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Résumé: Les cancers HPV induits sont responsables

d’une forte proportion des cancers du col de l’utérus

localement avancés (LACC), des cancers de l’anus et

de l’oropharynx. Afin d’améliorer la prise en charge

et le traitement de ces cancers, le développement de

schémas thérapeutiques combinant des modalités de

traitement complémentaires telles que la chimiora-

diothérapie (CRT) et l’immunothérapie semble être

une option thérapeutique prometteuse. Dans ce

contexte, la recherche de biomarqueurs spécifiques

à la réponse au traitement reste un enjeu majeur.

Les récentes innovations technologiques en informa-

tique, i.e. le Machine Learning (ML) et le Deep-

Learning (DL) basé sur l’analyse d’images médicales,

la radiomique, pourraient fournir des outils com-

plémentaires et puissants pour une meilleure com-

préhension du cancer. La radiomique consiste à

extraire des caractéristiques quantitatives d’images

médicales, caractérisant la forme de la tumeur, ses

intensités sur l’image et son hétérogénéité spatiale.

Les algorithmes de ML basés sur les caractéristiques

radiomiques ont déjà démontré leur capacité à iden-

tifier des motifs complexes permettant l’élaboration

de modèles phénotypiques, pronostiques et prédictifs

robustes.

Dans ce travail, le ML appliqué à l’imagerie

en oncologie, à savoir la tomographie par émission

de positons (TEP) avec 18F-fluorodésoxyglucose

([18F]-FDG TEP) et l’imagerie par résonance mag-

nétique (IRM), a été exploré comme outil potentiel

pour l’optimisation du traitement des cancers HPV-

induits. Dans un premier temps, des modèles ML

basés sur les variables cliniques, biologiques et ra-

diomiques extraites des images TEP au [18F]-FDG

ont été développés pour prédire la survie des pa-

tients. Deuxièmement, étant donné que les car-

actéristiques radiomiques dépendent fortement des

paramètres d’acquisition et de reconstruction, un

réseau conditionnel antagoniste génératif (cGAN) a

été entraîné pour générer des images IRM synthé-

tiques robustes aux paramètres d’acquisition. Dans

le but de transposer ces modèles dans la pratique

clinique, une méthode de standardisation basée sur

un CycleGAN a été entraînée sur une cohorte rétro-

spective de patients traités pour un LACC et sa con-

tribution a été évaluée sur deux tâches cliniques :

la classification du stade tumoral et la prédiction de

rechute.

D’après nos résultats, les modèles de prédic-

tion de survie basés sur les caractéristiques ra-

diomiques extraites des images TEP au [18F]-FDG

pourraient prédire la survie avec une signature com-

mune aux LACC, et aux cancers du canal anal et

de l’oropharynx. Les résultats ont été validés sur des

jeux de données indépendants, mais la valeur ajoutée

par rapport aux grandeurs conventionnelles telles que

le volume tumoral métabolique reste à démontrer.

Nous avons montré la supériorité des réseaux de

neurones pour la standardisation des images IRM en

comparaison à des méthodes plus conventionnelles.

Dans cette thèse, nous avons démontré que les mod-

èles de ML pourraient ouvrir la voie à une radiomique

reproductible en routine clinique, pour conduire à un

traitement personnalisé des cancers HPV-induits.
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Abstract: HPV-induced cancers account for a

high proportion of locally advanced cervical can-

cers (LACC), anal cancers, and oropharyngeal can-

cers. In order to improve the management and treat-

ment of these cancers, the development of ther-

apeutic regimens combining complementary treat-

ment modalities such as chemoradiotherapy (CRT)

and immunotherapy appears to be a promising ther-

apeutic option. In this context, the search for spe-

cific biomarkers of treatment response remains a ma-

jor challenge. Recent technological innovations in

computer science, i.e. Machine Learning (ML) and

Deep-Learning (DL) based on medical image anal-

ysis, radiomics, could provide complementary and

powerful tools for a better understanding of can-

cer. Radiomics consists in extracting quantitative

features from medical images, characterizing the tu-

mor shape, its intensities on the image and its spa-

tial heterogeneity. ML algorithms based on radiomic

features have already demonstrated their ability to

identify complex patterns allowing the development

of robust phenotypic, prognostic and predictive mod-

els.

In this work, ML applied to oncology imag-

ing, namely 18F-fluorodeoxyglucose positron emis-

sion tomography (PET) ([18F]-FDG PET) and mag-

netic resonance imaging (MRI), was explored as

a potential tool for optimizing treatment of HPV-

induced cancers. First, ML models based on clini-

cal, biological and radiomic variables extracted from

[18F]-FDG PET images were developed to predict

patient survival. Second, because radiomic features

are highly dependent on acquisition and reconstruc-

tion parameters, a conditional generative adversarial

network (cGAN) was trained to generate synthetic

MR images robust to acquisition parameters. With

the aim of translating these models into clinical prac-

tice, a CycleGAN-based standardization method was

trained on a retrospective cohort of patients treated

for LACC and its contribution was evaluated on two

clinical tasks: tumor stage classification and relapse

prediction.

Based on our results, survival prediction models

using radiomic features extracted from [18F]-FDG

PET images could predict survival outcomes using

a common HPV signature in LACC, anal cancers,

and oropharyngeal cancers. Results have been val-

idated on external independent data sets, but the

added value compared to conventional quantities

such as metabolic tumor volume (MTV) remains to

be demonstrated. We have shown the superiority

of neural network-based MR images standardization

compared to more conventional methods. In this

thesis, we demonstrated that ML models could pave

the way for reproducible radiomics in clinical routine

that would in turn lead to personalized treatment of

HPV-induced cancers.
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Introduction

Cancer is a complex disease affecting millions of people worldwide with almost one in six deaths, rendering cancer

the second overall cause of death in the world according to the World Health Organisation. In addition to the

human toll, cancer carries a heavy economic burden estimated at $25.2 trillion from 2020 to 2050[1]. The most

common cancers are breast, lung, colorectal, and prostate cancer. Among the diversity of cancer-related risk

factors, chronic infections with bacteria and viruses are common risk factors for cancer. Human papillomavirus

(HPV), a mainly sexually transmitted infection, accounts for 31.1% of cancers worldwide, especially in low- and

middle-income countries. HPV is responsible for most cervical cancers, oropharyngeal cancers (and a substantial

part in head and neck cancers), anal cancers, penile cancers, vaginal cancers, and vulvar cancers. Between 30

and 50% of cancers can currently be prevented by avoiding risk factors and implementing existing evidence-based

prevention strategies. The cancer burden can also be reduced through early detection of cancer and appropriate

treatment and care of patients who develop cancer.

Medical imaging has proved to be an essential component in cancer management. It is now mandatory

to proceed to multiple modality acquisitions from the diagnosis of the disease to the follow-up of the patient.

It has been shown that medical images are more than tools for a one-time inspection: images are data[2].

Artificial Intelligence (AI), especially machine learning (ML) thanks to various pattern recognition tools has

taken advantage of medical images, via the field of radiomics. Radiomics is a field of medical imaging analysis

that uses high-dimensional, mineable features to build image-based models for better patient management.

In HPV-induced cancers, studies have reported that CT-based and MRI-based radiomics could predict HPV

status in head and neck cancers[3, 4, 5]. In addition to prediction of HPV status, radiomic studies have shown

promising results in assessing treatment response. Several studies have assessed the power of radiomic features

in the prediction of lymph node metastasis in cervical cancer[6, 7, 8]. Radiomic prognostic performances have

also been studied. Multiple sources have reported that image-based models could be used for personalized

treatment after promising results in prediction of progression, recurrence, or survival in HPV related cancers[9,

10, 11, 12, 13, 14].

Despite excellent results and flourishing literature, some limitations still hinder the clinical implementation

of developed radiomic-based models. Radiomic-features are indeed highly dependent on the scanning devices

used during image acquisition. Given that most studies are not multi-institutional (images are acquired with

the same acquisition parameters), the generalizability of developed models will be negatively affected rendering

such models obsolete. ML models also suffer from inadequate practices in the field, such as inadequate feature

selection or absence of an independent validation cohort, which do not allow us to conclude on a realistic

implementation in clinical routine. The purpose of this thesis was to develop radiomic-oriented ML algorithms for

personalized treatment in HPV-related cancers, namely locally advanced cervical cancer (LACC), anal squamous

cell carcinomas (ASCC), and oropharyngeal squamous cell carcinomas (OSCC). In this thesis, some of the

limitations encountered in radiomic studies were addressed.

In Chapter 1, a brief summary of the genesis of cancer is presented. The role of AI based on medical imaging

in cancer management is discussed.

In Chapter 2, HPV cancers in general are described. We focused on LACC, ASCC, and OPSCC as these

1



types of cancers account for up to 90% of most HPV-induced cancers. The role of MRI and FDG-PET in the

management of these cancers is also discussed as an introduction to the work done in this thesis.

In Chapter 3, ML in medical imaging analysis is described with an emphasis on radiomic modeling, from

image acquisition to ML algorithms building. General concepts, good practices, and practices to avoid are

detailed.

In Chapter 4, efforts were made to collect a large dataset of FDG-PET images from five institutions of

patients treated for HPV-related cancers. A radiomic signature based on PET imaging to predict survival and

the evaluation of its generalization properties on multiple HPV-induced cancers, was developed.

Signal intensities in MRI are highly dependent on imaging parameters, which will in turn impact radiomic

features. Strategies to mitigate the effects of acquisition and reconstruction imaging parameters for strong

reproducibility and robustness of radiomic features must be established. In Chapter 5, the lack of robust

standardization methods for MRI-based radiomic studies in LACC was addressed. A Deep-Learning (DL) based

standardization method was developed and compared to other conventional methods.

In Chapter 6, we discussed tumor automatic segmentation in LACC and the potential use of the devel-

oped standardization method coupled to radiomics to assess the impact of combining immunotherapy with

chemoradiation (CRT) in the framework of the AtezoLACC clinical trial.

In Chapter 7, conclusions and general perspectives are discussed.

2



Chapter 1

Cancer: Evolution towards Precision
Medicine

1.1 Genesis of Cancer

Fossilized bone tumors, human mummies in ancient Egypt, and ancient manuscripts have shown that mankind

has had cancer throughout recorded history. The oldest description of the disease can be retraced back to

about 3000 BC in ancient Egypt on a manuscript called the Edwin Smith Papyrus. This document is a copy

of an ancient medical text on trauma surgery describing 8 cases of tumors or ulcers of the breast that were

removed by cauterization. The oldest known scientific treatise about cancer explicitly said that there was no

treatment. Fortunately, knowledge of the matter has improved significantly over the years. The Greek physician

Hippocrates (460-370 BC), used the word "carcinos", meaning crab, to describe ulcers evolving into tumors.

The Roman physician, Celsus (25 BC - 50 AD), later translated the Greek term into cancer, the Latin word for

crab. The highly spreading nature of tumor cells was clearly captured by the crab analogy. It was thought up

to several hundred years AD that an imbalance in body fluids was the cause of cancer. This theory is known

as the humoral theory of cancer in reference to the belief that the human body was made of 4 humors or body

fluids. Later on in the 1700s, a theory based on lymph nodes gained rapid success. Cancer was then thought to

be caused by another body fluid called lymph and tumors were believed to grow from lymph constantly thrown

out by the blood. It was not until 1775 that the first link of environmental exposure to the development of

cancer was shown by Percival Pott. By 1838, Johannes Muller demonstrated that tumor cells were not made of

lymph but developed from normal cells. Rudolph Virchow correctly linked the origin of cancers to normal cells,

believing that cancer was caused by severe irritation in the tissues (the ‘chronic irritation theory’) [15]. Virchow’s

theory was then improved in the 1860s by Karl Thiersch, showing that cancers metastasized through the spread

of malignant cells, and not through some unidentified fluid 1. Throughout the 17th and 18th centuries, cancer

was also believed contagious after members of the same household experienced breast cancer. In the 1900s,

several studies showed that external causes such as viruses, tobacco, and coal tar, were directly linked to the

development of cancers[16, 17, 18, 19], even though earlier knowledge on the subject existed. The discovery of

1https://www.cancer.org/treatment/understanding-your-diagnosis/history-of-cancer/
modern-knowledge-and-cancer-causes.html
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DNA structure by Crick and Watson [20] led to the missing evidence for a genetic component in some cancer

growth. It is now believed that all causes of cancer, carcinogens, cause gene damages which will in turn evolve

into cancer. Twelve key mechanisms are commonly accepted as hallmarks of cancer [21] namely:

Sustaining Proliferative Signaling Unlike non-pathological cells, cancer cells can acquire the ability to

maintain proliferative signals. The enabling signals are conveyed in large part by growth factors that bind

cell-surface receptors signaling pathways that regulate progression through the cell cycle as well as cell

growth (that is, increases in cell size); often these signals influence yet other cell-biological properties,

such as cell survival and energy metabolism.

Evading Growth Suppressors Cancer cells can also circumvent powerful programs that negatively regulate

cell proliferation. The two main inhibitory proteins of cell proliferation are the RB protein, associated

with retinoblastoma, and the p53 protein, both involved in the phenomena of proliferation, senescence,

and apoptosis.

Resisting Cell Death Tumor cells develop a variety of strategies to limit or circumvent apoptosis. The

most common is the loss of TP53 tumor suppressor function, but tumors may achieve similar results by

increasing expression of antiapoptotic regulators (Bcl-2, Bcl-xL) or of survival signals (Igf1/2).

Enabling Replicative Immortality Normal cells are able to pass through only a limited number of suc-

cessive cell growth-and-division cycles in contrast to cancer cells which possess an enzyme very rare in

normal cells, telomerase, allowing them unlimited replication.

Inducing Angiogenesis The tumor has the ability to create a vascular system necessary for its growth: this

is an angiogenesis induction phenomenon. This tumor-associated neovasculature will address its needs in

the form of nutrients and oxygen as well as metabolic wastes and carbon dioxide evacuation.

Activating Invasion and Metastasis By a succession of cellular biological changes, beginning with lo-

cal invasion, then intravasation into nearby blood and lymphatic vessels, transit through the lymphatic

and hematogenous systems, followed by escape of cancer cells from the lumina of such vessels into the

parenchyma of distant tissues (extravasation), the formation of small nodules of cancer cells (micrometas-

tases), and finally the growth of micrometastatic lesions into macroscopic tumors, cancer cells invade

and colonize normal organs.

Genome Instability and Mutation Non-pathological cells have a DNA repair system that limits the rate

of spontaneous mutations. Mutations in cancer cells are related to altered genome maintenance processes

and surveillance systems.

Tumor-promoting inflammation The presence of infiltrating immune cells in the tumor can induce posi-

tive effects on tumor progression. Inflammatory cells produce active molecules in the microenvironment

and can release substances such as free radicals, which are highly mutagenic to the cells.

Reprogramming Energy Metabolism The chronic and often uncontrolled cell proliferation that repre-

sents the essence of neoplastic disease involves not only deregulated control of cell proliferation but also
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corresponding adjustments of energy metabolism in order to fuel cell growth and division. By limiting

their energy metabolism largely to glycolysis, cancer cells can reprogram their energy production.

Evading Immune Destruction By inhibiting the action of the molecules produced by the immune system

to destroy cancer cells, they are able to escape eradication.

Phenotypic Plasticity Cancer cells can unlock the normally restricted capability for phenotypic plasticity

in order to evade or escape from the state of terminal differentiation.

Nonmutational Epigenetic Reprogramming Genome (DNA) instability and mutation is a fundamental

component of cancer formation but mutation-free cancer evolution and purely nonmutational epigenetic

programming can cause cancer growth. Epigenetic reprogramming is the process by which an organ-

ism’s genotype interacts with the environment to produce its phenotype and provides a framework for

explaining individual variations and the uniqueness of cells, tissues, or organs despite identical genetic

information[22].

Polymorphic Microbiomes The diversity and variability of the plethora of microorganisms, collectively

termed the microbiota, have profound impact on health and disease. Polymorphic variability in the

microbiomes between individuals in a population can have a profound impact on cancer phenotypes.

Senescent Cells Cellular senescence is a typically irreversible form of proliferative arrest, likely evolved as a

protective mechanism for maintaining tissue homeostasis, as a complementary mechanism to programmed

cell death that serves to inactivate and in due course remove diseased, dysfunctional, or otherwise un-

necessary cells. By the activation of a senescence-associated secretory phenotype (SASP) involving the

release of a plethora of bioactive proteins, including chemokines, cytokines, and proteases, senescent

cells have been shown to contribute to proliferative signaling, avoiding apoptosis, inducing angiogenesis,

stimulating invasion and metastasis, and suppressing tumor immunity[23, 24]

1.2 Cancer Treatment

Cancer treatment has kept improving with the understanding of the intrinsic nature of the disease while benefiting

from technological advances in the field. Physicians, for a long time, believed that no treatment existed, with

surgery more or less localized to the tumor area being the only available treatment. Since then, the scientific

community has highlighted various mechanisms leading to the development of cancer, which has allowed the

development of treatments, in addition to surgery, to stop the proliferation of tumor cells. Although treatment

is not always curative for these cancers, there has been significant improvement in progression-free survival

(PFS) and overall survival (OS).

Nevertheless, surgery remains today the main course of treatment for the majority of cancers. Alongside

surgery in the case of solid tumors, are radiation therapy and antitumor drugs, chemotherapy and immunother-

apy. The first use of chemotherapy in treating cancer was in the 1930s. Chemotherapy is a drug treatment

using chemicals to kill fast-growing cells. Used as primary treatment, it can be curative in some types of
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Figure 1.1: The Hallmarks of Cancer. Left, from the Hallmarks of Cancer proposed in 2000 and
in 2011 [25, 26] Hallmarks of Cancer embody eight hallmark capabilities and two enabling char-
acteristics. Right, the figure incorporates additional proposed emerging hallmarks and enabling
characteristics involving “unlocking phenotypic plasticity”, “nonmutational epigenetic reprogram-
ming,” “polymorphic microbiomes,” and “senescent cells.” Reprinted from [21] under the Creative
Commons Attribution-NonCommercial 4.0 International.

advanced cancers, including acute lymphoblastic and acute myelogenous leukemia, germ cell cancer, small cell

lung cancer, ovarian cancer, and choriocarcinoma. Chemotherapy can also be used concomitantly with RT or as

neoadjuvant therapy. Neoadjuvant chemotharapy aims at reducing the size of the primary tumor and preventing

micrometastases. This type of treatment improves on conservative surgical techniques in preserving the func-

tionality of important organs. Neoadjuvant chemotherapy is indicated for anal, breast, lung, gastroesophageal,

rectal, bladder, and head and neck cancer (HNC), as well as some types of sarcoma[27]. Radiation therapy (RT)

is the use of high doses of ionizing radiation, targeted to tumor sites, and administered mostly to cause DNA

damage that results in the arrest or slowing of tumor cell growth. Cancer cells exposed to cytotoxic doses of

radiotherapy also undergo a potently immunostimulatory cell death variant that has been named immunogenic

cell death[28]. It has been shown that ionizing radiation could also reduce tumor growth outside the field of

radiation, known as the abscopal effect[29]. The earliest radiation treatments were delivered as single large

exposures using low-energy cathode-ray tubes or radium-filled glass tubes close to tumors. Unfortunately, this

type of treatment implied very high doses which were often associated with extensive normal tissue damage[30].

Since then, machines for treatment delivery have been constantly improved with devices producing higher energy

X-rays that penetrate deeper into tissue allowing for treatment of internal tumors and causing lower skin burns.

In the earliest 1950s, RT devices, such as compact linear accelerators installed on gantries capable of rotating

360 degrees around patients or teletherapy units using cobalt-60, had custom-designed metal blocks placed in

the head of the treatment machines to shape radiation beams. Recent advances from the past decades have

allowed the use of multi-leaves collimators (MLCs) which consist of small metallic leaves located in the head of

the treatment unit. Each leaf within an MLC moves independently of the others to create beams with specific

characteristics of shape. This technique, known as three-dimensional conformal radiation therapy, allows both

conformal (that is, high doses “wrap” closely around the target volume) and homogeneous (with little variability
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of dose within the target) delivery[30]. This allowed for the development of volumetric modulated arc therapy

(VMAT), which from an arc trajectory, delivers doses dynamically during rotation. By moving the MLCs during

the beam-on time, the field aperture is split into smaller segments, and a checkerboard pattern across the length

and width of each beam is achieved such that each small segment delivers a different intensity. This is called

intensity-modulated radiation therapy (IMRT) and this technique offers the potential for improved dose distri-

butions in many clinical situations[31]. Unlike IMRT, VMAT do not support beam modulation by the MLCs.

In the case of very small tumors, high-precision devices can deliver a high radiation dose under stereotactic

conditions (Cyber knife or Gamma knife). In addition, new treatment techniques are being assessed. This is

particularly the case for FLASH radiotherapy. Re-discovered in 2014 in mice, ultrahigh dose rate irradiation

increases differential responses between normal and tumor tissues. This therapy delivers a single high dose of

irradiation in a very short time (less than 200 milliseconds) with an equal probability of tumor control and little

or no normal tissue damage compared to current radiotherapy[32, 33]. FLASH therapy opens up new and very

promising treatment possibilities and could represent a major breakthrough not only in cancer management

but also in its understanding. In addition to photons and electrons being widely used for cancer treatment,

particle beams have also been developed. Due to the unique energy absorption profile of protons in tissues,

proton beam therapy is among the most highly conformal radiation modalities[34, 35]. The main limitation of

proton therapy is due to the large financial investment required partly for building cyclotrons used to generate

therapeutic proton beams. Smaller and more affordable cyclotrons are now in development, and if successful,

this may result in the more widespread availability of proton-based radiotherapy in the coming decades. In the

future, it is expected that various techniques of radiotherapy, such as proton therapy, heavy particle therapy,

and FLASH therapy, will be widely or specifically used.

Surgery, chemotherapy, and RT can be used as primary or sole treatment but in most cases are used in

combination. Since the 1990s, several clinical trials have shown that the combination of radiotherapy with

cytotoxic chemotherapy can result in improved local tumor control, organ preservation, and patient survival in

some oncological settings[36]. Over the past few years, a new form of therapy that uses drugs that block immune

checkpoints, with the goal to boost the natural ability of lymphocyte cells to fight cancer and enhance the body’s

immune response against cancer, called immunotherapy, has become an important therapeutic alternative. The

immune system was shown to play a major role in therapeutic responses to radiotherapy[29]. Remarkable

systemic effects have been observed in patients receiving radiotherapy to control tumors that were progressing

during immune checkpoint blockade, stimulating interest in using radiation to overcome primary and acquired

cancer resistance to immunotherapy[37]. This has motivated several clinical trials combining multiple variants

of immunotherapy with different forms of radiotherapy. As a recent example in this context, chemoradiotherapy

plus the immune checkpoint inhibitor durvalumab for the treatment of unresectable stage III non-small-cell lung

cancer (NSCLC)[38] was approved. More than 150 clinical trials are exploring the combination of standard,

full-dose (chemo)radiotherapy plus immunotherapy[39, 40].
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1.3 Medical imaging in radiotherapy

Before the age of medical imaging, cancer diagnosis required in the majority of cases exploratory surgery and

up to now, in most situations, biopsy is the only way to definitively diagnose cancer. With the progress of

medical imaging, namely ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI),

single-photon emission computed tomography (SPECT), and positron emission tomography (PET), biopsies

procedures were coupled with medical images. These diagnostic images allow both, anatomical and functional

imaging. Anatomical imaging enables detection of structural details that are sometimes, but not invariably,

associated with cancer mass whereas functional imaging allows detection of molecular signals that indicate the

presence of biochemical activity and changes (changes in metabolism, blood flow, etc.)[41].

Anatomic images in daily clinical routine are based on structural features such as location, size, morphol-

ogy, and structural changes to adjacent tissues. Anatomical imaging is an essential tool used in radiotherapy

treatment planning to accurately localize tumors and normal structures within a patient’s body. This imaging

is used to create a 3D image of the patient’s anatomy, which helps radiation oncologists and medical physicists

to design a customized treatment plan that delivers radiation precisely to the tumor while minimizing exposure

to surrounding healthy tissues. Anatomical imaging is also used during the course of radiotherapy treatment to

monitor tumor response and assess the need for any adjustments in the treatment plan. For example, repeat

imaging may be performed to assess tumor shrinkage or growth, which may necessitate changes in the radiation

dose or treatment fields. CT is the modality of choice for initial cancer evaluation because of its widespread

availability, short scan times, excellent multiplanar reconstruction capabilities, and familiarity among clinicians.

T1-weighted (T1w) or T2-weighted (T2w) MRI are particularly well suited to specific anatomic locations such

as prostate cancer, uterine cancer, the paranasal sinuses, salivary glands, oral cavity, and certain liver cancers

but suffer from a poor contrast in soft tissue. Structural imaging alone may not provide the clinician with

all of the information that is necessary to fully characterize or monitor lesions in those with cancer or at risk

for cancer[42]. With anatomic imaging, it is often not clear whether masses are the result of malignant or

benign etiologies, as in solitary pulmonary nodules or borderline-size lymph nodes. Similarly, small cancers are

hardly detectable with traditional anatomic methods, because they have not yet formed a mass[43]. Moreover,

assessment of lymph nodes based on structural imaging features alone is limited in sensitivity and specificity[42].

Functional imaging (mostly PET, SPECT and some sequences of MRI) helps to address many of the limita-

tions of anatomic imaging during radiotherapy. Functional imaging techniques in MRI can be used to study tumor

physiology through perfusion imaging that studies the vascularity of malignancies (dynamic contrast-enhanced

MRI), diffusion imaging that measures the diffusion of water molecules (diffusion-weighted MRI, or diffusion

tensor MRI), and lymph node imaging for tumor staging (ferumoxtran-10-enhanced MRI). Functional images

are wildly used to assess tumor molecular processes through metabolic imaging (such as glucose metabolism,

amino-acid metabolism) using PET with different metabolic radiotracer, cell proliferation imaging, oxygenation

imaging, or molecular imaging with targeted imaging agents. These additional information can be acquired

before treatment delivery (e.g. tumor staging) to improve treatment planning or after radiotherapy to assess

the tumor response. Functional imaging can also be implemented through the use of CT, and US, as well as

through PET, SPECT, and MRI, and when combined with anatomic images (such as PET/CT or PET-MRI),
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is emerging as a particularly valuable tool, providing both anatomic precision and functional information in a

single image set[43].

Much of the progress in radiotherapy in recent decades has been due to technological advances in medical

imaging. Medical imaging has improved invasive procedures like biopsies through image-guided biopsy with CT,

real-time X-ray (fluoroscopy), US, MRI, or a combination of these modalities. In addition to improving surgical

practices, early diagnosis, and follow-up of cancer patients, advances in medical imaging have also allowed for

the optimization of cancer treatment. This has been particularly significant in RT with the use of increasingly

precise techniques guided by imaging. In particular, axial imaging methods and three-dimensional treatment

planning systems have significantly improved our ability to deliver homogenous radiation doses, especially in

difficult anatomic locations and where there are unusual shapes. CT–based imaging before treatment planning is

now a standard procedure for radiation oncology centers. The use of functional and anatomical imaging such as

MRI and PET scans has also become common for tumor volumes and normal organ anatomy characterization.

In prostate cancer, for example, MRI can better differentiate between the gland and the surrounding muscle. In

most cancers, PET scans can better discriminate between hypermetabolic tumor and adjacent normal tissue[30].

Innovations in imaging modalities have led to significant improvement to position the patient and precisely

deliver radiation to a tumor. One of the most prominent imaging techniques in image-guided radiotherapy

(IGRT) is the acquisition of cone beam computed tomographies (CBCTs), through X-rays tubes integrated into

linear accelerators (linac), with the patient in treatment position. CBCTs provide accurate 3-dimensional (3D)

knowledge about the patient’s anatomy for every treatment fraction[44, 45]. The MR-Linac combines an MV

linac with onboard MR imaging. The MR unit enables monitoring of the patient throughout the treatment,

before, during, and after dose delivery. MR monitoring allows for real-time target and organs at risk (OARs)

visualization, enabling a fully integrated on-table adaptive workflow[46, 47]. In particular, MR-linac will enable

daily online adaptive RT, especially in cancer where inter- and intra-fractional changes of the target could lead

to suboptimal tumor coverage and/or high exposure of OARs.

Medical imaging has therefore helped in improving detection and characterization of tumors, optimizing dose

delivery during RT, monitoring tumor response to therapeutic intervention, improving delineation of residual or

recurrent tumors, and assessing patient prognosis before and after treatment. It is clear that the role of imaging

in cancer treatment is crucial and the scientific community agrees that its potential has not been fully explored.

Figure 1.2: The radiotherapy workflow and the place of medical imaging at different steps.
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1.4 Cancer in the era of Big Data

1.4.1 Big Data and Artificial Intelligence

Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathol-

ogy, and response to therapy[21]. The integrative concept embodied in the hallmarks of cancer is helping to

distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this

perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and

malignant progression, and apply that knowledge to cancer medicine. Various studies use different approaches

to understand cancer in its complexity from the molecular to the macroscopic level. Ever more powerful exper-

imental and computational tools and technologies are providing an avalanche of “big data” about the myriad

manifestations of the diseases that cancer encompasses[21]. It’s essential to remember, however, that data

by themselves are useless but must be analyzed, interpreted, and acted on. Thus, it is essential to develop

algorithms, as analytical tools of these accumulated data, that will prove transformative in regard to cancer

understanding[48]. Many genius individuals have participated in the development of these powerful algorithms

since the ground-breaking work in the field of artificial intelligence (AI) in the mid-20th century by the British

logician and computer pioneer Alan Mathison Turing. Artificial intelligence (AI) is a broadly encompassing

term, coined by McCarthy et al.[49] in the 1950s, referring to the branch of computer science in which al-

gorithms are developed to emulate what an intelligent human might do in the same situation[50]. Arthur

Samuel considered a pioneer in AI and computer gaming, developed the first accepted today as a self-learning

computer program in 1952, the Samuel Checker Playing Program[51]. The more its program played the game,

the more it learned from its experience, by using a minimax algorithm that analyzed moves to find winning

strategies. Since then, there have been tremendous efforts to improve AI performances, and in 1997, the IBM

super-computer Deep-Blue defeated the world chess champion, Garry Kasparov, proving that machines were

indeed capable of human-like intelligence. AI technology is indeed capable of extracting valuable data from

huge sources of complex information, without having to rely on humans in some cases. Where traditional

analytical tools are often limited by the maximum amount of data that can be analyzed, AI reveals its full

potential when data sources are growing, allowing it to learn and refine insights with ever-increasing accuracy,

which makes it suitable for "Big Data". Clearly, the more data there is, the more powerful AI computers are

and the more efficiently they can discover patterns buried in the data. AI, similarly to a doctor progressing

through residency, learns rules from data. Algorithms navigate through vast numbers of variables, including

patient-level observations, looking for combinations that reliably predict outcomes. AI is a general term that

encompasses various fields such as ML, robotics, natural language processing (NLP), and expert systems. Deep

learning (DL) is a particular subset of ML that structures algorithms in layers to create an "artificial neural

network". Machine Learning (ML) usually provides computer systems with the ability to learn and enhance

from experience automatically without being specifically programmed[52]. The main difference between ML

and traditional regression models (which are now often considered as ML), is that ML handles a large number

of variables — sometimes, remarkably, more predictors than observations — and combines them in nonlinear

and highly interactive ways[obermeyer_predicting_2016 ]. Further details on ML are given in Chapter 3
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Figure 1.3: Subsets of Artificial Intelligence. ML; Machine Learning; NLP; Natural Language
Processing

1.4.2 Artificial Intelligence for cancer management

AI techniques open the possibility for new and innovative approaches in the treatment of diseases, in particular

cancer, as they allow the processing of large and complex amounts of data on individual variability. The

application of these techniques could help explain why patients with the same clinical diagnosis or symptoms

develop different responses to the same treatment. In other words, this would lead to precision medicine,

as the ability to classify individuals into groups differing in their susceptibility, prognosis, or response to a

particular disease and treatment[53]. This could be particularly applied to immunotherapy as it has been

seen that only a small fraction of treated patients respond to this particular and promising treatment[54]. AI

is therefore a natural tool to explore the potential of all kinds of medical data, including biological, clinical,

genomic, proteomic, histological data, and in particular medical images as seen in Figure 1.4. Given that medical

imaging is crucial and contains multiparametric information (structural, functional, molecular, and metabolic),

for precision medicine to reach its highest potential, medical imaging must be a necessary and integral part in ML

research[55]. A field that shows great promise in this context is radiomics, a new ”data-driven” approach to the

analysis of medical images. Radiomics is defined as “the high-throughput mining of quantitative image features

from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision

support systems to improve diagnostic, prognostic, and predictive accuracy”[56].

Whenever possible, radiomic models are combined with uncorrelated data such as those provided by clinical

variables such as demographics, patient risk factors, biological analyses, or genomics. Such models that include

both radiomics and clinical covariates generally improve predictive capabilities[14, 11].
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Figure 1.4: AI-driven multimodal data integration (A and C–F) (A) AI models can integrate
complementary information and clinical context from diverse data sources to provide more accurate
outcome predictions. The clinical insights identified by such models can be further elucidated
through (C) interpretability methods and (D) quantitative analysis to guide and accelerate the
discovery of new biomarkers or therapeutic targets (E and F). (B) AI can reveal novel multimodal
interconnections, such as relations between certain mutations and changes in cellular morphology
or associations between radiology findings and histology tumor subtypes or molecular features.
Such associations can serve as non-invasive or cost-efficient alternatives to existing biomarkers
to support large-scale patient screening (E and F). Reprinted from [57] under the terms of the
Creative Commons Attribution-NonCommercial-No Derivatives License (CC BY NC ND).
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1.4.3 AI tools in oncology clinical routine

Multiple clinical trials are being run to demonstrate the benefit of AI-based models for better cancer care.

Table 1.1 (non-exhaustive list) presents a brief overview of ongoing clinical trials. These clinical trials cover

the different stages of cancer treatment and aim to improve different tools. Some of them aim at improving

patient screening for better cancer detection[58] (NCT04874064) while others aim at improving RT treatment

planning tools[59] (NCT05653063). There are also clinical trials involved in assessing the power of radiomic

models in predicting the efficacy of immunotherapy in patients with stage III non-small cell lung cancer[60]

(NCT04984148), or prediction of survival in glioblastoma[61] (NCT02666066).

The evident success of AI in the medical field has been accompanied by the validation by competent

authorities (CE marking, FDA approval) of various tools for routine clinical practice. Mostly, softwares to

speed treatment planning in RT have been implemented. As an example, ART plan (Therapanacea, France), a

software designed to assist the contouring process of the organs at risk (OARs) on 3D images of cancer patients

for whom radiotherapy treatment has been planned, has been CE marked and FDA-/TGA cleared. It can also

be used for image registration and generation of synthetic CT from MR images. Similarly, Mirada MedicalLtd

(United Kingdom) and LimbusAI (Canada) developed a tool based on AI for automation and optimization of the

RT workflow, encompassing automatic OARs multi-modality contouring. DL Precise, a one-click software tool

developed by DeepLook Medical (United States) for automatic segmentation and measurement of suspicious

objects across all medical imaging modalities, has also been FDA-cleared. EthosT M , developed by Varian Medical

Systems has also been deployed after FDA approval, for daily on-the-fly adaptive radiotherapy (DART).

1.4.4 Ethics in AI

In contrast to promising results in cancer care, AI poses ethical issues that have to be addressed. Safeguards

must be clearly established to implement the responsible research paradigm into their current practice. The use

of AI comes with certain risks such as data bias (incomplete data, data selection, effect of garbage in garbage

out), data security and storage, training bias, violation of privacy, lack of transparency and interpretability, harm

to patients, etc. Therefore the practice in clinical routine and medical research must be regulated and have

to follow specific principles: the autonomy, the beneficence, and the nonmaleficence principles. The autonomy

principle is usually expressed as the right of competent adults to make informed decisions about their own

medical care. It underlies the right to refuse treatment, the right to participate in research or refuse it. To

exercise this right would require Informed Consent. Under the beneficence principle, AI must be used to provide

treatment in an ethical manner not only by respecting patients decisions and protecting them from harm but

also by making efforts to secure their well-being. The principle of nonmaleficence assures that any AI model

has an obligation not to inflict harm on patients. Ethics guidelines for trustworthy AI have been issued by the

High-Level Expert Group on Artificial Intelligence (AI HLEG), an independent commission led by the European

Union[62]. AI HLEG identified seven conditions:

• Human agency and oversight: an AI system should be aimed to supporting human agency and fundamental

rights, rather than reducing, limiting, or undermining human independence.
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Study Title Type of Cancer Hospitals
The Application Value of Artifi-
cial Intelligence in MRI Precision
Diagnosis and Treatment of Blad-
der Cancer

Bladder Cancer The first affiliated hospital of Nanjing
Medical University Nanjing, Jiangsu,
China

Artificial Intelligence in Breast
Cancer Screening Programs in
Córdoba (AITIC)

Breast Cancer Hospital Universitario Reina Sofia Cór-
doba, Spain

TRIple Negative Breast Cancer
Markers In Liquid Biopsies Using
Artificial Intelligence

Breast Cancer St. Joseph’s Health Care London
London, Ontario, Canada The Ottawa
Hospital Cancer Center, Ottawa, On-
tario, Canada Sunnybrook Health Sci-
ences Centre Toronto, Ontario, Canada
Jewish General Hospital, Montreal, Que-
bec, Canada

ARCHERY - Artificial
Intelligence-Based Radiother-
apy Treatment Planning for
Cervical, Head and Neck and
Prostate Cancer

Cervical, Head and
Neck, and Prostate
Cancer

University College, London, United
Kingdom

Radiomics and Metabolomics in
the Follow-up of CAR T-cells
for Refractory or Relapsed Non-
Hodgkin’s Lymphoma

Refractory or
Relapsed Non-
Hodgkin’s Lym-
phoma

CHU de Nice, Nice, France

Construction of CT Radiomics
Model for Predicting the Effi-
cacy of Immunotherapy in Pa-
tients With Stage III Non-small
Cell Lung Cancer

Stage III Non-small
Cell Lung Cancer

Guangdong Provincial People’s Hospital
Guangzhou, Guangdong, China

Radiomics for Prediction of Sur-
vival in Glioblastoma

Glioblastoma Maastricht Radiation Oncology (MAAS-
TRO clinic), Maastricht, Limburg,
Netherlands

Radiomics-based Prediction
Model of Tumor Spread Through
Air Space in Lung Adenocarci-
noma

Lung Adenocarci-
noma

Departement of general surgery "Paride
Stefanini", Roma, Italy

Evaluation of the Use of Ra-
diomics in 18F-FDOPA PET Ex-
aminations for the Characteriza-
tion of Gliomas

Gliomas CHRU of Nancy, Vandœuvre-lès-Nancy,
France

Can MRI of the Prostate Com-
bined With a Radiomics Evalua-
tion Determine the Invasive Ca-
pacity of a Tumour

Prostate Cancer Victoria General Hospital, Halifax, Nova
Scotia, Canada

Table 1.1: Brief overview of clinical trials on AI into clinical routine. An electronic search was
performed on https://www.clinicaltrials.gov/ with the keywords "Artificial Intelligence in cancer"
or "radiomics in cancer".
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• Technical robustness and safety: trustworthy AI requires algorithms that are sufficiently secure, reliable,

and robust to deal with errors or inconsistencies in all phases of the AI system’s work.

• Privacy and data governance: citizens should have full control over their personal data. This data must

not be used to harm or disadvantage them.

• Transparency: emphasizes the AI system’s traceability, explainability, and communication.

• Diversity, non-discrimination, and fairness: AI systems should consider all degrees of people’s talents,

skills, and needs, as well as guarantee user accessibility

• Societal and environmental well-being: AI systems should be utilized to reinforce positive social change

and increase sustainability and environmental responsibility.

• Accountability: mechanisms should be put in place to ensure responsibility and accountability for AI

systems and the results of their processes, including the opportunity to review and report negative con-

sequences.

Furthermore, a concise set of principles for better scientific data management and stewardship has been

defined, the “FAIR Guiding Principles”[63], stating that all research objects should be: i) Findable; ii) Acces-

sible; iii) Interoperable; and iv) Reusable. Implementation of the FAIR principles within the radiomics field, in

particular, can facilitate its faster clinical translation.

Several initiatives have been taken to guarantee "FAIR radiomics". To name a few, the Image biomarker

standardization initiative (IBSI) (see Chapter 3) and the radiomics ontology provided guidelines for standardized

practices. The radiomics ontology frequently updates a repository on the National Center for Biomedical

Ontology BioPortal 2 in order to improve the interoperability of radiomics analyses via consistent tagging of

radiomic features, segmentation algorithms, and imaging filters. This ontology could provide a standardized

way of reporting on radiomic data and methods and would summarize the implementation details of a given

radiomics workflow.

It is important to note that these guidelines apply not only to "data" in the conventional sense, but also to

the algorithms, tools, and workflows that led to that data.

2bioportal.bioontology.org/ontologies/RO
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Chapter 2

Human papillomavirus in Oncology

2.1 Overview

Papillomaviruses (PVs) are a large and diverse family of double-stranded circular DNA viruses that by and

large exhibit rigid species and tissue tropism[1] containing eight genes. The L1 gene, one of these eight genes,

encodes the principal capsid protein and is used for classification and construction of phylogenetic trees, as it

can be found in the genome of all known PVs. These viruses are traditionally referred to as types, a type being

a cloned full-length PV genome, whose L1 nucleotide sequence is at least 10% dissimilar from that of any other

PV types[2]. The classification in types is therefore based on genome sequence homology, biological function,

and pathological effect. The consensus within the community of papillomavirus researchers established that the

name of an animal PV should be based on the scientific name of the host, using the host genus and species

designation. Types of these viruses that infect humans are called human papillomaviruses (HPV). HPVs are

one of the most common sexually transmitted infections. There are more than 220 known types of HPV[2,

3]. HPV, and PVs in general, are known to infect the vertebrate epithelia through the oral cavity or upper

respiratory tract, the anogenital tract, or the skin. The infection can lead to a large range of pathologies,

from warts (papillomas) to dysplasia and cancer but can also persist asymptomatically. HPV are classified into

two groups, low and high risk, and only a few are at high risk of leading to cancer. Low-risk HPV infections

have low chances of leading to tumor growth but can cause warts on or around the genitals, anus, mouth, or

throat. High-risk HPVs can cause several types of cancer. There are about 14 high-risk HPV (hrHPV) types

namely HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68[4]. Two of these, HPV16 and HPV18,

are responsible for most HPV-related cancers namely cervical cancer, oropharyngeal cancer, anal cancer, penile

cancer, vaginal cancer, and vulvar cancer. Since the squamous cells on the inner surfaces of these organs are

mostly infected, most HPV-related cancers represent a type of cancer called squamous cell carcinoma. Other

cancers are due to infection in the glandular regions of epithelial tissue and are called adenocarcinomas. Today

5% of all cancers are considered HPV-related[5] and HPV is the most common pathogen responsible for female

cancers[6], with cervical cancer being one of the most common cancers and a leading cause of death especially

in low- and middle-income countries. In this chapter, we will focus only on the types of HPV that are known

to cause cancer.
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2.2 HPV induced cancers

2.2.1 Cervical cancer

Cervical cancer remains the fourth most common cancer worldwide among females after breast, colorectal,

and lung cancer with approximately 604 000 new cases and 342 000 deaths annually[7]. The cervix is the

lowermost part of the uterus and is a cylindrical structure composed of stroma and epithelium. The ectocervix,

which projects into the vagina, is lined by squamous epithelium. The endocervical canal, which extends from

the opening into the uterus (internal os) to the opening into the vagina (external os), is lined by columnar

epithelium. Almost all cases of cervical carcinoma originate from the ecto- or endocervical mucosa in the

transformation zone, the area of the cervix between the old and new squamocolumnar junction[8]. Cervical

cancers are considered to be related to HPV infections in 99% of cases[9]. Most women will encounter at least

one hrHPV infection but only one-tenth of all infections could lead to the development of precancerous lesions.

Cervical cancer occurs as a long-term outcome of these persistent infections of the lowermost part of the uterus

by one of the hrHPV types. Of the estimated 604 000 new cervical cancer cases annually worldwide, HPV 16

and HPV 18 account for 71% of cases; while HPV types 31, 33, 45, 52, and 58 account for another 19% of

cervical cancer cases[10]. The United Nations 2030 Agenda with The World Health Organization (WHO) have

called for a global initiative for the elimination of cervical cancer as a public health problem by implementing

the following 90%–70%–90% triple pillar intervention strategy before the year 2030[11]:

• 90% of girls fully vaccinated with two doses of HPV vaccine by the age of 15 years;

• 70% of women screened using a high-performance screening test at the age of 35 and 45 years;

• 90% of women detected with cervical lesions to receive treatment and care.

Studies have reported evidence of effectiveness of HPV vaccination (a single dose can prevent hrHPV infection

as well as three or two doses) on significantly reducing the risk of invasive cervical cancer[12, 13]. It has

been estimated that worldwide HPV vaccination with high coverage could prevent about 8.7 million cases by

2094[14].

Histopatology

The diagnosis of cervical cancer is made by histological analysis on biopsy. HPV dependency is mostly de-

termined using the P16INK4a immunohistochemistry (IHC) by looking for a diffuse overexpression of the p16

molecule, which is a test for the presence of potentially transforming HPV infection. Cervical cancers are al-

most totally caused by HPV infection in epithelial tissue with a majority of squamous carcinomas (80-90%)

and adenocarcinomas (10-20%). Macroscopically, carcinomas appear as irregular, ulcerated, exophytic masses.

There are several histological variants but the most common histological form is non-keratinized squamous cell

carcinoma. These different histological forms do not alter the therapeutic management or prognosis. Non-HPV

squamous cell carcinomas have similar morphologic features to HPV-related carcinomas with keratinizing histol-

ogy. Adenocarcinomas are a more heterogeneous category. Macroscopically, they also present as an exophytic,
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polyoid, and irregular mass. Purely infiltrative forms, which are more common, are more difficult to diagnose.

HPV-independent adenocarcinomas account for approximately 20% of cervical adenocarcinomas. We also dis-

tinguish adenosquamous carcinomas which are tumors with both squamous and glandular differentiation. Other

histological types of cervical cancer are much rare. Basal adenoid carcinoma is a tumor with an excellent prog-

nosis after surgical excision without metastatic spread. It should not be confused with squamous cell carcinoma

in a basaloid variant. Neuroendocrine carcinomas of the cervix (small cell carcinoma and large cell carcinoma)

are very aggressive tumors. They are HPV-induced and overexpress p16. Their morphological characteristics

are identical to those of endocrine tumors of other organs.

Staging and treatment of cervical cancer

Staging in cervical cancer is based on tumor size, lymph node involvement, and the presence of metastases.

According to the FIGO (Fédération Internationale de Gynécologie et d’Obstétrique) classification of cervical

cancer stage[15] and the TNM (Tumor-node-metastasis) classification of malignant tumours[16], the different

stages are presented in Table 2.1.

Treatment of cervical cancer is mainly surgery or chemoradiation depending on cancer stage as seen in Figure

2.1. Surgery is suitable for early stages (IB1, IB2, IIA1), where cervical conization (IA1), simple hysterectomy,

or radical hysterectomy (IA2) may be selected according to the stage of disease[8]. In FIGO 2018 stages

IB2 and IIA1, surgery or radiation therapy may be chosen as the primary treatment on the basis of other

patient factors and local resources, as both have similar outcomes. If not operable, patients are treated with

chemoradiotherapy (CRT) (weekly intravenous cisplatin 40 mg/m2, 5–6 cycles, 1 day per cycle, plus 45–50 Gy

external-beam radiotherapy delivered in 1.8–2 Gy per fraction) ± simultaneously integrated boost to metastatic

lymph nodes, followed by brachytherapy (BT) based on recommendations published by the Groupe Européen

de Curiethérapie - European Society for Radiation Oncology (GEC-ESTRO)[17]. More detailed information on

cancer staging and radiation management can be found in [8].

Follow-up should be performed every 3-4 months in the first 2 years and every 6-12 months in years 3-5.

More than 75% of recurrences occur within 2-3 years in LACC [19], therefore, annual pelvic examinations should

be rescheduled after 5 years of recurrence-free follow-up.

2.2.2 Anal cancer

The anal canal is a tube at the end of the rectum that measures about 4 cm in length. Anatomically, the anal

canal extends from the dentate line to the anal verge. The dentate line demarcates a transition from a glandular

mucosa to the squamous epithelium and is located 2–3 cm proximal to the anal verge. Functionally, the accepted

boundaries of the anal canal span from the proximal aspect of the internal anal sphincter (IAS) to the anal verge,

with a length of approximately 3–6 cm[20]. An estimated 29 000 persons, predominantly women, are diagnosed

with anal cancers every year, for which HPV infection is considered the main cause[21, 22]. Anal cancer is

a rare disease that accounts for < 1% and < 3% of all new cancer diagnoses and gastrointestinal tumors,

respectively[23]. Two different categories of tumors can be found in the anal canal region. We distinguish

tumors that develop from the mucosa, called the anal canal tumors, and tumors that arise within the skin at or
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Stage grouping

FIGO TNM

Stage 0 Tis N0 M0

Stage IA T1a N0 M0

Stage IA1 T1a1 N0 M0

Stage IA2 T1a2 N0 M0

Stage IB T1b N0 M0

Stage IB1 T1b1 N0 M0

Stage IB2 T1b2 N0 M0

Stage IIA T2a N0 M0

Stage IIB T2b N0 M0

Stage IIIA T3a N0 M0

Stage IIIB T1, T2, T3a, N1 M0

T3b Any N M0

Stage IVA T4 Any N M0

Stage IVB Any T Any N M1

Table 2.1: LACC TNM classification. Tis: Tumor in situ, T1: tumor confined to the cervix, T1a:
stromal invasion with a maximal depth of 5 mm, T1a1: Measured depth of stromal invasion 3 mm
or less in depth, T1a2: measured depth of stromal invasion more than 3 mm and not more than 5
mm, T1b: Lesion confined to the cervix with depth of invasion greater than 5mm, T1b1: tumor
of 2 cm or less in greatest dimension, T1b2: lesion more than 2 cm in greatest dimension but no
more than 4cm in greatest dimension. T2: tumor of 4 cm but not >5 cm in greatest dimension,
T3: tumor of >5 cm in greatest dimension, and T4: tumor of any size invades adjacent organ(s).
N refers to regional lymph nodes. NX: Regional lymph nodes cannot be assessed, N0: No regional
lymph node metastasis, N1: Regional lymph node metastasis. The regional lymph nodes are
the paracervical, parametrial, hypogastric (internal ilial, obturator), common and external iliac,
presacral, and lateral sacral nodes. M refers to distant, metastasis. MX: Distant metastasis cannot
be assessed, M0: No distant metastasis, M1: Distant metastasis.
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Figure 2.1: Overview of the management and treatment of cervical cancer based on stage of the
disease. BT = brachytherapy; EBRT = external beam radiation therapy; IMRT = intensity
modulated radiation therapy; LND = lymph node dissection; RT = radiation therapy. Reprinted
from [18] under the Creative Commons Attribution-NonCommercial 4.0 International.
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distal to the squamous mucocutaneous junction, termed as perianal cancers[24]. Multiple risk factors have been

identified such as HPV infection, anoreceptive intercourse, cigarette smoking, and immunosuppression. HIV

infection is also associated with anal cancer; there is a higher incidence in HIV-positive patients but the direct

relationship between HIV and anal cancer has been difficult to separate from the prevalence of HPV in this

population [25]. At least 23 HPV subtypes have been shown to infect the anogenital cells and similar to cervical

cancer, HPV subtypes 16 and 18, are mostly attributable to progression of premalignant anal intraepithelial

lesions into invasive anal canal cancer.

Histopathology

The diagnosis of anal cancer is made by biopsy-proven histology analysis. Similarly to LACC, anal cancer

induced by HPV leads to over-expression of p16 protein and is diagnosed through the P16INK4a IHC. The

workflow for anal cancer diagnosis is shown in Figure 2.2. Almost all anal cancers are squamous cell carcinoma

(SCC). HPV infections are considered to be the primary cause of SCC being associated with 88% of anal cancers

(AC)[26]. SCC can display various patterns which can lead to interobserver variability in diagnosis. Histological

sub-types of basaloid, transitional, spheroidal, and cloacogenic cell cancers have no impact on management

and are all included under the same heading of SCC[27]. The other histological types, although rare, are

adenocarcinoma, malignant melanoma, gastrointestinal stromal tumors, poorly differentiated neuroendocrine

tumors, and lymphoma. A variety of other tumor types may arise less frequently in the anal canal and make

recognition more difficult. These histopathological types other than SCC are frequently diagnosed incidentally

and often at an advanced stage, rendering poor overall prognoses. Therefore, histological confirmation is

mandatory. Adenocarcinoma of the anal canal is a rare entity, accounting for less than 5%-10% of all anal

cancers, and develops from the glandular cells that produce mucus in the anal canal. HPV16 is the type most

commonly detected in SCC, whereas HPV18 predominates in adenocarcinomas.

Screening programs using anal cytology and high-resolution anoscopy have been proposed for high-risk

populations ( Gay, Bisexual, and HIV-negative women with a history of anal intercourse or other HPV-related

anogenital malignancies) based on achievements obtained in cervical cytology screening. However, no random-

ized controlled study has yet demonstrated a preventive effect of screening in these high-risk populations and

thus it cannot be routinely advocated at present[23].

Staging and treatment of anal cancer

Staging in anal cancer follows the recommendations of the Union for International Cancer Control (UICC) TNM

8th edition staging system classification of malignant tumors which are based on clinical assessment of the

diameter of the tumor in anal cancer. Classification into different stages is detailed in Table 2.2.

Similar to cervical cancer, stage I is treated with local excision surgery followed by low-dose CRT for patients

with histological margins of ≤ 1mm. While there is no definitive consensus on treatment, recommendations

have been made to treat anal cancer patients of localized stage I-III by CRT with a dose of at least >50 Gy to

the clinical target volume (CTV) plus concomitant fluorouracil (5-FU) plus mitomycin C (MMC) during the first

and the fifth week of RT, followed by surgery if possible. Capecitabine can be possibly used as an alternative

to 5-FU in combination with MMC and RT.
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Figure 2.2: Diagnostic algorithm for anal cancer. CT: computed tomography; HIV: human immun-
odeficiency virus; HPV: human papillomavirus; MRI: magnetic resonance imaging; PET: positron
emission tomography; SCCA: squamous-cell carcinoma of the anus. Reprinted from [23] under the
Creative Commons Attribution-NonCommercial 4.0 International.

Stage grouping
Stage I T1 N0 M0
Stage IIA T2 N0 M0
Stage IIB T3 N0 M0
Stage IIIA T1, T2 N1 M0
Stage IIIB T4 N0 M0
Stage IIIC T3, T4 N1 M0
Stage IV Any T Any N M1

Table 2.2: Anal cancer TNM classification. T1: tumor of 2 cm or less in greatest dimension, T2:
tumor of >2 cm but not >5 cm in greatest dimension, T3: tumor of >5 cm in greatest dimension,
and T4: tumor of any size invades adjacent organ(s). N refers to regional lymph nodes. NX:
Regional lymph nodes cannot be assessed, N0: No regional lymph node metastasis, N1: Regional
lymph node metastasis. The regional lymph nodes are the perirectal, internal iliac, inguinal, and
external iliac lymph nodes. M refers to distant, metastasis. MX: Distant metastasis cannot be
assessed, M0: No distant metastasis, M1: Distant metastasis
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Figure 2.3: Treatment workflow for anal cancer. Purple: general categories or stratification; red:
surgery; green: combination of treatments or other systemic treatments; white: other aspects
of management. 5-FU, 5-fluorouracil; CRT, chemoradiotherapy; M, metastasis; N, node; MMC,
mitomycin C; RT, radiotherapy; T, tumour. a Optimum timepoint to assess clinical tumor response
after CRT is 26 weeks [II, B]. b In cases where surgery cannot be carried out. Reprinted from [23]
under the Creative Commons Attribution-NonCommercial 4.0 International.
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Patients in complete remission should be evaluated every 3-6 months for a period of 2 years, and every

6-12 months until 5 years, with a clinical examination including digital rectal exam (DRE) and palpation of the

inguinal lymph nodes. Most relapses occur before 3 years (only <1% after 3 years)[28] so extended imaging

surveillance after this time is not recommended.

2.2.3 Head and Neck cancer

Head and Neck cancer (HNC) is responsible for approximately 900,000 cases and over 400,000 deaths annually

and ranks as the seventh most common cancer worldwide[29, 30]. HNCs are usually located in the squamous

cells along the mucosal epithelium surfaces in the oral cavity (lips, buccal mucosa, hard palate, anterior tongue,

floor of mouth, and retromolar trigone), pharynx (palatine tonsils, lingual tonsils, base of tongue, soft palate,

uvula, posterior pharyngeal wall, bottom part of the throat, extending from the hyoid bone to the cricoid

cartilage) and larynx. These cancers are collectively called HNC squamous cell carcinoma (HNSCC) and consist

of 90% of all HNCs. Other types of HNCs such as adenoid cystic carcinoma (AdCC) are very rare. HNSCCs have

been associated with well-established risk factors like tobacco smoking, alcohol use, and viral infections, such

as HPV, referred to as mucosal hrHPV types that have been clearly associated with anogenital cancers. Oral

cavity and larynx cancers are generally associated with tobacco consumption, alcohol abuse, or both, whereas

pharynx cancers are increasingly attributed to infection with HPV, primarily HPV 16 and, to a lesser extent,

HPV 18[31, 32, 33]. HPV-positive HNSCC outside of the oropharynx is rare (<6%). HPV-negative HNCs

have worse prognostic than HPV-positive and while the incidence of non-viral HNCs is decreasing, HPV-positive

HNCs incidence has dramatically increased in the last few decades. No screening strategy has proved to be

effective, and careful physical examination remains the primary approach for early detection. It is feasible that

HPV-positive HNSCC could be prevented by successful vaccination campaigns worldwide.

Histology

Squamous cells abnormal development of the surface epithelium prior to invasion of the subepithelial connective

tissues include abnormal cellular organization, increased mitotic activity, and nuclear enlargement with pleo-

morphism. With progression, the carcinoma in situ breaks through the basement membrane and infiltrates the

subepithelial connective tissue as cohesive nests and cords. With advanced tumor growth, nests of invasive cells

invade skeletal muscle, craniofacial bones, and facial skin. Invasion may be associated with tumor extension

along nerves (i.e., perineural invasion) and involvement of lymphatic spaces. The microscopic appearance may

vary as a function of tumor differentiation, but the prototypic HNSCC is moderately differentiated. Subtypes of

HNSCC include the basaloid variant, the spindle-cell variant, and the papillary variant. The basaloid squamous

variant (solid lobules of cells with peripheral palisading, scant cytoplasm, and dark nuclei) is a rapidly growing

tumor associated with poor patient outcomes. The spindle-cell variant is characterized by the proliferation

of noncohesive spindle cells. Its microscopic appearance more closely resembles a sarcoma than a carcinoma.

The papillary variant is characterized by a prominent exophytic component of papillary growth. In contrast

to the benign squamous papilloma, the papillary fronds are lined by overtly malignant squamous cells [34].

HPV-positive HNSCC presents a basaloid, nonkeratinizing, poorly differentiated histology, while HPV-negative
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HNSCC is keratinized and moderately differentiated. HPV-induced HNSCC, similar to other HPV-related can-

cers, is characterized by p16 overexpression.

Staging and treatment of HNSCC

Staging in HNC follows the recommendations of the UICC TNM 8th edition staging system classification of

malignant tumours[16]. Classification into different stages is detailed in Table 2.3. Table 2.3 refers to the stage

grouping of oropharyngeal squamous cell carcinoma (OPSCC), given that, in this work, data of OPSCC patients

were used.

Stage grouping
Stage 0 Tis N0 M0
Stage I T1,T2 N0, N1 M0
Stage II T1,T2 N2 M0

T3 N0, N1, N2 M0
Stage III T1, T2, T3 N3 M0

T4 Any N M0
Stage IV Any T Any N M1

Table 2.3: OPSCC TNM classification. TX: Primary tumor cannot be assessed. T0: No evidence
of primary tumor. Tis: Carcinoma in situ. T1: Tumor with a maximum size of 2 cm or less. T2:
Tumor with a maximum size of more than 2 cm but not more than 4 cm. T3: Tumor with a
maximum size of more than 4 cm or extension to the lingual surface of the epiglottis. T4: tumor
of any size invades adjacent organ(s). N refers to regional lymph nodes. NX: Regional lymph
nodes cannot be assessed. N0: No regional lymph node metastasis, N1: Unilateral metastasis in
lymph node(s), all with a maximum size of 6 cm or less. N2: Contralateral or bilateral metastasis
in lymph node(s), all with a maximum size of 6 cm or less. N3: Metastasis in lymph node(s) with
a maximum size of greater than 6 cm. M refers to distant, metastasis. MX: Distant metastasis
cannot be assessed, M0: No distant metastasis, M1: Distant metastasis

The standard care for oropharyngeal cancers is RT or surgery (followed by RT or CRT if indicated) for stage

I disease, and definitive (C)RT or adjuvant (C)RT for locally advanced tumors (Figure 2.4). In regard to RT,

all patients with HNSCC should be treated by Intensity-Modulated RT (IMRT) or Volumetric Modulated Arc

Therapy (VMAT) regardless of their HPV status. The standard chemotherapy treatment includes cisplatin

at a dose of 100 mg/m2 given on days 1, 22, and 43 of concomitant RT (70 Gy), or weekly cisplatine

at a dose of 40 mg/m2. However, if patients are unfit for cisplatin, carboplatin combined with 5-FU or

cetuximab concomitant to RT as well as hyperfractionated or accelerated RT without chemotherapy can be

treatment alternatives. Immunotherapy was shown effective for patients with recurrent/metastatic HNSCC

expressing PD-L1, using Pembrolizumab in combination with platinum/5-FU or pembrolizumab monotherapy.

For recurrent/metastatic patients with HNSCC not expressing PD-L1, platinum/5-FU/cetuximab remains the

standard therapy. Nivolumab is both FDA- and EMA-approved for recurrent/metastatic patients who progress

within 6 months of platinum therapy. Guidelines details can be found in [35, 36].
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Figure 2.4: Management of oropharyngeal cancer (p16-negative stage I–IVB; p16-positive stage
I–III). CRT, chemoradiotherapy; M, metastasis; N, node; RT, radiotherapy; T, tumour. a Altered
fractionation (accelerated or hyperfractionated) RT is a valid option for T1–N1, T2–N0 or T2–N1.
b Altered fractionation (accelerated or hyperfractionated) RT is a valid option for T1–N1 or T2–N1.
Reprinted from [36] under the Creative Commons Attribution-NonCommercial 4.0 International.
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2.3 Role of imaging in HPV induced cancers

In clinical routine, CT scans, PET and MRI are the most used imaging techniques. CT (which can be enhanced

with a contrast agent) because of its high availability, is almost always the first step in diagnosis of patients and

occupies an important place in RT, where it is mandatory for treatment planning. The diagnosis can then be

refined by the other modalities. PET and MRI provide additional insights and can be critical in solving clinical

differential diagnoses. Many types of solid tumors can be better characterized by PET/CT and PET-MRI scans,

including: brain, breast, cervical, colorectal, esophageal, HNC, lung, lymphatic system, pancreatic, prostate,

skin, thyroid.

In this section, the role of PET and MRI in HPV-induced cancers is discussed.

2.3.1 Positron Emission Tomography

PET and SPECT are image modalities that exploit the nuclear properties of radiotracers, i.e, radioactive

isotopes chemically bound to a biological complex normally used by the body such as glucose (or glucose

analogs), water, or ammonia, or into molecules that bind to specific receptors or sites within the body. The

radiotracer is usually injected intravenously but can also be swallowed, or inhaled, depending on what area of

the body is being examined. The biological complex acts characteristically and is concentrated into areas of

higher levels of metabolic or biochemical activity. Mostly, in oncology, the biological complex used is glucose

analog, and gets metabolized by tumor cells since these cells have increased glycolysis compared to normal

cells. In PET images, the positron emitters fluorine-18 (18F) coupled with glucose analog compound to form

[18F]Fluorodeoxyglucose ([18F]-FDG) is the most used radiopharmaceuticals. The radionuclide is continuously

emitting positrons that collide with medium electrons and produce two photons of 511 keV. These two photons

are emitted in approximately opposite directions and are finally detected in the scintillators arranged in a ring,

which are one of the elements of the PET detector blocks, and form the basis for locating the annihilation site

in the reconstructed PET image[37]. PET enables functional imaging (visualizes the expression of receptors,

enzymes, and other molecular target structures) and can be coupled with computed tomography (CT) or

magnetic resonance imaging (MRI) as a hybrid technique. The working principles of PET are shown in figure

2.5.

In [18F]-FDG PET, FDG uptake in tumors is usually quantified by measuring the standardized uptake value

(SUV). The SUV is a simplified measure, and is now the most widely used method for the quantification of

18F-FDG PET studies, although other measures have been developed as well[39, 40]. The SUV is defined as

[18F]-FDG retention normalized to injected activity whole body concentration :

SUV =
A[kBq

mL ]
Di[kBq]

w[g]

(2.1)

where A is the tumor activity concentration in the considered voxel, Di is the decay-corrected activity of

injected radiolabeled FDG, and w is the weight of the patient [g][41]. Mean and Maximal Standard Uptake

Value (SUVmean and SUVmax) are the most commonly used imaging biomarkers derived from the analysis of

18F-FDG PET images used to guide clinical decision in differential diagnosis, treatment response prediction,
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Figure 2.5: The basic principle of a positron emission tomography (PET) system: A PET detector
ring detects a pair of gamma photons with an energy of 511 keV (red arrows) which results from
the annihilation of an electron with a positron emitted by the radiotracer (here, FDG). Reprinted
from [38] under the Creative Commons Attribution-NonCommercial 4.0 International.

and prognosis[42, 43]. In addition to SUVmax, metabolic tumor volume and total lesion glycolysis have been

extensively investigated in recent studies, and many lines of evidence support that these parameters are related

to patient outcome[44]. The reproducibility of these biomarkers is hampered by several factors, which can

be either physiologic (i.e., blood glucose concentration) or technical (e.g. type of detectors and associated

electronics, reconstruction algorithms)[45].

[18F]-FDG PET/CT is particularly useful in the detection of the primary tumor, of pelvic lymph nodes,

and in the initial staging of patients with LACC and anal cancers. In both cancers, its sensitivity was found

superior for the detection of regional nodal involvement, and distant metastatic disease compared to conventional

imaging[46, 47, 48]. In HNCs, physical examination and endoscopy followed by imaging modalities such as neck

ultrasound, neck MRI and neck-chest CT, have been shown to be less accurate than [18F]-FDG PET pre-

treatment staging. For primary tumor assessment, the extent of the tumor may be underestimated especially

if the exam is performed with low-dose enhanced CT. However, the main indication of [18F]-FDG PET/CT in

newly diagnosed HNCs remains the detection of cervical lymph node involvement, which is one of the most

important prognostic factors[49]. [18F]-FDG PET is therefore considered mandatory in clinical routine[50].

In addition, there is growing interest in PET-guided RT for more precise target volume segmentation and

the possibility of implementing functional signal-guided dose escalation[51, 52]. PET/CT can also detect and

differentiate radiation and surgical changes from residual or recurrent tumors because cancer cells retain more

FDG for longer periods of time than inflammatory tissues. Studies have shown that PET/CT had a high

sensitivity (of more than 90%) for localization of recurrent disease[53, 54, 55]. As well, [18F]-FDG PET is used

for restaging in case of tumor recurrence whether local or distant [48, 23, 47, 49].

Despite clear benefits of this modality in multiple situations, misinterpretation of tracer uptake may be
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unavoidable in some cases where high activity in normal tissues may lead to confusion when distinguishing

pathologic activity from physiologic activity. Infections and inflammations related to cancer therapy or foreign

bodies are also associated with increased FDG uptake. This is due to high glycolysis of macrophages in

inflammatory and neoplastic lesions. Therefore, caution should be paid to timing in tumor follow-up. Finally,

Some tumors such as salivary gland tumors (mucoepidermoid and adenoid cystic carcinoma), cystic lesions, and

necrotic lesions have inherently low FDG uptake[53].

2.3.2 Magnetic Resonance Imaging

MRI is a medical imaging technique based on nuclear magnetic resonance (NMR). When nuclei with an intrinsic

magnetic moment (odd numbers of nucleons) are placed in a strong magnetic field B⃗0, the macroscopic

magnetization vector M⃗ resulting from all the microscopic magnetization vectors, oriented in the same direction

as the applied magnetic field, becomes non-null. By applying a resonating radio frequency (RF) pulse, at a

specific frequency called Larmor frequency, often perpendicular to B⃗0, the nuclei magnetic vector is deflected by

an angle alpha, which will decrease the longitudinal component of M⃗ and increase its transverse component. The

RF will influence the longitudinal and transverse components, through simultaneous but different mechanisms:

by inducing the transition on the high energy level and by the phasing of protons. When the RF is stopped,

a radio wave signal is emitted because the magnetic vector M⃗ is returning to its resting state. This is called

relaxation. We distinguish longitudinal and transversal relaxations. The process of relaxation is described in

Figure 2.6.

Figure 2.6: Relaxation phenomena in MRI. (A) Macroscopic magnetization vector M⃗ resulting
from the presence of a strong magnetic field B⃗0 and its components. (B) Excitation phase: the
resonating RF pulse deflects M⃗ by an angle alpha. Here alpha is equal to 90◦, the longitudinal
component is nullified. (C) Longitudinal relaxation characterized by a time constant T1, (D)
Transversal relaxation characterized by a time constant T2.

Longitudinal relaxation is characterized by the return of the longitudinal component of M⃗ to its maximum.

This relaxation is accompanied by the emission of the energy absorbed during the excitation phase. The energy

emission with the surrounding medium, called lattice is done by thermal exchange (spin-lattice or thermal
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relaxation). Longitudinal relaxation is called T1 relaxation because it follows an exponential process with T1 as

a first-order time constant characterizing the tissue. T1 can be viewed as the time required for the longitudinal

component of M⃗ to reach (1−1/e) or about 63% of its maximum value. When the 90◦RF emission is stopped,

in addition to inducing the disappearance of the longitudinal component of M⃗ , this leads to a dephasing of

the spins of protons: the transversal component of M⃗ decreases rapidly. This phenomenon is characterized

by interactions of protons between them. Transversal relaxation is called T2 relaxation or spin-spin relaxation

and follows an exponential decay with time constant T2, where T2 can be viewed as the time required for the

transversal component of M⃗ to reach (1/e) or lose about 63% of its maximum value. T2 is intrinsically related

to the molecular medium, while T1 is dependent on the intensity of the magnetic field B⃗0. Furthermore, T2

can be influenced by local static field disturbance in addition to B⃗0.

The emitted signal after NMR is detected with a coil antenna by free induction decay (FID). However, this

signal is affected by both the inhomogeneities of molecular origin, to which are added the proper inhomogeneities

of the magnetic fieldB⃗0. To get rid of these inhomogeneities, and since the signal is decaying, a 180◦RF is

emitted after a time TE/2 after the 90◦pulse. This will allow the spins to rephase and an echo will be emitted

at a time called echo time (TE). At this point, the signal is measured to collect the maximum intensity signal,

this is the echo spin sequence. RF and echo emission can be repeated periodically. The amount of time between

two consecutive series of RF and echo pulses is called repetition time (TR). Given that different tissues relax at

different rates when the transmitted RF pulse is switched off, modulation of TE and TR will highlight different

emphases on tissues. Therefore, TE will define T2 weighting, while TR will define T1 weighting.

• a short TR and a short TE give a T1-weighted image

• a long TR and a long TE give a T2 weighted image

• a long TR and a short TE give a proton density-weighted image

The quality of an MR image is described using conventional quality metrics, including signal-to-noise ratio

(SNR), spatial resolution, and image contrast. The signal emitted during an MRI acquisition depends on

intrinsic tissue properties but also on machine parameters such as the magnetic field B⃗0, RF pulses, TR, TE,

voxel volume, number of excitations (NEX), bandwidth, etc. Spatial resolution is directly dependent on voxel

volume, itself associated with the selected slice thickness and field of view, while TR and TE affect image

contrast. In T1-weighted MR image, optimal TR is around tissue T1 and TE should be minimal. For T2-

weighted images, TR and TE should be long enough at the expense of optimal SNR. NEX also impacts the

signal in MRI as SNR is proportional to the square root of NEX. Therefore as NEX increases, noise begins to

be canceled out with the square root of the NEX. In MRI, bandwidth refers to the receiver (or acquisition)

bandwidth and the transmit bandwidth. The receiver bandwidth impacts the MR image quality as a narrow

bandwidth will increase SNR but might add spatial distortion, while a larger bandwidth reduces SNR but allows

for faster imaging. The transmit bandwidth is proportional to the slice thickness of the acquired MR image.

Originally, MRI was anatomical but sequences have been developed over the years to broaden the scope

of this modality. Advanced techniques have allowed for functional MR images such as Diffusion-weighted

imaging (DWI), perfusion-weighted imaging (PWI), diffusion tensor imaging (DTI), and magnetic resonance

spectroscopy (MRS).
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MRI displays high soft tissue contrast which allows for accurate delineation between the different tissues.

The use of T2-weighted MRI is needed for optimal assessment of primary tumor and lymph nodes both in

LACC, anal cancers, and HNCC[56, 23, 35]. Therefore MRI is an indispensable image modality in the planning

and delivery of radiotherapy (RT) and brachytherapy (BT)[57, 58]. Lymph node assessment is notoriously

difficult to predict using imaging modalities, and validation of nodal assessment criteria has not been possible

due to the scarcity of surgical specimens for histopathology correlation. However, node involvement is best

assessed using high-resolution T2-weighted MRI[59]. Moreover, MRI plays also a key role in post-treatment

response assessment and surveillance. In anal cancer, patients with locally advanced anal cancer may benefit

from intensive MRI surveillance in the first 12 months[23]. For all these reasons, MRI is now a widely used

modality, and its role in RT and cancer management, in general, will only increase over the years, especially

with the event of synthetically generated CT with AI.
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Chapter 3

From image acquisition to precision
medicine

Radiomics is defined as “the high-throughput mining of quantitative image features from standard-of-care med-

ical imaging that enables data to be extracted and applied within clinical-decision support systems to improve

diagnostic, prognostic, and predictive accuracy”[1]. Radiomics aims to identify and combine new imaging

biomarkers, not assessable to the human eye, in complex models, providing predictive or prognostic information

about patients and their pathologies based on statistical analyses. These biomarkers, i.e. image descriptors,

reflect tissue intrinsic properties and heterogeneity and, indirectly, molecular and genetic substrates.

Predictions have been made that radiologists will beneficially incorporate AI methods into their daily prac-

tice[2]. Success of AI, especially ML in imaging offers a new and promising set of methods for analyzing image

data and will most likely increase diagnostic certainty, and lead to faster turnaround, better outcomes for pa-

tients, and better quality of work life for radiologists. In this section, we are going to discuss the radiomics

workflow from data acquisition to ML model development. Radiomic models developed in this thesis were based

on MR images and PET scans, therefore, this section focuses on these modalities.

3.1 Image acquisition

As imaging data are collected during routine clinical practice, large data sets are — in principle — readily

available, thus offering an incredibly rich resource for scientific and medical discovery. Image data are acquired

at various stages, starting with diagnostic stages, both prior to and during treatment, but also during the

follow-up of patients to assess response to treatment. Worldwide, the images are stored in DICOM (Digital

Image and Communication in Medicine) format into the institutional archiving systems (PACS, Picture Archiving

and Communication System). MR images and PET scans are mostly used for diagnosis, staging, and to help

monitor the patient during and after therapy. For practical reasons, DICOM images are often converted to the

Neuroimaging Informatics Technology Initiative (NIfTI) format for AI analyses[3].
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3.2 Segmentation

Segmentation is a critical step in the radiomic process because features are extracted from the segmented vol-

umes in radiomic studies. Most of the time, the region of interest (ROI) is the tumor itself. Radiomic features

can be extracted from bidimensional ROI or from the whole 3D volume. Tumor segmentation is challenging

because many tumors show unclear borders. It is contentious because there are ongoing debates over whether

to seek ground truth or reproducibility and how much to rely on manual or automatic segmentation.[4]. To

delineate as accurately as possible the tumor volume, taking into consideration real tumor borders, information

accessible only through histology have to be combined with 3D images. Studies[5, 6] have explored this suc-

cessfully. Manual segmentation by expert readers has been shown to be subject to high inter-reader variability.

This method is also labor intensive and not always feasible for radiomic analysis based on very large data sets[7].

Nevertheless, manual segmentation remains an acceptable option if inter-expert variability is negligible, mostly

in monocentric studies where images are delineated by the same expert or by few experts. In large multi-

institutional studies, manual segmentation would be flawed even when performed by experienced specialists.

Semi-automatic or fully automatic segmentation should be therefore preferred. Semi-automatic segmentation

refers to automatic segmentation followed by manual checking and editing of the segment boundaries. Several

methods for automatic segmentation methods have been proposed i.e., level-set-based active contour model[8,

9], deformable models like the active contour algorithm[10, 11], region growing technique using several con-

straints[12], K-means clustering[13], and fuzzy C-means clustering[14, 15]. One of the major challenges in

radiomic studies and in radiotherapy in general concerns the implementation of fully automated delineation

methods to reduce inter-reader variability. DL-based automatic segmentation methods are showing promising

results in obtaining the most robust and reproducible contours[16, 17, 18].

3.3 Image pre-processing

Before image intensity standardization, some limitations inherent to each imaging modality must be addressed

by means of image pre-processing. Image pre-processing refers to various techniques used in order to reduce

image artifacts, increase comparability, and therefore the developed model’s accuracy and generalizability. Some

artifacts on MR images and PET scans are due to bad image acquisitions. If present prior to radiomic features

calculation, those images should be excluded from the study. Here, pre-processing steps prior to radiomics

extraction on MR and PET images are discussed.

In MR images, the signal returned is negatively impacted by poor radio frequency (RF) coil uniformity,

static field inhomogeneity, RF penetration, gradient-driven eddy currents, and patient anatomy[19, 20]. In

addition to these artifacts, the images acquired do not always have the same voxel size which is a source of

variability in MRI-based radiomics[21]. These sources of varaibilities lead to the need to apply at least a bias

field inhomogeneity correction coupled to a voxel size resampling on MR images.

Apart from biological factors and technical errors, the quality of PET images is influenced by a wide

variety of factors, some inherent to the modality itself (partial volume effects, choice and arrangement of

detectors, acquisition time, etc... ) and others inherent to the selected reconstruction parameters. Several
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techniques for denoising and limiting the partial volume effects have been investigated to improve SNR and

spatial resolution and SUV quantification of images beyond what the reconstruction algorithm initially produced.

Ideally, reconstruction parameters should be kept the same for all imaging data in a radiomics study. As for

voxel size, considered the most important source of variability in radiomic features from PET images[22], there

are two ways to reduce this effect, namely through reconstruction to the same voxel dimensions or by image

interpolation[23]. Differences in SUV units would impact not only histogram-based features but also textural

features. Due to these variations, most of the previously published radiomic studies have been performed using

small, retrospective, and monocentric cohorts[24]. This is the main limitation of radiomic studies based on PET

images.

In the following sections, we are discussing bias field correction in MR images and voxel resampling.

3.3.1 Bias field inhomogeneity

The static polarising magnetic field in MRI is supposed to be spatially invariant. Any deviation from this principle

affects, among other things, the uniformity of the image, its spatial integrity, and blurring, and can lead to

image artifacts. Bias field corresponds to the low-frequency background nonuniformities (inhomogeneities) of

the image domain that exist in MR images due to inhomogeneity in the magnetic field. Although the bias field

can not be always observed by human eyes, it can significantly affect the performance of many image processing,

segmentation, and analysis techniques[25]. Nonparametric intensity nonuniformity normalization (N3) and its

improved version (N4ITK)[26] are reference algorithms for intensity inhomogeneity correction. In this algorithm,

the corrupted image is considered a multiplicative component of the uncorrupted image corrupted by a smooth

polynomial bias field and an additive component as shown in the equation below:

v(x) = u(x)f(x)+n(x) (3.1)

where v is the observed image, u is the uncorrupted image, f is the bias field, n is the noise (assumed to be

independent and Gaussian), and x designates the spatial position or voxel. Assuming a noise-free scenario, the

image model becomes:
ˆv(x) = û(x)+ f̂(x) (3.2)

where û = log(u), f̂ = log(f). The particularity of N4ITK is that the B-spline fitting is improved compared

to N3. Thus for N4ITK, from equation (3.1), the iterative component of the algorithm is optimized as described

by the following equation:

ûn = ûn−1 − f̂n
r = ûn−1 −{S∗ûn−1 −E[û|ûn−1]} (3.3)

where S∗ is a modified B-spline estimator, and f̂n
r is the estimated residual bias field at the nth iteration.

3.3.2 Image denoising and partial volume correction

Noise reduction techniques in medical images can be broadly divided into two categories: techniques applied

during the acquisition and techniques used after the acquisition of the image. Here, we are referring to techniques

51



used after image acquisition. Several digital processing techniques have been developed in medical imaging and

applied to MR and PET images[27]. Basic techniques for image denoising are digital filters typically applying

a low pass filter to remove peaks and replace certain values with a specific measure such as local average.

Commonly digital filters are Gaussian averaging, mean, median, and Diffusion filters[28, 29]. However, these

filters tend to remove small and lower contrast lesions along with the noise. Therefore more complex and

computationally expensive techniques have been assessed: adaptive filters such as median adaptive filter [30]

and bilateral filters[31], multi-scale methods, deep-learning (DL) based techniques, Genetic Algorithms (GA)

and Fuzzy Logic (FL) based on multi-scale analysis have been implemented.

On MR images, the noise corrupting the images is Rician. State-of-the-art MR image denoising techniques

include filtering methods, transform domain approaches, statistical techniques, algorithms utilizing sparsity

and self-similarity, low-rank approximation[32, 33, 34]. Machine learning (ML) methods, including DL-based

methods[35], have also been utilized for this task.

In PET imaging, denoising is mainly done by Gaussian smoothing and locally adaptive filtering[27]. The

spatial width of the Gaussian smoothing filter must be selected carefully to provide a compromise between SNR

and spatial resolution. Otherwise, it might result in excessive smoothing which in turn would result in loss of

resolution and blurring of adjacent objects. Multi-scale transform coupled to non-local means filtering achieved

also good results while preserving structures and details[36]. Bilateral filtering and multi-scale techniques have

also been successfully applied. Similarly to denoising in MRI, ML methods, especially DL based, are a new trend

in PET image denoising[37, 38, 39]. More details on image denoising for both modalities can be found in [27].

In PET images, the partial volume effects (PVEs) is a phenomenon encompassing two effects: image blurring

and image sampling The first effect, 3D image blurring, is due to the limited spatial resolution of the imaging

system (the detector design and the reconstruction process). This results in loss of apparent activity as part

of the signal from the source “spills out” and hence is seen outside the actual sources. The second effect of

PVEs, image sampling (also called the tissue fraction effect), is due to the fact that most voxels include signals

coming from different type of tissues. The signal intensity in each voxel is the mean of the signal intensities

of the underlying tissues included in that voxel. It is interesting to note that, even if the imaging system had

perfect spatial resolution, PVE would still affect the image due to the image sampling effect. This explains

why high-resolution imaging such as MRI and CT are still affected by PVE. Technically, the spatial resolution is

regarded as the point-spread function (PSF), which essentially corresponds to the image of a point source[40].

The reconstructed PET image can be described in the frequency domain as the product of the Fourier transform

of the true activity distribution and the modulation transfer function (MTF) of the system. The ultimate goal

of partial volume correction (PVC) is to reverse the effect of the system PSF in a PET (or SPECT) image and

thereby restore the true activity distribution, qualitatively and quantitatively[41].

PVC can be performed using two main approaches: image reconstruction with resolution modeling ±
introduction of anatomical priors, and post-reconstruction image restoration. The first approach is mostly done

by deconvolution during iterative image reconstruction by incorporating the PSF in the system matrix[42, 43,

44]. This is done to enhance spatial resolution during reconstruction. Several methods have been assessed

to improve this approach: anatomically based PVC methods using structural information from other imaging

modalities[45, 46], penalized iterative reconstruction algorithms[47, 48, 49], minimization of cross-entropy
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method[50], etc. Unfortunately, each method has its limitation and no consensus has been reached on the

best method. The second approach consists of performing image enhancement by post-processing the image

reconstructed without resolution modeling (or in an attempt to reduce residual partial volume effects after

reconstruction with resolution modeling)[41]. This can be performed either using a deconvolution operation on

a reconstructed image or by incorporating into the reconstructed image some high-frequency information taken

from a structural image[51, 52, 53, 54, 55, 56]. Similarly to the first approach, these methods suffer from

several limitations and there is no consensus on which method is most appropriate.

To date, the available literature suggests that the denoising models in MRI and PET struggle to preserve

small or low-contrast structures. Similarly, PVC in PET images did not show a significant impact on standard

PET metrics and there is no evidence that pre-processing images with denoising and/or partial volume effects

provide significant improvement for radiomics application. Therefore, for these reasons and given that no

consensus exist on the best denoising or PVC method[24], image denoising and PVC were not applied in this

thesis.

3.3.3 Voxel size harmonization

Radiomic features are supposed to be extracted from images whose voxels have a common voxel spacing, i.e,

are isotropic. This is particularly relevant for textural features computed by taking into account the relationship

among values of neighboring voxels[57]. Spatial resampling is thus indispensable to ensure comparability and

rotational invariance of extracted radiomic features. Resampling should be done using high-order interpolator

(cubic or b-spline for example) to avoid smoothing texture in the image. The masks should be resampled to

isometric voxels also, using nearest-neighbor interpolation, or other similar methods. Voxel size harmonization

covers both upsampling (decreasing spacing or increasing the number of voxels) and downsampling (increasing

spacing or decreasing the number of voxels) depending on the given data.

3.4 Image intensities standardization

After image pre-processing, given that MR images are non-quantitative contrast images acquired on multiple

devices using different acquisition and reconstruction parameters, and within a long time frame, before extracting

features, MR images need to be standardized, to mitigate the so-called ’center-effect’. This problem can however

be treated by a step of binning of the intensities which can be an alternative method to image standardization

(relative binning) in addition to the need to group the close intensities to reduce the sensitivity to the noise and

to decrease the computing time.

In PET images, only the intensity binning step is necessary because image intensities are converted into

SUV units and considered normalized. Nevertheless, differences in SUV values can differ from 15% or 30%

[58] due to acquisition or reconstruction parameters, respectively. Specifically, matrix size of the images and

variation in voxel size were found to impact substantially the image intensity thus the SUV normalization while

the choice of reconstruction method, number of iterations and iterations, and width of the Gaussian filter used

for post-reconstruction smoothing might also increase differences in SUV values but to a lesser extent[59].
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Several methods have been proposed in order to harmonize image intensities and allow reproducible radiomic

studies[60, 25, 61, 62]. Among these methods, statistical methods based mainly on first-order statistics have

been widely used.

3.4.1 Image normalization principles

For any voxel v from an MR image expressed in arbitrary units, measured for a subject i at time j, normalization

can be described as any transformation of the type:

Yij(v) → Nij(Yij(v)) (3.4)

In 2014, Shinohara et el.[61] introduced a set of 7 principles, which we refer to as the statistical principles

of image normalization (SPIN) as an attempt to provide guidelines/definitions for better practices in regard to

image normalization. They stipulated that any normalization process should produce units that:

• have a common interpretation across locations within the same tissue type

• are replicable

• preserve the rank of intensities

• have similar distributions for the same tissues of interest within and across patients

• are not influenced by biological abnormality or population heterogeneity

• are minimally sensitive to noise and artifacts and

• do not result in loss of information associated with pathology or other phenomena.

3.4.2 First-order normalization techniques

These techniques refer to normalization processes based on first-order statistics like minimum, maximum, me-

dian, mean intensity, or standard deviation of the intensities in the images or a specified ROI. The most popular

are the Max-Min normalization, z-score, and histogram-based normalization.

Max-Min or Linear normalization

Max-min normalization (usually called feature scaling) performs a linear transformation on the original

intensities and consists of rescaling all intensities in the range [0, 1]. Max-min normalization preserves the

relationships among the original data values and consists of subtracting Imin corresponding to the minimum

intensity of the image from each voxel intensity I(x) and dividing the result by the difference between the image

maximum intensity Imax and Imin:

Imax−min(x) = I(x)− Imin

Imax − Imin
(3.5)

The cost of having this bounded range is that we will end up with smaller standard deviations, which can

suppress the effect of outliers. The max-min technique has been applied for MR image normalization in several

radiomic studies[63, 64].
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Z-score normalization

The Z-Score method normalizes image histograms by subtracting µ, corresponding to the mean intensity

value of the image, from each voxel intensity I(x) and dividing the result by the standard deviation of the image

intensity valuesσ:

Izscore(x) = I(x)−µ

σ
(3.6)

Z-score normalization sets mean intensity and standard deviation to 0 and 1 respectively. It is a straight-

forward, easy-to-implement technique and by far the most used for MRI normalization in radiomics[65, 66, 67,

68, 69, 70].

Histogram matching method

A histogram-matching method was detailed for the first time by Nyul et al.[60] and modified later by Nyul et

al.[71] and Shah et al.[72]. The main idea underlying this method is two-fold: the first stage creates a template

histogram, with landmarks of interest usually defined through averaging histograms in a reference population[71].

Then, for each subject in the study, the histogram is mapped via a piecewise linear transformation to the template

defined using quantiles as knots[72]. The working principles is illustrated on Figure3.1:

Figure 3.1: Histogram matching method as proposed by Nyul et al.[71]. Only two input images
are shown. For j = 1,2, m1j ,m2j are the minimum and maximum intensities in the image j, p1j

and p2j are the minimum and maximum percentile intensities, µkj is one of the landmarks of the
histogram, µ′

kj is the mapped value of µkj , and µks is the mean of the µ′
kj : the actual parameter

we are looking for on the standard scale. Reprinted from[71].

In Shah et al.[72], the authors demonstrate good results with this method by defining landmarks as intensity

percentiles at 1,10,20,...,90,99 percents (where the intensity values below 1% and above 99% are extrapolated

from the [1,10] and [90,99] percent intervals). This method has been applied to harmonize MR images in

different radiomic studies showing good results[66, 73, 74, 67]. In the following chapters, this method will be

referred to as ’Nyul’.

Pros and cons of cited methods Max-min normalization does not handle well outliers but z-score normal-

ization suffers less from this limitation. However, z-score assumes that the intensities are normally distributed

and does not consider the skewness and kurtosis of the intensities distribution which can lead to false conclusion
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if the distribution is not symmetrical. Despite producing replicable results, being easy to implement, and being

computationally fast, Nyul method presents some limitations. This method is based on assumptions that might

be questionable: the distribution of tissue type is supposedly the same across subjects, abnormal pathologies

are not considered among patients, and technical artifacts (for example, from patient motion and residual

spatial inhomogeneity after correction) are not taken into account. To overcome these limitations, statistical

normalization methods based on the intensity values of biological tissue were assessed.

3.4.3 Tissue specific standardization methods

Madhabushi et al.[75] developed statistical methods capable of automatically partition the image into homo-

geneous regions, corresponding to different tissue regions. Unlike Nyul method, which utilized the median and

other quartile locations from the whole image histogram, this method used landmarks derived from the individ-

ual scale regions in the image to perform the nonlinear mapping of intensities. Similarly, Shinohara et al.[61]

selected the normal-appearing white matter (NAWM) in the brain as reference tissue, adjusting the intensity

distribution in other tissues accordingly. This method is called the WhiteStripe method. The image intensity in

each voxel x after normalization using WhiteStripe is:

IW hiteStripe(x) = I(x)−µws

σws
(3.7)

where I(x) is the voxel intensity before normalization, µws the mean value intensity value of NAWM, σws the

standard deviation of the NAWM, and IW hiteStripe(x) the voxel intensity after WhiteStripe normalization. Many

studies in brain cancers have applied the WhiteStripe technique to improve robustness of radiomic feeatures[66,

67]. Carré et al.[66] compared different normalization techniques on a tumor-grade classification task and

recommended z-score as the best technique compared to Nyul and WhiteStripe. Li et al.[67] implemented

WhiteStripe and three additional normalization techniques based on different values of intensity of the white

matter. They concluded that Nyul, WhiteStripe, z-score, and techniques based on white matter tissue achieved

similar results in radiomic features robustness enhancement.

Similar normalization methods based on other anatomical tissues have been developed. In HNC, Wahid

et al.[63] developed a method based on cheek fat. This method standardized the image with respect to left

and right cheek fat (healthy tissue) and was adapted from van Dijk et al.[76]. The intensity of each voxel was

divided by the mean intensity of the cheek fats and multiplied by an arbitrary scaling value of 350 using the

equation:

Icheekfat(x) = I(x)
µfat

∗350 (3.8)

where I(x) and Icheekfat were the original and standardized intensities, respectively, and µfat was the mean

intensity of both cheek fat ROIs per patient. Issakson et al.[74] implemented a prostate-specific normalization

based on healthy prostate tissue intensities on MR images of prostate cancer patients. They demonstrated

that normalization based on healthy prostate tissue intensities as a landmark had better results compared to

Nyul. In a similar study on MR images of patients with prostate cancer, Scalco et al.[77] implemented MRI

normalization based on the mean value of the urine in the bladder and found that this method had lower

performances compared to Nyul.
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3.4.4 Where do we stand on MR images standardization?

Despite the clearly promising results of different normalization methods in MRI-based radiomics, whether for

reducing feature variability or improving the performance of the developed radiomic signatures, it is not clear

which method should be preferred. All methods have pros and cons, and their implementation should be task

motivated and accurately described. Here, it is important to report that standardization methods can also be

applied a posteriori on extracted features. The commonly used method is the ComBat harmonization[78, 79,

80, 81] and will be discussed in subsection3.5.3. Many studies have shown the benefits of combining image

normalization with feature harmonization using the ComBat method[82, 67, 83]. Orlhac et al. demonstrated

that multicenter harmonization using WhiteStripe and ComBat could remove protocol-based variations in MR

images of brain tumor patients (T1w and FLAIR images) acquired in two different centers[82]. Li et al.[67] also

showed that image normalization techniques in MRI might not be enough and could benefit from the addition

of ComBat.

3.5 Radiomic features extraction

3.5.1 Gray-level discretization

Intensity discretization is another required step in the workflow of radiomic studies. This step has to be applied

right before features extraction as it consists of converting continuous values into discretized levels in order to

group close gray levels together and reduce the impact of noise[57]. This step facilitates the calculation and

comparison of texture features[84] among patients. Two methods are usually used for gray-level discretization:

relative discretization also known as fixed bin number (FBN) or absolute discretization also known as fixed bin

size (FBS).

Relative discretization consists of grouping the gray levels in a fixed number of bins between the minimum

and maximum intensity of each ROI:

R(x) = (Nb ∗ I(x)− IROI,min

IROI,max − IROI,min
)+1

where R(x) is the resampled value in voxel x, I(x) is the value in voxel x in the original image, Nb corresponds

to the fixed number of bins, IROI,min and IROI,max are the minimum and the maximum intensity in the ROI

respectively.

Absolute discretization consists of grouping the gray levels in bins of a fixed size between two bounds (Imin

and Imax). It is described as follows:

R(x) = (Nb ∗ I(x)− Imin

Imax − Imin
)+1

where R(x) is the resampled value in voxel x, I(x) is the value in voxel x in the original image, Nb corresponds

to the fixed number of bins. Imin and Imax are mostly defined as the minimum and maximum voxel intensity

across patients respectively.
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The relation between the number of bins Nb and the bin width Wb is given by the following equation:

Wb = Imax − Imin

Nb

In PET, Leijnaar et al.[85] showed that FBS yields features with lower correlation with the corresponding

tumor volume than with FBN. However, Orlhac et al.[57] found that FBS introduced spurious correlation with

SUV. Goya-Outi et al.[86], in a study on multimodal MRI, showed that the choice of discretization was crucial

in regard to modeling performance. Since there are no clear indications of which method is the best, gray-level

discretization should be applied carefully in regard to image modality. For comparison purposes, it may be useful

to systematically implement and report both[23, 24].

3.5.2 Features extraction

For a long time, radiomic features referred to handcrafted features, but they also include deep features extracted

by layers of deep neural networks. Radiomic features should be extracted through a high-quality pipeline in

order to be reproducible. The Image Biomarker Standardization Initiative (IBSI) has issued common definitions

of radiomic features and guidelines to ensure calibration and verification of radiomics software[23].

Handcrafted features are usually categorized into the following subgroups:

Shape features : describe the shape of the selected ROI and its geometric properties such as volume,

maximum diameter along different orthogonal directions, maximum surface, tumor compactness, and

sphericity. For example, the surface-to-volume ratio of a spiculated tumor will show higher values than

that of a round tumor of similar volume.

First-order statistics : these features describe the distribution of individual voxel values without concern

for spatial relationships. These are histogram-based properties reporting the mean, median, maximum,

and minimum values of the voxel intensities on the image, as well as their skewness (asymmetry), kurtosis

(flatness), uniformity, and randomness (entropy).

Second-order statistics : these features refer to textural features, which are obtained by calculating the

statistical inter-relationships between neighboring voxels [87]. They provide a measure of the spatial

arrangement of the voxel intensities, and hence of intra-lesion heterogeneity. Such features can be

derived from the gray-level co-occurrence matrix (GLCM), quantifying the incidence of voxels with the

same intensities at a predetermined distance along a fixed direction, or from the Gray-level run-length

matrix (GLRLM), quantifying consecutive voxels with the same intensity along fixed directions. They

can also be derived from the gray-level size zone matrix (GLSZM) measuring the number of neighboring

voxels with the same value for any voxel value, or from the neighborhood gray-level difference matrix

(NGDLM) calculating the difference between neighboring voxels based on voxel values. Textural features

can be computed either in two dimensions (2D), three dimensions (3D), or in 2.5 dimensions, meaning

that values are calculated in 2D for each slice and then averaged over all slices in the volume[88].

Higher-order statistics : these features are obtained by statistical methods after applying filters or math-

ematical transforms to the images; for example, with the aim of identifying repetitive or non-repetitive
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patterns, suppressing noise, or highlighting details. These include fractal analysis, Minkowski functionals,

wavelet transform, and Laplacian transforms of Gaussian-filtered images, which can extract areas with

increasingly coarse texture patterns.

Figure 3.2: Radiomic features. (A) Histogram or first-order features reflect voxel intensity distribu-
tion only. (B) Textural or second-order features derived from texture matrices reflect the complex
and unique spatial arrangement of voxels. Reprinted from [89] under the terms and conditions
provided by Elsevier and Copyright Clearance Center.

Deep features are features extracted from an image by a neural network, relevant to a specific task without

being predefined by the user. These features are self-designed in contrast to handcrafted features. Multiple

studies have highlighted that models using deep features outperformed those using handcrafted features[90, 91]

but have also demonstrated the benefits of integrating both handcrafted and deep features[92, 93].

3.5.3 ComBat Harmonizaztion

ComBat is a technique commonly used for harmonization of features extracted from multiple centers, i.e devices

with different acquisition and reconstruction parameters to mitigate the ’center effect’ in radiomics. Originally

developed for combating the batch effect in microarray genomic analysis [78], it was later demonstrated that

the ComBat harmonization technique successfully removes inter-site technical variability, while preserving inter-

patient biological variability on MR images[79, 80]. ComBat harmonization implements the location (mean) and
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scale (variance) (L/S) method. The main goal of the L/S method is to set the same mean and/or variance on all

batches. Correcting for the batch effect consists of estimating additive and multiplicative parameters accounting

for batch effects for each radiomic feature in a given batch while taking into account present covariates. To

improve the estimations of these parameters, ComBat harmonization technique can be applied with an empirical

Bayes (EB) method. When ComBat is applied with the EB method, instead of running L/S on each feature

separately, the L/S model parameters are estimated by pooling features in each batch to “borrow information”

across features to “shrink” the batch effect parameter estimates toward the overall mean of the batch effect

estimates. The EB method can be used with a parametric or a non-parametric approach. Here we applied

ComBat harmonization with EB estimates and non-parametric prior method. The L/S adjustment method

considers the value of a feature f as:

Yijf = αf +Xβf +γif + δif ϵijf , (3.9)

where Yijf represents the value corresponding to feature f for sample j from batch i, αf is the overall

feature expression, X is the covariates matrix, and βf is the vector of regression coefficients corresponding to

X. The error terms, ϵijf , can be assumed to follow a Normal distribution with expected value of zero and

variance σ2
f . The γif and δif represent the additive and multiplicative batch effects of batch i for feature f ,

respectively. Correcting for the batch effect consists then of estimating the parameters γif and δif using the

following equation:

Y ∗
ijf = Yijf − α̂f −Xβ̂f − γ̂if

δ̂if

+ α̂f +Xβ̂f , (3.10)

where α̂f , β̂f , γ̂if and δ̂if are estimators of parameters αf ,βf , γif and δif .

As stipulated in section 3.4, the benefit of using ComBat, combined with or without other normalization

techniques, in multi-institutional studies has been demonstrated[82, 67, 83, 94]. However, studies have also

shown mixed results with ComBat showing no improvement compared to raw features[95] or underperforming

in increasing robustness of radiomic features compared to a quantile normalization technique[96]. Despite these

results, the benefit of ComBat is now widely accepted and efforts have been made to improve this method[81,

97, 98, 99, 100]. An electronic search was performed on PubMed with the keywords "ComBat" and "radiomics"

(80 articles were found). Table 3.1 presents some of the recent studies using ComBat harmonization in the

radiomics field for cancer management.
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Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Leithner et al.[101](2023) MRI (T1w, T1c, T2w,

and FLAIR) - 2

ComBat-B and

ComBat-NB

Impact of ComBat harmonization

on nonbinary tissue classification:

liver, spleen, and paraspinal muscle

(80)

ComBat-B and ComBat-NB

harmonized features achieved

higher accuracy than

unharmonized radiomic features (

P = 0.005)

Lucia et al. [102](2023) 18F-FDG PET/CT

and MRI -

ComBat Prediction of PALN involvement in

LACC (239)

18F-FDG PET/CT radiomic

features harmonized with ComBat

outperformed clinical variables in

prediction of PALN involvement.

C-statistic was in the range of

0.88- 0.96 and 0.57-0.67 for

radiomic features and clinical

variables, respectively

Salome et al.[103] (2023) MRI (T1w,

contrast-enhanced

T1w , T2w, and

T2w-FLAIR) - 29

Fuzzy C-Means, kernel

density estimation,

Gaussian mixture

models, Nyul,

WhiteStripe, z-score,

Combat

Impact of MR intensity

normalization methods on overall

survival prediction in primary and

recurrent high-grade glioma (338)

ComBat and Nyul methods were

found to be the top performing for

both MRI sequences with C-ondex

values ranging from 0.66 to 0.68

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Zounek et al. [104] (2023) [18F]FET PET and

[18F]GE-180 PET

ComBat Effect of ComBat harmonization

on radiomic feature extracted of

pooled [18F]FET or [18F]GE-180

PET images of gliomas acquired

with different reconstruction

settings (19)

ComBat resulted in almost

complete harmonization (87%)

according to Friedman test and

little to no improvement according

to the coefficient of variation and

inter-rater reliability measures

Xu et al.[105](2023) 18F-FDG PET/CT 8 different strategies

for ComBat

harmonization: before

or after feature

selection, in feature

groups separately or all

features directly, and

with center or

clustering-determined

labels.

Assess the impact of several

ComBat harmonization strategies,

intra-tumoral sub-volume

characterization, and automatic

segmentations for PFS prediction

through radiomics modeling for

patients with HNC (325)

The best performances were

obtained when ComBat was

applied after feature selection,

with C-index values ranging from

0.65-0.66. The best model was

clinical variables with radiomic

features harmonized by ComBat

applied after FS, for feature

groups separately and relying on

clustering-determined labels with

C-index of 0.71. The use of

radiomics from tumor sub-volume

characterization or automatically

segmented achieved similar results

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Song et al.[106] (2023) MRI (T2w, DWI, and

fat-saturation

contrast-enhanced

T1w) - 5

ComBat Assessment of microsatellite

instability (MSI) status in (EC)

(338)

A higher MSI prediction

performance was achieved after

ComBat harmonization method.

The SVM algorithm had the best

performance, with AUCs of 0.921,

0.903, and 0.937 in the training,

internal validation, and external

validation cohorts, respectively

Castaldo et al.[70] (2022) MRI (T2w) ComBat, ARSyNseq,

SVA, mixed effect - 2

Comparison of tree harmonization

methods of radiomic features

extracted from MRI of prostate

cancers from different centers

(210)

The ComBat method

outperformed all other methods by

achieving 70% accuracy and 78%

AUC with the random forest

method in classification of patients

affected by prostate cancer

Bos et al.[96] (2023) MRI (T1w) ComBat, quantile

normalization - 2

Validation of an MR-based

radiomics model predictive of LRC

in OPSCC patients

Quantile normalization was found

more robust than ComBat

harmonization. With appropriate

harmonization, radiomics can be

applied on data acquired from

different vendors and protocols

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Du et al.[107] (2023) CT deep-learning based

harmonization method,

ComBat

Comparison of a

deep-learning-based harmonization

method with other well-known

harmonization methods for

compensating the kernel effect in

CT images on LNM prediction

(85) and for differential diagnosis

between LC and TB (164)

The convolutional neural network

(CNN) harmonization methods

outperformed all other

harmonization methods. For LC vs

TB diagnosis: best AUCs of CNN

vs. others were 0.87 vs. 0.54-0.86

(p = 0.0001-0.55). For LNM

prediction, best AUCs of CNN vs.

others were 0.78 vs.0.70-0.73 (p =

0.07-0.40)

Horng et al. (2022)[99] CT Nested ComBat, GMM

ComBat - 48

Generalized ComBat

harmonization methods for

radiomic features with multi-modal

distributions and multiple batch

effects in NSCLC(281)

GMM ComBat was seen to be the

best model for radiomic features

robustness. Nested ComBat and

GMM ComBat achieved similar

results on the whole dataset

(C-index of 0.63). Both methods

had higher performances compared

to ComBat

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Horng et al. (2022)[98] CT OPNested ComBat

and OPNested +/−
GMM ComBat - 48

Improvement of GMM ComBat

harmonization method for multiple

batch effects (281)

OPNested + GMM ComBat and

OPNested - GMM ComBat

exhibited the best harmonization

performance, and the best

C-statistics for survival prediction.

However, for survival prediction

ComBat achieved similar results as

OPNested - GMM ComBat

Paquier et al.[108] (2022) DW-MRI ComBat - 6 Role of ComBat harmonisation in

DW-MRI for radiomic analysis

ComBat method could improve

significantly the within-subject

coefficients of variation compared

to reproducibility without ComBat

in radiomic features (p-value <

0.001)

Carré et al. [100] (2022) MRI (T1w, T1w-Gd,

T2w-flair)

ComBat, AutoComBat

harmonization after

z-score image

normalization

Comparisosn of AutoComBat and

ComBat harmonization techniques

on MRI of patients with low-grade

glioma and glioblastoma (243)

On T2w-flair, AutoComBat, using

either metadata plus quality

metrics or metadata alone as

inputs, performs better than the

conventional ComBat, highlighting

its potential for data

harmonization

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Frood at al.[94] (2022) 18F-FDG PET/CT ComBat Assessment of Pre-treatment FDG

PET/CT-derived radiomic features

for outcome prediction in classical

Hodgkin lymphoma (289)

Pre-treatment FDG

PET/CT-derived radiomic features

achieved accuracy of 0.81 after

ComBat harmonization in

predicting 2-year event-free

survival in classical Hodgkin

lymphoma

Chang et al.[109] (2022) MRI (T2w) modified cycle GAN

coupled to histogram

matching, ComBat,

CLAHE

CycleGAN harmonization method

for image standardization

The proposed method

overperformed ComBat and

CLAHE in reducing variabilities in

radiomic features and in predicting

LNM in LACC (accuracy of 0.89)

Refaee et al.[110] Phantom CT scans - 5 Reconstruction Kernel

Normalization (RKN)

and ComBat

harmonization

Effect of Reconstruction Kernel

Normalization (RKN) technique,

ComBat harmonization in CT

Reconstruction Kernels (28)

ComBat improves the number of

robust features in 54% and RKN

in 28% of scenarios. Combined,

ComBat and RKN achieved

features robustness statistical

improvement in 79% of scenarios

Acquitter et al.[83] (2022) MRI (T1w,

contrast-enhancement

T1w , T2w, and FLAIR

WhiteStripe coupled

with ComBat - 7

Detection of radionecrosis after

treatment of Glioblastoma using

harmonized features extracted

from multiparametric MRI (28)

Harmonized radiomic models

achieved better predictive.

Balanced accuracy of 0.61 with

the model based on raw data and

0.72 with ComBat harmonization

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Whitney et al.[95] (2021) DCE-MRI ComBat - 5 Classification of breast cancer

(benign vs malignant) after

features harmonization

Pre- and post-harmonized radiomic

features achieved similar results

Li et al.[67] (2021) MRI (T1w) z-score, WhiteStripe,

Nyul, FCM-based,

GMM-based, and

KDE-based

normalization with or

without ComBat

The scanner effects at the

radiomic feature level still exist

after applying these intensity

normalization methods. ComBat

can be applied in combination with

image normalization to remove the

scanner effect

Da-ano et al.[81] (2020) MRI and 18F-FDG

PET/CT

M-ComBat,

B-ComBat,

BM-ComBat, ComBat

Evaluation of three modified

versions of ComBat in predicting

patients with local failure in LACC

(197) and lack of response in

LALC (98)

Scanner effect was successfully

removed with all ComBat versions.

The predictive performance of the

radiomic models was always

improved with harmonization and

the improved ComBat versions

provided the best results

Da-ano et al.[111] (2021) MRI and 18F-FDG

PET/CT

Transfer learning

technique applied to

M-ComBat,

B-ComBat, ComBat

Integrate transfer learning

technique into ComBat and its

improved versions

The proposed TL approach

enables applying a previously

determined ComBat transform to

new, previously unseen data

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Badic et al.[97] CT B-ComBat Prediction of recurrence after

surgery in colorectal cancer

patients (193)

After B-ComBat harmonization

the prediction AUC increased from

[0.52-0.63] to [0.64-0.79]

Ferreira et al.[112] (2021) 18F-FDG PET/CT ComBat - 3 Predict disease-free survival in

cervical cancer (158)

ComBat did not improve the

predictive performance of the best

models

Saint Martin et al.[113]

(2021)

MRI (T1, T2, and

T1-DCE) phantoms

Z-score or Nyul,

coupled to ComBat

Pipeline to increase reproducibility

in breast MRI radiomic studies

Harmonisation by ComBat lowered

the percentage of radiomic

features significantly different

between the three coils from 87%

after bias field correction and MR

normalisation to 3% in the gel,

while preserving or improving

performance of lesion classification

in the phantoms

Garau et al.[114] (2020) Low-dose CT ComBat Impact of the Combat

harmonization method to

compensate for multicenter

datasets variabilities in early lung

cancer diagnosis (182)

No significant improvements were

observed when applying the

Combat harmonization method to

the classification of lung nodules

from multicenter data

Continue on the next page
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Table 3.1: My caption (cont.)

Author (year of publication) Modality - number of

scanners

Standardization Task ( patients] Results

Table 3.1: Radiomic studies assessing ComBat harmonization performance in radiomics. AUC; Area under the Receiving Operating
Curve LDA; Linear Discriminant Analysis. ComBat-B; ComBat harmonization with empirical Bayes estimation. ComBat-NB; ComBat
harmonization without empirical Bayes estimation. LACC; Locally Advanced Cervical Cancer. LALC; Locally Advanced Laryngeal Cancer
PALN; Para-Aortic Lymph Node. GLCM; Gray-Level Co-occurrence Matrix. GLZLM; Gray-Level size Zone Matrix. LZLGE; Large Zone
Low Gray-Level Emphasis. PFS; Progression-Free Survival. DWI; diffusion-weighted imaging. DCE; Dynamic Constrast-Enhanced. EC;
Endometrial Cancer. SVM; Support Vector Machine. ARSyNseq; Anova-simultaneous component analysis (ASCA) Removal of SYstematic
Noise SVA; Surrogate Variable Analysis. LRC; Loco-Regional Control. OPSCC; Oropharyngeal Squamous Cell Carcinoma. LNM; lymph
node metastasis. LC; Lung Cancer. TB; Pulmonary Tuberculosis. GMM; Gaussian Mixture Model. FCM; Fuzzy C-Means. KDE;
Kernel Density Estimate. NSCLC; non-small cell lung cancer. OP; Optimized order. GAN; Generative Adversarial Network. CLAHE;
Contrast Limited Adaptive Histogram Equalization. M-ComBat allows transforming all features distributions to a chosen reference, instead
of the overall mean, providing more flexibility. B-ComBat adds bootstrap and Monte Carlo for improved robustness in the estimation.
BM-ComBat combines both modifications. SVD; Singular value decomposition69



3.6 Radiomics-based AI models

AI is broadly a set of systems that can accurately perform inferences from a large amount of data, based on

advanced computational algorithms[2]. The relationship between radiomics and AI is mutual. Due to its ever-

growing high-dimensional nature, the field of radiomics needs much more powerful analytic tools, and AI appears

to be a potential candidate for this purpose, with its extreme capabilities. On the other hand, in medical image

analysis, AI applications inevitably need the radiomics because the features that are used to train and build the

AI models are delivered through radiomic approaches, specifically, feature extraction and feature engineering

techniques[115]. It has become clear that AI methods will have a strong impact in oncology. It is a priority to

establish good practices in AI applied to medical imaging for successful clinical implementation.

3.6.1 Data preparation

Data preparation is by far the most important and most difficult step in any AI project. It is a crucial step for

accurate and robust ML models building. Given that we have standard implementations of highly parameterized

machine learning algorithms in open source libraries[116, 117], fitting models has become routine. As such,

the most challenging part of each predictive modeling project is how to prepare the one thing that is unique

to the project: the data. Any AI model is only as good as the quality of the training data. This is often

summarized as garbage in, garbage out[118]. Also, data can be very complex, containing compressed complex

nonlinear relationships that may need to be exposed, and messy with statistical noise, errors, missing values, and

conflicting examples. Messy data is often dealt with using deep domain expertise. Thus, incorrect values, such

as being mistyped, corrupted, duplicated, missing, and other obviously erroneous observations, are identified

and removed. In medical images, this means checking for corrupted images, artifacts, poor quality, etc.

Before applying any data preparation technique, one must clearly define the problem at hand, gather all

available information and discuss the project with subject matter experts. At this step, several input variables

might be included or disregarded. The outputs have also to be correctly selected. Visualizing selected inputs

and using statistical methods can, at this level, provide a first glance at the quality of selected inputs. Outliers

for a variable or patient outliers can be identified by plots. This can help with data cleaning. It may also

provide insight into the probability distribution that underlies the data. This may help in determining whether

data transforms that change a variable’s probability distribution would be appropriate. Statistical hypothesis

tests can be used to determine whether a variable matches a given probability distribution. There may also be

interplay between the data preparation step and the evaluation of models. The choice of algorithm is based

on information on the underlying mechanisms which can in turn inform the selection and configuration of data

preparation methods. For example, input variables might be required to be presented in a specific way or

have a particular probability distribution given the algorithm we desire to train. In some cases, variables must

be encoded (into binary for instance) or transformed before we can apply a machine learning algorithm, such

as converting strings to numbers. We might need to apply different methods on different input variables or

different subsets of input variables may require different sequences of data preparation methods. Choosing which

methods to apply to the variables can be overwhelming, given the large number of methods, each of which

may have its own configuration and requirements. Performance metrics may also influence the preparation of
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the target variable such as scoring regression models based on prediction error using a specific unit of measure.

This highlights the highly iterative nature of any predictive modeling project. Minimal data preparation should

be targeted but this should be done in a proper way, reducing errors of any kind (statistical, noise, incorporating

missing values and conflicting examples) but in such a manner it does not erase useful patterns. The broader

philosophy of data preparation is to discover how to best expose the underlying structure of the problem to the

learning algorithms[119].

In radiomics studies, raw images typically cannot be used directly, the raw data must be pre-processed

prior to being used to train and evaluate an ML model. Data preparation includes data acquisition, image

pre-processing, and feature extraction (see the previous section from section3.3 to section3.5.2. This step is not

only image modality specific but also depends on the goals of the project, and the algorithms that will be used

to model your data. For example, bias field correction only concerns MR images but voxel resampling prior to

radiomic extraction is for all modalities.

3.6.2 Data splitting

After data preparation, the data set is conventionally split into training, validation, and test sets. In AI in

general, when training a model, poor generalization on unseen data has to be avoided. To ensure that the

trained model is robust and its performance is not just limited on the training set, the model has to be tested

on another set of unseen data. Data splitting refers to dividing the dataset into two or more subsets: the

training, validation, and test sets. The training set should be used to train the model, the validation set used

for model optimization, and the final model performance should be evaluated on the test set. Data splitting is

data dependent and different strategies can be preferred as illustrated in Figure 3.3. To this day, there is no

consensus on data splitting but common split percentages include: 80%-20%, 67%-33%, 50%-50% for train

(training and validation) and test sets respectively[119]. Several techniques for data splitting in presence of

limited data have been developed to avoid overly optimistic results in addition to the classical train-test splits:

Cross-validation(CV) : CV is a statistical method of evaluating and comparing learning algorithms by

dividing the training set into two segments: one used to learn or train a model and the other used to

validate the model or hold-out validation. The training and validation sets must cross over in successive

rounds such that each data point has a chance of being in both sets. The basic form of CV is k-fold

CV. In k-fold CV, the data is first partitioned into k equally (or nearly equally) sized segments or folds.

Subsequently, k iterations of training and validation are performed such that within each iteration a

different fold of the data is held-out for validation while the remaining k − 1 folds are used for learning.

Variations of the CV have been assessed such as the leave-one-out CV (LOOCV), which is a special case

of k-fold CV where k equals the number of instances in the data or the repeated K-Fold CV, which is a

k-fold CV run several times. Further details can be found in [120]. CV procedure can be used both when

optimizing the hyperparameters of a model on a dataset, and when comparing and selecting a model

for the dataset. Using the same CV procedure and dataset is likely to lead to an optimistically biased

evaluation of the model performance. To overcome this bias, one can use a nested CV. In ML, classes

are often imbalanced. It is therefore recommended to apply CV with stratified sampling, i.e, stratified
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CV. Stratified CV will return folds by preserving the percentage of samples for each class.

Nested Cross-validation (nCV) : In nCV, data is split into k outer folds and then inner folds are created

in each outer training set to select features, train models, and tune parameters. An outer cross-validation

procedure is performed to provide a performance estimate used to select the optimal model. In each fold

of the outer cross-validation, the hyperparameters of the model are tuned independently to minimize an

inner cross-validation estimate of generalization performance. nCV should also be applied with stratified

sampling.

Data preparation methods that may induce data leakage, where knowledge of the hold-out test set leaks into the

dataset used to train the model, must not be applied to the whole dataset as this could result in an incorrect

estimate of model performance. Methods such as normalization of the input variables, or feature selection

should not be applied to the whole dataset.

Figure 3.3: Simplistic representation of validation schemes. K-fold CV splits all samples (n) into
equal-sized groups known as folds (if K = n, this is identical to the Leave-One-Out method). K-1
folds are used to learn the prediction function, and the fold that is left out is utilized for validation.
A nCV consists of an inner loop CV enclosed inside an outer CV. The inner loop controls model
selection and hyperparameter tuning (similar to the validation set), while the outer loop is in
charge of error estimates (similar to test set). Random subsampling randomly splits the data set
into training and validation subsets. Unlike k-fold cross-validation, where the data set is divided
into folds, the split here is random. A single split is formed using random sampling in the hold-out
approach. Independent validation uses a new data set, preferably an external data set, for the
validation part. CV; Cross-validation, nCV; nested cross validation Reprinted from[121].
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3.7 Model building

3.7.1 Feature selection

Feature selection refers to techniques for selecting a subset of input features that are most relevant to the target

variable that is being predicted. This is important as irrelevant and redundant input variables can distract or

mislead learning algorithms possibly resulting in lower predictive performance. Furthermore, in most radiomic

studies, the number of patients is lower than the number of features, which generates a high-dimensional

data problem, leading to overly optimistic results and preventing the generalizability of the trained models.

Additionally, it is desirable to develop models only using the data that is required to make a prediction, e.g. to

favor the simplest possible well-performing model[119]. There are two main types of feature selection techniques:

supervised and unsupervised. When the outcome is ignored during the elimination of predictors, the technique

is unsupervised[122].

Supervised techniques for feature selection may be divided into wrapper, filter, and intrinsic:

Wrapper methods : These methods evaluate multiple models using procedures that add and/or remove

predictors to find the optimal combination that maximizes model performance[122]. Model performance

maximization can be based on p-values, R-squared, Adjusted R-squared (in case of regression models),

or accuracy, precision, and recall (for classification models). Although effective, these approaches can

be computationally very expensive, especially for large training datasets and sophisticated models. Some

of the most wrapper methods are recursive feature elimination (RFE), and Bi-directional elimination

(Stepwise Selection)[123].

Filter methods : these are statistical methods that evaluate the relevance of the predictors outside of the

predictive models and subsequently select only the predictors that pass some criterion[122]. Most of

these techniques are univariate, meaning that they evaluate each predictor in isolation. In this case, the

existence of correlated predictors makes it possible to select important, but redundant, predictors. The

obvious consequences of this issue are that too many predictors are chosen and, as a result, collinearity

problems arise. Different statistical tests are used: Pearson’s test, Spearman’s test, T-test, ANOVA,

Chi-squared test, etc.

Intrinsic methods : These methods refer to ML algorithms’ built-in feature selection, meaning that the

model will only include predictors that help to maximize accuracy. In these cases, the model can pick

and choose which representation of the data is best[122].

Feature selection is also related to dimensionality reduction techniques in that both methods seek fewer input

variables to a predictive model. The difference is that feature selection selects features to keep or remove from

the dataset, whereas dimensionality reduction creates a projection of the data resulting in entirely new input

features. Dimensionality reduction is often used for data visualization. Dimensionality reduction yields a more

compact, more easily interpretable representation of the target concept, focusing the user’s attention on the

most relevant variables[124] by projecting the data to a lower dimensional subspace which captures the “essence”

of the data. The most common approach to dimensionality reduction is called principal components analysis
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or PCA[125]. There are other techniques for dimensionality reduction such as manifold learning techniques or

auto-encoders.

Feature selection should be applied with great caution and should never be applied on the whole data set

or hold-out folds in cross-validation. Otherwise, it will lead to a selection bias due to the leak of information by

the pre-filtering of the features[126]. There is no best method for feature selection; feature selection techniques

must be carefully chosen depending on the inputs and the output response variables.

3.7.2 Machine Learning

Machine learning (ML) is a branch of AI and computer science that uses statistical and optimization methods, to

train algorithms to uncover key insights in given data. Unlike, expert systems that are made for problem-solving,

ML purpose is learning. An expert system requires a strict set of rules to mimic experts’ decision-making process.

Three main types of ML models can be distinguished based on the presence or absence of human influence

on raw data, specific feedback or reward, or based on predefined labels: i) Supervised learning where all the

datasets being used has been pre-labeled by users to allow the algorithm to see how accurate its predictions

are. Some of the most used algorithms for supervised learning are polynomial regression, random forest, linear

regression, logistic regression, decision trees, K-nearest neighbors, and convolutional neural networks. Typical

supervised tasks involve function approximation, like regression and classification. Classification can be binary,

or involve multiple classes, as in determining a particular pathology among several labels, or concern not the

whole image but each pixel, as done for image segmentation[127]. Regression can also be done in a pixel-

wise way, image enhancement (e.g. improving a low-quality image, the input, by mapping it to its higher

quality counterpart, the output label or annotation) or image-to-image mapping (e.g. mapping a CT image,

the input, to the corresponding dose distribution, the output). ii) Unsupervised learning where the models

learn hidden patterns on the dataset without pre-existing labels. These models are mostly used for probability

density estimation, like clustering (finding separated groups of similar data items), outlier or anomaly detection

(isolated items), or even manifold learning and dimensionality reduction (subspaces on which data concentrate).

Unsupervised learning has been, so far, less used than its supervised counterpart, although useful applications

for medical imaging exist, such as domain adaptation (e.g., adapting a segmentation model trained on an

image modality to work on a different image modality) [128], data generation (e.g., generate artificial realistic

images) [129, 130] or even image segmentation[131]. The most used algorithms are partial least squares, fuzzy

means, singular value decomposition, K-means clustering, apriori, hierarchical clustering, principal component

analysis, and convolutional neural networks. A hybrid framework halfway between supervised and unsupervised,

called semi-supervised learning, uses both labeled and unlabeled data in a training dataset. Groups identified as

clusters by unsupervised learning can be used as possible class labels. Semi-supervised learning has been applied

for the generation or translation of images from a specific class to another in a semi-supervised setting (e.g.,

generation of synthetic CTs from MR images)[132], and segmentation or classification of images with partially

labeled data[133]. Generative Adversarial Networks have been widely used in semi-supervised learning mostly

for synthetic image generation[134, 135] but also for segmentation[136] and recently for image normalization

to improve reproducibility and discriminative power of radiomic features[137, 138, 139]. iii)Reinforcement

learning which gives feedback to the algorithm to learn from its own experiences by trial and error using a
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“rewards/punishments” system. Reinforcement learning for medical imaging is still scarcely used but promising

applications mimicking physician behavior for typical tasks have been assessed[140, 141].

Figure 3.4: AI and its different subsets. Three types of ML can be distinguished: supervised
learning (requires annotated data), unsupervised learning (the model learns hidden patterns on
the dataset without pre-existing labels) and reinforcement learning ( learns in trial and error
process). Semi-supervised learning refers to models using both labeled and unlabeled data in the
training dataset.

Based on the provided input data, which can be labeled or unlabeled, the trained model will produce an

estimate of a pattern in the dataset. This model learns this pattern by optimizing an error function called

the loss function. The loss function characterizes the difference between the output of an ML model and the

expected result. The loss function has to be optimized during learning by finding a set of weights and biases

that have low loss, on average, across all examples. If this function is a distance, for example, this distance will

be minimized numerically.

In addition to model parameters (weights and biases), ML models must use specific hyperparameters for

optimal results. Hyperparameters can be set manually before training (default hyperparameters). For example,

the number of trees in a random forest, and the learning rate in a neural network are hyperparameters while

weights are learned during training. ML model hyperparameter optimization includes finding a combination of

hyperparameters that reduces a predefined loss function and in turn increases the accuracy on a given indepen-

dent data. Different strategies can be used for hyperparameter optimization. Traditionally, hyperparameters

were selected manually by trial and error. This is still done but better, faster, and automatic methods have

been developed:

• Random Search: a random combination of hyperparameters over a pre-defined grid of hyperparameters

is tested.
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Figure 3.5: Overview of the main machine learning (ML) algorithms. (a) Supervised and Un-
supervised learning. (b) Overview of ML methods from simpler and more interpretable to more
advanced algorithms with potentially higher performance at the expense of less interpretability.
Position of methods on the figure is qualitative and in practice depends on the number of free
parameters, model complexity, data type, and the exact definition of interpretability used. PCA,
principal component analysis; SVM, support vector machine; tSNE, t-distributed stochastic neigh-
bor embedding; UMAP, uniform manifold approximation and projection. Readapted from [142]
under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International.
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• Grid Search: each possible combination of all of the hyperparameters is evaluated. This can result

in a very high number of combinations which can be computationally expensive and time-consuming

depending on the trained model. Given its random search pattern, random search is usually preferred in

the first time to form a grid of the most relevant hyperparameters[143]. Grid Search can then be applied

on this grid to select to best hyperparameters.

• Bayesian Optimization: is sequential model-based optimization (SMBO) algorithm that allows the use

of the results of a previous iteration to improve the sampling method of the next iteration. In this

manner, only settings closer which bring the model closer to the desired output are considered. Bayesian

optimization reduces the loss function using a posterior distribution of functions (Gaussian process).

• Genetic Algorithms: inspired by the biological concept of evolution, use stochastic global search proce-

dure to efficiently discover the top-performing model[144]. This method uses a dynamic process where

from N models with predefined hyperparameters, the best performing are kept. From these models, N

offsprings models with similar hyperparameters are again defined and tested. This cycle is repeated until

hyperparameters yielding the best performances are found.

In brief, through an accurate combination of parameters and hyperparameters, the goal of an ML model is

to provide predicted outputs close to the input in the training set, otherwise, it is said that it underfits and has a

high bias. Models should also generalize beyond the training set. The opposite is called overfitting. Overfitting

is an undesirable machine learning behavior referring to an ML model that gives accurate predictions for training

data but underperforms on unseen data. Underfitting can occur when the model is too simple or when input

variables are not informative enough. Overfitting often occurs when the model is too complex or there are too

many features over a small set of training examples.

Figure 3.6: Illustration of the underfitting/overfitting issue on a simple regression case. Data points
are shown as blue dots and the model fits as red lines. Underfitting occurs with a linear model (left
panel), a good fit with a polynomial of degree 4 (center panel), and overfitting with a polynomial of
degree 20 (right panel). Root mean square error is chosen as the objective function for evaluating
the training error and the generalization error, assessed by using 10-fold cross-validation. Reprinted
from [142] under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International.
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Figure 3.7: Workflow for radiomic studies. Acquired medical images are segmented by a physician
(manually or using automatic tools). The images and the masks of the ROI are then pre-processed
depending on the modality. After, gray-level discretization, radiomic features are extracted to be
fed to ML algorithms for a specific task. ROI; Region of Interest.

3.7.3 Deep Learning

Artificial neural networks (ANN), deep learning, and machine learning tend to be used interchangeably. However,

ANN is a sub-field of ML and DL is a sub-field of neural network. ANN constitute a collection of neurons and

edges, drawing their origins from circuit analysis. Different weights can be applied to each edge connecting the

neurons. Each neural node is connected to another and is characterized by its weight and a threshold called

bias. Bias is a constant value (or constant vector) that enables the training process not to be limited to certain

values only. Biases are added to the product of inputs and weights. At each neuron, an activation function is

applied to a weighted input signal to generate an output signal. A sigmoidal function is often used, consisting

of a first-order lowpass filter of a unit step function[142]. Neural networks are subdivided into an input layer,

hidden layer(s), and output layer, as shown in 3.9. The hidden layers perform the layer of abstraction needed

to go from the input layer to the output layer. The number of hidden layers defines whether the system is

a shallow learning system (with one or a few hidden layers) or deep learning (with many hidden layers). The

first theoretical model of an artificial neuron was proposed in 1943[145] and in the late 1950s, the first ANN

was implemented[146]. It was a single-layer ANN combined with a learning ability for binary classification.

The main limitation of the perceptron and single-layer networks in general was their inability to handle linear

inseparable problems. Further improvements to address the limitations of single-layer networks have been made

with multilayer ANN, which can become in turn very time-consuming and computationally expensive. Therefore,

there is an inherent trade-off between the number of hidden layers and time required to train the model[142].
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At the beginning of the training of a DL model, similarly to any ML model, randomly generated weights are

initialized and biases are set to zero. The input data is then transferred (forward pass) to the input layer which

will distribute it to the hidden layers. The hidden layers will then make decisions from the previous layer and

weigh up how a stochastic change within itself, detriments or improves the final output, and this is referred to

as the process of learning. Neural Networks learn through iterative tuning of parameters (weights and biases)

during the training stage, commonly referred to as backpropagation in supervised learning. The model training

process typically entails several iterations of a forward pass, backpropagation, and parameters update.

Figure 3.8: Illustration of the backpropagation process in neural network. The input is forward
passed through the DL model that generates an output. The output is compared to the ground
truth and an error rate via the loss function is backpropagated through the neural networks to
adjust the weights. Until the output and the ground truth are similar, the loss function is optimized
and weights are tuned iteratively via this process.

Different DL architectures have been used in various studies based on medical images with performances

that outperform human experts[147, 148, 149]. Convolutional Neural Networks (CNNs) and Recurrent Neural

Networks (RNNs) are the most popular discriminative architectures in radiomics[150, 151, 152, 153] but other

networks have also been utilized[154, 155, 156]. LeCun et al. constructed a convolutional neural network for

handwritten zip code recognition in 1989 and used the term "convolution" first, which is the original version

of LeNet[157]. CNN is a kind of feedforward neural network that is able to extract features from data with

convolution structures. CNNs are a multilayer network made of convolutional, pooling, and fully-connected

layers, overlapping one another. Each neuron is only connected to a small number of neurons, which is effective

in reducing parameters and speed up convergence. A group of connections can share the same weights, which

reduces parameters further. Pooling layers purpose is to subsample an input representation (image, hidden layer

output matrix, etc.) by reducing its dimension reducing computational cost, trivial features and the number of

parameters to be considered by the next layer. For all these reasons CNN is particularly adapted for image-based

DL[158].

RNN have been an interesting and important part of neural network research and have already been applied to
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Figure 3.9: Illustration of a neuron, a fully connected neural network and a convolutional neural
network.

a wide variety of problems mostly time sequences of events and ordered data such as characters in words. When

input data are not independent, ordinary feedforward neural networks cannot be used, the ANN architecture

needs to incorporate dependencies between these inputs. RNNs are type of networks with loops within layers that

allow information of previous inputs to generate the next output of the sequence but also take the previous output

as input. RNNs allow training with inputs of varying lengths. However, they are computationally expensive and

can induce vanishing gradient difficulties during the training. Since its first publication by Goodfellow et al.[159],

generative adversarial networks and cycle GAN are increasingly being used for image generation[160, 161, 162,

163]. GAN is an unsupervised model consisting of two CNNs, a generative model G and a discriminative model

D, capable of generating realistic output (image or text for example) via an adversarial relationship between the

generative network and the discriminative network. Model G with random noise z generates a sample G(z) that

subjects to the data distribution Pdata learned by G. The model D can determine whether the input sample is

real data x or generated data G(z), it outputs a single scalar representing the probability that x came from the

data rather than from G(z).
The training process follows a two-player minimax game with loss function LGAN (G,D):

m
G

in m
D

ax LGAN (G,D) = Ex[logD(x)]+Ez[log(1−D(G(z)))] (3.11)

G and D are both trained simultaneously: we adjust parameters for G to minimize log(1 − D(G(z)) and

adjust parameters for D to minimizelogD(X).
Since the original GAN allows no explicit control on the actual data generation, Mirza et al.[164] proposed

the conditional GAN (cGAN) to incorporate additional information such as class labels in the synthesis process.

cGAN is an extension of the GAN model in which both the generator and the discriminator are conditioned on

some additional information. In the context of sCT generation from MR images for example, the sCT image

output is conditioned on the MR image input.

GAN training requires a large amount of paired images. This means that to train successfully a GAN to

80



Figure 3.10: GAN vs cGAN architecture. (A) Diagram of a conventional GAN, (B) diagram of
a conditional GAN. GAN: Generative adversarial network; cGAN: conditional Generative Adver-
sarial Network; G: Generator. D: Discriminator; z: noise; Xreal: image source from Domain X
Xfake: generated image; Yreal: target image from domain Y ; Yfake: fake target.

generate output from domain X to domain Y , one has to gather paired data from domain X and domain

Y . Therefore, to overcome this limitation, unsupervised cycle generative adversarial networks (CycleGAN)

to translate an image from a source domain X to a target domain Y in the absence of paired data were

proposed[165]. Mathematically, CycleGAN consists of training a translator G : XßY and another translator

F : Y ßX, with G and F being inverses of each, both mappings should be bijections. X and Y are the domain

source and domain target respectively.

The GAN training process described above becomes in CycleGAN:

min
G,F

max
DX ,DY

LCycleGAN (G,F,DX ,DY ) = min
G

max
DY

LGAN (G,DY ,X,Y )+min
F

max
DX

LGAN (F,DX ,Y,X)

+λmin
G,F

Lcyc(G,F )

, where λ controls the relative importance of the two objectives and

min
G,F

Lcyc(G,F ) = Ex∼pdata
(x)[||F (G(x))−x||1]+Ez∼pz (z)[||G(F (y))−y||1] (3.12)

Radiomic features, despite promising results, suffer from several limitations inherent to image modalities

and to their design process. DL technologies based on multilayer neural networks may offer realistic solutions

to address some of these limitations. Tumor segmentation is a source of variability in radiomics whereas
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robust registration might provide a tool for implementing multimodal radiomic studies. Estienne et al.[166]

proposed 3D deep CNN for both image registration and tumor segmentation. Primakov et al.[18] developed

and validated a modified 2D CNN for automatic tumor detection and segmentation. Moreover, thanks to

DL, data representation (feature extraction) and prediction (e.g, classification or regression) can be performed

jointly. Therefore, selected deep features would be not impacted by statistical bias due to the feature selection

process. DL could also be used for image standardization. In this thesis, MR images standardization will be

explored through GAN and compared to traditional models.

3.7.4 Performance metrics for model assessment

Performance metrics are target-dependent. Usually, supervised models are trying to tackle classification or re-

gression problems. For binary classification tasks, accuracy and area under the receiving operator characteristic

curve (ROC AUC) are mostly used as performance metrics. These performance measures are derived from the

“confusion matrix” shown in Table 3.11. This matrix allows evaluating the efficiency of a model to predict cor-

rectly the different classes with different metrics such as precision, recall, and specificity. Precision corresponds

to the ratio of correctly predicted positive values to the total number of predicted positive values. Recall or

sensitivity also called true positive rate (TPR) is the ratio of correctly predicted positive values to the total

number of positive values in the dataset. False Positive Rate (FPR), also known as specificity, corresponds

to the proportion of negative values predicted incorrectly. Accuracy corresponds to the number of correctly

predicted values divided by the total number of predicted values. Accuracy is the most used evaluation metric

but can be misleading when the dataset is imbalanced. For example, if one class accounts for 80% of the

dataset, a model predicting only the minority class 1 in 10 times will have an accuracy greater than 0.8. This

model would clearly be inadequate despite its high accuracy. ROC AUC shows the TPR (recall) and FPR

dependence. In binary classification, each point on the ROC curve is located by choosing different thresholds

for classification of a subject in the dataset in the positive or the negative class. The top left corner of a

ROC curve is the ideal case with 100% of positive values correctly classified (TPR = 1) and 0% of negative

values incorrectly predicted at 1 (FPR = 0). As it is ideal to maximize the TPR while minimizing the FPR,

a larger area under the ROC curve (AUC) shows a high predictive capability of a model[142]. However, AUC

does not place more emphasis on one class over the other. Given that precision is directly influenced by class

imbalance, precision-recall curves have been proposed as they are more informative than ROC curves in highly

imbalanced datasets[167]. One should, in addition to accuracy, compute the sensitivity, specificity, and F-score

of the model. The F-Measure conveys the balance between precision and sensitivity. The measure is 0 when

either the precision or the sensitivity is 0. The Youden index is another commonly used metric to evaluate the

ability of a classifier to avoid misclassifications. It puts equal weights on a classifier’s performance in both the

positive and negative cases.

Youden Index(γ) = sensitivity − (1−specificity) (3.13)

The balanced accuracy is the average between the sensitivity and the specificity, which measures the average ac-

curacy obtained from both the minority and majority classes. The balanced accuracy is a better characterization
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of a classification model. It is given by:

Balanced accuracy = 1
2(sensitivity ×specificity) (3.14)

For this reason, it is recommended to always report multiple metrics and the degree of imbalance in the

data. Several techniques exist to handle imbalanced data but three major approaches are mainly used: algorithm

modifications, cost-sensitive learning, and data sampling. The most common approach is data sampling. Data

sampling refers to techniques designed to change the class distribution in the training dataset in an attempt

to balance the class frequencies. Representative work in this area includes random oversampling, random

undersampling, synthetic sampling with data generation, cluster-based sampling methods, and integration of

sampling and boosting[168]. Data sampling can be divided into oversampling and undersampling. Oversampling

techniques reproduce or synthesize new examples from the examples in the minority class while undersampling

techniques delete or select a subset of examples from the majority class. Oversampling and undersampling

methods can also be combined.

Figure 3.11: Confusion matrix for a classification task with two classes. The confusion matrix
indicates how successful the algorithm was at predicting labels in a binary classification problem
where labels take values 0 (called “negative”) or 1 (called “positive”) by evaluating the predicted
vs. the real labels. Every data point in the test set belongs to one of the four categories and
different measures can be derived from these numbers

There are three metrics that are commonly used for evaluating and reporting the performance of a regression

model; they are Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error

(MAE). The purpose of ML models in a regression task is to find a pattern that minimizes these distances.

For survival analysis, the most frequently used evaluation metric is the concordance index (C-index, C-

statistic). C-index is a measure of the model’s ability to correctly provide a trustworthy ranking of survival times

based on individual risk scores. It is the fraction of pairs in a cohort where the observation with the higher

survival time has the higher probability of survival predicted by the model.
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3.8 ML and radiomics for cancer management optimiza-
tion

Several ML/DL models have been applied successfully in the field of oncology, at all stages of radiotherapy,

from tumor early detection[169, 170, 171], to treatment planning[172, 173, 130, 18] to treatment response

prediction[174, 175, 176, 177, 178]. Here, we are going to focus on studies related to HPV-induced cancers,

namely LACC, ASCC, and OPSCC.

3.8.1 Radiomics for early detection and characterization of lesions

Screening policies have been promoted by the World Health Organization (WHO) to prevent cancer mortality,

particularly in patients at risk. Cancer characterization at an early stage increases the chance for early diagnosis

and effective treatment for most cancers. ML, through radiomics, might improve screening and replace classic

tumor characterization based on macroscopic and invasive samples (biopsies, blood test) [179]. In other words,

radiomics could be used for differential diagnosis (malignant or benign lesiosn), or for differential prognosis

(good or bad prognosis).

In HNC, HPV status has been shown to be a prognosis factor and if supported by sufficient evidence,

radiomics-based biomarkers could be used in the future as a viable alternative to confirm HPV status after or

without positive p16 immunohistochemical tests[180]. Song et al.[170] demonstrated that radiomic features

extracted from 562 CT scans could potentially be used for identifying HPV-positive patients with OPSCC

and that HPV status was associated with disease-free survival (DFS). Similarly, Bagher-Ebadian et al.[169,

181] showed that radiomic-based classifier outperforms clinical factors in characterizing HPV for patients with

OPSCC. Apart from OPSCC, in HNC it has been shown that in sinonasal squamous cell carcinoma (SCC),

inverted papilloma (IP) is an uncommon phenotype with aggressive behavior and a propensity for postoperative

recurrence. The characterization of IP is based on endoscopic incisional biopsy but its sensitivity has shown

sampling errors. Ramkumar et al.[182] found that MRI-based textural analysis had the potential to differentiate

sinonasal SCC from IP (accuracy 89.1%) with results comparable to manual assessment by neuroradiologists

(P = 0.0004). The use of radiomics biomarkers has also been proposed to identify molecular subtypes in

HNC[183, 184, 185]

For patients with early-stage cervical cancer, pelvic lymph node metastasis (PLNM) and clinical stage are

the two primary factors that affect disease-free survival (DFS) and overall survival (OS) in patients with cervical

cancer[186]. Mu et al.[187] studied the value of texture features and other commonly used semi-quantitative

indices extracted from 18F-FDG PET images in predicting the stage of patients with cervical cancer. Xia et

al. [171] developed and validated a noninvasive individualized radiomic-based nomogram integrating a radiomic

signature and clinicopathologic factors for PLNM in patients with early-stage cervical cancer before surgery.

This radiomic nomogram also showed higher accuracy than the clinical diagnostic criteria of PLNM (stromal

invasion depth, FIGO stage, and maximal tumor diameter). Li et al. conducted a meta-analysis of MRI-based

radiomic features for predicting PLNM in patients with cervical cancer including 12 studies comprising 793

female patients. Li et al. concluded that using MRI-based radiomic features can help improve the accuracy
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of predicting lymph node metastasis in cervical cancer patients[188]. Hystological type of LACC has also been

identified using radiomics features extracted from 18F-FDG PET/CT images[189, 190]

Moreover, studies have successfully shown that image textural features could be useful to identify the immune

phenotype of tumors before immunotherapy alone or combined with CRT. Chen et al.[191] demonstrated that

several 18F-FDG PET/CT-derived textural features could provide additional information to determine tumor

PD-L1 expression which correlates with response to PD-1 blockers, such as nivolumab or pembrolizumab. Sun

et al.[192, 193] developed and validated a CT-based radiomic signature to quantify CD8 cell count and predict

clinical outcomes of patients treated with immunotherapy in multiple solid tumors.

3.8.2 Image-based DL for tumor detection and segmentation

Detection and segmentation of abnormalities on medical images are highly important in patient care. Medical

image segmentation has become more and more automated in the field of RT well before the arrival of DL. For

example, an automated method, atlas-based segmentation (ABS)[194], is used in several commercially available

software solutions. ABS algorithms use multiple libraries of predefined, expert-delineated structures, that vary

in size and shape to cover anatomical variations[195]. These predefined structures can be transferred to a new

image with the help of image registration methods using a single atlas or multiple ones. One disadvantage of

ABS-based methods is that all data used to generate one or several atlases must be available during matching,

making huge atlases time-consuming and not feasible in clinical workflows. Furthermore, ABS-based methods

have been shown to perform poorly on cancerous lesions. As an alternative to ABS, tumor segmentation

based on deep neural networks has established itself over the past ten years as the state of art technique and

has outperformed classical automatic segmentation methods[196, 197], even though segmentation based on

conventional ML methods has also been implemented in several studies, albeit with less success[198, 199, 200].

Automatic segmentation might be able to reduce or achieve similar inter-observer variability associated with

organ or lesion manual segmentation[7, 201, 16]. Deng et al.[202] proposed an automatic segmentation method

using traditional ML techniques for evaluation of HNC lesions demonstrating superior segmentation performance

(area overlap measure of 0.76 ± 0.08 and accuracy of 86 ± 8%) compared to other methods in the literature

at that time. Despite high variability in regard to Dice Similarity Coefficient (DSC) between DL segmentation

and ground-truth segmentation derived by radiologists, automatic segmentation has shown promising results in

LACC. Torheim et al.[199] developed a fully automatic method for tumor delineation based on voxel classification

using Fisher’s Linear Discriminant Analysis (LDA) on multi-sequence MR images and achieved mean sensitivity

and specificity of 85% and 93% respectively. Several DL algorithms applied to different MRI modalities have

been assessed for LACC detection and segmentation. Lin et al.[172] implemented a U-Net on Diffusion-Weighted

MR images and apparent diffusion coefficient (ADC) images. Bnouni et al.[136] developed a multi-stage deep

learning architecture based on cycle-GAN to segment pelvic multi-organs using complementary multi-view MRI.

In a multi-institutional study by Rouhi et al.(cite the paper in review), different deep neural network models

were trained on multi-vendors T2-weighted MRI for both 2D and 3D segmentation, to present a comprehensive

comparison for tumor segmentation in LACC. The best model achieved DSC of 0.72±0.16. Rahimeh et al. also

proposed a failure detection method based on radiomic features to identify cases with sub-optimal DSC. Huang

et al[153] proposed an end-to-end modified U-Net to segment clinical target volume (CTV) for cervical cancer
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brachytherapy and achieved a median accuracy of 0.81 in terms of average surface distance. In addition to gross

tumor, other organs have also been segmented with DL models. Sartor et al.[173] have investigated automatic

delineation of CTV lymph nodes, a key structure during RT delivery, and their model yielded a median DSC of

0.82.

Notably, automated DL-based segmentation methods have rarely been applied to anorectal cancers and to

complex pelvic OAR structures, like small and large bowels. Nevertheless, few studies have tackled the task of

tumor segmentation using DL in anorectal (most of them in rectal cancer) cancers[203, 204, 205, 173], most of

which are on CT. Men et al. proposed a CT-based deep dilated convolutional neural network (DDCNN)-based

method[203], for fast and consistent auto-segmentation of CTV and OARS of patients with rectum cancer.

The mean DSC value was 87.7%. Using a ResNet-101 [205], Men at al. showed that increasing positions-

related information improved the trained model accuracy for CTV segmentation. A 2D U-net network was

developed on T2-weighted MR images for rectal tumor detection and segmentation by Wang et al.[204]. The

DSC was 0.71 ± 0.13 and no significant difference has been observed between automated segmentation and

manual segmentation considering DSC.

These studies have shown that automatic tumor segmentation in HPV-induced cancers could be applied

with accuracy comparable to manual tumor delineation and potentially less inter-observer variability.

3.8.3 Response prediction

Another application of radiomics is the development and refinement of signatures that can improve upon

prognostic and/or predictive models for specific cancers[206]. Several studies have focused on the predictive

ability of radiomics models regarding radiotherapy and chemotherapy outcomes and showed that radiomics

could predict outcomes not only on recurrence and metastatic status, survival, and treatment response but

also in adjacent non-cancerous tissues, such as glandular tissues (parotid and major salivary glands). As an

example, several side effects like acute toxicity due to ionizing radiation have been assessed. Multiple studies

have assessed the ability of radiomic features to predict xerostomia, a radiation common side effect causing dry

mouth in HNC[207, 208, 209] at different timepoints.

Several studies have shown promising results to predict survival in patients with HNC, analyzing various

cancer anatomic subsites, tumor segmentation methods, and textural indices[210, 211, 212]. Vallierres et

al.[213] built multivariate models based on five features extracted from FDG-PET images that could reliably

classify HPV status and predict treatment failure in HNC. Zhuo et al.[214] extracted radiomics from multi-

modalities MR sequences and developed a model predicting survival in different phenotypes of patients with

non-metastatic nasopharyngeal carcinoma (NPC). Their model achieved a C-index of 0.81 and was seen to be

superior to and more stable than conventional TNM staging system with a C-index of 0.76. Another study by

Starke et al.[215] combining CT and PET scans from multiple timepoints during treatment showed the predictive

ability of radiomics features in HNC. CT-based features allowed for more accurate risk prediction, while FDG-

PET-based models are able to stratify patients into low- and high-risk groups more reliably. Similarly, multiple

studies have demonstrated the added-value of radiomic features for response prediction in LACC whether on

CT, PET, or MR images[175, 216, 81]. Combining radiomic features extracted from PET and MRI images,

Lucia et al.[216] validated a radiomic signature for prediction of disease-free survival (DFS) and locoregional
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control (LRC) in LACC with an accuracy ≥ 0.90 for both outcomes. Additionally to LACC, and HNC cancers,

radiomic features extracted from [18F]-FDG PET and MRI have also been successfully assessed for recurrence

and survival prediction in anal squamous cell carcinoma (ASCC) [217, 218, 219, 176]. Brown et al.[176] showed

that radiomic features extracted from [18F]-FDG PET/CT could improve prediction of progression-free survival

(PFS) in ASCC compared to conventional clinical variables. Giraud et al.[219] showed that pre-therapeutic MRI

radiomics mixed with two clinical variables could predict 2-year disease control after CRT and could contribute

to identifying high-risk patients.

3.8.4 Radiomics and clinical implementation

Despite a flourishing literature on radiomics, most studies encountered radiomics intrinsic limitations and

methodological issues underlined years ago that need to be addressed before their application into clinical

routine.

Firstly, most published radiomic studies would be difficult to reproduce and validate due to the lack of

standardized definitions and validated reference values. The Image Biomarker Standardization Initiative (IBSI)

was thus formed with the following objectives: (a) establish nomenclature and definitions for commonly used

radiomic features; (b) establish a general image processing scheme for the calculation of features from imaging;

(c) provide data sets and associated reference values for verification and calibration of software implementations

for image processing and feature computation; and (d) provide a set of reporting guidelines for studies involving

radiomic analyses[23]. In this thesis, radiomic feature calculations were compliant with the IBSI guidelines.

Secondly, the main limitation for clinical implementation is the data itself. This limitation affects the field of

ML in general and consists of the difficulty of constituting large, high-quality datasets that cover the complexity

of the task at hand. The majority of early research on radiomics had a retrospective, monocentric design, which

advocates for caution in interpreting the reported findings[220]. Particularly, most of these studies display small

data size which may lead to a patient selection bias, not accurately depicting a real-life scenario. A direct

consequence of this is the lack of an independent validation dataset which may cause the predictive model to

overfit. This also results in studies involving few device manufacturers and data acquisition techniques. Given

that radiomic features are strongly impacted by acquisition and reconstruction parameters[66, 221, 222, 223,

224, 225, 84, 226], it is, therefore, crucial to develop robust image standardization methods for generalizable

radiomic studies. Otherwise, this could lead to biased models that cannot duplicate their performances in

new research trials. Nevertheless, efforts have been made to collect large and multi-institutional high-quality

open-source datasets to overcome the lack of data. This has been done through different data challenges

[227, 228]. BReast tumor Image classification on Gigapixel HisTopathological images (BRIGHT) is an open-

source data challenge (only available through registration) 1 for the development, testing, and evaluation of

models for automatic breast tumor subtyping of frequent lesions along with rare pathologies, by using clinical

Hematoxylin & Eosin (H&E) stained annotated gigapixel Whole-Slide Images (WSIs). BRIGHT was the first

breast tumor subtyping challenge that included atypical lesions. More than 550 annotated WSIs across a wide

spectrum of tumor subtypes are available. WSI classification into three classes as per cancer risk, and WSI

classification into six fine-grained lesion subtypes are the two tasks proposed in the challenge. HEad and neCK

1https://research.ibm.com/haifa/Workshops/BRIGHT/
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TumOR (HECKTOR) challenge[228] was organized for automatic segmentation of HNC primary Gross Tumor

Volume (GTV), the automatic prediction of PFS from the same FDG-PET/CT. A third task of predicting PFS

with ground truth GTVt annotations provided to the participants was also included. The data were collected

from six centers for a total of 325 images, split into 224 training and 101 testing cases. The Brain Tumor

segmentation (BraTS) challenge aims at the development of state-of-the-art methods for the segmentation

of brain tumors in multi-parametric MR images by gathering a publicly available dataset and a community

benchmark[229, 227]. Furthermore, to pinpoint the clinical relevance of this segmentation task, BraTS also

proposed a task of prediction of patient OS, via integrative analyses of radiomic features and machine learning

(ML) algorithms. BraTS made available data consisting for each patient of a native T1-weighted scan (T1),

post-contrast T1-weighted scan (T1Gd), a native T2-weighted scan (T2), and a T2 Fluid Attenuated Inversion

Recovery (T2-FLAIR) scan. These initiatives were found to be key to ensuring generalization performance and

developing trusted and ethical models. To achieve AI models robust enough to be implemented in clinical

routine, such actions should be strongly supported.

Although ML has shown tremendous progress which in turn has resulted in promising applications for better

cancer management, current practices are still flawed and need to be harmonized before clinical implementation.

Guidelines have been formulated for good practices in the fields of ML, especially to ensure standardized image

acquisition, data preparation, and model building. Radiomic-based algorithm is based on a multi-step workflow,

each step must be performed carefully and described thoroughly to avoid bias and overly optimistic not repro-

ducible results. Studies should be conducted on multi-institutions datasets. Therefore, robust standardization

methods must be applied to mitigate the so-called ’center effect’. Segmentation of the ROI should be done by

the same experts or by the same automatic or semi-automatic method. Feature selection and model building

should be conducted precisely to avoid selection biases and reported accurately. Furthermore, studies should

always include an independent cohort of unseen data to evaluate the generalizability of the constructed model.

ML and especially DL models are highly complex and have a large number of parameters. This renders the

interpretation of these models quite complicated but indispensable[230, 231].
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Chapter 4

A common [18F]-FDG PET radiomic
signature to predict survival in patients
with HPV-induced cancers

Abstract

Locally advanced cervical cancer (LACC), anal and oropharyngeal squamous cell carcinoma (ASCC and OP-

SCC) are mostly caused by oncogenic human papillomaviruses (HPV). In this paper, we developed machine

learning (ML) models based on clinical, biological and radiomic features extracted from pre-treatment fluorine-

18-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET) images to predict survival of patients

with HPV induced cancers. For this purpose, cohorts from five institutions were used: two cohorts of patients

treated for LACC including 104 patients from Gustave Roussy Campus Cancer (Center 1) and 90 patients from

Leeds Teaching Hospitals NHS Trust (Center 2), two datasets of patients treated for ASCC composed of 66 pa-

tients from Institut du Cancer de Montpellier (Center 3) and 67 patients from Oslo University Hospital (Center

4) and one dataset of OPSCC patients from University Hospital of Zurich (Center 5). Radiomic features were

extracted from baseline [18F]-FDG PET images. The ComBat technique was applied to mitigate intra-scanner

variability. A modified consensus nested cross-validation for feature selection and hyperparameter tuning was

applied on four machine-learning (ML) models to predict progression free survival (PFS) and overall survival

(OS) using harmonized imaging features or/and clinical and biological variables as inputs. Each model was

trained and optimized on Center 1 & Center 3 cohorts, and tested on Center 2, Center 4 and Center 5 cohorts.

The radiomic-based CoxNet model achieved C-index values of 0.75, 0.78 for PFS and 0.76, 0.74, 0.75 for OS

on the test sets. Radiomic feature-based models had superior performance compared to the bioclinical ones

and combining radiomic and bioclinical variables did not improve the performances. Metabolic tumor volume

(MTV) based models obtained lower C-index values for a majority of the tested configurations, but the same

or better performance for the identification of early relapses (td-AUC). The results demonstrate the possibility

of identifying common PET-based image signatures for predicting the response of patients with induced HPV

pathology, validated on multi-center multiconstructor data.

Keywords— Humanopapillomavirus, LACC, ASCC, OPSCC, [18F]-FDG PET, Radiomics, ComBat
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4.1 Introduction

Oncogenic human papillomaviruses (HPV), one of the most sexually transmitted infections, are established to

be the primary causes of locally advanced cervical cancer (LACC) and locally advanced anal squamous cell

carcinomas (ASCC) [1], [2], accounting for up to 99% of cervical cancers[3] and being associated with 88-

100% of anal cancers (AC)[4]. A clear pathogenic role for this virus in head and neck squamous cell carcinoma

(HNSCC) is also emerging, as it plays a part, especially for oropharyngeal squamous cell carcinoma (OPSCC)[5].

Over the past two decades, several studies have shown a substantial increase in the number of HPV-positive

OPSCC, currently accounting for over 60% [5, 6, 7, 8]. Based on epidemiological and biological data, nearly

all squamous intraepithelial lesions of the cervix, anus and oropharynx are caused by alpha HPV genotype,

mostly HPV 16 and HPV 18 [9]. Despite differences in epidemiology, management and treatment, these types

of cancer share many similarities both cytologically and histologically [10]. Patients with LACC are treated

with external beam radiotherapy (EBRT) with concomitant chemotherapy followed by brachytherapy (BT)

whereas anal cancer treatment consists of chemoradiotherapy (CRT) [11, 12, 13, 14] combined with a radical

abdominoperineal resection (APR) for non-responding cases [12]. OPSCC treatment is dependent on tumor

stage and location. In early stage (I–II), either conservative surgery or radiotherapy is preferred. Combined

concomitant chemoradiation is the standard treatment in non-resectable patients [15]. Sturdza et al. reported

3-year local control (LC), pelvic control (PC), and overall survival (OS), of 91%, 87%, and 74%, respectively,

for LACC [16]. Das et al. showed that ASCC 3-year rates of locoregional control (LRC), distant control (DC),

and OS were 81%, 88%, and 84%, respectively [17]. More than 75% of recurrences occur within 2-3 years

in LACC [18] and ASCC [19]. Taylor et al. found that the rates of three-year OS were 94% in HPV-positive

OPSCC [8], with approximately two-thirds of events occurring within the first 6 months of follow-up [20].

Technological improvement in diagnostic imaging has allowed better characterization of cancerous tissues,

which has led to better cancer management. Imaging such as Positron Emission Tomography (PET) with

18F-fluorodeoxyglucose ([18F]-FDG PET) is particularly useful to distinguish pelvic lymph nodes and in initial

staging of patients with LACC and ASCC [21, 22, 23]. Besides, it plays a crucial role in HNSCC as it is utilized

before treatment in refinement of neck staging and evaluation of distant metastases or second primaries[24,

25]. In addition, features extracted from PET images have already shown promising prognostic results. Multiple

classical semi-quantitative pre-treatment PET features such as Standardized Uptake Value (SUV), Metabolic

Tumor Volume (MTV), and Total Lesion Glycolysis (TLG), have shown prognostic value in squamous cell

cancers [26, 27, 28]. Extracting more complex quantitative features from diagnostic images, known as radiomics,

characterizing not only the tumor’s intensities and volume but also its shape and heterogeneity, has the potential

to get deeper tumor characterization. It allows for stratification of patients into distinct phenotypic subgroups

with the added advantage of being non-invasive[29]. Radiomic features have also been successfully assessed

for recurrence and survival prediction not only in LACC but also in ASCC and OPSCC[30, 31, 32, 33, 34, 35,

36]. Reuzé et al. [37] developed PET-based four-feature radiomic signature that could predict local recurrence

in LACC. Brown et al. [38] showed that radiomic features extracted from [18F]-FDG PET/CT could improve

prediction of progression-free survival (PFS) in ASCC compared to conventional clinical variables. Bogowicz

et al.[39] showed that PET radiomics are potential prognostic biomarkers in HNSCC for local tumor control.

Moreover, several studies have shown that combining radiomic and clinicopathological features might improve

predictions [27, 38, 40, 41, 42, 43]. In the era of personalized medicine, the early identification of patients most

likely to experience relapse may aid better treatment selection to improve outcomes. Therefore, the purpose
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of this study is to develop a multi-parametric signature including clinical data, baseline biological data, and

imaging features extracted from pre-treatment [18F]-FDG PET exams to predict PFS and OS of HPV-induced

cancers. To the best of our knowledge, this work is the first multicentric study to evaluate the generalizability

of a single signature to multiple HPV-induced cancers.

4.2 Materials and methods

4.2.1 Patients

In this retrospective study, cohorts from five institutions were gathered. Patients treated for LACC were enrolled:

118 patients from Gustave Roussy Cancer Campus in France (Center 1) and 93 patients from Leeds Teaching

Hospitals NHS Trust in the United Kingdom (Center 2). Furthermore, two datasets of patients treated for

ASCC were also collected: 88 patients from Institut du Cancer de Montpellier in France (Center 3) and 93

patients from Oslo University Hospital in Norway (Center 4). Additionally, a cohort from University Hospital of

Zurich in Switzerland (Center 5) with 45 patients treated for OPSCC was retrieved.

For each patient, specific inclusion criteria were defined in our study: i) availability of baseline PET scan ii)

histologically-confirmed LACC, ASCC, or OPSCC, iii) HPV p16 positive (or p18 positive subtypes for ASCC)

iv) no cervical conization performed before baseline PET acquisition for LACC patients vi) minimum follow-up

period of 36 months after treatment for patients without recurrence. Patients who did not experience any event

with follow-up < 36 months were also excluded: 14 patients from Center 1, 3 patients from Center 2 and 2

patients from Center 3. At the end, 104, 90, 66, 67 and 45 patients from Center 1, Center 2, Center 3, Center

4 and Center 5 respectively, were considered in this study.

This study was performed in accordance with the General Data Protection Regulation (GDPR) and approved

by the local ethical committees for Centers 1 and 3; all alive patients at the time of the study were informed

of the use of their data. In Center 2, this retrospective study was considered with no impact on patients:

the review board considered it as a service evaluation and issued a waiver for informed consent/formal ethics

approval. For Center 4, the study was approved by the Regional Ethical Committee and all patients had given

written informed consent. For center 5, data analysis was approved by the Swissethics and was carried out in

accordance with Swissethics guidelines and regulations.

LACC patients from Center 1 and Center 2 were treated with chemoradiotherapy (weekly intravenous

cisplatin 40 mg/m2, 5–6 cycles, 1 day per cycle, plus 45–50 Gy external-beam radiotherapy delivered in 1.8–2

Gy fractions) +/- simultaneously integrated boost to metastatic lymph nodes, followed by brachytherapy (BT)

based on recommendations published by the Groupe Européen de Curiethérapie - European Society for Radiation

Oncology (GEC-ESTRO) [44]. For 30 patients from Center 2 with issues preventing intra-cavity treatment or

with poor initial response, an external beam boost of 12-18 Gy was given instead of BT. LACC patients’

characteristics are displayed in Table 1.

While there is no definitive consensus on treatment, patients with ASCC are usually treated by CRT with

at least 45 Gy to the clinical target volume (CTV) and concomitant fluoroucil(5-FU)/mitomycin(MMC) during

the first and the fifth week of RT, followed by a boost limited to the macroscopic tumor given by either EBRT

or brachytherapy. Guidelines on management of ASCC can be found in [14]. Patients from Center 3 were

treated with 45(n=85) or 50 (n=2) Gy to the CTV and 55.8-67 Gy (n=18) or 61-67 Gy (n=67) or without

additional boost (n=2) to the GTV and lymph nodes if present. In Center 3, 5-FU and MMC were administered
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Center 1 Center 2
Variables mean[min-max] mean[min-max]

Age 48.0 [27.0-82.0] 48.0 [25.0-75.0]
Hemoglobin (g/dL) 12.0 [6.5-15.3] 12.8 [7.3-15.7]
Platelets (G/L) 302.0 [89-662] 338.4 [118-699]
Leukocytes (G/L) 8.2 [1.8-18.0] 8.8 [4.7-20.2]
Neutrophils (G/L) 5.8 [1.2-14.0] 5.9 [2.0-15.3]
Lymphocytes (G/L) 1.7 [0.2-4.1] 1.9 [0.8-4.1]
Monocytes (G/L) 0.6 [0.1-1.5] 0.5 [0.2-1.1]
NLR 4.2 [0.9-24.0] 3.4 [0.2-10.2]

Value(%) Value(%)

HPV Status
Positive 104 (100%) 90 (100%)

Stage
I 33 (31.7%) 9 (10%)
II 59 (56.7%) 63 (70.0%)
III 8 (7.7%) 8 (8.9%)
IV 4 (3.9%) 10 (11.1%)

Histology
SCC 87 (83.7%) 71 (78.8%)
Adenocarcinoma 17 (16.3%) 19 (21.2%)

PET device
Siemens Biograph 67 (64.4%) -
GE Discovery 690 37 (35.6%) -
Philips Gemini TF TOF 64 - 90 (100%)

Table 4.1: LACC patients’ characteristics.
NLR: neutrophil-to-lymphocytes ratio. HPV: human papillomavirus. SCC: squamous cell carcinoma. *According to the
cancer stage classification by the TNM 8th edition
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intravenously during the first and the fifth week of RT at a dose of 800 mg/m2 daily during 4 days and 80

mg/m2 daily during 2 days, respectively. Delivered dose during RT in Center 4 was similar to that in Center

3 with 88 patients treated with 46 Gy sequential radiotherapy to the CTV and 54 or 58 Gy to the tumor and

pathologic lymph nodes if present. Five patients were treated with simultaneous integrated boost giving 48.6

Gy to the CTV and 57.5 Gy to the GTV. Most patients received concomitant chemotherapy with MMC 10

mg/m2 Day 1 (and Day 29 if T3-4 or N+) and 5-FU 1000 mg/m2 days 1–4 (and days 29–32 if T3-4 or N+).

More details are given in [19, 27]. Clinical characteristics of ASCC patients are shown in Table 2.

The HPV status of 35 patients in center 3 was missing. These patients were not excluded since 88-100%

of ASCCs are HPV-related[4]. The results of the survival analysis excluding these patients are presented in the

discussion.

OPSCC from Center 5 were all treated with RT and concomitant chemotherapy, receiving a total dose of

66-72 Gy to the planning target volume (PTV) and a minimum dose of 55 Gy to the elective lymph nodes

delivered in 32–35 fractions of 2-2.2 Gy, following guidelines from Gregoire et al[45]. Concomitant chemotherapy

for 25 of the patients consisted of cycles of cisplatin and cetuximab. Twelve patients received cisplatin only,

and 8 patients received cetuximab only. Clinical characteristics of OPSCC patients are shown in Table 3. Blood

count information was not retrieved for OPSCC patients.

4.2.2 Model inputs

Age, lymph node status, cancer stage and blood count, i.e neutrophils, leukocytes, monocytes, lymphocytes,

platelets, hemoglobin, neutrophil-to-lymphocyte ratio (NLR), before treatment were available and used as bio-

clinical variables. Cancer stage was assessed using the concordance between TNM classification of malignant

tumours[46] and FIGO stage for LACC[47].

Images were acquired on different scanners. Patients from Center 1 were scanned either on a Siemens

Biograph mCT (Siemens AG, Erlangen, Germany) (n=67) or on a GE Discovery 690 (GE Healthcare, Waukesha,

WI) (n=37). In Center 2, all images (n=90) were scanned with a Philips Gemini (Philips Healthcare, Best, The

Netherlands). GE Discovery 690 and Siemens Biograph mCT were utilized in Center 3 (n=66) and Center 4

(n=67) respectively. In addition, two devices, GE Discovery STE (n=30) and GE Discovery RX (n=15) were

used to scan patients in Center 5. The difference in acquisition and reconstruction parameters did not allow us

to consider each machine as a separate "batch". Thus, three scanner image series were considered for LACC,

two for ASCC, and two for OPSCC.

Image intensities were converted from activity concentration to parametric SUV units. A threshold-based

segmentation was applied, considering the threshold as 40% of the maximum radiopharmaceutical uptake in

the lesion (SUVmax), to delineate the volume of interest (VOI). This delineation was performed by a certified

nuclear medicine physician (R.D.S.with 5 years of expertise), and an experienced Clinical Scientist ( G.M. with

19 years of expertise) under the supervision of a dual certified Radiologist/Nuclear Medicine Physician (AS,

>15 yrs experience). They both used using the LifeX software, V6.30, and V4, respectively.

To ensure comparability and rotational invariance of extracted radiomic features, spatial resampling was

applied, setting voxel size on all images to 3x3x3 mm3 using b-spline interpolation implemented in the Advanced

Normalization Tools (ANTs)[48]. A fixed bin width of 0.3 SUV was selected for gray-level discretization [49].

With PyRadiomics v3.0.1, an open-source python package [50], radiomic features (n=107) were extracted from

baseline [18F]-FDG PET images: first-order (n=18), gray-level co-occurrence matrix (GLCM)(n=24), gray-level
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Center 3 Center 4
Variables mean[min-max] mean[min-max]

Age 63 [41-92] 62 [40-90]
Hemoglobin (g/dL) 12.7 [8.6-15.6] 13.5 [8.6-16.9]
Platelets (G/L) 282.3 [60.0-628.0] 289.8 [83.0-849]
Leukocytes (G/L) 7.6 [2.3-17.4] 8.0 [3.3-16.9]
Neutrophils (G/L) 5.1 [1.3-13.4] 5.3 [1.8-13.7]
Lymphocytes (G/L) 1.7 [0-3.8] 2.1 [0.3-4.1]
Monocytes (G/L) 0.6 [0.1-1.5] 0.6 [0.1-1.4]
NLR 3.7 [0.6-17.3] 3.3 [0.7-27.3]

Value(%) Value(%)

HPV Status
Positive 31 (47.0%) 67 (100%)
Missing 35 (53.0%) -

TNM*
T0 - -
T1 10 (15.1%) 1 (1.5%)
T2 24 (36.4%) 39 (58.2%)
T3 19 (28.8%) 11 (16.4%)
T4 13 (19.7%) 16 (22.4%)
N0 26 (39.4%) 36 (53.7%)
N1 11 (16.7%) 7 (10.4%)
N2 16 (24.2%) 13 (19.4%)
N3 13 (19.%) 11 (16.4%)
M0 44 (66.7%) 66 (98.5)
M1 22 (33.3%) 1 (1.5%)

Stage
I 8 (12.1%) 1 (1.5%)
II 17 (25.8%) 32 (47.8%)
III 19 (28.8%) 33 (49.2%)
IV 22 (33.3%) 1 (1.5%)

Histology
SCC 66 (100%) 67 (100%)

PET device
GE Discovery 690 66 (100%) -
Siemens Biograph mCT - 67 (100%)

Table 4.2: ASCC patients’ characteristics.
NLR: neutrophil-to-lymphocyte ratio. HPV: human papillomavirus. SCC: squamous cells carcinoma. *According to the
cancer stage classification by the TNM 8th edition
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Center 5
Variables mean[min-max]

Age 59 [43-75]

Value (%)

HPV Status
Positive 45 (100%)

TNM*
T0 -
T1 3 (6.7%)
T2 14 (31.1%)
T3 14 (31.1%)
T4 14 (31.1%)
N0 5 (11.1%)
N1 1 (2.2%)
N2 37 (82.2%)
N3 2 (4.4%)
M0 40 (88.9%)
M1 5 (11.1%)

Stage
I -
II 24 (53.3%)
III 16 (35.5%)
IV 5 (11.1%)

Histology
SCC 45 (100%)

PET device
GE Discovery STE 30 (67%)
GE Discovery RX 15 (33%)

Table 4.3: OPSCC patients’ characteristics.
HPV: human papillomavirus. SCC: squamous cells carcinoma. *According to the cancer stage classification by the TNM
8th edition
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dependence matrix (GLDM)(n=14), gray-level run length matrix (GLRLM)(n=16), gray-level size zone matrix

(GLSZM)(n=16), neighboring gray-tone difference matrix (NGTDM)(n=5), and shape (n=14) features.

To tackle differences in scanner acquisition and image reconstruction, the ComBat method was applied.

Originally developed for combating the batch effect in microarray genomic analysis [51], it was later demonstrated

that the ComBat harmonization technique successfully removes inter-site variability while preserving inter-

patient biological variability on MR images[52, 53]. When applied to radiomics, the raw value of each feature

is considered the sum of a mean value, an additive scanner effect, and a multiplicative scanner effect [49].

The purpose of this technique is to eliminate the differences between batches, by a location (mean) and scale

(variance) (L/S) transform. Radiomic features values in each batch are adjusted to have the same mean and/or

variance. To improve fit across batches, ComBat can be run with an empirical Bayes (EB) procedure that

pools the values of radiomic features from each batch to "reduce" the error on the batch effect parameter [51].

ComBat applied with EB estimates increases robustness especially if the number of samples in each batch is

small. In this study, ComBat with EB estimates and non-parametric prior method was applied. In addition

to eliminating the so-called scanner effect, ComBat can also take into account covariates that should not be

changed when removing the scanner effect. In this study, two covariates were considered. A covariate indicating

the tumor location, whether LACC, ASCC, or OPSCC, was set since it was seen that the intensities distribution

was statistically different among batches depending on tumor location. The other covariate was cancer stage,

as it has been stressed out by Orlhac et al. [54] that feature value distributions might be different in patients

with different tumor stages. Center 3 GE Discovery images were selected as the reference cohort.

The workflow used in this paper is described in Figure4.1.

Figure 4.1: Overview of the workflow, including image acquisition, data splitting, data pre-
processing, extraction of radiomic features and final survival analyses
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4.2.3 Survival prediction

Four machine-learning (ML) models for survival analysis were built to predict OS and PFS based on clinical

and biological variables only, radiomic features only and a combination of clinical variables and radiomics:

Cox’s proportional hazard’s model with elastic net penalty (CoxNet), Fast Survival Support Vector Machine

(FSSVM) and two ensemble methods: Random Survival Forest (RSF) and Component-wise Gradient Boosting

Survival Analysis (CGBSA). The different models were implemented with scikit-survival [55], a Python module

for survival analysis built on top of scikit-learn library. Ensemble method is a machine learning technique built

on several learners in order to improve generalizability and robustness over a single estimator [56, 57]. RSF and

CGBSA are built on an ensemble of tree-based learners, considering Gradient-boosted Cox proportional hazard

loss with regression trees and Gradient boosting with component-wise least squares as base learner, respectively.

Patients from Center 1 and Center 3 were used as training sets. The trained models were applied on independent

test sets,i.e., Center 2, Center 4, and Center 5 to test models generalizability. Since the information on PFS

in OPSCC patients from Center 5 was not available, we evaluated the trained models for PFS on patients

from centers 2 and 4 only. The performance of the trained models was evaluated using the concordance-index

(C-index), a metric assessing the model’s ability to correctly provide a reliable ranking of the survival times

based on the individual risk scores.

Prediction with bioclinical variables

The first model aimed to assess the prognostic value of clinical and biological variables for survival and thus

build a baseline model. Three clinical variables (age, lymph node status, cancer stage), and seven biological

variables, i.e blood count (neutrophils, leucocytes, monocytes, lymphocytes, platelets, hemoglobin and NLR)

were available. Performance of clinical features and blood count features were evaluated independently before

the combined model. It has been shown in several studies that MTV, and TLG are prognostic factors for

survival in SCC [27, 58]. A grid search with 5-fold cross-validation (CV) was used to train the models and tune

hyper-parameters.

Prediction with radiomic features

Regarding the radiomic features-based model, a modified consensus nested cross-validation (cnCV)[59] was im-

plemented for feature selection and hyper-parameter tuning (Figure 2). Although MTV and TLG are commonly

used in clinical routine, they were considered as radiomic features in this study, being directly extracted from

the images.

To this end, a grid search strategy was implemented. The parameter space used for tuning the hyper-

parameters is presented in the supplementary materials (Table S1). The C-index was used as performance

metric. In this study, instead of choosing the best outer model like in a classical nCV, all models yielding

a C-index ≥ 0.7 on the outer folds were retained. The modified cnCV was repeated ten times to increase

robustness of the selected features and hyper-parameters. The most common features (appearing at least in

60 models) and the most selected hyper-parameters within these models were then selected to train the final

model on the full training cohort (Center 1 and Center 3) and tested on the test sets (Center 2, Center 4 and

Center 5). Using the predicted risk scores, we plotted the area under the receiver operating characteristic (ROC)

curve (AUC) extended to survival by defining sensitivity (true positive rate) and specificity (true negative rate)
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Figure 4.2: Modified consensus Nested Cross-Validation (cnCV) implemented for feature selection
and hyperparameter tuning. Features are selected in the inner loops, and robustness is evaluated
on the outer loops. The final radiomic features are a consensus on the most selected features.

as time-dependent measures. This was done to evaluate how well estimated risk scores can separate patients

experiencing death or progression from healthy patients n months after the end of treatment on Center 2 and

4. As MTV has been already identified as a prognostic feature for survival[58, 60, 61], time-dependent AUC of

a CoxNet model based on MTV was also evaluated.

Prediction with clinical variables and radiomic features

For each ML model, a model combining the clinical variables and new radiomic features, again selected by

the modified cnCV, was trained and compared with the respective models built on bioclinical variables only or

radiomic features only.
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4.3 Results

4.3.1 Prediction with bioclinical variables

Baseline models considering age, cancer stage and lymph node status as inputs, were found to give the best

performance on OS and PFS (Table 3) compared to blood count-based models or a combination of both. Blood

counts alone were found to be weak prognostic features (C-index≤0.55). The C-index did not improve when

these variables were introduced into the OS and PFS prognosis models for all ML models developed (results not

shown). The baseline models gave C-index values between 0.60 and 0.67 on Centers 2 and 4. On Center 5, only

CoxNet model achieved a C-index of 0.60, when other models showed poor prognostic values (C-index<0.50).

Table 4.4: Performance of baseline models based on clinical variables alone, including age, lymph
node status and cancer stage.

CoxNet PFS OS
Train 0.68 ± 0.01 0.66 ± 0.02
Validation 0.66 ± 0.09 0.62 ± 0.09
Test (Center 2: LACC) 0.64 0.65
Test (Center 4: ASCC) 0.66 0.67
Test (Center 5: OP-
SCC)

- 0.60

FSSVM PFS OS
Train 0.71 ± 0.06 0.70 ± 0.07
Validation 0.66 ± 0.08 0.63 ± 0.08
Test (Center 2: LACC) 0.62 0.64
Test (Center 4: ASCC) 0.64 0.66
Test (Center 5: OP-
SCC)

- 0.46

RSF PFS OS
Train 0.75 ± 0.07 0.74 ± 0.08
Validation 0.65 ± 0.07 0.63 ± 0.09
Test (Center 2: LACC) 0.61 0.60
Test (Center 4: ASCC) 0.63 0.64
Test (Center 5: OP-
SCC)

- 0.50

CGBSA PFS OS
Train 0.72 ± 0.06 0.71 ± 0.08
Validation 0.66 ± 0.08 0.63 ± 0.08
Test (Center 2: LACC) 0.61 0.61
Test (Center 4: ASCC) 0.62 0.63
Test (Center 5: OP-
SCC)

- 0.48

LACC: locally advanced cervical cancer. ASCC: anal squamous cells carcinoma. OPSCC: oropha-
ryngeal squamous cell carcinoma. Coxnet: Cox’s proportional hazard’s model with elastic net
penalty, FSSVM: Fast Survival Support Vector Machine, RSF: Random Survival Forest, CGBSA:
Component-wise Gradient Boosting Survival Analysis.
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4.3.2 Prediction with radiomic features

C-index values obtained for the models incorporating the radiomic features are presented in Table 4. For PFS,

CoxNet yielded C-index values of 0.75 and 0.78, CGBSA achieved C-indexes of 0.72 and 0.74, and FSSVM

0.75 and 0.76 on Centers 2 and 4 respectively. Using MTV only, these models achieved C-index of 0.75 on

Center 2 and values ranging from 0.65 to 0.70 on Center 4. Likewise, these models had similar C-indexes on OS

prediction on center 2 and 4. However, on OPSCC (Center 5), we obtained lower results for OS prediction on

all trained models except for CoxNet model with a C-index value equal to 0.75. FSSVM had 0.69, and CGBSA

had 0.65 as C-index values. The MTV based model had lower results on Center 5, C-index values were between

0.56 and 0.59. On all the test sets in general, results were consistent on LACC and ASCC patients for both

OS and PFS across CoxNet, FSSVM and CGBSA (0.72≥ C-index ≤ 0.78). RSF was prone to overfitting as it

performed remarkably well on the training cohort but decreased in performance on the validation and test sets.

The time-dependent AUC is shown in Figure 3. Regarding PFS prediction for Center 2, the MTV based

model and FSSVM achieved time dependent AUC values of 0.78 and 0.77 respectively. CoxNet and CGBSA

had similar results with 0.75 and 0.74, respectively. Similarly, all models achieved similar results on Center 4:

MTV based model, CoxNet and FSSVM had mean AUC values of 0.75 while CGBSA reached 0.73. On OS

prediction, the time dependent AUC values were comparable across all models on Centers 2 and 4. FSSVM

model and MTV based model presented mean AUC values of 0.72 and 0.71 on Center 2 respectively, when

CoxNet and CGBSA had 0.70 and 0.69 respectively. On Center 4, CGBSA, with the highest score, achieved

0.78 as mean AUC value, CoxNet and MTV based model achieved 0.76 and 0.77 respectively, while FSSVM

had an AUC of 0.74. On Center 5, the MTV based model had an AUC of 0.65 whereas CoxNet, FSSVM and

CGBSA yielded 0.61, 0.60 and 0.53 respectively.

4.3.3 Prediction with clinical variables and radiomic features

The modified cnCV built on radiomic and bioclinical variables selected radiomic features only as relevant features

for OS and PFS prediction. However, to evaluate the added value of bioclinical variables, we added age, stage

cancer and lymph node status to the previously selected radiomic features. Combining clinical and radiomic

features improved slightly the results on all the outcomes on the training set, but the performances remained

comparable to radiomic based models on the test sets.
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Figure 4.3: Time-dependent AUC performance metrics assessed over 36 months in terms of
progression-free survival for Center 2 (left, LACC) and Center 4 (right, ASCC)

LACC: locally advanced cervical cancer, ASCC: anal squamous cells carcinoma, OPSCC:
oropharyngeal squamous cell carcinoma, Coxnet: Cox’s proportional hazard’s model with elastic

net penalty, FSSVM: Fast Survival Support Vector Machine, RSF: Random Survival Forest,
CGBSA: Component-wise Gradient Boosting Survival Analysis

Figure 4.4: Time-dependent AUC performance metrics assessed over 36 months in terms of overall
survival for Center 2 (top left, LACC), Center 4 (top right, ASCC), and OPSCC (bottom)

LACC: locally advanced cervical cancer, ASCC: anal squamous cells carcinoma, OPSCC:
oropharyngeal squamous cell carcinoma, Coxnet: Cox’s proportional hazard’s model with elastic

net penalty, FSSVM: Fast Survival Support Vector Machine, RSF: Random Survival Forest,
CGBSA: Component-wise Gradient Boosting Survival Analysis
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Table 4.5: C-index of models based on radiomic features alone and combined features (radiomic
features combined to clinical variables).

Radiomic features Combined features
Model PFS OS PFS OS

CoxNet
Train 0.74 ± 0.02 0.77 ± 0.01 0.76 ± 0.02 0.76 ± 0.01
Validation 0.73 ± 0.07 0.74 ± 0.08 0.71 ± 0.07 0.70 ± 0.06
Test(Center 2: LACC) 0.75 0.76 0.72 0.75
Test(Center 4: ASCC) 0.78 0.74 0.76 0.75
Test(Center 5: OPSCC) - 0.75 - 0.67

FSSVM
Train 0.74 ± 0.01 0.77 ± 0.02 0.76 ± 0.02 0.81 ± 0.01
Validation 0.72 ± 0.06 0.72 ± 0.07 0.72 ± 0.08 0.75 ± 0.08
Test(Center 2: LACC) 0.75 0.75 0.72 0.72
Test(Center 4: ASCC) 0.76 0.78 0.73 0.72
Test(Center 5: OPSCC) - 0.69 - 0.60

RSF
Train 0.93 ± 0.01 0.94 ± 0.01 0.90 ± 0.01 0.91 ± 0.01
Validation 0.72 ± 0.06 0.72 ± 0.10 0.72 ± 0.06 0.73 ± 0.05
Test(Center 2: LACC) 0.65 0.69 0.65 0.71
Test(Center 4: ASCC) 0.69 0.70 0.63 0.69
Test(Center 5: OPSCC) - 0.51 - 0.51

CGBSA
Train 0.74 ± 0.01 0.76 ± 0.01 0.75 ± 0.02 0.79 ± 0.02
Validation 0.73 ± 0.05 0.74 ± 0.07 0.72 ± 0.07 0.72 ± 0.06
Test(Center 2: LACC) 0.72 0.72 0.69 0.64
Test(Center 4: ASCC) 0.74 0.75 0.69 0.72
Test(Center 5: OPSCC) - 0.65 - 0.64

LACC: locally advanced cervical cancer, ASCC: anal squamous cells carcinoma, OPSCC: oropha-
ryngeal squamous cell carcinoma, Coxnet: Cox’s proportional hazard’s model with elastic net
penalty, FSSVM: Fast Survival Support Vector Machine, RSF: Random Survival Forest, CGBSA:
Component-wise Gradient Boosting Survival Analysis.
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4.4 Discussion

In this study, a common [18F]-FDG PET radiomic signature was developed to predict OS and PFS for patients

with HPV induced cervical cancer, anal and oropharyngeal squamous carcinomas. For this purpose, five in-

dependent cohorts were used: two cohorts of patients with LACC, two cohorts of patients treated for ASCC

and a cohort of patients with OPSCC. Four ML models were trained on LACC patients from Center 1 and

ASCC patients from Center 3. Center 2 (LACC), Center 4 (ASCC) and Center 5 (OPSCC) cohorts were used

as independent test sets to evaluate the generalizability of the trained models. Models trained on the clinical

variables including age, lymph nodes status, and cancer stage (baseline model) yielded results between 0.61

and 0.66 for PFS prediction, and between 0.60 and 0.67 for OS prediction in centers 2 and 4, respectively.

OS prediction for OPSCC patients in center 5 showed C-index values < 0.5, except for Coxnet model, which

achieved a C-index of 0.60. Using radiomics features only, results were consistent on LACC and ASCC cohorts

for both OS and PFS with CoxNet, FSSVM and CGBSA achieving C-indexes comprised between 0.72 and 0.78,

whereas RSF was prone to overfitting with C-index values≤ 0.70 on all the test sets. However, on OPSCC

(Center 5), we obtained lower results for OS prediction on all trained models (C-index≤0.69) except for CoxNet

model (C-index=0.75). The radiomic based CoxNet model showed better ability to predict survival on the three

independent cohorts with C-index scores between 0.74 and 0.78 regardless of the predicted task. Combining

radiomic and bioclinical variables gave better results than the baseline model but remained inferior or equal to

models based on radiomics alone.

C-index is a measure of the model’s ability to correctly provide a trustworthy ranking of survival times based

on individual risk scores. It is the fraction of pairs in a cohort where the observation with the higher survival time

has the higher probability of survival predicted by the model. Therefore, C-index should allow for discrimination

between early events, associated with higher-risk subjects, and later occurrences. To evaluate the ability of

the trained models to classify patients who will experience death or relapse n months after the treatment, we

computed the time dependent AUC. The MTV based model was slightly superior in distinguishing patients

prone to experience progression in the first months after treatment, but over time all models had similar results.

For OS, all models achieved similar performances except on Center 5 where the MTV based model proved to

be superior in the first months after treatment and achieved a mean AUC of 0.65. In all cases, the mean AUC

remained stable and comparable regardless of the ML model, except for the prediction of OS on Center 5 during

the first months after treatment. These results can be explained by the fact that the selected radiomic features

for FSSVM and CGBSA were found to be correlated to MTV (r ≥ 0.6) except for two features of texture, i.e,

dependence entropy calculated from GLDM and zone entropy calculated from GLSZM. The predicted risk scores

of the FSSVM model showed a linear correlation with MTV (Figure S2). We note, furthermore, that combining

second-order features (gldm DependenceEntropy and glszm ZoneEntropy), not correlated to MTV, provided

the best survival ranking (CoxNet model). The C-index values of all radiomic features-based ML models were

found to be higher than the prediction based on MTV alone for PFS and OS (Table S3). These results highlight

the importance of the performance metric used for model construction according to the clinical purpose of the

developed tool. To ensure that forcing the signature to be generalizable to 2 types of HPV-induced cancers did

not worsen the performance of radiomics and only favored the selection of volume-correlated features, a CoxNet

model based on radiomic features was trained on cervical cancer patients only (Center 1) and its performance

evaluated on Center 2. The same process was applied to Center 3 and 4. For PFS, the model achieved C-index

values of 0.72 and 0.73 on Center 2 and 4 respectively. For OS, the model yielded 0.73 and 0.75 on Center 2
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and 4 respectively. All these results are in favor of a common phenotype, highlighted by the generalizability of

the results obtained.

Several studies have highlighted the interest of combining radiomic and clinical features for performance

improvements[27, 38, 40, 41, 42, 43]. In this project, combining radiomic and clinical features did not improve

the C-index values on the test cohorts. In addition, some radiomic features were found to be better predictors

of survival than conventional SUV measures, such as maximum SUV, minimum SUV, mean SUV and peak

SUV. In line with our findings, other studies have pointed out the superiority of radiomic features over SUV

measurements [30, 62, 63]. Since the first publications on radiomics [29, 64, 65], the main limitation remains

the non-standardization of imaging protocols, acquisition and reconstruction parameters. Several studies have

assessed the impact of these parameters and multiple solutions have been proposed [66, 67, 68, 69]. We

applied the ComBat method to mitigate the variability in extracted features and to improve the generalizability

of response prediction signatures in a multi-center context. The main limitation of using ComBat is the way

batch allocation is determined. As acquisition and reconstruction parameters have an impact on image quality,

batch allocation was done in such a way that one batch had to share the same device, the same acquisition

parameters, and the same reconstruction algorithm and parameters. The results show that the approach seems

to have been correctly applied with generalizable results from one cohort to another.

The amount of variables used as inputs to train ML algorithms plays a key role on its performance. Subop-

timal number of variables can lead to over-fitting or under-fitting [70]. Combining a high number of variables

can limit the performance by diluting the predictive power of certain features by the noise present in others.

In most radiomic studies, the number of patients is lower than the number of features, which generates a

high-dimensional data problem, leading to overly optimistic results and preventing the generalizability of the

trained models. Therefore, feature selection is an indispensable step to avoid irrelevant features and redundancy.

It allows for better comprehension and explainability of the trained models[70]. Several methods, each with

its limitations, for feature selection have been assessed but no consensus has been reached. In this study, a

modified cnCV was implemented to ensure for quality and robustness of the trained models performance on the

independent test sets. Given that, feature selection is data dependent, feature selection was carried out in the

inner folds of the modified cnCV, while assessing the stability of model performance in the outer folds[59]. The

selected features are presented in Table S2

In this study, the HPV status of 35 patients with ASCC treated in Center 3 was missing. However, these

patients were included in the study under the assumption that 88-100% [4]of anal canal cancers are HPV-

induced. To ensure that the addition of these patients did not constitute a bias, the performance of the trained

models was evaluated by removing these patients. The C-index values decreased slightly but remained above

0.70 for all models (Table S4).

This study had some limitations. First, patients with OPSCC were only 45 and the number of events, here

death, occurring in the following 36 months after treatment, was only six. The size of this cohort is clearly

a limitation for survival prediction using the C-index metric. Nevertheless, the results for OS prediction are

promising and further investigation should be conducted by adding OPSCC patients in the training and/or

test cohorts. Second, the tumors on the PET images were segmented by two board-certified nuclear medicine

physicians. This was shown to add variability in radiomic features but for the purposes of this study, we

considered it negligible. Third, impact of voxel resampling was not assessed. As there is no consensus on the

best method for voxel resampling, further analysis should be conducted to ensure that the signature developed

is independent of resampling settings. Adding other information besides imaging such as histology, genomics or

130



dose-based variables could lead to better prediction.

In conclusion, survival prediction models using radiomic features extracted from [18F]-FDG PET images

could predict survival outcomes using a common HPV signature in LACC, ASCC and HNSCC. Results have

been validated on external independent data sets, but the added value remains to be demonstrated compared

to conventional quantities such as MTV extracted from PET in particular for early event detection. Radiomics

may therefore pave the way to optimization of HPV induced cancers treatment, identifying patients who might

benefit from intensified or deintensified dose delivery.
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4.5 Supplementary materials

Table S1: Grid search space used for hyper-parameters tuning of the different ML models

ML models Parameters
Name Space

CoxNet alphas [1e-04 – 1e+4]
FSSVM alpha [2e-4 - 4e+3]

optimizer [avltree, rbtree, direct-count]
RSF n_estimators [100, 150, 200]

max_features [auto, sqrt, log2, None]
min_samples_split [4, 6, 10]

CGBSA loss [coxph, squared]
learning_rate [0.01, 0.1, 0.5, 1]
n_estimators [100, 150, 200, 250]

Coxnet: Cox’s proportional hazard’s model with elastic
net penalty
FSSVM: Fast Survival Support Vector Machine
RSF: Random Survival Forest
CGBSA: Component wise Gradient Boosting Survival
Analysis
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Table S2: Selected features after consensus Nested Cross-Validation

ML models PFS OS
CoxNet

gldm DependenceEntropy gldm DependenceEntropy
glszm ZoneEntropy glszm ZoneEntropy
TLG TLG
shape MinorAxisLength

FSSVM
shape MinorAxisLength shape MinorAxisLength
shape SurfaceArea shape SurfaceArea
shape MeshVolume shape MeshVolume
shape LeastAxisLength shape LeastAxisLength
shape Maximum2DDiameterColumn shape Maximum2DDiameterColumn
shape Maximum2DDiameterSlice glcm Correlation
shape VoxelVolume gldm DependenceEntropy
glcm Correlation glszm ZoneEntropy
gldm DependenceEntropy TLG
glszm ZoneEntropy
TLG
shape SurfaceVolumeRatio

RSF
glszm ZoneEntropy glszm ZoneEntropy
glcm JointENtropy glcm JointEntropy
gldm DependenceEntropy gldm DependenceEntropy
glrlm RunEntropy glrlm RunEntropy
firstorder Variance firstorder Variance
TLG TLG
glszm SmallAreaEmphasis
shape Elongation

CGBSA
gldm DependenceNonUniformity gldm DependenceNonUniformity
gldm DependenceEntropy gldm DependenceEntropy
glszm ZoneEntropy glszm ZoneEntropy
firstorder TotalEnergy firstorder TotalEnergy
TLG TLG
shape Maximum2DDiameterSlice glrlm RunLengthNonUniformity
shape MeshVolume ngtdm Coarseness

Coxnet: Cox’s proportional hazard’s model with elastic net penalty
FSSVM: Fast Survival Support Vector Machine
RSF: Random Survival Forest
CGBSA: Component wise Gradient Boosting Survival Analysis
GLDM: Gray Level Dependence Matrix
GLSZM: Gray Level Size Zone Matrix
TLG: Total Lesion Glycolysis
ngtdm: Neighbouring Gray Tone Difference Matrix
glrlm: Gray Level Run Length Matrix
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Table S3: C-index of models based on MTV only

PFS OS
CoxNet
Train 0.69 ± 0.02 0.72 ± 0.02
Validation 0.69 ± 0.07 0.73 ± 0.08
Test (Center 2: LACC) 0.75 0.74
Test (Center 4: ASCC) 0.70 0.71
Test (Center 5: OPSCC) 0.56
FSSVM
Train 0.69 ± 0.02 0.72 ± 0.07
Validation 0.69 ± 0.08 0.72 ± 0.08
Test (Center 2: LACC) 0.75 0.74
Test (Center 4: ASCC) 0.65 0.71
Test (Center 5: OPSCC) 0.59
RSF
Train 0.77 ± 0.03 0.73 ± 0.06
Validation 0.66 ± 0.06 0.65 ± 0.06
Test Center 2 0.60 0.60
Test Center 4 0.61 0.59
Test Center 5 0.52
CGBSA

Train 0.69 ± 0.01 0.74 ± 0.02
Validation 0.70 ± 0.05 0.74 ± 0.07
Test (Center 2: LACC) 0.75 0.75
Test (Center 4: ASCC) 0.65 0.71
Test (Center 5: OPSCC) 0.56

Coxnet: Cox’s proportional hazard’s model with elastic net penalty
FSSVM: Fast Survival Support Vector Machine
RSF: Random Survival Forest
CGBSA: Component wise Gradient Boosting Survival Analysis
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Table S4: C-index of models based on radiomic features: exclusion of patients with missing
information on HPV status in Center 3

PFS OS
CoxNet
Train 0.71 ± 0.03 0.73 ± 0.02
Validation 0.72 ± 0.08 0.70 ± 0.07
Test (Center 2: LACC) 0.71 0.72
Test (Center 4: ASCC) 0.72 0.73
Test (Center 5: OPSCC) 0.64
FSSVM
Train 0.73 ± 0.04 0.72 ± 0.07
Validation 0.70 ± 0.08 0.71 ± 0.08
Test (Center 2: LACC) 0.70 0.72
Test (Center 4: ASCC) 0.71 0.71
Test (Center 5: OPSCC) 0.68
RSF
Train 0.75 ± 0.04 0.73 ± 0.05
Validation 0.72 ± 0.09 0.70 ± 0.08
Test (Center 2: LACC) 0.64 0.66
Test (Center 4: ASCC) 0.65 0.66
Test (Center 5: OPSCC) 0.62
CGBSA
Train 0.74 ± 0.02 0.72 ± 0.06
Validation 0.72 ± 0.08 0.73 ± 0.09
Test (Center 2: LACC) 0.71 0.71
Test (Center 4: ASCC) 0.71 0.70
Test (Center 5: OPSCC) 0.61

Coxnet: Cox’s proportional hazard’s model with elastic net penalty
FSSVM: Fast Survival Support Vector Machine
RSF: Random Survival Forest
CGBSA: Component wise Gradient Boosting Survival Analysis
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Figure S1: CoxNet risk score predictions and tumor volume

Figure S2: FSSVM risk score predictions and tumor volume

Figure S3: CGBSA risk score predictions and tumor volume

LACC: Locally advanced cervical cancer
ASCC: Anal squamous cell carcinoma
OPSCC: Oropharyngeal squamous cell carcinoma
Coxnet: Cox’s proportional hazard’s model with elastic net
penalty
FSSVM: Fast Survival Support Vector Machine
RSF: Random Survival Forest
CGBSA: Component wise Gradient Boosting Survival Analysis
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Chapter 5

MR image normalization in locally
advanced cervical cancer: what is the
optimal method for developing
multicenter radiomic models?

Abstract

MRI-based radiomic studies have shown promising results in locally advanced cervical cancer (LACC) but have

been negatively impacted by the lack of robustness of radiomic features depending on the device used and

parameters selected for image acquisition. In this paper, we proposed a conditional generative adversarial

network (cGAN) and a CycleGAN to address this problem and compared it to conventional preprocessing and

a posteriori methods proposed in the literature. For this purpose, T2w MR images from 30 patients treated

for LACC were acquired prospectively, as Cohort 1. For each patient, three images were taken sequentially

on the same scanner with fixed values of repetition time (TR) and voxel size (VS). A retrospective cohort

of 216 LACC patients (Cohort 2) was also gathered, including 86 and 160 T2w MR images taken before

radiotherapy (RT) and brachytherapy (BT), respectively. A cGAN was trained on paired images from Cohort

1 to generate images robust to the impact of TR and VS modulation, and its performance was evaluated on

an unseen test set considering 10 patients. A CycleGAN strategy was applied on unpaired images from Cohort

2. Histogram-matching standardization (Nyul), z-score normalization and ComBat harmonization methods

were also implemented. Different quality metrics (e.g. mean, range, variance, Peak signal to noise ratio, etc)

were extracted from Cohort 1 images and the impact of standardization methods assessed by means of principal

component analysis (PCA). Using Intra-Class Correlation (ICC) and Concordance Correlation Coefficient (CCC),

robust features were also characterized (CCC and ICC ≥ 0.75). Similarly, pre-RT and pre-BT MR images of

Cohort 2 were standardized using Nyul, z-score, and CycleGAN, and different machine learning (ML) models

were trained to investigate the impact of these harmonization methods on stage classification and relapse

prediction, respectively. PCA on quality metrics showed that TR and VS changes were mitigated the most with

cGAN. The maximum variance was effectively reduced by Nyul and z-score but only cGAN managed to reduce
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also the maximum variance direction. Regarding TR/VS modulation on first-order features, cGAN achieved the

best results with 100% (18/18) robust features after standardization follwed by Nyul combined with ComBat.

Regarding TR/VS modulation on second order features, cGAN yielded 77%(58/75) of robust features. On pre-

RT images, stage classification showed improved performance whatever the harmonization strategy implemented.

Average accuracy was improved on the test set from 0.68±0.16 to 0.83±0.07, 0.78±0.04, and 0.88±0.09 with

Nyul standardization, z-score standardization, and CycleGAN standardizations, respectively. Likewise, relapse

prediction based on pre-BT images achieved higher AUC on the test set after image standardization with

the best model achieving 0.44 before standardization, 0.52, 0.56, and 0.60 after z-score, Nyul, and CycleGAN

standardization, respectively. Our results suggest that neural network-based normalization could better limit the

impact of acquisition parameters on MRI radiomic features compared to conventional methods in LACC. This

result reinforces the growing popularity of DL in medical imaging field, providing here an answer to the not-so-

common problem of image normalization. This study provides an additional building block for the deployment

of radiomic signatures at a multi-center scale.

Keywords— LACC, MRI, Radiomics, image standardization, cGAN, CycleGAN

5.1 Introduction
Magnetic resonance imaging (MRI) thanks to its high soft tissue contrast is a capital imaging modality in

diagnosis, treatment planning, and follow-up of patients with locally advanced cervical cancer (LACC)[1, 2,

3, 4, 5, 6]. MRI T2 Weighted (T2w) sequence is particularly essential for RT and BT target volume and

organs at risk (OARs) definition, as well as for the assessment of nodal involvement and distant metastasis[7].

Furthermore, it has been shown by several studies that T2w MR images-based processing methods, such as

radiomic analysis, could lead to a better prognosis of tumor response in LACC [8, 9, 10, 11].

MR images manipulated on a daily basis by radiologists are generally contrast images, expressed in arbitrary

units, meaning that the intensity value of one tissue can vary from scanner to scanner and from one acquisition

to another[12]. Quantitative MRI sequences are emerging as potential imaging biomarkers for better diagnosis

and characterization of tumors, in a similar fashion to standard uptake value (SUV) in positron emission

tomography (PET[13, 14]). Diffusion-weighted imaging in MRI has the particularity to measure the mobility of

water molecules for complementary information to convetional MRI. MR T2 mapping (or T1 mapping) measures

transverse magnetization T2 relaxation time (or longitudinal magnetization T1 relaxation time) in milliseconds.

There are still relatively few studies on quantitative MR images and these modalities are still scarcely used in

clinical routine. Therefore, most radiomic studies are still based on conventional anatomical sequences such

as T2w MR images. In contrast to the T2 MR mapping values, which are absolute and therefore more or

less comparable, signal intensities in T2w MRI are highly dependent on imaging parameters, which will in turn

impact radiomic features[15, 16, 17]. The first publications in the field of radiomics[18, 19] were met with

strong enthusiasm, but the interest is now experiencing a relative decline. The main reason is the lack of

reproducibility and robustness of radiomic features. If the first papers were content to develop signatures on

very homogeneous datasets, these must now demonstrate their generalisability in multicentre conditions and

on a large number of patients in order to be considered solid, and robust enough to be applicable to clinical

practice. Various methods to tackle the lack of standardization of imaging protocols and inter-device variability

have been proposed but, to this time, no consensus was reached. These methods might be applied directly on
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MR images such as histogram matching [20, 21] or image intensity normalization; or a posteriori on radiomic

features to eliminate the so-called ’batch-effect’ [carre_autoComBat_2022, 22, 17].

Deep learning (DL) is becoming very popular in computer vision and medical imaging, achieving state-of-

the-art results in both fields without the need of defining hand-crafted features. In radiotherapy, deep-learning is

now widely used in clinical routine for a variety of tasks, ranging from automatic segmentation to the generation

of synthetic images[23]. Generative adversarial networks (GANs) have been successfully applied for almost 10

years, and have demonstrated their ability to increase the realism of the generated images, i.e generation of

synthetic CT from MRI, their utility in data augmentation in machine-learning (ML), noise removal, etc[24,

25, 26, 27, 28] Since its first publication[29], GANs have been broadly applied, and several improvements

have been proposed. The conditional GAN (cGAN) is based on the original GAN with additional inputs to

guide the generation of image. GAN and cGAN architectures are based on unsupervised learning and require

a large amount of paired images. This means that to train successfully a GAN/cGAN to generate MR images

from domain X (machine X with specific parameters) to domain Y (Machine X or machine Y, with different

parameters), one has to gather paired data from domain X and domain Y. This would be an insurmountable

limitation in radiomic analysis, since, in a retrospective context, images are not paired. Therefore, to overcome

this limitation, unsupervised cycle generative adversarial networks (CycleGAN) to translate an image from a

source domain X to a target domain Y in the absence of paired data were proposed[30]. CycleGANs have

been applied for many purposes in MRI including intensity standardization, or generation of synthetic CT from

MRI [31, 32, 33, 34, 35]. CycleGANs have shown superior visual similarities between image domains both

quantitatively and qualitatively compared with other normalization techniques and thus increase the overlap

of feature distribution not only among unharmonized MR images[32, 33, 36], but also in digital pathology,

methods[37, 38]. Few studies have applied GAN or CycleGan for MR image standardization so far, despite the

high resolution of generated images and preservation of the semantic information within the data[34, 39].

This study had two main objectives. On the one hand, on a prospective cohort with fixed acquisition

parameters and paired images, a conditional GAN (cGAN) was trained to generate standardized MR images

robust to the impact of repetition time (TR) and voxel size (VS). Its performance was compared to conventional

standardization techniques: two standardization methods applied on MR images (a histogram matching method

called Nyul and z-score normalization) and the ComBat method applied to extracted features. On the other

hand, on a retrospective dataset, to evaluate the performance of these standardization methods, ML algorithms

were trained on T2w MR images on two clinical tasks: tumor grade classification and relapse prediction. Here,

MR images were unpaired with very large acquisition parameters. Therefore, instead of a cGAN, a CycleGAN

method was implemented for MR image standardization.
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5.2 Material and Methods

5.2.1 Input Data

T2w MR images from 30 patients treated for LACC at different steps of their cancer management (5 pre-RT, 7

pre-BT, 18 follow-up) were acquired prospectively, as Cohort 1. For each patient, T2w MR images were taken se-

quentially using a 1.5T GE Optima MR450w (GE Healthcare, Waukesha, WI) with specific values of TR and VS:

1) TR ≥ 5700ms and VS=0.58mm×0.58mm×4.0mm, 2) TR = 3300ms and VS=0.78mmx0.78mm×4.0mm,

3) TR = 3300ms and VS=0.58mm×0.58mm×4.0mm. All other parameters were kept constant (magnetic

field, echo time, slice thickness, acquisition matrix). Image parameters of Cohort 1 are shown in Table 5.1.

On each image, the whole cervix, excluding the disease, was manually segmented by a board-certified radiation

oncologist (P-A.L) with 3 years of expertise. This was done to ensure that the region from which the radiomic

features were extracted was the same across patients.

Acquisition Manufacturer -
Model name

Matrix dimen-
sion

TE (ms) TR (ms) Slice
thickness
(mm)

Pixel size
(mmxmm)

FOV
(mm)

1st GE Medical Sys-
tems - Optima
MR450w

512x512 108 ≥ 5700 4.0 0.58x0.58 300

2nd 3300 4.0 0.78x0.78 400
3rd 3300 4.0 0.58x0.58 300

Table 5.1: Prospective cohort MR images (n=30) acquisition parameters. TE: Echo time, TR:
Repetition time, FOV: Field of view.

A retrospective cohort, Cohort 2, of 216 LACC patients was gathered. Patients were treated by a com-

bination of external beam RT (EBRT) with concomitant chemotherapy, followed by a BT boost. T2w MR

images for 86 patients and 216 patients, taken before EBRT and BT, respectively, were available as shown in

Table 4.1. The Gross Tumor Volume (GTV) and the high-risk clinical target volume (CTVHR) were manually

segmented on pre-RT and pre-BT MR images respectively. After quality checks, 56 patients were excluded from

the pre-BT cohort: 22 patients presented artifacts in the segmented CTVHR and clinical follow-up was missing

for 34 patients.

Patient characteristics and MRI acquisition parameters of Cohort 2 are detailed in Tables 2-4. Tables 6.2

and 5.3 refer to pre-RT and pre-BT MRI acquisition parameters, respectively. Table5.4 details patients’ clinical

characteristics. Patients experiencing local, regional (pelvic), or distant (metastasis) recurrence were considered

relapsing patients. Patients were followed up at least until the occurrence of the relapse or at least for 30

months for non-relapsing patients.

5.2.2 Standardization methods

Two standardization techniques applied to images prior to radiomic features extraction and one a posteriori

harmonization method applied to extracted features were implemented. GAN-based standardization was also

assessed on Cohort 1 and Cohort 2 with cGAN and CycleGAN respectively. Prior to image standardization, MR

images were corrected from magnetic field inhomogeneity using the N4ITK correction algorithm [40]. The images
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Manufacturer Model (n) Magnetic
Field
(T)

Matrix
dimen-
sion

TE (ms) TR (ms) Slice
thickness
(mm)

Pixel Spacing
Range (mmxmm)

min*min-
max*max

min-max min-max min-max min*min-max*max

GE Medical
Systems

SIGNA EX-
CITE (34)

1.5 512x512 88-149 2720-
6750

3-8 0.39x0.39-0.78x0.78

SIGNA
HDxt (14)

1.5 512x512 103-124 4330-
5460

3.0-7.0 0.47x0.47-0.58x0.58

SIGNA HDx
(3)

1.5 512x512 100-108 4330-
5460

4.0-5.0 0.47x0.47

SIGNA HDe
(1)

1.5 512x512 100-108 4330-
5460

5.0 0.47x0.47

Genesis
Sigma (1)

1.5 512x512 95-123 2400-
3000

5.0 0.47x0.47-0.62x0.62

Optima
MR450w (1)

1.5 512x512 124 6036 3.5 0.49x0.49

Optima
MR360 (1)

1.5 512x512 117 4177 5.0 0.64x0.64

Discovery
MR750 (1)

3.0 512x512 113 5055 5.0 0.43x0.43

HITACHI
Medical Cor-
poration

Airis Elite
(1) (∗)

3.0 256x256 100 4720 6.0 1.17x1.17

Philips Medi-
cal System

Panorama
HFOx (2)

1.5 512x512 117 3200-
3600

4.0 0.47x0.47

Intera (1) 1.5 512x512 80 3000 3.0 0.66x0.66
Panorama
HFO (2)

1.5 512x512 117 4177 5.0 0.64x0.64

Achieva (2) 1.5 320x320-
512x512

90-125 3774-
8260

2.0-5.0 0.48x0.48-0.75x0.75

Siemens Avanto (7) 1.5 320x320-
384x384

108-149 3550-
7570

3.5-6.0 0.75x0.75-1.0x1.0

Symphony
(6)

1.5 372x372-
512x512

88-110 5960-
7510

4.0-5.0 0.74x0.74-0.83x0.83

Toshiba MRT200PP3
(7)

1.5 288x288-
512x512

75-120 4800-
7320

3.5-4.0 0.58x0.58-0.76x0.76

MRT200SP6
(3)

1.5 512x512-
768x768

108-144 4200-
8134

3.0-3.5 0.32x0.32-0.47x0.47

Table 5.2: Retrospective pre-RT MR images (n=86) acquisition parameters. RT: Radiotherapy,
T: Tesla, TE: Echo time, TR: Repetition time, ms: milliseconds. n is the number of patients
for whom images were acquired on the specified model. ∗: MR image selected as as target for
CycleGAN training.

and associated masks were then resampled to isotropic voxels of 1 × 1 × 1 mm3 using b-spline interpolation

and nearest-neighbor interpolation, respectively, implemented in the Advanced Normalization Tools (ANTs)[41].

Methods based on standardization of MR image intensities

In this paper, two methods proposed in the literature for MR images intensity standardization were assessed.

The first method was a histogram-matching method detailed for the first time by Nyul et al.[20] and modified
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Manufacturer Model Magnetic
Field T)

Matrix
dimen-
sion

TE (ms) Slice
thickness
(mm)

PixelSpacing
Range
(mmxmm)

TR (ms) (min-
max)

n pa-
tients

GE Med-
ical Sys-
tems

SIGNA
EXCITE

1.5 512x512 128 3 0.58x0.58 2340 1

3300-3320 (∗) 16
3440-3900 60
4460 1
5200-5800 4
6000-6640 41

0.60x0.60-
0.68x0.68

3300-3440 22

4260 1
6600 5

0.70x0.70-
0.78x0.78

3400 7

6600 2

Table 5.3: Retrospective pre-BT MR images (n=160) acquisition parameters (Cohort 2). BT:
Brachytherapy, T: Tesla, TE: Echo time, TR: Repetition time, ms: milliseconds. ∗: MR images
with TR=3300ms (16 patients) were selected as target for CycleGAN training. n is the number of
patients for whom images were acquired with the specified parameters.

later by Shah et al.[21]. The main idea underlying the method is to deform the histogram of a source image so

that it matches a target histogram determined over the training set in an ML context. The matching is based

on intensity-landmark configuration CL as:

CL = [plow,m10,m20,m30,m40,m50,m60,m70,m80,m90,phigh] (5.1)

where each mi, i ∈ 10, 20, . . . , 90 denotes the mode m at each ith percentile of the histogram associated

with the foreground of the image. The tails of the image histogram are generally pruned so as to make the

algorithm robust against artifacts and outliers that may result in inter-patient and scanner variations. This

pruning results in an intensity range called intensity of interest (IOI).plow and phigh denote the minimum and

maximum percentile values of the overall intensity range of the IOI. The method consists of a first stage to

find the parameters of the standard scale and a transformation stage that maps the histograms of candidate

volumes to the standard histogram scale in a piece-wise linear manner[21].

The second technique was z-score normalization. Here, the average intensity and standard deviation of each

MR image foreground was set to zero and one, respectively, by subtracting the average intensity of the entire

image foreground from each voxel value and dividing it by the corresponding standard deviation.

Conditional Generative Adversarial Network - Cohort 1

Generative Adversarial networks family consists of two neural networks trained simultaneously: a generative

model G that captures the data distribution and a discriminative model D that estimates the probability that a

sample came from the real data rather than generated by G. Through a minimax two-player game, in the space

of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D
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Pre-RT Pre-BT
Variables mean[min-max] mean[min-max]

Age (years) 48.0[26.5-79.9] 48.6[25.5-82.7]

Value(%) Value(%)

FIGO stage
Ib1 1 (2.2%) 5 (3.1%)
Ib2 29 (32.9%) 43 (26.9%)
IIa 5 (5.7%) 13 (8.1%)
IIb 34 (45.5%) 78 (48.7%)
IIIa 1 (2.2%) 3 (1.9%)
IIIb 8 (9.1%) 14 (8.7%)
IVa 2 (2.2%) 4 (2.5%)
IVb 6 (1%) -
Nodal status
Yes 33 (38%) 72 (45%)
No 53 (62%) 88 (55%)

Histology
SCC 72 (81.8%) 132 (82.5%)
ADK 12 (13.6%) 23 (14.4%)
ASC 2 (3.4%) 5 (3.1%)

Relapse
Total 18 (20.9%) 51 (31.9%)
Local 7 (8.1%) 26 (16.2%)
Pelvic 7 (8.1%) 18 (11.2%)
Metastasis 9 (10.5%) 20 (12.5%)

Table 5.4: Patients’ clinical characteristics. SCC: squamous cell carcinoma, ADK: adenocarcinoma,
ASC: adenosquamous carcinoma

equal to 0.5 everywhere[29].

On Cohort 1, the proposed standardization method is an image-to-image translation inspired by the Pix2Pix

cGAN developed by Isola et al.[42]. Their method for image-to-image translation is not task-specific and is

relatively easy to implement. While GANs learn a mapping from random noise vector z to output an image y

(G: z → y), cGANs learn a mapping from observed image x and random noise vector z, to output an image

y, (G: (x,z) → y). This makes cGANs suitable for image-to-image translation tasks, where we condition on

an input image and generate a corresponding output image[42]. The cGAN was used to translate domain

information from the 1st and 2nd acquisitions to the 3rd acquisition, reducing variabilities due to different TR

and VS in Cohort 1. The cGAN consisted here of a U-Net-based[43] G and a convolutional neural network

D. The generator was trained via adversarial loss, namely binary cross-entropy (BCE), to generate plausible

images in the target space. The discriminator consisted of four convolutional layers with different filter sizes

but the same kernel sizes and strides, followed by three fully connected layers. ReLU was used as the activation

function.

The training process followed a two-player minimax game with loss function LcGAN (G,D):

m
G

in m
D

ax LcGAN (G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))] (5.2)
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where G tries to minimize this function against an adversarial D that tries to maximize it.

It has been shown that combining the GAN objective with another loss function, such as a distance loss

function can improve its performance. Doing this implies that G has to generate an image similar to the ground

truth in regard to distance. Here similarly to Isola et al., [42], we used L1 distance rather than L2 as L1

encourages higher spatial resolutions. The loss function applied to D was BCE. The final objective becomes:

m
G

in m
D

ax LcGAN (G,D) = Ex,y[logD(x,y)]+Ex,z[log(1−D(x,G(x,z)))]+λLL1(G) (5.3)

The cGAN was trained using 40 paired images from the 1st or 2nd acquisitions to generate MR images

standardized to the 3rd acquisition (20 patients). The network performance was evaluated on the remaining

10 patients. More details on cGAN can be found in [29] and [42]. To accelerate convergence, a slice-paired

training strategy was applied, making the hypothesis that there was no patient motion between acquisitions.

Here images were resized to (256,256,32). Due to constraints, we considered a batch size of 1, corresponding to

each slice along the z-axis. The model was trained for 700 epochs until D achieved a random probability when

estimating if the generated image was from 3rd acquisition. The Adam solver, with a learning rate of 0.0002,

and momentum parameters 1 = 0.5, 2 = 0.999 were applied, corresponding to hyperparameters selected in the

original work of Isola et al.[42] The workflow is described in Figure 5.1.

Figure 5.1: cGAN architecture for MR image standardization applied to Cohort 1. The input MR
images have a TR or VS different from 3300ms or 0.58x0.58x4.0mm3, respectively, and are trans-
formed into a new domain, in terms of image quality (TR = 3300ms,V S = 0.58x0.58x4.0mm3).
Matched data from 20 patients were used for training and the network performance was tested on
10 new patients.

CycleGAN - Cohort 2

Given that in Cohort 2, the use of the GAN was impossible because of unpaired data, a CycleGAN was trained.

Mathematically, CycleGAN consists of training a translator G: X→Y and another translator F: Y→X, with
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G and F being inverses of each, both mappings should be bijections. X and Y are the domain source and

domain target respectively. We applied this structural assumption by training both the mapping G and F

simultaneously and adding a cycle consistency loss that encourages F (G(x)) ≈ x and G(F (y)) ≈ y. Combining

this loss with adversarial losses as BCE on domains X and Y yields our full objective for unpaired image-to-image

translation[30]. The GAN training process described in 3.11 becomes in CycleGAN:

min
G,F

max
DX ,DY

LCycleGAN (G,F,DX ,DY ) = min
G

max
DY

LGAN (G,DY ,X,Y )+min
F

max
DX

LGAN (F,DX ,Y,X)

+λmin
G,F

Lcyc(G,F )

, where λ controls the relative importance of the two objectives and

min
G,F

Lcyc(G,F ) = Ex∼pdata
(x)[||F (G(x))−x||1]+Ez∼pz (z)[||G(F (y))−y||1] (5.4)

The generators and discriminators used in the CycleGAN share the same specificities as those of the cGAN

trained on the prospective cohort. To accelerate convergence during the CycleGAN training, a slice training

strategy was implemented. CycleGAN was trained to generate MR images considering MRI with specific acqui-

sition parameters (∗ in Table ??) as the target domain for the pre-RT, and pre-BT images respectively. In Table

6.2, the 3 tesla MRI was chosen as target domain while in Table5.3 MR images with parameters similar to the

target domain of the prospective cohort (with TR 3300ms and pixel size:0.58x0.58) were selected. Similarly to

cGAN, images were resized to (256,256,32) and a batch size of 1 was considered. The model was trained for

700 epochs until convergence using Adam optimizer, with a learning rate of 0.0002, and momentum parameters

β1 = 0.5,β2 = 0.999.

ComBat harmonization

Originally developed for ComBating the batch effect in microarray genomic analysis [22], it was later demon-

strated that the ComBat harmonization technique successfully removes inter-site technical variability, while

preserving inter-patient biological variability on MR images[44, 45]. ComBat harmonization implements the

location (mean) and scale (variance) (L/S) method. The main goal of the L/S method is to set the same mean

and variance on all batches. In the context of radiomics analysis, correcting for the batch effect consists of

estimating additive and multiplicative parameters accounting for batch effects for each radiomic feature while

taking into account present covariates. To improve the estimations of these parameters, ComBat harmonization

technique can be applied with an empirical Bayes (EB) method, which assumes that the batch effect affects

the radiomic features in a similar way, thus allowing for more robustness in the evaluation of the corrective

parameters when the batch size is small. The EB method can be used with a parametric or a non-parametric

approach. Here, we applied ComBat harmonization with EB estimates and non-parametric prior method.
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5.2.3 Effect of standardization on robustness of radiomic features

Image Clustering with Principal component analysis

On the one hand, to evaluate the impact of each step (pre-processing and standardization) in the radiomic

workflow (see Figure??) on Cohort 1, different quality metrics (Table 5.5) were extracted from MR images

before and after each step, i.e bias field correction, bias field correction and resampling, bias field correction,

resampling, and a standardization technique (Nyul, z-score or cGAN). These metrics have been proposed to

quantify the batch scanner effect in MRI as well as to detect artifacts[46]. In total, 15 quality metrics were

extracted including first-order statistical measures (e.g., range, variance, coefficient of variation) as well as

second-order statistics and filter-based measures (e.g., contrast per pixel (CPP), entropic focus criterion (EFC),

signal-to-noise ratio). Detailed formulation on the calculation of these metrics can be found in [46]. We then

used Principal Component Analysis (PCA) for image quality metrics clustering for an easier interpretation of

the information contained across acquisitions.

Table 5.5: Summary table of quality measures extracted before and after each image processing
step prior to extraction of radiometric features[46].

Name Description
mean Mean of the foreground
range Range of the foreground
variance Variance of the foreground
PCV Percent coefficient of variation: coefficient of variation

of the foreground for shadowing and inhomogeneity ar-
tifacts

CPP Contrast per pixel: mean of the foreground filtered by
a 3×3 2D Laplacian kernel for shadowing artifacts

PSNR Peak signal-to-noise ratio of the foreground
SNR1 Foreground standard deviation (SD) divided by back-

ground SD
SNR2 Mean of the foreground patch divided by background

SD
SNR3 Foreground patch SD divided by the centered fore-

ground patch SD
SNR4 Mean of the foreground patch divided by mean of the

background patch
CNR Contrast-to-noise ratio for shadowing and noise arti-

facts: mean of the foreground and background patches
difference divided by background patch SD

CVP Coefficient of variation of the foreground patch for shad-
ing artifacts: foreground patch SD divided by fore-
ground patch mean

CJV Coefficient of joint variation between the foreground
and background for aliasing and inhomogeneity arti-
facts

EFC Entropy focus criterion for motion artifacts
FBER Foreground-background energy ratio for ringing arti-

facts
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Radiomic features robustness

With the goal to evaluate radiomic features robustness, Nyul method and z-score normalisation were applied

to the spatially resampled bias field corrected MR images before radiomic features extraction. The a posteriori

ComBat method was also implemented on the radiomic features extracted from these MRI images, as well

as to radiomic features extracted after Nyul or z-score image standardization. Lastly, the trained cGAN was

applied on the remaining 10 patients and radiomic features were extracted from the generated images. Radiomic

features were extracted after image standardization using a relative discretization with 32 binswith PyRadiomics

(v3.0.1) [47]. First-order (n=18), gray-level co-occurrence matrix (GLCM)(n=24), gray-level dependence matrix

(GLDM)(n=14), gray-level run length matrix (GLRLM)(n=16), gray-level size zone matrix (GLSZM)(n=16),

neighboring gray-tone difference matrix (NGTDM)(n=5), and shape (n=14) features for a total of 107 radiomic

features were extracted. By means of Intra-Class Correlation (ICC) and Concordance Correlation Coefficient

(CCC), robust features were assessed (CCC and ICC ≥ 0.75) for each standardization method.

5.2.4 Stage classification and relapse prediction

Pre-RT and pre-BT MR images (Cohort 2) were standardized using Nyul, z-score, and CycleGAN methods. The

ComBat method was not applied here due to the diversity of acquisition parameters. Patients for whom pre-RT

MR images were available were separated into two classes: low (FIGO stage <IIb) and high (FIGO stage ≥
IIb) stages. Low stages cancer are characterized by small tumor size and no invasion of the vagina while high

stages refer to tumors that have spread to the upper and/or lower vagina[48].

Four ML algorithms were trained with the goal to define a radiomic signature able to correctly categorize

the patients depending on their stage: logistic regression, random forest, k-nearest neighbors classifier, and

support vector machine (SVM), using a stratified five-fold cross-validation repeated 10 times. To address the

class imbalance in the pre-RT dataset, the Synthetic Minority Over-sampling Technique (SMOTE)[49] was used

to generate synthetic patient samples from the minority class on the training set of each fold. Classification

performance was evaluated using the area under the receiver operating characteristic curve (ROC-AUC)[50].

The default settings of the different classifiers were used.

The other task was the prediction of relapse based on pre-BT images, considered here as a binary variable.

In this aim, pre-BT images were stratified split into 80% for training (n=128) and 20% for testing (n=32).

As shown in Table 4, only 51 patients were prone to relapse. Therefore, we also applied SMOTE to tackle

class imbalance in the pre-BT dataset before training 4 ML algorithms: logistic regression, random forest

classifier, decision tree classifier, and SVM with a stratified 5-fold cross-validation. The trained models were

then evaluated on the test set using a ROC-AUC.
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5.3 Results

5.3.1 Clustering with PCA

Results from the PCA are shown in Figure 2. Visually, using quality metrics as inputs, PCA showed that 2nd

and 3rd acquisitions were much closer unlike 1st acquisition after bias field correction and image resampling.

This suggests that VS modulation induces less variability than TR in quality metrics. Nyul standardization

added similarity among acquisitions, especially between 1st and 2nd. The variance of the principal component

2 (PC2) was similar among the three acquisitions after Nyul standardization but several elements from 3rd

acquisition could still be regarded as outliers in regard to the variance of principal component 1 (PC1). Z-

score normalization applied after pre-processing reduced divergence among groups regarding PC1 compared to

Nyul standardization. However, variations were greater for PC2 and the different acquisitions could be better

differentiated comparatively to Nyul method. cGAN standardization compacted all acquisitions making it almost

impossible to separate them both with respect to PC1 and PC2.

5.3.2 Radiomic features robustness

According to ICC and CCC values, we found first-order features to be very sensitive to TR modulation since

none was robust (ICC and CCC < 0.75) between acquisitions 1 and 3. Only 22% (4/18) were robust to VS

changes before any standardization. For first-order features, application of Nyul method followed by ComBat

increased the features robust to TR and VS changes to 100% and 67% respectively. cGAN standardization

resulted in 100% robust first-order features for both TR and VS modulations. For second-order features, 21%

(16/75) and 15% (11/75) features were robust to TR and VS shifts before standardization. Regarding TR

modulation, ComBat, z-score, z-score combined with ComBat, Nyul and Nyul combined with ComBat achieved

40% (30/75), 13% (10/75), 27% (20/75), 40% (30/75), 72% (54/75) of robust features respectively. Regarding

VS modulation, ComBat harmonization achieved 15/75 (20%), z-score only 9/75 (12%), z-score combined to

ComBat and Nyul 12/75 (16%), while Nyul combined to ComBat had only 10/75 (13%) of robust features.

cGAN normalization resulted in the highest scores with 77% (58/75) features robust to TR and VS modulation

(Figure 4).

5.3.3 Stage classification and relapse prediction

Classification results based on pre-RT and pre-BT MR images are shown in Tables 5.6 and 5.7. On pre-

RT images (Cohort 1), grade classification showed better results after standardization for all ML algorithms.

After standardization, the ROC-AUC was improved from 0.68±0.16 to 0.83±0.07 with Nyul standardization,

0.78±0.04 with z-score standardization and 0.88±0.09 with CycleGAN standardization for the logistic regression

classifier, which in all cases achieved the best performance. Despite poor performance, relapse prediction based

on pre-BT images achieved higher AUC after image standardization whatever the ML model considered. In the

cross-validation, logistic regression was found to be the best model, with ROC-AUC of 0.54±0.11, 0.58±0.10,

0.63±0.11 and 0.68±0.14 before standardization, after z-score, Nyul, and CycleGAN standardization, respec-

tively. On the test set, the logistic regression model’s performance was equal to 0.44 before standardization, to

be compared to 0.52, 0.56, and 0.60 after z-score, Nyul, and CycleGAN standardization, respectively.
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Figure 5.2: Principal component analysis based on the quality metrics extracted from raw im-
ages(wo_preprocess), after bias field correction, after preprocess (bias field correction and spatial
resampling), after preprocess and Nyul standardization, after preprocess and z-score normaliza-
tion, and preprocess and cGAN standardization

157



Figure 5.3: Samples of slices generated by the cGAN

Figure 5.4: Number of robust features before and after standardization: A) first-order radiomic
features (n=18), B) Second-order radiomic features (n=75)
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Logistic regression
wo_standardization z-score Nyul CycleGAN

Train 0.81 ± 0.03 0.88 ± 0.07 0.94 ± 0.05 0.93 ± 0.06
Validation 0.68 ± 0.16 0.78 ± 0.09 0.83 ± 0.07 0.88 ± 0.09

Random forest
wo_standardization z-score Nyul CycleGAN

Train 0.90 ± 0.09 0.84 ± 0.08 0.96 ± 0.06 0.97 ± 0.08
Validation 0.62 ± 0.11 0.72 ± 0.13 0.76 ± 0.11 0.77 ± 0.09

K-nearest neighbors
wo_standardization z-score Nyul CycleGAN

Train 0.91 ± 0.08 0.92 ± 0.09 0.99 ± 0.09 0.95 ± 0.08
Validation 0.64 ± 0.16 0.66 ± 0.10 0.64 ± 0.09 0.71 ± 0.13

SVM
wo_standardization z-score Nyul CycleGAN

Train 0.93 ± 0.08 0.85 ± 0.08 0.94 ± 0.07 0.92 ± 0.06
Validation 0.61 ± 0.18 0.70 ± 0.13 0.72 ± 0.14 0.71 ± 0.09

Table 5.6: Tumor stage classification into low (< IIa) and high grade before and after
standardization(≥ IIa). wo: without, SVM: Support-vector machine.

Logistic regression
wo_standardization z-score Nyul CycleGAN

Train 0.81 ± 0.13 0.78 ± 0.09 0.79 ± 0.09 0.76 ± 0.06
Validation 0.54 ± 0.11 0.58 ± 0.10 0.63 ± 0.11 0.68 ± 0.14
Test 0.44 0.52 0.56 0.60

Random forest
wo_standardization z-score Nyul CycleGAN

Train 0.96 ± 0.07 0.92 ± 0.04 0.95 ± 0.09 0.96 ± 0.07
Validation 0.47 ± 0.09 0.55 ± 0.11 0.53 ± 0.13 0.55 ± 0.10
Test 0.49 0.53 0.55 0.55

Decision Tree
wo_standardization z-score Nyul CycleGAN

Train 0.84 ± 0.04 0.87 ± 0.06 0.91 ± 0.09 0.86 ± 0.04
Validation 0.51 ± 0.11 0.57 ± 0.09 0.58 ± 0.10 0.59 ± 0.08
Test 0.47 0.53 0.58 0.57

SVM
wo_standardization z-score Nyul CycleGAN

Train 0.94 ± 0.08 0.89 ± 0.02 0.93 ± 0.08 0.89 ± 0.04
Validation 0.49 ± 0.14 0.55 ± 0.11 0.59 ± 0.11 0.57 ± 0.13
Test 0.46 0.52 0.55 0.54

Table 5.7: Relapse prediction on pre-BT MR images before and after standardization. wo: with-
out, SVM: Support-vector machine.
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5.4 Discussion

In this study, different standardisation methods applied to MR images obtained from LACC patients were eval-

uated with different complementary objectives. Firstly, on a prospective cohort, image preprocessing techniques

applied before extraction of radiomic features (Nyul and z-score) and the a posteriori ComBat harmonisation

method were implemented. In addition, a cGAN-based standardization method was proposed to deal with the

variability of TR and VS. The PCA analysis using image quality variables as input demonstrated the very positive

impact of applying a GAN strategy for the transition from one domain to another. This positive effect was

confirmed quantitatively by the identification of robust radiomic features, both first and second order. In a

second step, on two retrospective cohorts of patients treated for LACC, the impact of the image normalization

step was evaluated on two clinical tasks. Since in a retrospective scenario, normalization by cGAN is often

unrealistic, due to the lack of matched data for training, a normalization method based on CycleGAN was

proposed. For this purpose, 86 and 160 images taken before RT and BT, retrospectively, were collected and

ML algorithms to classify patients with high and low stage tumours, on the one hand, and to predict relapsing

patients, on the other hand, were developed. In both cases, the application of a CycleGAN strategy significantly

improves the results compared to conventional approaches used in the literature.

In the considered scenarii, TR had the greatest impact on the raw MR images compared to VS as reflected

by the PCA analysis. This effect is, however, more easily overcome regardless of the method of standardiza-

tion applied. Pre-processing combined with Nyul standardization made cluster distinction less clear than the

consecutive application of pre-processing and z-score as seen in Figure, illustrating a beneficial effect of this

strategy5.2. This conclusion is further supported by the subsequent analysis of the robustness of the first-order

radiomics features based on the ICC and CCC indices (Figure 5.4). For TR modulation, Nyul standardization

gave better results than z-score normalization with 16/18 robust features and 18/18 when combined to ComBat

harmonization. Similarly, for VS modulation, Nyul combined with ComBat achieved 12/18 of robust features

on first-order features while z-score combined with ComBat achieved 10/18. Logically, the change in parame-

ters impacts even more drastically the robustness of 2nd-order features, again with a greater ease of features

harmonization in the case of a change in TR than in VS. cGAN-based method increased robust features from

15% to 77% (11/75 to 58/75) in the case of VS modulation while other methods did not exceed 20% (15/75).

Considering TR changes, conventional normalization techniques improved the robustness of the features, but

their performance was inferior to that of the cGAN-based method, except for the combination of Nyul and

ComBat which performed about equally here.

This 2-step analysis allowed us to confirm the interest of the image quality metrics proposed by Sadri et

al.[46] in the context of a radiomic evaluation, which have the advantage of being applicable to the image

without the need to delineate a volume of interest. If a visual analysis on the first 2 components has only

been considered here, it is possible to envisage inter-cluster and intra-cluster distance evaluations to better

quantify the harmonization capacities of the different strategies. Different metrics could be considered in

this aim, including Euclidean distance or cosine distances. It should be noted that these metrics had already

demonstrated their added value for automated batch definition for the implementation of ComBat in highly

heterogeneous multicentre brain cancer studies[carre_autoComBat_2022].

Given the large number of MRI machines and acquisition parameters present in Cohort 2 (Table 6.2 and 5.3),

ComBat harmonization was not suitable since the determination of batches with a minimum of five patients

was impossible. Furthermore, the variability in magnetic fields, TR, TE, VS and slice thickness values is such
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that ComBat would have been fastidious and time-consuming to implement. As mentioned earlier, Carré

et al[carre_autoComBat_2022] have developed AutoComBat, which aims to automatically determine

the batch labels, using either MRI metadata or MR image quality metrics. While AutoComBat could have

been useful in this configuration as it does not require a statistically representative sample of each batch, the

method deployed here has the advantage of being almost instantaneous to apply at the inference stage. In

addition to providing very promising results for robust radiomic studies, adversarial networks could be used for

multiple and varied tasks in combination with augmentation and normalization techniques with complementary

benefits[51]. As GANs have been used to generate complementary sequences from a single MRI sequence [52,

53], thereby reducing acquisition times and increasing patient comfort, CycleGAN could be used to move from

one image quality space to another, by changing target domain selection. This generation of MR images with

different properties in terms of noise, contrast and spatial resolution, would give physicians access to additional

information that could help to improve the accuracy of manual and automatic segmentation in the context of

radiation therapy. For example, Conte et al. [54] implemented two GANs to generate missing T1-weighted

images from post-contrast T1w images and FLAIR T2 images from T2w images. They demonstrated that the

generated images could be used as inputs for automatic segmentation in case of missing MRI sequences. This

strategy could also be explored for multi-modality radiomic studies, as it has been found that radiomic images

from different modalities can improve model prediction [17]. Access to images with different properties could

also be an alternative to the application of filters, i.e. extraction of higher-order radiomic features, used in

a large number of studies. In all these virtual image generation strategies however, care must be taken with

the generated images, which may be polluted by unrealistic artifacts. Advances in the DL field such as style

GANs[55] and their derivates should also be investigated for multi-centric radiomic studies.

On a similar topic, Andrearczyk et al.[56] showed that DL could be applied to normalize hand-crafted and

deep features extracted from images and could be generalized to features coming from unknown scanners. Their

approach was a posteriori standardization comparable to ComBat harmonization. Wei et al.[57] used a 3D GAN

to normalize CT images obtained from different slice thickness and dosage scenarios. Their method used a

specific spectral-norm layer to perform global regularization in the feature matrices. The GAN-based approach

improved CT scans’ perceptual appearance and reduced the variability across radiomic features. Despite being

denoising and super-resolution simultaneously, this approach was not evaluated on a clinical task. Similarly,

Chen et al.[36] have applied GAN and CycleGAN on simulated and real CT images to improve radiomic features

reproducibility in simulated low-dose CT images but also their performance in survival prediction. For both

simulated and real CT images, the trained CycleGANs increased the CCC of radiomic features and the AUC

of survival prediction. Marcadent et al.[58] developed a CycleGAN to translate texture information from chest

radiographs acquired using one manufacturer to another. This CycleGAN approach showed decreased inter-

manufacturer radiomic features variability and experienced radiologists were not able to identify generated

radiographs. Despite these promising results, vanishing gradient renders GAN training time-consuming and data-

hungry. Similarly to our approach, Du et al[39] developed a CNN-based harmonization method for CT images,

and found their method to outperform ComBat, centering-scaling method, matrix factorization harmonization

methods, and independent component analysis for lymph node metastasis (LNM) prediction and classification

between lung cancer and pulmonary tuberculosis. They also showed that CNN harmonization methods improve

feature reproducibility not only between specific kernels from the same scanner but also between unobserved

kernels from different scanners of different vendors. Similarly to our study, Chang et al.[59] developed a

cycleGAN coupled to a histogram matching module for female pelvic T2w MR image standardization. The
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proposed method overperformed ComBat and contrast limited adaptive histogram equalization (CLAHE) in

reducing variabilities in radiomic features and in predicting LNM in LACC (AUC of proposed method: 0.89,

ComBat: 0.685, and CLAHE: 0.770).

On 86 pre-RT T2w MR images of LACC patients, radiomic features were extracted before and after image

standardization in order to classify tumor patients into low and high stages. For all ML algorithms considered,

the ROC-AUC increased after image standardization. Across standardization methods, the CycleGAN-based

method gave the best results with a ROC-AUC of 0.88±0.09 for the logistic regression (Table 5.6). Staging of

cervical cancer is performed on MRI by radiologists in a first attempt. However, histopathological examination

is usually needed as definitive diagnosis. Early-stage cervical cancer are usually treated with hysterectomy or

cervical resection, while high stages are treated by chemoradiotherapy (CRT). Staging based on MR images

alone would eliminate the need for invasive procedures to confirm the stage of the tumor and, above all, would

drastically speed up patient management. For such a strategy to be considered in clinical routine, however,

it is important that the performance of the models is perfect or at least similar to the current classification

reliability. On 160 pre-BT T2w MR images, we also extracted radiomic features to predict relapse. For this

task, a binary classification of the relapse event was considered. This assumption is meaningful in LACC as any

recurrence (local, regional or distant) was considered as relapse. Without any standardization, the classification

performances were below 0.50 for all ML algorithms on the test set but were increased after standardization,

although the final results remain rather poor (Table5.7).

This study has several limitations. The analysis on the prospective cohort was done on the cervix and not

the tumor, due to the heterogeneity of the patients recruited, as the images were acquired at the diagnostic,

radiotherapy treatment preparation, or follow-up stage. Further work is also needed to identify the limits

of application of this generative neural network-based methodology to bridge the differences in acquisition

properties, i.e. whether there are too extreme configurations for which the model is not applicable [60]. While

the issue of differences in scanner model, slice thickness, magnetic field and TE has been indirectly assessed,

a larger prospective study should also be implemented to collect larger data sets for proper validation of these

models The number of patients in the pre-RT cohort did not allow us to split the data into training and testing

cohorts. An external test set is needed to validate our findings. Furthermore, pre-BT images were taken on the

same machine and despite the large variability of acquisition parameters, the test set used to evaluate CycleGAN

standardization shared acquisition parameters with data from the training set. Some of the limitations are also

inherent to generative networks i.e. evaluation metrics of the generated images. Here, radiomic features were

extracted and robustness was assessed using ICC and CCC. The cGAN/CycleGAN-based normalization methods

presented in this study only allows translation of an image from domain X to domain Y in order to get rid of

the limitations due to the differences in acquisition parameters but are in no way a method to improve the

quality of native images. Thus, artifacts present in the input images will also be present in the generated

images. In this study, only one loss function for the discriminator (BCE) and two for the generator (BCE and

L1 loss) have been implemented. In particular, a loss function to compare the similarity of structures, such as

structural similarity loss, could increase the structural correspondence between the generated and the source

images. Finally, different neural network architectures should have been compared. However, the objective of

this paper was to demonstrate the feasibility and superiority of a neural network-based approach for MRI image

standardization and this was outside the scope of the study.

In conclusion, we have shown that GAN-based normalization method could better limit the impact of acqui-

sition parameters on MRI radiomics features compared to conventional methods, and increase the performances
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of predictive signatures in LACC. Considering that DL is becoming popular in computer vision and medical

imaging, one would argue that adversarial networks could present an "all in one" solution to several problems,

from image standardization to treatment outcome prediction (survival, relapse, complication after treatment,

etc).
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Chapter 6

Radiomic signature of lymphocyte
infiltrate in LACC treated with
Radiotherapy/Immunotherapy

6.1 Stimulating the immune system for cancer treatment

“Drugs can only repress symptoms: they cannot eradicate disease. The true remedy for all diseases is Nature’s

remedy. There is at bottom only one genuinely scientific treatment for all diseases, and that is to stimulate the

phagocytes. Stimulate the phagocytes. Drugs are a delusion” as it can be read in George Bernard Shaw’s 1906

play The Doctor’s Dilemma. Immunotherapy as the basis for a new paradigm in cancer treatment was born by

the end of the 19th century when Dr. William Coley decided to inject preparations of streptococci directly into

the tumors of patients with sarcomas after having observed a correlation between the regression of this type of

tumor and acute infection with Streptococcus pyogenes[1]. Following the work of Ehrlich in 1909, later taken

up in 1957 by Lewis Thomas and Frank McFarlane Burnet, the hypothesis that the immune response after

infection could prevent the development of cancers was put forward and the concept of immunosurveillance was

developed according to which the immune system could control, detect and eliminate tumor cells. Later on,

after a century of controversy, an overwhelming amount of data from animal models, together with compelling

data from human patients, indicate that a functional cancer immunosurveillance process indeed exists that acts

as an extrinsic tumor suppressor. However, it has also become clear that the immune system can facilitate

tumor progression, at least in part, by sculpting the immunogenic phenotype of tumors as they develop. The

recognition that immunity plays a dual role in the complex interactions between tumors and the host prompted

a refinement of the cancer immunosurveillance hypothesis into one termed "cancer immunoediting." [2] The

concept of cancer immunoediting was defined using the 3Es, i.e, elimination, equilibrium, and escape. During the

elimination phase, the immune system detects and destroys tumor cells by the immune system. The equilibrium

phase corresponds to the control of the proliferation of tumor cells without eradicating them. During this

phase, the immune system exerts a selective pressure leading to clones that are not very immunogenic: this is

the immunoediting process. Finally, the tumor cells hijack the immune system to promote their development:

this is the escape phase.
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Figure 6.1: Cancer Immunoediting Process. In the elimination process, normal cells (here in gray)
subject to common oncogenic stimuli transform into tumor cells (here in red). These cells may ex-
press distinct tumor-specific markers and generate proinflammatory signals that trigger the cancer
immunoediting process (bottom). In this phase, cells and molecules of innate and adaptive immu-
nity, which comprise the cancer immunosurveillance network, may eradicate the developing tumor
and protect the host from tumor formation. However, if this process is not successful, the equilib-
rium phase can be initiated. Tumor cells may be either maintained chronically or immunologically
sculpted by immune “editors” to produce new populations of tumor variants. These variants may
eventually evade the immune system by a variety of mechanisms and become clinically detectable
in the escape phase. Reprinted from [3] under the Creative Commons Attribution-NonCommercial
4.0 International.

In the presence of cancer cells, the immune system might act as sentinel in order to identify and possibly

eliminate somatic cells transformed by mutations, yet, cancer cells can escape identification, therefore destruction

by the immune system. This provided a strong rationale for immunotherapy. Efforts to do so and to stimulate

the immune response were made for treatment of cancer. T-cells are among the main cellular actors involved

in the anti-tumor response through the specific recognition of their receptor, T-cell receptor (TCR) present in

the major histocompatibility complex (MHC) of the tumor peptide. For a complete activation of the T-cell,

the latter must also integrate activating or inhibiting signals from co-stimulatory molecules. Called immune

checkpoints (ICs), these co-stimulatory molecules are receptors and ligands located respectively on the surface

of lymphocytes and on the surface of antigen-presenting cells and tumor cells. ICs play a key role in limiting the

immune response and inducing autoimmunity. Several ICs have been identified such as: cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4), programed death 1 (PD-1), programed death-ligand 1 et 2 (PD-L1 et PD-L2) [4,

5, 6]. The CTLA-4 protein, expressed by effector T-cells (Teffs) and regulatory T-cells (Tregs), is an inhibitory
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co-receptor that has the same ligands, B7-1 and B7-2 also called CD80 and CD86, as the activating co-receptor

CD28. It is involved early in the immune response, on naive T-cells in secondary lymphoid organs. PD-1 is

expressed by T-cells and Tregs. It is involved later in the immune response by inhibiting the activation of T-cells

during the effector phase in tissues and in the tumor microenvironment. PD-1, by binding to PD-L1, a protein

found on some normal (and cancer) cells, prevents T-cells from attacking other cells in the body. Some cancer

cells have large amounts of PD-L1, which allows them to escape from the immune response. The development

of monoclonal antibodies targeting these ICs, the immune checkpoint inhibitors (ICIs), in the treatment of

certain cancers, has shown impressive results [7, 8, 9, 10]. The efficacy of ICIs relies on the release of T-cells

that are no longer subject to the inhibitory effects of the ICs. Thus, in order for T-cells to be effective, it is

essential that the therapeutic targets, CTLA-4, PD-1 and/or PD-L1, be present to allow the immune system

to regain sustained anti-tumor activity.

Immunotherapy has shown success in several types of cancers including lung cancer, head and neck cancer,

bladder cancer, kidney cancer, and Hodgkin lymphoma[8, 7, 9, 10, 11, 12]. Immunotherapies based on anti-PD-1

and anti-PD-L1 have shown promising results in long-term cancer remissions. However, these drugs work better

in some cancers than others. Moreover, only a fraction of patients with cancer responds to immunotherapy, and

currently, available immunotherapeutic agents are expensive and generally associated with considerable toxicities,

calling for the identification of robust predictive biomarkers. This calls for the development of regimens that

combine various interventions. RT stands out as a particularly promising candidate in this setting, not only

because of its established safety profile but also because radiotherapy has the potential ability to mediate

robust immunostimulatory effects that could synergize with immunotherapy in systemic tumor control[13].

Ionizing radiation can cause direct damage to cancer cells, leading to cell death, but also trigger CD8+ T-

cell activation. Numerous preclinical studies have suggested that combining immunotherapy with radiotherapy

could be a promising strategy for synergistic enhancement of treatment efficacy[8, 14, 15, 13]. Preclinical

studies demonstrated that the combination of RT and targeted PD-1/PD-L1 therapy activated cytotoxic T-cells,

reduced myeloid-derived suppressor cells, and induced an abscopal response[16, 17]. Numerous clinical trials

are in progress exploring the combination of standard, full-dose (chemo)radiotherapy plus immunotherapy[18].

Several ongoing clinical trials have assessed and confirmed the benefit of the combination of PD-1/PD-L1

inhibition and RT in different localizations[19, 20]. Recent results of the phase III randomized trial (PACIFIC,

NCT02125461) testing the role of the PD-L1 antibody durvalumab versus placebo as consolidation therapy

after chemoradiation for stage III non-small cell lung cancer (NSCLC) demonstrated substantial improvement

in progression-free survival (PFS) with durvalumab (16.8 months versus 5.6 months with placebo), with similar

types and severity of side effects [21, 22]. However, it is important to note that clinical trials have also reported

negative results of immunotherapy. combined to other standard-of-care or that some immunotherapy regimens

seem to work better than others. In a phase II trial, Sun et al. found that tolerance of pembrolizumab

concomitant to RT was good compared to cetuximab concomitant to RT in locally advanced squamous cell

carcinoma HNC[23]. In a double-blind, placebo-controlled, phase III trial (NCT02952586), Lee et al. reported

that prolonging PFS with avelumab plus CRT followed by avelumab maintenance in patients with locally

advanced squamous cell carcinoma of the head and neck was not met[24].

Tumoral and peritumoral immune infiltration were shown to be correlated with patient response to anti-
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PD-1/PD-L1 immunotherapy. Depending on the immune phenotypes, i.e. immune-inflamed, immune-excluded,

and immune-desert, patient will answer differently to treatment. Immune-inflamed tumors are characterized

by dense, functional CD8 T-cell infiltration[25] and showed better response to immunotherapy. Both immune-

excluded and immune-deserted phenotypes, present very low CD8 T-cells infiltration. CD8 T-cells infiltration

could provide a powerful biomarker for predicting clinical outcomes of patients treated with immunotherapy alone

or combined with conventional treatment. In addition to CD8 T-cells, radiomics, clinical data, hematology data,

patient demographics and driver mutations have also been identified as potential biomarkers to predict response

to immunotherapy[26, 27, 28, 29].

Several ways have been explored to tackle these limitations and in the era of big data, radiomics could

allow the identification of responders and non-responders prior to immunotherapy as a standalone treatment or

combined with other strategies. This remains a major focus in cancer studies. The tools developed in this thesis

will be applied to the prediction of cancer treatment responses based on MR images from the ATEZOLACC

clinical trial, to develop a radiomic signature assessing the amount of tumor-infiltrating CD8 T-cells in LACC.

As a result, the differences between responding and non-responding patients will be characterized.

6.2 ATEZOLACC clinical trial

6.2.1 Overview

A multi-centric randomized phase II clinical trial evaluating chemo-radiotherapy±ICI against PD-L1 1 was set up

starting from August 2018 at Gustave Roussy Cancer Campus; inclusion of patients is now closed. The primary

objective of this clinical trial is to evaluate the clinical benefits of the addition of atezolizumab to standard

CRT (arm 2) compared with CRT alone (arm1), on investigator-assessed progression-free survival (PFS), as

per Response Evaluation Criteria in Solid Tumors version 1.1. Additionally to the exams already planned in the

clinical trial, MR exams (T1, T1-Gd, T2, DWI) have been realized for 40 patients at week 4 of the radiotherapy

treatment in arm 2 (see Figure6.2). In addition to MR images, 3 tumor biopsies has been performed as well,

before treatment, at weeks 3 and 7 (pre-brachytherapy) to assess tumor immune infiltration and tumor response.

In both arms, CRT consisted of weekly intravenous cisplatin 40 mg/m2 (5–6 cycles, 1 day per cycle) plus 45

Gy external-beam radiotherapy (EBRT) delivered in 1.8 Gy fractions ± simultaneously integrated boost to

macroscopically involved lymph nodes, if any, followed by brachytherapy (BT) on week 7 with the objective to

deliver a minimal total dose of 85 Gy (equivalent dose in 2-Gy fractions with α/β = 10Gy) to 80% of the High

Risk-Clinical Target Volume (HR-CTV). Atezolizumab was administered (IV 1200 mg Q3W), starting on the

same week as EBRT (Week 1), and continued as an adjuvant for a total maximum of 20 cycles (approximately

14 months total of treatment). Tumor biopsies were analyzed and characterized for immunological parameters

such as Tumor Infiltrating Lymphocytes (TIL). Briefly, samples were processed, formalin-fixed, and paraffin-

embedded according to conventional procedures. Serial 4 µm-thick tissue sections were prepared for histological

and immunohistochemical examinations. The first section was stained for histological evaluation in order to

assess the representativity of the sample and the presence of possible confounding factors: the presence of tumor

1(ATEZOLACC, https://clinicaltrials.gov/ct2/show/NCT03612791)
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cells, type of tumor, tumor cellularity, amount of stroma, ulceration, and necrosis. In the same section, the

density of tumor intra-epithelial lymphocytes was evaluated according to current recommendations[30]. The next

sections were used for immunohistochemical evaluation, including the immunodetection of CD8+ lymphocytes

(clone SP16, automated immunoperoxidase technique, Ventana Benchmark Ultra stainer). The density in

CD8+ lymphocytes was evaluated by two approaches: (a) visual counting by an experienced pathologist, and

(b) automated counting by an algorithm available on the platform (Tribvn Healthcare, Chatillon, France). All

sections were digitalized (Hamamatsu scanner) and stored for further analysis.

Figure 6.2: AtezoLACC clinical trial. Patients in Arm 1 received the conventional treatment, i.e.
radiotherapy with concomitant chemotherapy followed by brachytherapy. Patients in Arm 2 (ex-
perimental arm) received in addition to the conventional treatment an immunotherapy treatment
with Atezolizumab. In addition to patients in Arm 1, retrospective data from 160 patients were
also gathered.

6.2.2 Data acquisition

Patient inclusion in the ATEZOLACC clinical trial started in the fourth quarter of 2018, involved 20 centers,

and was closed in 2022. 110, 64, and 84 biopsies were performed in both arms before treatment, at weeks 3

and 7 (pre-brachytherapy) respectively. 102, 56, and 78 biopsies taken before treatment, at weeks 3 and 7,

respectively, were retrieved by Gustave Roussy Cancer Campus. 137, 12, and 127 MR images (T1, T1-Gd, T2,

DWI) were taken before treatment, at weeks 4 and 7 respectively. 106, 7, and 102 MR images taken before

treatment, at weeks 4 and 7 respectively, were repatriated at Gustave Roussy Cancer Campus. Details about

Arm 1 and Arm 2 are given in Table 6.1.

6.2.3 Tumor segmentation

In AtezoLACC clinical trial, several MR images were acquired at different time points. To study the evolution

of tumor heterogeneity throughout the treatment or to characterize the profile of responding patients to RT ±
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Biopsies
Baseline Week 3 Week 7

Arm 1 54 (52) 33 (29) 44 (42)
Arm 2 56 (50) 31 (27) 40 (36)

MR images
Baseline Week 3 Week 7

Arm 1 70 (52) 5 65 (55)
Arm 2 67 (54) 7 (7) 62 (47)

Table 6.1: Biopsies and MR images in Arm 1(standard arm) and Arm 2(experimental arm)
collected from the AtezoLACC clinical trial. In (), the number of samples already at Gustave
Roussy Cancer Campus.

immunotherapy, using radiomic features, it is essential to delineate the tumor on all the acquired images. As

stated in the previous chapters, one of the difficulties in radiomic analysis in general and in clinical routine in

particular, lies in the segmentation of the tumor on medical images. Indeed, in addition to generating inter-

observer variability, segmentation remains an extremely time-consuming task. To overcome this limitation,

efforts have been undertaken to develop an automatic method for GTV detection and segmentation on T2 MRI

images. This work was done in collaboration with Rahimeh Rouhi, a post-doctoral researcher in our team. This

study was designed by Charlotte Robert, Rahimeh Rouhi, and I. I performed image pre-processing and Rahimeh

Rouhi developed the automatic segmentation tool. Rahimeh Rouhi, Charlotte Robert, and I conducted the

analysis of the results.

For this purpose, 160 pre-RT T2w MR images from patients treated for LACC were gathered retrospectively,

as the training set for the automatic segmentation model. 45 images were excluded for the presence of artifacts

in the image, or poor image quality. These images were acquired on 30 different scanners and had multiple

acquisition parameters. We also gathered prospectively, 51 T2w MR images from the ATEZOLACC clinical

trial from 8 centers, as the testing set. MRI device characteristics and acquisition parameters for test set are

detailed in tables and 6.2.

Manual segmentation of the training cohort was done by two board-certified radiation oncologists P-A.L

and S.A, respectively with 3 and 7 years of expertise. Manual segmentation of the test cohort was done by

MB.B, a radiation oncologist with 5 years of expertise, and the delineations were checked by R.S., with 5 years

of experience.

Deep learning model training, validation, and testing

Several deep neural network architectures were trained for 2D and 3D segmentation (UNet [31, 32], VNet [33],

SegResNet and SegResNetVAE [34]). In total, 8 different models were evaluated. A 5-fold cross-validation

was applied to the training set and two strategies were assessed. In the first strategy, the best model on the

five folds was selected and then applied to the test set. In the second strategy, an ensembling model was put

in place, where all five trained models were applied to each MR image in the test cohort, and the ensemble

prediction was obtained by the majority of voting among the results of all the models. All models were trained

for 300 epochs, rectified linear unit (ReLU) as the activation function, and Adam optimizer were selected for all
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Manufacturer Manufacturer
model name

Magnetic
Field
Strength
(T)

Repetition
time (ms)

Echo
time
(ms)

Slice
thickness
(mm)

Pixel
spacing
(mm)

Matrix
dimen-
sion

Number
of pa-
tients

GE Medical Sys-
tems

Optima
MR450W

1.5 5235, 7348,
7756, 7799,
8289, 8319,
8552, 8581,
8981, 9012,
10858,
10903

81, 86,
87, 93,
102,
111,
122, 125

4 0.58x0.58
0.74x0.74,
0.82x0.82

512x512 14

GE Medical Sys-
tems

Optima MR360 1.5 5665,
10838,
12789

101, 102 3, 4.5 0.47x0.74,
0.55x0.55,
0.58x0.58

512*512 7

GE Medical Sys-
tems

DISCOVERY
MR750w

1.5 10598,
10800,
11815,
13019

79, 128 4 0.78x0.78,
0.82x0.82

512*512 4

GE Medical Sys-
tems

Signa Explorer 1.5 6421 102 5 0.78x0.78 512*512 4

GE Medical Sys-
tems

Signa Premier 1.5 7267, 7483,
14149

119,
121, 122

5 0.78x0.78 512*512 4

Siemens Avanto_fit 1.5 4820, 5540,
7230

118 5 1.0x1.0 320x320 13

Siemens Aera 1.5 1200, 3400,
4040, 4080,
7530

78, 89,
158

3, 3.5, 5 0.62x0.62,
0.75x0.75,
1.17x1.17,
1.18x1.18

260x260,
384x384

5

Table 6.2: Prospective pre-RT MR images (n=51) acquisition parameter, for testing cohort. RT:
Radiotherapy, ms: milliseconds.

the applied networks. To tackle the overfitting issue and increase the generalizability of the segmentation, data

augmentation was performed on the fly, prior to each optimization iteration during the training, to decrease

the excessive storage requirements. More specifically, random rotation, flip, zoom with 0.5 probability, contrast

adjustment, Gaussian noise, and Gaussian smoothing with 0.2 probability were applied for data augmentation.

During the validation and testing, to include the GTVs completely in the segmentation inference for both single

and ensemble models, the model already trained with the image size of 256×256×64 was applied to images

with the size of 256×256×128, with a sliding window and a batch size equal to 2. We did also post-processing

on the predicted segmentation, during the validation and testing, by applying morphological operations and

keeping the largest connected components.

Evaluation metrics

The dice similarity coefficient (DSC) was used to evaluate the concordance between manual and automatic

segmentation. DSC has become the most broadly used metric for automatic segmentation evaluation in AI.

Given two sets X and Y , DSC measures the ratio between twice the overlap of sets X and Y divided by the

sum of of both sets:

DSC = 2|X ∩Y |
|X|+ |Y |

(6.1)

where X and Y represent the ground truth and the automatically segmented target volume, respectively.

The surface DSC (SDSC)[35], which measures the overlap between two surfaces instead of volumes, was
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also applied to evaluate manual and automatic segmentation:

SDSC =
|Sg ∩Bτ

o |+ |So ∩Bτ
g |

|Sg|+ |So|
(6.2)

where the output and the ground truth binary volumes are converted to polygon meshes, representing their

surfaces depicted by So and Sg, respectively, and Bg and Bo are the boundaries of ground truth and output

surfaces at a tolerance τ (τ = 3mm in our evaluation).

The Hausdorff distance (HD) is another commonly used metric to evaluate how far two subsets are from

each other. The HD is the maximum distance of a set to the nearest point in the other set. For our purpose,

the 95th percentile of the distances between boundary points in X and Y , or 95 Hausdorff Distance(95HD) was

calculated:

95HD(X,Y ) = percentile(h(X,Y )∪h(Y,X),95th) (6.3)

h(X,Y ) = max
y∈Y

(
min
x∈X

||x−y||
)

(6.4)

where h(X,Y ) is the largest distance from a point in X to the nearest point in Y and ||.|| is the Euclidean

norm of the points of X and Y .

For 2D segmentation, 3D volume final segmentation was reconstructed before calculating DSC, SDSC, and

95HD. In our experiments, we computed the aforementioned metrics based on deepmind Python library2. Since

some models may fail in segmentation, resulting in no output and an infinitive value of 95HD, we also reported

F as the number of segmentation failures.

Results

Table 6.3 presents the average validation results obtained from the 5 trained models in the 5-fold cross-validation

for each network in 2D and 3D segmentation separately on the training set. The 2D-SegResNetVAE resulted in

the best values of DSC = 0.61 ± 0.03, SDSC = 0.57 ± 0.04, 95HD = 16.17 ± 2.65mm, and F=0, respectively

compared with the other models. Besides, Table 6.4 shows the results of segmentation on the test cohort based

on single models, i.e. the best model obtained from 5-fold cross-validation. The results of SegResNet and

SegResNetVAE in the 2D case were the best when considering the output of the single models with/without

failure i.e., F=1/0. Furthermore, Table 6.5 presents the results of the final segmentation by applying the

ensemble models, obtained from 5-fold cross-validation, to the test samples in cohort 2. Accordingly, 2D-

SegResNet achieved the best performance compared to all the other models.

Conclusion on tumor segmentation

The total time required for automatic segmentation was 209 min (with an average of 4.26±3.62 min), which was

approximately less than one-third of the time required for manual segmentation of images in the test set (cohort

2). A radiation oncologist performed qualitative results of the automatic segmentation. 62% (32/51), 27%

(14/51), and 5% (3/51) of the images in the test set were scored as A (good with no/with minor corrections),

2https://github.com/deepmind/surface-distance
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Table 6.3: Average results of DSC(%), SDSC(%), and 95HD(mm) and total number of segmen-
tation failures F of the 5 models obtained from 5-fold cross-validation on cohort 1 for different
network architectures in 2D and 3D segmentation.

2D 3D
Network DSC ± SD(%) SDSC ± SD 95HD ± SD F DSC ± SD SDSC ± SD 95HD ± SD F

UNet 0.59 ± 0.05 0.57 ± 0.06 19.42 ± 1.27 1 0.40 ± 0.08 0.34 ± 0.06 37.20 ± 6.49 8
VNet 0.57 ± 0.07 0.54 ± 0.06 19.53 ± 3.85 5 0.38 ± 0.10 0.28 ± 0.10 38.58 ± 16.58 13
SegResNet 0.60 ± 0.03 0.56 ± 0.03 17.45 ± 1.81 0 0.37 ± 0.09 0.31 ± 0.07 52.44 ± 16.94 0
SegResNetVAE 0.61 ± 0.03 0.57 ± 0.04 16.17 ± 2.65 0 0.41 ± 0.11 0.35 ± 0.08 45.87 ± 14.71 0

Table 6.4: Average results of DSC(%), SDSC(%), and 95HD(mm) and total number of segmen-
tation failures F for single models on cohort 2 for different network architectures in 2D and 3D
segmentation.

2D 3D
Network DSC ± SD(%) SDSC ± SD 95HD ± SD F DSC ± SD SDSC ± SD 95HD ± SD F

UNet 0.66 ± 0.25 0.63 ± 0.25 20.09 ± 29.83 0 0.51 ± 0.25 0.37 ± 0.21 27.61 ± 18.01 2
VNet 0.67 ± 0.23 0.63 ± 0.23 22.60 ± 34.08 1 0.43 ± 0.23 0.25 ± 0.18 37.23 ± 21.72 2
SegResNet 0.70 ± 0.16 0.66 ± 0.16 15.68 ± 9.50 1 0.49 ± 0.27 0.37 ± 0.22 34.27 ± 27.59 0
SegResNetVAE 0.68 ± 0.21 0.63 ± 0.22 16.26 ± 12.36 0 0.56 ± 0.26 0.45 ± 0.22 27.16 ± 32.68 0

Table 6.5: Average results of DSC(%), SDSC(%), and 95HD(mm) and the total number of seg-
mentation failures F for ensemble models on cohort 2 for different network architectures in 2D and
3D segmentation.

2D 3D
Network DSC ± SD(%) SDSC ± SD 95HD ± SD F DSC ± SD SDSC ± SD 95HD ± SD F

UNet 0.69 ± 0.23 0.65 ± 0.23 18.18 ± 24.19 0 0.54 ± 0.28 0.44 ± 0.25 32.04 ± 36.10 0
VNet 0.71 ± 0.20 0.66 ± 0.19 14.65± 11.71 1 0.50 ± 0.22 0.32 ± 0.19 30.99 ± 24.01 1
SegResNet 0.72 ± 0.16 0.66 ± 0.17 14.62 ± 9.04 0 0.57 ± 0.26 0.45 ± 0.23 37.41 ± 53.33 0
SegResNetVAE 0.70 ± 0.18 0.63 ± 0.18 15.09 ± 10.89 0 0.63 ± 0.21 0.52 ± 0.19 20.59 ± 16.47 0
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B (satisfactory with major corrections), and C (Bad with a complete correction or delineation from scratch),

respectively. The oncologist refused to score 3.9% (2/51) images due to their low quality. Similarly to our

findings, Breto et al. developed a region-based convolutional neural network (R-CNN) for the segmentation of

GTV+Cervix and OARs in 646 onboard MR images taken before each treatment fraction from five patients

[36] and showed a good agreement between the auto-contoured and manual segmentation with (DSC) = 0.84
for GTV+Cervix and DSC > 0.7 for OAR. In another similar study, Breto et al.[37] used planning and daily

treatment fraction MR images, from 15 LACC patients for OARs and GTV+Cervix segmentation. The best

results for GTV+Cervix segmentation achieved DSC = 0.67±0.30 and 95HD = 2.77±1.73mm and the DSC

for rectum, femur, and bladder was greater than 0.8. These results suggest that the developed tools for GTV

automatic segmentation could be used for image segmentation in the AtezoLACC clinical trial for harmonization

of practices. Nevertheless, despite promising results, the models’ performances should be improved by combining

different planes and MR sequences.

6.2.4 Are biopsy samples representative of the whole tumor?

In the AtezoLACC trial, several biopsy samples have been collected. These samples were acquired in different

configurations, which might not be representative of the tumor cells and would create biases in our study.

With the help of two board-certified pathologists (M. C. and C. G.), we conducted a preliminary study that

consisted in validating the hypothesis that the tumor infiltrate on the surface biopsy would be representative of

the overall tumor infiltrate. Indeed, the tumor biopsy is firstly performed to confirm the presence of tumor cells

and secondly to evaluate the type and stage of the tumor. From a sample of 10 cone biopsies (conization),

peritumoral, stroma and global TILs were analyzed. Polymorphonuclear neutrophils (PMN) were also assessed

on the superior (at the surface) and the inferior slice of the volume. The visual assessment showed that the

infiltrate was quite homogeneous between the surface and the depth of the tissues from the conizations. PMN

scores between the superior and the inferior part of the conization and TILs quantification (Figure 6.3) were

also found not statistically different.

Afterward, pre-BT biopsies of 17 patients with a majority of squamous cell carcinomas except for three

cases (adenocarcinomas), treated at Gustave Roussy (retrospective biological material) for cervical cancer were

retrieved for a first multiplex CD3 (T-cells), CD20 (B-cells), CD68 (macrophages), CD57(natural killer (NK)),

with the goal to exhaustively analyze the tumor microenvironment in the frame of the ATEZOLACC clinical

trial. B-cells, T-cells, and NK cells are all involved in the immune system response but while NK cells respond

to signals of immune stress such as inflammation, B and T-cells specifically recognize and eliminate foreign

antigens. Observations showed that CD3 populations were superior in number to macrophage populations,

which were superior to CD20. NK populations were not observed. These results led to the development of a

new multiplex: CD8 (T-cells), PD-L1 ( tumor cells/response to anti-PD-1 or anti-PD-L1 antibodies), FoxP3

(T-reg), and CK (tumor cells). The first labeling was launched in March 2022 following the repatriation of the

biological material.
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Figure 6.3: TILs quantification in conizations from pre-BT LACC patients. The biopsy is well
representative of the whole tumor lymphocyte infiltration in LACC.

6.2.5 Evolution of CD8 T-cells prevalence troughout the treatment

The approach explored in order to distinguish the phenotype of responders and non-responders to immunotherapy

combined or not with CRT, was the quantification of the lymphocyte cell infiltrate in the tumor, in particular CD8

T-cells. After having validated the hypothesis that the infiltrate analyzed on a sample was well representative

of the tumor infiltrate, this quantification was done on biopsies acquired at different times to characterize the

evolution of CD8 T-cells over time in the two arms (experimental vs standard).

In the standard arm (arm 1), 56 biopsies were analyzed: 28, 10, and 18 taken respectively before treatment,

at weeks 3 and 7. In arm 2, 56 biopsies were gathered: 25, 11, and 20 were taken respectively before treatment,

at weeks 4 and 7. The estimation of CD8 cell infiltrate was done on each biopsy using the validated multiplex

described above using the HALO algorithm and was validated by a board-certified pathologist.

As shown in Figure 6.4, there was no statistical difference (Wilcoxon rank-sum test) between arm 1 (standard

arm) and arm 2 (experimental arm) during the course of the treatment up to week 7.
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Figure 6.4: Evolution of CD8 T-cells prevalence throughout the treatment between arm 1 and arm
2.
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6.3 Future work and final results

Although no differentiated CD8 modulation was observed in the 2 arms at 7 weeks, it remains to be seen whether

a link between response to treatment and CD8 modulation can be established and, if so, whether a radiomic

signature of the infiltrate could be developed, probably common to both arms. A radiomic score will be then

determined to assess CD8 T-cell content based on MR images. To do so, the tumor core as well as a peripheral

ring will be delineated on the MR images from which radiomic features will be extracted. For that purpose, the

automatic segmentation tool described above will be applied before verification by a board-certified radiation

oncologist. This study could be done in >24 months after the last inclusion, given the 2-year follow-up required

in the clinical trial. The pre-trained model on images acquired before RT will be transferred to the pre-BT

images via transfer learning. For this purpose, 160 T2w pre-BT MR images were retrospectively collected, have

been contoured, and will serve as the training cohort. The AtezoLACC pre-BT images will serve as the testing

cohort. The standardization method based on CycleGAN developed in this thesis will also be used on the

different MR images for robust radiomic feature extraction, as well as the developed modified consensus nested-

cross validation (cnCV) for an appropriate feature selection. Several ML algorithms will be tested (classifiers

and predictors) such as random forest, penalized regression (lasso, elastic-net), support vector machine (SVC),

etc., and the performance of each will be evaluated. Analysis of the association of the CD8 T-cell signature with

other immune cell populations (neutrophils, CD4) and PD-L1 assessed by immunohistochemistry will be also

performed. The last step would be to analyze the correlation between dynamic changes in radiomic features and

immunological content for conventional RT treatments with the goal to develop predictive signatures of local,

loco-regional, distant recurrence-free, and overall survivals. Optimizing the information generated by routine

imaging performed during treatment will provide insights for potential biomarkers, which will constitute valuable

tools to be used in a personalized therapeutic approach. In parallel, the analysis of intra-patients, per treatment

dynamic changes, is a first step for a better understanding of tumor heterogeneity and eventually will serve for

adaptive radiotherapy purposes as allowed by innovative MR-Linacs.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

The last past few years have seen the development of new lines of treatment towards precision medicine through

immunotherapy, targeted therapies, and efforts have been made for personalized chemotherapy (CT), and RT

regimens. Despite these advancements, in most cases, patients with the same type of cancer are still treated

similarly, especially in RT and CT where they are given the same doses in a standard manner. Developments of

effective personalized treatment involve understanding and characterization of tumor phenotypes using a large

panel of high dimensional data such as genomics, proteomics, radiomics, dosiomics in addition to clinical and

biological information.

Radiomics, specifically AI applied to radiomics, is a highly promising and evolving field for personalized cancer

treatment as shown by the high number of studies on the subject. Multiple lines of evidence demonstrated how

radiomics is revealing real information regarding tumor cells that is above and beyond visual analysis, which could

be taken advantage of for cancer early detection, treatment optimization, and prediction of treatment outcome.

However, some limitations still hinder the field of radiomics. The main limitation to clinical implementation is

by large the lack of large, structured, high-quality datasets that are well annotated with respect to the relevant

outcome. This strongly and negatively impacts the generalizability of the developed models to real life. The

other limitation in radiomic studies is the lack of standardization tools for multi-institutional images affected by

the ‘center-effect’. In this thesis, several approaches were made to tackle these limitations.

In the first project, efforts have been made to collect a large dataset of [18F]-FDG PET images from 5

independent institutions with the objective of building a robust model for survival prediction in patients with

HPV-induced cancers, namely LACC, ASCC, and OPSCC. PET images of patients treated for LACC from

Gustave Roussy Campus Cancer (104 patients) and Leeds Teaching Hospitals NHS Trust (90 patients) were

gathered. We also collected ASCC PET images from Institut du Cancer de Montpellier (66 patients) and

from Oslo University Hospital (67 patients). An additional cohort of patients with OPSCC was also gathered

from University Hospital of Zurich (45 patients). The ComBat harmonization technique was applied to radiomic

features. We implemented a robust feature selection method coupled with hyperparameters tuning, the modified

consensus nested cross-validation, within four ML models to predict PFS and OS. Each model was trained and

optimized on LACC and ASCC cohorts and tested on independent LACC, ASCC, and OPSCC patients. The
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radiomic-based CoxNet model achieved the best results with C-index values of 0.75, 0.78 for PFS, and 0.76,

0.74, 0.75 for OS on the test sets. Radiomic feature-based models had superior performance compared to the

bioclinical ones and combining radiomic and bioclinical variables did not improve the performances. Metabolic

tumor volume (MTV)-based models obtained lower C-index values for a majority of the tested configurations, but

the same or better performance for the identification of early relapses. The results demonstrate the possibility

of identifying common PET-based image signatures for predicting the response of patients with induced HPV

pathology, validated on multi-center multiconstructor data. However, the added value of radiomics remains to

be demonstrated compared to conventional quantitative metrics. To our knowledge, this is the first time that

a common radiomic signature has been developed for different HPV-positive cancers. This study may therefore

pave the way for the optimization of HPV-induced cancers treatment, by guiding the clinician on the dose

coverage trade-offs to be implemented in the planning stages of RT and/or BT.

In the second project, we developed a standardization method based on GAN for T2w MR images in patients

with LACC. A cGAN and a CycleGAN method to address MR standardization were proposed and compared

to conventional preprocessing and a posteriori methods proposed in the literature (Nyul, z-score normalization,

and ComBat harmonization). In a first step, T2w MR images from 30 patients treated for LACC were acquired

prospectively. For each patient, three images were taken sequentially on the same scanner with fixed values of

repetition time (TR) and voxel size (VS). A cGAN was trained on these paired images to generate images robust

to the impact of TR and VS modulation. The impact of standardization methods was assessed by means of

PCA on image quality metrics extracted from the images before and after standardization. Using ICC and CCC,

robust features were also characterized (CCC and ICC 0.75). PCA on image quality metrics showed that TR and

VS changes were mitigated the most with cGAN-based standardization. Regarding TR/VS modulation, cGAN

achieved the best results with 100% (18/18) and 77%(58/75) of robust features after standardization, on first-

order and second-order features, respectively. In a second step, a retrospective cohort of 216 LACC patients was

also gathered, including 86 and 160 T2w MR images taken before radiotherapy (RT) and brachytherapy (BT),

respectively. A cycleGAN standardization method for unpaired images was trained but also Nyul and z-score

normalization on the retrospective images. Different ML models were trained to investigate the impact of these

standardization methods on stage classification and relapse prediction, respectively. CycleGAN achieved the

best results on both tasks compared to other standardization methods. On pre-RT images, stage classification

average accuracy was improved on the test set from 0.68±0.16 to 0.83±0.07, 0.78±0.04, and 0.88±0.09 with

Nyul standardization, z-score standardization, and CycleGAN standardization, respectively. Likewise, relapse

prediction based on pre-BT images achieved higher AUC on the test set after image standardization with

the best model achieving 0.44 before standardization, 0.52, 0.56, and 0.60 after z-score, Nyul, and CycleGAN

standardization, respectively. Our results suggest that neural network-based normalization could better limit the

impact of acquisition parameters on MRI radiomic features compared to conventional methods in LACC. Such

approach could be used in a single harmonization strategy encompassing image pre-processing steps without the

need for a priori information on imaging acquisition and reconstruction parameters. In addition to providing very

promising results for robust radiomic studies, adversarial networks could be used for multiple and varied tasks

in combination with augmentation and normalization techniques with complementary benefits[1]. CycleGAN

could be used to move from one image quality space to another, by changing target domain selection. which
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would generate MR images with different properties in terms of noise, contrast and spatial resolution. This

would help improve the accuracy of manual and automatic segmentation in the context of radiation therapy. It

may also reduce the image acquisition time, thus increasing patient comfort.

7.2 Perspectives

The developed model and tools will be further applied to unseen data. An additional cohort of PET images

of patients with HNC has been already collected at Gustave Roussy Campus Cancer. The developed radiomics

signature will be evaluated on it to validate furthermore our findings, given the small size of OPSCC patients

used in this thesis. In addition to OPSCC, it will also be tested on other types of HPV-related HNCs. The

CycleGAN-based standardization tool will be applied to different sequences of MR images from the AtezoLACC

clinical trial. It will allow for the development of a multi-sequence radiomic signature which will hopefully

ensure the generalizability of the radiomic signature of CD8 T-cells infiltrate. Additional loss, such as structural

similarity loss, could increase the structural correspondence between the generated and the source images and

should be assessed. Advances in the field of GAN such as style GANs and their derivates should also be

investigated for multi-centric radiomic studies. Several studies have proven the power of radiomic features for

personalized treatment. However, a question remains: "How accurate should a radiomic or DL-based model be

to be considered relevant in clinical routine?” To answer this question, prospective studies must be set up. In

addition, a close collaboration among physicists, physicians, researchers but also patients, is essential to clearly

define the relevant metrics for an efficient evaluation of a radiomic model, for example, before moving to a dose

escalation strategy in RT.
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Appendix D

Substantial French Summary

Il est établi que les papillomavirus humains (HPV) oncogènes, l’une des infections les plus sexuellement transmis-

sibles, sont responsables d’une forte proportion des cancers du col de l’utérus localement avancés (LACC), des

cancers de l’anus (ASCC) et de l’oropharynx (OPSCC). Le dépistage pour une détection précoce et la campagne

de vaccination contre les virus HPV font partie des solutions pour réduire le nombre de cancers HPV-induits, mais

des efforts supplémentaires doivent être faits pour améliorer la prise en charge et le traitement de ces cancers.

Le développement de schémas thérapeutiques combinant des modalités de traitement complémentaires telles

que la chimioradiothérapie (CRT) et l’immunothérapie semble être une option thérapeutique particulièrement

prometteuse. Dans ce contexte, la recherche de biomarqueurs spécifiques à la réponse au traitement reste un en-

jeu majeur, notamment pour identifier les patients non-répondeurs aux thérapies conventionnelles. Les récentes

innovations technologiques en informatique, à savoir le Machine Learning (ML) et surtout le Deep-Learning

(DL) basé sur l’analyse d’images médicales, i.e la radiomique, pourraient fournir des outils complémentaires et

puissants pour une meilleure compréhension du cancer. La radiomique consiste à extraire des caractéristiques

quantitatives d’images médicales, caractérisant en particulier la forme de la tumeur, ses intensités sur l’image et

son hétérogénéité spatiale. Les algorithmes de ML basés sur les caractéristiques radiomiques ont déjà démontré

leur pouvoir d’identifier des motifs complexes permettant l’élaboration de modèles phénotypiques, pronostiques

et prédictifs robustes. Ces dernières années ont vu le développement de nouvelles techniques de traitement

allant de plus en plus vers une médecine de précision notamment parl’immunothérapie, les thérapies ciblées, et

des efforts ont été faits pour personnaliser les schémas standard de chimiothérapie (CT) et de radiothérapie

(RT). Malgré ces avancées, dans la plupart des cas, les patients atteints du même type de cancer sont toujours

traités de la même manière, en particulier en ce qui concerne la RT et la CT, où ils reçoivent les mêmes doses

de manière standard.

La radiomique, et plus précisément l’IA appliquée à la radiomique, est un domaine très prometteur et en

pleine évolution pour le traitement personnalisé du cancer, comme le montre le grand nombre d’études sur le

sujet. De nombreuses sources de données ont démontré que la radiomique révèle des informations réelles sur

les cellules tumorales qui vont au-delà de l’analyse visuelle et qui pourraient être exploitées pour la détection

précoce du cancer, l’optimisation du traitement et la prédiction de l’issue du traitement. Cependant, certaines

limitations entravent encore le domaine de la radiomique. La principale limite à la mise en œuvre clinique

est, de manière générale, le manque de grands ensembles de données structurés et de haute qualité qui sont
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correctement annotés. Cela a un impact fort et négatif sur la généralisation des modèles développés dans la

vie réelle. L’autre limite des études radiomiques est le manque d’outils de standardisation pour les images

multi-institutionnelles affectées par ’l’effet de centre’. Dans cette thèse, plusieurs approches ont été mises en

œuvre pour remédier à ces limitations.

Dans le premier projet, des efforts ont été faits pour collecter un large ensemble de données d’images

[18F]-FDG TEP provenant de 5 institutions indépendantes avec l’objectif de construire un modèle robuste pour

la prédiction de la survie chez les patients atteints de cancers induits par le HPV, à savoir LACC, ASCC,

et OPSCC. Nous avons recueilli des images TEP de patients traités pour LACC au Gustave Roussy Campus

Cancer (104 patients) et au Leeds Teaching Hospitals NHS Trust (90 patients). Nous avons également recueilli

des images TEP d’ASCC de l’Institut du cancer de Montpellier (66 patients) et de Oslo University Hospital

(67 patients). Une cohorte supplémentaire de patients atteints d’OPSCC a également été recueillie auprès

de University Hospital of Zurich (45 patients). La technique d’harmonisation ComBat a été appliquée aux

caractéristiques radiomiques. Nous avons mis en œuvre une méthode robuste de sélection des caractéristiques

couplée à l’ajustement des hyperparamètres, le "modified consensus nested cross-validation", au sein de quatre

modèles ML pour prédire la survie sans progression (PFS) et la survie globale (OS). Chaque modèle a été entraîné

et optimisé sur les cohortes LACC et ASCC et testé sur des patients LACC, ASCC et OPSCC indépendants.

Le modèle CoxNet basé sur la radiomique a obtenu les meilleurs résultats avec des valeurs de C-index de

0,75, 0,78 pour la PFS, et 0,76, 0,74, 0,75 pour l’OS sur les ensembles de test. Les modèles basés sur

les caractéristiques radiomiques ont eu des performances supérieures à celles des modèles biocliniques et la

combinaison des variables radiomiques et biocliniques n’a pas amélioré les performances. Les modèles basés

sur le volume tumoral métabolique (MTV) ont obtenu des valeurs de C-index inférieures pour la majorité

des configurations testées, mais des performances identiques ou supérieures pour l’identification des rechutes

précoces. Les résultats démontrent la possibilité d’identifier des signatures d’image communes basées sur

la TEP pour prédire la réponse des patients présentant une pathologie HPV induite, validée sur des données

multiconstructeurs multicentriques. Cependant, la valeur ajoutée de la radiomique reste à démontrer par rapport

aux mesures quantitatives conventionnelles. À notre connaissance, c’est la première fois qu’une signature

radiomique commune a été développée pour différents cancers HPV-positifs. Cette étude pourrait donc ouvrir

la voie à l’optimisation du traitement des cancers induits par le HPV, en guidant le clinicien sur les compromis

de couverture de dose à mettre en œuvre dans les étapes de planification de la RT et/ou de la curiethérapie.

Dans le second projet, nous avons développé une méthode de standardisation basée sur le GAN pour les

images IRM T2 chez des patients atteints de LACC. Nous avons proposé une méthode basée sur un cGAN

et une méthode basée sur un CycleGAN pour la standardisation des images MR et les avons comparées aux

méthodes conventionnelles de prétraitement et a posteriori proposées dans la littérature (Nyul, normalisation

z-score et ComBat). Dans un premier temps, les images RM T2w de 30 patients traités pour un LACC ont

été acquises de manière prospective. Pour chaque patient, trois images ont été prises séquentiellement sur le

même scanner avec des valeurs fixes de temps de répétition (TR) et de taille de voxel (VS). Un cGAN a été

entraîné sur ces images appariées pour générer des images robustes à l’impact de la modulation du TR et de la

VS. L’impact des méthodes de standardisation a été évalué au moyen d’une analyse en composantes principales

(PCA) sur les mesures de qualité d’image extraites des images avant et après la standardisation. En utilisant le
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coefficient de corrélation intraclasse (ICC) et le coefficient de corrélation de concordance (CCC), des variables

radiomiques robustes ont également été analysées (CCC et ICC 0,75). La PCA sur les métriques de qualité

d’image a montré que les changements de TR et de VS étaient les plus atténués avec la standardisation basée

sur le cGAN. En ce qui concerne la modulation TR/VS, le cGAN a obtenu les meilleurs résultats avec 100%

(18/18) et 77% (58/75) de caractéristiques radiomiques robustes après standardisation, sur les caractéristiques

de premier ordre et de second ordre, respectivement. Dans un deuxième temps, une cohorte rétrospective

de 216 patients atteints de LACC a également été collectée, comprenant 86 et 160 images IRM T2 prises

avant la radiothérapie (RT) et la curiethérapie (BT), respectivement. Une méthode de standardisation basé

sur le CycleGAN pour les images non appariées a été entraînée, ainsi qu’une standardisation Nyul et z-score

sur les images rétrospectives. Différents modèles ML ont été entraînés pour étudier l’impact de ces méthodes

de standardisation sur la classification des stades et la prédiction des rechutes, respectivement. CycleGAN a

obtenu les meilleurs résultats sur les deux tâches par rapport aux autres méthodes de standardisation. Sur

les images pré-RT, la précision moyenne de la classification des stades a été améliorée sur le jeu de test de

0.68 ± 0.16 à 0.83 ± 0.07, 0.78 ± 0.04, et 0.88 ± 0.09 avec la standardisation Nyul, la normalisation z-score,

et la standardisation basé sur le CycleGAN, respectivement. De même, la prédiction des rechutes basée sur

les images pré-BT a obtenu une meilleure AUC sur l’ensemble des tests après la standardisation des images,

le meilleur modèle atteignant 0,44 avant la standardisation, 0,52, 0,56, et 0,60 après la standardisation par

z-score, Nyul, et CycleGAN, respectivement. Nos résultats suggèrent que la standardisation basée sur un réseau

neuronal pourrait mieux limiter l’impact des paramètres d’acquisition sur les caractéristiques radiomiques de

l’IRM que les méthodes conventionnelles dans le cadre du LACC. Cette approche pourrait être utilisée dans une

stratégie d’harmonisation unique englobant les étapes de prétraitement des images sans qu’il soit nécessaire de

disposer d’informations a priori sur les paramètres d’acquisition et de reconstruction de l’imagerie.
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