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Abstract

The research presented in this thesis delves into a theoretical exploration of Andreev bound states (ABS)
hosted in Josephson junctions with spin-orbit coupling (SOC). ABS are fermionic bound states that ap-
pear at the junction between two superconducting electrodes forming a Josephson junction. These bound
states are at the core of the microscopic description of the Josephson effect and provide an explanation
for the transfer of Cooper pairs from one superconducting electrode to the other. Crucially, when the su-
perconducting phase difference between the two electrodes is non-zero, a supercurrent can flow in the
junction, depending on the occupancy of the ABS. The presence of this supercurrent facilitates the cou-
pling between a microwave resonator and a junction due to its sensibility to the electromagnetic field.
This coupling then allows for the detection and manipulation of ABS.

Furthermore, in the presence of SOC along with a superconducting phase bias, the spin degeneracy
of ABS can be lifted. Therefore such a junction provides a unique opportunity to realize a special kind of
spin qubit known as Andreev spin qubit (ASQ). The qubit operation can be performed via an AC modula-
tion of an electrostatic gate or magnetic flux, thanks to the sensitivity of the ABS to the electric potential
or the phase difference, respectively. So far, the coherent manipulation of such qubits has been realized
in gate-driven experiments as well as in flux-driven experiments with the use of additional Andreev levels.
However, the direct transition between the two ABS forming the ASQ has remained out of reach in flux-
driven experiments.

In this thesis, we investigate two distinct types of Josephson junctions with SOC with the aim of es-
timating the amplitude of the matrix elements of the current operator between two ABS forming an ASQ.
These elements characterize the coupling strength between the qubit and an external flux drive, indicat-
ing which transitions between ABS are within reach.

Our first project focuses on a superconductor-normal-superconductor junction where the normal
region consists of a nanowire with Rashba SOC. As a minimal model, we consider a generic scatterer lo-
cated along the nanowire. Unless this scatterer possesses additional spatial (mirror) symmetries, it is re-
sponsible for inducing spin-flip transmission probability. Using the scattering formalism, we derive the
energy spectrum of ABS and assess how SOC influences the spin-splitting between opposite spin states.
We then obtain analytical expressions for the matrix elements of the current operator. Notably, our study
reveals that SOC allows one to have finite elements between opposite spin states.

In a second project, the system we study consists of a superconductor - double quantum dots -
superconductor junction. A quantum dot consists of a tiny region defined by electrostatic gates or im-
purities. Due to its small size, Coulomb repulsion can be significant. In the simplest case of a quantum
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dot with a single level, even in the presence of SOC in the coupling between the dot and the leads, spin
degeneracy of ABS is still preserved. However, recent experiments showed that additional levels allow to
lift the spin degeneracy. Here, we introduce a second quantum dot which provides an additional level and
offers more control on each level. By using an effective model, we identify the minimal ingredients that
are necessary to lift the spin degeneracy. Our results reveal that this splitting is achievable through spin-
dependent couplings with the leads and is reduced by the Coulomb repulsion. Additionally, the presence
of a finite coupling between the two dots, combined with SOC in the couplings with the leads, allows one
to have finite matrix elements of the current operator between opposite spin states, which we obtain nu-
merically.

In short, we present in this thesis two platforms for the realization of phase-driven ASQ.
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Résumé

Les recherches présentées dans cette thèse portent sur l’exploration théorique des états liés d’Andreev
(ABS) dans des jonctions Josephson avec couplage spin-orbite (SOC). Les ABS sont des états liés appa-
raissent à la jonction entre deux électrodes supraconductrices formant une jonction Josephson. Ils sont
au cœur de la description microscopique de l’effet Josephson expliquant le transfert des paires de Cooper
d’une électrode à l’autre. Lorsque la différence de phase supraconductrice entre les deux électrodes est
non nulle, un supercourant peut circuler dans la jonction, en fonction de l’occupation des ABS. Grâce à
ce supercourant, un résonateur micro-ondes peut être facilement couplé à la jonction due à sa sensibilité
au champ électromagnétique. Ce couplage permet de détecter et de manipuler les ABS.

En outre, en présence de SOC et d’une différence de phase supraconductrice, la dégénérescence de
spin des ABS peut être levée. Une telle jonction offre une occasion unique de réaliser un type de qubit de
spin connu sous le nom de qubit de spin d’Andreev (ASQ). La manipulation du qubit peut être réalisée
par une modulation en courant AC d’une grille électrostatique ou d’un flux magnétique, grâce à la sen-
sibilité des ABS au potentiel électrique ou à la différence de phase, respectivement. Jusqu’à présent, leur
manipulation a été réalisée dans des expériences pilotées par grilles et dans des expériences pilotées par
flux grâce à l’utilisation d’ABS supplémentaires. Cependant, la transition directe entre deux ABS formant
un ASQ est restée hors de portée dans les expériences pilotées par flux.

Dans cette thèse, nous étudions deux types de jonctions Josephson avec SOC dans le but d’estimer
l’amplitude des éléments de matrice de l’opérateur courant entre deux ABS formant un ASQ. Ces éléments
caractérisent la force de couplage entre le qubit et un flux externe, indiquant quelles transitions entre ABS
sont accessibles.

Notre projet initial porte sur une jonction supraconducteur-normal-supraconducteur où, la région
normale consiste en un nanofil avec effet Rashba. Comme modèle minimal, nous considérons une im-
pureté générique située le long du nanofil. À moins que cette impureté présente des symétries spatiales
additionnelles, elle permet d’induire une probabilité de transmission retournant le spin. En utilisant le
formalisme des matrices de diffusion, nous dérivons le spectre en énergie des ABS et évaluons l’influence
du SOC sur la séparation en spin entre états de spin opposés. Nous obtenons ensuite des expressions
analytiques pour les éléments de matrice de l’opérateur courant. Notre étude révèle que le SOC permet
d’avoir des éléments finis entre états de spin opposés.

Dans un second projet, nous étudions est une jonction supraconducteur - points quantiques -
supraconducteur. Un point quantique (QD) consiste en une minuscule région définie par des grilles élec-
trostatiques ou des impuretés. En raison de sa taille, la répulsion Coulombienne peut être significative.
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Dans le cas le plus simple d’un seul QD, malgré la présence de SOC dans le couplage entre le QD et les
électrodes, la dégénérescence de spin est préservée. Cependant, de récentes expériences montrent que la
présence d’autres niveaux permet de lever la dégénérescence de spin. Ici, nous introduisons un second
QD, fournissant un niveau supplémentaire et offrant plus de contrôle sur chaque niveau. Avec un modèle
effectif, nous identifions les ingrédients minimaux pour lever la dégénérescence de spin. Nos résultats
montrent que la séparation en spin est permise grâce au SOC dans les couplages avec les électrodes (tun-
nel) et est réduite par la force de la répulsion Coulombienne. De plus, la présence d’un couplage entre
les deux QD, avec le SOC dans les couplages tunnel, permet d’obtenir des éléments de matrice finis entre
états de spin opposés, que nous avons obtenu numériquement.

En bref, nous présentons dans cette thèse deux plateformes pour la réalisation d’ASQ pilotées en
phase.
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Introduction

In the fascinating field of quantum computing, several technologies have the ambition to transform the
computing landscape as we know it. To do so, physicists came up with the idea of developing systems
that use the properties of quantum mechanics to store information, called qubits. Thus, where classical
bits can only take the values 0 or 1, the qubits, thanks to their quantum properties, can be placed in a
superposition state of 0 and 1 at the same time. A quantum computer operating with multiple qubits can
therefore have a greater computing power than a classical computer operating with the same number of
classical bits. At the heart of this endeavor lies the world of condensed matter, where the properties of
quantum mechanics manifest themselves at macroscopic scale. Condensed matter physics explores the
physics of collections of particles, such as atoms or electrons, as they interact with each other and arrange
themselves in various ways. The unique feature of condensed matter comes from the emergent properties
that arise from the interaction of these collections of particles, which are absent at the level of individual
particles. In the context of quantum computing, condensed matter systems, such as superconductors
and semiconductors, provide an ideal platform for building quantum circuits and harnessing the power
of quantum mechanics to perform computations. In addition, these systems benefit from already exist-
ing fabrication techniques like thin-film deposition and lithography, which can provide a foundation for
manufacturing qubits with similar processes. Another advantage of these systems is their potential inte-
gration with classical electronics.

One of the key milestones that quantum computing must reach to fulfill its promise is so-called
quantum supremacy, which means that a programmable quantum system would be able to solve a prob-
lem that is unsolvable by a classical computer. In this quest, a team of Google recently claimed to have
achieved quantum supremacy [1]. The system they used to achieve this result is a quantum computer
composed of 53 working qubits. Despite this claim, the use of quantum computers to revolutionize com-
puting is still a long way off. In fact, current quantum computers are still subject to a large number of
errors and are limited in the number of qubits they can implement. These two problems limit the maxi-
mum performance and fidelity of current quantum computers. It is therefore necessary to develop new
systems that allow the realization of qubits that are less sensitive to noise and/or easier to realize/integrate.

Superconductors and semiconductors are among the most studied materials for this purpose. These
two platforms each have amazing properties. Superconductors are known for their ability to carry current
without dissipation thanks to the pairing of electrons in what is called a Cooper pair. This phase of matter
is also characterized by a complex order parameter called the superconducting gap, which defines the en-
ergy range in which electrons form Cooper pairs. As for semiconductors, they have a low density of charge
carriers compared to metals, so their chemical potential can be manipulated by field effect. In addition,
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Introduction

some semiconductor materials exhibit strong spin-orbit coupling, i.e., coupling between the spin degree
of freedom and the motion of the particles that carry the spin.

The more common qubits realized by superconducting circuits are based on Josephson tunnel junc-
tions. These junctions consist of a thin layer of an insulating material separating two superconducting
reservoirs. The charge and the phase being conjugate variables in a superconductor, modifying one also
change the other. Therefore, in Josephson junctions, when there is a finite superconducting phase dif-
ference between the two superconductors, a coherent transfer of Cooper pairs across the insulator can
take place, such that it gives rise to a non-dissipative current even at zero voltage. This phenomenon is
known as the Josephson effect [2]. In addition, it is known since the 1960s that in a Josephson junction
subject to a current bias with finite capacitance, this phase difference acts as a particle moving in a tilted
washboard potential with a mass given by the capacitance of the junction [3]. In 1985, it was experimen-
tally demonstrated that the phase difference obeys the rules of quantum mechanics through energy level
quantization by John M. Martinis, Michel H. Devoret, and John Clarke [4]. They showed that in such junc-
tion, irradiating the latter with microwaves at appropriate frequency, i.e. a frequency matching the energy
difference between two energy levels, that the escape rate of the particle from the energy well is changed.
Since the escape rate of this particle changes with its energy, their experiment highlighted the presence of
quantized quasi-levels (see Fig. 0.1). The fact that this phase difference follows the rules of quantum me-
chanics has since been used to design various superconducting qubits [5], most notably the transmons [6]
used by Google to claim quantum supremacy. These are realized by a circuit in which two superconduct-
ing islands coupled through two Josephson junctions in parallel forming a closed loop (a system known
as a superconducting quantum interference device, or SQUID for short).

On the other hand, semiconductor qubits are implemented using quantum dots, which are tiny re-
gions in semiconductor materials defined by electrostatic gates or impurities. These quantum dots serve
as electron boxes, with dimensions typically in the tens of nanometers, where electrons are confined. The
energies in quantum dots are discrete, and it is now possible to trap a single electron in them [7]. In semi-
conductor materials with strong spin-orbit coupling, it is possible to use the spin degree of freedom of
this electron as a basis for semiconductor spin qubit realization [8–10].

∆ e−iϕ/2 ∆ eiϕ/2

ϕ

U

h̄ω

(a) (b) (c)

Figure 0.1: Schematic of a phase biased Josephson junction (panel (a)), circuit diagram of a circuit with a
Josephson junction and a capacitance (panel (b)), and the quantized energy level of the tilted washboard
potential in red highlighted by the experiment of Martinis, Devoret and Clarke in [4] (panel (c)). Irradiating
the junction causes a particle to make a transition into an excited state changing its escape rate from the
well.
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Introduction

A good qubit should possess long coherence times and high fidelity, maintaining its quantum state
superposition accurately. It should be readable, allowing for accurate measurements. Interactions be-
tween qubits, control, low error rates, and robustness to noise and environmental factors are critical for
reliable quantum computing. Meeting these requirements is essential for building efficient and practical
quantum computing systems. Although semiconductor spin qubits as the one realized with silicon or with
nitrogen-vacancy centers in diamond [11, 12] offer a relatively long coherence time exceeding µs and a
size allowing for a high integration density, they lack the ability to realize and control the interaction be-
tween multiple spin qubits over long distances, which limits the increase in the number of qubits coupled
together [13–16]. The difficulty in coupling multiple semiconductor spin qubits over long distances stems
from the low spin magnetic moment of electrons. Also, the coherence time of these qubits is sensitive
to the nuclear spin of the material used for their fabrication, as well as charge noise. In contrast, super-
conducting qubits offer a larger coupling, but are limited by their short coherence time [17–20]. These
qubits exploit the Josephson effect, which makes them well suited for integration into electrical circuits.
However, their coherence time is sensitive to variations in the electromagnetic environment around them.
These fluctuations can induce decoherence, which prevents the qubits to maintain their quantum state
over time. In general, superconducting qubits rely on the ratio between the Josephson energy and the
capacitive energy. Hence, they are sensitive to charge noise and to flux noise. The two platforms appear
to complement each other. Therefore, it is natural to want to find a way to combine their advantages.

One way to do this is to use Josephson junctions containing semiconductors. Although most super-
conducting qubits consist of tunnel junctions, it is possible to replace the thin insulating layer between the
two superconductors with another material, such as a metal or a semiconductor. In those cases, we call the
normal region a weak link in order to distinguish it from tunnel junctions. Regardless of the nature of this
material, the property of supercurrent to be a periodic function of the superconducting phase difference
remains [21, 22]. This reflects the fact that an arbitrary number of Cooper pairs are transferred coherently
across the junction. A part of the current flowing in the junction originates from the contribution of the
continuum of state above the superconducting gap, i.e., the energy range in which electrons pair up to
form Cooper pairs. The other part of it comes from subgap states. A quasiparticle in the weak link cannot
penetrate the superconducting electrodes if its energy is below the superconducting gap. At the interface
between the two materials an incoming quasiparticle can be reflected "normally" as at any interface. But
another phenomenon can occur. When an electron arrives at the interface, it can be reflected as a hole
moving in the opposite direction in the normal region. In this way, a Cooper pair is transferred to the su-
perconducting electrode. This particular phenomenon is called Andreev reflection [23]. In a Josephson
junction, this hole can then undergo Andreev reflection at the other electrode and be converted back into
an electron (see Fig. 0.2) and lead to a destruction of a Cooper pair in the electrode. This cycle allows
Cooper pairs to transfer from one superconducting electrode to the other, creating a supercurrent across
the junction. In the weak link, interference between the electron and the hole leads to the formation of
bound states with quantized energies. They are referred to as the Andreev bound states (ABS) [23–26]. Be-
ing mainly localized in the weak link, these bound states inherit the electronic properties of this junction
region. Since their theoretical description, Andreev bound states have been observed with spectroscopy
experiments in various systems such as atomic contacts [27, 28], carbon nanotubes [29], and semiconduc-
tor nanowires [30, 31].

In tunnel junctions, which have many conduction channels of small transmission probability, the
supercurrent arises from the collective behavior of ABS. Each of these states represents a degree of free-
dom that can be populated by electronic excitations, the Bogoliubons. However, due to their vast number
and close energy proximity, manipulating them individually is impractical. In fact, each ABS detaches

from the gap with a binding energy εB i =
∆τi

2 sin2 φ
2 in the case of a short junction, i.e., when the length

of the non-superconducting region is small compared to the characteristic size of a Cooper pair ξ, where
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Figure 0.2: Schematic representation of an Andreev bound state between two superconducting reservoirs.
The right moving electron in the normal region represented by a black dot is converted into a left moving
hole represented by an empty dot due to Andreev reflection at the right superconducting interface. The
reflected hole is converted into an electron at the other interface. This process allows for the transmission
of a Cooper pair from the left to the right superconductor.

∆ is the superconducting gap, φ the phase difference and τi is the transmission probability of channel
i . As one can see, if τi is small, then each ABS hardly detaches from the gap and disperses little with the
phase. The current flowing in the junction is related to the energy by the relation I = 2e

ħh ∂ E /∂ φ, each
ABS contributes to the total current giving rise to the Josephson effect. Nevertheless, in certain structures,
a limited number of conduction channels with good transmission probability can be achieved, resulting
in a set of well-separated Andreev levels. In this case, ABS may disperse more deeply into the supercon-
ducting gap and exhibit much more dispersion with the phase (see Fig. 0.3). Therefore, in a Josephson
junction with high transmission conduction channels, each ABS may carry more current than an ABS of a
tunnel junction. Using this current to couple the Josephson junction capacitively or inductively to a mi-
crowave resonator allows to detect and manipulate the quantum state of the junction. Experimentally, it
is feasible to measure the resonant frequency of a specific resonator. When this resonator is coupled to a
junction, it is observed that the quantum state of the junction impacts the resonant frequency. Further-
more, by applying a resonant signal that matches the energy gap between two states, it becomes possible
to induce transitions between these states. For a resonator which is inductively coupled to the junction,
this signal can be a microwave pulse sent through the resonator which will produce a phase fluctuation
over the junction. We will refer to those as phase driven transitions. Another possibility is to drive the
transitions by sending a microwave pulse on electrostatic gates placed below the normal region of the
junction. We will therefore refer to these as gate driven transitions. Consequently, by measuring changes
in the resonance frequency of the resonator and stimulating various potential transitions, it becomes fea-
sible to reconstruct the excitation spectrum of the junction. These techniques serve as the foundation for
circuit quantum electrodynamic experiments (cQED) [32] which were originally developed for readout
and control of superconducting qubits.

In the junction ground state, all energy levels below the Fermi level are occupied by quasiparticles.
Due to the spin degeneracy, the ground state of the junction is therefore populated by an even number
of quasiparticles. Since the ground state is occupied by an even number of quasiparticles, the configu-
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ration in which this parity is maintained is called the even-parity sector. If the junction is driven out of
equilibrium, transitions between different ABS can occur. For instance, a quasiparticle occupying one of
the levels below the Fermi level can be promoted to a positive energy level. This transition is called a pair
transition, as it results of a quasiparticle occupying the positive energy level and leaving the original level
unoccupied (see left panel of Fig. 0.3). Another type of transition can be possible when a quasiparticle
occupies a positive-energy ABS. If the junction has other ABSs, which is possible if the junction is of finite
length, it can be excited or desexcited to one of them. This is called a single-particle transition (see left
and middle panel of Fig. 0.3). An additional quasiparticle can also be trapped in an ABS. We often refer to
this phenomenon as quasiparticle poisoning [33]. In this case, the junction is occupied by an odd number
of quasiparticles. Therefore, this configuration is referred to as the odd parity sector.

Hybrid junctions composed of materials exhibiting strong spin-orbit coupling have garnered sig-
nificant attention in recent years. This attention is particularly focused on the exploration of topological
superconductivity and the investigation of non-abelian Andreev states known as Majorana zero modes
[34–36]. The latter would benefit from topological protection which relies on non-local properties and
are less sensitive to local variations or noise. These would make it possible to create qubits with very low
noise sensitivity. With this type of qubit, a quantum computer with a low error rate would be possible.
However, their experimental observation faces a number of challenges. Another utilization of the spin
of a trapped quasiparticle, such that the junction resides in the odd parity sector, was proposed in 2003
as a support for quantum information called an Andreev spin qubit (ASQ) [37]. The first problem facing
the realization of this type of qubit is the need to be in the odd parity sector. To be in this parity sector, a
quasiparticle needs to be trapped within an Andreev level as explained above. The lifetime of this trapped
quasiparticle can exceed theµs [33], thus limiting the maximum operating time of an ASQ. The other issue
is that, to realize an ASQ, we need to lift the spin degeneracy of ABS. However, the theory describing ABS
in a 1D system with spin-orbit coupling does not predict the lifting of the spin degeneracy without the use
of a strong Zeeman field [38, 39], which can be detrimental to superconductivity. In fact, it is necessary to
consider higher dimensional systems to achieve this effect. In this case, for a weak link of finite length with
spin-orbit coupling and a finite phase difference due to a weak magnetic field breaking time reversal sym-
metry, it becomes possible to lift spin degeneracy even without the use of a Zeeman field [40–42]. Without
spin degeneracy, new transitions are accessible. Thus, in addition to spin-conserving transitions, spin-
flipping single-particle transitions become possible (see right panel of Fig. 0.3). These transitions have
been used in cQED experiments on junctions made with InAs nanowires, highlighting the spin structure
of Andreev bound states in this type of structure [43–45]. Ultimately, these experiments have paved the
way for the realization of an ASQ.

The first realization of an ASQ was made in 2021 by the team of Michel Devoret [47]. In their experi-
ment, they used a Josephson junction with an InAs nanowire coupled to a resonator. Their junction, which
exhibits multiple doublets of ABS, due to the finite length of the weak link, allowed them to manipulate
the spin of a trapped quasiparticle using two different doublets. Thus, by performing two phase-driven
transitions, one conserving the spin and the other reversing it, they realized an ASQ. The second realiza-
tion of an ASQ was made one year later [48]. Here, the authors used a more complex system made of a
transmon coupled to an InAs/Al Josephson junction. With the use of electrostatic gates, they defined a
quantum dot in the InAs region. The advantage of defining a quantum dot resides in the possibility to
tune the Coulomb repulsion strength on the dot. Hence, with the appropriate tuning of the gates, it be-
comes possible to favor a ground state with an odd number of electrons occupying the dot. In addition,
they used a fixed external magnetic field in order to increase the energy splitting between opposite spin
states, allowing for an easier manipulation of the qubit. In this configuration, they were able to directly
manipulate the spin states of the doublet ground state via electric dipole spin resonance by sending a mi-
crowave pulse into one of the gates. This technique refers to the fact that an oscillating electric field can
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Figure 0.3: ABS energy spectrum for different Josephson junctions. The left panel corresponds to the spec-
trum of a short junction such as an atomic contact Josephson junction. The middle panel corresponds to
the scenario of a finite length Josephson junction. The right panel is for a finite length junction with spin-
orbit coupling. In right panel, red curves correspond to pseudo-spin up states whereas blue curves cor-
respond to pseudo-spin down states (see discussion in [46]). Black arrows show pair transitions between
the ground state and one excited state. Light blue arrows show spin conserving single particle transitions,
whereas light red arrows show spin-flip single particle transitions. Occupied states above Fermi level are
represented by black dots whereas unoccupied states below Fermi level by empty dots.

be coupled to the spin of an electron thanks to spin-orbit coupling. This coupling between field and spin
then allows to control the dynamics of the latter. In both experiments, they reach coherence time on the
order of tens of nanoseconds. This short coherence time seems to be limited by the nuclear environment,
i.e., the nuclear spin of InAs, a problem that is already known for the realization of semiconductors spin
qubits. Thus, as pointed out in [48], the coherence time could be increased with the use of nuclear-spin-
free semiconductors. Although the spin structure of this type of junction has been demonstrated, as well
as the realization of ASQ, the observation and manipulation of the spin within the lowest energy doublet ,
which constitutes the qubit’s basis, have not yet been achieved in phase-driven experiments. This transi-
tion has only been observed in gate-driven experiments. However, it should also be possible to drive this
transition with the phase.

It is in this context that this thesis is inscribed. If the intra-doublet transition has not yet been used
in phase-driven experiments, this is partly due to the fact that it was considered impossible. The quantity
that determines whether this transition is possible is the current operator. Thus, the non-diagonal matrix
elements of this operator are directly related to the transitions accessible in cQED experiments. Without a
magnetic field, the non-diagonal elements between the two spin states within the lowest energy doublet
were predicted to be zero. However, they can be made non-zero by spin-flip scattering processes. These
processes can occur when a potential presents an asymmetry in the transverse direction of the normal
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region. This potential may be the result of a potential applied by a gate, or it may be due to the presence
of impurities [45, 47]. Therefore, in this thesis, we have studied spin-split ABS and the effect of spin-flip
processes on their energy spectrum and associated current operator matrix elements. In addition to indi-
cating whether a transition is possible or not, the off diagonal elements are also related to the magnitude
of the frequency shift and resonance linewidth in microwave spectroscopy experiments, as well as the
Rabi oscillation for a driven transition [49–51]. We have first studied a Josephson junction with a Rashba
nanowire and an asymmetrical potential. By modeling the asymmetric potential by a delta barrier po-
tential, we have shown how spin-flip transmission through the barrier acts on the energy spectrum and
allows to have finite off-diagonal matrix elements of the current operator between opposite spin states.
We have also studied a Josephson junction whose normal region consists of two coupled quantum dots,
which present the advantage of allowing to control the parity of the ground state. In this system, the
combination of a coupling between the dots and a spin-dependent coupling between the dots and the
superconducting electrodes also allows, in the odd parity sector, to obtain a spin-degeneracy-free energy
spectrum and finite matrix elements for the current operator between opposite spin states (see Fig. 0.4).
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Ū

×10−2

0 π 2π
φ

0

2

|J
ε −
↓→

ε −
↑|/
J

0

×10−6

(b)

Figure 0.4: Energy spectrum and some matrix elements of the current operator for each with the corre-
sponding junction shown above. In the panel (a), the energy spectrum is normalized by the supercon-
ducting gap. In the panel (b), the energy spectrum shown is the one of the two lowest energy doublets of
the dots normalized by the mean of the Coulomb repulsion strength of each dot. On both panel red lines
correspond to spin up states and blue lines to spin down states. Due to SOC, the spin degeneracy of these
states is lifted for phases different from φ = nπ with n ∈ N. For each panel, the matrix element of the
current operator for the intra-doublet transition within the lowest energy doublet is shown in black. For
both junctions, the magnitude of this matrix element is maximal when the splitting between the two spin
states of the doublet is also maximal. These two junctions are studied in Chap. 2 and Chap. 3.

This thesis is organized as follows.

In chapter 1, we will present the required physics basis for understanding the work presented here.
We start by presenting the BCS theory which describes superconducting materials. We then discuss the
Josephson effect, Andreev reflection and Andreev bound states, which are the key ingredients for the real-
ization of Andreev spin qubit. Finally, we study two Josephson junction systems for the remainder of this
manuscript. The first one is the superconductor - normal - superconductor (S-N-S) Josephson junction
and the second one is the superconductor - quantum dot - superconductor (S-QD-S).
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In chapter 2, we study ABS in a Josephson junction with a Rashba nanowire. We first show what are
the important ingredients in order to obtain a spin-splitting of ABS, as well as the key mechanism in order
to manipulate the spin in flux-driven experiments. Next, we present analytical and numerical results of
the relevant quantities, i.e., the energy spectrum and the current operator matrix elements of this kind of
junction.

In chapter 3, we present another Josephson junction circuit made with two coupled quantum dots.
We begin by presenting why a single quantum dot junction is insufficient to lift the spin degeneracy. We
then proceed with the study of the energy spectrum in such junctions. By using an effective model, we
finally determine the minimal set of ingredients in order to lift the spin degeneracy, and, to have finite
matrix elements of the current operator between opposite spin states which we obtained numerically.

We finally conclude and provide perspectives.
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In this chapter, we present important physical theories that are necessary for the understanding of
this thesis. Superconductivity being present in all the devices being studied in this thesis, we will start
by discussing the theory of Bardeen, Cooper and Schrieffer (BCS theory) in Sec. 1.1 which describes the
microscopic mechanism of superconductivity [52]. We will also present the mean field approximation and
Bogoliubov-de Gennes (BdG) Hamiltonian in Sec. 1.1.2, which allows one to find the eigenenergies and
eigenstates of a superconductor. To derive those results, we follow the books of Tinkham [53], Asano [54],
and the notes of Carsten Timm [55]. Then, since this manuscript is mainly focused on the study of ABS,
the other sections will be dedicated to it. The energy spectrum and current operator matrix elements of
ABS being dependent on the scattering in the normal region, we will introduce the scattering formalism
in Sec. 1.2. Finally, we will study the energy spectrum of ABS in S-N-S junctions in Sec. 1.3 and of S-QD-S
junctions in Sec. 1.4.
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CHAPTER 1. Superconductivity, Josephson effect and Andreev bound states

1.1 BCS theory and Bogoliubov-de Gennes Hamiltonian

Superconductivity is a state of matter in which electrons form pairs due to an effective attractive potential
between them. In this manuscript, we will only study devices with conventional superconductors called
BCS superconductors. This name comes from the initials of Bardeen, Cooper and Schrieffer, who estab-
lished a microscopic theory to describe them [52]. In this section, we will therefore present the BCS theory
and then use the mean field approximation leading to the BdG Hamiltonian, which allows one to obtain
the eigenenergies and eigenstates of a superconductor.

1.1.1 BCS theory

The BCS theory describes superconductors in which the pairs are formed between two electrons on the
Fermi surface with opposite spins and momenta thanks to a weak attractive interaction between them.
The idea that even a weak attraction can bind pairs of electrons was presented by Cooper in 1956 [56].
He showed that the Fermi sea is unstable against the formation of at least one bound pair, regardless of
how weak the attractive interaction is if it exists. In superconductors, the Coulomb interaction between
electrons is still present but, is being dominated by the attractive one. This interaction is mediated by the
phonons of the crystal. To understand how this phonon-mediated interaction leads to the formation of
the so-called Cooper pairs, we can use a simple picture. At very low temperatures, the ions forming the
crystal lattice are almost immobile (no vibrations around their equilibrium position). So when an electron
moves in this crystal, it attracts the surrounding ions. Due to the stiffness of this lattice, after the electron
has passed, the lattice remains locally deformed, creating an attractive potential for another electron as
shown in Fig. 1.1. The result is a non-zero correlation between these two electrons. In this way, we can
explain why electrons form pairs thanks to this non-instantaneous attractive potential. The idea that the
electron-lattice interaction is important to explain superconductivity was first suggested by Fröhlich in
1950 [57]. This suggestion was confirmed experimentally by the discovery of the isotope effect, i.e., the
dependence of the critical temperature Tc and critical magnetic field Hc on the mass of isotopes of the
same element [58, 59].

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+ +

+ +

+ +

Figure 1.1: Schematic representation of the lattice deformation due to the passage of electrons.
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1.1. BCS theory and Bogoliubov-de Gennes Hamiltonian

An accurate description of this phenomenon involves quantum mechanics. We can write the Hamil-
tonian which describes a superconductor as H =H0+HI , where H0 describes the free electrons within a
periodic lattice potential and HI the interaction between them when the lattice is deformed, giving rise to
the attractive interaction. In second quantization, we write H0 as

H0 =
∑

α

ˆ
drΨ†

α(r )

ñ
−
ħh 2∇2

2m
−EF

ô
Ψα(r ), (1.1)

where α stands for the spin degree of freedom of the electron and Ψα is its associated field operator. EF is
the Fermi energy, representing the energy of the highest energy occupied electron state at zero tempera-
ture. m is the effective mass of electrons which takes into account the interactions of electrons with the
periodic lattice. The interaction Hamiltonian HI can be written as

HI =
1

2

∑

αβ

ˆ
dr

ˆ
dr ′Ψ†

α(r )Ψ
†
β (r
′)V (r − r ′)Ψβ (r

′)Ψα(r ), (1.2)

where V is the effective nonlocal interaction potential, which combines the effect of the Coulomb inter-
action as well as the interaction arising from the deformation of the lattice. Since electrons are fermions,
their associated field operators follow the anticommutation relations¶

Ψα(r ), Ψ
†
β (r
′)
©
=δα,βδ(r − r ′), (1.3){

Ψα(r ), Ψβ (r
′)
}
= 0. (1.4)

To diagonalize the single-particle Hamiltonian H0, we can go to momentum space using the Fourier trans-
formation which leads to

Ψα(r ) =
1√
Vvol

∑

k

ck ,αe i k .r , (1.5)

where Vvol is the volume of the solid. The normalization condition and completeness of the basis requires

1

Vvol

ˆ
dr e i (k−k ′).r =δk ,k ′ , (1.6)

1

Vvol

∑

k

e i k .(r−r ′) =
1

(2π)d

ˆ
dk e i k .(r−r ′) =δ(r − r ′), (1.7)

with d the spatial dimension of the solid. Using these relations, we can find the anticommutation relations
for the fermionic operators in momentum space{

ck ,α, c †
k ′,β

}
=δα,βδk ,k ′ , (1.8)¶

ck ,α, ck ′,β

©
= 0. (1.9)

We now need to apply the Fourier transformation to the single-particle and the interaction Hamiltonian.
For the single-particle Hamiltonian, it leads to

H0 =
∑

α

∑

k

ξk c †
k ,αck ,α, (1.10)

where

ξk =
ħh 2k 2

2m
−EF (1.11)
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describes the kinetic energy of an electron relative to the Fermi level. For the interaction Hamiltonian, we
first need to introduce the Fourier transform of the interaction potential. It reads,

V (r ) =
1

Vvol

∑

q

Vq e i q .r . (1.12)

Using the previous relations, we can now write the total Hamiltonian in the momentum space as

H =
∑

α

∑

k

ξk c †
k ,αck ,α+

1

2Vvol

∑

α,β

∑

k 1,k 2,q

c †
k 1+q ,αc †

k 2−q ,βVq ck 2,β ck 1,α. (1.13)

The second term of this Hamiltonian describes the interaction between the two electrons. These two elec-
trons come with momentum k 1 and k 2, they undergo the effective interaction which results in a transfer
of momentum q from one electron to the other such that their momenta become k 1 +q and k 2 −q . As
we said at the beginning of this section, the pairing occurs between electrons of opposite spins and mo-
menta. We will impose another condition in order to simplify the interaction. The main property that
is required is that the interaction is attractive. Even though the effective interaction in the Hamiltonian
does not contain information about its source, we assume here that this attractive interaction results from
the electron-phonon interaction. Therefore, we can assume that in this case, the interaction is attractive
for frequencies below the Debye frequency, which is the typical phonon frequency. The conditions we
impose are the following,

• The attraction is between two electrons of opposite spins β =−α and opposite momenta k 2 =−k 1.

• The two electrons have energies in an energy window near the Fermi level EF and delimited by the
Debye energy ħhωD .

• In this energy window, the interaction is attractive and independent of momenta, therefore, Vq =−V
with V a positive constant.

This last condition implies that from here we make the approximation that the potential is local in the real
space. With all of these conditions satisfied, we can finally write the BCS Hamiltonian which reads

HBCS =
∑

α

∑

k

ξk c †
k ,αck ,α−

V

Vvol

∑

k ,k ′
c †
−k ′,↓c

†
k ′,↑ck ,↑c−k ,↓Θ(ħhωD − |ξk |)Θ(ħhωD − |ξk ′ |), (1.14)

where Θ(x ) is the Heaviside function defined such that

Θ(x ) =

®
0 x < 0,

1 x > 0
. (1.15)

The idea of Bardeen, Cooper and Schrieffer was that due to the attractive interaction, the ground state of
the system is modified. They proposed the ansatz that, in this ground state, the states |k ,↑〉 and |−k ,↓〉
form so-called Cooper pairs. The resulting ground state is therefore a superposition of states built up
of such pairs. In particular, they proposed that either the states |k ,↑〉 and |−k ,↓〉 are occupied or empty
allowing to write the wavefunction in the form

|Ψ〉BCS =
∏

k

Ä
uk + vk c †

k ,↑c
†
−k ,↓

ä
|0〉 , (1.16)

where |0〉 is the vacuum state without any electrons and uk , vk are complex coefficients verifying |uk |2+
|vk |2 = 1. Such a ground state is peculiar since it is a superposition of states with a different number of elec-
trons, meaning that the number of electrons can fluctuate. A consequence of this is that expressions with
an unequal number of electronic creation or destruction operators can have non-vanishing expectation
values. This property will be of use in the next section in order to diagonalize the BCS Hamiltonian.
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1.1. BCS theory and Bogoliubov-de Gennes Hamiltonian

1.1.2 Mean field approximation and BdG Hamiltonian

The interaction term in the BCS Hamiltonian (1.14) is quartic and cannot be diagonalized. It is therefore
necessary to simplify it in order to obtain the eigenenergies and eigenstates. To do so, we can use the
mean field approximation. This approximation assumes that the fluctuations of the electronic creation
and destruction operators around their mean values are small. We thus introduce the average of these
operators as

∆e iϕ ≡
V

Vvol

∑

k

〈
ck ,↑c−k ,↓

〉
Θ(ħhωD − |ξk |), (1.17)

where ∆e iϕ is referred to as the pair potential or superconducting order parameter, with ∆ > 0. This
order parameter can only be non-zero if the mean value

〈
ck ,↑c−k ,↓

〉
is non-zero, which is the case with the

ground state proposed by Bardeen, Cooper, and Schrieffer. This pair potential describes the Cooper pairs
and is antisymmetric under permutation of the two spins. One can relate this pair potential to the typical
size of a Cooper pair, ξBCS through the relation

ξBCS =
ħh vF

π∆
(1.18)

where vF is the Fermi velocity. This length scale is particularly useful for describing the temperature de-
pendence of the superconducting phase transition characterized by the divergence of ξBCS. We can now
start to rewrite the BCS Hamiltonian using the average values of the operators. For that, we write

ck ,↑c−k ,↓ =
〈

ck ,↑c−k ,↓
〉
+
[

ck ,↑c−k ,↓−
〈

ck ,↑c−k ,↓
〉]

, (1.19)

c †
−k ,↓c

†
k ,↑ =

¨
c †
−k ,↓c

†
k ,↑

∂
+
î

c †
−k ,↓c

†
k ,↑−
¨

c †
−k ,↓c

†
k ,↑

∂ó
. (1.20)

The terms
¨

c †
−k ,↓c

†
k ,↑

∂
can be obtained by taking the hermitian conjugate of Eq. (1.17). Under this form,

it allows one to identify the first terms as the average values of the operators, and the second terms as the
fluctuations around these average values. By keeping only the first order term in fluctuations, we obtain
for the interacting part of the BCS Hamiltonian

˜∑

k ,k ′
c †
−k ′,↓c

†
k ′,↑ck ,↑c−k ,↓ ≈−

Vvol∆
2

V 2
+

Vvol

V
˜∑

k

î
∆e −iϕck ,↑c−k ,↓+∆e iϕc †

−k ,↓c
†
k ,↑

ó
, (1.21)

where we have introduced the notation

˜∑

k

=
∑

k

Θ(ħhωD − |ξk |). (1.22)

The mean field Hamiltonian is thus given as

HMF =
∑

α

∑

k

ξk c †
k ,αck ,α−

Vvol

V
˜∑

k

î
∆e −iϕck ,↑c−k ,↓+∆e iϕc †

−k ,↓c
†
k ,↑

ó
+

Vvol∆
2

V 2
. (1.23)

In the latter, we will drop the notation ˜∑ in order to simplify a bit the notations, but one has to keep in
mind the energy window restriction such when needed in order to obtain a finite result. By introducing
the Nambu spinor,

Ck ≡
Ç

ck ,↑
c †
−k ,↓

å
, (1.24)

23



CHAPTER 1. Superconductivity, Josephson effect and Andreev bound states

we write the mean field Hamiltonian in the form

HMF =
∑

k

C †
k

Å
ξk ∆e iϕ

∆e −iϕ −ξ−k

ã
Ck +ξk +

Vvol∆
2

V 2
,

=
∑

k

C †
k HBdGCk +ξk +

Vvol∆
2

V 2
,

(1.25)

where we introduced the Bogoliubov-de Gennes Hamiltonian HBdG [60]

HBdG =
Å
ξk ∆e iϕ

∆e −iϕ −ξ−k

ã
. (1.26)

The eigenvalues of this Hamiltonian allow us to obtain the eigenenergies up to a constant offset energy.
Note that here we have ξ−k = ξk because we consider here a parabolic dispersion. The two eigenvalues
±Ek are given as

Ek =
»
ξ2

k +∆2. (1.27)

We can see from this equation that the energy dispersion is gapped by 2∆. For this reason,∆ is called the
superconducting gap (see Fig.1.2). The associated eigenvectors are

ψk ,+ =

Ç
uk e i ϕ2

vk e −i ϕ2

å
, ψk ,− =

Ç
−vk e i ϕ2

uk e −i ϕ2

å
, (1.28)

whereψk ,+ is associated with Ek andψk ,− with −Ek . The components of the two eigenvectors are given
as

uk =

 
1+ξk /Ek

2
, vk =

 
1−ξk /Ek

2
. (1.29)

Those coefficients verify u 2
k + v 2

k = 1, which allows one to verify the normalization condition of the two
wavefunctions |ψk ,+|2 = |ψk ,−|2 = 1. In fact, one can show that these two coefficients correspond to the
ones of the BCS ground state of Eq. (1.16). The Bogoliubov-de Gennes Hamiltonian also presents another
property called particle-hole symmetry. This symmetry indicates that for every state ψ with energy Ek ,
it exists an accompanying state Pψ with energy −Ek , with P the particle-hole symmetry operator. We
can easily see this with the statesψk ,+ andψk ,−. These two states have opposite energies and are related
through

ψk ,− =−iτy Cψk ,+ =Pψk ,+, (1.30)

where τy is the Pauli matrix in Nambu space and C, the complex conjugation operator. This symmetry
implies that the Bogoliubov-de Gennes Hamiltonian verifies

PHBdGP−1 =−HBdG. (1.31)

We now introduce new operators using the Bogoliubov transformations [61, 62]

γk ,σ = uk ck ,σe −i ϕ2 +σvk c †
−k ,−σe i ϕ2 , (1.32)

such that we can write the mean field Hamiltonian in a diagonal form

HMF =
∑

k

Ä
γ†

k ,↑ γ−k ,↓
äÅEk 0

0 −Ek

ãÇ
γk ,↑
γ†
−k ,↓

å
+ξk +

Vvol∆
2

V 2
. (1.33)
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1.1. BCS theory and Bogoliubov-de Gennes Hamiltonian

The quasiparticle created by those new operators is a superposition of the creation of an electron with
amplitude u and the destruction of another with amplitude v . Since it involves the destruction of one
electron, we often refer to those quasi-particles as a superposition of an electron and a hole. We named
those quasiparticles as bogoliubons in reference to the Bogoliubov transformation used to write them. We
can check that those operators follow the anticommutation rules for fermions{

γk ,σ, γk ′,σ′
}
= 0, (1.34){

γk ,σ, γk ′,σ′†
}
=δσ,σ′δk ,k ′ . (1.35)

The superconducting ground state is defined as follows,

γk ,σ |0〉= 0, (1.36)

such that the creation of a bogoliubon corresponds to an elementary excitation in a BCS superconductor.
Now, we will determine the value of the pair potential ∆. We can find it in a self-consistent way. First,

E

k

E

k

E

k2∆

Figure 1.2: Bands structure for obtained with HBdG. In panel (a), we consider a parabolic dispersion in
the normal state, i.e. ∆= 0. In this case, the band in red is for electrons while the one in blue is for holes.
In panel (b), the pairing leads to a finite coupling between the two bands which results in a gap between
them. The finite coupling implies a mixing between the electron and hole character of quasiparticles.
Hence, a more reddish color indicates a larger electron amplitude while a more blue-tinted color indicates
a larger hole amplitude.

using its definition in Eq. (1.17), we can write it using the Bogoliubov transformation as

∆e iϕ =
V

Vvol

∑

k

uk vk e iϕ(1−2 f (Ek )) =
V

Vvol

∑

k

∆e iϕ

2Ek
tanh

Å
Ek

2kB T

ã
, (1.37)

where we used the relations¨
γ†

k ,σγk ′,σ′

∂
= f (Ek )δk ,k ′δσ,σ′ ,

〈
γk ,σγk ′,σ′

〉
= 0, (1.38)

with f (E ) = (1+exp [E /(kB T )])−1, the Fermi distribution function. The amplitude of ∆ is obtained by
solving the gap equation (1.37). In order to do this calculation, we introduce the density of states per
volume and per spin

ν(ξ) =
1

Vvol

∑

k

δ(ξ−ξk ). (1.39)
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Transforming the sum of (1.37) into an integral, we obtain

1=V

ˆ ħhωD

0
dξ

ν(ξ)√
ξ2+∆2

tanh

Ç√
ξ2+∆2

2kB T

å
. (1.40)

At zero temperature, we can approximate this integral as

1≈V ν0 ln(2ħhωD /∆0), (1.41)

where ν0 is the density of states at the Fermi level per unit volume and spin in the normal state and ∆0,
the pair potential at zero temperature, is given as

∆0 = 2ħhωD e −1/(V n0). (1.42)

We can also determine the critical temperature Tc , i.e., the temperature at which the transition between
the normal and the superconducting state occurs. For that, we can take the limit∆→ 0 in the gap equa-
tion. It leads to

1=V ν0 ln

Å
2ħhωDγ0

πkB Tc

ã
, (1.43)

where we considered ħhωD ≫ Tc and used the Euler constant ln
(
γ0

)
≈ 0.577. Thus, we obtain

Tc =
γ0

πkB
∆0 (1.44)

The general temperature dependence of the gap is shown in Fig. 1.3. Finally, we can look at the density of

0.0 0.5 1.0
T/Tc

0.0

0.5

1.0

∆
/∆

0

Figure 1.3: Temperature dependence of the superconducting gap.

states in superconductors. This density of states is given as

νS (E ) =
d N

d E
. (1.45)
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The subscripts "S" stands for superconducting and N is the total number of states with energy less than
E. We find,

νS (E ) =
d N

dξ

dξ

d E
,

= ν0
d

d E

√
E 2−∆2,

= ν0
E

p
E 2−∆2

(1.46)

So, we can summarize

νS (E ) =

{
0 for 0≤ |E |<∆,

ν0
|E |p

E 2−∆2
for |E | ≥∆.

(1.47)

Notable features are the gap in the density of states, i.e., no states below the superconducting gap, and
divergences at |E |=∆ (see Fig. 1.4). In the limit∆→ 0, we obtain νS (E ) = ν0.

−3 −2 −1 0 1 2 3
E/∆

0

1

2

3

4

ν S
(E

)/
ν 0

Figure 1.4: Density of states of a BCS superconductor.

1.2 Scattering formalism

In this thesis, we are mainly interested in the study of Josephson junctions and their transport properties.
A good way to describe these properties is provided by the scattering formalism. In particular, as we will
see later in Sec. 1.3, it is useful for describing the normal region of a Josephson junction, which is where
scattering takes place. In this section, we will therefore present this formalism. We will start with the ex-
ample of the scattering at a Dirac-δ potential. This kind of potential is often used to model impurities or
the interface between two materials. Then, we will introduce the scattering matrices, which generalize the
concept of reflection and transmission of incoming particles. We will continue by presenting the transfer
matrix and how it allows one to determine the scattering matrix of a system with different sources of scat-
tering. To illustrate how practical it is, we will use two examples, a system with free propagation and one
or two Dirac-δ potentials.
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CHAPTER 1. Superconductivity, Josephson effect and Andreev bound states

1.2.1 Scattering due to a Dirac-delta potential

To introduce the scattering formalism, we start with the Dirac-delta potential. In this thesis, we will use it
to model impurities, local potentials or interfaces between materials. In this example, we will treat the 1D
delta potential. We can write this potential as V (x ) = V δ(x ). Therefore, the Schrödinger equation with
such potential reads

−
ħh 2

2m
ψ”(x ) +V δ(x )ψ(x ) = Eψ(x ), (1.48)

where ψ”(x ) denotes the second derivative of ψ(x ) with respect to x . For x ̸= 0, the solution of the
Schrödinger equation is trivial, and we can write the wave functions as plane waves

ψ(x ) =

®
ψL (x ) = AL e i k x +BL e −i k x for x < 0,

ψR (x ) = AR e i k x +BR e −i k x for x > 0,
(1.49)

with k =
p

2m E /ħh . The continuity of the wave function implies

ψL (0) =ψR (0)≡ψ(0), (1.50)

leading to

AL +BL = AR +BR . (1.51)

However, due to the delta function, the derivatives are not continuous at x = 0. One way to deal with
this problem is to integrate the Schrödinger equation around x = 0. Doing so allows one to obtain the
difference between the derivatives of the two wavefunctions. We obtain

ψ′R (0)−ψ
′
L (0) =−

2mV

ħh 2 ψ(0), (1.52)

which leads to

AR −BR +BL −AL =−2i
mV

ħh 2k
(AR +BR ). (1.53)

For positive energies, the free moving particles may be scattered at the delta potential as illustrated in Fig.
1.5. In this example, we will consider an incoming particle from the left side of the delta potential. This

ALe
ikx BRe

−ikx

BLe
−ikx ARe

ikx

Figure 1.5: Scattering from a delta potential.

incoming particle can be either reflected on the potential with a probability amplitude r or transmitted to
the right side of it with a probability amplitude t . With those assumptions, we can simplify the previous
equations by setting AL = 1, BL = r , AR = t and BR = 0. Using eqs. (1.50) and (1.52), we obtain the following
relation

r =−i
mV /(ħh 2k )

1+ i mV /(ħh 2k )
=−i

V /(ħh v )
1+ i V /(ħh v )

, (1.54)

t =
1

1+ i mV /(ħh 2k )
=

1

1+ i V /(ħh v )
, (1.55)
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where we introduce v = ħhk/m , the velocity of the particle. It is easy to check that R +T = 1, where R = |r |2
and T = |t |2. In the limit V /(ħh v )→ 0, one can see that T → 1 and R → 0 such that the particle moves freely
from left to right. On the other hand, in the limit V /(ħh v )→∞we have the opposite, R → 1 and T → 0.

In the case of an incoming particle coming from the right, we would have found the same results.
The cases of an incoming particle coming from the left or from the right can be reunited together into a
more general theory which is the scattering matrix formalism.

1.2.2 Scattering and transfer matrix

Here, we will derive the scattering and transfer matrix formalism for 1D systems. More details can be found
in the book of Markoš and Soukoulis [63]. In a system with a localized potential such as the delta potential
of the previous example, or a square potential, we can always treat the scattering problem of left/right
incoming particles (or both). The idea is to separate the space into three different regions. One of these
regions is described by a scattering matrix. The two others being on the left and right of this scattering
region, in which no potential is present. In these two regions, we can write the wavefunctions as in Eq.
(1.49) where hereψL/R (x ) denotes the wavefunction at the left/right side of the scattering region. In the
central scattering region, the wavefunction is unknown unless we know the specific form of the potential.
What we want to obtain are the scattering amplitudes, which indicate the probability of an incoming state
to be either reflected or transmitted in terms of the amplitude of the incoming state through the scattering
region. Therefore, we can write this problem as a matrix equation.Å

BL

AR

ã
= S
Å

AL

BR

ã
=
ÅS11 S12

S21 S22

ãÅ
AL

BR

ã
, (1.56)

where the S matrix is called the scattering matrix. Since this matrix relates the amplitude of incoming
states to the amplitude of the outgoing states, we can write it in a shortened way as

ψout = Sψin. (1.57)

Under this form, we can associate the coefficient of the scattering matrix to the scattering amplitudes. It
can be written as

S =
Å

r t ′

t r ′

ã
, (1.58)

where r and r ′ describe the reflection of a state coming from the left/right, t the transmission from right
to left and t ′ the transmission from left to right. Due to the conservation of the probability current, the
scattering matrix S must be unitary. The probability current density J of the wave function is defined as

J =−i
ħh

2m

(
ψ∗(x )∂xψ(x )−ψ(x )∂xψ

∗(x )
)

(1.59)

Therefore, the probability current density to the left and right side of the scattering region is

JL =
ħhk

m

(
|AL |2− |BL |2

)
, (1.60)

JR =
ħhk

m

(
|AR |2− |BR |2

)
. (1.61)

The conservation of the probability current implies JL = JR . Hence, we can write

|BL |2+ |AR |2 = |AL |2+ |BR |2

⇔ ψ†
outψout =ψ

†
inψin

⇔ ψ†
inS†Sψin =ψ

†
inψin

⇒ S†S = SS† = 1

(1.62)
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This property implies that we can also describe the incoming state using the scattering matrix. This can
be written as

ψin = S†ψout. (1.63)

By using the unitarity we obtain the following relation for the scattering coefficients

|t |= |t ′|, (1.64)

|r |= |r ′|, (1.65)

r =−r ′∗
t

t ′∗
=−r ′∗

t ′

t ∗
(1.66)

For the rest of this section, we redefine the scattering coefficients up to a global phase corresponding to
the average of the phase of t and t ′ that we denote asφt andφt ′ leading to t ′ = t ∗ and r ′ =−r ∗ such that

S = e iθ
Å

r t ∗

t −r ∗

ã
, θ =

φt +φt ′

2
. (1.67)

In the case of our previous example, the delta potential yields

S0 =
1

1+ i V /(ħh v )

Å
−i V /(ħh v ) 1

1 −i V /(ħh v )

ã
, (1.68)

such that we can write

θ =−arctanβ , (1.69)

r =−iβ/
√

1+β2, (1.70)

t = 1/
√

1+β2, (1.71)

β =V /(ħh v ). (1.72)

So far, we’ve seen that with the scattering matrix, we can express the amplitude of the outgoing states
in terms of the incoming states. Another possibility is to express the states that are on the right side of the
scattering region in terms of the states that are on the left side of it. This is the purpose of the transfer
matrix, which we will call M. This can be written asÅ

AR

BR

ã
=M

Å
AL

BL

ã
=
ÅM11 M12

M21 M22

ãÅ
AL

BL

ã
, (1.73)

that we can reduce to

ψR =MψL , (1.74)

with ψR/L = (AR/L , BR/L )T . Solving the scattering matrix equation for AR and BR in terms of AL and BL

allows expressing the transfer matrix coefficients in terms of the scattering matrix ones

M=−
1

S12

Å
Det S −S22

S11 −1

ã
. (1.75)

As this matrix also involves the amplitude of the incoming and outgoing states, we can express the scat-
tering matrix coefficients in terms of the transfer matrix ones

S = 1

M22

Å
−M21 1
Det M M12

ã
. (1.76)
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The benefit of using the transfer matrix is that, for a system with multiple sources of scattering, we can
define a transfer matrix for each of these sources. The total transfer matrix which describes all the scat-
tering regions will be given by the product of the transfer matrices associated to each scattering source.
As an example, we can consider a system with two scattering sources. We can write this using the transfer
matrix as

ψR =MψL =M2M1→2M1ψL , (1.77)

where M1,2 corresponds to the transfer matrix of the first and second scattering sources while M1→2

is the transfer matrix that describes the propagation between the two scattering sources. Two concrete
examples will be given in the next part of this section.

1.2.3 Free propagation and delta potential

In this part, we will present how we can use the transfer matrix in order to obtain the scattering matrix
for a system with different sources of scattering. We will make use of two examples which we will use
later to describe the scattering in Josephson junctions. The first example consists of a system in which the
scattering region of interest is composed of a delta potential placed at a position x0. On both sides of this
potential, the particle moves freely, i.e., there is no potential. We consider that this region is of length d .
This example is exactly the same as the one at the beginning of this section. But here, we include a region
of free propagation as a part of the scattering region (see Fig.1.6) so that the wavefunction at the left and
right sides of this region can be written as

ψL (x ) = AL e i k x +BL e −i k x , (1.78)

ψR (x ) = AR e i k (x−d )+BR e −i k (x−d ). (1.79)

x
x00 d

Scattering region

Figure 1.6: Schematic representation of the system considered in the first example. In blue are the two re-
gions between which we want to describe the scattering. The delta potential is represented by the dashed
area at x0.

The transfer matrix of this system can be written as

M=MRM0ML =
Å

e i k (d−x0) 0
0 e −i k (d−x0)

ãÅ
(|r |2t −1+ t ∗)e iθ −r ∗t −1

−r t −1 t −1e −iθ

ãÅ
e i k x0 0

0 e −i k x0

ã
,

=
Å
−(|r |2t −1+ t ∗)e iθ+i k d r ∗t −1e −i k (2x0−d )

r t −1e i k (2x0−d ) t −1e −iθ−i k d

ã
.

(1.80)

From this transfer matrix, we obtain the following scattering matrix for the whole scattering region

S = e iθ+i k d
Å

r e i k (2x0−d ) t
t ∗ −r ∗e −i k (2x0−d )

ã
(1.81)
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This result is coherent with what we can expect. An incoming particle that is transmitted will gain a phase
e i k d due to its propagation. And, an incoming particle that is reflected will gain a phase which depends
on which side of the potential the incoming particle is.

The last example that we will present is a system composed of two delta potentials, separated by a
region of length d where no potential is present. We will consider the case where the two delta potentials
can be different, such that we denote the scattering coefficients of the scattering matrix of the left and
right sides with the subscripts L and, R respectively. Following the same procedure as before, we obtain

M=
Å
(|rR |2t −1

R + t ∗R )e
iθR −r ∗R t −1

R
−rR t −1

R t −1
R e −iθR

ãÅ
e i k d 0

0 e −i k d

ãÅ
(|rL |2t −1

L + t ∗L )e
iθL −r ∗L t −1

L
−rL t −1

L t −1
L e −iθL

ã
(1.82)

The scattering matrix obtained for this system from the transfer matrix can again be written in the form

S = e i θ̃
Å

r̃ t̃
t̃ ∗ −r̃ ∗

ã
, (1.83)

where its coefficients read

t̃ = tR tL/
�

�1+ rR r ∗L e i (θR+θL+2k d )
�

� , (1.84)

r̃ =
Ä

rL e −iθR−i k d + rR e iθL+i k d
ä
/
�

�1+ rR r ∗L e i (θR+θL+2k d )
�

� , (1.85)

θ̃ = θR +θL +k d −arctan

Ç
Im
[
1+ rR r ∗L e i (θR+θL+2k d )

]
Re
[
1+ rR r ∗L e i (θR+θL+2k d )

]å . (1.86)

We can see that the denominator of t̃ and r̃ involves the reflection amplitude of both delta potentials.
To understand this, we can picture the path that an incoming particle from the left can take. At the first
potential, this particle is either transmitted or reflected. If it is transmitted, it will freely propagate until it
arrives at the second delta potential. Here again, it can be either transmitted or reflected. In the scenario
where the particle is reflected, the same thing happens on the left side. In fact, once the particle is being
transmitted in the region between the two potentials, it can be reflected a multiple number of times until
it comes out of the scattering region (see Fig. 1.7). This can be written in the form of a power series of the
reflection amplitude as

t̃ = tR

[
1− rR r ∗L e i (θR+θL+2k d )+

Ä
−rR r ∗L e i (θR+θL+2k d )

ä2
+ ...
]

tL e i k d =
tR tL e i k d

1+ rR r ∗L e i (θR+θL+2k d )
. (1.87)

The same happens for the reflection amplitude. To obtain the form of Eq. (1.83), we then rewrite the
scattering amplitudes. If the two delta potential are the same, the scattering coefficients simplify into

t̃ = t 2/
�

�1+ |r |2e 2i (θ+k d )
�

� , (1.88)

r̃ = 2r cos(θ +k d )/
�

�1+ |r |2e 2i (θ+k d )
�

� , (1.89)

θ̃ = 2θ +k d −arctan

Ç
Im
[
1+ |r |2e 2i (θ+k d )

]
Re
[
1+ |r |2e 2i (θ+k d )

]å . (1.90)

In this case, we can see that if k d = (2n + 1)π2 − θ , with n ∈ Z, the reflection amplitude vanishes. These
peaks of transmission are called transmission resonances or Fabry-Pérot resonances (see Fig. 1.8). In the
limit β = V /(ħh v )→∞, the term θ → −π/2. Thus, the condition for the resonance becomes k d = nπ.
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Scattering region

tLtR

tL(−rRr
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Figure 1.7: Illustration of the system with the two delta potentials. The left and right regions are separated
by the scattering region. An incoming particle from the left, depicted here with the arrow, can be reflected
multiple times before being transmitted to the right side of the scattering region.

k being related to the wavelength of the incoming state through λ = 2π/k , we can write the condition
as d = nλ/2. If this condition is verified, this means that all the transmitted waves are in phase, such
that we observe constructive interferences, whereas the reflected waves are in phase opposition leading
to destructive interferences. In fact, in this case, the problem is analogous to a particle in a box where
the wavelength of the wavefunction must be λ = 2nd . Due to the reflection phase shift, which depends
on the height of the potential, the positions of the resonance peaks are shifted depending on the applied
potential.

1.2.3.1 Resonant level with the doublet delta potentials

In the previous section, we discussed the general properties of a scattering region with two delta poten-
tials. Also, we made the analogy with a particle in a box which has discrete energy levels when we are in
the limit β →∞. We saw that the transmission was maximal when the energy of the incident particle
matched one of these discrete energy levels. We may focus on a single resonant level (the one closest to
EF ), that we will denote as Er . Also, we won’t require both potentials to be identical. Assuming that the
scattering region separates two normal leads with parabolic dispersion, we have for an incident electron

k = kF

√
1+E /µ, (1.91)

where µ is the electrochemical potential (equivalent to the Fermi energy at zero temperature) and kF =√
2mµ/ħh . In the limit µ≫ E , we may linearize this expression such that

k = kF +
E

ħh vF
. (1.92)

The maximum of transmission is still given by the constructive interference condition, i.e.

ϕtot+
E d

ħh vF
= (2n +1)

π

2
, (1.93)
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Figure 1.8: Transmission T of the scattering region as function of k d with various strengths of the delta
potentials β =V /(ħh v ). We observe resonances when k d = (2n +1)π2 −θ with θ =−arctanβ .

where we defineϕtot = θ+kF d . Let’s expand the transmission coefficient around the resonance condition
E → Er

t̃ (E ) =
tR tL»(

1+
√

RR RL

)2−4
√

RR RL sin2
(
ϕtot+E d /(ħh vF )

) ,

=
tR tL»(

1+
√

RR RL

)2−4
√

RR RL sin2 ((2n +1)π/2+ (E −Er )d /(ħh vF ))
,

=
tR tL»(

1−
√

RR RL

)2
+4
√

RR RL ((E −Er )d /(ħh vF ))
2

.

(1.94)

The resonant level Er is well-defined only when tL , tR ≪ 1. Thus, at the lowest order we obtain

t̃ (E ) =
tR tL»

(TL +TR )2/4+4 ((E −Er )d /(ħh vF ))
2

. (1.95)

Introducing the coupling rates of the level into the leads Γ j = Tjħh vF /(2d )we can write

t̃ (E ) =

√
ΓR ΓL e i (φt R+φt L )√

((ΓR + ΓL )/2)2+ (E −Er )2
, (1.96)

which corresponds to the Breit-Wigner formula [64]. We can see that the transmission coefficient has a
Lorentzian shape of energy width ΓL + ΓR and amplitude 4ΓL ΓR/(ΓL + ΓR )2

In fact, this model is well suited to describe a junction containing a quantum dot. A quantum dot
can be modeled as a small region of space defined by electrostatic gates or impurities. Due to its small
size, electrons in a quantum dot have discrete energy levels. Hence, the double potential model describes
well the coupling between the dots and the leads. Therefore, according to this model, when the energy of
electrons from the leads does not match one of the quantum dot’s levels, it makes it difficult to tunnel into
the quantum dot. In contrast, when one of its levels is in resonance, electrons can easily tunnel from the
electrodes into the dot.
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1.3. Josephson effect and ABS

1.3 Josephson effect and ABS

As we said in the introduction, a Josephson junction consists of a weak link separating two supercon-
ducting electrodes. Those junctions are characterized by a dissipationless current which arises from the
superconducting phase difference between the two electrodes. The Josephson relations which capture
the essential physics of Josephson junctions are [2, 53, 65]

I (ϕ) =
2e

ħh
∂ E J (ϕ)
∂ ϕ

,
dϕ

dt
=

2e V

ħh
, (1.97)

whereϕ corresponds to the phase difference between the two electrodes, E J (ϕ) is the junction energy and
V is the voltage bias. The transfer of Cooper pairs from one electrode to the other constitutes a part of this
current and is allowed by the formation of ABS in the weak link which disperses with the phase difference.
In junctions shorter than the coherence length, ξ= ħh vF /(∆), the system energy is fixed by occupation of
the ABS. Hereafter, we will introduce the scattering reflection mechanism that permits the formation of
those bound states. Properties of Josephson junctions being dependent on the energy, we will derive the
energy spectrum of ABS for a typical junction using the scattering matrix formalism, where the weak link
is a non-superconducting metal, we refer to this system as a S-N-S junction. Finally, we will present one
way to treat the case of a weak link separated from the superconducting electrodes by strong electrostatic
gates, which allows defining the weak link as a quantum dot.

1.3.1 Andreev reflection

Andreev reflections appear at the interface between a normal non-superconducting material and a su-
perconductor. This scattering process corresponds to the situation where an incident electron is being
reflected as a hole in the normal region, while a Cooper is formed in the superconductor. This scat-
tering process is illustrated in Fig. 1.9. To capture this process, we first need to describe the spatially-

e

h

normal metal supercondutctor

Figure 1.9: Andreev reflection at a normal metal - superconductor interface. An incoming electron from
the normal metal is being reflected as a hole at the interface. This process results in the formation of
a Cooper pair in the superconductor. The outgoing charge comprising the hole and the Cooper pair is
equal to the one of the incoming electron.

inhomogeneous problem since we have a superconducting and a normal material. This can be done
from the mean field Hamiltonian we introduced in Sec. 1.1.2 that, this time, we will write in real space.

35



CHAPTER 1. Superconductivity, Josephson effect and Andreev bound states

This Hamiltonian reads

HMF =
ˆ

dr
∑

σ

ψ†
σ(r )H0(r )ψσ(r ) +

ˆ
dr
Ä
ψ†
↑(r )∆(r )e

iϕψ†
↓(r ) +h.c.

ä
, (1.98)

=
ˆ

dr
Ä
ψ†
↑(r ) ψ↓(r )

ä
HBdG(r )

Ç
ψ↑(r )
ψ†
↓(r )

å
,

HBdG(r ) =
Å

H0(r ) ∆(r )
∆∗(r ) −H0(r )

ã
, (1.99)

H0(r ) =−
ħh 2∇2

2m
−µ. (1.100)

A Bogoliubov transformation can be used to solve the problem such that

ψ↑(r ) =
∑

ν

(u∗ν(r )γν↑− vν(r )γ
†
−ν↓), (1.101)

ψ†
↓(r ) =
∑

ν

(uν(r )γ
†
−ν↓+ v ∗ν(r )γν↑), (1.102)

where the exact form of uν(r ) and vν(r ) depends on ξ(r ). The index ν labels the different eigenstates of
the BdG Hamiltonian such that

HBdG(r )
Å

uν(r )
vν(r )

ã
= Eν

Å
uν(r )
vν(r )

ã
. (1.103)

Here again, we can see that HBdG(r ) has particle-hole symmetry such that PHBdG(r )P−1 =−HBdG(r )with
P =−iτy C. This symmetry implies that for a state of energy E it exist another state of energy −E .

To capture the Andreev reflection process, we will use the BdG Hamiltonian of Eq. (1.99). Here, we
will consider a one dimensional infinite lead which is described by the following equation in real spaceÅ

H0(x ) ∆(x )
∆∗(x ) −H0(x )

ãÅ
u (x )
v (x )

ã
= E

Å
u (x )
v (x )

ã
, (1.104)

where the normal Hamiltonian is

H0(x ) =−
ħh 2

2m

d2

dx 2
−µ. (1.105)

The superconducting gap ∆(x ) verifies ∆(x ) = ∆e iϕΘ(x ), with Θ(x ) the Heaviside function and ϕ the
phase of the superconducting order parameter. This Hamiltonian describes a normal region with parabolic
dispersion in the region x < 0 and a superconducting region for x > 0. In the superconducting region, this
Hamiltonian is equivalent to Eq. (1.26) but written in the real space instead of the momentum space. To
obtain the amplitude associated to Andreev reflection, we will follow the same procedure as in the pre-
vious section for reflection and transmission coefficients. Therefore, we need to solve the Schrödinger
equation in both regions. In the normal region, we have to solve

±
Ç
−
ħh 2

2m

d2

dx 2
−µ
å
η±(x ) = Eη±(x ). (1.106)

The solutions of those equations are

η±(x ) = a±e i k±x + b±e −i k±x , (1.107)
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where a± and b± are constants. The values of k± are given as

k± =
1

ħh
√

2m (µ±E ) = kF

 
1±

E

µ
, (1.108)

with kF =
√

2mµ/ħh . The + solution corresponds to an electron which belongs to the energy branch
ξ = ħh 2k 2/(2m ), whereas the − solution corresponds to a hole and belongs to the branch −ξ. From the
group velocity v = ∂ ξ/(ħh∂ k ), we find that, for k > 0, the group velocity of electrons is positive and the one
of holes is negative in the x -direction. Thus, the terms a+ and b− describe right-moving particles, while
the terms b+ and a− describe left-moving particles. The full wavefunction in the normal region can be
written as a superposition of the electron and hole wavefunction

ψN (x ) =
Å

1
0

ã
η+(x )p

vk+
+
Å

0
1

ã
η−(x )p

vk−
, (1.109)

with v± = ħhk±/m .

In the superconducting region, we have to solve the BdG equationÇ
− ħh

2

2m
d2

dx 2 −µ ∆e iϕ

∆e −iϕ ħh 2

2m
d2

dx 2 +µ

åÅ
u (x )
v (x )

ã
= E

Å
u (x )
v (x )

ã
, (1.110)

where u (x ) and v (x ) describe electron and hole like quasiparticles respectively. The superconducting gap
being constant in the superconductor, we can assume plane wave solutions ∼ e i q x . The possible values
of q are found by solving the eigenvalues problem. We obtain four different solutions q = q± and q =−q±
with q± given as

q± =
1

ħh

√
2m
Ä
µ±
√

E 2−∆2
ä
= kF

√
1±
p

E 2−∆2

µ
. (1.111)

The+ solution describes quasi electrons while the− solutions describe quasi holes which respectively be-
long to the branch±Ek with E =

√
ξ2+∆2. The wavefunction in the superconducting region can therefore

be written as

ψS (x ) =
1√
vq+

Å
ue iϕ/2

v e −iϕ/2

ã[
c1e i q+x + c2e −i q+x

]
+

1√
vq−

Å
v e iϕ/2

ue −iϕ/2

ã[
d1e i q−x +d2e −i q−x

]
, (1.112)

where u and v are given in Eq. (1.29) and

vq± =
ħhq±
m

ξ

E
, (1.113)

with ξ= sign(E )
p

E 2−∆2.

As one can see, we have normalized the wavefunctionsψN (x ) by
p

vk± andψS (x ) by
√

vq±. In the
following, we will want to describe the normal-superconductor interface with a scattering matrix. This
normalization ensures that the current is conserved, so we can use these states as a basis for this scattering
matrix. The resulting scattering problem can be written asÜ

b+
a−
c1

d2

ê
= SN S

Ü
a+
b−
c2

d1

ê
, SN S =

Ü
r e e

nn r e h
nn t e e

n s t e h
n s

r he
nn r hh

nn t he
n s t hh

n s
t e e

s n t e h
s n r e e

s s r e h
s s

t he
s n t hh

s n r he
s s r hh

s s

ê
, (1.114)
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where the lower indices i j of the scattering coefficients indicate that the incoming state is from the region
j and the outgoing state is from the region i . On the other hand, the upper indices k l indicate the quasi
electron / quasi hole nature of the incoming state (indice l ) and outgoing state (indice k ). For example,
t e h

n s describes the transmission of a quasi hole from the superconductor to a quasi electron in the nor-

mal region. Definingψout =
(

b+, a−, c1, d2

)T
andψin =

(
a+, b−, c2, d1

)T
, we can easily see that,

imposing JN = JS , where JN /S =
ħh
m Im

î
ψ†

N /S (x )∂xτzψN /S (x )
ó

is the current obtained in the normal / su-

perconducting region and τz the Pauli matrix in the Nambu space, leads toψ†
outψout =ψ

†
inψin, ensuring

that S†
N SSN S = 14.

As in Sec. 1.2, the scattering coefficients can be obtained by matching the wavefunctions and their
first derivative at x = 0. This yields

ψN (0) =ψS (0), (1.115)

ψ′N (0) =ψ
′
S (0). (1.116)

From here, we assume |E |,∆≪µ such that we at the lowest order in kF , we have k± ≈ q± ≈ kF [24, 66]. For
a quasiparticle coming from the normal metal, we can put c2 = d1 = 0 whereas for a quasiparticle coming
from the superconductor, we can put a+ = b− = 0. We obtain the following scattering coefficients [54]

r e h
s s =−α, r he

s s =−α, r e h
nn =αe iϕ , r he

nn =αe −iϕ

t hh
s n = tN S e iϕ/2, t e e

s n = tN S e −iϕ/2, t e e
n s = tN S e iϕ/2, t hh

n s = tN S e −iϕ/2,
(1.117)

with

α=
E

∆
− sign(E )

 
E 2

∆2
−1, tN S =

 
2E

E +
p

E 2−∆2

√
Re

ñp
E 2−∆2

E

ô
, (1.118)

and the other scattering coefficients are zero. As one can see, for |E |<∆, one part of the wavefunction in
the superconductor is evanescent and the other explodes when x increases. Thus, in this case, we nec-
essarily have c2 = d1 = 0. The evanescent part of the wavefunction indicates that the transport channels
are evanescent, which is why we have tN S = 0. The only remaining process is the Andreev reflection in the
normal region. In the following, we will denote r he

nn = rA,e (E ,ϕ) and r e h
nn = rA,h (E ,ϕ) = rA,e (E ,−ϕ) as they

correspond to Andreev reflection for an electron reflected into a hole and a hole reflected into an electron
in the normal region. Also, from now on, we will only consider particles with energy |E |<∆≪µ such that

α=
E

∆
− i

 
1−

E 2

∆2
= exp

ï
−i arccos

E

∆

ò
. (1.119)

The value of the modulus of rA is plotted in Fig. 1.10.

1.3.2 ABS in a "zero-length" junction

In a Josephson junction, Andreev reflection on both normal-superconductor interfaces can lead to the
formation of bound states known as Andreev bound states. Those bound states are therefore a superpo-
sition of an electron and a hole. In this section, we will derive the energy spectrum of ABS in a junction
with perfect transmission. In order to obtain this energy spectrum, we will first consider that the normal
region is of length d . We will consider a right moving electron starting from x = 0 in the normal region
that is being reflected as a hole at the right interface, i.e., at x = d . The wavefunction in the normal region
can thus be written as

ψN (x ) =N

ñÅ
1
0

ã
e i
Ä

kF +
E
ħh vF

ä
x +

Ç
0

αe −iϕR+i (kF +
E
ħh vF
)d

å
e i
Ä

kF − E
ħh vF

ä
(x−d )
ô

, (1.120)
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Figure 1.10: Modulus of the Andreev reflection coefficient

with N being the normalization coefficient. We can note that here, we have an additional phase factor of

e i E d
ħh vF for the Andreev reflection amplitude. This phase comes from the free propagation of the electron

in the normal region. After the first Andreev reflection on the right interface, the reflected hole will, in
turn, freely propagate in the normal region until it arrives at the left interface. The reflected hole, in turn,
undergoes an Andreev reflection. The resulting electron has therefore an amplitude given as

Aαe −i (kF − E
ħh vF
)d+iϕL ,

where A = αe −iϕR+i (kF +
E
ħh vF
)d is the amplitude of the reflected hole. The reflected electron has the same

amplitude as the initial one but with an additional phase of α2e 2i E d
ħh vF
−iφ , with φ = ϕR −ϕL . A bound

state appears if there is constructive interference between the initial electron and the reflected one. This
condition can be written as

α2e 2i E d
ħh vF
−iφ = 1. (1.121)

The same study can be made for a left moving electron in the normal region, which leads to the following
condition for constructive interference and therefore, for the formation of a bound state [23, 24]

α2e 2i E d
ħh vF
+iφ = 1. (1.122)

These two conditions simply follow from the Bohr-Sommerfeld quantization rule, which implies that a
bound state corresponds to a closed quasi-particle trajectory with a total phase accumulated during one
cycle equal to a multiple of 2π. We can use these expressions to determine the energy spectrum of these
bound states. It leads to

2
E d

ħh vF
±φ−2 arccos

E

∆
= 2qπ, (1.123)

with q ∈ Z. In the zero-length limit, i.e., d → 0 (the case of finite length will be treated in Sec. 1.3.3), we
can neglect the first term which allows us to write

E± =±∆cos
φ

2
sign

ï
sin
φ

2

ò
. (1.124)
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As expected by the particle-hole symmetry of the Bogoliubov-de Gennes Hamiltonian, we obtain two

states with opposite energy. The term sign
î

sin φ
2

ó
comes from the domain in which arccos(x ) is defined.

The energy of these bound states cross perfectly at the Fermi energy atφ =πmod 2π, and, are in contact
with the continuum for φ = 0 mod 2π as shown in Fig. 1.11. The energy spectrum being 2π periodic, we
will restrain ourselves to the intervalφ ∈ [0, 2π] in the following.
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Figure 1.11: Energy spectrum of ABS hosted in a "zero-length" junction.

1.3.2.1 Effect of backscattering

In reality, some disorder will be present in the junction, leading to the scattering of electrons and holes.
Therefore, we need to take into account the scattering when calculating the energy spectrum. To do so,
we will use the scattering formalism in order to describe the scattering processes in the normal region.
Here, we will consider that there is finite backscattering in the normal region and that the length of this
region is negligible such that we can model it with a delta potential. The scattering matrix that describes
this potential for electrons is the same as in Eq. (1.67)

Se = e iθ
Å

r t
t −r ∗

ã
. (1.125)

At the interfaces, the outgoing electron states will undergo Andreev reflection and therefore reflected as
holes. The question is, how can we describe the scattering of holes in the normal region? We still can
define ingoing and outgoing states for holes, so we still can use the scattering matrix formalism such that
we can write

ψh
out = Sh (E )ψ

h
in. (1.126)

But, we have to determine what is Sh (E ), the scattering matrix for holes. First of all, the Hamiltonian
which describes holes is the opposite of the one which describes electrons. Hence, electrons and holes
should be described by similar scattering matrices but with opposite energy dependence. Next, the basis
in which we have written the Hamiltonian for holes is the time reversal symmetric of the basis in which we
have written the Hamiltonian for electrons (see Appendix A for more details on TRS). Thus, we can write

Θψe
out(−E ) = Sh (E )Θψ

e
in(−E ), (1.127)
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where Θ is the TRS operator and where we have written the energy dependence explicitly. From this rela-
tion, we can easily see that

Sh (E ) =ΘSe (−E )Θ†. (1.128)

Here, we do not consider the spin of particles such that this operator is Θ = C, where C denotes complex
conjugation. So, in our case, we have

Sh (E ) = S∗e (−E ) = S∗e . (1.129)

We can now construct a scattering matrix which links outgoing electrons to incoming holes. The
reflected hole on the right interface has an amplitude given as α(E )e −iϕR , whereas, the ones on the left
interface have an amplitude given asα(E )e −iϕL . We can therefore link the incoming holes to the outgoing
electrons with the matrix

ψh
in =α(E )rA(ϕL ,ϕR )ψ

e
out =α(E )

Å
e −iϕL 0

0 e −iϕR

ã
ψe

out. (1.130)

To link the Andreev reflected electrons to the outgoing holes, the procedure is the same. It leads to

ψe
in =α(E )rA(−ϕL ,−ϕR )ψ

h
out =α(E )

Å
e iϕL 0

0 e iϕR

ã
ψh

out. (1.131)

We can combine these equations to obtain

ψe
in =α

2(E )rA(−ϕL ,−ϕR )S∗e rA(ϕL ,ϕR )Seψ
e
in ≡α

2(E )M (φ)ψe
in (1.132)

Written in this form allows one to see explicitly that this combination of scattering matrices describes a
bound state. An important remark is that here, M (φ) is to be distinguished from a transfer matrix that we
denoted as M in Sec. 1.2.2. M (φ) is a product of scattering matrices and so verifies the relation M †M = 1.
Also, note that here again only the phase difference matters which is why we did write only aφ dependence
in M (φ). Equation (1.132) implies [25]

Det
[
1−α2(E )M (φ)

]
= 0. (1.133)

Doing the matrix product, we obtain for M (φ)

M (φ) =

Ç
R +T e −iφ 2i

p
RT sin φ

2 e −i φ2 −iφr

2i
p

RT sin φ
2 e i φ2 +iφr R +T e iφ

å
, (1.134)

where θr is the phase of the reflection coefficient and, we recall that R = |r |2 and T = |t |2. The eigenvalues
and eigenvectors of this matrix are found by diagonalizing it. The rotation matrix that diagonalizes it, is

W = e −i δ2σz e −i γ2σy , (1.135)

whereσy ,z are the Pauli matrices and

δ= θr +
φ

2
, γ= arctan

−
p

R
p

T cos φ2
, (1.136)

such that,

W †M (φ)W =
(

R +T cosφ
)
1−2i sign

Å
cos

φ

2

ãp
T sin

φ

2

 
R +T cos2

φ

2
σz = e −2iχ(φ)σz , (1.137)
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with

χ(φ) = arccos

(
sign

Å
cos

φ

2

ã 
R +T cos2

φ

2

)
. (1.138)

The condition for obtaining a bound state can therefore be written as

±χ(φ)−arccos
E

∆
= qπ, (1.139)

This is very similar to what we obtained for the perfectly transmitted junction, but here instead of a phase
factor ofφ/2, we have χ(φ) due to finite backscattering. This equation leads to,

E± =±∆

 
R +T cos2

φ

2
sign

Å
cos

φ

2

ã
=±∆

 
1−T sin2 φ

2
sign

Å
cos

φ

2

ã
. (1.140)

As expected, in the limit T → 1, we recover the energy spectrum of the perfectly transmitted junction, i.e.,
E± =±∆cosφ/2.

The main effect of adding backscattering is that a gap of 2∆
p

R opened atφ =π, which results from
the mixing of left and right moving particles, as represented in Fig. 1.12. The energy spectrum in this case

Figure 1.12: Representation of the scattering processes that give rise to the ABS. Due to the finite backscat-
tering, a mixing occurs between the left and right moving particles.

is represented in Fig. 1.13.

1.3.3 Effect of finite length

Until now, we have neglected the length of the junction. However, as we can see in Eq. (1.123), the length of
the junction induced a phase proportional to the energy of ABS. The drawback is that even in the simplest
case of perfect transmission, this equation is a transcendental equation, so it is in principle impossible to
find an analytical solution to it. However, we can find approximate solutions in certain limits.

1.3.3.1 Short-length limit

The first limit that we can look at is the short length limit, d /ξ≪ 1. We introduce the notations λ= d /ξ=
∆L/(ħh vF ), and ε= E /∆ ∈ [−1, 1], such that we need to solve

λε+ρ
φ

2
−arccosε−qπ= 0, (1.141)

with ρ =±1. We can rewrite this equation under the form

ε= cos

Å
λε+ρ

φ

2
−qπ

ã
sign

ï
sin

Å
λε+ρ

φ

2
−qπ

ãò
. (1.142)
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Figure 1.13: Energy spectrum of ABS in a "zero-length" junction in the presence of backscattering at T =
0.99.

In the following, we will forget about the sign term, but one has to keep in mind that it restricts the values
for which we have solutions for the energies. In particular, we take q = 0 and restrain ourselves to the
study of ε > 0 since we know that particle-hole symmetry implies that for a state at energy ε, it exists a
state at energy −ε. Also, we restrain ourselves to the phase intervalφ ∈ [0, 2λε] such that we can write

|ε|=
�

�

�

�

cos

Å
λε+ρ

φ

2

ã�
�

�

�

. (1.143)

In the short length limit, we have λ≪ 1. Therefore, we can develop this equation up to the second order
in λ. It leads to

|ε|=
�

�

�

�

Å
1−

1

2
λ2ε2
ã

cos

Å
ρ
φ

2

ã
−λεsin

Å
ρ
φ

2

ã�
�

�

�

. (1.144)

By solving this equation, we find the following expression for the energy at the second order in λ

|ερ |=
�

�

�

�

cos
φ

2
−ρ

1

2
λsinφ+

1

4
λ2 cos

φ

2

(
1−3 cosφ

)��
�

�

. (1.145)

We can see that the effect of length is to bring out a new ABS as shown in Fig. 1.14. However, where the
first level extends over the entire phase range, i.e., from φ = 0 to φ = 2π, this new level quickly joins the
continuum of states when |ε|= 1. We can develop Eq. (1.145) aroundφ→ 0 in order to find when this new
state joins the continuum. We find

|ερ | ≈ 1−
λ2

2
−ρ

λ

2
φ−

1

8
φ2. (1.146)

This equation allows us to see that the maximal allowed value forφ for the solution with ρ =−1 isφmax =
2λ, and that the two states crossed each other atφc = 0 with an energy given as εc = 1−λ2/2.

We can make the analogy with a potential well to understand the effect of the length. In a potential
well, the number of bound states is dictated by the height and the width of this potential, such that, the
number of states increases with them. In some way, the normal region of a Josephson junction is a poten-
tial well with height fixed by the value of the superconducting gap. Therefore, the number of ABS hosted
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Figure 1.14: Energy spectrum of ABS for a short length junction. Due to the finite length of the junction,
an additional level appears but quickly joins the continuum in the short length limit. In this case, we took
λ= 0.2.

in the junction depends on the length of the normal region. In fact, the number of states is determined by
the minimal and maximal value of q in Eq. (1.141). Each new ABS is gradually detached from the contin-
uum. Thus, for positive energy, and for 0<φ < 2π, we take ε= 1 in Eq. (1.141) which gives the maximum
allowed value for q . We find qmax = [(λ+ρφ/2)/π]. For negative energy, we just have to take ε=−1 leading
to qmin =−1− [(λ−ρφ/2)/π]. In qmax and qmin, [x ] refers to the integer part of x .

As for the zero length limit, we can try to include the effect of backscattering. As we can see in
Fig. 1.15, adding backscattering leads to the opening of a gap between the two levels at φ = φc . We will
model the scattering in the normal region as a combination of free propagation and of scattering on a
delta potential placed at x = x0. The matrix which describes the scattering of electrons is the same as Eq.
(1.80), which reads

Se (E ) = e iθ+i k d
Å

r e i k d x̃0 t
t ∗ −r ∗e −i k d x̃0

ã
, (1.147)

with x̃0 = 2x0/d −1 and k = kF +E /(ħh vF ). Adding the effect of finite length results in an additional global
phase factor as well as a phase for the reflection, which both depend on the energy. To obtain the tran-
scendental equation for the energy spectrum, the procedure is the same as for the “zero-length” junction
case. This equation takes the form

λε±arccos

 
1+T cosφ+R cos (2λεx̃0)

2
−arccosε−nπ= 0. (1.148)

In order to characterize the gap which opened due to the finite value of R , we will treat R perturbatively
and place ourselves at φ = 0 where the crossing occurs at perfect transmission. At this phase, the energy
of the lowest energy state is ε = εc −δ with εc = 1−λ2/2 the energy at which the two states crossed at
perfect transmission. At first order in

p
R , for the lowest energy state, Eq. (1.148) becomes

λ(εc −δ) +
p

R |sin(λ(εc −δ)x̃0)| −arccos(εc −δ) = 0. (1.149)
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Figure 1.15: Finite backscattering leads to the opening of a gap at φ = 0 between the two states. Here,
we model the scattering with a single delta potential placed at position x0. We took λ= 0.2, T = 0.99 and
x0 = d .

By Assuming λ,δ≪ 1, we develop this equation at the second order in λ and first order in δ, we obtain the
following expression for δ

δ=
p

Rλ2|x̃0|. (1.150)

As we see, with this model, the gap depends on the position of the delta potential in the normal region
and can even lead to a closing of this gap when the potential is placed at the middle of the normal region
even though there is finite backscattering. Indeed, when the potential is at this particular position, the
phase acquired from the propagation in the normal region is the same for the reflected and transmitted
particles. Thus, at φ = 0, the only phase acquired by particles which form the ABS is the phase acquired
through propagation. This phase being the same for reflected and transmitted particles, the resulting ABS
have the same energy at φ = 0. The resulting energies of the two states can be obtained by finding the
eigenvalues of the matrix Å

ε+ δ
δ ε−

ã
, (1.151)

where ε± correspond to the state with a positive / negative slope with the phase (see Eq. (1.146)). The
eigenvalues of this matrix are

ε>/< =
1

2

î
ε++ε−±

√
(ε+−ε−)2+4δ2

ó
, (1.152)

where ε> correspond to the state with the highest energy and ε< to the state of lowest energy. A comple-
mentary view on the structure of Andreev levels in the vicinity of zero phase is discussed in Ref. [67]

1.3.3.2 Low energy limit and long length junction

The other limit that we can look at is the low energy limit ε≪ 1. Hence, we can develop Eq. (1.141) at the
first order in ε, which leads to

(1+λ)ε+ρ
φ

2
− (2q +1)π= 0. (1.153)
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With this form, it is easy to find the energy spectrum

εq ,ρ =
1

2

(2q +1)π−ρφ
1+λ

. (1.154)

This expression for the energy works for arbitrary length junction. Nevertheless, where for a short
junction this expression works for phases close to π, we can see that, for high values of λ, i.e., for a long
length junction, we can use this expression for phases in the range φ ∈ [0, 2π] for the lowest values of q .
For the remainder of this section, we will only look at positive energies since we know that for each positive
energy solution, there is a negative energy one. In addition, we restrict ourselves to the interval [0, π], since
the spectrum is symmetric with respect to π. As for the short junction, we can see that the different states
cross each other at different phases (see Fig. 1.16). Between two states with the same values for q , we can
see that the energy level with a positive slope and the one with a negative slope cross each other atφc = 0
with an energy εc ≈ (2q + 1)π/(2λ). The other crossings are between states εq and εq+1 with opposite
slope. One can easily see that the crossings occur atφ =π at the energy εc ≈ (q +1)π/λ.
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Figure 1.16: Energy spectrum of ABS in the long length limit. We took λ= 10.

Here again, we can see in Fig. 1.17, that adding finite backscattering leads to the opening of gaps at
those crossings. With the same calculation as for the short length junction, assuming

p
R ,λδ,εc ≪ 1 and

λ≫ 1, we can develop Eq. (1.148) around φc , at the lowest order in
p

R and δ which allows us to find the
value of δ for the different crossings. Thus, for the crossing between states with the same value of q , we
find a gap δ given as

δ0,q ≈
p

R

�

�

�

�

sin

Å
(2q +1)π

x̃0

2

ã�
�

�

�

/λ, (1.155)

whereas for the states q and q +1, we find

δπ,q ≈
p

R |cos
(
(q +1)πx̃0

)
|/λ. (1.156)

The modification of the energies around the phases at which those gaps open is again given by Eq. (1.152).
As for the short length limit, we can see that depending on the position of the delta potential the gaps
between different ABS can be closed even if we have finite backscattering [68, 69].
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Figure 1.17: Gaps opening in the energy spectrum of ABS in the long length limit with finite backscattering.
Here, we took λ= 10, T = 0.99 and x0 = d .

1.3.3.3 Particular case of the double delta potential

As we have seen in the scattering formalism section (see Sec. 1.2), a scattering region with two delta po-
tentials separated by a region of a given length can present peaks of transmission even at high potential.
In addition, we discussed in Sec. 1.2.3.1 why this model is well suited for describing junctions containing
a quantum dot. Therefore, we will here look at the effect of this kind of scattering on the energy spectrum
of ABS. We will first discuss the general properties of the energy spectrum of ABS with this model, then
focus on a resonant level. As for the single delta potential, we have already done the calculation of the
scattering matrix for electrons. This matrix reads

Se (E ) = e i θ̃ (E )
Å

r̃ (E ) t̃ (E )
t̃ (E ) −r̃ ∗(E )

ã
, (1.157)

where t̃ (E ), r̃ (E ) and θ̃ (E ) are given by Eq. eq. (1.84), Eq. (1.85), and Eq. (1.86) respectively. Also, we intro-
duced the quantity

2ϕtot = 2kF d −arctanβR −arctanβL , (1.158)

with βR/L =VR/L/(ħh vF )where VR/L the height of the right/left delta potential respectively and

|K (E )|2 = (1−
√

RL RR )
2+4

√
RR RL cos2

(
ϕtot+λε

)
. (1.159)

We will consider this scattering region as the normal region of the Josephson junction, such that the delta
potentials represent non-perfect interfaces between the superconducting electrode and a normal region
of perfect transmission.

The transcendental equation which allows one to determine the energy spectrum can be obtained
with the same procedure as for the single delta potential model. It leads to

θ̃ (E )− θ̃ (−E )
2

±arccos

 
1+Re[t̃ ∗(−ε)t̃ (ε)e −iφ] +Re[r̃ ∗(−ε)r̃ (ε)]

2
−arccosε−qπ= 0. (1.160)
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Neglecting the effect of length, we can write the energy in the same form as for the single delta potential

ε=±

 
R̃ + T̃ cos2

φ

2
, (1.161)

with R̃ = |r̃ |2 and T̃ = |t̃ |2. When we consider a non zero-length junction, we can as before find limiting
regimes to obtain an approximate expression for the energy spectrum. Far from the resonance condition,
the single potential and double potential yield a very similar energy spectrum. This is because, in this
case, the reflection and transmission coefficients for the double delta potential model are simply rescaled
compared to the single delta potential model. Here, we mainly want to characterize the energy spectrum
when the resonnance condition is satisfied, i.e., when VR =VL and T̃ (E ) = T̃ (−E ) = 1 even when VR/L ̸= 0.

This energy dependence in the resonance condition implies that the energy spectrum of ABS in a
finite length junction can present features of a junction with perfect transmission only for peculiar values
of ε and φ. The main feature of a junction with perfect transmission is the crossing between positive
and negative energy ABS at φ = π. This crossing happens at energy εc = 0 such that the condition for
resonance is given byϕtot = (2n+1)π/2 with n ∈Z. In fact, other gaps can be closed even when we are not
at resonance [70, 71]. This can happen when,

arccos

 
1+Re[t̃ ∗(−ε)t̃ (ε)e −iφ] +Re[r̃ ∗(−ε)r̃ (ε)]

2
= (q1−q2)

π

2
, (1.162)

such that the states with the same or different values q and oppositeρ have the same energy. In both case,
this is possible when |K (E )|= |K (−E )| and whenφ = nπ and does not necessarily implies T̃ (E ) = T̃ (−E ) =
1. If q1 = q2, then the gap atφ = 0 is close whenϕtot = nπ. For q1 = q2+1, then, it is the gap atφ =πwhich
is close when ϕtot = (2n +1)π/2. Different cases are shown in Fig. 1.18
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Figure 1.18: Energy spectrum of ABS in the long length limit λ = 10 with the two delta potential model.
On the panel (a) and (b), we set TR = TL = 0.99. In the panel (a), we set ϕtot = π/2 such that all the gaps
at φ =π are closed due to the resonance conditions being satisfied. In panel (b), we have ϕtot =π, which
results in the closing of the gaps at φ = 0. Finally, in panel (c), we set TL ̸= TR and ϕtot = π. In this last
situation, the resonance condition is not satisfied and therefore, all the gaps are opened.

1.3.4 Resonant level

We have previously discussed the energy spectrum of ABS for a model with two delta potentials. As pointed
out in Sec. 1.2.3.1 this model is well suited to describe a junction with a quantum dot. In the following, we
will discuss Josephson junctions where the normal region is a quantum dot that we will model as a single
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1.3. Josephson effect and ABS

energy level which can be doubly occupied. Therefore, we will here focus on a single resonant level Er . In
addition, we will neglect Coulomb repulsion on the dot. This will allow us to obtain the energy spectrum
of ABS in a superconductor - quantum dot - superconductor (S-QD-S) junction. In Sec. 1.2.3.1, we already
derived the transmission coefficient in Eq. (1.96) for such scenario. The equation that determines the
energy of ABS is still given by Eq. (1.160). Multiplying this equation by a factor 2, rearranging the terms
and using the cos function, we obtainÅ

1−2
E 2

∆2

ã
cos
(
θ̃ (E )− θ̃ (−E )

)
+2

E

∆

 
1−

E 2

∆2
sin
(
θ̃ (E )− θ̃ (−E )

)
−Re[t̃ ∗(−ε)t̃ (ε)e −iφ]−Re[r̃ ∗(−ε)r̃ (ε)] = 0,

(1.163)

Plugin 2ϕtot = (2n + 1)π− Er d /(ħh vF ), R j = 1− 2d Γ j /(ħh vF ) and developing at the second order in Γ j and
the lowest order in d , leads to [72]

0=
(
∆2−E 2

)(
E 2−E 2

r − Γ
2/4
)
+E 2Γ

√
∆2−E 2+∆2ΓR ΓL sin2 φ

2
, (1.164)

with Γ = ΓL + ΓR . If we suppose E small compared to other energies and keep only the terms at second
order in E , we can solve this equation. We obtain

E =±∆eff

 
1−τeff sin2 φ

2
, (1.165)

with

∆eff =

Ã
∆2

1+ 4∆2+∆Γ
4E 2

r +Γ 2

, τeff =
4ΓL ΓR

4E 2
r + Γ 2

, (1.166)

which has the same form as the expression for the energy spectrum of a zero-length junction, but, with
an effective gap ∆eff and an effective transparency τeff. In the limit of a large coupling with the leads
Γ j = Tjħh vF /(2d )≫ 1, the effective gap tends to∆eff→∆. We can also note that the effective transparency
is given by T̃ (Er ). Γ j describing the coupling between the normal region and the superconducting leads, it
makes sense that the effective gap∆eff shrinks as Γ gets smaller since the normal region gets less coupled
to the superconductors. The energy spectrum obtained with Eq. (1.164) is shown in Fig. 1.19 for different
limits. As we can see, the energy spectrum is very well described by Eq. (1.165) in all of these limits.
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Figure 1.19: Energy spectrum for resonant level in different limits obtained with Eq. (1.164) and Eq. (1.165)
represented in full and dashed lines respectively. For all the panels, we have ΓR/ΓL = 1.2 and Er = 0, such
that the effective transmission τeff is the same for all panels. To the left, we are in the limit Γ/∆≪ 1 such
that the effective gap is given as∆eff ≈ Γ/2. In the middle panel, we have Γ =∆, therefore the effective gap
is given as ∆eff ≈∆/3. Finally, on the right panel, we are in the limit Γ/∆≫ 1, which leads to∆eff ≈∆. As
one can see, the maximal value of E /∆ is different in each panel as it is limited by∆eff.

1.4 The S-QD-S junction

In this section, we will study in more detail the S-QD-S junction. As we said earlier, this kind of junction
can be seen as a limit case of the S-N-S Josephson junction, where we model the normal region by two
potentials separating a small normal region from the superconducting electrodes. But, before discussing
the S-QD-S junction, we will discuss the simpler case of a normal metal-quantum dot-normal metal (N-
QD-N) junction.

The particularity of this system is that the number of electrons on a quantum dot can be experi-
mentally controlled by a gate electrode. This gate, which is capacitively coupled to the dot, allows the
manipulation of its electrochemical potential and thus the shifting of energy levels relative to the Fermi
level. By adjusting this gate so that one of the dot’s levels is in resonance, electrons readily tunnel from the
electrodes to the dot. In the previous section, we did not consider Coulomb repulsion. However, due to
the limited size of the dot, Coulomb repulsion can be significant. The consequence of this is that adding
an electron means overcoming the Coulomb repulsion from the other electrons in the dot. Hence, this
additional energy cost makes it less probable for electrons to be added to the dot. Consequently, at low
temperatures, the Coulomb interaction suppresses the conductance except at the so-called charge de-
generacy points. We refer to this phenomenon as Coulomb blockade [73–75]. At these points of charge
degeneracy, the states with n and n ± 1 electrons on the dot have the same energy. This allows electrons
to hop on off the dots without having to overcome a barrier. This leads to the apparition of a periodic
peak pattern in the conduction, which is accessible experimentally. This pattern, known as Coulomb di-
amonds is represented in Fig. 1.20 for a single-layer graphene quantum dot from [76]. This figure shows
the differential conductance as a function of the bias voltage Vbias versus the gate voltage VPG. The effect
of VPG is simply to shift the energy levels of the dot. We can see the characteristic diamond shape.

Since the number of electrons on the dot can be manipulated, it means that the total spin S on the
dot can also be manipulated. It turns out that each level of the quantum dot can be doubly occupied.
Thus, when the number of electrons occupying the last occupied level of the dot is even, the total spin
on the dot is zero while, when there is an odd number of electrons the total is S = 1/2. In the latter case,
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Figure 1.20: Differential conductance of a single-layer graphene quantum dot connected to a source and
a drain obtained by C. Stampfer et al. in [76].

this localized spin can be seen as a magnetic impurity surrounded by a Fermi sea, a role played by the
two normal electrodes. This is precisely the situation in which the so-called Kondo effect can be observed
[77]. In this case, adding a second electron will cost an on-site Coulomb energy. If this energy is superior
to the Fermi energy of the normal electrodesµR/L then, an electron cannot tunnel into the dot. Moreover,
if the on-site energy of the dot ϵd is smaller than the Fermi energy of the leads, the electron on the dot
cannot tunnel off the dot. This is what we depicted earlier when we talked about Coulomb blockade.
However, even if first order tunneling leads to a high energy state, higher order processes in which an
intermediate state is of high energy are allowed provided the system returns back to a low energy state at
the end. We are interested in virtual tunneling events that effectively flip the spin on the dot (see Fig. 1.21).
A succession of these spin-flip processes will effectively screen the local spin on the dot such that the
electrons in the normal leads and on the dot together form a spin-singlet state. This correlated state gives
rise to the Kondo effect. In a quantum dot, this effect leads to an increase of the density of states near the
Fermi energy resulting in an increase of the differential conductance at zero bias when the dot is occupied
by an odd number of electrons. In contrast, the Kondo effect leads to an increase of resistivity in the case
of a magnetic impurity in a bulk metal. In this scenario, the impurity constitutes a scattering center for
the freely moving electrons. Replacing the normal electrodes by superconducting electrodes such that
we now have an S-QD-S junction leads to more complex behavior and different physics. For instance,
an interesting interplay between the physics of the Kondo effect and superconductivity can take place.
In the S-QD-S, the characteristic energy of the conduction bands is set by the superconducting gap ∆.
Thus, the ground state of this kind of junction results from a competition between the Kondo effect and
superconductivity.

In general, quantum dots can host several levels which can be coupled between each other due
to multiple interactions such as Coulomb or spin-spin interactions. When in a junction, each level in
the dot can be coupled to the electrodes, with a coupling that is level dependent. Due to these multiple
interactions and couplings, an exact modeling of a dot coupled to an electrode is impossible. However, if
the device exhibits relatively large level spacing, we can simplify the description of the dot by keeping only
the electronic level closest to the Fermi energy. This approximation may be justified as the occupation of
the level closest to the Fermi energy is most likely to change. A simple Hamiltonian which describes this
kind of quantum dot coupled to two superconducting electrodes is the Anderson model,

H =
∑

a=L , R

Ha +HD +
∑

a=L , R

HT ,a , (1.167)
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Figure 1.21: Schematic representation of virtual processes leading to a spin flip of the spin on the dot from
[78]. In (a1), the state won’t change from first order tunneling processes as it would cost the Coulomb
energy to add an electron on the dot. However, higher order processes allow to transfer the electron of
the dot to the right electrode (panel (a2)) such that the system is in a virtual high energy state. Then, an
electron from the left electrode will tunnel to the quantum dot leaving the system in a low energy state
with a spin-flip of the spin in the quantum dot (panel (a3)). The Kondo effect results in an increase of the
density of state (DOS) around the Fermi energy as depicted in panel (b).

with

Ha =
∑

k ,σ

ξk ,a c †
k ,σ,a ck ,σ,a +
∑

k

Ä
∆a c †

k ,↑,a c †
k ,↓,a +h.c.

ä
, (1.168)

HD =
∑

σ

ϵd d †
σdσ +U n↑n↓, (1.169)

HT ,a =
∑

k ,σ

(ta d †
σck ,σ,a +h.c.). (1.170)

In those equations, dσ is the annihilation operator of an electron of spin σ on the dot, ck ,σ,a the one of
an electron with spin σ, momentum k on the superconducting electrode a = L , R which stands for the
left or right electrode. The operator nσ = d †

σdσ is the number operator. ξk ,a is the energy of an electron
of momentum k , spin σ in the electrode i and ∆i the superconducting gap of this electrode. ϵd is the
on-site energy of the dot and U , the strength of the Coulomb interaction. The couplings between the dot
and the electrodes a are set by ta , with ta real.

In the atomic limit, i.e., when the dot is decoupled from the leads, we can see that depending on the
values of ϵd and U , a certain number of electrons on the dot will be preferential from an energy point of
view. U corresponding to the Coulomb interaction, we know it is a positive value. Thus, we can see that
for ϵd ≥ 0, the state with 0 particles will be preferred as a ground state for the dot. In the case ϵd < 0, if
U > −ϵd , the state with one electron on the dot will be preferred, whereas, if U < −ϵd , it is the state with
two electrons on the dot that will be preferred. To simplify the discussion of the S-QD-S junction, we will
make the following assumptions:

• The leads are described by conventional BCS superconductors with the same gap amplitude ∆a =
∆e iϕa .
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• We assume that we have the same constant normal-state density of state νS in the superconductors.

• We assume an k - independent tunneling amplitude ta , i.e., the electrons always tunnel from the
same position in the leads.

An exact theoretical description of a quantum dot coupled to superconducting leads is only pos-
sible when the Coulomb interaction is fully neglected. In the beginning, a non-superconducting version
of this Hamiltonian was used to describe the Kondo effect [79] we discussed earlier. Experimentally, the
Coulomb interaction U , the gap∆ and the hybridization Γa =πνS t 2

a energies are typically all of the same
order of magnitude, which represents a challenge for analytical techniques [80, 81]. As a result, this model
Hamiltonian has been studied using various analytical approaches, such as perturbative expansions in
the Coulomb interaction [82] or in the tunnel coupling [83]. However, these techniques are unable to de-
scribe entirely the physics of a quantum dot coupled to superconducting electrodes. Non-perturbative
calculations, like numerical simulations based on the numerical renormalization group (NRG) [84–87] or
quantum Monte Carlo methods [88], have also been developed to address this problem. However, these
non-perturbative methods are computationally expensive, as they require resources and time. This limi-
tation can restrict the size of the system or the timescale that can be realistically simulated. Nevertheless,
we can try to give at least a qualitative description of these kinds of junctions. Therefore, we will consider
here what is called the "atomic limit". In this limit, we consider the superconducting gap as being the
dominant characteristic energy of the system, such that∆→∞. It might then be tempting to project the
total Hamiltonian into the low energy sector, i.e., in the subspace describing the quantum dot. Unfortu-
nately, this would simply describe an isolated quantum dot and would not capture the physic induced
by the coupling between the dot and the electrodes. In order to go around this problem, we will use the
Schrieffer-Wolff transformation, which allows us capturing this coupling even in the low energy sector.

1.4.1 Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation is a version of degenerate perturbation theory in which the low energy
Hamiltonian is obtained from the exact one by a unitary transformation decoupling the low and high
energy sectors. This transformation was initially proposed by Schrieffer and Wolff as the name suggests,
with the aim of describing the Kondo effect in the single impurity Anderson model (SIAM) [89, 90]. Our
model is a superconducting version of this model where the dot plays the role of the impurity and the
tunnel couplings between the dot and the superconducting leads play the role of a perturbation coupling
the low and high energy sector, i.e., the dot and the superconducting leads. The Hamiltonian of this model
can be written in a general way as,

HSIAM =H =HL +HH +λV =H0+λV , (1.171)

where the subscripts L and H denote the low and high energy sectors and V is the coupling between
the two sectors. We define the projectors onto the high and low energy subspace as PH =

∑

|ΦH 〉 |ΦH 〉 〈ΦH |
and PL =
∑

|ΦL 〉 |ΦL 〉 〈ΦL |. To capture the coupling between the two sectors when looking at the low energy
excitations of the system, Schrieffer and Wolff proposed to perform a well-chosen unitary transformation
of the Hamiltonian before projecting onto the low energy sector. By defining this transformation as U =
e λS , such that S =−S †, with the requirement of eliminating the linear term inλ, we obtain the Hamiltonian

H̃ =U H U †. (1.172)

By using a series expansion, we can write

H̃ =H +λ[S , H ] +
λ2

2
[S , [S , H ]] + · · ·+

λn

n !
[S , H ]n + · · · . (1.173)
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Eliminating the linear term in λ implies [S , H0] =−V . Using this conditions leads to the following expres-
sion for the transformed Hamiltonian

H̃ =H0+
∞
∑

n=1

nλn+1

(n +1)!
[S , V ]n . (1.174)

Now, the question is how to appropriately choose S . First, we can write all the terms in the form

H0 = PL H PL +PH H PH =
Å

HL 0
0 HH

ã
, (1.175)

V = PL H PH +PH H PL =
Å

0 V†

V 0

ã
, (1.176)

S =
Å

0 −S†

S 0

ã
. (1.177)

Finally, using the condition [H0,S ] =V , we obtain

S =
∑

|ΦL 〉|ΦH 〉
|ΦH 〉

〈ΦH |V |ΦL 〉
〈ΦH |HH |ΦH 〉− 〈ΦL |HL |ΦL 〉

〈ΦL | −h.c.. (1.178)

To construct a low energy effective Hamiltonian, one has to project H̃ onto the low energy sector,
i.e.

Heff = PL H̃ PL . (1.179)

Due to the off-diagonal structure of S , one can see that only the even orders in V of H̃ will contribute to
the modification of the initial low energy Hamiltonian HL .

1.4.2 Effective Hamiltonian and energy spectrum of the S-QD-S junction

Now that we have all the tools we need, we can construct the effective low energy Hamiltonian, which
describes the S-QD-S junction. Using the previous notation, we have

λV =
∑

a=L , R

HT ,a . (1.180)

The high energy sector is constituted by states with quasiparticle excitations in the superconducting leads,
while the low energy sector by states without quasiparticles in the leads. First, we diagonalize the super-
conducting Hamiltonian using the Bogoliubov-de Gennes transformation

ck ,σ,a = e iϕa /2(ukγk ,σ,a −σvkγ
†
−k ,−σ,a ). (1.181)

Thus, we can write the superconducting Hamiltonian and the tunnel Hamiltonian as

Ha =
∑

k ,σ

Ek ,aγ
†
k ,σ,aγk ,σ,a , (1.182)

HT ,a = t
∑

k ,σ

î
γ†

k ,σ,a

Ä
uk e −iϕa /2dσ −σvk e iϕa /2d †

−σ

ä
+h.c.

ó
. (1.183)

Now, we perform the Schrieffer-Wolff transformation at the lowest order in [S , HT ,a ] and project onto
the low energy sector,

Heff =HD +
1

2
PL

[
S ,
∑

a=L , R

HT ,a

]
PL , (1.184)
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which at the lowest order in 1/Ha such that the terms 1/(Ha −HD )≈ 1/Ha gives

Heff =HD −
1

2

∑

a=L , R

∑

|ΦH 〉,|ΦL 〉,|Φ′L〉
|ΦL 〉
Ç
〈ΦL |HT ,a |ΦH 〉 〈ΦH |HT ,a

�

�Φ′L
〉

〈ΦH |H |ΦH 〉− 〈ΦL |H |ΦL 〉
+
〈ΦL |HT ,a |ΦH 〉 〈ΦH |HT ,a

�

�Φ′L
〉

〈ΦH |H |ΦH 〉−
〈
Φ′L
�

�H
�

�Φ′L
〉 å〈Φ′L �� ,

(1.185)

=HD −
∑

a=L , R

∑

|ΦH 〉,|ΦL 〉,|Φ′L〉
|ΦL 〉 〈ΦL |HT ,a |ΦH 〉 〈ΦH |

1

H
|ΦH 〉 〈ΦH |HT ,i

�

�Φ′L
〉〈
Φ′L
�

� , (1.186)

=HD −
∑

a=L , R

t 2
a

[
∑

k ,σ

Ç
u 2

k − v 2
k

Ek ,a

å
d †
σdσ −
∑

k ,σ

σ

Å
uk vk

Ek ,a
e iϕa d †

σd †
−σ +h.c.

ã]
+ cste, (1.187)

where |ΦH 〉 denotes high energy states and |ΦL 〉 and
�

�Φ′L
〉

denote low energy states. The second term in the
first line corresponds to the effective coupling between the dot and the electrodes. It can be understood
as follows. We start from a low energy state, described by HD (no quasiparticles in the superconducting
leads). Due to the coupling between the dot and the leads, this low energy state couples to the high en-
ergy sector, which results in a virtual high energy state corresponding to the 〈ΦH |HT ,a

�

�Φ′L
〉

term. Then,
because this state is high in energy and the system can go back to the low energy sector thanks to the
coupling, this virtual high energy state goes back to a low energy state, which corresponds to the term
〈ΦL |HT ,a |ΦH 〉 term. This process is represented in Fig. 1.22.

Figure 1.22: Schematic representation of the physics described by Eq. (1.186) for a normal metal coupled
to a superconductor. For a quantum dot, the situation is a bit different, since there is no continuum of
states but discrete energy levels.

In Eq. (1.187), the first term is odd in k and so vanishes when summing over k . For the second term,
we can write

∑

k

uk vk

Ek
=
νS

2

ˆ
dξ

∆

ξ2+∆2
=
πνS

2
. (1.188)

Finally, we obtain the following effective Hamiltonian

Heff =
∑

σ

ϵd d †
σdσ +U n↑n↓+πνS

∑

a=L , R

t 2
a

Ä
e iϕa d †

↑d †
↓ +h.c.

ä
,

=
∑

σ

ϵd d †
σdσ +U n↑n↓+

(
Γφd †
↑d †
↓ e i

ϕR +ϕL
2 +h.c.

)
,

(1.189)

with

Γφ = Γ cos
φ

2
+ iδΓ sin

φ

2
, (1.190)

Γ = ΓR + ΓL , δΓ = ΓR − ΓL , (1.191)
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As one can see in Eq. (1.189), this Hamiltonian is very similar to the one describing a superconduc-
tor. This is called the proximity effect. The tunnel coupling between the dot and the superconducting
leads gives rise to BCS-like correlations on the dot, leading to the induction of superconductivity in the
latter. The physical interpretation of this Hamiltonian is quite simple. For finite value of the supercon-
ducting gap∆, the quantum dot is coupled to the Cooper pairs inside the gap as well as the quasiparticle
excitations. In the atomic limit ∆→∞, the dot is no longer coupled to the quasiparticles, but it is still
coupled to the Cooper pairs. Thus, the proximity effect survives with a local pairing which depends on
the hybridization Γφ between the dots and the superconducting leads.

The Hilbert space associated with Eq. (1.189) is spanned by the states {|0〉 , |↑〉 , |↓〉 , |↑↓〉}. The eigen-
states of this Hamiltonian are a superposition of these four states. Two of the eigenstates are simple. Those
two states are |↑〉 and |↓〉 with an energy of ϵd . The last two eigenstates are given by a superposition of |0〉
and |↑↓〉which reads

|+〉= ud e iφΓ |↑↓〉+ vd e −iφΓ |0〉 , (1.192)

|−〉=−vd e iφΓ |↑↓〉+ud e −iφΓ |0〉 , (1.193)

with eigenenergies

ϵ± = ϵd +
U

2
±

 Å
ϵd +

U

2

ã2

+ |Γφ |2 ≡ ξd ±
»
ξ2

d + |Γφ |2, (1.194)

where the coefficients of the eigenstates are given as

ud =
1
p

2

√
1+

ξd

ξ2
d + |Γφ |2

, vd =
1
p

2

√
1−

ξd

ξ2
d + |Γφ |2

, (1.195)

and

φΓ = arctan

Å
δΓ

Γ
tan

φ

2

ã
+
ϕR +ϕL

2
. (1.196)

By introducing the quantities

τ=
4ΓL ΓR
ξ2

d + Γ 2
, ∆eff =

»
ξ2

d + Γ 2, (1.197)

we can rewrite the eigenenergies as,

ϵ± = ξd ±∆eff

 
1−τsin2 φ

2
(1.198)

which is very similar to the equation of the ABS energy spectrum of a zero-length junction. Note that
the effective gap ∆eff and τ introduced in Eq. (1.197) are very similar to the ones obtained in Eq. (1.166)
when taking the limit ∆→∞. The only difference is a factor 2 in the definition of Γ j . Here, we can also
characterize the parity of the ground state. The eigenstates of Eq. (1.189) can be classified into two groups:
states with an odd number of particles occupying the dot, corresponding to the spin-doublet states |↑〉 and
|↓〉, and states with an even number of particles occupying the dot, corresponding to the states |+〉 and |−〉.
The latter states are superpositions of |0〉 and |↑↓〉, corresponding to spin-singlet states. Examining the
spin-singlet states, we observe that ϵ+ is always larger than ϵ−. Consequently, the effective Hamiltonian
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has two potential ground states: either the spin-singlet state |−〉, or, the spin-doublet states {|↑〉 , |↓〉}. The
transition between these two parity sectors occurs for

ϵd = ϵd +
U

2
−

 Å
ϵd +

U

2

ã2

+ |Γφ |2, (1.199)

⇔ ξ2
d + |Γφ |

2 =
U 2

4
. (1.200)

The phase diagram representing the parity of the ground state of the effective Hamiltonian is shown in
Fig. 1.23.

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
ξd/U

0.0

0.2

0.4

0.6

0.8

|Γ
φ
|/U

doublet

singlet

Figure 1.23: Phase diagram of a single quantum dot junction coupled to superconducting electrodes with
Coulomb interaction U , energy level ξd and hybridization Γφ at φ = 0 in the superconducting atomic
limit. The white line corresponds to the transitions between the singlet and doublet sector.

One can notice that taking U = 0 in Eq. (1.199) does not reproduce the energy spectrum we obtained
in Sec. 1.3.4. This is because what we are describing here are the superconducting states of the quantum
dot due to its coupling with the superconducting leads and not ABS. ABS being discrete subgap states,
they result in peaks in the density of states of the dot indicating at which energies an electron may enter
or leave the latter. Therefore, this corresponds to transitions between states with n and n ± 1 electrons.
Hence, we can interpret these peaks in the DOS as transitions between the superconducting states of the
quantum dot we just described. In the superconducting atomic limit, the energy scale of the states of the
dot is necessarily lower than the superconducting gap, so transitions between the superconducting state
of the dot will indeed result in sub-gap peaks in the DOS. As the states |±〉 are superpositions of an empty
and doubly occupied dot, the transition from the doublet states |σ〉 needs to be a coherent addition of
an electron and a hole such that the final singlet state can be understood within the Andreev reflection
picture. Thus, our effective Hamiltonian in Eq. (1.189) describes the energies of ABS as transitions energies
from the doublet states to the singlet states and the resulting energy spectrum of ABS is given as [91, 92]

E =± (ϵ±− ϵd ) =±

(
U

2
±∆eff

 
1−τsin2 φ

2

)
, (1.201)
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Energy
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Figure 1.24: Schematic representation of the effect of the superconducting atomic limit. In the general
case, the quantum dot is coupled to the continuum of states and to the Cooper pairs. However, when the
gap becomes large, the dot is only coupled to the Cooper pairs.

which allows us to recover the energy spectrum we obtained in Eq. (1.165) as we take U = 0.

Unfortunately, the effective Hamiltonian presented in Eq. (1.189) is not sufficient to describe all
aspects of the system’s physics. Firstly, it only accounts for doublet states stabilized by the Coulomb inter-
action or spin-singlet states resulting from the proximity effect. However, when the Coulomb interaction
is significantly stronger compared to other energies, the electron’s spin occupying the dot level can be
screened through the Kondo effect, leading to a spin-singlet ground state. But here, by taking the su-
perconducting atomic limit ∆→∞, we have thrown away the contribution of the continuum of states,
such that the dot is only coupled to the Cooper pairs as depicted in Fig. 1.24. But, as pointed out at the
beginning of this section, the Kondo effect results from a coupling between the spin on the dot and the
conduction states. Hence, it cannot be described by the limit we took.
Despite these limitations, the effective model still provides a qualitative description of the system that
suffices for our purposes in the following sections of this thesis.

1.5 Conclusion

In this chapter, we have introduced the necessary tools essential for comprehending this thesis. We ex-
plored the BCS theory, which describes the properties of superconductivity and how these properties give
rise to Andreev bound states (ABS) in Josephson junctions. Utilizing the scattering matrix formalism, we
derived the energy spectrum of ABS and examined these bound states in detail.

Moving forward to the next chapter, our focus will be on the impact of spin-orbit coupling (SOC)
on the energy spectrum of ABS and how it can lift the spin degeneracy of these states. We will also study
how to access this energy spectrum experimentally, and how we can manipulate the spin of one of these
bound states to use it as a basis for realizing an Andreev spin qubits.
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For the moment, we have seen in the previous chapter that ABS are formed due to Andreev reflec-
tions at the interfaces of the normal region with the superconducting electrodes. However, in the junctions
we studied in this chapter, ABS present a spin degeneracy which prevents us from distinguishing the spin
state of a single state, and, therefore does not allow one to realize a spin qubit thanks to them. But, thank-
fully, it is not the end of the story. In fact, it is possible to lift the spin degeneracy of ABS. A first obvious
solution is to use a Zeeman field. However, a magnetic field can be detrimental to superconductivity, so
this is not the solution we are going for. In Sec. 1.3, we saw that the energy spectrum of ABS depends on
the phase acquired by quasiparticles as they travel through the normal region. In particular, this phase
depends on the Fermi velocities of the quasiparticles. Therefore, another way to lift the spin degeneracy is
to have spin-dependent Fermi velocities. This can be achieved thanks to spin-orbit coupling (SOC). The
effect of SOC on the energy spectrum of ABS and the resulting current in the junction has long been the
subject of numerous studies [93, 94], but, it is only recently that the spin-splitting of ABS has been exper-
imentally observed [43–45, 95]. To realize an ASQ when the junction is subject to quasiparticle poisoning
[33], i.e. when a non-equilibrium quasiparticle is trapped within an ABS, then remains the question of the
spin manipulation. Initially, S. Park and A. Levy Yeyati proposed to use a magnetic field to manipulate the
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spin of the ABS forming the ASQ [42]. Nonetheless, spectroscopy realized in [43] indicates that the spin
degree of freedom of ABS can be relevant even in the absence of a magnetic field. Therefore, the main
objective of our work will be to demonstrate how it is possible to obtain finite matrix elements of the cur-
rent operator between opposite spin states in flux-driven experiments, thanks to spin-flip transmission
probability.

In this chapter, we will start in Sec. 2.1 with a short presentation on the effect of SOC in solids. Then,
in Sec. 2.2 we will show how SOC in quasi-1D systems can lead to the lifting of the spin degeneracy of ABS,
and study the scattering in such system. Next, we will study the ABS energy spectrum in this kind of
system. We will continue in Sec. 2.3 with a discussion on how to probe ABS in experiments. In particular,
we will show that to determine which transitions are accessible in flux-driven experiments, we have to
calculate the matrix elements of the current operator associated with ABS. Finally, in Sec. 2.4, we will
discuss our primary findings, highlighting that the spin-flip transmission probability enables the existence
of finite matrix elements between opposite spin states, as we detailed in our paper [46].

2.1 Some words on spin-orbit coupling (SOC)

Spin-orbit coupling is a relativistic effect which results from the interaction of the spin of a particle with
its motion. This effect manifests itself for example in the shift of an electron’s atomic energy levels. This
shift originates from the magnetic field produced by the nuclei felt by the electron in its rest frame. The
magnetic field felt by the electron is given as

B SOC =
p ×E nuc

m c 2
, (2.1)

where p is the electron momentum, E nuc the electric field produced by the nucleus, m the mass of the
electron and finally c the speed of light. The effect of this magnetic field on the electron can be described
with a Zeeman Hamiltonian

HSOC =
gµB

2
B SOC ·σ =

gµB

2m c 2
(p ×E nuc) ·σ, (2.2)

where σ is a vector containing the Pauli matrices σx ,y ,z , g is the g -factor for electron spin and µB is the
Bohr magneton. Note that the Thomas energy due to the precession of the electron should be taken into
account to properly describe the interaction energy such that g should be replaced by (g −1) [96].

However, in a solid, an electron can be free to move through a crystal instead of being bound to a
nucleus. The crystal being charge neutral, there is in general no net electric field in a solid. However, if
the crystal presents an inversion asymmetry, then an electric field may arise. If this asymmetry is intrinsic
to the material, we talk about bulk inversion asymmetry and it results in a Dresselhaus kind of SOC [97].
This asymmetry can also result from an external potential such as boundary effects, contacts with other
materials or simply applied via electrostatic gates, we talk about Rashba SOC. In this thesis we will focus
on the Rashba interaction. For instance, we can consider an electric field pointed in the z direction. The
resulting Hamiltonian that describes this effect is known as the Rashba Hamiltonian, which reads

HR =
gµB

2m c 2
(p ×E ẑ ) ·σ =

αR

ħh
ẑ · (σ×p ), (2.3)

where ẑ is the unit vector in the z direction and αR gives the coupling strength. In the next section, we
will look at the effect of such SOC on ABS.
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2.1.1 In a 1D system

Our objective is to obtain spin-dependent velocities, and, a 1D system allows to have well separated ABS.
Therefore, we will look at the effect of the Rashba interaction in a 1D system such as a wire along the x
direction (similar to the one represented in Fig. 2.1 neglecting its size in the transverse direction). We still
consider an electric field pointing in the z direction such that the Rashba Hamiltonian for this system
reads

H =
ħh 2k 2

x

2m
−αRσy kx −µ, (2.4)

=
1

2m
(ħhkx −mαRσy /ħh )2−

mα2
R

2ħh 2 −µ.

We can see here, that for a 1D system, the only effect of the Rashba interaction is to shift the position of both
spin energy bands by ±mαR/ħh 2. We denote the momenta at which those bands crossed the Fermi level
kF 1 and kF 2, with kF 2−kF 1 = 2mαR/ħh 2. The splitting between the two dispersion bands, unfortunately, is
not enough to obtain spin-dependent velocities at the Fermi level. We can verify this by computing these
velocities v1 and v2

v1 =
1

ħh
dE

dkx

�

�

�

�

kx=kF 1

=
ħhkF 1

m
−
αR

ħh
, (2.5)

v2 =
1

ħh
dE

dkx

�

�

�

�

kx=kF 2

=
ħhkF 2

m
+
αR

ħh
. (2.6)

By using kF 1−kF 2 = 2mαR/ħh , we can easily see that v1 = v2. Do note that a tight-binding model resulting
in cosine dispersion relations yields the same consequence for the velocities as shown in [50].

2.1.2 Quasi-1D system

The 1D system is not enough to split the spin degeneracy. Thus, we need to look at a higher dimensions
system. Here, we will consider a 3D system that can be considered as a quasi-1D system. An example
of such a system is shown in Fig. 2.1, where the system is elongated along one axis, with dimensions sig-
nificantly smaller in the transverse directions. It has been shown that in this kind of system, Rashba in-
teraction significantly affects the band structure [98]. As we are studying a quasi-1D system, we want to
describe it with an effective 1D Hamiltonian. For this section, we will follow the derivation made in [42].
We will consider that a harmonic confinement potential is applied in the y and z directions that we can
write as

Hc =
1

2
mω2

0(y
2+ z 2). (2.7)

We can define an effective diameter W = 2
√
ħh/(mω0) of the system. Note that instead of a harmonic con-

xy
z

E

Figure 2.1: Schematic representation of a long nanowire aligned in the x direction. The electric field E
pointed in the z direction results in a Rashba interaction.
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finement potential, we could have chosen a hard-wall confinement potential. Quasi-1D systems are often
made from cylindrical nanowires or 2D electron gases heterostructures. Hence, the appropriate choice of
confinement potential depends on the system we want to model. But, as detailed in [42], the following
results are independent of such geometric differences.

The full Hamiltonian reads,

H =
p 2

x +p 2
y +p 2

z

2m
+
αR

ħh
(σx py −σy px ) +

1

2
mω2

0(y
2+ z 2)−µ. (2.8)

As one can see, a part of this Hamiltonian describes a 2D harmonic oscillator. In order to define a 1D effec-
tive Hamiltonian, we need to integrate out the y and z coordinates. The eigenvalues of the Hamiltonian
which describe the 2D harmonic oscillator are

Eny ,nz
= ħhω0(ny +nz +1) =

4ħh 2

mW 2
(ny +nz +1), (2.9)

where ny , nz ∈N. We already know that the term −αRσy px /ħh leads to a kx shift of the bands depending
on the spin values in the y direction. Hence, we can write the eigenstates φny ,nz ,σ(y , z ) (with σ =↑,↓) for
the lowest eigenvalues ħhω0 and 2ħhω0 in the eigenbasis ofσy of the 2D harmonic oscillator Hamiltonian
as

φ0,0,σ(y , z ) =
2
p
πW

e −2(y 2+z 2)/W 2
Ωσ, (2.10)

φ1,0,σ(y , z ) = 2
p

2yφ0,0,σ(y , z ), (2.11)

φ0,1,σ(y , z ) = 2
p

2zφ0,0,σ(y , z ), (2.12)

with Ω↑,↓ = (1,±i )T /
p

2, the eigenstates of σy . By integrating the y and z coordinates, we can see that it
leads to a finite couplingηbetween the stateφ0,0,σ(y , z ) andφ1,0,σ(y , z ) through the spin-orbit interaction

η=
¨

dy dzφ†
1,0,↑(y , z )

αR

ħh
σx pyφ0,0,↓(y , z ), (2.13)

=

p
2αR

W
.

Due to the symmetry of the eigenstates,φ0,1,σ(y , z ) does not couple toφ0,0,σ(y , z ) through the spin-orbit
interaction ¨

dy dzφ†
0,1,σ(y , z )

αR

ħh
σx pyφ0,0,−σ(y , z ) = 0, (2.14)

such that we can project the full Hamiltonian in the basis spanned by the relevant states{
φ0,0,↑,φ0,0,↓,φ1,0,↑,φ1,0,↓

}
. Here, we made the choice to project the full Hamiltonian in the lowest

energy states. This choice is relevant if the chemical potential only crosses these subbands. In particular,
we will see that, to lift the spin degeneracy, it is enough that it crosses only the lowest subbands. The
effective 1D Hamiltonian we obtain is

H1D =
p 2

x

2m
+E++E−Σz −

αR

ħh
px σ̃z +ησ̃yΣy −µ, (2.15)

where E± = (E0,0±E1,0)/2, the Pauli matrices σ̃y ,z act in the basis {Ω↑, Ω↓}, whereas the Pauli matricesΣy ,z

act in the subspace of the transverse degree of freedom {φ0,0,σ,φ1,0,σ}. In the regime E < E1,0, only the
lowest subbands is occupied with an energy E given as

E =
ħh 2k 2

x

2m
+E+−

√
(E−∓αR kx )2+η2−µ. (2.16)
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2.1. Some words on spin-orbit coupling (SOC)

We can see that putting η = 0 allows one to recover the dispersion for a 1D system of Eq. (2.4) shifted
by E0,0. The higher subband has the same dispersion relation but shifted by E1,0. If η = 0, then, the two
subbands cross each other at degeneracy points and lead to the same velocity for each spin as for the pure
1D system. However, ifη ̸= 0, then a gap opens up between the subbands and the spin velocities we obtain
at the Fermi level are (see Fig. 2.2)

v1 =
ħhkF 1

m
+

αR (E−−αR kF 1)

ħh
√
(E−−αR kF 1)2+η2

, (2.17)

v2 =
ħhkF 2

m
−

αR (E−+αR kF 2)

ħh
√
(E−+αR kF 2)2+η2

. (2.18)

The eigenstates of electrons moving to the right and leftψR/L , j=1, 2 with velocities v j are related through

−2 0 2
k (nm)−1 ×10−2

0.00

0.25
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0.75

1.00

E
n
,σ

(m
eV

)
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0 ↓
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Figure 2.2: Dispersion relation of the quasi-1D system with Rashba SOC on the left panel. The coupling
term η between the subbands results in a gap opening between the first and second energy subbands.
On the right panel is energy as a function of the inverse of the velocities for the lowest subbands. On this
panel, red/blue lines are associated with the corresponding subband in the dispersion on the left. As one
can see, the mixing between the subbands results in spin-dependent velocities, with a maximal difference
between the two velocities at the hybridization points. The parameters are αR = 30 meV nm, W = 200 nm
and m = 0.023me with me the mass of the electron.

time reversal symmetry (TRS) and can be written as

ψR ,1 =T ψL ,1 =
e i kF 1 x√
|v1|

Å
−sin

θ1

2
, 0, 0, cos

θ1

2

ãT

, (2.19)

ψR ,2 =−T ψL ,2 =
e i kF 2 x√
|v2|

Å
0, −sin

θ2

2
, cos

θ2

2
, 0

ãT

, (2.20)

with T = i σ̃yΣ0C the time reversal operator, and,

θ1 = arctan
−η

E−−αR kF 1
, (2.21)

θ2 = arctan
η

E−+αR kF 2
. (2.22)
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

Another consequence of the hybridization between the different subbands is that the spin is no longer a
good quantum number anymore and we should talk about pseudo-spin from now on. In the following, we
will refer to these states with a shortened notation for simplicity. We will denote them as R1, L1, R2 and L2.

As we can see, considering a finite size system in the transverse direction to the propagation is
enough to obtain spin-dependent velocities, and, therefore, should lead to the lifting of the spin degener-
acy of ABS as we will see in the next section.

2.2 Energy spectrum of spin-split Andreev bound states

In this section, we will derive the energy spectrum of ABS hosted in Josephson junctions with a quasi-1D
normal region in which the particles have a spin-dependent velocity. We will consider the most general
scattering potential which respects TRS, allowing to have spin-dependent scattering coefficients as well
as scattering processes which couple opposite spin textures. We will show that the SOC leads to a lifting
of the spin degeneracy. In addition, we will study the effect of the spin-flip processes on this energy
spectrum. To do so, we will consider the limit λ =∆L/(ħh v )≪ 1 and ε = E /∆≪ 1 for a one barrier model
as in Chap. 1. Additionally, we will briefly study the energy spectrum with a model involving a scattering
potential at each normal-superconductor interface.

Let’s begin by introducing the effective 1D Hamiltonian of the system. We consider a normal region
of length d coupled to superconductors on either side. The superconductors induce a pair potential with
amplitude

∆(x ) =∆[θ (−x ) +θ (x −d )], (2.23)

whereθ is the Heaviside step function, and the phaseφ(x ) is equal to−φ/2 andφ/2 in the left and right su-
perconductor, respectively. The normal part of the junction consists of a quasi-one dimensional nanowire
with Rashba spin-orbit coupling. As detailed in the previous section, in such systems the lowest subband
of transverse quantization splits into two pseudo-spin bands with different Fermi momenta kF j and dif-
ferent Fermi velocities v j , where j = 1, 2, depending on the propagation direction. An example is shown
in Fig. 2.3. In the following, we will linearize these pseudo-spin bands around the Fermi level µ. The
corresponding Hamiltonian H0 takes the form

H0 =
Å

H1 0
0 H2

ã
, H j = ħh v j

[
(−1) j i∂xσz −kF j

]
, (2.24)

in the basisψ= (R1, L1, L2, R2)
T . Furthermore, σz is the Pauli matrix that acts in the right/left subspace.

Note that R1 and L2 (R2 and L1) belong to the same pseudo-spin band. The Hamiltonian respects time
reversal symmetry (TRS), i.e., ΘH0Θ

−1 =H0 with the time reversal operator

Θ =
Å

iσy C 0
0 iσy C

ã
. (2.25)

Thus, the states R j and L j form a Kramers pair.

We impose that the scattering in this system also respects TRS. Hence, the most general form al-
lowed for a scattering potential which respects this symmetry is

Hb =

Ç
U1(x ) U3(x )
U †

3 (x ) U2(x )

å
, (2.26)
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2.2. Energy spectrum of spin-split Andreev bound states

k

µ

E

kF2 kF1

Figure 2.3: Electron band structure of the nanowire. The dotted lines correspond to the case without cou-
pling between the transverse subbands. The two Kramers pairs are represented by different colors. Note
that the coupling between the transverse subbands leads to a tilt between the respective spin quantization
axes of the two pairs.

where the potentials U1,2 are restrained to be proportional to the identity U1,2 = u1,21with u1,2 real as TRS
forbids backscattering within a Kramers pair. By contrast, U3 takes the form

U3 = u01+ i u ·σ, (2.27)

with u0,x ,y ,z real. The diagonal terms of the block U3 couple counter-propagating states within the
same pseudo-spin band, whereas the off-diagonal terms of the block U3 couple co-propagating states in
opposite pseudo-spin bands. The latter are present if the scattering potential possesses an asymmetry in
the transverse direction. Symmetry arguments that prove this statement are present in the supplemen-
tary material of Ref. [45, 47]. Here, we will present a short argument making it easy to understand why
this coupling is possible. As we saw previously, the SOC couples the transverse subbands of opposite
spin. Then, if a potential allows coupling the transverse subbands with the same spin, it can lead to a
coupling between opposite spins of the lowest subband. Using the symmetry of the eigenstates of the
2D harmonic oscillator, we can restrain the symmetry of the potential such that it allows one to couple
different subbands with the same spin. The eigenstate associated with the lowest energy is even in y ,
while, the eigenstate associated to the second-lowest energy is odd in y . Thus, when projecting to the
subspace spanned by

{
φ0,0,↑,φ0,0,↓,φ1,0,↑,φ1,0,↓

}
, a potential presenting an asymmetry in the y direction

will lead to a finite coupling between the stateφ0,0,σ andφ1,0,σ.

As done in [42], we consider that the spinor part of Eqs. (2.19) and (2.20) does not change signifi-
cantly for subgap energies |E |<∆. Hence, we can consider θ j as being fixed, such that θ j (kx j ) = θ j (kF j ).
This approximation can be justified if the subband separation is very large compared to the supercon-
ducting gap, i.e., 2|E−|= 2ħh 2/(mW 2)≫∆. Finally, we assume that SOC is unchanged under the supercon-
ductor. The 1D Bogoliubov-de Gennes Hamiltonian, which describes the system reads

HBdG = (H0+Hb )τz +∆(x )
[
cosφ(x )τx − sinφ(x )τy

]
, (2.28)

where τx ,y ,z are Pauli matrices in particle-hole (Nambu) space, and we chose the basis Ψ = (ψ, Θψ)T .
The particle-hole symmetry operator in this basis is given by P =−iτyΘ such that PHBdGP−1 =−HBdG.
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

The Hamiltonian (2.28) will allow us to characterize the Andreev bound states that form in the nor-
mal region at subgap energies |E |<∆. To derive the ABS energy spectrum, we want to use the scattering
formalism. So first, we need to determine the scattering matrix which describes the scattering of electrons
on the scattering potential described by Hb

2.2.1 Scattering in the normal region

We will now study the different scattering processes that can take place in the normal region of the
junction. To describe the scattering of electrons on the scattering potential described by Hb , we will
use the scattering formalism. The resulting scattering matrix Se , relates the incoming states Ψe ,in =Ä

R in
1,e , R in

2,e , L in
2,e , L in

1,e

äT
and the outgoing states Ψe ,out =

Ä
L out

2,e , L out
1,e , R out

1,e , R out
2,e

äT
(see Fig. 2.4). With this

choice, TRS imposes

ΘS†
eΘ
−1 = Se , (2.29)

with the same Θ as given in Eq. (2.25). The most general form of Se then reads [99]

Se (E ) = e iξ(E )

Ü
r (E ) 0 −t ∗(E ) −s ∗(E )

0 r (E ) −s t (E )
t (E ) s ∗(E ) r ∗(E ) 0
s (E ) −t ∗(E ) 0 r ∗(E )

ê
. (2.30)

Here, r and t are pseudo-spin conserving reflection and transmission coefficients, while s describes spin-
flip transmission. As pointed out before, TRS forbids spin-flip reflection.

x
x00 d

Rin
1

Rin
2

Lout
1

Lout
2 Rout

1

Rout
2

Lin
1

Lin
2

Figure 2.4: Schematic of the scattering problem. The incoming and outgoing states are taken at both
superconducting/normal interfaces. In this scheme, we consider that a barrier is present at position x0,
such that the incoming and outgoing states freely propagate in the junction area of length d and are being
scattered at this barrier.

To obtain the expression of these coefficients, we will consider a specific model with a single short-
range scattering potential at a position x = 0, i.e., in Eq. (2.26), we choose Uj (x ) = Ujδ(x ). To link the
scattering coefficients to the scattering potential, we will consider a spin up incoming electron from the
left side of the barrier. The resulting wavefunctions on both side of the potential are

ψleft(x ) =

Ç
e i k1 x

p
v1

, 0,
r e −i k2 x

p
v2

, 0

å
, (2.31)

ψright(x ) =

Ç
t e i k1 x

p
v1

, 0, 0,
s e i k2 x

p
v2

å
, (2.32)
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2.2. Energy spectrum of spin-split Andreev bound states

where we have normalized each component by a factor 1/
p

vi such that the current is conserved, ensuring
that we can use these states as a basis for the scattering matrix, as we did when deriving the scattering ma-
trix for a normal-superconductor interface in Sec. 1.3.1. To obtain the scattering coefficients, we integrate
the Schrödinger equation around x = 0 as in Sec. 1.2

ˆ 0+

0−
dx H0ψ(x ) +

ˆ 0+

0−
dx Hbψ(x ) =

ˆ 0+

0−
dx Eψ(x ). (2.33)

By using half-sum regularization, it leads to

0=
ˆ 0+

0−
dx H0ψ(x ) +

1

2
Hb

(
ψright(0

+) +ψleft(0
−)
)

. (2.34)

After integrating the first term, we have to solve the following system

−2iħhpv1(t −1) +u1(1+ t )/
p

v1+ (u0+ i uz )r /
p

v2+ i (ux − i u y )s/
p

v2 = 0, (2.35)

(u0− i uz )s + i (ux + i u y )r = 0, (2.36)

−2iħhpv2r +u2r /
p

v2+ (u0− i uz )(1+ t )/
p

v1 = 0 (2.37)

−2iħhpv2s +u2s/
p

v2− i (ux + i u y )(1+ t )/
p

v1 = 0. (2.38)

By introducing the quantity ũ j = u j −2iħh v j for j = 1, 2, ur = u0+ i uz and us = ux + i u y , we can rewrite
this system as

ũ1t + ũ∗1+
…

v1

v2
(ur r + i u∗s s ) = 0, (2.39)

(u∗r s + i us r ) = 0, (2.40)

ũ2r +
…

v2

v1
u∗r (1+ t ) = 0, (2.41)

ũ2s − i us

…
v2

v1
(1+ t ) = 0. (2.42)

We obtain the following expression for the scattering coefficients that we defined up to a global phase
factor θ as

r =
4u∗rħh
p

v1v2

||ur |2+ |us |2− ũ1ũ2|
, (2.43)

t =−i
|ur |2+ |us |2− ũ∗1ũ2

||ur |2+ |us |2− ũ1ũ2|
, (2.44)

s =−i
4usħh
p

v1v2

||ur |2+ |us |2− ũ1ũ2|
, (2.45)

θ =−
π

2
−arg

[
|ur |2+ |us |2− ũ1ũ2

]
. (2.46)

As an example, we will model the scattering region by a delta potential in the x direction placed at
a position 0< x0 < d . We will assume that this potential does not depend on the z coordinates. However,
we will consider that this potential presents an asymmetry in the y direction. We can write this potential
as [45]

V (x , y ) =δ(x − x0)
[
Vs (y ) +VAS (y )

]
, VS , AS (y ) =

V (y )±V (−y )
2

. (2.47)
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

Mapping this potential onto the subspace spanned by
{
φ0,0,↑,φ0,0,↓,φ1,0,↑,φ1,0,↓

}
leads to¨

dy dzφ†
0,0,σ(y , z )VS (y )φ0,0,σ′ (y , z ) =VS1δσ,σ′ , (2.48)

¨
dy dzφ†

1,0,σ(y , z )VS (y )φ1,0,σ′ (y , z ) =VS2δσ,σ′ , (2.49)
¨

dy dzφ†
0,0,σ(y , z )VAS (y )φ1,0,σ′ (y , z ) =VAδσ,σ′ , (2.50)

whereas all other matrix elements are zero and where we used the symmetry of the wavefunction and of
the potential. We will not look at a peculiar form of V (y ). The only thing that is important, here, is that
it has an asymmetry in the y direction such that we obtain a finite coupling VA between the subbands.
Thanks to this coupling, when we project onto the subspace spanned by {R1, L1, L2, R2}, i.e., the states
corresponding to the lowest subbands, we obtain the following scattering potential

Hb ,V =δ(x − x0)

Ç
U1,V U3,V

U †
3,V U2,V

å
, (2.51)

where the label V is here to avoid confusion with the general derivation we made above. The potentials
U1/2,V are proportional to the identity, U1/2,V = u1/2,V 1, with u1/2,V given as

u1/2,V =VS1 sin2 θ1/2

2
+VS2 cos2 θ1/2

2
, (2.52)

where θ1/2 are given in Eqs. (2.21) and (2.22). And, U3,V takes the form

U3,V = u0,V + i u y ,Vσy (2.53)

with ur /s ,V real and given as

ur,V =−VS1 sin
θ1

2
sin
θ2

2
+VS2 cos

θ1

2
cos

θ2

2
, (2.54)

us ,V =−VA sin
θ1+θ2

2
(2.55)

As one can see in Eq. Eq. (2.45), the spin-flip term is proportional to us ,V which originates from the
asymmetry of the potential in the transverse direction. A particularity of this simple model is that,
for η = 0, we have θ2 = −θ1 = π, and, therefore, it leads to us ,V = 0, such that co-propagating states
with opposite spin will not be coupled through this kind of scattering potential Also, it is to be noted
that, according to Eq. (2.43), it is possible to have zero-backscattering if ur,V = 0, i.e., if the potential
is completely asymmetric in the transverse direction. Later in this manuscript, we will be interested in
the limit 1 − |t |2 ≪ 1. With this simple model, this limit can be obtained in a system with small SOC
(θ1+θ2)≪ 1 and a mostly asymmetric potential.

In the following, we will continue with the general form of Hb which respects TRS, given in Eq. (2.26).
What we also need to obtain is the scattering matrix for holes in the normal region. As in Sec. 1.3.2.1,
holes are described by Hh = −ΘHeΘ

−1, so we can define the incoming and outgoing states for holes as
Ψh ,in(E ) =ΘΨe ,in(−E ) and Ψh ,out(E ) =ΘΨe ,out(−E ). Thus, the scattering matrix for holes is given as

Sh (E ) =ΘSe (−E )Θ−1 = S†
e (−E ). (2.56)

An ABS will form in the junction when Ψe ,in = α2(E )rA(−φ)Sh (E )rA(φ)Se (E )Ψe ,in where rA(φ) takes
the usual form given in Sec. 1.3.2.1. Hence, we define M (E ,φ) = rA(−φ)Sh (E )rA(φ)Se (E ), such that the
discrete energy spectrum of ABS is given by the roots of the secular equation given in Eq. (1.133). Therefore,
one can directly calculate the roots of Eq. (1.133) in this basis, or, we can first diagonalize M (E ,φ) such
that we have an ABS when one of the eigenvalues is equal to (α∗(E ))2. The benefit of the second approach
is that we will have access to the eigenvectors of M (E ,φ) which will be of great use in the remainder of
this manuscript. The diagonalization of M (E ,φ) is done in Appendix B.
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2.2. Energy spectrum of spin-split Andreev bound states

2.2.2 Energy spectrum

Now that we have obtained the eigenvalues of M (E ,φ) in Appendix B, we can easily find the roots of
Eq. (1.133). The solutions can be cast in the form

ξ(E )−ξ(−E )
2

+ρχσ(E ,φ)−arccos
E

∆
−qπ= 0, (2.57)

with q ∈Z,σ, ρ =±1 and

χσ(E ,φ) = arccos

 
1+τ(E )cos

(
φ−σω(E )

)
+Re [r ∗(−E )r (E )]

2
, (2.58)

τ(E ) =
»(
|t (E )|2+ |s (E )|2

)(
|t (−E )|2+ |s (−E )|2

)
, (2.59)

ω(E ) = sign(E )arccos

Å
Re [t ∗(−E )t (E ) + s ∗(−E )s (E )]

τ(E )

ã
. (2.60)

Note that particle-hole symmetry implies that for a state with energy E , it exists a state with energy −E .
This reflects in the energy solutions of Eq. (2.57) which obey Eq ,ρ,σ = −E−(q+1),−ρ,−σ. In the following, we
will thus concentrate on energies E > 0 only. Furthermore, TRS implies T HBdG(φ)T −1 = HBdG(−φ) with
T = τ0Θ. In addtion, the energy spectrum is 2π periodic, such that we have Eq ,ρ,σ(2π−φ) = Eq ,ρ,−σ(φ).
Thus, it will be sufficient to consider phases 0≤φ ≤ π. The maximum number of ABS is set by the maxi-
mum value that q can take. This value is obtained by setting E =∆ in Eq. (2.57), leading to

qmax =
ï

1

π

Å
ξ(∆)−ξ(−∆)

2
+ρχσ(∆,φ)

ãò
, (2.61)

where [x ] stands for the integer part of x . In the absence of backscattering, τ(E ) = 1 and Eq. (2.58) reduces
to

χσ(E ,φ) = (φ−σω(E ))/2.

In this form, one can see explicitly that the spin-splitting originates from ω(E ). One notices further
that ω(E ) = 0, if the scattering coefficients are energy-independent. Note that σ corresponds to the
pseudo-spin of right-moving electrons involved in the ABS at T = 1 and when v1 > v2. In the following,
we will continue to call the states σ = 1 spin up and σ = −1 spin down, even though the pseudo-spin of
the ABS is not well defined at T ̸= 1.

In the following, most of our results will be obtained for a specific model with a single short-range
scattering potential at a position x0 along the nanowire. We will therefore start by discussing the energy
spectrum of ABS for this model. A discussion of a model with a barrier at each interface between the
nanowire and the superconducting leads forming the junction can be found in Appendix C.

In the case of a single scattering potential, the scattering coefficients take the following form:

r (E ) = r e i k̄ d x̃0 , t (E ) = t e
1
2 iδk d , s (E ) = s e

1
2 iδk d x̃0 , (2.62)

and ξ(E ) = k̄ d + θ which we obtained from the results presented in Sec. 1.2.2. Here, x̃0 = 2x0/d − 1 and
k̄ = (k1 + k2)/2, δk = k1 − k2 with k j = kF j + E /(ħh v j ). Equation (2.57) can be solved numerically in all
parameter regimes, whereas analytical solutions are possible only in limiting cases. For this particular
model, Eqs. (2.57), (2.58), (2.59) and (2.60) can be written as

λ̄ε+ρχσ(ε,φ)−arccosε−qπ= 0, (2.63)
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with

χσ(ε,φ) = arccos

 
R cos2(λ̄εx̃0) +τcos2

Å
φ−σω

2

ã
, (2.64)

ω= sign(ε)arccos

ï
T cos(δλε)+S cos(δλεx̃0)

τ

ò
, (2.65)

τ= T +S , (2.66)

where T = |t |2, S = |s |2, R = |r |2 and ε = E /∆. A sample spectrum obtained numerically is shown
in Fig. 2.5. By putting s = 0 in Eq. (2.65) allows one to recover the results present in the literature for
spin-split ABS [42, 43]. As can be seen, the spin degeneracy is lifted except for phases multiple ofπ, which
effectively preserves TRS and, hence, Kramers degeneracy. Otherwise, the states group into doublets of
opposite spin, which we labeled by an index m ∈N∗ that increases with energy. Specifically, the doublets
with odd m contain the states ((m − 1)/2,+,σ), whereas the doublets with even m contain the states
(m/2−1,−,σ). The energies within a doublet will then be denoted Emσ.

0 ϕ1 π/2 ϕ2 π
0

0.3

φ

ε = E/∆

2δ1

2δ2

ε1,↓

ε2,↓

ε3,↓

ε1,↑

ε2,↑

ε3,↑

Figure 2.5: Energy spectrum of ABS for a model with a single scattering center in the junction, shown up
to an energy Ē ≪∆. Here, T = 0.95, S = 0, λ1 = 8, λ2 = 10, and x̃0 = 0.9. Red lines correspond to spin up
states, while blue lines correspond to spin down states. We denote the gap between doublet m and m +1
at phase ϕm as δm .

We will now characterize the energy spectrum more precisely thanks to analytical results obtained
for the same regime we discussed in Sec. 1.3.

2.2.2.1 Zero and short length limit

The simplest form is obtained in the zero-length limit d → 0 where the scattering coefficients do not
depend on energy. In that case, the spin-orbit coupling plays no role since there is no propagation in the
normal region, and, one recovers the well-knwon result of a single spin-degenerate ABS with energy [40]

ε(0)1σ(φ) = ε0 ≡

 
1− (T +S )sin2 φ

2
, (2.67)
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It is interesting to note that, in this limit, only the total transmission T +S matters [40, 100].

Spin-split Andreev levels are obtained once one takes into account a finite length of the junction as
illustrated in Fig. 2.5. To better understand the effect of the different parameters on this splitting, we start
by taking the finite length of the junction into account perturbatively. Namely, we compute the corrections
to ε0 to first order in λ j =∆d /(ħh v j ), which yields

ε1σ = ε0+δεshift+σδεsplit, (2.68)

with

δεshift =−λ̄ε0

»
1−ε2

0, (2.69)

δεsplit =
1

2
|δλ|
»

1−ε2
0

»
T +S x̃ 2

0 cos
φ

2
, (2.70)

where λ̄= (λ1+λ2)/2 and δλ= λ1−λ2. Here, δεshift describes a shift of both eigenvalues, whereas δεsplit

describes the spin splitting. Furthermore, we recover the sinφ-dependence of the splitting predicted
pertubatively in SOC in Refs. [37, 40]. Finally, we note that the splitting depends separately on the spin-
conserving transmission T and the spin-flip transmission S . At R = 0 and S ≪ T up to small corrections
∝ S , the result simplifies to

ε1σ = cos
φ

2
−

1

2

Å
λ̄−

1

2
σ|δλ|

ã
sinφ. (2.71)

In contrast, in the limit, T ≪ S , it yields

ε1σ = cos
φ

2
−

1

2

Å
λ̄−

1

2
σ|x̃0δλ|

ã
sinφ. (2.72)

In this particular case, one can easily see that for x̃0 = 0, there is no lifting of the spin degeneracy. In fact,
this result is more general than the case of perfect transmission (R = 0). For T = 0, we have ω(E ) = 0 for
x̃0 = 0, such that there is no spin-splitting of ABS. This can be easily understood with a simple picture. We
know that the splitting originates from the propagation of particles in the normal region. These particles
will acquire a given phase depending on their spin polarization. However, if there is no possibility of
spin-conserving transmission through the scattering potential, but only spin-flip transmission, the
transmitted particles will acquire the propagation phases of both spin polarizations. In the particular
limit of x̃0 = 0, the scattering potential is placed at the middle of the nanowire such that, the particles of
each spin polarization will acquire the same phase from their propagation in this normal region.

The approximation for Eq. (2.68) is valid for phases not too close to zero. As detailed in Sec. 1.3.3
and as can be observed in Fig. 2.5, additional Andreev levels may appear in a finite length junction. From
Eq. (2.57), setting T = 1 andε= 1, one can see that, for a short length junction, the additional states quickly
join the continuum at φ = 2λ j . Taking into account corrections up to second order in λ j as in Sec. 1.3.3,
one finds a crossing between the doublets m = 1 and m = 2 that takes place atϕ1 ≈ |δλ| [67] (see Fig. 2.6).

2.2.2.2 Low energy limit and long length junction

In arbitrary length junctions, a simple expression for the low-energy spectrum, ε≪ 1, can be obtained at
R = 0 as done in Sec. 1.3.3 and S ≪ T , namely

εmσ =
fm (φ)

2(1+ λ̄) + (−1)mσ|δλ|
, (2.73)
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Figure 2.6: Energy spectrum obtained for a short length junction. The parameters are T = 0.95, S = 0,
R = 0.05, x̃0 = 0.3, λ1 = 2λ2 = 0.1. As pointed out in the main text, we can see that an avoided crossing is
present at ϕ1 ≈ |δλ|, and that the additional states quickly joins the continuum atφ = 2λ j .

while in the limit T ≪ S , we have

εmσ =
fm (φ)

2(1+ λ̄) + (−1)mσ|x̃0δλ|
, (2.74)

with

fm (φ) =


mπ−φ, m odd,

(m −1)π+φ, m even.

(2.75)

In the short junction limit, λ̄,δλ≪ 1, Eqs. (2.73) and (2.74) coincide with Eqs. (2.71) and (2.72) respectively
for φ near π when the condition ε≪ 1 is verified. In the following, we will continue with the case S ≪ T .
Time-reversal invariance at phases φ = 0, π imposes level crossings at these phases. Namely, ε2m ,σ =
ε2m−1,−σ at φ = 0, whereas ε2m ,σ = ε2m+1,−σ at φ = π. In the long junction limit λ̄ ≫ 1, and assuming
δλ≪ λ̄, Eq. (2.73) can be written at the first order in |δλ|/λ̄ as

εmσ ≈
fm (φ)

2λ̄

Å
1− (−1)mσ

|δλ|
2λ̄

ã
. (2.76)

The phases at which different levels cross each other can be found by looking at εmσ = εm ′σ′ . The
crossings between same spin-states of doublets m and m +1 occur at phases

ϕm =


πm |δλ|

2λ̄
m odd,

π−πm |δλ|
2λ̄

, m even.

(2.77)

Note that for m odd, the crossing is between spin up states whereas for m even, the crossing is between
spin down states. These crossings are not protected by TRS and are lifted at finite R as we will see in the
following. The resulting spectrum resembles the one shown in Fig. 2.5 at phases ϕm < φ < ϕm+1 for m
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odd and ϕm−1 < φ < ϕm for m even. The energy gaps δm which open for finite R , in units of ∆, at the
anti-crossings can be obtained by calculating the energy perturbatively in R at the phasesφc =ϕm using
with the help of Eq. (2.57) (the procedure is the same as the one detailed in Sec. 1.3.3). We find

δm =

p
R

λ̄


�

�

�sin
Ä
πm x̃0

2

ä�
�

� m odd,

�

�

�cos
Ä
πm x̃0

2

ä�
�

� , m even.

(2.78)

Note that these gaps close at particular values of x̃0. This happens when the reflected and transmitted
part of the wavefunction acquire the same phase through propagation in the normal region. The energies
of the two states involved in the anti-crossing are then given as

ε>/<m =
1

2

(
ε+m +ε

−
m ±
»
(ε+m −ε−m )2+4δ2

m

)
, (2.79)

where ε±m corresponds to the energy level with positive/negative slope as a function ofφ. For m odd,

ε±m =
πm ±φ

2λ̄

Å
1∓
|δλ|
2λ̄

ã
, (2.80)

whereas for m even,

ε±m =
π(m ∓1)±φ

2λ̄

Å
1±
|δλ|
2λ̄

ã
. (2.81)

Note that ε−m −ε
+
m = (ϕm −φ)/λ̄ for all m .

The doublet m = 1 requires special attention. At T = 1, it crosses with the negative energy states at
phase φ = π, leading to a four-fold degeneracy at the Fermi level. Finite back-scattering opens up a gap
(while preserving the two-fold degeneracy imposed by TRS). Using the same method as outlined above,
we find that the positive energy states are shifted to δπ =

p
R/λ̄.

Until now, we have mainly studied the energy spectrum of ABS. We have shown how SOC can lift the
spin degeneracy of ABS. Also, we saw that spin-flip transmission allows one to couple opposite spin sec-
tors resulting in a modification of the energy splitting between opposite spin states when considering one
scattering potential in the junction. In the next sections, we will assess how ABS can be probed. We will
give a particular interest to circuit quantum electrodynamics (cQED) experiments, which are the types of
experiments now performed for the detection and manipulation of ABS. We will show that, the current
operator associated with ABS is a quantity of interest to determine which transitions between ABS are ac-
cessible in these experiments. Thus, we will turn to the evaluation of the matrix elements of this operator
for a model with one scattering potential.

2.3 How to probe and manipulate ABS

The majority of this manuscript has, for the moment, been devoted to the study of spin-split ABS in order
to use them as a basis for the realization of ASQs. However, although theory tells us that it is possible to
lift the spin degeneracy of ABS, it needs to be verified experimentally. This section will thus be dedicated
to the detection of ABS. We begin with a brief discussion of tunnel spectroscopy experiments which
provided the first direct evidence of the existence of ABS. Next, we will discuss the basic idea behind
circuit quantum electrodynamics (cQED), which corresponds to the types of experiments now performed
for the detection and manipulation of ABS. In particular, we’ll show that the current operator associated
with ABS is the quantity that allows us to determine the accessible transitions between ABS in these
experiments.
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

2.3.1 Tunnel spectroscopy

Initially, ABS in Josephson junctions were detected in tunnel spectroscopy experiments. The principle
of these experiments was to use a tunnel probe to measure the differential conductance of a junction.
Due to the presence of ABS in the normal region of the junction which are discrete subgap states, the
density of states (DOS) of this region will present discrete peaks for energies below the superconducting
gap. The differential conductance being related to the DOS, the latter shows both a spatial and a phase
dependence [101]. Hence, by measuring the differential conductance, it is possible to obtain the DOS and
directly compare the energy spectrum predicted by theory with the experimental result. To do so, one
can use a tunnel probe placed near the normal region of the junction. By applying a bias voltage V to the
tunnel probe, a current will flow in the latter when there is an accessible state at energy e V . This current
can be expressed as

ITP∝
ˆ

dϵ (nTP (ϵ− e V )−nWL(ϵ))ρTP (ϵ− e V )ρWL(ϵ), (2.82)

where the labels TP and WLstand for tunnel probe and weak link, ni are the Fermi-Dirac distributions and
ρi the DOS, V is the bias voltage applied to the tunnel probe. The corresponding differential conductance
is obtained by taking the derivative of ITP with respect to V , which yields

∂ ITP

∂ V
∝
ˆ

dϵ
[
n ′TP (ϵ− e V )ρTP (ϵ− e V ) + (nWL(ϵ)−nTP (ϵ− e V ))ρ′TP (ϵ− e V )

]
ρWL(ϵ), (2.83)

where the prime denotes the derivative with respect to V . In the simplest case, we can assume that
the DOS of the tunnel probe is independent of the bias voltage V . In this case, we can easily see that
the differential conductance is directly proportional to DOS. This is a reasonable approximation when
considering a normal probe, but for instance, it will fail for a superconducting probe as its DOS is gapped.
Therefore, in this case, additional work is required to extract the DOS from the differential conductance
as done in [29]where a superconducting tunnel probed was use.

This type of experiment has allowed to demonstrate the presence of ABS in S-N-S and S-QD-S junc-
tions [29, 101–104] as shown in Fig. 2.7.

Figure 2.7: Differential conductance and corresponding density of states (DOS) obtained in [29] for a car-
bon nanotube Josephson junction. The tunnel probe used was superconducting, which explains the dif-
ference between the two figures. In this case, the DOS can be obtained by an appropriate deconvolution
of the measured differential conductance. The sharp resonances are the signature of the ABS in the nan-
otube. The periodicity of the pattern shows the sensitivity of ABS to the superconductive phase difference
denoted here as ϕ.
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2.3.2 Using cQED to probe ABS

More recently, the use of cQED to detect ABS has become more widespread. In particular, this exper-
imental technique has been of great use for the experimental characterization of spin-split ABS and
for the realization of an ASQ [43–45, 47, 48, 50, 95]. Originally developed for readout and control of
superconducting qubits, cQED involves coupling a microwave resonator to a quantum circuit of interest
[32, 105]. These resonators are typically made of superconducting materials, ensuring minimal energy
dissipation. Basically, they can be described as LC resonators. In this section, we will present the basic
idea behind cQED. We will start by discussing a system with a resonator coupled to a quantum circuit.
We will show that in such systems, the resonance frequency of the resonator depends on the quantum
state occupied by the quantum circuit. We will see that, in phase-driven experiments, this shift is linked
to the current operator. Finally, we will show that the current operator associated with ABS allows one to
determine which transitions between ABS are accessible within flux-driven experiments.

The basic principle of cQED is as follows. At first glance, the direct determination of the quantum
state of our target system may seem complex. However, determining the resonance frequency of a res-
onator is easier. Thus, if coupling our system of interest to a resonator allows us to modify the resonant
frequency of the latter as a function of the quantum state of the system, we can determine the quantum
state that our system occupies. Let’s start by writing down the Hamiltonian of this kind of system. First,
we can describe the resonator with the following Hamiltonian

Ĥr = ħhωr

Å
a †a +

1

2

ã
, (2.84)

where ωr corresponds to the resonant frequency of the resonator and a (a †) to the photon annihilation
(creation) operator. From now on, we will follow the derivation made in [106]. We will consider a gen-
eral quantum circuit described by the Hamiltonian Ĥqc(x ), which depends on a dimensionless control
parameter x , contingent on the coupling scheme with the resonator. The latter can either be inductive
or capacitive, as shown in Fig. 2.8. Thus, x can correspond to a flux through a loop or an excess charge
on a capacitor. We will denote |n〉 the eigenstates of Ĥr , with n being the number of photons in the res-
onator, and, |Φi (x )〉 the eigenstates of Ĥqc(x ) such that Ĥqc(x ) |Φi (x )〉= Ei |Φi (x )〉. When coupling the res-
onator to the quantum circuit, a flux or charge fluctuation in the resonator leads to x → x0 + x̂r , with
x0 the phase through the loop containing the quantum circuit or the number of charge in the latter and,
x̂r = λ(s a + s ∗a †) where λ is a coupling constant that depends on the coupling scheme and s = 1 (−i )
for flux (charge) fluctuations. The coupling constant λ is given by the product of the geometric coupling
ratio and of the zero point fluctuations of the phase or the charge (see Ref. [50, 106–108]). For a capacitive
coupling, one obtains

λ=
CM

CR

 
RQ

4πZR
, (2.85)

whereas for an inductive coupling, one obtains

λ=
M
LR

 
πZR

RQ
, (2.86)

where ZR =
√

LR/CR , RQ = h/4e 2 is the resistance quantum, CR and LR are the capacitance and the
inductance of the resonator respectively, M is the mutual inductance of the resonator and the quantum
circuit, and, CM the coupling capacitance. A derivation of these couplings is given in [50], see section 4.2.1
therein.
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Figure 2.8: Resonator-quantum circuit coupling schemes. The resonator is a LC circuit represented in
cyan. The quantum circuit is described by Ĥ (q ,φ) and is represented by the black box containing discrete
energy levels (thick black lines). In red is represented the circuit which allows one to link the resonator to
the quantum circuit. In panel (a) is represented an inductive coupling through a mutual inductance M,
while, in panel (b) is represented a capacitive coupling through a capacitance CM .

Designing the system such that λ≪ 1 (which can be done by keeping the geometric coupling ratio
small for example), we can obtain the full Hamiltonian of the system by expanding Ĥqc(x0 + x̂r ) up to
second order in x̂r which yields

Ĥ = ħhωr

Å
a †a +

1

2

ã
+ Ĥqc(x0) +λĤ ′qc(x0)(s a + s ∗a †) +λ2Ĥ ′′qc(x0)

Å
a †a +

1

2

ã
, (2.87)

where the prime stands for the derivative with respect to x . The terms λ2a (†)2 lead to corrections of or-
der λ4 and have therefore been neglected. When the term proportional to Ĥ ′′qc(x0) can be neglected, this

Hamiltonian is known as the Jaynes-Cummings Hamiltonian when Ĥqc describes a two levels system [32,
109, 110]. To determine the correction to the energies of this Hamiltonian, we introduce the basis set
{|Φi n〉= |Φi 〉⊗ |n〉}, where we have not written the x dependencies for simplicity. We can see that the first
order correction yields zero since it involves states with different numbers of photons. Therefore, the low-
est order correction to the energies is given by the second order correction which is why developing Ĥ
up to second order in λ earlier is necessary. Assuming that the |Φi 〉 are non-degenerate, the second order
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correction can be written as δEi ,n =δE (1)i ,n +δE (2)i ,n with

δE (1)i ,n =λ
2
∑

j ̸=i ,n ′ ̸=n

�

�

�

〈
Φ j n ′
�

�Ĥ ′qc(s a + s ∗a †) |Φi n〉
�

�

�

2

Ei −E j +ħhωr (n −n ′)

=λ2
∑

j ̸=i

�

�

�

〈
Φ j

�

�Ĥ ′qc |Φi 〉
�

�

�

2
Ç

n +1

Ei −E j −ħhωr
+

n

Ei −E j +ħhωr

å
,

(2.88)

δE (2)i ,n =λ
2 〈Φi n |Ĥ ′′qc(a

†a +1/2) |Φi n〉=λ2 〈Φi |Ĥ ′′qc |Φi 〉 (n +1/2). (2.89)

Thus, we need to compute 〈Φi |Ĥ ′′qc |Φi 〉. To do so, we can use the Hellmann-Feynman theorem, which

establishes that E ′i = 〈Φi |Ĥ ′qc |Φi 〉. Taking the derivative of this last expression, we obtain,

E ′′i = 〈Φi |Ĥ ′′qc |Φi 〉+
〈
Φ′i
�

�Ĥ ′qc |Φi 〉+ 〈Φi |Ĥ ′qc

�

�Φ′i
〉

, (2.90)

which involves
�

�Φ′i
〉

terms. Using Ĥqc |Φi 〉= Ei |Φi 〉, we can write
�

�Φ′i
〉
=−(Ei − Ĥqc)−1(Ei − Ĥqc)′ |Φi 〉. Thus,

we write

〈Φi |Ĥ ′qc

�

�Φ′i
〉
=−〈Φi |Ĥ ′qc(Ei − Ĥqc)

−1(Ei − Ĥqc)
′ |Φi 〉 . (2.91)

Now, using the identity relation
∑

j

�

�Φ j

〉〈
Φ j

�

�= 1, we have

〈Φi |Ĥ ′qc

�

�Φ′i
〉
=−〈Φi |Ĥ ′qc(Ei − Ĥqc)

−1

(
∑

j

�

�Φ j

〉〈
Φ j

�

�

)
(Ei − Ĥqc)

′ |Φi 〉 (2.92)

=
∑

j ̸=i

�

�

�〈Φi |Ĥ ′qc

�

�Φ j

〉�
�

�

2

E j −Ei
.

The term
〈
Φ′i
�

�Ĥ ′qc |Φi 〉 can be computed the same way. At the end, we find a correction to the energy
given by

δEi ,n =λ
2

[
E ′′i (n +1/2) +
∑

j ̸=i

�

�

�〈Φi |Ĥ ′qc

�

�Φ j

〉�
�

�

2
Ç

2n +1

E j −Ei
+

n +1

Ei −E j −ħhωr
+

n

Ei −E j +ħhωr

å]
(2.93)

By factorizing the right part of this equation by (n +1/2), we can rewrite this equation as

δEi ,n = ħhδω(i )r (n +1/2)−λ2
∑

j ̸=i

�

�

�〈Φi |Ĥ ′qc

�

�Φ j

〉�
�

�

2
Ç

1

E j −Ei +ħhωr
−

1

E j −Ei −ħhωr

å
, (2.94)

where δω(i )r corresponds to the frequency shift of the resonator when the state |Φi 〉 is occupied. Using
Eq. (2.93) and Eq. (2.94), we obtain the following expression for the frequency shift [45, 106]

ħhδω(i )r

λ2
= E ′′i +
∑

j ̸=i

�

�

�〈Φi |Ĥ ′qc

�

�Φ j

〉�
�

�

2
Ç

2

E j −Ei
−

1

E j −Ei +ħhωr
−

1

E j −Ei −ħhωr

å
. (2.95)

This equation holds far from resonance, i.e., when E j − Ei differs from ħhωr by much more than the

coupling energy, i.e., we need to have λ2
�

�

�〈Φi |Ĥ ′qc

�

�Φ j

〉�
�

� ≪
�

�E j −Ei ∓ħhωr

�

� otherwise, the perturbation

theory cannot be legitimely used. We now introduce the notation ωi j = (E j − Ei )/ħh to shorten the
equations.
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In the limit δω(i )r ≪ωi j , known as the adiabatic regime, one can easily see that the frequency shift

is given by ħhδω(i )r = λ2E ′′i . This result can be interpreted as a renormalization of the capacitance / in-
ductance of the resonator by the one of the quantum circuit. When the terms coming from H ′′qc can be
neglected, i.e., when ωr ∼ ωi j , one recovers the dispersive shift that can be derived from the Jaynes-
Cummings Hamiltonian yielding

δω(i )r =−
λ2

ħh 2

∑

j ̸=i

�

�

�〈Φi |Ĥ ′qc

�

�Φ j

〉�
�

�

2
Ç

1

ωi j +ωr
+

1

ωi j −ωr

å
, (2.96)

In our case, we are interested in flux driven experiments, where the coupling with the resonator
induces phase fluctuations across the weak link. The control parameter corresponding to the phase, we
need to calculate the derivative of the weak link Hamiltonian Ĥwl with respect to the phase, which can be
written as

Ĥ ′wl =
∂ Ĥwl

∂ φ
=
Φ0

2π
Ĵ , (2.97)

where Ĥwl is the Hamiltonian that describes the weak link which corresponds to our quantum circuit, Ĵ
is the current operator and Φ0 = h/2e is the superconducting flux quantum. Until now, we have looked at
the frequency shift of the resonator for a given occupied state. However, the quantum state of the weak
link is a many-body state, i.e., a state where multiple ABS may be occupied. For example, we can start with
the ground state that we will denote

�

�g
〉

. This state is obtained by filling all ABS with negative energy. The
resulting frequency shift will therefore be the sum of the frequency shifts for each occupied state, which
can be written as

δω
|g 〉
r =

1

2

∑

i<0,σ

δω(i ,σ)
r , (2.98)

where we denote the many-body state with bracket notation whereas we denote a single state i with spin
σ with parentheses. The factor 1/2 results from the particle-hole redundancy of the BdG-Hamiltonian.
Once the frequency shift of the ground state is known, one can determine the shift associated to any state
|Ψ〉 by creating the appropriate electron-like γ†

i ,σ

�

�g
〉

(with i > 0) or hole-like γi ,σ

�

�g
〉

(with i < 0) excitation

from the ground state, where γ(†)i ,σ stand for the Bogoliubov quasiparticle annihilation (creation). Hence,
the resulting shift of the resonator’s frequency for a state |Ψ〉 is given by (see [45, 50])

δω|Ψ〉r =δω
|g 〉
r +
∑

i>0,σ

î
ni ,σδω

(i ,σ)
r − (1−n−i ,σ)δω

(−i ,σ)
r

ó
, (2.99)

where ni ,σ = 0, 1 is the occupancy of the state i ,σ.

So far, we have looked at the frequency shift for a system with no drive applied. But, to manipulate
the qubit, one further need to drive transitions between ABS. When a drive is applied, the story is a bit
different. What can be done, is to first send a microwave signal at appropriate frequency in order to realize
a superposition of two states. During the application of this signal, the probability of measuring one of
the two states oscillates. These oscillations are the so-called Rabi oscillations. The excitation spectrum
can be obtained by sending two microwave pulses. One is here to drive the transitions between states.
The second microwave pulse at frequencyωr allows one to measure the state of the system, the resulting
frequency shift of the transition between the two states can be written as [45, 50]

δω
|i 〉→| j〉
r =δp| j〉

(
δω
| j〉
r −δω|i 〉r

)
, (2.100)
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Figure 2.9: Possible transitions between ABS for different Josephson junctions. Left panel corresponds
to the spectrum of an atomic contact Josephson junction. Middle panel corresponds to the scenario of a
finite length Josephson junction. Right panel is for a finite length junction with spin-orbit coupling. In the
right panel, blue curves correspond to spin up states whereas red curves correspond to spin down states.
In the left and middle panels, since ABS are spin degenerate the color is the average between spin up and
spin down colors. Dark green arrow show pair transitions between the ground state and one excited state.
Blue arrows show spin conserving single particle transitions, whereas pink arrows show spin-flip single
particle transitions. Occupied states are represented by black dots whereas unoccupied states by empty
dots.

where δp| j〉 stands for the population change in the state
�

� j
〉

due to the microwave drive. This change
in population is linked to the driving of the system. The driving can be modeled by adding the following
term to the Hamiltonian [45]

Â(t ) =
1

2

∑

iσ< jσ′

Ä
Aiσ, jσ′γ

†
iσγ jσ′e

iωd t +h.c.
ä

, (2.101)

whereωd is the drive frequency [45]. In the case of flux-driving, it turns out that Aiσ, jσ′∝〈Φiσ|Ĥ ′wl

�

�Φ jσ′
〉

.
The possible transitions between ABS are shown on Fig. 2.9. As presented in the introduction of this
manuscript, there are two kinds of possible transitions between ABS. The first kind of possible transitions
are called pair transitions. They involve the breaking of a Cooper pair as it results of an quasiparticle
occupying one of the negative energy level being promoted to a positive energy level, leaving its original
level empty. The other kind of possible transitions are called single particle transition. They involve the
transition of a quasiparticle occupying a positive energy level to another one. These are the ones we are
most interested in for the realization of an ASQ.

Thanks to the knowledge acquired in this section, we can see that calculating the current operator
is essential both for assessing the feasibility of transitions between different states in a flux-driven exper-
iment and for observing the spin-split energy spectrum of ABS. Therefore, in the next section, we will
evaluate the different matrix elements of the current operator.
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

2.4 Current operator

We now turn to the evaluation of the matrix elements of the current operator for a one scattering potential
model. Namely, we are interested in transitions between Andreev levels when a microwave drive is applied
to the junction. In particular, we will restrain ourselves to the odd parity sector, since we are interested
in the spin-flip transition between excited levels. As we saw previously, the microwave drive leads to a
variation of the phase difference φ across the junction. The coupling of the junction to the microwave
drive is in this case described by the current operator

Ĵ =
2π

Φ0

∂HBdG

∂ φ
, (2.102)

with Φ0 = h/2e is the superconducting flux quantum and, the off-diagonal elements of Ĵ in the basis of
Andreev levels determine which transitions can be induced.

Using a gauge transformation HBdG→ H̃BdG = e −iφg (x )τz /2HBdGe iφg (x )τz /2, Eq. (2.28) can be brought
into the form

H̃BdG =Heτz +
ħh
2
φ
∂ g (x )
∂ x

Å
v1σz 0

0 −v2σz

ã
τ0+∆(x )τx , (2.103)

where g (x )describes the phase profile along the x direction with g (d ) =−g (0) = 1/2. Therefore, the current
operator may be written as

Ĵ =
ħhπ
Φ0

∂ g (x )
∂ x

Å
v1σz 0

0 −v2σz

ã
. (2.104)

The elements of the current operator are given by

Jnn ′ =
ˆ

dxΨ†
n (x ) ĴΨ

†
n ′ (x ), (2.105)

whereΨn (x ) is the wavefunction of the Andreev level n associated with the spectrum obtained in Sec. 2.2.2
and n = (m ,σ) is a composite index. For the diagonal elements, the expression simplifies to Jnn =

e
ħh ∂φEn

as expected from the Feynman-Hellmann theorem. Time-reversal symmetry relates states at phases
φ and 2π−φ. In particular, T Ψmσ(2π−φ) = Ψm−σ(φ) with T = τ0Θ, where Θ is defined in Eq. (2.25).
Using T Ĵ T −1 = − Ĵ , it follows that Jmσ→m ′σ′ (2π−φ) = −Jm−σ→m ′−σ′ (φ), i.e., we can restrict ourselves to
computing the current operator matrix elements in the phase intervalφ ∈ [0,π].

To evaluate the off-diagonal of the current operator, we must first determine the wavefunction of
Andreev levels. The eigenvectors of M (E ,φ) are given by

W =
Å

WA 0
0 WD

ãàcos γB 1
2 e −i

θB 1
2 0 −sin γB 1

2 e −i
θB 1

2 0

0 cos γB 2
2 e −i

θB 2
2 0 −sin γB 2

2 e −i
θB 2

2

sin γB 1
2 e i

θB 1
2 0 cos γB 1

2 e i
θB 1

2

0 sin γB 2
2 e i

θB 2
2 0 cos γB 2

2 e i
θB 2

2

í
, (2.106)

where

θB i =
π

2
+ϕB i , γB i = arctan

|B̃i |
− Im

[
Ãi

] , (2.107)
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2.4. Current operator

with B̃i = |B̃i |e iϕB i . Here the different columns correspond to different values of (ρ,σ), namely the first
column corresponds to the state (−,+), the second column to (−,−), the third column to (+,+), and the

fourth column to (+,−). with WA/D = e −i
θA/D

2 σz e −i
γA/D

2 σy . For the particular case of a single potential
model, the coefficient in Eq. (2.106) are given by

θA/D =δkF (1± x̃0)d +ϕs ±ϕt , (2.108)

θB i = k̄F x̃0d +
φ

2
+ϕr +

π

2

(
1+ (−1)i

)
, (2.109)

γA/D = arctan
2
p

ST sin (δλε(1∓ x̃0)/2)
T sin(2δλε)±S sin(2δλεx̃0)

, (2.110)

γB i = arctan
−2(−1)i

√
R (T +S )sin

(
φ+(−1)iω(ε)

2 + λ̄εx̃0

)
−R sin

(
2λ̄εx̃0

)
+ (T +S )sin

(
φ+ (−1)iω(ε)

) , (2.111)

whereω(ε) is given in Eq. (2.65).

Some limiting cases will be useful. At R = S = 0, the matrix W reduces to

W0 =

à
e −i

θA+θB 1
2 0 0 0

0 −i e i
θA−θB 1

2 0 0

0 0 e −i
θD −θB 1

2 0

0 0 0 i e i
θD +θB 1

2 ,

í
. (2.112)

Introducing R ,S ≪ 1 perturbatively yields W ≈W0w1 with

w1 =

Ü
1 i

p
S ds−

p
R dr− 0

i
p

Sds− 1 0
p

R dr+
−
p

R dr− 0 1 −i
p

S ds+
0 −

p
R dr+ −i

p
S ds+ 1

ê
, (2.113)

with ds± =
1
2 tanγD /A and dr± = ∓ 1

2 tanγB 2/1. Using ω ≈ δλε where we remind that δλ = λ1 − λ2, and
γA/D ,γB 1/2≪ 1, the corresponding expressions simplify to

ds± =
sin
î
δλε

2 (1± x̃0)
ó

sin(δλε)
, (2.114)

dr± =
sin
î
φ
2 + (λ̄x̃0± δλ2 )ε

ó
sin
(
φ±δλε

)
−R sin

(
2λ̄εx̃0

) . (2.115)

The eigenvector of M (E ) give the amplitudes of incoming electron states at the interfaces with the
superconducting leads. To obtain the full wavefunction, we can construct the outgoing electron and in-
coming/outgoing hole amplitudes with the help of the scattering matrices:

ψe
out = Se (E )ψ

e
in, (2.116)

ψh
in =α(E )rA(φ)Se (E )ψ

e
in, (2.117)

ψh
out =α

∗(E )rA(φ)ψ
e
in. (2.118)

Then, using continuity, the wavefunctions in the nanowire and the superconductors can be computed.
In the basis in which the BdG-Hamiltonian of Eq. (2.28) is given, the wavefunctions for the case of a single
scattering potential at position x0 take the following form in different regions:
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

• in the left superconductor

Ψn (x )√
Nn

=



A(n )1e κ1n x /
p

v1

(Se (n )A(n ))2e κ1n x /
p

v1

(Se (n )A(n ))1e κ2n x /
p

v2

A(n )2e κ2n x /
p

v2

α∗nA(n )1e iφ/2+κ1n x /
p

v1

αn (Se (n )A(n ))2e iφ/2+κ1n x /
p

v1

αn (Se (n )A(n ))1e iφ/2+κ2n x /
p

v2

α∗nA(n )2e iφ/2+κ2n x /
p

v2


,

(2.119)

• in the right superconductor

Ψn (x )√
Nn

=



(Se (n )A(n ))3e −κ1n (x−d )/
p

v1

A(n )4e −κ1n (x−d )/
p

v1

A(n )3e −κ2n (x−d )/
p

v2

(Se (n )A(n ))4e −κ2n (x−d )/
p

v2

αn (Se (n )A(n ))3e −iφ/2−κ1n (x−d )/
p

v1

α∗nA(n )4e −iφ/2−κ1n (x−d )/
p

v1

α∗nA(n )3e −iφ/2−κ2n (x−d )/
p

v2

αn (Se (n )A(n ))4e −iφ/2−κ2n (x−d )/
p

v2


,

(2.120)
• in the normal region of the nanowire to

the left of the barrier, 0< x < x0:

Ψn (x )√
Nn

=



A(n )1e i k e
1 x /
p

v1

(Se (n )A(n ))2e −i k e
1 x /
p

v1

(Se (n )A(n ))1e −i k e
2 x /
p

v2

A(n )2e i k e
2 x /
p

v2

α∗nA(n )1e i k h
1 x+iφ/2/

p
v1

αn (Se (n )A(n ))2e −i k h
1 x+iφ/2/

p
v1

αn (Se (n )A(n ))1e −i k h
2 x+iφ/2/

p
v2

α∗nA(n )2e i k h
2 x+iφ/2/

p
v2


,

(2.121)

• in the normal region of the nanowire to
the right of the barrier, x0 < x < d :

Ψn (x )√
Nn

=



(Se (n )A(n ))3e i k e
1 (x−d )/

p
v1

A(n )4e −i k e
1 (x−d )/

p
v1

A(n )3e −i k e
2 (x−d )/

p
v2

(Se (n )A(n ))4e i k e
2 (x−d )/

p
v2

αn (Se (n )A(n ))3e i k h
1 (x−d )−iφ/2/

p
v1

α∗nA(n )4e −i k h
1 (x−d )−iφ/2/

p
v1

α∗nA(n )3e −i k h
2 (x−d )−iφ/2/

p
v2

αn (Se (n )A(n ))4e i k h
2 (x−d )−iφ/2/

p
v2


,

(2.122)

with Nn the normalization coefficient of the n-th ABS and A(n )k the component k of the eigenvector of

M (E ) associated with the state n . We defined κ j n = (∆/(ħh v j ))
√

1−ε2
n . In general, the subscript n or (n )

indicates that a quantity is evaluated for a state with energy εn . The normalization coefficient Nn is given
by

Nn =
∆

2ħh

√
1−ε2

n

1+
∑

j=1,2λ jζ j (n )

√
1−ε2

n

, (2.123)

where

ζ1(n ) =
1

2

î
(1+ x̃0)

Ä
�

�A(n )1
�

�

2
+
�

�

(
Se (n )A(n )

)
2

�

�

2ä
+ (1− x̃0)

Ä
�

�A(n )4
�

�

2
+
�

�

(
Se (n )A(n )

)
3

�

�

2äó
, (2.124)

ζ2(n ) =
1

2

î
(1+ x̃0)

Ä
�

�A(n )2
�

�

2
+
�

�

(
Se (n )A(n )

)
1

�

�

2ä
+ (1− x̃0)

Ä
�

�A(n )3
�

�

2
+
�

�

(
Se (n )A(n )

)
4

�

�

2äó
. (2.125)

We can now go back to the evaluation of the off-diagonal elements of the current operator. To do
so, we need to know how the phase of the superconducting order parameter drops along the nanowire.
Rather than evaluating the electrostatic profile along the nanowire, we will compute the elements of the
current operator for the case when the entire phase drop happens at an arbitrary point x ′, i.e.,

g (x ) = θ (x − x ′)−1/2, (2.126)

such that ∂x g (x ) = δ(x − x ′). The off-diagonal elements of the current operator for different phase
profiles can be obtained by appropriately averaging over x ′. Let us note that the phase profile does not
affect the value of the diagonal elements of the current operator due to the Feynman-Hellmann theorem
mentionned earlier.
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2.4. Current operator

Using the wavefunctions given above, the current operator elements can be written in the following
form

Jnn ′ = e
√

Nn Nn ′


∑

k=1,2

î
f +nn ′,kA∗(n )kA(n ′)k − f +nn ′,k+1α

∗
nαn ′ (Se (n )A(n ))∗k (Se (n ′)A(n ′))k

ó
, 0< x ′ < x0,

−
∑

k=3,4

î
f −nn ′,k−1A∗(n )kA(n ′)k − f −nn ′,kα

∗
nαn ′ (Se (n )A(n ))∗k (Se (n ′)A(n ′))k

ó
, x0 < x ′ < d ,

(2.127)

where f ±nn ′,k = e iλk (εn ′−εn )(1±x̃ ′)/2 +αnα
∗
n ′e
−iλk (εn ′−εn )(1±x̃ ′)/2 with x̃ ′ = 2x ′/d − 1, and we defined λ3 = λ1,

λ4 =λ2.
It is important to note that Eq. (2.127) can be simplified when certain components A(n )k of the

wavefunction are zero. In particular, this may lead to the absence of specific transitions. If S = 0, the
spin up and spin down states are decoupled and all spin-flip transitions are absent. A similar decoupling
into two independent blocks occurs when there is only spin-flip scattering (T = 0). If R = 0, the states
with different parity of m , i.e., with positive and negative slope as a function of φ, are decoupled and all
transitions between a doublet with m odd and a doublet with m even are absent.

Eq. (2.127) allows one to compute all the elements of the current operator for arbitrary parameters
numerically. Before showing the results, let us discuss limiting cases, where analytical results are possible
due to the above-mentioned simplifications.

2.4.1 Spin-flip transitions without backscattering

The expressions for the elements of the current operator simplify considerably when considering the case
R = 0 and treating S ≪ 1 perturbatively. As in that case, states with a different parity of m are decoupled,
spin-flip transitions within a given doublet are only possible in the phase interval ϕm < φ < ϕm+1 for m
odd and ϕm−1 < φ < ϕm for m even. For inter-doublet spin-flip transitions, the phase interval is given
as ϕm ′ < φ < ϕm−1 for m , m ′ odd and as ϕm ′−1 < φ < ϕm for m , m ′ even. Within that interval, we can
compute the matrix elements Jm↓→m ′↑ using the eigenvectors given by Eq. (2.113). For m odd, only the
components A(n )k with k = 3, 4 contribute, whereas, for m even only the components A(n )k with k =
1, 2 contribute. Furthermore, only the product A∗(m↓)kA(m ′↑)k−1 is of order 1 whereas A∗(m↓)kA(m ′↑)k is of

order
p

S . Keeping only terms up to order
p

S and assuming |δλ|ε, δε ≪ 1, one obtains after a lengthy
but straightforward calculation the matrix elements for spin-flip transitions between doublets m and m ′,
where m +m ′ even. Up to a global phase factor (see Appendix D), they take the form

�

�Jm↓→m ′↑
�

�√
N↑N↓

=
√

S
e

2
|δλδε|
�

�

�

�

η(x̃0)
2
|δλ|ε̄ f (0)± + (−1)m (1∓ x̃0) f

(1)
±

�

�

�

�

, (2.128)

with

f (0)± =cos

ï
δε

2

Å
1

p
1− ε̄2

+ λ̄(1± x̃ ′)
ãò

, (2.129)

f (1)± =(1± x̃ ′)sin

ï
δε

2

Å
1

p
1− ε̄2

+ λ̄(1± x̃ ′)
ãò

, (2.130)

and η(x̃0) = (1− x̃ 2
0 )(1∓ x̃0/3). Here the upper (lower) sign has to be used for x ′ < x0 (x ′ > x0). Furthermore

ε̄= (εm ′↑+εm↓)/2 and δε= εm ′↑−εm↓.

According to Eq. (2.128) the spin-flip current operator matrix elements vanish when the barrier is
at one of the interfaces, |x̃0| = 1. In fact, this feature is true beyond the specific model considered here:
if scattering is only taking place at the interfaces, there are no spin-flip transitions. In this case, it can be
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CHAPTER 2. Spin-split ABS in Rashba nanowire Josephson junction

easily seen that s (ε) and t (ε) have the same form for their energy dependence, such that, the problem
becomes analogous to having only one transmission coefficient. This result is reflected in WA/D which
becomes energy independent as for the zero-length junction, yielding vanishing spin-flip elements of the
current operator. The problem can be extended to the model with two scattering potentials as discussed in
Appendix C. Hence, we will focus on the model with one scattering potential with |x̃0| ̸= 1 where Eq. (2.128)
yields a finite result that will be analyzed in more detail for the case of short and long junctions below.

2.4.1.1 Short junction

In the short junction limit, the only possible transition is the intra-doublet transition 1 ↓→ 1 ↑. Using
δε, λ̄≪ 1, the current matrix element Eq. (2.128) further simplifies to

|J1↓→1↑|=
√

S
e

4

»
N↑N↓δλ

2|δεε̄|
�

�η(x̃0)− (1∓ x̃0)(1± x̃ ′)
�

� .

Using Eq. (2.71) to obtain ε̄,δε and
√

N↑N↓ ≈∆sin
(
φ/2

)
/2ħh as well as the expression for η(x̃0), one finds

|J1↓→1↑|=
√

S
e∆

32ħh
|δλ|3 sin2φ(1∓ x̃0)

�

�

�

�

1

3
(x̃0− x̃ ′)− x̃0(1± x̃0)

�

�

�

�

. (2.131)

The characteristic scale for the magnitude of the current matrix element is J (short)
0 =

p
S e∆|δλ|3/32ħh

where we remind that δλ=λ1−λ2.

2.4.1.2 Long junction

In the long junction limit, several doublets with energies ε≪ 1 exist and Eq. (2.128) can be applied in a
large phase interval comprisingπ/2 up to the level crossings given by Eq. (2.77). Approximating Eq. (2.73)
as

εm ,σ ≈
fm (φ)

2λ̄

Å
1− (−1)mσ

|δλ|
2λ̄

ã
and

√
N↑N↓ ≈ ∆/(2ħh λ̄), one finds that δε ≈ |δλ|ε̄/λ̄ for the intra-doublet matrix elements where we re-

mind that λ̄= (λ1+λ2)/2, yielding

|Jm↓→m↑|=
√

S
e∆

32λ̄ħh

�

�

�

�

δλ

λ̄

�

�

�

�

3

f 2
m (φ)
�

�η(x̃0) + (−1)m (1∓ x̃0)(1± x̃ ′)2
�

� , (2.132)

and the phase interval is delimited by ϕm < φ < ϕm−1 for m odd and ϕm−1 < φ < ϕm for m even. In the
long junction regime, the characteristic scale for the magnitude of the matrix elements of the current

operator is J
(long)

0 =
p

S e ET |δλ/λ̄|3/32ħh with the Thouless energy ET = ∆/λ̄. As for the short junction,
the amplitude is proportional to |δλ|3. Namely, it is suppressed as |δλ/λ̄|3 ≪ 1. However, as expected in
a long junction, the overall energy scale for the transition matrix elements is set by the Thouless energy
rather than the superconducting gap.

By contrast, for the inter-doublet matrix elements, δε≈ (m ′−m )π/(2λ̄). In that case, the two terms
in the second line of Eq. (2.128) behave differently. For |x̃ ± 1| ≪ |δλ|/λ̄, the first term dominates and we
obtain

|Jm↓→m+2n↑| ≈
√

S
e∆

16λ̄ħh

�

�

�

�

δλ

λ̄

�

�

�

�

2

π|n |η(x̃0) fm+n (φ), (2.133)

whereas for other values of x̃ , the second term dominates and the result reads

|Jm↓→m+2n↑| ≈
√

S
e∆

4λ̄ħh

�

�

�

�

δλ

λ̄

�

�

�

�

π|n |(1∓ x̃0)(1± x̃ ′)
�

�

�sin
(

n
π

2
(1± x̃ ′)

)�
�

� . (2.134)
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Let us first note that these matrix elements are larger than the intra-doublet matrix elements which
have an additional suppression factor due to the small energy difference δε∝ δλ. Furthermore, their
magnitude strongly depends on the phase profile. Namely, it is enhanced by a factor |λ̄/δλ| ≫ 1 when
the phase drop is not at the interfaces. 1 Figure 2.10 shows the intra-doublet matrix elements of the cur-
rent operator within the first doublet in the short and long junction regime, while Fig. 2.12 shows both
intra-doublet and inter-doublet spin-flip matrix elements in the long junction regime. We show the ma-
trix elements |Jm↓→m ′↑| over the entire phase interval φ ∈ [0, 2π]. Using the relation Jmσ→m ′σ′ (2π−φ) =
−Jm−σ→m ′−σ′ (φ), the extended phase interval allows one to deduce the matrix elements |Jm↑→m ′↓| as well.
The different transitions are indicated in Fig. 2.11.

0 π/2 π 3π/2 2π
φ

0.0

0.2

0.4

0.6
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|J
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|/J
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or
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0

(a)
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φ
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2
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1↓
→

1↑
|/J

(l
on

g
)

0

(b)

Figure 2.10: Spin-flip current operator matrix elements within the lowest doublet. (a) Short junction (λ1 =
0.02 and λ2 = 0.01) and (b) long junction (λ1 = 20 and λ2 = 16). The parameters for both panels are

T = 0.99, S = 0.01, and x̃0 = 0.3. The current operator elements are normalized by J (short)
0 and J

(long)
0 for

the short and long junction, respectively. Results for a phase drop at x ′ = 0 (green) and x ′ = d (black) are
shown. Dashed lines correspond to the analytical results and full lines to the numerical results. As can be
seen in panel (b), the matrix element sharply drops to zero at φ =ϕ1. In panel (a), the drop happens at a
phase too close to zero to be visible.

1For |n |> 1, the enhancement only holds when the phase drop occurs away from the positions n (1± x̃ ′)/2 ∈Z.
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Figure 2.11: Energy spectrum at perfect transmission (R = 0, dashed lines) and with finite backscattering
(R = 0.01, full lines). The colored arrows indicate the transitions for which we calculate the matrix ele-
ments of the current operator in Figs. 2.12 and 2.13. The parameters are T = 0.99−R , S = 0.01, x̃0 = 0.3,
λ1 = 20, and λ2 = 16.
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Figure 2.12: Numerical results for the matrix elements of the current operator between opposite spin states
at perfect transmission associated with the spectrum shown in Fig. 2.11. Panels (a) and (b) show the intra-
doublet matrix elements for the first and second doublet, respectively. Panel (c) shows the inter-doublet
spin-flip matrix elements between the first and third doublet, having the same parity. Panel (d) shows the
inter-doublet spin-flip matrix elements between the first and second doublet, having opposite parity. In
all panels, we took x ′ = d . The abrupt drops to zero at phasesϕm are due to the various crossings between
states at perfect transmission.
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2.4. Current operator

2.4.2 Effect of finite backscattering

Finite backscattering couples states with different parity of m and therefore renders the spin-flip current
operator elements finite for all phases. This is particularly interesting in long junctions, where several dou-
blets exist and anti-crossings take place at phases not too close to zero. To include the effect of backscat-
tering on the current operator matrix elements in long junctions, we use the results of section 2.2.2 for the
ABS at finite R . Namely, the wavefunctions corresponding to the energies given by Eq. (2.79) read

ψ>m =Umψ+m +Vmψ−m , (2.135)

ψ<m =−Vmψ+m +Umψ−m , (2.136)

where Um = Γm/

…(»
δϕ2

m + Γ 2
m −δϕm

)2
+ Γ 2

m and Vm =
√

1−U 2
m with Γm = 2λ̄δm and δϕm = φ −ϕm .

Thus, Um and Vm vary around ϕm on a typical scale set by Γm .

2.4.2.1 Modification of the intra- and inter-doublet spin-flip transitions in long
junctions

In this section, we will focus on how the transitions we previously studied in section 2.4.1 are modified due
to finite backscattering. For intra- and inter-doublet matrix elements in the limit |1± x̃ ′| ≪ |δλ|/λ̄ ≪ 1,
Eq. (2.128) simplifies to

|Jm↓→m ′↑|=J0λ̄
�

�

�ε2
m↓−ε

2
m ′↑

�

�

� (2.137)

with J0 =
p

S e∆(δλ/λ̄)2η(x̃0)/16ħh .

Finite back-scattering modifies this result in the vicinity of the anti-crossings on a scale Γm . If the
different anti-crossings are well separated in phase on that scale, we find the spin-flip matrix elements
between doublets m and m ′ =m +2n ,

|Jm↓→m ′↑|
J0λ̄

=


Um ′Vm−1

�

�

�

(
ε−m−1

)2−
(
ε−m ′
)2
�

�

� m odd,

Um ′−1Vm

�

�

�

(
ε+m
)2−

(
ε+m ′−1

)2
�

�

� m even.

(2.138)

Thus, the main effect of finite backscattering is to smooth the drop to zero over a width given by Γm , i.e.,
the typical scale of variation of Um and Vm . Figure 2.13 shows numerical results for both intra-doublet
and inter-doublet matrix elements |Jm↓→m ′↑| over the entire phase interval [0, 2π].

As discussed in Sec. 2.4.1, the inter-doublet matrix elements are enhanced by a factor ∼ λ̄/|δλ| for
|x̃ ± 1| ≫ |δλ|/λ̄. The smoothing due to finite backscattering involves the same factors Um and Vm , but
starting form Eq. (2.134) instead of Eq. (2.133).

2.4.2.2 Spin-flip matrix elements between opposite parity doublets

In the absence of backscattering, spin-flip matrix elements between opposite parity doublets are possible
only in a narrow phase interval around 0 andπ. Including backscattering renders them finite at all phases
and can be done the same way as in the previous section. For a given transition, two anti-crossings are rel-
evant, one close to zero and another one close to π. The spin-flip matrix elements of the current operator
between doublets m and m ′ =m +2n +1 are given as

|Jm↓→m ′↑|
J0λ̄

=
�

�

�Um ′−1Um−1

î(
ε+m−1

)2−
(
ε+m ′−1

)2
ó
+Vm ′−1Vm−1

î(
ε−m−1

)2−
(
ε−m ′−1

)2
ó�
�

� , (2.139)
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for m odd, and

|Jm↓→m ′↑|
J0λ̄

=
�

�

�Um ′Um

î(
ε−m
)2−

(
ε−m ′
)2
ó
+Vm Vm ′

î(
ε+m
)2−

(
ε+m ′
)2
ó�
�

� , (2.140)

for m even. Here the first line in Eq. (2.139) [in Eq. (2.140)] is significant at phases φ ∼ ϕm−1 (ϕm ) while
the second line is significant at phasesφ ∼ϕm ′−1 (ϕm ′ )when m odd (even). As previously, the main effect
of finite backscattering is to smoothen the drop to zero of the different matrix elements over a width Γm
around each crossing. An illustration of these matrix elements is shown in panel (d) of Fig. 2.13.
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Figure 2.13: Numerical results for the matrix elements of the current operator between opposite spin states
at finite backscattering (R = 0.01) associated with the spectrum shown in Fig. 2.11. As discussed in the
main text, finite backscattering smoothens the sharp drops seen in Fig. 2.12. In panel (c), one further sees
that the matrix element no longer vanishes at phases close to π. This results from the avoided crossing
between positive and negative energy states at ϕ =π in the presence of finite backscattering.

2.4.3 Spin-conserving matrix elements

Finally, we can look at the spin-conserving matrix elements of the current operator. These matrix
elements do not require spin-flip scattering. We will therefore start by calculating them at R = S = 0.
Then we will include backscattering as in section 2.4.2.

At R = S = 0 only one component A(n ),k with k = 1, ..., 4 is non zero, which simplifies Eq. (2.127)
significantly. As before, at R = 0, only transitions between doublets with the same parity are allowed in a
wide phase interval. Hence, the matrix elements between doublet m and m ′ =m +2n are given as

|Jm↑→m ′↑| ≈
e ET

ħh

�

�

�cos
[πn

2
(1− x̃ ′)

]�
�

�


1+ sign(φ−ϕm )|δλ|/(2λ̄), m odd,

1− sign(φ−ϕm−1)|δλ|/(2λ̄), m even.

(2.141)
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For σ =↓, one has to interchange sign(φ − ϕm ) and sign(φ − ϕm−1). For m ′ = m + 2n + 1, the same
result holds, but in the complementary phase intervals where |Jm↑→m+2n↑| = 0. As for the spin-flip
matrix elements, the spin-conserving matrix elements sharply drop to zero at level crossings. Including
backscattering smoothens these drops as discussed above for the spin-flip matrix elements.

However, there is a particular case when m ′ = m + 1. In that case, the two states involved in the
transition cross atϕm in the absence of backscattering. Backscattering mixes them and therefore enables
transitions. One finds

|Jmσ→m+1σ|= 2e ET |Um Vm | . (2.142)

This leads to a peak in the amplitude of the current operator matrix element at φ = ϕm as shown in
Fig. 2.14(a).
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Figure 2.14: Numerical results for the spin-conserving matrix elements of the current operator. Here S = 0,
x̃0 = 0.3, x̃ ′ = 1, λ1 = 20, and λ2 = 16. The dashed and full lines corresponds to perfect transmission R = 0
and finite backscattering R = 0.001, respectively. Panel (a) shows the matrix elements between spin-up
states of the first and second doublet. The peak at φ =ϕ1 results from the mixing between the two states
involved in the transition in the presence of finite backscattering. Panel (b) shows the matrix elements
between spin up states of the first and third doublet.

2.4.4 Numerical results

Arbitrary length junctions and/or arbitrary values of the scattering parameters may be studied numer-
ically using Eqs. (2.57) and (2.127). In particular, we will be interested in the case when S and T are
comparable and/or when δλ ∼ λ̄. A sample spectrum is shown in Fig. 2.15(a) and the corresponding
current operator matrix element for spin-flip transitions within the lowest doublet in Fig. 2.15(b).
The phase dependence is similar to the perturbative case with maxima at the avoided crossings. For
the example shown, the scale for the magnitude of the current operator matrix elements is set by

J
(long)

0 =
p

S e ET |δλ/λ̄|3/32ħh , where e ET /ħh is the relevant scale for the critical current of the junction.
The smallness of the prefactor is due to numerical factors and does not contain a small parameter.

In Fig. 2.16, we show the dependence of the magnitude of the current operator matrix element for
intra-doublet transitions within the lowest doublet m = 1 on various parameters. Panel (a) shows that
the magnitude of the current operator matrix element is indeed maximal when S and T are comparable,
whereas it vanishes when one of them is zero. Panel (b) shows the length dependence of the effect. As
expected, intermediate length junctions are optimal. If the junction is too short, the effect of spin-orbit
coupling is weak such that the magnitude of the spin-flip current operator matrix elements is suppressed.
If the junction is too long, the overall energy scale for all the current operator matrix elements set by the
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Figure 2.15: Numerical results in the non-perturbative regime: (a) spectrum and (b) current operator ma-
trix element for spin-flip transitions within the lowest doublet. Here S = T = 0.45, R = 0.1, λ1 = 2.3,
λ2 = 1.3, x̃0 = 0.3, and x̃ ′ = 1. The phase dependence is similar to the perturbative case with maxima
at the avoided crossings. The scale for the magnitude of the current operator matrix elements is set by

J
(long)

0 =
p

S e ET |δλ/λ̄|3/32ħh .

Thouless energy is small and therefore suppresses the effect. Panel (c) shows the dependence of the mag-
nitude of the current operator matrix element on the position of the scattering center. As mentioned ear-
lier, spin-flip transitions are absent when scattering only occurs at the interfaces. Here we see that their
amplitude is maximal when the scattering happens close to the center of the junction. Finally, panel (d)
shows the variation of the current operator matrix element with the position of the phase drop. The matrix
element drops to zero for a particular value of x̃ . This can already been seen on the perturbative level, see
Eqs. (2.131) and (2.132). In Fig. 2.17, we show that this generically the case for all current operator matrix
elements, both spin-preserving and spin-flip.
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Figure 2.16: Dependence of the intra-doublet matrix elements of the current operator within the lowest
doublet on different parameters. In all panels, R = 0.1 and |δλ|/λ̄= 0.556. In panel (a)-(c), the phase drop
is set at x̃ ′ = 1. For panel (b)-(d), we have T = S = 0.45. For panels (a), (c) and (d), we set λ1 = 2.3. For
panels (a), (b) and (d), we set x̃0 = 0.3.
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Figure 2.17: Dependence on the position of the phase drop x̃ ′ of several current operator matrix elements,
covering all possible kinds of transitions. Same parameters as in Fig. 2.16 (d). We can see that both spin-
preserving and spin-flip matrix elements generically vanish for particular values of x̃ .

2.5 Conclusion

In this chapter, we have studied the spin-splitting of ABS due to SOC. In the first part, we showed how the
SOC can lift the spin degeneracy of ABS in finite length junctions. We have studied the energy spectrum in
detail. The model we considered involves a single scattering potential located at an arbitrary position x0

along the normal region. We saw that considering finite spin-flip transmission can lead to a modification
of the spin-splitting of ABS. Then, in the second part, we briefly presented some experimental methods
that allow for the detection of ABS. We mainly focused on cQED, which are the types of experiments
performed today for the detection and manipulation of ABS. Therefore, we have evaluated the relevant
quantities, namely the matrix elements of the current operator, that determine which transitions are
within reach in phase-driven experiments. Notably, we found that SOC with finite spin-flip transmission
probability allows one to have finite matrix elements between opposite spin states within the same dou-
blet. Our detailed study provides the specific dependence of the energy splitting and current-operator
matrix elements on the phase difference, the transmission properties of the scattering potential, and its
location along the nanowire. In particular, we find that the ratio between the current-operator matrix
element and the energy splitting varies quadratically in the pseudo-spin band velocity asymmetry and
linearly in the spin-flip transmission amplitude. The strong suppression of the current-operator matrix
element does not favor the operation of the Andreev spin qubit using a flux drive if spin-orbit coupling is
small. Thus, our study will contribute to identifying optimal working points, where a sufficiently strong
driving may be achieved. If spin-orbit coupling is sufficiently large, the order of magnitude of the matrix
element is bounded by the critical current of the junction. Thus, we do not see major challenges in
operating an Andreev spin qubit in that case.

Note that recent experiments with quantum dots subject to large Coulomb repulsion allowed for
stabilizing the doublet ground state in the odd sector thus removing the constraint of having a junction
subject to quasiparticle poisoning, as well as resolving the spin splitting [48, 95, 111]. The next chapter
will then focus on the possibility of realizing an ASQ in S-QD-S junctions.
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In chapter 2, we showed how spin-orbit coupling can lead to the lifting of the spin degeneracy of
ABS. Also, we showed that thanks to spin-flip scattering processes, it is possible to couple opposite spin
states within the same doublet of ABS. As such, we predict that spin-flip transition within a same doublet
should be accessible in flux-driven cQED experiments, and therefore, that this transition could be used
to realize an ASQ when the junction is in the odd parity sector. However, there is an issue with the system
we described previously. To realize an ASQ, we must be in the odd parity sector such that the total spin
of the system is non-zero. To be in this parity sector, the weak link must be subject to what is known as
quasiparticle poisoning [33, 112]. This quasiparticle poisoning corresponds to an excess quasiparticle
being trapped within the subgap levels. The time that this particle is trapped in an ABS is finite. It can
either escape back into the continuum or recombine, ultimately bringing the weak link to its spin-zero
ground state.

One way of countering this problem is to consider a junction with a quantum dot rather than a
weak link. As we saw in Sec. 1.4 of chapter 1, using a quantum dot allows one to tune the ground state of
the junction to be an odd-parity spin-1/2 ground state. Using this type of junction for ASQ is the solution
that has been adopted in these studies [48, 95, 111]. They considered a S-QD-S junction with spin-orbit
coupling, allowing spin-dependent tunneling terms between the superconducting electrodes and the
resonant level of the quantum dot. In addition, their experiment showed that the spin degeneracy of
ABS in such junctions can be lifted, which they explain by the presence of all other non-resonant levels
in the QD that act as additional conduction channels. Using such systems and by applying a magnetic
field, they were able to realize ASQs and have better control of the parity of the junction thanks to the
Coulomb repulsion. Note however that, the applied magnetic field helped for the qubit manipulation
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and readout in [48] but was not necessary to observe the intra-doublet transition in [95]. As mentioned in
the introduction of this manuscript, to manipulate the spin states of the doublet ground state, they used
electric dipole spin resonance by sending a microwave pulse into a gate placed below the QD.

Here, we want to propose a simplification of their system, in which the spin degeneracy can be lifted,
and potentially be an interesting platform for the realization of ASQs. The junction we will study consists
of two quantum dots coupled together to form the normal region of the junction. Each of these dots is
coupled to the two superconducting electrodes, with spin-dependent tunnel couplings. In this system,
we therefore have two levels that can be occupied and tuned separately. Also, when one of the two dots
is non-resonant then, our system becomes analogous to the one presented in [48, 95]. In this chapter, we
will first show in Sec. 3.1 why it is not enough to consider a junction with a single quantum dot and spin-
dependent couplings if we consider only a single resonant level. This result can be understood with an
analogy to the S-N-S junction where two channels with different Fermi velocities are needed in order to
lift the spin degeneracy. Then, we will consider the full system with the two quantum dots. We will show
in Sec. 3.3 that adding a second quantum dot to the system results in the lifting of the spin degeneracy
in the odd parity sector. Finally, as for the S-N-S junction, we will be looking at the current operator in
order to determine which transitions are allowed in the system with the considered couplings. Specifi-
cally, in Sec. 3.4.3 we will determine the minimum requirements in order to have finite matrix elements
between opposite spin states such that in this kind of junctions, an ASQ could be realized in phase-driven
experiments. Our results indicate that these elements can be non-zero when considering a finite coupling
between the two dots and spin-dependent tunnel couplings between the superconducting leads and the
dots. This is again analogous to the S-N-S junction studied in Chap. 2 where the spin-flip transmission
probability was necessary to couple opposite spin states. This corresponds here to the combination of the
inter-dot coupling and spin-dependent tunnel coupling.

3.1 Josephson junction with a single quantum dot and SOC

We will start this chapter by showing why it is insufficient to consider a Josephson junction with a single
quantum dot to lift the spin degeneracy, even if the couplings between the dot and the leads are spin-
dependent. We consider tunnel couplings, independent of k as in Sec. 1.4, which respect TRS, such that
we can write them under the form

ť = t0+ i t ·σ, (3.1)

with t0,x ,y ,z reals. A schematic of the system is shown in Fig. 3.1.

In the following, we use the notation σ̄=−σ and t (a )αβ whereα,β are spin indices and a = L , R stands
for left or right electrode such that

t↑↑ = t ∗↓↓ = t0+ i tz , (3.2)

t↑↓ =−t ∗↓↑ = i (tx − i t y ). (3.3)

As in Sec. 1.4, we use the single impurity Anderson model (SIAM) given in Eq. (1.167) to describe
our system. We recall that the Hamiltonian is given as

H =
∑

a=L ,R

(
Ha +HT ,a

)
+HD , (3.4)
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Figure 3.1: Schematic of the S-QD-S with spin-dependent tunnel couplings between the superconducting
leads and the quantum dot where we used the notation σ̄ = −σ. The on-site energy of the dot is ϵ and
with a Coulomb repulsion of strength U . The spin-conserving couplings are represented in red and the
spin-flip ones in blue.

with

Ha =
∑

kσ,a

ξk ,a c †
kσ,a ckσ,a +
∑

k ,a

Ä
∆e iϕa c †

k ↑,a c−k ↓,a +h.c.
ä

, (3.5)

HT ,a =
∑

k

∑

α,β

Ä
t (a )αβ d †

αckβ ,a +h.c.
ä

, (3.6)

HD =
∑

σ

ϵd †
σdσ +U d †

↑d↑d
†
↓d↓. (3.7)

The first Hamiltonian describes the superconducting electrode a , such that c †
kσ,a and ckσ,a correspond

to the creation and annihilation operators for an electron of spin σ and momentum k in this electrode.
HD describes the quantum dot with on-site energy ϵ and Coulomb potential U . The operators d †

σ and
dσ thus stand for the creation and annihilation of an electron with spin σ in the dot. Finally, HT ,a is the

tunneling Hamiltonian between the dot and lead a with tunneling amplitude t (a )αβ . However, do note that
for even parity states, the inter-dot interaction just leads to an energy shift of the different states, but the
exchange interaction shifts the energy of states with an electron with parallel spin on each dot.

As in Chap. 1, we place ourselves in the atomic limit, such that we can describe the system with an
effective low energy Hamiltonian. We first perform a Schrieffer-Wolff transformation U = e S on the SIAM
Hamiltonian with

S =
∑

a=L ,R

∑

|ΦH 〉|ΦL 〉
|ΦH 〉

〈ΦH |HT ,a |ΦL 〉
〈ΦH |H |ΦH 〉− 〈ΦL |H |ΦL 〉

〈ΦL | −h.c., (3.8)

Where |ΦH 〉 denotes high energy states, i.e., states which contain at least one quasiparticle in the super-
conducting leads a , while |ΦL 〉 denotes the low energy without any quasiparticle in the superconducting
leads. The effective low energy Hamiltonian is obtained by projecting the "transformed" Hamiltonian into
the low energy sector

Heff =HD +
1

2
PL

[
S ,
∑

a=L ,R

HT ,a

]
PL , (3.9)

with PL =
∑

ΦL
|ΦL 〉 〈ΦL | is the projector onto the low energy sector.
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Before developing the second term, we rewrite the superconducting and tunneling Hamiltonian

using the Bogoliubov-de Gennes transformation ckσ,a = e iϕa /2
Ä

ukγkσ,a −σvkγ
†
−k σ̄,a

ä
yielding

Ha =
∑

k ,σ

Ek ,aγ
†
kσ,aγkσ,a , (3.10)

HT ,a =
∑

k

∑

α,β

[
γ†

kβ ,a

(
(t (a )αβ )

∗uk e −iϕa /2dα−β t (a )
ᾱβ̄

vk e iϕa /2d †
ᾱ

)
+h.c.

]
, (3.11)

with Ek ,a =
»
ξ2

k ,a +∆2 the eigenvalues of the superconducting Hamiltonians. We can now develop
Eq. (3.9) at the lowest order in Ek ,i

Heff =HD −
∑

a=L ,R

∑

k

∑

α,β ,δ

[
t (a )βδuk e i ϕa

2 d †
β −δ(t

(a )
β̄ δ̄
)∗vk e −i ϕa

2 dβ̄

] 1

Ek ,a

î
(t (a )αδ )

∗uk e −i ϕa
2 dα−δt (a )

ᾱδ̄
vk e i ϕa

2 d †
ᾱ

ó
.

(3.12)

Now, using Eqs. (3.2) and (3.3), and (d (†)α )2 = 0, we can write

Heff =HD −
∑

a=L ,R

∑

k

[
∑

α,β ,δ

u 2
k − v 2

k

Ek ,a
t (a )δβ (t

(a )
ᾱβ )
∗d †
δdα+2

uk vk

Ek ,a

Ä
|t (a )0 |

2+ |t (a )|2
äÄ

d †
↑d †
↓ e iϕa +h.c.

ä]
. (3.13)

As one can see, we find a Hamiltonian with the same structure as Eq. (1.187). The first term remains odd
in momentum, so it vanishes when summed over k . For the second term, the only combination is the one
that was already present in Eq. (1.187). In the end, we obtain an effective low energy Hamiltonian which
can be written once again as

Heff =
∑

σ

ϵd †
σdσ +U d †

↑d↑d
†
↓d↓+

(
Γφd †
↑d †
↓ e i

ϕR +ϕL
2 +h.c.

)
, (3.14)

with

Γφ = Γ cos
φ

2
+ iδΓ sin

φ

2
, (3.15)

Γ = ΓR + ΓL , δΓ = ΓR − ΓL , (3.16)

Γa =πνS

Ä
|t (a )0 |

2+ |t (a )|2
ä

, (3.17)

φ =ϕR −ϕL . (3.18)

The only difference with the case without spin-dependent coupling is the hybridization Γφ between the
dot and the superconducting leads which now contains the spin-dependent part of the tunnel couplings
due to finite SOC. Since the Hamiltonian is the same as Eq. (1.189) and there are no spin-dependent terms,
the energy spectrum will still present the spin degeneracy, even with spin-dependent tunnel coupling.
This was a predictable result as pointed out in the introduction of this chapter. An analogy can be made
with the S-N-S junction studied in Chap. 2 where two channels with different Fermi velocities were re-
quired in order to lift the spin degeneracy of ABS. To lift this spin degeneracy, it is necessary to either
consider additional conduction channel for particles provided by the other non-resonant levels of the
quantum dot as done in [48, 95], or, as we will do, add another channel by putting an additional quantum
dot in the Josephson junction such that the normal region will now consist of two quantum dots connected
to the superconducting leads.
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3.2. Josephson junction with two quantum dots as the normal region

3.2 Josephson junction with two quantum dots as the normal region

As we showed in the previous section, considering only one quantum dot with a single resonant level
coupled with spin-dependent tunnel coupling to superconducting electrodes is not enough to lift the
spin degeneracy of the eigenstates of the full system. To solve this problem, let’s consider a Josephson
junction whose normal region now consists of two quantum dots. Double quantum dots Josephson
junctions have already been extensively studied in the literature [113–118]. As pointed out earlier in
Sec. 1.4 of chapter 1, in S-QD-S junctions, the Kondo effect and superconductivity compete between each
other. In superconductor - double quantum dots - superconductor (S-DQD-S) junctions, it is of course
still true. However, in addition, the coupling between the two dots can be the source of spin exchange
interaction in the system yielding a richer phase diagram than that of the single dot junction [113, 119,
120]. Another possibility present in S-DQD-S junctions is to have a triplet ground state in the even parity
sector when each dot is occupied by one electron. In particular, in this configuration, the transition
between singlet and triplet states has been addressed theoretically [118, 121, 122] and experimentally
[123].

This extra quantum dot gives an extra conduction channel for electrons to flow when it is coupled
to the superconducting leads. When one of the two dots is non-resonant, then this junction becomes
analogous to the one studied in [48, 95]. The benefit of our approach is that each dot can be tuned
separately, allowing for a better control of the system parameters such as the Coulomb repulsion strength
or the tunnel coupling with the superconducting electrodes. In this section, we will start by deriving the
Hamiltonian, which we will use to describe the system. We will continue by briefly studying the main
feature of the energy spectrum of the S-DQD-S junction without SOC in the couplings in Sec. 3.2.1. Then,
in Sec. 3.3, we will study the effect of SOC on the energy spectrum in the odd parity sector in order to
determine the required ingredients to lift the spin degeneracy. Finally, we’ll conclude with a study of
the non-diagonal matrix elements of the current operator in the odd sector in Sec. 3.4, with the aim of
determining the parameters that allow transitions between opposite spin states.

First, let’s assume that each dot is coupled to the superconducting electrodes and that there is also
a non-zero coupling between these two dots. We’ll consider that all of these couplings respect TRS, such
that we can write them as

ť = t0+ i t ·σ, κ̌= κ0+ iκ ·σ, (3.19)

where t -couplings describe the tunnel couplings between the dots and the leads, whereas the κ-coupling
describes the coupling between the two quantum dots. A schematic of the junction is shown in Fig. 3.2. We
use the same notation as in the previous section for the coupling terms in order to simplify the equations,
i.e.,

t↑↑ = t ∗↓↓ = t0+ i tz , t↑↓ =−t ∗↓↑ = i (tx − i t y ), (3.20)

κ↑↑ = κ
∗
↓↓ = κ0+ iκz , κ↑↓ =−κ∗↓↑ = i (κx − iκy ), (3.21)

such that in the following we denote the coupling terms as tαβ and καβ where α,β are spin indices. We
model the system with the following Hamiltonian

H =
∑

a=L ,R

(
Ha +
∑

j=1,2

HT ,a j

)
+
∑

j=1,2

HD , j +HD−D , (3.22)

with as usual Ha being the Hamiltonians describing the superconducting leads given in Eq. (3.5). HT ,a j is
the tunneling Hamiltonian between lead a and dot j , HD , j is the Hamiltonian which describes the dot j ,
and, finally, HD−D is the Hamiltonian which describes the coupling between the two dots. These Hamil-
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ε1, U1

ε2, U2

t
(L,1)
αβ

t
(L,2)
αβ

t
(R,1)
αβ

t
(R,2)
αβ

καβ

Figure 3.2: Schematic of the double quantum dots Josephson junction. Each dot is coupled to the su-

perconducting leads via spin-dependent tunneling coupling t
(i , j )
αβ . Furthermore, the quantum dots are

coupled together through καβ which is also spin-dependent. The on-site energy for each dot is ϵ j with
Coulomb repulsion of strength Uj . Note that we did not consider finite inter-dot interaction between the
two dots as discussed in the main text.

tonians are given as

HT ,a j =
∑

k

∑

αβ

Ä
t
(a , j )
αβ d †

jαckσ,a +h.c.
ä

, (3.23)

HD , j =
∑

σ

ϵ j d †
jσd jσ +Uj n j ↑n j ↓, (3.24)

HD−D =
∑

αβ

Ä
καβd †

1αd2β +h.c.
ä

, (3.25)

with n jσ = d †
jσd jσ. As usual, c operators are for electrons in the superconducting leads, and, d operators

are for electrons in the quantum dots. Additional terms could have been considered in our Hamiltonian.
In particular, we did not consider any inter-dot interaction of the form U12N1N2, where Nj is the total
number of electrons on dot j and Hund spin-spin exchange term of the form JH S 1 · S 2 where S j denotes
the total spin on dot j as we are interested in odd parity states, where an odd number of electrons are
occupying the dots. In this case, we either have one or three electrons on the dots such that the spin-spin
exchange interaction yields zero for these states, and the inter-dot interaction leads to a shift of the three
particle states energy. Including this term in the Hamiltonian for the dots allows one to easily see this
claim. In this case, the Hamiltonian for the dots reads

Hdots =
∑

σ

Å
ϵ j +σ JH +

Uj

2

ã
d †

jσd jσ +
∑

j=1,2

Ũj

2

Ç
∑

σ

d †
jσd jσ −1

å2

+
JH

2

(
∑

j=1,2

∑

σ

σd †
jσd jσ −1

)2

+
U12

2

(
∑

j=1,2

∑

σ

d †
jσd jσ −1

)2

−
1

2
(JH +Ũ1+Ũ2+U12),

(3.26)

with Ũj =Uj + JH −U12. It can be easily seen from this Hamiltonian that in the odd parity sector, the only
change is a global energy shift 2U12 of the three particle states. As these terms do not give a particular
contribution in the odd sector, we will take U12 = JH = 0 from now on. However, do note that in the
even sector, the inter-dot interaction yields an energy shift for the different states, and the exchange
interaction yields a different contribution for the two triplet states in which each dot is occupied by one
electron with parallel spins.

Our strategy to describe this junction is the same as in Sec. 1.4 and Sec. 3.1. We will consider the
superconducting atomic limit ∆→∞. Therefore, we will use the Schrieffer-Wolff transformation, then
project the Hamiltonian onto the low energy sector spanned by the quantum dots states. We will not
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3.2. Josephson junction with two quantum dots as the normal region

present the details of the derivation, since it is very similar to the case with only one quantum dot. Also,
from now on, we will take ϕR =−ϕL =φ/2 which is always possible using an appropriate gauge transfor-
mation. The obtained low energy effective Hamiltonian is given as

Heff =
∑

j=1,2

HD , j +HD−D

+
∑

j=1,2

Ä
Γ jφd †

j ↑d
†
j ↓+h.c.

ä
+
∑

αβ

Ä
ταβ ,φd †

1αd †
2β +h.c.

ä
,

(3.27)

with,

Γ jφ = Γ j cos
φ

2
+ iδΓ j sin

φ

2
, (3.28)

Γ j = ΓR , j + ΓL , j , δΓ j = ΓR , j − ΓL , j , (3.29)

Γa , j =πνS

Ä
|t (a j )

0 |
2+ |t (a j )|2

ä
, (3.30)

and

τ↑↓,φ =
ï
τ↑↓ cos

Å
φ+δϕ↑↓

2

ã
+ iδτ↑↓ sin

Å
φ+δϕ↑↓

2

ãò
e i ϕ̄↑↓ , (3.31)

τ↓↑,φ =−
ï
τ↑↓ cos

Å
φ−δϕ↑↓

2

ã
+ iδτ↑↓ sin

Å
φ−δϕ↑↓

2

ãò
e −i ϕ̄↑↓ , (3.32)

τ↑↑,φ =
ï
τ↑↑ cos

Å
φ+δϕ↑↑

2

ã
+ iδτ↑↑ sin

Å
φ+δϕ↑↑

2

ãò
e i ϕ̄↑↑ , (3.33)

τ↓↓,φ =
ï
τ↑↑ cos

Å
φ−δϕ↑↑

2

ã
+ iδτ↑↑ sin

Å
φ−δϕ↑↑

2

ãò
e −i ϕ̄↑↑ , (3.34)

where we used

ταβ =τ
(R )
αβ +τ

(L )
αβ , δταβ =τ

(R )
αβ −τ

(L )
αβ , (3.35)

τ(a )αβ =πνS

�

�

�t
(a 1)
α↑ t (a 2)

β↓ − t (a 1)
α↓ t (a 2)

β↑

�

�

� , (3.36)

ϕ̄αβ =
Ä
ϕ(R )αβ +ϕ

(L )
αβ

ä
/2, δϕαβ =ϕ

(R )
αβ −ϕ

(L )
αβ , (3.37)

ϕ(a )αβ = arg
Ä

t (a 1)
α↑ t (a 2)

β↓ − t (a 1)
α↓ t (a 2)

β↑

ä
. (3.38)

One can further notice that

Γ jφ(φ) = Γ
∗
jφ(−φ), (3.39)

τ↓↑,φ(φ) =−τ∗↑↓,φ(−φ), (3.40)

τ↓↓,φ(φ) =τ
∗
↑↑,φ(−φ). (3.41)

Before we go any further, let’s talk a bit about this Hamiltonian. The first line of Eq. (3.27) describes
each dot and the coupling κ̌ between them, which corresponds to what we would have without the
coupling to the superconducting leads. Note that at the lowest order in 1/Ek when deriving Eq. (3.27),
there is no additional inter-dot coupling as this term vanishes when summing over k . However, it can
become non-zero when considering k dependent tunnel couplings, i.e., when considering that the two
dots are not connected at the same point of the reservoir on the Fermi length scale. Now, we can discuss
the terms arising from the coupling with electrodes. We placed ourselves in the superconducting atomic
limit, such that ∆ is the dominant energy of the system. As a consequence, the dots are only coupled
to the Cooper pair of the leads and not the continuum. Hence, we recover a hybridization term Γ jφ
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CHAPTER 3. The double quantum dots junction

which describes the transfer of a Cooper pair from the leads to one of the quantum dots as in the single
quantum dot junction. The only difference is that here, the Cooper pair can either tunnel through one
or the other dot. The last term of our Hamiltonian ταβ ,φ also describes the coupling between Cooper
pairs and quantum dots. But whereas Γ jφ describes the tunneling of a Cooper pair to the dot j , here,
the Cooper pair is being split between the two dots. This is known as crossed Andreev reflection [124, 125].

The only terms that we can expect to lift the spin degeneracy are the ταβ ,φ and καβ (see Eq. (3.25))
as they are the only spin-dependent terms in the Hamiltonian. For the καβ terms, they are not sufficient
by themselves as κ̌ respects TRS (see Eq. (3.19)). Their combination with Andreev reflection terms is
required as they provide aφ-dependence that breaks TRS.

We can see that each of the terms ταβ ,φ presents a phase shift ±δϕαβ with respect to φ. We can
expect that this phase shift may play a role in the lifting of the spin degeneracy. To illustrate this, we can
do an analogy with the junction we studied in Chap. 2. In the previous Josephson nanowire, the spin
degeneracy was lifted thanks to a phase difference resulting from the spin-dependent Fermi velocities.
Here, this phase difference is provided by the crossed Andreev reflection terms ταβ ,φ such that, a transfer
of Cooper pair from one superconducting electrode to the other involving this mechanism will lead to a
phase shift depending on the spins of the particles. We can see in Eq. (3.38) that without SOC, i.e. t = 0,

the phases ϕ(a )αβ = 0 such that the phase shifts we talked about vanish.

ταβ ,φ and Γ jφ are proportional to πνS and depends on t
a j
σσ′ thus, we will give t0 and t in unit of

1/
p
πνS in the following.

As parity is conserved due to the coupling with the superconducting leads, the Hamiltonian of
Eq. (3.27) can be decomposed into two independent Hamiltonians which describe the even sector where
an even number of particles are occupying the dots, and, an odd sector with an odd number of particles
occupying the dots. The even sector contains the following singlet and triplet states

singlet : |0〉 , |↑1↓1〉= d †
1↑d

†
1↓ |0〉 , |↑2↓2〉= d †

2↑d
†
2↓ |0〉 ,

|↑1↓2〉− |↓1↑2〉p
2

=
d †

1↑d
†
2↓−d †

1↓d
†
2↑p

2
|0〉 , |↑1↓1↑2↓2〉= d †

1↑d
†
1↓d

†
2↑d

†
2↓ |0〉 ,

triplet : |↑1↑2〉= d †
1↑d

†
2↑ |0〉 , |↓1↓2〉= d †

1↓d
†
2↓ |0〉 ,

|↑1↓2〉+ |↓1↑2〉p
2

=
d †

1↑d
†
2↓+d †

1↓d
†
2↑p

2
|0〉 ,

which, in the basis Ψeven =
Ä
|0〉 |↑1↓1〉 |↑2↓2〉 |↑1↓1↑2↓2〉

|↑1↓2〉−|↓1↑2〉p
2

|↑1↑2〉 |↓1↓2〉
|↑1↓2〉+|↓1↑2〉p

2

äT
, are

described by the Hamiltonian

Heven =



0 Γ ∗1φ Γ ∗2φ 0
τ∗↑↓,φ−τ

∗
↓↑,φp

2
τ∗↑↑,φ τ∗↓↓,φ

τ∗↑↓,φ+τ
∗
↓↑,φp

2

Γ1φ 2ϵ1+U1 0 Γ ∗2φ
κ↓↓+κ↑↑p

2
κ↓↑ −κ↑↓

κ↓↓−κ↑↑p
2

Γ2φ 0 2ϵ2+U2 Γ ∗1φ
κ∗↓↓+κ

∗
↑↑p

2
−κ∗↑↓ κ∗↓↑ −

κ∗↓↓−κ
∗
↑↑p

2

0 Γ2φ Γ1φ 2(ϵ1+ ϵ2) +U1+U2
τ↓↑,φ−τ↑↓,φp

2
−τ↓↓,φ −τ↑↑,φ

τ↓↑,φ+τ↑↓,φp
2

τ↑↓,φ−τ↓↑,φp
2

κ∗↓↓+κ
∗
↑↑p

2

κ↓↓+κ↑↑p
2

τ∗↓↑,φ−τ
∗
↑↓,φp

2
ϵ1+ ϵ2 0 0 0

τ↑↑,φ κ∗↓↑ −κ↑↓ −τ∗↓↓,φ 0 ϵ1+ ϵ2 0 0

τ↓↓,φ −κ∗↑↓ κ↓↑ −τ∗↑↑,φ 0 0 ϵ1+ ϵ2 0
τ↑↓,φ+τ↓↑,φp

2

κ∗↓↓−κ
∗
↑↑p

2
−κ↓↓−κ↑↑p

2

τ∗↓↑,φ+τ
∗
↑↓,φp

2
0 0 0 ϵ1+ ϵ2


.

(3.42)
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The changes in sign for the καβ and ταβ terms come from the anti-commutation rules for fermionic

operators d (†)jσ. An important thing to notice here, is that when there is no SOC in the different couplings,
we have κσσ̄ = τσσ,φ = 0 and τ↑↓,φ = −τ↓↑,φ such that the triplet states become completely decoupled
from the singlet states. As can be seen, the triplet states are not coupled between them. They are also
decoupled from the singlet state (|↑1↓2〉− |↓1↑2〉)/

p
2 which results in a diagonal block in Eq. (3.42)

On the other hand, the odd sector contains the following doublet states, i.e., states with an effective
spin of 1/2,

doublet : |↑1〉= d †
1↑ |0〉 , |↓1〉= d †

1↓ |0〉 , |↑2〉= d †
2↑ |0〉 , |↓2〉= d †

2↓ |0〉 ,

|↑1↓1↑2〉= d †
1↑d

†
1↓d

†
2↓ |0〉 , |↑1↓1↓2〉= d †

1↑d
†
1↓d

†
2↓ |0〉 ,

|↑1↑2↓2〉= d †
1↑d

†
2↑d

†
2↓ |0〉 , |↓1↑2↓2〉= d †

1↓d
†
2↑d

†
2↓ |0〉 ,

which, in the basis Ψodd =
(
|↑1〉 |↓1〉 |↑2〉 |↓2〉 |↑1↓1↑2〉 |↑1↓1↓2〉 |↑1↑2↓2〉 |↓1↑2↓2〉

)T
, are described

by the Hamiltonian

Hodd =



ϵ1 0 κ↑↑ κ↑↓ τ∗↓↑,φ τ∗↓↓,φ Γ ∗2φ 0

0 ϵ1 κ↓↑ κ↓↓ −τ∗↑↑,φ −τ∗↑↓,φ 0 Γ ∗2φ
κ∗↑↑ κ∗↓↑ ϵ2 0 Γ ∗1φ 0 −τ∗↑↓,φ −τ∗↓↓,φ
κ∗↑↓ κ∗↓↓ 0 ϵ2 0 Γ ∗1φ τ∗↑↑,φ τ∗↓↑,φ
τ↓↑,φ −τ↑↑,φ Γ1φ 0 2ϵ1+ ϵ2+U1 0 −κ↓↓ κ↑↓
τ↓↓,φ −τ↑↓,φ 0 Γ1φ 0 2ϵ1+ ϵ2+U1 κ↓↑ −κ↑↑
Γ2φ 0 −τ↑↓,φ τ↑↑,φ −κ∗↓↓ κ∗↓↑ 2ϵ2+ ϵ1+U2 0

0 Γ2φ −τ↓↓,φ τ↓↑,φ κ∗↑↓ −κ∗↑↑ 0 2ϵ2+ ϵ1+U2


.

(3.43)

Here again, the changes in sign in front of the καβ and ταβ terms come from the anti-commutation rules

for fermionic operators d (†)jσ. We can see that, as opposed to the S-QD-S junction studied in Sec. 1.4,
here the doublet states can present a φ dependence as states with one electron and states with three
electrons are coupled through the terms involving the transfer of Cooper pairs [126]. Without SOC, we
have κσσ̄ =τσσ,φ = 0 so that the spin states decouple. Thus, Eq. (3.43) can be separated into two identical
and independent blocks for each spin, and τ↑↓,φ =−τ↓↑,φ in this case (see Eq. (3.45)).

In the following, we will study the energy spectrum of the system without SOC, which we will obtain
numerically in Sec. 3.2.1. We will describe the main features of this spectrum for different configurations
of the system and compare them to the energy spectrum of the single dot junction. Since we are mainly
interested in the odd parity sector, in which we want to break the spin degeneracy, we will try to find the
suitable range of parameters to have a spin doublet ground state.

3.2.1 Energy spectrum without SOC

We will start by discussing the energy spectrum of this system when there is no SOC in the cou-
plings. In this case, the Hamiltonian in Eq. (3.42) can be separated into a block describing the sin-
glet states and another one for the triplet states, while the Hamiltonian in Eq. (3.43) can be separated
into two independent spin sectors. We denote HT the Hamiltonian describing the triplet states which

we write in the basis ΨT =
Ä
|↑1↑2〉 |↓1↓2〉

|↑1↓2〉+|↓1↑2〉p
2

äT
, HS for the singlet states in the basis ΨS =Ä

|0〉 |↑1↓1〉 |↑2↓2〉 |↑1↓1↑2↓2〉
|↑1↓2〉−|↓1↑2〉p

2

äT
and, Hσ describes the states of spin σ and is written in the
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basis Ψσ =
(
|σ1〉 |σ2〉 |σ1 ↑2↓2〉 |↑1↓1 σ2〉

)T
. Without SOC, we have τ↑↓,φ = −τ↓↑,φ , so we will use the

notation τφ =τ↑↓,φ =−τ↓↑,φ for simplicity. These Hamiltonians are given as

HT = (ϵ1+ ϵ2)13, (3.44)

Hσ =

Ü
ϵ1 κ0 −τ∗φ Γ ∗2φ
κ0 ϵ2 Γ ∗1φ −τ∗φ
−τφ Γ1φ 2ϵ1+ ϵ2+U1 −κ0

Γ2φ −τφ −κ0 2ϵ2+ ϵ1+U2

ê
, (3.45)

HS =

â
0 Γ ∗1φ Γ ∗2φ 0

p
2τ∗φ

Γ1φ 2ϵ1+U1 0 Γ ∗2φ
p

2κ0

Γ2φ 0 2ϵ2+U2 Γ ∗1φ
p

2κ0

0 Γ2φ Γ1φ 2(ϵ1+ ϵ2) +U1+U2 −
p

2τφp
2τφ

p
2κ0

p
2κ0 −

p
2τ∗φ ϵ1+ ϵ2

ì
, (3.46)

We will discuss the main features of the energy spectrum for different shapes of the junction.

Namely, we will look at the two dots being in parallel (κ̌ = 0 and t
(a j )
0 ̸= 0), in series (κ0 ̸= 0, t (L1,R 2)

0

or t (R 1,L2)
0 non-zero with t (R 1,L2)

0 = 0 or t (L1,R 2)
0 = 0 respectively) and with a finite value for all different

couplings as depicted in Fig. 3.2, i.e., κ0 and t
(a j )
0 non-zero. We obtained the energy spectrum for all

configurations by numerically diagonalizing the Hamiltonians of Eqs. (3.42) and (3.43). The resulting
spectrum is shown in Fig. 3.3 for symmetric and asymmetric tunnel coupling (same/different tunnel
couplings between the dots and the right and left superconducting electrodes), respectively. In this figure,
the parallel configuration is shown in the first column, the series configuration in the middle one and,
finally, the configuration with all couplings in the third column.

Let’s first discuss the symmetric case. In contrast to the single quantum dot junction, here the
energy spectrum is much richer. Notably, doublet states in green dashed lines exhibit dispersion with the
superconducting phase difference φ, originating from the coupling between the one and three particles
states. Without spin-orbit coupling, triplet states, shown in red lines, remain decoupled from other states
and show no phase dependence. Finally, we can notice a qualitative difference in phase dependence for
the configuration where the two dots are in series, i.e., in the middle column of Fig. 3.3. Compared to the
parallel configuration a π-phase shift can be observed between the lowest / highest energy levels and the
second lowest / highest energy levels. This particularity in the phase dependence can also be seen for
the doublet states. However, when all the couplings are finite, this particularity does not survive in the
symmetric case.

In the asymmetric case, the main difference that can be observed in panel (b) of Fig. 3.3 is for the
configuration with all couplings being finite (right column). For this configuration, a mix between the
phase difference of the dots in parallel and the dot in series can be observed for phases close to π. In this
way, it is possible to get closer to the phase dependence of one configuration or the other as a function of
the relative values of the various couplings.

We will not give more details on the general energy spectrum. Instead, we will now try to find a
suitable range of parameters to favor an odd parity ground state. More precisely, we want to find the
parameters such that in the weak tunnel couplings limit, the ground state of the system is a state with a
single electron on the dots. Since we cannot derive analytically the eigenvalues of the Hamiltonians of
Eqs. (3.42) and (3.43) in the general case, we can first look at a stability diagram of the two dots without
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Figure 3.3: Energy spectrum of the S-DQD-S junction obtained numerically and normalized by Ū =
(U1 +U2)/2. For each plot, we chose ϵ1/Ū = −0.5, ϵ2/Ū = −0.2, and, δU /Ū = 0.5 with δU = U1 −U2.
Red lines correspond to triplet states, green dashed lines to doublet states and, in black are the singlet
states. The first/second row is for the symmetric/asymmetric tunnel couplings to the leads. The parallel
configuration is shown in the first column, the series configuration in the middle one and, the config-
uration with all couplings in the third column. For the symmetric coupling (panel (a)), we have for the
parallel configuration Γ1/Ū = Γ2/Ū = 2, and δΓ1/Ū = δΓ2/Ū = κ0/Ū = 0. For the series configuration,
Γ1/Ū = Γ2/Ū = κ0/Ū = 1, and δΓ1/Ū =−δΓ2/Ū =−1. And, for the configuration with all couplings, we set
Γ1/Ū = Γ2/Ū = 2, κ0/Ū = 1 and δΓ1/Ū = δΓ2/Ū = 0. For the asymmetric tunnel couplings (panel (b)), the
parameters are Γ1/Ū = 2, Γ2/Ū = 5, δΓ1/Ū = −1, δΓ2/Ū = 2.5 for the parallel configuration. For the dots
in series, we have Γ1/Ū =−δΓ1/Ū = 1.5, Γ2/Ū = Γ2/Ū = 3.75 and κ0/Ū = 2.5. Finally, for the configuration
with all couplings, we have Γ1/Ū = 2, Γ2/Ū = 5, δΓ1/Ū =−1, δΓ2/Ū = 2.5 and κ0/Ū = 2.5. The parameters
have been chosen such that all the couplings are of the same order of magnitude.

the superconducting leads depicted in Fig. 3.4. 1 According to this simple diagram, to have a single
electron occupying the dots when there is no inter-dot interaction, we need to have a negative on-site
energy for one of the two dots within the range −Uj < ϵ j < 0, while the other on-site energy needs to be
positive.

From the study of the ground state parity made in Chap. 1, we also know that the couplings between
a dot and the superconducting leads play a role in the parity of the ground state. However, Eq. (1.200)
shows that if Coulomb repulsion is strong enough compared to other energies of the system, i.e., on-site
energy and hybridization between the dot and the leads, a doublet ground state will be favored. Here, the
situation is a bit different as we now have two dots coupled to the leads, and the two dots can be coupled
to each other. Thankfully, strong Coulomb repulsion, i.e., Γ jφ ,ταβ ,φ ≪ Ū = (U1+U2)/2, as for the S-QD-S
junction, helps moderate the effect of the couplings with the leads on the parity of the ground state. The

1In the case of symmetric couplings between the left and right leads, several simplifications can be made. When the couplings
are symmetric, we have τσσ,φ = 0 and τ↑↓,φ =−τ↓↑,φ . These simplifications allow one to rewrite Eq. (3.43) as two 4x4 independent
matrices which take the same form as Eq. (3.45).
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Figure 3.4: Stability diagram of the two dots without any couplings. The number of electrons on each dot
is indicated in parentheses, where the first element corresponds to the number of electrons in dot 1 and
the second element gives the number of electrons in dot 2.

last parameters that can affect the parity of the ground state are the on-site energy of each dot and the
coupling between them. For the on-site energies, we already know from the stability diagram in Fig. 3.4
that we need to have opposite sign on-site energies. However, due to the couplings with the leads, the
difference between these on-site energies will also play a role. Finally, the inter-dot coupling, as we will
see in the next section, is responsible for shifting the energy of the dots such that it plays a similar role as
the on-site energy difference. The effect of those parameters on the parity of the ground states is shown
in Fig. 3.5.
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Figure 3.5: Effect of the on-site energy difference, tunnel couplings and inter-dot coupling on the ground
state parity of the junction. Panel (a) shows a reference energy spectrum with the two lowest energy states
being shown. The level in dashed lines is the doublet state and the other one is the singlet state. For this
panel, the parameters are ϵ1/Ū =−5×10−3, ϵ2/Ū = 10−2, t0/Ū = 5×10−3 and κ0/Ū = 0. In panels (b)-(d),
we change only one parameter from panel (a) in order to show the effect of the different parameters. In
the panel (b) is shown the effect of on-site energy difference where we took ϵ1/Ū = −2.5× 10−2. For the
panel (c), we show the effect of the tunnel couplings where t0/Ū = 3.5×10−3. Finally, in the panel (d), we
put κ0/Ū = 1.5×10−2.
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3.3. Lifting the spin degeneracy

For the moment, we have qualitatively described the energy spectrum of the S-DQD-S junction.
Also, we discussed the parameters that can affect the parity of the ground state. Thus, in the next section,
we will delve more deeply into the study of the energy spectrum in the odd parity sector. We will focus on
the minimal ingredients required to lift the spin degeneracy by adding SOC in the different couplings of
the system.

3.3 Lifting the spin degeneracy

As previously said, in this section, we will study the energy spectrum in the odd sector. Namely, we will
focus on sets of parameters that allow to have an odd parity ground state. In particular, we will show how
SOC in the inter-dot coupling κ̌ or in the tunnel coupling ť can lead to a spin-splitting of the quantum
dots states. We recall that the Hamiltonian Hodd describing the odd sector is given by Eq. (3.43) which is

written in the basis Ψodd =
(
|↑1〉 |↓1〉 |↑2〉 |↓2〉 |↑1↓1↑2〉 |↑1↓1↓2〉 |↑1↑2↓2〉 |↓1↑2↓2〉

)T
. We can divide

this Hamiltonian into several blocks. The first one is the upper left block, which describes states with one
electron on a given dot. We can write it as

H1 = ϵ̄ρ0σ0+
δϵ

2
ρzσ0+κ0ρxσ0−ρyκ ·σ, (3.47)

where we used the notations ϵ̄ = (ϵ1 + ϵ2)/2 and δϵ = ϵ1 − ϵ2. σx ,y ,z and ρx ,y ,z are Pauli matrices acting
in the spin space and dot space respectively. The second block is the one describing the states with three
electrons, which can be written as

H3 = (3ϵ̄+Ū )ρ0σ0+
δϵ+δU

2
ρzσ0−κ0ρxσ0−ρyκ ·σ, (3.48)

with Ū = (U1 +U2)/2 and δU =U1 −U2. At large U , this separation allows one to define a low and a high
energy sector corresponding to the sector with one electron and three electrons on the dots, respectively.
The last Hamiltonian we need is the one that contains the off-diagonal block. We denote this Hamiltonian
as HV which is given as

HV =
Å

0 V†

V 0

ã
, (3.49)

V =
ï
τ0ρ0+

Γ1φ + Γ2φ
2

ρx + i
Γ1φ − Γ2φ

2
ρy

ò
σ0+ρzτ ·σ, (3.50)

with

τ0 =
τ↓↑,φ −τ↑↓,φ

2
=−
î
τ(R )↑↓ cosϕ(R )↑↓ +τ

(L )
↑↓ cosϕ(L )↑↓

ó
cos

φ

2
+ i
î
τ(L )↑↓ cosϕ(L )↑↓ −τ

(R )
↑↓ cosϕ(R )↑↓

ó
sin
φ

2
, (3.51)

τx =
τ↓↓,φ −τ↑↑,φ

2
=
î
τ(R )↑↑ sinϕ(R )↑↑ −τ

(L )
↑↑ sinϕ(L )↑↑

ó
sin
φ

2
− i
î
τ(R )↑↑ cosϕ(R )↑↑ +τ

(L )
↑↑ cosϕ(L )↑↑

ó
cos

φ

2
, (3.52)

τy =−i
τ↓↓,φ +τ↑↑,φ

2
=
î
τ(R )↑↑ cosϕ(R )↑↑ −τ

(L )
↑↑ cosϕ(L )↑↑

ó
sin
φ

2
− i
î
τ(R )↑↑ cosϕ(R )↑↑ +τ

(L )
↑↑ cosϕ(L )↑↑

ó
cos

φ

2
, (3.53)

τz =
τ↓↑,φ +τ↑↓,φ

2
=
î
τ(L )↑↓ sinϕ(L )↑↓ −τ

(R )
↑↓ sinϕ(R )↑↓

ó
sin
φ

2
+ i
î
τ(R )↑↓ sinϕ(R )↑↓ +τ

(L )
↑↓ sinϕ(L )↑↓

ó
cos

φ

2
, (3.54)

where one can notice that the real part ofτ0 and imaginary part ofτ are proportional to cosφ/2 while their
imaginary / real parts are proportional to sinφ/2. From these relations, it is easy to see thatτ∗0(φ) =τ0(−φ)
and τ∗(φ) =−τ(−φ). Hence, we can easily verify that under TRS, we have ΘHodd(φ)Θ−1 =Hodd(−φ)with
Θ = iσyρ0Σ0C where σy acts in the spin space, ρ0 in dot space and Σ0 is the Pauli matrix acting in the
1−3 particles space.
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CHAPTER 3. The double quantum dots junction

To simplify the problem, we will assume that the Coulomb repulsion is very strong such that U is the
dominant energy, i.e., ϵ j , καβ , Γiφ , ταβ ,φ ≪Uj . This way, we will use the Schrieffer-Wolff transformation to
obtain an effective Hamiltonian to describe the states with only one electron. In addition, in the following,
we will also assume that δU ≪ Ū in the following such that the energy scale of the problem is set by Ū
allowing us to treat other energies as perturbations. But, first, we need to diagonalize H1 and H3. This is
easily done thanks to TRS. The two rotation matrices that diagonalize these two blocks are

R1 = e −i θκ2 ρ0σz e −i γκ2 ρ0σy e −i ακ2 ρzσz e −i
β1
2 ρyσ0 , (3.55)

R3 = e −i θκ2 ρ0σz e −i γκ2 ρ0σy e i ακ2 ρzσz e −i
β3
2 ρyσ0 , (3.56)

where R1 is the rotation matrix for H1, R3 for H3 and

θκ = arctan
κy

κx
, γκ = arctan

»
κ2

x +κ2
y

κz
, ακ = arctan

−|κ|
κ0

, (3.57)

β1 = arctan
2
»
κ2

0+ |κ|2

δϵ
, β3 = arctan

−2
»
κ2

0+ |κ|2

δϵ+δU
. (3.58)

Applying these rotations leads to

H̃1 =R †
1 H1R1 = ϵ̄ρ0σ0+

 
δϵ2

4
+κ2

0+ |κ|2ρzσ0, (3.59)

H̃3 =R †
3 H3R3 = (3ϵ̄+Ū )ρ0σ0+

 Å
δϵ+δU

2

ã2

+κ2
0+ |κ|2ρzσ0. (3.60)

We can see in the above equations that the inter-dot coupling κ̌ cannot lift the spin degeneracy by itself
due to TRS. Its effect is simply to shift the energy levels of the two dots.

In addition, we define H̃V = diag(R †
1 , R †

3 ) · HV · diag(R1, R3) and Ṽ =R †
3VR1. In general, we will denote

with a "∼" symbol the quantities when we have projected Eq. (3.43) into the eigenbasis of H1 and H3 with
R1 and R3.

We can now apply the Schrieffer-Wolff transformation e S to Hodd, where S is defined as

S =
∑

|Φ3〉|Φ1〉
|Φ3〉

〈Φ3|H̃V |Φ1〉
〈Φ3|H̃3 |Φ3〉− 〈Φ1|H̃1 |Φ1〉

〈Φ1| −h.c., (3.61)

and
�

�Φ1,3

〉
denotes the states of H̃1,3 respectively. The resulting Hamiltonian is given as

H1,eff = H̃1−
1

2

∑

|Φ3〉|Φ1〉|Φ′1〉
|Φ1〉
ñ
〈Φ1|H̃V |Φ3〉 〈Φ3|H̃V

�

�Φ′1
〉

〈Φ3|H̃3 |Φ3〉− 〈Φ1|H̃1 |Φ1〉
+
〈Φ1|H̃V |Φ3〉 〈Φ3|H̃V

�

�Φ′1
〉

〈Φ3|H̃3 |Φ3〉−
〈
Φ′1
�

�H̃1

�

�Φ′1
〉ô〈Φ′1�� , (3.62)

≡ H̃1− H̃V ,eff.

This Hamiltonian allows one to describe the one particle states where H̃V ,eff takes into account the
coupling between the one and three particle states. Namely, when a Cooper pair tunnels to the dots, cor-
responding to the terms 〈Φ3|H̃V

�

�Φ′1
〉

, we have a virtual high energy state with three electrons occupying
the dots. Then, this Cooper pair tunnels back into one of the superconducting leads, which is described
by 〈Φ1|H̃V |Φ3〉, leaving the junction in a low energy state. These processes are represented in Fig. 3.6 for a
junction without inter-dot coupling.
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3.3. Lifting the spin degeneracy

In the denominator of H̃V ,eff, we keep H̃1 since it contains terms that can be of the same order of
magnitude as those in H̃3 besides Ū such as the terms proportional to ϵ j , δU and καβ . We keep these
terms because, as we will see later, it can be necessary to go to first order in (αϵ̄+βδϵ+δκαβ +γδU )/Ū
where α,β ,δ,γ are adimensional coefficients resulting from 〈Φ3|H̃3 |Φ3〉− 〈Φ1|H̃1 |Φ1〉.

Our goal here is to determine the ingredients we need to lift the spin degeneracy. Using again the
analogy with the S-N-S junction of Chap. 2, we know that we need to have at least two channels and a
phase shift between opposite spin states. The two channels are provided by the dots when they are both
connected to the superconducting leads. For the phase shift, we saw in Sec. 3.2 that it can be provided
by the crossed Andreev reflection terms ταβ ,φ when the tunnel couplings have a finite spin dependence
t ̸= 0. The other mechanism that can provide this phase shift is the inter-dot coupling if the latter also
has a finite spin dependence κ ̸= 0, and if the two dots are connected to the leads. Therefore, in the
following, we will study two simple cases. For both of them, we will consider that there is no spin-flip
such that tx ,y = κx ,y = 0. This simplifies a lot the problem as it leaves the two spin sectors uncoupled. In
the first case, we will consider the parallel configuration, i.e., without inter-dot coupling κ̌ = 0 and SOC
in the tunnel couplings such that ť = t0 + i tzσz . In the second case, we will consider the configuration
when all the couplings are present (tunnel and inter-dot), with SOC in the inter-dot coupling such that
κ̌ = κ0 + iκzσz and no SOC in the tunnel couplings ť = t0. With these two cases, we will be able to show
that the spin degeneracy can be lifted if at least one of the couplings has a finite spin dependence.

3.3.1 Effect of SOC in the couplings

As mentioned before, in this section, we will study the effect of SOC in the couplings of the system (tunnel
or inter-dot couplings) without spin-flip transmission probability tx ,y = κx ,y = 0. We will start with the
case without inter-dot coupling (parallel configuration) and then, study the case with SOC in the inter-dot
coupling (configuration where all the couplings are present).

3.3.1.1 Effect of SOC in the tunnel couplings ť

Let’s start with the study of the energy spectrum without inter-dot coupling κ̌ = 0, i.e., the parallel con-
figuration. Here, we will characterize the spin-splitting of states within a same doublet when the tunnel
couplings have a finite spin dependence of the form ť = t0 + i tzσz . The Hamiltonians for the one and
three particle states take the simple form

H1 = ϵ̄ρ0+
δϵ

2
ρz , (3.63)

H3 = (3ϵ̄+Ū )ρ0+
δϵ+δU

2
ρz , (3.64)

Without spin-flip τ↑↑ =τ↓↓ = 0, V simplifies to

V =
ï
τ↓↑,φ −τ↑↓,φ

2
ρ0+

Γ1φ + Γ2φ
2

ρx + i
Γ1φ − Γ2φ

2
ρy

ò
σ0+

τ↓↑,φ +τ↑↓,φ
2

ρzσz . (3.65)

From these Hamiltonians, we can get HV ,eff. Without spin-flip in the coupling, the two spin sectors remain
decoupled and we can look at each block separately which are given as

HV ,eff,σ =
1

2

Ñ
2
(
|τσ̄σ,φ |2

2ϵ̄+Ū+δU /2
+

|Γ2φ |2

2ϵ̄+Ū−δϵ−δU /2

)
κ∗eff,σ

κeff,σ 2
(
|τσσ̄,φ |2

2ϵ̄+Ū−δU /2
+

|Γ1φ |2

2ϵ̄+Ū+δϵ−δU /2

)é , (3.66)
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where

κeff,σ =σ
ï
Γ ∗1φτσ̄σ,φ

Å
1

2ϵ̄+Ū +δU /2
+

1

2ϵ̄+Ū +δϵ+δU /2

ã
−τ∗σσ̄,φΓ2φ

Å
1

2ϵ̄+Ū −δU /2
+

1

2ϵ̄+Ū −δϵ−δU /2

ãò
.

(3.67)

As we discussed in the previous section, the Hamiltonian H1,eff from Eq. (3.62) describes a state with
one electron in one of the two dots. Cooper pairs can tunnel from one of the superconducting electrodes
to the dots and bring the system into a three particles state so that the system is in a virtual high energy
state. These Coopers then tunnel back into one of the electrodes leaving the system in a one particle state.
Without inter-dot coupling, Cooper pairs can either tunnel into the same dot or they can be split between
the two dots as depicted in Fig. 3.6. Thanks to this coupling to the three particle states sector, an effective
coupling between the two dots which we denoteκeff,σ in Eq. (3.66) is possible. The eigenvalues of Eq. (3.66)

(a)

(b)

Figure 3.6: Illustration depicting the physics governed by H1,eff in a system without inter-dot coupling (κ̌=
0). In panel (a), the process involves either splitting or tunneling of the Cooper pair into the unoccupied
dot, followed by its exit in the same manner. In panel (b), the sequential events of Cooper pair tunneling
into both dots and the co-tunneling of the two electrons occupying the same quantum dot or vice versa
allow an effective transfer of an electron from one dot to the other.

can easily be obtained. We write them as

ϵσ,± = ϵ̄−
(HV ,eff,σ)11+ (HV ,eff,σ)22

2
±
…

1

4

(
δϵ+

(
(HV ,eff,σ)11− (HV ,eff,σ)22

))2+
�

�(HV ,eff,σ)21

�

�

2
, (3.68)

In the limit |δϵ| ≫ |(HV ,eff,σ)i j |, i.e. |δϵ| ≫ (πνS |ť |2)2/Ū , we obtain the following spin-splitting

Ūδϵ± =∓s (|τ↓↑,φ |2− |τ↑↓,φ |2) =±s (τ2
↑↓−δτ

2
↑↓)sinδϕ↑↓ sinφ, (3.69)

with s = sign(δϵ) and δϵ± = ϵ↑± − ϵ↓±. Foremost, we can see that the resulting spin-splitting has a sinφ
dependence and is opposite for the two doublets. The SOC strength is encoded in δϕ↑↓. An interesting
point is that from Eq. (3.69), we can see that SOC allows one to lift the spin degeneracy except when
δϕ↑↓ is a multiple of π. This is the case when there is a symmetry between the couplings, i.e., when
ť (a 1) = ť (a 2). Hence, as long as the tunnel couplings are different, there is a finite splitting between the
spin states of a same doublet. We can also see that the splitting vanishes when τ↑↓ = δτ↑↓ which simply
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Figure 3.7: Energy spectrum of the lowest energy states for the S-DQD-S studied in Sec. 3.3.1.1 for the
regime |δϵ| ≫ |(HV ,eff,σ)i j |. Full lines correspond to the numerical diagonalization of Eq. (3.43) while dot-
ted lines correspond to the analytical results obtained in Sec. 3.3.1.1 at first order in 1/Ū . For each panel,
we set δU /Ū = 2.5 × 10−2, ϵ1/Ū = −1 × 10−2 and ϵ2/Ū = 5 × 10−3. For the tunnel couplings, we have
t R 1

0 = t R 2
0 = t L2

0 = t R 1
z = t L2

z = Ū /2×10−3 and t L1
0 = t L1

z = t R 2
z = Ū ×10−3. We have normalized the energies

by Ū as it sets the energy scale. The scale on each plot is set by the smallness of the tunnel couplings
and Ū as the dispersion with the phase is proportional to (πνS t 2)2/Ū according to Eq. (3.68) and is here
of the order of ∼ 10−7. The panel (a) shows the energy of the lowest energy doublet ϵ−σ. The panel (b)
shows the same but for the higher-energy doublet ϵ+σ. Finally, panel (c) shows the energy splitting be-
tween states within a same doublet. We have a sinφ spin splitting for the two doublets of states which are
nearly identical as predicted by Eq. (3.69). The smallness of the parameters has been chosen such that a
doublet ground state is favored.

indicates that there is no splitting when one of the two superconducting leads is not connected to the
dots, which is expected as in this case, the spectrum becomes independent of the phase difference. The
phase dispersion and spin-splitting for each doublet is shown in Fig. 3.7.

We can also look at the limit δϵ = 0. This regime can be achieved via the use of electrostatic gates
to tune the on-site energy of each dot. From Fig. 3.4, we already know that in this case, it should not
stabilize a doublet ground state, but we can still look at the required ingredients to lift the spin degeneracy.
Developing Eq. (3.68) to the second order in 1/Ū leads to

δϵ± =
δU

2Ū 2
(|τ↑↓,φ |2− |τ↓↑,φ |2)

1±
|Γ1φ |2+ |Γ2φ |2+ |τ↑↓,φ |2+ |τ↓↑,φ |2…(

|τ↓↑,φ |2+ |Γ2φ |2− |τ↑↓,φ |2− |Γ1φ |2
)2+4
�

�

�Γ ∗1φτ↓↑,φ − Γ2φτ
∗
↑↓,φ

�

�

�

2

 . (3.70)

First, a factor δU /Ū now reduces the splitting. The factor (|τ↑↓,φ |2 − |τ↓↑,φ |2) of Eq. (3.70) is the same as
the one in Eq. (3.69) and gives a sinφ splitting. However, the phase dependence of the second term in
parentheses can be more complicated. In addition, the two terms in parentheses of Eq. (3.70) can be of
the same order of magnitude. Hence, the resulting splitting for one of the doublets can be significantly
smaller than for the other one due to the ± sign in front of the second term in parentheses. As for the
limit |δϵ| ≫ |(HV ,eff,σ)i j |, the factor (|τ↑↓,φ |2−|τ↓↑,φ |2) implies that we need to have an asymmetry between
the tunnel couplings to have a finite spin-splitting. The resulting dispersion with the phase difference
and spin-splitting is shown in Fig. 3.8
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Ū

×10−7
(a)

0 π 2π
φ

−2

−1

(ε
σ
,+
−
ε 2

)/
Ū
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Figure 3.8: Same Figure as Fig. 3.7 but for the regime δϵ = 0. Full lines correspond to the numerical diag-
onalization of Eq. (3.43) while dotted lines correspond to the analytical results obtained in Sec. 3.3.1.1 at
second order in 1/Ū . For each plot, we here have δU /Ū = 5×10−2, ϵ1/Ū = ϵ2/Ū =−1×10−2. The tunnel
couplings are the same as in Fig. 3.7. As expected from Eq. (3.70), the splitting of one of the two doublets
is significantly lower than the other and differ from a sinφ.

According to Eq. (3.70), if the two dots are identical δϵ = δU = 0 then, there is no spin-splitting.
The question is whether this result is more general than what the effective Hamiltonian of Eq. (3.66)
yields. This can be easily done by looking back at the initial Hamiltonians of Eqs. (3.63)-(3.65). When the
two dots are identical, H1 and H3 become proportional to identity. In this case, the Hamiltonian Hodd of
Eq. (3.43) can be easily diagonalized and yields the same eigenvalues for the two spin sectors.

Interestingly, we can see with the two limits we have studied that, in order to lift the spin degener-
acy, it is necessary to have non-identical dots. Namely, their on-site energy ϵ and/or Coulomb repulsion
strength U must be different. In addition, there must be an asymmetry in the tunnel couplings with the
leads to have a finite spin-splitting. Away from the two limits we describe, the spin-splitting can become
different from the sinφ we obtained, but keep the two-fold degeneracy for φ multiple of π which effec-
tively preserves TRS. in Fig. 3.9, we show a typical energy spectrum obtained numerically for this scenario.
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Figure 3.9: Same Figure as Fig. 3.7 but for the regime |δϵ| ∼ |(HV ,eff,σ)i j |. The parameters are δU /Ū =
5×10−2, ϵ1/Ū =−1×10−2 and |δϵ|/Ū = 5×10−8. We used the same tunnel couplings as in Fig. 3.7.
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3.3. Lifting the spin degeneracy

3.3.1.2 Effect of SOC in the inter-dot coupling κ̌

We now turn to the evaluation of the energy spectrum in the scenario where we have SOC in the inter-
dot coupling κ̌ = κ0 + iκzσz and finite spin-independent tunnel couplings ť = t0. The Hamiltonians
describing the one and three particles states are in this case

H1 = ϵ̄ρ0σ0+
δϵ

2
ρzσ0+κ0ρxσ0−κzρyσz , (3.71)

H3 = (3ϵ̄+Ū )ρ0σ0+
δϵ+δU

2
ρzσ0−κ0ρxσ0−κzρyσz , (3.72)

while V is given as

V =−τφρ0+
Γ1φ + Γ2φ

2
ρx + i

Γ1φ − Γ2φ
2

ρy , (3.73)

where

τφ =τcos
φ

2
+ iδτsin

φ

2
, (3.74)

τ=τR +τL , δτ=τR −τL , (3.75)

τa =πνS

�

�

�t
(a 1)
0 t (a 2)

0

�

�

� (3.76)

Projecting Eq. (3.43) into the eigenspace of H1 and H3 yields

H̃1 = ϵ̄ρ0+

 
δϵ2

4
+κ2

0+κ2
z ρz ≡ ϵ̄ρ0+

δ̃ϵ(1)
2
ρz , (3.77)

H̃3 = (3ϵ̄+Ū )ρ0+

 Å
δϵ+δU

2

ã
+κ2

0+κ2
z ρz ≡ (3ϵ̄+Ū )ρ0+

δ̃ϵ(3)
2
ρz . (3.78)

while V becomes

Ṽ =
[
V00ρ0+Vz 0ρz +Vx 0ρx +Vy 0ρy

]
σ0+

[
Vz zρz +Vx zρx

]
σz , (3.79)

with

Vz 0 =
1

2

(
Γ1φ + Γ2φ

)
sin

Å
β1+β3

2

ã
, (3.80)

Vz z = iτφ sinακ cos

Å
β1+β3

2

ã
, (3.81)

Vx 0 =
1

2

(
Γ1φ + Γ2φ

)
cos

Å
β1+β3

2

ã
, (3.82)

Vx z =−iτφ sinακ sin

Å
β1+β3

2

ã
, (3.83)

V00 =
1

2

(
Γ1φ − Γ2φ

)
sin

Å
β1−β3

2

ã
−τφ cosακ cos

Å
β1−β3

2

ã
, (3.84)

Vy 0 = i

ï
τφ cosακ sin

Å
β1−β3

2

ã
+

1

2

(
Γ1φ − Γ2φ

)
cos

Å
β1−β3

2

ãò
. (3.85)

As mentioned at the beginning of Sec. 3.3, the inter-dot coupling by itself, even with SOC, does not di-
rectly lift the spin degeneracy of the one and three particle states. However, it induces a spin structure in
H̃V . Hence, we can expect that the spin degeneracy will be lifted thanks to this coupling. The effective
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CHAPTER 3. The double quantum dots junction

Hamiltonian describing the one particle states thus describes a similar physic as in the previous section.
The main difference here is that the electrons are delocalized between the two dots due to the finite value
of κ̌. The derivation of the eigenvalues of H1,eff is the same as the one we did for the scenario with SOC in

ť (see Eq. (3.68)). So we will jump directly to the resulting spin-splitting. In the limit δ̃ϵ(1) ≫ |(H̃V ,eff,σ)i j |
that favors a doublet ground state, we obtain at the lowest order in 1/Ū the following splitting

δϵ± =±
1

Ū
[τ (δΓ1−δΓ2)−δτ (Γ1− Γ2)]sinβ1 sinακ sinφ. (3.86)

Here again, we observe a sinφ spin-splitting. The splitting is maximal when β1 and ακ are equal to π/2,
which is the case when δϵ = δU = 0 for β1, and when κ0 = 0 for ακ. Unlike the previous scenario, here, it
is not necessary to have a finite non-spin-dependent part of the coupling, in this case κ0. In addition, the
splitting vanishes when τ = δτ = 0, which corresponds to the configuration where the dots are in series
or simply means that the dots are not coupled to the superconducting leads. Also, there is no splitting

when Γ1 − Γ2 = δΓ1 −δΓ2 = 0, which is verified when Γi ,1 = Γi ,2. With κ̌ ̸= 0, we can’t be in the limit δ̃ϵ(1) =

2
»
δϵ2

4 +κ
2
0+κ2

z = 0, therefore, we won’t cover this limit here. The energy spectrum for the lowest energy
states is shown in Fig. 3.10
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Figure 3.10: Energy spectrum of the lowest energy states for the S-DQD-S junction with SOC in the inter-

dot coupling in the regime δ̃ϵ(1)≫ |(H̃V ,eff,σ)i j |. Full lines are for the numerical results and dotted lines are
for the analytical result of Eq. (3.68) at first order in 1/Ū . For each plot, we set δU = 0, ϵ1/Ū = −1× 10−2,
ϵ2/Ū = 5× 10−3, κ0/Ū = 2.5× 10−3 and κz /Ū = 5× 10−3. For the tunnel couplings, we have t L1

0 = t R 2
0 =

Ū /2× 10−3, t R 1
0 = t L1

0 = Ū × 10−3. As in Fig. 3.7, the panel (a) shows the energy of the lowest doublet
ϵ−σ shifted by ϵ1 and normalized by Ū . The panel (b) is the same but for the higher-energy doublet ϵ+σ.
Finally, the panel (c) shows the energy splitting between states within a same doublet. As predicted by
Eq. (3.86), we obtain a sinφ spin splitting for the two doublets of states that are nearly identical in this
regime.

Finally, as can be seen in Fig. 3.11, in the limit δ̃ϵ ∼ |(HV ,eff,σ)i j | the spin-splitting differs from the
simple sinφ splitting we obtained as in Fig. 3.7.

We have now described the energy spectrum in the odd parity sector. Using an effective Hamilto-
nian describing the one particle states, we have shown how SOC can lead to a spin-split energy spectrum.
To do so, we have studied the simple scenario of a junction with spin-dependent tunnel coupling between
the two dots and the superconducting and no inter-dot coupling. And, we studied a junction with spin-
dependent inter-dot coupling and finite tunnel coupling between the dots and the leads without SOC.
Our results indicate that to lift the spin degeneracy, the following ingredients are required
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3.4. Current operator
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Figure 3.11: Same figure as Fig. 3.10 but for the regime δ̃ϵ(1) ∼ |(H̃V ,eff,σ)i j |. For each plot, we set δU = 0,
ϵ1/Ū =−1×10−2, ϵ2 = ϵ1, κ0/Ū = 2.5×10−9 and κz /Ū = 0.5×10−8. The tunnel couplings are the same as
in Fig. 3.10. As opposed to the splitting obtained in Fig. 3.9, here the two doublets show a quasi-identical
spin-splitting.

• SOC in the tunnel or inter-dot couplings.

• Each dot needs to be connected to both leads.

• Non-identical dots, i.e. finite on-site energy difference δϵ ̸= 0, Coulomb repulsion strength differ-
ence δU ̸= 0 or introduced via the inter-dot coupling κ̌.

• Asymmetry between the left and right tunnel couplings between the dots and the leads (no inter-dot
coupling), or different tunnel couplings for each dot (with inter-dot coupling).

In the next section, we will study the current operator. As in Chap. 2, we will study the off-diagonal
matrix element of this operator. Our main goal here will be to determine what is needed to obtain finite off-
diagonal matrix elements between opposite spin states. We will also characterize, with numerical results,
the dependence of these elements on the parameters of the system.

3.4 Current operator

As said previously, in this section we will evaluate the matrix elements of the current operator. Our objec-
tive will be to highlight the minimal set of ingredients to obtain finite matrix elements between opposite
spin states. In particular, we want to obtain these requirements for the matrix element for states within the
same doublet. To fulfill this objective, we will start by deriving the current operator in the superconduct-
ing atomic limit ∆→∞ which we used to obtain the Hamiltonians describing the even and odd parity
sector. Then, as we did for the energy spectrum, we will only study the odd parity sector and consider
strong Coulomb repulsion to describe only the one particle states. From the effective model which de-
scribes the latter, we will show that in order to have finite matrix elements between opposite spin states,
spin-flip in the tunnel couplings, finite inter-dot coupling and different Coulomb repulsion on the two
dots are required. Finally, we will use numerical results to characterize the different matrix elements of
the current operator and give perspectives to obtain analytical results to evaluate these matrix elements.
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CHAPTER 3. The double quantum dots junction

3.4.1 Current operator in the superconducting atomic limit

Let’s start by deriving the current operator in the superconducting atomic limit∆→∞. As we will see be-
low, in this limit the current operator is the derivative of the effective Hamiltonian Heff defined in Eq. (3.27)
with respect to the phase difference φ. To show this, we first need to know how the current operator is
defined in the general case. This operator should describe the flow of particles in the junction. Therefore,
we can define it from the variations of the number of particles in the superconducting leads. The current
operator describing the variation of the number of particles in one of the leads can thus be written as

JL/R = e ṄL/R , Na =
∑

kσ

c †
kσ,a ckσ,a , (3.87)

where Ṅa = dNa/dt . Using Heisenberg equation of motion, we can simply write

Ja =i
e

ħh
[H , Na ] (3.88)

=
i e

ħh

∑

k

∑

j=1,2

∑

αβ

Ä
t
(a j )
αβ d †

jαckβ ,a −h.c.
ä

.

Note that we could have obtained this result from a different derivation. In fact, by performing an appro-
priate gauge transformation such that

ck ,σ,a → ck ,σ,a e iϕa /2, (3.89)

then, the superconducting Hamiltonians for both electrodes contain only real terms. However, the tun-
neling Hamiltonian which couples the electrodes to the dots becomes

HT ,a =
∑

k

∑

j=1,2

∑

αβ

Ä
t
(a j )
αβ e iϕa /2d †

αck ,β ,a +h.c.
ä

. (3.90)

It results that Eq. (3.88) can thus be obtained by taking the derivative of H with respect to ϕa , i.e.,
Ja =

2e
ħh ∂ϕa

HT ,a .

From this definition, we want to obtain a current operator that describes the flow of electrons from
the left lead to the right lead. More precisely, when an electron leaves the left lead, and an electron enters
the right lead so that ṄR =−ṄL , this operator should describe the transfer of one charge across the junc-
tion. Also, when the number of electrons in each lead increases by one charge ṄR = ṄL , then we should
not have any current in the junction. Therefore, the current operator we obtain is given as [127]

JL→R =
JR − JL

2
, (3.91)

Using the derivation for Ja , we obtain

JL→R =e
ṄR − ṄL

2
=

e

ħh

Å
∂HT ,R

∂ ϕR
−
∂HT ,L

∂ ϕL

ã
=

2e

ħh
∂H

∂ φ
, (3.92)

The fact that only the tunnel Hamiltonian HT appears in the current operator is not surprising as the
only possible way to transfer electrons from one lead to the other is by their tunneling to the quantum
dots. Also, the fact that we recover the usual current-phase relation by performing the appropriate gauge
transformation is not surprising as well, given that we are describing a Josephson junction.
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3.4. Current operator

To obtain the current operator in the atomic limit, the procedure is the same as for the Hamiltonian.
We will first perform a Schrieffer-Wolff transformation on JL→R then project onto the low energy sector.
This reads

Jeff,a =
∑

|ΦL 〉|Φ′D 〉
|ΦL 〉 〈ΦL | (Ja + [S , Ja ])

�

�Φ′D
〉〈
Φ′D
�

� , (3.93)

where S is given in Eq. (3.8) and |ΦL 〉 ,
�

�Φ′D
〉

denotes the states of the dots.

From our previous results, we can easily see that, at first order in 1/Ek ,a with Ek ,a =
√
ξk ,a +∆2,

the effective current operator obtained is none other than the derivative of the effective Hamiltonian Heff

defined in Eq. (3.27) with respect to the phase such that we can write

Jeff,a =
2e

ħh
∂Heff

∂ ϕa
. (3.94)

It results that the current operator describing the flow of electrons from the left to the right electrodes of
Eq. (3.91) can, in the superconducting atomic limit, be written as

Jeff =
2e

ħh
∂Heff

∂ φ
, (3.95)

where we have dropped the subscript L→R for readability.

In the following, it is this current operator that we will use as a basis for our numerical results.

3.4.2 Effective current operator in the odd parity sector

From here, we will focus on the matrix elements of the current operator in the odd parity sector.
In Hodd only the off-diagonal blocks described by HV depends on the phase difference φ such that
∂φHodd = ∂φHV .

As for the energy spectrum, we will consider a strong Coulomb repulsion so that U is the dominant
energy. Therefore, we want to evaluate the matrix elements of the current operator in the low energy sector
constituted by the one particle states. We can, once again, use a Schrieffer-Wolff transformation onto Jodd

then project onto the basis spanned by the one particle states. We denote the resulting current operator
as J1,eff which is given as

J1,eff =−
2e

ħh

∑

|Φ3〉|Φ1〉|Φ′1〉
|Φ1〉
ñ
〈Φ1|H̃V |Φ3〉 〈Φ3|∂φH̃V

�

�Φ′1
〉

〈Φ3|H̃3 |Φ3〉− 〈Φ1|H̃1 |Φ1〉
+
〈Φ1|∂φH̃V |Φ3〉 〈Φ3|H̃V

�

�Φ′1
〉

〈Φ3|H̃3 |Φ3〉−
〈
Φ′1
�

�H̃1

�

�Φ′1
〉 ô〈Φ′1�� , (3.96)

where |Φ3〉 denotes the states of H̃3 and |Φ1〉 ,
�

�Φ′1
〉

the states of H̃1.

From this equation, we can already see that at first order in 1/Ū , we will obtain J1,eff = 2e ∂φH1,eff/ħh .
However, as we saw for the energy spectrum, it may be necessary to go to higher orders in 1/Ū to properly
describe the physics contained in Hodd. Therefore, we will leave Eq. (3.96) as it is for now, and develop
this equation at given orders when necessary.

3.4.3 Minimal ingredients for finite elements between opposite spin
states

We can now study the matrix elements of J1,eff in more detail. We can already see that the two scenarios
we covered in the previous section on the energy spectrum don’t allow us to obtain finite matrix elements
between opposite spin states. In those scenarios, we considered finite SOC in the couplings between the

115



CHAPTER 3. The double quantum dots junction

dots and the leads or in the coupling between the two dots. However, in both cases, the two spin-sectors
remained decoupled because we did not include spin-flip transmission probability in the couplings. So,
we can simply start by studying these two scenarios again, but this time including finite spin-flip trans-
mission probabilities. More precisely, for the scenario studied in Sec. 3.3.1.1, we will this time consider
ť = t0 + i t ·σ and, for the scenario of Sec. 3.3.1.2 we will consider κ̌ = κ0 + iκ ·σ. Unfortunately, as we
shall demonstrate, even in these cases this is not enough to have finite matrix elements between opposite
spin states. In fact, as we will show below, a minimal model with spin-flip in the tunnel couplings, finite
inter-dot coupling and a finite difference between the Coulomb repulsion strengths is required to have
finite matrix elements between opposite spin states.

3.4.3.1 Spin-flip in the inter-dot coupling

Let’s start with the case of Sec. 3.3.1.2 and include spin-flip in the inter-dot coupling κ̌ = κ0 + iκ ·σ. In
this case, it is quite trivial to see that the spin states remain decoupled. We recall that the diagonalized
Hamiltonians for the one and three particle states are given in Eqs. (3.47) and (3.48). Those two Hamilto-
nians have been diagonalized by the rotation matrices R1 and R3 respectively which are given in Eqs. (3.55)
and (3.56). Without SOC in the tunnel couplings, the Hamiltonian HV which couples the one and three
particles states does not present any spin-structure and therefore, commute with ρ0σi with i = x , y , z .

Therefore, the matrix e −i θκ2 ρ0σz e −i γκ2 ρ0σy in R1/3 will commute with HV and, the problem turns out to be
exactly the same as if we had considered only κ̌= κ0+ iκzσz as in Sec. 3.3.1.2. Hence, the spin sectors re-
main decoupled such that it is not possible to have finite matrix elements of the current operator between
opposite spin states.

3.4.3.2 Spin-flip in the parallel configuration

Let’s now study the parallel configuration of Sec. 3.3.1.1 when we add spin-flip such that ť = t0+ i t ·σ. As
we will see, for this scenario it is possible to find an appropriate unitary transformation independent of
the superconducting phase difference φ, which diagonalizes the block of V and results in a redefinition
of the spin but leaves the spin sector uncoupled. The Hamiltonians describing the one and three particles
states are given in Eqs. (3.63) and (3.64). The Hamiltonian HV which couples the one and three particle
states is given by Eq. (3.49). We can write V in the form

V =
ÅT1 Γ ′1
Γ ′2 T2

ã
. (3.97)

The off-diagonal blocks contain the terms coming from Andreev reflection and are given as Γ ′j = Γ jφ12.
The diagonal blocks T1,2 contain the ταβ ,φ terms and encode the spin structure of V . These blocks can be
written as T1,2 =τ012±τ ·σwhereτ0 andτ are given in Eqs. (3.51)-(3.54). One can observe that they verify
the relation T †

1 =ηT2η
−1 with η= iσy C. From the defintion of ταβ ,φ , we can see in Eqs. (3.51)-(3.54) that

the real part of τ0 and the imaginary part of τi with i = x , y , z are proportional to cosφ/2 while, their
imaginary / real parts are proportional to sinφ/2.

We now have everything we need. The only blocks of V that are not diagonal in spin space are the
blocks T1/2. These two blocks contain only complex terms and are not hermitian, so we cannot diagonal-

ize them with a single unitary transformation. But, we can use the relation T †
1 = ηT2η

−1 and diagonalize
the matrices T †

1/2T1/2 which are 2× 2 hermitian matrices. Since these matrices are hermitian, we can di-
agonalize them by rotations aroundσx ,y ,z which commute with η. Hence, as we now show, diagonalizing

T †
1/2T1/2 is equivalent to diagonalize T1 and T2 at the same time. These matrices are given as

T †
1/2T1/2 =

(
|τ0|2+ |τ|2

)
σ0±2
∑

i

Re
[
τ∗0τ

]
·σ−2
∑

i< j

∑

k

Im
[
εi j kτ

∗
iτ j

]
σk , (3.98)
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where the sums over i or j go over x , y , z and εi j k is the Levi-Civita symbol.

Expanding the products of τ terms leads to a global sinφ phase dependence for the terms propor-
tional to σi with i = x , y , z . Thus, the rotation matrices that diagonalize these matrices won’t depend on
the superconducting phase differenceφ. These rotation matrices are given as

Wk = e −i
θτ,k

2 σz e −i
γτ,k

2 σy , (3.99)

with k = 1, 2 and

θτ,k = arctan
Re
[
τ∗0τy

]
− (−1)k Im

[
τ∗xτz

]
Re
[
τ∗0τx

]
+ (−1)k Im

[
τ∗yτz

] , (3.100)

γτ,k = arctan
(−1)k+1

…
∑

i=x ,y

Ä
Re
[
τ∗0τi

]
−
∑

j=x ,y Im
î
ε j 3iτ

∗
jτz

óä2

Re
[
τ∗0τz

]
+ (−1)k Im

[
τ∗xτy

] . (3.101)

After being diagonalized, one can show that T †
1 T1 and T †

2 T2 can be written in the form

W †
k T †

k Tk Wk =
(
|τ0|2+ |τ|2

)
σ0

− (−1)k 2

Ã(
Re
[
τ∗0τz

]
+ (−1)k Im

[
τ∗xτy

])2+
∑

i=x ,y

(
Re
[
τ∗0τi

]
−
∑

j=x ,y

Im
î
ε j 3iτ

∗
jτz

ó)2

σz .

(3.102)

Using the relation T †
1 = T T2T −1 and ηση−1 =−σ, we can easily see that

T1/2T †
1/2 =

(
|τ0|2+ |τ|2

)
σ0±2
∑

i

Re
[
τ∗0τ

]
·σ+2
∑

i< j

∑

k

Im
[
εi j kτ

∗
iτ j

]
σk . (3.103)

One can see that for T1T †
1 the terms proportional to σi with i = x , y , z have an opposite sign compared

to T †
2 T2. The same applies to T2T †

2 and T †
1 T1. Hence, the rotation W2 diagonalizes T1T †

1 while W1

diagonalizes T2T †
2 .

The rotation matrices that diagonalize individually T1 and T2 can be found with the result we just
derived. To do so, we can first remark thatÄ

W †
1 T †

1 T1W1−W †
2 T1T †

1 W2

ä
= 0, (3.104)Ä

W †
2 T †

2 T2W2−W †
1 T2T †

2 W1

ä
= 0. (3.105)

It turns out that these two relationships appear in the evaluation of the commutatorsî
W †

1 T †
1 T1W1, W †

2 T1W1

ó
and
î

W †
2 T †

2 T2W2, W †
1 T2W2

ó
. They are given asî

W †
1 T †

1 T1W1, W †
2 T1W1

ó
=
Ä

W †
1 T †

1 T1W1−W †
2 T1T †

1 W2

ä
W †

2 T1W1 = 0, (3.106)î
W †

2 T †
2 T2W2, W †

1 T2W2

ó
=
Ä

W †
2 T †

2 T2W2−W †
1 T2T †

2 W1

ä
W †

1 T2W2 = 0, (3.107)

where we used the relation W †
k Wk = 1. These commutators being zero, it implies that W †

2 T1W1 and

W †
1 T1W2 have only terms proportional toσ0 andσz , meaning that these two matrices are diagonal.
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CHAPTER 3. The double quantum dots junction

What we have shown here is that, with an appropriate unitarity transformation that is independent
of the superconducting phase difference φ, it is possible to diagonalize T j which results in a redefinition
of the spin of our states but leaves the two spin sector uncoupled. Hence, even in this case where we
have spin-flip transmission in the tunnel couplings between the dots and the leads, it is not enough to
have finite matrix elements of the current operator between opposite spin states. This results, as for the
previous scenario with κ̌= κ0+ iκ ·σ is valid at all orders in 1/Ū .

3.4.3.3 Minimal model for finite matrix elements between opposite spin states

In fact, to have finite matrix elements of the current operator between opposite spin states, it is necessary
to have aφ dependent unitary transformation such that it is not possible to diagonalize all the blocks of Ṽ
at the same time. A minimal model for which it is possible to have finite matrix elements between opposite
spin states involves at least spin-dependent tunnel couplings ť = t0+ i t ·σ, a finite inter-dot coupling of
the form κ̌= κ0 and, a finite difference δU ̸= 0 between the Coulomb repulsion strengths of the two dots.
The last two conditions come from the diagonalization of the Hamiltonians describing states with one and
three electrons on the dots. The rotation matrices that diagonalize these Hamiltonians are in this case

R1/3 = exp

ï
−i
β1/3

2
ρyσ0

ò
, (3.108)

with

β1 = arctan
2κ0

δϵ
, (3.109)

β3 = arctan
−2κ0

δϵ+δU
. (3.110)

The dependence inρy in R1/3 allows one to couple the different blocks T1/2 and Γ ′1/2 of V . However, in the

particular case of δU = 0, then, β3 =−β1 and one can show that this will lead to a Ṽ with spin-dependent
diagonal blocks and spin-independent off-diagonal blocks, analogous to the study we’ve done in the
previous section. In this case, anotherφ-independent unitary transformation diagonalizing the diagonal
block of Ṽ leaving the spin sectors decoupled can be found. This result can even be extended to a more
complex inter-dot coupling which is spin-dependent of the form κ̌ = κ0 + iκ ·σ. As can be seen in
Eq. (3.57) and Eq. (3.58), it is mandatory to have δU ̸= 0. This condition implies that developing Eq. (3.96)
at first order in 1/Ū is not sufficient in order to have finite matrix elements between opposite spin in the
effective model.

We will not go further into details in this section. Instead, in the next section we will look at the
characteristics of the matrix elements of the current operator, in particular, we will study the matrix ele-
ments between states within the same doublet. To do so, we will use numerical results obtained from the
diagonalization of Eq. (3.43) to determine the typical φ dependence of these matrix elements and which
parameters fix their amplitude.

3.4.4 Numerical results

We will now qualitatively characterize the matrix elements of the current operator. Especially, we want
to find the dependence of the matrix element between states of the lowest energy doublets on the
parameters of the system such as the superconducting phase difference φ, or, the Coulomb repulsion
strength Ū . We will use numerical results obtained by projecting Jeff which we defined in Eq. (3.95) into
the eigenbasis of Eq. (3.43) which we have diagonalized numerically, such that the only approximation
made here is the superconducting atomic limit∆→∞.
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3.4. Current operator

Figure 3.12 shows a typical energy spectrum and the matrix elements of the current operator be-
tween states of the lowest energy doublet. These curves are obtained for a regime in which this doublet
of states constitutes the ground states of the junction. We considered a junction with strong Coulomb re-
pulsion strength ϵ j , κ̌, ťδU ≪ Ū . The inter-dot coupling does not present SOC and is set to κ0/Ū = 10−2.
The on-site energies are set to ϵ1/Ū = −1 × 10−2 and ϵ2/Ū = 5 × 10−3 with different Coulomb repul-
sion strength given by δU /Ū = 5× 10−2. Finally, we consider spin-dependent tunnel couplings between
the dots and the superconducting leads such that ť = t0 + i t ·σ. The values for the couplings are re-
sumed in Tab. 3.1. A typical sinφ splitting can be seen in the energy spectrum, characteristic of the

regime
»
(δϵ/2)2+κ2

0 ≫ |(H̃V ,eff)i j |. We normalized the matrix element of the current operator |Jϵ−↓→ϵ−↑ |
by J0 = e Ū /ħh . The latter shows a phase dependence resembling a sin2φ can be seen. According to the
parameters we took, the maximum amplitude seems to be limited by the cube of the Coulomb repulsion
strength. To characterize more precisely the dependence of |Jϵ−↓→ϵ−↑ | on parameters other than the phase
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Figure 3.12: Energy spectrum (left) and off-diagonal matrix element of the current operator (right) for the
lowest energy doublet ϵ−. The parameters are ϵ1/Ū = −1× 10−2, ϵ2/Ū = 5× 10−3, δU /Ū = 5× 10−2 and
κ0/Ū = 10−2. The values of the tunnel couplings are given in Tab. 3.1. A sinφ splitting can be seen in the

energy spectrum in the middle panel, characteristic of the regime
»
(δϵ/2)2+κ2

0≫ |(H̃V ,eff)i j |. The matrix

element of the current operator is normalized by J0 = e Ū /ħh , and its amplitude seems to be limited by Ū 3.
The latter shows a phase dependence resembling a sin2φ.

t0/Ū tx /Ū t y /Ū tz /Ū
ťL1 5×10−3 10−3 1.5×10−3 10−3

ťR 1 10−2 5×10−4 5×10−4 5×10−4

ťL2 10−3 10−3 1.5×10−3 10−3

ťR 2 5×10−4 10−3 2.5×10−3 5×10−4

Table 3.1: Values of the tunnel couplings used for Fig. 3.12

φ, we looked at the maximum amplitude of |Jϵ−↓→ϵ−↑ |/J0 with J0 = e Ū /ħh versus the Coulomb repulsion
strength Ū , the difference between the Coulomb repulsion strength δU and the inter-dot coupling κ0 in
Fig. 3.13. In this figure, a dependence on Ū 4 is highlighted in panel (a) with a fit in open dots given by
αδU /Ū 4, where α depends on the values of other parameters such as ť and κ0. Here, α = 0.09. This fit
also indicates a linear dependence on δU , corroborating what can be seen on panel (b). Finally, for the
dependence with κ0, the maximum amplitude first increases with κ0 until it reaches a maximum. This
dependence can be understood from the definition of β1 and β3 which are used to diagonalize the Hamil-
tonians describing one and three particle states. They are given by Eqs. (3.109) and (3.110). Asκ0 increases,
we tend to have β3→−β1, and as we discussed in the previous section, in this case we cannot have finite
matrix elements of the current operator between opposite spin states. Finally, Fig. 3.14 shows different
matrix elements of the current operator. However, note that the parameters used for this figure do not al-
low one to have a doublet ground state and were chosen for visibility. The parameters areδU /Ū = 5×10−2,
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0

1

2

3

m
ax

(|J
ε −
↓→

ε −
↑|/
J

0
)

×10−9
(a)

0.000 0.025 0.050 0.075 0.100
δU/Ū

0

2

4

6

×10−9
(b)

0.00 0.02 0.04
κ0/Ū
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Figure 3.13: Maximum amplitude of Jϵ−↓→ϵ−↑ versus Γ̄/Ū with fixed Γ̄ = (Γ1 + Γ2)/2 (panel (a)), δU /Ū with
Ū fixed (panel (b)) and, κ0/Ū with Ū fixed (panel (c)). With panels (a) and (b), we can see a linear de-
pendence on δU and a cubic dependence of |Jϵ−,↓→ϵ−,↑ | on 1/Ū . When being fixed, the parameters are
δU /Ū = 5×10−2, κ0/Ū = 10−2 and Γ̄/Ū = 1.43×10−2. The tunnel couplings are given in Tab. 3.1. We used
this result to fit the curve of panel (a) with αδU /Ū 4 where α depends on the values of other parameters
such as ť and κ0, and is here set to α = 0.09. The dependence on κ0 shows a global maximum which is
explained in the main text.

ϵ1/Ū =−7.5×10−3 and ϵ2/Ū =−2.5×10−3. κ0/Ū is set to κ0/Ū = 1×10−3 while the tunnel couplings are
given in Tab. 3.2. The main point in this figure is that the matrix element between states of the same spin
(in purple) has a qualitatively higher amplitude than the ones between opposite spin states (black and
green). Also, compared to the phase dependence of the intra-doublet element, the phase dependence of
Jϵ−↓→ϵ+↑ and Jϵ−↓→ϵ+↓ looks more complicated.

t0/Ū tx /Ū t y /Ū tz /Ū
ťL1 1×10−3 6×10−3 2×10−3 7×10−3

ťR 1 9×10−3 4×10−3 2×10−3 3×10−3

ťL2 2×10−3 3×10−3 5×10−3 1×10−3

ťR 2 7×10−3 3×10−3 7×10−3 4×10−3

Table 3.2: Values of the tunnel couplings used for Fig. 3.14

All of these results indicate that in order to characterize more precisely the matrix elements of the
current operator with analytical results, it is necessary to develop Eq. (3.96) to the third order in 1/Ū .
This means that one needs to go to a higher order when performing the Schrieffer-Wolff transformation.
However, the linear dependence with δU shows that developing Eq. (3.96) to the third order in 1/Ū may
be sufficient, as the spin-flip matrix element goes to zero when δU = 0. In order to further simplify the
problem, an effective model describing only the lowest energy doublet could be considered.
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Figure 3.14: Energy spectrum for the single particle states and some matrix elements of the current oper-
ator associated with the arrows depicted in the energy spectrum. The spin-conserving transition shows
a qualitatively greater amplitude than the spin-flip ones. Additionally, the phase dependence of |Jϵ−↓→ϵ+↑ |
and |Jϵ−↓→ϵ+↓ | looks more complicated than for the intra-doublet transition.

3.5 Conclusion

In this chapter, we have studied a Josephson junction in which the normal region is constituted by two
quantum dots. We showed that in this kind of Josephson junction, the spin degeneracy can be lifted thanks
to SOC in the tunnel couplings between the quantum dots and the superconducting leads, and/or, in the
inter-dot coupling. Using an effective model describing the one particle states, we have characterized
the resulting spin-splitting in parameter regimes in which a doublet ground state with one electron oc-
cupying the dots is favored. In particular, we showed that when the on-site energy difference between
the two dots is sufficiently high, this splitting shows a sinφ dependence. Finally, we found the minimal
required ingredients to have finite matrix elements of the current operator between opposite spin states.
Thanks to numerical results, we showed that the intra-doublet elements present a sin2φ for parameters
that allow one to have a doublet ground state. Its maximum amplitude seems to be limited by the cube of
the Coulomb repulsion strength and requires to have at least, a finite inter-dot coupling, spin-dependent
tunnel couplings with spin-flip transmission and a difference between the Coulomb repulsion strengths
of the two dots. These results indicate that analytical results could be obtained by developing Eq. (3.96)
to the third order in 1/Ū . Also, a simpler effective model describing only the lowest energy doublet could
be considered.
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Conclusion and perspectives

The work presented in this thesis focused on the theoretical study of Andreev bound states in Josephson
junctions with spin-orbit coupling. This research was motivated by the opportunity to realize an Andreev
spin qubit using the spin of Andreev bound states. A key result of this thesis is that the concomittance of
spin-split ABS, and spin-flip scattering processes due to the presence of a generic scatterer or electrostatic
gates, allows for non-vanishing current operator matrix elements between ABS of opposite spin. This
result indicates that the direct manipulation of a phase-driven Andreev spin qubit should be possible.
Two types of Josephson junctions which could be promising platforms for the realization of such qubits
were studied in this thesis in chapter 2 and chapter 3.

Chapter 2 focuses on the study of a superconductor-normal-superconductor junction, in which
the normal region consists of a nanowire with Rashba SOC. We first show how spin-orbit coupling
allows lifting the spin degeneracy of ABS. A finite spin-splitting can be obtained when at least three
ingredients are present. The first one is an asymmetry of the velocities in opposite pseudo-spin bands in
the nanowire, which is possible thanks to the concomitance of SOC and a finite transverse width of the
nanowire. The second ingredient is a finite length of the nanowire. Finally, a finite superconducting phase
difference that differs from the effective time-reversal invariant values 0 and π is needed. When these
requirements are fulfilled, the spin-splitting is only limited by the minimum of the superconducting gap
in the superconducting leads for short junctions and the inverse of the dwell time in the normal region for
long junctions. In this chapter, we consider a scattering center located along the nanowire, responsible
for inducing spin-flip transmission probability. Unless the system possesses additional symmetries, such
scattering is generally present. We first study the effect of SOC and spin-flip transmission probabilities
on the energy spectrum of ABS. We then turn to the evaluation of the matrix elements of the current
operator. We show that generic scattering potentials, such as the one we consider, yield non-vanishing
matrix elements for all possible transitions, including the intra-doublet spin-flip transitions, in the
absence of a magnetic field. The amplitude of the matrix element for intra-doublet spin-flip transitions
is controlled by the spin-splitting of the spectrum and the presence of spin-flip scattering in the junction.
Our findings indicate that the strong driving of the ASQ can be reached in a Josephson junction made
with a nanowire of intermediate length (on the scale of the superconducting coherence length), provided
that spin-orbit coupling (characterized by the relative asymmetry of the Fermi velocities in each of the
pseudo-spin bands intercepting the Fermi level) is strong.

In the nanowire-based Josephson junctions that we investigated, we ignored the effect of Coulomb
interaction. Thereby, the Andreev spin qubit resides above the even ground state, and it requires a
quasiparticle to “poison” the junction [33, 112] in order to be realized. Recent experiments with quantum
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dots subject to large Coulomb repulsion allowed stabilizing the doublet ground state in the odd sector, as
well as resolving the spin splitting [48, 95, 111].

Hence, in our second project presented in Chapter 3, we study a superconductor-double quantum
dots-superconductor junction. In this chapter, we first show why one quantum dot with a single level is
insufficient to lift the spin degeneracy. Introducing a second quantum dot in the normal region allows for
having an additional channel for electrons to flow, thus resembling the model presented in [95]. However,
our system presents the advantage of offering more control over on-site energy and Coulomb repulsion
for each dot. By using an effective model, we are able to determine and characterize the minimal set of
ingredients to lift the spin degeneracy in the superconducting atomic limit ∆ →∞. Our study reveals
that a finite spin-splitting can be obtained when the tunnel or inter-dot couplings are spin-dependent
and preserve TRS. Such couplings can for instance be obtained with quantum dots realized with InAs
nanowires and electrostatic gates. The resulting spin-splitting is reduced by the Coulomb repulsion
strength and requires non-identical tunnel couplings between the left and right leads and the two dots.
As for our study of the Josephson junction with the Rashba nanowire, we then proceed to the study of
the current operator matrix elements. We are able to show that finite matrix elements between opposite
spin states are possible within the framework of a minimal model. This model involves a finite coupling
between the two dots, spin-dependent tunnel couplings between the leads and the dots, and a finite
Coulomb repulsion strength difference between the two dots. Thanks to numerical results, we are able
to characterize the dependence of the intra-doublet spin-flip elements on the system parameters. In a
regime of parameters that favor a doublet ground state with one electron occupying one of the two dots,
our results indicate a typical sin2φ phase dependence. The amplitude of these matrix elements seems to
be limited by the inverse of the cube of the Coulomb repulsion strength and shows a linear dependence
with the Coulomb repulsion strength difference between the two dots when the latter is small compared
to the mean of the two.

In the future, some questions need to be addressed. One of them is on what factor the phase
profile along the junction we discussed in Chap. 2 depends on when the system is driven. Answering this
question would involve the evaluation of the AC profile of the drive along the junction. One might expect
this phase profile to be mostly influenced by the electrostatic profile of the weak link such that for instance
the phase drop would occur at the normal - superconductor interfaces, the scattering center or a mix of
both. Experimental work on the S-DQD-S junction depicted in Chap. 3 is also needed to show the viability
of this platform for the realization of ASQ. For the nanowire Josephson junction, a better understanding
of the poisoning mechanism is required as it limits the maximum time during which the qubit can be
manipulated. Answering these questions will help to find the best platform for the realization of such
qubits. Additionally, the coupling of multiple Andreev spin qubits as well as with other kinds of qubits
will have to be studied. Also, the experimental realization of these qubits shows a coherence time of only
a few nanoseconds and seems to be limited by the spinful nuclear bath of the indium arsenide used for
the normal region. As pointed out in [48], the use of nuclear-spin-free semiconductors like Silicon-28 or
isotopically purified germanium could be envisaged as alternative platforms for the realizations of ASQ.
Hence, this point should be improved in the future.

The systems studied in this thesis could also be of interest for other realizations besides Andreev
spin qubits. In particular, with the addition of an external magnetic field, for instance, it would become
possible to obtain a spin-polarized ground state allowing for the possibility to realize aϕ0-Josephson junc-
tion. These junctions present the property to show a finite supercurrent at zero superconducting phase
difference [39, 128, 129]. Spin-split ABS energy levels present a finite slope with the phase at zero phase
difference. And, the current flowing in the junction is given by the derivative of the energy of the occupied
ABS with respect to the phase. Thus, a spin-polarized ground state will lead to a non-zero supercurrent
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at zero superconducting phase difference. These systems could also be of interest for the study of the su-
perconducting diode effect, an effect characterized by different magnitudes of the critical supercurrents
flowing in opposite directions [129–131]. Such junctions can be realized when both time reversal and in-
version symmetry are broken [132]. In analogy with the role of a semiconducting diode, which is one of the
building blocks of our actual digital technologies, superconducting diodes may form building blocks for
dissipationless digital technologies. In the same spirit, the so-called Andreev molecules could be studied
[133, 134]. The latter can occur when two weak links of a Josephson junction are within a coherence length
from each other. If that’s the case then, their ABS will become coupled such that the current flowing in
one weak link would be dependent on the phase difference of the other, allowing to realize ϕ0-Josephon
junctions. For instance, one could imagine using this interaction between the two weak links to couple
two ASQ [111]. Finally, with sufficiently large magnetic fields, it would become possible to enter into the
topological regime and explore the physics of Majorana bound states [34–36, 135]. These particular bound
states which occur at zero energy would be robust against local noise or perturbations due to their topo-
logical protection making them an excellent candidate for the realization of low-error qubits.
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APPENDIX A
Time reversal symmetry

Most systems are asymmetric when we reverse the direction of time, such that we can distinguish whether
the time of a movie is running forward or backward. However, when dissipation is removed, the laws
of mechanics are time reversal invariant. In this appendix, we will mainly follow the PhD thesis of Jens
Hjörleifur Bárðarson [136]. In 1930, while studying the Schrödinger equation, H. A. Kramers discovered a
mapping Θ. This mapping when appled to a solution

�

�ψ
〉

with energy E produces another solution Θ
�

�ψ
〉

with the same energy [137]. In cases involving an odd number of spin 1/2 particles, these solutions are
orthogonal, introducing a degeneracy in the spectrum known as Kramers degeneracy. Wigner showed
that the transformation discovered by Kramers is time reversal, and the degeneracy reflects the existence
of time reversal symmetry [138]. Besides causing the Kramers degeneracy of energy eigenvalues, the
presence of time reversal also enforces a symmetry on the Hamiltonians and scattering matrices.

According to a theorem of Wigner [139], symmetries can be represented by two types of operators.
The first ones are unitary and linear operators. The symmetries described by these operators lead to the
conservation of quantities. For instance, translational symmetry conserves momentum, and rotational
symmetry conserves angular momentum. The other types of operators are antiunitary and antilinear
operators. The symmetries they are describing generally do not conserve quantities. Their effect is thus
more nuanced as evidenced by the Kramers degeneracy due to time reversal symmetry. However, these
symmetries are equally crucial as the unitary ones.

We will begin by a short review on antiunitary operators, followed by an explanation and derivation
of the time reversal symmetry operator and its consequences for scattering matrices.

A.1 Antiunitary operators

Let’s start by discussing the properties of antilinear and antiunitary operators. An operator Θ is said to be
antilinear if for any states

�

�φ
〉

,
�

�ψ
〉

and for any complex numbersα andβ , it satisfies the following relation

Θ
(
α
�

�φ
〉
+β
�

�ψ
〉)
=α∗Θ
�

�φ
〉
+β ∗Θ
�

�ψ
〉

. (A.1)

Furthermore, if this operator satisfies the relation

�

�

〈
φ
∣∣ψ〉��= ��〈Θφ∣∣Θψ〉�� , (A.2)

then, this operator is an antiunitary operator. This property can be written as〈
Θφ
∣∣Θψ〉= 〈φ∣∣ψ〉∗ . (A.3)
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The simplest operator that verifies these conditions is the complex conjugation operator C and it
satisfies

C |n〉= |n〉 , C2 = 1, (A.4)

where |n〉 is a state in an orthogonal basis which we denote as {|n〉}. The action of this operator on a state
�

�ψ
〉
=
∑

n cn |n〉 can thus be written as

C
�

�ψ
〉
=
∑

n

c ∗n |n〉 . (A.5)

Another property is that a product of an antiunitary and unitary operator is again antiunitary while the
product of two antiunitary operators is unitary. Therefore, any antiunitary operator Θ can be written as a
product of a unitary operator U and the complex conjugation operator C.

A.2 Time reversal symmetry operator

With this mathematical background, we can turn our attention to the study of the time reversal operator.
As it will be shown here, this operator needs to be antiunitary. The effect that it should have on the physics
of the system is that it needs to reverse the momentum of a particle while it keeps its position unchanged.
We can describe the evolution of state

�

�ψ(t )
〉

to the state
�

�ψ(t ′)
〉

with the time evolution operator U (t , t ′) =
exp [−i H (t ′− t )/ħh ]. If we apply the time reversal operator on the state

�

�ψ(t0)
〉

, it should reverse its motion
such that, if the system is time reversal symmetric, then

U (t0, t0+δt0)Θ
�

�ψ
〉
=ΘU (t0, t0−δt0)

�

�ψ
〉

, (A.6)

which can be understood as follows. If the system is time reversal symmetric, it is equivalent to first re-
versing the motion then evolving forward in time or to first evolving backward in time and then reversing
the motion. In particular, if δt is small, we can write

(1− i Hδt /ħh )Θ =Θ(1+ i Hδt /ħh ). (A.7)

IfΘ is taken to be a linear operator such thatΘH =−HΘ, it would mean that, for any energy eigenvalue E ,
it would exist a state with an energy eigenvalue−E which is a nonsensical result and implies that H is not
bounded from below. A basic example is free electrons. The latter has a strictly positive energy spectrum.
Therefore, we have to take Θ as an antiunitary operator verifying [Θ, H ] = 0.

A.2.1 Spinless system

For a spinless system, the complex conjugation operator C fulfills all the requirements that we have for the
time reversal operator Θ with respect to the position basis {|x 〉}. We can see this on a general state vector
�

�ψ
〉

:

C x̂
�

�ψ
〉
= C
ˆ

dx x̂ψ(x ) |x 〉=
ˆ

dx x̂ψ∗(x ) |x 〉= x̂C
�

�ψ
〉

, (A.8)

Cp̂
�

�ψ
〉
= C
ˆ

dx

Å
−iħh

∂

∂ x

ã
ψ(x ) |x 〉=

ˆ
dx

Å
iħh
∂

∂ x
ψ∗(x )

ã
|x 〉=−p̂C
�

�ψ
〉

. (A.9)

These relations are valid for any
�

�ψ
〉

. Thus, the operators need to satisfy

C x̂C−1 = x̂ , (A.10)

Cp̂C−1 =−p̂ , (A.11)

which is exactly what we want for the time reversal operator, thus Θ = C.
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|ψ(t′)⟩

|ψ(t)⟩

(a)

|ψ⟩ Θ |ψ⟩ U(δt)Θ |ψ⟩
(b)

|ψ⟩ U(−δt) |ψ⟩ ΘU(δt) |ψ⟩
(c)

Figure 1.1: Representation of the time evolution of a state
�

�ψ
〉

in panel (a). In a time reversal symmetric
system, reversing the motion and evolving forward in time as represented in panel (b) is equivalent to
evolving backward in time and then reversing the motion as represented in panel (c). This figure has been
taken from [136].

A.2.2 Spin 1/2 system

In general, the time reversal operator needs to reverse all the momenta. However, we can see that the time
reversal operator that we defined for a spinless case does not work for spin 1/2 particles. In particular, its
action on the Pauli matrices which describe the spin of particles is,

CσxC−1 =σx , (A.12)

Cσy C−1 =−σy , (A.13)

CσzC−1 =σz , (A.14)

and we need to have an operator such that ΘσΘ−1 = −σ as we want it to reverse momentum and spin.
Thus, we want to write the time reversal operator as Θ = U C with U ̸= 1 because complex conjugation
is not enough by itself. However, we can see that C is sufficient to reverse σy . Therefore, we want an
operator U which commutes with σy and anticommutes with σx and σz . It turns out that this is one of
the properties ofσy . Hence, we can define

Θ = iσy C, (A.15)

where we have put an accompanying phase i such that the unitary operator is real. This reasoning can be
extended to particles of any spin. By denoting the matrices in the three directions for these particles as
Sx ,y ,z that are proportional to the Pauli matrices, we need to construct an operator that must anticommute
with Sx ,z and commute with Sy . This corresponds to a rotation ofπaround the y axis, which can be written
as

Θ = e iπSy /ħhC. (A.16)
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From this relation, one can easily recover Eq. (A.15) by taking Sy =
ħh
2σy so that

Θ = e i π2σy C = iσy C. (A.17)

One property of the operator defined in Eq. (A.15) is that its square value depends on the spin of the
particle such that

Θ2 =

®
1 for integer spin particles,

−1 for spin-half particles.
(A.18)

A.2.3 Consequences of time reversal symmetry (TRS) on scattering ma-
trix

The scattering matrix links the amplitude of ingoing and outgoing states in the following way,

ψout = Sψin. (A.19)

The scattering matrix S being unitary, we can also write

ψin = S†ψout. (A.20)

Now, if we consider that the system we study is time reversal symmetric, it means that the time reversed
states described by the scattering matrix are also solutions of the Hamiltonian and should be described
by the same scattering matrix. Thus, we can write

Θψin = SΘψout. (A.21)

By using the property of the scattering matrix S and of Θ, we can write

ψin =Θ
−1SΘψout = S†ψout. (A.22)

Thus, we can see that if the system is time reversal symmetric, the scattering matrix S must verify the
condition

S =ΘS†Θ−1. (A.23)

So that S = ST for spinless particles and S =σy STσy for spinfull particles.
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APPENDIX B
Diagonalization of M (E ,φ)

To find the solutions of Eq. (1.133) for the Rashba nanowire Josephson junction studied in Chap. 2, we will
diagonalize the matrix M (E ,φ) in this appendix. We can write this matrix as

M (E ,φ) = e iξ(E )−iξ(−E )
Å

A −B †

B D

ã
, (B.1)

where

A =R†(−E )R(E ) +T †(−E )T (E )e −iφ , (B.2)

D =R(−E )R†(E ) +T (−E )T †(E )e iφ , (B.3)

B =R(−E )T (E )−T (−E )R(E )e iφ , (B.4)

and

R(E ) = r (E )12, T (E ) =
Å

t (E ) s ∗(E )
s (E ) −t ∗(E )

ã
. (B.5)

As one can see, putting no backscattering simplifies a lot the problem as the block B goes to zero.
In this case, the problem reduces to the diagonalization of the 2×2 matrices corresponding to the blocks
A and D . Thus, we will start by diagonalizing these blocks, and then, we will care about the block B . Let’s
start with block A. It can be written in the form

A =
Å
αA +βAe −iφ −δ∗Ae −iφ

δAe −iφ αA +β ∗Ae −iφ

ã
=αAσ0+

{
Re
[
βA

]
σ0+ i

(
Im
[
βA

]
σz + Im [δA]σx −Re [δA]σy

)}
e −iφ ,

(B.6)

with

αA = r ∗(−E )r (E ), βA = t ∗(−E )t (E ) + s ∗(−E )s (E ), δA = s (−E )t (E )− t (−E )s (E ). (B.7)

This matrix can be easily diagonalized by the following rotation

WA = e −i
θA
2 σz e −i

γA
2 σy =

(
cos γA

2 e −i
θA
2 −sin γA

2 e −i
θA
2

sin γA
2 e i

θA
2 cos γA

2 e i
θA
2 ,

)
(B.8)

131



CHAPTER B. Diagonalization of M (E ,φ)

where

γA = arctan
|δA |

Im
[
βA

] , θA = arctan
−Re [δA]
Im [δA]

=ϕA −
π

2
, (B.9)

with δA = |δA |e iϕA . We will denote this matrix in the rotated basis as Ã which reads

Ã =αAσ0+Re
[
βA

]
e −iφσ0+ i

√
Im
[
βA

]2+ |δA |2e −iφσz . (B.10)

We can now do the same for the block D . We write this block under the form

D =αDσ0+
{

Re
[
βD

]
σ0− i

(
− Im

[
βD

]
σz − Im [δD ]σx +Re [δD ]σy

)}
e iφ , (B.11)

with

αD = r (−E )r ∗(E ), βD = t (−E )t ∗(E ) + s ∗(−E )s (E ), δD = s (−E )t ∗(E )− t ∗(−E )s (E ). (B.12)

We choose to write the signs differently as compared to Eq. (B.6) such that in the rotated basis, Ã and D̃
have opposite sign imaginary part and same sign real parts. As we will show below, this will allow us to

write D̃ = Ã†. The block D can be diagonalized with the rotation WD = e −i
θD

2 σz e −i
γD

2 σy where

γD = arctan
|δD |

− Im
{
βD

} , θD =ϕD +
π

2
. (B.13)

Using the same notation convention, we obtain

D̃ =αDσ0+Re
[
βD

]
e iφσ0− i

√
Im
[
βD

]2+ |δD |2e iφσz . (B.14)

Note that, due to the square roots in Eq. (B.10) and Eq. (B.14) which result from the rotation of the blocks,
there is an ambiguity in the spin definition. In particular, in the limit = |t |2 = 1, the square root simplifies
to |Im

[
βA/D

]
|, which changes the way we label spin when Im

[
βA/D

]
< 0.

Now that we’ve diagonalized these two blocks, we can take a closer look at the various terms they
contain. First, we can begin by noting the following relationships

αA =α
∗
D , Re

[
βA

]
=Re

[
βD

]
. (B.15)

For the terms under the square root, after some math, they both can be cast in the form(
|t (E )|2+ |s (E )|2

)(
|t (−E )|2+ |s (−E )|2

)
+ (Re [t ∗(−E )t (E )] +Re [s ∗(−E )s (E )])2 . (B.16)

To simplify the notations, we introduce

τ(E ) =
»(
|t (E )|2+ |s (E )|2

)(
|t (−E )|2+ |s (−E )|2

)
, (B.17)

ω(E ) = sign(E )arccos

Å
Re [t ∗(−E )t (E ) + s ∗(−E )s (E )]

τ(E )

ã
, (B.18)

such that we can write

A =D ∗ = r ∗(−E )r (E ) +τ(E )e −iφe iω(E )σz . (B.19)

We can now look at the block B . Using the unitarity of M (E ,φ), we obtain

D †B −B A = 0. (B.20)
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Thus, in the rotated basis where

M̃ (E ,φ) =

Ç
W †

A 0
0 W †

D

å
M (E ,φ)

Å
WA 0

0 WD

ã
, (B.21)

it implies that Ã must commute with B̃ where B̃ =W †
D BWA , meaning that in this basis, B̃ must be diagonal,

i.e.,

B̃ =
Å

B̃1 0
0 B̃2

ã
. (B.22)

In fact, one can show after a lengthy calculation that WDT (±E )W †
A is diagonal and can be written in the

form

WDT (±E )W †
A =

√
|t (±E )|2+ |s (±E )|2e iθT (±E )σzσz , (B.23)

such thatω(E ) = θT (E )−θT (−E ).

As a consequence, the diagonalization of the blocks A and D allows decomposing M (E ,φ) into two
2×2 independent blocks, which can be readily diagonalized and yield eigenvalues in the form

exp
[
2iρχσ(E ,φ) + iξ(E )− iξ(−E )

]
, (B.24)

withσ, ρ =±1 and,

χσ(E ,φ) = arccos

 
1+τ(E )cos

(
φ−σω(E )

)
+Re [r ∗(−E )r (E )]

2
. (B.25)

The eigenvectors are given by

W =
Å

WA 0
0 WD

ãàcos γB 1
2 e −i

θB 1
2 0 −sin γB 1

2 e −i
θB 1

2 0

0 cos γB 2
2 e −i

θB 2
2 0 −sin γB 2

2 e −i
θB 2

2

sin γB 1
2 e i

θB 1
2 0 cos γB 1

2 e i
θB 1

2

0 sin γB 2
2 e i

θB 2
2 0 cos γB 2

2 e i
θB 2

2

í
, (B.26)

where

θB i =
π

2
+ϕB i , γB i = arctan

|B̃i |
− Im

[
Ãi

] , (B.27)

with B̃i = |B̃i |e iϕB i . Here the different columns correspond to different values of (ρ,σ), namely the first
column corresponds to the state (−,+), the second column to (−,−), the third column to (+,+), and the
fourth column to (+,−). Note that this result is independent of the scattering model, the only requirement
is that it respect TRS.
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APPENDIX C
Particular case of the two delta potentials

barriers

Here, we will briefly describe the specificities of the model with a delta potential at each nanowire-
superconductor interface. Let’s start by discussing the energy spectrum of ABS for this model. Using
the scattering and transfer matrix formalisms presented in Sec. 1.2.2, we obtain the following scattering
coefficients

r (E ) =
i

|K (E )|

î
rL e −iθR−i k̄ d − rR e iθL+i k̄ d

ó
, (C.1)

t (E ) =
i

|K (E )|

î
tL tR e

1
2 iδk d + sL S ∗R e −

1
2 iδk d

ó
, (C.2)

s (E ) =
i

|K (E )|

î
tL sR e

1
2 iδk d − sL t ∗R e −

1
2 iδk d

ó
, (C.3)

ξ(E ) = θL +θR + k̄ d −ζ(E )−π/2, (C.4)

ζ(E ) = arctan

Ç
−
√

RL RR sin
(
ϕtot+2λ̄ε

)
1−
√

RL RR cos
(
ϕtot+2λ̄ε

)å , (C.5)

|K (E )|2 = (1−
√

RL RR )
2+4RL RR sin2(ϕtot+ λ̄ε), (C.6)

2ϕtot = θL +θR +ϕrR
−ϕrL

+ (kF 1+kF 2)d , (C.7)

where θR/L are the global phases of the scattering matrix at each interface, and,ϕrR/L
are the phases of the

reflection coefficient of each scattering matrix. As can be seen, the spin-conserving and spin-flip trans-
mission coefficient present the same form of energy dependence, such that it leads to ω(ε) = δλε. The
resulting energy spectrum is very similar to the one obtained with the one scattering potential model.
However, as we saw previously in Sec. 1.3.3.3, a model with two identical scattering potentials can lead
to resonance for specific values of ϕtot. The resonance condition is |K (E )| = |K (−E )| which is verified for
ϕtot = nπ and ϕtot = (2n + 1)π/2 with n ∈ Z. Hence, for ϕtot = nπ, the gap at φ = π for the doublet m = 1
is closed as well as the gap at ϕm between doublet m and m + 1 for m even. For ϕtot = (2n + 1)π/2, it is
the gap at ϕm between doublet m and m +1 for m odd that are closed. An energy spectrum showing the
different resonant conditions is shown in Fig. 3.1.
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0 π 2π
0.0

0.5

1.0

E
/∆

(a)

0 π 2π
φ

(b)

0 π 2π

(c)

Figure 3.1: Energy spectrum of spin-split ABS obtained with the model with two scattering potentials for
λ1 = 7 and λ2 = 4.2. In all panels, we set TR = TL = SR = SL = 0.49, such that the resonance condition
can be satisfied depending on the value of ϕtot. In panel (a), we have ϕtot = 0, while in panel (b), we have
ϕtot =π/2. In these two cases, the resonance condition is satisfied leading to crossings between different
states. Finally, in panel (c), we have ϕtot = π/4, therefore the resonance condition is not satisfied and we
don’t have any crossings apart from the two-fold degeneracy atφ = nπwithin a doublet due to TRS.

In this model, s (E ) and t (E ) have the same energy dependency and as a consequence the matrices
WA and WD given in Appendix. B are energy independent:

cosγA/D =
TL/R −SL/R

TL/R +SL/R
, (C.8)

sinγA/D =
2
√

TL/R SL/R

TL/R +SL/R
, (C.9)

while

θA =ϕtL
+ϕsL

, θD =ϕsR
−ϕtR

. (C.10)

As for the single scatterer model, this yields zero spin-flip matrix elements when plugged into Eq. (2.127).
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APPENDIX D
Global phase of the current operator

matrix elements

In this appendix, we show that the global phase of the matrix elements of the current operator obtained
from Eq. (2.127) does not depend on x̃ ′.

The matrix W given in Eq. (2.106) containing the eigenvectors can be cast in the form W =
Dϕ(ϕ2)rA(−φ/2)W̃ , where

W̃ =

Ü
cos γA

2 cos γB 1
2 i sin γA

2 cos γB 2
2 −cos γA

2 sin γB 1
2 −i sin γA

2 sin γB 2
2

sin γA
2 cos γB 1

2 −i cos γA
2 cos γB 2

2 −sin γA
2 sin γB 1

2 i cos γA
2 sin γB 2

2
cos γD

2 sin γB 1
2 −i sin γD

2 sin γB 2
2 cos γD

2 cos γB 1
2 −i sin γD

2 cos γB 2
2

sin γD
2 sin γB 1

2 i cos γD
2 sin γB 2

2 sin γD
2 cos γB 1

2 i cos γD
2 cos γB 2

2

ê
, (D.1)

and Dϕ(ϕ2) is a diagonal-matrix containing energy-independent phases,

Dϕ(ϕ2) = exp

ï
−

i

2

(
ϕ1σz +ϕ2τz +ϕ3σzτz

)ò
(D.2)

with ϕ1 = δkF d /2+ϕs , ϕ2 = k̄F d x̃0 +ϕr and ϕ3 = δkF d x̃0/2+ϕt . Thus, the phase of A(n )k does not
depend on the energy such that A∗(n )kA(n ′)k is real.

Furthermore, we may use that the matrix

Se (E ) = e iθ+i k̄ (E )d

á
r e i k̄ (E )d x̃0 0 −t ∗e −i δk (E )

2 d −s ∗e −i δk (E )
2 d x̃0

0 r e i k̄ (E )d x̃0 −s e i δk (E )
2 d x̃0 t e i δk (E )

2 d

t e i δk (E )
2 d s ∗e −i δk (E )

2 d x̃0 r ∗e −i k̄ (E )d x̃0 0

s e i δk (E )
2 d x̃0 −t ∗e −i δk (E )

2 d 0 r ∗e −i k̄ (E )d x̃0

ë
(D.3)

can be written in the form Se (E ) = e i (θ+k̄F d )Dϕ(−ϕ2)S̃e (E )D †
ϕ(ϕ2), where S̃e (−E ) = S̃ ∗e (E ). This allows us to

rewrite the matrix M in the form

M =Dϕ(ϕ2)rA(−φ)S̃ T
e (E )rA(φ)S̃e (E )D

†
ϕ(ϕ2). (D.4)

With this, we can then cast the equation α2M W =W in the form mW̃ =m∗W̃ with the matrix

m =αrA(φ/2)S̃e (E )rA(−φ/2). (D.5)
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Since the columns Ã of W̃ are either purely real or purely imaginary, this shows that mÃ is
either purely real or purely imaginary. As a consequence the global phase of (αS(n )A(n ))k =
(e i (θ+k̄F d )rA(−φ/2)Dϕ(−ϕ2))k k (m(n )Ã(n ))k does not dependent on energy and (αS(n )A(n ))∗k (αS(n ′)A(n ′))k is
real.

With this we conclude that the phase of the current matrix operator elements is determined by the
phase of f ±nn ′,k = e iλk (εn ′−εn )(1±x̃ ′)/2+αnα

∗
n ′e
−iλk (εn ′−εn )(1±x̃ ′)/2, which is given as

θnn ′ = (arccosεn ′ −arccosεn )/2. (D.6)

As observed in Fig. 2.16, the current operator matrix elements may vanish for particular values of x̃ .
In Fig. 2.17, we show that this is generally the case for all current operator matrix elements, both spin-
preserving and spin-flip.
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