
HAL Id: tel-04672899
https://theses.hal.science/tel-04672899v1

Submitted on 19 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

User-oriented exploration of semi-structured datasets
Nelly Barret

To cite this version:
Nelly Barret. User-oriented exploration of semi-structured datasets. Computer Science [cs]. Institut
Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX001�. �tel-04672899�

https://theses.hal.science/tel-04672899v1
https://hal.archives-ouvertes.fr

626

N
N

T
:

2
0
2
4
IP

P
A

X
0
0
1

User-oriented exploration of semi-structured
datasets

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Inria Saclay

École doctorale n◦626 Ecole Doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Informatique, Données et Intelligence Artificielle

Thèse présentée et soutenue à Palaiseau, le Vendredi 15 mars 2024, par

Mme, Nelly Barret
Composition du Jury :

Fatiha Säıs
Professeur des universités, Université Paris Saclay, Laboratoire
Interdisciplinaire des Sciences du Numérique (LISN)

Présidente

Jean-Marc Petit
Professeur des universités, Insa Lyon, Laboratoire d’InfoRmatique
en Image et Systèmes d’information (LIRIS)

Rapporteur

Olivier Teste
Professeur des universités, Université Toulouse Jean Jaurès,
Institut de Recherche en Informatique de Toulouse (IRIT)

Rapporteur
(absent du jury)

Katja Hose
Full professor, TU Wien, Databases and Artificial Intelligence
Research Unit

Examinatrice

Stefano Ceri
Professor, Politecnico di Milano, Dipartimento di Elettronica,
Informazione e Bioingegneria (DEIB)

Examinateur

Fatemeh Nargesian
Assistant professor, University of Rochester, Department of
Computer Science

Examinatrice

Ioana Manolescu
Chercheur senior, Inria et Ecole Polytechnique, Laboratoire
d’Informatique de l’École Polytechnique (LIX)

Directrice de thèse

Karen Bastien
Co-fondatrice, WeDoData Co-encadrante de thèse

À mon compagnon, Julien

Et à ma famille proche :

ma maman Patricia et mon papa Michel

ma sœur jumelle Isabelle

et ma grand-mère Claudette

Pour leur amour et leur soutien sans faille

Nelly

Résumé

À travers le monde, la création, l’utilisation et le partage sans précédent des données contribuent à
de nouvelles applications et opportunités économiques. Ces données sont souvent larges, hétérogènes
en schéma comme en modèle, et plus ou moins structurées. Pour y mettre de l’ordre, le consortium
du World Wide Web recommande de partager des graphes RDF, ce qui a été majoritairement
adopté dans l’Open Data (données ouvertes), mais beaucoup d’autres formats sont utilisés en
pratique. C’est le cas des journalistes qui récoltent des jeux de données de différents acteurs, qui
ne se sont pas coordonnés. Par exemple, ils souhaitent comprendre comment les politiciens français
en campagne sont liés, de près ou de loin, aux entreprises offshores. Dans ce cadre, ils ont trouvé
sur la plateforme Kaggle des fichiers CSV recensant les pourcentages obtenus par les candidats
aux élections présidentielles françaises ; les déclarations d’intérêt des parlementaires et sénateurs
français sont partagées en XML sur le site du gouvernement ; les tweets des personnalités politiques
françaises sont disponibles en JSON ; les graphes de propriétés (comme ceux de Neo4J) sont utilisés
pour partager les données d’Offshore leaks, une base de données sur les sociétés offshores, dont
certaines sont françaises. Les journalistes ont donc cruellement besoin d’outils pour consolider et
interagir avec des sources provenant de différents acteurs, puis générer des résultats concrets qu’ils
peuvent partager avec leurs collègues ou dans leur rédaction.

Plus généralement, les producteurs de données et les utilisateurs (novices ou non) qui doivent
trouver, utiliser ou partager des jeux de données se trouvent face à un exercice difficile. Dans la
littérature, il existe déjà ConnectionLens, un système capable de convertir des données struc-
turées, semi-structurées et non-structurées en un graphe de données intégré. Ceci est très pratique
pour intégrer et explorer plusieurs sources récoltées auprès de différents acteurs. En effet, le forma-
lisme graphe permet une intégration fine et modulaire de l’information. En revanche, les utilisateurs
qui ne sont pas familiers avec ce formalisme ou qui connaissent peu la structure et/ou le contenu
de leurs jeux de données peuvent facilement se retrouver perdus.

Dans cette thèse, nous proposons deux nouvelles méthodes pour appréhender, utiliser et parta-
ger des jeux de données semi-structurées, i.e., documents XML, documents JSON, tableaux
CSV, graphes RDF et de propriétés (PG). La première méthode produit des schémas rappelant
les diagrammes Entité-Relation reflétant les entités et relations principales d’un jeu de données ;
la seconde énumère un ensemble de chemins, considérés intéressants, entre des entités nommées,
telles que des personnes, lieux, entreprises, etc. Ces deux propositions sont basées sur la vue graphe
des différents modèles de données, introduite dans la littérature par ConnectionLens et ensuite
étendue dans cette thèse sous la forme d’un graphe résumé (que nous appelons graphe de collec-
tions). Nous avons construit cette vue graphe et globale dans l’optique de tirer le meilleur de toutes
ces données, quel que soit leur modèle.

i

La première partie de cette thèse se focalise sur la génération automatique de descriptions de
données, sous la forme de diagrammes rappelant les schémas Entité-Relation, pour des données
structurées et semi-structurées. Dans la littérature, il existe déjà beaucoup d’approches pour cons-
truire des schémas/descriptions pour les modèles semi-structurés, tels que JSON, XML, RDF et
PG. En revanche, elles ne sont définies que pour un modèle à la fois, ce qui oblige à définir des
méthodes de génération de schéma pour chaque modèle. Au contraire, l’approche proposée dans ce
travail voit chaque jeu de données comme un ensemble d’entités (objets du monde réel), chacune
ayant un ensemble de propriétés et pouvant avoir des connexions avec les autres. Par exemple, le
jeu de données au format JSON décrivant les tweets de politiciens français contient deux entités
(les tweets et les politiciens) et une relation (les tweets sont écrits par les politiciens).

La seconde partie de cette thèse se consacre à l’énumération de chemins intéressants dans
des données. La plupart des travaux existants permettent aux utilisateurs de demander des mots-
clés, tels que des noms de personnes ou d’entreprises, puis les systèmes retournent les données, ou
chemins, associés à ces mots-clés. Cette approche est très pratique quand des mots-clés intéressants
sont connus. Dans le cas contraire, et surtout si l’on connâıt peu les données que l’on interroge,
il est préférable d’adopter une approche plus générale, telle que celle que nous proposons. Ainsi,
nous présentons une méthode qui, via quelques questions posées à l’utilisateur, énumère d’abord
l’ensemble des chemins connectant des entités nommées, puis filtre et trie les chemins considérés
comme les plus intéressants, et enfin matérialise ces chemins sur les données sous-jacentes. La qualité
intéressante d’un chemin peut être calculée de différentes façons ; nous proposons de prendre en
compte la fiabilité des entités extraites ainsi que la force de l’information présente dans le chemin.

ii

Abstract

In the world, the unprecedented creation, use and share of data contribute to many new applications
and economic opportunities. Such data is often large, heterogeneous in terms of schema and model,
and more or less structured. To bring it order, the World Wide Web consortium recommends sharing
RDF graphs, which has been mostly adopted in the Open Data initiative, but many other formats
are used in practice. This is the case of journalists, who gather datasets from diverse actors, which
did not cooperate. For instance, they seek to understand how French politicians in campaign relate
to offshore companies. In that frame, they found on Kaggle CSV files describing the percentages
obtained by candidates in the French presidential elections; French deputies’ interest declarations
are shared as XML on the governmental website; tweets from political figures are available in JSON;
property graphs (such as pioneered by Neo4J) are used to share Offshore leaks data, a database
about offshore companies, some of which are French. Therefore, journalists crucially need tools to
consolidate and interact with sources gathered from various actors, then compute practical results
they can share with their colleagues or within newsrooms.

More generally, data producers and users (newbies or not) who need to find, use or share datasets
may have a hard time. In the literature, there already exists ConnectionLens, a system capable
of converting structured, semi-structured and unstructured data in a integrated data graph. This is
very convenient to integrate and explore sources from different actors. Indeed, the graph formalism
allows a fine-granularity and modular integration of information. However, users who are not
familiar with this formalism or who know very little about the structure and/or content of their
datasets can quickly become lost.

In this thesis, we propose two novel methods to grasp, use and share semi-structured datasets,
i.e., XML documents, JSON documents, CSV tables, RDF and Property Graphs (PG). The for-
mer method computes schemas akin to the classical Entity-Relationship diagrams, reflecting main
entities of a dataset and their relationships; the latter enumerates a set of paths, considered in-
teresting, between Named Entities, such as people names, places, companies names, etc. Those
two proposals are based on the graph view of different data models, introduced in the literature by
ConnectionLens, and further extended in this thesis in the form of a summarized graph (which
we call collection graph). We built this global graph view in order to get the most out of all this
data, regardless its model.

The first part of this thesis is about automatically generating data descriptions, in the form of
diagrams like Entity-Relationship schemas, for structured and semi-structured data. There already
exist many approaches to build schemas/descriptions out of semi-structured models, such as JSON,
XML, RDF and PG. Nevertheless, they are defined for only one model at a time, requiring to define
new methods for each model. On the contrary, our proposed approach sees each dataset as a set of

iii

entities (objects in the real world), each of which having a set of properties and potentially some
connections with other entities. For instance, the JSON dataset about tweets would encompass two
entities (tweets and politicians) and a relationship (tweets are written by politicians).

The second part of this thesis focuses on the enumeration of interesting paths in the data.
Most of the existing works allow users to ask keywords, such as people or companies names; then
systems would return data or paths associated to those keywords. This approach is very suitable
when users have some keywords of interest in mind. Otherwise, and even more if users know very
little about the data they are querying, it is preferable to adopt a more general approach, such
as the one we propose. After asking few questions to users, our method first enumerates the set
of paths connecting Named Entities, then filters and sorts paths considered the most interesting,
and finally materializes those paths on the underlying data. The interestingness of a path may be
computed in several ways; we propose to take into account the reliability of Named Entities and
the force of information present in the path.

iv

Remerciements

Maintenant que j’ai défendu mon doctorat et que j’ai commencé ma nouvelle vie italienne, c’est le
bon moment pour repenser à ces quatre dernières années. Quand j’ai commencé ma thèse en janvier
2021, j’ai rencontré l’équipe CEDAR à travers mon écran, mais des liens se sont très vite noués
une fois les confinements terminés. Les présentations et conférences se sont ensuite enchâınées dans
des cadres souvent idylliques. Sans crier garde, le moment de rédiger mon manuscrit est arrivé et
c’était déjà bientôt la fin de mon doctorat.

Mes remerciements les plus chaleureux vont à Ioana, ma directrice de thèse, qui m’a encouragée à
aller plus loin dans mes idées, à viser l’excellence, et à toujours acquérir de nouvelles compétences.
Merci Ioana pour l’encadrement de qualité, la prévenance à mon égard et le soutien continu, malgré
la pandémie de Covid-19 et ma vie lyonnaise. Je n’oublierai pas cette aventure, ni les précieux
moments passés ensemble, que ce soit à CEDAR, dans Paris ou en conférence.

Je remercie ensuite les rapporteurs de ce manuscrit, Jean-Marc Petit et Olivier Teste, pour leur
retours précis et constructifs. Merci aussi aux examinatrices et examinateurs, Fatiha Säıs, Katja
Hose, Fatemeh Nargessian et Stefano Ceri : vous avez fait de ma soutenance un moment riche et
gratifiant.

Merci aussi à Karen Bastien, data journaliste et co-fondatrice de WeDoData. Les cas d’utilisation et
les données fournies nous ont permis de confronter notre production scientifique au monde réel. Data
journaliste aussi, Camille a été de très bonne compagnie et toujours disponible pour des discussions
passionnantes. Elles m’ont permis d’appréhender la pluridisciplinarité entre l’informatique et le
journalisme, notamment par les échanges avec les journalistes, dont le groupe Datajournos.

Je n’oublie pas toute l’équipe CEDAR, avec qui j’ai eu des discussions épanouissantes au Magnan et
lors de nos réunions d’équipe hebdomadaires. Plus particulièrement, je voudrais remercier Prajna
pour notre riche collaboration pendant ma première année et Madhu pour avoir été une collègue et
amie de grande qualité. Je n’oublie pas Théo G et Simon pour leur expertise ainsi que nos sorties
au restaurant. Je pense aussi à Pawel, Yamen, Ghufran, Kun, Qi, Guillaume, Théo B, et tous les
autres, avec qui j’ai partagé d’agréables moments et discussions.

Je remercie aussi les cinq stagiaires que j’ai co-supervisé pour leur investissement : Antoine, Jia Jean,
Nikola, Tudor et Shay. Cette expérience a été très formatrice pour moi.

J’ai une pensée pour Fabien Duchateau et Franck Favetta, mes encadrants de stage en Licence et
Master à Lyon. Merci de m’avoir permis d’entrer dans le monde de la recherche, ceci a conforté
mon envie de faire une carrière académique. C’est avec vous que j’ai acquis les bases qui me sont
utiles chaque jour.

v

Je souhaite remercier Inria Saclay, pour avoir été un endroit convivial pendant ces quatre dernières
années, ainsi que la région Île-de-France et le projet SourcesSay pour avoir financé mon doctorat.

Mes derniers, mais pas des moindres, remerciements vont à mon compagnon et à ma famille. Julien,
Maman, Papa, Isa, Mémé : merci de m’avoir soutenue et proposé des week-ends lyonnais, brulliolois,
ou dompierrois pour décompresser.

Pour finir, je remercie toutes les personnes qui ont contribué, de près ou de loin, à cette aventure.
J’ai vraiment apprécié d’avoir pu réaliser mon histoire doctorale à CEDAR. Merci à tous !

vi

CONTENTS

Contents

1 Introduction 3
1.1 Context . 4
1.2 Goal of the thesis and main contributions . 6

1.2.1 Data abstractions for heterogeneous datasets with Abstra 6
1.2.2 Entity-to-entity paths exploration with PathWays 7
1.2.3 Heterogeneous data exploration with ConnectionStudio 10
1.2.4 Scientific contributions . 10

1.3 Publications . 11
1.4 Prototypes . 12
1.5 Manuscript outline . 13

2 Preliminaries 15
2.1 Basics . 16
2.2 Entity-Relationship model . 16
2.3 Relational data . 17
2.4 XML documents . 18
2.5 JSON documents . 21
2.6 RDF graphs . 22
2.7 Property graphs . 24
2.8 Summary . 25

3 Related work 27
3.1 Heterogeneous data integration . 28

3.1.1 Virtual integration with mediators . 28
3.1.2 Physical integration with data warehouses . 32
3.1.3 Schema-less data integration . 33
3.1.4 Data integration architectures comparison . 36

3.2 Data summarization . 37
3.2.1 Quotient and non-quotient summaries . 38
3.2.2 Structural summarization based on labels . 38
3.2.3 DataGuide summarization . 39
3.2.4 Structural RDF quotient summaries . 41
3.2.5 XML schema inference . 46
3.2.6 JSON schema inference . 46
3.2.7 Property graph schema inference . 48
3.2.8 Summarizing data of multiple models . 49

3.3 Structured and unstructured querying . 50
3.3.1 Structured querying . 50

i

CONTENTS

3.3.2 Keyword-based search . 52
3.3.3 Exploration of complex datasets . 54
3.3.4 Dataset search . 55

3.4 Summary . 55

4 A unified view of semi-structured data formats: the graph representation 57
4.1 Target model: directed graphs . 58

4.1.1 Relational data . 58
4.1.2 XML documents . 59
4.1.3 JSON documents . 60
4.1.4 RDF graphs . 61
4.1.5 Property graphs . 61

4.2 Extraction of Named Entities . 62
4.3 Graph normalization . 63
4.4 Summary . 63

5 From a data graph to a collection graph 65
5.1 From applications to datasets: a unified perspective 66

5.1.1 Records and values . 66
5.1.2 Relationships . 66
5.1.3 Same-kind records . 67

5.2 Node equivalence in different data models . 68
5.2.1 Relational data . 68
5.2.2 XML documents . 69
5.2.3 JSON documents . 70
5.2.4 RDF graphs . 72
5.2.5 Property graphs . 73

5.3 Collection graph and associated statistics . 74
5.3.1 Collection nodes . 74
5.3.2 Collection edges . 77
5.3.3 Paths in the collection graph and their associated statistics 79
5.3.4 Discussion: simplifications made in the collection graph 81

5.4 From multiple datasets to a collection graph . 81
5.5 Summary . 83

6 Data abstraction 85
6.1 From the collection graph to entities . 86
6.2 Main entity selection algorithm . 87

6.2.1 Naive algorithm . 89
6.2.2 Greedy algorithm . 91

6.3 Scores . 91
6.3.1 Simple collection scores . 92
6.3.2 Scores by DAG propagation . 94
6.3.3 Scores using PageRank . 96

6.4 Boundary methods . 100
6.4.1 Boundaries for simple scores . 100
6.4.2 Boundaries for DAG weights . 101

ii

CONTENTS

6.4.3 Boundaries for PageRank-based weights . 102
6.5 Collection graph update methods . 104

6.5.1 Graph update for simple scores . 104
6.5.2 Graph update for weight-based scores . 104

6.6 Relationships between main entities . 106
6.6.1 Relationships identification . 106
6.6.2 Multi-traversed (non-main) entities . 106

6.7 Alternative: multi-greedy algorithm . 107
6.8 Main entity classification . 109

6.8.1 Semantic resources . 109
6.8.2 Classification algorithm . 112
6.8.3 Alternatives . 114

6.9 Experimental evaluation . 116
6.9.1 Datasets, semantic resources, and settings . 116
6.9.2 Quality of the main entity selection methods 117
6.9.3 Main entities in all datasets . 119
6.9.4 Quality of main entity classification . 120
6.9.5 Scalability of the abstraction computation . 125
6.9.6 Inferred schemas vs. abstractions . 127
6.9.7 Remarks on abstraction . 127
6.9.8 Experiment conclusion . 128

6.10 Summary . 129

7 Entity-to-entity path exploration 131
7.1 From data graphs to entity-to-entity data paths . 132
7.2 ChatGPT-based Named Entity extractor . 132
7.3 Entity-to-entity path enumeration and associated path metrics 134

7.3.1 Entity-to-entity collection path enumeration 134
7.3.2 Path directionality . 135
7.3.3 Path reliability . 136
7.3.4 Path force . 137

7.4 Data paths materialization . 138
7.4.1 From a collection path to a query over the data graph 138
7.4.2 Candidate views enumeration . 139
7.4.3 Materialized views selection and path queries rewriting 140

7.5 Experimental evaluation . 141
7.5.1 Datasets and settings . 142
7.5.2 Performance of ChatGPT entity extraction 142
7.5.3 Path enumeration . 145
7.5.4 Efficiency of path evaluation . 146
7.5.5 Path reliability and ranking . 148
7.5.6 Evaluation of the top-ranked paths . 150
7.5.7 Experiment conclusion . 150

7.6 Summary . 151

8 Conclusions and perspectives 153

iii

CONTENTS

iv

LIST OF FIGURES

List of Figures

1.1 The software pile: from existing contributions (OntoSQL, RDFQuotient, Con-
nectionLens) to the original ones (Abstra, PathWays, ConnectionStudio). . 6

1.2 E-R model computed by Abstra from an XMark [150] XML document (3M nodes). 8
1.3 XML PubMed notice of the paper about glyphosate. 9
1.4 Tabular connections computed by PathWays from an XML PubMed bibliographic

information (60K nodes). 10
1.5 A query over the French assembly data showing how many shares each member has

in the 40 most influential French companies. 11

2.1 Relational data modeling scientific publications and their authors. 18
2.2 An XML document describing few authors and their publications. 19
2.3 The XML tree corresponding to the data in Figure 2.2. 19
2.4 A JSON document describing an author and her publications. 21
2.5 The JSON tree corresponding to the data in Figure 2.4. 21
2.6 RDF triples depicting an author and her two papers, and few RDFS ontology triples. 23
2.7 The RDF graph corresponding to the RDF triples in Figure 2.6. The graph also

contains those inferred by the graph saturation (blue edges). 24
2.8 Property graph modeling scientific publications and their authors. 25

3.1 The three main architectures for heterogeneous data integration. 29
3.2 An XML tree describing four people. 39
3.3 The label summarization of the XML tree in Figure 3.2. 39
3.4 A JSON tree representing few people. 39
3.5 The two possible DataGuides for the JSON tree presented in Figure 3.4. 41
3.6 An RDF graph depicting four people, and one ontology edge saying that Friend is a

sub-class of Person. 42
3.7 Weak summary. 43
3.8 Strong summary. 43
3.9 Data-then-type weak summary. 44
3.10 Data-then-type strong summary. 44
3.11 The type-then-data (weak and strong) quotient summary with type generalization. . 45
3.12 A JSON document describing four people. 47
3.13 The corresponding JSON document with inferred value types. 47
3.14 The kind schema. 48
3.15 The label schema. 48
3.16 A Property Graph describing four people. 49

v

LIST OF FIGURES

3.17 The Property Graph schema inferred from Figure 3.16. 49
3.18 Bi-directional path (top) and uni-directional path (bottom) connecting Alice and

Bob to their common publication, Paper1. 51
3.19 The SPARQL query to ask for Alice and Bob connections. 51
3.20 Keyword search query on the PubMed example presented in Figure 1.4 where users

ask for connections between “Roche” (a Swiss multinational healthcare company),
“Bayer” (a German multinational pharmaceutical and biotechnology company) and
“Garassino” (an internationally recognized expert in the treatment of thoracic tumors). 53

4.1 Example of a data graph. 59
4.2 An XML snippet describing a book and its authors. 59
4.3 The data graph for the XML snippet in Figure 4.2. 60
4.4 The data graph for the XML snippet in Figure 4.2 with ID-IDREF edges. 61
4.5 The normalized data graph obtained from the initial data graph in Figure 4.1. . . . 64

5.1 A JSON snippet. 70
5.2 A visual representation of the partition after path-based summarization is applied. . 72
5.3 A visual representation of the partition after the clique-based further summarization

is applied. 72
5.4 Collection graph corresponding to the data graph in Figure 4.5. 74
5.5 Deeply shared vs shallow shared collections. 76
5.6 Data graph of an XML snippet about emails. 82
5.7 The collection graph corresponding to the normalized graph in Figure 5.6. Red edges

are those involved in a cycle; those are also data-acyclic. 82
5.8 Sample normalized data graph for an RDF and an XML dataset about rocket launches. 83
5.9 Multi-dataset collection graph corresponding to Figure 4.5. 83

6.1 The collection graph with 3 possible main entities and their boundaries. 88
6.2 An XHTML search results, grouped in pages. 88
6.3 A collection graph showing desck limitations. 93
6.4 The wDAG propagation on the collection graph. 95
6.5 The wPR propagation on GR, the reverse collection graph. 99
6.6 The wdw−PR propagation on GR, the reverse collection graph. 101
6.7 The bounddesc boundary obtained for the main entity author, based on desc2 scores. 101
6.8 The boundDAG boundary obtained for the main entity author, based on wDAG scores.102
6.9 Illustration of an abstraction before and after the election of multi-traversed non-

main entities as main ones. 107
6.10 A set of RDF triples describing the RDF entity Emmanuel Macron. 110
6.11 The GitTable entry for the property gender. 111
6.12 Outline of the classification algorithm. 112
6.13 Abstraction computation times on synthetic XML, JSON, RDF and PG datasets,

using (wdw−PR, boundfl−ac). 126
6.14 A collection graph leading to a disconnected Entity-Relationship schema. 128

7.1 ChatGPT prompt for NE extraction (directive plus a string, denoted ‘XXX’). 133
7.2 Multi-dataset collection graph corresponding to Figure 4.5. 134

vi

LIST OF TABLES

List of Tables

2.1 Summary of notations. 17

6.1 Datasets used in the evaluation. 118
6.2 Datasets used in the user relevance feedback. 118
6.3 Users’ ranking of dataset sample abstractions. 120
6.4 Main entities found in the XML application datasets. 121
6.5 Main entities found in the PG application datasets. 121
6.6 Main entities found in the RDF application datasets. 122
6.7 Main entities found in the JSON application datasets. 122
6.8 Quality of ME classification for XML application datasets. 123
6.9 Quality of ME classification for PG application datasets. 123
6.10 Quality of ME classification for RDF application datasets. 124
6.11 Quality of ME classification for JSON application datasets. 124
6.12 Schemas sizes for a subset of JSON, RDF and PG evaluation datasets. 127

7.1 Sample ChatGPT NE extraction results. 133
7.2 Dataset overview. 142
7.3 Flair and ChatGPT-based extractors time (in seconds) and cost analysis on sample

strings. 143
7.4 Comparison of Flair and ChatGPT sets of extracted entities. 143
7.5 Entity paths found in our datasets and their associated statistics. 146
7.6 View-based data path evaluation. 147
7.7 Numbers of paths and reliability information in our datasets. 148
7.8 Some of the top-reliability (τP , τO) paths in the PubMed dataset, at ranks: 1, 2, 3,

4, 20 (above the double line), respectively, 21 and 22 (below the double line), out of
52 paths. 149

7.9 Data path evaluation on the top-20 enumerated paths, sorted by reliability, then
force, in the PubMed, Nasa and YelpBusiness datasets. 150

1

LIST OF TABLES

2

1
Introduction

Chapter Outline

1.1 Context . 4

1.2 Goal of the thesis and main contributions . 6

1.2.1 Data abstractions for heterogeneous datasets with Abstra 6

1.2.2 Entity-to-entity paths exploration with PathWays . 7

1.2.3 Heterogeneous data exploration with ConnectionStudio 10

1.2.4 Scientific contributions . 10

1.3 Publications . 11

1.4 Prototypes . 12

1.5 Manuscript outline . 13

Chapter Abstract. In this chapter, we first introduce the context of the thesis (Section 1.1),
then, we present the main goals of the thesis (Section 1.2). Next, we list the main publications
that came out of this work (Section 1.3) and the associated prototypes that have been implemented
(Section 1.4). Finally, we outline the manuscript organization (Section 1.5).

3

CHAPTER 1. INTRODUCTION

1.1 Context

Data-driven applications are at the heart of many businesses and governmental initiatives. The
domains of such applications are very varied, ranging from journalism to education, environment,
or health. For instance, the RADAR application (from MediaCites, a French independent journal)
monitors city mayors promises during their mandate, e.g., for the city of Lyon, 47 are completed,
70 are partially completed, 20 are uncompleted and 2 are unverifiable. Promises examples are:
“increase the number of bus lines”, “renovate 10K homes”, “forbid advertising on buildings”, etc.
The evaluation of the promises success leverages city data. In the health domain, the COVID-19
pandemic allowed to massively share data and produce data-driven monitoring applications such
as https://covid19.who.int/data and https://coronavirus.jhu.edu/map.html.

While a specific start date is hard to identify, we can generally refer to the so-called “Big Data
era” as the last 20 years or so, more generally to a time when digital data has been recognized
useful in a large variety of application settings, from science to entertainment, agriculture, across
all industries and central to commerce [90]. Therefore, it becomes more and more important to
design tools to store, manage, and understand data. Relational database systems [145] have been
created in the late 60’s to store and manage information. Such systems are suited to work with
traditional data, in the sense of carefully gathered, prepared, stored, and shared data. Apart from
database systems, files were used to share system configurations, results, and any other kind of
reasonably small information. At that time, software and storage systems were designed based on
an application scenario.

Following the rise of the Internet, the Big Data era shifted traditional data into big data. Many
challenges have rapidly arisen from this new environment: it is not processable as before. The
major difference with big data lies in the characteristics of the data, which can be described along
the 7 following axes (also known as the 7V [100, 148]):

• Volume. First, the volume of data produced every day is enormous: according to the United
Nations, 64.2 zettabytes of data has been created in 2020 (+314% compared to 2015). A large
part of this is “data exhaust”, i.e., passively collected data derived from everyday interactions
with digital products or services, such as mobile phones, credit cards, and social media.

• Velocity. Next, data is shared as soon as it is produced, reinforcing the large spread of
data, across all domains from health and market to environment and the arts. The 50 billion
devices also play a role in data velocity, allowing, e.g., a sensor to directly send its data to a
cloud or a student to order a pizza from her home. Striking examples of data velocity are:
users watch 694,000 hours of YouTube videos, 16 million text messages are sent, 156 million
emails are sent... every minute on the Web.

• Variety. Depending on many factors, such as the data producer preferences and the data
application scenario constraints, dozens of different formats are used when sharing data: Web
formats such as JSON and XML, open data formats such as RDF graphs, text such as Twitter
and Facebook posts, data streams formats such as Avro, Parquet or ORC, etc. Data may also
be photos, music, videos, etc. With the variety comes the heterogeneity: each data model has
its own specificities and using data of different data formats requires dedicated algorithms.
Further, all these data formats can be categorized in three main categories: structured, semi-
structured and unstructured data (see Chapter 2).

• Variability. Produced data is not rigid, it may be updated at any time, e.g., to amend data

4

https://www.mediacites.fr/radar/lyon/promesses/
https://covid19.who.int/data
https://coronavirus.jhu.edu/map.html

1.1. CONTEXT

inconsistencies or to add new useful information. Variability means also more effort to obtain
the same data quality.

• Veracity. With the large quantities of data produced every day (recall volume and velocity),
it is very challenging to recognize and process erroneous data. The current most famous
example is fake news. Also, there are 100 million spam emails sent every minute. Despite a
start of global awareness about this, people still tend to share wrong, or at least unverified,
information.

• Visualization. Visualization of data became critical in most domains at several levels. First,
data producers need to understand their data in order to work with it. Also, citizens are
more inclined to learn if they are provided graphical, vulgarized content. However, building
visualization tools for big data is more challenging than ever.

• Value. Raw data is nowadays very cheap, mainly because of the global volume of data, but
also because it is less expensive to store huge amounts of data. On the contrary, the real value
resides in the cleaned, processed data as well as the insights and knowledge we can extract
and build from it.

All these characteristics play a role in the increasing complexity of (big) data processing. This also
stifles computer scientists and data experts to build data-driven applications. However, a large
part of the daily-generated data is owned by (private) companies, thus limiting the global exchange
and possibilities, due to company privacy restrictions. Nevertheless, in order to make data more
accessible, the Open Data initiative emerged in the last decade. This aims at sharing datasets
freely on the Internet and let the knowledge circulate through institutions and companies. Toward
this goal, the World Wide Web Consortium recommends sharing data as RDF graphs, and this
has been widely adopted, e.g., to build the Linked Open Data Cloud. However, practitioners also
use a variety of other data formats such as relational data, XML or JSON documents and property
graphs (recall variety and heterogeneity). Thousands of CSV datasets are available on Kaggle and
the French public portal data.gouv.fr. XML is used to share bibliographic notices on PubMed,
a leading website in the medical domain. JSON has become the reference model for the French
parliament to increase the transparency of the public life, notably on the websites NosDeputes.fr
and NosSenateurs.fr. Relational databases are sometimes shared as dumps, including schema
constraints such as primary and foreign keys, or as CSV files. Property graphs (PGs, in short,
such as pioneered by Neo4J) are used to share Offshore leaks, a journalistic database of offshore
companies, or by the LDBC council.

More recently, a new community came up in the journalism community: the data journalism,
also named data-driven journalism [36]. It aims at creating journalistic stories out of gathered,
prepared, and filtered data, which requires a minimum of IT skills. Data journalism helps make
a step toward exposing and explaining how society functions. One world-wide example of data
journalism is the Panama Papers scandal. In 2016, more than 10 million confidential documents
leaked and have been sent to the ICIJ (International Consortium of Investigative Journalists). It
has disclosed confidential information about offshore companies used for tax evasion or money
laundering. The ICIJ has cross-checked the information with several sources before a court case
took place. This event helped data journalists to understand the need of IT tools to store and
manage data, even if they are not highly skilled in computer science.

5

https://lod-cloud.net/
https://www.kaggle.com/
https://data.gouv.fr
https://www.nosdeputes.fr/
https://www.nossenateurs.fr/
https://neo4j.com/
https://offshoreleaks.icij.org/
https://ldbcouncil.org/

CHAPTER 1. INTRODUCTION

ConnectionStudio
User front-end
25K LOC
Java, Javascript

Pathways
NE paths
4K LOC
Java

Abstra
Abstractions
10K LOC
Java

ConnectionLens
Data graph
47K LOC
Java

RDFQuotient
RDF summary
14K LOC
Java

OntoSQL
RDF management
85K LOC
Java

Jena
RDF, SPARQL, ...
Apache software

Figure 1.1: The software pile: from existing contributions (OntoSQL, RDFQuotient, Con-
nectionLens) to the original ones (Abstra, PathWays, ConnectionStudio) proposed in the
thesis.

1.2 Goal of the thesis and main contributions

In the current data-driven world, it is clear that we need tools to manage and explore all of this data.
However, data is produced in various formats (recall variety) and users need user-friendly interfaces
to interact with the data (recall visualization), therefore the task of creating such tools becomes
complex. In this thesis, our goal is to propose tools to help users in the task of exploring
heterogeneous data sources. For this, we work on three different, but complementary, axes. The
first one, presented in Section 1.2.1, aims at producing data abstractions in the form of lightweight
Entity-Relationship diagrams. The second, described in Section 1.2.2, seeks to explore popular
entities connections in the data. The last one, outlined in Section 1.2.3, intend to provide a
complete user-friendly interface to load, query, clean and interact with heterogeneous data. Finally,
we describe the associated scientific contributions in Section 1.2.4. All this work is based on
ConnectionLens, a data lake that ingests (very) heterogeneous data and extracts, using language
models, entities such as people names, companies names, places, emails, temporal references (data
and time), etc. ConnectionLens also provides a keyword search feature, allowing users to explore
the data using keywords of interest; the results they obtain are trees connecting one node that
matches each query keyword. Research on keyword search algorithms is out of the scope of this
thesis [13, 12, 44]. Figure 1.1 illustrates the software pile resulting from both the existing works
(in grey) and the original ones (in bold) implemented in this thesis. For each system, we provide
its name, its functionality (in italic), its number of lines of code (LOC) and the main programming
languages used. An arrow from a software A to a software B signifies that A builds on B. Jena is
outlined in a dashed box because it is an external software, provided by Apache.

1.2.1 Data abstractions for heterogeneous datasets with Abstra

When using data, e.g., to build a software, practitioners need to get a basic understanding of a
dataset content in order to decide whether it suits their needs. This is a difficult task,
especially for non-IT users such as data journalists, because this requires IT skills to understand
the dataset technical features, e.g., read an XML document requires some basic knowledge about
the markup language. Also, when the dataset is large, it is not always possible to understand it,
even for IT experts. On the other side, data producers need tools to generate automatically a
description of the dataset they want to share: this is essential to make it (re)usable and useful

6

1.2. GOAL OF THE THESIS AND MAIN CONTRIBUTIONS

for others.

Datasets descriptions generally take the form of a documentation or a schema. While these can
help users in their quest of the right dataset, they have limitations. First, documentation is often
lacking or insufficient (writing documentation is time-consuming). It may also be outdated, due to
data evolution (recall variability). Next, a schema may be inferred from the dataset to describe
its structure. However, schemas have several limitations:

1. They are rare when sharing semi-structured datasets such as XML, JSON, RDF and PG.

2. Schema syntactic details, such as regular expressions, are hard to interpret for non-IT users.

3. Generated schemas are often too large to be visualized as a whole (recall visualization).

4. Existing (schema inference) techniques1 mainly focuses on the dataset structure, not on its
content. It does not take advantage of linguistic information available in structures and text
values.

5. They do not reflect quantitatively the dataset either, whereas showing only the most im-
portant structures in the dataset may give a sufficiently good overview of the data without
overwhelming the user.

Data summarization techniques [79, 43, 48, 19, 157, 113], whose aim is to generate a schema of a
semi-structured data model, partially lift limitation (1). In the particular case of RDF graphs, an
ontology may accompany the graphs and give an overview of the semantic of the dataset, thus lifting
limitation (4) but not the others. Pattern mining [87] may help users to grasp the popular patterns
in their datasets, e.g., items often purchased together. This allows to bypass limitations (1) and (5)
only. Finally, drawbacks (2) and (3) are generally left besides in schema generation works.

To answer practitioners’ and data producers’ needs, we present a novel approach for abstracting
any tabular, tree-structured, or graph-structured dataset. Data abstraction takes the form
of a lightweight Entity-Relationship schema, showing the most important entities in the data and
how they relate to each other. Figure 1.2 shows the data abstraction produced on an XMark [150]
XML document, describing an auction website where people sell and buy items through auctions.
When a transaction is approved, it becomes a closed auction. Moreover, items are categorized, e.g.,
food, high-tech, home appliance, etc. People also may be interested in some item categories.

We focus on application datasets, each describing a specific scenario, e.g., the one in Figure 1.2,
and do not consider “universal” datasets, such as Wikidata [161] and YAGO [138]. No universal
dataset abstraction is likely to be both compact and comprehensive; extracting an application
dataset from a universal one, based on keywords or terms the user already knows, is an orthogonal
problem, e.g., [71, 46].

1.2.2 Entity-to-entity paths exploration with PathWays

In the data journalism context, when practitioners investigate data to work with, they generally look
for interesting entities and connections (or paths) between them. Entities may have multiple forms;
the most identifiable ones are the Named Entities (NEs in short), which may be very varied, e.g.,

1Large language models (LLM) recently demonstrated their capabilities in summarizing datasets into small texts.
We prefer a more structured approach, as outlined in Section 3.4 and detailed in Chapter 6.

7

CHAPTER 1. INTRODUCTION

Abstraction of file:/data/datasets/abstraction_data/xmark1.xml with configuration (DWPR, FL)
3085795 normalized nodes, 136 collections, 5 main collections, data coverage is 91%

25500 person (Person)

name

emailaddress

id

homepage

address...

phone

creditcard

12000 open_auction (Product)

quantity

initial

current

type

interval...

id

privacy

reserve

watches.watch@open_auction

1000 category

name

description...

id

profile.interest@category

seller@person

bidder.personref@person

annotation.author@person

21750 item (Product)

location

quantity

name

payment

description...

shipping

mailbox

id

featured

itemref@item

incategory@category

9750 closed_auction (Product)

quantity

date

type

price

seller@person

buyer@person

annotation.author@person

itemref@item

Figure 1.2: E-R model computed by Abstra from an XMark [150] XML document (3M nodes).

people, places, companies, dates, URIs, email addresses, etc. After being identified and extracted
from the data, data journalists look for connections between them.

For instance, an investigative journalist works on conflicts of interest in the biomedical domain.
More particularly, she works on bringing into light undeclared conflicts of interest, e.g., when scien-
tific researchers get paid or influenced by external companies. For this investigation, she gathered
some scientific publications (co-)authored by Helmut Greim, a German Professor of Toxicology, as
PDF files and looks at the acknowledgment section. Concerning one paper discussing transparency
in the biomedical domain, she finds out that authors, including H. Greim, declare no conflict of
interest in the acknowledgement section (“[...] We claim no conflict of interest [...]”). In parallel, she
has access to PubMed [193], a 36 million bibliographic notices database for biomedical literature.
From there, she gathered, as XML documents, all the PubMed notices mentioning Helmut Greim.
An example of a notice is presented in Figure 1.3. One of the PubMed notices represents a paper,
co-authored by H. Greim, stating that the glyphosate molecule does not have particular negative
effects on the human body. In that notice, she discovers in the acknowledgment section that authors
received money from Monsanto, the company which created the RoundUp, a very efficient, but also
very poisonous, glyphosate-based herbicide. This is one example among the numerous undeclared
conflicts of interest in the biomedical domain.

From this example, we can derive the following set of observations:

1. Correspondences are hard to find, especially when it comes to join several datasets, potentially
of different models.

2. Formulating queries over large, heterogeneous data is not feasible, especially in the frame of
investigative journalism.

3. Entity-to-entity paths should not make any assumption on the edge directions, which strongly
depends on how the data is modeled.

4. Entity-to-entity path enumeration is a very costly task, especially if the graph is large and/or
there are many paths (the latter is almost always true, if the data is complex/heterogeneous,
and/or if we allow paths to traverse edges in both directions).

5. Only interesting and reliable paths should be shown to users.

Observation (1) shows the importance of a multi-model approach, in order to connect different
actors, appearing in different data sources. Observation (2) pushes forward the need of path enu-

8

1.2. GOAL OF THE THESIS AND MAIN CONTRIBUTIONS

1 <PubmedArticleSet>

2 <PubmedArticle>

3 <ArticleTitle>Evaluation of carcinogenic potential of the

4 herbicide glyphosate[...]</ArticleTitle>

5 <JournalTitle>Critical reviews in toxicology</JournalTitle>

6 <pubmedLink>https://pubmed.ncbi.nlm.nih.gov/25716480/</pubmedLink>

7 <Year>2015</Year>

8 <DOI>10.3109/10408444.2014.1003423</DOI>

9 <KeywordList>

10 <Keywords>carcinogenicity</Keywords>

11 <Keywords>Roundup</Keywords>

12 ...

13 </KeywordList>

14 <AuthorList>

15 <Author>

16 <Name>Helmut Greim</Name>

17 <Affiliation>Technical University Munich, Germany</Affiliation>

18 </Author>

19 ...

20 </AuthorList>

21 <CoiStatement>[...] Quality control and review of data transcription were

22 valued services provided by Carrie Leigh Logan and Aparna Desai Nemali,

23 Monsanto Quality Assurance Specialists.</CoiStatement>

24 <PubmedArticle>

25 </PubmedArticleSet>

Figure 1.3: XML PubMed notice of the paper about glyphosate.

meration instead of user queries. Existing works allow to query heterogeneous data [160], if one

can query the data. To illustrate observation (3), think of the following paths: H. Greim
authorOf−−−−−−→

PubMedPaper
acknowledge−−−−−−−−→ Monsanto and H. Greim

writtenBy←−−−−−−− PubMedPaper
acknowledge−−−−−−−−→ Mon-

santo; they are both interesting. Note that traversing a graph as if it is undirected considerably
increases the possible entity paths, and thus the computational cost. For observation (5), non-
expert users, or users which are not familiar with the dataset structure, cannot be expected to state
“only the paths that they would like to see”, since they lack technical expertise and/or dataset
knowledge. However, if prompted by the system, they can give valuable input on whether certain
links (or connections) are worth making, or whether they are just spurious links that would generate
uninteresting paths. An example of uninteresting path is: in the PubMed example, all papers are
written by authors, thus each paper is connected to a set of people. A more interesting example is
shown in Figure 1.4: the user can explore how publications authors relate to company names found
in their conflict-of-interest statement (COI statement). To answer above observations, users need
entity-to-entity paths to visualize connections between different actors, that may be
shared across heterogeneous datasets.

9

CHAPTER 1. INTRODUCTION

Figure 1.4: Tabular connections computed by PathWays from an XML PubMed bibliographic
information (60K nodes).

1.2.3 Heterogeneous data exploration with ConnectionStudio

Developed in 2023, ConnectionStudio is a novel front-end to ConnectionLens, Abstra and
PathWays; beyond integrating them, it provides some new functionalities, in particular helping
users clean and query the data. For instance, Figure 1.5 shows a user query on the HATVP dataset,
an open-source XML document provided by the French state to improve transparency in public
life. Users express this query by combining and editing (“stitching”) paths present in the data; the
paths are enumerated by ConnectionStudio which proposes them in a drop-down menu. The
data cleaning module offers ways to clean semi-automatically the data. For instance, in Figure 1.5,
one can see that there is a missing hyphen in “alain pierre” (the name of the first deputy). By
correcting this value, all identical values will be updated too, allowing a fast correction.

1.2.4 Scientific contributions

Our contributions rely on very heterogeneous data, ranging from structured (CSV, relational
databases), to semi-structured (JSON, XML, RDF, Property Graphs) data. To tackle this hetero-
geneity, we transform incoming data as a data graph using ConnectionLens. Our contributions
toward addressing these challenges are as follows:

1. First, we introduce a novel structure, called the collection graph to summarize and repre-
sent efficiently large data graphs. This structure is at the heart of the dataset abstraction
and entity path exploration researches.

2. For dataset abstraction, we design an efficient algorithm to select entities and relation-
ships constituting the final Entity-Relationship schema. This algorithm works on complex,
and potentially cyclic, collection graphs.

3. For entity path exploration, we propose an efficient algorithm to enumerate entity paths con-
necting entities of interest to the user. This relies on a view (sub-paths) recommender

10

1.3. PUBLICATIONS

Figure 1.5: A query over the French assembly data showing how many shares each member has in
the 40 most influential French companies.

system, which determines how to efficiently evaluate the set of entity paths, possibly over-
lapping.

4. For heterogeneous data exploration, we provide new ways to query the data, even if the
dataset is unknown to the user. Specifically, we propose an interface to incrementally
build queries using elementary query building blocks, computed over the integrated
heterogeneous data. We also provide a module to correct and improve the data graph
through semi-automatic processes.

1.3 Publications

The work presented in this thesis has been presented in national and international conferences.
Specifically, we wrote five papers for Abstra, three for PathWays and three for Connection-
Studio. The following list presents all the papers accepted for publication sorted by date (from
the most to the least recent). Moreover, each international publication has also been informally
presented at BDA, the annual French database conference.

• Abstra:

1. Nelly Barret, Ioana Manolescu, Prajna Upadhyay. “Computing generic abstractions
from application datasets”. Researcher paper in EDBT 2024 (A).

2. Nelly Barret, Ioana Manolescu, Madhulika Mohanty, Tudor Enache. “Finding the PG
schema of any (semi)structured dataset: a tale of graphs and abstraction”. Short paper
in ICDE SEAGraph workshop 2024 (A∗).

11

CHAPTER 1. INTRODUCTION

3. Nelly Barret, Ioana Manolescu, Prajna Upadhyay. “Abstra: toward generic abstractions
for data of any model”. Demonstration in CIKM 2022 (A).

4. Nelly Barret, Ioana Manolescu, Prajna Upadhyay. “Toward generic abstractions for data
of any model”. Short paper in BDA 2021 (national).

5. Nelly Barret. “Facilitating heterogeneous dataset understanding”. PhD student paper
in BDA 2021 (national).

• PathWays:

1. Nelly Barret, Antoine Gauquier, Jia Jean Law, Ioana Manolescu. “Finding meaningful
paths in heterogeneous graphs with PathWays”. Journal paper under review in Infor-
mation Systems 2024.

2. Nelly Barret, Antoine Gauquier, Jia Jean Law, Ioana Manolescu. “Exploring heteroge-
neous data graphs through their entity paths”. Research paper in ADBIS 2023 (C).

3. Nelly Barret, Antoine Gauquier, Jia Jean Law, Ioana Manolescu. “PathWays: entity-
focused exploration of heterogeneous data graphs”. Demonstration in ESWC 2023 (B).

• ConnectionStudio:

1. Oana Balalau, Nelly Barret, Simon Ebel, Théo Galizzi, Ioana Manolescu, Madhulika
Mohanty. “Graph lenses over any data: the ConnectionLens experience”. Short paper
in ICDE SEAGraph workshop 2024 (A∗).

2. Nelly Barret, Simon Ebel, Théo Galizzi, Ioana Manolescu, Madhulika Mohanty. “User-
friendly exploration of highly heterogeneous data lakes”. Demonstration in EGC 2024
(national).

3. Nelly Barret, Simon Ebel, Théo Galizzi, Ioana Manolescu, Madhulika Mohanty. “User-
friendly exploration of highly heterogeneous data lakes”. Short paper in CoopIS 2023
(B).

Five students have been involved in the work carried out in the thesis and are present in the above-
mentioned publications. Antoine Gauquier and Jia Jean Law worked on PathWays, while Nikola
Dobričic worked on ConnectionStudio. Shay Pripstein and Tudor Enache respectively worked
on extending ConnectionLens and Abstra (see Chapter 8). I co-supervised all of them, along
with Ioana Manolescu and Madhulika Mohanty.

1.4 Prototypes

Each project has its own website, sharing a quick introduction to the software, the code and a
gallery of results:

• Abstra is available at: https://team.inria.fr/cedar/projects/abstra;

• PathWays is available at: https://team.inria.fr/cedar/projects/pathways;

• ConnectionStudio is available at: https://connectionstudio.inria.fr/.

12

https://team.inria.fr/cedar/projects/abstra
https://team.inria.fr/cedar/projects/pathways
https://connectionstudio.inria.fr/

1.5. MANUSCRIPT OUTLINE

1.5 Manuscript outline

The manuscript is organized as follows:

Chapter 2. We first introduce concepts that will be used in the thesis. We cover basic notations
and existing structured and semi-structured data models.

Chapter 3. This work lies between heterogeneous data integration, data summarization, and
structured and unstructured querying. Thus, we discuss existing works in those research areas and
showcase their limitations.

Chapter 4. We explain how any semi-structured dataset can be viewed as a data graph. This is
the key to provide solutions for well-known semi-structured data models.

Chapter 5. Building on the data graph, we introduce the collection graph, a core structure that is
at the heart of data abstractions and entity-to-entity path enumeration. It summarizes both data
structure and content, while being sufficiently small to allow designing efficient algorithms.

Chapter 6. Starting from the collection graph, we build data abstractions, i.e., schemas recalling
Entity-Relationship diagrams and showing the main entities of a dataset and their relationships.

Chapter 7. Also based on the collection graph, we efficiently and interactively compute paths in
the data graph connecting entities of interest, e.g., people, places, companies, etc. We also compute
path interestingness, an important measure to rank meaningful paths first.

Chapter 8. We conclude this thesis manuscript and emphasize future works and open questions.

13

CHAPTER 1. INTRODUCTION

14

2
Preliminaries

Chapter Outline

2.1 Basics . 16

2.2 Entity-Relationship model . 16

2.3 Relational data . 17

2.4 XML documents . 18

2.5 JSON documents . 21

2.6 RDF graphs . 22

2.7 Property graphs . 24

2.8 Summary . 25

Chapter Abstract. This chapter introduces key notions used throughout this manuscript.
We first recall basic notions (Section 2.1). Second, we introduce the Entity-Relationship model
(Section 2.2). Next, we describe the main data models we will consider: relational data (Section 2.3),
XML documents (Section 2.4), JSON documents (Section 2.5), RDF graphs (Section 2.6) and
property graphs (Section 2.7). More generally, data models can be grouped in three categories:

• Structured data conforms to a schema, designed beforehand and for a given application
scenario. Structured information allows highly efficient algorithms, optimizations and data
integrity but is not very flexible, e.g., newly upcoming data has to match the schema. Rela-
tional data is the leading data model when talking about structured data.

• Unstructured data models store data as it is, without any schema or kind of organization.
Examples of unstructured data are text, PDF1, binary files of any kind, etc.

• More recently, semi-structured data models appeared as a compromise between structured
and unstructured data models. They organize data without relying on a fixed schema to
conform with. On one hand, the adaptable organization better handles newly incoming data
than a fixed schema. On the other hand, semi-structured data cannot benefit from all the
inherent strengths of structured data. Therefore, many works [39, 199, 31, 35, 52] push
toward bringing such strengths into semi-structured data models. Among the most widely
used semi-structured data models, there are: XML, JSON, RDF and Property graphs.

1Tagged PDF have been created to transform PDF documents into semi-structured documents by annotating the
document with HTML-like tags. This lifts only partially the problem because such annotation is time-consuming
and of medium quality when performed automatically by a program.

15

CHAPTER 2. PRELIMINARIES

2.1 Basics

We define the following domains:

• N: the set of natural numbers, e.g., 0, 1, 2, 3, etc;

• Z: the set of relative numbers, also known as integer values, e.g., 0, 1, -1, etc;

• R: the set of real numbers, also known as float values, e.g., 1.34, -4.56, 2
3 , etc;

• I: the set of identifier labels, e.g., myNode, person, city, etc;

• S: the set of strings, e.g., “Paris”, “Hello”, “He is 12.”, etc;

• U: the set of URIs, e.g., https://www.google.com/, https://dbpedia.org/page/Paris,
etc. They are often written in their concise form by simplifying the URI prefix, e.g., dbpedia:
Paris (we will adopt this convention in this manuscript);

• T: the set of time references, including date and time, e.g., 01/01/2021, 05:46PM, etc.

We consider L , a set of literals, which is the disjoint union of all the above-mentioned sets. L
also includes the empty label, denoted ε.

Moreover, we settle a directed graph as being a set of nodes N , connected by a set of edges
E = (N ×N). A node may carry a label, belonging to L , and it is uniquely defined in the graph
by an identifier, id in short, defined in N. Similarly, an edge may carry a label (also belonging to
L), and is also uniquely defined in the graph by an identifier (defined in N). A node is said to be:

• A root node when it has no incoming edge;

• A structural node when its label is in I;

• A leaf node when it has no outgoing edge;

• An L -leaf node, or simply a value node, when that node is a leaf and its label is in L \I.

Two main graph data models have been studied so far: RDF graphs and property graphs. We
will discuss them and the corresponding query languages (Section 2.6, respectively, Section 2.7).
Only very recently, proposals to unify (or simplify the translation between) these two models have
started to be investigated [112], focusing mainly on faithfully translating each aspect supported by
each standard into the other. These efforts are still ongoing.

The main notations introduced above are summarized in Table 2.1.

2.2 Entity-Relationship model

The Entity-Relationship model [145] is a widely used way to model data when designing relational
databases (see Section 2.3). It relies on the following concepts. An entity is an object of the real
world, e.g., Inria Saclay lab, and an entity set is a set of similar entities, e.g., all French computer
science labs. Each entity set has attributes, which are properties of the objects represented in the
entity set. For instance, the Lab entity set may have “name”, “address” and “SIREN” (company
unique identifier) attributes. In the classical E-R model, attributes take their values in L . Also,
each entity set has a key, i.e., a minimal set of of attributes to uniquely identify an entity in the

16

https://www.google.com/
https://dbpedia.org/page/Paris
dbpedia:Paris
dbpedia:Paris

2.3. RELATIONAL DATA

Notation Definition

Graphs

G a directed graph
N the set of G nodes
E the set of G edges

Nodes and edges
ε empty node, respectively edge, label
Ni the G node of identifier i
N l
i the G node of identifier i and label l

Nx → Ny the G unlabeled edge connecting Nx to Ny

Nx
l−→ Ny the G l-labeled edge connecting Nx to Ny

Table 2.1: Summary of notations.

entity set. The “SIREN” attribute is a good candidate for being a key in the Lab entity. Entity sets
may be connected with relationship sets. Two, three or more entity sets may be involved in a
relationship set, they are referred to as binary, ternary and n-ary relationship sets (binary ones are
most common). As for entity sets, relationship sets may have attributes. For instance, the entity
set Student may be connected to the Lab one using a relationship set named “startsInternship”,
with a “date” relationship attribute to store when the student started her internship in the lab. A
relationship is an instance of a relationship set, i.e., an actual connection between entities.

Further, the E-R model also features key and participation constraints. Key constraints state
that every entity in a given entity set participates in at most one relationship, e.g., each Student is
an intern in at most one Lab (no student is involved in two or more internships). Participation
constraints allow to specify that every entity in a given set participate in at least one relationship,
e.g., every Student is an intern in a Lab (no Student is left without an internship).

The ensuing E-R schema is a drawing representing entity sets as rectangles, attributes as ovals and
relationships as diamonds. This is easily translated to a relational model (see Section 2.3).

Building on the above-mentioned E-R modeling, extended versions include features such as: weak
entities, reflexive associations, specializations, generalizations and aggregations.

2.3 Relational data

As per the classical relational database theory [2], a table (or relation) consists of a relation name,
of a schema and an instance. The schema is a set of attributes, each of which has a name (these
names, denoted for instance {a1, a2, . . . , an}, are all pairwise distinct), and an associated domain (as
per Section 2.1). A relation’s instance is a subset of the cartesian product of the domains that are
part of the schema. Thus, each instance is a set of tuples. Within a relation, a subset of attributes
{ai1 , . . . , aik} ⊆ {a1, . . . , an} may be primary keys, that is: (i) the values of these attributes suffice
to uniquely identify a tuple of the relation, in other words, no two tuples agree on these values; and
(ii) no subset of these attributes satisfies this property. Further, in a relation R, some attributes
{aj1 , . . . , ajl} may be foreign keys referring to a primary key of a relation S: this means that for
every R tuple, there exists an S tuple whose primary key attributes are respectively equal to those

17

CHAPTER 2. PRELIMINARIES

paper
id title abstract
P1 RDF W3C...
P2 XML Data...
P3 JSON Nodes...

wrote
authorId paperId year
A1 P1 2023
A2 P1 2003
A3 P2 2013

author
id name affiliation
A1 Alice INRIA
A2 Bob IPP
A3 Carl IPP

Figure 2.1: Relational data modeling scientific publications and their authors.

of the foreign key in the R tuple.

For instance, relational data in Figure 2.1 encodes data in three tables (paper, wrote and author).
In this example, paper.id is a primary key, and so is author.id. Two foreign keys refer to them:
the paperId and authorId in the wrote table. Other constraints may be applied on tuples values,
such as non-null values, year above 1900, etc. Such constraints need to be preserved when adding,
modifying, or deleting tuples.

In practice, relational data comes in two flavors, of interest to us:

• Relational databases [145] follow the relational database conceptual model recalled above,
and more specifically implement the ISO SQL language [169], standing for Structured Query
Language. Among the best-known relational database management systems, there are Post-
greSQL, Oracle, MySQL and Microsoft SQL server.

• The CSV data format (Comma-Separated Values) allows to model each table in a separate
CSV file. Similarly, each relationship is modeled in a separate file. Moreover, attribute names
can be lacking, i.e., the file may lack a header and just include data. Primary and foreign
keys could be present in a file, or across several files, but there is no standard way to specify
and describe them. As a consequence, data profiling is needed in order to identify candidate
primary keys [1, 98].

2.4 XML documents

XML (Extensible Markup Language) [175] is a World Wide Web Consortium (W3C, in short)
standard for describing structured documents. According to the standard XML Data Model [174],
each document can be seen as a tree, whose nodes are of one of the following three types:

1. Document node (there is exactly one for each XML document);

2. Element nodes: one of them is the (only) child of the document node, while each other element
node is the child of another element node; each element node carries a name (defined in I),
which is non-empty; a total order holds over the elements that are children of the same node.
Each element may have zero or more attributes; each attribute has a name, which is non-
empty, and one or several values (if there are several values, they are concatenated, separated
with white spaces). There is no order among the attributes of a given XML node;

3. Text nodes, taking their values in L , which are children of element nodes.

An XML document is presented in Figure 2.2 and its corresponding tree is shown in Figure 2.3.
There are 10 elements, e.g., document, author and title; 7 text nodes, e.g., “Alice” and “p1”; and 4

18

https://www.postgresql.org/
https://www.postgresql.org/
https://www.oracle.com/
https://www.mysql.com/
https://www.microsoft.com/en-us/sql-server/sql-server-2022

2.4. XML DOCUMENTS

1 <document>

2 <authors>

3 <author aid="a1" wrote="p1">

4 <name>Alice</name>

5 <affiliations>

6 <affiliation>INRIA</affiliation>

7 </affiliations

8 </author>

9 </authors>

10 <papers>

11 <paper pid="p1"/>

12 <paper pid="p2">

13 <title>RDF</title>

14 <abstract>W3C...</abstract>

15 </paper>

16 </papers>

17 </document>

Figure 2.2: An XML document describing few
authors and their publications.

document

authors

author

a1

aid

name

Alice

affiliations

affiliation

INRIA

papers

paper

p1

pid

paper

p2

pid

title

RDF

abstract

W3C...

wrote

Figure 2.3: The XML tree corresponding to the data
in Figure 2.2.

attributes, e.g., id and wrote. Following a frequent convention in XML data management research,
the attributes are depicted as value nodes, and attribute names are shown as labels on the edge
leading from an element to each of its attribute. Note that while edges connecting an element to
its element children are unlabeled, each edge leading to an attribute is labeled with the attribute
name.

On the contrary to relational databases where types are defined beforehand, e.g., in a relational
schema, XML is self-describing data. This means that elements labels form the structure of the
document; types and constraints may be added on top of it.

The first typing language introduced for XML is the DTD [168], standing for Document Type
Description. This language allows to describe the children an element has. For instance, the
XML document in Figure 2.2 may be accompanied with the DTD in Listing 2.1 (note that several,
different DTDs may be valid for a given XML document). A statement of the form <!ELEMENT

element (child quantifier, [...])> specifies that:

• element is an XML element label;

• child is the expected element child;

• quantifier is the frequency of that child expressed with a regular expression.

When an element accepts several children, pairs of child and quantifier are unioned with a comma.
For instance, <!ELEMENT document (authors, papers)> states that the element labeled document con-
tains exactly two child elements, authors and papers, each exactly once (the quantifier is omitted
when the child appears exactly once); <!ELEMENT author (name, affiliations?)> states that an
author element has (exactly) a name, and zero or one element affiliations. When the child is
#PCDATA, this means that the element child is a text node and does not contain any further struc-

19

CHAPTER 2. PRELIMINARIES

tured child. This is the case in <!ELEMENT name (#PCDATA)>. One can also specify element attributes,
using a statement of the form <!ATTLIST element attribute type value>, where:

• element is the element name;

• attribute is the expected attribute for that element;

• type may be #PCDATA when the attribute value is a text node, an ID or IDREF (see below), etc.;

• value specifies whether that attribute is required (#REQUIRED), optional (#IMPLIED) or a fixed
value (#FIXED).

It is worth stressing that, in a DTD, element label and element type are unified notions: each type
corresponds to an element label; conversely, each element type corresponds to a label.

1 <!ELEMENT document (authors, papers)>

2 <!ELEMENT authors (author)>

3 <!ELEMENT papers (paper)>

4 <!ELEMENT author (name, affiliations?)>

5 <!ELEMENT name (#PCDATA)>

6 <!ELEMENT affiliations (affiliation*)>

7 <!ELEMENT affiliation (#PCDATA)>

8 <!ELEMENT paper (title?, abstract?)>

9 <!ATTLIST paper pid ID #REQUIRED>

10 <!ATTLIST author aid ID #REQUIRED>

11 <!ATTLIST author wrote IDREF #IMPLIED>

Listing 2.1: A possible DTD for the XML document in Figure 2.2.

To enrich XML schema descriptions, the XSD [177], standing for XML Schema Description, has
been introduced and endorsed by the W3C. It allows to attach to elements simple and complex
types, as well as type restrictions, thus bringing a richer typing system than in DTDs. For instance,
Listing 2.2 gives a possible XSD for the authors described in the XML document in Figure 2.2.
As opposed to DTD, XSD decouples the notions of element label and element type, i.e., each type
corresponds to an element label, but the inverse is not always true. Therefore, element names
(specified using a name attribute in a <element>) differ from element types, which may be simple
or complex. Simple types include string, decimal, integer, boolean, date and time values (as in
type="integer"). Complex types are described using the XML element <complexType>, e.g., an
affiliations type is a list of zero, one or several affiliation elements, each being a string.

1 <element name="author">

2 <key name="aid" type="integer"></key>

3 <keyref name="wrote" refer="pid"></keyref>

4 <element name="name" type="string"></element>

5 <element name="affiliations">

6 <complexType>

7 <sequence>

8 <element name="affiliation" type="string" minOccurs="0" maxOccurs="unbound"/>

9 </sequence>

10 </complexType>

11 </element>

12 </element>

Listing 2.2: A possible XSD to describe authors depicted in Figure 2.2.

20

2.5. JSON DOCUMENTS

1 {
2 "name": "Alice",

3 "aff.": "INRIA",

4 "wrote": [

5 "JSON",

6 {
7 "title": "RDF",

8 "abstract": "W3C..."

9 }
10]

11 }

Figure 2.4: A JSON document describing an
author and her publications.

{ }

Alice

name

INRIA

aff.

[]

JSON { }

RDF

title

W3C

abstract

wrote

Figure 2.5: The JSON tree corresponding to the
data in Figure 2.4.

Furthermore, DTDs and XSDs allow to declare identifiers, that are later used in references, in
order to create connections between elements residing in different places of the document. Such
connections are known as ID-IDREF connections. An ID allows to uniquely identify an element
in the document (in the sense of a primary key in the database community). An IDREF is a
reference to the element to refer to; they can be viewed as foreign keys. For instance, in Figure 2.3,
the author of id “a1” wrote the paper of ID “p1”. This information is encoded in both the DTD
and the XSD. In the DTD, the paper and author ids are declared as ID, while wrote is an attribute
that refers to some ID in the document. Note that nothing in the DTD constraints the IDREF
values to be part of a given element ID, e.g., that wrote IDREFs refer to paper IDs. For the XSD,
the author is declared as an integer in a key; similarly, the paper is declared as an integer key.
The wrote attribute is said to be a keyref of a paper id. When not provided along the data, such
connections may be inferred from the data itself with the help of data profiling [1, 98].

Finally, such schema descriptions are very convenient to validate a data file against a schema. Any
data element that does not follow the type, attributes, children, or restrictions specified in the
schema make the validation fail.

XQuery (XML Query) [176] is the standard language for querying and updating XML. Prominent
current XML data management systems supporting XQuery include BaseX and eXist.

2.5 JSON documents

JSON [139] (JavaScript Object Notation) is a more recent, highly popular model to describe het-
erogeneous semi-structured data. JSON documents can be seen as trees, where a node may be:

• A map: a map node has the empty label ε, and has one or more elements, each of which is
has a key (name from L) and a value (which is a node).

• An array : each array node is also labeled ε, and has zero or more children, which are nodes.
If there are children, a total order holds among them (in other words, they are indexed on N).

• A value (string): this belongs to L .

21

https://basex.org/
http://exist-db.org/exist/apps/homepage/index.html

CHAPTER 2. PRELIMINARIES

Figure 2.4 depicts a JSON document describing Alice, and her two publications, namely “JSON”
and “RDF”. Figure 2.5 shows the corresponding JSON tree. There are 2 maps (the outer element
and the map for “RDF”). The former contains 3 keys ("name", "aff." and "wrote") and 3 values
("Alice", "INRIA" and the array). The array contains one value ("JSON") and one element, namely
a map (the latter map), describing Alice’s second publication.

As of today, there is no standardization for a JSON query language. However, the W3C drafted
a proposal to create an XQuery-like language for JSON: this is JSONiq [171]. Moreover, JSON is
extensively used in NoSQL databases, such as MongoDB and CouchBase. Note that these NoSQL
databases adopt a different paradigm to store and query the underlying data. MongoDB sees data
as a collection of documents, leveraging the JSON embedded structure, which can be queried using
CRUD MongoDB-specific operations, e.g., the operation find corresponds to a full selection in SQL.
Inversely, CouchBase fuses the strengths of relational databases such as SQL and ACID transactions
with JSON flexibility and scale that defines NoSQL.

2.6 RDF graphs

RDF (Resource Description Framework) is the W3C recommended model [172] for sharing data on
the Web; an RDF dataset is naturally viewed as a graph. The RDF standard relies on:

• Resources identifiers take their values in U. A resource should be used to model an entity,
thing, or person of the real world, for which a full identifier is known.

• Blank nodes are anonymous resources, for which a URI is not available. Instead, a blank node
is described by an ID that only allows to identify it within the enclosing RDF dataset.

• Literals are string values and take their values in L ;

A triple is of the form 〈subject〉〈predicate〉〈object〉 where 〈subject〉 and 〈predicate〉 are URIs,
while 〈object〉 can be a URI or a literal. For instance, Figure 2.6 depicts an RDF graph containing
nine triples. A resource can be assigned zero, one or more types, using the special property http://

www.w3.org/1999/02/22-rdf-syntax-ns#type (for conciseness we refer to this URI as rdf:type).
For instance, in Figure 2.6, the resource corresponding to Alice Dupont is declared to be of type
author (see the fifth triple). A set of triples can be seen as an RDF graph, where each triple is
a directed edge leading from the node corresponding to its subject, to a node corresponding to its
object, as depicted in Figure 2.7.

One can also add semantic information to an RDF graph, describing relationships that hold be-
tween its classes and properties. Such relationships are stated as RDF triples using special prop-
erties, and including these triples in the RDF graph itself. For instance, in Figure 2.6, the triple
〈yago:Paper〉〈rdfs:subClassOf〉〈yago:Artwork〉 states that the class Paper is a specialization of the
(generic) class Artwork. The set of semantic triples in a graph is commonly known as its ontology.
Ontology triples are shown in dotted edges in Figure 2.7.

Several ontology languages, i.e., sets of dedicated properties for expressing specific relationships
between classes and/or properties, have been standardized so far, having different expressive pow-
ers. RDFS [162], standing for RDF Schema, relies on four main properties, including subClassOf
illustrated above. Further, RDF Schema allows stating that any subject of a given property is au-
tomatically considered of a certain type, using the domain (rdfs:domain) property. Symmetrically,
the range (rdfs:range) allows stating that any object of a given property is of a certain type. For

22

https://www.mongodb.com/
https://www.couchbase.com/
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2.6. RDF GRAPHS

1 <yago:AliceD> <yago:name> "Alice Dupont" .

2 <yago:AliceD> <rdf:type> <yago:Author> .

3 <yago:AliceD> <yago:wrote> <yago:Paper1> .

4 <yago:AliceD> <yago:wrote> <yago:Paper2> .

5 <yago:Paper1> <rdf:type> <yago:Paper> .

6 <yago:Paper2> <yago:title> "JSON fundamentals" .

7 <yago:wrote> <rdfs:domain> <yago:Author> .

8 <yago:wrote> <rdfs:range> <yago:Paper> .

9 <yago:Paper> <rdf:subClassOf> <yago:Artwork> .

Figure 2.6: RDF triples depicting an author and her two papers, and few RDFS ontology triples.

instance, in Figure 2.6, Lines 7 and 8 model the fact that a resource of type Author (may) write
resources typed as Paper. One can also define a hierarchy among the properties, using the predicate
rdfs:subPropertyOf. Two more predicates present in the RDFS vocabulary are: rdfs:label and
rdfs:comment, to provide a human-readable name, respectively description, of a resource.

Among the more expressive ontology languages, OWL [191] allows to express more complex rela-
tionships between types and properties. For instance, unlike RDFS, it allows to state that two types
are disjoint, i.e., that no resource can be simultaneously of two types. This leads to a question of
validity of a graph with respect to an OWL ontology, a question that does not concern graphs with
RDFS ontologies (since the latter does not allow expressing any constraints that the graph could
violate). OWL also allows to define derived types by intersections/unions/set differences over other
types, etc. In this thesis, we will not consider OWL further, and rely on RDFS ontologies only.

The triples of an RDF graph may be split in three categories:

• Type triples are triples whose property is rdf:type;

• Schema (or ontology) triples are triples using a property from the RDFS vocabulary;

• All other triples are data triples.

The presence of an ontology leads to implicit (or inferred) triples. First, two ontology triples may
lead to a third one, e.g., if 〈c1〉〈rdfs:subClassOf〉〈c2〉 and 〈c2〉〈rdfs:subClassOf〉〈c3〉, it follows that
〈c1〉〈rdfs:subClassOf〉〈c3〉. Second, a data triple and an ontology triple may lead to a new data
triple. For instance, if 〈x2〉〈wrote〉〈x1〉 and 〈wrote〉〈rdfs:range〉〈yago:Paper〉, then it follows that
〈x1〉〈rdf:type〉〈yago:Paper〉 (see the blue edges in Figure 2.7). The process of inferring triples from
a graph based on its ontology is also called reasoning. The process of inferring all possible triples
from a graph, adding them to the graph, and inferring again until no new triples can be found is
called saturation. For RDFS, it has been shown [78] that the graph saturation can be computed in
finite time (polynomial time complexity). Other more expressive ontology languages may lead to
an infinite saturation process, e.g., if we allow an ontology rule such as “any Person has a friend
that is also of type Person”. In this thesis, we consider that the RDF graphs we work with have
been fully saturated.

SPARQL [173], standing for SPARQL Protocol and RDF Query Language, is the W3C recom-
mended language to query RDF graphs. Major RDF databases, also known as triple stores, include
AllegroGraph, Virtuoso and StarDog.

23

https://allegrograph.com/
https://virtuoso.openlinksw.com/
https://www.stardog.com/

CHAPTER 2. PRELIMINARIES

yago:AliceD

“Alice Dupont”

yago:Author

yago:Paper

yago:Paper1

yago:Paper2

“JSON fundamentals”

yago:Artwork

yago:wrote

yago:name
yago:wrote

yago:wrote

rdf:type

rdfs:domain

rdfs:range

rdf:subClassOf

rd
f:t

ype

rdf:type
yago:title

Figure 2.7: The RDF graph corresponding to the RDF triples in Figure 2.6. The graph also contains
those inferred by the graph saturation (blue edges).

RDF has been used to describe numerous useful datasets. Many are domain-specific and focus on a
given topic, e.g., ESKG, the NASA knowledge graph for Earth Science. Others, such as Yago [138],
DBPedia [18] and WikiData [161], do not focus on one topic, but instead serve as repositories of
universal knowledge. RDF graphs are also called Knowledge Bases (KBs) or Knowledge Graphs
(KGs), highlighting their ability to represent data and knowledge.

2.7 Property graphs

In property graphs, information is organized in nodes, relationships, and properties:

• A node describes a structured record. It may have zero, one or few labels playing the role of
types. A node may have a set of properties, where each property is a key-value pair. Nodes
with the same set of labels may not have the exact same set of properties.

• A relationship is a directed labeled edge between a source node and a target node. Also, they
may have properties, like nodes.

For instance, Figure 2.8 features a property graph describing three scientific publications and three
authors. The nodes referring to publications are labeled as PAPER, while author nodes are labeled
as AUTHOR and/or PERSON. Each node has a set of properties, in the attached rounded rectangle.
Relationships are connecting authors to their publications using WROTE edges. Some of them have
a property indicating the publication year.

No standardized schema for Property Graphs exists at the time of the writing. Each competitor
in the field has its own way to define it. Recently, [14] proposed PG-schema, a formal definition of
what a Property Graph schema could look like. They emphasize three main components: types,
attributes and relationships between types.

24

https://github.com/ESIPFed/eskg

2.8. SUMMARY

id: 4
AUTHOR

name: Alice
affiliation: INRIA

id: 1
PAPER

title: RDF
abstract: W3C...

id: 6
AUTHOR

name: Carol
affiliation: IPP

id: 2
PAPER

title: XML

id: 5
AUTHOR
PERSON

name: Bob
affiliation: IPP

id: 3
PAPER

title: JSON
abstract: Nodes...

WROTE
year: 2023

WROTE

WROTE
year: 2013

Figure 2.8: Property graph modeling scientific publications and their authors.

2.8 Summary

This chapter provided a brief recall of the main data models considered by the research work of
this thesis: structured (relational) data, as well as four leading semi-structured data models: XML
documents, JSON documents, RDF graphs and Property graphs. As shown above, these models
feature a great deal of surface differences: tuples, trees or graphs, ordered or unordered, different
notions of type, etc. Our goal in the rest of the thesis will be to bridge this variety through a
common understanding of the data.

25

CHAPTER 2. PRELIMINARIES

26

3
Related work

Chapter Outline

3.1 Heterogeneous data integration . 28

3.1.1 Virtual integration with mediators . 28

3.1.2 Physical integration with data warehouses . 32

3.1.3 Schema-less data integration . 33

3.1.4 Data integration architectures comparison . 36

3.2 Data summarization . 37

3.2.1 Quotient and non-quotient summaries . 38

3.2.2 Structural summarization based on labels . 38

3.2.3 DataGuide summarization . 39

3.2.4 Structural RDF quotient summaries . 41

3.2.5 XML schema inference . 46

3.2.6 JSON schema inference . 46

3.2.7 Property graph schema inference . 48

3.2.8 Summarizing data of multiple models . 49

3.3 Structured and unstructured querying . 50

3.3.1 Structured querying . 50

3.3.2 Keyword-based search . 52

3.3.3 Exploration of complex datasets . 54

3.3.4 Dataset search . 55

3.4 Summary . 55

Chapter Abstract. In this chapter, we review existing works in the area of heterogeneous
data integration (Section 3.1), data summarization (Section 3.2) and data querying (Section 3.3).
We also discuss the limitations of existing works, as well as the existing gaps in those research areas.
Finally, we position this thesis with respect to these existing works (Section 3.4).

27

CHAPTER 3. RELATED WORK

3.1 Heterogeneous data integration

When working on real-world data-driven applications, users often need to deal with several datasets.
Such datasets may be gathered from different providers, which did not coordinate when designing
or producing it. Therefore, data heterogeneity may appear at several levels:

• The data model may differ because each data producer or production scenario may have
different preferences. Thus, datasets may be available in the relational form, or as XML or
JSON documents, as RDF graphs, as text, etc.;

• The schemas of different datasets (when schemas are available), or more generally, the data
structure may differ, e.g., a dataset about students may describe them by their full name and
student number, while another database provides the students’ full name, home university
and international student number.

Data integration systems aim at providing a unified interface to access, process and query a set of
diverse, and potentially heterogeneous, datasets. When the data volume is small, one can attempt
to work with heterogeneous data sources “as they are”, manually gathering information about a
few items of interest present in the data. This is, for instance, the case of data journalists: they
work with multiple data sources (such as political speeches, city- and country-level data, etc.) but
have no particular IT skills, and work under resource and time constraints. Following the recent
emergence of data journalism [36], where journalists are increasingly aware of the opportunities
provided by digital data and its associated processing tools, journalists are becoming interested in
automated data integration systems, which could allow them to inspect and query the data with
the help of friendly interfaces.

In larger organizations, e.g., companies or institutions, data integration systems (such as Tsim-
mis [73], Agora [123], Pegasus [7], Obi-Wan [40] and ConnectionLens [13]) have been designed
to provide means to automatically integrate and manage such heterogeneous data. The interest and
challenges raised by data integration remain quite high; they have been studied in different types
of architectures. The three main categories are: mediator systems (described in Section 3.1.1),
data warehouses (presented in Section 3.1.2) and data lakes (introduced in Section 3.1.3). Fig-
ure 3.1 highlights their main components, thus emphasizing their similarities and differences. We
will describe these in Section 3.1.4.

3.1.1 Virtual integration with mediators

Data mediation has been initially introduced in [166]. The goal was to provide a unified ar-
chitecture interacting with several data sources, with possibly different data models and schemas.
As stated in Chapter 1, heterogeneity is still a main aspect of Big Data today (recall “variety”);
sources may also evolve independently (recall “variability”). To enable data source use despite these
challenges, mediator systems [73, 123, 40] provide (i) an integrated way for users and applications
to interact with the underlying sources; and (ii) access to the data from its original source, also
ensuring freshness. The mediation approach has also been termed virtual data integration systems
in the literature.

Given a set of data sources, each having its own (local) data model and/or schema, a mediator
system is composed of:

28

3.1. HETEROGENEOUS DATA INTEGRATION

S1

w1

S2

w2

S3 S4

w4

View generation

mediator

S1 S2 S3 S4

Data staging (ETL)

Data presentation

warehouse

S1 S2 S3 S4

Ingestion + Metadata

ETL + Storage

data lake

query

q
u

er
y

query

Figure 3.1: The three main architectures for heterogeneous data integration.

• A global (or mediated) schema, i.e., a unique and integrated schema exposed to users and
applications;

• A set of semantic mappings specifying how local schemas and the global one relate;

• A global (or meditated) data model providing a unique formalism to interact with underlying
data sources;

• A set of wrappers converting (local) data formats of the original sources into the mediator
data model.

Finally, users and applications may send queries to the mediator system, expressed against the
global (or mediator) schema. The mediator is in charge of processing the queries, possibly enlisting
help from the data sources.

Global schema

The global schema is crucial to the functioning of a mediation system. To design it, IT experts
and domain experts typically collaborate, aiming to ensure that it is sufficiently rich to be useful
to users, and well designed to allow query optimization. The task of designing such a model is
often tedious because each local source has its own (local) schema, thus inconsistencies between the
different schemas have to be solved, domain and ontology differences have to be clarified and entity
resolution may be useful to understand how similar entities are represented in each local schema.

In the upcoming examples, we will consider the following global and two local schemas. The global

29

CHAPTER 3. RELATED WORK

schema has two relations: the first one records the projects researchers are working on; the second
one stores the scientific field of each project. The local schema of the first source consists of a unique
relation depicting the interest of some people in a field. The second source has two relations: the
first one stores data about researchers’ grants; the second one relates grants to projects. We will
denote the global schema relations as G.Work(R,P) and G.Area(P,F). Local schema relations will be
denoted by S1.Interest(Pe,F), S2.HasGrant(R,G) and S2.For(G,P).

Global schema

Work(Researcher, Project)

Area(Project, Field)

Local schema for source 1

Interest(Person, Field)

Local schema for source 2

HasGrant(Researcher, Grant)

For(Grant, Project)

Semantic mappings

For a given set of n local schemas S1, . . . , Sn, each of one relation, and a global schema of m relations
G1, . . . , Gm, semantic mappings specify how local and global relations connect to each other. A
mapping is a logical formula of the form Ai :- Bi where Ai and Bi are queries over the global or
the local schema(s).

Depending on the mapping structure, we identify three kinds of mappings:

• Global-As-View, or GAV, mappings express the global schema relations in terms of local
schemas relations, as in G.Work(R,P) :- S2.HasGrant(R,G), S2.For(G,P) and G.Area(P,F) :-

S1.Interest(Pe,F), S2.HasGrant(Pe,G), S2.For(G,P). Each global schema relation Gi can be
seen as a view of some local relations, thus a GAV mapping states how it can be computed
from the sources. That is why GAV mappings are straightforward to implement, thus leading
to its wide adoption [73, 26]. However, the update or integration of sources is complex.
Indeed, when a local source Si is updated, all mappings using Si need to be updated with
the new source definition. Similarly, when a new source is added, new attributes may need
to appear in the global schema. Therefore, mappings whose definition has changed to include
the new attributes need to be updated.

• Local-As-View, or LAV, mappings express the local schemas relations in terms of global
schema relations, as in S1.Interest(Pe,F) :- G.Work(Pe,P), Area(P,F). Note that local rela-
tions HasGrant(R,G) and For(G,P) cannot be expressed in terms of the global schema as it
does not contain grant information. LAV mappings describe each data source as a view over
the mediator schema. However, LAV mappings do not suffer from the GAV main problem
related to changes in the data sources: they can be integrated independently from others since
each LAV mapping does not refer to other sources schemas but only to the global schema, as
emphasized in [114, 146]. The price for such flexibility is to have more complex rewritings, as
we discuss below.

• Global-Local-As-View, or GLAV, generalizes both GAV and LAV as follows. It associates
a query over the global schema to a query over the local schemas, as in Interest(R,F) :-

30

3.1. HETEROGENEOUS DATA INTEGRATION

Work(R,P), Area(P,F) and HasGrant(R,G), For(G,P) :- Work(R,P). GLAV mappings general-
ize both GAV and LAV mappings. They maximize the flexibility and the expressive power of
data integration. GLAV mappings are used in systems such as [40, 42].

Wrappers

When a mediator integrates data sources that (only) differ in their schemas, a global schema and
a set of semantic mappings suffice to interact with the underlying data. However, when sources
having different data models, such as relational, XML, JSON, or RDF, are integrated together,
wrappers are needed. They allow to “wrap”, or “hide”, the underlying data model and provide to
the mediator the data as if it was in the mediator data model. Many mediators [73, 123] consider a
relational mediator schema; more recent ones use RDF [40] at the mediator level, for more flexibility,
and the possibility to use ontologies to describe, and enrich, the mediator schema.

Query answering in a mediator system

Typically, when a user asks for a global query, i.e., a query over the global schema, the mediator
has to (i) translate that query into local queries referring to the original data sources schemas, such
a task is called query rewriting [85]; and (ii) build a global query to aggregate local query results.

In a GAV setting, the rewriting task is easy because the global schema is expressed in terms of local
ones. Therefore, a user query is simply rewritten by query unfolding. This replaces each term of
the global query by its local schema twin using semantic mappings. For instance, suppose the user
asks for all fields by issuing the following query: q(F) :- G.Area(,F). With query unfolding, this
query is rewritten as q(F) :- S1.Interest(Pe,F), S2.HasGrant(Pe,G), S2.For(G,), meaning that
asking for q(F) is equivalent to asking for something () that received a grant G such that this grant
has be given to a researcher Pe, working in some field F. GAV query rewriting has low complexity
(linear in the size of the mappings and given query).

In a LAV setting, the task is more complex because the mappings express how the sources can
be described by the global schema. Therefore, the global query cannot be directly translated.
Instead, an inference mechanism is needed to re-express each term in the global query using local
schemas terms. There exist three main query rewriting algorithms in this case: Bucket [114],
Minicon [141] and Inverse-rules [60]. For instance, if a user asks the query q(F) :- G.Area(,F),
the query rewriting component will have to find out that S1.Interest, S2.HasGrant and S2.For will
be useful. Then, it will build multiple join combinations of these views, check which of these are
guaranteed to provide query results, then build the rewriting as a union of all these. In a LAV
setting, complete rewritings may not exist, i.e., the computed results may be just a subset of those
that the user query is asking for. However, in such cases, we seek maximally contained rewritings,
that is, the largest subset of the query result that can be computed based on the available view
definitions. LAV query rewriting is NP-hard (in the size of the query plus the size of the views) for
simple, conjunctive relational queries and views [114].

In a GLAV setting, query rewriting starts with a LAV step, rewriting the query formulated against
the global schema, with the “views” defined by the global schema queries of the existing mappings.
This process leads to reformulating the query over a set of atoms, each of which corresponds to
one mapping. Then, a GAV rewriting step is applied, replacing each of these atoms with the
corresponding source query from each mapping, leading to the desired outcome: a rewriting of the
user query over the data sources. The complexity of this process is dominated by the first step

31

CHAPTER 3. RELATED WORK

(LAV rewriting). Overall, GLAV (and GLAV rewriting) correspond to the most complex setting,
and also the one providing the largest expressive power.

3.1.2 Physical integration with data warehouses

The warehouse architecture has been firstly mentioned in [54]. The goal was to design a “business
data warehouse” to provide users a decision support system where they can focus on the information,
rather than on how to obtain it. To achieve this goal, a data warehouse is a unique consolidated
repository where data, coming from several heterogeneous sources, is replicated, cleaned, consoli-
dated, and stored. A data warehouse enforces a unique schema that users are familiar with and
based on which they can query the data of interest to them. The main advantage of a consolidated
repository is to deliver high performance since processing is upstream and not done at the query
time. It also adopts a unique model: relational or multi-dimensional [50, 108].

In a typical data warehouse, data is stored in relations, one per fact (recall Chapter 2). Relational
modeling allows very fast retrieval, thanks to good indexation strategies and relational optimizers.
However, they are less performant when it comes to specify many conditions. Therefore, dimen-
sional modeling has been introduced in [187] and is now widely used. Data is seen as a set of
facts, to which are associated a set of dimensions, as well as a value along each dimension, and
a (set of) measure. Such data is typically called a n-dimensional cube. For instance, in a retail
company, a cube describes some Products (x axis) sold by a Store (y axis) at a given Time (z axis)
for a given price (the numerical measure in the cube cell). A data warehouse can be queried with
the help of operations specific to this multidimensional model, e.g., slice, dice, drill-down, roll-up,
etc., well described in specialized textbooks [108].

From the system organization viewpoint, with our focus on data integration, in a data warehouse,
we identify:

• The operational systems area contains the (external) data sources, which are self-ruling,
generate data mostly outside of the warehouse’ realm of control, and are not coordinated with
other sources;

• The data staging area provides an ETL (Extract-Transform-Load) pipeline, composed of
the three following steps:

1. Extraction gets data into the warehouse by (i) reading and understanding the sources;
then (ii) copying necessary data in the staging area;

2. Transformation applies various data cleaning processes, e.g., values normalization,
deduplication, missing values inference, then transforms the cleaned data into dimen-
sional tables;

3. The loading step sends the cleaned dimensional tables to the storage, indexes them and
notifies users that new data has arrived in the warehouse.

• The data presentation area is where data is made available for direct querying by users
and analytical applications. This is the farthest that they can go in the warehouse; they are
not allowed to enter the operational systems and data staging areas. The presentation area
is often composed of data marts, i.e., small portions of the whole warehouse.

Data warehouses, such as those proposed by Amazon [179], eBay [180] or Google [186], are widely
used by companies for analytical queries, data mining, business statistics, etc. Indeed, they are

32

3.1. HETEROGENEOUS DATA INTEGRATION

well-suited for specific, targeted contexts where large amounts of data can be (i) integrated in a
central repository, (ii) organized along dimensions, and (iii) queried intensively with analytical
queries.

3.1.3 Schema-less data integration

In recent years, settings where very large number of data sources need to be used together has led
to new paradigms for data integration. Unlike the mediator and the warehouse architectures, in
very large-scale data integration it becomes unfeasible to establish a global schema, due to the high
number of sources and their heterogeneity. Therefore, new platforms have emerged for this task;
we discuss their main characteristics below.

Data lakes have emerged in the last decade, sample systems being [10, 111, 83, 25, 13, 203, 68].
Since the area has not completely converged yet, many data lake definitions co-exist, depending
on the research area, application domain and user needs. We focus on the definition provided in
a recent survey [84]: “a data lake is a flexible, scalable data storage and management system,
which ingests and stores raw data from heterogeneous sources in their original model, and provides
maintenance, query processing and data analytics in an on-the-fly manner, with the help of rich
metadata.”. A data lake also often comprises sources which have different schemas. The data
lake itself is schema-less, in the sense that no unified schema is sought or built. Some data lakes
propose to unify the different formats used by each source, e.g., in a relational [83, 25] or graph
paradigm [13, 203]; however, most of the data lakes do not require it. We now describe the main
aspects of a data lake, following the recent survey [84] and a recent VLDB tutorial [132]. We
first discuss data ingestion, then metadata extraction. We continue with data processing and data
storage. Finally, we cover the exploration of data lakes by users.

Data ingestion

During the ingestion phase, source data is loaded in the data lake. This (raw) ingested data is
hard to use as is, given that the structure and semantic of the data is not known. At this point, the
data lake is simply a “data swamp” of several datasets co-existing in the same place. Therefore,
the next step is crucial: the acquisition of as much metadata as possible.

Metadata extraction

To be profitable, a data lake should follow the FAIR principles: data should be Findable, Accessible,
Interoperable and Reusable. This is why metadata extraction is primordial and should be designed
using a rich and flexible metadata model, which also allows to further access and query the
data. Three main metadata models exist:

• Generic models [13, 83, 25] store metadata based on their type, e.g., structural, semantic,
content-based;

• Data vaults [134, 75] define hubs (to model business concepts), links (to connect hubs) and
satellites (to attach information to hubs and links);

• Graph-based models [203, 68] represent metadata using networks or hyper-graphs. This mainly
allows to connect datasets based on their common metadata nodes.

33

CHAPTER 3. RELATED WORK

More specifically, metadata extraction allows to discover the structural, semantic and provenance
information of the loaded datasets as follows:

• Structural metadata often takes the form of schemas extracted out of each source (see Sec-
tion 3.2 for more details on schema extraction). For instance, Constance [83] leverages
existing schemas that may accompany the data, such as DTDs and XSDs for XML docu-
ments or relational schemas for databases. Lacking these, Constance extracts schemas from
semi-structured data by looking for self-describing data attributes, e.g., headers for spread-
sheets, and “has-a” relationships. Datamaran [72] builds “structure templates” in the form
of regular expressions built on the data instances. As of now, no data lake proposal extracts
complex structural metadata (as those described in Section 3.2) from semi-structured datasets.
When datasets have schemas, in particular relational datasets, schema matching [144] and/or
schema mapping [65] may be applied to find how they relate and possibly merge them on
their common attributes. Also, structural enrichment is possible, for instance, to discover
functional dependencies that a dataset either fully satisfies, or “mostly” satisfies, i.e., there
are a few violations.

• Semantic annotations can be added to the data, e.g., frequent keywords and Named Entities,
that may be connected to an external knowledge base and/or contextualized and disam-
biguated using entity linking [38];

• Data provenance, also mentioned as data lineage, refers to the data origin and possibly addi-
tional information about the data suppliers. For instance, Goods [86] is a provenance-first
lake where data can be explored based on its provenance, which is composed of the data
provider and how it relates to other datasets (which datasets depend on it / it depends on).

• Some metadata models also keep track of the time to provide versioning, as in Goods [86].

As of today, data lakes often extract metadata for each data source, one at a time, and then fuse all
the extracted content in a metadata model. However, transient value across the lake, i.e., metadata
extracted when considering several, if not all, data sources, is not well explored yet.

Data processing

After metadata extraction, the lake still needs some processing and maintenance to perform
data organization and/or cleaning tasks.

Dataset organization discusses how to structure, organize, and navigate the datasets in the lake.
Mainly three categories can be identified for this task:

• Catalogues, such as in Goods [86] and ConnectionLens [13], store in tables various meta-
data, such as the provenance, date of acquisition, information about the data semantics, etc.;

• Classification models categorize datasets using classification algorithms, e.g., k-nearest neigh-
bors algorithm in [11], where similar datasets are close to each other in the feature space, thus
classified in the same category;

• DAG-based methods, as in [121, 131], organize datasets in Directed Acyclic Graphs where
datasets are connected based on their common features.

Data cleaning seeks to discover and fix data quality problems at a schema and instance level. For
instance, missing or erroneous values, redundancies, value (re)formatting should be identified, and

34

3.1. HETEROGENEOUS DATA INTEGRATION

repaired. In general, the cleaning task is performed during the data processing. However, some
authors point out that early cleaning, i.e., during data ingestion, as proposed in Clams [67], avoids
error propagation, and increases the data quality at a lower cost.

Storage

Most data lakes store datasets in their original data model. For this storage task, the main
approaches are as follows:

• File-based storage systems, as in Clams [67], mostly rely on HDFS (Hadoop Distributed File
System), a distributed file system widely used in massively parallel data processing;

• Single data stores leverage a single database to store the data, this is the case for [163] and
ConnectionLens [13];

• Polystore systems, such as Constance [83], Goods [86] or Estocada [9] provide a single
entry point to access many heterogeneous datasets;

• Cloud data lakes [200] store data in a cloud, such as those provided by IT giants: Azure Data
Lake from Microsoft, AWS data lake from Amazon and Delta Lake from DataBricks, among
many others.

Depending on the system size and capabilities, data lakes have been referred to as “data puddle”,
“data pond”, “data lake” or “data ocean” in [80]. Recently, data lakehouses [16, 17] have been
proposed as a hybrid approach between data lakes and data warehouses (recall Section 3.1.2). The
goal is to add, on top of a data lake architecture, processing capabilities typically provided by data
warehouses, in particular analytics.

More recently, the new term of data mesh [51] has been introduced in 2019. A data mesh is an
architectural framework, referring first (or mainly) to how data is produced, shared, and reused
(thus, less centered on the physical storage layer). The stated goal of data mesh is to integrate
diverse sources in a single point of access to the data, while domain teams (that is, those actually
performing the tasks of the company or organizations owning the mesh) keep their freedom to
create, share, derive, reuse, and govern the data. Data meshes are not yet well studied in the
literature because its is an extremely new concept. However, major companies are advertising their
versions thereof, as in AWS lake formation from Amazon and IBM Data Fabric from IBM.

Exploration

Several kinds of users interact with the data lake: data scientists and business analysts, who apply
models on data; information curators, who define new data sources and organize the data lake; and
operations teams which maintain the data lake. Data lake exploration is challenging because
data should be findable and usable by users (recall FAIR principles); it is also heterogeneous, with
no consolidated schema. This is where all the metadata computation and (pre)processing show
their importance. In general, users interact with the data lake in two ways: finding datasets related
to an input dataset; or sending queries to a unified lake interface.

• To find related datasets, the goal is to, given an input dataset, return the top-k datasets in the
lake that are the most similar, or joinable on the input dataset. This task is called discovery
of semantically related datasets and compares attributes and their values according to some
semantic similarities. For instance, Josie [202] finds similar tables by computing the overlap

35

https://en.wikipedia.org/wiki/Azure_Data_Lake
https://en.wikipedia.org/wiki/Azure_Data_Lake
https://aws.amazon.com/what-is/data-lake/
https://docs.databricks.com/en/delta/index.html
https://aws.amazon.com/lake-formation/
https://www.ibm.com/topics/data-mesh

CHAPTER 3. RELATED WORK

between the input tables and the lake tables; the higher the overlap, the better. Discovery
of joinable datasets methods find how different tabular datasets might be related by their
columns. Columns may be related based on their label, cardinality, distribution and/or data
values. For instance, Pexeso [57] finds semantically joinable tables by transforming textual
values into high-dimensional vectors and computing their vector similarities. Note that all
these techniques are designed for tabular data.

• The data lake may also provide a unified querying interface to access the heterogeneous
datasets (see Section 3.3 for more on querying). For instance, Constance [83] helps users to
explore the lake by browsing existing data sources and their metadata. Then users may write
a query (in SQL for structured data, or JSON for NoSQL data) on a data source they are
interested in. They may also run a keyword search over a data source or its schema. Finally,
users can ingest their query results in the data lake (recall the importance of provenance and
metadata). Similarly, CoreDB [25] provides a unified interface through a REST API to query
or send CRUD operations to the data lake. Queries are internally transformed into elastic
search queries for full-text search, SQL queries for relational queries or SPARQL queries for
knowledge graphs. ConnectionLens [13] provides an efficient algorithm to query a graph-
based data lake using keywords, where an answer is a sub-tree of the data graph, connecting
one node that matches each query keyword.

Given the large number of datasets, as well as their high degree of heterogeneity, data lake explo-
ration remains an active area of research.

3.1.4 Data integration architectures comparison

Mediators, warehouses, and schema-less integration all target the same goal: automatically integrat-
ing heterogeneous data under a unified user interface. Beyond this common goal, their differences
and specific features can be summarized as follows:

• Mediators and warehouses follow a hierarchical, or vertical, architecture, with a global schema
hiding local sources’ schemas, while schema-less integration can be seen as “horizontal” (see
Figure 3.1);

• Warehouses physically integrate the data in a unified schema (plain edges in Figure 3.1) while
mediators and data lakes expose virtual views over the data (dashed edges in Figure 3.1).
Thus, warehouses require refresh strategies to ensure recent data is queried. On the contrary,
virtual integration guarantees the data read by an application is always fresh; however, query
processing is more complex since queries are stated over a different schema than the actual
storage schemas;

• In mediator systems, there is typically no data curation or transformation; the data is exposed
as is;

• With respect to their handling of data heterogeneity: warehouses eliminate it by migrat-
ing data in the target data model; mediator systems handle it through dedicated wrappers
(w1, w2, w4 in Figure 3.1); data lakes work with data as it is in the sources or may apply a
unified model.

No single data integration architecture fits all needs. Data warehouses are the architecture of choice
when the main processing of the data is analytical, and the data is not too frequently updated.

36

3.2. DATA SUMMARIZATION

Mediation architectures are suited to contexts where a relatively low number of data sources, each
with high autonomy requirements, cooperate for a specific data sharing application. Schema-less
data integration, and in particular data lakes, are used when the number and the variety of sources
is too large to support designing an integrated schema.

3.2 Data summarization

Faced with a very large dataset, it may be difficult for users to learn about its content, as it is
sometimes hard to even figure out what questions to ask. Data summarization builds structured
and concise summaries out of semi-structured datasets; since a summary is relatively small, users
can visually inspect it to gather first insights about the data. Many approaches have been proposed
to automatically summarize semi-structured datasets. Summarization methods for XML documents
are surveyed in [63, 128], for RDF graphs in [43, 101], and more generally for data graphs in [32, 119].
Regardless of the data model, existing summarization techniques can be divided in four categories:

• Structural approaches summarize a dataset structure by creating groups of nodes consid-
ered equivalent. Different algorithms rely on different notions of node similarity; generally,
these notions leverage node labels, types, and/or their neighborhood, i.e., their incoming and
outgoing edges. Note that, depending on the input data and the similarity notion, the sum-
mary may still be too large to be inspected by users. Such structural approaches have been
used to summarize XML data [15, 79], RDF graphs [77, 76], Property Graphs [33], and JSON
documents [20].

• Pattern mining methods leverage mining techniques to discover patterns, out of which the
summary is built. Works in this line include [156, 204, 205].

• Statistical approaches [59, 92, 142] summarize data from a quantitative point of view.
They often count class instances, property and value types, properties frequency, etc.

• Hybrid methods, such as [103, 133, 147], combine structural, mining-based and/or statis-
tical methods.

Some summaries have also been called a-posteriori schemas, in opposition to the typical a priori
schemas, traditionally defined before a database is populated. From this perspective, summarization
methods can be related to schema inference techniques, even if the overlap is quite partial.
Specifically, schema inference applies in settings where a specific schema language is available.
Then, schema inference starts from a dataset and attempts to find a schema specification expressed
in the given schema language, such that the dataset is valid with respect to (or conforms to) the
computed schema. Often, many schemas satisfy this requirement; schema inference methods may
then return one schema or another, depending on other objectives, such as generality, conciseness,
etc. Schemas for semi-structured data are usually some form of grammar, which may contain regular
expressions, etc., thus they are not suited for users lacking technical skills. Also, depending on the
dataset, the target schema language, and the specific schema inference method, inferred schemas
may be large, especially if the data instances exhibit some variability. Schema inference techniques
have been devised for all semi-structured data models, including XML [48, 109], JSON [20, 19, 158],
RDF [81] and Property Graphs [113, 143, 14].

Below, we describe in detail five structural summarization techniques, which we either adopt, or
compare with, in this thesis. We first categorize structural summarization techniques in two groups:

37

CHAPTER 3. RELATED WORK

quotient and non-quotient summaries (Section 3.2.1). We continue by describing label summariza-
tion (Section 3.2.2) and path summarization (Section 3.2.3). Then, we discuss RDF quotient
summaries (Section 3.2.4). Next, we move to schema inference techniques for XML (Section 3.2.5),
JSON (Section 3.2.6), and Property Graphs (Section 3.2.7). Finally, we discuss the challenges of
devising novel techniques to summarize data of different models (Section 3.2.8).

3.2.1 Quotient and non-quotient summaries

Structural summarization methods can be divided in two categories:

• Quotient approaches, such as [77, 104, 126], build summaries on the following notion:
nodes that are considered equivalent are grouped together, and this equivalence will serve
to “compress” (or represent) the original graph into a graph-shaped summary. Formally,
suppose a graph G and an equivalence relation ≡ over the nodes of G. The equivalence
relation partitions G nodes into equivalence classes, where an equivalence class contains ≡-
equivalent nodes. Thus, each node is represented by exactly one equivalence class. The
quotient graph, or quotient summary or simply summary, of G by ≡ is the graph having:

– A summary node for each equivalence class of the ≡ relation;

– For each G edge of the form n1
a−→ n2, an edge m1

a−→ m2, where m1,m2 are the
equivalence class nodes representing n1, respectively n2.

• Non-quotient techniques, as in [79, 102], structurally summarize datasets by other means.
Contrary to quotient summaries, a non-quotient technique (i) may not represent all the nodes
in the original data, and/or (ii) may represent a node of the original graph by more than one
summary node.

Among the numerous summarization techniques, we will discuss the ones that we used in this thesis
or are very close. Some of them are quotient approaches, while others are not.

3.2.2 Structural summarization based on labels

Label summarization groups structural, i.e., non-value, nodes with the exact same label into a
group (equivalence class) to which we assign the same label. Values are grouped based on their
parent label, i.e., all value children of equivalent parents labeled a are grouped together in an
equivalence class labeled #val. For instance, the XML document given in Figure 3.2 describes four
people and leads to the summary in Figure 3.3. All the four person nodes have been grouped
together, regardless of their position in the XML tree. This is because they carry the same label.
All people names are therefore grouped in the node #val whose parent is name. The same applies for
people affiliations and addresses. Note the cycle person → friends → friend → person. It appears
because person nodes originate from different places in the XML document.

In general, label summarization can be applied on any graph. However, it is useful only if some
nodes have the same label. Otherwise, the label summarization will output the same graph as given
as input. For instance, label summarization should not be applied on an RDF graph, where all
node labels are unique.

38

3.2. DATA SUMMARIZATION

people

person

name

“Alice”

aff

“IPP”

person

name

“Bob”

person

name

“Carole”

friends

friend

person

name

“David”

address

“Paris”

Figure 3.2: An XML tree describing four
people.

people

person

name

#val

aff

#val

address

#val

friends

friend

Figure 3.3: The label summarization of the
XML tree in Figure 3.2.

[]

{ }
“Alice”

name

“IPP”aff
ε
{ } “Bob”

nameε

{ }
“Carole”

name

[] { }
“David”

name

“Paris”address
ε

friends

ε

Figure 3.4: A JSON tree representing few people.

3.2.3 DataGuide summarization

The first summarization technique based on paths introduced in the literature is that of DataGuides [79].
A DataGuide summary can be built on a rooted acyclic graph; it groups nodes occurring on a com-
mon path from the root. Formally, given a rooted acyclic data graph G:

• A path is a sequence of nodes connected by consecutive edges, of the form {n1, e2, n2, e3, ..., ei, ni},
where ni is the ith node in the path and ei the ith edge in the path connecting ni−1 to ni.
For both ni and ei, 1 ≤ i ≤ depth(G). The path label is the set of dot-separated node and
edge labels. For instance, the path { [], ε, {}, name } is denoted [].ε.{}.name.

• The target node of a path p is the last element of the path, i.e., ni.

• A path from the root is a path whose first element n1 is G root.

• A DataGuide D of G is a rooted graph such that every path from the root in G corresponds
to exactly one path in D, and every path of D corresponds to a path in G. DataGuides contain
no L -leaf value since the goal is to reflect the input graph structure. Instead, different L -leaf
values occurring on the same path from the root are considered equivalent.

39

CHAPTER 3. RELATED WORK

DataGuides were originally introduced to summarize Object Exchange Model (OEM) data, a semi-
structured graph-structured data model issued from research carried at U. Stanford and IBM in
the 90’s [73]. DataGuide summarization easily translates to other semi-structured data models,
thus in Figure 3.5 we show two DataGuides built from the JSON tree describing few people in
Figure 3.4. In the DataGuide in Figure 3.5a, all the maps in the root array are grouped together as
they appear on the same path rooted in the graph root, i.e., [].{}. The corresponding DataGuide
map has for fields friends, name and aff, the union set of all the map fields in the three original
maps (one with a name and a list of friends, one with a name and an affiliation, and one with a
name only). For what concerns value summarization, the JSON paths [].ε.{}.name.“Alice” and
[].ε.{}.name.“Bob” lead to only one path in the DataGuide: [].ε.{}.name.#val.

It is important to note that several valid DataGuides may exist for a given input graph. For in-
stance, Figure 3.5a and 3.5b are both valid DataGuides for the data graph in Figure 3.4. In fact, the
DataGuide in Figure 3.5b is minimal, while the other is not. Intuitively, minimal DataGuides
compress the original graph as much as possible, by minimizing the number of nodes. Such com-
pression can be achieved starting from a non-minimal DataGuide, treating it as an automaton, and
applying state minimization algorithms [91].

Any graph summary, thus any DataGuide, induces some level of information loss. Among DataGuides,
the minimum ones maximize such information loss. For instance, when looking at the minimal
DataGuide only, one cannot distinguish the two lists (the graph root and the list of friends), re-
spectively the four maps (the three maps of people and the one for Carole’s friend).

As defined above, a DataGuide guarantees that a given path in D reaches a unique DataGuide
node. However, nothing guarantees that a DataGuide node can be reached by only one path. For
instance, in Figure 3.5b, one can access the element {} using, [].{}, or [].{}.[].{}, among others.
To prevent this, strong DataGuides have been introduced. Let G be a rooted graph and p a path
in G.

• The target set TG(p) is the set of G target nodes that can be reached by traversing p;

• LG(p) is the set of G paths having for target set TG(p);

• Conversely, LD(p) is the set of D paths having for target set TD(p);

• Intuitively, LG(p), respectively LD(p), contains more paths than only p when a node in TG(p),
respectively TD(p), can be accessed by different paths.

which can be formalized as follows:

TG(p) = {ni | p is a path in G} (3.1)

LG(p) = {z | TG(z) = TG(p)} (3.2)

LD(p) = {z | TD(z) = TD(p)} (3.3)

Based on these notations, the authors define strong DataGuide as a DataGuide where for every
path p ∈ G, LG(p) = LD(p).

40

3.2. DATA SUMMARIZATION

[] { }

#val

name
#val

aff

[] { }
#val

name

#valaddress
ε

frie
nds

ε

(a) A possible DataGuide.

[] { }

#val

name
#val

aff

#val

address

ε

friends

(b) The minimal DataGuide.

Figure 3.5: The two possible DataGuides for the JSON tree presented in Figure 3.4.

For instance, let p be { [], ε, {}, name }, G be the JSON tree in Figure 3.4, and D the DataGuide
in Figure 3.5b. We first compute TG(p), which we refer to as TG, as being { “Alice”, “Bob”,
“Carole” } and TD(p), or simply TD, as being { #val }. Next, we compute LG(p) and LD(p),
respectively referred to as LG and LD. LG corresponds to the set of every graph path z reaching
the three nodes in TG. So, LG(p) = { [].ε.{}.name }. LD contains every DataGuide path z reaching
the name values, i.e., { [].ε.{}.name, [].ε.{}.friends.[].{}.name, ... }. Because LG 6= LD, the
DataGuide in Figure 3.5b is not strong. On the contrary, the other DataGuide (Figure 3.5a) is
strong: there is only one way to reach each DataGuide node.

In general, strong DataGuides minimize the information loss but are heavy to store (because they
are larger than DataGuides and minimal DataGuides). On the contrary, minimal DataGuides are
the cheapest to store, but also introduce approximations. Also, they are harder to maintain: when
a new node needs to be introduced, most of the DataGuide may have to be revisited. This because
of the approximations, which make the task of finding where to add the node and how to connect
it to others harder. In this thesis, we prefer strong DataGuides. Finally, note that a strong
DataGuide is also minimal if each node label appears at most once. Indeed, node labels appearing
in different places in the (strong) DataGuide allow minimization.

3.2.4 Structural RDF quotient summaries

Novel summarization techniques leveraging quotient graphs have been introduced in [77], where
authors propose two kinds of summaries, each derived in two flavors. Those summaries both rely
on the labels of the edges incoming and outgoing the RDF graph nodes; they are respectively called
weak and strong summaries. The first summarization flavor consists of grouping resources first,
based on their adjacent properties, then attach type information, if present. The latter makes RDF
types first-class citizens and uses edge neighborhood only on nodes for which no type information
is available.

Figure 3.6 depicts an RDF graph describing four people, namely Alice, Bob, Carole and David.
The first three are typed as people while David is typed as a Friend. Each person has its own set
of properties, e.g., Alice has a name and an affiliation while Bob only has a name. The RDF graph
also includes a (dashed) ontology edge to specify that friends are also people.

The techniques introduced in [77], and their flavors, rely on the notion of source and target property
cliques. They are defined using the concept of source-related and target-related properties,
which are defined as follows:

41

CHAPTER 3. RELATED WORK

PERSON BobZ “Bob”

AliceZ IPP “IPP”

“Alice”

CaroleZ“Carole”

DavidZ“David”

“Paris”

FRIEND

SCHOOL

rdf:type

n
a
m

e

aff name
rd

f:ty
p

e

namerdf:typename

frien
d

rdf:type

rdf:type

rdf:subClassOf

fullname

a
d

d
ress

Figure 3.6: An RDF graph depicting four people, and one ontology edge saying that Friend is a
sub-class of Person.

• Two RDF properties p1, p2 are source-related if there exist an RDF node s such that:

– The node s is the subject of both p1 and p2;

– Or s is the subject of p1 and another RDF property p3 such that p2 and p3 are source-
related.

• Similarly, two RDF properties p1, p2 are target-related if there exist an RDF node o being the
object of both p1 and p2; or o is the object of p1 and another RDF property p3 such that p2
and p3 are target-related.

A source property clique is the maximal set of RDF properties which are pairwise source-
related. Similarly, a target property clique is the maximal set of RDF properties which are
pairwise target-related. For instance, in Figure 3.6, the RDF properties friend and name are source-
related because they both have a common parent, CaroleZ. Also, aff and friend are source-related,
because friend and name are source-related, and name is source-related with aff. Therefore, one
source property clique for Figure 3.6 is {name, aff, friend}.

All RDF quotient summaries described in [77] copy all schema triples from the input RDF graph
to the quotient. Further, two flavors of summarization are introduced: one that first considers data
triples (through property cliques), and then transcribes type statements from the input graph to
the corresponding quotient nodes representing them; the other, on the contrary, first considers the
type triples, and relies on property cliques only when types are absent.

Weak quotient summary

A weak quotient summary is a quotient of the RDF graph based on weak equivalence. Two data
nodes are weakly equivalent if:

• They have the same non-empty source or non-empty target clique;

• Or they both have empty source and empty target cliques;

• Or they are both weakly equivalent to another RDF node in the graph.

Figure 3.7 depicts the weak summary of the RDF graph showed in Figure 3.6. Each rectangle
corresponds to a summary node, each encompassing the summary node id and the nodes it rep-

42

3.2. DATA SUMMARIZATION

N2

AliceZ
BobZ

CaroleZ
IPP

N5

“Alice”
“Bob”

“Carole”
“IPP”

N1

DavidZ

N3

“Paris”

N4

“David”

aff

friendname

ad
d

re
ss

fu
lln

am
e

Figure 3.7: Weak summary.

N1

AliceZ
BobZ

CaroleZ

N2

DavidZ

N3

IPP

N4

“Alice”
“Bob”

“Carole”

N5

“Paris”

N7

“David”

N6

“IPP”

fr
ie

n
d aff

name

fu
lln

am
e

ad
d

re
ss

n
a
m

e

Figure 3.8: Strong summary.

resents. Alice, Bob, Carole, and IPP resources have been grouped together because they are all
weakly equivalent due to their common outgoing property name. David is not included because it
does not have the same source or target property clique as the others. Three summary nodes have
been created out of the RDF values: N3, which represents David’s address, N4, which represents
David’s name and N5 containing all name values. Note the cycle on N2, labeled aff; this is because
the resources describing people and the school (IPP) are in the same summary node. Observe that
weak summaries tend to create few groups, putting together many RDF nodes that would be better
separated, e.g., the IPP school should not be mixed with people.

Strong quotient summary

Similarly, a strong quotient summary builds on a strong equivalence. Two data nodes are strongly
equivalent if:

• They have the same non-empty source and non-empty target clique;

• Or they both have empty source and empty target cliques;

• Or they are both strongly equivalent to another RDF node in the graph.

The strong summary is the quotient graph computed from an RDF graph whose nodes have been
grouped based on their strong equivalence. Figure 3.8 outlines the strong summary computed on
the RDF graph of Figure 3.6. In this summary, people resources (Alice, Bob, Carole, and David) are
grouped in two summary nodes: David is in N2 while others are in N1 because David does not share
any property with other people. The school shares properties, e.g., name, with people resources, but
it has an incoming edge aff that people do not have. Therefore, they are not strongly equivalent,
thus are not in the same summary node. Unlike weak summaries, strong ones tend to create many
groups, separating nodes that could belong to the same group. For instance, N1 and N2 could be
merged, as they all represent people.

43

CHAPTER 3. RELATED WORK

N2

AliceZ
BobZ

CaroleZ
IPP

N1

DavidZ

N5

“Alice”
“Bob”

“Carole”
“IPP”

N8

SCHOOL

N7

PERSON

N6

FRIEND

N3

“Paris”

N4

“David”

friend

a
d

d
re

ss

fu
lln

am
e

name

rd
f:

ty
p

erdf:type

rd
f:

ty
p

e

Figure 3.9: Data-then-type weak summary.

N1

AliceZ
BobZ

CaroleZ

N2

DavidZ

N3

IPP

N5

“Paris”

N7

“David”

N6

“IPP”

N10

SCHOOL

N4

“Alice”
“Bob”

“Carole”

N8

PERSON

N9

FRIEND

friend aff

n
am

e

fullnam
e

a
d

d
re

ss

n
am

e

rdf:typ
e

rd
f:

ty
p

e

rd
f:

ty
p

e

Figure 3.10: Data-then-type strong summary.

Data-then-type RDF quotient summary

The vanilla versions of the weak and strong quotient summaries only consider data triples (recall Sec-
tion 2.6). However, type information is very precious when present. It reflects the human knowledge
about resources and should be part of the summarization process. Therefore, the data-then-type
flavor also considers type triples, i.e., the set of triples assigning an RDF type to a resource, as in
〈AliceZ〉〈rdf:type〉〈Person〉. A data-then-type (weak or strong) summary is computed as follows:

1. Summarize G using the weak, respectively strong, equivalence ≡;

2. For each triple of the form n1 rdf:type C, add an edge m1
rdf:type−−−−−→ C in the summary, where

m1 is the summary node representing n1.

Figures 3.9 and 3.10 illustrate data-then-type weak and strong summaries. Observe that the vanilla
weak and data-then-type weak summaries are identical, expect for the type information that is not
present in the weak summary. This observation also holds for the vanilla strong and data-then-type
strong summary. Those observations hold because data-then-type summarization techniques first
summarize the graph (step 1) and then add type information on top of it (step 2).

Type-then-data RDF quotient summary

Another flavor is to consider type information as a first-class citizen and summarize first, based on
RDF types, if they are available. When type information is attached to a graph, data producers
have typically invested time and effort to model it; the outcome is also precious because data
producers have the best knowledge of the data and its application domain.

For the type-then-data summary, two nodes n1, n2 ∈ G are equivalent if:

• n1, n2 are both typed and have the same set of types;

44

3.2. DATA SUMMARIZATION

N1

AliceZ
BobZ

CaroleZ
DavidZ

N4

“David”

N3

“Paris”

N2

IPP

N5

“Alice”
“Bob”

“Carole”

N6

“IPP”

N8

FRIEND

N7

PERSON

N9

SCHOOL

a
d

d
re

ss

fullname

na
m

e

name

rdf:type

rdf:type

rd
f:t

yp
e

aff

Figure 3.11: The type-then-data (weak and strong) quotient summary with type generalization.

• n1, n2 are both untyped and are equivalent according to the weak, respectively strong, equiv-
alence ≡.

All nodes in G are typed, thus the summarization respectively groups: the three PERSON resources,
David, and the IPP school. Both weak and strong type-then-data summarizations lead to the
same result; this is because all nodes are typed. Also, these two summaries coincide exactly with
the data-then-type strong summarization, depicted in Figure 3.10. This does not hold in general,
especially when there are more resources and more types.

Type generalization

When many types are attached to resources, type-first summarization may lead to (too) many
equivalence classes. For instance, real world datasets about e-commerce transactions tend to use
dozens of product types, e.g., Diary, Meat, Fish, Home Appliance, etc. The resulting summary
computed with types includes each such type, thus scatters the resources into several summary
nodes. Very often, when data types are numerous, a type hierarchy (DAG) comes with the RDF
graph. In the case of the e-commerce graph, there could be a type Food, being a super-type for
Meat and Fish; similarly, there could be a type Product, being a super-type of Diary, Food and
Home Appliance.

For a given typed resource, type generalization uses the most general type associated to the resource
type. For instance, a Meat resource would be summarized as if it was typed as a Product, the most
general type associated to this type. Therefore, all Diary, Food and Home Appliance would be
grouped in a single summary node. Similarly, users of different types, e.g., Seller and Buyer, would
also be grouped if a super-type User exists.

Figure 3.11 shows the type-then-data summary obtained with type generalization. One can observe
that people (of type PERSON) and Carole’s friend (of type FRIEND) are grouped in the same summary
node. This is thanks to the ontology triple saying that a Friend is a sub-class of a Person.

45

CHAPTER 3. RELATED WORK

3.2.5 XML schema inference

One way to summarize XML data is to infer a DTD or an XSD schema (recall XML preliminaries
in Section 2.4). Existing approaches include [74, 28, 27].

In [74], authors propose Xtract, which, given an XML document: (i) generates a set of candi-
date regular expressions which, together, describe every XML path; (ii) generalizes the candidate
expressions by replacing some patterns with regular expression meta-characters such as ∗; and (iii)
applies the MDL principle (Minimal Description Length) which seeks to minimize the sum of the
DTD length and the data instances length, to play both on the DTD conciseness and precision.

In [28], authors consider that the content of two XML elements with the same label does not depend
on the full path to the root, but only on the i ancestors those elements may have, with i ≤ 3 [124].
They define an XSD as being i-local if its model depends only on labels up to the ith ancestor.
For instance, recall Figure 3.2: there are four elements labeled person, the last one has a different
set of ancestors, e.g., at depth i = 3. iXSD is an XSD generation tool which (i) applies iLocal,
an algorithm which infers an i-local XSD from a corpus of XML documents; (ii) smoothens the
obtained XSD by fusing types having the same structure; and (iii) also fuses types having similar
structure, to obtain XSDs of reasonable complexity despite the sparsity and/or incompleteness of
real-world datasets.

XML schema inference has also been implemented by companies, such as Microsoft, which pro-
vides an interface named XmlSchemaInference [188] to compute an XSD out of a (set of) XML
document(s).

3.2.6 JSON schema inference

Despite the recent JSON schema proposals [170, 139], JSON documents are often shared and
exchanged without a schema. However, to ensure that the application receiving JSON data knows
what to expect, a schema could be very helpful, thus research works have proposed inferring JSON
schemas. In [20], a parametric algorithm is proposed to summarize massive JSON datasets, which
are viewed as collections of records. The approach is based on a Map-Reduce workflow. The Map
phase assigns a type to each record value in the document. Next, the Reduce phase fuses records
of similar type. In order to achieve good summarization results, authors provide two alternative
methods for fusing types; we outline them below.

For instance, Figure 3.12 depicts a JSON collection of three maps, each representing a person. Note
the common and different attributes that maps have, as well as their different depths.

Individual type inference

Given a JSON document, type inference builds a JSON document of the exact same form (respecting
the initial nesting), but replaces any atomic value by its inferred value type. Atomic values
comprise strings (S as defined in Chapter 2), numbers (R), booleans (true and false) and null
values.

Type inference applied on the JSON collection presented in Figure 3.12 leads to the JSON document
in Figure 3.13.

46

3.2. DATA SUMMARIZATION

1 [{
2 "name": "Alice",

3 "aff.": {"name": "IPP" }
4 },{
5 "name": "Bob",

6 "aff.": {"name": null }
7 },{
8 "name": "Carole",

9 "friends": [{
10 "fullname": "David",

11 "address": "Paris"

12 }],
13 "age": 26

14 }]

Figure 3.12: A JSON document describing
four people.

1 [{
2 "name": STRING,

3 "aff.": {"name": STRING }
4 },{
5 "name": STRING,

6 "aff.": {"name": NULL }
7 },{
8 "name": STRING,

9 "friends": [{
10 "fullname": STRING,

11 "address": STRING

12 }],
13 "age": NUMBER

14 }]

Figure 3.13: The corresponding JSON docu-
ment with inferred value types.

Fusion of similar records

Based on the typed JSON document, the fusion step seeks to fuse (merge) similar records, i.e.,
records with the same value type. The authors [20] propose two flavors of fusion. The first one is
called kind equivalence and proceeds as follows:

• Atomic types are collapsed when they are identical; otherwise, they are combined using a
union operator.

• For record types, i.e., maps or arrays, keys that are present in both records are collapsed
(only one key is present in the final JSON document) and their non-atomic value types are
recursively fused. Otherwise, when a key is present in only one record, the key is added,
marked as optional and its value type is copied.

For instance, Figure 3.14 shows the schema of the JSON document in Figure 3.12 using the kind
equivalence. The three map records are fused together because they have a common key, name.
Further, their atomic value types are fused, e.g., STRING for people names, or unioned, e.g., STRING
+ NULL for affiliation names. The two keys that were not present in all records, i.e., friends and
age, are added to the final schema, but marked as optional using the question mark.

The second option is to fuse records at a finer grain, using the label equivalence. In that case,
atomic types are fused as with the kind equivalence. However, records are fused only if they have
the same set of keys; other records are only unioned. For instance, Figure 3.15 illustrates the schema
obtained with that fusion. The two first records are merged together because they have the same
key set. Their atomic values are fused, e.g., for people names, or unioned, e.g., for affiliation names.
The third map is not merged with the first two because it does not have the same key set, i.e.,
friend and age keys are not present in the first two records. Therefore, the label equivalence unions
them, instead of merging them. This allows to preserve the precision at the expense of succinctness.

47

CHAPTER 3. RELATED WORK

1 [{
2 "name": STRING,

3 "aff.": {
4 "name": STRING + NULL

5 },
6 "friends": [{
7 "fullname": STRING,

8 "address": STRING

9 }]?,
10 "age": NUMBER?

11 }]

Figure 3.14: The kind schema.

1 [{
2 "name": STRING,

3 "aff.": {
4 "name": STRING + NULL

5 }
6 }+ {
7 "name": STRING,

8 "friends": [{
9 "fullname": STRING,

10 "address": STRING

11 }],
12 "age": NUMBER

13 }]

Figure 3.15: The label schema.

3.2.7 Property graph schema inference

For property graphs, [33, 34] propose novel schema inference techniques, to summarize such graphs
based on both node labels and properties. This improves authors’ previous work [113], which was
leveraging a less-performant Map-Reduce algorithm and which was able to consider only one aspect
at a time, but not both. The Property Graph schema inference technique, denoted GMM-Schema,
recursively builds a set of base types, i.e., most general types, which are further divided into sub-
types based on their represented nodes’ labels and properties. The sub-types then become the
current base types and the process repeats until no further type can be divided into sub-types. For
this, the algorithm leverages a dividing hierarchical clustering based on Gaussian Mixture Models.
A Gaussian Mixture Model (GMM, in short) [127] is a probabilistic model assuming that a dataset
can be viewed as a population and that sub-populations, i.e., groups of data points, follow a normal
distribution.

Leveraging this, GMM-Schema goes as follows. First, the set L containing all the node labels is built.
For instance, based on the property graph shown in Figure 3.16, L = {PERSON, SCHOOL, FRIEND}.
Then, for each label l ∈ L, sorted by the decreasing order of their frequency:

1. Compute C, the set of PG nodes carrying (at least) the label l. When l = PERSON, we have
C = {n1, n3, n4, n5}.

2. Construct a reference base type bref for C. A base type corresponds to the following triplet:
〈l′, k, Eb〉, where l′ is the set of labels nodes in C have (this is potentially larger than {l}
because a PG node may carry several labels), k is the set of most frequent properties C nodes
have and Eb is the set of types bref extends. Intuitively, bref represents the most general
type extended by all nodes in C, i.e., the parent type at the top of the type hierarchy. The
reference base type for C would be 〈{PERSON, FRIEND}, {name, address}, ∅〉. Initially, Eb is
empty because the reference does not extend any type.

3. Compute a feature vector d containing the similarity scores between bref and the base type of
each C node. Intuitively, the more a C node has bref labels and bref properties, the better.
The score is computed using the Dice coefficient, which, when applied to two sets, is a ratio
between the number of common elements and the sum of the size of each set. For instance,

48

3.2. DATA SUMMARIZATION

id: 1
PERSON

name: “Alice”

id: 2
SCHOOL

name: “IPP”

id: 3
PERSON

name: “Bob”

id: 4
PERSON

name: “Carole”
id: 5

FRIEND
PERSON

name: “David”
address: “Paris”

aff

friend

Figure 3.16: A Property Graph describing
four people.

C1
PERSON

C2
PERSON

C3
SCHOOL

PERSON

name
address

name

name

a
ff

fr
ie

n
d

subtype

subtype

Figure 3.17: The Property Graph schema in-
ferred from Figure 3.16.

for n1, we have k = {name} and for bref we have k = {name, address}, thus Dice coefficient for

properties would be:
2∗|{name}|

1+2 = 0.66. For types, we would also obtain 0.66. Then, these
two scores are combined to get the final similarity score that is stored in the feature vector.

4. Fit a Gaussian Mixture Model with d and 2 normal distributions; in general, a GMM supports
n normal distributions. This leads to a set of n mixture components, denoted θi. Each θi
component corresponds to a sub-type of bref .

5. Using the n mixture components, classify C nodes in n sub-types, denoted Cil , based on how
similar their base type is to bref . This is encoded in the feature vector d that has been given
to the GMM. For instance, we obtain C1

PERSON = {n5} and C2
PERSON = {n1, n3, n4} because n5

has the most similar reference type to bref , others are very similar to each other but are less
similar to bref , thus belong to the second sub-type.

6. Apply hierarchical clustering on each sub-type Cil and stop when no subsequent sub-type is
found. Finally, C1

PERSON and C2
PERSON are fed again in the algorithm but no more sub-type can

be extracted, so the algorithm stops here for these two types and continues on the next label
in L.

Finally, each sub-type becomes a schema node type, representing a unique combination of node
labels and properties. The type hierarchy can be easily derived by adding an edge from a type to
its n sub-types. Figure 3.17 shows the final schema obtained from the Property Graph presented
in Figure 3.16. Observe that nodes of type Person are in two groups, both sub-types of the initial
Property Graph node label Person.

3.2.8 Summarizing data of multiple models

So far, we discussed existing works for dataset summarization, and showed that they are tied to
only one data model at a time. Following this idea, recent surveys [135, 137] expose three main
reasons why we still lack a data model-independent approach:

49

CHAPTER 3. RELATED WORK

1. Data models are very varied, ranging from tuples, to trees, graphs, etc. Quoting [137]: “most
techniques are input data-model specific, [...] input datasets must all conform to a single data
model, [...] and much of the evidence used to inform the schema inference process is specific
to that data model. This has allowed existing approaches to exploit model-specific features
to carry out inferences, but reduces applicability”.

2. The summarization output is very varied from one data model to another, but also even for
a given data model. For instance, JSON summarization techniques may output a tree, a
JSON document or a schema with types. XML ones lead to XSD or DTD documents, trees
or regular expressions. For RDF graphs, we may obtain a set of classes, a (summarized) RDF
graph, or a table. For non-technical users, some of these outputs are hard to understand,
in particular regular expressions or schema notations. On the contrary, novice users such
as journalists are generally familiar with tabular data which they sometimes manipulate in
spreadsheets; are better able to apprehend diagrams than text; and favor simplicity (or at
least complexity that comes in a controlled fashion, only when users ask for it).

3. Evaluation metrics of the surveyed papers are primarily focused on the execution time and
effectiveness (only). Effectiveness may be measured in different ways, but most pertinent
measures rely on succinctness (how much smaller the inferred schema is, compared to the
data?), precision (how close is the inferred schema to a ground truth schema?) or coverage
(how many data elements are represented in the inferred schema?). According to [135, 137],
scalability experiments are often lacking, due to the lack of community-accepted benchmarks,
thus comparison with other approaches is difficult. A core reason for that is because of
the diversity of data models on which summarization applies. Also, summarization code is
available for less than half of the methods surveyed there.

As outlined above, no existing summarization method is capable of handling several, different data
models, due to the above-mentioned challenges. In this thesis, we propose such a method, also
aiming for intuitive summaries that any user can understand, regardless of their initial IT skills.

3.3 Structured and unstructured querying

To explore unknown datasets, users may query the underlying (integrated) data [97, 130]. Very
often, users want to search for entities of interest and their connections. In our context, users
query with only a partial idea of what they want to see. Mainly, they may have few particular
keywords in mind (as in “how do H. Greim and Monsanto relate in my data?”). Also, they do not
know in advance the complexity of the relationships they are looking for. For instance, companies
usually do not directly grant researches of interest to them, they go through intermediary actors.
Furthermore, users want to find entity connections regardless of their directionality; allowing for-
ward and backward edge traversal considerably raises the problem complexity. For this querying
task, users have two options: issue structured queries (Section 3.3.1) or use keyword search
(Section 3.3.2). If the dataset is a knowledge graph, dedicated querying techniques have been
devised (Section 3.3.3). We also review dataset search techniques (Section 3.3.4).

3.3.1 Structured querying

When users have an idea of what they are looking for and are familiar with the dataset structure,
they can express structured queries. Such queries have the advantage to be very efficient, even

50

3.3. STRUCTURED AND UNSTRUCTURED QUERYING

Alice Paper1 Bob
wrote wrote

Alice Paper1 Bob
wrote writtenBy

Figure 3.18: Bi-directional path (top) and uni-directional path (bottom) connecting Alice and Bob

to their common publication, Paper1.

SELECT n1.label, n2.label, n3.label

FROM nodes n1, edges e1, nodes n2, edges e2, nodes n3

WHERE n1.label=’Alice’ AND n3.label=’Bob’

AND ((e1.s=n1.id AND e1.t=n2.id AND e2.s=n3.id AND e2.t=n2.id)

OR (e1.s=n1.id AND e1.t=n2.id AND e2.s=n2.id AND e2.t=n3.id)

OR (e1.s=n2.id AND e1.t=n1.id AND e2.s=n3.id AND e2.t=n2.id)

OR (e1.s=n2.id AND e1.t=n1.id AND e2.s=n2.id AND e2.t=n3.id)

);

Figure 3.19: The SPARQL query to ask for Alice and Bob connections.

on large data, and return the complete set of results. In the relational setting, users can write SQL
queries. For graphs, SPARQL [173] or Cypher [167] are mostly used. When users do not know
the length of the connection between two entities, they cannot use traditional structured queries
mentioned above. Indeed, they need to specify in some way that their entities are connected at a
given distance. One can specify such a query using recursive queries in SQL or reachability
queries in the graph model. As of now, SPARQL and JEDI [5] check for paths between query
variables, i.e., whether there exists at least one path connecting expected entities; it does not
return the actual corresponding path(s). For instance, users may check whether a path of the form

x
mother of∗−−−−−−−→ y exists to know whether one staring on a node x can reach a node y by walking

only on mother of edges1. In contrast, a GPML query (GPML stands for Graph Pattern Matching
sub-Language [53]) returns the expected paths. However, GPML is a standard in the making, i.e.,
at the time of this writing, no complete GPML query processing engine is available.

Structured queries require users to have at least some knowledge of the dataset schema; this is
typically hard for users discovering datasets, or lacking IT skills, such as journalists. Also, the
data may need to be traversed forward and backward, depending on how the data is modeled; this
considerably increases the complexity and the query writing becomes cumbersome. For instance,
Figure 3.18 shows that Alice and Bob have a common publication, namely Paper1; they may be
connected using a uni-directional path (top) or a bi-directional path (bottom). To find how Alice

and Bob relate, one needs to ask for all the possible connections if one has no prior knowledge on how
the data is modeled. Figure 3.19 shows the corresponding SQL query: we ask for the four possible
connections between Alice (n1) and Bob (n3) using an intermediate node n2, i.e., n1 → n2 ← n3,
n1→ n2→ n3, n1← n2→ n3 and n1← n2← n3.

1The asterisk in the edge label indicates zero, one or an unlimited number of times, as in the regular expression
vocabulary.

51

CHAPTER 3. RELATED WORK

To facilitate querying for users lacking IT skills, numerous works have been conducted in many
research areas, which we list here:

• Interactive, incremental querying methods [55, 154, 56, 61] build, with the feedback of
the user, a query returning data they expect. For instance, [55, 154] leverages the query-by-
example paradigm where users input a set of data examples in the system, which will further
generalize the corresponding query and return the matching tuples. If users do not know
which examples to input, [56] incrementally builds a user exploration profile based on few
user-annotated examples, which the system uses to suggest tuples as relevant as possible. In
the same direction, examplar queries [129] allow users to specify queries they are interested
in, e.g., “Helmut Greim acknowledges Monsanto, which produces RoundUp”, and obtain
isomorphic results, i.e., those that have the same structure but not the same values, e.g.,
“Ursula von der Leyen acknowledges Pfizer, which produces Covid-19 vaccines”.

• Guided query writing approaches, such as [61, 105], aim at helping users write syn-
tactically and semantically correct queries to retrieve data. Such systems are also able to
recommend attributes to use and tables to join.

• SQL query generation, such as [66], translates a set of keywords, e.g., “count author
publications”, into a SQL query. Some other works put a high-level language on top of the
query engine. For instance, [110] provides Scala constructs to build queries, which will be
further converted to SQL queries.

• SQL query recommendation systems model user profiles [58, 45] in order to recommend
queries that might be of interest to them. To generate such recommendations, the system will
rely on information gathered from the querying behavior of past users, as well as the queries
posed by the current user so far.

• NL2SQL (Natural Language to SQL) methods, such those described in the survey [106],
may also be used to gather the user query as a sentence and generate the corresponding
SQL query using sets of rules [149, 152, 115] or deep learning methods, e.g., deep neural
networks [151, 164, 178, 198]. Note that users still need to be aware of the database schema
to be able to formulate a query.

• Graphical query languages, as in [107, 155], let users draw their query using “boxes”,
representing entities, and arrows for relationships. Because users are given the set of entities
and relationships, they can compose their query without having a prior knowledge on the
database. However, they still require to understand the conceptual model of entities and
relationships (recall E-R model in Section 2.2).

All the above-mentioned techniques aim at making the query writing process more user-friendly.
Some of them ask users to give examples of what they are looking for, others let them draw or
express using natural language their query. Note that most of them require users to know the
database schema in advance and/or understand how objects relate in the relational model.

3.3.2 Keyword-based search

Keyword-based search systems (KBS, in short), such as [6, 13], are designed for users who are
not aware of the data structure but have few keywords of interest in mind. Those keywords will be
used to identify data items relevant to the user, and (typically) how they are related to each other.

52

3.3. STRUCTURED AND UNSTRUCTURED QUERYING

Figure 3.20: Keyword search query on the PubMed example presented in Figure 1.4 where users ask
for connections between “Roche” (a Swiss multinational healthcare company), “Bayer” (a German
multinational pharmaceutical and biotechnology company) and “Garassino” (an internationally
recognized expert in the treatment of thoracic tumors).

Note that this kind of search does not allow formulating complex, very specific queries (as opposed
to structured queries). Keyword search has been designed for relational databases [6, 29, 4, 93],
XML data [70, 21, 120] and graphs [13, 62, 88]. Specifically, keyword-based search systems:

• On graph datasets, return trees (or sub-graphs) connecting nodes, such that each node
matches one query keyword (see Figure 3.20);

• On tree datasets, return sub-trees connecting such nodes;

• On a relational database, return so-called Joined Tuple Networks, i.e., a set of tuples such
that each of them joins with at least another via a natural join (primary key-foreign key join),
and such that each keyword is matched by one attribute in one of the tuples.

Surveys on keyword search [196, 165, 197, 120] show that:

1. Keyword search output is often not exhaustive, but instead, is limited only to the answers
that best match the keywords, according to a score. This avoids overwhelming the user with
very large result sets, that may arise if the dataset is large and/or well connected.

2. Keyword search algorithms potentially face the Group Steiner Tree Problem (GSTP, in short),
which makes keyword search a very costly operation. This problem (extending the Steiner
Tree Problem) seeks, in a weighted graph, to connect several trees to a root node while
maximizing an objective function, e.g., achieve the minimum total edge weight. This problem
is known to be NP-hard [99], but many heuristics have been proposed, e.g., limit the number
of results, enumerate smaller trees first to build larger answer trees on them, etc.

3. In the literature, many works [29, 4, 70, 21, 116] focus on unidirectional search, i.e., edges
may be chained in a path only if the target of the first edge is the source of the second edge
(recall Figure 3.18). However, proceeding in this way, many interesting results may be missed,
depending on how the data is modeled, thus connected. The GAM algorithm [13] applies bi-

53

CHAPTER 3. RELATED WORK

directional search to allow the algorithm to connect edges regardless of their directions. This
considerably increases the search complexity, thus the algorithm has to be run with a time-out
and will typically not explore its full search space.

4. The results are sorted according to a scoring function, which may be hard to specify or in-
terpret for non-expert users. Also, keyword search algorithms use several parameters and
heuristics, thus it is hard to understand why an answer is ranked better than another, es-
pecially for non-technical users. Combined with the fact that keyword search algorithms
typically prune (do not enumerate) some of the results, this makes it hard for users to be
convinced that the system returns all the results they would be interested in seeing.

Furthermore, journalists are also very interested in other connections they do not think of or see
in the data. For such connections, they do not have keywords in mind and prefer to ask for all the
connections for a given set of entity types (as in “how do people and companies relate in my data?”).
To the best of our knowledge, prior to our work, there has been no method to automatically identify
interesting paths in a graph, without asking the users to provide initial examples (which they may
have a hard time doing).

3.3.3 Exploration of complex datasets

Knowledge graphs (KGs in short), such as the Google Knowledge Graph [185], Yago [138] or DBPe-
dia [18], aim at representing all the knowledge of a given topic or of any topic (as an encyclopedia). It
is often not possible to query them without prior knowledge and technical skills. Also, no summary
can be both compact and comprehensive when computed on a knowledge graph due to their high
conceptual complexity. To overcome those issues, several dedicated techniques, surveyed in [117],
have been proposed to apprehend a knowledge graph the user is not familiar with, and we list them
below:

• Exploratory search [118] allows users to dig into the data with a “tentative” query they
will refine based on the results. For instance, one can inspect and query nodes around Helmut

Greim until they have fulfilled their information needs about the toxicologist.

• Exploratory analytics [49, 96] compute statistics, and support multi-dimensional analytics
as well as analytical queries. For instance, users may first ask about the general statistics of
the knowledge graph, e.g., the number of entities per type and connectivity between types.
This lifts the issue of not being able to build a compact and comprehensive summary of it.
Next, they can ask for more topic-targeted queries, such as “what are the top-10 toxicologists
who reached an H-index about 50 in the last decade?”.

• Users can also look at the knowledge graph constraints, also known as validating shapes [143],
to get a broad picture of what is in the graph. Such constraints express logical facts such as
“a professor works for a department”, “a publication can have one or several authors”, etc.
However, note that such constraints lack graphical representation and are hard to understand
and exploit for non-expert users.

Above-mentioned approaches are dedicated techniques to help users explore graphs with a high
conceptual complexity. They allow to get a broad overview of the data in the knowledge graph;
next, users can leverage structured or unstructured queries to explore more precisely the data based
on their needs and skills.

54

3.4. SUMMARY

3.3.4 Dataset search

Users may also want to query data storehouses in order to find related datasets to the ones they
already collected, e.g., to augment or improve them. This task is known as dataset search.
The goal is to find, in a large repository, a set of relevant datasets given an information need, e.g.,
expressed through keywords [37, 41, 140], structured queries [68, 89], or similar tables [201]. Dataset
search techniques often leverage word embeddings, as in TSBERT [47], and/or an ontology [89].
After finding complementary datasets, users can further summarize and query them to assess their
relevance in their application context.

3.4 Summary

So far, we presented the different related works existing in the research areas of our interest, namely
heterogeneous data integration, data summarization and data querying.

With respect to these areas, the positioning of the thesis is outlined below:

• For the integration part, our approach is based on a graph model, but stored in a relational
database, in order to benefit from both their advantages: flexibility of the graph model;
efficiency and optimization of the relational databases.

• Regarding the data summarization, the main novelty and strength of our approach is to apply
to many data models (after an initial step that we argue must remain data model-specific).
We leverage the dataset structure and content, to produce a user-oriented result; most of
our decision are taken algorithmically and can thus be inspected and explained. Our solution
does leverage trained language models for an entity classification tasks, to exploit the linguistic
signal contained in attribute or edge labels.

• Our query approach does not assume any particular IT skills, such as writing queries, or user
knowledge when specifying keywords, and it returns the complete set of paths connecting
certain entity types. Also, it does so in and across datasets thanks to our graph integration
of heterogeneous data sources.

More detailed elements of the positioning will be presented in the respective chapters, in order to
be able to refer to individual techniques.

55

CHAPTER 3. RELATED WORK

56

4
A unified view of semi-structured data

formats: the graph representation

Chapter Outline

4.1 Target model: directed graphs . 58

4.1.1 Relational data . 58

4.1.2 XML documents . 59

4.1.3 JSON documents . 60

4.1.4 RDF graphs . 61

4.1.5 Property graphs . 61

4.2 Extraction of Named Entities . 62

4.3 Graph normalization . 63

4.4 Summary . 63

Chapter Abstract. In this chapter, we present how we convert data of heterogeneous data
models into a unique, common paradigm: a directed graph. We first describe the conversion from
relational (Section 2.3), XML (Section 2.4), JSON (Section 2.5), RDF (Section 2.6) and property
graphs (Section 2.7) to a directed graph model (Section 4.1). Next, we explain how we use Entity
Extraction tools to identify Named Entities, such as people, places, company names, in the data
values (or leaves) of the data graph (Section 4.2). This can be seen as a form of graph enrichment.
Finally, we discuss how to obtain, from the graph representation of heterogeneous data sources, a
uniform directed graph (Section 4.3).

57

CHAPTER 4. THE GRAPH REPRESENTATION

4.1 Target model: directed graphs

Directed graphs are a natural model to encode heterogeneous data, since they generalize all the
other models. Recall Chapter 2: a graph G is a set of nodes N and a set of edges E, which may be
both labeled, including with the empty label ε. When modeling different data models as a graph,
we could choose either fine granularity data modeling, or coarse granularity. When fine granularity
is used, nodes and edges have exactly one label, as is the case in the RDF standard. With coarse
granularity, nodes may encapsulate their own attributes, in the style of property graphs. We chose
the former for the following reasons:

• Fine-granularity nodes are more natural when representing RDF, JSON, or XML data;

• Conversion to coarse granularity would require turning some RDF, JSON, or XML nodes into
coarse-granularity nodes, while other nodes of the initial dataset would become attributes
of the coarse-granularity nodes. Instead, our goal is to make such judgments at a higher
(conceptual) level (which nodes are entities, and what are their attributes, possibly nested?),
based on a deeper analysis (see Chapter 6).

The transformation of any (set of) semi-structured dataset(s) into a fine-granularity graph, within
the ConnectionLens platform, has been introduced in [13, 44]. In our setting, we call the graph
computed by ConnectionLens out of one individual dataset the data graph G0. Note that Con-
nectionLens assigns a simple integer ID to every node in G0. In this chapter, we adopt the
following convention when referring to nodes: Na

i designates the data node whose identifier is i and
carrying the label “a”, while Ni designates the data node of id i (regardless its label).

For illustration, Figure 4.1 shows the data graph G0 obtained from a dataset about conferences
where authors have written (hW) some papers; each of which is written by (wB) that author. When
papers are published in (pIn) a conference, authors may also be invited by (inv) the conference
organizers. Each circle is a data node; each of which shows it id (the number in italic) and its label.
To differentiate structural from L -leaf nodes, we quote the latter. Each arrow between two nodes
is a data edge, possibly annotated with its label (in italic). Red edges are those involved in cycles.

4.1.1 Relational data

We start by explaining how tabular data is converted into a graph.

A CSV file is converted as follows. Each tuple leads to an unlabeled node. Each tuple attribute
leads to a leaf node, labeled with the respective attribute value. A directed edge leads from the
tuple node to the attribute leaf node. If the CSV file has a header indicating attribute names, the
edge is labeled with the respective attribute name; otherwise, the edge has an empty label.

A relational database is converted to a directed graph in a similar way: every tuple, and every
attribute, lead to a node, with directed edges connecting them and labeled with the attribute
name. Further, in the presence of a primary key-foreign key constraint of the form “R.a is a
foreign key referencing S.b”, where a, b are sets of attributes from R, respectively, S, each node nr
corresponding to a tuple r ∈ R tuple has an outgoing edge labeled a pointing to the S tuple node
ns created for the respective tuple s ∈ S. This modeling has been introduced in works focused on
keyword search in relational databases, since [4]. When such primary key-foreign key pairs arise,
the attribute nodes corresponding to R.a and S.b are removed (the edges between the tuple nodes
replace them).

58

4.1. TARGET MODEL: DIRECTED GRAPHS

Figure 4.1: Example of a data graph.

1 <document>

2 <book authors="a1 a2">XML</book>

3 <authorList>

4 <author id="a1">Alice</author>

5 <author id="a2" city="Paris">Bob</author>

6 <author id="a3" city="Paris">Carole</author>

7 </authorList>

8 </document>

Figure 4.2: An XML snippet describing a book and its authors.

4.1.2 XML documents

XML documents lead to trees, thus are easily mapped to a graph representation. The document
root node, all element nodes and all text nodes lead to data nodes in G0. Such nodes may be
connected by unlabeled edges, modeling the “parent-child” relationship. Next, for each attribute
value, a node is created and is connected to its respective element node by a directed edge labeled
with the element name, concatenated with the @ separator, concatenated with the attribute name.
For instance, Lines 4 and 5 in Figure 4.2 lead to four nodes: NauthorList

1 , Nauthor
2 , N“a1”

3 , N“Alice”
4 .

They are connected by two parent-child edges, respectively N1→ N2 and N2→ N4, and an element-

attribute edge, respectively N2
author@id−−−−−−−→ N3. The obtained data graph is shown in Figure 4.3.

Because most of the XML datasets available online do not come with an XSD or a DTD document,
we identify ID-IDREF connections (recall Section 2.4) by profiling the data. We only consider
identifiers and references appearing in attribute values; this is a subset of all ID-IDREF cases
according to the XSD formalism because they can be defined both on attributes and element
values. Note that this restriction will significantly reduce the problem complexity without missing
too much information, mainly because it is very frequent that ID-IDREF connections are set in
XML attributes. We start by looking for candidate sets for identifiers and references. Given an

59

CHAPTER 4. THE GRAPH REPRESENTATION

document

book

“a1”

au
th
or
s

“XML” “a2”

authors

authorList

author

“a1”

id

“Alice”

author

“a3”

id

“Carole”“Paris”

city
author

“a2”

id

“Bob” “Paris”

city

Figure 4.3: The data graph for the XML snippet in Figure 4.2.

XML element name e and an XML attribute name a, we denote by Se@a the set of data nodes
created out of corresponding XML attribute values. For instance, in Figure 4.3, we have author@id =
{“a1”, “a2”, “a3”}. Based on Se@a sets, we compute the sets Ie@a and Re@a, respectively of ID
and IDREF values, as follows. Any set Se@a having all its values distinct is also an Ie@a because
it comprises candidate ID values. Further, any set Se@a is also a Re@a set because any set of XML
attribute values is a candidate set of references (IDREFs). For instance, in Figure 4.3, we have
Iauthor@id, but not Iauthor@city because it contains duplicates. A candidate set of references may
also be a candidate set of identifiers: this happens when the set of references contains no duplicates.
For two given sets Ie@a and Re

′@a′ , we consider the following assertions:

• When Re
′@a′ is a strict subset of Ie@a, Re

′@a′ makes a reference on the set Ie@a;

• When Re
′@a′ is not a strict subset of Ie@a, Re

′@a′ makes a reference on the set Ie@a and
conversely (no strong insight on the direction of the connection);

• When Re
′@a′ = Ie@a and the XML attribute a is expressly labeled id in the data, Re

′@a′

makes a reference on the set Ie@a.

Otherwise, the two sets have nothing in common, thus the pair is discarded. Next, for any set
referencing another, each element labeled e′ points to the element labeled e, whose value for the
attribute a′ equals the value of the attribute a (whose parent is e). For instance, from Figure 4.3,
we obtain the data graph drawn in Figure 4.4. The book node points to two author nodes with two
edges labeled book@authors. The value nodes initially created for the references, i.e., “a1” and “a2”
authors values in Figure 4.2, are removed from the data graph as well as the edge connecting them
to their parent. Once ID-IDREF connections have been identified, the data graph resulting from
an XML document is no longer a tree, and it may actually have cycles.

4.1.3 JSON documents

We transform JSON documents into trees (particular cases of directed graphs) as follows:

• Each map, respectively array, leads to an unlabeled node;

• Each value leads to a node labeled with the string value;

• An edge labeled with the map key connects the map node to the map value (either an L -leaf
value or another element);

60

4.1. TARGET MODEL: DIRECTED GRAPHS

document

book

“XML”

authorList

author

“a1”

id

“Alice”

author

“a3”

id

“Carole”“Paris”

city
author

“a2”

id

“Bob” “Paris”

city

book@authors

book@authors

Figure 4.4: The data graph for the XML snippet in Figure 4.2 with ID-IDREF edges.

• An unlabeled edge connects each array node to its elements (either L -leaf nodes or other
elements).

Note that in principle one could profile JSON documents trying to find an equivalent of ID-IDREF
links. We did not do this since it seems that such PK-FK encoding in JSON is less prevalent than
in XML (where it has been specifically described both in the DTD and XSD standards).

4.1.4 RDF graphs

RDF graphs naturally lead to a graph representation. Each triple 〈s〉〈p〉〈o〉 is modeled as an edge
labeled p, between the Ns

i and No
j , respectively carrying identifiers i, j and labels s, o. There is

exactly one node (with identifier i) per RDF graph resource labeled with the URL s, and similarly,
across the whole graph, for each literal, only one node is created (and automatically assigned an
ID). This is in coherence with the semantics of the RDF data model (Section 2.6): each resource is
unique, i.e., present only once in the RDF graph. Thus, each triple referring to an already existing
RDF resource node will only increase the connectivity by adding an edge in the graph. Note that
literal values used, e.g., for default values such as “true”, “false” or “0”, “1”, may have a very high
in-degree, if they are frequent in the data.

As stated in Section 2.6, we consider that RDF graphs we work with have been saturated, that is:
they already contain all the schema or type triples that can be inferred from their triples using the
possible (RDFS) ontology they contain.

4.1.5 Property graphs

Property Graphs (PG, in short) are ingested as follows:

• Each PG node leads to a node, assigned a unique identifier.

– Each PG node label leads to a node labeled with that label and which is connected to
its PG node by an edge labeled with the standardized RDF URI rdf:type. We do this
for two reasons: (i) a PG node label cannot simply become a node label, because a PG
node may have several labels, while in our model we assign a single label to each node;
and (ii) as we will discuss in Chapter 5, we summarize Property Graphs using the same
technique as for RDF graphs. From this viewpoint (and also taking into account how
labels are used when creating Property Graphs), PG node labels are semantically close
to RDF types.

61

CHAPTER 4. THE GRAPH REPRESENTATION

– Each PG node attribute leads to a node labeled with the attribute value; an edge labeled
with the attribute name connects the PG node to its PG attribute value node.

• Each PG edge without proper attributes connecting two PG nodes leads to an edge labeled
with the PG edge label;

• Each PG edge with proper attributes is converted into a node Nj (a fresh identifier) labeled
with the edge label el. Two edges, respectively labeled el subject and el object, connect the
edge source node to Nj and Nj to the target node. Each Nj attribute is converted as PG
node attributes and attached to Nj .

4.2 Extraction of Named Entities

In Information Extraction (IE), a Named Entity (NE) is a real-world object, such as a Person,
Place, Organization, Product, Event, etc., that can be denoted with a proper name. Such Named
Entities can be found in text, using more or less advanced techniques; their family is referred to
as Named Entity Recognition (NER). Technically speaking, NE extractors take as input a textual
string and yield a set of triples of the form 〈NE, τ, c〉 where NE is the identified NE label, τ is the
type associated to that entity and c is the confidence the extractor has in NE and τ . Currently, the
set of extracted entity types, denoted T , includes Person, Location (places), Organization, Date,
Email, URI, Hashtag and Twitter mention NEs; they can currently be extracted from English and
French. We have at hand two kinds of extractors, of each which has different capabilities in terms
of NER:

• Pattern-based extractors may extract Date, Hashtag, URI, Email and Twitter mention NEs;

• Extractors based on pre-trained Language Models identify Person, Location and Organization
NEs.

Pattern-based extractors are internally composed of regular expressions. They are easily defined
for dates, hashtags, URIs, emails and Twitter mentions, because of the simplicity of the pattern to
recognize. Pattern-based extraction is extremely fast. For hashtags, URIs, and emails, it is error-
free; for dates, it may introduce both false positives, e.g., consider 2023 a year when it is a page
number, and false negatives, e.g., miss “Christmas Eve this year”. The latter would be detected
by a state-of-the-art temporal extractor such as HeidelTime [159], on top of which an extractor
has been developed as part of this thesis. However, HeidelTime is very slow, thus in this work we
extracted dates using patterns.

People, Organization and Location names can take multiple forms. Thus, ConnectionLens [13]
extracts them using two extractors, each of them is based on a pre-trained language model.
The first one is based on the Stanford NER [69, 122], while the second one is based on the Deep
Learning Flair NLP framework [8]1, pre-trained on the CoNLL-20032 news articles dataset.

Named Entities are extracted from each L -leaf node of the data graph (RDF or PG literal, XML
text node or attribute value, or JSON value). Each such node t is sent to the extraction module,
which performs the following steps:

1https://github.com/flairNLP/flair
2https://www.clips.uantwerpen.be/conll2003/ner/

62

4.3. GRAPH NORMALIZATION

1. First, all pattern-based extractors are applied on t, leading to a (potentially empty) set of
NEs, denoted NEt. Then, all tokens corresponding to NEt are removed from t, to avoid re-
analyzing these tokens by trained models (Flair or ChatGPT), which takes time and/or incurs
financial costs. For instance, if t is initially “E. Macron and J. Biden met during the NATO
summit in 2023 @nato”, “2023” is extracted as a Date by the date pattern and “@nato” by
the Twitter mention extractor. Then, t becomes “E. Macron and J. Biden met during the
NATO summit in ” (note the absence of “2023” of “@nato” at the end of the string).

2. Next, the trained-model extractor is called on the (remaining) t.

3. Each extracted NE is materialized by a new node in the graph, connected via an extraction
edge (dashed arrows in Figure 4.1) to each L -leaf node from which it has been extracted,
e.g., as the “Palaiseau” place (green background). People are highlighted in orange, Emails
in blue, Dates in yellow, Organizations in pink and Locations in green.

4.3 Graph normalization

The data graph G0 obtained from an original dataset may exhibit some heterogeneity, in particular
for what concerns its edges. If G0 is obtained from an RDF graph, all data edges are labeled. If G0

is built from an XML graph, edges corresponding to parent-child element pairs are unlabeled, but
edges connecting elements with their attributes are labeled. When G0 is built from JSON, most
edges are unlabeled; for CSV files, the answer depends on the presence of a header.

For uniformity, we transform G0 into an unlabeled directed graph G = (N,E), where each

labeled edge from G0 has been transformed into a node. In details, any edge of the form Ni
l−→ Nj

is replaced by a node N l
k and two unlabeled edges Ni → N l

k and N l
k → Nj in G. Figure 4.5 shows

the normalized graph obtained from the data graph in Figure 4.1.

The space complexity of graph normalization is bounded as follows: |N0| + |E0| ≤ |N | + |E| ≤
|N0|+ |E0| ∗ 3. This is linear in the number of elements in G0 (nodes and edges).

4.4 Summary

In this chapter, we have shown how to convert several datasets, possibly originating from different
data models, into a unique data graph. Beyond the version originally published in [13]; we extended
it by creating an unlabeled data graph, which is necessary toward designing generic algorithms for
semi-structured datasets. Moreover, Named Entity extraction is applied on the data graph values;
this allows to better interconnect datasets based on their common entities/actors.

63

CHAPTER 4. THE GRAPH REPRESENTATION

Figure 4.5: The normalized data graph obtained from the initial data graph in Figure 4.1.

64

5
From a data graph to a collection graph

Chapter Outline

5.1 From applications to datasets: a unified perspective 66

5.1.1 Records and values . 66

5.1.2 Relationships . 66

5.1.3 Same-kind records . 67

5.2 Node equivalence in different data models . 68

5.2.1 Relational data . 68

5.2.2 XML documents . 69

5.2.3 JSON documents . 70

5.2.4 RDF graphs . 72

5.2.5 Property graphs . 73

5.3 Collection graph and associated statistics . 74

5.3.1 Collection nodes . 74

5.3.2 Collection edges . 77

5.3.3 Paths in the collection graph and their associated statistics 79

5.3.4 Discussion: simplifications made in the collection graph 81

5.4 From multiple datasets to a collection graph . 81

5.5 Summary . 83

Chapter Abstract. This chapter presents how we build a collection graph, a core structure
for determining, in a given dataset, the main entities and their relationships (see Chapter 6); also,
the collection graph will be used to enumerate paths between entities of interest (see Chapter 7).
Informally, a collection is a set of data nodes that represent data objects (or records) of the same kind,
regardless of the data model in which the dataset was structured. Toward identifying collections,
we start by an analysis of how data creators encode information about records, their attributes,
and relationships (Section 5.1). Next, we explain how the kind is encoded by each data model
(Section 5.2). Further, we detail how the collection graph is constructed from the data graph, and
based on the above analysis (Section 5.3). Finally, we show how to build a collection graph out of
data graphs where several datasets co-exist (Section 5.4).

65

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

5.1 From applications to datasets: a unified perspective

We consider the data models discussed in Chapter 2, namely: relational, CSV, XML documents,
JSON documents, RDF graphs, and Property Graphs. Toward abstracting datasets, we first analyze
how each model describes a set of core features of any real-world application: application objects
(at various granularities), data types, relationships, and information about application objects “of
the same kind”. We use “kind” (not “type”), because “type” has precise (but different!) meanings
in different data models. In this work, “same-kind” designates similarity from the application
perspective.

5.1.1 Records and values

We denote by record a piece of data in a dataset, describing an application domain object. Specif-
ically:

• In a relational database, each tuple or attribute value is a record;

• In a JSON or XML document, each node is a record;

• In a PG or an RDF graph, each node is a record too.

Clearly, some records may contain other records. For instance, tuple attribute value records are
contained in (or part of) the respective tuple record1. We call leaf record (or value) a record that
does not (syntactically) contain any other records: relational attribute values; leaf nodes in JSON
and XML documents; literals in RDF graphs; atomic values of node or edge attributes in a PG.

Each data model supports some value types such as String, Float, etc., described, e.g., in the
ISO/IEC 9075:2011 standard for relational databases, or the W3C’s standard [177] for XML
and RDF. Even if declared of type String, values such as “Paul Jones”, “paul@outdoor.com” or
“https://twitter.com/pjones” denote, more expressively: a person name, respectively, an email, and
a URI. Named Entities may be inferred from the data, through profiling [1], pattern matching or
Named Entity Recognition (recall Section 4.2). Both our abstraction and entity path enumeration
methods leverage them. For abstraction, it allows us to semantically classify the main entities (Sec-
tion 6.8). For entity path enumeration, it connects Named Entities of interest in the data graph
(Section 7.3).

5.1.2 Relationships

Next, we consider where and how relationships between application objects are expressed in the
data.

A first category of relationships comprises anonymous part-of relations, e.g., the records of the maps
within a JSON array are part of the record corresponding to the array; similarly, an XML element
is part of its parent.

Next, we identify named binary relationships, which hold between:

• A tuple record and its value, the relationship is named with the relation attribute;

1This raises the question: where does one record end and where does another record start? This question is
complex for some data models, such as XML, RDF etc. We will address it in Chapter 6.

66

5.1. FROM APPLICATIONS TO DATASETS: A UNIFIED PERSPECTIVE

• An XML element record and each of its attribute values - the relationship name is the attribute
label;

• Two XML elements when one refers to another, e.g., when specified through schema informa-
tion using a DTD or an XSD (recall Section 2.4); the relationship is named with the referenced
node element name and attribute name;

• A JSON map record and its children: in this case, the relationship name is the attribute name
(or key);

• A Property Graph node and each of its attribute values; the relationship name is the attribute
label;

• A Property Graph edge is a named binary relationship; it may have its own attributes: the re-
lational model also allows this, e.g., in a relation WorksFor(personID, companyID, startDate);

• Each RDF triple naturally encodes a named binary relationship.

For instance, in the relation Person(id, name), in the tuple (1, ‘Alice’), a binary relationship
labeled name holds between the tuple record and the value ‘Alice’. Similarly, in the XML element
〈person id=‘1’ name=‘Alice’/〉, a relationship labeled name holds between the person node and the
value ‘Alice’. Moreover, if a DTD or XSD states that an attribute id is a primary key (#ID)
for 〈person〉 elements, and that parent is a foreign key (#IDREF) on person ids, then 〈student
name=‘Bob’ parent=‘1’/〉 leads to a binary relationship between the student and the person records.
This relationship would be labeled student@parent.

Datasets may also encode relationships of a higher arity n, where n ≥ 2. These are more rare, and
we do not consider them in this work.

5.1.3 Same-kind records

Our last question is: how do data creators signal, in a dataset, same-kind records, that is, records
describing real-world objects of the same (or similar) nature? In a relational database, all tuple
records of the same table are of the same kind; the same holds for XML elements with the same
name in a document. If an optional DTD or XSD schema is available, each element is assigned a
type, and all same-type elements are of the same kind. Moreover, leaf records (values) participating
in a given named binary relation, with non-leaf records of the same kind, are of the same kind. For
instance, values of “name” attribute in the Person relation above, “name” attributes of 〈person〉
XML elements.

RDF and property graphs allow attaching to node records zero, one or more RDF types, respectively
PG labels, e.g., a node can be a “FrenchCitizen”, a “Student” and also a “PhDStudent”. If an
(optional) ontology is attached to an RDF graph, it may lead to infer some node types, e.g., if x is
an UndergraduateStudent, then x is also a Student. In this work, we assume that the set of facts
inferred from the ontology is finite, already computed [78], and part of the RDF graph, thus, we only
consider saturated RDF graphs.

Some records carry no explicit kind information. This is the case for RDF and property graph
nodes without types (or labels), non-leaf JSON records, and nodes created out of a CSV relation
with no header. Instead, their kind is implicitly encoded in the data structure.

We call kind name(s) of a record:

67

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

• for a tuple r ∈ R, the relation name R;

• XML element names;

• RDF node types and Property Graph node and edge labels (when present).

Other records do not have kind names.

In semi-structured data models (JSON, XML, RDF, Property Graphs), records may lack an explicit
type (label), or on the contrary, several explicit types (or labels) may be present for a given record.
Thus, we need a method for deciding which records are of the same kind. We will describe such
methods in Section 5.2.

5.2 Node equivalence in different data models

Introduced in Section 5.1, the kind information allows us to identify groups of nodes based on
their similarity from the application perspective. Kind information is encoded explicitly in some
data models, while in others, it is implicitly encoded. We view “being of the same kind” as an
equivalence relation, and leverage it as introduced in Section 3.2.1, to group nodes that describe
things/objects that are similar in the real world. Thus, two principles guide our partitioning:

(F) Whenever “kind” information is explicit, we should leverage it, as it reflects the dataset
producers’ application-domain knowledge.

(�) The number of equivalence classes should remain “reasonable”, e.g., at most in the hundreds
(as opposed to thousands or more), in order to produce meaningful and intelligible results
meant for users. This is because abstractions and path exploration are meant for novice users,
which should not be overwhelmed with details.

It is important to note that no “one-size-fit-all” equivalence relation can be used for all formats,
thus the partitioning is model-dependent. Indeed, “kind” information is not always available
in the same form, thus requiring different specifications depending on the data model. When several
kinds are present, we need to decide which one prevails. On the contrary, when the kind is not
available at all, we need to devise model-specific methods to group nodes.

Once a collection graph has been built, the next processing steps involved in abstraction and path
exploration are based on it (see Section 5.3), thus are data-model independent.

5.2.1 Relational data

Relational data explicitly assigns only one “kind” to their records, which correspond to the tuples
in the relational setting. Indeed, each tuple belongs to exactly one relation.

Let R(a1, ..., an) be a relation (coming from a relational table or a CSV file):

• The G nodes created from any tuple r ∈ R are equivalent to each other, thus all belong to
the same equivalence class.

• Edges in G0 were labeled with the attribute names if they exist and have been normalized
into nodes in G.

68

5.2. NODE EQUIVALENCE IN DIFFERENT DATA MODELS

• All G nodes corresponding to an attribute ai, and connecting a tuple node to its ai value, are
equivalent. They are grouped in an equivalence class labeled with the attribute name, if it
exists.

• Next, the nodes created from attribute values r.ai, for r ∈ R and an attribute ai, are equiv-
alent. Their equivalence class is labeled with the attribute name and the suffix #val as in
ai#val.

• Finally, an equivalence class edge connects two equivalence classes ECi and ECj whenever
there exist two G nodes N1 and N2 such that N1 → N2 and N1 is represented in ECi,
respectively N2 is represented in ECj .

This partitioning is the most natural: tuples of the same relation are equivalent, respectively, same-
name attribute values are equivalent, etc. The partitioning can also be seen as a particular case of
the path summarization described in Section 3.2.3. Indeed, tuples of a given relation, thus occurring
on the same path, are grouped in the same equivalence class.

5.2.2 XML documents

XML trees also explicitly assign only one “kind” to their records. We leverage the label partitioning
described in Section 3.2.2 and group nodes as follows:

• For what concerns XML elements, if a schema, such as a DTD or an XSD, is available with
the data, we leverage it to respect principle (F) and group nodes of the same type in the
same equivalence class. If not, XML elements with the same label are said equivalent and
grouped in the same class. For instance, the author elements in Figure 4.2 leads to a class
(representing the three author nodes). Another class will group all the three author names
nodes.

• With respect to element attributes, recall that each G0 labeled edge created for any attribute
to connect the element node to its attribute value has been transformed, during the normal-
ization, into a node containing the attribute name. As shown in the normalized data graph
in Figure 4.5, the edge connecting the author node N35 to its name (“Léa”) in Figure 4.1 has
become the node Nname

42 .
We group such nodes as follows. For a given element name, e.g., author, and a given attribute,
e.g., name, an equivalence class of the form elemName@attrName is created. For instance, in Fig-
ure 4.5, the equivalence class author@name will represent the nodes N42, N44 and N49 but not
N2 and N11 as those attributes come from a conference element, not from an author one.

• Next, we turn to XML values. For each equivalence class of XML element values, we create
an equivalence class of the form elemName#val. Respectively, for each equivalence class of
XML attribute values, we create an equivalence class of the form elemName@attrName#val.
For instance, the equivalence class author@name#val represents the nodes N50, N52 and N54,
corresponding to the three authors’ names.

• Finally, edges connect equivalence classes: for two equivalence classes ECi and ECj , there
exists an equivalence class edge ECi → ECj whenever there exists a data edge for two G
nodes N1, N2 such that N1 → N2.

69

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

1 [{"name": "Bob", "aff": "IPP",

2 "friends": [

3 {"name": "Alice", "aff": {"lab": "Inria", "city": "Paris" }},
4 {"name": "Zoe", "email": "zoe@company.com" }
5]

6 }]

Figure 5.1: A JSON snippet.

5.2.3 JSON documents

For JSON documents, no explicit kind is defined and many nodes have empty labels. Therefore, a
kind based on the node names, as for XML, is not a good indicator of the kind: all empty-labeled
nodes would be grouped together in a single class. Instead, we consider equivalent nodes on the
same path, following the strong DataGuide summarization (described in Section 3.2.3). We proceed
as follows:

• Array and map nodes are grouped when they appear on the same path from the root. For
instance, in Figure 5.2, an equivalence class contains the root array in Figure 5.1, another one
contains the outer map, a third one contains the two maps representing Bob’s friends, etc.

• Next, each JSON map key has been converted to a node while normalizing G0 into G. There-
fore, all the nodes for a given key on a given path from the root are grouped in an equivalence
class. For instance, in Figure 5.2, nodes created out of Bob’s friends name-labeled edges are
grouped in the same equivalence class; so it is for the outer name, the outer aff, friends, Bob’s
friends email keys, etc.

• Further, we need to group JSON values. For each equivalence class of a given array, respec-
tively a given map and a given key, all values nodes encountered at that place are grouped in
an equivalence class. For instance, the equivalence class computed out of the friends’ names,
namely name#val, represents “Alice” and “Zoe”.

• Last but not least, we add equivalence class edges as follows: whenever there exists a data
edge N1 → N2 for two G nodes N1 and N2, there exists an equivalence class edge ECi → ECj
such that N1 is represented by ECi, respectively N2 is represented by EC2.

Using the partitioning described above, we observe that map nodes representing similar things
may be separated in different equivalence classes if they are located in different places in the
JSON document (thus, are not on the same path from the root). This is, e.g., the case with
equivalence classes on the paths [].ε.{} and [].ε.{}.ε.friends.ε.[].ε.{} representing the outer
map, respectively the two friends maps. To overcome this limitation and to follow principle (�), we
apply an extra summarization step on the partition computed out of JSON documents. Specifically,
we fuse equivalence classes of map nodes having the same property clique, following the intuition
they should belong to the same equivalence class (even if they do not occur on the same path). We
proceed as follows.

First, we compute source property cliques on G0 map keys, just like the Typed Strong summary
does with RDF properties (recall Section 3.2.4). We denote by ECSCi the set of equivalence classes
having the (source) property clique SCi. For instance, in Figure 5.2, we obtain two source property

70

5.2. NODE EQUIVALENCE IN DIFFERENT DATA MODELS

cliques, i.e., SC1 = { name, aff, friends, email } for the outer and friends maps, respectively SC2 = {
lab, city } for the affiliation map. Then, we have ECSC1 = {EC1, EC8} and ECSC2 = {EC12}.

Next, for each property clique SCi and its associated set of equivalence classes ECSCi :

1. We identify EC∗, the equivalence class in ECSCi having the lowest id. In Figure 5.2, this
would be EC1 for SC1 and EC12 for SC2.

2. Next, we fuse in EC∗ all equivalence classes in ECSCi , meaning that all (map) data nodes
represented by any EC ∈ ECSCi are now represented by EC∗. This fusion is depicted in
Figure 5.3: both the outer and friends maps are now represented in the outer equivalence
class.

3. Recall that normalization introduced nodes that correspond to map edge labels in the original
JSON dataset. Given two equivalence classes ECx and ECy, such that (i) ECx → ECy, (ii)
ECx ∈ {ECSCi} \ {EC∗} and (iii) ECy represents k-labeled nodes (thus, k is a map edge
label), several cases may arise:

• If EC∗ already has a child equivalence class ECa, i.e., EC∗ → ECa, representing k-
labeled nodes, ECy data nodes are “moved” to, i.e., represented by, ECa; this is, e.g.,
the case of EC9, which is fused in EC2 (Figure 5.3);

• Otherwise, ECy is attached as a child of EC∗, thus EC∗ → ECy; this is, e.g., the case
of EC17.

4. Next, we need to proceed carefully with equivalence classes of values, which may contain
atomic values, maps or arrays. Reusing the notations EC∗, ECa, ECx and ECy from above
and considering a third equivalence class ECz, such that (i) ECy → ECz and (ii) ECz
represents key values, several cases may arise:

• If EC∗ already has a grandchild equivalence class ECb, i.e., EC∗ → ECa → ECb, and
both ECb and ECz contain atomic values (their label ends with #val). In this case, we
fuse ECb and ECz.

• Similarly, if ECb and ECz both contain arrays, we fuse them. The (child) equivalence
classes containing array values are fused depending on the values they contain, i.e.,
strings, arrays or maps.

• Similarly, if ECb and ECz both contain maps, we do nothing as this case is covered in
step (2).

• Otherwise, when ECb and ECz contain elements of different types, e.g., atomic values
and arrays, we add ECz as a new child equivalence class of ECa.

5. Finally, we delete and/or change edges between the equivalence classes, to reflect the possible
fusions applied above. We proceed as follows:

• Each equivalence class edge ECx → ECy, such that both ECx and ECy have been fused,
is deleted.

• Next, each equivalence edge ECx → ECy, such that only ECx or ECy has been fused,
is updated to point to the equivalence class in which ECx, respectively ECy, has been
fused.

71

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

[]0 { }1

name2 name#val3

aff4 aff#val5

friends6 []7 { }8

name9 name#val10

aff11 { }12
lab13 lab#val14

city15 city#val16

email17 email#val18

Figure 5.2: A visual representation of the partition after path-based summarization is applied.

[]0 { }1,8

name2,9 name#val3,10

aff4,11

aff#val5

{ }12
lab13 lab#val14

city15 city#val16email17 email#val18

friends6 []7

Figure 5.3: A visual representation of the partition after the clique-based further summarization is
applied.

For instance, in Figure 5.3, EC7 will now point to EC1,8, the edge connecting EC8 to EC9,
respectively EC9 to EC10 are removed, etc.

The fusion of equivalence classes using property cliques described above bears some similarities with
the construction of a minimal DataGuide (recall Section 3.2.3), in the sense that in both cases, we
reduce the number of summary nodes. However, there are differences among the two. The clique-
based approach only reduces the number of equivalence classes containing map nodes, while a
minimal DataGuide reduces the number of equivalence classes overall. Also, the summary resulting
from path-based summarization followed by clique-based factorization is not necessarily minimal:
more equivalence classes could be fused using a state minimization algorithm (recall Section 3.2.3).
In our example, this is the case of EC0 and EC7.

5.2.4 RDF graphs

RDF graphs attach zero, one or several explicit kinds to each record, which exactly corresponds to
an RDF node. In such graphs, kind is expressed through types, as defined in the W3C standard.

To group together RDF nodes of the same kind, we rely on the typed-strong RDF graph summary,
outlined in Section 3.2.4. Recall that resources having one or more types are grouped together
by this summarization technique, if and only if they have the same set of most general types;
this respects our principle (F). Next, typed strong summarization groups untyped nodes together
based on the cliques into which their source and, respectively, target properties are grouped. These
choices have been shown [77] to lead to a moderate number of equivalence classes, thus also satisfying
principle (�).

72

5.2. NODE EQUIVALENCE IN DIFFERENT DATA MODELS

For instance, the three paper nodes of the initial data graph G in Figure 4.1 have the same source
property clique, defined as {pIn, title, year, wB, abstract}. Similarly, they all have the same target
property clique: {hW}. Recall that, to obtain a robust partitioning method, two untyped nodes are
considered equivalent if they have the same source and target property cliques. In Figure 4.1, the
three paper nodes N8, N19, N24 have the same source and target property cliques, thus belong to
the same equivalence class. Note that untyped nodes encompass resources, i.e., URIs, and literals:
RDF literals are always grouped depending on their target property clique (as their source property
clique is always empty: an RDF literal is a leaf in the graph).

The clique-based summarization technique operates on the initial data graph, not the normalized
one, in order to leverage edge labels. Therefore, it only partitions the nodes in G that are also
present in G0, the original graph (prior to normalization). To also reflect the G nodes introduced

by normalization, we proceed as follows. Consider an edge ECi
p−→ ECj connecting the equivalence

class ECi to another class ECj using a p-labeled edge in the summary of G0. For each such edge,
a new equivalence class ECk is created and represents p-labeled nodes that have been introduced
while normalizing G0 in G. This allows to represent all G nodes in the final partition. For instance,
the newly created equivalence class ECk would represent nodes N16, N23 and N33 and connect the
paper equivalence class to the one representing paper title values.

Finally, recall (Section 2.6) that RDF graphs may comprise also ontology (or schema) triples.
Following typed-strong summarization (and more generally, the quotient summarization principles
from Section 3.2.4), ontology triples are not altered in any way when constructing summaries: they
are copied from the graph in the summary, as they are. This fits well with our goal to summarize
data, while being guided by the ontology if one exists.

5.2.5 Property graphs

Property graphs attach zero, one or several explicit labels to their nodes; zero or one explicit labels
can be assigned to an edge. Recall that property graphs model kinds using node, respectively, edge
labels. As described in Section 4.1.5, we convert property graphs into RDF-like graphs: nodes have
one label but zero, one or several (RDF) types; edges also have one label, and zero or one type.
PG node attributes become standalone nodes. Then, we leverage typed-strong summarization, just
like for RDF graphs. This groups G0 nodes according to their cliques, also taking care of nodes
introduced by normalization instead of edges, etc. This is done with the same process as for RDF
graphs (Section 5.2.4).

An alternative would be to summarize the property graph directly with the hierarchical summary
technique [33] described in Section 3.2.7. However, this would only group PG nodes, not attribute
values, which we view as data nodes (recall Section 4.1.5). Therefore, we would need a way to
group those, e.g., by creating an equivalence class for each set of attribute value nodes for a given
equivalence class of nodes and a given attribute name. As for RDF graphs, this would also require
to cover PG edges, that have been transformed into data nodes while normalizing the data graph.
Finally, following principle (�), the chosen partitioning method should provide a reasonable number
of equivalence classes. This goal is not satisfied by [33], which tends to separate, in different
classes, nodes with slightly different attributes. For these reasons, we prefer to use the typed-strong
summarization.

73

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

C0

paper

C3

abstract

C4

#val

C1

year

C2

#val

C5

title

C6

#val
C11

wB

C12

hW

C7

pIn

C13

inv

C14

author

C8

conf

C9

name

C10

#val

C23

date

C24

#val

C15

email

C16

#val

C17

affiliation

C18

university
C18

university
C19

city
C20

#val

C21

campus
C22

#val

1

1

1
1

1

1 1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1

1 1 1

1

1

〈8〉
〈so[D] = 2〉
〈sl[D] = 8〉

〈8〉
〈so[D] = 2〉
〈sl[D] = 8〉

〈9〉
〈so[E] = 3〉
〈sl[E] = 9〉

〈28〉
〈so[P] = 3, so[O] = 2〉
〈sl[P] = 9, sl[O] = 8〉

〈9〉
〈so[L] = 1〉
〈sl[L] = 9〉

Figure 5.4: Collection graph corresponding to the data graph in Figure 4.5.

5.3 Collection graph and associated statistics

Based on the set of equivalence classes found as explained in Section 5.2, we build a directed
collection graph G = (C,EG) as follows:

• Each equivalence class (set of nodes) becomes a collection node Ci; we discuss collection
nodes in more details in Section 5.3.1;

• For each data edge ni → nj in G such that ni ∈ Ci, nj ∈ Cj are two graph nodes from two
collections, the collection graph contains the collection edge Ci → Cj . We detail collection
edges and their properties in Section 5.3.2.

Each collection is an equivalence class, thus the collection graph is a quotient summary (Sec-
tion 3.2.4).

Paths in the oriented collection graph are important for our analysis and understanding of this
graph. We discuss the computation of various path properties in Section 5.3.3, and some simplifi-
cations (approximations) introduced by the collection graph in Section 5.3.4.

For illustration, we will rely on Figure 5.4, which shows the collection graph of the normalized
graph presented in Figure 4.5.

5.3.1 Collection nodes

From each equivalence class computed as discussed in Section 5.2 we create exactly one collection
node Ci (or collection, in short). A collection is thus a set of (G) nodes, and a G node itself; we also

74

5.3. COLLECTION GRAPH AND ASSOCIATED STATISTICS

say the collection represents each of its constituent graph nodes. Collection nodes are depicted as
squares in Figure 5.4.

For each collection, we define:

Definition 5.3.1 (Collection size)

Given a collection node Ci ∈ C, its size |Ci| is the number of data nodes it represents.

Definition 5.3.2 (Collection label)

The label of a collection node Ci ∈ C, denoted L(Ci), is:
• The kind name, if all nodes in Ci have exactly one kind;
• The name of the most general kind, if Ci nodes have different kinds;
• Otherwise, when no kind is available, the label is:

– #val if Ci represents L -leaf data nodes;
– The longest common prefix of the represented nodes’ labels, if it is non-empty;
– Otherwise, a concatenation of a very small set (a sample) of node labels.

For instance, in Figure 4.5, the label for nodes N8, N19 and N24 is paper. If those nodes where
typed, e.g., using RDF types such as Article or Demonstration, both being specifications of a
more general type ScientificPublication, a good label for a collection containing them would be
ScientificPublication. Alternatively, if the nodes are RDF URI resources, we attempt to find
a significant common prefix of the URIs; this is helpful when the URLs are composed by adding
numbers to a long string. This does not always succeed, e.g., on WikiData data where URIs are
very short and include no meaningful word. In such cases, in best-effort mode, we sample a few
node labels and show them to help users have an idea of what the nodes in the collection look like,
e.g., uri123,uri456,uri789.

A collection node whose label ends with #val (recall Figure 5.4) is called a leaf collection:

Definition 5.3.3 (Leaf collection)

A collection node Ci ∈ C is called a leaf collection node if it represents only data nodes whose
labels belong to L (the set of literals).

Note that a childless node in the collection graph is not necessarily a leaf collection (as defined here).
We reserve this name only for collections of L -labeled nodes. By construction, such collections are
guaranteed not to have outgoing edges in the collection graph.

Because the collection graph is a (quotient) summary, like any summary, it introduces a certain
loss of precision about how nodes and edges are connected. Below, we distinguish two particular
configurations, when two collection edges have the same target in the collection graph:

Definition 5.3.4 (Deeply shared collection)

We say a collection Cz is deeply shared by collections Cx, Cy ∈ C, where Cx, Cy, Cz are three
pairwise distinct collections, if there exists a data node nz ∈ Cz, having both an incoming data
edge from a node nx ∈ Cx and an incoming edge from a node ny ∈ Cy.

75

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

paper wB author inv conf

C1 C2 C3 C4 C5

(a) Deeply shared collections.

paper wB author author inv conf

C1 C2 C3 C4 C5

(b) Shallow shared collections.

Figure 5.5: Deeply shared vs shallow shared collections.

Definition 5.3.5 (Shallow shared collection)

We say a collection Cz is shallow shared by collections Cx, Cy ∈ C, such that Cx, Cy, Cz are
pairwise distinct, if there exist two collection edges Cx → Cz, Cy → Cz ∈ EG , but Cz is not
deeply shared by Cx and Cy.

Figure 5.5 illustrates both deeply and shallow shared collections. Each rectangle is a collection node,
containing one or several data nodes. As shown in Figure 5.5a, C3 is deeply shared : the node author

is unique and shared by two distinct data nodes, specifically wB in C2 and inv in C4. Figure 5.5b
shows that the collection of author nodes is shallow shared : wB and conf nodes are pointing to
two distinct author nodes. The important difference here is that deeply shared collections feature
common nodes (more than one incoming edge) at the data level, while shallow shared collections
feature only common incoming edges (but they do not point to common data nodes). Looking at
the collection graph alone does not allow to distinguish the difference.

We attach to each leaf collection node a leaf entity profile in order to represent which and how
many Named Entities have been found in their string values. This will be useful both to classify
abstraction entities in semantic classes (Section 6.8) and to enumerate entity paths (Section 7.3).

We call T vector an array of natural numbers indexed by the types in T (the set of Named Entity
types considered in this work, recall Section 4.2). Let |s| denote the length of a string s, so be
the T vector of Named Entity occurrences in s, and sl be the T vector of the total length of these
entities. For instance, if s is “France and Germany are part of NATO”, we have:

• |s| = 34, the string length;

• so[Location] = 2 (the countries France and Germany are extracted as Locations), so[Organization] =
1 (NATO is identified as an Organization), and so = 0 for the other Named Entity types;

• sl[Location] = 13, sl[Organization] = 4, and sl = 0 elsewhere.

The string entity profile of s is the triple (|s|, so, sl).

Next, for a collection Ci and a label l, we denote by NCi,l the set of leaf children labels of an
l-labeled child of a data node represented in Ci. For example, considering the collections drawn
in Figure 5.4, NC15,name = {“Léa”, “Eva”, “Zoé”} (recall the normalized data graph in Figure 4.5).
Finally, we define the collection-label entity profile as follows:

76

5.3. COLLECTION GRAPH AND ASSOCIATED STATISTICS

Definition 5.3.6 (Collection-label entity profile)

Given a collection Ci ∈ C and a label l, the collection-label entity profile of Ci and l,
denoted τCi,l, is the triple:

τCi,l = (τCi,l.s, τCi,l.o, τCi,l.l) =

 ∑
s∈NCi,l

|s|,
∑

s∈NCi,l

so,
∑

s∈NCi,l

sl

where the last two are component-wise T vector sums.

Figure 5.4 represents collection-label entity profiles in dotted rounded squares pointed by leaf col-
lections. For instance, C10 collection-label entity profile shows that C10 leaf values are 28 characters
long, they contain 3 Person NEs of 9 characters in total, and 2 Organization NEs of 8 characters
in total. Note that τCi,l.l differs from τCi,l.s when extracted entities are shorter than the actual
leaf value nodes. For instance, for the leaf value “VLDB conference”, “VLDB” is extracted as an
Organization, the Organization NE length is 4, whereas the string length is 15.

5.3.2 Collection edges

A collection edge collection edge Ci → Cj is created for any edge in G of the form ni → nj , with
ni ∈ Ci, nj ∈ Cj . We say that the (unique) collection edge Ci → Cj represents all the edges from
a node ni ∈ Ci to a node nj ∈ Cj .

We define:

Definition 5.3.7 (Collection edge size)

Given a collection edge Ci → Cj∈ G, its size |Ci → Cj | is the number of data edges it represents.

Definition 5.3.8 (Collection edge frequency)

Given a collection edge Ci → Cj∈ G, the frequency f(Ci → Cj) is defined as the ratio of data
nodes in Cj having a parent in Ci, and the size of Ci. Formally:

f(Ci → Cj) =
|Ci → Cj |
|Ci|

The collection edge frequency ranges in the interval]0,+∞].

For instance, in Figure 5.4, we have f(C14 → C9) = 3/3 = 1.0 because all authors have a name and
f(C0 → C1) = 2/3 = 0.6 because only two paper data nodes have a child node year. The frequency
may be higher than 1 when several distinct nodes in Cj have the same parent in Ci. This is, e.g.,
the case of the edge C14 → C12, which has a frequency of f(C14 → C12) = 4/3 = 1.3, illustrating
that N36 points to two hw data nodes.

Next, we introduce:

Definition 5.3.9 (At-most-one collection edge)

Given a collection edge Ci → Cj ∈ G, it is at-most-one if and only if each node in Ci is
connected to at most one node in Cj .

77

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

For instance, in Figure 5.4, the collection edge C0 → C11 is not at-most-one because, in Figure 4.5,
N18 is connected to N21 and N23, both represented by C11. Similarly, the collection edge C14 → C12

is not at-most-one too. They are represented as dashed edges in the collection graph. This notion
resembles 0-to-1 or 1-to-1 relationships in Entity-Relationship models [145].

We now consider how collection edges may be involved in cycles. Recall that a cycle is a non-empty
trail, i.e., a sequence of edges which are all distinct, in which only the first and last nodes are equal.
We define:

Definition 5.3.10 (Acyclic collection edge)

A collection edge Ci → Cj ∈ G is acyclic if and only if it is not part of any cycle in G.

For instance, collection edges that are involved in a cycle in G are in red in Figure 5.4. All the
others are acyclic. Further, we define:

Definition 5.3.11 (Data-acyclic collection edge)

A collection edge Ci → Cj ∈ G is data-acyclic if and only if all the G data edges it represents
are not involved in any G cycle.

For instance, C0 → C11 is not data-acyclic because the data edges it represents are also involved in
a cycle in G, e.g., N24 → N28 and N24 → N30, also in red in Figure 4.5.

Next, we define the transfer factor of a collection edge. Intuitively, this measures how important
(or frequent) Ci parents are among Cj nodes. Formally:

Definition 5.3.12 (Edge transfer factor)

The edge transfer factor of a collection edge Ci → Cj ∈ EG , denoted etf(Ci → Cj), is the
fraction of nodes from Cj having a parent in Ci. Formally:

etf(Ci → Cj) =
|{nj |∀ni, nj ∈ N,ni → nj , ni ∈ Ci, nj ∈ Cj}|

|Cj |

The collection edge transfer factor ranges over]0, 1].

For instance, in Figure 5.4, we have etf(C12 → C0) = 2/2 = 1.0 and etf(C14 → C9) = 3/5 = 0.6,
while etf(C8 → C9) = 2/5 = 0.4. Note how the collection C9 shares its edge transfer factor among
its parents C8 and C14. As shown in the examples, the edge transfer values may vary depending on
the data nodes connectivity. Note that the edge transfer factor of a given collection edge is never
0, because, by definition, the corresponding collection edge exists due to at least one data edge
connecting a node in Ci to a node in Cj . We distinguish several cases:

• Between zero and one. The edge transfer factor value lies between 0 and 1 (both excluded)
when some Cj nodes are not pointed by any Ci node. For instance, Figure 4.5 shows that not
all name nodes are pointed by author nodes, thus decreasing the edge transfer factor of the
edge C14 → C9. A particular case is when Cj is a shallow shared collection. In Figure 5.4,
name is a shallow shared collection between author and conf, thus splitting the edge transfer
factor between them: etf(C14 → C9) = 3/5 and etf(C8 → C9) = 2/5. The edge transfer
factors of collection edges incoming Cj do not always sum to 1, e.g., when some Cj nodes are
pointed by several data nodes of distinct collections connected to Cj . This corresponds to the
case when Cj is a deeply shared collection.

78

5.3. COLLECTION GRAPH AND ASSOCIATED STATISTICS

• One. The edge transfer factor value equals 1 when at least each data node in Cj is pointed
by one, or several, Ci nodes. A particular case is when each Ci node is connected to exactly
one Cj node; this corresponds to an at-most-one collection edge.

5.3.3 Paths in the collection graph and their associated statistics

Abstractions and entity-focused path enumeration will need to rely on paths in a collection graph,
and a set of associated statistics.

We define a collection path cp in a collection graph as a sequence of collection edges such that
the source of each edge is the target of the previous edge in the path. We do not allow two edges
in the same path to start in the same node (in other words, a path can be acyclic, or it can close a
cycle, but if it closes a cycle, this is how the path ends):

Definition 5.3.13 (Collection path)

Given a collection graph G, a collection path cp ∈ G is a sequence of collection edges such
that cp = Ci → Ca, Ca → Cb, ..., Cb → Cj .

The corresponding collection path label is the sequence of its nodes’ labels, e.g., the path C14 →
C15, C15 → C16 is labeled author.email.#val.

Algorithm 1 enumerates all the possible acyclic (collection) paths in the collection graph. It starts
with paths of length l = 1, i.e., edges, and then iterates over the children of edge targets to build
paths of length l + 1. In the end, it produces: P, a 2D matrix containing all the possible acyclic
paths connecting each pair of input graph nodes, and Θ, the set of input graph edges that are
involved in a cycle (of size l ≥ 1). Data structures are initialized in Lines 1-8, while iterative path
enumeration takes place at Lines 9-25.

During the initialization phase, P is created as a 2D matrix indexed with G nodes on both dimen-
sions. Each element in P is a set of paths (connecting the two indexed nodes), set by default to the
empty set.

Next, the algorithm tries to extend each path in each P[i][j] with a new G edge of the form j → k
(Line 19). If such an edge exists, we check whether k is equal to i to detect a potential cycle. If
so, the current edge points back to the source of the path, leading to a cycle. Thus, we add all the
edges in the extended path to Θ (Line 22). Otherwise, the newly extended path is added to P at
the right indexes (Line 24).

Next, we define the collection path transfer factor for a given collection path cp, as follows:

Definition 5.3.14 (Collection path transfer factor)

Given a collection path cp, its path transfer factor ptf(cp) is the product of all the edge
transfer factors along that path. Formally:

ptf(cp) =
∏
e∈cp

etf(e)

For instance, given the collection path cp = C8 → C13, C13 → C14, C14 → C9 in Figure 5.4, its path
transfer factor is ptf(cp) = 1 ∗ 0.33 ∗ 0.6 = 0.198.

79

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

Algorithm 1: Path enumeration and cycle detection algorithm

Input: G = (N,E): a directed graph
Output: P: complete set of paths in G, Θ: cycles in G

1 P ← [|N |][|N |]
2 Θ← ∅
3 for i ∈ N do
4 for e of the form i→ j do
5 if i == j then
6 Θ← Θ ∪ {e}
7 else
8 P[i][j]← P[i][j] ∪ {{e}}

9 stop ← false
10 l← 1
11 while not stop do
12 l← l + 1
13 stop ← true
14 for i, j ∈ N, i 6= j do
15 paths← P[i][j]
16 for p ∈ paths do
17 if |p| == (l − 1) then
18 for e of the form j → k do
19 p2 ← p ∪ {e}
20 if i == k then
21 for e2 ∈ p2 do
22 Θ← Θ ∪ e2

23 else
24 P[i][k]← P[i][k] ∪ {p2}
25 stop ← false

80

5.4. FROM MULTIPLE DATASETS TO A COLLECTION GRAPH

Based on the path transfer factor, we define the total path transfer factor, an important metric
to elect entities to report in abstractions (Section 6.3). Intuitively, this represents how much of Cj
weight can be transferred back to Ci by any collection path connecting Ci to Cj .

Definition 5.3.15 (Total path transfer factor)

Given two collections Ci, Cj ∈ C, the total path transfer factor tptf(Ci, Cj) from Ci to Cj is
the sum, over each path in P[i][j] (all collection paths connecting Ci to Cj that do not traverse
an in-cycle edge), of the path transfer factor of that path. Formally:

tptf(Ci, Cj) =
∑

p∈P[i][j]

ptf(p)

For instance, in Figure 5.4, the path transfer factor between C8 and C10 equals to ptf(C8, C10) =
1× 0.4 = 0.4.

If C13 had been involved in a cycle (which is not the case), then the total path transfer factor would
have been ptf(C8, C10) = 0.4× 1 + 1× 0.33× 0.6× 1 = 0.598.

5.3.4 Discussion: simplifications made in the collection graph

We now discuss approximations (simplifications) introduced when building the collection graph.
Grouping nodes by equivalence relations, such as those discussed earlier in Section 5.2, simplify the
graph structure; this is beneficial because it allows to work on a much smaller collection graph than
the original one. However, inevitable, such simplifications introduce some differences between the
structures present in the original and the collection graph. We comment on two such cases below.

First, when, in the data graph, some nodes in collection A have children in the collection B, and
some C nodes also have (different) B children, the resulting collection graph will contain a collection
of A pointing to a collection of B and the collection of C pointing to the same collection of B even if
they were disjoint in the data. In this case, the collection B is shallow shared by collections A and C.

Second, the collection graph may have cycles even when the data was acyclic. They are introduced
when the label-based summarization is used on an XML document which features several elements
with the same label at different places. For instance, the XML snippet in Figure 5.6 leads to the
collection graph in Figure 5.7: note the cycle between ul and li.

5.4 From multiple datasets to a collection graph

In a heterogeneous dataset exploration scenario, it is very common to have several of these to
interconnect on their common values. The graph view of any semi-structured data is the first step
toward this goal (recall Chapter 4). The next one is to build a consolidated collection graph out of
a data graph where many datasets co-exist, and possibly originate from different models. In this
chapter, we have considered the collection graph of a single dataset, we now explain how this can
be seamlessly extended to multiple datasets.

One could think that we can simply ingest all the data as explained in Chapter 4 and then build
the collection graph. However, this is not possible because each data model has its own way to

81

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

mailbox

email
date “Mon.”

content ul li text “Task 3”

email
date “Tue.”

content ul li

text “Task 2”

ul
li text “2.2”

li text “2.1”
email

date “Wed.”

content text “Task 1”

Figure 5.6: Data graph of an XML snippet about emails.

mailbox email date #val

content ul li text #val

Figure 5.7: The collection graph corresponding to the normalized graph in Figure 5.6. Red edges
are those involved in a cycle; those are also data-acyclic.

encode the kind (recall Section 5.1). Therefore, to obtain a single collection graph from a set of
datasets, we proceed as follows:

1. First, we build a separate collection graph from each dataset, as described previously in the
chapter.

2. Then, whenever two L -leaf collections Ci, Cj ∈ C from distinct datasets share values, we
replace them by a new collection Ci,j , which contains the values of Ci and Cj , and inherits all
the incoming and outgoing edges of Ci and Cj in the collection graph they came from. Their
original collection graphs are thus connected.

3. The collection-label entity profile of each grandparent collection of a newly created collection
Ci,j is built.

For instance, the data graph in Figure 5.8 features RDF triples about NASA spacecrafts (on the
right), and an XML document describing presidents who attended spacecraft launches (on the left).
Named Entity nodes are highlighted, respectively in pink for Organization, yellow for Person and
green for Location NEs; they are also connected to the value node they come from (dashed edges in
Figure 5.8; recall Chapter 4). Note the three NEs found in the value node N17, and the common NE
“N. Armstrong” found both in the RDF and XML datasets values. Figure 5.9 shows the collection
graph built out of the data graph in Figure 5.8 and reflects the value unification: (i) the pilot and
astronaut leaf collections have been merged in a single collection C9, representing N12 and N24;
and (ii) both entity profiles of (C1, pilot) and (C11, astronaut) lead to People NEs.

82

5.5. SUMMARY

Figure 5.8: Sample normalized data graph for an RDF and an XML dataset about rocket launches.

C1

Spacecraft

C4

agency
C5

#val

C2

descr

C3

#val

C6

pilot
C9

#val
C10

astronaut
C11

launch

C12

president

C13

presidents

C14

name

C15

#val

〈4〉
〈so[O] = 1〉
〈sl[O] = 4〉

〈85〉
〈so[L] = 1, so[O] = 2〉
〈sl[L] = 13, sl[O] = 23〉

〈8〉
〈so[P] = 1〉
〈sl[P] = 8〉

〈12〉
〈so[P] = 1〉
〈sl[P] = 12〉

Figure 5.9: Multi-dataset collection graph corresponding to Figure 4.5.

5.5 Summary

This chapter has introduced a crucial technical ingredient of this thesis’ result: the collection graph
is a quotient summary of a data graph obtained from one or several individual datasets, each of
which can be a relational, XML, JSON, RDF, or property graph dataset. Different equivalence
relations are used for each of the data models; we have also shown how to weave summaries of
individual datasets into a single integrated collection graph. Our collection graphs expose useful
information about the presence of Named Entities extracted from the leaf nodes in the data. We
also introduced a set of terminology referring to collection graph nodes and edges. All these features
will be exploited by our next two chapters, outlining main technical contributions of the thesis.

83

CHAPTER 5. FROM A DATA GRAPH TO A COLLECTION GRAPH

84

6
Data abstraction

Chapter Outline

6.1 From the collection graph to entities . 86

6.2 Main entity selection algorithm . 87

6.2.1 Naive algorithm . 89

6.2.2 Greedy algorithm . 91

6.3 Scores . 91

6.3.1 Simple collection scores . 92

6.3.2 Scores by DAG propagation . 94

6.3.3 Scores using PageRank . 96

6.4 Boundary methods . 100

6.4.1 Boundaries for simple scores . 100

6.4.2 Boundaries for DAG weights . 101

6.4.3 Boundaries for PageRank-based weights . 102

6.5 Collection graph update methods . 104

6.5.1 Graph update for simple scores . 104

6.5.2 Graph update for weight-based scores . 104

6.6 Relationships between main entities . 106

6.6.1 Relationships identification . 106

6.6.2 Multi-traversed (non-main) entities . 106

6.7 Alternative: multi-greedy algorithm . 107

6.8 Main entity classification . 109

6.8.1 Semantic resources . 109

6.8.2 Classification algorithm . 112

6.8.3 Alternatives . 114

6.9 Experimental evaluation . 116

6.9.1 Datasets, semantic resources, and settings . 116

6.9.2 Quality of the main entity selection methods . 117

6.9.3 Main entities in all datasets . 119

6.9.4 Quality of main entity classification . 120

6.9.5 Scalability of the abstraction computation . 125

6.9.6 Inferred schemas vs. abstractions . 127

6.9.7 Remarks on abstraction . 127

6.9.8 Experiment conclusion . 128

6.10 Summary . 129

Chapter Abstract. We first explain how entities, attributes and relationships may appear in
the collection graph (Section 6.1). Next, we provide algorithms to compute, from the collection
graph, main entities, i.e., entities which deserve to be shown in the abstraction together with their
attributes (Sections 6.2 and 6.7). Further, we present and detail several methods we devised for
those algorithms (Sections 6.3, 6.4 and 6.5). Next, we show how to find main entities’ relationships
(Section 6.6). The last data abstraction step concerns the main entity classification into seman-
tic classes (Section 6.8). Finally, we provide Abstra’s experimental evaluation, the system we
developed implementing all the above-mentioned steps (Section 6.9).

85

CHAPTER 6. DATA ABSTRACTION

Data abstractions leverage the idea that any dataset comprises some entities, i.e., sets of record-
s/data objects having attributes, which are often connected by relationships. In this chapter, our
goal is to retrieve, from the dataset, the conceptual model originally behind it. However,
to account for the recent adoption of complex, non-relational data formats, our abstractions differ
from the classical Entity-Relationship schemas [145] in the sense that our entities may have a
deeply nested structure of attributes. Finally, we seek to provide an abstraction at the right
level of details, i.e., sufficiently compact to be readable by a human and sufficiently comprehensive
to not lack important aspects of the data.

6.1 From the collection graph to entities

In a collection graph, some collections can be seen as sets of records, or “entities”, while others
contain “fields (or attributes)” of those entities, potentially nested several levels deep. For instance,
in Figure 5.4, paper, author and/or conf can be viewed as entities; it appears natural that year,
abstract and title would be attributes of the paper entity; similarly, email and name are attributes
of the author entity.

In general, collection graphs may have hundreds of collections, and their structure may be quite
complex (involve several cycles, etc.). Therefore, the selection of some entities as main entities
may become complex. That is why we establish the two following requirements, which will guide
our abstraction algorithm design:

(R1) We want the set of main entities to be rather small to not overwhelm the user with too much
information.

(R2) Further, we want the main entities to represent most of the data since this is where the real
interesting payload resides.

Toward determining main entities, their attributes and relationships in such graphs, our goals are
to:

• Propose algorithms whose goals are to select a set of collections playing the role of the most
relevant main entities. Further, the algorithm should be able to identify attributes which
belong to each such main entity. Two algorithms, guided by requirements (R1) and (R2),
are presented in Section 6.2. An alternative algorithm, devised at the end of the PhD, is
proposed in Section 6.7 and lifts limitations of the first two algorithms. This global task may
be divided into few smaller goals we enumerate here:

(G1) Provide effective methods to assign scores to collections in order to decide which of them
are the most relevant. Section 6.3 discusses a set of simple baselines as well as more
elaborate methods, based on data weights and PageRank [136] scores.

(G2) When a collection is identified as relevant, find which other collections may be seen as
attributes of it. We call this task entity boundary detection, and provide algorithms for
it in Section 6.4.

(G3) Reflect that some main entities have been selected, and that, in turn, they (and the
data they represent) are not available anymore for future steps. We call this task graph
update, and we provide algorithms for it in Section 6.5.

86

6.2. MAIN ENTITY SELECTION ALGORITHM

• Identify all relationships between the main entities. We describe an algorithm for this task
and provide an extension of it in Section 6.6.

• Assign a semantic category to each main entity to facilitate the dataset understanding, es-
pecially if the user is not familiar with the domain knowledge. The classification process is
described in Section 6.8.

6.2 Main entity selection algorithm

In this section, we start by providing a definition for main entities, whose set is denoted ME .
Next, in Section 6.2.1, we provide a naive algorithm to select them and demonstrate its limitations.
Further, we provide a greedy algorithm in Section 6.2.2.

A main entity is composed of a root (the collection that is identified as interesting and which
contains records) and a boundary which may be viewed as comprising entity’s (deeply nested)
properties. Formally:

Definition 6.2.1 (Main entity)

We call main entity ME i a collection Ci ∈ C, together with a sub-graph of the collection
graph, rooted in Ci, denoted Bi, and called boundary of the main entity. Each collection graph
node that is part of Bi is reachable from Ci by one or several paths, whose nodes and edges are
also in Bi.

Conceptually, the boundary includes all the data nodes that are part of the main entity (or, equiv-
alently, “belong to” the main entity root). However, our boundaries are defined on the collection
graph G, not the normalized data graph G. For instance, Figure 6.1 depicts three possible main
entities in G: author, paper and conf. Each main entity root is colored in yellow. In this abstraction,
the conf main entity has two attributes, a name and a date. The paper one has three attributes:
year, abstract and title. Finally, the main entity containing author records is the deepest one: it
contains six attributes, nested in three levels. The highlighted areas in blue, green and red, represent
the boundary of each main entity. We will discuss how to compute boundaries, in Section 6.4.

Next, leveraging classical E-R design [145], we identify a set of main entity eligibility criteria
a collection must satisfy to be considered as a potential main entity:

(C1) It should represent more than one data node, discouraging one-node collections as degenerate
“entity sets”. Also, the node in such a singleton collection is typically a container to many
nodes from another, potentially interesting, collection.

(C2) It must have at least two child collections and/or at least one child collection having a leaf
child. This adapts to our setting the intuition that “entities have attributes”:

• childless collections do not qualify because they have no internal structure;

• collections with a single child that is a leaf do not qualify for the same reason;

• collections with a single, non-leaf child do not qualify; they act more as “containers” for
their children.

(C3) It should not already be part of a boundary of another main entity.

87

CHAPTER 6. DATA ABSTRACTION

C0

paper

C3

abstract

C4

#val

C1

year

C2

#val

C5

title

C6

#val
C11

wB

C12

hW

C7

pIn

C13

inv

C14

author

C8

conf

C9

name

C10

#val

C23

date

C24

#val

C15

email

C16

#val

C17

affiliation

C18

university
C18

university
C19

city
C20

#val

C21

campus
C22

#val

1

1

1
1

1

1 1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1

1 1 1

1

1

C14

author

C0

paper
C8

conf

Figure 6.1: The collection graph with 3 possible main entities and their boundaries.

We illustrate the above criteria on few XHTML search results, grouped in pages, in Figure 6.2. First,
the (only) top element is the parent, or container, of all (more interesting) page nodes. Therefore,
it is not eligible according to (C1). Next, following (C2), all leaf or parents of leaf collections, such
as those containing date nodes or text value nodes, do not qualify. Similarly, the page collection
has a single child, namely result, with the actual data; the result collection is eligible, but the
page one is not as per (C2).

In a collection graph, one may identify more or less entities, depending on its structural complexity.
We consider a target entity number Emax, which the users can configure, and seek to solve
the problem (informally) defined as follows: identify, from the collection graph, the Emax most
interesting entities (if there are at least Emax), otherwise, return all that can be found. As an

1 <top>

2 <page>

3 <result><date>01/01/2021</date><text>My first result</text></result>

4 <result><date>02/01/2021</date><text>My second result</text></result>

5 ...

6 </page>

7 <page> ... </page>

8 ...

9 </top>

Figure 6.2: An XHTML search results, grouped in pages.

88

6.2. MAIN ENTITY SELECTION ALGORITHM

alternative, instead of specifying Emax, users could specify a minimum coverage, where we define
coverage as: the fraction of nodes from the normalized graph, that are comprised in one of the
returned main entities. We denote the user-specified coverage score threshold by covmin.

6.2.1 Naive algorithm

A naive way to produce the set of main entities is to assign to each collection a score (or weight)
cw, and to select the Emax collections having the highest scores. Algorithm 2 formalizes this idea;
we will discuss concrete score alternatives in Section 6.3. First, we initialize cws, an array indexed
on the collection ids and storing the score of each collection (Line 1). Further, for each collection
Ci ∈ C, we compute its score. (Lines 2-3). Next, we iteratively select at most Emax entities or
until the coverage of the selected main entities reaches covmin (Lines 4-10). Those two stopping
criteria help follow requirement (R1), stating that the size of ME should be rather small (recall
Section 6.1). At each step, we select C∗, the next best collection (Line 5), using Algorithm 3.
It takes as input cws, the array of collection scores, and returns the identifier of the next best
collection. First, we fill cands with the set of eligible collections (recall eligibility criteria above)
maximizing the score (Lines 1-4). If there is no candidate, we return −1 to signal it (Line 5). If
there is only one candidate, we return it (Line 7). Otherwise, several candidate collections have the
highest score, therefore a tie occurs. We use the following heuristics to determine which collection
to select among the best candidates:

(H1) The collection with the highest number of children wins the tie (Lines 10-13).

(H2) If (H1) is not sufficiently restrictive, the largest collection in terms of size wins (Lines 15-18).

(H3) If (H1) nor (H2) could help, we select the collection with the lowest id (Line 20)1.

Algorithm 2: Naive main entity selection algorithm

Input: G: a collection graph
Output: ME : the set of main entities found in G

1 cws← []
2 for Ci ∈ C do
3 cws[Ci]← score(Ci)

4 while |ME| ≤ Emax or cov < covmin do
5 C∗← nextCollection(cws)
6 if C∗= −1 then
7 stop

8 else
9 b←boundary(C∗)

10 ME← {(C∗, b)} ∪ ME

If Algorithm 3 could find a candidate for the next main entity, we create it as a new main entity in
ME , i.e., a pair composed of C∗for the root and the boundary computed by any method described
in Section 6.4.1, 6.4.2 or 6.4.3.

1We could take any other heuristic, e.g., the collection with the largest id; the important thing is to make a
deterministic choice and do not select a collection randomly.

89

CHAPTER 6. DATA ABSTRACTION

Algorithm 3: Next collection selection method

Input: cws: an array of scores
Output: id: a collection id

1 cands← {}
2 for cand ∈ argmax all(cws) do
3 if isEligible(cand) then
4 cands← cands ∪ {cand}

5 if |cands| = 0 then
6 return −1

7 else if |cands| = 1 then
8 return cands[0]

9 else
10 children← count children(cands)
11 winnerNbChildren← argmax all(children)
12 if |winnerNbChildren| = 1 then
13 return winnerNbChildren[0]

14 else
15 nodes← count nodes(cands)
16 winnerNbNodes← argmax all(nodes)
17 if |winnerNbNodes| = 1 then
18 return winnerNbNodes[0]

19 else
20 return cands[min(cands.indexes)]

90

6.3. SCORES

6.2.2 Greedy algorithm

The naive approach to select main entities (Algorithm 2 in Section 6.2.1) is rather limited because
it does not reflect that some collections have already been reported. Indeed, collection scores are
computed only once (at the beginning), thus the naive algorithm always decides what is the next
main entity based on the initial set of scores, which becomes gradually obsolete as long as main
entities are selected.

Therefore, we propose a greedy approach, leveraging the intuition that making locally optimal
choices at each step of the algorithm will produce more sound results. The idea of this greedy
approach is implemented through Algorithm 4. The major difference with the naive approach
(Algorithm 2) lies in the graph update and scores re-computation after each main entity selection.
The intuition behind the graph update task (Line 11) is to identify the next main entity as if “all
the data nodes and edges that are part of the previously selected entities where not in the data”.
Indeed, previously selected main entities are already part ofME , thus they are not useful anymore
in the decision of the next best collection to select. Making graph updates after each main entity
selection involves a score re-computation because some data is now excluded from the data graph,
thus the collection graph will change (Line 13). Note that the rest of the algorithm is the same as
in Algorithm 2.

Algorithm 4: Greedy main entity selection algorithm

Input: G: a collection graph
Output: ME : the set of main entities found in G

1 cws← []
2 for Ci ∈ C do
3 cws[Ci]← score(Ci)

4 while |ME| < Emax or cov < covmin do
5 C∗← nextCollection(cws)
6 if C∗= −1 then
7 stop

8 else
9 b← boundary(C∗)

10 ME← {(C∗, b)} ∪ ME
11 graphUpdate()
12 for Ci ∈ C do
13 cws[Ci]← score(Ci)

6.3 Scores

In Section 6.2, we presented two algorithms (Algorithms 2 and 4) to produce ME , the set of main
entities. Those algorithms both rely on scores assigned to collections, which can be computed
in several ways. We first define simple scores in Section 6.3.1, and we discuss their limitations.
Next, we define more elaborate scores, based on a notion of data weight in Section 6.3.2, and the
well-known PageRank algorithm [136] in Section 6.3.3.

91

CHAPTER 6. DATA ABSTRACTION

6.3.1 Simple collection scores

We start with considering some very simple scoring techniques.

Roots

Following the intuition that “children collections belong to their parents”, e.g., title belongs to
paper, the root method assigns a score of 1 for root collections, 0 to others. Formally, we have:

Definition 6.3.1 (Root score)

Given a collection Ci ∈ C, its root score is:

{
1 in degree(Ci) = 0

0 otherwise

Such a score would suggest the root(s) of the collection graph as main entities. However, this may
be inapplicable: the collection graph may have no root if it is cyclic, as in Figure 5.4.

Node count

We could select collections with the highest number of nodes (recall collection size in Sec-
tion 5.3.1), based on the intuition that they cover a large part of a dataset. This may also be
inappropriate in some cases, e.g., in Figure 5.4, the name collection is the largest, because it con-
tains both people names and conference names, but name says very little of what the dataset is
about. Moreover, in case of regular data, when each record tends to have one child of a given kind,
the collection containing the records will have the same score as a collection containing children of
these records. For instance, in Figure 4.5, all papers have a title; thus, there are as many title

nodes and title value nodes as paper nodes. This score does not give a sufficiently strong signal
to help selecting main entity roots.

Child count

Another intuition is that important entities are likely to have many attributes. Thus, we can select
collections having the largest number of children in the collection graph. We define this score as
follows:

Definition 6.3.2 (Child count score)

Given a collection Ci ∈ C, its number of children score is |{Cj |Ci → Cj∀Ci, Cj ∈ C}|.

For instance, C14, the author collection, has four children: name, email, affiliation, and hW, thus
obtains a score of 4. This method, however, does not account for deeply nested structure, e.g., the
affiliation has several nested children.

Descendant count

In order to account for potentially deeply nested attributes, we can select collections having the
largest number of descendants. We call this method desck and define it as follows:

92

6.3. SCORES

C0(1)
root

C1(2)
metadata

C2(2)
dataset

C3(2)
origin

C4(2)
editor

C5(2)
#val

C6(1)
papers

C7(100)
paper

C8(100)
title

C9(100)
#val

Figure 6.3: A collection graph showing desck limitations.

Definition 6.3.3 (Descendant count score)

Given a collection Ci ∈ C and an integer k > 0, its number of descendants score at depth
k is:

desck(Ci, k) = |descendants(i, k)|

considering that the descendants of a node at a depth k is defined as follows:

Definition 6.3.4 (Limited-depth descendant count)

Given any graph, the descendants of a node i at depth k is the set of nodes j such that
there exists a path in the graph from i to j without any in-cycle edge and containing at most k
edges, i.e.,

descendants(i, k) = ∀j ∈ [0, |N |[,∀p ∈ P [i][j]s.t.|p| ≤ k,
⋃
e∈p
{Ci, Cj}

In practice, we have experimented with k ∈ {1, 2, 3}, leading to the scores desc1, desc2, desc3.
However, a score based on the number of descendants may rapidly become unfair depending on
the dataset structure. Indeed, it will favor collections with deep structures, even if they do not
carry much of the data. For instance, Figure 6.3 shows a collection graph obtained from an XML
document describing scientific publications. For each collection, we show its id, name and size (the
number in parenthesis). desc3 would select the collection C1 of metadata nodes. Observe that C0

is not eligible because it represents only one node and C6 is also not eligible because it acts as a
container. In this example, desc3= 4 for metadata, while it values only 2 for paper. Nevertheless,
this does not seem to be a wise choice, especially considering the information brought by the 100
papers. It also contradicts our requirement (R2) to select main entities representing most of the
dataset (recall Section 6.1).

Leaf descendant score

Instead of counting all descendants, we can count only leaf descendants. This variant, denoted
leafk, for some integer k, relies on the assumption that data content in leaf (value) nodes (paper
titles, paper author names, etc.) is more important than the structural nodes which only serve to
“organize” the values. leafk assigns to a collection a score equal to the number of leaf collections
reachable at distance at most k. Similarly, k ∈ {1, 2, 3} leads to the score functions leaf1, leaf2,
leaf3, respectively.

93

CHAPTER 6. DATA ABSTRACTION

Definition 6.3.5 (Leaf descendants score)

Given a collection Ci ∈ C and an integer k > 0, its leaf descendants score at depth k is:

leafk(Ci, k) = |{n|∀n ∈ descendants(Ci, k) ∧ isLeaf(n)}|

From now on, we only consider the descendant count score desck, and the score based on the leaf
descendant count, leafk. This is because other scores do not reflect at all the data depth and
collection graph complexity, thus contradicting our requirement (R2).

6.3.2 Scores by DAG propagation

In Section 6.3.1, we have defined methods mostly accounting the structure of the data (how many
children?, how many descendants?, etc.). However, data and collection graphs may have various
shapes and may not be always well-balanced. Therefore, and to meet requirement (R2), specifying
that the final set ME should reflect where the data is, we define more elaborate scores, based on
the notion of data weight, introduced below.

We start by defining the own data weight of a node as follows:

Definition 6.3.6 (Node own data weight)

Given a node Ni ∈ G, its own data weight ow(Ni) is the number of edges incoming n:

ow(Ni) = in degree(Ni)

In tree data, ow is equal to 1. Otherwise, ow may be greater than 1. This is the case for RDF
literals that are the value of several triples, XML nodes being the identifier of some references (recall
ID-IDREF connections in Section 4.1.2), and JSON maps in collections that have been merged due
to their common keys (recall Section 4.1.3).

We can now define a collection’s own data weight as follows:

Definition 6.3.7 (Collection own data weight)

Given a collection Ci ∈ C, its collection own weight ow(Ci) is the sum of the own data
weights of nodes it represents:

ow(Ci) =
∑
Nj∈Ci

ow(Nj)

We have devised an algorithm, called wDAG(Algorithm 5), in which leaf collections transmit their
own data weight back to all their ancestors, along ancestor-descendant paths that do not overlap
with cycles in the collection graph. Before applying wDAG, we proceed to some initialization. First,
we compute the ow of each L -leaf data node Ni ∈ G. Leaf structural nodes, e.g., RDF resource
nodes without outgoing edges, XML elements without children, or JSON empty maps or arrays, get
an ow of 0, following requirement (R2). Then, each L -leaf collection node gets its ow computed

94

6.3. SCORES

C0

paper

C3

abstract

C4

#val

C1

year

C2

#val

C5

title

C6

#val
C11

wB

C12

hW

C7

pIn

C13

inv

C14

author

C8

conf

C9

name

C10

#val

C23

date

C24

#val

C15

email

C16

#val

C17

affiliation

C18

university
C18

university
C19

city
C20

#val

C21

campus
C22

#val

1

1

1
1

1

1 1

1

1 1

1

1 1

0.33

1 1

0.4

0.
6

1

1 1

1

1 1 1
1

1

1

6

2

2 1

3

3 0

0

0

0

10

4 2 2

5 5

3 3

4 4 2 2

22

Figure 6.4: The wDAG propagation on the collection graph.

as the sum of leaf nodes ow in that collection. Next, the collection weight of a collection Ci,
cw(Ci), is initialized to ow(Ci) for L -leaf collection nodes, 0 for others. Algorithm wDAG leverages
the total path transfer factor (recall Section 5.3.3) between a leaf collection and one if its ancestors
(Line 3). A collection i gets its cw(i) increased only by acyclic paths connecting it to one of its
descendant collections k. It is worth noting that the highest the tptf , the more L -leaf collection
weights are reflected in their ancestors.

Algorithm 5: wDAG
Input: G: a collection graph
Output: cw: a set of scores for each node in G

1 foreach L -leaf collection Ck ∈ G do
2 foreach collection Ci ∈ G do
3 cw[Ci]← cw[Ci] + ow[Ck] ∗ tptf [Ci][Ck]

Figure 6.4 shows the wDAG propagation on our collection graph in Figure 5.4. For each collection
node, we indicate, in the attached circle, its collection weight cw. Observe how collections having
only outgoing edges in cycles, i.e., C7, C11, C12, C13, have a cw of 0. This is because they cannot
get any data weight from any leaf collection.

The main limitation of wDAG is its failure to propagate scores through cyclic edges. For instance, in
the collection graph of Figure 5.7, the wDAG collection weight of the collection labeled content score
does not reflect all the text values ow because some paths connecting these two collections contain
collection edges involved in cycles. In particular, only the text values that have a grandparent

95

CHAPTER 6. DATA ABSTRACTION

labeled content will be reflected. Note that cycles are very frequent in graphs, e.g., in RDF and
property graphs, thus they may appear in the respective collection graphs; also, the collection graph
may be cyclic even if the data is tree-structured (recall Section 5.3.4).

6.3.3 Scores using PageRank

To escape the main limitations of simple and the wDAG scores, we have devised two scoring methods
based on PageRank [136], a well-known algorithm used to compute weights (or scores) in a graph
based on propagation along edges, regardless of the structure of the graph. PageRank has been
initially introduced by Google’s search engine in order to rank Web pages, and thus Web search
results.

The main intuition of PageRank is the following: given a directed graph, a node is itself important
if it is pointed by a large number of important nodes (note the recursive definition). In the context
of Web searches, the PageRank score of a Web page n is the probability that a random user will
arrive on n after a large number of random traversal steps on the graph, following Web links as
directed graph edges. Indeed, the more important a page is, the higher the probability a user
reaches it is. Importantly, PageRank scores reflect only the graph topology and are independent
of any context, such as a Web query or the graph node weights.

Algorithm 6 recalls the PageRank algorithm from the literature [3]. Given a directed graph with a
set of initial node weights and a set of edge weights, it computes the PageRank score of each node in
that graph. PageRank propagates initial node weights in an iterative manner, meaning that node
weights are propagated to their direct neighbors at each iteration. PageRank stops its propagation
when node weights have stabilized or after a certain number of iterations. Formally, the algorithm
takes two inputs: P , a square matrix of edge weights, and U , a square matrix of node weights. Both
P and U are computed based on an input directed graph and are both indexed on that graph nodes
(see below for P and U initialization). The algorithm yields v, a vector of PageRank scores, one
for each node in the graph. The algorithm starts with main structures initialization (Lines 1-4):

• v is a vector indexed on node ids and stores the current PageRank score of each node;

• oldV is a copy of v and stores the PageRank scores of the previous iteration;

• M is a square matrix, of same dimensions as P , and is used to compute matrix multiplications
at a given iteration;

• d is a probability between 0 and 100%, typically set to 15%, modeling the probability to
randomly jump to another node in the graph;

• iter is an integer counting PageRank iterations;

• k is the maximum number of iterations allowed before PageRank stops (typically set to 100);

• maxChange is the maximum difference observed for each v[i] and oldV [i] for any 0 ≤ i < |v|;

• σ is the change threshold, typically set to 10−6, under which convergence is declared.

Next, we compute M , the square matrix modeling the different choices the algorithm can make at
each iteration (Line 5). It can follow graph edges outgoing the current node, with a probability
of 1 − d; this corresponds to the left arm of the sum in Line 5 and allows to naturally handle
graph cycles because node weights are propagated on directed neighbors only. Otherwise, with a

96

6.3. SCORES

probability of d, it can jump to another random node in the graph, such that each node in the
graph has a uniform probability to be chosen as the destination of the jump. This corresponds to
the right arm of the sum and helps PageRank to visit all parts of the graph, even the disconnected
ones. Rootless and multiply-rooted graphs are also of no problem for PageRank as weights are
propagated all over the graph and in all directions. The iteration process can now start for at most
k iterations or until convergence (Line 6), defined as the point where a new iteration brings only
a very small change to the vector of node scores. A standard value for PageRank convergence is
σ = 10−6, that is, scores should not change by more than σ of their value. Each iteration repeats
four steps. First, the matrix v of current PageRank scores is stored in oldV . Then, v is updated by
multiplying it by M , the transition matrix saying whether to follow graph edges or jump to random
nodes. Then, the change between each element in v and oldV is computed; the maximal value is
kept in maxChange. Finally, the number of iterations is increased by 1.

Algorithm 6: PageRank

Input: U : a matrix of node weights, P : a matrix of edge weights
Output: v: a vector of PageRank scores

1 v, oldV ← []
2 M ← [][]
3 d← 0.15; iter ← 1 ; k ← 100 ; maxChange← 1
4 σ ← 0.000001

5 M ← (1− d)× PT + d× U
6 while iter ≤ k ∧maxChange ≥ σ do
7 oldV ← v
8 v ←M × v
9 maxChange← maxV alue(v − oldV)

10 iter ← iter + 1

PageRank-based scoring

Our first PageRank-based scoring, denoted wPR, leverages the PageRank algorithm. Algorithm 7
details how wPR works; it can be applied on any graph g, including G and G.

First, the matrices U and P of node and edge weights are computed following the literature [3].
For node weights (Lines 2-4), U is filled with the value 1

|N | (for all cells). This models the fact

that users may start their walk on any node in the graph with a uniform probability. The initial
value used to set any U [i][j] should be wisely defined in order to let the algorithm converge as
rapidly as possible. Indeed, one can set this value to any positive value, e.g., 0.1, 1, 1000, the
further the initial value is from the optimal value, the longer the convergence is. Therefore, the
literature recommends initializing node weights to 1

|N | . For edge weights (Lines 5-10), it goes as

follows. For two nodes Ni, Nj ∈ g, P [i][j] = 1
|out degree(Ni)| if there exists an edge from Ni to Nj , 0

otherwise. This initialization ensures two properties: (i) the matrix is stochastic, i.e., all rows sum
to 1, and (ii) all Ni’s neighbors have a uniform probability to be chosen when the random user is
on Ni. The PageRank initialization for edge weights could stop here, but a problem arises with
nodes having no outgoing edges (typically called sink nodes): such nodes cannot propagate any
weight. The PageRank algorithm treats each sink Ni as follows: |N | artificial edges are created,

97

CHAPTER 6. DATA ABSTRACTION

connecting Ni to each Nj ∈ g and their edge weight is P [i][j] = 1
|N | (Lines 11-13). This models a

uniform probability to move to any other node in the graph for all sink nodes.

Algorithm 7: wPR

Input: g = (N,E): a graph
Output: scores: a set of scores for each node in g

1 P,U ← [][]
2 for i ∈ {0, 1, ..., |N |} do
3 for j ∈ {0, 1, ..., |N |} do
4 U [i][j]← 1

|N |

5 for i ∈ {0, 1, ..., |N |} do
6 for j ∈ {0, 1, ..., |N |} do
7 if Ni → Nj ∈ g then
8 P [i][j]← 1

out degree(Ni)

9 else
10 P [i][j]← 0

11 if out degree(N [i]) = 0 then
12 for j ∈ {0, 1, ..., |N |} do
13 P [i][j]← 1

|N |

14 scores← PageRank(U,P)

We apply Algorithm 7 on the collection graph with reverse edges, denoted GR, in order to let leaf
collection nodes propagate their importance to non-leaf collection nodes. Finally, the set of rankings
that PageRank computed is exactly the set of collections scores (Line 14). Figure 6.5 shows the
wPR propagation applied on the reverse collection graph (note the inverse collection graph edges);
numbers on edges are PageRank edge weights. The circle attached to each collection node shows
the wPR score, shorten after 3 decimals. Note how two nodes at the same “position” in the graph
obtain the same score. For instance, leaf collection nodes, e.g., C2, C4 and C22, all obtain a score
of 0.006. Similarly, parent collections of leaf collections all obtain a score of 0.011. Note that the
sum of collection weights equals 1. Finally, observe that, starting from a collection node, there is
equal chance to walk on each outgoing edge. For instance, from C9, there is equal chances to go to
C8 and C14.

Data-weighted PageRank-based scoring

The above method presents a score based solely on the graph topology (recall how nodes at the
same position in the graph have same PageRank score and how there are equal chances to go on all
neighbors of a node). However, the data weight, as described in Section 6.3.2, plays an important
role in the task of assigning good scores to graph nodes, typically collection nodes. Also, not using it
contradicts our requirement (R2) of selecting entities which cover a large part of the dataset (recall
Section 6.1). Therefore, we devise a new method, namely wdw−PR (data-weighted PageRank), which
addresses this problem and which applies to the reverse collection graph GR (not to any graph, as
for wPR). For that method, one could think of initializing the PageRank node weights with ow,

98

6.3. SCORES

C0

paper

C3

abstract

C4

#val

C1

year

C2

#val

C5

title

C6

#val
C11

wB

C12

hW

C7

pIn

C13

inv

C14

author

C8

conf

C9

name

C10

#val

C23

date

C24

#val

C15

email

C16

#val

C17

affiliation

C18

university
C18

university
C19

city
C20

#val

C21

campus
C22

#val

.169

.011

.006

.011

.006

.011

.006

.079 .086

.011 .006

.078

.149 .078

.170 .011 .006

.027 .024 .011 .006

.011.006

.011 .006

1

1

1
1

1

1

1

.5

1 1

1

1 1

.5

1 1

.5

.5

1

1 1

1

1 1 1

1

1

Figure 6.5: The wPR propagation on GR, the reverse collection graph.

as defined in Section 6.3.2, and then to let PageRank move them until convergence. However,
this would not work because PageRank final node scores are independent of the initial ones, thus
data weights would not be reflected in the final collection scores. Instead, we reflect them in edge
weights; this is why wdw−PR resembles Algorithm 7 in the way it initializes node weights, but not
edge weights. We present wdw−PR in Algorithm 8. It goes as follows:

1. First, each collection node in GR obtains a node weight of 1
|C| (Lines 2-4), as in the literature.

2. Next, in Line 8, for each collection Ci ∈ GR with some outgoing edges, we set the weight of
each outgoing edge Ci → Cj as: the number of data edges represented by the corresponding
collection edge in G, i.e., Cj → Ci, divided by the number of data edges outgoing Ci in GR
(corresponding to Cj in G). Observe that these weights sum to 1 for each Ci ∈ GR, following
the PageRank convention.

3. Otherwise, for each collection Ci ∈ GR without outgoing edges, i.e., sink collection nodes,
wdw−PR creates an edge going from Ci to every other node Cj ∈ GR (Line 11). We assign to
such an “artificial” edge, a weight obtained by dividing the number of nodes in Ci by the total
number of nodes in the graph (artificial edges are also inverted compared to the collection
graph and data edges). Such weights also sum up to 1 for each Ci, following the PageRank
convention.

Observe that we compute GR edge weights from edge (not node) counts. To see why, consider an
address shared by two companies (thus, two incoming edges). Intuitively, each company has this
address, not just half of it. More generally, shared nodes should weigh as many times as they are
shared; this is reflected by counting incoming edges.

99

CHAPTER 6. DATA ABSTRACTION

Algorithm 8: wdw−PR

Input: GR: a reverse collection graph
Output: cw: a set of scores for each collection node in GR

1 P,U ← [][]
2 for i ∈ {0, 1, ..., |C|} do
3 for j ∈ {0, 1, ..., |C|} do
4 U [i][j]← 1

|C|

5 for i ∈ {0, 1, ..., |C|} do
6 if out degree(Ci) > 0 then
7 for j ∈ {0, 1, ..., |C|} do

8 P [i][j]← |Cj→Ci∈G|
|Cj→Ck∈G|

9 else
10 for j ∈ {0, 1, ..., |C|} do

11 P [i][j]← |Ci|
|C|

12 cw ← PageRank(U,P)

Figure 6.6 shows the reverse collection graph and the corresponding PageRank scores in the circles
attached to collection nodes. Observe how edge weights are not all equal for a given collection node,
but are still summing to 1. For instance, starting from C9, PageRank has more chances to go on
C14, than on C8. This is how the data-weight is reflected by wdw−PR: more authors have names
than conferences. Same applies for C14, C11 and C13. Final node weights reflect this: the author

collection has a larger weight than it has with wPR (see Figure 6.5); similarly, the conf collection
has a lower weight than with wPR. When the collection graph contains hundreds or thousands of
collections and/or the dataset is unbalanced, wdw−PR is able to reflect better where the data is
than wPR, as shown in the experimental evaluation in Section 6.9.

6.4 Boundary methods

After assigning scores to collections, the next step in our main entity selection algorithms (Algo-
rithms 2, 4 and 11) is to compute their boundaries. Recall that boundaries correspond to the
sub-graph of collections that “belong to” the main entity. The boundary computation depends on
the method used to assign scores: how collections obtain their scores naturally defines a boundary.
Therefore, we present boundaries for simple scores in Section 6.4.1, for data weights in Section 6.4.2
and for PageRank-based scores in Section 6.4.3.

6.4.1 Boundaries for simple scores

Given a main entity root C∗ elected using desck or leafk methods, its natural boundary represents
all the collection nodes, respectively leaf collection nodes, in the descendants of C∗ far from at most
k edges from C∗. We denote such a boundary bounddesc, respectively boundleaf .

For instance, in the collection graph in Figure 5.4, the bounddesc of C14, when the score is desc2,

100

6.4. BOUNDARY METHODS

C0

paper

C3

abstract

C4

#val

C1

year

C2

#val

C5

title

C6

#val
C11

wB

C12

hW

C7

pIn

C13

inv

C14

author

C8

conf

C9

name

C10

#val

C23

date

C24

#val

C15

email

C16

#val

C17

affiliation

C18

university
C18

university
C19

city
C20

#val

C21

campus
C22

#val

.179

.011

.006

.011

.006

.011

.006

.063 .067

.011 .006

.107

.158 .056

.178 .011 .006

.027 .024 .011 .006

.011.006

.011 .006

1

1

1
1

1

1

1

.66

1 1

1

1 1

.33

1 1

.4

.6

1

1 1

1

1 1 1

1

1

Figure 6.6: The wdw−PR propagation on GR, the reverse collection graph.

author email #val

name #val

hWpaper

affiliationuniversity

Figure 6.7: The bounddesc boundary obtained for the main entity author, based on desc2 scores.

is the (sub-)graph shown in Figure 6.7. One can observe how such boundaries take exactly the
collections that contributed to the main entity. However, they do not take into account the depth
of the data, e.g., the paper main entity is published in a conference which is “incomplete” in the
sense that it stops after the conf collection and not taking, at least C23, C24, C9 and C10 (the
collections of date and name nodes, with their respectively leaf value collections).

6.4.2 Boundaries for DAG weights

For a main entity chosen based on its wDAG score, its natural boundary is the DAG of the de-
scendants of C∗ restricted only to nodes which have contributed to the score of C∗. We denote
those boundaries boundDAG. For instance, Figure 6.8 shows boundDAG for the main entity author:
only collections that contributed to the score of the author collection are in the boundary. Collec-
tions that are descendants of the author collection but did not transmit any weight to it because
they are involved in cycles are not part of the boundary. However, wDAG is able to identify deep
boundaries, on the contrary to boundaries computed for simple scores. For example, the author

collection obtains a boundary composed of C9, C10 and all collections from C15 to C22. The affili-
ation depth would therefore be reflected. However, note that, because wDAG does not cross cyclic

101

CHAPTER 6. DATA ABSTRACTION

author email #val

name #val

hWpaper

affiliationuniversitycity#val

campus#val

Figure 6.8: The boundDAG boundary obtained for the main entity author, based on wDAG scores.

edges, boundDAG does not involve any collections included in a cycle.

6.4.3 Boundaries for PageRank-based weights

When using wPR and wdw−PR, no clear boundary may be defined based on the scores. Indeed,
scores have been propagated globally and iteratively until convergence. Depending on the graph
connectivity, all nodes may have contributed to all other nodes in the graph. Further, the boundDAG
boundary method does not reflect the weight transfers across cyclic paths, thus it is not consistent
with the PageRank propagation principle. Instead, we devise two flooding-style boundary compu-
tation methods, which leverage edges along the paths rooted in C∗. The idea is to go as deep as
possible until finding a collection edge which should not be part of the boundary.

Flooding boundary

In the database literature [145], when an entity has a one-to-one correspondence with another,
they are typically associated, or modeled together. For instance, if each person has at most an
email, that email is considered part of the person. Including only such attributes in the boundary
may be too restrictive, especially if few data nodes break the at-most-one assertion. Therefore, a
second criterion for the flooding is to accept edges having an edge transfer factor above a given
threshold, denoted fmin. For instance, even if some people may have several email addresses, the
email collection would still be part of the boundary of people because the edge transfer factor
between people and emails is 1, meaning that all emails belong to people (the collection is not
shared). We define:

Definition 6.4.1 (Flooding boundary)

The flooding boundary, denoted boundfl, associated to a collection C∗ is the (sub-)graph
rooted in C∗ and encompassing each collection node Ci ∈ C such that:

1. There exists at least one path starting in C∗ and ending in Ci;
2. Among those, each collection edge along at least one such path meets at least one of the

two following conditions:
• It is an at-most-one collection edge;
• Its edge transfer factor is above fmin.

Note that the boundary is defined on the original (not the reverse) collection graph G.

As an example, the flooding boundary of the author main entity corresponds to the collection graph
itself, i.e., it encompasses all collection nodes and edges of G. Indeed, all collection edges are either

102

6.4. BOUNDARY METHODS

at-most-one (in Figure 5.4, the straight ones are) or have an edge transfer factor above fmin, which
we set to 0.8 in our experiments (see Section 6.9).

We make a restriction only in the particular case of collection graphs produced out of XML doc-
uments, we limit the flooding boundary to collection edges that do not represent ID-IDREF data
edges. This allows to not inline (include) the referenced elements into their parents, which may end
encompassing the collection graph entirely.

Acyclic flooding boundary

When computed on a collection graph having cycles, the flooding boundary may accept all nodes
and edges, when everything is reachable from C∗ due to the cycles. In turn, this may include the
whole collection graph in a single entity, which is not desirable.

Therefore, we define boundfl−ac, the acyclic flooding boundary, an improved version of the
flooding boundary which does not traverse in-cycle edges, as follows:

Definition 6.4.2 (Acyclic flooding boundary)

The acyclic flooding boundary, denoted boundfl−ac, associated to C∗ is the (sub-)graph
rooted in C∗ and encompassing each collection node Ci ∈ C such that:

1. There exists at least one path starting in C∗ and ending in Ci;
2. Among those, at least one of such path does not contain any in-cycle edge;
3. Among those acyclic paths, each collection edge along at least one such path meets at least

one of the two following conditions:
• It is an at-most-one collection edge;
• Its edge transfer factor is above fmin.

Similarly, for collection graphs produced out of XML documents, the acyclic flooding boundary does
not traverse collection edges corresponding to ID-IDREF data edges. The acyclic flooding boundary
of the author collection corresponds to the blue area in Figure 6.1, including the author names,
emails and deep affiliations, as well as their respective values. The collection C12 is not included in
C14’s boundary because it is part of the cycles between papers, authors, and conferences.

Alternative: Data-acyclic flooding boundary

The method boundfl−ac may lead to non-intuitive abstractions because the flooding stops as soon
as it encounters a cycle in G. For instance, Figures 5.6 and 5.7 show that an acyclic graph obtained
from an XML document may lead to a cyclic collection graph. Next, say the scoring method selects
the email collection. When its boundary is computed with the acyclic flooding boundary, it stops
when the collection edge ul → li is encountered (because it is involved in a cycle). Therefore, the
boundary of the collection email is clearly missing the collections ul, li and (li) #val, which we
would expect it to be included.

The data-acyclic flooding boundary is based on the following two observations:

• When a cycle in G is also present in G, i.e., the corresponding data edges are also involved in a
cycle, the node may belong to the main entity boundary, or to another main entity boundary.

103

CHAPTER 6. DATA ABSTRACTION

• However, when a cycle in G is not present in G, it seems natural that the corresponding data
should be part of the boundary. Conceptually, if there is no cycle at the data level, there is
no doubt that it should belong to the boundary.

We define the data-acyclic flooding boundary as follows:

Definition 6.4.3 (Data-acyclic flooding boundary)

The data-acyclic flooding boundary, denoted boundfl−dac, is the (sub-)graph rooted in C∗

and encompassing each collection node Ci ∈ C such that:
1. There exists at least one path starting in C∗ and ending in Ci;
2. Among those, at least one path has all its in-cycle edges data-acyclic (if there are some);
3. Among the data-acyclic ones, each collection edge along at least one such path meets

at least one of the two following conditions:
• It is an at-most-one collection edge;
• Its edge transfer factor is above fmin.

6.5 Collection graph update methods

We now present how to reflect, during the main entity selection algorithms, that some main entities
have already been selected, together with their boundaries.

We define two graph update methods; the first one, presented in Section 6.5.1, is to be used
together with simple scores, the other one, presented in Section 6.5.2, is to be used with more
elaborate scores (recall data-weight DAG propagation and PageRank-based scores in Sections 6.3.2
and 6.3.3). By design, the naive and multi-greedy algorithms do not need a graph update step.

6.5.1 Graph update for simple scores

When using a simple scoring method, i.e., desck or leafk, the graph update excludes from the
collection graph all the collections that are involved in the boundary of an already-selected main
entity. Any collection edge having its source or target collection excluded is also excluded from the
collection graph. We call this method boolean graph update and denote it updateboolean.

While simple, this method has a major drawback. When shared collections (whether they are
shallow or deeply shared, recall Section 5.3.1) that are part of a main entity boundary are excluded
from the collection graph, this prevents other collections, that also point to those collections, from
being included in other main entities’ boundaries or to be reported as main entities. For instance,
in Figure 6.1, if the greedy algorithm selects C8, the conf collection, as a main entity, the collection
C9 (among others) will be excluded from the collection graph. Next, when C14 (author collection)
is selected as a main entity, it no longer has the information that author nodes have names: the
name collection cannot be included in the author boundary as it has been previously excluded.

6.5.2 Graph update for weight-based scores

For methods leveraging the data-weight DAG propagation or the PageRank-based scores, where
importance is propagated across the graph, a simple boolean graph update is too limited. Instead,
we devise a data-based update mechanism, which, once a main entity is selected, sets as inactive all

104

6.5. COLLECTION GRAPH UPDATE METHODS

the data nodes and edges that are represented in C∗’s boundary, if they do not contribute to the
weight of nodes outside the boundary.

We call this mechanism exact graph update and denote it a updateexact. Note that it is much
more expensive, given that it needs to examine the whole data graph. Algorithm 9 details it. We
inactivate each data node in the main entity (root) collection C∗(Line 2), and do the same for
all its outgoing edges (Line 4). Next, we call a recursive, breadth-first inactivation, presented in
Algorithm 10, on the target node of the inactive edge (Line 5). The recursive update takes as
input a data node and decides whether it can be inactivated by checking whether all its incoming
edges are inactive (Lines 2-5). If so, the node, and each of its outgoing edges, become inactive,
then recursive calls are made on the targets of these edges. The algorithm continues until all data
nodes and edges in the boundary have been traversed. Finally, the graph update recomputes a new
collection graph, based on the remaining active collection nodes and edges, i.e., those representing
at least one active data node, respectively data edge.

Algorithm 9: updateexact
Input: G: a graph

1 foreach n ∈ C∗ do
2 n.isActive← false
3 foreach edge e of the form n→ t do
4 e.isActive← false
5 recursiveUpdate(t)

6 G ← build()

Algorithm 10: Recursive node update

Input: n: a data node
1 toInactivate← true
2 foreach edge e of the form s→ n do
3 if e is active then
4 toInactivate← false
5 break

6 if toDeactivate then
7 n.isActive← false
8 foreach edge e of the form n→ t do
9 e.isActive← false

10 recursiveUpdate(t)

The exact update could be implemented directly on the stored data, in our case with SQL queries,
or in memory. The former does not require to load the data graph in memory, but suffers from low
speed because, in general, recursive SQL queries are not executed efficiently. The latter is faster,
but requires loading the data graph in memory, which may fail for large graphs. We implemented
both alternatives; in this thesis, we report abstraction times measured when using the in-memory
implementation.

105

CHAPTER 6. DATA ABSTRACTION

We have also introduced two parameters that allow to partially load the graph in memory, together
with a variant of the exact update implementation, based on this partial loading. This may yield
a slightly different set of main entities being selected, due to the variant’s not accessing the graph
completely and simultaneously during updates. Thus, we do not consider this variant further.

6.6 Relationships between main entities

Once the main entities in the collection graph have been identified, we are interested in computing
the set MR of their relationships. We first describe in Section 6.6.1 the algorithm to infer them
fromME , the set of main entities, and the collection graph. Next, in Section 6.6.2, we discuss how
some relationships may contain collections that are worth reporting as main entities.

6.6.1 Relationships identification

For each pair of main entity roots (C∗i , C
∗
j) such that there exists a set of paths from C∗i to C∗j in

the collection graph, we report this set as the set of relationships between C∗i and C∗j . Indeed, two
main entities may have several relationships, e.g., some authors write papers, which are themselves
written by those authors, as in Figure 5.4. Each single relationship from C∗i to C∗j can be labeled
with the corresponding path label (as defined in Section 5.3.3). For instance, in Figure 1.2, we
have the path person.watches.watch.watch@id.open auction between the main entities of person

and open auction, thus a relationship. In general, their number is moderate if Emax is low, as
outlined in the experimental evaluation (see Section 6.9).

6.6.2 Multi-traversed (non-main) entities

When an abstraction contains several main entities connected by multiple relationships, some (non-
main) collections may be utilized in several relationships. We call such collections multi-traversed
collections. This is, for instance, the case in Figure 6.9, which shows an abstraction built out of
an e-commerce dataset where a set of products is manufactured by different producers and sold
through offers; consumers may leave reviews on them. The greedy main entity selection algorithm
has selected three main entities, those of reviews, offers and producers. Next, two relationships
have been identified, i.e., reviewFor.Product.producer and product.Product.producer.

Among the multi-traversed collections, some deserve to be elected as main entities because they
help the overall understanding of the abstraction and may simplify complex relationships traversing
several collections. This is the case of the Product collection in Figure 6.9a. Relying on [153], we
study how multi-traversed collections should be processed conceptually. When a collection Cj is
pointed by only one collection Ci, Cj “belongs to” Ci, thus is inlined in Ci. Otherwise, when several
collections are pointing Cj , Cj may be viewed as an entity of its own and should deserve to be elected
as a main entity. Therefore, as a post-processing heuristic, the eligible non-main, multi-traversed
collections are promoted to be shown as entities in the abstraction (not just on relationship labels).
For instance, in Figure 6.9b, the collection of Product nodes has been promoted; reviewFor, product
and producer are not eligible.

We now explain when such multi-traversed (non-main) entities exist. In our example, products are

106

6.7. ALTERNATIVE: MULTI-GREEDY ALGORITHM

Review

Offer

Producer

reviewFor.Product.producer

product.Product.producer

(a) Three elected main entities with their relationships
in a dataset about e-commerce.

Review

Offer

Product Producer
reviewFor

product

producer

(b) The abstraction after the multi-traversed en-
tity is promoted as a main one.

Figure 6.9: Illustration of an abstraction before and after the election of multi-traversed non-main
entities as main ones.

not elected because each single product is involved in an offer or a review. Thus, the algorithm
elects offers and reviews first as they have a larger score. Next, the graph update makes inactive
the collection of products as all products have been individually inactivated. Further, the collection
of producers is reported because it still has some weight due to some producers that are not
referenced in any product. Finally, the relationships are computed and the post-processing heuristic
identifies the collection of products as a main entity. Therefore, it is promoted as a main entity
and relationships are re-computed. More generally, consider two (or more) paths cpi, cpj of the
form Ci1 → ... → Cim and Cj1 → ... → Cjn connecting main entity root collections at the paths’
extremities. No restriction about distinctness applies to collections in cpi, respectively cpj , e.g., Ci1
may equal Cj1 , and so on. Therefore, one, two, three or four main entities may be connected by
these two paths. In Figure 6.9a, we have Ci1 = Review, Cj1 = Offer and Cim = Cjn = Producer. A
(non-main) collection Cz that is present both in cpi and cpj exists if the following two conditions
are true:

• All nodes in Cz are only pointed by nodes present in Ci1 and Cj1 ;

• Cim and/or Cjn are still active; this happens in two cases:

– They have nodes pointed by nodes in other collections, which are not in cpi nor cpj ;

– Or they have nodes not pointed by nodes in Ci1 nor Cj1 .

6.7 Alternative: multi-greedy algorithm

In Section 6.2, we presented two algorithms, the naive and greedy ones, which both leverage the
multi-traversed collections post-processing heuristic (recall Section 6.6.2). Those collections do not
have the chance to be elected because they are totally included in the boundary of their ancestors,
something the heuristic lifts by reporting them. Yet, it may elect multi-traversed collections even
though their score were low compared to others, thus decreasing their legitimacy regarding other
selected collections. Also, in case of data-weight and PageRank-based scores, a main entity may
have been chosen due to this multi-traversed collection, which increased its score. If the heuristic
further promotes that multi-traversed collection, the reason for choosing that main entity becomes
weaker.

To lift the above-mentioned limitations, we introduce an alternative algorithm which selects several
main entities at a time. We call it multi-greedy algorithm and present it in Algorithm 11. The idea

107

CHAPTER 6. DATA ABSTRACTION

is to select, at each iteration of the greedy, a pool tops, of size top, of eligible collections maximizing
the current scores (Lines 6-13). Selecting several, i.e., top, main entities at a time allows to elect the
best-scored collections, even though they were fully included in their ancestors. Next, if the pool
is empty, meaning that no collection is eligible anymore, the algorithm stops. Otherwise, for each
collection in the pool, its root is set, and its boundary is computed (Lines 17-19). In this algorithm,
we do not need a graph update because several collections are selected at a time to avoid inlining
too many collections, something that the exact graph update was made for. The algorithm stops
when Emax main entities have been elected, or when a sufficient data coverage is achieved.

Algorithm 11: Multi-greedy main entity selection algorithm

Input: G: a collection graph, top: a positive integer
Output: ME : the set of main entities found in G

1 cws← []
2 tops← ∅
3 for Ci ∈ C do
4 cws[Ci]← score(Ci)

5 while |ME| < Emax or cov < covmin do
6 i← 0
7 for i ≤ top do
8 C∗← nextCollection(cws)
9 if C∗= −1 then

10 stop

11 else
12 tops← tops ∪ { C∗}
13 i← i+ 1

14 if |tops| = 0 then
15 stop

16 else
17 for t ∈ tops do
18 b← boundary(t)
19 ME← ME∪{(t, b)}

When top = 1, Algorithm 11 behaves like the naive one (Algorithm 2). When top = Emax,
Algorithm 11 selects directly the final set of main entities. In this case, shared collections are
not inlined in other main entities’ boundaries; instead, they are all elected as main entities, which
lifts the problem that the had-hoc heuristic for multi-traversed entities was trying to solve. When
(Emax mod top) > 0, a pool of some main entities will be greedily reported, until Emax is reached.
Note that we may report some more collections that what specified with Emax, specifically Emax
mod top additional collections.

108

6.8. MAIN ENTITY CLASSIFICATION

6.8 Main entity classification

Now that we have selected a few main entities and identified their relationships, we aim at clas-
sifying each main entity among a set of semantic classes, or categories. Indeed, they may
have user-friendly labels, such as conf, paper and author in Figure 6.1, but this is not always the
case as shown in our experimental evaluation in Section 6.9.

To assign a semantic class to a main entityME i ∈ME , we describe in Section 6.8.1 a set of semantic
resources as well as embeddings to assign toME i a realistic and easy-to-understand category. Next,
in Section 6.8.2, we detail our classification algorithm, which assigns a semantic class to each main
entity. Finally, we discuss in Section 6.8.3 alternatives to further add in the classification algorithm.

6.8.1 Semantic resources

We define a set of categories K, e.g., Person, GeographicalLocation, Restaurant, and a set of prop-
erties P that are associated to categories as follows:

• For each property p ∈ P, the set domain(p) ∈ K describes categories to which one belong if
one has the property p. For instance, domain(birthDate) = {Person} states that if one has
a property birthDate, it may be classified as a Person.

• Similarly, the set range(p) ∈ K describes categories to which the values of p belong; for
instance, range(birthDate) = {Date}.

Defining few core concepts and their associated properties

To populate K and P, users may have in mind few (generic) concepts/categories, e.g., Person,
Location, Organization, and some properties associated to them, e.g., name, address and age for
Person. We manually identified seven categories and few corresponding properties:

• Person, to which we have associated 40 properties including name, address, age, worksFor;

• Location, to which we have associated 31 properties including language, latitude, landscape;

• Organization, to which we have associated 30 properties including name, logo, rating;

• Creative Work, to which we have associated 20 properties including name, rating, publisher;

• Event, to which we have associated 23 properties including name, organizer, location;

• Product, to which we have associated 29 properties including name, quantity, price;

• Thing, which is a general category that we will assign to main entities that do not fall in one of
the six specific categories described above. No specific properties are associated to the Thing

category as this is a default category.

Note how some properties belong to several categories, such as name and rating. In total, we
obtained 101 distinct properties by looking at Wikidata, Schema.org and XMLNS FOAF. We
denote by Pk the set of properties associated to the category k ∈ K.

109

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://schema.org
http://xmlns.com/foaf/spec/

CHAPTER 6. DATA ABSTRACTION

1 <yago:EmmanuelMacron> <rdf:type> <yago:Person> .

2 <yago:EmmanuelMacron> <yago:nationality> "French" .

3 <yago:EmmanuelMacron> <yago:spouse> <yago:BrigtitteMacron> .

Figure 6.10: A set of RDF triples describing the RDF entity Emmanuel Macron.

Extending core concepts and properties with knowledge bases

The manual identification of categories and properties leads to a very tiny set for both, which is
not sufficient to correctly classify most of the main entities. Therefore, we leverage knowledge bases
(recall Section 2.6) to augment them in terms of quantity (number of categories and properties)
and quality (a large number of properties per category).

First, we need to anchor our core concepts to KB classes. Given a knowledge base B, we map
each core concept to a few classes from B, using word distance, e.g., Word2Vec [125]. For instance,
our category Location is mapped to http://dbpedia.org/ontology/Place and schema:Place, re-
spectively from the DBPedia [18] and YAGO4 [138] knowledge bases. We add to K the B classes
thus obtained.

Next, we need to acquire properties for categories in K using KBs. Given B and a category
k ∈ K, the set of properties Pk likely to be associated with k is obtained using Equation 6.1.

Pk = {r | 〈a〉〈r〉〈b〉 ∈ B ∧ 〈a〉〈rdf:type〉〈k〉 ∈ B} (6.1)

For example, triples in Figure 6.10, which have been extracted from YAGO4 [138], lead to the
addition of nationality and spouse to the set PPerson.

Further, to continue expending the set of categories K and their associated properties, we acquire
K categories and P properties from GitTables [94]. GitTables is a repository of 1.5M ta-
bles extracted from CSV files in GitHub. GitTables has been populated using SHERLOCK [95],
a state-of-the-art deep-learning based semantic tag annotation technique for a collection of values.
For each attribute name encountered in a table, it provides candidate properties from DBPedia [18]
and/or Schema.org. For instance, the attribute name “impact factor” is associated to the DB-
Pedia property http://dbpedia.org/ontology/impactFactor, while “actor” is associated to the
Schema.org schema:actor property. GitTables also provides the domain and range sets correspond-
ing to these properties. Each property in GitTables is a candidate to be added in P; similarly, each
category in the domain of a GitTables property is a candidate to be added in K. For instance,
Figure 6.11 shows the GitTable’s entry for gender. Therefore, schema:SportsTeam would be added
to K (schema:Person is already in K, following the anchoring of our core concepts in KB classes);
gender would be added to PPerson and Pschema:SportsTeam.

Dealing with worthless properties

The acquisition of properties using knowledge bases and GitTables may retrieve properties contain-
ing inaccurate information or being very general: we call them worthless properties. For example,
an erroneous information is represented by the triples 〈Emmanuel Macron〉〈rdf:type〉〈Organization〉
and 〈Emmanuel Macron〉〈birthdate〉〈1977〉. Indeed, Organization resources do not have a birthdate.

110

http://dbpedia.org/ontology/Place
http://dbpedia.org/ontology/impactFactor

6.8. MAIN ENTITY CLASSIFICATION

1 {
2 "id": "schema:gender",

3 "label": "gender",

4 "description": "Gender of something, typically a Person",

5 "domain": ["schema:Person", "schema:SportsTeam"],

6 "range": ["schema:GenderType", "schema:Text"]

7 }

Figure 6.11: The GitTable entry for the property gender.

This happens because knowledge bases such as Wikidata are collaboratively created, which can lead
to errors. Moreover, we might get some properties which are common for all the categories in K,
thus are not very useful to classify a main entity in a unique category. For example, the property
Google Knowledge Graph ID has been retrieved for each core category in K. Therefore, we score
retrieved properties and rank them to select only the ones with the highest scores.

We define the category score, measuring how frequent a property is in a given category, as follows:

Definition 6.8.1 (Category score)

Given Pk the set of properties retrieved for a category k ∈ K from a knowledge base B, the
category score of a property p for a category k is:

c score(p, k) = |{a|〈a〉〈p〉〈b〉 ∈ KB ∧ 〈a〉〈rdf:type〉〈k〉 ∈ B}|

such that 0 ≤ c score(p, k) ≤ ∞.

Intuitively, a property which appears only few times in B is less likely to be relevant than a property
which appears very often. For example, the pair (birthdate, Organization) obtains a low c score
since only a few Organization resources have a birthdate in B. Inversely, a property such as ISBN

will have a high c score since almost each Organization has an ISBN number.

Next, we look for very general properties by introducing the inverse category score: this quan-
tifies how unique a property is for distinguishing categories. Formally, we have:

Definition 6.8.2 (Inverse category score)

Given Pall = ∪k∈K{Pk} the set of set of properties retrieved for each category k ∈ K according
to Equation 6.1, the inverse category score of a property p is:

ivc score(p) = log

(
1 + |K|

1 + |{Pk | p ∈ Pk,Pk ∈ Pall}|

)
such that 0 ≤ ivc score(p) ≤ ∞.

Concretely, a property p appearing in all sets Pk ∈ Pall will get ivc score(p) = 0 because log(1) = 0.
A property p appearing in only one Pk will get a high score. For example, the property Google

Knowledge Graph ID gets a low score because it participates to all categories in K. Inversely, ISBN
gets a high inverse category score because it appears only for Organization resources.

111

CHAPTER 6. DATA ABSTRACTION

C∗ C∗ properties

P
p

domain(p)
range(p)

C∗ kind
name(s)

dpi
collection-label
profile of C, dpi

compare

K k

vote to
classify ME i

as k

l compare

classify ME i
as winner
class k∗

Figure 6.12: Outline of the classification algorithm.

Finally, after defining the category score c score and the inverse category score ivc score, we define
the score of a property p for a category k as the product of the category score and the inverse
category score:

Definition 6.8.3 (Property score)

Given a property p, and a category k ∈ K, the property score of p in k is:

score(p, k) = c score(p, k) ∗ ivc score(p)

For each category k ∈ K, we score the properties in decreasing order of score and retain the top-m
Pmk properties. For each p ∈ Pmk , we set its domain as being {k} and its range as being range(p),
if the range is available from B, ∅ else. Each such property is added to P and categories in the
domain of p that are not yet in K are added to it.

6.8.2 Classification algorithm

Algorithm 12 details the classification of a main entityME i in a category from K. Its main steps are
also outlined in Figure 6.12; solid arrows connect associated data items and trace the classification
process, while dotted arrows go from a set to one of its elements.

To assign a semantic class to a main entity ME i ∈ ME , we leverage four different signals:

1 The main entity root kind name(s), if available (recall Section 5.1);

2 The ME i’s records labels;

3 The labels of first-level collections in ME i’s boundary - this corresponds to the main entity
root children;

4 The collection-label entity profiles (recall Section 5.3.1) associated to each pair of a main entity
root and a main entity root child label - this corresponds to the Named Entities extracted
from the values of these root children.

112

6.8. MAIN ENTITY CLASSIFICATION

First and foremost, we initialize S[k] to 0 for each category k ∈ K. This will store the classification
score that each category obtains for the given main entity (Lines 1-2). Next, if ME i has one or a
few kind names, we compute the semantic similarity of each pair of a kind name kn and a category
k (Lines 3-5) using Equation 6.2. This basically computes the similarity between two strings,
by embedding each keyword w they contain in a multidimensional vector e(w), and summing up
the pairwise cosine similarities of these embedding vectors. This rewards semantic similarity, e.g.,
anniversary is considered similar to birth date, even if they are different words. We currently
use the Word2Vec model [125] for this task. The similarity scores thus obtained are added to S[k].

This leverages signal 1 . Further, we compute the word similarity between each main entity record

label and the categories in K to leverage signal 2 (Lines 6-7). Recall that some main entities have
records with all the same label, e.g., XML elements, while others have records having each a distinct

label, e.g., RDF resources. Third, we leverage signals 3 and 4 . For this, we determine the set
dp of data properties of C∗, i.e., the set of collection labels outgoing the main entity root. We
compare each data property dpi ∈ dp, with each semantic property p ∈ P, and assign to each pair
a similarity score. This score, denoted score(dpi, p) and defined in Equation 6.4, reflects:

• The similarity between the names of the properties dpi and p, which is computed using the
word similarity of Equation 6.2;

• Which we possibly average (if there are extracted entities in the leaf values of the data property
dpi) with the entity similarity computed using the Named Entity types found in the values
of dpi (represented in collection-label entity profiles) and the categories in range(p) using
Equation 6.3. This computes entity type overlap as a ratio of the total length of the Named
Entities in the values of dpi to the total length of values of dpi.

w sim(s1, s2) =
∑

wi∈s1,wj∈s2

cosine sim(e(wi), e(wj)) (6.2)

entity sim(Ci, dpi, p) =

∑
k∈τCi,dpi

.l,k∈range(p)(τCi,dpi .l[k])

|range(p)| · τCi,dpi .s
(6.3)

score(Ci, dpi, p) =

{
w sim(dpi,p)+entity sim(Ci,dpi,p)

2 τCi,dpi .l > 0

w sim(dpi, p) otherwise
(6.4)

We retain p as a match of dpi if the similarity score, presented in Equation 6.4, is above a threshold
α (Lines 8-13). Next, each retained property p “votes” toward classifying ME i in any category
k ∈ domain(p), by contributing to S[k] according to Equation 6.5 (Lines 15-16).

Intuitively, this transfers the domain knowledge about P, our semantic properties (recall semantic
resources presented in Section 6.8.1), to the data properties ofME i, in order to apply a soft (quan-
titative) domain reasoning. This mimics the “hard” (logical) reasoning based on RDFS domain
constraints (“if x has a property p and τ ∈ domain(p), then x is of type τ”), but we modulate the
strength of each property’s vote, as follows:

• The higher score(Ci, dpi, p) is, the more the domain constraint(s) of p matter, because it is
more likely that p and dpi mean the same or similar things;

113

CHAPTER 6. DATA ABSTRACTION

• p “splits its vote” equally among all classes in domain(p), to reward properties with few
domain that type more precisely;

• p’s votes are multiplied by the node support, i.e., the percentage of nodes in ME i having
property dpi. The intuition is that the more frequent dpi is, the more the domain typing it
brings.

score(Ci, dpi, p)× supp(dpi, Ci)
|domain(p)|

(6.5)

Based on the computed scores S[k], we classify ME i with the highest-scored category k ∈ K, if
that is well-defined (Lines 19-33). First, we look for the categories achieving the highest score max
(Lines 19-21). If only one category has this score, thus best contains only one element, we classify
ME i with that category. Otherwise, there exist ties and we have to solve them using heuristics.
We proceed as follows:

• First, we check whether there exists a hierarchy between the categories involved in the tie: if
so, we classifyME i using the most specialized category. For instance, if there is a tie between
the categories schema:Hospital and schema:MedicalOrganization and schema:Hospital is a
sub-class of schema:MedicalOrganization, we would classify the main entity as an hospital.

• Otherwise, if the main entity root Ci has a data property labeled with labels typically associ-
ated to identifiers, e.g., id, label, name or designation, and if all the values of this property
contain only Named Entities mapped to a single K category, we classify ME i with that
category.

If the above heuristics do not suffice to classify ME i in a single K category, we assign it the most
general category in K, e.g., Thing in our setting.

6.8.3 Alternatives

As of now, the classification algorithm, presented in Algorithm 12, leverages the set of labels
of collections outgoing the main entity root. When the main entity boundary is complex, e.g.,
involves collections nested several levels deep, the information brought by grandchildren and their
descendants is not used. This means that when a data property does not have a leaf collection
as a child, the associated entity profile is null, thus that data property is compared to semantic
properties only using the word similarity (recall Equation 6.4). This may prevent good classification
results for deep main entities. For instance, in Figure 6.1, the classification algorithm will classify
the collection of authors knowing that they have a name, an email and an affiliation. However,
it would not know that the data property affiliation leads to Organization entities (because
universities can be classified so using their own data properties and collection-label entity profiles).
Therefore, an alternative is to leverage the boundary deep structure of data properties.
This would induce a depth-first traversal of the main entity boundary to classify the main entity
using:

• First, its direct non-deep children, i.e., its data properties and their associated collection-label
entity profiles;

114

6.8. MAIN ENTITY CLASSIFICATION

Algorithm 12: Classifying a collection Ci.

Input: ME i: a main entity, Ci: ME i’s root, P: semantic properties, K: categories
Output: ME i: classified main entity

1 foreach k ∈ K do
2 S[k]← 0

/* 1. compare ME i’s kind names and K categories */

3 if Ci has one or a few kind names kns then
4 foreach k ∈ K, kn ∈ kns do
5 S[k]← S[k] + w sim(kn, k)

/* 2. compare ME i’s records labels and K categories */

6 foreach k ∈ K, l ∈ L do
7 S[k]← S[k] + w sim(l, k)

/* 3. compare ME i’s outgoing properties names and K categories */

8 foreach dpi property of some nodes in Ci do
9 foreach p ∈ P do

10 if τCi,dpi .l > 0 then

11 score(dpi, p)← w sim(dpi,p)+entity sim(Ci,dpi,p)
2

12 else
13 score(dpi, p)← w sim(dpi, p)

14 if score(dpi, p) > α then
15 foreach k ∈ domain(p) do

16 S[k]← S[k] + score(Ci,dpi,p)·supp(dpi,c)
|domain(p)|

17 else
18 score(dpi, p) = 0

/* 4. select the best category for ME i */

19 max← maxk{S[k]}
20 if max > θ then
21 best← argmax all(S)
22 if best has just one element k∗ then
23 Classify ME i as k∗

24 else
25 if ∃ k ∈ best s.t. k is a specialization of all the other best categories then
26 Classify ME i as k

27 else
28 if Ci has an ID-like and its entity profile contains 1 type then
29 Classify ME i as that type

30 else
31 Classify ME i as the most general class in K

32 else
33 Classify ME i as the most general class in K

115

CHAPTER 6. DATA ABSTRACTION

• Then, its direct deep children, which would be classified first, and then the chosen category
would correspond to a “kind of” collection-label entity profile saying that entities of that
category have been found for that (deep) data property.

6.9 Experimental evaluation

We implemented data abstractions in Abstra, a Java software leveraging ConnectionLens [13]
for the graph creation (recall Chapter 4). We experimented on a Linux server with an Intel Xeon
Gold 5218 CPU @ 2.30GHz and 196GB of RAM, and relied on PostgreSQL v9.6 for storing the
data.

We focus our evaluation on JSON, PG, RDF and XML datasets, given their popularity, and
because their complexity make their abstraction more challenging (Section 6.9.1). The questions
we study are:

1. What is the best-performing main entity selection method? (Section 6.9.2);

2. Does this method succeed in identifying the main entities, their boundaries, and the main
relationships in a dataset? (Section 6.9.3);

3. How well does the classification algorithm perform? (Section 6.9.4);

4. How efficiently can abstractions be computed? (Section 6.9.5);

5. How do they compare to inferred schemas? (Section 6.9.6);

Finally, we discuss interesting remarks we found on abstractions in Section 6.9.7.

6.9.1 Datasets, semantic resources, and settings

We evaluated Abstra on JSON, PG, RDF and XML synthetic and real-life, open datasets. Ta-
ble 6.1 shows, for each dataset, the number of nodes and edges in G0 (the graph obtained by loading
the dataset) and the normalized graph G; � indicates synthetic datasets (as opposed to real-world).
Since each RDF edge is labeled, normalization (Section 4.3) adds many extra nodes and edges.

For JSON, we wrote the Researchers dataset generator. Each researcher has a first and last name,
id, H-index, status, gender, age, date of birth, and continent. It also includes: the titles of their
three best papers, and a list of five co-authors (each with a first name and a last name). Real-
life JSON datasets comprise a dataset of commits and push events in GitHub repositories [184],
Prescriptions [192] (medical prescriptions), NYTimes articles [20], three datasets from Yelp [195],
a crowd-source app to review businesses, and bibliographic notices from CoreResearch [181].

For PG datasets, we used two datasets generated based on the LDBC benchmark [64]: LDBCsmall,
used in [34], and LDBC0.3 obtained using the available generator. We also wrote a custom generator
to obtain Movies250K. Each movie has a title, a synopsis, a duration, a year and a number of entries.
Some movies are also typed as sequel. Movie directors have a first and a last name while actors also
have a nationality. Actors and movie directors are also both typed as Person in addition to their
own type. Cinemas have a name and a city. Awards have a label, a year and a boolean indicating
whether it is for international nominations. Each movie is projected in some cinemas at a specific

116

6.9. EXPERIMENTAL EVALUATION

date, and some of them received awards. Each actor has played in some movie(s); for each acting, a
role is associated. Finally, movie directors have supervised the production of one or several movies.

For RDF, we used BSBM [30] and LUBM [82] benchmarks, as well as our generator of graphs about
scientific papers (having a title, a DOI and a year) written by authors (with first name, last name,
affiliation university, birth date, gender, email and honorific prefix) and published in conferences
(with a place, a year, an organizer, and a duration). Authors are also invited in conferences, thus
leading to cycles. We used real-life datasets about: gas and electricity in Italy (EnelShops [182]),
food recipes (Foodista [183]) and NASA flights [190].

For XML, we used XMark [150] documents, modeling an e-commerce scenario where people buy
and sell on products through bids. We also used the real-life PubMed [193], Mondial [189] and
WikiMedia [194] datasets.

For the classification (Section 6.8), we used YAGO4 [138] and WikiData as knowledge bases. We
extracted 565 P properties (on top of the 101 we had manually identified). From GitTables [94],
we derived 4.187 P properties; 3.687 (respectively, 3.898) among them have domain (respectively,
range) statements, involving a total of 810 classes.

Settings Unless otherwise specified, we used the following values, which worked best in our exper-
iments. For the main entity selection algorithms (recall Section 6.2), we set Emax = 5 to select at
most 5 main entities and covmin = 1.0 to get a full coverage of the dataset if possible. For the main
entity classification (Section 6.8), θ = 0.8 to assign a category to a main entity only if the score is
sufficiently high and α = 0.3 to use semantic properties that somehow match data properties.

6.9.2 Quality of the main entity selection methods

We assessed the quality of the main entities ME and relationships MR selected as described in
Section 6.2 through a user study. For this task, we built four dataset samples, one for each data
model, as subsets of datasets in Table 6.1. The samples are small enough (Table 6.2) for users
to inspect them to decide if our abstractions are relevant, yet sufficiently complex to test our
algorithms.

The JSON sample is extracted from the Researchers dataset. The PG sample is extracted from
LDBCsmall. It contains forums, in which posts and comments are posted by people who study or
work at an institution. Each forum, post or comment may have some tags. The RDF sample is
a subset of Conferences. The XML sample is extracted from XMark1. It depicts items to be sold
in auctions, people with nested addresses, some of which are interested in open auctions; there are
also closed auctions. Items for sale have nested descriptions and categories they belong to. There
is also a category hierarchy. As in larger datasets, items are in several continents, e.g., 〈africa〉
and 〈asia〉 XML elements.

We abstracted each sample using 11 methods2 (first column of Table 6.3), each of which pairs a
scoring method (Sections 6.3.1, 6.3.2 and 6.3.3) with a method for determining its boundary (Sec-
tions 6.4.1, 6.4.2 and 6.4.3). The main entity selection algorithm used is the greedy one (Algorithm 4
in Section 6.2). We asked a group of 16 evaluators (graduate and post-graduate researchers) to
rank, for each sample, data abstractions shown as E-R diagrams, where they could click to unfold

2We did not experiment with the data-acyclic flooding boundary nor the multi-greedy main entity selection algo-
rithm because they have been devised at the end of the PhD, after the experimental evaluation has been conducted.

117

CHAPTER 6. DATA ABSTRACTION

Dataset name |N0| |E0| |N | |E|
JSON

CoreResearch 2,112,023 2,112,022 2,112,025 2,112,024
GitHub 5,094 5,093 5,096 5,095
NYTimes 1,053,979 1,053,978 1,053,981 1,053,980
Prescriptions 14,214,033 14,214,032 14,214,035 14,214,034
Researchers � 4,505,657 4,505,656 4,505,659 4,505,658
YelpBusiness 8,111,982 8,111,981 8,111,984 8,111,983
YelpCheckIn 659,653 659,652 659,655 659,654
YelpTips 9,998,068 9,998,067 9,998,070 9,998,069

PG
LDBCsmall � 9,851 43,011 48,621 77,546
LDBC0.3 � 2,306,540 10,907,534 11,890,404 19,167,734
Movies250K � 12,386,250 14,817,871 23,140,245 21,507,996

RDF
BSBM4M � 1,134,834 4,000,740 4,755,392 7,241,116
BSBM16M � 5,344,748 16,038,464 19,870,744 29,051,992
Conferences � 121 184 273 304
EnelShops 14,694 51,639 56,426 83,464
Foodista 190,271 1,019,801 1,162,086 1,943,630
LUBM1M � 248,261 1,035,610 1,076,519 1,656,516
NASA 53,528 99,423 140,540 174,024

XML
Mondial 129,567 135,588 130,756 136,777
PubMed 49,035 49,034 49,037 49,036
XMark1 � 3,392,392 3,392,391 3,392,394 3,392,393
XMark4 � 13,615,551 13,615,550 13,615,553 13,615,552
Wikimedia 1,824,185 1,768,803 1,872,877 1,817,495

Table 6.1: Datasets used in the evaluation.

Dataset name |N0| |E0| |N | |E| |C|
Researchers (JSON) 569 665 684 780 26
LDBC (PG) 445 791 1,082 1,280 78
Conferences (RDF) 145 256 369 448 32
XMark (XML) 847 863 904 920 126

Table 6.2: Datasets used in the user relevance feedback.

118

6.9. EXPERIMENTAL EVALUATION

nested attributes. We asked them to rank them according to what a good abstraction is, which
leads to the following set of questions:

• Does it capture all important entities? Are there spurious entities?

• Are the relationships informative? Do they help understand the entities?

• Do each entity’s attributes logically belong there? Are any attributes missing?

For each abstraction method and sample dataset, Table 6.3 reports the number of times that the
method was ranked first, respectively in the top-3 methods. The (leaf1, boundleaf) is omitted, since
it always leads to an empty abstraction: the only collections with a non-zero score (Section 6.3.1) are
not eligible (recall eligibility criteria presented in Section 6.2). We show in bold the best-performing
method(s) for each dataset.

On JSON, our weight-based methods perform (much) better than the baselines, except (desc3,
bounddesc) which coincides with the weighted methods. All weight-based abstractions of this dataset
led to the same result. In the JSON sample abstraction, we fused the “co-authors” collection with
the one of researchers because they both have similar properties (recall Section 5.2.3). On the PG
sample, again all weight-based methods lead to the same result, and are ranked best; some simple
baselines come close. They compute similar results as the weighted ones, but they either miss the
comment entity (even though important) or report the organization entity, which can be nested
into the person entity. On the RDF sample, users prefer some simple baselines to the weight-
based methods. This is because all weight-based methods included university within the person

entity, given that university only appears there; in contrast, users preferred to see university

as a separate entity. The XML sample, with the most complex structure, lead to more diverse
evaluations. (wPR, boundfl−ac) and (wdw−PR, boundfl−ac) win, followed by (wPR, boundfl) and
(wdw−PR, boundfl). Users downgraded baseline methods, which fail to reflect the complex XMark
structure.

In the Total column, (leaf2, boundleaf) is ranked 1st most often: this method only chooses tuple-
like entities, with named properties having atomic values. The samples used here were simple,
to ease user evaluation. In real-life datasets with hundreds of collections (see Tables 6.4, 6.5, 6.6
and 6.7), (leaf2, boundleaf) can only return Emax such entities, which degrades its coverage. The
methods (wPR, boundfl−ac) and (wdw−PR, boundfl−ac) are close behind in the 1st place ranking,
and they both score best in the top-3 ranking. Based on this, and the remark that only (wdw−PR,
boundfl−ac) leverages both complex graph structure and data cardinalities, from now on, we focus
on the (wdw−PR, boundfl−ac) abstraction method, which performed best in our experiments.

6.9.3 Main entities in all datasets

We now study the main entitiesME and relationshipsMR identified by the (wdw−PR, boundfl−ac)
abstraction method, in all our datasets (Tables 6.4, 6.5, 6.6 and 6.7). A � indicates that the
dataset’s collection graph has cycles (14 datasets out of 23). For each dataset, we report |C|, the
collection graph size; |ME|, the number of selected main entities; |MR|, the number of relationships
connecting main entities; cov the data coverage of the abstraction; ME , the set of main entities.
For each main entity, we report:

1. A human-readable label (not yet our classification - see Section 6.9.4) obtained as follows.
When the nodes in the collection share an explicit kind name, e.g., Post in LDBC data, we

119

CHAPTER 6. DATA ABSTRACTION

Abstraction method
JSON PG RDF XML Total

1st top-3 1st top-3 1st top-3 1st top-3 1st top-3
(desc1, bounddesc) 2 8 8 14 16 16 2 5 28 43
(desc2, bounddesc) 1 15 0 8 0 8 2 10 3 41
(desc3, bounddesc) 11 15 1 13 0 15 0 5 12 48
(leaf2, boundleaf) 1 9 8 14 16 16 5 7 30 46
(leaf3, boundleaf) 1 3 8 14 16 16 0 8 25 41
(wPR, boundfl) 11 15 8 16 0 1 6 11 25 43

(wPR, boundfl−ac) 11 15 8 16 0 12 7 13 26 56
(wdw−PR, boundfl) 11 15 8 16 0 1 6 11 25 43

(wdw−PR, boundfl−ac) 11 15 8 16 0 12 7 13 26 56

Table 6.3: Users’ ranking of dataset sample abstractions.

show it in normal font. Otherwise, we provide ourselves a label, shown in italic, e.g., Notice
in CoreResearch.

2. dmax, the maximal depth in the data of any record in the main entity root.

3. |ME i|, the number of nodes in the main entity root, i.e., its number of records.

Our JSON datasets lead to one entity and no relationships. This is because (i) unlike the sample
used in Section 5.3, they feature no shared entities; (ii) they don’t use references in the style of
XML ID-IDREF. In the RDF BSBM4M dataset, the collection Product is multi-traversed (recall
Section 6.6.2) by the relationships Review.reviewFor.Product.productFeature.ProductFeature and
Offer.product.Product.productFeature.ProductFeature; this is why 6 main entities are reported.

Tables 6.4, 6.5, 6.6 and 6.7 show that from each dataset, the selected entities are frequent,
coherent, and semantically central: this confirms that our approach, based on the collection
graph and the main entity selection method (wdw−PR, boundfl−ac), attains its goal. The main
entity depth varies from 2 (XMark) to 16 (LDBC0.3), with 3, 4 and 6 being frequent values. This
shows that (wdw−PR, boundfl−ac) identifies nested entities of various depths, which fixed-
depth baseline methods (Section 6.3.1) cannot do. Finally, the node coverage (cov in Tables 6.4,
6.5, 6.6 and 6.7) shows that, in general, our abstractions represent most of the dataset, thus
fulfilling our objective (recall Section 6.1 presenting data abstraction requirements).

6.9.4 Quality of main entity classification

In this section, we analyze the quality of the categories (semantic classes) assigned to main entities
through classification (presented in Section 6.8). We inspected few main entity instances and
ranked the assigned category’ relevance high (H), medium (M) or low (L). We graded H if the
category describes the entity well, e.g., a Person or Author category for authors, CreativeWork or
Publication for articles, etc. We graded M acceptable (if sub-optimal) categories, and L any clear
misclassification, e.g., Place instead of Person, as well as Thing (not enough insight to classify).
Tables 6.8, 6.9, 6.10 and 6.11 show for each dataset and main entity, the assigned category, and the
relevance value r. As in Tables 6.4, 6.5, 6.6 and 6.7, names in italics are those we manually chose
for collections that lack a kind name.

120

6.9. EXPERIMENTAL EVALUATION

Dataset name |C| |ME| |MR| cov ME dmax |ME i|

Mondial � 168 5 8 0.85

City
Province
Country
Organization
River

3
3
4
4
4

3,152
1,455

231
168
135

PubMed 26 1 0 1.0 PubMedArticle 5 957

XMark1 � 136 5 10 0.91

Person
Item
Open Auction
Closed Auction
Category

4
7
8
8
2

25,500
21,750
12,000
9,750
1,000

XMark4 � 136 5 10 0.90

Person
Item
Open Auction
Closed Auction
Category

4
7
8
8
2

102,000
87,000
48,000
39,000
4,000

Wikimedia 59 2 0 1.0
Page
Namespace

4
3

54,750
32

Table 6.4: Main entities found in the XML application datasets.

Dataset name |C| |ME| |MR| cov ME dmax |ME i|

LDBCsmall � 61 4 9 1.0

Post
Comment
Forum
Person

6
6
9
6

3,189
471
381
50

LDBC0.3 � 82 6 16 1.0

Comment
Post
Forum
Tag
Organization
Person

9
6

16
4
6

13

523,222
324,825
31,097
16,080
7,955
3,514

Movies250K � 38 4 3 1.0

playedIn
Actor
Movie
Director

9
12
8

10

1,758,142
1,099,489

250,000
124,818

Table 6.5: Main entities found in the PG application datasets.

121

CHAPTER 6. DATA ABSTRACTION

Dataset name |C| |ME| |MR| cov ME dmax |ME i|

BSBM4M � 340 6 7 1.0

Offer
Review
Product
ProductFeature
Producer

3
5
5
3
3

226,800
113,400
11,340
10,519

232

BSBM16M � 724 6 7 1.0

Review
Offer
Person
Product
Producer
Vendor

3
3
3
5
3
3

1,324,146
914,000
134,570
45,700

921
464

Conferences � 29 2 2 0.83
Author
Paper

5
3

20
10

EnelShops 46 1 0 1.0 Shop 6 1,136

Foodista � 49 4 20 0.47

Recipe
Food
Tool
PreparationMethod

5
3
3
3

32,782
7,651

150
149

LUBM1M 108 5 3 1.0

Publication
UndergraduateStudent
GraduateStudent
ResearchAssistant
TeachingAssistant

11
5
6
6
6

60,342
59,437
9,259
5,454
4,156

Nasa � 61 5 13 0.95

Spacecraft
Launch
Image
MissionRole
Person

5
5
3
3
3

6,692
5,090

303
142
59

Table 6.6: Main entities found in the RDF application datasets.

Dataset name |C| |ME| |MR| cov ME dmax |ME i|
CoreResearch � 48 1 0 1.0 Notice 5 39,767
GitHub � 343 1 0 1.0 Repository 8 30
NYTimes 116 1 0 1.0 Document 9 4,482
Prescriptions 4,814 1 0 1.0 Prescription 3 239,930
Researchers � 25 1 1 1.0 Researcher 5 38,090
YelpBusiness 122 1 0 1.0 Business 4 150,346
YelpCheckIn 6 1 0 1.0 Check-in 3 131,930
YelpTips 12 1 0 1.0 Tip 3 908,915

Table 6.7: Main entities found in the JSON application datasets.

122

6.9. EXPERIMENTAL EVALUATION

Dataset ME i category r

Mondial

City
Province
Country
Organization
River

City
Province
Country
Organization
River

H
H
H
H
H

PubMed PubMedArticle CreativeWork H

XMark1

Person
Item
Open Auction
Closed Auction
Category

Person
Product
Product
Product
Thing

H
H
M
M
L

XMark4

Person
Item
Open Auction
Closed Auction
Category

Person
Product
Product
Product
Thing

H
H
M
M
L

Wikimedia
Page
Namespace

Thing
Thing

L
L

Table 6.8: Quality of ME classification for XML application datasets.

Dataset ME i category r

LDBCsmall

Post
Comment
Forum
Person

Thing
Comment
Blog
Person

L
H
H
H

LDBC0.3

Comment
Post
Forum
Tag
Organisation
Person

Comment
Thing
Blog
Thing
Organisation
Person

H
L
H
L
H
H

Movies250K

playedIn
Actor
Movie
Director

Play
Actor
Movie
Person

M
H
H
H

Table 6.9: Quality of ME classification for PG application datasets.

123

CHAPTER 6. DATA ABSTRACTION

Dataset ME i category r

BSBM4M

Offer
Review
Product
ProductFeature
Producer

Offer
Review
Product
Product
Thing

H
H
H
H
L

BSBM16M

Review
Offer
Person
Product
Producer
Vendor

Review
Offer
Person
Product
Thing
Thing

H
H
H
H
L
L

Conferences
Author
Paper

Person
CreativeWork

H
H

EnelShops Shop Restaurant M

Foodista

Recipe
Food
Tool
PreparationMethod

Recipe
Food
Thing
Thing

H
H
L
L

LUBM1M

Publication
UndergradStudent
GradStudent
ResearchAssistant
TeachingAssistant

CreativeWork
Person
Person
Person
Person

H
H
H
H
H

Nasa

Spacecraft
Launch
Image
MissionRole
Person

Spacecraft
LaunchPad
ImageObject
SpaceMission
Person

H
H
H
H
H

Table 6.10: Quality of ME classification for RDF application datasets.

Dataset ME i category r
CoreResearch Notice CreativeWork H
GitHub Repository Thing L
NYTimes Document CreativeWork H
Prescriptions Prescription CreativeWork M
Researchers Researcher Person H
YelpBusiness Business Thing L
YelpCheckIn Check-in Thing L
YelpTips Tip Thing L

Table 6.11: Quality of ME classification for JSON application datasets.

124

6.9. EXPERIMENTAL EVALUATION

Out of 68 main entities, 76.4% (52) obtained an informative category through classification: 86.5%
(45) are rated H, and 13.5% (7) are rated M. In contrast, 23.6% (16) collections were classified
as Thing, among which: 12 have informative kind names, and 4 (the JSON ones) do not. In all
L-rated results, the linguistic and semantic signal from entities is below the algorithm’s thresholds
(recall Algorithm 12). This happens for two reasons: (i) an entity has very few properties with
not-so-informative names, e.g., Yelp check-ins have only user id and date; and/or (ii) most (or all)
of the entity’s properties have no equivalent in P, e.g., GitHub properties such as allow forking

and ssh url.

A classification example illustrates the combined effect of property matching and collection-label

entity profiles (respectively, step 3 and 4 in Section 6.8). The Notice entity has 20 properties,
such as publisher, downloadUrl and doi. Values of the publisher property include the Organization
and Person entity types. Classification identifies three P properties matching the data property
publisher: editor, illustrator and publisher, which vote toward the following classes: Creative

Work, Written Work, Work and Book. However, publisher adds more support for Creative Work, since
the collection-label entity profile for Notice and publisher (Section 5.3.1) matches the publisher

data property range, raising the score(Ci, dpi, p) value in favor of Creative work, which is good
in this case. In other cases, the classification is due to sim(dpi, p) and P domain typing, e.g.,
for PubMedArticle, the properties PubMedLink, DOI and KeywordList all voted toward Creative work;
for XMark items, seller voted toward the Offer, Order, BuyAction, Demand, Flight and Product

categories, however, quantity only voted for Product and helped it be selected.

In conclusion, classification was overall successful, leveraging the property names, collection-
label entity profiles, and the background semantic information (K and P). In general, classification
quality depends on the overlap between the dataset vocabulary, and the background information:
categories may not be found for very specific entities, e.g., GitHub. Even when the classification
is not very precise, e.g., Creative work for (medical) Prescriptions, it is still useful (in particular in
this example, where the collection has no kind name to guide users).

6.9.5 Scalability of the abstraction computation

We now study the performance of data abstraction as a function of the input data size.

We measure the execution time of all the steps involved in the abstraction computation method
using (wdw−PR, boundfl−ac). To study this, we use four of our synthetic, controlled-size datasets:
XMark (XML), Researchers (JSON), BSBM (RDF), and Movies (PG), and show the results in
Figure 6.13; all axes are logarithmic. The normalization step, i.e., transforming the labeled graph
G0 into an unlabeled graph G, is longer for RDF than other data models; this is because all RDF
data edges are labeled compared to others. Identifying the main entities takes most time; this is due
to the cost of updating the graph (excluding nodes as described in Section 6.5.2) before recomputing
weights. Main entity identification is faster on the JSON dataset as there are few entities selected,
thus few graph updates. The time taken to identify relationships (Section 6.6) is negligible (thus
not shown). This is because this task only manipulates the collection graph, much smaller than the
graph.

All our abstraction methods scale up linearly in the data size. The methods using
bounddesc and boundleaf (not plotted to avoid clutter) are faster, since they do not recompute
weights. However, as shown in Section 6.9.2, their results are of lower quality.

125

CHAPTER 6. DATA ABSTRACTION

Figure 6.13: Abstraction computation times on synthetic XML, JSON, RDF and PG datasets,
using (wdw−PR, boundfl−ac).

126

6.9. EXPERIMENTAL EVALUATION

Dataset name Schema extractor # nodes # edges

CoreResearch
[19]
[157]

128
146

-

Prescriptions
[19]
[157]

7,221
4,218

-

YelpTips
[19]
[157]

191
144

-

YelpBusiness
[19]
[157]

18
21

-

YelpCheckIn
[19]
[157]

12
12

-

LUBM [143] 23 187

LDBC [34] 10 22

Table 6.12: Schemas sizes for a subset of JSON, RDF and PG evaluation datasets.

6.9.6 Inferred schemas vs. abstractions

Abstractions have different goals and uses than dataset schemas. Schemas define a notion of data
validity, and are used by code that processes the data; abstractions aim to give human users a
simple, first glance at the data. Schemas have technical features, such as inheritance and property
cardinalities, that abstractions voluntarily leave out. They contain interconnected types, while
abstractions wrap some collections into the main entity boundaries, to facilitate understanding.
At the same time, abstractions share with schemas, in particular those inferred from the data,
e.g., [19, 20, 157, 33, 34, 143], the goal to compactly describe a dataset.

Keeping this in mind, we tested recent schema extractors for: JSON [19, 157], RDF graphs [143], and
PGs [33, 34]. We report in Table 6.12 results on some datasets from Table 6.1. For JSON, on the
CoreResearch, Prescriptions, YelpTips, YelpBusiness and YelpCheckIn datasets, respectively, [19]
and [157] produce schemas of dozens to several thousand nodes. The schema itself is a JSON
document, and we count its nodes as a measure of its complexity. Clearly, schemas of more than
hundreds of nodes are unsuited as abstractions. For RDF, the LUBM schema [143] features 23
node shapes (types), one for each RDF type, and 187 property shapes (an RDF property such as
worksFor leads to 9 property shapes: worksForProfessor, worksForChair, etc.). Such precision leads
to many syntactic details, going against our need for clarity. For PGs, on the LDBC dataset,
[34] creates a schema of 10 types connected by 22 edges. While compact, it contains several nodes
for the same concept, e.g., three nodes labeled “Post”, but with slightly different properties. Our
abstractions are more compact (Tables 6.4, 6.5, 6.6 and 6.7), and prefer node kinds over structural
precision.

These results confirm that compact abstractions are needed to give human users a first
idea of a dataset. They helpfully complement schemas, whose objectives are different.

6.9.7 Remarks on abstraction

During our experiments, presented in Section 6.9, we have observed some interesting particular
cases, which we discuss below.

127

CHAPTER 6. DATA ABSTRACTION

root paper title #val

year #val

authorname#val

email#val

Figure 6.14: A collection graph leading to a disconnected Entity-Relationship schema.

Boundary overlap

Boundaries of several collections may overlap, e.g., conf and author collections have in their bound-
aries the collection name. As discussed in Section 5.3.4, the collection graph introduces approxima-
tions, e.g., the name nodes were used in two different contexts, which are conferences and authors.
However, all name nodes are represented in the same collection in G. This approximation also appears
in the boundaries: both the conf and author main entities do have name in their boundaries.

Result variations

Data abstraction results may differ depending on the scoring and boundary method used, as well
as the parameters Emax, covmin and fmin. Relational Entity-Relationship (E-R) modeling is also
known to include a subjective factor, and for a given database, several E-R models may be correct.
Our focus is on not missing any essential component of the dataset, while allowing users to limit the
amount of information through Emax, and classifying the main entities into semantic categories.

E-R schemas connectivity

Some abstractions may produce disconnected Entity-Relationship schemas, even if the initial data
was connected, e.g., an XML or a JSON document. For instance, Figure 6.14 shows the collection
graph obtained from an XML document describing authors and papers. The main entity selection
algorithm will report the collections of authors and papers: the final Entity-Relationship schema
will contain two entities with no relationship.

When designing an Entity-Relationship diagram for an application database, it is very rare to find
unconnected entities. This is also because the general practice is to factorize as much as possible
in order to obtain atomic entities.

JSON abstractions

For the particular case of data abstractions computed out of JSON documents, it appears that only
maps can be elected as main entities. Indeed, only collections with an internal structure, i.e., data
properties and values are eligible (recall eligibility criteria in Section 6.2). On the contrary, arrays,
map keys and (map or array) values cannot be reported.

6.9.8 Experiment conclusion

The abstraction method (wdw−PR, boundfl−ac) attains the best results overall, even on complex,
cyclic collection graphs. This method successfully identifies the central dataset entities, when their
structure ranges from simple (depth 2 in Table 6.4) to very complex (depth 16 in Table 6.5).
Classification, with record kind names, property names, collection-label entity types, and semantic

128

6.10. SUMMARY

resources, is overall successful in identifying what each main entity is about. Abstra sets param-
eters’ default values to wdw−PR, boundfl−ac and thresholds in Section 6.9.1. Our abstractions are
computed in linear time in the input size. Intuitive, and more compact than (inferred) schemas
due to their focus on structured entities (as opposed to node types), they provide useful first-glance
dataset summaries.

6.10 Summary

In this chapter, we have presented the last important stage toward computing, from a dataset, a
user-friendly diagram, akin to Entity-Relationship ones, which we call dataset abstraction. Two
core technical challenges needed to be addressed in order to achieve this. The first is to interpret
the collection graph (Chapter 5), separating collections which we consider entity roots, from those
that we consider to be their attributes. This task is hard for several reasons: (i) the potentially
complex structure of the collection graph, with multiple cycles; (ii) collections shared among many
others; (iii) our target entities may have a deeply nested structure.

The second technical challenge is to manage to automatically attach a semantic class to each entity,
in order to give users a first understanding of what the entity contains. We achieve this by leveraging
linguistic signal in the types and labels of nodes and edges encompassed in the collection structure;
further, we take advantage of the Named Entities present in our data graph. Our experiments have
demonstrated the feasibility and the practical interest (for users) of our abstractions.

Having finalized our presentation of dataset abstraction, we turn to another exploitation of the
collection graph to help user discover heterogeneous data.

129

CHAPTER 6. DATA ABSTRACTION

130

7
Entity-to-entity path exploration

Chapter Outline

7.1 From data graphs to entity-to-entity data paths . 132

7.2 ChatGPT-based Named Entity extractor . 132

7.3 Entity-to-entity path enumeration and associated path metrics 134

7.3.1 Entity-to-entity collection path enumeration . 134

7.3.2 Path directionality . 135

7.3.3 Path reliability . 136

7.3.4 Path force . 137

7.4 Data paths materialization . 138

7.4.1 From a collection path to a query over the data graph 138

7.4.2 Candidate views enumeration . 139

7.4.3 Materialized views selection and path queries rewriting 140

7.5 Experimental evaluation . 141

7.5.1 Datasets and settings . 142

7.5.2 Performance of ChatGPT entity extraction . 142

7.5.3 Path enumeration . 145

7.5.4 Efficiency of path evaluation . 146

7.5.5 Path reliability and ranking . 148

7.5.6 Evaluation of the top-ranked paths . 150

7.5.7 Experiment conclusion . 150

7.6 Summary . 151

Chapter Abstract. In this chapter, we study a different approach for helping users discover
interesting information in semi-structured datasets. Specifically, we identify, rank, and evaluate
graph paths connecting pairs of Named Entities with the help of the collection graph (Chapter 5).
We start by explaining how entity-to-entity1 data paths exist in data graphs, like the one shown
in Figure 5.8 (Section 7.1). Next, we discuss the importance of highly reliable NE extractors in
our context, and how we devised a novel, more accurate one based on OpenAI’s ChatGPT model
(Section 7.2). Further, we describe how we rank entity-to-entity data paths, based on metrics we
propose as part of this thesis. We also describe how, from few user interactions, we enumerate
(only) data paths that are of interest to them (Section 7.3). To speed up data paths evaluation on
the underlying data graph, we recommend a set of views (sub-paths) to materialize, and rewrite
each data path using these materialized views (Section 7.4). Finally, we present an experimental
evaluation of these methods (Section 7.5).

1Here, the concept of entity refers to Named Entities, as described in Section 4.2; do not confuse them with
Abstra entities.

131

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

7.1 From data graphs to entity-to-entity data paths

Building on entity-rich data graphs, users may be interested in finding connections between Named
Entities of interest, as in “are Helmut Greim and Monsanto related in some way?”, “how do French
politicians relate to the top-40 most influential French companies?”, “how people are connected to
companies?”, etc. Toward this, our work leverages the idea that we can find entity-to-entity data
paths, or simply data paths, starting and ending in Named Entities of interest to the user. Because
it is often hard to specify the Named Entities one can expect in a dataset, we instead prefer to
ask users the Named Entity types (recall T , which include Person, Location, Organization, etc)
that are of interest to them. Among the (numerous) data paths, some are not of high quality.
Therefore, our goal is to enumerate and rank a set of interesting entity-to-entity data
paths connecting two Named Entity nodes at the path extremities. To chase this goal,
we establish the following set of requirements:

(R1) The entity-to-entity path exploration system should work on any data graph and regardless
of the edge directionality;

(R2) Most reliable and interesting entity-to-entity paths should be shown first;

(R3) Users should be able to specify their interest in an interactive way.

7.2 ChatGPT-based Named Entity extractor

The main ingredient to enumerate reliable data paths (recall requirement (R2)) is to have top-
quality NER modules, identifying all expected NEs (not more, not less) and assigning them the
right type. In reality, NE extractors may fail in identifying some entities, because it may be rare in
the training data they have seen; or the data may contain tokens that are miss-understood (such as
proper nouns without capitalization, etc). As shown in ConnectionLens [13], the Flair extractor
has significantly better accuracy than the Stanford one. However, a close examination of extraction
results shows many to be false positives (NEs extracted when there should be none). This likely
is because the news training corpus differs from the text snippets found in various semi-structured
datasets we experimented with. While some false positives (and/or negatives) are to be expected
in NLP settings, false positives lead to erroneous extraction edges. In our work, in turn, these
edges lead to erroneous entity-to-entity data paths. To solve the problem of false positives with
extractors based on pre-trained language models, one could retrain the Flair model for different
corpora, but this is labor-intensive. Instead, we have developed a new NE extractor, leveraging
OpenAI’s ChatGPT 42. Its very large model, trained on a huge corpus, allowed us to expect
good performance, once properly prompted, in detecting NEs in texts of various forms even without
corpus-specific fine-tuning.

We used ChatGPT in a question-answer mode. Each question we send, also called prompt, consists
of a fixed directive, together with a string (L -leaf in the dataset) in which we ask ChatGPT to
identify Named Entities. For each entity found, ChatGPT also returns a type it considers the most
suited for the entity in the context of the input string, as well as its confidence. There is no way
of knowing the complete set of entity types that ChatGPT could propose; in ConnectionLens,
on the other hand, we use a fixed set of entity types T , and extraction based on trained models is

2https://platform.openai.com

132

https://platform.openai.com

7.2. CHATGPT-BASED NAMED ENTITY EXTRACTOR

Please get each named entity you identify in the following string: ‘XXX’. Return a table contain-
ing four columns, one for the named entity name, one for the named entity type you assigned
to it, one for a category among (person, organization, location) that fits your type, and one with
the confidence you have in the category assigned to the extracted entity where the confidence
is a float value between 0 and 1. If no category fits your type or a sub-type of your type, set
the category as OTHER. If no named entities of the expected types, answer NONE.

Figure 7.1: ChatGPT prompt for NE extraction (directive plus a string, denoted ‘XXX’).

Named Entity Type Category Confidence
Y. Hu Person Person 0.95
A. Coates Person Person 0.90
antibiotic resistance breaker technology Product OTHER 0.70
quinoline and tobramycin Product OTHER 0.70
Pseudomonas spp. Species OTHER 0.80
Helperby Therapeutics Company Organization 0.85
HT61 Product OTHER 0.60
Dr Richard Amison Person Person 0.80

Table 7.1: Sample ChatGPT NE extraction results.

only used to identify People, Organizations, or Locations (recall Section 4.2). Thus, our directive
also instructs ChatGPT to map its entity types to our desired types, or to an extra category
OTHER. The best prompt we found appears in Figure 7.13. It constrains the answer format to
ensure a deterministic structure that facilitates its integration. For instance, Table 7.1 shows the
NEs (with their attached information) found by ChatGPT in the string: “Declaration of competing
interest Y. Hu and A. Coates are the coinventors of the antibiotic resistance breaker technology, in
particular the combination of the quinoline and tobramycin (patent granted). They were the first to
test this combination against highly resistant Pseudomonas spp. They originated the concept and
performed the background work upon which this work is based. A. Coates, Y. Hu and CP declare
they have equity in Helperby Therapeutics who are developing HT61. CP is in receipt of a grant
from Helperby Therapeutics to support Dr Richard Amison for the conduct of the in vivo aspect of
this study. There are no other conflicts of interest to declare”. This string is part of the metadata
(Conflict of Interest statement) in a PubMed article; we analyzed such statements in a previous
study [12], using ConnectionLens and the Flair NE extractor. As Table 7.1 shows, our prompt
is effective in getting ChatGPT to perform high-quality extraction. We analyze its performance in
more depth in Section 7.5.2.

3We have tested 6 other prompts, which were not giving sufficiently precise instructions and/or structured answer
format, before reaching the one of Figure 7.1.

133

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

C1

Spacecraft

C4

agency
C5

#val

C2

descr

C3

#val

C6

pilot
C9

#val
C10

astronaut
C11

launch

C12

president

C13

presidents

C14

name

C15

#val

Figure 7.2: Multi-dataset collection graph corresponding to Figure 4.5. Highlighted areas corre-
spond to entity-to-entity paths and their intersection (in purple) will be materialized as a view.

7.3 Entity-to-entity path enumeration and associated path
metrics

Based on a data graph with highly accurate Named Entities, we are now interested in finding
interesting paths into it. However, enumerating them on the data graph itself would be prohibitively
expensive, we instead rely on the collection graph (recall Chapter 5) for this task. In the set of
enumerated paths, some of them may be more interesting than others. This is why we rank them,
based on their extraction reliability (“how confident are we in the Named Entities?”) and their
force (“is the information diluted?”). Last but not least, we efficiently evaluate the set of paths
that are of interest to the user, leveraging a multi-query optimization approach.

Figure 7.2 illustrates the collection graph obtained from the data graph shown in Figure 5.8 and
represents Named Entity types extracted from L -leaf collections as colored squares, e.g., � repre-
sent people extracted from C9 and C15. The colored areas correspond to paths connecting People
to Organization entities. The purple sub-path will be later materialized as a view (Section 7.4) to
speed up their evaluation.

7.3.1 Entity-to-entity collection path enumeration

Following requirement (R3), we first ask users few questions to guide/restrict the path enumeration
toward paths that are of interest to them:

• A pair of Named Entity types (τ1, τ2), where τ1, τ2 ∈ T , the set of supported NE types
(recall Section 4.2).

• Possibly, the maximum path length Lmax, i.e., the number of edges it contains, whose
default value we set to 10. Depending on the application, interesting connections can be
made by paths of different lengths; however, it appears likely that beyond a certain length,
connections may become meaningless.

Next, and following requirement (R1), we seek to efficiently enumerate the set of data paths in
G connecting two NEs, respectively of types τ1 and τ2, and of length at most Lmax. However,

134

7.3. ENTITY-TO-ENTITY PATH ENUMERATION AND ASSOCIATED PATH METRICS

enumerating data paths on the data graph G itself would be prohibitively expensive and slow,
and even unfeasible for large data graphs. Therefore, we will work with GU , the collection graph
whose edges are undirected. Recall from Section 5.3.3: a collection path is of the form cp = (Ci →
Ca, Ca → Cb, ..., Cb → Cj), which we can simply abbreviate in cp = (Ci ! Cj). We extend
collection paths to entity-to-entity collection paths as follows:

Definition 7.3.1 (Entity-to-entity collection path)

Given a collection graph G, an entity-to-entity collection path ecp ∈ G is a sequence of
collection edges such that ecp = � L99 Ci ! Cj 99K � where �,� are two collection-label
entity profiles and Ci, Cj are value collections. The directions of the leftmost and rightmost
edges are by convention always toward � and �, which represent entities.

For instance, an entity-to-entity collection path in Figure 7.2 would be � L99 C3 ← C2 ← C1 →
C6 → C9 99K �.

First, we build GU , the undirected collection graph, and (efficiently) enumerate its set P of collection
paths using Algorithm 1. Note that, because GU is undirected, enumerated paths may contain
collection edges in both directions, i.e., → and ←. Next, to build EP, the set of entity-to-entity
collection paths, we take from P only those meeting the user requirements: τ1 ∈ �, τ2 ∈ � and its
length is lower than Lmax.

Next, we compute the directionality (Section 7.3.2), reliability (Section 7.3.3) and force (Sec-
tion 7.3.4) of each path thus enumerated, and rank them, first by reliability (truncated to 2 decimals)
and then by force. Then, we inform users about paths and they can then chose a set of entity-to-
entity collection paths to materialize, e.g., “only the shared-root ones”, or “the ones ranked in the
top-20”, or “just those involving specific internal node labels”, etc. How paths are evaluated on the
data graph will be discussed in Section 7.4.

7.3.2 Path directionality

We can classify entity-to-entity collection paths according to the directions of the edges in !.
Specifically, paths may be:

• Unidirectional, i.e., all ecp edges go from Ci toward Cj , or the opposite;

• Shared-sink, i.e., ecp may contain a (collection) node Ck such that all edges between Ci and
Ck (if any) go from Ci toward Ck, and all edges between Cj and Ck (if any) go from Cj
toward Ck. A shared-sink path is C1 → C6 → C9 ← C10 ← C11 ← C12.

• Shared-root, i.e., ecp may contain a (collection) node Ck such that all edges between Ck and
Ci (if any) go from Ck toward Ci, and all edges between Ck and Cj (if any) go from Ck toward
Cj . A shared-root path is C3 ← C2 ← C1 → C6 → C9.

• General, i.e., the edges may be in any direction.

Unidirectional paths are quite rare. This is because entity-connecting paths must have at each end
a node from which an entity is extracted. Most of the time, these are two literal (string) nodes (as
opposed to internal nodes structuring the dataset). Literals have incoming edges, but not outgoing
ones (other than those toward extracted entities); thus, there is no unidirectional path from a
literal to another. However, in some RDF datasets, NEs are extracted from URIs, e.g., the triple

135

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

〈dbpedia:Facebook〉〈dbpedia:locatedIn〉〈dbpedia:California〉 is a unidirectional data path from an
Organization to a Location. Similarly, shared-sink paths only occur when nodes in Ci and Cj have
outgoing edges, and NEs appear in their labels; this only happens in RDF URIs.

7.3.3 Path reliability

Data graph edges can be divided into: (i) structural, which originate in the way the data is organized
in the input graph; in our approach, we consider such edges as certain, or fully reliable; and
(ii) extraction edges, which connect a NE to the string from which it had been extracted. In turn,
an extraction edge can reflect a true positive (the entity is correctly extracted, i.e., most human
users would agree that the entity of the respective type is present in the string), or a false positive
(a human user would not consider the entity is present there). In the collection graph, we call
extraction edge an edge corresponding to one or more data graph extraction edges. Each entity
path has at least two extraction edges, � ← Ci and Cj → �; if the path is either shared-sink or
general, it may contain other extraction edges. In Figure 7.2, the path � L99 C3 ← C2 ← C1 →
C6 → C9 99K � L99 C10 ← C11 ← C12 → C14 → C15 99K � in the collection graph exhibits four
extraction edges.

Examining several datasets, we noted situations when all the data extraction edges behind a given
collection graph extraction edge e correspond to false positives, due to NER errors. For instance, in
PubMed bibliographic data, chemical acronyms in article titles were mistakenly extracted as being
Organizations. In more subtle cases, people names were extracted from (i) titles; two among a few
thousand articles were scientists’ obituaries thus had their name in the title; (ii) affiliations, when
a research lab, institution, or a street is named after a person. In such cases, a person name is
technically present, but since most titles, and most affiliations, do not feature people, we consider
that the collection-level extraction edge is not reliable.

Formally, an extraction collection edge has a reliability, denoted erel, as follows:

Definition 7.3.2 (Extraction collection edge reliability)

Given an extraction collection edge e ∈ G of the form Ci 99K � where � corresponds to NEs of
a specific entity type τ , its reliability is:

erel =
|{n ∈ Ci|n 99K τ}|

|Ci|

Further, we compute the reliability of an entity-to-entity collection path as follows:

Definition 7.3.3 (Entity-to-entity path reliability)

Given ecp ∈ GU , an entity-to-entity collection path, its reliability is:

ecprel = min({erel|e ∈ ecp})

Using the minimum to aggregate extraction edge reliability is a conservative choice, which penalizes
a path according to its least reliable edge. In our experiments, this choice gave good results; indeed,
even a single unreliable edge in a collection graph path may make it meaningless.

136

7.3. ENTITY-TO-ENTITY PATH ENUMERATION AND ASSOCIATED PATH METRICS

7.3.4 Path force

Beyond directionality and reliability, entity paths can also be analyzed based on the numbers of
edges adjacent to graph nodes. ConnectionLens [13] attaches to each data edge e ∈ G0, having

a non-empty label a, a measure called specificity. Let e be the edge n1
a−→ n2 for some nodes n1, n2.

The specificity of e, denoted es, is computed as 2
(N1,a+N2,a)

, where N1,a, N2,a are the numbers of

edges labeled a outgoing n1, respectively incoming n2. The highest N1,a and/or N2,a, the lowest
es. For instance, in the data graph G0 used to compute the normalized data graph G in Figure 5.8,
the specificity of the two agency RDF labeled edges would be 2

(1+2) = 2
3 . For our purposes, we

extend specificity to unlabeled edges as follows: the specificity of an edge n1
ε−→ n2 is 2

(1+n1,2)
where

n1,2 is the number of ε (empty-labeled) edges outgoing n1, toward nodes having the same label
as n2. For instance, the specificity of the edge N6 → N7 is also 2

3 in Figure 5.8. In [13], edge
specificity has been used as an ingredient for scoring connections (paths or trees) in the original
graph, returned when users search the graph using keywords. Indeed, low-specificity edges can be
seen as “weakening” connections, e.g., when a person has 1 spouse and 200 friends, intuitively, an
edge (thus, path) going from the person to a friend is weaker than one going from the person to
the spouse.

In [22], we leveraged data edge specificity as follows:

1. In the collection graph, the edges with a non-empty label, connecting nodes from two equiva-
lence classes, lead to a collection, e.g., agency triples lead to C4. To this collection is attached
the average specificity of all the data edges it comes from, e.g., to C4 corresponds 2

3 .
Empty-label edges connecting graph nodes from two equivalence classes lead to an edge in
the collection graph, e.g., C11 → C10. To an edge between collections is attached the average
specificity of the original edges.

2. Paths with low-specificity collections or edges were pruned. Specifically, users were first asked
to state how many low-specificity collections and collection edges they are willing to review,
then shown the lowest-specificity ones, each of which they can validate or invalidate. Then, we
only enumerated paths that did not traverse invalidated collections. This approach allowed to
control the effort required from users; it is also more accurate than just invalidating collections
whose specificity is below a certain threshold, which could lead to decisions suitable for some
collections but unsuitable for others. However, this approach of [22] still had drawbacks. On
one hand, it required user effort; on the other hand, low-specificity collections and collection
edges, that do not make it to the users’ inspection may be preserved, leading to weak paths.

Toward avoiding these limitations, we change our approach, as follows. First, we no longer require
users to inspect structural metrics. Second, we use structural metrics to rank paths, instead of
pruning them. Third, we compute a different structural metric, the path force. We start by defining
a G data edge cardinality as:

Definition 7.3.4 (Data edge cardinality)

Given a data edge e = Ni → Nj such that ni ∈ Ci, nj ∈ Cj , its edge cardinality ecard is:

ecard = |{Ni → Nz|Nz ∈ Cj}|

137

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

This differs from specificity in several aspects. First, cardinality is asymmetric, i.e., it only considers
how many edges exit a node in Ci, not how many enter a particular node in Cj . This seems simpler
and more intuitive. Second, cardinality interprets the neighborhood of ni through the prism of
the collections Ci, Cj to which ni, nj belong. Specificity had no awareness of collections, and only
focused on edges exiting ni and entering nj .

Next, we define the collection edge force f(Ci → Cj) of a collection edge as the inverse of the
maximum cardinality among all data edges represented by the collection edge; this number is in
(0, 1]. Taking the inverse of the maximum cardinality penalizes the existence of even one node
ni ∈ Ci having a large number of edges to nodes from Cj . Averaging specificity as in [22] allowed
to smooth the impact of such nodes. We prefer the inverse of the maximum cardinality since we
consider a Ci node with many edges to Cj signals that connections Ci → Cj may be not too selective
for a Ci node, i.e., one could have hundreds of friends, or written hundreds of papers, even if most
people do not. In contrast, one always has a single birth country, at most one or a few spouses over
a lifetime, etc. Finally, we define the path force F (p) of a path p as:

Definition 7.3.5

Given an entity-to-entity collection path ecp ∈ GU , its force F (ecp) is:

F (ecp) =
∏

Ci→Cj∈ecp
f(Ci → Cj)

This combines all forces along the path, penalizing multiple and/or low values. It also penalizes
paths containing many edges whose force is below 1.

7.4 Data paths materialization

At this point, we have a set of entity-to-entity collection paths, which must be transformed into
queries and evaluated on the data graph. Each such query matches similar-structure data paths,
thus its results are shown to users as a table: the first and last attribute of such a table comprise
entities of type τ1, τ2, while the intermediary attributes are the nodes and edges connecting these
entities in the data graph. For instance, let τ1 be Person, τ2 be Organization: the light-blue and
light-red background shapes in Figure 5.9 materialize two paths which, in this graph, connect the
pink child of C5 (�) with the yellow children (�) of C9, respectively, those of C3 and C15.

7.4.1 From a collection path to a query over the data graph

Each entity-to-entity collection path translates into a chain-shaped conjunctive query. For instance,
the path on blue background in Figure 5.9, going through C5 and C9, becomes:

q1(x̄) :- n(x1, τOrg,�), e(x2, x1,), n(x2, , C5), e(x3, x2, agency), n(x3, , C1), e(x3, x4, pilot),
n(x4, , C9), e(x4, x5,), n(x5, τPerson,�)

This query refers to two relations: n(ID, type, coll), describing nodes, with the last attribute denot-
ing their collection, and e(s, t, label), describing edges between nodes s and t and carrying a certain
label. Each xi is a variable; x̄ in the query head denotes all the xi variables, 1 ≤ i ≤ 5. We use to
denote a variable which only appears once, in a single query body atom. Finally, τOrg and τPerson

138

7.4. DATA PATHS MATERIALIZATION

denote the node types of extracted Organization and Person entities. Similarly, the red-background
collection path translates into:

q2(x̄) :- n(x1, τOrg,�), e(x2, x1,), n(x2, , C3), e(x3, x2, descr), n(x3, , C1), e(x3, x4, pilot),
n(x4, , C9), e(x5, x4,), n(x5, , C10), e(x6, x5,), n(x6, , C11), e(x7, x6,), n(x7, , C12),
e(x7, x8,), n(x8, , C14), e(x8, x9,), n(x9, , C15), e(x9, x10,), n(x10, τPerson,�)

Note how the above path features labeled and unlabeled edges, respectively from the RDF and XML
datasets. Each of these queries can be evaluated through any standard graph database. However,
evaluating dozens or hundreds of path queries on large graphs can get very costly. Further, since
we do not know which paths may result from the user choices, we cannot establish path indexes
beforehand.

View-based optimization To address this problem, we propose an optimization, based on the
observation that queries resulting from collection paths may share some sub-paths. For instance,
the sub-query s(x3, x4) :- n(x3, , C1), e(x3, x4, pilot), n(x4, , C9) is shared by q1(x̄) and q2(x̄).
Therefore, we decide to (i) evaluate s and store its results; (ii) rewrite q1(x̄) and q2(x̄) by replacing
these atoms in each query, by a single occurrence of the atom s(x3, x4). The next sections formalize
this for larger query sets, also showing how to handle different alternatives that may arise as to
which shared sub-paths to materialize.

7.4.2 Candidate views enumeration

A first question we need to solve is enumerating, based on a set Q of path queries, the possible
sub-queries that we could materialize, and based on which we could rewrite some workload queries.

Let q ∈ Q be a path query: it is an alternating sequence of node (n) and edge (e) atoms. We denote
by nq the number of edge atoms, then the number of node atoms is nq + 1. We denote by nQ the
highest nq over all q ∈ Q.

Without loss of generality, our first heuristic (H1) is: we only consider connected sub-paths of q
as candidate sub-queries. If q is of the form q(x̄) :- n1, e1, . . . , enq

, nnq+1, each connected sub-path
of q, denoted sq, is determined by two integers 1 ≤ i ≤ nq, i < j ≤ nq + 1, such that sq(xi, xj) :-
ni, ei, . . . , nj , ej , and xi, xj are the IDs of the nodes in the atoms ni, nj , respectively. We denote
by q|i,j the sub-query of q determined by the positions i, j. For instance, when q1 is the sample
query in Section 7.4.1, q1|3,4 is the sub-query s(x3, x4) introduced there. Considering connected
(cartesian-product free) candidate views is common in the literature too (see Section 3.3).

Each query q ∈ Q has O(n2q) connected sub-paths, that can be easily enumerated from q’s syntax.
A second heuristic (H2) we adopt is: we only consider shared sub-paths, that is, those sub-paths
s for which there exist q′, q′′ ∈ Q, q′ 6= q′′, and integers i′, j′, i′′, j′′′ such that s = q′|i′,j′ = q′′|i′′,j′′ ,
possibly after some variable renaming. For the queries q1, q2 in Section 7.4.1, the sub-query s3,4 is
q1|3,4 and also q2|3,4. (H2) restricts the number of candidate views from |Q|×n2Q to a number that
depends on the actual workload Q, and which decreases when Q paths look more like each other.
Another interest of (H2) is: the benefit of using a view v to rewrite one query q is likely offset by
the cost of materializing v; actual performance improvements start when v is used twice (or more),
which is exactly the case for sub-queries shared by several Q queries.

Our third heuristic (H3) is: among the possible sub-queries shared by two queries q′, q′′, consider
only the longest ones. That is, if s1, s2 are two shared sub-queries of q′ and q′′ such that

139

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

ns1 > ns2 , do not consider the sub-query s2.

Our heuristics (H1), (H2), (H3) lead to building the candidate view set V as follows. For each
pair of distinct queries (q′, q′′) where q′, q′′ ∈ Q, add to V the longest, shared, connected sub-queries
of q′ and q′′. The complexity of this algorithm is O(|Q|2 × n2Q), while |V| is in O(|Q|2).

Algorithm 13: Selecting views to materialize and the respective view-based rewritings

Input : Q: queries, V: candidate materialized views
Output: M: materialized views, R: rewritings for some Q queries

1 M← ∅; R ← ∅
2 while V 6= ∅ do
3 for v ∈ V do
4 ben(v)← 0; cost(v)← cost to compute and store the view v
5 for q ∈ Q, q can be rewritten using v do
6 (ben(v, q), rq,v)← the cost of evaluating q directly on the graph, minus the cost

of evaluating q based on v, through the rewriting rq,v
7 ben(v)← ben(v) + ben(v, q)

8 (vmax, bmax)← a view vmax maximizing ben(v)− cost(v), and its benefit
9 if bmax < cost(vmax) then

10 exit

11 Add vmax to M
12 for q ∈ Q, q can be rewritten using vmax do
13 if ben(vmax, q) > 0 then
14 Add rq,vmax to R
15 Remove q from Q

16 Remove vmax from V

7.4.3 Materialized views selection and path queries rewriting

Knowing the path queries Q and the candidate view set V, we need to determine: a set M⊆ V of
views which we actually materialize, in order to rewrite some Q queries. We collect the rewriting
of each such queries in R. The decision to materialize a view incurs a cost, since the view data
must be computed and stored. We denote cost(·) the cost of evaluating a view (or query), and
assume it can be determined without actually evaluating it. Materializing a view is more attractive
if (i) rewritings using it reduce significantly query evaluation costs, and (ii) its own materialization
cost is small.

In the most general case, a query could be rewritten based on any number of views, and also
involving the base graph. For instance, query q1 from Section 7.4.1 could be rewritten as: q1|1,3 ./
q1|3,4 ./ q1|4,6, where each ./ denotes a natural join, on the variables x3, respectively, x4. However,
enumerating all such alternatives makes the query rewriting problem NP-hard [85]. Instead, we
adopt another pragmatic heuristic (H4): rewrite each query using not more than one view.
This simple choice keeps the view selection complexity under control, all the while providing good
performance.

140

7.5. EXPERIMENTAL EVALUATION

Algorithm 13 depicts our greedy method for finding M and V. It computes the benefit of each
view v for each query that may be rewritten using v, as well as the cost of v. In a greedy fashion, it
decides to materialize the view vmax maximizing the overall benefit (for all Q queries), and uses it
to rewrite all queries whose evaluation cost can be reduced thanks to vmax, via the rewriting rq,vmax

.
These queries are then removed from Q, the benefits of the remaining views are recomputed over
the diminished Q, and the process repeats until no profitable view to materialize can be found.
Algorithm 13 makes at most O(|V|× |Q|) iterations, which can be simplified into O(|Q|3). Forming
a rewriting takes O(nQ), bringing the total to O(|Q|3 × nQ).

Algorithm 13 needs to compute the following values, which must be estimated before any query or
view results are computed. We do this as follows:

1. To compute cost(·), the cost to evaluate a query q or materialize a view v, we use the cost
estimation of the graph data management system (GDBM, in short). Our implementation
relies on PostgreSQL, whose explain command returns both the estimated number of results
of a certain query (or view), denoted size(q), and the cost of computing those results.

2. For rq,v, the rewriting of q using a view v, recall that when v is used to rewrite q, v is a
sub-path of q, thus there exist i, j such that v = q|i,j (Section 7.4.2). The rewriting rq,v is
easily obtained by replacing, in the body of q, the atoms from the ith to the jth, with the
head of v.

3. Estimating cost(rq,v), the cost of such a rewriting is more complex than evaluating cost(·).
This is because the cost of a query (or view) is estimated based on statistics the GDBM has
about the stored graph. In contrast, the GDBM cannot estimate cost of rq,v, because v has
not been materialized yet, thus the GDBM cannot reason about v like it does about the graph.
To compensate, we proceed as follows: we compute the cost of reading the hypothetical view
vmax from the database, by multiplying size(vmax), the estimation of the view size, with a
constant (we used PostgreSQL’s own CPU TUPLE COST); then, we estimate the cost of
rq,vmax

as this reading cost plus the cost of estimating the parts of q not in vmax plus the
cost of joining vmax with these (one or two) remaining query parts. We estimate the cost
of each such join by adding their input sizes, which we then multiply with another (GDBM)
constant. This reflects the fact that modern databases feature efficient join algorithms, such
as memory-based hash joins, whose complexity is linear in the size of their inputs.

Regarding our heuristics, (H1) is universally adopted in the literature: no candidate view features
cartesian products. (H2), imposing that views benefit at least two queries, preserves result quality,
i.e., cost savings, under every monotone cost model, ensuring that the cost of evaluating a query q
is at least that of evaluating s, when s is a sub-query of q. In contrast, (H3) and (H4) may each
divert from the globally optimal solution. However, as our experiments show, our chosen rewritings
perform well in practice, and the algorithm itself is very efficient.

7.5 Experimental evaluation

Our approach is fully implemented in a system called PathWays, in Java 11. PathWays relies on
ConnectionLens [12, 13] for the construction of the data graph (Chapter 4) and on Abstra [23,
24] which builds the collection graph (Chapter 5); these are stored in PostgreSQL. We experimented

141

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

Dataset name |N | |E| |τP | |τL| |τO| min(es)
PubMed 63,052 89,710 5,993 2,151 5,096 0.001
Nasa 59,408 128,068 634 690 4,530 0.0002
YelpBusiness 57,963 61,627 322 427 1,437 0.001
YelpBusiness4 229,949 247,074 1,099 1,230 4,199 0.0002

Table 7.2: Dataset overview.

on a Linux server with an Intel Xeon Gold 5218 CPU @ 2.30 GHz and 196GB of RAM. We used
PostgreSQL v9.6. Our evaluation seeks to answer the two following questions:

1. How does the ChatGPT-based extractor compare with the previous best one available in Con-
nectionLens? (Section 7.5.2);

2. How are NEs connected in each dataset? (Section 7.5.3);

3. How efficient is our multi-query optimization algorithm in reducing the time to evaluate paths
queries over the data graph? (Section 7.5.4)

4. How do reliability and force vary in our datasets? (Section 7.5.5);

5. How efficient is our path evaluation on top-ranked paths? (Section 7.5.6).

7.5.1 Datasets and settings

We used three of the datasets we used in Abstra’s experimental evaluation, namely PubMed,
Nasa and YelpBusiness. Moreover, we also used YelpBusiness4, a dataset 4 times larger than
YelpBusiness, to study the scalability of our algorithm. They all come from real-life applications
(as opposed to synthetic) to stay close to application needs, and to ensure realistic Named Entities
(NEs). Indeed, synthetic datasets are often generated with an interest on structure, while the leaf
(text) values lack interesting information. Table 7.2 shows for each dataset: its number of nodes
|N |, edges |E|, numbers of extracted NEs |τP |, |τL|, |τO| and the minimum edge specificity min(es).
Without loss of generality, we experiment with the NE types Person, Location, Organization, whose
types are denoted τP , τL, τO, respectively. We set Lmax to 10.

7.5.2 Performance of ChatGPT entity extraction

We have analyzed the novel ChatGPT-based NE extractor introduced in this work (Section 7.2),
from the angle of: speed (it is a remotely provided service, whose invocation requires remote calls),
financial costs incurred, and results quality.

Table 7.3 shows, for 6 strings taken from the experimental datasets (Section 7.5.1): |s|, the number of
characters in the string; TFlairextr , resp. TGPTextr , the Flair, resp. ChatGPT, time (in seconds) to send the
extraction query, wait for the service answer, and retrieve it through a java.net.HttpURLConnection;
|Flair|, resp. |GPT |, the number of NEs found by each extractor in the string; |tcont|, the number of
context tokens in the ChatGPT prompt; and |tgen|, the number of tokens in the ChatGPT output.

With respect to speed, we note that Flair extraction time increases with regards to the input string
size. On the other side, ChatGPT brings a comparatively huge overhead per connection (or per

142

7.5. EXPERIMENTAL EVALUATION

String |s| TFlairextr |Flair| TGPTextr |GPT | |tcont| |tgen|
s1 13 0.022 1 2.465 1 126 37
s2 16 0.020 1 2.208 1 128 40
s3 80 0.067 3 5.171 5 140 119
s4 125 0.106 5 6.503 6 148 114
s5 673 0.371 8 10.741 9 267 194
s6 3,191 1.931 10 6.789 8 809 176

Table 7.3: Flair and ChatGPT-based extractors time (in seconds) and cost analysis on sample
strings.

GPT Person GPT Location GPT Organization GPT no entity
Flair Person 5913 6 11 98
Flair Location 25 1088 507 905
Flair Organization 36 141 2988 1797
Flair no entity 101 1335 1233 −

Table 7.4: Comparison of Flair and ChatGPT sets of extracted entities.

string sent to the extractor). Thus, TGPTextr times are much higher than TFlairextr , even if extraction
itself is not longer than with Flair (which can be tested by sending the same query to the ChatGPT
free online assistant). While TGPTextr will vary depending on the caller’s internet connection and
many other factors hard or impossible to control (where is the actual ChatGPT server located, its
load, etc.), the slowdown incurred by the remote connection is likely to occur in all settings.

For what concerns financial costs (non-existent for our Flair extractor), GPT-4 use incurs around
$0.03/1K context (or prompt) token and $0.06/1K generated tokens according to OpenAI4. In total,
extractions in Table 7.3 used 1,618 context tokens and 680 generated tokens, leading to a cost of
$0.08.

To compare extraction quality, Table 7.4 quantifies agreement and disagreement between the
Flair and ChatGPT extractors, for the PubMed dataset. Specifically, for each string s found in the
data, and entity type τ , each extractor finds a set of entities of type τ . Let’s call these sets E1

τ , E
2
τ .

1. If one set is empty, the size of the other set adds to the counter in the respective τ/“no entity”
cell.

2. Otherwise:

(a) Each entity in E1
τ ∩ E2

τ counts as 1 in the τ/τ cell;

(b) Each entity in (E1
τ \ E2

τ) ∪ (E2
τ \ E1

τ) which the other extractor found with the same
label, but of another type τ ′ 6= τ , counts as 1 in the cell corresponding to τ for the first
extractor and τ ′ for the other;

(c) Each entity in (E1
τ \E2

τ)∪ (E2
τ \E1

τ) such that the other extractor has found no entity (of
any type) with the same label in s, adds to the counter in the respective τ/“no entity”
cell.

4https://openai.com/pricing#language-models

143

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

Note that this measure of agreement is conservative, in the following sense: we require identical
labels and identical types for entities to be in agreement. If the two extractors find in the same
string, respectively, entities e and e′, it will show in τ/“no entity” cells (Table 7.4), even if their
labels are very close, as in “Lyon” and “Lyon Cedex”. Moreover, if e and e′ also have the same
type, it will also be counted in τ/“no entity” cells of Table 7.4. Observe that for our purposes,
such cases lead to the exact same collection paths being enumerated, and the same path reliability
values. Thus, we do not consider them further.

Table 7.4 shows that agreement is significant (entity numbers in bold on the diagonal), and
very frequent for Person entities. Also, entities recognized as Person by one extractor and of
another type by the other are very rare. ChatGPT disagrees more strongly with Flair over
Flair’s Organizations, frequently considering that no entity at all exists with the same label.
The same holds about ChatGPT’s Locations: Flair finds no entity with the same label, almost
as often as it agrees with ChatGPT. Such cases, when Flair finds an entity and ChatGPT does
not, reflect: on one hand, exactly Flair’s false positives that we seek to avoid, in order to increase
edge and path reliability; on the other hand, extractor disagreements on the tokens to include in
an entity label, as we exemplify below.

Flair Person entities not found by ChatGPT include “Claudin-7b”, “Cytochrome” and
“Claudin-h”, which are all proteins. Flair was likely confused by the capitalization, and wrongly
extracts them as Person from paper titles and abstracts. Other mistakenly extracted Person en-
tities include people names in street names such as Peter Henry Rolfs︸ ︷︷ ︸

PERS

in “Av. Peter Henry Rolfs,

36570-900 Viçosa”. These mistaken Flair extractions are made on paper titles and author affilia-
tions, leading to unreliable extraction edges in the collection graph, and thus, to unreliable paths.
ChatGPT’s better training gives it an advantage here.

Flair Location entities not found by ChatGPT are mostly due to different allocations of
tokens in entity labels. For instance, in the string “Institute for Cancer Outcomes and Sur-
vivorship, University of Alabama at Birmingham, Birmingham, Alabama, USA”, Flair identifies:
Institute for Cancer Outcomes and Survivorship︸ ︷︷ ︸

ORG

, University of Alabama︸ ︷︷ ︸
ORG

, Birmingham︸ ︷︷ ︸
LOC

, Alabama︸ ︷︷ ︸
LOC

and

USA︸︷︷︸
LOC

(five entities), while ChatGPT extracts four: Institute for Cancer Outcomes and Survivorship︸ ︷︷ ︸
ORG

,

University of Alabama at Birmingham︸ ︷︷ ︸
ORG

, Birmingham, Alabama︸ ︷︷ ︸
LOC

, and USA︸︷︷︸
LOC

. In our table, this leads

to “Alabama” and “Birmingham” counting as two Flair Locations not found by ChatGPT (and
symmetrically, “Alabama, Birmingham” counts as a ChatGPT Location not found by Flair). Due to
the presence of many affiliation strings in our dataset, such disagreements are frequent in the table
cells involving Locations and/or Organizations. In these cases, we found that ChatGPT’s choice of
entity labels is better. For instance, “Birmingham, Alabama” is more specific than “Birmingham”
(the latter exists in many places, among them also UK, etc.). Other Flair-extracted Locations are
clearly incorrect, e.g., from “Av. Professor Egaz Moniz, Lisboa 1649-028, Portugal”, it extracts
Av.︸︷︷︸
LOC

.

Flair Organization entities not found by ChatGPT are mostly due to similar errors (Loca-

144

7.5. EXPERIMENTAL EVALUATION

tions and Organizations competing for tokens). They also include other obvious errors, e.g., Ag︸︷︷︸
ORG

(silver), Critique of the Literature︸ ︷︷ ︸
ORG

, Lolium perenne L.︸ ︷︷ ︸
ORG

(a plant), Drs.︸︷︷︸
ORG

(doctors), etc.

ChatGPT Person entities not found by Flair include, e.g., “Antonio González”, (Spanish
name, probably under-represented in Flair’s training set), “John A. Reif, Jr” (full name plus the
“Jr” suffix, probably also rare in the training set), etc.

ChatGPT Location entities not found by Flair include: “Varese, Italy” (Flair found “Varese”
and separately “Italy”, see discussion of “Birmingham, Alabama” above), “3-5-7 Tarumi” (address
without the city, Japanese format), and numerous addresses including zip codes. ChatGPT has
better knowledge of international addresses, e.g., correctly identifying a Location in: the Korean
address “San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam City, Gyeonggi-do, 461-701, South Ko-
rea”; the Japanese address ”Yoshida, Sakyo-ku, Kyoto 606-8501, Japan”; and the Polish address
“ul. Niezapominajek 8, 30-239 Krakow, Poland”, where Flair only accepted the city and/or the
country.

ChatGPT Organization entities not found by Flair are again mostly due to different allo-
cations of tokens in entities. For instance, in “Oxford Radcliffe Hospitals NHS Trust, Department
of Otolaryngology - Head and Neck Surgery, Level LG1, West Wing, John Radcliffe Hospital, Ox-
ford, UK, OX3 9DU.”, ChatGPT finds Department of Otolaryngology - Head and Neck Surgery︸ ︷︷ ︸

ORG

(among others), whereas Flair finds: Department of Otolaryngology︸ ︷︷ ︸
ORG

and Head and Neck Surgery︸ ︷︷ ︸
ORG

,

two entities instead of the correct single one.

NE type disagreements between extractors The most frequent class of such disagreements
(Table 7.4) are Flair Locations considered Organizations by ChatGPT. In these cases, ChatGPT is
right: the entity is really an Organization. Some of them include a Location element, e.g., “Middle
East Technical University”, “The University of Tokyo”, “Taipei Medical University”, “McGill Uni-
versity”, which may have confused Flair, but others do not, e.g., “INRA”, “LIFE Center”, “Joint
Orthopaedic Centre”. Conversely, Flair Organizations which ChatGPT considers Locations include:
“Lille”, “Viet Nam”, “Rua de Universidade” (ChatGPT is right; this is a majority of cases), and a
handful of cases where Flair is right, e.g., “Ospedale di Busto Arsizio”, “Intensive Care Unit”. 90%
of the Flair Locations and Flair Organizations which GPT finds to be Person entities are initials,
such as “A.R.A”, “R.H.S”, or acronyms such as “M.D” and “PhD”. The latter are author academic
titles; both extractors are wrong here. The former correspond to authors’ initials, found in the
paper metadata (conflict of interest statements). ChatGPT is right on “Chiharu Uno” and “L.
Giampiero Mazzaglia” (these are people indeed); it also made a mistake on “Korean Firefighters”,
which should rather be an Organization.

Overall, we find ChatGPT leads to better-quality results, and should be preferred whenever one
can afford the budget.

7.5.3 Path enumeration

For each dataset and pair of entity types, Table 7.5 reports the number of paths of each direc-
tionality (Section 7.3.2), the minimum and maximum length Lp of each path, and the minimum

145

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

(τ1, τ2) Nroot Ngen min(Lp) max(Lp) min(Sp) max(Sp)

P
u
b
M

ed

(τP , τO) 21 - 5 8 0 13,988
(τP , τL) 21 - 5 8 0 15,181
(τL, τO) 21 - 5 8 0 5,054
(τP , τP) 21 - 5 8 0 389
(τL, τL) 21 - 5 8 0 1,214
(τO, τO) 21 - 5 8 3 3,090

N
as

a

(τP , τO) 99 1 5 9 0 629
(τP , τL) 95 5 5 9 0 137
(τL, τO) 97 3 5 9 0 603
(τP , τP) 97 3 5 9 0 89
(τL, τL) 97 3 5 9 0 3,050
(τO, τO) 97 3 5 9 0 8,960

Y
el

p
B

u
si

n
es

s (τP , τO) 41 - 5 7 0 651
(τP , τL) 33 - 5 7 0 193
(τL, τO) 21 - 5 5 0 1,412
(τP , τP) 28 - 5 7 0 35
(τL, τL) 15 - 5 5 2 158
(τO, τO) 21 - 5 5 0 1,232

Y
el

p
B

u
si

n
es

s4

(τP , τO) 48 - 5 7 0 2,593
(τP , τL) 39 - 5 7 0 760
(τL, τO) 39 - 5 5 0 258
(τP , τP) 36 - 5 7 0 207
(τL, τL) 15 - 5 5 0 674
(τO, τO) 21 - 5 5 0 4,889

Table 7.5: Entity paths found in our datasets and their associated statistics.

and maximum data path support (number of results when evaluated on the data), this is denoted
Sp. For the PubMed (XML) and YelpBusiness (JSON) datasets, we obtained only shared-root
paths: this is because of the tree structure of these datasets, where text values (leaves) are only
connected by going through a common ancestor node. In the RDF Nasa dataset, we also found
general-directionality paths. The JSON datasets are more irregular, leading to more paths. In al-
most every case, a few collection paths had 0 support, due to dataset summarization (Section 7.3).
The maximum support may be high, e.g., 15,181 in the PubMed dataset.

These results show that numerous interesting entity paths exist in our datasets, of significant length
(up to 9), and some with high support, bringing the need for an efficient evaluation method.

7.5.4 Efficiency of path evaluation

We now study the efficiency of data path computations over the graph. Table 7.6 shows, for each
dataset and entity type pair, T0 is the time to evaluate the corresponding path queries without the
view-based optimization of Sections 7.4.2 and 7.4.3, referred to as VBO from now on. |QTO| is
the number of queries whose execution we stopped (time-out of 30s) without VBO. |QNV | is the

146

7.5. EXPERIMENTAL EVALUATION

(τ1, τ2) T0 |QTO| |QNV | |V| |M| TR TQNV
T=TR+TQNV

s=T0/T

P
u
b
M

ed

(τP , τO) 250.36 5 1 16 5 3.78 0.32 4.10 61×
(τP , τL) 37.29 0 1 16 5 19.06 0.32 19.38 2×
(τL, τO) 151.29 2 2 16 5 11.88 8.59 20.47 7×
(τP , τP) 152.59 3 1 16 5 44.19 0.08 44.27 3×
(τL, τL) 169.64 2 1 16 5 71.32 0.31 71.63 2×
(τO, τO) 317.92 5 1 16 5 22.99 0.25 23.24 13×

N
a
sa

(τP , τO) 195.47 1 0 80 10 54.14 - 54.14 3×
(τP , τL) 254.26 3 0 68 10 44.57 - 44.57 5×
(τL, τO) 1073.55 32 0 77 9 131.58 - 131.58 8×
(τP , τP) 278.95 4 0 76 10 92.01 - 92.01 3×
(τL, τL) 1103.48 30 0 77 9 101.35 - 101.35 10×
(τO, τO) 1318.78 37 0 77 9 247.43 - 247.43 5×

Y
el

p
B

u
si

n
es

s (τP , τO) 205.95 2 0 22 6 4.20 - 4.20 49×
(τP , τL) 410.87 7 1 19 5 40.87 1.27 42.12 9×
(τL, τO) 239.90 0 1 20 10 1.15 0.6 1.75 137×
(τP , τP) 466.58 9 2 23 5 15.33 12.02 27.35 17×
(τL, τL) 450.00 15 1 8 4 9.89 < 0.01 9.89 45×
(τO, τO) 334.22 4 1 10 5 2.83 < 0.01 2.83 118×

Y
el

p
B

u
si

n
es

s4

(τP , τO) 804.70 26 0 23 6 62.52 - 62.52 12×
(τP , τL) 454.19 10 1 20 5 92.50 < 0.01 92.50 5×
(τL, τO) 242.57 5 1 10 5 62.74 6.61 69.35 3×
(τP , τP) 317.00 7 1 27 7 14.35 1.08 15.43 20×
(τL, τL) 395.49 10 1 8 4 2.62 18.15 20.77 19×
(τO, τO) 347.23 8 1 10 5 42.93 2.34 45.27 7×

Table 7.6: View-based data path evaluation.

147

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

(τ1, τ2) min prel max prel p20rel |P| |P ′| R = |P′|
|P|

P
u

b
M

ed

(τP , τO) 0.0150 0.9142 0.0409 52 20 38.45%
(τP , τL) 0.0150 0.9107 0.0150 30 20 66.66%
(τL, τO) 0.0150 0.9107 0.0232 34 20 58.82%
(τP , τP) 0.0150 0.9774 0.0150 24 20 83.33%
(τO, τO) 0.0150 0.4158 0.0232 31 20 64.51%
(τL, τL) 0.0150 0.0954 0.0150 20 20 100.00%

N
a
sa

(τP , τO) 0.0014 0.0645 0.0178 191 20 10.47%
(τP , τL) 0.0014 0.0645 0.0077 142 20 14.08%
(τL, τO) 0.0014 0.1016 0.0077 115 20 17.39%
(τP , τP) 0.0014 0.0232 0.0077 110 20 18.18%
(τO, τO) 0.0014 0.0581 0.0077 92 20 21.73%
(τL, τL) 0.0014 0.3790 0.0077 67 20 29.85%

Y
el

p (τL, τO) 0.0002 0.9997 0.0002 8 8 100.00%
(τL, τL) 0.0002 1.0000 0.0002 11 11 100.00%

Table 7.7: Numbers of paths and reliability information in our datasets.

number of queries for which Algorithm 13 did not recommend a view. TR is the time to evaluate
the rewritten queries on the data graph, while TQNV

is the time to evaluate the non-rewritten
queries QNV ; T = TR +TQNV

is the (total) execution time to evaluate queries using VBO. Finally,
s = T0/T is the speed-up thanks to VBO. We do not report times to materialize views because
they were all very short (less than 0.01s). All times are in seconds.

The evaluation time T0 without VBO ranges from 37s to 1318s; these path queries require 5 to
9 joins, on graphs of up to more than 250,000 edges (Table 7.2). |QNV |, the number of queries
that could not make use of any views, is rather small, which is good. The number of candidate
views, respectively, materialized views depend on the complexity of the dataset, and thus on the
complexity of the paths. The total path evaluation time T is reasonable. Finally, the VBO speed-up
is at least 2× and at most 137×, showing that our view-based algorithm allows to evaluate path
queries much more efficiently.

7.5.5 Path reliability and ranking

We now study how reliability (Section 7.3.3) and force (Section 7.3.4) vary across paths. Table 7.7
illustrates reliability of enumerated paths on our datasets, loaded with the ChatGPT-based NE
extractor (Section 7.2). We excluded YelpBusiness4 in order to limit ChatGPT expenses. For each
dataset and a pair of NE types connected by at least a path in a collection graph, we show: min
prel, the minimal path reliability among all the paths connecting NEs of these types; max prel,
the maximal path reliability for the same paths; p20rel, the reliability of the 20th ranked path (20 is
the default number of paths shown to the user for each pair of entity types); |P|, the number of
enumerated paths; |P ′|, which is either 20 if there are at least 20 paths, or |P| otherwise. We also
show the ratio R between |P ′| and |P|. Path reliability values span over the whole (0, 1] interval,
e.g., 1.000 or 0.9997 in the YelpBusiness dataset, or 0.9774 in PubMed, to 0.0002 for some in
YelpBusiness. Thus, reliability gives a strong signal for ranking paths.

Table 7.8 illustrates some paths between τP and τO, ordered by reliability, then force, in the PubMed

148

7.5. EXPERIMENTAL EVALUATION

pid prel F (p) Path p connecting a Person (τP) entity with an Organization (τO) entity
p1 0.91 1.00 τP←1.0 #val ← Name ← Author → Affiliation → #val →0.91 τO
p2 0.41 0.02 τP←1.0 #val ← Name ← Author ←0.02 AuthorList ← PubmedArticle →

JournalTitle → #val →0.41 τO
p3 0.09 1.00 τP←0.09 #val← CoiStatement← PubmedArticle→ JournalTitle→#val→0.41

τO
p4 0.09 0.02 τP←0.09 #val ← CoiStatement ← PubmedArticle → AuthorList →0.02 Author

→ Affiliation → #val →0.91 τO
...
p20 0.04 1.0 τP←1.0 #val ← Name ← Author → Affiliation → #val →0.91 τL←0.09 #val

→0.04 τO

p21 0.04 1.00 τP←0.09 #val← CoiStatement← PubmedArticle→ JournalTitle→#val→0.05

τL←0.09 #val →0.04 τO
p22 0.04 0.02 τP←1.0 #val ← Name ← Author ←0.02 AuthorList ← PubmedArticle → Arti-

cleTitle → #val →0.04 τO

Table 7.8: Some of the top-reliability (τP , τO) paths in the PubMed dataset, at ranks: 1, 2, 3, 4,
20 (above the double line), respectively, 21 and 22 (below the double line), out of 52 paths.

dataset; we picked these since this is the largest group of paths (52 initially, recall Table 7.7). It
features the first four and the last paths among the top-ranked paths, as well as p21 and p22, which
almost made it to the top-20. For each of them, Table 7.8 shows the path reliability, its force
and the collections it connects. We show the reliability of each extraction edge as an index, and
similarly, show the force of each non-extraction edge when it is smaller than 1. For instance, the
edge connecting the XML element 〈AuthorList〉 to all its 〈Author〉 children has a force of 0.02.
The most reliable path connects authors with the organizations to which they are affiliated. The
second connects authors to organizations present in the title of the journals where their articles
appear, such as American Chemical Society︸ ︷︷ ︸

ORG

identified in “Journal of the American Chemical Soci-

ety”. The following paths connect, respectively: people mentioned in the paper’s Conflict of Interest
statements with organizations appearing in journal titles (third), and author’s employers (fourth),
respectively. p20 connects an author’s name to its affiliation location, such that this affiliation
also contains a location found in journal titles. p21 connects people found in conflict of interest
statements to organizations found in article titles, to which a low reliability of 0.04 is given. p22

connects an author’s name to the organization that may be found in an article title. This path has
a low reliability (only 0.04) and its force is also low (0.02), due to the many authors that an article
may have.

The least reliable collection extraction edges found in PubMed include: 6 Locations extracted from
399 CoiStatement values (leading to a reliability of 0.015) and 86 people names in 5712 Affiliations
(reliability also equal to 0.015). They were found in strings such as “James J. Peters︸ ︷︷ ︸

PERS

VA Medical

Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.”. All paths traversing this edge are
at the very bottom of the ranked list of paths. Analysis of path reliability in the other datasets
lead to similar findings.

149

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

(τ1, τ2) T0 |QTO| |QNV | |V| |M| TR TQNV
T=TR+TQNV

s=T0/T
PubMed

(τP , τO) 6.29 0 1 32 4 1.80 0.04 1.84 3.4×
(τP , τL) 38.73 1 1 26 4 1.57 0.02 1.59 24.3×
(τL, τO) 68.80 2 1 24 4 4.04 0.02 4.06 16.9×
(τP , τP) 2.21 0 4 26 5 9.08 0.04 9.12 0.2×
(τO, τO) 20.20 0 1 33 4 18.65 0.01 18.66 1.1×
(τL, τL) 23.57 0 7 16 2 1.38 0.01 1.39 16.9×

Nasa
(τP , τO) 11.30 0 1 46 2 10.04 8.82 18.86 0.5×
(τP , τL) 29.77 0 1 41 4 2.37 0.03 2.40 12.4×
(τL, τO) 36.57 1 1 29 4 4.71 0.03 4.74 7.7×
(τP , τP) 3.13 0 1 35 2 2.46 0.01 2.47 1.2×
(τO, τO) 32.66 1 3 35 4 2.89 0.04 2.93 11.1×
(τL, τL) 36.13 0 6 19 2 1.62 0.09 1.71 21.1×

YelpBusiness
(τL, τO) 38.86 1 0 7 1 3.62 0 3.62 10.7×
(τL, τL) 131.98 4 2 6 3 45.74 0.15 45.89 2.8×

Table 7.9: Data path evaluation on the top-20 enumerated paths, sorted by reliability, then force,
in the PubMed, Nasa and YelpBusiness datasets.

7.5.6 Evaluation of the top-ranked paths

Table 7.9 studies the benefit of the MQO approach (Algorithm 13) on the top-ranked paths. For
each dataset ingested with the ChatGPT-based NE extractor, we show the same information as
presented in Table 7.6 (Section 7.5.4). All the evaluation times, notably T0 when directly evaluating
paths, and T when applying our MQO, are given in seconds. The speed-up (rightmost column)
shows that for 12 out of 14 path groups, MQO achieves its goal, reducing evaluation times by up
to 10× or 20×. We also notice two path groups whose evaluation it slowed by MQO, by a factor
of 2×, respectively, 5×. This is due to its heuristic choices and relatively simple cost model. The
gains are slightly less than those in Table 7.6; this may be because there were in general more paths
in that table, leading to more sharing opportunities. Still, we find the MQO gains are generally
robust and significant, confirming its interest.

7.5.7 Experiment conclusion

Our experiments lead to the following observations. First, the ChatGPT entity extractor improved
the overall path quality by (i) a better recognition of Locations, at all geographical levels (street
up to country); (ii) a significantly better recognition of Organizations, avoiding false positives and
finding good entity labels; (iii) modest improvements in the quality of extracting people names;
and (iv) overall, a better support of many languages (Section 7.5.2). All these advantages can be
attributed to its large training corpus, and we recommend it whenever extraction time is not crucial,
and financial costs can be afforded. Second, many Named Entity paths exist, in the datasets we
considered (Section 7.5.3). Third, our path evaluation algorithm is very effective in reducing the
time to evaluate path sets (Section 7.5.4). Fourth, our novel ranking based on reliability and force

150

7.6. SUMMARY

downgrades many meaningless paths, while preserving significant ones (Section 7.5.5). Our joint
path materialization technique is effective also on the top-ranked paths (Section 7.5.6).

7.6 Summary

In this chapter, we have presented how to efficiently enumerate and evaluate a set of interesting paths
in and across datasets, leveraging the data graph (Chapter 4) and the collection graph (Chapter 5).
We addressed two main challenges, i.e., identify interesting entity-to-entity paths and efficiently
find them in a data graph.

We tackled the first challenge by designing a high-quality Named Entity extractor using ChatGPT 4
and ranked paths based on their interestingness, which we define as a combination of extraction
reliability and information force. Our experiments have shown that our new NE extractor and
interestingness measure allow to show users meaningful paths. For the second challenge, paths are
efficiently enumerated using the collection graph, even if the data is large and complex. Enumerated
paths are evaluated on the data graph, leveraging the idea they may share materializable sub-paths.
Experiments have shown that this allows important speed-ups.

151

CHAPTER 7. ENTITY-TO-ENTITY PATH EXPLORATION

152

8
Conclusions and perspectives

In this thesis, we have provided novel means to help users and data providers understand, ex-
plore, and share heterogeneous semi-structured datasets they may work with. Working with semi-
structured data is challenging, especially for non-technical users, and especially when multiple data
models must be handled simultaneously. This thesis has proposed methods and tools working
on any structured and semi-structured data model, i.e., relational data, XML documents, JSON
documents, RDF graphs and Property graphs. This has led to the following proposals:

• A unified view over how datasets model objects (records), relationships between objects, and
objects of the same kind.

• The notion of same-kind records, allowing to group records, not only based on their (explicit)
type, but also on their implicit kind.

• The collection graph, a core structure in our works, allowing to work on a summarized version
of the data.

Next, we have introduced novel data abstractions: compact, but expressive, descriptions of data in
the form of Entity-Relationship schemas, potentially nested to accommodate semi-structured data
complexity. For this, we proposed Abstra, a method and software which:

• Automatically identifies, in a given dataset, a set of main entities and their relationships; they
broadly correspond to the entities one could create when designing a relational database.

• Determines which collections in the collection graph deserve to be elected as main entities,
using various weight schemes, some simple, some more intricated, based on PageRank. Fur-
ther, we identify the (potentially nested) properties belonging to each main entity, included
in the entity boundaries.

• Classifies each main entity among a set of categories, that helps the overall understanding of
the dataset, especially if users are not familiar with the dataset application domain.

• Is scalable to large datasets, as shown in the experimental evaluation.

153

CHAPTER 8. CONCLUSIONS AND PERSPECTIVES

Perspectives and open questions Numerous intriguing avenues exist for future work. We high-
light some, that could be immediately pursued.

Our detection of relationships is only capable of finding binary relationships (between two entities).
It would be interesting to extend this approach in order to capture also relations of higher arity.
For that, data profiling could be used, also taking inspiration from the data model where n-ary
relations are represented in well-known ways.

A different avenue of research leverages the vision presented in this thesis in order to convert data
of various data models, into Property Graphs. The latter model is the target of many research
activities today, on the data model, query language, efficient query processing, in particular in-
memory, etc. Many interesting datasets are available in data models that are not natively PGs. We
have started a follow-up project (not reported in the manuscript) where, from the data abstraction,
we compute a PG schema. The next logical step, continuing on this line, is to migrate (map) also
the data, from the normalized data graph created by Abstra, into the PG format.

An orthogonal question concerns the construction (or enrichment) of a given dataset. Once loaded
in ConnectionLens and abstracted by Abstra, existing Open Data sources could be leveraged
to augment the dataset with external knowledge about the Named Entities it contains. We have
started work along this direction (not reported in the manuscript), leveraging RDF Knowledge
Bases (KBs).

It would be intriguing also to further experiment the usage of abstractions in very large data lakes,
with thousands or tens of thousands of datasets. On one hand, to speed up dataset abstraction,
one could resort to sampling. On the other hand, once abstractions have been computed, it would
be interesting to understand how to aggregate or search over them, in order to help users quickly
identify the datasets that could be most useful to them.

154

BIBLIOGRAPHY

Bibliography

[1] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock. Data Profiling.
Morgan & Claypool Publishers, 2018.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.
Addison-Wesley Reading, 1995.

[3] Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, and Pierre
Senellart. Web data management. Cambridge University Press, 2011.

[4] B Aditya, Gaurav Bhalotia, Soumen Chakrabarti, Arvind Hulgeri, Charuta Nakhe, S Sudar-
shanxe, et al. BANKS: browsing and keyword searching in relational databases. In VLDB,
pages 1083–1086. Elsevier, 2002.

[5] Christian Aebeloe, Vinay Setty, Gabriela Montoya, and Katja Hose. Top-K diversification for
path queries in knowledge graphs. In ISWC (Workshops), 2018.

[6] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. DBXplorer: A system for keyword-
based search over relational databases. In ICDE, 2002.

[7] Rafi Ahmed, Philippe De Smedt, Weimin Du, William Kent, Mohammad A. Ketabchi,
Witold A. Litwin, Abbas Rafii, and Ming-Chi Shan. The Pegasus heterogeneous multidatabase
system. Computer, 24(12):19–27, 1991.

[8] Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif Rasul, Stefan Schweter, and Roland
Vollgraf. FLAIR: An easy-to-use framework for state-of-the-art NLP. In NAACL (demon-
strations), pages 54–59, 2019.

[9] Rana Alotaibi, Damian Bursztyn, Alin Deutsch, Ioana Manolescu, and Stamatis Zampetakis.
Towards scalable hybrid stores: Constraint-based rewriting to the rescue. In SIGMOD, 2019.

[10] Rana Alotaibi, Bogdan Cautis, Alin Deutsch, Moustafa Latrache, Ioana Manolescu, and Yifei
Yang. ESTOCADA: towards scalable polystore systems. PVLDB, 13(12):2949–2952, 2020.

[11] Ayman Alserafi, Alberto Abelló, Oscar Romero, and Toon Calders. Keeping the data lake
in form: DS-kNN datasets categorization using proximity mining. In MEDI, pages 35–49.
Springer, 2019.

[12] Angelos Anadiotis, Oana Balalau, Théo Bouganim, et al. Empowering investigative journalism
with graph-based heterogeneous data management. IEEE DEBull., 2021.

[13] Angelos Anadiotis, Oana Balalau, Catarina Conceicao, et al. Graph integration of structured,
semistructured and unstructured data for data journalism. Information Systems, 104, 2022.

155

BIBLIOGRAPHY

[14] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan
Hidders, Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, et al. PG-Schema: schemas
for property graphs. SIGMOD, 1(2):1–25, 2023.

[15] Andrei Arion, Angela Bonifati, Ioana Manolescu, and Andrea Pugliese. Path summaries and
path partitioning in modern XML databases. WWW, 11(1), 2008.

[16] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,
Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Luszczak, et al. Delta Lake: high-
performance ACID table storage over cloud object stores. PVLDB, 13(12):3411–3424, 2020.

[17] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. Lakehouse: a new generation
of open platforms that unify data warehousing and advanced analytics. In CIDR, volume 8,
2021.

[18] Sören Auer et al. DBpedia: A nucleus for a web of open data. In The Semantic Web, 2007.

[19] Mohamed Amine Baazizi, Clément Berti, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
Human-in-the-loop schema inference for massive JSON datasets. In EDBT, 2020.

[20] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. Parametric
schema inference for massive JSON datasets. The VLDB Journal, 28(4), 2019.

[21] Zhifeng Bao, Jiaheng Lu, Tok Wang Ling, and Bo Chen. Towards an effective XML keyword
search. TKDE, 22(8):1077–1092, 2010.

[22] Nelly Barret, Antoine Gauquier, Jia Jean Law, and Ioana Manolescu. Exploring heterogeneous
data graphs through their entity paths. In ADBIS, volume 13985, pages 163–179. Springer,
2023.

[23] Nelly Barret, Ioana Manolescu, and Prajna Upadhyay. Abstra: toward generic abstractions
for data of any model (demonstration). In CIKM, 2022.

[24] Nelly Barret, Ioana Manolescu, and Prajna Upadhyay. Computing generic abstractions from
application datasets. In EDBT, 2024.

[25] Amin Beheshti, Boualem Benatallah, Reza Nouri, Van Munin Chhieng, Huang Tao Xiong,
and Xu Zhao. CoreDB: a data lake service. In CIKM, pages 2451–2454, 2017.

[26] Domenico Beneventano, Claudio Gennaro, Sonia Bergamaschi, and Fausto Rabitti. A
mediator-based approach for integrating heterogeneous multimedia sources. Multimedia tools
and applications, 62:427–450, 2013.

[27] Geert Jan Bex, Wouter Gelade, Frank Neven, and Stijn Vansummeren. Learning deterministic
regular expressions for the inference of schemas from XML data. TWEB, 4(4):1–32, 2010.

[28] Geert Jan Bex, Frank Neven, and Stijn Vansummeren. Inferring XML schema definitions
from XML data. In VLDB, pages 998–1009. ACM, 2007.

[29] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching
and browsing in databases using BANKS. In ICDE, 2002.

[30] Christian Bizer and Andreas Schultz. The Berlin SPARQL benchmark. IJSWIS, 5(2), 2009.

156

BIBLIOGRAPHY

[31] Philip Bohannon, Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Prasan Roy, and Jérôme
Siméon. Bridging the XML relational divide with LegoDB. In ICDE, 2003.

[32] Angela Bonifati, Stefania Dumbrava, and Haridimos Kondylakis. Graph summarization.
CoRR, abs/2004.14794, 2020.

[33] Angela Bonifati, Stefania Dumbrava, and Nicolas Mir. Hierarchical clustering for property
graph schema discovery. In EDBT. OpenProceedings.org, 2022.

[34] Angela Bonifati, Stefania-Gabriela Dumbrava, Emile Martinez, Fatemeh Ghasemi, Malo
Jaffré, Pacome Luton, and Thomas Pickles. DiscoPG: Property graph schema discovery
and exploration. PVLDB, 15(12), 2022.

[35] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha Srinivas, Patrick
Dantressangle, Octavian Udrea, and Bishwaranjan Bhattacharjee. Building an efficient RDF
store over a relational database. In SIGMOD, 2013.

[36] Liliana Bounegru and Jonathan Gray. The data journalism handbook: Towards a critical data
practice. Amsterdam University Press, 2021.

[37] Dan Brickley, Matthew Burgess, and Natasha Noy. Google Dataset Search: building a search
engine for datasets in an open web ecosystem. In WWW, pages 1365–1375, 2019.

[38] David Guy Brizan and Abdullah Uz Tansel. A survey of entity resolution and record linkage
methodologies. Communications of the IIMA, 6(3):5, 2006.

[39] Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and Wang-Chiew Tan. Rea-
soning about keys for XML. Information Systems, 28(8):1037–1063, 2003.

[40] Maxime Buron, François Goasdoué, Ioana Manolescu, and Marie-Laure Mugnier. Obi-Wan:
ontology-based RDF integration of heterogeneous data. PVLDB, 13(12):2933–2936, 2020.

[41] Michael J. Cafarella, Alon Halevy, and Nodira Khoussainova. Data integration for the rela-
tional web. PVLDB, 2(1):1090–1101, 2009.

[42] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Query
processing under GLAV mappings for relational and graph databases. PVLDB, 6(2):61–72,
2012.

[43] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana Manolescu,
Georgia Troullinou, and Mussab Zneika. Summarizing semantic graphs: A survey. The VLDB
Journal, 28(3), 2019.

[44] Camille Chanial, Rédouane Dziri, Helena Galhardas, et al. ConnectionLens: Finding connec-
tions across heterogeneous data sources (demonstration). PVLDB, 11(12), 2018.

[45] Gloria Chatzopoulou, Magdalini Eirinaki, and Neoklis Polyzotis. Query recommendations for
interactive database exploration. In SSDBM, pages 3–18. Springer, 2009.

[46] Wei Chen, Fangzhou Guo, Dongming Han, Jacheng Pan, Xiaotao Nie, Jiazhi Xia, and Xiao-
long Zhang. Structure-based suggestive exploration: A new approach for effective exploration
of large networks. IEEE Transactions on Visualization and Computer Graphics, 25(1), 2019.

157

BIBLIOGRAPHY

[47] Zhiyu Chen, Mohamed Trabelsi, Jeff Heflin, Yinan Xu, and Brian D. Davison. Table search
using a deep contextualized language model. In SIGIR, pages 589–598, 2020.

[48] Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. Schemas for safe and efficient XML pro-
cessing. In ICDE. IEEE Computer Society, 2011.

[49] Dario Colazzo, François Goasdoué, Ioana Manolescu, and Alexandra Roatiş. RDF analytics:
lenses over semantic graphs. In WWW, pages 467–478, 2014.

[50] George Colliat. OLAP, relational, and multidimensional database systems. SIGMOD,
25(3):64–69, 1996.

[51] Zhamak Dehghani. Data mesh. O’Reilly Media, 2022.

[52] Alin Deutsch, Mary F. Fernández, and Dan Suciu. Storing semistructured data with
STORED. In SIGMOD, 1999.

[53] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, et al.
Graph pattern matching in GQL and SQL/PGQ. In SIGMOD, 2022.

[54] Barry A. Devlin and Paul T. Murphy. An architecture for a business and information system.
IBM systems Journal, 27(1):60–80, 1988.

[55] Gonzalo Diaz, Marcelo Arenas, and Michael Benedikt. SPARQLByE: querying RDF data by
example. PVLDB, 9(13):1533–1536, 2016.

[56] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. Explore-by-example: an auto-
matic query steering framework for interactive data exploration. In SIGMOD, pages 517–528,
2014.

[57] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada. Efficient joinable
table discovery in data lakes: A high-dimensional similarity-based approach. In ICDE, pages
456–467. IEEE, 2021.

[58] Marina Drosou and Evaggelia Pitoura. YMALDB: exploring relational databases via result-
driven recommendations. The VLDB Journal, 22(6):849–874, 2013.

[59] Marek Dudáš, Vojtěch Svátek, and Jindřich Mynarz. Dataset summary visualization with
LODSight. In ESWC (Satellite Events), pages 36–40. Springer, 2015.

[60] Oliver Michael Duschka. Query planning and optimization in information integration. Stan-
ford University, 1998.

[61] Ahmed El-Roby, Khaled Ammar, Ashraf Aboulnaga, and Jimmy Lin. Sapphire: querying
RDF data made simple. arXiv preprint arXiv:1805.11728, 2018.

[62] Shady Elbassuoni and Roi Blanco. Keyword search over RDF graphs. In CIKM, pages
237–242, 2011.

[63] Hassan A. Elmadany, Marco Alfonse, and Mostafa Aref. XML summarization: A survey. In
ICICIS, pages 537–541, 2015.

[64] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat,
Minh-Duc Pham, and Peter Boncz. The LDBC social network benchmark: Interactive work-
load. In SIGMOD, 2015.

158

BIBLIOGRAPHY

[65] Ronald Fagin, Laura M. Haas, Mauricio Hernández, Renée J. Miller, Lucian Popa, and Yan-
nis Velegrakis. CLIO: schema mapping creation and data exchange. Conceptual Modeling:
Foundations and Applications, pages 198–236, 2009.

[66] Ju Fan, Guoliang Li, and Lizhu Zhou. Interactive SQL query suggestion: Making databases
user-friendly. In ICDE, pages 351–362. IEEE, 2011.

[67] Mina Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Hoffmann, and Xu Chu.
CLAMS: bringing quality to data lakes. In SIGMOD, pages 2089–2092, 2016.

[68] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel Madden, and
Michael Stonebraker. AURUM: A data discovery system. In ICDE, pages 1001–1012. IEEE,
2018.

[69] Jenny Rose Finkel, Trond Grenager, and Christopher D. Manning. Incorporating non-local
information into information extraction systems by GIBBS sampling. In ACL, pages 363–370,
2005.

[70] Daniela Florescu, Donald Kossmann, and Ioana Manolescu. Integrating keyword search into
XML query processing. Computer Networks, 33(1-6):119–135, 2000.

[71] Kun Fu, Tingyun Mao, Yang Wang, Daoyu Lin, Yuanben Zhang, Junjian Zhan, Xian Sun, and
Feng Li. TS-Extractor: large graph exploration via subgraph extraction based on topological
and semantic information. Journal of Visualization, 24, 2021.

[72] Yihan Gao, Silu Huang, and Aditya Parameswaran. Navigating the data lake with DATA-
MARAN: Automatically extracting structure from log datasets. In SIGMOD, pages 943–958,
2018.

[73] Hector Garcia-Molina, Yannis Papakonstantinou, Dallan Quass, Anand Rajaraman, Yehoshua
Sagiv, Jeffrey D. Ullman, Vasilis Vassalos, and Jennifer Widom. The TSIMMIS approach to
mediation: Data models and languages. Journal of Intelligent Information Systems, 8(2):117–
132, 1997.

[74] Minos N. Garofalakis, Aristides Gionis, Rajeev Rastogi, S. Seshadri, and Kyuseok Shim. DTD
inference from XML documents: The XTRACT approach. IEEE DEBull., 26(3):19–25, 2003.

[75] Corinna Giebler, Christoph Gröger, Eva Hoos, Holger Schwarz, and Bernhard Mitschang.
Modeling data lakes with data vault: practical experiences, assessment, and lessons learned.
In ER, pages 63–77. Springer, 2019.

[76] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. Incremental structural summa-
rization of RDF graphs. In EDBT, 2019.

[77] François Goasdoué, Pawel Guzewicz, and Ioana Manolescu. RDF graph summarization for
first-sight structure discovery. The VLDB Journal, 29(5), 2020.

[78] François Goasdoué, Ioana Manolescu, and Alexandra Roatis. Efficient query answering against
dynamic RDF databases. In EDBT. ACM, 2013.

[79] Roy Goldman and Jennifer Widom. DataGuides: enabling query formulation and optimiza-
tion in semistructured databases. In VLDB, 1997.

159

BIBLIOGRAPHY

[80] Alex Gorelik. The enterprise big data lake: Delivering the promise of big data and data
science. O’Reilly Media, 2019.

[81] Benôıt Groz, Aurélien Lemay, Slawek Staworko, and Piotr Wieczorek. Inference of shape
graphs for graph databases. In ICDT, volume 220, 2022.

[82] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: a benchmark for OWL knowledge
base systems. Journal of Web Semantics, 3(2-3), 2005.

[83] Rihan Hai, Sandra Geisler, and Christoph Quix. Constance: an intelligent data lake system.
In SIGMOD, 2016.

[84] Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. Data lakes: A survey of
functions and systems. TKDE, 2023.

[85] Alon Y. Halevy. Answering queries using views: A survey. The VLDB Journal, 10(4), 2001.

[86] Alon Y. Halevy, Flip Korn, Natalya Fridman Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven Euijong Whang. Managing Google’s data lake: an overview of the
GOODS system. IEEE DEBull., 39(3):5–14, 2016.

[87] Jiawei Han, Micheline Kamber, and Jian Pei. Data mining concepts and techniques, third
edition. 2012.

[88] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. BLINKS: ranked keyword searches on
graphs. In SIGMOD, pages 305–316, 2007.

[89] Ahmed Helal, Mossad Helali, Khaled Ammar, and Essam Mansour. A demonstration of
KGLac: a data discovery and enrichment platform for data science. PVLDB, 14(12):2675–
2678, 2021.

[90] Tony Hey. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research,
2009.

[91] John E. Hopcroft. An nlog n algorithm for minimizing the states in a finite automaton. The
Theory of Machines and Computation, 1970.

[92] Katja Hose and Ralf Schenkel. Towards benefit-based RDF source selection for SPARQL
queries. In SWIM, pages 1–8, 2012.

[93] Vagelis Hristidis and Yannis Papakonstantinou. DISCOVER: keyword search in relational
databases. In VLDB, pages 670–681. Elsevier, 2002.

[94] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. GitTables: A large-scale corpus of
relational tables. CoRR, abs/2106.07258, 2021.

[95] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satyanarayan,
Tim Kraska, Çağatay Demiralp, and César A. Hidalgo. Sherlock: a deep learning approach
to semantic data type detection. SIGKDD Explorations, 2019.

[96] Dilshod Ibragimov, Katja Hose, Torben Bach Pedersen, and Esteban Zimányi. Towards
exploratory OLAP over linked open data – a case study. In BIRTE, pages 114–132. Springer,
2015.

160

BIBLIOGRAPHY

[97] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of data exploration
techniques. In SIGMOD, pages 277–281, 2015.

[98] Lan Jiang and Felix Naumann. Holistic primary key and foreign key detection. Journal of
Intelligent Information Systems, 54(3), 2020.

[99] Richard M. Karp. Reducibility among combinatorial problems. Springer, 2010.

[100] Avita Katal, Mohammad Wazid, and R. H. Goudar. Big data: Issues, challenges, tools and
good practices. In IC3, pages 404–409, 2013.

[101] Kenza Kellou-Menouer, Nikolaos Kardoulakis, Georgia Troullinou, Zoubida Kedad, Dimitris
Plexousakis, and Haridimos Kondylakis. A survey on semantic schema discovery. The VLDB
Journal, 2021.

[102] Kenza Kellou-Menouer and Zoubida Kedad. Schema discovery in RDF data sources. In ER.
Springer, 2015.

[103] Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. Set-based approximate approach
for lossless graph summarization. Computing, 97:1185–1207, 2015.

[104] Shahan Khatchadourian and Mariano P. Consens. ExpLOD: summary-based exploration of
interlinking and RDF usage in the Linked Open Data Cloud. In ESWC, pages 272–287.
Springer, 2010.

[105] Nodira Khoussainova, YongChul Kwon, Magdalena Balazinska, and Dan Suciu. SnipSuggest:
context-aware autocompletion for SQL. PVLDB, 4(1):22–33, 2010.

[106] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. Natural language to SQL:
Where are we today? PVLDB, 13(10):1737–1750, 2020.

[107] Hyoung-Joo Kim, Henry F. Korth, and Avi Silberschatz. PICASSO: a graphical query lan-
guage. Software: Practice and Experience, 18(3):169–203, 1988.

[108] Ralph Kimball and Margy Ross. The data warehouse toolkit: the complete guide to dimen-
sional modeling. John Wiley & Sons, 2011.

[109] Michal Klempa, Jakub Stárka, and Irena Mlynková. Optimization and refinement of XML
schema inference approaches. Procedia Computer Science, 10:120–127, 2012.

[110] Yannis Klonatos, Christoph Koch, Tiark Rompf, and Hassan Chafi. Building efficient query
engines in a high-level language. PVLDB, 7(10):853–864, 2014.

[111] Boyan Kolev, Patrick Valduriez, Carlyna Bondiombouy, Ricardo Jiménez-Peris, Raquel Pau,
and José Pereira. CloudMdsQL: querying heterogeneous cloud data stores with a common
language. Distributed and parallel databases, 34:463–503, 2016.

[112] Ora Lassila, Michael Schmidt, Olaf Hartig, Brad Bebee, Dave Bechberger, Willem Broekema,
Ankesh Khandelwal, Kelvin Lawrence, Carlos-Manuel López-Enŕıquez, Ronak Sharda, and
Bryan B. Thompson. The OneGraph vision: Challenges of breaking the graph model lock-in.
Semantic Web, 14(1):125–134, 2023.

[113] Hanâ Lbath, Angela Bonifati, and Russ Harmer. Schema inference for property graphs. In
EDBT, 2021.

161

BIBLIOGRAPHY

[114] Alon Y. Levy, Anand Rajaraman, Joann J. Ordille, et al. Querying heterogeneous information
sources using source descriptions. In VLDB, volume 96, pages 251–262. Citeseer, 1996.

[115] Fei Li and Hosagrahar V. Jagadish. Constructing an interactive natural language interface
for relational databases. PVLDB, 8(1):73–84, 2014.

[116] Guoliang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. EASE: an
effective 3-in-1 keyword search method for unstructured, semi-structured and structured data.
In SIGMOD, pages 903–914, 2008.

[117] Matteo Lissandrini, Davide Mottin, Katja Hose, and Torben Bach Pedersen. Knowledge
graph exploration systems: are we lost? In CIDR, 2022.

[118] Matteo Lissandrini, Davide Mottin, Themis Palpanas, Yannis Velegrakis, and HV Jagadish.
Data Exploration Using Example-Based Methods. Springer, 2019.

[119] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods
and applications: A survey. ACM Computing Surveys, 51(3):1–34, 2018.

[120] Ziyang Liu and Yi Chen. Processing keyword search on XML: a survey. World Wide Web,
14:671–707, 2011.

[121] Antonio Maccioni and Riccardo Torlone. KAYAK: a framework for just-in-time data prepa-
ration in a data lake. In CAiSE, pages 474–489. Springer, 2018.

[122] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard,
and David McClosky. The Stanford CoreNLP natural language processing toolkit. In ACL
(demonstrations), pages 55–60, 2014.

[123] Ioana Manolescu, Daniela Florescu, Donald Kossmann, Florian Xhumari, and Dan Olteanu.
AGORA: living with XML and relational. In VLDB, pages 623–626. Citeseer, 2000.

[124] Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. Expressiveness and
complexity of XML schema. TODS, 31(3):770–813, 2006.

[125] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In NIPS, 2013.

[126] Tova Milo and Dan Suciu. Index structures for path expressions. In ICDT, pages 277–295.
Springer, 1999.

[127] Ankur Moitra. Algorithmic aspects of machine learning. Cambridge University Press, 2018.

[128] José de Aguiar Moraes Filho. Summarizing XML Documents: Contributions, Empirical Stud-
ies, and Challenges. PhD thesis, Technische Universität Kaiserslautern, 2010.

[129] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. Exemplar
queries: Give me an example of what you need. PVLDB, 7(5):365–376, 2014.

[130] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, Themis Palpanas, et al. New trends
on exploratory methods for data analytics. PVLDB, 10(12):1977–1980, 2017.

[131] Fatemeh Nargesian, Ken Q. Pu, Erkang Zhu, Bahar Ghadiri Bashardoost, and Renée J. Miller.
Organizing data lakes for navigation. In SIGMOD, pages 1939–1950, 2020.

162

BIBLIOGRAPHY

[132] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C. Arocena. Data
lake management: challenges and opportunities. PVLDB, 12(12):1986–1989, 2019.

[133] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization with
bounded error. In SIGMOD, pages 419–432, 2008.

[134] Iuri D. Nogueira, Maram Romdhane, and Jérôme Darmont. Modeling data lake metadata
with a data vault. In IDEAS, pages 253–261, 2018.

[135] Silvio Normey, Lorena Etcheverry, Adriana Marotta, and Mariano P. Consens. Findings from
two decades of research on schema discovery using a systematic literature review. CEUR
(Workshops), 2100, 2018.

[136] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation
ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[137] Norman W. Paton, Jiaoyan Chen, and Zhenyu Wu. Dataset discovery and exploration: A
survey. ACM Computing Surveys, 2023.

[138] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian Suchanek. YAGO 4: a reason-able
knowledge base. In ESWC, 2020.

[139] Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Mart́ın Ugarte, and Domagoj Vrgoč. Foun-
dations of JSON schema. In WWW, pages 263–273, 2016.

[140] Rakesh Pimplikar and Sunita Sarawagi. Answering table queries on the web using column
keywords. arXiv preprint arXiv:1207.0132, 2012.

[141] Rachel Pottinger and Alon Levy. A scalable algorithm for answering queries using views. In
VLDB, pages 484–495, 2000.

[142] Valentina Presutti, Lora Aroyo, Alessandro Adamou, Balthasar Schopman, Aldo Gangemi,
and Guus Schreiber. Extracting core knowledge from linked data. 2011.

[143] Kashif Rabbani, Matteo Lissandrini, and Katja Hose. Extraction of validating shapes from
very large knowledge graphs. PVLDB, 2033.

[144] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching.
The VLDB Journal, 10:334–350, 2001.

[145] Raghu Ramakhrishnan and Johannes Gehrke. Database Management Systems (3rd edition).
McGraw-Hill, 2003.

[146] Chantal Reynaud. Building scalable mediator systems. In IFIP WCC, pages 25–30. Springer,
2004.

[147] Matteo Riondato, David Garćıa-Soriano, and Francesco Bonchi. Graph summarization with
quality guarantees. Data mining and knowledge discovery, 31:314–349, 2017.

[148] Seref Sagiroglu and Duygu Sinanc. Big data: A review. In CTS, pages 42–47, 2013.

[149] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq Minhas,
Ashish R. Mittal, and Fatma Özcan. ATHENA: an ontology-driven system for natural lan-
guage querying over relational data stores. PVLDB, 9(12):1209–1220, 2016.

163

BIBLIOGRAPHY

[150] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana Manolescu, and
Ralph Busse. XMark: A benchmark for XML data management. In PVLDB, 2002.

[151] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. PICARD: parsing incre-
mentally for constrained auto-regressive decoding from language models. arXiv preprint
arXiv:2109.05093, 2021.

[152] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou, Ayushi Dalmia,
Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankaranarayanan. ATHENA++:
natural language querying for complex nested sql queries. PVLDB, 13(12):2747–2759, 2020.

[153] Jayavel Shanmugasundaram, Kristin Tufte, Chun Zhang, Gang He, David J. DeWitt, and
Jeffrey F. Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In VLDB, 1999.

[154] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev Novik. Discov-
ering queries based on example tuples. In SIGMOD, pages 493–504, 2014.

[155] Gary H. Sockut, Luanne M. Burns, Ashok Malhotra, and Kyu-Young Whang. GRAQULA: a
graphical query language for entity-relationship or relational databases. Data & Knowledge
Engineering, 11(2):171–202, 1993.

[156] Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and Hui Sun. Mining summaries for
knowledge graph search. TKDE, 30(10):1887–1900, 2018.

[157] William Spoth, Oliver A. Kennedy, Ying Lu, Beda Hammerschmidt, and Zhen Hua Liu.
Reducing ambiguity in JSON schema discovery. In SIGMOD, 2021.

[158] William Spoth, Ting Xie, Oliver Kennedy, Ying Yang, Beda Hammerschmidt, Zhen Hua Liu,
and Dieter Gawlick. SchemaDrill: interactive semi-structured schema design. In Proceedings
of the Workshop on Human-In-the-Loop Data Analytics, pages 1–7, 2018.

[159] Jannik Strötgen and Michael Gertz. HeidelTime: High quality rule-based extraction and
normalization of temporal expressions. In SemEval@ACL, pages 321–324, 2010.

[160] Ran Tan, Rada Chirkova, Vijay Gadepally, and Timothy G. Mattson. Enabling query pro-
cessing across heterogeneous data models: A survey. In Big Data, pages 3211–3220, 2017.

[161] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM, 57(10), 2014.

[162] RDF Schema. Available online at https://www.w3.org/TR/rdf12-schema/.

[163] Coral Walker and Hassan Alrehamy. Personal data lake with data gravity pull. In BDCloud,
pages 160–167. IEEE, 2015.

[164] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson.
Rat-SQL: relation-aware schema encoding and linking for text-to-SQL parsers. arXiv preprint
arXiv:1911.04942, 2019.

[165] Haixun Wang and Charu C. Aggarwal. A survey of algorithms for keyword search on graph
data. Managing and mining graph data, pages 249–273, 2010.

164

https://www.w3.org/TR/rdf12-schema/

BIBLIOGRAPHY

[166] Gio Wiederhold. Mediators in the architecture of future information systems. Computer,
25(3):38–49, 1992.

[167] Query a Neo4j database using Cypher. Available online at https://neo4j.com/developer/
cypher/.

[168] W3C XML Document Type Specification. Available online at https://www.w3.org/TR/

REC-xml/#dt-doctype, 2008.

[169] SQL Standards. Available online at https://docs.oracle.com/en/database/oracle/

oracle-database/19/sqlrf/SQL-Standards.html.

[170] JSON Schema. Available online at https://json-schema.org/.

[171] JSONiq: XQuery for JSON. Available online at https://www.w3.org/2011/10/

integration-workshop/p/Documentation-0.1-JSONiq-Article-en-US.pdf.

[172] Resource Description Framework (RDF). Available online at https://www.w3.org/RDF/.

[173] SPARQL query language for RDF. Available online at https://www.w3.org/TR/

rdf-sparql-query/.

[174] The XML data model. Available online at https://www.w3.org/XML/Datamodel.html.

[175] Extensible Markup Language (XML) 1.0 (Fifth Edition). Available online at https://www.

w3.org/TR/xml/.

[176] XQuery 3.1: An XML Query Language. Available online at https://www.w3.org/TR/

xquery-31/.

[177] W3C XML Schema Definition Language (XSD). Available online at https://www.w3.org/

TR/xmlschema11-1/, 2012.

[178] Xiaojun Xu, Chang Liu, and Dawn Song. SQLNet: generating structured queries from natural
language without reinforcement learning. arXiv preprint arXiv:1711.04436, 2017.

[179] Amazon Redshift. Available online at https://aws.amazon.com/redshift.

[180] From vendor to in-house: How eBay reimagined its analytics landscape.
Available online at https://innovation.ebayinc.com/tech/engineering/

from-vendor-to-in-house-how-ebay-reimagined-its-analytics-landscape/.

[181] CoreResearch JSON dataset. Available online at https://core.ac.uk/services/dataset,
2022.

[182] ENELShops RDF dataset. Available online at https://old.datahub.io/dataset/

enel-shops, 2022.

[183] Foodista RDF dataset. Available online at https://old.datahub.io/dataset/foodistal,
2022.

[184] GitHub JSON dataset. Available online at https://api.github.com/events, 2022.

[185] Introducing the Knowledge Graph: things, not strings. Available online at https://blog.

google/products/search/introducing-knowledge-graph-things-not/.

165

https://neo4j.com/developer/cypher/
https://neo4j.com/developer/cypher/
https://www.w3.org/TR/REC-xml/#dt-doctype
https://www.w3.org/TR/REC-xml/#dt-doctype
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SQL-Standards.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/SQL-Standards.html
https://json-schema.org/
https://www.w3.org/2011/10/integration-workshop/p/Documentation-0.1-JSONiq-Article-en-US.pdf
https://www.w3.org/2011/10/integration-workshop/p/Documentation-0.1-JSONiq-Article-en-US.pdf
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/XML/Datamodel.html
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xquery-31/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-1/
https://aws.amazon.com/redshift
https://innovation.ebayinc.com/tech/engineering/from-vendor-to-in-house-how-ebay-reimagined-its-analytics-landscape/
https://innovation.ebayinc.com/tech/engineering/from-vendor-to-in-house-how-ebay-reimagined-its-analytics-landscape/
https://core.ac.uk/services/dataset
https://old.datahub.io/dataset/enel-shops
https://old.datahub.io/dataset/enel-shops
https://old.datahub.io/dataset/foodistal
https://api.github.com/events
https://blog.google/products/search/introducing-knowledge-graph-things-not/
https://blog.google/products/search/introducing-knowledge-graph-things-not/

BIBLIOGRAPHY

[186] Cloud data warehouse to power your data-driven innovation. Available online at https:

//cloud.google.com/bigquery?hl=en.

[187] A dimensional modeling manifesto. Available online at https://www.kimballgroup.com/

1997/08/a-dimensional-modeling-manifesto/, 1997.

[188] Microsoft XML inference. Available online at https://learn.microsoft.com/en-us/

dotnet/standard/data/xml/inferring-schemas-from-xml-documents, 2021.

[189] Mondial XML dataset. Available online at http://aiweb.cs.washington.edu/research/

projects/xmltk/xmldata/www/repository.html#mondial, 2022.

[190] NASA flights RDF dataset. Available online at https://old.datahub.io/dataset/

data-incubator-nasa, 2022.

[191] OWL 2 Web Ontology Language RDF-Based Semantics. Available online at https://www.

w3.org/TR/owl2-rdf-based-semantics/.

[192] Prescription JSON dataset. Available online at https://www.kaggle.com/datasets/

roamresearch/prescriptionbasedprediction, 2022.

[193] PubMed biomedical database (XML). Available online at https://www.ncbi.nlm.nih.gov/
books/NBK25501/, 2022.

[194] WikiMedia XML dump. Available online at https://dumps.wikimedia.org/frwikinews/

20221001/, 2022.

[195] Yelp open dataset: An all-purpose dataset for learning. Available online at https://www.

yelp.com/dataset, 2018.

[196] Jianye Yang, Wu Yao, and Wenjie Zhang. Keyword search on large graphs: A survey. Data
Science and Engineering, 6(2), 2021.

[197] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword search in relational databases: A survey.
IEEE DEBull., 2010.

[198] Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li, and Dragomir
Radev. SyntaxSQLNet: syntax tree networks for complex and cross-domain text-to-SQL task.
arXiv preprint arXiv:1810.05237, 2018.

[199] Gongsheng Yuan, Jiaheng Lu, Zhengtong Yan, and Sai Wu. A survey on mapping semi-
structured data and graph data to relational data. ACM Computing Surveys, 55(10), 2023.

[200] Elisabeta Zagan and Mirela Danubianu. Cloud data lake: The new trend of data storage. In
HORA, pages 1–4. IEEE, 2021.

[201] Yi Zhang and Zachary G. Ives. Finding related tables in data lakes for interactive data science.
In SIGMOD, pages 1951–1966, 2020.

[202] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. JOSIE: overlap set simi-
larity search for finding joinable tables in data lakes. In SIGMOD, pages 847–864, 2019.

[203] Julian Ziegler, Peter Reimann, Florian Keller, and Bernhard Mitschang. A graph-based
approach to manage CAE data in a data lake. Procedia CIRP, 93:496–501, 2020.

166

https://cloud.google.com/bigquery?hl=en
https://cloud.google.com/bigquery?hl=en
https://www.kimballgroup.com/1997/08/a-dimensional-modeling-manifesto/
https://www.kimballgroup.com/1997/08/a-dimensional-modeling-manifesto/
https://learn.microsoft.com/en-us/dotnet/standard/data/xml/inferring-schemas-from-xml-documents
https://learn.microsoft.com/en-us/dotnet/standard/data/xml/inferring-schemas-from-xml-documents
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#mondial
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html#mondial
https://old.datahub.io/dataset/data-incubator-nasa
https://old.datahub.io/dataset/data-incubator-nasa
https://www.w3.org/TR/owl2-rdf-based-semantics/
https://www.w3.org/TR/owl2-rdf-based-semantics/
https://www.kaggle.com/datasets/roamresearch/prescriptionbasedprediction
https://www.kaggle.com/datasets/roamresearch/prescriptionbasedprediction
https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://dumps.wikimedia.org/frwikinews/20221001/
https://dumps.wikimedia.org/frwikinews/20221001/
https://www.yelp.com/dataset
https://www.yelp.com/dataset

BIBLIOGRAPHY

[204] Mussab Zneika, Claudio Lucchese, Dan Vodislav, and Dimitris Kotzinos. RDF graph summa-
rization based on approximate patterns. In ISIP (workshops), pages 69–87. Springer, 2016.

[205] Mussab Zneika, Claudio Lucchese, Dan Vodislav, and Dimitris Kotzinos. Summarizing linked
data RDF graphs using approximate graph pattern mining. In ICDT, 2016.

167

Titre: Exploration orientée utilisateur de données semi-structurées

Mots clés: intégration de données, extraction d’information, compréhension de données, modèle Entité-Relation

Résumé: La création, l’utilisation et le partage sans
précédent des données à travers le monde contribue à de
nouvelles applications et opportunités économiques. Ces
données sont souvent larges, hétérogènes en schéma et en
modèle, et plus ou moins structurées. Par exemple, les
journalistes récoltent des jeux de données de différents
acteurs: déclarations d’intérêt des sénateurs français
(XML), tweets des personnalités politiques françaises
(JSON), base de données d’Offshore leaks (PG) sur les
compagnies offshores, dont certaines sont françaises, etc.
Dans ce cadre, les journalistes ont cruellement besoin
d’outils pour gérer et consolider des sources provenant de
différents acteurs, et générer des résultats concrets qu’ils
partageront avec leurs collègues ou dans les rédactions.
Plus généralement, les utilisateurs (novices ou non)
qui doivent trouver, utiliser et/ou partager des jeux

de données se trouvent face à un exercice difficile.
C’est pourquoi nous proposons de nouvelles méthodes
pour appréhender, utiliser et partager des jeux de
données semi-structurées, i.e., documents XML et
JSON, tableaux CSV, graphes RDF et de propriétés.
La motivation principale de ce travail est d’aider les
utilisateurs dans leur tâche d’exploration, e.g., compren-
dre la structure de leurs données, trouver des informa-
tions intéressantes dans la masse, pouvoir formuler des
requêtes sans grande expertise informatique, recouper
plusieurs jeux de données provenant de différents ac-
teurs, etc. Nous proposons une approche unifiée des
différents modèles de données, une vue globale que nous
pensons nécessaire pour tirer le meilleur de toutes ces
données.

Title: User-oriented exploration of semi-structured datasets

Keywords: data integration, information extraction, data understanding, Entity-Relationship model

Abstract: The unprecedented creation, use and share of
data around the world has led to new applications and
economic opportunities. This data is often large, hetero-
geneous at a schema and model level, and more or less
structured. For instance, data journalists collect data
from many different actors: French elected people dec-
larations of interest (XML), tweets of political figures
(JSON), OffShore leaks database (PG) about offshore
companies, some of which are French, etc. In this frame,
this is crucial for journalists to have tools to manage
and consolidate sources coming from different actors,
and generate tangible results they can share with col-
leagues and in newsrooms.

More generally, users (novice or not) who need to find,
use and/or share datasets may have a hard time. This is
why we propose novel methods to get acquainted, utilize
and share semi-structured datasets, i.e., XML and JSON
documents, CSV tables, RDF and property graphs. The
main motivation of this work is to help users in their data
exploration task, e.g., understand the structure of the
data, find interesting nuggets of information, formulate
queries without strong IT skills, match several datasets
coming from different producers on their common fea-
tures, etc. We present a unified approach of many semi-
structured data models; a global view we think necessary
to get the most out of all this data.

Institut Polytechnique de Paris

91120 Palaiseau, France

	Introduction
	Context
	Goal of the thesis and main contributions
	Data abstractions for heterogeneous datasets with Abstra
	Entity-to-entity paths exploration with PathWays
	Heterogeneous data exploration with ConnectionStudio
	Scientific contributions

	Publications
	Prototypes
	Manuscript outline

	Preliminaries
	Basics
	Entity-Relationship model
	Relational data
	XML documents
	JSON documents
	RDF graphs
	Property graphs
	Summary

	Related work
	Heterogeneous data integration
	Virtual integration with mediators
	Physical integration with data warehouses
	Schema-less data integration
	Data integration architectures comparison

	Data summarization
	Quotient and non-quotient summaries
	Structural summarization based on labels
	DataGuide summarization
	Structural RDF quotient summaries
	XML schema inference
	JSON schema inference
	Property graph schema inference
	Summarizing data of multiple models

	Structured and unstructured querying
	Structured querying
	Keyword-based search
	Exploration of complex datasets
	Dataset search

	Summary

	A unified view of semi-structured data formats: the graph representation
	Target model: directed graphs
	Relational data
	XML documents
	JSON documents
	RDF graphs
	Property graphs

	Extraction of Named Entities
	Graph normalization
	Summary

	From a data graph to a collection graph
	From applications to datasets: a unified perspective
	Records and values
	Relationships
	Same-kind records

	Node equivalence in different data models
	Relational data
	XML documents
	JSON documents
	RDF graphs
	Property graphs

	Collection graph and associated statistics
	Collection nodes
	Collection edges
	Paths in the collection graph and their associated statistics
	Discussion: simplifications made in the collection graph

	From multiple datasets to a collection graph
	Summary

	Data abstraction
	From the collection graph to entities
	Main entity selection algorithm
	Naive algorithm
	Greedy algorithm

	Scores
	Simple collection scores
	Scores by DAG propagation
	Scores using PageRank

	Boundary methods
	Boundaries for simple scores
	Boundaries for DAG weights
	Boundaries for PageRank-based weights

	Collection graph update methods
	Graph update for simple scores
	Graph update for weight-based scores

	Relationships between main entities
	Relationships identification
	Multi-traversed (non-main) entities

	Alternative: multi-greedy algorithm
	Main entity classification
	Semantic resources
	Classification algorithm
	Alternatives

	Experimental evaluation
	Datasets, semantic resources, and settings
	Quality of the main entity selection methods
	Main entities in all datasets
	Quality of main entity classification
	Scalability of the abstraction computation
	Inferred schemas vs. abstractions
	Remarks on abstraction
	Experiment conclusion

	Summary

	Entity-to-entity path exploration
	From data graphs to entity-to-entity data paths
	ChatGPT-based Named Entity extractor
	Entity-to-entity path enumeration and associated path metrics
	Entity-to-entity collection path enumeration
	Path directionality
	Path reliability
	Path force

	Data paths materialization
	From a collection path to a query over the data graph
	Candidate views enumeration
	Materialized views selection and path queries rewriting

	Experimental evaluation
	Datasets and settings
	Performance of ChatGPT entity extraction
	Path enumeration
	Efficiency of path evaluation
	Path reliability and ranking
	Evaluation of the top-ranked paths
	Experiment conclusion

	Summary

	Conclusions and perspectives

