
the model output based on the queries that are performed around and estimating
the expected gradient of T with respect to the input x.

By analyzing the decision boundary of the model, one might obtain a new
understanding of the existence of adversarial cases. The adversarial examples are
often quite close to the decision boundary of a naturally trained model. This
may be due to the fact that the decision boundary is either inflexible [48], or too
curved [49], or too flat [50]. Researching the rationale behind the existence of
adversarial instances is crucial because it can guide us in the development of more
robust models and assist us in better comprehending those that already exist in
the field of deep learning. Even though, up to this moment, there is no unified
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Figure 2.4: The taxonomy of defense against adversarial attacks strategies.

view on this problem, there are several defense mechanisms proposed in the litera-
ture to limit the effect of adversarial attacks, which will be discussed in the following.

2.5 . Defense strategies

Since there are many ways an adversary can exploit the model’s weaknesses,
defensive strategies have been developed to alleviate this robustness issue.

Silva et al. [51] divide adversarial defense methods into three categories, as
follows.

(i) Robust Optimization techniques protect the model by imposing some robust-
ness constraints during the training phase, or by augmenting the dataset.
These techniques are proven to upgrade the model stability with respect to
adversarial attacks, but they may hinder the performance of the model.

(ii) Obfuscation, also known as gradient masking, focuses on building models
with gradients that cannot be used by adversaries. In general, obfuscated
models generate smooth loss functions in the neighborhood of the input
samples, which can confound adversaries and improve robustness.

(iii) Adversarial example detection strategies concentrate on detecting perturbed
inputs using an additional module (usually another neural network specialized
in adversarial detection), or by performing some statistical tests on the input
data.

A taxonomy of existing defense strategies is presented in Figure 2.4.
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2.5.1 . Robust Optimization
The main idea behind robust optimization methods is to study how to change

the way of learning the model so that representations will be obtained that are
stable against adversarial inputs. In this context, the vast majority of research
focuses mainly on learning a new set of parameters η∗ which minimize the average
adversarial loss defined in Eq. (2.10):

η∗ = argminη E
x∼N

max
||x̃−x||⩽ϵ

L(η, x̃, y, T ), (2.19)
where N denotes the distribution of the input data.

Robust optimization mechanisms usually aim to create classifiers that are ro-
bust against small ℓp perturbations [52]. Although they do not provide stability
certificates against non-ℓp attacks (e.g., spatial attacks [53]), it is fundamental
to understand how to assess and control the robustness in the case of ℓp attacks,
which can stand as a baseline for further generalizations. The rest of this section
will focus on various defense strategies in the case of ℓp norm attacks.

Regularization methods – An early work of Rifai et al.[54] introduced contrac-
tive auto-encoders, as a solution for extracting better feature representations from
images. They show that introducing a penalization factor corresponding to the
Frobenius norm of the activation’s Jacobian matrix w.r.t. its input helps improve
the model’s generalization capabilities while reducing overfitting. Inspired by their
work, Gu et al.[55] extended this idea and proposed an algorithm for building deep
contractive networks. By adding a penalty term on the Jacobian matrix of each layer
during the back-propagation phase, they limit the effect that a slight perturbation of
the input data will have on the final prediction, hence improving the model’s stability.

Control of the Lipschitz constant A similar defense strategy aims to control
the Lipschitz constant of the network. As highlighted in [14], the Lipschitz behaviour
of the network is tightly correlated with its robustness against adversarial attacks.
The Lipschitz constant allows to upper bound of the output perturbation knowing
the magnitude of the input one, for a given metric [16]. Given the model T , for
every (x, z) ∈ (RN0)2, then

∥T (x+ z)− T (x)∥p ⩽ θ∥z∥p, (2.20)
where θ ⩾ 0 denotes the Lipschitz constant of the network. Different norms can also
be used for the input and output spaces. Controlling this constant thus represents
a feasible approach to limit the effect of adversarial attacks. Computing the exact
Lipschitz constant of a neural network is however an NP-hard problem [16, 20], so
the main challenge is to find efficient ways to approximate this constant effectively
and to control it during the training phase without hindering the model performance.
A recent study [56] shows how the Lipschitz behaviour of a network is influenced
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by the architectural choices as well as the initialization values of the weights.

Computing the Lipschitz bound
Several studies have been devoted to the complex problem of estimating the

Lipschitz constant of DNNs. Goodfellow et al. estimate the global Lipschitz
constant by multiplying the constants of each individual layer in the network. (see
[14] for more information). Although this method is simple and general, since it is
valid for convolutional layers as well [57], the upper bound it produces is rough and
usually over-pessimistic.

In [16], the authors introduce a generic technique known as AutoLip to compute
the upper bound for the Lipschitz constant of any differentiable function, which
can be applied for feed-forward neural networks. Moreover, the authors introduce a
variant that is suitable for sequential neural networks, named SeqLip. Another study
[58] introduces a convex programming framework capable of deriving tight Lipschitz
bounds in the context of feed-forward neural networks. They take advantage of the
fact that the usual non-linear operators used in neural network-based models are
gradients of convex functions. Using this observation, they formulate the Lipschitz
estimation problem in the form of a semi-definite program (SDP), referred to as
LipSDP. Despite the fact that there exist quite effective SDP solvers, the approach
itself is still very computationally demanding.

Combettes and Pesquet [20] derived several global Lipschitz bounds for forward
neural networks, by making the assumption that for every layer i ∈ {1, . . . ,m},
the associated activation function Ri is an αi-averaged operator where αi ∈]0, 1].
This means that there is a 1-Lipschitz (non-expansive) operator Qi such that
Ri = (1− αi) Id +αiQi. Then, the following holds, (∀(x, x′) ∈ (RNi)2),

|| Rix−Rix
′ ||22⩽|| x− x′ ||22 −

1− αi
αi

|| (Id −Ri)x− (Id −Ri)x′ ||22 . (2.21)
We can say that the stability of the operator Ri increases as αi gets smaller. We
recover some special cases: if αi = 1, then Ri is non-expansive and if αi = 1/2,
Ri is firmly non-expansive. An example of a firmly non-expansive operator is the
proximity operator of a function which is proper, convex, and lower-semicontinuous
(l.s.c.). We recall below some definitions.

Let f : RN →]−∞,+∞[.

(i) Function f is proper if
dom(f) ̸= ∅,

where dom(f) = {x ∈ RN | f(x) < +∞}.

(ii) Function f is lower-semicontinous (l.s.c.) if
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(∀x0 ∈ RN ) lim
x→x0

inf f(x) ⩾ f(x0).

(iii) Function f is convex if the following holds for every α ∈]0, 1]:(
∀(x, x′) ∈ (dom(f))2

)
f(αx+ (1− α)x′) ⩽ αf(x) + (1− α)f(x′).

The proximity operator was introduced by Moreau in 1965 [59], and can be
viewed as an extension of the projection onto a convex set. The proximity
operator of the afore-mentioned function f at a point x ∈ RN is

(∀x ∈ RN ) proxf (x) = argmint f(t) +
1

2
∥t− x∥2. (2.22)

In [60] is shown that the activation operators commonly used in deep learning
models, e.g. Sigmnoid, Tanh, ReLU and its variants (SeLU, ELU, Leaky ReLU) are
proximity operators of some proper, convex, and l.s.c. functions. A fundamental
result established in [20] states that, when such activation functions are used, tight
Lipschitz bounds can be derived and these bounds are easy to compute when the
weight matrices of the network are non-negative.

In the context of convolutional neural networks, a first naive method for esti-
mating the Lipschitz bound has been proposed in [61], and later refined in [61],
where a linear program is introduced to compute an upper bound.

Lipschitz-based defenses
Recently, several techniques to ensure the Lipschitz stability of neural networks

have been explored. The work in [19] formalized the idea of ensuring robustness
by controlling the Lipschitz constant of the network. This study shows that the
network adversarial risk is directly related to its Lipschitz constant θ:

E
x∼N

[ max
||x̃−x||⩽ϵ

| L(T (η, x̃, y, T )) |] ⩽ E
x∼N

L(η, x, y, T ) + λθϵ, (2.23)
where λ is a positive constant quantifying the smoothness of the loss. The authors
introduce Parseval networks, another approach for designing networks that are
intrinsically robust to adversarial noise, by imposing the Lipschitz constant of each
layer of the system to be less than 1. This approach was further extended for
unsupervised learning in [62].

In another study, Miyato et al. [12] propose a novel weight spectral normaliza-
tion technique applied to stabilize the training of the discriminator in Generative
Adversarial Networks (GANs). The Lipschitz constant of the network is viewed as a
hyper-parameter that can be tuned in the training process of the generator. By
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doing so, the model exhibits improved generalization capabilities.

In [63] norm-constraint GroupSort-based architectures are proposed, and it is
shown that they can be used as universal Lipschitz function approximators. The
authors apply gradient norm preservation to create Lipschitzian networks that offer
adversarial robustness guarantees.

Serrurier et al.[64] propose DeelLip, a mechanism to train 1-Lipschitz networks
using a hinge regularized formulation of Kantorovich-Rubinstein loss. They use
Björck normalization to control the Lipschitz constant of feed-forward layers. An-
other method that accounts for a local Lipschitz bound during the training phase is
presented in [65].

Although training a neural network under Lipschitz constraints guarantees its
robustness against possible attacks, it may affect its performance. Finding a good
accuracy-robustness balance is a challenging task, which will be one of the main
topics of this thesis.

Adversarial training – This is one of the most popular defenses against ad-
versarial attacks. First introduced by Goodfellow et al. [14], it implies introducing
adversarial examples in the training process to help the model improve generaliza-
tion capabilities. The process implies augmenting the dataset by adding pairs of
adversarial examples together with their associated true label (x̃, y), to increase
the model robustness against future adversarial samples.

In [14], the authors use a non-targeted version of FGSM attack (Eq. (2.14))
to create the adversarial samples x̃, which are later used to augment the training
set. This strategy was later reformulated in [10], by introducing scaled adversarial
training, which facilitates the integration of this methodology for larger datasets.
The adversarial training algorithm includes an additional step in the training process,
which augments the original batch of inputs with n ∈ N∗ adversarial examples. This
method has been proven efficient against FGSM attacks, but it is still vulnerable
against more powerful iterative-based adversaries [32].

Another popular approach, introduced in [66] proposes PGD attack as an
alternative to one-step FGSM for adversarial training. When T is trained on the
most-adversarial cases in an ℓ∞-ball around x, the optimizer actually minimizes the
adversarial loss from Eq (2.9). A small adversarial loss ensures that the model is
stable in all points around the ball B∞(x, ϵ).

Concerning the training strategy, Madry et al. [66] propose to train the model
only on adversarial examples, instead of concatenating the original dataset with

26



Figure 2.5: Fi are the decision boundaries. The certificate C(x, F ) lowerbounds the minimal perturbation distance, guaranteeing the robustness ofthe model inside the ball.

some adversarial samples. This involves introducing an additional loop into the
training process, thus increasing the training time. Due to this additional overhead,
this method is not scalable to large datasets.

Tramer et al. introduced ensemble adversarial training [32], a technique that
implies augmenting the training set with adversarials designed by using other pre-
trained classifiers. In their study, they proved that this method is more time-efficient
than the previous two strategies since it decouples the process of crafting adversarial
samples from the actual training. Hence, this method is also suited for large datasets.

Lately, the techniques used for adversarial training were refined (see for example
[67, 68, 69, 70]) and several optimizations techniques have been proposed to reduce
the additional overhead during training. The main disadvantage of adversarial
training is that, although it can be efficient against some adversaries, it remains
quite an empirical strategy that does not offer any theoretical robustness guarantees
[71].

Certifiable defences – To circumvent the disadvantage of adversarial training,
methods that can offer some robustness guarantees were proposed. Carlini et
al.[72] were the first to propose a Reluplex [73] algorithm to check the stability
properties of neural network (NN) models. Considering a model T with ReLU
activation functions, their method computes the minimal perturbation distance
r(x, T ) w.r.t. the input x. Extending the Reluplex to the entire test data, it is
possible to compute the percentage of safe examples against perturbations with
norms less than r, thus, certifying the robustness of the model on x. Other studies
refining this idea [74, 75] propose methods to assess trainable certificates C(x, T )
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in order to ensure the robustness of the trained network.

For example, Hein et al. [75] propose a trainable certificate mechanism, which
implies computing a lower bound of the minimal perturbation distance of F on x,
i.e. C(x, T ) ⩽ r(x, T ), guaranteeing the model robustness inside the C(x, T ) ball.
A visual representation of this concept is depicted in Figure 2.5. Their method is
based on the Cross-Lipschitz constant, resulting from the following maximization
problem:

maxϵmin

min
i ̸=k

T ∗
k (x)− T ∗

i (x)

max
x̃∈B(x,ϵ)

|| ∇T ∗
k (x̃)−∇T ∗

i (x̃) ||
, ϵ

 , (2.24)
where Tk(x) = maxi Ti(x).

Alternatively, works like [76, 77, 78, 79] propose different strategies to solve
the same problem. They derive an upper bound U(x, T ) for the adversarial loss
defined in Eq. (2.9), based on the margin loss.

L(x) = max
x̃

{max
i ̸=y

T ∗
i (x̃)− T ∗

k (x̃)} s.t. x̃ ∈ B(x, ϵ). (2.25)
The certificate U(x, T ) operates as follows. If the value of U(x, T ) is negative,

it implies that the value of the adversarial loss is also negative, and thus, the model
will always award the highest score to the true label y inside the region delimited by
B(x, ϵ). Wong et al.[76] solved Problem 2.25 as a linear programming problem, by
training an alternative version of the neural network, while Raghunathan [77] solved
the certificate via semi-definite programming (SDP). Due to the computational
overhead, these early solutions only considered shallow neural networks, containing
one hidden layer. In more recent works, Leiono et al. improved the scalability of
these techniques, introducing Globally-Robust neural networks (GloRo-Nets) [78].

2.5.2 . Obfuscation
Since the strategies employed by adversarial attackers heavily rely on exploiting

the gradient information of the classifier, the concept of hiding or obscuring this
information has emerged as a defense mechanism to thwart adversarial attacks.
These techniques are also known as gradient masking include defensive distillation,
shattered gradients, and randomized gradients, briefly described in the following.

Defensive distillation – The concept was first introduced by Hinition et al.
[80] and implies compressing the model’s architecture, by training a reduced version
of the network on the logits. The work was later refined in [41], which proposed a
distillation technique that uses a temperature parameter τ for the final softmax
operator, defined as

softmax(x, τ) =
( exi/τ∑

j e
xj/τ

)
1⩽i⩽Nm

. (2.26)
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Although this technique proved to be effective against some attacks like FGSM and
L-BFGS, it provides poor results against more sophisticated adversaries like C&W,
DDN, and FMN.

Shattered gradients – Another strategy is to use some preprocessing module
for the input data to ensure the robustness of the classifier [81, 82]. The main
idea is to include a non-differentiable or non-smooth operator f(·), apply it to
the dataset, and then train the model T on this new dataset. Since the trained
model T (f(·)) is usually not differentiable w.r.t x, it may make the adversary fail
in crafting efficient adversarial samples.

Randomized gradients – Another way to confuse the adversary is to find a
way to randomize the model T . This can be done by randomly omitting some
neurons of the trained classifier, as proposed by [83], or by randomly resizing the
input image and then introducing zero-padding, as suggested in [84].

Although obfuscation methods are usually easy to use and implement, they
are still vulnerable to adversarial samples, as shown in [40], because their main
objective is to confuse the adversaries, not to completely mitigate their effect.

2.5.3 . Adversarial example detection
Adversarial example detection techniques constitute another popular defense

strategy, They strive to find if the input is benign or adversarial [85].

Auxiliary models – some efforts concentrate on the development of auxiliary
models that are intended to differentiate between adversarial and benign instances.
Grosse et al. [86] introduce an additional label m+ 1 to the classification problem,
which accounts for adversarial examples. A variation of this method was proposed
in [87, 88], where a binary adversarial detection model is trained and used before
the classification module. The auxiliary model takes as input an intermediate
feature representation of the original classifier. This binary model has the task to
distinguish adversarial examples from genuine inputs.

Statistical models – statistics can be used to distinguish adversarial examples.
The work in [89] claims that principal component analysis (PCA) is a useful tool
for detecting adversarial inputs. The authors compute the covariance matrix C of
the training date. Then, they perform a singular value decomposition (SVD) on
C = UΣU⊤. The PCA whitened input associated with an input x is computed as
Σ−1/2U⊤x. The resulting coefficients can be sorted in the ascending order of the
diagonal components of Σ. It is shown that the coefficients for the later principal
components associated with adversarial inputs show consistently a greater value
than the ones of the clean inputs.
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Other statistical detection techniques imply computing some measure to tell if
two datasets were drawn from the same distribution. For example, Grosse et al.[86]
used the maximum mean discrepancy (MMD) [90] on random groups of data, in
an effort to detect possible adversarial attacks.

Consistency check – this direction of research concentrates on determining
whether, given an input sample, the model prediction is feasible or not. In most
cases, they adjust the values of the model parameters or modify the instances that
are being fed into the classifier in order to see if this makes a substantial difference in
the results. These are predicted on the assumption that the classifier will continue to
make accurate predictions when applied to the original data after some changes [52].
For example, [91] randomizes the model, by employing dropout technique. If these
classifiers come up with highly different prediction results following randomization,
then this sample is quite likely to be an adversarial one. However, Carlini et al. [85]
showed that their attack is capable of evading 10 distinct detection mechanisms,
proving that the intrinsic properties of adversarial examples are not easy to spot
and elude.

2.6 . Conclusion

This chapter has presented an overview of the state-of-the-art in the field of
adversarial attacks and defenses of neural networks. The robustness of deep learning
models is a hot topic that has attracted increasing attention from the research
community, since it represents an important aspect to consider in the development
and integration of future trust-worthy AI solutions in real-life applications. The
next chapters will present new contributions in this domain.
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Chapter 3 – EMG-based automatic gesture
recognition using robust neural
networks

This chapter introduces a novel approach for building a robust Automatic
Gesture Recognition system based on Surface Electromyographic (sEMG) signals,
acquired at the forearm level. Our main contribution is to propose new constrained
learning strategies that ensure robustness against adversarial perturbations by
controlling the Lipschitz constant of the classifier. We focus on nonnegative neural
networks for which accurate Lipschitz bounds can be derived, and we propose
different spectral norm constraints offering robustness guarantees from a theoretical
viewpoint. Experimental results on four publicly available datasets highlight that
a good trade-off in terms of accuracy and performance is achieved. We then
demonstrate the robustness of our models, compared to standard trained classifiers
in three scenarios, considering both white-box and black-box attacks.

3.1 . EMG and automatic gesture recognition

sEMG stands for surface electromyography and represents the electrical mani-
festation of the neuromuscular activation related to the contraction of the muscles
[92]. This technology may be used by physically impaired persons to control rehabil-
itation and assisting devices. EMG is also used in many types of research domains,
including those involved in biomechanics, motor control, neuromuscular physiology,
movement disorders, postural control, and physical therapy [93].

The first recording of EMG activity was made by Marey in 1890, who intro-
duced the term electromyography. Clinical use of surface EMG for the treatment of
different disorders began in the 1960s. Hardyck was the first practitioner who used
EMG [94]. Cram and Steger introduced a clinical method for scanning a variety of
muscles, in 1980, using an EMG sensing device [95]. Progress in understanding these
signals has been made during the past 15 years. Still, there are some limitations
in characterizing the properties of surface EMG signals (estimation of the phase,
acquiring exact information) due to derivation from normality. Traditional system
reconstruction algorithms have various limitations and considerable computational
complexity, and many show high variance [93].

The work carried out by researchers focused on sEMG signals resulted in
developing better algorithms, upgrading existing methodologies, improving detection
techniques to reduce noise, and acquiring accurate EMG signals. This section will
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further present the performance of various technologies developed with sEMG
signals.

3.1.1 . Challenges and limitations
In recent years, the concept of human-computer interaction (HCI) has been

at the core of many scientific and sociological developments. Combined with
the power of machine learning algorithms, it has led to some of the most out-
standing achievements in nowadays technology which are used successfully in an
ever-increasing number of areas impacting our lives, e.g. medicine [3], autonomous
driving [4], natural language processing [5], etc. Researchers all around the world
focus on providing new intuitive and accurate ways of interacting with devices
around, based on gesture, voice, or vision analysis [26]. Gestures constitute a
universal and intuitive way of communication, with the potential of bringing the
Internet of Things (IoT) experience to a different, more organic level [6]. Automatic
gesture recognition (AGR) algorithms can be successfully used in various applica-
tions, from sign language recognition (SLR) [96] to Virtual Reality (VR) games [97].

Various solutions for AGRs based on image or video stream analysis, leveraging
computer vision algorithms, have been proposed; see for example [98, 99, 100]. A
multi-stream solution for dynamic hand-gesture recognition is described in [101].
Multi-modal approaches for gesture classification have also been studied [102]. A
novel method showing a fully neuromorphic implementation [103] achieves good
results (96% accuracy while reducing the inference time by 30%). Although a good
performance is achieved on synthetic data, in real-life scenarios these systems may
be sensitive to environmental conditions, e.g. light conditions, background, etc.
Additionally, these systems are often computationally demanding and consequently
not always suited for real-time applications. Accelerometers and electromyography
(EMG) sensors provide an alternative low-cost technology for gesture sensing [104].
In [105] the authors propose a method combining feature selection with ensemble
learning, achieving around 78% classification accuracy for 52 gestures. The appli-
cations of sEMG-based classification systems are focused on, but are not limited
to, assertive devices and rehabilitation or postural control therapy for physically
impaired persons [106]. With the continuous development of more versatile signal
processing techniques, the applications of EMG signal classification expanded to a
wide range of domains including augmented reality, the gaming industry, military
applications, etc.[107, 108].

Two critical issues need to be addressed when developing AGR algorithms:
fast enough inference to ensure real-time feeling for the end-user, and accurate
and robust classification to guarantee that the gesture is correctly identified no
matter the environmental conditions. Machine learning methods have become the
main tools for AGR systems, on account of their ability to solve a great variety of
problems, from simple regressions to complex multi-modal classification.
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However, as emphasized in Chapter 2, deep neural networks, which are probably
the most powerful methods, may appear as black boxes whose robustness is not
always well-controlled. For real-life applications, it is mandatory to guarantee the
reliability of such techniques. Nowadays, the main difficulty to overcome consists in
developing high-performance systems that are also trustable and safe. An additional
challenge is to avoid implementation heaviness during the learning phase.

It must be emphasized that adversarial inputs are not necessarily artificially
created with the intention to sabotage the system. As other physiological signals,
e.g. EEG or EKG, EMG signals have low frequency components (usually between
10 – 150Hz), and low amplitudes (⩽ 10 mV Peak to Peak). This makes them very
sensitive to noise and outside perturbations that can occur innately, in the form of
noise stemming from acquisition devices, imperfect sensor contact, etc. Those can
seriously flaw the performance of real-life applications based on pre-trained models
[15].

The Lipschitz behaviour of the network is intimately connected with its resilience
against adversarial attacks, as was mentioned in Section 2.5. For a given metric, the
Lipschitz constant enables an upper bound to be placed on the output perturbation.
Consequently, exercising control over this constant is a workable answer to the
problem of reducing the impact of perturbations.

3.2 . Robustness solutions in the context of non-negative neural
networks

3.2.1 . Problem formulation
Consider the Model 2.2.1 introduced in the previous chapter. Even though

the choice of the activation Ri may differ depending on the task at hand, it has
been shown in [20, 60] that most of them are actually αi-averaged operators
with αi ∈]0, 1]. Recall that Ri is an αi-averaged operator if, for every pair
(xi, yi) ∈ (RNi)2, the following inequality holds:

∥Ri(xi)−Ri(yi)− (1− αi)(xi − yi)∥ ⩽ αi∥xi − yi∥. (3.1)
When αi = 1/2, Ri is said to be firmly nonexpansive. For standard choices of

activation operators, Ri is firmly nonexpansive since it is the proximity operator of
a proper, lower-semicontinuous function (see [60] for more details). Note that, in
[58], it is assumed that Ri operates component-wise and is slope-bounded. The
authors emphasize that the most common case corresponds to lower and upper
slope values equal to 0 and 1, respectively. It follows from [109, Proposition 2.4]
that a function satisfies this property if and only if it is the proximity operator of
some proper lower-semicontinuous convex function so that similar assumptions to
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those made in [60] are recovered.

As explained in [20], examples of activation operators Ri which are αi-averaged
with αi > 1/2 can be encountered. They basically correspond to over-relaxations of
firmly nonexpansive operator. An example of such operator is the Swish activation
function [110]. Another famous example is the group-sort operator:∀xi =

 xi,1...
xi,M

 ∈ RNi

 Ri(xi) =

 x
↑
i,1
...

x↑i,M

 , (3.2)

where the vector xi has been decomposed inM subvectors xi,j with j ∈ {1, . . . ,M},
of dimension B (Ni = BM) and x↑i,j designates the vector of components of xi,j
sorted in ascending order. Ri is then purely nonexpansive, i.e. αi = 1. Note that
max-pooling can be achieved by composing this group sort operation with a linear
operator. Indeed, if i < m, M = Ni+1, and Wi+1 is the matrix extracted from the
Ni ×Ni identity matrix Id Ni by selecting the matrix rows with indices multiple of
B, then Wi+1 ◦Ri corresponds to a max-pooling.

3.2.2 . Lipschitz robustness certificate
Consider a neural network T as described in Figure 2.2. let x ∈ RN0 be the

input of the network and let T (x) ∈ RNm be its associated output. By adding
some small perturbation z ∈ R0 to the input, the perturbed input is

x̃ = x+ z.

The effect of the perturbation on the output of the system can be quantified by
the following inequality:

∥T (x̃)− T (x)∥ ⩽ θm∥z∥, (3.3)
where θm ⩾ 0 denotes a Lipschitz constant of the network. θm represents thus an
important parameter that allows us to assess and control the sensitivity of a neural
network to various perturbations. It needs however to be accurately estimated to
provide valuable information. A standard approximation to the Lipschitz constant
[14] is given by

θm =

m∏
i=1

∥Wi∥S, (3.4)
where ∥ · ∥S denotes the spectral norm of a matrix. Although simple to compute,
this approximate bound is over-pessimistic. Different methods for obtaining tighter
estimates of the Lipschitz constant have been presented in the recent literature; see
for example [16, 20, 58, 111, 112]. Local estimates of the Lipschitz constant can
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also be performed, which may appear more relevant. But they are more complex to
compute and, as we will see, controlling the global Lipschitz constant is usually
sufficient to get a good performance. Estimating the global Lipschitz constant of the
network is an NP (non-deterministic polynomial-time)-hard problem [16]. Although
there exist efficient approaches to approximate an accurate bound [58, 111, 112],
computing these estimates may be expensive for wide or deep networks. In addition,
using these bounds within a training procedure is a difficult task [113].

In this work, we will make the following assumption.

Assumption 3.2.1 Let a neural network be given by (2.1) where the i-th layer
with i ∈ {1, . . . ,m} is given by (2.2). We assume that

(i) all the activation layers, except possibly the last one, consist of separable
averaged operators, that is, for every i ∈ {1, . . . ,m − 1}, there exist
averaged functions (ρi,k)1⩽k⩽Ni

from R to R such thatRi : (ξi,k)1⩽k⩽Ni
7→

(ρi,k(ξi,k))1⩽i⩽k;

(ii) at the last activation layer, Rm is an averaged operator.

Our approach will be grounded on the following result.

Proposition 3.2.2[20] Suppose that Assumption 3.2.1 holds. For every i ∈ {1, . . . ,m},
let Ai be the matrix whose elements are the absolute values of those ofWi. Then,

ϑm = ∥Am · · ·A1∥S (3.5)
is a Lipschitz constant of T . In addition

∥Wm · · ·W1∥ ⩽ ϑm. (3.6)
In particular if, for every i ∈ {1, . . . ,m},Wi ∈ [0,+∞[Ni×Ni−1 , ϑm is equal to the
lower bound in (3.6).

Based on this proposition, the best estimate for the Lipschitz constant of a
given feedforward neural network having nonnegative weights simplifies to the
spectral norm of the product of all the weight matrices composing the network.
More precisely, the obtained Lipschitz constant

ϑm = ∥Wm · · ·W1∥S

is the Lipschitz constant of a purely linear network, where all the non-linear activa-
tion operators have been replaced with the identity operator.

The above result is guaranteed to be valid only in the case when all the weights
are nonnegative. In the general case of networks with weights having arbitrary
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signs, it can be proved that ∥Wm · · ·W1∥S represents only a lower bound of the
Lipschitz constant established in [20]. It is also worth mentioning that the proposed
results hold for any algebraic structure of the weight matrices (Wi)1⩽i⩽m. Using
the above-defined bound, in the following we will propose an algorithm for training
models with theoretical robustness guarantees, and validate it in the context of
gesture classification. By focusing on gesture recognition, we aim to showcase
the effectiveness of our methodology in a challenging domain having multiple
applications and for which real experiments can be made. Moreover, gesture
recognition tasks often involve complex and dynamic data, making them suitable
testbeds for evaluating the robustness and adaptability of our proposed approach.

3.3 . Optimization methods for training robust feed-forward
neural networks

Standard training in neural networks consists in the minimization of a nonconvex
cost function with respect to the model parameters by means of an iterative strategy.
Let L be the cost function defined as follows:

L(η) =
K∑
k=1

ℓ(zk, η), (3.7)
where η = (ηi)1⩽i⩽m is a vector encompassing all the model parameters. For each
layer i ∈ {1, . . . ,m}, ηi denotes a vector of dimension Ni(Ni−1 + 1) that contains
the scalar variables associated with the weight matrices Wi and the corresponding
bias components bi. The data information is represented by (zk)1⩽k⩽K . For every
k ∈ {1, . . . ,K}, zk is a pair consisting of an input of the system and the associated
desired output (ground truth). Also, ℓ represents the loss function assumed to be
differentiable (almost everywhere) with respect to η.

To ensure robustness, we shall impose spectral norm constraints on the weight
matrices. In other words, the vector of parameters η is constrained to belong to a
closed set S that will be described in the next section. We propose to use an exten-
sion of a standard optimization technique for training neural networks [114]. More
specifically, we will implement a projected stochastic gradient algorithm. A momen-
tum parameter is introduced in this algorithm to accelerate the convergence process.

Algorithm 1 describes the iterations performed at each epoch n > 0. We see
that there are two nested loops: the outer loop operates on the batch index q
and the second one on the layer index i. In this algorithm, γn ∈]0,+∞[ is the
learning rate, while ζn ∈ [0,+∞[ denotes the inertia parameter for momentum. The
algorithm is very similar to block-iterative techniques used in convex optimization
[114]. The parameters of each layer are indeed updated successively by performing a
gradient step on the data in the current mini-batch (which can be epoch-dependent).
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Algorithm 1: Projected SGD Algorithm
Partition {1, . . . , K} into mini-batches (Lq,n)1⩽q⩽Q
foreach q ∈ {1, . . . , Q} do

foreach i ∈ {1, . . . ,m} do
∆i,n = (1 + ζn)ηi,n − ζnηi,n−1

η̃i,n = [(η⊤j,n+1)j<i ∆⊤
i,n (η⊤j,n)j>i]

⊤

ηi,n+1 = PSi,n

(
∆i,n − γn

∑
k∈Lq,n

∇iℓ(zk, η̃i,n)
)

where Si,n =
{
ηi | [(η⊤j,n+1)j<i η⊤i (η⊤j,n)j>i]

⊤ ∈ S
}
.

∇i represents the gradient, computed by standard backpropagation mechanism,
with respect to ηi for each i ∈ {1, . . . ,m}. This stochastic gradient step is followed
by a projection PSi,n onto the constraint set Si,n. The definition of this set as well
as the way of handling this projection are detailed in the following.

3.3.1 . Constraints sets
As mentioned before, this thesis revolves around feed-forward networks with

positive weights. Thus, the first condition that we impose is nonnegativity for each
layer i ∈ {1, . . . ,m}, which is modelled by the constraint set

Di = {Wi ∈ RNi×Ni−1 |Wi ⩾ 0} (3.8)
Moreover, based on our standing assumptions and Proposition 3.2.2, we must impose
a spectral norm constraint on the weight matrices to control the robustness of the
system. This translates mathematically as the following upper bound constraint:

∥Wm · · ·W1∥S ⩽ ϑ, (3.9)
where ϑ represents the target maximum Lipschitz constant of the network. This
bound constitutes a direct measure of the system’s level of robustness against
adversarial inputs. We need to handle these two constraints simultaneously during
the training process. Imposing nonnegativity is fairly easy since (4.2) defines a simple
convex constraint. By contrast, constraint (3.9) does not satisfy the convexity
property. Since (3.9) corresponds to a closed set in the underlying space of weight
matrices and this set has a nonempty intersection with D1×· · ·×Dm, the projection
onto the intersection of the two sets can be defined but it is not guaranteed to
be unique. To circumvent this difficulty, it can be noticed that (3.9) actually
defines a multi-convex constraint in the sense that if, for every i ∈ {1, . . . ,m},
(Wj)1⩽j⩽m,j ̸=i are given, then (3.9) imposes a convex constraint on Wi. This
suggests introducing the following closed and convex set:

Ci,n = {Wi ∈ RNi×Ni−1 | ∥Ai,nWiBi,n∥S ⩽ ϑ} (3.10)
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in order to control the Lipschitz constant. Hereabove, the matrices Ai,n and Bi,n
represent the product of the weight matrices for the previous and the posterior
layers, respectively. By adopting the convention that Ai,n = Id if i = m and
Bi,n = Id if i = 1, we define these matrix products as

Ai,n =Wm,n · · ·Wi+1,n, Bi,n =Wi−1,n+1 · · ·W1,n+1, (3.11)
where (Wj,n)1⩽j⩽m denote the estimates of the weight matrices at each iteration
n, as it appears in Algorithm 1.

Thus, our objective will be to perform the projection onto the set Si,n = Di∩Ci,n,
for each layer i ∈ {1, . . . ,m} and at each iteration n. Several algorithms can be
envisaged to solve this convex optimization problem.

Before describing our proposed algorithmic solution, let us recall the expressions
of the required elementary projections. For every W ∈ RS×T , the projection of W
onto [0,+∞[S×T is

P[0,+∞[S×T (W ) = (W̃s,t)1⩽s⩽S,1⩽t⩽T , (3.12)
where, for every s ∈ {1, . . . , S} and t ∈ {1, . . . , T},

W̃s,t =

{
Ws,t if Ws,t ⩾ 0

0 otherwise.
(3.13)

Let B(0, ϑ) be the closed spectral ball of centre 0 and radius ϑ defined as1

B(0, ϑ) = {W ∈ RS×T | ∥W∥S ⩽ ϑ}. (3.14)
For every W = (Ws,t)1⩽s⩽S,1⩽t⩽T ∈ RS×T , let UΛV ⊤ be the singular value de-
composition of W , where U ∈ RS×R and V ∈ RT×R are matrices such that
U⊤U = Id and V ⊤V = Id , R = min{S, T}, and Λ = Diag(λ1, . . . , λR),
(λr)1⩽r⩽R ∈ [0,+∞[R being the singular values of W . Then the projection
of W onto B(0, ϑ) is expressed as

PB(0,ϑ)(W ) = U Λ̃V ⊤ (3.15)
where Λ̃ = Diag(λ̃1, . . . , λ̃r) and

(∀i ∈ {1, . . . , r}) λ̃i =

{
λi if λi ⩽ ϑ

ϑ otherwise.
(3.16)

To compute the projection onto Si,n of a matrix W i ∈ RNi×Ni−1 , we propose
to employ the accelerated iterative dual forward-backward method in Algorithm
2. This algorithm is based on a dual proximal approach [115] and constitutes an
extension of the optimization method originally proposed in [116]. The rationale
for this algorithm is given in Appendix 3.7.

1To simplify our notation, B(0, ϑ) will designate any spectral ball of this kind what-ever the dimensions of the involved matrices.
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Algorithm 2: FISTA-like accelerated version of DFB algorithm
Let Y0 ∈ RNm×N0

Set γ = 1/(∥Ai,n∥S∥Bi,n∥S)2
Set α ∈]2,+∞[
for l = 0, 1, . . . do

ηl =
l

l+1+α

Zl = Yl + ηl(Yl − Yl−1)
Vl = PDi

(W i − A⊤
i,nZlB

⊤
i,n)

Ỹl = Zl + γAi,nVlBi,n

Yl+1 = Ỹl − γPB(0,ϑ)(γ
−1Ỹl)

return Vl

3.3.2 . Handling looser constraints
The Lipschitz constant of the network can be controlled in multiple ways.

Besides the solution formulated in Section 3.3.1, a more standard approach to
control it [9] consists in imposing

m∏
i=1

∥Wi∥S ⩽ ϑ. (3.17)
Two strategies have been implemented to enforce this constraint.

(i) The first one consists in imposing a uniform bound on the spectral norm of
each weight matrix (Wi)1⩽i⩽m, which leads to the following convex constraint
sets:

(∀i ∈ {1, . . . ,m})

C̃i = {Wi ∈ RNi×Ni−1 | ∥Wi∥S ⩽ ϑ
1/m}. (3.18)

(ii) The second strategy aims at introducing more flexible bounds on the spectral
norms of each layer. It is based on the following choice for the individual
convex constraint sets:

(∀n ∈ N \ {0})(∀i ∈ {1, . . . ,m})

Či,n =
{
Wi ∈ RNi×Ni−1 |

∥Wi∥S ⩽ ∥Wi,n∥S
( ϑ∏m

j=1 ∥Wj,n∥S

)1/m}
. (3.19)

For every i ∈ {1, . . . ,m}, projecting onto C̃i or Či,n is performed by truncating
a singular value decomposition, similar to the technique described at the end of
Section 3.3.1. The projections onto C̃i ∩ Di and Či,n ∩ Di can then be computed
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by using the same iterative method as in Algorithm 2 with Ai,n = Bi,n = Id .

In all the proposed constrained optimization methods, the projection PB(0,ϑ̃)

onto a spectral ball with radius ϑ̃ > 0 plays a prominent role. The ball radius
depends on the handled constraint (3.9), (3.18), or (3.19). A complex operation such
as a singular value decomposition may be very demanding in terms of computational
resources when dealing with large-size matrices. In that case, we propose to use an
approximate projection [12] defined as

(∀W ∈ RS×T ) PB(0,ϑ̃)(W ) ≃


W if ∥W∥S ⩽ ϑ̃

ϑ̃

∥W∥S
W otherwise.

(3.20)

Using this approximation in Algorithm 2 yields approximate projections
(P̃Ci,n∩Di)1⩽i⩽m,n>0. Note however that we then lose the theoretical guarantees of
convergence Algorithm 2, even if this issue was not observed in our implementation.

An additional advantage of Formula (3.20) is that it allows the nonnegativity
of the elements of the input matrix to be kept. This allows us to derive cheap
approximate versions of the projection onto C̃i ∩ Di with i ∈ {1, . . . ,m} by first
projecting onto Di and then applying the approximate projection onto C̃i. The
resulting approximate projection is denoted by (P̃C̃i∩Di

)1⩽i⩽m. A similar procedure

can be followed to compute approximate projections (P̃Či,n∩Di
)1⩽i⩽m,n>0 onto

(Či,n ∩ Di)1⩽i⩽m,n>0.

3.4 . AGR experimental setup

3.4.1 . sEMG datasets

We test our proposed training scheme on four online datasets containing EMG
information on different hand gestures. The first three were acquired using Myo
armband, a device developed by Thalmic Labs, equipped with eight sEMG sensors
displayed circularly, while the last one was acquired using 10 active double-differential
OttoBockMy-oBock13E200 sEMG electrodes 2.

Myo-sEMG. The first dataset, detailed in [117] contains EMG signals charac-
terizing 7 hand gestures correlated to the primary movements of the hand. There are
four mobility gestures (i.e., wrist flexion and extension, ulnar, and radial deviation)
and two gestures used for grasping and releasing objects (i.e., spread fingers and
close fist). The 7th gesture characterizes the neutral position, corresponding to the

2https://www.ottobock.com/en-gb/home-uk

40

https://www.ottobock.com/en-gb/home-uk


Figure 3.1: 13-gestures Dataset [2]

relaxation of the muscles.

13Myo-sEMG. The second dataset includes 13 gestures: the same 7 gestures
described above, plus 6 additional classes. It contains gestures from 50 different
subjects and two sets of trials per user. All 13 gestures are depicted in Figure 3.1.
More details about the dataset can be found in [2].

NinaPro DB5.C. The third dataset is a subset of NinaPro DB5 dataset, de-
tailed in [118]. The dataset is acquired using two Myo armbands, one positioned
just below the elbow and the other one closer to the arm. For our experiments, we
considered the subset C, which contains sEMG data associated with 24 gestures.

NinaPro DB1. The fourth dataset was introduced in [119], and encompasses
physiological data acquired from 27 able-bodied subjects, performing a total of 53
different gestures. The sEMG data is recorded using 10 electrodes, positioned as
follows. The first eight electrodes are evenly distributed around the forearm using
an elastic band, maintaining a consistent distance from the radio-humeral joint
located directly below the elbow. Two more electrodes are strategically positioned
on the major flexor and extensor muscles located in the forearm.

We also validate our models in a real-context scenario. For the real-life predic-
tions, we recorded the EMG activity associated with each gesture at the forearm
level using the Myo armband. The information collected from each channel is
transmitted to a computer via Bluetooth protocol, where it is processed to extract
relevant time domain features that will be used by the classifier to determine which
gesture has been performed.
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Figure 3.2: Proposed neural network architecture for AGR. All the layers except the
last one use ReLU activation functions; the last layer uses Softmax. The number of
neurons considered for each layer is: 128, 128, 128, 64, 32, 16, in the case of the
7-gestures dataset, 256, 256, 256, 128, 64, 32 in the case of the 13-gesture dataset,
and 512, 512, 256, 128, 64 in the case of the 24-gesture and the 53-gesture dataset.
The last layer has 7, 13, 24, or 53 neurons representing the gesture number being
recognized. Each EMG box represents a column vector containing 8 time descrip-
tors.

3.4.2 . Proposed Architecture
The raw 8 /10 channels EMG signal is split using a 250 ms sliding window, with

50% overlap. A 250 ms window is long enough to cover the most common gesture
durations, ensuring that the essential temporal aspects of each gesture are captured
within this window. Overlap ensures that important signal characteristics, such as
abrupt changes or transient patterns, are not missed due to window boundaries. By
using overlapping windows, the feature extraction process also becomes more robust,
as multiple windows contribute to representing the same temporal information from
the EMG signal. From each window of each channel, a series of 8 time descriptors
are extracted. The information from all the channels is then concatenated, forming
a 64 (80 for the fourth dataset)-dimensional vector. The 7-gestures dataset contains
around 200k vector samples, the 13-gestures dataset has around 59k vector samples,
the 24-gestures dataset has around 20k vector samples, and the 53-gestures dataset
has 250k vector samples. Those are split into training, validation, and test sets
at the user level according to the ratio: 70%, 20%, 10%. These vectors are fed
to the network in mini-batches of size 2048. For our experiments, we used as the
loss function ℓ the categorical cross-entropy, with a learning rate γ = 10−3 and
momentum parameter ζ = 0.02. The considered architectures consist of a 6-hidden
layer (m = 6) fully connected neural networks, with different parameters depending
on the considered datasets, but the same core structure, as displayed in Figure 3.2.
Let x = (xk)0⩽k⩽K−1 be the vector of EMG samples acquired on a window from
one channel. We considered some of the most relevant features to describe sEMG
data, as follows.

(i) Mean Absolute Value (MAV) – represents the average muscle activation
level within a specific time window. As different gestures involve varying
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degrees of muscle activation, MAV can capture the overall muscle activity
pattern, helping to distinguish between gestures with low and high muscle
involvement.

MAV(x) =
1

K

K−1∑
k=0

|xk|. (3.21)

(ii) Zero Crossing Rate (ZCR) – indicates how frequently the EMG signal
crosses zero within a time window. Rapid changes in muscle activation lead
to higher ZCR values, making it relevant for identifying gestures involving
quick and repetitive movements. A threshold α ⩾ 0 is used in order to lessen
the noise effect. This feature can be computed in an incremental manner,
and it is defined as

ZCR(x) =
∣∣∣{k ∈ {1, . . . ,K − 1} | |xk − xk−1| ⩾ α and xkxk−1 < 0

}∣∣∣.
(3.22)

(iii) Waveform Length (WL) – quantifies the amplitude variations within a time
window. Longer WL values may correspond to gestures involving sustained
muscle activity or complex patterns. It corresponds to the following total
variation seminorm:

WL(x) =
K−1∑
k=1

|xk − xk−1|. (3.23)

(iv) Slope Sign Changes (SSC) – counts the number of times the slope of the
EMG signal changes its sign within a window. It is effective in detecting
abrupt changes in muscle activation, which is crucial for recognizing gestures
with distinct start and stop points. It amounts to checking a condition on
three consecutive samples xk, xk−1, xk+1 with k ∈ {2, . . . ,K − 2}:

SSC(x) =
∣∣∣{k ∈ {2, . . . ,K−2} | (xk− xk−1)(xk − xk+1) ⩾ α}

∣∣∣, (3.24)
where the threshold α > 0 is employed to reduce the influence of the noise.

(v) Root Mean Square (RMS) – provides information about the overall energy
of the EMG signal within a time window. High energy levels may correspond
to forceful gestures, while lower energy levels may indicate more subtle
movements. RMS helps in recognizing gestures with varying intensity levels,
and it is given by

RMS(x) =

√√√√ 1

K

K−1∑
k=0

x2k . (3.25)
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Table 3.1: Comparison to other sEMG-based AGR systems
Myo-sEMG 13Myo-sEMG NinaPro DB5 Ex. C NinaPro DB 1

Method Acc.[%] Method Acc.[%] Method Acc.[%] Method Acc.[%]
7-DNN (ours) 99.67 13-DNN (ours) 99.31 24-DNN (ours) 86.20 53-DNN (ours) 88.50DL-TL [117] 98.12 EMG-CNN [120] 99.28 EELM [105] 83.60 IRDC-Net[121] 89.82

(vi) Hjorth parameters – are a set of three features originally developed for
characterizing electroencephalography signals and then successfully applied
to sEMG signal recognition. The most relevant Hjorth activity parameter can
be thought of as the integrated power spectrum and basically corresponds
to the variance of the signal, calculated as follows:

σ2(x) =
1

K

K−1∑
k=0

(xk − µ(x))2, (3.26)
where µ(x) represents the mean value of the signal. The standard deviation
and RMS(x) are equal when the mean of the signal is zero.

(vii) Skewness – measures the asymmetry of the EMG signal amplitude distri-
bution within a time window. Positive skewness indicates a longer tail on
the right side, while negative skewness indicates a longer tail on the left side,
and can be useful in identifying gestures with asymmetric muscle activations.

Skew(x) =
1

K

K−1∑
k=0

(
xk − µ(x)

σ(x)

)3

. (3.27)

(viii) Integrated Square-root EMG (ISEMG) – It provides a measure of the
total muscular activity and is particularly useful for capturing the overall
muscle involvement over time. iEMG is commonly used to quantify muscle
fatigue and effort during movements. In the context of gesture recognition,
iEMG can help differentiate between gestures with varying levels of sustained
muscle activation and can be indicative of the gesture intensity and duration.

ISEMG(x) =

K−1∑
k=0

√
| xk |. (3.28)

3.4.3 . Performance analysis in terms of accuracy and robustness
Since in this case the weights are not guaranteed to be positive, the lower

bound introduced in Proposition 3.2.2 does not constitute a valid Lipschitz constant.
Computing the exact Lipschitz constant θm of the system is a very difficult task
[20], but we can easily bound θm between the estimate given by (3.4) and the
spectral norm of the product of all the weight matrices from the network. We found
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Table 3.2: Performance and robustness results for 7-gestures dataset base-line models. The training time is computed for an epoch, with a batchsize=2048. All models were trained for 1000 iterations. All experiments wereperformed using 2 × A100 40 Gb Nvidia GPUs.
Regularizationmethod Param. Accuracy [%] Lipschitzconstant Trainingtime [ms]Train Validation Test
None – 99.98 79.63 80.35 5.3×1012 150
Dropout rate=0.1 98.31 97.76 97.66 5.1×1011 160rate=0.15 98.00 97.44 97.34 5.6×1011 160rate=0.2 97.55 97.03 96.98 6.1×1012 162
Batch Norm. – 99.96 99.65 99.78 6.3×1012 160
ℓ1regularization

reg. factor=10−4 99.28 97.35 97.59 7.2×109 135reg. factor=10−3 95.87 95.53 95.48 9.2×109 162reg. factor=10−2 84.35 84.24 83.34 5.8×1010 160

ℓ2regularization
reg. factor=10−4 99.71 98.36 98.02 5.7×1011 160reg. factor=10−3 98.66 97.99 97.25 3.2×1010 160reg. factor=10−2 91.97 91.86 91.78 5.5×108 160

Non-negativity – 97.23 96.82 96.92 9.69×1010 162

that the Lipschitz constant upper bound θm is greater than 1012 for all our baseline
models. Also, while training our model, we faced the problem of overfitting, which
is a challenging issue in the classification of physiological signals.

This suggests that despite the high performance of the classifiers, their robust-
ness is poorly controlled, leaving the systems vulnerable to adversarial perturbations.
A first step towards controlling the Lipschitz constant of the classification algorithm
and implicitly its robustness is to impose the nonnegativity condition associated
with the constraint D. Training under such a nonnegativity constraint is shown
to improve the network operation interpretability [21] and acts as a regularization,
reducing overfitting. On the other hand, it can affect its approximation capabil-
ity and potentially lead to a performance decay. To further study the effect of
other regularization techniques from a dual performance-robustness perspective, we
trained several models for 1000 iterations using common regularization methods,
such as Dropout, ℓ1/ℓ2 Regularization, and Batch Normalization. Such comparisons
were also featured in other works like [122]. The results for the 7-gesture dataset
are summarized in Table 3.2. It can be observed that Batch Normalization is
the most efficient technique from the accuracy viewpoint, but it comes with an
increase in the overall Lipschitz constant of the classifier. Training the proposed
system subject to the nonnegativity constraint (D) results in an overall accuracy of
96.92%, 95.87%, 84.75%, and 85.65% for the case of 7, 13, 24, and 53 classes,
respectively. The performance decay was balanced by an increase in the robustness,
since the Lipschitz constant, computed as indicated in Proposition 3.2.2, equals
θm = 9.69× 1010 for 7 classes, θm = 9.73× 1010 for 13 classes, θm = 1.03× 1011

for 24 classes, and θm = 8.4× 1010 for 53 classes. We observed that the accuracy
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Table 3.3: Lipschitz constant obtained with various constrained optimizationstrategies for different accuracies
Accuracy 75% 80% 85% 90% 95%

Lipschitzconstant7-gesturesMyo-sEMG

C̃i ∩ Di
P̃C̃i∩Di

19.5 37.5 68.3 3.5× 104 3.5× 108

PC̃i∩Di
0.66 13.47 74.16 1.04× 103 1.39× 105

Či,n ∩ Di
P̃Či,n∩Di

0.71 1.84 3.42 6.87 11.60
PČi∩Di

0.70 1.35 3.41 6.79 11.20
Ci,n ∩ Di

P̃Ci,n∩Di
0.44 1.79 2.93 4.85 5.68

PCi,n∩Di
0.35 0.46 0.65 0.82 0.95

Lipschitzconstant13-gestures13Myo-sEMG

C̃i ∩ Di
P̃C̃i∩Di

20.2 41.8 145.2 2.2× 105 1.21× 1011

PC̃i∩Di
0.85 20.47 112.3 1.62× 104 2.31× 108

Či,n ∩ Di
P̃Či,n∩Di

0.84 2.08 4.23 7.54 12.02
PČi∩Di

0.81 2.01 4.12 7.50 11.92
Ci,n ∩ Di

P̃Ci,n∩Di
0.54 1.87 3.38 4.20 5.78

PCi,n∩Di
0.49 0.53 0.75 0.92 1.25

Accuracy 65% 70% 75% 80% 85%
Lipschitzconstant24-gesturesNinaPro DB5Ex C.

C̃i ∩ Di
P̃C̃i∩Di

25.13 57.16 188.26 2.5× 106 2.14× 1011

PC̃i∩Di
1.85 31.12 112.3 1.82× 104 4.63× 108

Či,n ∩ Di
P̃Či,n∩Di

1.74 2.41 6.02 10.17 20.14
PČi∩Di

1.57 2.18 5.94 10.58 19.69
Ci,n ∩ Di

P̃Ci,n∩Di
0.88 2.05 4.28 5.74 6.84

PCi,n∩Di
0.77 0.96 1.27 1.44 1.96

Lipschitzconstant53-gesturesNinaPro DB 1

C̃i ∩ Di
P̃C̃i∩Di

26.26 86.17 200.45 4.10× 106 4.45× 1011

PC̃i∩Di
2.60 50.12 163.14 2.8× 104 2.9× 109

Či,n ∩ Di
P̃Či,n∩Di

2.94 4.43 6.88 14.25 22.16
PČi∩Di

2.83 2.18 5.56 16.48 20.16
Ci,n ∩ Di

P̃Ci,n∩Di
1.22 1.80 6.83 7.40 8.23

PCi,n∩Di
1.56 2.08 2.53 2.74 3.88

reduction can be overcome by adding additional layers to the architecture. Indeed,
we were able to obtain a similar accuracy to the baseline by adding an extra layer
to the existing architecture and retraining both systems subject to D, i.e. 98.68%,
97.21%, 85.12%, and 87.03% for the 7-gesture, 13-gesture, 24-gesture, and 53-
gesture datasets, respectively. Furthermore, compared to the unconstrained models,
we managed to maintain high performance while improving the robustness with
respect to unconstrained training, i.e. θm = 1.02× 1011 for the 7-classes dataset,
θm = 9.96× 1010 for the 13-classes dataset, θm = 4.24× 1011 for the 24-classes
dataset, and θm = 3.15×1011 for the 53-classes dataset. We can however conclude
from these tests that imposing the nonnegativity of the weight coefficients is not
sufficient to reach satisfactory robustness.

To further control the robustness of the systems, we have to manage the
Lipschitz constant of the networks by training them under additional spectral norm
constraints, as described by (3.9). Searching for the optimal accuracy robustness
trade-off, we trained several models considering each of the four aforementioned con-
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straints, namely (Ci,n)1⩽i⩽m,n∈N in (3.10), (C̃i)1⩽i⩽m in (3.18), and (Či,n)1⩽i⩽m,n∈N
in (4.2).

By adjusting the upper bound ϑ, we were able to assess the effect of a robustness
constraint on the overall performance of the neural network-based classifiers, and
finally to achieve the optimal trade-off. All our models were trained using Algorithm
1 as the optimizer. The obtained results are summarized in Table 3.3. As expected,
obtaining a good robustness-accuracy trade-off requires paying attention to the
way we design our constrained networks. In all the cases, we show that using tight
constraints during the training phase to approximate the Lipschitz bound improves
the overall performance of the classifier, proving the generalization properties of
our solution.

For comparison, for each of the proposed constraints, we also evaluated the use
of an inexact projection, designated by P̃ (see Section 3.3.2). It can be observed
that using an exact projection yields significantly better results. By combining
tight constraints and exact projection techniques, we observe that the robustness
of the network can be properly ensured while keeping a good accuracy in both
cases. Indeed, we succeeded in ensuring a Lipschitz constant of around 1 for a 95%
accuracy for the first two datasets. The observed loss in accuracy with respect to
standard training is consistent with the “no free lunch theorem" [123].

Training neural networks subject to tight spectral norm constraints can be
challenging, and the cost of obtaining a good performance is the training time. We
used a learning rate scheduler strategy during training, reducing the learning rate
by a factor of 2 if the performance does not improve for 1000 epochs. Figure 3.3
shows the training curves for both validation and training sets in the context of the
unconstrained baseline model (yellow and green lines), and in the case of training
a constrained version (red and blue lines) using the optimal projection PCi,n∩Di ,
with ϑm = 0.95. Even though it requires more iterations, the constrained model
is capable of reaching an accuracy comparable to the baseline, while providing a
robustness certificate.

Since the training curves may show some slight variations, we measured the
accuracy variations in two ways: by computing the classical standard deviation
(std), and by employing median absolute deviation (mad). For a vector (xi)1⩽i⩽I ,
it is expressed as MAD = median

(
(|xi − ζ(x)|)1⩽i⩽I

)
, where ζ(x) represents the

median of the vector components. From this quantity, we can derive an empirical
estimate of the standard deviation by multiplying MAD with a factor equal to
1.4826. The latter estimate is known to be more robust to outliers for Gaussian
distributed data, especially in the case of small populations. The results are
summarized in Table 3.4. It can be observed that the empirical standard deviation is
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Figure 3.3: Accuracy vs. Iterations – constrained and unconstrained models in
the context of 7-gesture dataset. The training and validation curves are displayed
in green and yellow, respectively, for the unconstrained model. The training and
validation curves are displayed in blue and red, respectively, in the case of con-
strained training, with the bound ϑ = 0.95.

below 1.6% and the robust estimate of it is below 1.1% for all four datasets. These
deviation values are normal considering the size of the dataset and show that the
presented results are relevant and consistent. Next, we have also evaluated how the
positivity constraint impacts the overall accuracy of our system. We trained a robust
network by allowing the weights to have arbitrary signs. For this purpose, we control
individually the Lipschitz constant of each layer i ∈ {1, . . . ,m} to be less than a
given value ϑ1/m. The exact projection onto C̃i, PC̃i , as well as the approximate

one P̃C̃i were computed as described previously. In this case ϑ represents an upper
bound on the Lipschitz constant of the system. Table 3.5 summarizes the results
for different values of ϑ, for two datasets. We compare our method for dealing with
Lipschitz constraints with the approach proposed in [64]. This approach, which
is implemented in the deel-lip library, allows the user to train robust networks in
a convenient manner, offering a robustness certificate by performing a spectral
normalization for each layer. It can be observed on these datasets that our method
yields similar results when using the approximate projection, but better ones when
using the exact projection. These results underline again the importance of carefully
managing the projections and the effect it has on the accuracy of the system.

3.5 . Robustness validation

In this section, we investigate to what extent the theoretical concepts described
in the previous sections help in improving the robustness of the classifier in different
settings. To this goal, we consider the following three scenarios. In the first one, we
examine the impact of adversarial attacks on the performance of the classifier. The
second scenario takes into account the effect of noise in the acquisition process. In
the case of sEMG signals, this noise may come from imperfect skin-sensor contact
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Table 3.4: Standard deviation of accuracy computed on 15 epochs, after con-vergence, on the test set for constrained models.
Accuracy 75% 80% 85% 90% 95%

7-gestures dataset (Myo-sEMG)Model Variation empirical std 0.65 1.22 0.56 1.35 1.10
robust std 1.02 0.94 0.53 0.87 1.07

13-gestures dataset (13Myo-sEMG)Model Variation empirical std 0.65 1.05 0.75 0.75 0.72
robust std 0.77 0.81 0.72 0.97 0.59
Accuracy 65% 70% 75% 80% 85%

24-gestures dataset (NinaPro DB5.C)Model Variation empirical std 0.68 0.95 0.87 0.77 0.76
robust std 0.89 0.74 0.79 0.89 0.64

53-gestures dataset (NinaPro DB1)Model Variation empirical std 0.72 0.93 0.95 0.87 0.78
robust std 0.94 0.77 0.78 0.92 0.84

Table 3.5: Lipschitz constant for networks trained with arbitrary signs – 7-gestures / 13-gestures datasets.
Accuracy 75% 80% 85% 90% 95%

7-gestures datasetLipschitz constant Ci
P̃C̃i 72.03 127.5 1296 8.75× 104 5.43× 109

PC̃i 52.06 102.49 905.45 7.23× 104 8.14× 108

Deel-lip [64] 75.81 126.9 1283.6 8.70× 104 5.43× 109

13-gestures datasetLipschitz constant Ci
P̃C̃i 76.59 125.20 1016 2.03× 104 4.3× 108

PC̃i 61.22 99.74 740 1.26× 104 6.7× 107

Deel-lip [64] 77.21 125.63 1120 2.04× 104 4.5× 108

caused by hairs or drops of sweat. In the last scenario, we perform a real-life
experiment using 10 able-bodied volunteers.

3.5.1 . Sensitivity to adversarial attacks
We evaluate our robust model on purposely designed perturbations, by studying

their influence on the overall performance of the system. We lead attacks on our
best robust model in terms of accuracy and robustness, achieving 92.95% accuracy
and a Lipschitz constant ϑ = 0.87 for the 7-gesture dataset. We compare the results
with two conventionally trained models: the best one in terms of performance,
which achieves 99.78% prediction accuracy on non-adversarial data, and another
one trained to have similar performance as our robust model, reaching 92.99%
accuracy on the original test set.

To create the adversarial samples we used some of the most popular white-box
attackers, namely:

• Fast gradient sign method (FGSM) [14] – generates adversarial data based
on the gradient of the cost function with respect to the input data;
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Table 3.6: Adversarial attack results. The first four lines correspond to white-box attacks, whereas the last line shows a black-box attack. We consider outbest constrained model, having a Lipschitz constant θ = 0.97, two modelstrained conventionally: the best baseline and another one having similar per-formance as the constrained one. On the last columns we feature an adver-sarial trained model using PGD-generated perturbations.
Accuracy [%]

robust model baseline model adv. trained model – PGD
Attack adv. non-adv. adv. non-adv. adv. non-adv. adv. non-adv.

FGSM [14] 91.75
92.95

76.48
99.78

71.21
92.99

80.43
97.25C&W ℓ2 [40] 90.09 48.03 45.85 60.17PGD [66] 91.92 59.36 56.38 97.25JSMA [39] 91.10 89.37 81.27 83.31GM [124] 92.13 98.25 89.04 95.38

• Jacobian Saliency Map Attacker (JSMA) [39] – computes a perturbation
based on ℓ2 distance metric by iteratively selecting the input sample that will
increase the chance of miss-classification;

• Projected gradient descent (PGD) [66] – uses local first-order information
about the network to create adversarial examples;

• Carlini and Wagner (C&W) [40] – utilizes ℓ2 distance to compute the optimal
adversarial perturbation.

• Gradient Matching (GM) [124] – this is a data-poisoning black-box attack. In
this case, the attacker does not have access to the victim model parameters
but instead is trying to match the gradient direction for adversarial examples.

We also show a comparison with another popular technique of ensuring the
robustness of neural network-based models, namely Adversarial training. This
implies training an extended version of the dataset, containing the original training
data together with a perturbed version of the samples, in an effort to increase the
system stability against adversarial inputs. Note that this method is purely empirical
and gives no theoretical robustness certificates. We implemented an adversarial
training strategy detailed in [66], training the system using an augmented version
of the dataset which was updated every 25 epochs. The adversarial samples were
created using PGD attack, and then the model was validated using data containing
perturbations computed with various attacks.

The results summarized in Table 3.6 show the performance obtained for the
7-gesture test set. Note that the robust model performance is barely affected by the
adversarial perturbations, whereas the baseline models show a huge drop in accuracy.
It can be observed that adversarial training helps to increase the robustness, but
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our method of controlling the Lipschitz constant of the network provides better
results when facing data perturbed with other attackers than PGD. As expected,
the poisoning attack is less effective than the white-box ones against the baseline
models, but still, our robust model showcases better performance. This shows that
our method is more versatile since its performance remains stable whatever the
attacker.

3.5.2 . Noisy input behaviour
To simulate the effect of underlying noise generated during the acquisition

process, we added synthetic noise directly to the raw sEMG data, prior to the
feature extraction step. The noise is chosen independent and identically distributed
according to a Gaussian mixture law (1− p)N (0, σ20) + pN (0, σ21). The mixture
comprises a background component, corresponding to the intrinsic electronic noise
in the armband, such as thermal or quantization noise, and an impulsive component
accounting for outliers. Those may be related to imperfect wiring that can generate
impulse-like artefacts. In our experiments, we consider background and impulse
noises with standard deviations σ0 = α and σ1 = 10α with α ∈ [0,+∞[. We
generate different levels of noise, by varying the parameter α. The probability of
peaks p ∈ [0, 1] is also adjusted to simulate more or less severe scenarios in terms
of outliers.

From the resulting noisy signals, we extract the features described in Section 3.4
and pass them to the classifier, using our robust models reaching an accuracy of
92.95% (ϑ = 0.87) for the 7-gestures dataset, and 93.05% (ϑ = 0.98) in the case
of the 13-gestures dataset, trained with non-altered data. We compared the results
achieved with our robust training with those obtained with i) classical training
and ii) adversarial training. In this case, the adversarial training was performed by
generating an extended dataset, containing the original data and corrupted versions
of them by additive noise following the Gaussian mixture law described above, where
the parameters p and α were drawn randomly in a uniform manner on [0.15, 0.45]

and [0, 2], respectively. In the absence of noise, a similar performance in terms
of accuracy was obtained: 7-gestures dataset – 92.99%, and 92.97%, 13-gestures
dataset – 93.03% and 92.98% for baseline and adversarial training, respectively.

The experimental results obtained on two datasets are depicted in Figure 3.4.
The red, blue, and green lines correspond to the unconstrained, constrained, and
adversarial models, respectively. We observe that the constrained model is signif-
icantly less affected by the presence of noise in the inputs than the one trained
without robustness guarantees. It is also worth noting that training with adversarial
inputs also leads to satisfactory results, although usually slightly less accurate.
The Lipschitz lower and upper bounds computed for the networks trained in an
adversarial manner are indeed much lower than those with standard training, but
they remain quite large ((1845.23, 79534.2) for 7-gestures dataset and (1754.74,
64595.8) for 13-gestures dataset).
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Table 3.7: Real-scenario experiment results
Movement User #1 User#2 User#3 User#4 User#5 User#6 User#7 User#8 User#9 User#10C U C U C U C U C U C U C U C U C U C U

up 2 2 1 3 0 0 0 1 0 0 0 2 0 2 1 2 0 2 1 3down 1 1 0 2 2 3 0 0 2 4 1 0 2 3 1 1 0 1 0 1right 0 4 0 0 0 1 0 1 1 1 0 2 0 0 0 0 0 1 1 2left 3 5 1 4 0 1 0 1 2 5 0 0 0 1 2 3 1 2 0 1fist 0 2 2 4 0 0 1 0 0 3 0 1 1 1 0 2 1 1 1 3spread 0 3 2 5 3 4 2 4 1 0 0 0 1 2 1 0 0 1 0 3Sum 6 17 6 18 5 9 3 7 6 13 1 5 4 9 6 7 2 8 3 3Error rate (%) 5 14 5 15 4.1 7.5 2.5 5.7 5 10.7 0.7 4.1 3.3 7.5 5 5.7 1.6 6.6 2.5 10.7

This experiment emphasizes that controlling the Lipschitz constant of a network
improves its robustness not only against targeted adversarial attacks, as shown
previously, but also in the case of black-box attacks, where no prior information
about the model is used.

3.5.3 . Real-life scenario validation

To illustrate the practical applicability of our findings, we proceed to validate
our model in a real-life context. For this purpose, we designed an experiment to
compare a conventionally trained model with the constrained one. We integrated
both models in a real-time application that controls a 3D hand on a screen, as well
as a game that can be controlled by gestures, to give the user tangible feedback. We
used the Unity3 platform to design and control a 3D hand and then encapsulated
our models in an application that performed real-time inference and the hand was
moving on the screen in accordance with the predicted gesture. We asked 10
volunteers (males and females) to test both models by performing each gesture
20 times. We emphasize that the user had no prior knowledge about what model
was implemented since it was randomly selected at the beginning of each new trial.
Pictures of the experimental setup are provided in Figure 3.5. Table 3.7 details on
a user level, how many (out of the 20) trials were erroneously classified. U and
C denote the Unconstrained and the Constrained models, respectively. Note that,
despite obtaining very good results on the test set, the unconstrained model loses a
lot in terms of performance (up to 15%) when facing real-life data. We can observe
that training a positive neural network subject to Lipschitz constraints improves
the overall robustness of the classifier against adversarial perturbations, not only
from a theoretical viewpoint but also practically by leading to more reliable systems
with greater generalization power.

As for the other application, we asked the volunteers to play 2 rounds of a
gesture-controlled game, one with each model. The game was inspired by the famous
Temple Run 4, and consists of a moving cube which the user controls via gestures.

3https://unity.com/4https://play.google.com/store/apps/details?id=com.imangi.templerun&
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(a) σ0 = α; σ1 = 10α; p = 0.15 (b) σ0 = α; σ1 = 10α; p = 0.3

(c) σ0 = α; σ1 = 10α; p = 0.45 (d) σ0 = α; σ1 = 10α; p = 0.15

(e) σ0 = α; σ1 = 10α; p = 0.3 (f) σ0 = α; σ1 = 10α; p = 0.45

Figure 3.4: Accuracy vs. α in the context of Noisy Inputs training. (a), (b), (c): 7-
gesture dataset; (d), (e), (f): 13-gesture dataset. Red line: robust model; Blue line:
baseline model; Green line: adversarial trained model

The player can move his/her hand left or right to move the character to either side

hl=en&gl=US&pli=1
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(a) 3-D hand control

(b) Gesture-control game
Figure 3.5: Real-life experimental setup

Table 3.8: Training time for different constraints in the case of anm = 6-layernetwork. The training time is computed on a batch of 2048 examples.
Constraint None P̃C̃i∩Di

PC̃i∩Di
P̃Či,n∩Di

PČi∩Di
P̃Ci,n∩Di

PCi,n∩Di

time/step [ms] 7 9 11 9 11 18 28

of the screen to avoid obstacles. The player can also move the hand up to jump or
spread its fingers to shoot and clear the obstacles ahead. The game is over when
the player fails to take a turn or to jump/ clear an obstacle. We observed that 70%
of the users were able to obtain higher scores when they used the constrained model,
showing again that our solution is more stable when it comes to real-life applications.

3.5.4 . Limitations

Increased training time is one of the main limitations of our proposed approach.
Indeed, to compute the true projection, the proposed method uses an iterative
algorithm that performs singular value decomposition at each iteration, which is a
resource-consuming operation, especially when performed on large matrices. We
propose several lower complexity solutions, which have proved to offer a good
trade-off between training time, robustness, and performance. Table 3.8 shows the
training time for all the proposed constraint algorithms The time is measured per
step, which consists of a batch of 2048 examples. Nevertheless, it is worth noting
that the additional time overhead is applicable only during the training phase. The
inference is the same for all the models, around 7 ms per step.

Another limitation is related to the fact that our method for controlling the
Lipschitz constant of the system is currently applicable in the context of nonnegative
weighted fully connected feed-forward neural networks. Although the performance
remains good for the considered AGR systems, the nonnegativity constraint might
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lead to a loss of expressivity of the neural networks in other inference tasks. In
future work, we plan to extend our method towards more general neural network
architectures, including convolutional layers, skip connections, etc.

3.6 . Conclusion

This chapter has shown the usefulness of designing robust feed-forward neural
networks for automatic gesture recognition based on sEMG physiological signals.
More precisely, we proposed to finely control the Lipschitz constant of these non-
linear systems by considering positively weighted neural architectures. To offer
robustness certificates, we also developed new optimization techniques for training
classifiers subject to spectral norm constraints on the weights. We studied various
constrained formulations and showed that robustness can be secured without sacri-
ficing accuracy when using a combination of tight constraints and exact projections.
We also provide several lower-complexity solutions, which reduce the training time
significantly.

Experiments on four distinct datasets illustrated the good performance of
our approach. We further demonstrated the effectiveness of our robust classifier,
compared to classically trained ones, when facing white-box and black-box attacks.
We also want to highlight that one of the key advantages of our research was
the ability to conduct real-life experiments. This was made possible because
we had access to a specialized acquisition module tailored for capturing gesture
data. The availability of this acquisition module allowed us to gather real-world
gesture data in a controlled setting, which closely mimics practical scenarios. By
conducting experiments with real users and their gestures, we could thoroughly
evaluate the performance and accuracy of our proposed methodology. This real-life
experimentation not only provided us with invaluable insights into the effectiveness of
our approach but also demonstrated its feasibility and potential for implementation
in real-world applications. In future works, it would be interesting to apply such
a robust training procedure to other applications in pattern recognition involving
data acquired in real-time.
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3.7 . Appendix – accelerated DFB algorithm

Let n ∈ N\{0} and i ∈ {1, . . . ,m}. Computing the projection of a matrixW i ∈
RNi×Ni−1 onto Di ∩ Ci,n is equivalent to solve the following matrix optimization
problem:

minimize
Wi∈RNi×Ni−1

ιDi(Wi) + ιB(0,ϑ)(Ai,nWiBi,n) +
1

2
∥Wi −W i∥2F (3.29)

where ∥ · ∥F is the Frobenius norm and ιS denotes the indicator of a set S (this
function is equal to 0 on this set and +∞ otherwise.) The dual optimization
problem associated to this strongly convex minimization problem reads

minimize
Y ∈RNm×N0

f∗(−A⊤
i,nY B

⊤
i,n) + ι∗B(0,ϑ)(Y ), (3.30)

where, for a given function g, g∗ denotes its Fenchel-Legendre conjugate. In our
case f = ιDi +

1
2∥ · −W i∥2F. From standard conjugation rules [115], f∗ is equal to

(∀Wi ∈ RNi×Ni−1) f∗(Wi) = ι̃Di(Wi +W i), (3.31)
where ι̃Di is the Moreau envelope of ι∗Di

given by

ι̃Di(Wi) = inf
W ′

i∈R
Ni×Ni−1

ι∗Di
(W ′

i ) +
1

2
∥W ′

i −Wi∥2F. (3.32)
The Moreau envelope of a proper lower-semincontinuous convex function is

differentiable. Thus f∗ is differentiable, and its gradient is [125, Example 17.33]

∇f∗(Wi) = PDi(Wi +W i). (3.33)
We deduce that the gradient of Y 7→ f∗(−A⊤

i,nY B
⊤
i,n) is

−Ai,nPDi(W i −A⊤
i,nY B

⊤
i,n)Bi,n.

Since PDi is a nonexpansive operator, the latter function has a Lipschitz gradient
with constant β = ∥Ai,n∥2S∥Bi,n∥2S. The dual problem (3.30) thus corresponds
to the minimization of the sum of a smooth convex function and a proper lower-
semicontinuous function. Consequently, it can be minimized by a proximal algorithm.
Such a strategy will require calculating the proximity operator of γι∗B(0,ϑ) for some
scaling parameter γ ∈]0,+∞[. By using Moreau’s formula [125], this proximity
operator is expressed as

(∀Y ∈ RNm×N0) proxγι∗
B(0,ϑ)

(Y ) = Y − γPB(0,ϑ)(γ
−1Y ). (3.34)

A classical solution for solving the dual problem consists in using the standard
forward-backward algorithm [126, 109]. This leads to Algorithm 3 [116]. Another
solution consists in using the FISTA-like algorithm in [127], which leads to the
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accelerated version in Algorithm 2. The sequences (Yℓ)ℓ∈N generated by these
two algorithms are guaranteed to converge to a solution Ŷ to the dual problem.
In addition, from Kuhn-Tucker conditions, the solution to the primal problem
Ŵi = PSi,n(W i) is equal to ∇f∗(−A⊤

i,nŶ B
⊤
i,n). It follows from (3.33) and the

continuity of PDi that the sequence (Vℓ)ℓ∈N converges to Ŵi.

Algorithm 3: Dual Forward-Backward algorithm
Let Y0 ∈ RNm×N0

Set ϵ ∈]0, 1/(∥Ai,n∥S∥Bi,n∥S)2[
for l = 0, 1, . . . do

Set γℓ ∈ [ϵ, 2/(∥Ai,n∥S∥Bi,n∥S)2 − ϵ]
Vℓ = PDi

(W i − A⊤
i,nYℓB

⊤
i,n)

Ỹℓ = Yℓ + γℓAi,nVℓBi,n

Yℓ+1 = Ỹℓ − γℓPB(0,ϑ)(γ
−1
ℓ Ỹℓ)

return Vl
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Chapter 4 – Signal denoising using new classes
of robust neural networks

In this chapter, we focus on robust solutions for a regression problem, namely
audio signal denoising. We address the task at hand from two perspectives. First,
we only concentrate on denoising the magnitude elements resulting from a Fourier
analysis of the audio signal. To this end, we design a fully connected network,
called Adaptive Convolutional Neural Network (ACNN), whose layers have a special
structure that exhibits some similarity with a 1D convolutional one. In the second
part of the chapter, we extend our approach to denoising the whole complex
spectrum of the audio signals, using complex-valued neural networks (CVNN).
For both solutions, we derive tight Lipschitz bounds and propose robust training
mechanisms which are later validated on denoising piano music clips corrupted by
various levels of additive white noise.

4.1 . Adaptive convolutional networks

Convolutive Neural Networks (CNNs) and their variants have been applied
successfully to a variety of learning problems in various domains such as image clas-
sification [128, 129], face recognition [130], object tracking [131], natural language
processing [5], speech enhancement [132, 133] etc. Despite their massive success
with respect to fully connected neural networks, CNNs are difficult to analyze theo-
retically and thus raise some robustness issues. However, as Deep Neural Networks
(DNNs) have highly complex and non-linear structures, an accurate and efficient
estimation of the Lipschitz constant remains a challenge. In the recent literature
[20, 58], different techniques have been proposed to derive Lipschitz bounds for deep
feed-forward neural networks using non-expansive activation operators. As we will
show in Chapter 5, these techniques may, however, be challenging to apply to CNNs.

This section introduces a new class of neural networks, called Adaptive Convo-
lutional Neural Networks (ACNN), which can be seen as an intermediate between
CNNs and Fully Connected Networks (FCNs). Learning capabilities of CNNs being
well-investigated and proven, we take advantage of this potential by structuring
the weights of our network in a similar manner. A significant difference is that the
network makes use of filters that are no longer time/space invariant, similar to
what is done in adaptive filtering.

Thus, such network architecture appears more flexible. In addition, we show that
we can obtain tight Lipschitz certificates to ensure its robustness. More precisely,
we control the Lipschitz constant of the network to reach a good performance-
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robustness balance by training the system under suitable spectral norm constraints.
Our approach focuses on neural networks with nonnegative weights for which we
can efficiently compute an optimal Lipschitz constant, as shown in the previous
chapter.

Many recent developments in the field of deep learning emphasize the importance
of convolutions in neural network architectures [134] and the improvement in their
performance [135]. To the best of our knowledge, there are few works that propose
ways to improve FCN architectures. In [136], the performance increase is achieved
by reducing the sparsity of the network and improving the gradient flow in it. In
our work, we also aim at improving the performance of an FCN, but we follow
a different approach. The linear layers of our network have a structure similar
to convolutive ones, in the sense that each neuron input is a weighted sum of
the outputs of a given limited number of neurons in the preceding layer and the
processing is split into multiple channels operating in a parallel manner. In contrast
to convolutive layers, ACNN uses multiple kernels at each channel, leading to more
flexibility in the choice of weights. Not only do we reach a good performance, but
we also keep it robust to input perturbations by providing Lipschitz certificates.

4.1.1 . Making the bridge between CNNs and FCNs

In this section we aim at filling the gap between FCNs and CNNs. In terms of
signal processing concepts, a convolutive layer is a Multiple-Input Multiple-Output
(MIMO) filter. For one-dimensional signals, each of these filters can be viewed as a
Tœplitz matrix generated by the impulse response of the filter, which is applied
to the vector of signal samples. If the filter length is short, large upper and lower
triangular parts of this matrix are null. In our proposed approach, we will keep
this band structure for the weight matrix, which is equivalent to performing local
processing at each time within a sliding window. However, in order to add more
flexibility to this architecture, we will allow all the nonzero coefficients of this matrix
to be fully optimized.

The proposed architecture is depicted in Figure 4.1a. Figure 4.1.b is the
graphical representation of the presented concept. As it can be observed, the
weights are split to emulate a MIMO system. Each kernel is associated with a
specific shape of the matrix, which is depicted in Figure 4.1.c. The lower and upper
triangular null parts are displayed in dark gray, while the light gray central part
contains overlap and may use different weight values.

4.1.2 . Learning algorithm

For training the proposed ACNN, we use a stochastic gradient-like optimization
based on the popular ADAM method [137]. Consider the vector of parameters of
the network, η = (ηi)1⩽i⩽m, such that, for each layer i ∈ {1, . . . ,m}, ηi represents
a vector of dimension Ni(Ni−1+1), composed of the elements of the weight matrix
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Figure 4.1: Proposed architecture of Adaptive Convolutional Neural Network(ACNN). a) An encoder-decoder architecture composed of a 6-layer FCN fol-lowed by ReLU activation function. b) Relation between proposed FCNs andCNNs; the weights are split into sub-matrices simulating convolutive filters inCNNs c) Each of the sub-matrices is constrained to have a band structure asshown in this example. The dark grey area marks the zero-entries, while thelight-grey colour corresponds to the ones that are allowed to be non-zero.

Wi and the components of the bias vector bi.
To secure the conditions of robustness while imposing the desired structure for

our network, the parameter vector η is projected onto a closed set S that expresses
all these constraints. The parameter update at epoch n > 0 is performed for
mini-batches (Mq,n)1⩽q⩽Q. If the training data are denoted by (zk)1⩽k⩽K , where
zk is the k-th pair of inputs and their associated outputs, the operations performed
during the n-th epoch are summarized in Algorithm 4, where the square, the square
root, and the division are performed component-wise, and

Si,t =
{
ηi | [(η⊤j,t+1)j<i η

⊤
i (η⊤j,t)j>i]

⊤ ∈ S
}
. (4.1)

Here-above, ℓ denotes the loss function, ∇i represents the gradients with re-
spect to ηi; µi,t and νi,t represent the first and second momentum estimates at the
iteration t, initialized with µi,0 = νi,0 = 0. PSi,t designates the projection onto the
constraint set Si,t. Although the set S is non-convex, the sets Si,t will be defined
as the intersection of three closed and convex constraint sets, as detailed next.
The parameters used for learning are set to β1 = 0.9, β2 = 0.999, γ = 0.001, and
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Algorithm 4: Projected ADAM Algorithm
Partition {1, . . . , K} into mini-batches (Mq,n)1⩽q⩽Q
foreach q ∈ {1, . . . , Q} do

t = (n− 1)Q+ q
foreach i ∈ {1, . . . ,m} do

gi,t =
∑

k∈Mq,n
∇iℓ
(
zk, (ηi,t

)
1⩽i⩽m

)

µi,t = β1µi,t−1 + (1− β1)gi,t
νi,t = β2νi,t−1 + (1− β2)g

2
i,t

γt = γ
√
1− βt2/(1− βt1)

ηi,t+1 = PSi,t

(
ηi,t − γtµi,t/(

√
νi,t + ϵ)

)
,

ϵ = 10−12.

To ensure the computation of a tight robustness bound, as explained in Sec-
tion 3.2.2, we impose non-negative weights for every i ∈ {1, . . . ,m} by considering
the constraint set:

Di = {Wi ∈ RNi×Ni−1 |Wi ⩾ 0} (4.2)

Let Ri (resp. Qi) be the number of output (resp. input) channels used in
layer i ∈ {1, . . . ,m}. The proposed algebraic structure of each weight operator is
guaranteed by splitting the corresponding matrix Wi into Ri × Qi sub-matrices
of dimension N ′

i × M ′
i (with N ′

i = Ni/Ri and M ′
i = Ni−1/Qi), denoted by

(W
(r,q)
i )1⩽r⩽Ri,1⩽q⩽Qi . The desired band structure of the sub-matrix W (r,q)

i is
ensured by imposing that it belongs to the following vector space:

Ei = {(Vu,v)1⩽u⩽N ′
i ,1⩽v⩽M

′
i
∈ RN

′
i×M ′

i | ∀(u, v) s.t.

|(M ′
i − 1)(u− 1)− (N ′

i − 1)(v − 1)| ⩾ di, Vu,v = 0}.

Herein, di is an integer and, if N ′
i = M ′

i > 1, 2⌊di/(N ′
i − 1)⌋ − 1 plays a role

similar to a kernel length in standard CNNs.
Finally, to control the robustness, we need to limit the Lipschitz constant of

the network to a given value ϑ > 0. The related constraint can be expressed as:

Ci,t = {Wi ∈ RNi×Ni−1 | ∥Ai,tWiBi,t∥S ⩽ ϑ} (4.3)
Ai,t =Wm,t · · ·Wi+1,t, (4.4)
Bi,t =Wi−1,t+1 · · ·W1,t+1 (4.5)

with the convention that for the first layer (i = 1), Bi,t is the Ni×Ni identity matrix
Id Ni and for the last layer (i = m), Ai,m = Id Ni . Hereinabove, (Wj,t)1⩽j⩽m
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PSNR MSE CC

Noisy Signal 18.25 1.18× 10−2 0.76

Denoised Signal

Baseline - Wavelet-based denoiser 20.66 1.00× 10−3 0.80

ACNN denoiser
Scenario (i)

ϑ = 1 24.27 3.73× 10−3 0.96

ϑ = 5 29.03 1.25× 10−3 0.97

ϑ = 10 33.76 6.53× 10−4 0.98

Scenario (ii)
ϑ = 1 25.87 3.12× 10−3 0.96

ϑ = 5 30.63 8.63× 10−4 0.98

ϑ = 10 36.02 2.23× 10−4 0.99Standard FCN denoiser ϑ = 1 23.38 4.59× 10−3 0.90
Table 4.1: Comparison of different variants of the proposed method withbaselines.

designates the estimates of the weight matrices at iteration t of the projected
ADAM optimizer.

The projection onto the intersection of the above three closed convex sets has
no closed-form expression. The intersection Di ∩ ERi×Qi

i is however quite simple
to handle since the projection onto this set reduces to PDi ◦ PERi×Qi

i

. To compute

the final projection onto Ci,t ∩ (Di ∩ ERi×Qi
i ) of a weight matrix Wi, we use the

dual forward-backward algorithm, as presented in the previous chapter.

4.1.3 . Experimental Evaluation

The proposed network has been evaluated for denoising music signals.

4.1.3.1 . Dataset Description

We train our proposed ACNN on a dataset consisting of musical exercises and
songs performed on a Ronald organ. The organ covers 5 octaves (range C2–C7),
each octave having 12 semitones, generating a total of 61 different possible notes.
For the recordings, the whole range of notes is used. The songs are recorded in
MIDI format using MidiEditor, in the following manner: the recording mode from
MidiEditor is activated before each song is played and is stopped after the song is
finished (so there is silence at the beginning and end of each recording). In total,
the dataset contains 100 MIDI recordings, with a sampling frequency Fs = 44100

Hz, constituting 1 h and 17 min of audio. The data set is available online1.

The dataset is divided into training, validation, and test sets. The training set
contains 90 clips with variable lengths, ranging from 6 s up to 150 s, having in total
over an hour (67 min) of audio recordings. Some songs are repeated on different
octaves to obtain a minimum number of occurrences for all notes. The validation

1https://speed.pub.ro/downloads/
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Figure 4.2: Convergence profile of the proposed method.

dataset contains 9 songs with lengths between 12 and 120 s, forming around 10
minutes of audio signals. The test set has one 2-minute-long clip.

4.1.3.2 . Experimental setup

The noisy data for training, validating, and testing is generated by adding white
Gaussian noise to the original samples. The noise has zero mean and its standard
deviation is randomly chosen so that the resulting signal-to-noise ratio (SNR)
varies between 5 and 30 dB. The dataset samples are normalized between 0 and
1. We extract the frequency features from the audio signal using a Short-Time
Fourier Transform (STFT). The network estimates the STFT coefficients of the
samples, and an Inverse Short-Time Fourier Transform (ISTFT) is performed as
the post-processing step. We consider a Hanning sliding analysis window of length
T = 23 ms, with an overlap between two consecutive windows of 50%. The STFT
is performed on 1024 points. In total, from each audio segment, a vector of length
L = 513 frequency coefficients is obtained, constituting the input of our ACNN.

The denoising is performed using a 6-layer ACNN architecture, as presented
in Figure 4.1. The network has an encoder-decoder structure. Each layer employs
ReLU as activation function followed by a batch normalization step that acts as a
regularizer and prevents the model from overfitting.

4.1.3.3 . Simulations and results

In order to measure the performance of our proposed ACNN architecture, we
perform two sets of experiments. In the first set, we control the Lipschitz constant
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of the architecture for three values ϑ equal to 1, 5, and 10. In the second exper-
iment, we test our architecture by varying the number of channels, i.e. the way
we split each weight matrix. Note that for both scenarios we consider a network
with m = 6 layers and ∀i ∈ {1, . . . , 6}, di = d′i(max{N ′

i ,M
′
i} − 1), having the

following characteristics:

(i) R1 = 2 = Q6, Q1 = 1 = R6, ∀i ∈ {2, . . . , 5} Ri = Qi = 2, (Ni)1⩽i⩽6 =

(400, 200, 100, 200, 400, 513), (d′i)1⩽i⩽6 = (237, 80, 30, 30, 80, 237);

(ii) R1 = 3 = Q6, Q1 = 1 = R6, ∀i ∈ {2, . . . , 5} Ri = 3, Qi = 3,
(Ni)1⩽i⩽6 = (630, 510, 420, 510, 630, 513), (d′i)1⩽i⩽6 = (237, 85, 65, 65, 85, 237).

We evaluate the performance on 3 standard metrics: Peak to Signal Noise
Ratio (PSNR), Mean squared error (MSE), and Cross-correlation (CC), as shown in
the Table 4.1. We compare our method with a standard denoising technique, based
on a Wavelet decomposition. We employ a 5-level decomposition using Symlet8
filters combined with SureShrink thresholding. We also compare ACNN with an
FCN implementation, for which we ensured the Lipschitz bound ϑ = 1. Here, the
FCN has no structural constraints but, in addition to the imposed Lipschitz property,
it has positive weights.

Table 4.1 reports the quantitative results obtained by all three approaches,
evaluated over the test set. Our method outperforms the baseline on all measures
by a significant margin. ACNN also outperforms classical FCN, inferring that the
structure imposed on the weight matrix for ACNN leads to a model with better
generalization power, whereas FCN implementation may be prone to overfitting.
We observed that, without any Lipschitz constraint, FCNs tend to have a very high
Lipschitz constant of the order 105 − 106, which emphasizes the importance of
controlling the Lipschitz behaviour of the system. The Lipschitz constant of the
network is also closely related to the expressiveness of the trained model. Architec-
tures with tight robustness constraints have fewer degrees of freedom and are thus
expected to be less accurate and lead to a slower convergence. The convergence
profile of our proposed method is shown in Figure 4.2.

This section is a step towards bridging the gap between FCNs and CNNs. We
split the weight matrix at each layer of an FCN in such a way that it acts similarly
to multichannel convolutive filters in a CNN. We verified the effectiveness of the
proposed architecture by showing its denoising capabilities on music clips. It is
worth noting that the method is not only limited to such a regression problem. In
the next section, the idea of controlling the Lipschitz constant for complex-valued
architectures will be tackled.
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4.2 . Design of robust complex-valued feed-forward neural net-
works

Complex valued neural networks (CVNNs) [138, 139, 140] have been a topic of
ongoing interest in the data science community. Indeed, being able to deal with
complex-valued data is of high interest in the signal processing domain. Even when
analyzing real-valued signals (e.g., audio or images), one of the most commonly
used approaches is based on frequency analysis, which immediately leads us to the
complex plane. Magnitude and phase carry different information types, which offer
insight into the information content of the signals [141]. Handling complex-valued
data may be difficult since it requires more computational power, but it has also
been shown that CVNNs may be more expressive than classical neural networks
[142]. For example, [143] shows that an end-to-end complex-valued neural network
outperforms a 2-channel real-valued network in the context of accelerated MRI
reconstruction. In [144], CVNNs are employed for non-stationary RADAR data
analysis. Also, it was shown that smaller CVNNs outperform larger real networks
when dealing with physical data [145].

In this section, we introduce a new class of neural networks operating in the
complex domain, called Robust Complex Feed-Forward Network (RCFF-Net). The
structure of the network is inspired by CapsNets [146, 147]. The weight matrices
process the real and imaginary parts distinctly. The activation functions handle the
correlation between the real and imaginary parts of complex pairs. We demonstrate
that, for the proposed structure, the Lipschitz constant can be efficiently computed.
In addition, we develop a learning strategy to control this constant and ensure the
robustness of the network against adversarial perturbations. We show that this
approach offers better performance than real-valued neural networks in the context
of audio denoising.

4.2.1 . Theoretical background
A complex-valued feedforward neural network is defined as follows.

Model 4.2.1 Let m ∈ N \ {0}. T is an m-layer complex-valued feedforward
neural network if there exists (Ni)0⩽i⩽m ∈ (N \ {0})m+1 such that

T = Tm ◦ · · · ◦ T1 (4.6)
where, for every i ∈ {1, . . . ,m}, Ti = Ri(Wi · +bi), Wi ∈ CNi×Ni−1 , bi ∈ CNi ,
and Ri : CNi → CNi .

In the following, we will make the assumption that the activation operators
(Ri)1⩽i⩽m satisfy some nonexpansiveness properties and that all of them, ex-
cept possibly for the last layer, are separable.

66



Assumption 4.2.2

(i) Rm is a nonexpansive (i.e., 1-Lipschitz) operator and, for every i ∈
{1, . . . ,m− 1}, Ri is separable, that is(

∀z = (ζk)1⩽k⩽Ni
∈ CNi

)
Riz =

(
ϱi,k(ζk)

)
1⩽k⩽Ni

, (4.7)
where, for every k ∈ {1, . . . , Ni}, ϱi,k : C → C.

(ii) For every i ∈ {1, . . . ,m − 1} and k ∈ {1, . . . , Ni}, ϱi,k is αi-averaged
where αi ∈]0, 1], i.e.

(∀(ζ, ζ ′) ∈ C2) |ϱi,k(ζ)−ϱi,k(ζ ′)|2+
1− αi
αi

|ζ−ϱi,k(ζ)− ζ ′+ϱi,k(ζ ′)|2

⩽ |ζ − ζ ′|2. (4.8)
Note that, when αi = 1 in (4.8), we recover the definition of a nonexpansive
function. More generally, nonexpansive functions form a superset of αi-averaged
functions. It is also worth to note that (4.8) is equivalent to the fact that the
function defined as

(∀ζ ∈ C) ϑi,k(ζ) =
ρi,k(ζ)− (1− αi)ζ

αi
(4.9)

is nonexpansive. When αi = 1/2, ρi,k is a firmly nonexpansive function. It can be
shown that if αi > 1/2, then ρi,k is αi averaged if and only if it is an overrelaxation
of a firmly nonexpansive function [148], i.e. there exists λi,k ∈]1, 2] and a firmly
nonexpansive function σi,k : C → C such that

(∀ζ ∈ C) ρi,k(ζ) = (1− λi,k)ζ + λi,kσi,k(ζ). (4.10)
4.2.2 . Nonexpansive complex-valued activation functions

There exist two main recipes for building activation functions, satisfying (4.8).
The first one is to use split-complex activation functions of the form

(∀z ∈ C) ϱi,k(ζ) = ϱRi,k(Reζ) + ıϱIi,k(Imζ) (4.11)
where ϱRi,k : R → R and ϱIi,k : R → R are αi-averaged activation functions. It
is shown in [20] that most existing real-valued activation functions are averaged.
The majority of them are proximity operators of some proper lower-semicontinuous
functions and are thus firmly nonexpansive. Examples of functions within this class
are:

• the split-complex ReLU function

(∀ζ ∈ C) ϱi,k(ζ) = CReLU(ζ) = ReLU(Reζ) + ıReLU(Imζ) (4.12)
where

(∀ξ ∈ R) ReLU(ξ) =

{
ξ if ξ ⩾ 0

0 otherwise.
(4.13)
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• the split-complex hyperbolic tangent function

(∀ζ ∈ C) ϱi,k(ζ) = Ctanh(ζ) = tanh(Reζ) + ı tanh(Imζ). (4.14)
The second recipe we propose is based on the following property.

Proposition 4.2.3 Let ω : [0,+∞[ → R be α-averaged with α ∈]0, 1] and such
that ω(0) = 0. Let ρ be defined as

(∀ζ ∈ C) ρ(ζ) =


ω(|ζ|)
|ζ|

ζ if ζ ̸= 0

0 otherwise.
(4.15)

Then the following hold

(i) ρ is α-averaged.

(ii) if ω is the restriction to [0,+∞[ of the proximity operator of a convex func-
tion φ : R → R which is even and differentiable on R \ {0}, then ρ is the
proximity operator of

Φ: C → R :

ζ 7→ φ(|ζ|). (4.16)
Proof.

(i) Let us first show that the property is satisfied when α = 1. Then, for every
(ζ, ζ ′) ∈ (C \ {0})2,

|ρ(ζ)− ρ(ζ ′)|2

=|ρ(ζ)|2 + |ρ(ζ ′)|2 − 2Re{ρ(ζ)ρ(ζ ′)∗}

=ω(|ζ|)2 + ω(|ζ ′|)2 − 2
ω(|ζ|)ω(|ζ ′|)

|ζ||ζ ′|
Re{ζζ ′∗}. (4.17)

Since ω is nonexpansive and vanishes in 0,

|ω(|ζ|)| = |ω(|ζ|)− ω(0)| ⩽ ||ζ| − 0| = |ζ|, (4.18)
which implies that

ω(|ζ|)ω(|ζ ′|)
|ζ||ζ ′|

⩽ 1. (4.19)
From the latter inequality, we deduce that

|ζ − ζ ′|2 − |ρ(ζ)− ρ(ζ ′)|2

=|ζ|2 − ω(|ζ|)2 + |ζ ′|2 − ω(|ζ ′|)2 − 2
(
1− ω(|ζ|)ω(|ζ ′|)

|ζ||ζ ′|

)
Re{ζζ ′∗}

⩾|ζ|2 − ω(|ζ|)2 + |ζ ′|2 − ω(|ζ ′|)2 − 2
(
1− ω(|ζ|)ω(|ζ ′|)

|ζ||ζ ′|

)
|ζ||ζ ′|

⩾(|ζ| − |ζ ′|)2 −
(
|ω(|ζ|)− ω(|ζ ′|)

)2
⩾0, (4.20)
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where the last inequality follows again from the nonexpansiveness of ω. In
summary, we have proved that, for every (ζ, ζ ′) ∈ (C \ {0})2

|ρ(ζ)− ρ(ζ ′)| ⩽ |ζ − ζ ′|. (4.21)
On the other hand if ζ ∈ C \ {0} and ζ ′ = 0 , the inequality is also satisfied
since, according to (4.18),

|ρ(ζ)− ρ(0)| = |ρ(ζ)| = |ω(|ζ|)
|ζ|

|ζ| ⩽ |ζ − 0|. (4.22)
(4.21) also trivially holds if ζ = ζ ′ = 0. This shows that the property holds
when α = 1.

Let us now look at the case when α ̸= 1. Since ω is assumed to be
α-averaged, there exists a nonexpansive operator ϖ such

(∀ξ ∈ [0,+∞[) ω(ξ) = (1− α)ξ + αϖ(ξ). (4.23)
In addition, ϖ(0) = 0. Let

(∀ζ ∈ C) ϑ(ζ) =

{
ϖ(|ζ|)
|ζ| ζ if ζ ̸= 0

0 otherwise.
(4.24)

It follows from the first part of the proof that ϑ is nonexpansive. We have
then, for every ζ ∈ C \ {0},

ρ(ζ) =
(1− α)|ζ|+ αϖ(|ζ|)

|ζ|
ζ

=(1− α)ζ + αϑ(ζ). (4.25)
This relation remains valid if ζ = 0, which shows that ρ is α-averaged.

(ii) This is a direct consequence of [149, Proposition 24.27].

Proposition 4.2.3 allows us to show that many complex-valued activation func-
tions ρi,k operating jointly on the real and imaginary parts of their input satisfy
(4.8). Let us give a few examples.

(i) The Hirose function [139] is defined as

(∀ζ ∈ C) ρi,k(ζ) =


tanh(|ζ|)

|ζ|
ζ if ζ ̸= 0

0 otherwise.
(4.26)
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Based on [60, Example 2.12], it is the proximity operator of function

Φ: C → ]−∞,+∞]

ζ 7→


(1 + |ζ|) ln(1 + |ζ|) + (1− |ζ|) ln(1− |ζ|)− |ζ|2

2
if |ζ| < 1;

ln(2)− 1/2 if |ζ| = 1;

+∞, if |ζ| > 1.

(4.27)
(ii) The Georgiou-Katsageras function [150] defined as

(∀ζ ∈ C) ρi,k(ζ) = GK(ζ) =
ζ

1 + |ζ|
(4.28)

is the proximity operator of

Φ: C → ]−∞,+∞]

ζ 7→

−|ζ| − ln(1− |ζ|)− |ζ|2

2
, if |ζ| < 1;

+∞, if |ζ| ⩾ 1
(4.29)

(see [60, Example 2.15]).

(iii) The squashing function used in CapsNets [147] defined as

(∀ζ ∈ C) ρi,k(ζ) =
8

3
√
3

ζ

1 + |ζ|2
. (4.30)

is the proximity operator of a convex function (see [20, Example 3.2(ii)]).

(iv) The modulus-based inverse square root unit activation function

(∀ζ ∈ C) ρi,k(ζ) =
ζ√

1 + |ζ|2
(4.31)

is the proximity operator of

Φ: R → ]−∞,+∞] : ζ 7→

{
−|ζ|2/2−

√
1− |ζ|2, if |ζ| ⩽ 1;

+∞, if |ζ| > 1
(4.32)

(see [60, Example 2.9]).

(v) The modulus-based swish activation defined as

(∀ζ ∈ C) ρi,k(ζ) =
10ζ

11(1 + exp(−|ζ|))
, (4.33)

is α-averaged with α ≈ 0.546 (see [20, Example 3.2(iv)]).
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Note that, unlike split-complex activation functions, any function ρ defined
by (4.15) is phase-preserving, in the sense that, for every ζ ∈ C, arg ρ(ζ) = arg ζ.
Another example of an activation function which is not phase-preserving is the
group sort one, expressed as

(∀ζ ∈ C) ρi,k(ζ) = ζ↑ = min{Reζ, Imζ}+ ιmax{Reζ, Imζ}. (4.34)
This activation function is nonexpansive [20, Example 3.5]. We can also perform
convex combinations of nonexpansive activation functions to create new ones. For
example, let (µ1, µ2, µ3) ∈ [0, 1]3 be such that µ1 + µ2 + µ3 = 1 and define

(∀ζ ∈ C) ρi,k(ζ) = µ1CReLU(ζ) + µ2GK(ζ) + µ3ζ
↑. (4.35)

The above function is not-phase preserving (if µ1 + µ3 ̸= 0) and, as consequence
of [149, Proposition 4.42], it is α-averaged with

α =
1

2
(µ1 + µ2) + µ3 =

1 + µ3
2

. (4.36)
4.2.3 . Robustness results

In the following, for every M ∈ N \ {0} and α ∈]0, 1], we define the following
set

BM
α =

{
Diag(λ1, . . . , λM )

∣∣ (∀i ∈ {1, . . . ,M}) λi ∈ C and |λi − 1 + α| = α
}
.(4.37)

The convex envelope of this set is

DM
α =

{
Diag(λ1, . . . , λM )

∣∣ (∀i ∈ {1, . . . ,M}) λi ∈ C and |λi − 1 + α| ⩽ α
}
.

(4.38)
In the complex plane, each of the diagonal elements of a matrix in BM

α (resp. DM
α )

lies on a circle (resp. in a closed disk) with center 1− α and radius α.
In addition, for every complex-valued matrix (or vector) A, |A| denotes the matrix
(or vector) formed with the moduli of the elements of A.

Proposition 4.2.4 Consider Model 4.2.1 where Assumption 4.2.2 holds. Define

θm = sup
Λ1∈B

N1
α1

...
Λm−1∈B

Nm−1
αm−1

∥WmΛm−1 · · ·Λ1W1∥. (4.39)

Then θm is a Lipschitz constant of T . In addition,

∥Wm · · ·W1∥ ⩽ θm ⩽ ∥|Wm| · · · |W1|∥. (4.40)
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Proof. For every i ∈ {1, . . . ,m}, let Pi = Ri( · + bi). Let (z, z′) ∈ (CN0)2. For
every i ∈ {1, . . . ,m− 1}, let

yi = (yi,k)1⩽k⩽Ni
= Pi ◦Wi ◦ · · · ◦P1 ◦W1z−Pi ◦Wi ◦ · · · ◦P1 ◦W1z

′. (4.41)
Since Rm (hence, Pm) is assumed to be nonexpansive,

∥Tz − Tz′∥ ⩽ ∥Wmym−1∥. (4.42)
For every k ∈ {1, . . . , Nm−1},

ym−1,k

= ρm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z]k)− ρm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z
′]k)

= (1− αk)([Wm−1 ◦ · · · ◦ P1 ◦W1z]k − [Wm−1 ◦ · · · ◦ P1 ◦W1z
′]k)

+ αk
(
ϑm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z]k)− ϑm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z

′]k)
)
,(4.43)

where [·]k designate the k-th component of the vector in argument and ϑm−1,k is
a nonexpansive operator. Because of the nonexpansiveness property, there exists
ωm−1,k ∈ C (generally function of (z, z′)) such that |ωm−1,k| ⩽ 1 and

ϑm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z]k)− ϑm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z
′]k)

= ωm−1,k([Wm−1 ◦ · · · ◦ P1 ◦W1z]k − [Wm−1 ◦ · · · ◦ P1 ◦W1z
′]k). (4.44)

Thus, by setting λm−1,k = 1− αk + αkωm−1,k, we deduce that

ym−1,k = λm−1,k([Wm−1 ◦ · · · ◦P1 ◦W1z]k− [Wm−1 ◦ · · · ◦P1 ◦W1z
′]k) (4.45)

and |λm−1,k − 1 + αk| ⩽ αk. In summary, we have shown that there exists
Λm−1 ∈ D

Nm−1
αm−1 (depending on (z, z′)) such that

ym−1 = Λm−1Wm−1ym−2. (4.46)
By applying the same procedure iteratively, there exists Λm−2 ∈ D

Nm−2
αm−2 , . . . ,

Λ1 ∈ DN1
α1

such that

ym−1 = Λm−1Wm−1Λm−2Wm−2 · · ·Λ1W1(z − z′). (4.47)
It follows from (4.42) that

∥Tz − Tz′∥ ⩽ ∥WmΛm−1 · · ·Λ1W1∥∥z − z′∥, (4.48)
which implies that

∥Tz − Tz′∥ ⩽ θm∥z − z′∥, (4.49)
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where
θm = sup

Λ1∈D
N1
α1

...
Λm−1∈D

Nm−1
αm−1

∥WmΛm−1 · · ·Λ1W1∥. (4.50)

For every i ∈ {1, . . . ,m−1}, let (λi,k)1⩽k⩽Ni
be the diagonal elements of Λi. The

function

((Re{λi,k}, Im{λi,k})1⩽k⩽Ni
)1⩽i⩽m−1 7→ ∥WmΛm−1 · · ·Λ1W1∥ (4.51)

is a multi-convex function (i.e., convex with respect to each of its arguments).
It follows from [20, Lemma A.2] that the supremum in (4.50) can be restricted
to diagonal elements (λi,k)1⩽i⩽m−1,1⩽k⩽Ni

of matrices (Λi)1⩽i⩽m−1 reaching the
bounds of the interval imposed on (|λi,k − 1 + αi|)1⩽i⩽m−1,1⩽k⩽Ni

. This means
that the expression of θm reduces to (4.39).

The lower bound in (4.40) is simply obtained by noticing that, for every
i ∈ {1, . . . ,m− 1}, the identity matrix of dimension Ni belongs to BNi

αi
.

For every i ∈ {1, . . . ,m−1}, let Λi = Diag
(
(λi,k)1⩽k⩽Ni

)
∈ BNi

αi
. Note that,

for every k ∈ {1, . . . , Ni},

|λi,k| ⩽ |λi,k − 1 + αi|+ 1− αi = 1. (4.52)
Let y0 = (y0,k0)1⩽k0⩽N0 ∈ CN0 and let

ym = (ym,k)1⩽k⩽Nm =WmΛm−1 · · ·Λ1W1y0. (4.53)
Thus, we deduce from (4.47) that, for every km ∈ {1, . . . , Nm},

ym,km =

N0∑
k0=1

. . .

Nm−1∑
km−1=1

λm−1,km−1 · · ·λ1,k1 [Wm]km,km−1 . . . [W1]k1,k0 y0,k0 .

(4.54)
Because of (4.52),

|ym,km | ⩽
N0∑
k0=1

. . .

Nm−1∑
km−1=1

|[Wm]km,km−1 | . . . |[W1]k1,k0 ||y0,k0 |. (4.55)

Thus

∥ym∥ ⩽ ∥|Wm| · · · |W1||y0|∥ ⩽ ∥|Wm| · · · |W1|∥ ∥|y0|∥ = ∥|Wm| · · · |W1|∥∥y0∥.(4.56)
This yields the upper bound in (4.40).
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Remark 4.2.5

(i) In (4.52), Matrices Λi = Diag
(
(λi,k)1⩽k⩽Ni

)
∈ BNi

αi
. with i ∈ {1, . . . ,m−

1} are such that ∥Λi∥ ⩽ 1 (as a consequence of (4.52)). We deduce that

θm ⩽ ∥Wm∥ · · · ∥W1∥. (4.57)
The upper bound corresponds to a classical, less accurate estimate of the
Lipschitz constant of the network [15].

(ii) Although these results extend those given in [20, Theorem 5.2], there
exists a fundamental difference between the complex-valued case and
the real one. For the Lipschitz bound established for the real case in
[20, Theorem 5.2], the supremum is calculated on a finite set of values.
In contrast, the Lipschitz constant (4.39) requires computing it on an
infinite set of parameters, since the sets (BNi

αi
)1⩽i⩽m−1 are not countable.

However, we will show next that, for a specific choice of the weight
operators, it is easy to compute a Lipschitz constant of the network.

Proposition 4.2.6 Consider Model 4.2.1. For every i ∈ {1, . . . ,m}, let W+
i ∈

[0,+∞[Ni×Ni−1 . Let (β1,k)1⩽k⩽N0 ∈ [0, 2π[N0 , let (βm,k)1⩽k⩽Nm ∈ [0, 2π[N1 , and
for every i ∈ {2, . . . ,m−1}, let βi ∈ [0, 2π[. Suppose that Assumption 4.2.2 holds
and that the weight operators of the network are such that

W1 =W+
1 Diag

(
eıβ1,1 , . . . , eıβ1,N0

)
(∀i ∈ {2, . . . ,m− 1}) Wi = eıβiW+

i

Wm = Diag
(
eıβm,1 , . . . , eıβm,Nm

)
W+
m . (4.58)

Then
θm = ∥W+

m · · ·W+
1 ∥. (4.59)

Proof. This result is a direct consequence of Proposition 4.2.4. Indeed, we have

∥Wm · · ·W1∥ =

∥∥∥∥∥exp(ı
m−1∑
i=2

βi

)
WmW

+
m−1 · · ·W

+
2 W1

∥∥∥∥∥
=
∥∥Diag

(
eıβm,1 , . . . , eıβm,Nm

)
W+
m · · ·W+

1 Diag
(
eıβ1,1 , . . . , eıβ1,N0

)∥∥
= ∥W+

m · · ·W+
1 ∥. (4.60)

On the other hand, for every i ∈ {1, . . . ,m}, |Wi| =W+
i , and

∥|Wm| . . . |W1|∥ = ∥W+
m · · ·W+

1 ∥. (4.61)
Then Expression (4.59) follows from the sandwich inequality (4.40).

74



(a) The proposed architecture: 5 CDLs (1024, 512, 512, 1024, and 513 neurons, re-spectively) followed by a Rotation layer (ROT) or a Diagonal layer (DIAG).

(b) The structure of the dense complexlayer: each group of neurons (capsule)will process jointly the real part and theimaginary part of the coefficients.

(c) The structure of a diagonal layer: thewhite band corresponds to the main di-agonal which features non-zero coeffi-cients.
Figure 4.3: Overview of the RCFF-Network. The red part denotes the real part,while the green accounts for the imaginary part.

Remark 4.2.7 If the activation operators used at layers i ∈ {2, . . . ,m− 1} are
phase-preserving, they commute with the multiplication by factors eıβi . This
means that the factor exp

(
ı
∑m−1

i=2 βi

)
can be factorized and applied at the

output of the neural network. This phase shift factor then becomes redundant
with matrix Diag

(
eıβm,1 , . . . , eıβm,Nm

)
. In other words, when phase-preserving

activation functions are used, without loss of generality, the angles (βi)2⩽i⩽m
can be set to zero.

4.2.4 . Proposed approach
We implement our architecture to meet the requirements of Proposition 4.2.6

and design a Robust Complex Feed-Forward Neural Network (RCFF-Net). The
architecture is illustrated in Figure 4.3. The network processes complex-valued
data by stacking their real and imaginary parts. The weights associated with the
first and last layers, are Diagonal layers (DIAG), as they perform phase shifts in
the complex plane, which will be optimized during the training phase. At the core
of the architecture stands the Complex Dense Layer (CDL), detailed in Figure
4.3b. This layer encapsulates two equal nonnegative linear transforms that process
distinctly the real and imaginary parts. In contrast, the activation functions operate
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Table 4.2: Experimental results for audio denoising
MSE PSNR [db] CC

Noisy signal 7.21× 10−3 21.02 0.83
Baseline – Wiener Filter 3.45× 10−3 24.24 0.94Baseline – NLMS Adaptive Filter 2.52× 10−3 25.61 0.95Baseline – Standard FCN 2.78× 10−3 26.05 0.95

RCFF
ρ(ζ) = CReLU(ζ) U θupp = 335 0.96× 10−3 30.00 0.99

C θm = 0.99 2.02× 10−3 27.64 0.96
ρ(ζ) = GK(ζ)

U θupp = 73.25 1.04× 10−3 29.45 0.97
C θm = 0.99 2.11× 10−3 27.14 0.96

ρ(ζ) = 8
3
√
3

|ζ|
1+|ζ|2 ζ

U θupp = 120 0.96× 10−3 30.19 0.98
C θm = 0.93 1.22× 10−3 29.02 0.97

ρ(ζ) = Ctanh(ζ) U θupp = 421 1.28× 10−3 28.98 0.97
C θm = 0.99 2.09× 10−3 27.41 0.96

ρ(ζ) = ζ√
1+|ζ|2

U θupp = 143 1.90× 10−3 27.80 0.96
C θm = 0.97 2.12× 10−3 26.98 0.96

ρ(ζ) = tanh(|ζ|)
|ζ|

U θupp = 98 1.43× 10−3 28.60 0.97
C θm = 0.98 1.93× 10−3 27.63 0.97

ρ(ζ) = ζ↑
U θupp = 187 1.09× 10−3 30.21 0.98
C θm = 0.99 1.32× 10−3 29.13 0.97

ACNN C θm = 1.00 1.98× 10−3 26.24 0.96

on each pair of real-imaginary coefficients, and they can be chosen as explained in
Section 4.2.1. The output is then obtained by concatenating the real and imaginary
parts. Between CDL layers, we apply a rotation operation (ROT), which induces a
global phase shift of the outputs of each layer.

4.2.4.1 . Training strategy

Concerning the training strategy, we propose to use a similar approach to the case
of ACNNs. We employ a projected version of the AdaMax optimizer [137]. As
before, we define for each layer i ∈ {1, . . . ,m} the associated vector of parameters
ηi which gathers the weight elements W+

i , the angles, and the bias vectors bi. For
every i ∈ {2, . . . ,m− 1}, the size of this vector is Ni(Ni−1 + 1) + 1, whereas for
the first (resp. last) layer it is equal to N1(N0 + 1) +N0 (resp. Nm(Nm−1 + 2)).
During the learning phase, the parameters (ηi)1⩽i⩽m are constrained to belong to
a closed set S which expresses our robustness certificate. More precisely, we adopt
a block coordinate approach where at each iteration t the vector ηi is projected
onto a closed and convex set

Si,t =
{
ηi | [(η⊤j,t+1)j<i η

⊤
i (η⊤j,t)j>i]

⊤ ∈ S
}
. (4.62)
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Table 4.3: Experimental results for audio denoising with attacked inputs
MSE PSNR [db] CC Deg.[%]

Noisy signal 7.30× 10−3 21.00 0.83 0.09
Baseline – Standard FCN 5.46× 10−3 22.87 0.90 12.24

RCFF
ρ(ζ) = CReLU(ζ) U θupp = 335 4.84× 10−3 23.62 0.91 21.26

C θm = 0.99 1.96× 10−3 25.43 0.95 7.99
ρ(ζ) = GK(ζ)

U θupp = 73.25 5.42× 10−3 23.31 0.90 20.84
C θm = 0.99 1.84× 10−3 25.72 0.95 5.23

ρ(ζ) = 8
3
√
3

|ζ|
1+|ζ|2 ζ

U θupp = 120 5.26× 10−3 22.05 0.90 26.96
C θm = 0.93 1.34× 10−3 28.68 0.97 1.17

ρ(ζ) = Ctanh(ζ) U θupp = 421 5.15× 10−3 23.14 0.90 22.14
C θm = 0.99 2.82× 10−3 25.41 0.95 6.20

ρ(ζ) = ζ√
1+|ζ|2

U θupp = 143 6.02× 10−3 22.24 0.89 26.45
C θm = 0.97 2.98× 10−3 25.12 0.94 8.14

ρ(ζ) = tanh(|ζ|)
|ζ|

U θupp = 98 5.78× 10−3 21.36 0.89 23.32
C θm = 0.98 5.46× 10−3 25.56 0.95 5.61

ρ(ζ) = ζ↑
U θupp = 187 4.67× 10−3 23.09 0.90 22.34
C θm = 0.99 1.45× 10−3 28.20 0.95 2.60

ACNN C θm = 1.00 2.46× 10−3 25.43 0.95 3.08

The approach is implemented with a decomposition of the training set in mini-
batches (Mq,n)1⩽q⩽Q at epoch n > 0. The k-th sample of the dataset zk corre-
sponds to an input-output pair. K denotes the number of such samples in the
training set. The optimization process for the n-th epoch is given by Algorithm 5.

Algorithm 5: Projected AdaMax Algorithm
Partition {1, . . . ,K} into mini-batches (Mq,n)1⩽q⩽Q
foreach q ∈ {1, . . . , Q} do

t = (n− 1)Q+ q
foreach i ∈ {1, . . . ,m} do

gi,t =
∑

k∈Mq,n
∇iℓ
(
zk, (ηi,t

)
1⩽i⩽m)

µi,t = χ1µi,t−1 + (1− χ1)gi,t
νi,t = max(χ2νi,t−1, |gi,t|)
γi,t = γµi,t/(1− χt1)

ηi,t+1 = PSi,t

(
ηi,t − γtµi,t/(

√
νi,t + ϵ)

)
,

ηi,t+1 = PSi,t(ηi,t − γi,t/νi,t)

In this algorithm, the modulus and the division are performed component-wise.
Hereabove, ℓ denotes the loss function, ∇i represents the gradients with respect to
ηi. The vectors µi,t and νi,t represent the first and second momentum estimates
at iteration t, using parameters χ1 = 0.9 and χ2 = 0.999. These variables are
initialized with µi,0 = νi,0 = 0. Each gradient step is followed by a projection
PSi,t onto the constraint set Si,t. This set expresses the two constraints on which
our approach is grounded. First of all, since our assumptions are valid under a
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nonnegativity condition for the weights, we need to ensure that (∀i ∈ {1, . . . ,m},
W+
i ∈ [0,+∞[Ni×Ni−1 . Additionally, based on Proposition 4.2.6, to control the

robustness we impose that ∥W+
m . . .W+

1 ∥S ⩽ ϑ, where ϑ is the target Lipschitz
constant of the network.

4.2.5 . Experimental results
The proposed methodology is applied to the same problem as in the previous

section. We use a 5-layer RFCC-Net (m = 5), with diverse activation functions, and
use the same pre-processing pipeline as in Section 4.1.3.2. The main difference is that
the network now estimates the complex STFT coefficients and, in the post-processing
phase, an inverse operation (ISTFT) is performed for signal reconstruction.

We evaluate the performance of our RCFF-Net on the same 3 standard metrics:
Peak Signal-to-Noise Ratio (PSNR), Cross-correlation (CC), and Mean Squared
Error (MSE), which was also employed as the training loss. The results on the test
set are summarized in Table 4.2. We compare our solution with other standard
denoising techniques, namely optimal Wiener filter and adaptive filter based on
Normalised Least Mean Squares (NLMS) algorithm. As another baseline, we also
trained a classical m = 5 layers Fully Connected Network (FCN) with ReLU activa-
tion. Furthermore, we trained RCFF-Net both using constrained and unconstrained
weights, referred to in Table 4.2 as C and U, respectively. For the unconstrained
model, since the weights may have arbitrary signs, we only compute the upper
bound θupp of the Lipschitz constant, given by the right-hand side of (4.57).

In the constrained case, we were able to train nonexpansive models (θm ⩽ 1).
In accordance with the “no free lunch" theorem [123], this improved stability comes
at the expense of a loss of performance that remains acceptable with our proposed
method. We also compared our results with ACNN model, which only estimates
the magnitude of the STFT coefficients. Note that RCFF-Net outperforms ACNN
by a significant margin, showing that taking into account the whole spectrum
information, i.e. both magnitude and phase, has a clear impact on the performance
of the model.

Moreover, to show that our solution is indeed robust against adversarial per-
turbations, we have tested the performance of our models when facing adversarial
inputs, in the cases when it was possible and relevant. To the best of our knowledge,
there are very few white-box attackers suited for regression problems, and none
are currently available for complex-valued NNs. So, to create a worst-case input
perturbation, we extended the gradient-based attacker proposed in [28] to operate in
the complex domain. The attacked input was created by adding the aforementioned
perturbation over the clean audio sample. The results in the case of perturbed
inputs are presented in Table 4.3. To emphasize the effectiveness of our solution,
the last column from Table 4.3 shows the degradation level (in terms of percentage
of SNR) when the model faces adversarial inputs.
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Regarding the influence of the activation operator, it can be observed that,
from the split-complex activations, CReLU achieves the best results, showing that
ReLU remains a powerful operator even in the complex domain. From the activa-
tion operators defined by (4.15), the squashing function distinguishes as the best
phase-preserving activation. We remark that the top results are obtained when we
employ a non-phase preserving activation function, namely group sort, which shows
that phase plays an important role when solving our task.

It can be observed that the performance of the models trained without stability
guarantees is greatly affected, with a significant increase in the degradation level.
On the other hand, when the models (both RCFF and ACNN) were trained under
robustness constraints, the impact of the attack was limited, bounded by the
imposed Lipschitz constant, proving the validity of our robust training mechanism.

4.3 . Conclusion

This chapter proposes two new classes of neural networks. The first one,
ACNN, establishes a novel link between fully connected layers and convolutional
structures, whereas the second one RCFF-Net operates in the complex space. By
judiciously structuring the weight matrices, we derived a tight Lipschitz bound
for both proposed architectures. In the complex case, our analysis led to new
theoretical results concerning nonexpansive activation functions. We also extended
an existing tight Lipschitz bound for feedforward neural networks to the complex
domain. Computing this bound is no longer a combinatorial problem for complex-
valued neural networks, which emphasizes the challenges raised with respect to
the real case. We also showed how to control Lipschitz bounds numerically in the
training process. We proved the effectiveness of our method in the context of
audio denoising, but our method could be applied to other tasks such as source
separation.
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Chapter 5 – ABBA neural networks: coping
with positivity, expressivity, and
robustness

In this chapter, we introduce ABBA networks, a novel class of (almost) non-
negative neural networks, which are shown to possess a series of appealing properties.
In particular, we demonstrate that these networks are universal approximators while
enjoying the advantages of non-negative weighted networks. We derive tight
Lipschitz bounds both in the fully connected and convolutional cases. We propose
a strategy for designing ABBA nets that are robust against adversarial attacks, by
finely controlling the Lipschitz constant of the network during the training phase.
We show that our method outperforms other state-of-the-art defenses against
adversarial white-box attackers. Experiments are performed on image classification
tasks on four benchmark datasets.

5.1 . Introduction

It is widely accepted that humans possess the innate ability to decompose
complex interactions into discrete, intuitive hierarchical categories before analyz-
ing them [151]. Conceptually, this evolution towards part-based representation
in human cognition can be linked to non-negativity restrictions on the network
weights [152]. This idea, along with other factors, has sparked interest in neural
networks with non-negative weights. These networks have drawn attention for
several reasons. Firstly, they align with human understandability, making them
more interpretable. Secondly, the non-negativity constraint can act as beneficial
regularization, effectively reducing overfitting issues. Moreover, recent studies have
demonstrated that it is possible to derive a tight Lipschitz bound for such networks.
This Lipschitz constant serves as a valuable metric for quantifying the robustness of
the network, enabling us to design networks with enhanced resilience to adversarial
perturbations during the training process. Despite their advantages, one significant
drawback of networks with non-negative weights is that they might be less expres-
sive than networks with arbitrary signed weights. Another major disadvantage of
standard non-negative networks is that they are not universal approximators [153],
a limitation that our work overcomes.

Approach. We are interested in neural networks having non-negative weights,
except for the first and last linear layers. This class of networks obviously constitutes
an extension of those having all their linear layers non-negative-valued. We focus
on a particular subclass of these networks for which the weight matrices have a
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structure of the form [
A B
B A

]
,

thus enjoying a number of algebraic properties. The corresponding networks are
subsequently called ABBA networks. Note that weight matrices A and B are
duplicated in ABBA networks, thus allowing us to limit the number of parameters.

5.2 . Related work

Non-negative neural networks. Inspired by non-negative matrix factorization
(NMF) techniques, the work of [152] introduces non-negative restrictions on the
weights to create neural networks in which the hidden units correspond to identifi-
able concepts. [154] showed that Autoencoders (AE) trained under non-negativity
constraints are able to derive meaningful representations that unearth the hidden
structure of high-dimensional data. Their method showed promising results from
both performance and feature interpretation viewpoints on four different classi-
fication tasks. [155] presented the first polynomial-time algorithm for Probably
Approximately Correct (PAC) learning 1-layer neural networks with positive coeffi-
cients. Moreover, ensuring non-negativity has been shown to have a regularization
effect, reducing feature overfitting, which is a very common problem, especially for
tasks where the available training data is scarce [156]. Neural networks defining
convex functions of their inputs [157] also constitute a subclass of networks with
non-negative weights.

Link with other networks. From another perspective, the idea of using
redundant weights is reminiscent of siamese networks [158]. These architectures are
successfully used to handle similarity learning tasks, such as face verification [159],
character recognition [160], and object tracking [161]. Siamese networks compute
a similarity metric on the representations of the inputs, after applying the same
transformation to each one. Apart from the proven efficiency on solving computer
vision tasks, they have lately been employed in NLP problems, e.g., computational
argumentation. In [162], it is shown that siamese architectures outperform other
baselines trained on convincingness datasets.

Robustness. The robustness of neural networks against possible adversarial
attacks is a topic that has received increasing attention since nowadays AI-based
solutions are ubiquitous [163, 164]. A sizable body of literature on adversarial
attacks and different defense strategies has emerged in recent years as a result
of the work in [9]), which revealed the alluring susceptibility of neural networks
to adversarial perturbations and proposed a box-constrained L-BFGS algorithm
for finding adversarial examples. [14] introduced the FGSM attack as a one-step
modification of the input image, following the direction of loss maximization, while
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[10] incorporated this step into an iterative method known as PGD, seen as an
improvement over basic FGSM. DeepFool [38] iteratively searches for the closest
adversarial point that directs the optimization towards crossing the decision boundary.
DDN [42] and FMN [43] attacks fall into the category of projected-gradient methods,
using iterative updates of the perturbation vector towards the minimization of its
magnitude. Defensive strategies have been developed to alleviate this robustness
issue. [51] divides adversarial defense methods into three categories: adversarial
detection, gradient masking, and robust optimization. Adversarial Training was
first introduced by [14] and later improved by [66]. Recent works on AT [165, 166]
have successfully analyzed and refined training techniques, however, no theoretical
certificates regarding their behavior in the presence of different adversaries have been
established yet. Regularization-based methods, such as [167, 168, 169], include
additional terms in their objective, steering the learning process in a direction that
leads to better generalization. [170] provides robustness certificates for neural
networks with one hidden layer, yielding an upper bound of the error in the presence
of any adversary (see [171, 172, 77] for more advanced methods. Randomized
smoothing [173, 174, 175, 176, 177] certifies the robustness of a classifier around
an input point by measuring the most-likely prediction over Gaussian-corrupted
versions of the point.

5.3 . ABBA neural networks

5.3.1 . Problem formulation

In the remainder of this paper, ∥ · ∥ will denote the ℓ2-norm when dealing with
a vector, and the spectral norm when dealing with a matrix.
An m-layer feedforward neural network can be described by the following model.

Model 5.3.1 T is a feedforward neural network if there exists (Ni)1⩽i⩽m ∈
(N \ {0})m such that

T = Tm ◦ · · · ◦ T1 (5.1)
where, for every layer index i ∈ {1, . . . ,m}, Ti = Ri(Wi·+bi), Wi ∈ RNi×Ni−1 is
the weight matrix, bi ∈ RNi the bias vector, and Ri : RNi → RNi the activation
operator. Ni corresponds to the number of inputs at the i-th layer. Such a layer
is convolutive if it corresponds to a weight matrix Wi having some Taoeplitz
(or block Toeplitz) structure.
We will say that the activation operator Ri is symmetric, if there exists (ci, di) ∈
(RNi)2 such that

(∀x ∈ RNi) Ri(x)− di = −Ri(−x+ ci). (5.2)
In other words, (ci, di)/2 is a symmetry center of the graph of Ri.
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For example, if Ri is squashing function used in CapsNets [147], it is such
that

(∀x ∈ RNi) Ri(x) =
µ∥x∥

1 + ∥x∥2
x. (5.3)

with µ = 8/(3
√
3). It thus satisfies the symmetry property (5.2) with ci = di = 0.

In addition, Ri is nonexpansive, i.e. it has a Lipschitz constant equal to 1 [20]
Other examples of symmetric and nonexpansive activation operators are pre-
sented in Appendix 5.8.1 1 .

5.3.2 . ABBA Matrices
We first define ABBA matrices, which will be the main algebraic tool throughout

this chapter.

Definition 5.3.2 Let (N1, N2) ∈ (N \ {0})2. AN1,N2 is the set of ABBA matrices
of size (2N2)× (2N1), that is M ∈ AN1,N2 if there exist matrices A ∈ RN2×N1

and B ∈ RN2×N1 such that

M =

[
A B
B A

]
. (5.4)

The sum matrix associated with M is then defined as S(M) = A+B.

We give some of the most relevant properties of these matrices. In particular,
we will see that the ABBA structure is stable under standard matrix operations.

Proposition 5.3.3 Let (N1, N2, N3) ∈ (N \ {0})3.

(i) IfM ∈ AN2,N1 , then its transposeM⊤ ∈ AN1,N2 andS(M⊤) = S(M)⊤.

(ii) If (M1,M2) ∈ (AN2,N1)
2, then M1 +M2 ∈ AN2,N1 and S(M1 +M2) =

S(M1) +S(M2).

(iii) IfM1 ∈ AN2,N1 andM2 ∈ AN3,N2 , thenM2M1 ∈ AN3,N1 and
S(M2M1) = S(M2)S(M1).

(iv) AN1,N1 is a ringwhen equippedwith the standardmatrix addition and prod-
uct.

(v) If A and B are two square matrices of the same size, the eigenvalues of[
A B
B A

]
are those of A+B and A−B.

(vi) IfA andB are twomatrices having the same dimensions, the spectral norm

of
[
A B
B A

]
is equal tomax{∥A+B∥, ∥A−B∥}.

1Appendices with number of the form SMx can be found in the supplementarymaterials.
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(vii) IfM ∈ AN2,N1 has non-negative elements, the spectral normofM is ∥S(M)∥.

(viii) LetA ∈ RN2×N1 andB ∈ RN2×N1 , and letK = min{N1, N2}. Let (λk)1⩽k⩽K
(resp. (µk)1⩽k⩽K ) be the singular values of A + B (resp. A − B) and let
{uk}1⩽k⩽K / {vk}1⩽k⩽K (resp {tk}1⩽k⩽K / {wk}1⩽k⩽K ) be associated or-
thonormal families of left/right singular vectors in RN2 / RN1 .2 Then, the

singular values of
[
A B
B A

]
are (λk, µk)1⩽k⩽K and associated orthonormal

families of left/right singular vectors are{ 1√
2

[
uk
uk

]
,
1√
2

[
tk
−tk

]}
1⩽k⩽K

/ { 1√
2

[
vk
vk

]
,
1√
2

[
wk
−wk

]}
1⩽k⩽K

.

(ix) If A and B are two matrices having the same dimensions,

rank

([
A B
B A

])
= rank(A+B) + rank(A−B). (5.5)

(x) Let f be a function from R(2N2)×(2N1) to R(2N2)×(2N1). Assume that either
f operates elementwise or it is a spectral function in the sense that there
exists a function φ : R+ → R+ such that

(∀M ∈ R(2N2)×(2N1)) f(M) =

2K∑
k=1

φ(λ̃k)ũkṽ
⊤
k (5.6)

where K = min{N1, N2}, (λ̃k)1⩽k⩽2K are the singular values of M , and
{ũk}1⩽k⩽2K / {ṽk}1⩽k⩽2K are associated orthonormal families of left / right
singular vectors in R2N2 / R2N1 . Then f maps any matrix in AN2,N1 to a
matrix in AN2,N1 .

(xi) The best approximation of maximum rank R < min{N1, N2} (in the sense
of the Frobenius norm) to a matrix in AN2,N1 belongs to AN2,N1 .

(xii) The projection onto the spectral ball of center 0 and radius ρ ∈ ]0,+∞[ of
an ABBA matrix is an ABBA matrix.

The proofs of these properties are provided in Appendix 5.8.2.

5.3.3 . Extension to feedforward networks
We will now extend the previous algebraic concepts by introducing the class of

ABBA feedforward neural networks. In the following, the structure of an ABBA
fully connected network will be presented from the perspective of investigating its
links with standard networks. Such networks make use of weights that respect the
structure of ABBA matrices, except for the first and the last layers. More precisely,
the first layer maps the input to a twice-higher dimensional space, while the last
layer performs a dimension reduction by a factor of 2.

2This means that (5.63) and (5.64) hold.
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Definition 5.3.4 Let m ∈ N \ {0}. T̃ is an m-layer ABBA network if

T̃ = (W̃m+1 ·+b̃m+1)T̃m · · · T̃1W̃0 (5.7)
with W̃0 ∈ R(2N0)×N0 , W̃m+1 ∈ RNm×(2Nm), b̃m+1 ∈ RNm , and

(∀i ∈ {1, . . . ,m}) T̃i = R̃i(W̃i ·+b̃i) (5.8)
R̃i : R2Ni → R2Ni , (5.9)
b̃i ∈ R2Ni , (5.10)
W̃i ∈ ANi,Ni−1 , (5.11)

for given positive integers (Ni)0⩽i⩽m. T̃ is an m-layer non-negative ABBA
network if it is an m-layer ABBA network as defined above and, for every
i ∈ {1, . . . ,m}, the elements of W̃i are non-negative.

In the remainder of this chapter, Nm,A will designate the class of m-layer ABBA
networks and N+

m,A will designate the subclass of m-layer non-negative ABBA
networks. This latter subclass will be the main topic of investigation in this work.
We will also use the notation N+

m,A(ρ) to designate the set of neural networks in
N+
m,A where all the activation operators operate componentwise using the same

function ρ : R → R.

5.3.4 . Link with standard neural networks
In this section, we show that we can reshape Model 5.3.1 as a special case of

a non-negative ABBA network. At each layer i ∈ {1, . . . ,m} of this model, let
W+
i = (W+

i,k,ℓ)1⩽k⩽Ni,1⩽ℓ⩽Ni−1
∈ [0,+∞[Ni×Ni−1 be the positive part of matrix

Wi = (Wi,k,ℓ)1⩽k⩽Ni,1⩽ℓ⩽Ni−1
, i.e.

(∀k ∈ {1, . . . , Ni})(∀ℓ ∈ {1, . . . , Ni−1}) W+
i,k,ℓ =

{
Wi,k,ℓ if Wi,k,ℓ > 0

0 otherwise.(5.12)
Let W−

i =W+
i −Wi ∈ [0,+∞[Ni×Ni−1 be the negative part of Wi, where all the

positive elements of Wi have been discarded. Let us now define a non-negative
ABBA neural network by using these quantities.

Definition 5.3.5 Let m ∈ N \ {0}. Let T be the feedforward neural defined in
Model 5.3.1. T̃ is a network in N+

m,A associated with T if it satisfies relations
(5.7)-(5.11) with

W̃0 =

[
IN0

−IN0

]
, W̃m+1 =

1

2
[INm − INm ], (5.13)

and

(∀i ∈ {1, . . . ,m}) R̃i :

[
x
z

]
7→
[
Ri(x)
Ri(z)

]
, (5.14)

W̃i =

[
W+
i W−

i

W−
i W+

i

]
. (5.15)
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Figure 5.1: Equivalence between a standard fully-connected layer and itsABBA correspondent.

As we will show next, the main result is that, if the activation functions
are symmetric, network T̃ defined above is identical to network T in terms of
input-output relation, for judicious choices of the biases of T̃ .

Proposition 5.3.6 Let T be them-layer feedforward network in Model 5.3.1. As-
sume that, for every i ∈ {1, . . . ,m}, the activation operator Ri in the i-th layer
of T satisfies the symmetry relation (5.2) where ci ∈ RNi and di ∈ RNi . Let T̃ be
the neural network of N+

m,A associated with T whose bias vectors (̃bi)1⩽i⩽m are
linked to those (bi)1⩽i⩽m of T by the relations

(∀i ∈ {1, . . . ,m}) b̃i =

[
bi −W−

i di−1

ci − bi −W+
i di−1

]
, (5.16)

b̃m+1 = −dm
2
, (5.17)

with d0 = 0. Then, for every input, T̃ delivers the same output as T .

The proof of this proposition is provided in Appendix 5.8.3. An illustration of
the link between fully-connected layers and ABBA matrices is shown in Figure 5.1.

5.3.5 . Expressivity of non-negative ABBA networks
One of the main advantages of non-negative ABBA networks with respect to

standard networks with non-negative weights is that they are universal approximators.
More specifically, we have the following result.

Proposition 5.3.7 Let (ne, nr) ∈ (N \ {0})2. Let f : Rne → Rnr be a continuous
function. Let K be any nonempty compact subset of Rne and let ϵ ∈ ]0,+∞[.
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(i) Let ρ : R → R be a symmetric non-polynomial activation function. There
exists a network T̃ ∈ N+

1,A(ρ) with N0 = ne inputs and N2 = nr outputs
such that

(∀x ∈ K) ∥T̃ (x)− f(x)∥ < ϵ. (5.18)
(ii) Let ρ : R → R be a symmetric continuous activation function that is continu-

ously differentiable around at least one point where its derivative is nonzero.
Then there existsm ⩾ 3 and T̃ ∈ N+

m,A(ρ)withN0 = ne inputs,Nm+1 = nr
outputs, and 2Ni = 2(ne + nr + 2) neurons in every layer i ∈ {1, . . . ,m}
such that (5.18) holds.

Proof. Proposition 5.3.6 shows that non-negative ABBA networks can be as expres-
sive as signed networks. Combining this fact with existing universal approximation
results for signed networks (see [178] for (i) and [179] for (ii)) allows us to deduce
these results.

(i) addresses the case of shallow wide networks where the number of neurons in
the hidden layer can be arbitrarily large, while (ii) corresponds to the case of deep
networks having a limited number of neurons per layer. An illustration of these
results is provided in Appendix 5.8.11.

5.3.6 . Lipschitz bounds for ABBA fully-connected networks
As mentioned in the previous sections, the robustness of neural networks with

respect to adversarial perturbations can be evaluated through their Lipschitz con-
stant. However, most of the existing techniques for computing a tight estimate
of the constant have a high computational complexity for deep or wide networks,
whereas simpler upper bounds may turn out to be over-pessimistic.

Nevertheless, in the context of non-negative weighted neural networks [20]
proved that tight approximations to the Lipschitz constant can be achieved. In the
following, we extend this result and show that we can derive a simple expression for
the Lipschitz constant, using a separable bound, for non-negative ABBA networks.

Proposition 5.3.8 Letm ∈ N\{0} and let T̃ ∈ N+
m,A be given by (5.7)-(5.11). As-

sume that, for every i ∈ {1, . . . ,m− 1}, R̃i is a separable nonexpansive operator.
A Lipschitz constant of T̃ is

θm = ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥ ∥W̃0∥. (5.19)
The proof of this result is detailed in Appendix 5.8.4.

A standard separable upper bound for the Lipschitz constant [9] for the ABBA
network T̃ considered in the previous proposition is

θm = ∥W̃m+1∥ ∥W̃m∥ · · · ∥W̃1∥ ∥W̃0∥. (5.20)
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According to Proposition 5.3.3(vii), this bound reads also

θm = ∥W̃m+1∥ ∥S(W̃m)∥ · · · ∥S(W̃1)∥ ∥W̃0∥, (5.21)
which, by simple norm inequalities, is looser than θm.

If T is the feedforward network defined in Model 5.3.1 and we apply Proposition
5.3.8 to the associated non-negative ABBA network T̃ of Definition 5.3.5. We have

∥W̃0∥ = ∥W̃⊤
0 W̃0∥1/2 = ∥2 IN0∥1/2 =

√
2 (5.22)

and
∥W̃m+1∥ = ∥W̃m+1W̃

⊤
m+1∥1/2 =

1√
2
. (5.23)

In turn, for every i ∈ {1, . . . ,m},

S(W̃i) =W+
i +W−

i = |Wi|. (5.24)
where |Wi| is the matrice whose elements are the absolute values of those of Wi.
Hence the Lipschitz constant of T̃ in (5.19) reduces to

θm = ∥|Wm| . . . |W1|∥. (5.25)
It then follows from Proposition 5.3.6 that θm is also a Lipschitz constant of T
when using symmetric activation functions. Note that this bound was actually
already derived in [20, Proposition 5.12].

5.4 . Convolutional networks

We will now extend the results presented in Section 5.3 to convolutional layers.

5.4.1 . ABBA convolutional layers
For any i ∈ {1, . . . ,m}, Wi is a convolutional layer with ζi−1 ∈ N \ {0} input

channels, ζi output channels, kernels (wi,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi , and stride si ∈ N\{0}.
The output (yq)1⩽q⩽ζi of this layer (prior applying any activation operation) is
linked to its input (xp)1⩽p⩽ζi−1

by

(∀q ∈ {1, . . . , ζi}) uq =

ζi−1∑
p=1

wi,q,p ∗ xp (5.26)
yq = (uq)↓si .

Hereabove, for every p ∈ {1, . . . , ζi−1}, xp =
(
xp(n)

)
n∈Zd designates a d-

dimensional discrete signal. Dimension d = 1 corresponds to 1D signals and
d = 2 to images. A similar notation is used for other signals, in particular uq and
wi,q,p with q ∈ {1, . . . , ζi}. The d-dimensional discrete convolution is denoted by
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∗ and (·) ↓si is the decimation (or subsampling) by a factor si.

The ABBA convolutional layer W̃i associated with Wi has twice the number of
input channels and twice the number of output ones. More specifically, its input
consists of ζi−1 signals (x̃+p )1⩽p⩽ζi−1

and ζi−1 signals (x̃−p )1⩽p⩽ζi−1
. Similarly,

its output consists of ζi signals (ỹ+q )1⩽q⩽ζi and ζi signals (ỹ−q )1⩽q⩽ζi . To make
the input-output relations more explicit, let us define the kernels w+

i,q,p and w−
i,q,p

analogously to the fully connected case:

(∀n ∈ Zd) w+
i,q,p(n) =

{
wi,p,q(n) if wi,p,q(n) > 0

0 otherwise,

w−
i,q,p(n) = w+

i,q,p(n)− wi,p,q(n). (5.27)
Then the outputs of the ABBA layer are linked to its inputs by the relations

(∀q ∈ {1, . . . , ζi}) ũ+q =

ζi−1∑
p=1

w+
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w−
i,q,p ∗ x̃

−
p

ũ−q =

ζi−1∑
p=1

w−
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w+
i,q,p ∗ x̃

−
p (5.28)

ỹ+q = (ũ+q )↓si
ỹ−q = (ũ−q )↓si .

The above equations provide the general form of a convolutional ABBA layer when
relaxing (5.27). An alternative formulation of convolutional layers in a matrix form,
along with its correspondent d-dimensional spectral representation, is possible (see
Appendix 5.8.5). This basically amounts to characterize layer (5.26) by the following
matrices

(∀n ∈ Zd) W i(n) =

wi,1,1(n) . . . wi,1,ζi−1
(n)

...
...

wi,ζi,1(n) . . . wi,ζi,ci−1
(n)

 ∈ Rζi×ζi−1 , (5.29)

defining the so-called MIMO impulse response of Wi, which plays a prominent role
in dynamical system theory [180]. The MIMO impulse response of the ABBA layer
W̃i is then characterized by ABBA matrices:

(∀n ∈ Zd) W̃ i(n) =

[
W+

i (n) W−
i (n)

W−
i (n) W+

i (n)

]
∈ [0,+∞[(2ζi)×(2ζi−1) , (5.30)

where W+
i (n) = (w+

i,q,p(n))1⩽q⩽ζi,1⩽p⩽ζi−1
∈ [0,+∞[ζi×ζi−1 and W−

i (n) =

(w−
i,q,p(n))1⩽q⩽ζi,1⩽p⩽ζi−1

∈ [0,+∞[ζi×ζi−1 . This alternative view will be useful in
the following sections.
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5.4.2 . Lipschitz bounds for convolutional networks
In this section, we establish bounds on the Lipschitz constant of an m-layer

convolutional neural network T [61]. Each linear operator Wi corresponding to
layer i ∈ {1, . . . ,m} will be defined by (5.26). We also define a variable

σi =

i∏
l=1

sl (5.31)
aggregating strides from layer 1 to layer i. Subsequently, we will assume that,
for every i ∈ {1, . . . ,m}, the activation operators (Ri)1⩽i⩽m are nonexpansive
operators. Moreover, for every i ∈ {1, . . . ,m− 1}, these operators are separable.
By extending the standard definition for fully connected networks (see Appendix
5.8.1), this means that, for every i ∈ {1, . . . ,m − 1}, there exists a function ρi
from R to R such that

(∀x ∈ Hi) y = Ri(x)

⇔ (∀p ∈ {1, . . . , ci})(∀n ∈ Zd) yp(n) = ρi
(
xp(n)

)
. (5.32)

In Appendix 5.8.6, we derive frequency-based expressions allowing us to calcu-
late bounds on the Lipschitz constant of T .

For accurate numerical evaluations, the frequency transform in these expressions
has to be replaced by a Discrete Fourier Transform involving a significant number
of frequency bins (e.g., 128d). Due to this fact, a computation bottleneck occurs
when MIMO filters are characterized by a large number of input/output channels
(e.g., for 2D applications). In the following, we provide an alternative lower-
complexity formulation for calculating bounds on the Lipschitz constant. In the
case of non-negative kernels, we show that this bound is tight.

Theorem 5.4.1 Let (σi)1⩽i⩽m be the aggregated stride factors of network T , as
defined by (5.31), and let

W = (Wm)↑σm−1 ∗ · · · ∗ (W 2)↑σ1 ∗W 1 (5.33)
where (W i)1⩽i⩽m are the MIMO impulse responses of each layer of network T
and, for every i ∈ {2, . . . ,m}, (W i)↑σi−1

is the interpolated sequence by a factor
σi−1 of W i (see (5.92)). For every j ∈ S(σm) = {0, . . . , σm − 1}d, we define the
following matrix:

W
(j)

=
∑
n∈Zd

W (σmn+ j) ∈ [0,+∞[ζm×ζ0 . (5.34)
Then

θm =
∥∥∥ ∑
j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2 (5.35)

91



is a lower bound on the Lipschitz constant estimate of network T . In addition,
if for every i ∈ {1, . . . ,m}, p ∈ {1, . . . , ζi−1}, and q ∈ {1, . . . , ζi}, wi,q,p =

(wi,q,p(n))n∈Zd is a non-negative kernel, then θm is a Lipschitz constant of T .

The proof of Theorem 5.4.1 is given in Appendix 5.8.7.

The constant θm in (5.134) is actually equal to the one calculated in Appendix
5.8.6. The following majorization if thus obtained (see (5.97)):

θm ⩽ θm = ∥Wm∥ · · · ∥W1∥. (5.36)
By applying Theorem 5.4.1 to each individual layer (Wi)1⩽i⩽m assumed to be with
non-negative kernels, we get the following expression for the upper-bound:

θm =
m∏
i=1

∥∥∥ ∑
j∈S(si)

W
(j)
i

(
W

(j)
i

)⊤∥∥∥1/2, (5.37)

where

(∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) W
(j)
i =

∑
n∈Zd

W i(sin+ j). (5.38)

The bound θm is generally more tractable than θm since it separates the influence
of each layer and does not require to compute the global matrix sequence W as
expressed by (5.33). However, such separable bounds are usually loose. According
to our observations, it turns out that, in the special case of convolutional layers with
non-negative kernels, θm and θm are quite close (see numerical tests in Appendix
5.8.8).

To illustrate these results, the computation of the Lipschitz bound of a layer
corresponding to an average pooling is presented as an example in Appendix 5.8.9.

5.4.3 . Bounds for ABBA convolutional networks
Let us extend the previous results to the ABBA context. The linear operators

of the considered ABBA network T̃ are denoted by (W̃i)0⩽i⩽m+1. The weights
in W̃0 and W̃m+1 are signed, whereas (W̃i)1⩽i⩽m are convolutional layers with
d-dimensional non-negative kernels. More precisely, we assume that, for every
i ∈ {1, . . . ,m}, the i-th layer of the ABBA network has 2ζi−1 input channels, 2ζi
output channels, and stride si ∈ N \ {0}. The MIMO impulse response of such a
layer is of the form (5.30). We make the same assumptions of nonexpansiveness
and separability for the activation operators as in the previous section. We recall
that (W )↑σ denotes the interpolated version by a factor σ of a MIMO impulse
response W =

(
W (n)

)
n∈Zd .

The following result is then established in Appendix 5.8.10 :
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Theorem 5.4.2 Under the above assumptions on the convolutional ABBA net-
work T̃ , let

(∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) Ω
(j)
i =

∑
n∈Zd

S(W̃ i(sin+ j)) ∈ [0,+∞[ζi×ζi−1 ,

(5.39)
where (W̃ i(n))n∈Z is the MIMO impulse response of the ABBA layer of index i.
Then a Lipschitz constant of T̃ is

θm = ∥W̃m+1∥
( m∏
i=1

∥∥∥ ∑
j∈S(si)

Ω
(j)
i

(
Ω
(j)
i

)⊤∥∥∥)1/2∥W̃0∥, (5.40)

where ∥W̃m+1∥ (resp. ∥W̃0∥) is the spectral norm of the linear operator employed
in the last (resp. first layer).

The bound (5.40) will be subsequently used to control the Lipschitz constant of
non-negative ABBA networks during their training.

5.5 . Lipschitz-constrained training

The theoretical bounds established in the previous sections provide a relatively
easy way of computing a tight estimate of the global Lipschitz constant. We
propose a simple approach to control it during the training phase. Since our
networks contain mostly layers having non-negative weights and a few layers having
arbitrary-signed weights, their Lipschitz constant will be controlled separately, and
different constraint sets will be handled for each case.

To train a robust ABBA network, we employ a projected version of the well-
known ADAM optimizer. Each layer i is parameterized by a vector Ψi. In the case
of a dense layer, Ψi is a vector gathering the elements of the weight matrix W̃i,
the components of the associated bias b̃i, and a possible additional parameter that
will be introduced hereafter. For an ABBA layer, Ψi is thus a vector of dimension
2Ni(Ni−1+1) or 2Ni(Ni−1+1)+1. In the context of a 2D convolutional layer, an
array wi of scalar convolutional kernels is substituted for the weight matrix. In the
ABBA case, we have 2ζiζi−1 such kernels. To ensure nonnegativity (if needed) and
Lipschitz bound conditions on the weight operator, we project Ψi onto a suitable
closed and convex constraint set. Considering pairs (zk)1⩽k⩽K of inputs images and
their associated labels, the operations performed at each epoch n > 0 to minimize
a loss function ℓ are presented in Algorithm 6.

After each iteration t of the optimizer, we perform a projection projSi,t
onto

a constraint set Si,t The definition of this set and the corresponding method for
managing the projection is detailed in the following, according to the network type.
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Algorithm 6: Projected ADAM Algorithm
Partition {1, . . . , K} into minibatches (Lq,n)1⩽q⩽Q
t = (n− 1)Q+ q # iteration index# sweep minibatches
foreach q ∈ {1, . . . , Q} do

foreach layer i do
gi,t =

∑
k∈Mq,n

∇iℓ
(
zk, (Ψi,t

)
1⩽i⩽m

) # grad. computation
µi,t = β1µi,t−1 + (1− β1)gi,t # classical ADAM updates
νi,t = β2νi,t−1 + (1− β2)g

2
i,t

γt = γ
√
1− βt2/(1− βt1)

Ψ̃i,t = Ψi,t − γtµi,t/(
√
νi,t + ϵ)

foreach layer i do
Ψi,t+1 = projSi,t

(Ψ̃i,t) # projection step

Handling Lipschitz constants for fully-connected layers. Consider the
network defined by Model (5.3.5). In the case of fully connected networks, the
Lipschitz constant is given by Proposition 5.3.8, which basically splits the bound
into three terms: the first and the last account for the starting and ending layers,
respectively, while the middle one encompasses all the ABBA layers. For the two
former arbitrary-signed layers, we control the Lipschitz constants individually during
training, by imposing a bound on each weight matrix spectral norm. This defines
the following two constraints:

(∀i ∈ {0,m+ 1}) ∥W̃i∥ ⩽ θm,i, (5.41)
where θm,i is the imposed Lipschitz bound for the i-th layer. To deal with this
constraint, we decompose the weight matrix as W̃i = θm,iW̃

′
i , which yields the

constraint set

(∀i ∈ {0,m+ 1}) Si,t = {W̃ ′
i | ∥W̃ ′

i∥ ⩽ 1}. (5.42)
The projection onto Si,t is performed by clipping the singular values of W̃ ′

i to 1.
In our proposed training procedure, we set θm,0θm,m+1 = 1. This gives the

network one degree of freedom to automatically adapt the value of the Lipschitz
constant of these two layers. To do so, we adopt the following parametrization

θm,0 = exp(α), θm,m+1 = exp(−α), (5.43)
where α ∈ R is a trainable parameter. It constitutes an extra component of the
vector Ψi when i ∈ {0,m+ 1}.
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In the case of ABBA dense layers, we need to handle two requirements: ensure
that, for every i ∈ {1, . . . ,m}, W̃i is a non-negative ABBA matrix, and to constrain
the product of all the weight matrices to be such that ∥W̃m · · · W̃1∥ ⩽ θm. Since
θm,0θm,m+1 = 1, θm corresponds to the target Lipschitz bound for the ABBA
network.

For every i ∈ {1, . . . ,m}, W̃i is parameterized by W+
i and W−

i . We define
the following two constraint sets:

Di = {(W+
i ,W

−
i ) ∈ (RNi×Ni−1)2 |W+

i ⩾ 0 and W−
i ⩾ 0}, (5.44)

Ci,t =
{
(W+

i ,W
−
i ) ∈ (RNi×Ni−1)2 |

∥∥∥Ai,t[W+
i W−

i

W−
i W+

i

]
Bi,t

∥∥∥ ⩽ θm

}
. (5.45)

Here-above, matrix Ai,t (resp. Bi,t) is an ABBA matrix, which is the product of the
weight matrices for the posterior (resp. previous layers). In this case, Si,t = Di∩Ci,t.
To perform the projection onto the intersection of these two sets, we use an instance
of the proximal algorithm presented in [156], which alternates between elementary
projections onto Di and projections onto the spectral ball with center 0 and radius
θm. Because of Proposition 5.3.3(xii), the latter projection allows us to keep the
structure of ABBA matrices.

Handling Lipschitz constants for convolutional layers. In the case of
convolutional ABBA networks, we derived the bound in (5.40) which consists of the
product of m+2 terms. The Lipschitz bound constraint is managed by introducing
auxiliary variables (θm,i)0⩽i⩽m+1 defining upper bounds for each layer. At iteration
t of the algorithm estimates (θm,i,t)0⩽i⩽m+1 of the auxiliary bounds are updated.
Similarly to the fully connected case, we use two different types of constraints.

For the i-th ABBA convolutional layer with i ∈ {1, . . . ,m}, we consider the
constraint set

Ci,t = {Wi |
∥∥∥ ∑
j∈S(si)

Ω
(j)
i

(
Ω
(j)
i

)⊤∥∥∥ ⩽ θ
2
m,i,t} (5.46)

where matrices (Ω
(j)
i )j∈S(si) are linked to the convolution kernels by the linear

relation (5.39). By concatenating all these sdi matrices horizontally, we obtain a
rectangular matrix Ωi which allows us to reexpress (5.46) in the simpler form:

Ci,t = {Wi | ∥Ωi∥ ⩽ θm,i,t}. (5.47)
We also have to impose the non-negativity of the filters alongside the stability
bound. This corresponds to a constraint set Di. Projecting onto Si,t = Ci,t ∩Di is
performed by using the same iterative proximal algorithm as previously.

For the first and the last layers, we impose similarly that ∥Wi∥ ⩽ θm,i,t with
i ∈ {0,m + 1}. Since the kernels are signed, we resort a frequency formulation
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(see (5.111)) to estimate the spectral norm of the convolutional operator. The
procedure we use is described in Appendix 5.8.12.

Convolutional layers are usually post-processed by an ABBA fully connected
network. This part will be handled as explained previously. However, we need to
set the upper bounds (θm,i,t)0⩽i⩽m+1 used in the convolutional part and the upper
bound of the ABBA fully connected part. With a slight abuse of notation, let us
denote this latter bound by θm,m+2,t, while the target Lipschitz constant for the
global network is still denoted by θm. We have to deal with the following constraint:

m+2∏
i=0

θm,i,t = θm. (5.48)
We proceed by computing the Lipschitz constants (θ̃m,i,t)0⩽i⩽m+2 of the layers
after the ADAM update. Then, we set

(∀i ∈ {0, . . . ,m+ 2}) θm,i,t = θ̃m,i,t

(
θm∏m+2

i′=0 θ̃m,i′,t

) 1
m+3

, (5.49)
which guarantees that (5.48) holds. Update (5.49) can be interpreted as the
orthogonal projection onto the constraint set defined by (5.48) after a logarithmic
transform of the auxiliary variables. The benefit of such a transform is to convexify
the constraint.

5.6 . Experiments

In this section, we show the versatility of ABBA neural networks in solving
classification tasks. The objective of our experiments is three-fold.

(i) First, we compare positive ABBA structures with their classic non-negative
counterparts and check that our method yields significantly better results in
all considered cases.

(ii) We then train ABBA models constrained to different Lipschitz bound values
and evaluate their robustness against several adversarial attacks.

(iii) Finally, we compare our proposed approach with three other well-established
defense strategies, namely Adversarial Training (AT), Trade-off-inspired
adversarial defense (TRADES) [169], and Deel-Lip proposed by [64].

We validate our ABBA networks on four benchmark image classification datasets:
MNIST, its more complex variant Fashion MNIST 3, a variant 4 of the Rock-Paper-
Scissors (RPS) dataset [181], and a binary classification on CelebA [182]. For the

3https://github.com/zalandoresearch/fashion-mnist4https://github.com/DrGFreeman/rps-cv
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(a)MNIST – DDN (b)MNIST – FMN (c)MNIST – DeepFool

(d) FMNIST – DDN (e) FMNIST – FMN (f) FMNIST – DeepFool
Figure 5.2: Accuracy vs. Perturbation for different Lipschitz constants – Dense
Architecture.

last dataset, inspired from [64] where eyeglass detection is performed, we specialized
our models on a different attribute, namely to identify whether a person is bald or
not. To explore the features of different ABBA network topologies, we experiment
with two main types of ABBA architectures: one having only fully connected layers,
further referred to as ABBA Dense, and another one which includes a convolutional
part for feature extraction, followed by a fully connected classification module,
ABBA Conv. Depending on the dataset, the particularities of each architecture are
slightly different. A detailed description of all the small networks employed in this
work, as well as other training details, are provided in Appendix 5.8.13. For all
experiments, the input images were scaled in the [−1, 1] interval.

ABBA networks vs. non-negative networks. First, we compare our non-
negative ABBA networks with standard ones trained under non-negativity constraints.
We consider standard neural networks to have the same number of parameters
as their ABBA equivalent. The results are summarized in Table 5.1, indicating
that ABBA neural networks yield far superior results, in all cases. In the case of
fully connected architectures, the difference in terms of accuracy is around ∼ 3%

and ∼ 5% for MNIST and FMNIST, respectively. The difference is even higher
when we consider Conv architectures (e.g. ∼ 5%, ∼ 7%, ∼ 31% and ∼ 32%

for MNIST, FMNIST, RPS, and CelebA, respectively). This shows that standard
non-negative convolutional kernels are often suboptimal for extracting relevant
information from image data. On the other hand, training standard neural networks
having arbitrary-signed weights gives results very similar to their ABBA equivalents
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Dataset Network Architecture Accuracy [%]

MNIST
ABBA Dense 98.33Conv 98.70
Non-Negative Dense 94.95Conv 93.27
Baseline Dense 98.35Conv 98.68

FMNIST
ABBA Dense 90.02Conv 90.17
Non-Negative Dense 84.56Conv 83.09
Baseline Dense 90.00Conv 90.20

RPS
ABBA Conv 99.08
Non-Negative Conv 67.30
Baseline Conv 98.86

CelebA
ABBA Conv 90.21
Non-Negative Conv 61.04
Baseline Conv 90.17

Table 5.1: Comparison between ABBA, full non-negative and arbitrary-signed(baseline) networks.

in all the cases, showing that ABBA networks do not suffer from these shortcomings.
These results are in agreement with Proposition 5.3.6.

Stability vs. Performance. According to the “no free lunch" theorem [123],
stability guarantees may impact the system performance on clean data. In this work,
we train several models by following the approach described in Section 5.5. The
Lipschitz constant of the network is varied in an effort to find the optimal trade-off
between robustness and classification accuracy. This compromise is usually use-case
specific, depending on the architecture complexity and on the dataset particularities,
so the tightness of the imposed stability bound must be chosen accordingly. In our
experiments, we limited the maximum Lipschitz constant we impose, so that the
drop in performance does not exceed 5% of the baseline model accuracy (i.e., the
model trained without robustness constraints).

Adversarial attack validation. We train several robust ABBA models by varying
the global Lipschitz bound θm. We then evaluate their robustness against inputs
corrupted with different levels of adversarial perturbations, by studying their influ-
ence on the overall performance of the system. The adversarial data is obtained by
adding to the original image a perturbation. To create this adversarial noise, we
use three white-box attackers, as described next. DDN [42] is a gradient-based ℓ2
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(a)MNIST – DDN (b)MNIST – FMN (c)MNIST – DeepFool

(d) FMNIST – DDN (e) FMNIST – FMN (f) FMNIST – DeepFool
Figure 5.3: Acc. vs. Perturbation for different Lipschitz constants ABBA Conv-Dense
Architectures – MNIST and FMNIST.

adversarial attack method that seeks to decouple the direction and norm of the
additive perturbation. By doing so, this attack is able to generate effective examples,
while requiring fewer iterations than other methods. DeepFool [38] considers a
linear approximation to the model and refines the attack sample iteratively, by
selecting the point that would cross the decision boundary with minimal effort in the
logit space. The FMN [43] attack improves the approach in DDN by introducing
adaptive norm constraints on the perturbation, in order to balance the trade-off
between the magnitude of the perturbation and the level of miss-classification. This
results in a powerful attack that is able to generate adversarial examples with small
perturbation levels.

For a given maximum ℓ2 perturbation norm, we ran each attack for 300 steps,
using the default hyperparameters for each of the three attackers. Although all
images are normalized in the [−1, 1] range, we report the robust accuracy w.r.t. ℓ2
perturbation measured in [0, 1] range, which is the common practice in the literature.

The results are summarized in Figures 5.2, 5.3, and 5.4 which show the
robustness of MNIST, FMNIST, RPS, and CelebA ABBA models, w.r.t. increasing
ℓ2 norm perturbation, generated with DDN, FMN, and DeepFool attacks. A baseline
model, trained without stability constraints and arbitrary-signed weights, is provided
as a reference. These graphs could be interpreted as the expected performance of
the model if the attack is allowed to influence the input image with an ℓ2-norm less
than ϵ, where the level of perturbation ϵ varies. For a better understanding of the
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(a) RPS – DDN (b) RPS – FMN (c) RPS – DeepFool

(d) CelebA – DDN (e) CelebA – FMN (f) CelebA – DeepFool
Figure 5.4: Acc. vs. Perturbation for different Lipschitz constants ABBA Conv-Dense
Architectures – RPS and CelebA.

adversarial perturbation effect, some visual examples of the attacked inputs, for all
the datasets, are presented below. For all datasets, adversarial examples created by
using DDN attack are displayed in Figures 5.8, 5.9, 5.10, and 5.11. We generated
adversarial samples using untargeted DDN attacks, with a budget of 300 iterations
and initial parameters as proposed by the authors. We did not limit the maximum
perturbation ϵ, in order to find the minimum one, allowing us to fool the model. It
can be easily seen that for DeelLip and ABBA networks, the required perturbations
for misclassification are higher. In particular, we observe that the perturbations
needed to fool ABBA networks lead to severe artifacts in the images.

It can be observed that our robust ABBA models are significantly less affected
by adversarial inputs than the undefended baseline. This demonstrates that carefully
controlling the Lipschitz constant during training improves the network stability
against adversarial attacks. Naturally, as the imposed bound gets lower, the system
becomes more robust. Although the difference in robustness between similar values
of the Lipschitz constant depends on the intrinsic structure of the dataset, our
results show that a good trade-off between robustness and performance can be
achieved in all cases.

Comparison with other defense strategies. In the following, we compare our
method for training robust models using ABBA networks with other defense strate-
gies. Deel-Lip, developed in [64], is a popular Lipschitz-based approach, which
uses the spectral normalization of each layer to offer robustness certificates during
training. TRADES [169] introduces a robustness regularization term into the train-
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(a)MNIST – DDN (b)MNIST – FMN (c)MNIST – DeepFool

(d) FMNIST – DDN (e) FMNIST – FMN (f) FMNIST – DeepFool
Figure 5.5: Comparisons with other defense techniques Dense Architectures

ing objective. This regularizer encourages the network to have similar predictions
on both the original input and its adversarial counterparts. On the other hand,
Adversarial Training (AT) implies augmenting the training data with adversarial
samples, increasing the network generalization capabilities to different input alter-
ations. However, this technique offers weak theoretical stability guarantees, as it is
mainly dependent on the strength of the adversary used during training.

For all experiments regarding AT, we used Projected Gradient Descent (PGD)
attack to generate the adversarial samples with a perturbation level ϵ = 0.5 and
then we employed the scheduling strategy introduced by [66]. Concerning TRADES,
we set λ = 1 for MNIST and FMNIST, and λ = 1/2 for RPS and CelebA datasets.
For all the presented techniques, we considered the equivalent baseline to each
ABBA network.

Comparisons, in the same adversarial set-up as before, are depicted in Figures
5.5, 5.6, and 5.7. We observe that using our theoretically certified Lipschitz bound
yields models which are generally more robust than AT and TRADES. For simple
datasets, such as MNIST and FMNIST, robust ABBA and Deel-lip models exhibit
similar behavior for low-magnitude adversarial attacks, but as we increase the maxi-
mum perturbation ϵ, our method performs better. In the case of real-world datasets
(RPS and CelebA), ABBA models exhibit high robustness properties against all the
tested attacks, showing that our approach allows us to train neural models to reach
great stability properties, without losing their generalization power.
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(a)MNIST – DDN (b)MNIST – FMN (c)MNIST – DeepFool

(d) FMNIST – DDN (e) FMNIST – FMN (f) FMNIST – DeepFool
Figure 5.6: Comparisons with other defense techniques Conv-Dense Architectures
– MNIST and FMNIST.

Limitations. The main limitation of our method is that non-negative ABBA
operators require more parameters to meet the universal approximation conditions.
More precisely, for a given depth m and number of neurons (Ni)0⩽i⩽m per layer, a
network T̃ ∈ Nm,A has the same number of inputs and outputs as the standard
feedforward network T in Model 5.3.1. All the layers of T̃ , except the first one,
have however twice more inputs than T . Because of the ABBA structure of the
weight matrices in (5.11), the maximum number of parameters of T̃ is 2(N2

0 +∑m
i=1Ni(Ni−1+1)+N2

m) while the number of parameters of T is
∑m

i=1Ni(Ni−1+

1). By storing W̃ ′
1 = W̃1W̃0 ∈ R(2N1)×N0 instead of W̃1 and W̃0 separately,

the maximum number of parameters is reduced to 2(
∑m

i=1Ni(Ni−1 + 1) +N2
m).

Moreover, since the weights are non-negative, the model does not necessarily require
signed representations’ storage, so the memory space occupied by T̃ could also
be reduced. While our method does not provide any certification regarding the
accuracy of the classifier in adversarial environments, it delivers a certified value for
the Lipschitz constant of the network.

5.7 . Conclusions

In this chapter, we introduce ABBA networks, a novel class of neural net-
works where the majority of weights are non-negative. We demonstrate that these
networks are universal approximators, possessing all the expressive properties of
conventional signed neural architectures. Additionally, we unveil their remarkable
algebraic characteristics, enabling us to derive precise Lipschitz bounds for both
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(a) RPS – DDN (b) RPS – FMN (c) RPS – DeepFool

(d) CelebA – DDN (e) CelebA – FMN (f) CelebA – DeepFool
Figure 5.7: Comparisons with other defense techniques Conv-Dense Architectures
– RPS and CelebA.

fully connected and convolutive operators.

Leveraging these bounds, we construct robust neural networks suitable for
various classification tasks. For future research, it would be intriguing to explore
the application of ABBA networks in regression problems, where controlling the
Lipschitz constant may present more challenges. Moreover, extending our theoreti-
cal bounds to different structures, such as recurrent or attention-based networks,
holds promise for further advancements.

Finally, we recognize the necessity of investigating the scalability of the proposed
training method to deep architectures. One of the main hurdles in this endeavour
is the increased number of parameters that deep ABBA architectures entail.
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Figure 5.8: Adversarial examples with DDN attack for Conv-Dense models, onMNIST dataset. ℓ2 perturbation magnitude is given in the top-left corner.
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Figure 5.9: Adversarial examples with DDN attack for Conv-Dense models, onFMNIST dataset. ℓ2 perturbation magnitude is given in the top-left corner.
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Figure 5.10: Adversarial examples generated with DDN, on RPS dataset. Foreach example: first row – adversarial images; second row – pixel differencesbetween adversarial and clean sample.

105



Clean
1.26

Baseline
1.99

AT
3.91

TRADES
5.24

DeelLip
13.70

ABBA

1.66 2.83 6.05 6.81 12.68

1.06 1.40 4.14 4.76 5.25

1.23 1.74 2.62 3.49 4.68

1.94 3.50 5.67 8.22 11.19

1.57 2.97 4.11 4.81 7.34

1.55 2.00 5.13 5.79 8.25

0.90 1.29 3.19 6.05 7.95

0.68 0.58 2.17 4.11 8.48

1.30 2.79 4.81 7.07 9.18

Figure 5.11: Adversarial examples with DeepFool attack for CelebA. ℓ2 pertur-bation magnitude is given in the top-left corner.
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5.8 . Appendix

5.8.1 . Symmetric activation functions

In practice, the activation operator Ri is often separable, that is(
∀x = (ξk)1⩽k⩽Ni

∈ RNi
)

Rix =
(
ϱi(ξk)

)
1⩽k⩽Ni

, (5.50)
where, for every k ∈ {1, . . . , Ni}, ϱi : R → R. Examples of odd functions allowing
us to define symmetric separable activation operators Ri with ci = di = 0 are

• the hyperbolic tangent activation function ρi = tanh

• the arctangent activation function ρi = (2/π) arctan

• the inverse square root linear unit function ϱi : R → R : ξ 7→ ξ/
√

1 + ξ2

• the Elliot activation function ϱi : R → R : ξ 7→ ξ/(1 + |ξ|).

Some examples of separable activation operators which are non-odd are described
below. The capped ReLU function is given by

(∀ξ ∈ R) ρi(ξ) =


0 if ξ < 0

ξ if 0 ⩽ ξ < χ

χ otherwise,

(5.51)

where χ ∈ ]0,+∞[. We have then ci = di = χ1Ni with 1Ni = [1, . . . , 1]⊤ ∈ RNi .
We can also define a leaky version of this function as

(∀ξ ∈ R) ρi(ξ) =


αξ if ξ < 0,

ξ if 0 ⩽ ξ < χ,

α(ξ − χ) + χ otherwise,

(5.52)

where α ∈]0, 1[ and χ ∈ ]0,+∞[ are hyperparameters.

5.8.2 . Proof of the properties of ABBA matrices

(i)-(iii): These properties follow from basic algebra. We will just detail the
proof of the third one. Let

M1 =

[
A1 B1

B1 A1

]
and M2 =

[
A2 B2

B2 A2

]
, (5.53)

where (A1, B1) ∈ RN2×N1 and (A2, B2) ∈ RN3×N2 . Then

M2M1 =

[
A2A1 +B2B1 A2B1 +B2A1

A2B1 +B2A1 A2A1 +B2B1

]
∈ AN3,N1 . (5.54)
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In addition,

S(M2M1) = A2A1 +B2B1 +A2B1 +B2A1

= (A2 +B2)(A1 +B1)

= S(M2)S(M1). (5.55)
(iv): This property is a direct consequence of (ii) and (iii).

(v): Let M =

[
A B
B A

]
∈ R(2N1)×(2N1). λ ∈ C is an eigenvalue of M if and only if

det(M − λ Id ) = 0 ⇔ det
([A− λ Id B

B A− λ Id

])
= 0. (5.56)

We have[
A− λ Id B

B A− λ Id

] [
Id − Id
Id Id

]
=

[
A+B − λ Id −A+B + λ Id
A+B − λ Id A−B − λ Id

]
. (5.57)

Since A−B − λ Id and −A+B + λ Id commute, we have [183]

det
([A+B − λ Id −A+B + λ Id
A+B − λ Id A−B − λ Id

])
= 2N det

(
(A+B−λ Id )(A−B−λ Id )

)
.

(5.58)
Similarly

det
([Id − Id

Id Id

])
= 2N . (5.59)

We deduce from (5.57) that

det
([A− λ Id B

B A− λ Id

])
= det

(
(A+B − λ Id )(A−B − λ Id )

)
⇔ det(M − λ Id ) = det(A+B − λ Id ) det(A−B − λ Id ). (5.60)

So λ is an eigenvalue of M if and only if det(A+B − λ Id ) = 0 or det(A−B −
λ Id ) = 0, i.e., λ is an eigenvalue of A+B or A−B.
(vi) Let M be defined similarly to previously with (A,B) ∈ (RN2×N1)2. We have

∥M∥ = ∥MM⊤∥1/2 =
∥∥∥∥[AA⊤ +BB⊤ AB⊤ +BA⊤

AB⊤ +BA⊤ AA⊤ +BB⊤

]∥∥∥∥1/2 (5.61)

According to (v), the eigenvalues of MM⊤ ∈ AN2,N2 are those of AA⊤ +BB⊤ +

AB⊤ + BA⊤ = (A + B)(A + B)⊤ and AA⊤ + BB⊤ − AB⊤ − BA⊤ = (A −
B)(A−B)⊤. The maximum eigenvalues of the two latter matrices are ∥A+B∥2
and ∥A−B∥2, respectively. Therefore ∥M∥ = max{∥A+B∥, ∥A−B∥}.
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(vii): In addition, if A and B have nonnegative elements,

∥A−B∥ = sup
x∈RN\{0}

∥Ax−Bx∥
∥x∥

⩽ sup
x∈RN\{0}

∥A|x|+B|x|∥
∥x∥

= sup
a∈[0,+∞[N\{0}

∥Aa+Ba∥
∥a∥

⩽ ∥A+B∥, (5.62)
where |x| denotes the vector whose components are the absolute values of those of
vector x. We deduce from (vi) that ∥M∥ = ∥A+B∥ = ∥S(M)∥.
(viii): We have

A+B =
K∑
k=1

λkukv
⊤
k (5.63)

A−B =

K∑
k=1

µktkw
⊤
k . (5.64)

Thus

A =
1

2

K∑
k=1

(λkukv
⊤
k + µktkw

⊤
k ) (5.65)

B =
1

2

K∑
k=1

(λkukv
⊤
k − µktkw

⊤
k ) (5.66)

and we deduce that[
A B
B A

]
=

K∑
k=1

1

2

(
λk

[
ukv

⊤
k ukv

⊤
k

ukv
⊤
k ukv

⊤
k

]
+ µk

[
tkw

⊤
k −tkw⊤

k

−tkw⊤
k tkw

⊤
k

])

=
K∑
k=1

1

2

(
λk

[
uk
uk

] [
vk
vk

]⊤
+ µk

[
tk
−tk

] [
wk
−wk

]⊤)
. (5.67)

On the other hand, for every (k, ℓ) ∈ {1, . . . ,K}2,[
uk
uk

]⊤ [
uℓ
uℓ

]
= 2u⊤k uℓ =

{
2 if k = ℓ

0 otherwise,[
tk
−tk

]⊤ [
tℓ
−tℓ

]
= 2t⊤k tℓ =

{
2 if k = ℓ

0 otherwise,[
uk
uk

]⊤ [
tℓ
−tℓ

]
= 0, (5.68)
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which shows that
{

1√
2

[
uk
uk

]
, 1√

2

[
tk
−tk

]}
1⩽k⩽K

is an orthonormal family of R2N2 .

For similar reasons,
{

1√
2

[
vk
vk

]
, 1√

2

[
wk
−wk

]}
1⩽k⩽K

is an orthonormal family of R2N1 .

This allows us to conclude that (5.67) provides a singular value decomposition of[
A B
B A

]
.

(ix): The rank of
[
A B
B A

]
is equal to the number of its nonzero singular values.

From the previous result, it is thus equal to the sum of the nonzero values of A+B

and those of A−B, that is the sum of the ranks of matrices A+B and A−B.
(x): The fact that the ABBA structure is kept by matrix mappings operating
elementwise is obvious. Let us thus focus on the case of spectral functions. By
using the same notation as in (viii), it follows from (5.67) that

f
([A B
B A

])
=

K∑
k=1

1

2

(
φ(λk)

[
ukv

⊤
k ukv

⊤
k

ukv
⊤
k ukv

⊤
k

]
+ φ(µk)

[
tkw

⊤
k −tkw⊤

k

−tkw⊤
k tkw

⊤
k

])
=

[
Ã B̃

B̃ Ã

]
,

(5.69)
where

Ã+ B̃ =
N∑
k=1

φ(λk)ukv
⊤
k

Ã− B̃ =

N∑
k=1

φ(µk)tkw
⊤
k . (5.70)

(xi): By using the same notation as in (5.6), The best approximation of rank less
than or equal to R to a matrix M0 in R(2N2)×(2N1) is f(M0) where f is given by
(5.6) with

(∀λ ∈ R+) φ(λ) =

{
λ if λ ⩽ λ̃0,[R]

0 otherwise,
(5.71)

and λ̃0,[R] is the R-th eigenvalue of M0 when these are ordered by decreasing
value: λ̃0,1 ⩾ . . . ⩾ λ̃0,K . It thus follows from (x) that if M0 ∈ AN2,N1 , then
f(M0) ∈ AN2,N1 .
(xii): The projection onto the spectral ball of center 0 and radius ρ ∈ ]0,+∞[ of a
matrix M ∈ AN2,N1 is given by (5.6) where

(∀ξ ∈ R) φ(ξ) = min{ξ, ρ}.

The result then follows from Property (x).

Remark 5.8.1 The last result can be generalized as follows. Let ψ : R →
]−∞,+∞] be a lower-semicontinuous function, which is proper, even, and
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convex, and let

g : R(2N2)×(2N1) → ]−∞,+∞]

M 7→
2K∑
i=1

ψ(λ̃k) (5.72)
where K = min{N1, N2} and (λ̃k)1⩽k⩽2K are the singular values of M . The
proximity operator of g at M ∈ R(2N2)×(2N1) is [149, Proposition 24.68]:

proxg : M 7→ argmin
P∈R(2N2)×(2N1)

1

2
∥P −M∥2F + g(P )

=
2K∑
k=1

proxψ(λ̃k)ũkṽ
⊤
k , (5.73)

where ∥ · ∥F denotes the Frobenius norm. It then follows from Property (x)
that, if M ∈ AN2,N1 , then proxg(M) ∈ AN2,N1 .

5.8.3 . Proof of Proposition 5.3.6
For every i ∈ {1, . . . ,m}, let xi = Ti(xi−1) where x0 ∈ RN0 is an arbitrary

input of network T and xm ∈ RNm its corresponding output. By using the symmetry
properties of the activation operators, for every i ∈ {1, . . . ,m}, we have

(∀i ∈ {1, . . . ,m}) xi = Ri(Wixi−1 + bi)

= Ri(W
+
i xi−1 −W−

i xi−1 + bi), (5.74)
−xi = −Ri(Wixi−1 + bi)

= Ri(−Wixi−1 − bi + ci)− di

= Ri(W
−
i xi−1 −W+

i xi−1 − bi + ci)− di. (5.75)
By making use of notation (5.14), (5.74) and (5.75) can be rewritten more concisely
as

(∀i ∈ {1, . . . ,m})
[
xi
−xi

]
= R̃i

([W+
i W−

i

W−
i W+

i

] [
xi−1

−xi−1

]
+

[
bi

ci − bi

])
−
[
0
di

]
.

(5.76)
Let us define, for every i ∈ {0, . . . ,m},

x̃i =

[
xi

−xi + di

]
. (5.77)

Altogether (5.16), (5.11), (5.15), and (5.76) yield

(∀i ∈ {1, . . . ,m}) x̃i = R̃i

([
W+
i W−

i

W−
i W+

i

](
x̃i−1 −

[
0

di−1

])
+

[
bi

ci − bi

])
= R̃i

(
W̃ix̃i−1 + b̃i

)
. (5.78)

This shows that, if (T̃i)1⩽i⩽m are given by (5.8), x̃m = T̃m · · · T̃1(x̃0). By using
the forms of W̃0 and W̃m+1 in (5.13), we deduce that

xm = W̃m+1x̃m + b̃m+1 = T̃ (x0). (5.79)
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5.8.4 . Proof for Proposition 5.3.8
According to [16] [20, Proposition 5.5],

ϑm = sup
Λ1∈D

2N1
{−1,1}
...

Λm∈D2Nm
{−1,1}

∥W̃m+1ΛmW̃m · · ·Λ1W̃1W̃0∥. (5.80)

where, for every i ∈ {1, . . . ,m}, D2Ni

{−1,1} designates the space of diagonal ma-
trices of size (2Ni) × (2Ni) with diagonal entries equal to −1 or 1. For every
(Λ1, . . . ,Λm) ∈ D2N1

{−1,1} × · · · × D2Nm

{−1,1},

∥W̃m+1ΛmW̃m · · ·Λ1W̃1W̃0∥ ⩽ ∥W̃m+1∥∥W̃mΛm−1W̃m−1 · · ·Λ2W̃2Λ1W̃1∥∥W̃0∥.(5.81)
On the other hand, for every i ∈ {1, . . . ,m}, W̃i ∈ [0,+∞[(2Ni)×(2Ni−1). It then
follows from [20, Proposition 5.10] that

sup
Λ1∈D

2N1
{−1,1}
...

Λm−1∈D
2Nm−1
{−1,1}

∥W̃mΛm−1W̃m−1 · · ·Λ2W̃2Λ1W̃1∥ = ∥W̃mW̃m−1 · · · W̃2W̃1∥.

(5.82)
According to Proposition 5.3.3(iii), W̃mW̃m−1 · · · W̃2W̃1 ∈ ANm,N0 . Since this
matrix has nonnegative elements, we deduce from Proposition 5.3.3(vii) that

ϑm ⩽ ∥W̃m+1∥ ∥W̃m · · · W̃1∥ ∥W̃0∥

= ∥W̃m+1∥ ∥S(W̃m · · · W̃1)∥ ∥W̃0∥

= ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥ ∥W̃0∥, (5.83)
where the last equality is also a consequence of Proposition 5.3.3(iii). This leads to
the Lipschitz bound in (5.19).

5.8.5 . Link between Conv layers and MIMO systems
To be rigorous, let us first define the space Hi−1 (resp. Hi) in which signals

(xp)1⩽p⩽ζi−1
(resp. (yq)1⩽q⩽ζi) used in (5.26) live. Typically, Hi is some finite-

dimensional subspace of (ℓ2(Zd))ζi where ℓ2(Zd) denotes the space of square
summable discrete d-dimensional fields. For the discrete convolution ∗ to be
properly defined, kernels (wi,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi are then assumed to be summable.
In practice, this assumption is satisfied since these kernels are chosen with finite
size.

For x =
(
x(n)

)
n∈Zd ∈ ℓ2(Zd), the decimation operation (·) ↓si returns the

output signal
(∀n ∈ Zd) y(n) = u(sin). (5.84)

112



Eq. (5.26) defines a MIMO (multi-input multi-output) filter that can be reexpressed
in a matrix form as

(∀n ∈ Zd) u(n) =
∑
n∈Zd

W i(n
′)x(n− n′)

= (W i ∗ x)(n), (5.85)
where

u(n) =

u1(n)...
uζi(n)

 ∈ Rζj , x(n) =

 x1(n)
...

xζi−1
(n)

 ∈ Rζi−1 , (5.86)

and W i(n) is given by (5.29). (W i(n))n∈Zd defines the so-called MIMO impulse
response of Wi. The MIMO impulse response of an ABBA layer is similarly given
by (5.30).

These relations can also be written more concisely in the d-dimensional frequency
domain5 as

(∀ν ∈ [0, 1]d) û(ν) = Ŵ i(ν) x̂(ν), (5.87)
where

x̂(ν) =
∑
n∈Zd

x(n) exp
(
− ı2πn⊤ν

)
∈ Cζj−1 , (5.88)

Ŵ i(ν) =
∑
n∈Zd

W i(n) exp
(
− ı2πn⊤ν

)
∈ Cζj−1×ζj , (5.89)

and Ŵ i is the frequency response of the associated MIMO filter.
Note that

∫
[0,1]d ∥x̂(ν)∥

2dν < +∞ , whereas Ŵ i is a continuous (hence
bounded) function on [0, 1]d. Another useful result from sampling theory [184] is
that the Fourier transform of y = (yq)1⩽q⩽ζj in (5.26) is deduced from the Fourier
transform of u by the relation

(∀ν ∈ [0, 1]d) ŷ(ν) =
1

sdi

∑
j∈S(si)

û

(
ν + j

si

)
. (5.90)

where
(∀σ ∈ N \ {0}) S(σ) = {0, . . . , σ − 1}d. (5.91)

It is also worth noting that the interpolation by a factor s of y

v = y↑s ⇔ (∀n ∈ Zd) v(n) =

{
y
(n
s

)
if n ∈ sZd

0 otherwise,
(5.92)

translates into
(∀ν ∈ [0, 1]) ŷ↑s(ν) = ŷ(sν), (5.93)

in the frequency domain.
5Alternatively, we could use the d-dimensional z-transform since we are dealingwith discrete-space signals.
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5.8.6 . Frequency expressions of Lipschitz bounds

In this appendix, we establish frequency-based bounds of the Lipschitz constant
of an m-layer convolutional neural network T .

Based on the MIMO concepts introduced in Appendix 5.8.5, we will introduce
the following global frequency response of the network:

(∀ν ∈ [0, 1]d) Ŵ (ν) = Ŵm(σm−1ν) · · · Ŵ 2(σ1ν)Ŵ 1(ν) ∈ Cζm×ζ0 , (5.94)
where Ŵ i is the frequency response associated to filter W i (see (5.89)).

We have then the following result providing a frequency formula for evaluating
the Lipschitz constant of a convolutional network.

Proposition 5.8.2 The quantity

θm =
1

σ
d/2
m

sup
ν∈[0,1/σm]d

∥∥∥∥∥∥
∑

j∈S(σm)

Ŵ

(
ν +

j

σm

)
Ŵ

(
ν +

j

σm

)H
∥∥∥∥∥∥
1/2

. (5.95)

provides a lower bound on the Lipschitz constant estimate of network T 6. In
addition, if for every i ∈ {1, . . . ,m}, p ∈ {1, . . . , ζi−1}, and q ∈ {1, . . . , ζi},
wi,q,p = (wi,q,p(n))n∈Zd is a nonnegative kernel i.e.,

(∀n ∈ Zd) wi,p,q(n) ⩾ 0, (5.96)
then θm is a Lipschitz constant of T .

Proof. In the considered case all activation operators are nonexpansive and they
are assumed separable, except maybe at the last layer. Thus T is a special case
of the networks investigated in [20, Section 5] for which a tight estimate of the
Lipschitz constant was provided. It then follows from [20, Theorem 5.2] that a
lower bound on this Lipschitz constant estimate is

θm = ∥Wm ◦ · · · ◦ W1∥. (5.97)
In addition, under the additional assumption that all the kernels are nonnegative,
T is an instance of the positively weighted networks investigated in [20, Section
5.3] and it follows from [20, Proposition 5.10] that θm is then a Lipschitz constant
of T .
So the problem is to calculate the norm of the linear operator W = Wm ◦ · · · ◦W1.
Each operator Wi with i ∈ {1, . . . ,m} is the composition of a d-dimensional MIMO
filter with a decimator. It follows from Noble identities [184] that W reduces to
cascading a ζm × ζ0 MIMO filter with frequency response W̃ with a decimation of

6(·)H denotes the Hermitian transpose operation.
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each output by a factor σm. More precisely, if x ∈ H0 is the input of this linear
system and y its output, we have in the frequency domain:

(∀ν ∈ [0, 1]d) ŷ(ν) =
1

σdm

∑
j∈S(σm)

Ŵ

(
ν + j

σm

)
x̂

(
ν + j

σm

)

=
1

σdm
W̃

(
ν

σm

)
x̃

(
ν

σm

)
, (5.98)

where x̃
(

ν
σm

)
is a vector of dimension Cσd

mζ0 where the vectors
(
x̂((ν+j)/σm)

)
j∈S(σm)

are stacked columnwise and W̃
(

ν
σm

)
is a cm × σdmζ0 matrix where the matrices(

Ŵ ((ν + j)/σm)
)
j∈S(σm)

are stacked rowwise. For example, when d = 2, we have,
for every ν = (ν1, ν2) ∈ [0, 1]2,

x̃(ν) =


x̌(ν1, ν2)

x̌
(
ν1, ν2 +

1
σm

)
...

x̌
(
ν1, ν2 +

σm−1
σm

)

 ∈ Cσ
2
mζ0 (5.99)

x̌(ν) =


x̂(ν1, ν2)

x̂
(
ν1 +

1
σm
, ν2

)
...

x̂
(
ν1 +

σm−1
σm

, ν2

)

 ∈ Cσmζ0 (5.100)

W̃ (ν) =

[
W̌ (ν1, ν2) W̌

(
ν1, ν2 +

1

σm

)
. . . W̌

(
ν1, ν2 +

σm − 1

σm

)]
∈ Cζm×σ2

mζ0

(5.101)
W̌ (ν) =

[
Ŵ (ν1, ν2) Ŵ

(
ν1 +

1

σm
, ν2

)
. . . Ŵ

(
ν1 +

σm − 1

σm
, ν2

)]
∈ Cζm×σmζ0 .

(5.102)
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By using now Parseval’s formula,

∥y∥2 =
∫
[0,1]d

∥ŷ(ν)∥2dν

=
1

σ2dm

∫
[0,1]d

∥∥∥∥W̃ (
ν

σm

)
x̃

(
ν

σm

)∥∥∥∥2 dν
⩽

1

σdm

∫
[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∥x̃(ν)∥2 dν1dν2

⩽
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∫

[0,1/σm]d
∥x̃(ν)∥2 dν

=
1

σ2m
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∑

j∈S(σm)

∫
[0,1/σm]d

∥∥∥∥x̂(ν +
j

σm

)∥∥∥∥2 dν
=

1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∫

[0,1]d
∥x̂(ν)∥2 dν

=
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∥x∥2. (5.103)

This shows that
θ2m ⩽

1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 . (5.104)

On the other hand since Ŵ is continuous, W̃ is also continuous, and there exists
ν̂ ∈ [0, 1/σm]

d such that

sup
ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥ =

∥∥∥W̃ (ν̂)
∥∥∥ . (5.105)

Let us now choose, for every ν ∈ [0, 1/σm]
d, x̃ (ν) = αϵ(ν)u(ν) where u(ν) is a

unit norm eigenvector associated with the maximum eigenvalue of W̃ (ν)HW̃ (ν),
ϵ ∈ ]0,+∞[, and

αϵ(ν) =

{
1
ϵd/2

if (∃j ∈ {−1, 0, 1}d) ∥ν + j
σm

− ν̂∥∞ ⩽ ϵ
2

0 otherwise.
(5.106)

Then we see that when ϵ→ 0, the upper bound in (5.103) is reached. We conclude
that

θm =
1

σ
d/2
m

sup
ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥ . (5.107)

In addition, by using the relation between W̃ and Ŵ (i.e., (5.101) and (5.102) in
the 2D case),∥∥∥W̃ (ν)

∥∥∥2 = ∥∥∥W̃ (ν)W̃ (ν)H
∥∥∥

=

∥∥∥∥∥∥
∑

j∈S(σm)

Ŵ

(
ν +

j

σm

)
Ŵ

(
ν +

j

σm

)H
∥∥∥∥∥∥ . (5.108)
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Gathering the last two equalities yields (5.95).
When there is no decimation, i.e. the strides (si)1⩽i⩽m are all equal to 1, (5.95)

reduces to

θm = sup
ν∈[0,1]d

∥Ŵm(ν) · · · Ŵ 2(ν)Ŵ 1(ν)∥. (5.109)

We recall that the following upper bound holds [9]:

θm ⩽ θm =
m∏
i=1

∥Wi∥. (5.110)

Applying our result to the one-layer case shows that, for every i ∈ {1, . . . ,m},

∥Wi∥ =
1

s
d/2
i

sup
ν∈[0,1/si]2

∥∥∥∥∥∥
∑

j∈S(si)

Ŵ i

(
ν +

j

si

)
Ŵ i

(
ν +

j

si

)H
∥∥∥∥∥∥
1/2

. (5.111)

Note that the resulting upper bound in (5.110) gives a loose estimate of the Lipschitz
constant, which has however the merit to be valid for convolutional networks having
kernels with an arbitrary sign.

5.8.7 . Proof of Theorem 5.4.1

Before giving the proof of our main result, we will introduce a link between the
Fourier and the spatial representations for a nonnegative convolutional kernel.

Lemma 5.8.3 Let (c, c′) ∈ (N \ {0})2 and let

(∀n ∈ Zd) H(n) =
(
hq,p(n)

)
1⩽q⩽c′,1⩽p⩽c ∈ [0,+∞[c

′×c (5.112)
where, for every p ∈ {1, . . . , c} and q ∈ {1, . . . , c′}, hq,p ∈ ℓ1(Zd) 7. Then, the
Fourier transform Ĥ of

(
H(n)

)
n∈Zd is such that

sup
ν∈[0,1]d

∥Ĥ(ν)∥ =
∥∥∥ ∑
n∈Zd

H(n)
∥∥∥. (5.113)

Proof. For every ν ∈ [0, 1]d,

Ĥ(ν) =
∑
n∈Zd

H(n) exp
(
− ı2ππn⊤ν

)
. (5.114)

7ℓ1(Zd) is the space of summable d-dimensional sequences
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For every u = [u1, . . . , uc]
⊤ ∈ Cc, by using the triangle inequality,

∥Ĥ(ν)u∥2 =
c′∑
q=1

∣∣∣ c∑
p=1

[H(ν)]q,pup

∣∣∣2
=

c′∑
q=1

∣∣∣ c∑
p=1

∑
n∈Zd

hq,p(n) exp
(
− ı2πn⊤ν

)
up

∣∣∣2
⩽

c′∑
q=1

( c∑
p=1

∑
n∈Zd

hq,p(n)|up|
)2

=
∥∥∥ ∑
n∈Zd

H(n)|u|
∥∥∥2

⩽
∥∥∥ ∑
n∈Zd

H(n)
∥∥∥2 ∥∥∥|u|∥∥∥2

=
∥∥∥ ∑
n∈Zd

H(n)
∥∥∥2 ∥u∥2, (5.115)

where |u| denotes the vector of moduli of the components of vector u. This shows
that

∥Ĥ(ν)∥ ⩽
∥∥∥ ∑
n∈Zd

H(n)
∥∥∥. (5.116)

and, consequently,
sup

ν∈[0,1]d
∥Ĥ(ν)∥ ⩽

∥∥∥ ∑
n∈Zd

H(n)
∥∥∥. (5.117)

In addition, the upper bound is attained since

Ĥ(0) =
∑
n∈Zd

H(n). (5.118)

Next, we derive the proof for Theorem 5.4.1 in light of Lemma 5.8.3.

Proof. W being the impulse response of the MIMO filter with the frequency
response given by (5.94), it follows from Noble identities [180] that W is equivalent
to a convolution with W followed by a decimation by a factor σm. Let x ∈ H0.
Let the σm-polyphase representation of x (resp. W ) be defined as(

∀j ∈ S(σm)
)
(∀n ∈ Zd) x(j)(n) = x(σmn− j) (5.119)(

resp. W (j)(n) = W (σmn+ j)
)
. (5.120)

Then, as a result of multirate digital filtering, y = Wx if and only if

y =
∑

j∈S(σm)

W (j) ∗ x(j). (5.121)
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This sum of MIMO convolutions can be reformulated as a single one

y = H ∗ e, (5.122)
where H is the cm×σdmc0 MIMO impulse response obtained by stacking rowwise the
polyphase MIMO impulse responses (W (j))j∈S(σm) and e is the σdmc0-component d-
dimensional signal obtained by stacking columnwise the polyphase signal components
(x(j))j∈S(σm). For example, if d = 2, we have

(∀n ∈ Z2)

H(n) =[W (0,0)(n), . . . ,W (σm−1,0)(n), . . . ,W (0,σm−1)(n), . . . ,W (σm−1,σm−1)(n)](5.123)
and

(∀n ∈ Z2) e(n) =



x(0,σm−1)(n)
...

x(σm−1,σm−1)(n)
...

x(σm−1,σm−1)(n)
...

x(σm−1,σm−1)(n)


. (5.124)

Note that, according to (5.119),
∥e∥2 =

∑
n∈Zd

∥e(n)∥2

=
∑
n∈Zd

∑
j∈S(σm)

∥x(j)(n)∥2

=
∑
n∈Zd

∥x(n)∥2

= ∥x∥2. (5.125)
This equality and (5.122) imply that

∥W∥ = sup
ν∈[0,1]d

∥Ĥ(ν)∥. (5.126)

We thus deduce from Lemma 5.8.3 that

∥W∥ =
∥∥∥ ∑
n∈Zd

H(n)
∥∥∥. (5.127)
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On the other hand, by using (5.120),∥∥∥ ∑
n∈Zd

H(n)
∥∥∥

=

∥∥∥∥∥∥
( ∑

n∈Zd

H(n)
)( ∑

n∈Zd

H(n)
)⊤∥∥∥∥∥∥

1/2

=

∥∥∥∥∥∥
∑

j∈S(σm)

( ∑
n∈Zd

W (j)(n)
)( ∑

n∈Zd

W (j)(n)
)⊤∥∥∥∥∥∥

1/2

=
∥∥∥ ∑
j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2. (5.128)

5.8.8 . Numerical evaluation of the Lipschitz constant of nonnegative
convolutional networks

We compare the tight bound θm in Theorem 5.4.1 with the separable one θm
given by (5.37) for a classic convolutional network using non-negative kernels. The
results provided in Table 5.2 correspond to the convolutive part of LeNet-5 [185].
In our experiments, we initialized the networks with randomly sampled weights
drawn from a uniform distribution on [0, 1]. Table 5.2 shows the relative difference

ϵr =
θm − θm

θm
,

for 10 distinct noise realizations. We thus observe that the difference between
the two bounds is small. Similar observations can be made on various convolutive
architectures. In contrast, for fully connected networks, a separable bound is usually
overpessimistic.

LeNet-5#1 #2 #3 #4 #5 #6 #7 #8 #9 #10
θm 30302.73 27734.91 30298.73 29374.35 30180.16 28632.60 30615.02 30395.67 34828.90 30097.62
θm 30696.07 28114.29 30860.56 29821.62 30670.05 29298.64 31152.06 30866.87 35220.36 30367.71

ϵr [%] 1.28 1.35 1.82 1.50 1.60 2.27 1.72 1.53 1.11 0.89

Table 5.2: Lipschitz bounds obtained for 10 independent realizations of ran-dom positive initialization for LeNet-5.

5.8.9 . Lipschitz constant of average pooling
We consider the case when the i-th layer is an average pooling where the

average is computed on patches of length Li in each dimension and with stride
si. For simplicity, we suppose that Li is a multiple of si. The number of input
and output channels is then equal, i.e. ζi = ζi−1. The average is calculated
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on each channel independently, this operation is a special case of a nonnegative
convolutional layer where, for every n ∈ Zd, W i(n) is a diagonal matrix. The
diagonal elements of this matrix are

(∀p ∈ {1, . . . , ζi})(∀n ∈ Zd) wi,p,p(n) =

{
1
Ld
i

if n ∈ [0, Li − 1]d

0 otherwise.
(5.129)

We deduce that, for every j ∈ S(si), the matrix W (j)
i is also a diagonal matrix. More

precisely, the sum in (5.38) can be restricted to values of n ∈ {0, . . . , Li/si − 1}d

and W
(j)
i = 1

sdi
Id . We deduce that the Lipschitz constant of the average pooling

layer is

∥Wi∥ =
∥∥∥ ∑
j∈S(si)

W
(j)
i

(
W

(j)
i

)⊤∥∥∥1/2 = 1

s
d/2
i

. (5.130)
We see that this constant is independent of the patch size and is a decreasing
function of the stride.

5.8.10 . Proof of Theorem 5.4.2
This result is a consequence of Theorem 5.4.1, which provides a Lipschitz bound

for nonnegative convolutional neural networks. By following a similar reasoning to
Appendix 5.8.4, a Lipschitz constant of the ABBA network is

θm = ∥W̃m+1∥∥W̃m ◦ . . . ◦ W̃1∥∥∥W̃0∥. (5.131)
Let

W̃ = (W̃m)↑σm−1 ∗ · · · ∗ (W̃ 2)↑σ1 ∗ W̃ 1 (5.132)
and let

(∀j ∈ S(σm)) Ω(j) =
∑
n∈Zd

S
(
W̃ (σmn+ j)

)
∈ [0,+∞[ζm×ζ0 . (5.133)

Since (W̃i)1⩽i⩽m are convolutional operators with nonnegative kernels, it follows
from Theorem 5.4.1 that

θm = ∥W̃m+1∥
∥∥∥ ∑
j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2∥W̃0∥. (5.134)

where, for every j ∈ S(σm),

W
(j)

=
∑
n∈Zd

W̃ (σmn+ j) ∈ [0,+∞[(2ζm)×(2ζ0) . (5.135)

On the other hand, for every n ∈ Zd, W̃ i(n) is an ABBA matrix. Since W̃ (n) is
obtained by multiplication and addition of such matrices, it follows from Proposition
5.3.3(ii) and (iii) that it is also an ABBA matrix. We deduce that, for every j ∈
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S(σm), W
(j) is an ABBA matrix and, by using Proposition 5.3.3(i), W (j)(

W
(j))⊤

is ABBA. By invoking now Proposition 5.3.3(i)-(iii) and (vii), we deduce that∥∥∥ ∑
j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥ =

∥∥∥S( ∑
j∈S(σm)

W
(j)(

W
(j))⊤)∥∥∥

=
∥∥∥ ∑
j∈S(σm)

S
(
W

(j)
)
S
(
W

(j)
)⊤∥∥∥

=
∥∥∥ ∑
j∈S(σm)

Ω(j)
(
Ω(j)

)⊤∥∥∥. (5.136)

This shows that a Lipschitz constant of the ABBA network T̃ is

θm = ∥W̃m+1∥
∥∥∥ ∑
j∈S(σm)

Ω(j)
(
Ω(j)

)⊤∥∥∥1/2∥W̃0∥, (5.137)

Similarly to the derivation of (5.37), we deduce that θm ⩽ θm where θm is given
by (5.40).

5.8.11 . Expressivity of ABBA networks – simulations

(a) Standard model (b) ABBA model
Figure 5.12: Decision space comparison between fitting an ABBA network anda standard arbitrary-signed one.

For this experiment, we randomly sampled points from four distinct 2D Gaus-
sian distributions, with different means and covariance matrices, totalling 125
2-dimensional points per class. Figure 5.12 shows a comparison between decision
boundaries resulting from training two models: a standard one trained convention-
ally and its non-negative ABBA equivalent. The two models reach a similar solution,
showing that the theoretical properties proved in this paper are also observed in
practical simulations.
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5.8.12 . Constrained training of signed convolutional layers
The first and the last layers of an ABBA convolutional network have signed

kernels. The norm of these layers is computed by using (5.111) and constrained
to be less than θm,i,t with i ∈ {0,m + 1}. Note that (5.111) makes use of
the frequency response Ŵ i of filter Wi. A discrete Fourier transform (DFT)
is actually implemented (using 128 × 128 discrete frequencies). In the discrete
frequency domain, the upper bound constraint is thus decomposed into 1282 matrix
norm bounds obtained by summing over s2i frequencies. The projection onto each
of these elementary constraint sets is computed by truncating a singular value
decomposition. An additional constraint, however, is to be addressed, which is
related to the fact that the kernels are of finite size. This implicitly defines a
linear constraint. Projecting onto the associated vector space is simply obtained
by truncating the kernel (after inverse DFT) to the desired size. The set Si,t is
thus defined as the intersection of the former matrix norm constraint set and the
latter vector space. Projecting onto this intersection can be achieved by an iterative
convex optimization approach. In our case, we use a Douglas-Rachford algorithm
[148].

5.8.13 . ABBA architectures

Layer type RPS stride CelebA stride
Input 150× 150× 3 128× 128× 3Conv2D 150× 150× 8 1 128× 128× 8 1ABBA Conv2D + CLR – – 64× 64× 8(×2) 2ABBA Conv2D + CLR 75× 75× 32(×2) 2 32× 32× 16(×2) 2ABBA Conv2D + CLR 37× 37× 64(×2) 2 16× 16× 32(×2) 2ABBA Conv2D + CLR 18× 18× 128(×2) 2 8× 8× 64(×2) 2Conv2D 18× 18× 128 1 8× 8× 64 1Global Max-Pooling2D 128(×2) 64(×2)ABBA Dense + CLR 128(×2) –ABBA Dense + CLR 64(×2) –ABBA Dense + CLR 32(×2) –Dense 3 2

Table 5.3: ABBA Conv architectures details for RPS and CelebA datasets.
Table 5.4 details the ABBA Dense and ABBA Conv architectures used for

MNIST and FMNIST datasets, while Table 5.3 shows our choices for RPS and
CelebA datasets. As the ABBA layers have a specific form, their output size will be
twice the number of filters. The used activation operator is the Capped Leaky ReLu
(CLR) function defined in (5.52) for all Dense layers. For convolutional operators
we employed a 3× 3 kernel, using the same activation.

We used the official train-test split provided by the Tensorflow framework for
MNIST/FMNIST datasets and did not employ any augmentation strategy during
training. For RPS and CelebA models, we resized the input images to 150× 150,
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Layer type MNIST/FMNIST
Input 28× 28× 1Conv2D 28× 28× 32ABBA Conv2D + CLR 28× 28× 16ABBA Conv2D + CLR 28× 28× 16Conv2D 28× 28× 1Dense 256ABBA Dense + CLR 128ABBA Dense + CLR 64Dense 10

Layer type MNIST FMNIST
Input 784 784Dense 256 256ABBA Dense + CLR 128 128ABBA Dense + CLR 64 64ABBA Dense + CLR – 32Dense 10 10

Table 5.4: ABBA Dense and ABBA Conv architecture details for MNIST andFMNIST datasets. For convolutional layers, the stride is set to 1.
Dataset Optimizer No. Epochs Learning rate Batch size
MNIST projected ADAM 150 10−3 1024FMNIST projected ADAM 200 10−3 1024RPS projected ADAM 250 10−4 64CelebA projected ADAM 100 10−4 128

Table 5.5: Training hyperparameters.

resp. 128×128, before feeding them to the network. In the case of CelebA dataset,
we opted for a binary classification task on the bald feature. We extracted all the
images containing the bald attribute, and we randomly selected the same number
of examples from the non-bald class, in order to avoid class imbalance. Additional
information regarding the optimization parameters used during training is provided
in Table 5.5.
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Chapter 6 – Conclusions

6.1 . Summary

Despite the fact that they may appear at the forefront of developments in Data
Science, neural networks raise challenges in the areas of safety, privacy, and security
due to their susceptibility to a wide variety of threats and perturbations that may
arise while they are in operation. It is therefore vital to understand the reasons
for neural network instability, identify the areas of concern, and develop solutions
that aim to improve their stability in order to guarantee the existence of AI-based
systems that are agnostic to small variations of their inputs.

During this thesis, our main focus was the design and training of neural networks
that are intrinsically robust against adversarial perturbations of their inputs. Thus,
we proposed several robust training techniques, and we proved their effectiveness in
solving both classification and regression problems. We showed that our research
is applicable to a wide range of applications and that its results may be useful in
real-life scenarios as well.

First, we focused on simple feed-forward networks, that contain only linear
layers. Our research started from the results established in [20], which state that
in the case of non-negative weighted neural networks, tight Lipschitz bounds can
be derived. We design several robust training algorithms, trying to achieve a good
trade-off between robustness and performance.

In Chapter 3, we presented a real-time Robust Automatic Gesture Recognition
system, leveraging sEMG signals and neural networks. We experimented on four
distinct datasets, encompassing a variety of gestures, ranging from basic hand
movements to more complex grasping gestures. We proposed several methods to
finely control the Lipschitz constant of the model during training, using spectral
norm constraints. The estimation of a precise Lipschitz constant was efficiently
accomplished by directing our attention toward neural networks featuring positive
weights, drawing inspiration from the approach outlined in [21].

Additionally, we delved into an analysis aimed at comprehending the extent
to which the proposed theoretical solutions contribute to the improvement of the
classifier robustness in various contexts. To achieve this objective, we evaluated
our models in three scenarios. In the first one, we solidified the credibility of our
solution by testing across multiple white-box and black-box attacks. Next, we tested
the effect of noisy inputs, simulating perturbations akin to those encountered in
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practical scenarios where sensors may add some artifacts during the acquisition pro-
cess. Lastly, we assessed the final architecture performance in real-life experiments,
where we showed that our robust model outperformed conventionally trained models.

Second, we extended our method towards different classes of non-negative
feed-forward neural networks, and we proposed two novel architectures. For both
of them, we indicated that we can derive tight Lipschitz bounds and presented
constrained training mechanisms that ensure the robustness of the resulting models.
We showed that our algorithms are not limited to classification problems, as we
validated our solution in denoising audio music clips corrupted by various levels of
additive white noise.

In Chapter 4, we first introduced a novel class of neural networks inspired by
MIMO filters. This class, named ACNN, functions as an intermediary solution,
bridging the conceptual gap between CNNs and FCNs. Our proposed contribution
includes a training approach that constrains the network Lipschitz constant, bolster-
ing its robustness against adversarial noise. Moreover, we introduce another original
architecture named RCFF-Net, operating within the complex-valued domain, and
derived comprehensive bounds for its Lipschitz constant. To effectively train the pro-
posed structures while simultaneously managing their global Lipschitz constant, we
established carefully crafted constrained learning strategies. In order to demonstrate
the versatility of our solution beyond classification problems, we evaluated both
the ACNN and RCFF architectures within the context of audio signal denoising tasks.

Third, we have extended our contributions toward convolutional operators as
well, and we introduced ABBA-Nets, a novel class of (almost) positive neural net-
works. A very important aspect is that we proved that ABBA-Nets are as expressive
as arbitrary-signed networks while enjoying all the advantages that non-negative
weighted neural networks possess. This showed we were able to train robust DNNs
and CNNs models that were validated in computer vision tasks.

Chapter 5 highlights the contributions related to ABBA networks. In this part,
we proved that ABBA layers exhibit a host of compelling properties. Demonstrating
our solution versatility, we proved that any signed network can be transformed into
an ABBA form—a property applicable to both fully connected and convolutional
neural networks.

We also derived universal approximation theorems tailored to networks incorpo-
rating non-negatively weighted ABBA layers. To efficiently manage the Lipschitz
constant of ABBA networks, we proposed a method that is applicable to both fully
connected and convolutional scenarios. Our empirical validation involved subjecting
ABBA networks to numerical experiments using standard image datasets. The
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results underscored the remarkable performance of ABBA networks, particularly
in cases involving small models. Notably, these networks showcased substantial
gains in both performance and robustness compared to networks relying solely on
non-negative weights. Moreover, robust ABBA networks proved to be competitive
from a stability viewpoint with other state-of-the-art defense strategies.

6.2 . Perspectives

In this section, we propose some possible extensions of the aforementioned
methods that could be worth investigating in future works.

6.2.1 . Training 1-Lipschitz denoisers

A possible way to extend the work presented in this thesis would be leveraging
our established methods for controlling the Lipschitz constant of neural networks
to generate 1-Lipschitz denoisers, as presented in [186]. These denoisers could be
integrated into unrolled optimization or plug-and-play architectures, enabling the
resolution of sophisticated signal/image processing problems, such as multichannel
audio reverberation. To ensure the convergence of such schemes, it becomes
paramount to impose nonexpansivity constraints on the denoiser. This would not
only guarantee the stability of the optimization process but also pave the way for
more effective and efficient solutions in the realm of audio signal processing.

6.2.2 . Expanding the applications of complex-valued neural net-
works

In future works, it would be interesting to apply RCFF-Net to a larger panel of
signal processing applications involving complex-valued data, like audio unmixing
where robust CVNNs could play a pivotal role. Additionally, in the domain of
magnetic resonance imaging (MRI), where signals are inherently complex due to
their definition in Fourier space (k-space), the robustness guarantees offered by our
methods could help enhance the image reconstruction quality.

Furthermore, there is an exciting prospect in exploring the extension of our
ABBA networks to the complex case. This endeavour would open up a wealth of
possibilities for employing ABBA-inspired solutions to tackle complex-valued data
across various fields, from signal processing to image reconstruction.

6.2.3 . Controlling the Lipschitz constant of more complex layer
structures

Given the progress made in this thesis, particularly in the effective management
of the Lipschitz constant to enhance the stability of linear and convolutional layers
within neural networks, a compelling prospect emerges for future research endeav-
ours. Extending our current methodologies to encompass other layer structures
represents a promising next step in advancing the field of neural network robustness.
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It is noteworthy that a crucial initial step has been accomplished by adapting our
methodology to the context of graph neural networks, and some preliminary results
have been already obtained [187]. Expanding our efforts to more complex layer
structures, such as recurrent layers, attention mechanisms [188], and transformers
[189], presents a big challenge. These layer structures play pivotal roles in a wide
array of applications, including natural language processing, sequential data analysis,
and graph-based tasks. Adapting our techniques to address the unique challenges
posed by these layers is likely to yield valuable insights and significantly enhance
the overall robustness of neural networks in a broader spectrum of applications.

Additionally, designing methods for controlling the Lipschitz constant of more
complex architectures and scaling our methods to larger models would help us
build robust neural networks for more sophisticated tasks. This endeavour not only
aligns with the ongoing pursuit of creating robust machine learning models but
also ensures that our research continues to contribute meaningfully to the evolving
landscape of AI security and reliability.

6.2.4 . Combining Lipschitz control with other certifiable defenses
In the context of improving neural networks’ stability against adversarial threats,

a promising avenue for future research lies in the integration of our current Lipschitz
constant control mechanisms with complementary defense strategies. Of particular
interest is the potential synergy between our approach and certified defenses, such
as GloRoNets [78]. This would be possible if we insert our projection-based training
into the GloRoNet pipeline. Certified defenses provide rigorous guarantees on
model robustness for a certain perturbation, and by incorporating our Lipschitz
control methods, we can enhance the overall robustness of the resulting model.
Additionally, we could also combine our method with empirical defenses, such as AT
[66]. The fusion of both techniques could yield a substantially more potent defense
mechanism [190]. This combined approach has the potential to not only thwart
adversarial attacks but also provide provable bounds on the model performance
under various attacks.

Furthermore, exploring the combination of our Lipschitz control techniques
with other state-of-the-art defense strategies, including adversarial training [66] and
defensive distillation [41], can offer a multifaceted defense framework capable of
withstanding a wider spectrum of threats. This pursuit would contribute to the
creation of more reliable and trustworthy AI systems.
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6.2.5 . Studying the effect of other regularization techniques
Another interesting direction to follow would be the comprehensive study of

the effects of various regularization techniques on the stability of the model. While
a preliminary examination was conducted in Chapter 3 it would be compelling
to broaden this endeavour across all our model architectures. Existing literature
has proposed similar studies [122, 191], yet there remains a relative scarcity of
research in this particular direction. Thus, an extensive analysis holds the potential
to unravel deeper insights into the intricacies of the learning process within neural
networks.

By systematically investigating the impact of diverse regularization strategies,
ranging from ℓ1 and ℓ2 regularization to dropout and batch normalization, we can
gain a holistic understanding of how these techniques influence network robustness.
This deeper comprehension can guide us in the development of more effective
methods for constructing robust models.

Additionally, such an inquiry can shed light on the interplay between the
regularization effect and Lipschitz control. Ultimately, this line of research has the
potential to significantly advance our knowledge in the quest for building neural
networks that are not only accurate but also highly robust when facing adversarial
challenges.

6.2.6 . Extending to other distances
Extending our current methods for controlling the robustness of neural networks

to encompass other metrics is another research perspective. Presently, our tech-
niques primarily address ℓ2 perturbations, but the practicality of real-world systems
demands a more comprehensive approach [40]. Real-life adversarial inputs can stem
from a variety of sources, including faulty sensors or environmental anomalies, and
these may not always adhere to the ℓ2 norm. Thus, our efforts should expand to
incorporate other distance metrics, such as ℓ1, ℓ∞ norms, or even the ℓ0 pseudo-
norm. Computing the Lipschitz constant with respect to such measures might also
be sometimes easier. By embracing a broader range of distances, we can build
systems with stability guarantees that are resilient to a wider spectrum of adversarial
inputs. This undertaking can improve the pragmatic use of our methodologies and
also aligns with the crucial objective of strengthening neural networks to address
real-scenario threats.
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