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Notation

This section provides a reference describing notations used throughout this thesis. These
notations are taken from the Deep Learning Book (Ian Goodfellow, Yoshua Bengio and
Aaron Courville, Deep Learning MIT Press, 2016).

Numbers and Arrays
a A scalar (integer or real)

a A vector

A A matrix

Sets and Graphs
A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

G A graph

Indexing
ai Element i of vector a, with indexing starting at 1

Ai,j Element i, j of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

Linear Algebra Operations
A⊤ Transpose of matrix A

Calculus
dy

dx
Derivative of y with respect to x

∇xy Gradient of y with respect to x
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Probability and Information Theory
P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable

a ∼ P Random variable a has distribution P

E(f(x)) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

H(x) Shannon entropy of the random variable x

N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ

Functions
f : A→ B The function f with domain A and range B

f(x;θ) A function of x parametrized by θ.

||x||p Lp norm of x

1condition is 1 if the condition is true, 0 otherwise

Datasets and Distributions
pdata The data generating distribution

p̂data The empirical distribution defined by the training set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learning



General Introduction

Decision-making in healthcare is inherently uncertain. Pieces of evidence collected to establish
a diagnosis can be limited, ambiguous, incomplete, or conflicting. In the presence of a rare
disease, clinicians may be uncertain about the exact cause of the symptoms or disagree with
other experts’ opinions. Moreover, there are usually several plausible outcomes for a given
patient that should be taken into account to select the adequate treatment. In radiology,
image artifacts or poor resolution can result in uncertain conclusions, for instance regarding
the presence or malignancy of a lesion. As an additional challenge, the lack of experience
with complex pathologies as well as the accumulated fatigue over the course of a clinical shift
can contribute to reduced precision, potentially leading to incomplete or erroneous diagnoses.
It is thus commonly acknowledged that uncertainty is intrinsic to clinical practice [2], and
medical training generally includes learning how to optimize decision-making based on the
natural ambiguity and complexity of clinical scenarios [3].

In recent years, Machine Learning (ML) algorithms have achieved remarkable results in many
tasks, including medical image segmentation and classification. In radiology, ML algorithms,
mostly based on Deep Learning (DL) approaches, have the potential to considerably assist
clinicians by automatizing time-consuming and error-prone tasks, such as the segmentation of
the brain into hundreds of regions, or the detection of small subtle lesions in brain Magnetic
Resonance Imaging (MRI). As an example, ML tools allow faster quantification of Multiple
Sclerosis (MS) disease progression by providing a count of the new lesions in different brain
regions, a measure of the total lesions volume, and a precise description of the shape of lesions.
This analysis can be used as an additional source of knowledge for the neuroradiologist,
allowing for improved clinical decision-making and patient care. Yet, contrary to clinicians
who navigate daily with uncertainty, these algorithms generally produce predictions without
any information concerning their confidence. As a result, these models are often referred
to as "black boxes". This prevents the full adoption of AI algorithms in critical fields such
as healthcare, as they tend to make mistakes without confidence estimates, which could
have warned the user about model deficiency. These silent errors are particularly dangerous
and can lead to erroneous conclusions. Identifying and understanding these failure cases is
crucial to maximizing the utility of AI models, as well as their acceptance — in particular by
healthcare professionals, and their integration into the medical information flow.

Uncertainty Quantification (UQ) in DL models is challenging. These complex models are
composed of millions of parameters that cannot be easily interpreted. Moreover, training
strategies involve learning statistical features from the data itself, without any human
supervision regarding the choice of features. As a result, the learned decision rules are opaque.
In medical applications, however, uncertainty has to be provided to the healthcare professional
in an intelligible and useful way to assist decision-making. This requires defining levels of
uncertainty that are meaningful to clinicians. In the context of volumetric medical image
segmentation, the straightforward option is to quantify voxel uncertainty, which involves
assigning a score to each voxel representing the confidence of the model regarding the predicted
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label. However, it may not be the most relevant and meaningful option in a clinical context.
For example in MS, clinicians may be interested in the confidence of the model at the lesion
level to help determine if the identified lesion is not a false positive detection. They may
also be interested in confidence intervals associated with high-level metrics derived from the
segmentation, such as lesion volumes. Finally, overall quality scores could be envisaged for
both the input and the output. For instance, an input quality control measure could warn
the user if the input image does not meet established quality standards due to important
artifacts, thus potentially impacting the output analysis. Thus, it appears that the limitation
of UQ to the voxel level is not satisfying to fully quantify the ambiguity in DL-based medical
image analysis.

Challenges and Contributions

This thesis aims to address the current identified limitations by designing uncertainty estimates
that are relevant for clinicians. More particularly, we propose to investigate 4 different scales
of uncertainty that are useful in automated medical image analysis. They are illustrated in
Figure A, and a motivation for each is provided below:

• Voxel-level. DL segmentation models operate at the voxel level, and thus the appli-
cation of standard UQ methodology yields voxel-level uncertainty estimates. In these
maps, each voxel in the image volume is associated with a confidence estimate. These
maps can be superimposed to the image or segmentation to identify uncertain areas.
Interestingly, these voxel-level scores are efficient in identifying misclassified voxels, due
for instance to partial volume effect in MRI or to model deficiencies. Many performing
methods have been proposed to quantify voxel uncertainty. As a contribution, a bench-
mark of such methods is proposed with a particular focus on robustness to domain
shift, which occurs when the test data originates from a different distribution than the
training data. In MRI processing, domain shift primarily originates from variations in
the image acquisition protocol or inconsistencies in image quality.

• Lesion-level. For pathologies such as MS, the segmentation of lesion voxels usually
identifies several dozen individual brain lesions. For these diseases, the attention of the
clinician is at the lesion level, and estimating the overall confidence of each unique lesion
instance is critical. It will allow the user to directly review the most uncertain ones to
validate or reject them if they estimate that the lesion is a false positive finding. This
emerging level of UQ is still rarely considered in the literature. This thesis contributes
by proposing three different means of computing lesion-wise uncertainty. To this end,
we propose three lesion models that can predict the probability that the lesion is a false
positive, providing interpretable lesion uncertainty estimates.

• Subject-level. Quality Control (QC) is a crucial step of medical image analysis, and
uncertainty can play a major role in its automatization. QC can be implemented at
two levels: the input image, and the output analysis. Regarding the first case, the
rationale is that model confidence can be expected to be low for input images that
have poor qualities (e.g. important artifacts or poor resolution). Monitoring the model
confidence could thus be used to automatically detect poor-quality images. This input
QC can be framed as an out-of-distribution detection problem. Alternatively, QC can
be performed on the output segmentation to identify model failures at the subject level
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Voxel
Uncertainty maps contain
one uncertainty score per
voxel, allowing for the
identification of potential
incorrectly labeled voxels.

Lesion
Lesion-level uncertainty
scores allow for the rapid
overview of the prediction to
detect potential false
positive detections. 

Volume
High-level metrics such as
lesion volumes can be
equipped with predictive
intervals to quantify the
potential lack of
measurement accuracy.

Subject
Subject-level quality control
can be performed to detect
poor-quality images or
segmentations to alert the
user that the analysis may
be error-prone.

Figure A: Illustration of the different scales of uncertainty useful for automatic medical
image analysis. From the lowest to the highest level: voxel, lesion, volume and subject-level
estimates can be useful to estimate the confidence of the automated analysis.
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Figure B: Pixyl logo. The company, founded in 2015, specializes in developing AI-based
software for automated medical image analysis.

(e.g. erroneous segmentation). These two types of case-level uncertainties can be used
to automatically warn the user in cases where the automated analysis is expected to be
poor. However, they are generally tackled in completely different literature. We thus
propose here as a contribution a unified framework that combines these two levels for
an enriched automated QC procedure.

• Predictive Intervals on Volumes. Segmentation is usually the first step to a more
advanced analysis pipeline, including the extraction of lesional volumes. Indeed, this
information is a powerful biomarker to assess the extent and progression of the disease.
However, this volume estimation is also prone to uncertainty, and it can be taken into
account by associating predictive intervals with the estimation. To do so, we propose
the first investigation of the Conformal Prediction framework for predictive intervals
on volumes, using an efficient approach called TriadNet.

Thesis Context

Pixyl 1 (Figure B) is a company founded in 2015 and located in Grenoble, France, that
specializes in the development of AI-based software dedicated to the automated analysis of
MR images. More particularly, it commercializes Pixyl.Neuro, a software that automatically
analyses brain MR images to support rapid detection, early diagnosis, and objective monitoring
of neurological disorders. The solution, which is CE-marked (MDR class IIa) and FDA-cleared
(class II), is composed of two distinct but complementary modules: Pixyl.Neuro.MS and
Pixyl.Neuro.BV.

Pixyl.Neuro.BV, dedicated to brain volumetric analyses, delivers automatic neuroimaging
biomarker extraction to assist the diagnosis, prognosis, and follow-up of patients with
various neurodegenerative pathologies. It provides brain volume quantification using 3D
T1 Gradient Echo MRI, allowing a better understanding of the pattern of atrophy with
objective measurements and comparison with normative values. The Pixyl.Neuro.MS module,
dedicated to neuroinflammatory disorders, automatically detects, quantifies, and categorizes
white-matter hyperintensities on 3D T2-FLAIR MR images. Supporting patient follow-
up (longitudinal analysis), the software provides information on individual lesion activity,
highlighting even subtle changes between visits. In practice, it provides segmentation of
white matter hyperintensities, with lesion load classified by relevant regions (McDonald
regions: infratentorial, juxtacortical, periventricular, deep white matter). It may also provide
information on the disease activity and change of individual white matter hyperintensities

1https://pixyl.ai/

https://pixyl.ai/
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since the previous visit, if available. This can be used to support the diagnosis, prognosis,
and follow-up of subjects suffering from neuroinflammatory disorders (in particular, but not
exclusively, Multiple Sclerosis). Pixyl is used today by over 100 centers in more than 12
countries across Europe, North America, and Africa.

Although such AI tools are becoming pivotal in clinical decision-making, with benefits for
both the clinician and the patient, their deployment in the real clinical routine raises many
challenges linked to uncertainty. For example, the deployed model can be confronted with
data acquired with unusual imaging protocols, or the brain can present an unusual lesion
that is not present in the training dataset. These scenarios could potentially undermine the
performance of the AI model at hand. Being able to flag up these possibly problematical cases
and warn the user is crucial to guaranteeing the reliability of the software. Importantly, an
industrial requirement for computing uncertainty-related measures is speed and computational
efficiency. Indeed, Pixyl’s automated analyses should be sent to the user no longer than 5
minutes after receiving the input image, so that the clinician can examine the report while
the patient is still in the examination room. Thus, we aim in this Ph.D to incorporate the
different uncertainty quantification modules seamlessly within a Deep Learning-based analysis
pipeline, as illustrated in Figure C.

This Ph.D. is a collaboration between Pixyl and two research teams, namely the Grenoble
Institute of Neurosciences (GIN), Team Functional Neuroimaging and Brain Perfusion
directed by Benjamin Lemasson and Thomas Christen on one side, and INRIA, Team STAT-
IFY, directed by Florence Forbes on the other side. Team Lemasson-Christen specializes
in the development of innovative MRI scan acquisition techniques and their application in
preclinical and clinical neuroscience studies. Moreover, it develops mathematical models
used to assist MRI analysis. Team STATIFY specializes in the development of innovative
statistical models applied to complex and large-dimensional data. The thesis was funded
by a CIFRE convention granted by the National Technology Research Association (ANRT
2020/1555).



Segmentation
Model

Module 1 : Voxel Uncertainty Map

Input FLAIR Automatic Segmentation

Module 3 : Out-of-Distribution Detection Module 4 : Segmentation Quality Assessment

Conform
Image

Non-
Conform

Image

High-Quality
Segmentation

Poor-Quality
Segmentation

Module 2 : Per Lesion Confidence Scores

low

high

Confident
lesion

Possible False
Positive

Patient: John Doe
Age: 60 
Visit Date: 16/05/2024  
Lesion Load: 
5.9 mL [4 mL-8 mL]

Module 5 : Lesion Volume
Predictive Intervals 

Figure C: Expected thesis framework, incorporating the different uncertainty quantification levels within a Deep Learning
analysis pipeline.



7

Thesis Organization

The present dissertation is organized into 5 chapters.

Chapter I introduces the main concepts of DL networks. This helps to introduce their pitfalls
in terms of explainability and uncertainty quantification. Popular architectures and training
strategies in the context of medical image analysis are more specifically detailed.

Chapter II introduces the definitions and concepts of UQ in DL. The different types of
uncertainty (aleatoric, epistemic) inherent to medical image analysis are introduced. Then,
an in-depth literature review is proposed focusing on the applications of UQ for medical
image classification and segmentation. A particular focus is given to ways of quantitatively
evaluating the quality of uncertainty, a prerequisite for the development of useful UQ tools.
Eventually, a benchmark of the prevailing UQ methods is performed on three brain lesion
segmentation tasks to identify a baseline UQ method for the remainder of the manuscript.

Chapter III focuses on the emerging notion of structural uncertainty. Most UQ methods, when
applied to 3D medical image segmentation, provide uncertainty estimates at the voxel level.
Yet, for lesion segmentation tasks such as MS-lesion detection in brain MRI or lung-nodule
detection in chest CT, the interest of the clinician is at the lesion level. For efficient review
of the automated results, it is more appropriate to provide one uncertainty score per lesion,
instead of one score for each voxel. This chapter introduces our contribution related to
structural UQ, based on a model that builds graphs associated with each lesion, and leverages
Graph Neural Networks (GNN) to merge voxel uncertainty estimates into lesion uncertainty.

Chapter IV enlarges the scope of uncertainty quantification to the case level. More particularly,
as classical UQ approaches fail at this crucial detection task, the emerging technique of
latent-space detection is explored in detail on a large and complete benchmark of out-of-
distribution images. Second, this promising latent-space detector is combined with an output
segmentation quality estimation strategy, resulting in a unified input-output QC protocol.

Chapter V is dedicated to the conformal prediction (CP) framework, which is becoming
a prevailing UQ technique but is under-explored for medical-image processing. CP is a
mathematical framework that can be employed to equip DL predictions with predictive
intervals, guaranteed to contain the ground truth quantity with a user-defined level of
confidence. It is thus particularly promising for medical applications where the accountability
of algorithms is mandatory. In this thesis, we propose to use CP to compute predictive
intervals associated with estimated lesion volumes. As a perspective, we propose a discussion
on how a weighted formulation of CP can be used to tackle domain shift issues.

Associated Publications

In some parts, the studies presented in this thesis have given place to publications. The
complete list of this published work is provided in Appendix A9. This thesis proposes further
experiments and applications with respect to these publications. Additions are indicated at
the beginning of each thesis chapter.





Chapter I

Deep Learning for medical image
analysis

Deep Learning (DL) is one of the most promising technological innovations of this last decade.
Contrary to past ML frameworks that required handcrafted features, DL learns features
directly from the raw data itself, alleviating the need for formal specification of task-specific
knowledge. It is now well established as the state-of-the-art approach in many challenging
tasks, including image classification, segmentation, natural language processing, or regression.
This chapter provides an overview of the principles of DL, including neural networks design,
loss objectives, and optimization. These core steps are illustrated in Figure I.1.1. Current
trends regarding architecture choices and training paradigms in the context of medical-image
analysis are also briefly presented. This chapter lays the technical foundations necessary for
the methodological developments presented in the rest of the thesis.
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I.1 Neural networks

The building and training of Neural Networks (NNs) is the core of the DL framework. These
models can learn a function f * that maps an input x to a prediction ŷ by approximating a
set of parameters θ during training, which are learned to provide the optimal mapping ŷ →
f(x;θ). For classification tasks, the input x is an image and the prediction ŷ is a label. For
segmentation tasks, which are the primary focus of this thesis, the classification is performed
for each pixel (or voxel in 3D), and the output is a label image with the same dimensions as
the input.

NNs are traditionally composed of several layers with learnable weights, which are the
network’s high-level building blocks. Each layer i computes a function f (i)

(i=1,...,n), meaning
that the final approximated function f * can be written as a chain of compound function
f *(x) = f (n)...f (h)...f (1)(x). f (1) is the input layer receiving x, f (n) the output layer yielding
the prediction ŷ and f (h)

(h=2,...,n−1) are referred as hidden layers (Figure I.1.2). In the standard
supervised-learning scenario, pairs (x;y) of labeled training data are used to teach the NN
the expected behavior of the output layer, given the properties of the input. The behavior of
the other layers is not directly conditioned by the data, hence their hidden denomination.
Interestingly, it has been shown that even a simple feedforward NN with a single hidden
layer is a universal function approximator, meaning that for a given function, there exists a
finite number of neurons for which the network will be able to approximate it with arbitrary
accuracy [4].

The primary distinction of DL from other learning models (e.g. Random Forests, Logistic
Regression, XGBoost) is that features are not explicitly defined. Instead, a neural network
learns by itself to extract meaningful features from raw data. Early layers enable the extraction
of low-level features (e.g. edges, corners), while deeper layers can build from these simple
notions to build more complicated decision rules [5]. As a counterpart of this automated
learning, the model lacks interpretability, as the user does not have direct access to the
learned features.

In DL, handcraft feature engineering is thus replaced by sophisticated architecture engineering,
aiming to design a sequence of layers that maximizes the performance of an automated task.
While a large variety of NN architectures can be found in the literature, they are generally
composed of the same building blocks that are described below: fully connected (FC),
convolution, and transformer layers, as well as normalization layers (e.g. batch, instance or
channel normalization) and activation functions (e.g. ReLU, or sigmoid). Each block has
different functionalities and properties and their combination allows to perform the desired
task. With the rise of the number of layers grows the depth of the network, giving birth to
deep learning networks. In the following, the most commonly used NN blocks for medical
image analysis are presented.

Fully-connected (FC) layers, also called linear or dense layers, are the building blocks
of the Multi-Layer Perceptron (MLP) which has been one of the earliest NN proposed
in the literature (1991) [6]. FC layers are composed of a set of neurons, which are the
network’s lowest-level element, and are suitable for 1D input vectors. In FC, each neuron
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Figure I.1.1: Illustration of the principal steps of the development of a Deep Learning
model. At Pixyl, the ultimate step is the deployment of the model in the cloud, accessible
by users via the Picture Archiving and Communication System (PACS) of the hospital,
where medical images are stored. Each step of the development is further detailed in this
chapter.
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f(1) f(2) f(n-1) f(n)...

Hidden layers Output layerInput layerInput sample Prediction

Figure I.1.2: A standard feedforward Neural Network.

Input neurons Output neurons

Figure I.1.3: A fully connected layer with 2 input neurons and 5 output neurons.

from the previous layer is connected to each of the neurons of the output layer, hence their
fully-connected denomination (see Figure I.1.3). Writing M and N the number of input and
output neurons, respectively, then the learnable weights matrix of the FC layer is a matrix
W ∈ RM×N , and the learnable bias term is a vector b ∈ RN . Bias is used to offset the layer
activation towards the positive or negative side. For an input x ∈ RM , the output of the
layer can be expressed as:

y = xW⊤ + b (I.1.1)

The computation is thus akin to a linear transform. Following the computation of y, an
activation function h can be applied to get the final neuron output y′ = h(y). This function is
essential to add non-linearity to the networks, the root of their powerful modeling capabilities.
Commonly used functions are the Sigmoid or the ReLU activation functions.

FC layers are built for 1D inputs making them poorly suited for image processing. One
option would consist in flattening images into a 1D vector, but this process is inefficient for
large images, especially 3D medical images. Moreover, it would discard the important spatial
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information contained in the image. This motivated the development of parameter-efficient
layers suited for images, such as the Convolutional layer, that can be used in combination
with FC layers.

Input map Output map

sliding

sl
id
in
g

Figure I.1.4: A 2D convolution layer with a kernel size of 3× 3 and a stride of 1. Applied
to an input image of 5× 5 pixels, it produces an output map of shape 3× 3.

Convolutional layers The dedicated DL architecture for computer vision is the Convolu-
tional Neural Network (CNN). This kind of model obtained state-of-the-art results in image
classification and pattern recognition tasks and has been widely studied since a CNN called
AlexNet won the ImageNet challenge in 2012, a famous benchmark for image classification.
[7]. As their denomination indicates, CNNs are networks that include at least one convolution
operation in their architectures. The convolution (∗) is an operator that takes two real-valued
functions as inputs and can be expressed as:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (I.1.2)

where I is a 2D image, (i, j) the coordinate of a pixel, and K is a 2D kernel of shape m×n. In
most DL library, such as PyTorch [8] or TensorFlow [9], the convolution operation (represented
in Figure I.1.4) is actually implemented using the cross-correlation function, which is defined
as :

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (I.1.3)

which is essentially the same as the standard convolution operator, but without the flipping
of the kernel. A kernel, also referred to as a convolution filter, is an array of parameters
that are learned during training, usually defined as a small isotropic window (e.g. 3× 3 or
5 × 5). As the kernel is convolved across the input image, results are stored in an output
array called a feature map. The map contains the activation of the filter, and can thus be
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used to detect the presence of a particular pattern. As a single kernel can only learn a single
kind of feature, a convolution layer generally consists of many applications of different kernels
in parallel. A convolution layer is thus characterized by a set of hyperparameters, including
the size of the kernel and the number of filters. The stride of the convolution can also be
defined, quantifying the translation of the filter across the image. Ultimately, padding can be
applied to the borders of the image to allow convolution to be applied to image edges.

After convolution, a pooling operation is traditionally performed on the features maps to
scale them down. Essentially, it replaces the value of a feature map at a certain position with
a summary statistic of neighboring values. A common choice is using the max operation [10]
(Max Pooling) which effectively highlights the most prominent features in a predefined square
region (e.g. 3× 3 squares). The resulting reduction of the feature map dimensionality allows
the preservation of important structural elements, while fine details not relevant to the task
at hand are discarded. By doing so, pooling helps increase the robustness to translations.
Indeed, if an object included in the input image is translated by a small amount, the values
of most pooled outputs will not be modified [1]. Pooling also helps accelerate computation,
thus reducing training time. A CNN can therefore be obtained by chaining convolution and
pooling operations.

For classification and regression tasks, a FC layer is generally placed at the hand of the
CNN, after a series of convolutions, to produce the final class scores. For segmentation,
FC layers are generally not used in order to preserve the spatial information required to
perform the task, and models are thus generally fully convolutional. For medical image
classification, popular convolutional architectures include Residual and Dense Convolutional
Neural Networks (CNNs) [11] and EfficientNets [12]. For medical image segmentation, popular
choices include U-Net [13] and its variants, such as Residual U-Net [14], V-Net [15], Attention
U-Net [16] or Dynamic U-Net [17]. While very successful for image processing, convolutions
have some pitfalls. Indeed, the size of the kernel is limited, and thus CNNs struggle to
model long-range dependencies within images [18]. This has motivated the exploration of
convolution-free blocks, such as the vision transformer.

Vision Transformer Transformer models were originally proposed for sequence-to-sequence
tasks in natural language processing (NLP) [19]. The concept was further adapted to computer
vision tasks through the development of Vision Transformer blocks (ViTs, Figure I.1.5). In
ViT, the input image is divided into a series of non-overlapping patches of fixed size. They
are flattened and linearly projected into a lower-dimensional embedding sequence. Positional
encoding of the patches is added to embeddings to maintain the spatial information that
has been discarded when the input image has been divided into patches. ViT then exploits
the self-attention mechanism to consider dependencies between different patches of the
image when making predictions for a specific region. This allows the modeling of long-range
dependencies between distant patches. The final element is a MLP composed of FC and
normalization layers in order to produce the output of the ViT.

Popular transformer-based models in medical image processing include the U-NETR [20],
Swin U-NETR [18] or Trans U-Net [21] models. All these models combine convolutions and
transformer layers. However, transformer-based models are generally greedy in terms of



16 Chapter I. Deep Learning for medical image analysis

Positional
Embedding

Linear projection
of Flattened Patches

Patches

N
orm

M
ulti-head Attention

M
LP

Input Image

N
orm

Figure I.1.5: A Vision Transformer block. The input image is first divided into patches,
that undergo a linear projection into a lower-dimension embedding space. Positional
embedding is added to maintain spatial information. Then, multi-head attention is applied
to model the dependencies between patches. Finally, a Multi-Layer Perceptron (MLP)
produces the final layer output. Note that skip connections are used to facilitate gradient
flow during training.

parameters and computation and require extensive data points to be trained [22]. This is a
challenge for 3D medical image processing as datasets are limited, and images take up a large
amount of memory. As a result, training transformer-based models on 3D medical images
represent a challenge in terms of computational cost.

Normalization layers are a crucial element of deep NNs, aiming at facilitating their
training. They are generally applied to the hidden layers in the network. The most known
approach, Batch Normalization (BN), was proposed in 2015 by Ioffe et al. [23]. The main
objective was to tackle interval covariate shifts that can occur during the training of NN,
leading to instabilities. More precisely, during optimization, the gradients for a given layer
are computed assuming that the other layers are fixed. However, in practice we optimize all
layers in parallel [1]. As a result, the input distribution for the current layer is constantly
changing as the parameters of previous layers are updated, so that the current layer must
constantly readapt to the shifts. BN proposes to alleviate this optimization issue by fixing
the means and variances of the normalized layer.

Let’s write H the input of the layer we wish to normalize for a given batch of inputs.
Specifically, the i-th row of H contains the activation of the i-th element in the batch. Batch
normalization operates by normalizing the input across the batch during training. The output
of the batch normalization layer is expressed as:

BN(H) = γH ′ + β (I.1.4)

with H ′ =
H − µ
σ

(I.1.5)

where µ and σ are the vectors containing the mean of each unit (neuron for FC layers, kernel
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for convolutional layers) over the current batch. γ and β are learnable parameters named the
scale and the shift. γ allows the model to learn the optimal scaling factor for each feature in
the normalized layer, while β helps to control the spread of the activations. By normalizing
the mean and variance of the layer, BN helps stabilizing learning and provides a protection
against internal covariate shift. One drawback of BN is that its robustness depends on batch
size, with larger batches being preferable [24]. For high-dimensional medical image processing,
however, batch size is limited by hardware. Other types of normalization layers have therefore
been proposed, such as instance [25], layer [26], or group normalization [27], which perform
normalization for each sample in the batch independently, without taking into account the
other elements in the batch, which is more suitable for limited batch sizes.

Once a NN has been defined using the previously introduced blocks, training can be performed
to teach the model how to perform a given task. A pivotal step is the selection of a training
objective, used to quantify the performance of the NN towards the target goal. In the
following, the main principles of training objectives are presented.

I.2 Training objectives

In this section, the main concepts of training objectives are presented. They are introduced
for 2D image classification for notation simplicity. Segmentation tasks are then directly
derived from the presented framework as pixel-wise classification tasks.

For supervised classification, the goal is to build a discriminative model f that maps images
x ∈ RH×W into labels ŷ ∈ {0, ..., K − 1} where K corresponds to a pre-defined number
of classes. To build the model, a training dataset Dtrain is constructed, composed of pairs
of images and ground truth labels {x(i),y(i)}Ni=1, considered independently drawn from the
true, but unknown, data generating distribution pdata. In reality, only the empirical training
distribution defined as p̂data is available.

For a given image, the segmentation model outputs a categorical (or multinouilli) probability
distribution, defined by the model’s parameters θ̂. It corresponds to a distribution over the
discrete label y that can have K different states (e.g. class):

P (y|x; θ̂) = Cat(y; π) (I.2.1)

It is parameterized by a vector π ∈ [0, 1]K where πi indicates the probability of the i-th class,
such as

∑K−1
i=0 πi = 1 with πi ≥ 0. Typically, π is predicted by the DL model f by applying a

softmax function to the raw model’s logit predictions z ∈ [−∞,+∞]K :

π =
ez∑
j e

zj
with z = f(x|θ̂) (I.2.2)

Training requires the definition of a loss function J(θ), used to quantify the performance of



18 Chapter I. Deep Learning for medical image analysis

the network considering the task at hand. The baseline choice to train classification models is
the Negative Log-Likelihood (NLL) loss. The optimization problem can then be defined
as:

θ̂ = argmin
θ

{
− 1

N

N∑
i=1

K∑
k=1

1{y(i) = k} logP (ŷ = k|x(i); θ)
}

(I.2.3)

θ̂ = argmin
θ

{
Ep̂data [LNLL(y,x, θ)]

}

where 1 is the indicator function. The expectation is taken over the empirical training
distribution p̂data, hence the denomination of Empirical Risk Minimization. Several
derivates of the NLL loss function have been proposed for classification and segmentation tasks,
including the Focal and Top-K cross-entropy losses. They are referred to as Distribution
losses, as they aim at reducing the differences between the predicted and target probability
distributions.
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Figure I.2.1: Different categories of segmentation loss functions.

For segmentation tasks, defined as per-pixel classification, specific losses derived from
popular segmentation quality metrics can be applied. The different existing categories are
illustrated in Figure I.2.1. For instance, the Soft Dice loss [15] is predominantly used for
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medical-image segmentation. Contrary to the NLL, the soft Dice is a Region-based loss [28]
that aims to maximize the overlap between the predicted and ground truth masks. For a
binary segmentation task, let p0i the predicted probability that the pixel indexed by i belongs
to class 0, and p1i the probability that it belongs to class 1. Similarly, the ground truth label
g0i is 1 if i belongs to class to 0, else 0 (same for g1i). Then the Soft Dice is expressed as:

LDice =
2×

∑N
i=1 p1ig1i∑N

i=1 p1ig1i + β
∑N

i=1 p0ig1i + α
∑N

i=1 p1ig0i
(I.2.4)

with α and β the weights of False Positives (FP) and Negatives (FN) in the loss computation,
respectively. The baseline Soft Dice loss is obtained with α = β = 0.5, while alternative
weightings are explored in the Tversky variant [29]. Another popular region-based loss is the
Generalized Dice, designed for imbalanced segmentation problems [30].

However, region metrics including the Dice score are known to be biased toward large volumes
[31]. For small targets (e.g. new MS lesions), region losses may thus produce unstable
results [32]. This motivated the development of Boundary-based losses, inspired by the
Haussdorff Distance (HD) [33] or the Mean Squared Error between the boundaries [34, 32].
They seek to minimize the distance between the contours of the predicted and ground-truth
segmentations. Oversegmentation or undersegmentation will be penalized, which enforces a
precise delineation of the target object.

Note that in practice, there is no obligation to use a single loss function to perform training.
For medical image segmentation task, a popular choice is to combine the Dice loss and the
cross-entropy. This is for instance the default setting of the nn U-Net framework [17]. Now
that the loss function has been defined, the goal of training is to tune the model parameters
so that the loss is minimized. This is akin to an optimization process that is presented in the
following.

I.3 Optimization

In ML, optimization refers to the process of finding the optimal set of model parameters
(here, weights and biases) to minimize the empirical error, assessed using a loss function.
As previously presented, the loss function quantifies how well the model performs on the
given task. In DL, the loss function is optimized using a gradient-descent approach based
on the back-propagation algorithm [35]. The first step consists of the forward propagation
process, during which input x is passed to the NN, flows through the hidden layers, and
finally yields a prediction ŷ. An error value is then computed by comparing ŷ to the ground
truth y using the selected loss function L(y,x, θ). The gradient of this scalar cost with
respect to the parameters of the network ∆θL(y,x, θ) is computed during a step called back
propagation. It consists of the iterative computation of the gradient using the Chain-Rule of
calculus, stating that the gradient can be computed by multiplying derivatives of each function
composing the network. [1]. Let x be the input of the network. Each layer, represented by
functions f, g, h, operates a transformation of the input, yielding intermediate values v and
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w. Output z of the network is thus obtained by compounding functions: z = h(g(f(x))) and
the gradient of z regarding the input x can be written as:

∂z

∂x
=
∂z

∂w

∂w

∂v

∂v

∂x
(I.3.1)

= h′(w)g′(v)f ′(x)

This principle is applied to backpropagate the error within the NN. By going back up the
layers and chaining the derivatives, it is therefore possible to estimate ∆θL(y,x, θ) regarding
the parameters of the network. Following the backpropagation step, a gradient-descent
algorithm is performed, during which the model weights are updated accordingly to the
gradient computed as follows:

θ = θ − η.∆θL(y,x, θ) (I.3.2)

where η is an hyperparameter called the learning rate. Several optimization algorithms
called optimizers were developed to perform this gradient descent. Popular optimizers are
Adagrad [36] and Adam [37], which allow refinement of the descent direction according to
previous gradients.

Computing the error on the entire training dataset at each gradient descent step is too costly
when dealing with large datasets. A convenient way to circumvent this challenge is to use
a mini-batch approach [38]. More precisely, the error is computed over a reduced set of
training samples, called a batch. Gradient computation and parameter updates are then
carried out for each batch of data. This process continues until all the training samples have
been passed through the model, this cycle being called an epoch. Mini-batch training is a
stochastic process, as the batches are randomly sampled from the training dataset. This
approach has several advantages, including limiting the computational cost of the algorithm,
as the training dataset is decomposed into smaller batches. Yet the selection of the batch
size is crucial. Indeed, large batch sizes allow for a more accurate estimation of the gradient.
However, the memory usage scales up with the batch size, so small batch sizes (one or two
samples) are generally used when dealing with high-dimensional 3D images [15], which has the
disadvantage of making the gradient descent more noisy. This training procedure ultimately
leads to the decrease of the empirical error through an iterative process. Training of a DL
network is traditionally performed over several hundred epochs.

The goal of optimization is to minimize the error on the training dataset, with the assumption
that the model will generalize on fresh test data. However, complications may arise, which
have led to the development of methods to improve generalization. They are presented in the
following.
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Figure I.4.1: Illustration of the monitoring of overfitting. The loss is monitored on the
training dataset as well as a set-aside validation that is not used to perform gradient
descent. At the training step T, the validation loss starts to increase while the training
loss steadily decreases, which is an indicator of overfitting.

I.4 Generalization and stochastic regularization techniques

The starting assumption of DL (and more broadly ML) is that a model trained using p̂data
will be able to generalize to new unseen test data points drawn from the same underlying data
distribution. The main obstacle to generalization is overfitting, a deficiency of the network
for which the cost attained a small value on the training set, but is significantly larger when
processing new data. This mismatch is often referred to as the generalization gap in the
literature [1]. It implies that the model has failed to learn the global trend of the data, and
rather simply has learned a function that fits all the training points. Overfitting is a common
threat in medical image analysis: the size of the training dataset is often limited, hence there
is a risk that the model simply memorizes training data instead of learning generalizable
rules [39]. The NN is more prone to overfitting when it has a high complexity (high number
of parameters), which is generally desired to model complex decision rules.

In practice, overfitting can be detected by monitoring the value of the loss function on two
datasets: the training dataset, and a set-aside validation dataset that is not used to perform
gradient descent (see Figure I.4.1). Overfitting occurs when the training loss function steadily
decreases while the validation loss increases.

Several tools were designed throughout the history of DL to improve the generalization of
trained models, including Stochastic Regularization Techniques (SRTs) [40]. These techniques
are designed to regularize the model (i.e. reduce the generalization gap) by injecting random
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noise during training. The most widely known SRT technique is Dropout [41]. The concept is
to randomly drop (i.e. set to 0) the layer outputs within the network, with a given probability
(e.g. 20%). By doing so, the complexity of the model is impaired during training, preventing
memorization. Interestingly, using Dropout in a network allows the simulation of a virtually
infinite ensemble from a single network, as various network configurations are obtained by
stochastically dropping out activations. This property is at the root of the Monte Carlo
(MC) Dropout technique, a very popular UQ method that will be introduced later in this
thesis (Section II.2.6). Finally, data augmentation plays a pivotal role in generalization.
This technique consists of artificially increasing the size of the training dataset using image
augmentation such as rotation, flipping, contrast enhancement, or noise injection. From a
single image, an infinite number of variants can be potentially obtained by randomizing the
parameters of these transforms. Hence, data augmentation can be seen as a form of implicit
SRT [42]. Moreover, data augmentation is efficient in making the model robust to specific
types of noises and artifacts that are likely to be encountered during inference [43]. Another
recent lead of research is the use of generative AI to create synthetic images that can be used
to complement the training dataset. Important advancements in this direction were achieved
by diffusion models [44, 45, 46, 47].

After training is completed, the last important step of the model development is validating
the model on test data. This procedure is briefly detailed in the following for segmentation
models, which are the main focus of this thesis.

I.5 Evaluation of segmentation deep learning models

Once the model has been trained, a crucial step is the validation of the DL model to make
sure that it achieves satisfying performance on unseen test data. For medical applications,
careful evaluation is required to ensure that the model is clinically useful. The gold standard
is to rely on a test database of images manually annotated by human experts. It allows
computing overlap measures between predicted and reference segmentations, with the Dice
score being a predominant option in medical image processing. However this metric may
not always reflect the biomedical need, and other relevant metrics can be used to assess the
quality of a segmentation based on the task’s specifications. For settings where the exact
delineation of the target object is important (e.g. organ delineation), distance-based metrics
such as the Haussdorf distance [48] can be employed. For tasks involving the detecting of
lesions, lesion-wise detection metrics may be more relevant [31].

Finally, in industrial applications, other key metrics are monitored, not directly related
to the predictive performance. It includes the model memory consumption and inference
time. Particular attention is given to designing high-performance models that are compatible
with real-time clinical use, meaning that their time and memory consumption should be
reasonable.

Conventional DL model development stops at this validation stage. Nevertheless, it should be
noted that we have not yet turned our interest to quantifying uncertainty. An immediate idea
would be to look at the probability associated with a prediction. This concept is presented in
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the following section.

I.6 Probability calibration

Confidence

A
cc
ur
ac
y

Under-confidence Over-confidencePerfect calibration

0 1
0

1

Figure I.6.1: Example of a reliability diagram showing perfect calibration (black dashed
line), under (blue), and over-confidence (red).

By combining the tools introduced in this chapter, discriminative NN models can be trained
and applied to unseen test data points. As presented in Section I.2, the NN produces a
categorical probability distribution over the possible class labels. An immediate and intuitive
notion of uncertainty can be derived from this output: a high probability is expected to
indicate a confident prediction, while an uncertain choice should be associated with the
probability of random guessing (e.g. p = 0.50 for binary classification tasks). Ideally, correct
predictions should be made with high confidence, while erroneous ones should be associated
with low confidence. This alignment between confidence and accuracy is called the calibration
of the model [49].

For a perfectly calibrated model, the predicted probability perfectly reflects the true probability
of an event, e.g. when considering all predictions made with a probability of 0.80, the model
is correct 80% of times. More formally, writing Y and ŷ the ground truth and predicted label
classes and P̂ the associated probability, a perfectly calibrated model respects:

P (Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1] (I.6.1)

Of course, this ideal calibration property is rarely achieved, especially for modern NN [49]. A
convenient way to measure the actual calibration of the model is through reliability diagrams
(also called calibration plots). Such a diagram is illustrated in Figure I.6.1. The main idea is
to plot the model accuracy as a function of its confidence (e.g. defined here as the probability
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of the predicted class). This is performed by binning predictions according to the associated
predicted confidence, and computing the accuracy for each bin. Following Equation I.6.1, the
calibration plot of a perfectly calibrated model should correspond to the identity function
(Figure I.6.1, black dashed line). Any deviation to this identity function corresponds to
a calibration gap (either under or overconfidence, represented by the blue and red lines in
Figure I.6.1).

It is important to stress that many UQ methods that will be presented in the next section
are building on predicted probabilities to compute uncertainty scores, including the entropy,
variance, or mutual information (MI) of the categorical probability distribution. However,
severe miscalibration is usual in medical-image segmentation models, notably due to inap-
propriate choice of loss functions (e.g. using the Dice loss for image segmentation) [50]. An
example of such a phenomenon is presented in Figure I.6.2: a model is trained to segment
MS lesions using the Dice loss. A test image is then overlayed with the predicted lesion class
probability map. It appears that the large majority of voxels is associated with a probability
extremely close to 1. The associated reliability diagram is presented below. The first step
before exploiting probabilities for UQ is thus to make sure they are properly calibrated.
Calibration techniques are further introduced later in this thesis (Section II.6.3).
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Figure I.6.2: Illustration of a miscalibrated model trained using the Dice loss. (a) Input
FLAIR brain MRI overlayed with the predicted lesion class probability map. (b) Associated
reliability diagram showing both under-confidence for probabilities below p = 0.5, and
over-confidence for probabilities above p = 0.5.



26 Chapter I. Deep Learning for medical image analysis

I.7 Chapter conclusion

In this introductory chapter, the main concepts of DL models have been presented, including
NN building and loss function optimization. We also introduced the main challenges associated
with deep NN, including the generalization issue and poor calibration. In the following chapter,
the tools that have been proposed to enhance NN with proper uncertainty estimates are
presented.



Chapter II

Uncertainty for Deep
Learning-based medical image

analysis: definitions, motivations and
literature review

In the previous chapter, the DL paradigm was introduced. While it has revolutionized medical
image processing, it has yet to be accepted and used by clinicians due to the black-box effect
of NN. Indeed, NN do not have explicit decision rules, as the implicit features of NN that are
learned during training are generally unintelligible to the user, and there is a lack of reliable
confidence estimates associated with their predictions [49]. Moreover, it has been shown that
DL models can be overconfident about their predictions on outlier data [51], which suggests
a global lack of robustness of these predictive models. Due to these limitations, detecting
failures or inconsistencies produced by DL models is complex, raising concerns regarding the
reliability and safety of these algorithms in clinical-routine use [52]. To tackle this important
issue, Uncertainty Quantification (UQ) methods [53] have been developed to quantify the
predictive uncertainty of a given DL model and it has emerged, from a clinical point of
view, as one of the expected properties of any deployed AI algorithm [54]. As a result, the
medical-imaging community is becoming increasingly interested in incorporating UQ into
image-processing pipelines in order to highlight model failures or weaknesses. In this chapter,
we propose a literature overview of the proposed UQ tools integrated into medical-image
processing pipelines.
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II.1 Sources of uncertainty in medical images

Identifying the different sources of uncertainty that can arise in supervised ML classification
problems is crucial for their proper quantification. Predictive uncertainty, meaning the
uncertainty associated with the prediction of a DL model, is generally divided into two parts:
epistemic (or model) and aleatoric (or data) uncertainty [55]. For convenience, these different
sources of uncertainty are first illustrated on a simple 1D regression problem (Figure II.1.1).
In this scenario, the red line corresponds to the function to be learned using the training
samples (black dots). However, the learning is complicated by the presence of both epistemic
and aleatoric uncertainties.

Epistemic uncertainty describes the lack of knowledge of the model concerning the
current input being processed [55, 56]. It is considered to be reducible, meaning that it can
be limited by using additional data. In practice, epistemic uncertainty is expected to be high
when the model is confronted with samples that are unusual or different from those observed
during the training stage [57]. In the regression example, it can be observed that data points
are not uniformly distributed over the possible values of x. Instead, points are concentrated in
the intervals [−10,−5] ∪ [5, 10]. The intermediate interval [−5, 5] corresponds to a moderate
epistemic uncertainty region, as data points in this area are very scarce. The intervals
[−∞,−10] ∪ [10,∞] correspond to high epistemic uncertainty regions, as training samples
are absent. At inference, test samples belonging to these intervals would be considered as
out-of-distribution (OOD) data points, and it is expected that the model’s prediction
would be uncertain and suboptimal. In medical-image analysis, such situations are frequent,
as there may be significant variation between training and test images, for example, if they
were acquired at different hospitals or using different machines [58]. Additionally, unexpected
patterns can be encountered in test images, such as diseases not encountered during training
and artifacts. In ML, epistemic uncertainty is generally modeled using distributions over the
model’s parameters [57].

Aleatoric uncertainty describes intrinsic noise and random effects within the data [55].
It is not intrinsic to the model, but rather a property of the underlying distribution of
the data. In the 1D regression example, the green section (x ∈ [−10,−5]) corresponds to
a low aleatoric uncertainty region: measurements are noiseless and provide an accurate
approximation of the true function. On the contrary, the red section (x ∈ [5, 10]) corresponds
to a high aleatoric uncertainty setting: the measurements are much more noisy, and there
is a significant variability in the outcome for similar values of x. Aleatoric uncertainty can
be further split into two categories: homoscedastic uncertainty which is identical for each
sample of the dataset, and heteroscedastic uncertainty which depends on the query input.
Finally, aleatoric uncertainty is challenging to reduce. The only way to mitigate it would be
to change the data acquisition strategy, for instance by increasing the quality of the sensors.
In ML, aleatoric uncertainty is generally modeled by placing a distribution over the model’s
outputs [57].

Label uncertainty : In the context of medical-image analysis, aleatoric uncertainty can
be observed not only in the input data (low signal-to-noise ratio, artifacts, partial volume
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Figure II.1.1: Visualization of uncertainty sources on a simple 1D regression task. Blue
areas correspond to out-of-distribution regions where no training samples are available.

effect), but also in the ground truths. It has been observed that inter-rater variability in
the context of ground truth annotations of medical images is important [59, 60]. We refer
to this type of uncertainty as label uncertainty. Two real-world examples of this inter-rater
disagreement are provided in Figure II.1.3, for prostate MRI segmentation and new MS lesions
segmentation in longitudinal brain MRI. In these examples, the experts do not agree about
the exact delineation of the organ (prostate segmentation) or the presence of a brain lesion
(new MS lesions segmentation). This has a direct impact on the model’s overall uncertainty
as the same object of interest (e.g. a brain tumor) may have significantly different ground
truth delineations depending on the rater. The noisiness of ground truths for medical-image
segmentation is thus a serious issue that can heavily impair the performance of the trained
model [61].

While the regression example is convenient for introducing the concepts of aleatoric and
epistemic uncertainties, this thesis deals with the processing of high-dimensional medical
images, for which uncertainty sources manifest in specific ways. In Figure II.1.2, several
synthetic images are presented, each expressing one particular uncertainty setting that can
be encountered in medical applications. The first setting, No uncertainty, corresponds
to an ideal scenario where there are no uncertainty sources: the target object is easily
distinguishable from the background, and the ground truth perfectly matches the target
object. Aleatoric uncertainty is illustrated in two settings, respectively, label and image
uncertainties. Label uncertainty depicts the case where the ground truth is noisy and
contains annotation errors. More precisely, the delineation under-segments the object, which
would increase the model uncertainty about the expected boundary of the object. Image
uncertainty represents uncertainty contained within the image or ground truth. More
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Figure II.1.2: Types of uncertainties illustrated on synthetic 3D medical images.

particularly, 3 different classes are nested inside each other (blue, green, and red labels).
Partial volume, simulated using Gaussian blur, complicates the precise delineation of the
boundaries between classes. Such partial volume effect is extremely common on MRI [62],
where a single voxel can contain a combination of several tissues, for instance, healthy white
matter and MS lesion. Thus, it is expected that a segmentation model would hesitate about
both classes. Finally, the last example depicts Epistemic uncertainty. As compared to
the first image which contains a hyper-intense spheroid and a hypo-intense background, the
image contains a hypo-intense cube and a hyper-intense background. A model trained on
the former type of images would therefore lack knowledge about the expected output for the
second image.

These two examples (1D regression and synthetic images) allow us to intuitively distinguish
between the 2 main sources of uncertainty in supervised medical-image classification, namely
data (which encompass image and label-induced uncertainties) and model. In real-world
applications, these phenomena are often intertwined. A flourishing literature has been
proposed to quantify one particular type of uncertainty or both, in the context of DL-based
medical image analysis. In the following section, an in-depth review of this literature is
presented.
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Figure II.1.3: Illustration of label uncertainty in prostate MRI segmentation (a, QUBIQ
dataset a) and in new MS lesions segmentation in longitudinal brain MRI (b, MSSEG-2
dataset [63]). Images (left) are superimposed with the sum of the annotations (right) made
by distinct annotators. For prostate segmentation (a), label uncertainty can be observed
around the boundaries of the prostate. For new MS lesions segmentation (b), only 2 out
of 4 raters segmented the pointed lesion as new, although the lesion appears clearly in V1
but not in V0.

ahttps://qubiq.grand-challenge.org/

https://qubiq.grand-challenge.org/
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II.2 Review of UQ techniques applied to medical-image
analysis

II.2.1 Additional contributions to the paper "Trustworthy clinical
AI solutions: a unified review of uncertainty quantification in
deep learning models for medical image analysis"

The literature review presented in this section is the subject of an article published in Artificial
Intelligence in Medicine [64]. To complement this study, two benchmarks are added in this
thesis. While one focuses on the comparison of calibration techniques, the second compares
the most popular UQ paradigm on brain lesion segmentation tasks.

II.2.2 Overview

To examine existing methods proposed to quantify uncertainty in medical-image analysis, the
Google Scholar and PubMed search engines were employed. The goal was to identify studies
that implemented UQ methods applied to medical-image classification or segmentation. The
search was restricted to the following period: January 2015 to October 2023 (included).
The following keywords were employed: Deep Learning, Uncertainty, MRI, CT, PET,
X-RAY, Ultrasound and Medical Image. Matching articles were included if 1) they
presented DL approaches for medical-image classification or segmentation, and 2) they
proposed an uncertainty quantification of their algorithms. Non-peer-reviewed studies were
excluded, with exceptions for papers exceeding 30 citations. Non-English publications were
also removed, as well as review articles and animal studies. This ultimately narrowed down
the number of papers from 241 to 218. A total of 338 UQ methods were identified in this
pool of papers, implemented either as principal contributions or as comparison methods.
To identify trends in this collection of papers, they have been clustered according to 1) the
method used for uncertainty estimation and 2) the type of uncertainty that is considered,
namely epistemic, aleatoric of both (see Figure II.2.1). In the following section, each UQ
framework is introduced.

II.2.3 Softmax uncertainty

As mentioned in the previous chapter (Section I.6), a segmentation NN produces categorical
probability distributions over the possible class labels, which can be used as an immediate
and intuitive uncertainty estimate (see Figure II.2.2). In practice, this is true if and only if
probabilities are calibrated. However, modern NNs tend to be highly miscalibrated, meaning
that the produced probabilities are unreliable, and usually over-confident [49]. To transform
the raw probabilities into real certainty estimates, various calibration methods have been
proposed in the literature. Pioneering work proposed the Temperature Scaling approach [49],
which consists of rescaling the logits of the NN by a single scalar value, the temperature,
which proves to empirically reduce the calibration error without altering the classification
result. However, Temperature Scaling also reduces the confidence of correct predictions.
More sophisticated approaches were proposed afterward, based on binning approaches [65]
or Dirichlet distributions [66]. Finally, while these methods imply a post-hoc calibration
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Figure II.2.1: Pie chart of Uncertainty Quantification methods in the 218 selected papers.
Percentages (and numbers) of selected papers for each class of methods are indicated in
the outer ring. The inner ring classifies methods according to the type of uncertainty
modeled: aleatoric, epistemic (Ep.), or both.
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Figure II.2.2: Illustration of the Softmax uncertainty paradigm. A standard segmentation
network produces a categorical probability distribution for each voxel, from which different
uncertainty scores can be derived such as the Maximum Softmax Probability or the entropy.
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Figure II.2.3: Illustration of the Conformal Prediction (CP) paradigm for image clas-
sification. In the usual setting, the most probable class is predicted for a given image.
Instead, CP operates a post-processing of the predicted probabilities to generate a set of
labels conditioned to contain the true label with a user-defined confidence level, such as
95%.

once training is completed, another field of work enforces calibration through the learning
objective, to obtain ad-hoc calibrated models. Recent examples of these loss functions that
promote calibration are the Margin loss [67] and the Dice++ loss[50].

Due to its simplicity, the utilization of Softmax probabilities as uncertainty estimates was
naturally explored for medical-image processing applications, often serving as a simple
baseline for comparison to more sophisticated approaches. As an illustrative example, [68]
and [69] leveraged the entropy of (uncalibrated) Softmax probability vectors for brain tumor
segmentation in MRI. Alternatively, [70] used the Maximum Softmax Probability (MSP)
uncertainty estimator, corresponding to the highest probability class for each voxel, for
skin lesion segmentation in RGB images. A similar score is used for out-of-distribution
(OOD) detection experiments in the context of chest X-ray pathology classification [71] and
COVID-19 lesions segmentation in CT scans [72], respectively. Calibration was explored in
Carneiro et al. [73], where authors employ Temperature Scaling to recalibrate the predicted
probabilities of a polyp classification model. Finally, [67] and [74] proposed incorporating
calibration terms in the training objective of their NN in the context of segmentation and
classification of medical images, respectively, to obtain well-calibrated predicted probabilities.

It is important to note that UQ based on Softmax probabilities only considers the distribution
over the model’s outputs and not the model’s weights. Thus, this type of deterministic
uncertainty estimate only considers aleatoric uncertainty [55, 57].

II.2.4 Conformal prediction

Conformal Prediction (CP, Figure II.2.3) is a statistical approach for uncertainty quantification
that has been attracting a lot of attention lately in the ML community. When applied to
image classification, CP operates a post-processing of the raw softmax probabilities. Hence,
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it can be seen as an extension of the previously presented Softmax uncertainty approach.

While its fundamental concepts are not new [75], CP has been extensively revisited in DL
pipelines thanks to its several appealing properties: it makes no assumption about the
black-box predictor nor the distribution of the data, and it provides provable statistical
guarantees. The core concept of CP is to transform the point-wise prediction of a model
into a predictive set. In the classification setting, these predictive sets correspond to a list
of probable class labels, while for regression tasks, they correspond to predictive intervals
(PIs) associated with the regressed value [76]. These sets are constructed so that the ground
truth label is guaranteed to be included with a user-defined confidence level, such as 90% or
95%. This corresponds to the desired coverage level. To achieve this result, CP performs a
post-processing of the raw predictions of the model (class probabilities for classification, or
predicted scores for regression) and is usually fit using a set-aside labeled calibration dataset
that comes from the same distribution as the test dataset. This procedure is called split CP.
It is important to note that in contrast to other UQ methods that aim at complementing
a prediction with an uncertainty estimate, CP instead starts by defining a target level of
uncertainty, and then adapts the prediction accordingly. CP has found many applications in
natural image classification [77], regression tasks [78], or drug discovery [79]. Applications to
medical images are emerging: CP is employed in the AmnioML framework [80] to provide
PIs associated with Amniotic Fluid volume prediction. As opposed to volume prediction,
[81] focuses on computing PIs for counting tasks, applied to cell and brain lesions counting.
Finally, CP is also investigated in two recent studies focusing on medical-image classification
[82, 83].

While extremely promising for medical applications, as it provides statistical guarantees to
the user concerning the error of the deployed model, CP suffers from 2 major limitations that
may hinder its usage in the field. First, it is based on the assumption that calibration and
test data are exchangeable, meaning that they come from the same distribution. However,
it is well known that domain shifts are extremely common in medical-imaging applications,
which hinder the effectiveness of the conformal procedure [84]. Second, the calibration dataset
must be large enough to perform the split CP procedure. The current guideline is to use
1000 calibration samples [76]. In medical applications, data is often scarce, hence obtaining
high-confidence PIs using split CP may not always be feasible.

II.2.5 Bayesian deep learning

Bayesian modeling is a very convenient paradigm for dealing with uncertainty and is thus
the preferred theoretical approach to uncertainty in Deep Learning [40]. In Bayesian Deep
Learning (BDL, Figure II.2.4), each weight of the neural network is replaced by a distribution,
rather than having a single fixed value [85]. To achieve this, a prior distribution p(θ) (usually
Gaussian) is first initialized over the neural network parameters θ. It follows that each weight
is represented by a mean and a variance (thus effectively doubling the number of parameters
of the model). Then, during training, the model learns the posterior distribution p(θ|X, Y ),
given the dataset and the prior distribution, which accounts for the less and more likely
parameters given the observed data. Using Bayes theorem, the posterior is expressed as:
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Figure II.2.4: Illustration of the Bayesian Deep Learning paradigm. In a Bayesian
network, weights are represented by distributions in place of the usual deterministic
weights. The distributions are represented by a set of two parameters: the mean and the
variance. To perform inference, Bayesian Model Averaging is employed, following which
the weights are sampled from the posterior distribution.

p(θ|X, Y ) =
p(Y |X, θ)p(θ)

p(Y |X)
(II.2.1)

In this equation, p(Y |X, θ) is called the likelihood distribution of the model and is responsible
for generating outputs y based on a given query input x and parameters θ. Note that in the
context of image classification or segmentation, the likelihood corresponds to the softmax
function. The normalizer of equation II.2.5 is called the model evidence and can be written
as:

p(Y |X) =

∫
p(Y |X, θ)p(θ)dθ (II.2.2)

A trained Bayesian Neural Network (BNN) is akin to a virtually infinite ensemble of neural
networks, where each instance has its weights drawn from the learned posterior distribution.
During inference, the distribution is marginalized by repeatedly sampling weights from the
shared distribution and averaging the predictions. This process is called Bayesian Model
Averaging [86]. The inference process for a given query input x∗ can be written as:

p(y∗|x∗, X, Y ) =

∫
p(y∗|x∗, θ)p(θ|X, Y )dθ (II.2.3)
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Computing this integral requires marginalizing over all model parameters. Although it is
possible for very simple neural networks, modern neural networks are over-parameterized,
which makes the exact computation of the posterior intractable [40, 87]. To account for this
issue, a branch of work has focused on approximating the true posterior using Variational
Inference (VI). VI proposes to approximate the posterior using a variational distribution
q(θ|w) [88]. The parameters w of the variational distribution are learned during training to
be as close as possible to the exact posterior. This is achieved by minimizing the variational
free-energy cost function, usually referred to as the expected lower bound (ELBO) [85]:

F (D,w) = KL[q(θ|w) ∥ p(θ)]− Eq(θ|w)[log(P |θ)] (II.2.4)

Minimization of this loss is achieved using Stochastic Gradient Descent (SGD), as in standard
neural networks. This training paradigm is called Bayes by Backprop (BBB) [85]. VI
allows to address Bayesian Inference as a classical optimization problem. Once training
is completed, various uncertainty estimates can be obtained, such as the entropy of the
predictive distribution, its variance, or its mutual information. BDL places a distribution
on the model’s weights, hence it is rooted in epistemic uncertainty quantification. However,
BDL applied to classification and segmentation tasks also produces a categorical probability
distribution, so it can be easily coupled with the Softmax probabilities framework previously
introduced (Section II.2.3) to also quantify aleatoric uncertainty [89].

Applications of BDL to medical-image processing are so far scarce. Studies initially focused
on applying Bayesian convolutions associated with VI approaches. We found applications
for 2D medical-image classification [90, 91], knee abnormality detection [92], lung and nasal
endoscopy CT segmentation [93] and brain tumor segmentation [94]. However, this approach
requires extensive changes in the model architecture and training paradigm [85, 89], associated
with an increase in the computational cost of both training and inference. This has motivated
recent studies on scalable BDL solutions. For example, in Adams et al. [95], authors
evaluate Rank-1 Bayesian networks [96] as well as latent posterior BNN on a task of organ
segmentation in 3D CT. These two approaches were recently proposed as scalable alternatives
to the standard BDL framework.

II.2.6 Monte Carlo dropout methods

In Gal et al. [97], authors demonstrated that a NN trained with the dropout technique
(introduced in Section I.4) can efficiently approximate Bayesian inference without the as-
sociated prohibitive computational cost. Based on this principle, Monte Carlo Dropout
(MC dropout, illustrated in Figure II.2.5) proposes to train a model with dropout and keep
it activated during inference. For a given query input, multiple forward passes are then
performed. Each time, a different dropout mask is randomly sampled (generally following a
Bernoulli distribution), producing different predictions. Following this process, a predictive
distribution is obtained, similar to BNN. As for BDL, MC dropout was initially proposed to
tackle epistemic uncertainty, although it still produces a categorical probability distribution
from which aleatoric uncertainty estimates can be computed [98]. MC dropout allows the
approximation of a BNN in any network trained with dropout, it thus rapidly gained popu-
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Figure II.2.5: Illustration of the Monte Carlo Dropout framework in a 2D CNN. Blocks
colored in black indicate dropped-out channels. The key concept is to keep dropout
activated at test time and repeat the inference process multiple times. It generates a set
of Monte Carlo samples from which usual uncertainty scores can be derived (e.g. entropy,
variance).

larity, and applications in the medical-imaging field are numerous. Implementation of this
framework varies little. Studies that stand out have studied in further detail the importance
of the dropout layer’s position and type, rate, and the number of drawn MC dropout samples.
Jungo et al. [99, 69] studied the importance of the positioning of the dropout layer within a
convolutional network for brain tumor segmentation in MRI. However, experiments did not
allow to draw clear conclusions. [100] evaluated the impact of the number of MC samples at
inference on the segmentation accuracy of the photoreceptor layer in OCT scans, and found
no improvement after 20 samples. Similar work was carried out in Camarasa et al. [101],
where the impact of the dropout rate and type (Bernouilli or Gaussian dropout) was assessed
on a task of cardiac MRI segmentation. While the dropout type had little impact on the
segmentation performance, they found that the choice of the dropout probability was critical,
as the performance of their model significantly decreased for a dropout probability superior
to p = 0.50. In Ghoshal et al. [102], authors propose to quantify both aleatoric and epistemic
uncertainty using MC dropout in a task of nuclei segmentation in microscopy images and
found that increasing the number of MC samples led to a decrease of the measured aleatoric
uncertainty.

Other studies have proposed improvements to the standard MC dropout technique. In Jungo
et al. [69], authors propose to use concrete dropout, a variant where the dropout rate at
each layer is learned as part of the optimization process [103], but found no improvement as
compared to the standard Bernouilli dropout. In a similar vein, [104] proposed a novel Spike-
and-Slab dropout strategy, allowing to learn during training the dropout probability for each
convolutional filter independently, for brain parcellation in T1-weighted MRI. Alternatively,
[105] applied a variant of dropout called DropConnect [106], following which weights are
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Figure II.2.6: Illustration of the Deep Ensemble framework. In its simplest setting,
identical neural networks are trained on the same dataset. Due to the inherent stochasticity
of gradient descent, the resulting trained models are different. The variability in their
predictions can then be used to compute uncertainty scores.

randomly set to zero instead of activation, and demonstrated its advantages on various
segmentation tasks, including organ segmentation from CT scans.

II.2.7 Ensembling methods

Deep Ensemble (DE, illustrated in Figure II.2.6) [107] proposes to quantify uncertainty from
a series of sequentially trained NN. As the weights of the neural networks are initialized
randomly, the models reach different optimum during training. As a result, they produce
diverse predictions for the same query input. As for BDL and MC dropout, uncertainty
estimates of both aleatoric and epistemic uncertainties can then be extracted from the
ensemble’s predictive distribution [108]. A DE does not require any changes to model
architecture or training paradigm and is known for boosting predictive performance. Yet,
it requires to repeat the training several times, which is cumbersome when the model is
complex. Moreover, the aggregation of each individual prediction at inference increases the
computational cost of this approach.

Ensembling techniques have been widely studied for UQ in medical imaging, with various
studies demonstrating superior predictive performance and uncertainty-quantification quality,
as compared to the MC dropout approach [109, 110, 111]. Noticeably, efforts are carried
out to develop more efficient ensembling strategies that preserve the performance and
uncertainty gain of the standard DE approach, without the prohibitive computational cost.
Typical examples include multi-output architectures, that are able to produce a diverse set
of predictions in a single pass using different branches or heads. This concept has been
applied to both medical-image classification [112] and segmentation [94]. In a similar vein,
Layer Ensemble [113] proposes to add a dedicated output to each intermediate layer of
a segmentation model to form an ensemble within a single network. The same concept
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is adopted in the Early-Exit Ensemble [114] and applied to medical-image classification
tasks. Additional illustrative examples include Checkpoint Ensembling [115], which builds
an ensemble from different checkpoints saved during the course of a single NN training.
Alternatively, the Stochastic Weight Averaging Gaussian (SWAG) framework [116] can be
viewed as an efficient way of ensembling. It aims at estimating a Gaussian approximate
posterior over the weights of a NN by sampling its weight configurations during training,
using a constant learning rate. At inference, it is possible to sample an ensemble of diverse
models from this distribution. Two applications of SWAG can be found in the medical-
image processing literature, for retinal artery-venous segmentation [117] and chest X-Ray
classification [118], respectively. Finally, another research lead corresponds to developing
techniques to improve diversity within ensembles, which is known to be a key factor of this
technique [119, 120]. Two efforts in this direction are i) Orthogonal Ensembles [121], which
optimize the orthogonality between ensemble member’s weights to promote variety among
predictions, and ii) diversity-promoting ensembles, composed of varied NN architectures
explicitly chosen to minimize the correlation between their predictions [122].

Finally, it is worth noticing that some works propose to associate ensemble and MC dropout,
forming the so-called Ensemble Monte Carlo (EMC) [123, 124, 90]. This allows to investigate
two different types of uncertainty, namely i) uncertainty resulting from the random seed used
to perform SGD training, yielding to different optima when sequentially training NNs, and ii)
the weight uncertainty within each unique ensemble member assessed using the MC dropout
approach.

II.2.8 Learning-based uncertainty quantification

Learned uncertainty (LU) frameworks are built on the idea that aleatoric uncertainty can
be learned during training directly from the data itself. The most immediate approach, for
segmentation tasks, is to treat the inter-rater variability as a ground truth for uncertainty.
Supervised-learning strategies can then be adopted to reproduce the distribution of the raters
annotations [125, 126, 127, 128]. However, this approach is limited to datasets where multiple
ground truth segmentations are available per image, which is usually not the case. Most
LU approaches have thus developed strategies to learn the segmentation and uncertainty
conjointly without the need for explicit ground truth labels for uncertainty (see Figure II.2.7).
In this direction, the initial proposal is to suppose that the network output logits z can
be modeled by a Gaussian distribution parametrized by N (z; ρ, σ2), where ρ and σ are the
outputs of the NN, obtained by providing the model with two separate output branches [57].
High values of σ represent high heteroscedastic aleatoric uncertainty. To train the model
to predict both quantities, a sampling-based uncertainty-aware loss is adopted. Illustrative
applications of this approach can be found for Multiple Sclerosis lesions [129], tumor [130],
and atlas segmentation [131] in brain MRI. This framework was recently extended to skewed
Gaussian distributions in order to quantify asymmetric-contour uncertainty [132]. Another
lead consists of learning uncertainty estimates directly correlated with the errors of the model,
usually for segmentation applications. The starting observation is that errors are available
at each training iteration by computing differences between the ground truth labels and
the predicted labels. Thus, it is possible to use the computed-error maps as ground truth
indicators for uncertainty. In McKinley et al. [133], authors present a modified segmentation
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Figure II.2.7: Illustration of the Learned Uncertainty (LU) framework. A segmentation
network is equipped with two output heads: one for the usual segmentation output (red),
and one for the predicted uncertainty (blue). In practice, the model learns to predict both
quantities (segmentation and uncertainty) using a dedicated loss function (e.g. Labelflip
and Learned Confidence Estimates losses).

architecture with 2 output convolutions: one for the segmentation probabilities, and one for
an uncertainty output called labelflip probability. They also propose the Labelflip loss in
order to correlate this predicted uncertainty score with the incorrectly segmented voxels. The
loss aims at reducing the weight of voxels at the interface between classes, that are inherently
uncertain and inconsistently annotated in the ground truths. Instead, learning is emphasized
for voxels that are incorrect but not inherently uncertain. An alternative approach is the
Learned Confidence Estimates (LCE) loss proposed in Devries et al. [70]. In this framework,
the segmentation model is also equipped with two separate outputs for the segmentation and
a confidence estimate, respectively. This latter estimate is used to interpolate between the
predicted probability distribution and the target distribution so that low-confidence voxels
are pushed toward the correct output. Finally, [68] proposed the uncertainty cross-entropy
loss, which is an extension of the standard cross entropy with an extra class corresponding
to uncertain cases, for which no other class can be predicted with confidence. The loss can
be minimized in two fashions, either by i) predicting the correct class label or ii) predicting
the uncertainty class. The same motivation is at the core of the Deep Gambler model [134],
recently applied to medical-image classification [135], that converts a m−class classification
problem into a m+ 1 problem where the extra class represents abstention from answering.

II.2.9 Generative models

Image-conditional generative models have been explored for UQ in medical-image segmenta-
tion. The main objective is to generate various plausible and spatially-correlated segmentation
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Figure II.2.8: Illustration of the Probabilistic U-Net framework. The input image is
projected into a latent space using a dedicated encoder network. This latent space encodes
the different plausible segmentations for the given input image. Samples from this latent
space z1, ..., zT are injected at the output of the segmentation network to produce a set of
plausible masks, from which uncertainty estimates can be derived.

masks for a given input image. The first attempt in this direction was achieved with the
Probabilistic U-Net [136] which proposed a segmentation architecture based on a Variational
Autoencoder (VAE). This allows the encoding of the input image into several multivariate
normal latent variables which are then decoded into diverse variations of the same region
of interest. This process is illustrated in Figure II.2.8. Several improvements were then
proposed to extend the expressivity of this generative model, such as the Hierarchical Proba-
bilistic U-Net [137], the PHISeg [138], the RevPHISeg models [139], or by the insertion of
Normalizing Flows [140, 141, 142]. Another interesting variant was proposed in the Stochastic
Segmentation Network [143], which places low-rank multivariate normal distributions on the
predicted logit space, allowing the sampling of a set of spatially-coherent segmentation for
each input image. More recently, diffusion models were applied to this problem [144]. Note,
however, that these different approaches are based on the sampling (either sampling several
plausible masks at test time for Probabilistic U-Net and variants, or an iterative generative
process for diffusion models), hence their computation cost is higher than that of standard
segmentation models.

II.2.10 Test-time augmentation

Test-Time Augmentation (TTA, illustrated in Figure II.2.9) [145] was proposed as an UQ
method to evaluate aleatoric uncertainty. At test time, multiple variants of the input image
are generated using Data Augmentation. This can include spatial transformations (e.g.
flipping, rotation) as well as intensity augmentations (e.g. contrast modification, noise
injection, or artifacts). The model generates a prediction for each augmented variant of the
input image. From this distribution, uncertainty metrics can be extracted such as the median
or the variance. The TTA process aims to explore the impact of input-image transformations
on the prediction. TTA is particularly interesting as it is completely model-agnostic: it
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does not require any particular architecture or training design, and can thus be used with
any pretrained or open-source model. Moreover, TTA can mimic the natural variability
of medical imaging devices (contrast, noise level), which is thus relevant for medical tasks.
Various TTA strategies were experimented for medical-image applications. In its simplest
setting, only flipping is applied [72]. Noise and intensity shifts are also commonly added
to the augmentation pipeline [146, 147, 68]. [145] gives an example of a more elaborate
setting, where 128 variants are generated per input image using both extensive intensity
and geometry transformations. In a more original manner, [148] proposed to use in-painting
as TTA for uncertainty estimation. A downside of this approach is the increased cost of
generating variants of high-dimensional images, which can be time-consuming for instance
when using elastic deformations.
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Figure II.2.9: Illustration of the Test Time Augmentation framework. An augmentation
module generates multiple variants of the input image, which are each processed by the
trained model. This produces a set of heterogeneous predictions from which uncertainty
scores can be derived.

II.2.11 Latent-space OOD detection methods

From a practical point of view, epistemic uncertainty is expected to be high for Out-of-
distribution (OOD) images, corresponding to images that are far from the training image
distribution. Based on this, efficient epistemic-uncertainty techniques have been recently
proposed to detect OOD images using the intermediate features of a trained NN [149]. This
builds on the hypothesis that the feature maps computed when processing an input image
contain information regarding its conformity. These methods, illustrated in Figure II.2.10,
are computationally efficient and are increasingly experimented in medical-image processing
applications. For instance, the Mahalanobis Distance was investigated to detect outliers
in the context of COVID-19 lesions segmentation [72], X-ray classification [150, 71, 151]
mammography classification [152] and more recently liver segmentation in T1-w MRI [153].
As alternatives, [154] proposed to study the spectral signature of the intermediate feature
map by computing its Singular Value Decomposition in order to detect OOD images, while
[68] computed class-wise prototypes from the feature representations in the context of brain
tumor segmentation in MRI, allowing to detect train-test mismatches. Finally, we contributed
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Figure II.2.10: Illustration of latent-space Out-Of-Distribution (OOD) detection. A
compressed latent representation of the input image is collected from the intermediate
activations of the network. A distance metric is then usually computed to estimate the
distance between the test image and the training ones.

to this field by proposing a benchmark of the aforementioned solutions on a task of tumor
segmentation in 3D brain MRI, and by analyzing the importance of the number of feature
maps used to compute OOD scores [155]. This study is presented in Chapter IV of this thesis.

II.2.12 Evidential deep learning

The Dempster–Shafer Theory of Evidence (DST) is a framework for dealing with both
epistemic and aleatoric uncertainty [156]. In a K-class segmentation problem, DST proposes
to assign belief masses bki to each possible class for each voxel i, as well as an overall uncertainty
mass such that:

1 =
K∑
k=1

bki + ui (II.2.5)

where bki > 0 and u > 0. Beliefs are computed from evidence eki , which is typically obtained
by applying a Softplus operator to the raw logits predicted by the NN [157], such that:

bki =
eki
S

and ui =
K

S
with S =

K∑
k=1

(eki + 1) =
K∑
k=1

αk
i (II.2.6)

where S is called the Dirichlet strength. When there is no evidence collected guiding to any of
the K classes, the beliefs reach their minimal values 0, while the overall uncertainty reaches
its maximal value 1. Finally, DST proposed to parametrize a Dirichlet distribution on the
model’s outputs in place of the categorical distribution, using the parameters {α1

i , α
2
i , ..., α

K
i }.
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Figure II.2.11: Illustration of the Evidential Deep Learning uncertainty paradigm. A
Softplus activation is inserted at the end of the network to generate evidence for each class
and for each voxel. They are used to parameterize Dirichlet distributions, from which the
segmentation and uncertainty estimates can be derived.

Interestingly, the realization of a Dirichlet distribution is still a distribution. It can be
intelligently used to replace the standard categorical probability distribution of a classification
NN by a distribution over possible Softmax outputs, thus modeling second-order probabilities
and uncertainty [158]. It is thus much more expressive in terms of UQ than the standard
Softmax probability framework (Section II.2.3). Different configurations of the Dirichlet
distribution in the case of K = 3 are illustrated in Figure II.2.12, showing cases where
epistemic or aleatoric uncertainties are high. Figure II.2.11 illustrates how EDL can be
implemented in a segmentation network in practice.

In EDL, the probability that voxel i belongs to class k is obtained following [158]:

pki =
αk
i

S
(II.2.7)

and training is traditionally performed using the expected cross-entropy loss Lce on the
Dirichlet distribution [157, 158, 159]:

Lice = EDir(p|α) =
K∑
k=1

yK log pk =
K∑
k=1

yi(ψ(S)− ψ(α)) (II.2.8)

where ψ denotes the digamma function. A KL divergence term is usually added to the loss
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Figure II.2.12: Example of a Dirichlet distribution over categorical class probability
distributions for K = 3. Left: a setting with high epistemic uncertainty, without collected
evidence for any of the three classes. Center: Low uncertainty setting, with collected
evidence confidently in favor of the third class. Right: high aleatoric uncertainty, with
equivalent evidence for each of the three classes.

to make sure that incorrect predictions lead to less evidence [158, 157]:

LKL = log
Γ(
∑K

k=1 α̃k)

Γ(K)
∑K

k=1 Γ(α̃
k)

+
K∑
k=1

(α̃k − 1)

[
ψ(α̃k)− ψ(

K∑
k=1

α̃k)

]
(II.2.9)

Aleatoric-uncertainty estimates can be obtained from the estimated probability, similarly to
the Softmax uncertainty framework, while epistemic uncertainty can be evaluated using the
ui, which encompasses the accumulated evidence. DSL applications can be found for both
medical-images segmentation [157, 160, 161] and classification [162, 163, 164].

II.2.13 Other UQ methods

Finally, a few UQ methods considered in this literature review do not conform to any of the
previously introduced frameworks. In Jensen et al. [165], the authors explore the Monte Carlo
Batch Normalization (MCBN) framework, a variant of MC dropout which makes use of the
stochasticity of batch normalization layers. In Jungo et al. [69], an auxiliary net is proposed
to detect the errors of a segmentation model, and the voxel-wise error probability is used as
an uncertainty metric, allowing the decoupling of the uncertainty and segmentation tasks.
[166] plug a Gaussian Process at the end of a DL feature extractor for diabetic retinopathy
classification. Finally, Wang et al. [167] address contour uncertainty by replacing the binary
segmentation masks with a soft alpha matte mask.
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Figure II.3.1: Different levels of uncertainty in medical image illustrated on a 3-classes
segmentation task, containing one lesion class (purple) and two anatomical classes (green
and yellow).

II.3 From voxel uncertainty to lesion and case-level un-
certainties

In the previous section, the most popular approaches for UQ in medical-image analysis have
been introduced. In a segmentation setting, all methods except the feature-based approach
produce voxel-wise uncertainty estimates when applied to 3D medical-image segmentation.
While this is convenient for visualization purposes, this is not exactly aligned with medical
attention, which is usually located at the structure level (e.g. lesion or anatomical region).
Moreover, when processing 3D medical images, the visual inspection of the entire volume
to monitor uncertain areas can be time-consuming. A branch of the medical-imaging UQ
literature has thus focused on estimating uncertainty estimates at higher levels. These
structural uncertainty scores have been mainly explored in two settings: i) the binary
segmentation of lesions, for which an uncertainty score is assigned to each identified lesion
(Section II.3.1), and ii) case-level QC II.3.2, where the goal is to identify non-conform images
(input QC) or poor predictions (output QC). These different scales are illustrated in Figure
II.3.1, and the corresponding literature is further presented in the following.

II.3.1 Lesion-level uncertainty estimates

Lesion-level confidence estimation is an emerging UQ application that consists in attributing
a single uncertainty score for each identified lesion in a medical image. This is relevant for
applications that rely on the detection of multiple lesions, and for which precise counting is
required. A pioneering study in this direction is the work of Nair et al. [129] which proposes
to fuse voxel-level certainty scores to lesion-level scores, for MS-lesion segmentation. The
proposed strategy consists of using the logsum operator on the uncertainty of the voxels
composing each lesion. One downside is that this metric systematically attributes higher
uncertainties to smaller lesions. However, in practice, false positive detections are usually
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small lesions, which is why this operator provides useful estimates. Other aggregation
operators have further been proposed for MS, such as the average of voxel uncertainties [168].
In a different direction, several plausible masks can be obtained for each unique MS lesion
using a DE, and the disagreement between the ensemble members has been proposed as a
lesion-level uncertainty score, although not using directly the voxel uncertainty maps [168].

Lesion-level estimates were also explored for liver-tumor lesions [169, 170]. In these two studies,
the authors start by computing voxel-uncertainty maps, for example using MC dropout, DE
or TTA. Then, they compute radiomics [171] for each lesion, using the uncertainty maps.
These features are used to train a classifier (SVM) to predict the status of the lesion: True
Positive (TP) or False Positive (FP). While their primary focus is the reduction of FP
liver lesions, it seems that the FP probability of the lesion constitutes a viable lesion-level
uncertainty score, where higher values are associated with more ambiguous lesions. A similar
strategy was proposed by Ozdemir et al. [172] for FP reduction in nodules detected in lung
CT. The CT image is first processed by a segmentation model, providing a segmentation and
uncertainty map. Bounding boxes are further extracted from the segmentation, centered at
each identified nodule. An auxiliary CNN classifier then predicts the probability that the
lesion is a False Positive.

II.3.2 Case-level uncertainty estimates

A frequent question when dealing with uncertainty is to wonder if the overall prediction
can be trusted. To answer this, case-level uncertainty scores can be furnished to the user to
provide a general impression regarding the model confidence for a given case. In the context
of medical image segmentation, such scores can actually be computed to detect non-conform
input (input-level QC) or poor-quality output segmentation (output-level QC).

II.3.2.1 Input Quality Control

Epistemic (i.e. model) uncertainty is expected to be high for images that are significantly
different from the ones encountered during training [57]. Thus, monitoring the output
uncertainty of predictive models could theoretically be used to detect poor-quality input
images. This idea was explored in McClure et al. [104], where authors used MC dropout to
estimate the voxel uncertainty of a brain-tumor segmentation model. From these uncertainty
maps, image-level scores are derived by averaging voxel scores across the volume. The scores
are then used to detect poor-quality scans. A similar process is adopted by Gonzalez et
al. [72] for non-conform input detection in chest CT segmentation, using MC dropout and
TTA as voxel uncertainty estimators. In line with these works, the previously presented
feature-based OOD detection methods (Section II.2.11) propose case-level scores that can be
used to perform input-level QC.

II.3.2.2 Output Quality Control

Output-level uncertainty estimates aim at evaluating the overall quality of an automated
segmentation. An intuitive solution is to fuse the voxel uncertainty estimates computed by
a standard UQ methodology (MC dropout, DE, TTA...) to a case-level score, for example,
using the mean [173]. Following the observation that voxel uncertainty is often concentrated
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at the boundaries between classes, two studies have proposed to reduce the weight of contour
voxels to get more accurate structural uncertainties. This prior knowledge-based aggregation
was investigated in Jungo et al. [69] and Graham et al. [174].

Instead of relying on voxel uncertainties, a series of studies have proposed to focus on the
set of plausible segmentation masks generated by standard UQ methodologies. Pioneering
work in this direction is the study carried out by Roy et al. for whole brain segmentation
[173]. They use MC dropout to generate a set of segmentation masks for each input image
and use the disagreement between the samples as an estimate of structural uncertainty. This
follows the intuition that disagreement between the predictions should be higher for poor
predictions. In this direction, they propose different proxies: the Coefficient of Variations
among the volumes (CoV), the Dice & IoU agreements between the MC samples, and the
mean voxel uncertainty in the segmented volume. They further show that these proxy metrics
correlate strongly with the true Dice, unknown during inference. This concept of using a
set of plausible segmentation masks to compute structural uncertainty metrics was further
explored via MC dropout sampling [175, 176] (Section II.2.6), Deep ensemble [177] (Section
II.2.7) and TTA [146, 178] (Section II.2.10). Other proxies were proposed, including the
Predictive Dice Coefficient [175], the Contour Quality metric [179] or the Doubt score [180],
all of which have demonstrated a strong correlation with the true Dice coefficient.

To further improve the output QC procedure, several studies have explored the use of these
uncertainty metrics as features to train a ML model to directly infer the prediction quality,
in a regression setting. Ghosal et al. [181] and Hann et al. [182] trained linear regression
models to predict the Dice directly from uncertainty estimates of MC dropout models,
for digital histopathology image segmentation and cardiac-MRI segmentation, respectively.
Alternatively, Arega et al. [183] used a Random Forest (RF) either in a binary classification
approach (accept/reject poor segmentation) or regression (predict the Dice score) from the
outputs of a MC dropout model. These approaches require building a training dataset
comprising automated predictions together with their associated quality to allow the training
of the auxiliary ML model.

II.4 How to evaluate uncertainty quantification approaches

In the previous sections, the main UQ approaches applied to DL-based medical-image
classification and segmentation were presented. To compare them, different evaluations
have been proposed in the literature. Evaluating UQ approaches is not straightforward, as
there are generally no ground truth uncertainty values. Proxy metrics are thus developed
to circumvent this limitation. More precisely, 6 different types of evaluation protocols can
be identified in the reviewed papers (see Figure II.4.1). In the following, we present each
protocol and identify their use cases.

II.4.1 Qualitative assessment protocol

As computing quantitative metrics for uncertainty is not direct, several works focused on
a qualitative assessment of the predicted uncertainty estimates. In this context, a visual
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inspection of the cases considered as certain/uncertain is usually performed to verify whether
they correspond to cases that a human would consider as such [184, 185, 186]. Alternatively,
the relevance of the incorporation of UQ in a medical-image processing pipeline can be assessed
via the monitoring of its beneficial impact on a downstream task such as active learning [187],
curriculum learning [188, 189, 190], weakly-supervised learning [191], semi-supervised learning
[192, 193, 194, 195, 196], cascaded inference tasks [197, 198], segmentation refinement [199],
federated learning [200], cross-domain generalization [201], or predictive performance [202].

II.4.2 Calibration metrics

Calibration metrics are designed to evaluate the reliability of predicted probability estimates.
In the previous chapter, the reliability diagram was presented as a way to verify the corre-
spondence between predicted probabilities and actual error rates (see Section I.6 and Figure
I.6.1). From this graphical representation, the popular Expected Calibration Error (ECE)
score can be derived to quantitatively estimate calibration [49, 172, 164, 69, 67, 110]:

ECE =
M∑

m=1

|Bm|
n

∣∣∣∣acc(Bm)− conf(Bm)

∣∣∣∣ (II.4.1)

where acc(Bm) and conf(Bm) are the average accuracy and average confidence, respectively, in
the m-th bin. n designates the total number of test samples (images for classification, voxels
for segmentation). The ECE was initially introduced for classification tasks. However, for
medical-image segmentation, it has some pitfalls. Indeed, the majority of voxels correspond
to the background class, which is generally segmented correctly and with very high confidence.
Thus, it overestimates the true calibration of the NN. To circumvent this, recent works on
calibration compute the calibration metrics only on the foreground classes [67].

Alternatively, proper scoring rules can be employed to evaluate calibration, corresponding to
metrics that are minimized when the model predicts probabilities that are consistent with
the true-event probabilities. Popular scoring rules include the Negative Log-Likelihood (NLL)
score [109] (introduced in Equation I.2.3) and the Brier score [203], framed as:

Brier =
1

K

K∑
k=1

(pi,k − yi,k)2 (II.4.2)

where i is the voxel index and K the number of classes.

II.4.3 Coverage error

As presented in Section II.2.3, Conformal Prediction (CP) is traditionally defined around the
notion of coverage, following which a fraction of the ground truth labels should be included
in the predictive sets (e.g. 95% or 99%). A natural way of evaluating uncertainty under this
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Figure II.4.1: Illustration of the different approaches used to estimate the quality of
uncertainty estimates. See text for details.

framework is to compute the distance between the empirical coverage on test data and the
user-defined target coverage [76]. If implemented properly, CP is statistically guaranteed to
approximate the target coverage. However, this can be achieved with unnecessarily large
intervals. Let’s take the example of predicting the volume of a brain lesion, that we want to
equip with a predictive interval using CP. A perfect coverage of 100% could be achieved by
predicting a lower bound of 0ml, and an upper bound corresponding to the overall intracranial
volume. However, these intervals would be useless in practice. Thus, CP methods are also
generally evaluated with respect to the average interval width, where narrower values are
preferred [81].

II.4.4 Error detection and referral

A direct downstream application of uncertainty in an automated pipeline is the detection of
samples for which the prediction is likely to be incorrect. This is crucial to prevent silent errors
that could have a dramatic impact, especially in real-world medical-image applications. Error
detection is thus commonly used to estimate the quality of uncertainty estimates. In this
scenario, the model’s predictions are classified into two groups, certain and uncertain samples,
by setting a threshold on their associated uncertainty. The result of this classification is then
compared to the correctness of each sample, namely correct or incorrect. In that context, a
confusion matrix from the uncertainty point of view can be constructed, by distinguishing 4
possible cases, as shown in Figure II.4.1 (Error Detection case, where τ is the set threshold).
Usual classification metrics (e.g. Accuracy) can then be computed based on the counts of
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each case: i) True Positive (TP) cases when the classification is uncertain and the expected
label and the prediction differ; ii) False Negative (FN) cases when the classification is certain
but the expected label and the prediction differ; iii) True Negative (TN) cases when the
classification is certain and the expected label and the prediction are identical; and iv) False
Positive (FP) cases when the classification is uncertain but the prediction and the expected
label are identical. Illustrative applications of this metric can be found for COVID-19
detection [111], cell colony segmentation [204] and skin-disease assessment [205]. In a similar
vein, but specifically for image segmentation, the uncertainty-error overlap was also proposed
[69] and further extended using mutual information [206]. Other variants include the use of
distance metrics such as the Wasserstein distance [207] or Jensen-Shannon [208] to measure
how much the predicted uncertainty correlates with the distribution of the model errors.

Another variant of this framework is the referral mechanism (also sometimes referred to as
rejection or filtering) [209]. In this context, predictions of the model are ordered from the
most certain to the most uncertain. A fraction of the most uncertain predictions are then
rejected (for instance, referred to the expert), and the performance of the model is computed
on the remaining predictions. If uncertainty estimates efficiently identify as uncertain the
cases that are more likely to be incorrect, then the error rate on the remaining prediction
should decrease. Multiple fractions can then be used in this way, producing a curve showing
the error rate of the model with respect to the fraction of rejected data. The area under the
resulting curve is used as a qualitative score. This referral-based evaluation protocol aims at
mimicking a human-in-the-loop process where the model abstains on uncertain predictions,
which are eventually redirected to an expert for correction. It essentially highlights the same
trends as the previous misclassification detection setting. Such metric was for instance used
for MS-lesion segmentation in brain MRI [129], cardiac MRI segmentation [210], brain stroke
detection [211] or diabetic-retinopathy detection [212]. Interestingly, such referral metrics
were also used in the context of the QU-BraTS 2020 challenge focusing on UQ for brain-tumor
segmentation in MRI [213], as well as in the more recent SHIFT 2023 challenge focusing on
MS-lesion segmentation [214].

II.4.5 Out-of-Distribution detection protocol

A desired property of uncertainty is to be high in the context of a train-test mismatch,
occurring when input images are significantly different from the images seen during training.
Similarly to the misclassification-detection setting, the uncertainty estimates can be translated
into a binary classifier that aims at distinguishing between in-distribution (ID) and OOD
images. Standard classification metrics can further be computed.

Protocols for OOD detection can be characterized based on the type of OOD data used. The
most obvious setting corresponds to far OOD data, corresponding to samples that share
little to no similarity with the training data. For instance, [72] proposes to train a model
to segment COVID lesions in chest CT, and further use colon and spleen CT as OOD data.
A more realistic shift in the context of medical-image processing is diagnostic shift, where
a disease unobserved during training is included in the test images. This setting has been
explored in Berger et al. [71], where authors train a binary classifier to distinguish between
cardiomegaly and pneumothorax in chest X-ray, then use images with fracture as OOD data.
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Similarly, in the context of digital pathology detection, [112] and [110] train breast-metastasis
detection models and include images with new unseen abnormalities at test-time as OOD
data. Combalia et al. [215] train an 8-class classifier on the ISIC 2019 dataset to detect skin
disease, which also contains a test set of OOD images belonging to none of the 8 classes
for OOD evaluation. Modality shifts can also be encountered in medical-image processing
tasks, where the imaging acquisition protocol is different between training and testing images.
Tardy et al. [152] trained a 2D mammography classification model and used images acquired
from a different manufacturer at test time, simulating a common data shift encountered in
clinical routine. Calli et al. [150] consider posteroanterior chest X-rays as training images
and tested OOD detection on anteroposterior images. Finally, Transformation shifts have
also been investigated, where transformations are applied to the input images to push them
away from the training images distribution. For instance, Gonzalez et al. [72] generate OOD
data by applying affine transformations and synthetic artifacts to the input images. This
simulates image quality degradation or the presence of artifacts that can complicate analysis.

II.4.6 Quality control

For segmentation tasks, uncertainty is expected to be higher for poorly-segmented images
than for well-segmented ones. Based on this desired property, several works studied the
correlation between image-wise uncertainty scores (in contrast with the usual pixel-wise
estimates) and the segmentation quality, such as the Dice score. In an automated medical-
image segmentation pipeline, this process can be used to detect images for which the produced
segmentation does not meet quality standards. We refer to this mode of evaluation, specific
to segmentation tasks, as QC-based evaluation protocols. In this setting, the goal is generally
to maximize Pearson’s correlation between the true segmentation quality and the proxy
score [173, 146, 177, 216, 175, 179, 113]. However, we found that such QC-based protocols
usually only focus on the correlation with the Dice score, which is correlated to the size of the
segmented object [31, 217]. As a result, these QC protocols may demonstrate a correlation
between the size of the segmented region and the uncertainty level (with smaller regions being
more uncertain), rather than the true quality of the segmentation. Studying the correlation
with other segmentation metrics is only rarely envisaged, with an exception in Kushibar et
al. [113], where authors demonstrate a correlation for both the Dice and Haussdorf metrics.

II.4.7 Label-distribution protocol

Finally, for segmentation tasks where several expert delineations are available per image, label-
distribution metrics can be employed. This consists of comparing the predicted distribution of
labels Pout with the ground truth distribution of the experts Pgt, and is thus commonly used
paired with Generative UQ models presented in subsection II.2.9. A popular choice of metric
is the Generalized Energy Distance [136, 137, 138] between both distributions. Other proposed
metrics include the normalized cross-entropy [128], the normalized cross-correlation [138]
or the weighted mean of the predictive entropy between the true and predicted uncertainty
maps [218].

The distribution of the UQ evaluation protocols in the studied corpus of papers is shown in
Figure II.4.2.
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Figure II.4.2: Implemented UQ evaluation protocols in the reviewed papers. The
percentage (and number) of the reviewed papers per class is mentioned in the Pie chart.
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II.4.8 Distinguishing aleatoric and epistemic uncertainties during
evaluation

While the distinction between aleatoric and epistemic uncertainties is possible when defining
UQ approaches, this distinction is less clear when dealing with evaluation. Aleatoric and
epistemic uncertainty estimates are often compared using the same metrics [68, 69, 157, 206,
219]. Nevertheless, some evaluation scenarios specifically focus on one particular side of
uncertainty. For instance, OOD detection is clearly linked to epistemic uncertainty, while
label distribution is akin to aleatoric uncertainty. Other metrics including Coverage Error,
Error Detection, Referral, and Quality Control do not make any assumption about the source
of error, which could come from a noisy data point (aleatoric uncertainty) or the lack of
knowledge of the model (epistemic uncertainty), and hence cannot be associated with either
of them. Calibration metrics, that consider the output probabilities of the model, could be
cast as a way to evaluate aleatoric uncertainty. However, there is an increasing literature on
the calibration under domain-shift, which bridges the gap with epistemic uncertainty [220,
221, 222, 223].

II.5 Discussion on the literature review

Now that the most popular UQ methods and evaluation schemes for DL-based medical-image
analysis have been reviewed, we can take a step back and analyze the major trends in this
field.

First, the large number of studies (228) that have been included in this review proves that
the need for UQ is well taken into account by the DL community. This shows that efforts are
being made to develop responsible and understandable AI that can be used in real clinical
settings, without only focusing on the raw prediction accuracy.

Considering UQ methods, it appears that, although Bayesian methodology provides a
strong theoretical background for uncertainty, it is scarcely implemented for medical-image
analysis (only 2.06% of the papers, see Figure II.2.1). This can be explained by the complex
implementation that requires the modification of the NN and training paradigm. Less formal
approximations of the Bayesian framework, such as dropout-based methods, are thus generally
preferred. Overall, MC dropout method seems to be the most popular approach for UQ in
medical-image analysis, representing more than a third of the implemented methods (38.05%),
considering both the standard MC dropout methods (34.81%) as well as MC dropout Ensemble
models (3.24%), which are an MC-dropout extension. This popularity can be explained by its
easy implementation in any NN trained with dropout. Additionally, dropout helps prevent
over-fitting during training, which is a common problem in the medical domain, where the
training dataset size is limited. However, the performance of MC dropout is highly dependent
on the applied dropout rate [101, 224], which can make it impractical to tune. Moreover, it
requires multiple inferences for the same input image, increasing the inference time, which
may not be compatible with AI applications in clinical routine. Ensembling approaches are
also commonly employed for UQ (16.22% of the implemented UQ methods), although less
common than MC dropout models. Aggregating the predictions of multiple models is a
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well-known trick to improve predictive performance, while also providing quality uncertainty
estimates. The drawback is an increased computational cost and time, as it requires multiple
training and the aggregation of their predictions at inference. Other popular UQ metrics are
Softmax probability (12.98%), which provides intuitive and easy-to-use uncertainty estimates,
and Learned Uncertainty methods (8.26%) which propose to learn aleatoric uncertainty from
data. Finally, we note (see Figure II.2.1) that most implemented methods simultaneously
estimate aleatoric and epistemic uncertainties (61.95%), while a third only evaluated aleatoric
uncertainty (32.74%), and only a few simply considered epistemic uncertainty (4.13%). It
can also be noted that the majority (67.83%) of the implemented UQ methods are based on
a sampling protocol (MC dropout, Deep Ensemble, BNN, MC dropout Ensemble, TTA, and
Generative models), aiming at generating multiple plausible predictions for the same query
input. Yet, this process may significantly increase the computational burden of UQ, especially
when processing large 3D volumes, which may prevent its adoption in an automated pipeline
in the medical domain (where latency is a practical concern). Single-step UQ methods such
as Softmax (calibrated) probabilities, Evidential Deep Learning, or Features-based methods
are thus promising especially for time-critical applications.

UQ evaluation protocols. In the literature, a large variety of evaluation protocols are
reported, aiming at assessing the quality of uncertainty estimates. In the context of medical-
image segmentation, if multiple manual expert delineations are available for a given input
image, the inter-rater variability can be used as ground truth uncertainty, to be compared
with the one predicted (representing 7.57% of the implemented evaluation protocols, see
Figure II.4.2). However, most of the time, such an uncertainty gold standard is not provided.
Thus, the evaluation of UQ usually relies on proxy tasks, such as the detection of errors
(27.89%), Quality Control (12.75%), or Out-of-distribution (7.97%). These methods are
inspired by concrete applications of uncertainty in a real-world scenario. Yet, although
commonly used, UQ evaluation based on error detection is not ideal for ranking methods.
Indeed, the set of correct and incorrect predictions is specific to each predictive model. It is
then inappropriate to compare them directly [225]. Calibration evaluation metrics are also
commonly used (17.53%). The use of such metrics seems particularly interesting because
many popular uncertainty estimates, such as variance, entropy, or mutual information, can
be directly extracted from probability distributions. Thus, guaranteeing that the probability
estimates are well-calibrated seems to be an essential prerequisite to obtaining meaningful
uncertainty estimates.

Finally, it must be acknowledged that the effort of the community is promoted by the
organization of uncertainty-oriented challenges. The 2020 edition of the BraTS challenge
included an uncertainty task (QU-BraTS): participants were expected to provide brain tumor
segmentation models that are able to provide voxel-wise uncertainty estimates correlating
with segmentation errors [213, 226]. Furthermore, the MICCAI QUBIQ challenge1, hosted
in 2020 and 2021, focused on label uncertainty. Participants were provided with images
annotated by several experts, on a variety of medical-image segmentation tasks, and were
asked to develop methods able to reproduce the annotation distribution from the different
raters. Finally, the SHIFT 2023 challenge2 contained a task of uncertainty quantification for

1https://qubiq21.grand-challenge.org/
2https://shifts.grand-challenge.org/
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MS-lesion segmentation [214]. The challenge focused on the development of models robust to
train-test mismatches and uncertainty was evaluated through an error-detection setting. Our
participation in this challenge, which ranked at the second position, is further presented in
Appendix (A7).

II.6 Benchmark of voxel-level uncertainty estimates for
brain MRI segmentation

In this chapter, the flourishing literature on UQ for medical image analysis has been presented.
The 6 most popular approaches are further retained for benchmarking: Softmax, MC dropout,
Deep Ensemble, TTA, EDL, and Learned uncertainty. Altogether this pool of methods
regroup 83.28% of the reviewed UQ strategies. This benchmark has two main objectives: i)
selecting a baseline segmentation loss function that will be used to train the segmentation
models in this thesis, that shouldn’t hurt the calibration of the models and ii) selecting a
voxel-level uncertainty baseline.

II.6.1 Benchmark materials

The benchmark is based on three tasks with different characteristics: segmentation of WMH
in brain T2w FLAIR MRI, multi-class tumor segmentation in multi-modal brain MRI, and
binary stroke lesion segmentation in T1w brain MRI.

II.6.1.1 MS lesions segmentation in brain T2w FLAIR MRI

Pathology Description Multiple Sclerosis is a neurodegenerative, demyelinating disease
causing damage to the nerve fibers in the brain as well as the optic nerves and spinal cord.
It affects 2.8 million individuals worldwide in 2020 [227]. The diagnosis relies on clinical
symptoms (including balance, speech, or reflex impairments) and is supported by MRI
findings. The role of imagery is to highlight lesions within the brain white matter, which
are disseminated both in space and time for MS [228]. The preferred MRI sequence is a
T2-weighted FLAIR image, in which MS lesions appear as White Matter Hyperintensities
(WMH).

Data Description T2w FLAIR MRI of MS patients are collected from several open-source
datasets, along with the manual ground truth annotations of WMH: MSSEG-1 [229] (53
images), ISBI 2015 [230] (21 images), MSLUB [231] (30 images) and WMH Challenge (170
images). It results in a total of 274 images that are stratified as presented in Table II.1.
A total of 149 images are used to train the models, 21 to perform validation and model
checkpointing, 49 for an in-distribution test dataset with images from the same distribution
as training images. Note that contrary to the other datasets, ISBI 2015 is a longitudinal
dataset and actually contains multiple imaging visits (4 or 5) of a limited pool of 5 patients.
To avoid train-test contamination, the 4 visits of patient 1 are used for validation, the 4 visits
of patient 5 are kept for ID testing, and the rest of the patients (2, 3, 4) are used to training.
We then evaluate two domain-shift (DS) datasets to validate the robustness of the models.
MSLUB [231] is a test dataset containing images from a site unseen during training, while
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Dataset Centers Devices Train Val Test
ID

Test
DS 1

Test
DS 2 Total

MSSEG-1
Rennes
Bordeaux
Lyon

Siemens Verio 3T
GE Discovery 3T
Philips Ingenia 3T
Siemens Aera 1.5T

23 4 11 0 15 53

ISBI 2015 Best Philips Tesla 3T 13 4 4 0 0 21

WMH 2017
Utrecht
Singapore
Amsterdam

Philips Achieva 3T
Siemens Trio 3T
GE Sigma HDxT 3T
Philips Ingenuity 3T
GE Sigma HDxT 1.5T

124 13 23 0 10 170

MSLUB Ljubljana Siemens Trio 3T 0 0 0 30 0 30
Total 150 20 49 30 25 274

Table II.1: Data sources and stratification for the Multiple Sclerosis experiments. ID:
In-distribution, DS: Domain-shift.

the 1.5 Tesla dataset contains images from seen sites (Lyon and Amsterdam) but that were
acquired at 1.5 Tesla, in contrast to the training images acquired with 3 Tesla MRI devices.
All images are preprocessed uniformly, comprising a resampling to a 1mm3 resolution and
skull-stripping using HD-BET [232].

II.6.1.2 Tumor segmentation in multi-modal brain MRI

Pathology Description Glioblastoma is the prevalent form of brain tumor, representing
60% of brain tumors in the adult population [233]. It affects 0.59 to 5 per 100 000 persons
[234], and it is associated with a poor prognosis: the median survival is 14 to 15 months
starting from the diagnosis. Treatment relies greatly on surgery, which can be complemented
by radiotherapy and/or chemotherapy [235]. The diagnosis and follow-up of the disease relies
on MRI imaging. The standard protocol consists in a multi-parametric MRI acquisition,
including T1w, T2w, T1 with contrast enhancement, and FLAIR sequences [236].

Data Description The task is based on the large-scale BraTS 2023 dataset [237, 226] for
glioblastoma segmentation from brain MRI, comprising T1w, T2w, FLAIR, and T1 with
contrast enhancement (T1ce). This setting allows the exploration of multi-class segmentation:
background, necrosis, edematous, and GD-enhancing tumor (GDE). The 2023 edition of the
dataset is used, comprising 1133 subjects, stratified in 876 for training, 30 for validation,
and 227 for ID testing. The 2023 challenge also included various auxiliary datasets allowing
to evaluate the robustness of the model on DS settings. For this experiment, the BraTS
Africa [238] dataset (N = 60) is used, comprising sub-saharan (SSA) patients imaged with
lower quality devices and presenting more advanced stages of the disease. Due to this shift
in both image quality and population, the SSA dataset is particularly suitable to test the
robustness of the model. All images are provided pre-processed, including resampling to
a 1mm3 resolution, brain extraction, and registration of the MRI sequences to a common
anatomical template.
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Figure II.6.1: Samples from the ATLAS-2 dataset. Orange box: a patient with a single
large lesion. Green box: a patient with a single small lesion. Cyan box: a patient with
two lesions. Label uncertainty can be visualized in the Orange and cyan examples.

II.6.1.3 Stroke lesion segmentation in T1w MRI

Pathology Description Stroke is a very common brain disorder, being the second-leading
cause of death worldwide (6.55 million deaths in 2019) [239]. Most strokes (roughly 60%)
are ischemic strokes, corresponding to the blocking of an artery by a clot. The principal
treatment of ischemic strokes consists of the injection of a drug tissue plasminogen activator
[240] that dissolves the plug. While the diagnosis of stroke mainly relies on CT scans for
their wider availability [241], the follow-up of the patient requires accurate imaging of the
stroke lesion to guide reeducation. This can be performed using T1w MRIs, as they offer
accurate imaging of the damaged area [242]. Manual delineation of the damaged region is
hand-consuming, thus automated solutions are desired.

Data Description The task consists of the automatic delineation of stroke lesions in T1w
brain MRI. For this, the ATLAS 2 dataset is used (N=655), split into 475 for training, 30 for
validation, and 155 for ID testing. This dataset is interesting as the lesions are heterogeneous
concerning their size. Moreover, ground truth labels are noisy (see Figure II.6.1 for an
illustration), as the exact contour of the lesion is often ambiguous. Thus this experiment is
particularly interesting for uncertainty evaluation. All images are provided pre-processed,
including resampling to 1mm3 resolution and registration of the T1w sequences to the MNI
template [243]. To match the pre-processing of the other tasks, the brain are further extracted
using HD-Bet [232].
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II.6.2 Benchmark implementation details

The benchmark uses the Dynamic U-Net implemented using the MONAI’s library [244]
as a base model, which has demonstrated high segmentation performance and robustness
on various medical image segmentation tasks [17, 232, 245]. Its architecture is presented
in detail in Figure II.6.2. The overall model contains 16.5 million of trainable parameters.
The models are trained using the ADAM [37] optimizer with a learning rate of 2 × 10−4,
until the validation loss seizes to improve for a duration of 60 epochs. For WMH models,
a patch training approach is employed, using a patch size of 128× 128× 128 and a batch
size of 4. This is because images are not registered to a common atlas, and thus exhibit
heterogeneous dimensions, which make a patch approach more convenient. For tumor and
stroke segmentation, a full 3D approach is used, with an image size of 208 × 208 × 144
and 176 × 176 × 192, respectively, and a batch size set to 1. Batch normalization [23] is
used in WMH models; while instance norm [25] is used in 3D models that operate with a
reduced batch size. Input images are normalized by applying a Zero Mean Unit Variance
(ZMUV) normalization. A data augmentation scheme is implemented using TorchIO [246],
using all augmentations provided in the library (random contrast, spatial, and artifact
transformations).
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Figure II.6.2: Architecture of the Dynamic U-Net model used as segmentation backbone in the thesis experiments, representing
16.5 million trainable parameters.



64 Chapter II. Uncertainty for Deep Learning-based medical image analysis

II.6.3 Selection of a calibration-preserving segmentation objective

II.6.3.1 Considered Ad-hoc and Post-hoc calibration strategies

Throughout this thesis, multiple segmentation models will be trained. It has been discussed
that the popular Soft Dice loss is known for heavily damaging the calibration of the NN [50].
Thus, the first important decision is the choice of the baseline calibration procedure that will
be used throughout the thesis. More precisely, ad-hoc and post-hoc calibration techniques
can be implemented. Ad-hoc calibration means that the training objective is modified so
that the notion of calibration is enforced. Post-hoc calibration is a re-calibration strategy
making use of a set-aside validation dataset to fix the calibration of the trained NN. Two
ad-hoc techniques (Dice++ and Margin loss), as well as one post-hoc technique (Temperature
Scaling), are compared to the baseline Soft Dice choice. They are presented below:

Soft Dice and Cross-Entropy This baseline loss objective corresponds to the sum of the
Soft Dice loss (presented in Equation I.2) and the Cross-Entropy loss:

L1 = LDice + LCE (II.6.1)

It is expected that performing training with this loss yields to poorly calibrated NN, and it
is used to get baseline calibration scores.

Margin Loss The margin loss [67] is a recent proposal that enforces calibration by adding
constraints on the distance between logits l, corresponding to the pre-softmax NN outputs.
More formally, the distances d between the winner class and the others in a K-classes
segmentation problem is defined as d(l) = (maxj(lj) − lk), with k ∈ {1, ..., K}. Then, the
proposed loss is framed as:

L2 = LDice + LCE + λ
∑
k

max(0,max
j

(lj)− lk −m) (II.6.2)

wher m is a user-defined margin, set to the default value m = 10, and λ a weighting value
set to the default value of λ = 0.1.

Dice++ and Cross-Entropy The Dice++ loss [50] is an amelioration of the Soft Dice
loss that penalizes over-confident mistakes (FP and FN voxels). To achieve this, the Soft
Dice objective is modified by adding a penalization factor γ:

LDice++ =

∑N
i=1 p1ig1i∑N

i=1 p1ig1i + β
∑N

i=1 p0ig
γ
1i + α

∑N
i=1 p1ig

γ
0i

=
2TP

2TP + αFP γ + βFNγ
(II.6.3)

L3 = LDice++ + LCE (II.6.4)
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The LDice++ objective encourages the model to produce i) correct confident prediction and ii)
unconfident incorrect predictions, via the over-penalization of confident mistakes controlled
by γ. A value of γ = 2 is used, which was found as the optimal value to promote both
segmentation quality and calibration [50].

Temperature Scaling Contrarily to the Margin and Dice++ losses, Temperature Scaling
(TS) is a post-hoc calibration procedure [49]. The idea is to fit a scalar called the temperature
T so that the NLL loss is minimized on a set of validation images. More formally, the
temperature is used to adjust the entropy of the softmax output by scaling the logits z as
follows:

p = Softmax(z/T ) =
ez/T∑
j e

zj/T
(II.6.5)

It is important to notice that all logits are scaled with the same scalar, including both correct
and incorrect predictions, which can be seen as a limitation. However, TS has been shown to
empirically reduce the calibration errors and it can be combined with any ad-hoc calibration
objective to reach state-of-the-art calibration results [67]. A temperature superior to 1
indicates over-confidence, while a temperature inferior to 1 is indicated for under-confident
network.

II.6.3.2 Corrected Calibration Metrics

To compare models trained with L1, L2 and L3, the ECE and Brier scores are computed. As
mentioned in Section II.4.2, calibration metrics for medical images are biased because the
vast majority of voxels are background voxels, correctly segmented with very high confidence,
which greatly overestimate the calibration of the evaluated NN [67, 69]. In previous studies,
authors proposed to exclude the image background of the metric computation by using a
brain mask [69], or by skipping the background class in the metric computation [67]. However,
these approaches have some limitations. Restricting computation to a foreground brain mask
will still include a large quantity of confident non-foreground voxels if the foreground object
is small (e.g. small lesion), thus will still overestimate calibration. Alternatively, skipping all
background voxels signifies that False Positives are not included in the metric. To circumvent
these limitations, a third option is here investigated, following which the calibration metrics
are computed by excluding confident correctly background voxels, defined as voxels
correctly assigned to the background class and with confidence above p = 0.99. This allows to
efficiently exclude the large majority of confident background voxels while keeping uncertain
background voxels.

Additionally to calibration metrics, we also provide the Dice scores and Surface Dice (SD)
[247] scores to evaluate the quality of the segmentation.
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Figure II.6.3: Dice and Expected Calibration Error (ECE) at each training step for
segmentation models trained with L1, L2, L3. Dice scores are plotted with stars and
continuous lines. ECE scores are plotted with dashed lines and dots.

II.6.3.3 Results

Tables II.2, II.3, and II.4 present the calibration and segmentation metrics for WMH, tumor
and stroke lesion segmentation, respectively. The optimized temperatures are indicated in
the tables. Figure II.6.3 displays the evolution of the Dice and ECE metrics during training
for each tested loss and dataset.

First, it can be observed in Figure II.6.3 that for models trained using L1 and L2, the
ECE increases during training as the Dice score increases. For models trained with L3, the
ECE stagnates at a lower value. This is confirmed by the test calibration metrics before
Temperature Scaling, which are minimized by models trained using L3, for each of the 3
segmentation tasks. Contrarily, poorer calibrations are achieved with models trained using
L1 and L2, which exhibit similar miscalibration on the 3 segmentation tasks. No significative
improvement can be observed when using the L2 loss as compared to the baseline L1. This
may be due to the choice of the hyper-parameters in the Margin loss (margin m and weighting
λ), which were kept at their default value for this benchmark. It can be concluded that L3

provides the best intrinsic calibration, before post-hoc calibration.

The post-hoc TS procedure yields similar temperatures across the datasets: a temperature
around 2 for models trained with L1, around 1.5 for models trained with L2, and between
1.15 and 1.3 for models trained with L3. This may indicate that the miscalibration of the
models is intrinsic to the neural network and loss choice, rather than linked to the dataset
difficulty. Moreover, it appears that models trained with L3 are associated with temperatures
close to 1, meaning that they are already well-calibrated, which confirms the trends observed
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in Figure II.6.3. Overall, all models benefit from TS, with a significant reduction of the
calibration error for each dataset and model. Interestingly, even if the model is initially poorly
calibrated (e.g. models trained with L1), TS performs a very efficient post-hoc correction.
For instance on WMH segmentation, L1 alone produces the worst calibration, but L1 + TS
achieves a very competitive one. For each of the three tasks, the best calibration is achieved
after applying TS, and models trained with L1 are the ones that benefit the most from this
post-hoc adjustment.

Regarding the DS settings (MSLUB and 1.5T for WMH segmentation, SSA for tumor
segmentation), decreases in segmentation quality and calibration can be observed, as compared
to the metrics obtained on ID data. This indicates that the trained models are not able
to generalize very well to these datasets. Overall, the combination of L3 + TS seems to
provide the best and most robust results across the 3 segmentation tasks. It achieves the best
segmentation performances on the 3 MS datasets, as well as on the SSA tumor dataset while
having a very competitive calibration with and without post-hoc TS for each experiment. The
fact that it provides by far the best intrinsic (prior TS) calibration is an interesting feature in
situations where data is scarce and thus few images are allocated to validation. In these cases,
training with L3 yields well-calibrated models without the need to perform TS, contrarily
to the other tested losses. To conclude, in the following of this thesis, segmentation models
will be trained using the L3 if not specified otherwise. Moreover, TS will systematically be
performed using the validation dataset, after completion of the training.

II.6.4 Selection of a voxel uncertainty baseline estimator

Now that the segmentation objective was selected, several popular UQ frameworks are
evaluated on the same 3 segmentation tasks. The retained UQ paradigms are Softmax
uncertainty, MC dropout, Deep Ensemble, TTA, EDL and Learned uncertainty, representing
all together more than 85% of the review UQ methods. Below, implementation details for
each of the 6 techniques are presented.

Baseline Softmax uncertainty For this baseline approach, the Dynamic U-Net is trained
using L3, followed by post-hoc TS calibration using the set of validation images. At test time,
the uncertainty estimates is taken as the Maximum Softmax Probability (MSP) estimator
[248], which allows to get one uncertainty score for each voxel from the predicted probability
vectors. It is defined as:

MSP = 1−max
k

(pi,k) (II.6.6)

where pi,k is the probability of class k at voxel i.

MC dropout To implement MC dropout, 3D dropout layers are inserted after each
convolution in the Dynamic U-Net model, with a fixed dropout probability of p = 0.10. This
dropout rate is selected in order to preserve the quality of the segmentation, as we observed
that larger rates highly degraded the performance of the Dynamic U-Net. The MC model



ECE ↓ Brier ↓ Dice (%) ↑ Surface Dice (%) ↑
Dataset µ SEM CI µ SEM CI µ SEM CI µ SEM CI
ID 0.19 0.01 [−0.02, 0.02] 0.22 0.01 [−0.02, 0.02] 77.6 1.4 [−2.4, 2.3] 94.2 0.8 [−1.5, 1.3]

L1 MSLUB 0.21 0.01 [−0.01, 0.01] 0.24 0.01 [−0.01, 0.01] 65.9 3.0 [−5.0, 4.8] 84.9 2.6 [−4.5, 4.1]
1.5T 0.23 0.02 [−0.03, 0.03] 0.26 0.02 [−0.03, 0.03] 66.6 3.5 [−6.0, 5.3] 85.7 4.0 [−7.4, 5.7]
ID 0.19 0.01 [−0.02, 0.02] 0.23 0.01 [−0.02, 0.02] 75.1 1.3 [−2.2, 2.2] 94.0 0.8 [−1.3, 1.2]

L2 MSLUB 0.22 0.02 [−0.03, 0.03] 0.25 0.02 [−0.03, 0.03] 63.0 3.8 [−6.6, 6.0] 80.7 3.8 [−6.6, 5.8]
1.5T 0.23 0.02 [−0.03, 0.03] 0.26 0.02 [−0.03, 0.03] 65.2 3.4 [−5.9, 5.1] 86.8 4.1 [−7.4, 5.7]
ID 0.03 0.01 [−0.01, 0.01] 0.09 0.01 [−0.01, 0.01] 78.3 1.3 [−2.2, 2.2] 94.7 0.8 [−1.3, 1.2]

L3 MSLUB 0.06 0.01 [−0.01, 0.01] 0.12 0.01 [−0.01, 0.01] 66.8 3.3 [−5.6, 5.1] 84.5 2.6 [−4.4, 4.0]
1.5T 0.05 0.01 [−0.01, 0.01] 0.11 0.01 [−0.01, 0.01] 66.8 3.4 [−5.9, 5.2] 87.5 4.0 [−7.3, 5.5]

L1 ID 0.02 0.00 [−0.00, 0.00] 0.04 0.00 [−0.01, 0.01] 77.6 1.4 [−2.4, 2.3] 94.2 0.8 [−1.5, 1.3]
+ TS MSLUB 0.01 0.00 [−0.00, 0.00] 0.03 0.00 [−0.00, 0.00] 65.9 3.0 [−5.0, 4.8] 84.9 2.6 [−4.5, 4.1]

(T = 2.21) 1.5T 0.01 0.00 [−0.00, 0.00] 0.03 0.00 [−0.01, 0.01] 66.6 3.5 [−6.0, 5.3] 85.7 4.0 [−7.4, 5.7]
L2 ID 0.03 0.00 [−0.01, 0.01] 0.06 0.00 [−0.01, 0.01] 75.1 1.3 [−2.2, 2.2] 94.0 0.8 [−1.3, 1.2]

+ TS MSLUB 0.02 0.00 [−0.00, 0.00] 0.05 0.00 [−0.01, 0.01] 63.0 3.8 [−6.6, 6.0] 80.7 3.8 [−6.6, 5.8]
(T = 1.61) 1.5T 0.03 0.00 [−0.01, 0.01] 0.06 0.01 [−0.01, 0.01] 65.2 3.4 [−5.9, 5.1] 86.8 4.1 [−7.4, 5.7]
L3 ID 0.02 0.00 [−0.00, 0.00] 0.05 0.00 [−0.01, 0.01] 78.3 1.3 [−2.2, 2.2] 94.7 0.8 [−1.3, 1.2]

+ TS MSLUB 0.01 0.00 [−0.00, 0.00] 0.06 0.00 [−0.01, 0.01] 66.8 3.3 [−5.6, 5.1] 84.5 2.6 [−4.4, 4.0]
(T = 1.30) 1.5T 0.02 0.00 [−0.00, 0.00] 0.05 0.00 [−0.01, 0.01] 66.8 3.4 [−5.9, 5.2] 87.5 4.0 [−7.3, 5.5]

Table II.2: Results of the calibration benchmark for WMH segmentation. The mean (µ), the standard error of the mean (SEM)
and the 90% confidence interval (CI) are computed using bootstrap (M=15000). ↓ indicates that we seek to minimize the metric,
while ↑ indicates that it should be maximized. The best metrics for each dataset are indicated in bold. TS: Temperature Scaling.
ECE: Expected Calibration Error.



ECE ↓ Brier ↓ Dice (%) ↑ Surface Dice (%) ↑
Dataset µ SEM CI µ SEM CI µ SEM CI µ SEM CI

L1 ID 0.11 0.01 [−0.01, 0.01] 0.06 0.00 [−0.01, 0.01] 84.6 0.9 [−1.5, 1.4] 91.1 0.9 [−1.6, 1.5]
SSA 0.17 0.02 [−0.03, 0.04] 0.10 0.01 [−0.02, 0.02] 73.0 2.4 [−4.1, 3.8] 81.0 2.4 [−4.1, 3.8]

L2 ID 0.12 0.01 [−0.01, 0.01] 0.07 0.00 [−0.01, 0.01] 83.7 0.9 [−1.5, 1.5] 90.4 1.0 [−1.7, 1.6]
SSA 0.19 0.02 [−0.03, 0.03] 0.11 0.01 [−0.02, 0.02] 71.3 2.6 [−4.3, 4.1] 78.8 2.7 [−4.5, 4.3]

L3 ID 0.04 0.00 [−0.00, 0.00] 0.04 0.00 [−0.00, 0.00] 83.6 0.9 [−1.6, 1.5] 90.3 1.0 [−1.7, 1.6]
SSA 0.05 0.01 [−0.01, 0.01] 0.05 0.00 [−0.01, 0.01] 73.8 2.4 [−4.1, 3.9] 81.8 2.4 [−4.1, 3.9]

L1+TS ID 0.03 0.00 [−0.00, 0.00] 0.02 0.00 [−0.00, 0.00] 84.6 0.9 [−1.5, 1.4] 91.1 0.9 [−1.6, 1.5]
T = 2.06 SSA 0.04 0.00 [−0.01, 0.01] 0.04 0.00 [−0.00, 0.00] 73.0 2.4 [−4.1, 3.8] 81.0 2.4 [−4.1, 3.8]
L2+TS ID 0.07 0.00 [−0.01, 0.01] 0.05 0.00 [−0.00, 0.00] 83.7 0.9 [−1.5, 1.5] 90.4 1.0 [−1.7, 1.6]
T = 1.45 SSA 0.11 0.01 [−0.02, 0.02] 0.07 0.01 [−0.01, 0.01] 71.3 2.6 [−4.3, 4.1] 78.8 2.7 [−4.5, 4.3]
L3+TS ID 0.03 0.00 [−0.00, 0.00] 0.03 0.00 [−0.00, 0.00] 83.6 0.9 [−1.6, 1.5] 90.3 1.0 [−1.7, 1.6]
T = 1.15 SSA 0.04 0.00 [−0.01, 0.01] 0.04 0.00 [−0.01, 0.01] 73.8 2.4 [−4.1, 3.9] 81.8 2.4 [−4.1, 3.9]

Table II.3: Results of the calibration benchmark for glioblastoma segmentation. The mean (µ), the standard error of the mean
(SEM) and the 90% confidence interval (CI) are computed using bootstrap (M=15000). ↓ indicates that we seek to minimize the
metric, while ↑ indicates that it should be maximized. The best metrics for each dataset are indicated in bold. TS: Temperature
Scaling. ECE: Expected Calibration Error.



ECE ↓ Brier ↓ Dice (%) ↑ Surface Dice (%) ↑
µ SEM CI µ SEM CI µ SEM CI µ SEM CI

L2 0.41 0.02 [−0.04, 0.04] 0.43 0.02 [−0.04, 0.04] 55.0 2.5 [−4.1, 4.1] 65.2 2.6 [−4.4, 4.3]
L2 0.34 0.02 [−0.03, 0.03] 0.36 0.02 [−0.03, 0.03] 59.0 2.4 [−4.1, 3.9] 68.8 2.5 [−4.2, 4.1]
L3 0.06 0.01 [−0.01, 0.01] 0.11 0.01 [−0.01, 0.01] 56.6 2.5 [−4.1, 4.0] 66.0 2.6 [−4.3, 4.2]

L1+TS (T = 2.06) 0.11 0.01 [−0.02, 0.02] 0.14 0.01 [−0.02, 0.02] 55.0 2.5 [−4.1, 4.1] 65.2 2.6 [−4.4, 4.3]
L2+TS (T = 1.61) 0.34 0.02 [−0.03, 0.03] 0.36 0.02 [−0.03, 0.03] 59.0 2.4 [−4.0, 3.9] 68.8 2.5 [−4.1, 4.0]
L3+TS (T = 1.15) 0.04 0.01 [−0.01, 0.01] 0.08 0.01 [−0.01, 0.01] 56.7 2.5 [−4.1, 4.1] 66.0 2.6 [−4.4, 4.2]

Table II.4: Results of the calibration benchmark for stroke lesion segmentation. The mean (µ), the standard error of the mean
(SEM) and the 90% confidence interval (CI) are computed using bootstrap (M=15000). ↓ indicates that we seek to minimize the
metric, while ↑ indicates that it should be maximized. The best metrics for each dataset are indicated in bold. TS: Temperature
Scaling. ECE: Expected Calibration Error.
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is trained using L3, followed by post-hoc TS calibration. At test time, N = 20 predictions
are generated for each input image with dropout activated. Then, the entropy is used as an
uncertainty marker, defined as:

H(pi) = −
K∑
k=1

1

T

T∑
t=1

pi,k,t log(
1

T

T∑
t=1

pi,k,t) (II.6.7)

(II.6.8)

where pi,k,t is the probability that voxel i belongs to class k, for the t-th MC sample.

Deep Ensemble Deep Ensemble is implemented by training N = 5 identical Dynamic
U-Nets, trained on the same subjects, with the L3 loss. After training, TS is performed for
each member of the ensemble. Similarly to MC dropout, voxel-wise uncertainty is estimated
using entropy.

Test Time Augmentation TTA is implemented on top of the standard Dynamic U-Net
that has been trained to implement the Softmax uncertainty approach. At test time, the
TorchIO library [246] is used to generate N = 20 alternative variants of the original image.
The augmentation scheme comprises simple spatial transformations (rotations, flipping,
affine, and elastic deformations) and contrast alterations (gamma, noise). From the pool of
predictions, the entropy is computed.

Evidential Deep Learning The Dynamic U-Net used in this benchmark is transformed into
an EDL network by replacing the output softmax with an exponential function, guaranteeing
that the computed evidence are positive. Then, inspired by the TBraTS framework [157],
the model is trained with the compound loss:

LEDL = LDice++ + Lice + LKL (II.6.9)

where Lice and LKL are the losses introduced in Equations II.2.12 and II.2.12, respectively.
The final uncertainty score for voxel i corresponds to ui = K/

∑K
k=1 αi,k, where αi,k are the

estimated Dirichlet parameters for voxel i.

Learned uncertainty using the Labelflip loss The learned uncertainty framework is
implemented using the Focal Labelflip loss that achieved state-of-the-art performance on the
BraTS 2020 challenge [133]. The Dynamic U-Net is modified so that it has 2 outputs for
each class k and voxel i: one for the segmentation probabilities pi,k and one for the learned
uncertainty score, called the Labelflip probability qi,k. Writing yi,k the one-hot label vector
containing 1 for the correct class and 0 else, the Focal Labelflip loss is computed as:
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wi,k = qi,k(1− yi,k) + yi,k(1− qi,k) (II.6.10)
LLabelflip = (pi,k − wi,k)

2wi,k[log(wi,k)− log(pi,k)] + BCE(qi,k, zi)

where zi is the disagreement indicator for voxel i, computed by comparing the predicted
segmentation and yi, and BCE is the binary cross-entropy.

Following the original implementation, training is performed by combining the Focal loss
[249] and the Focal Labelflip loss:

LLU = Focal(p, y) + LLabelflip (II.6.11)

At test time, the modified Dynamic U-Net produces one uncertainty score qi,k for each voxel
and class. To obtain a single uncertainty score qtotal,i per voxel, the class-wise estimates are
summed at each voxel: qtotal,i =

∑K
k=1 qi,k.

II.6.4.1 Voxel-wise uncertainty metrics

For this benchmark, two popular voxel-wise uncertainty metrics are used to compare the
approaches, namely the uncertainty-error overlap (UEO) [69] and Area under the error
retention curves (R-AUC) [214].

Uncertainty-Error overlap To compute UEO, the voxel-wise uncertainty map is binarized
using a threshold, producing a binary uncertainty map U highlighting unconfident voxels.
Then, the segmentation error map E is computed by comparing the predicted segmentation
and the ground truth. Finally, the UEO is taken as the Dice between the binarized uncertainty
map and the error map:

UEO =
2|U ∩ E|
|U |+ |E|

(II.6.12)

This metric requires the estimation of a voxel-wise uncertainty threshold to compute U . As
in the original paper, this value is estimated for each UQ method by determining the optimal
threshold maximizing the UEO on the validation dataset. While the UEO is easy to compute
and interpretable, its downside is that it relies on the Dice and it is thus biased toward large
volumes of errors. Thus, models that are under-performing with respect to the segmentation
task can be attributed to large UEO values, as compared to models making very few mistakes.

Area under the Retention Curve The R-AUC metric is adapted from the Shift challenge
on segmentation uncertainty quantification [214]. Formally, for a given test image, the voxels
are ordered from the more uncertain to the most certain. Then, a fraction of the most
uncertain voxels is removed and the performance (Dice) is estimated on the remaining ones.



II.6. Benchmark of voxel-level uncertainty estimates for brain MRI segmentation 73

This process is repeated for a set of thresholds, which produces a fraction versus Dice
plot, from which the area under the curve is obtained. This metric will reward both accurate
segmentation (high dice coefficient) and reliable uncertainty. As for the calibration metrics,
the metric is enhanced by first removing the confident correct background voxels. This
mitigates the important class imbalance between the background and foreground classes.

Inference Time Many voxel-wise uncertainty methods are based on sampling various
predictions to compute uncertainty scores. However, this process is time-consuming. For
real-world applications, the prediction should be provided as fast as possible and thus fast
uncertainty estimates are preferred. To evaluate the efficiency of each technique, the average
inference time per subject is provided. To carry the inferences, a NVIDIA RTX A5000 with
a memory of 25 Gigabytes is used.

II.6.4.2 Results

Tables II.5, II.6, II.7 present the results of the voxel uncertainty benchmark on MS, tumor
and stroke data, respectively. Additionally, Figure II.6.4 presents an example of voxel-
wise uncertainty map obtained with the Deep Ensemble technique on a MS subject, with
the associated UEO and R-AUC values. Similar examples for tumor and stroke lesion
segmentation are provided in Appendix II.6.5 and II.6.6.

First, regarding segmentation performance, the Ensemble framework provides as expected
the best quality predictions, being the top performer on WMH, tumor, and stroke segmenta-
tion. Interestingly, the gain in performance is clear for both ID and DS datasets, as compared
to the single baseline Softmax model. Softmax and TTA achieve similar segmentation per-
formance results, indicating that the augmentation strategy does not modify substantially
the final segmentation, in good or bad. For EDL, results are similar to the ones achieved
by the Softmax baseline for WMH and Tumor, but it performed better on stroke lesion
segmentation, being close to the performance of the Deep Ensemble. Overall, the MC dropout
models produced poorer segmentation results on each of the 3 tasks. This may be due to an
under-fitting resulting from the 10% dropout applied after each convolution. Similarly, for the
LU model, segmentation quality is degraded on WMH and tumor segmentation, as compared
to the baseline Softmax model. For this framework, the modification of the learning objective
may be responsible for the weaker results, as segmentation and uncertainty are learned jointly
during optimization. Moreover, the Labelflip loss relies on the Focal loss instead of the Dice
loss for stability, hence it does not directly optimize the segmentation metric used in this
benchmark.

Second, regarding the quality of voxel uncertainty estimates, different tendencies are
observed for the UEO and R-AUC metrics, respectively. For UEO, the LU framework achieves
the best results on the 3 WMH datasets (ID, MSLUB, and 1.5T) and the ID and SSA tumor
datasets. DE maximizes the UEO on stroke data. However, as presented earlier, UEO relies
on the Dice score and it is thus biased in favor of large volume of errors. This may explain
the good performance of Learned uncertainty with respect to the UEO, while it produces
poorer segmentation results. Contrarily, R-AUC rewards both accurate segmentation and
good uncertainty estimates, and it places DE as the best uncertainty estimator for the 3 MS



UEO (%) ↑ R-AUC (%) ↑ Dice (%) ↑ Surface Dice (%) ↑ Time (s)
Dataset µ SEM CI µ SEM CI µ SEM CI µ SEM CI µ
ID 42.0 0.5 [−0.9, 0.8] 93.7 0.6 [−1.0, 0.9] 78.3 1.3 [−2.2, 2.1] 94.7 0.8 [−1.3, 1.2]

Softmax MSLUB 39.4 1.0 [−1.7, 1.5] 89.4 1.2 [−2.0, 1.8] 66.8 3.3 [−5.5, 5.2] 84.5 2.6 [−4.4, 4.1] 1.31
1.5T 40.9 1.8 [−3.3, 2.3] 87.0 3.7 [−7.2, 4.6] 66.8 3.5 [−6.0, 5.2] 87.5 3.9 [−7.2, 5.4]
ID 42.0 0.6 [−1.0, 1.0] 93.5 0.5 [−0.9, 0.8] 75.5 1.4 [−2.3, 2.2] 93.7 0.8 [−1.4, 1.3]

MC MSLUB 38.7 1.1 [−1.8, 1.7] 89.9 1.0 [−1.7, 1.6] 63.9 3.2 [−5.4, 5.2] 82.0 2.5 [−4.3, 3.9] 17.64
1.5T 40.9 1.5 [−2.7, 2.2] 87.1 3.8 [−7.2, 5.1] 64.7 3.4 [−6.0, 5.2] 87.5 4.0 [−7.4, 5.7]
ID 42.1 0.5 [−0.9, 0.8] 94.2 0.5 [−0.9, 0.8] 79.0 1.3 [−2.1, 2.0] 95.1 0.7 [−1.2, 1.1]

DE MSLUB 39.9 1.0 [−1.6, 1.5] 90.2 1.1 [−1.9, 1.7] 68.0 3.2 [−5.5, 5.1] 86.2 2.4 [−4.2, 3.8] 6.82
1.5T 42.5 0.9 [−1.6, 1.4] 87.6 3.7 [−7.1, 4.6] 67.8 3.5 [−6.2, 5.3] 88.5 4.0 [−7.4, 5.5]
ID 41.9 0.5 [−0.8, 0.8] 94.4 0.5 [−0.8, 0.8] 78.0 1.3 [−2.1, 2.0] 94.7 0.7 [−1.2, 1.1]

TTA MSLUB 39.3 0.9 [−1.6, 1.5] 89.7 1.2 [−2.0, 1.9] 65.9 3.5 [−5.9, 5.4] 83.2 2.8 [−4.8, 4.3] 38.89
1.5T 41.7 1.8 [−3.3, 2.5] 88.3 3.7 [−7.2, 4.5] 67.0 3.5 [−6.1, 5.2] 88.5 3.9 [−7.2, 5.4]
ID 45.2 0.6 [−1.0, 0.9] 92.6 0.6 [−1.0, 0.9] 74.0 1.5 [−2.4, 2.4] 93.9 0.8 [−1.3, 1.3]

Learned MSLUB 43.1 0.6 [−1.0, 1.0] 89.0 1.0 [−1.7, 1.6] 65.2 3.0 [−5.1, 4.9] 85.2 2.4 [−4.1, 3.8] 1.61
1.5T 45.8 0.8 [−1.4, 1.3] 85.7 3.7 [−7.0, 4.9] 63.4 3.5 [−6.1, 5.3] 85.0 4.1 [−7.4, 5.9]
ID 41.9 0.5 [−0.9, 0.9] 95.0 0.5 [−0.9, 0.8] 78.8 1.4 [−2.3, 2.2] 94.7 0.8 [−1.5, 1.3]

EDL MSLUB 37.1 1.3 [−2.3, 2.1] 89.4 1.4 [−2.5, 2.2] 67.2 3.3 [−5.6, 5.2] 84.8 2.9 [−5.1, 4.6] 1.65
1.5T 42.8 1.0 [−1.5, 1.7] 88.3 3.8 [−7.3, 4.6] 67.4 3.4 [−6.0, 5.1] 87.4 3.9 [−7.3, 5.4]

Table II.5: Results of the voxel-wise uncertainty benchmark for WMH segmentation. The mean (µ), the standard error of the
mean (SEM) and the 90% confidence interval (CI) are computed using bootstrap (M=15000). ↑ indicates that the metrics should
be maximized. The highest metrics for each dataset are indicated in bold. UEO: Uncertainty-Error Overlap.
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datasets, the SSA tumor dataset, and the stroke dataset. It is only overtaken by the MC
dropout framework on the tumor ID dataset. Overall, disentangling uncertainty quality and
segmentation performance during evaluation is complex. The UEO favors underperforming
models, while contrarily the R-AUC favors high-performing models.

Regarding robustness under domain-shift, the R-AUC scores on DS data (MSLUB, 1.5T,
SSA) are systematically lower than the scores obtained on the Test ID datasets. This is
correlated with the observed decline in segmentation accuracy. As the volume of errors
increases in DS settings, it could be expected that the UEO scores also increase in these
settings. However, this is not always the case, as a reduction of the UEO scores can be
observed on the MSLUB and the 1.5T datasets. This phenomenon can be due to the fact that
the uncertainty threshold for the UEO is optimized on the set-aside validation images, which
are a subset of the training images. Hence, this threshold may end up being sub-optimal in
the presence of domain shifts.

Finally, regarding inference speed, the baseline Softmax approach is as expected the fastest.
If time is crucial, the benchmark indicates that a calibrated segmentation model produces
interesting uncertainty estimates (with respect to the UEO and R-AUC scores), while not
being the top performer. The Learned Uncertainty and EDL frameworks are also very
competitive, as they do not require sampling to compute the voxel uncertainty. However, we
found no clear benefit of implementing the EDL or LU frameworks with respect to uncertainty
quality, as compared to the baseline (calibrated) Softmax uncertainty paradigm. Sampling
approaches, including MC, TTA, and DE, are less effective in terms of inference speed. TTA
is the worst, as it implies generating augmented versions of 3D MRIs, a time-consuming
process. This inference speed is of course dependent on the number of sampling steps, which
were defined as 20 for MC and TTA, and 5 for DE. Interestingly, even if the number of
sampled predictions is lower for DE, it still provides the best voxel-wise uncertainty quality.
Moreover, the computational cost of DE is primarily at the training stage, which requires
the repetition of the training multiple times. However, at test time it is the most efficient
sampling approach, taking on average 1.77s on stroke data, 1.87s on multi-modal tumor data,
and 6.82s for WMH data which requires patch sampling.

Overall, taking into account the segmentation performance, voxel-wise uncertainty quality,
and inference speed, it appears that the Deep Ensemble framework is the most interesting
one. First, it allows a gain in segmentation quality and robustness in DS settings. Second, the
voxel-wise uncertainty estimates are indicative. Lastly, its computational overhead is meanly
at the training stage, but once the pipeline is deployed, its inference time is not prohibitive.
Thus, in the following of this thesis, the DE will be used as the baseline voxel-wise uncertainty
method.
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Figure II.6.4: Example of a voxel-wise entropy map generated using the Deep Ensemble
technique on a MS patient. The segmentation achieves a Dice score of 0.803. Top: input
image, prediction, entropy map, errors and binarized entropy. Bottom: associated R-AUC
curve and score.
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Figure II.6.5: Example of a voxel-wise entropy map generated using the Deep Ensemble
technique a glioblastoma case. Top: input image, prediction, entropy map, errors, and
binarized entropy. Bottom: associated R-AUC curve and score.
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Figure II.6.6: Example of a voxel-wise entropy map generated using the Deep Ensemble
technique on a stroke patient. Top: input image, prediction, entropy map, errors and
binarized entropy. Bottom: associated R-AUC curve and score.



UEO (%) ↑ R-AUC (%) ↑ Dice (%) ↑ Surface Dice (%) ↑ Time (s)
Data µ SEM CI µ SEM CI µ SEM CI µ SEM CI µ

Softmax ID 43.1 0.3 [−0.5, 0.5] 92.7 0.8 [−1.3, 1.2] 83.7 0.9 [−1.6, 1.5] 90.8 0.9 [−1.6, 1.5] 0.39
SSA 45.1 1.1 [−1.8, 1.7] 87.1 2.3 [−3.9, 3.5] 73.3 2.6 [−4.4, 4.0] 81.3 2.7 [−4.6, 4.2]

MC ID 39.3 0.5 [−0.9, 0.9] 93.6 0.7 [−1.2, 1.2] 83.3 1.0 [−1.6, 1.5] 90.2 1.0 [−1.7, 1.6] 4.63
SSA 42.3 1.4 [−2.4, 2.3] 87.2 1.8 [−3.0, 2.8] 69.1 2.5 [−4.3, 4.0] 77.0 2.6 [−4.4, 4.1]

DE ID 41.5 0.4 [−0.7, 0.7] 93.5 0.7 [−1.3, 1.2] 84.9 0.9 [−1.5, 1.5] 91.3 0.9 [−1.5, 1.5] 1.87
SSA 44.0 1.2 [−2.0, 2.0] 88.8 2.2 [−3.9, 3.4] 74.4 2.5 [−4.3, 3.9] 81.9 2.6 [−4.4, 4.1]

TTA ID 41.2 0.4 [−0.7, 0.7] 93.3 0.7 [−1.3, 1.2] 83.8 0.9 [−1.5, 1.5] 90.7 0.9 [−1.6, 1.5] 37.67
SSA 43.2 1.2 [−2.0, 1.9] 87.9 2.2 [−3.9, 3.4] 73.4 2.6 [−4.4, 4.1] 81.1 2.7 [−4.6, 4.2]

Learned ID 46.9 0.5 [−0.8, 0.8] 92.7 0.7 [−1.3, 1.2] 81.6 1.0 [−1.7, 1.6] 89.1 1.0 [−1.7, 1.6] 0.39
SSA 50.2 1.5 [−2.6, 2.5] 87.3 1.7 [−2.8, 2.7] 69.4 2.6 [−4.3, 4.2] 77.1 2.7 [−4.6, 4.4]

EDL ID 36.3 0.7 [−1.1, 1.1] 93.0 0.8 [−1.3, 1.2] 84.2 0.9 [−1.4, 1.4] 91.1 0.9 [−1.5, 1.5] 0.40
SSA 40.8 1.3 [−2.2, 2.0] 88.5 1.9 [−3.3, 3.0] 73.9 2.5 [−4.2, 3.8] 81.7 2.6 [−4.4, 4.1]

Table II.6: Results of the voxel-wise uncertainty benchmark for glioblastoma segmentation. The mean (µ), the standard error of
the mean (SEM) and the 90% confidence interval (CI) are computed using bootstrap (M=15000). ↑ indicates that the metrics
should be maximized. The highest metrics for each dataset are indicated in bold. UEO: Uncertainty-Error Overlap.



UEO (%) ↑ R-AUC (%) ↑ Dice (%) ↑ Surface Dice (%) ↑ Time (s)
µ SEM CI µ SEM CI µ SEM CI µ SEM CI µ

Softmax 36.0 1.1 [−1.8, 1.8] 85.7 1.2 [−2.0, 1.9] 56.6 2.5 [−4.1, 4.0] 65.9 2.6 [−4.4, 4.2] 0.27
MC 34.7 1.1 [−1.9, 1.8] 87.6 1.2 [−2.0, 1.9] 56.0 2.5 [−4.2, 4.1] 64.6 2.6 [−4.4, 4.3] 3.75
DE 37.3 1.2 [−2.0, 1.9] 87.6 1.2 [−2.0, 1.9] 8.9 2.4 [−4.1, 3.9] 68.1 2.6 [−4.3, 4.3] 1.77

TTA 36.3 1.2 [−2.1, 2.0] 86.8 1.2 [−2.0, 1.9] 57.4 2.5 [−4.2, 4.0] 66.8 2.6 [−4.4, 4.2] 14.39
Learned 37.2 1.2 [−1.9, 1.9] 85.7 1.3 [−2.2, 2.1] 57.6 2.5 [−4.2, 4.2] 67.1 2.7 [−4.6, 4.4] 0.26

EDL 35.8 1.1 [−1.8, 1.7] 84.1 1.2 [−2.1, 1.9] 58.3 2.5 [−4.1, 4.0] 68.0 2.5 [−4.2, 4.0] 0.32

Table II.7: Results of the voxel-wise uncertainty benchmark for stroke lesion segmentation. The mean (µ), the standard error of
the mean (SEM) and the 90% confidence interval (CI) are computed using bootstrap (M=15000). ↑ indicates that the metrics
should be maximized. The highest metrics for each dataset are indicated in bold. UEO: Uncertainty-Error Overlap.
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II.7 Chapter conclusion

As presented in this chapter, the literature focusing on UQ in medical imaging applications
is flourishing. For segmentation tasks, many different techniques can be applied to generate
uncertainty maps, providing indicators of potentially incorrect voxels. This is because most
popular approaches including MC dropout and Deep Ensemble were initially proposed for
2D classification tasks [107, 97]. Directly applying these methods without adaptation on 3D
segmentation tasks thus produces one uncertainty estimate per voxel. In practice, voxel-level
uncertainty is useful but it is not sufficient to fully measure the confidence of an automatic
analysis. This leads to the development of emerging UQ methods operating at the instance
level (e.g. lesion) and case level (OOD detection or segmentation quality assessment).

Many popular UQ frameworks (MC, DE, TTA or Softmax uncertainty) rely on the output
probabilities of the model to compute an uncertainty score (e.g. MSP, variance, or entropy).
The implicit pre-requisite is that the probabilities are indeed representative of the model’s
confidence, which, as shown in the calibration benchmark, is not usually the case. Training
models with the usual Soft Dice loss indeed leads to poorly calibrated models. Simple
modifications to the loss objective, as done with the Dice++ loss, can highly correct this
pitfall. Then, a post-hoc scaling strategy such as Temperature Scaling can be adopted to
obtain state-of-the-art calibrations.

Ultimately, popular voxel uncertainty estimators were compared, which can be divided into two
groups: sampling-based approaches (MC, TTA, DE) and sampling-free approaches (Softmax,
EDL, Learned uncertainty). DE appeared as the most interesting baseline as it allows the
optimization of the segmentation accuracy while providing high-quality uncertainty estimates.
It is linked to an overhead of computational during the model development stage, however
it is efficient regarding inference speed. Overall, disentangling segmentation performance
and uncertainty quality is particularly complicated, as evaluating voxel uncertainty generally
involves detecting misclassified voxels.

In both the calibration and voxel uncertainty benchmarks, our experiments showed a drop
in segmentation accuracy in domain-shift settings (MSLUB, 1.5 Tesla, and SSA datasets).
More worryingly, the quality of uncertainty estimates also dropped, which indicates that the
reliability of uncertainty estimates is reduced on domain-shift data.

As a conclusion to this chapter, we demonstrated how high-quality voxel uncertainty maps can
be derived from properly calibrated models. However, inspecting the overall uncertainty map
to identify error-prone areas is time-consuming and may not be aligned with the expectations
of end-users. For applications involving the detection of lesions, the clinician’s attention
is rather situated at the lesion level. For a rapid validation of the automated prediction,
a lesion uncertainty score would allow the clinician to directly review the ones flagged as
uncertain, which may be false positive findings. However, translating voxel uncertainties to
lesion uncertainty is not trivial, as the lesion uncertainty may not simply resume to the sum
or mean of its voxel components. Thus, more complex aggregation techniques to quantify
structural uncertainty are explored in detail in the following Chapter.
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III.1 Problem definition

In the previous chapter, voxel-level uncertainty estimates have been presented, allowing the
review of uncertain areas in the output segmentation that may be error-prone. However,
these so-called uncertainty maps mainly highlight uncertainty at the border between classes.
Moreover, the review of the 3D uncertainty map can be time-consuming and hard to interpret
for non-experts. Finally, for pathologies such as Multiple Sclerosis, the attention of the
clinician is at the lesion-level, rather than at the voxel level. To alleviate these limitations,
lesion uncertainty scores are desired, which would allow the user of the software to directly
review uncertain lesions in the prediction that may result in false positive findings. More
formally, our objective is to obtain a module able to associate a single uncertainty score to
each identified lesion instance in the segmentation.

In practice, the correctness of each lesion detection can be assessed using the ground truth
segmentations, and three categories of lesions can be further defined:

• True Positive lesion (TPles): the identified lesion has a non-null intersection with one
or several ground truth lesions.

• False Positive lesion (FPles): the identified lesion does not intersect any ground truth
lesions.

• False Negative lesion (FNles): the ground truth lesion does not intersect any predicted
lesions.

In lesion-level UQ, uncertainty can only be quantified for lesions that have been detected,
including TPles and FPles instances. FNles are by definition not present in the output
segmentation, and they thus fall outside the scope of the lesion-level uncertainty paradigm
[168, 250]. Moreover, True Negative lesions (TNles) are undefined. Lesion-level UQ also
requires the development of specific metrics to evaluate the quality of uncertainty. Note that
we use in this chapter the denominations FPles, TPles, TNles, and FNles to indicate the status
of lesions to mark a distinction with FP, TP, FN, and TN voxels.

The experimental setting of this chapter, illustrated in III.1.1, is as follows. First, as the
previous chapter demonstrated the relevancy of DE to obtain voxel-wise uncertainty estimates,
a DE of 5 individually trained Dynamic U-Nets is composed, for each application. It is
used to generate voxel-wise predictions (entropy and segmentation). Then, a connected
component analysis (CCA) is carried out to identify each lesion in the raw segmentations,
using a 26-connectivity — meaning that a lesion is defined by voxels that are interconnected
by their faces, edges, or corners. Then, each lesion is processed by a Lesion Uncertainty
Module to extract a structural uncertainty score. In this chapter, lesion-level uncertainty
quantification is investigated through 3 lesion-oriented tasks: cross-sectional and longitudinal
MS lesions segmentation in brain FLAIR MRI, which is the core of Pixyl expertise, as well
as lung nodules detection in chest CT.

A direct and immediate approach to quantify lesion uncertainty would be to aggregate the
voxel uncertainty scores (e.g. entropy) for each lesion, using a summary statistic such as the
arithmetic mean. It supposes that each voxel equally contributes to the overall lesion score.
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This baseline approach is called Mean Entropy in the following. In this chapter, we aim to
determine if improvements over this baseline can be obtained by using more sophisticated
models for lesion uncertainty. More precisely, the proposed paradigm is to use auxiliary
classifiers to quantify lesion uncertainty. It operates as follows: a classifier is trained to
distinguish between true and false positive lesions using the predictions on the training and
validation images, using a standard binary classification setting. At test time, the probability
P (FPles) that the lesion is a false positive is used as the lesion uncertainty score. Interestingly,
this uncertainty score is easily interpretable for clinicians, as compared to other metrics
such as the average entropy. Implementing this classifier-based approach requires performing
learning on lesion instances. This involves being able to build lesion representations that are
suitable for training. Three different lesion representations are investigated in this thesis:

• The Feature representation (Section III.3) consists in extracting a set of meaningful
features from the voxel maps (image, entropy, and segmentation) for each lesion. They
are used to train a ML classifier (e.g. Random Forest, Logistic Regression, or Support
Vector Machines) to predict the status of each lesion (TPles or FPles).

• The Bounding box representation (Section III.4) is obtained by extracting 32×
32×32 bounding boxes centered on each predicted lesion. Then, a classic CNN classifier
is trained to predict P (FPles) the probability that the lesion is a FPles.

• The Graph representation (Section III.5) leverages a graph representation of the
lesion, following which voxels are converted to nodes and node features are computed
from the voxel-wise predictions. Then, a Graph Neural Network (GNN) is trained to
predict P (FPles).

Several research questions are open. First, is learning from lesion instances viable to quantify
lesion uncertainty? Do the classifier approaches offer a better quality of lesion uncertainty
than simpler aggregation methods such as the Mean Entropy? Which lesion representation
(feature, bounding box, or graph) is the most appropriate to train the auxiliary classifiers?
These different points will be investigated in this chapter.
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Figure III.1.1: Illustration of the inference process for lesion-level uncertainty experiments.
Voxel predictions (entropy and segmentation) are first derived from a Deep Ensemble
composed of 5 trained models. Then, Connected Component Analysis is performed to
identify lesion instances in the raw segmentation. Each lesion is passed through a Lesion
Uncertainty Module which computes lesion-level uncertainty scores.

III.2 Additional contributions to the paper "Beyond Voxel
Prediction, identifying lesions you can trust"

This chapter is based on the work previously presented in the paper Beyond Voxel Prediction,
identifying lesions you can trust [251]. However, several improvements and novelties are
presented in this chapter. First, the paper used a MC dropout model as a voxel-wise
prediction generator. Here, DE is used, as it is a stronger voxel uncertainty generator. Then,
applications to lung nodules and longitudinal MS lesions detection are added. Moreover,
robustness testing is added through the addition of the two domain-shift datasets (1.5 Tesla
and MSLUB) for cross-sectional MS experiments. The feature-based model is improved using
image radiomics in addition to uncertainty features. The bounding-box model is a novel
addition. Moreover, the correlation between the computed and expert-derived uncertainty
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scores (inter-rater variability and subtlety) is proposed for the lung nodules and longitudinal
MS experiments.

III.3 A feature-based Machine Learning model for lesion-
level uncertainty

The first presented application of lesion-wise uncertainty estimation is the detection of MS
lesions in a cross-sectional setting. The datasets used in this part are identical to the ones
described in the previous chapter (see Section II.6.1). In this setting, a single brain can
present up to a hundred individual lesions. The different proposed methods and evaluation
paradigms are introduced for this first application.

III.3.1 Training dataset generation

The Feature, Bounding box, and Graph approaches are all based on the concept of
training an auxiliary classifier to predict the probability that the lesion is a FPles, used as
an uncertainty score. This requires the building of a labeled dataset comprising examples
of TPles and FPles in sufficient amounts to allow for supervised training. In this thesis, the
training strategy proposed by Bhat et al. [169, 170] is adopted. It consists in generating
voxel-wise predictions on the training and validation images using the trained DE, which
is now fixed. Each unique lesion is identified from this set of predictions using CCA, and a
status (TPles or FPles) is attributed to each of them using the ground truth masks. To do so,
a lesion pairing strategy is adopted and presented in further detail in Section III.6.1. For
the MS cross-sectional experiment, this process generates a dataset composed of 8051 lesions
for training (comprising 6854 TPles and 1197 FPles) and 1028 for validation (comprising 852
TPles and 176 FPles). In both the lesion-level training and validation datasets, the ratio of
TPles to FPles is approximately 1 : 5. Then, to train the feature-based ML model, features
are extracted for each unique lesion, as presented in the next section.

III.3.2 Feature selection

One approach to fuse voxel-level information into lesion-level uncertainty is to use a feature
extraction paradigm. For each identified lesion, a set of meaningful features is extracted
and then used as inputs to train a ML model (e.g. Random Forest, SVM) to distinguish
between TPles and FPles. The features should convey meaningful information for uncertainty
quantification. In prior works, the feature vector included shape-based attributes, obtained
from the binary lesion mask [169, 170]. This typically includes the size of the lesion and
geometrical attributes such as flatness or sphericity. Alternatively, features can be collected
from the voxel uncertainty maps, such as the average lesion uncertainty [252]. In addition to
these 2 categories of features, one extra category is added here in the form of image intensity
radiomics [171]. This builds on the intuition that for FPles detection, important information
can be obtained from the input image, such as the average lesion intensity.

In practice, we use PyRadiomics [171] to automatically compute a set of 107 features: 93
intensity features extracted from the input image, and 14 shape features extracted from the
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binary lesion mask. We also add 3 features collected from the entropy map, namely the mean
entropies of the overall lesion, the lesion contour, and the lesion interior. This process leads
to a set of 110 features extracted from the voxel uncertainty maps, input image, and binary
lesion mask. A summary of the extracted features is presented in Table III.1.

Input Feature Type N features

Image

First Order
Gray Level Co-occurrence Matrix

Gray Level Size Zone Matrix
Gray Level Run Length Matrix

Neighbouring Gray Tone Difference Matrix
Gray Level Dependence Matrix

18
24
16
16
5
14

Lesion Mask Size and Shape 14
Entropy Map Mean overall, interior and boundary uncertainty 3

Total - 110

Table III.1: Description of the 110 features used to train the ML lesion classifier. They
are extracted from the input image, binary lesion mask, and entropy map, respectively.

III.3.3 Feature reduction

In Bhat et al. [169], authors demonstrated that radiomics extracted from voxel-wise uncer-
tainty maps were heavily correlated in the context of liver lesion segmentation. They showed
that the classifier can be simplified by resorting to a feature reduction step while maintaining
the accuracy of the FPles detection. Here, the same process is reproduced to reduce the
number of features and monitor their correlation. The reduction algorithm works as follows:

• Features are collected on the training dataset samples, yielding to a feature vector
x ∈ Rm, with m being the number of features.

• The correlation matrix C ∈ Rm×m is constructed by computing Spearman’s rank
correlation coefficient between each pair of features. The matrix is transformed into a
symmetric matrix by computing: C ′ = 0.5× (C + CT )

• The correlation matrix is transformed into a distance matrix by taking: D = 1− |C ′|.
As a result, a high correlation is linked to a low distance.

• Hierarchical clustering is performed from the distance matrix D. The result of this
clustering can be visualized using a dendrogram.

• Clusters are formed by cutting the dendrogram at a given threshold, set to 1. Features
below a cut form a single flat cluster. For each cluster, one single feature is kept by
taking the one with the maximum mutual information with respect to the ground truth
labels.

This process is here applied to the task of cross-sectional MS detection, which allows the
reduction of the number of features from 110 to 7. The correlation matrix of the original set
of 110 features is presented in Figure III.3.1. It can be noticed that many pairs of features
exhibit strong positive (pale orange) or negative (pale blue) correlations. The 7 features
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Figure III.3.1: Correlation matrix for the cross-sectional MS lesions classifier, on the 110
original features. The color map indicates Spearman’s rank correlation coefficient, with
pale blue and orange indicating high correlations between the features.

identified by the hierarchical clustering are Sphericity, Surface-Volume-Ratio, first-order
Total Energy, first-order Uniformity, Mean Entropy, Interior Entropy, and Small Dependence
Emphasis.

III.3.4 Machine Learning model development

The ML model is developed using the Sklearn framework [253]. Features are first normalized
using a zero-mean unit-variance scaler. Then, a grid-search cross-validation paradigm is
employed to identify the best hyper-parameters for the model, using 5 folds. Different models
are tested: a Logistic Regression model, a Support-Vector Classifier, and a Random Forest
model. Hyper-parameters tested during the cross-validation scheme are indicated in the
Appendix A2. To identify a final ML classifier for the rest of the experiment, the balanced
accuracy scores on the validation dataset are compared in Table III.2. The balanced accuracy
score is a variant of the standard accuracy that takes into account data imbalance. It is
suitable here as FPles are more rare than TPles. It is defined as:

BAcc =
1

2

TP

TP + FN
+

1

2

TN

TN + FP
(III.3.1)
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On the validation dataset, it appears that the Logistic Regression model with the full set of
features (110) achieves the best balanced accuracy (0.78), while the Random Forest performed
significantly worse. For each model, using the feature reduction strategy leads to a slight drop
in the balanced accuracy, except for Random Forest. As a result, the Logistic Regression
model with 110 features will be kept for the rest of the experiments.

Model N features BAcc
Logistic Regression 110 0.78
Random Forest 110 0.60
SVC 110 0.76
Logistic Regression 7 0.75
Random Forest 7 0.62
SVC 7 0.75

Table III.2: Classification performance on the MS validation dataset for the 3 tested ML
classifiers, with and without feature reduction. BAcc: Balanced Accuracy score.

III.3.5 Feature contribution

Interestingly, the Logistic Regression model is interpretable as the importance of each feature
is directly accessible. This provides some insights regarding the most meaningful features
for lesion uncertainty quantification. In Appendix A.3.1, the weight of the top 10 most
important features are provided. It appears that a mix of intensity, uncertainty, and shape
features constitutes the top 10. The highest coefficient is attributed to the image radiomic
glrlm RunEntropy, while the second is the average interior entropy. The third one is
Maximum2DDiameterRow, a shape radiomics linked to the size of the lesion.

III.4 A bounding-box CNN for lesion uncertainty quan-
tification

III.4.1 Concept

One downside of the feature-based approach previously introduced is that it requires a feature-
engineering step to identify useful attributes to quantify lesion uncertainty. Moreover, the
retained Logistic Regression model is a rather simple classifier, and it can be hypothesized that
better FPles detection performance could be attained by more complex classifiers. Another
potential limit is the lack of global context to evaluate the lesion status. Indeed, the radiomics
are extracted only within the lesion mask, thus excluding all the lesion surroundings that
could be relevant to evaluate its certainty.

To alleviate these limits, a CNN approach is proposed. The framework is presented in
Figure III.4.1. Cubic bounding boxes with a shape of 32× 32× 32 are extracted from the
voxel-wise volumes (input FLAIR, entropy map, and segmentation), centered on each lesion.
Then, a CNN model is trained to predict the lesion status (TPles or FPles) using these 3
concatenated patches. This process i) alleviates feature-engineering and selection, as the CNN
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Figure III.4.1: Illustration of the bounding-box 3D CNN to quantify lesion uncertainty.
The model receives as input bounding boxes centered on the lesion and predicts FPles the
probability that the lesion is a false positive.

automatically learns meaningful parameters to perform its task, and ii) allows the inclusion
of spatial context for each lesion, such as the proximity to other lesions or the location
within the brain. The downside is the lack of interpretability, as it becomes cumbersome
to identify which patterns in the bounding boxes contributed to the lesion classification.
Another downside that can be anticipated is the need for larger lesion databases to allow for
training, with a sufficient amount of samples from each class (TPles and FPles) to allow for
supervised learning.

III.4.2 CNN architecture

In terms of NN architecture, a simple configuration is used here (as presented in Figure
III.4.1). Three convolutional blocks are stacked, each composed of i) a 3D convolution with
an isotropic kernel size of 3 × 3 × 3 and a stride of 2 × 2 × 2 followed by ii) a 3D batch
normalization layer and iii) a dropout layer. In each block, the bounding boxes are spatially
downscaled by a factor of 2 in each direction, while the number of features gradually increases
with 8, 16, and 32 features. Finally, the resulting feature representation is flattened to a 1D
tensor of dimension 2048. A final FC layer transforms this latent vector into 2 output units,
containing the probabilities that the input lesion is a TPles and a FPles, respectively. In total,
this lightweight 3D CNN contains 76600 parameters, which is rather low for a neural network
classifier operating on 3D medical images. The choice of using a low-complexity CNN arises
from the limited size of the medical-image databases used in the experiments.
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III.4.3 Training setting

Training is performed in a standard supervised classification setting. The cross-entropy
loss (Equation I.2.3) is used to train the 3D CNN to predict the status of the input lesion.
However, as presented in Section III.3.1, TPles samples are much more frequent than FPles

samples (5 : 1 ratio). To take into account this class imbalance during training, class weights
are introduced in the loss formulation, corresponding to the inverse of the class frequency
in the training dataset. This is akin to the balanced weighting implemented in Sklearn.
More precisely, the weights wc for each class are computed as follows:

wc =
N

C ×
∑N

n=1 1{y
(n) = c}

(III.4.1)

w1 =
8051

2× 6854
= 0.587

w2 =
8051

2× 1197
= 3.363

were C = 2 is the number of classes, N the number of train samples, w1 and w2 are the
weights of the TPles and FPles classes, respectively. In practice the weight of the FPles class
is increased to take into account its low number of occurrences in the training set. Then, a
weighted cross-entropy loss can be formulated:

Lwce = −
2∑

k=1

wk log
exp(xk)∑2
c=1 exp(xc)

1{y = k} (III.4.2)

where xk are the scores predicted by the CNN. The ADAM optimizer [37] is used with a
fixed learning rate of 2 × 10−4 and a batch size of 16 bounding boxes. Training is carried
out until the validation balanced accuracy seizes to improve for 20 epochs. A dropout rate
of 20% is employed in each convolutional block to reduce overfitting. A data augmentation
strategy is adopted comprising flipping rotation, and gamma alterations. Note that intensity
augmentations are only applied to the input FLAIR bounding box, as the entropy map should
not be treated as a standard intensity map in the data augmentation pipeline.

Even though the model has a small number of parameters and that dropout is used in each
block, overfitting is observed starting at the 50000-th training step, as illustrated in Figure
III.4.2. However, the CNN achieves a satisfying validation balanced accuracy before the start
of the overfitting.
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Figure III.4.2: Training and validation scores for the bounding box CNN trained on
cross-sectional MS lesions. Left: weighted cross-entropy. Right: balanced accuracy. An
overfit can be observed, starting around the 50K training step, indicated by the vertical
dashed line.

III.5 A graph approach to lesion uncertainty quantifica-
tion

III.5.1 Motivations

Finding an appropriate lesion representation to allow for the training of an auxiliary lesion
classifier is complex, as lesions exhibit heterogeneous shapes, sizes, and appearances. Indeed,
lesions can exhibit complicated, non-euclidean geometry as illustrated in Figure III.5.1. Here,
Lewiners’s marching cube algorithm [254] is employed to transform the 3D binary lesion
masks into meshes, exhibiting the heterogeneous shapes they can display.

Because of this, the previously presented approaches may exhibit weak points. The feature-
based model relies on features averaged over the lesion mask voxels (such as the average
entropy, the average contour entropy, or the average lesion intensity...) which may discard
subtle relationships between the lesion voxels. The bounding-box model relies on a fixed
bounding box size of 32×32×32, which although suitable for most lesions, may be suboptimal
for very small or very large lesions. To circumvent this, a desirable representation should
1) preserve the entire available lesion voxel information and overall lesion structure and 2)
be flexible enough to handle the non-euclidean geometry of the lesions. A third desirable
property is a limited model complexity, due to the limited size of the medical-image datasets
used in our experiments.

With these properties in mind, a natural way of handling the lesions is to use a recent DL
framework suitable for non-euclidean data: Graph Neural Networks (GNN), which have
increasingly gained interest for their performance and their ability to learn the structure of
complex non-euclidean graph data. This way of modeling lesions allows to perform training
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Figure III.5.1: Input image, predicted lesion masks and associated meshes obtained
using the Marching’s cube algorithm. It displays the high heterogeneity in the size and
structure of the lesions.

directly on the lesion instances and offers a flexible framework for characterizing lesions
through node features.

This graph-based approach is motivated by the recent success of GNNs in exploiting voxel
uncertainties. More formally, Soberanis et al. [199] proposed to represent a medical image
segmentation by an undirected graph and use the voxel uncertainty map derived by a MC
dropout model to define node features. They then propose to classify each node (i.e. voxel)
as correct, or incorrect, thus akin to a node classification task. The operative goal is to refine
the segmentation by removing incorrect voxels. In this section, a similar idea is implemented,
yet each unique lesion in the segmentation is represented by a distinct graph, and each graph
is further classified as a TPles or FPles (thus the task is graph classification). To achieve this,
lesions must first be represented by graphs, and then a GNN can be trained to classify them
into TPles and FPles. These 2 steps are presented in the following.

III.5.2 Graph notations and Graph Neural Networks

III.5.2.1 Notations

In this section, the notation used to define graphs is introduced. Let G be an undirected
graph defined by a set of nodes V , connected by a set of edges E . We write n the number of
nodes in the graph, such as |V| = n. The graph is defined as G = {V , E ,A} where A is the
adjacency matrix. If there exists a link between the nodes i and j, then matrix cell A(i, j)
= wij where wij is the weight of the edge. For unweighted graphs, wij = 1. If there is no
connection between nodes i and j, then wij is set to 0. The neighboring nodes of a node v
are denoted by N (v). Finally, nodes are characterized by node attributes (or node features),
defined by vectors Xv ∈ Rd for v ∈ V , with d the number of attributes for each node.
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III.5.2.2 Converting lesions to graphs

Representing lesions by graphs requires several design choices. The proposed approach is
illustrated in Figure III.5.3. First, to incorporate voxels in the immediate vicinity of the
lesion that contain meaningful information for uncertainty quantification, each lesion mask
is dilated using a binary morphological operation. Then, each voxel of the dilated lesion
mask is associated with a node in the graph. Thus, if the dilated lesion contains V voxels, its
corresponding graph will include V nodes. As a result, each node in the graph is linked to a
voxel of coordinates (x, y, z) in the medical image. Edges are added between each adjacent
voxel, following a 26−connectivity. This indicates that a node will be connected to another
node if the two associated voxels are touching via their faces, edges, or corners in the lesion
mask. Undirected graphs are used here, meaning that edge weights are set to 1 when there is
a link between nodes, and 0 else. Then, the last step is to define the set of node features
used to train the GNN model. The following features for the node ni associated to the voxel
vi positioned at (x, y, z) are used:

• The lesion intensity obtained at the (x, y, z) location in the input image.
• The voxel uncertainty obtained at the (x, y, z) location in the entropy map.
• The contour indicator, which is 1 if the voxel belongs to the contour of the lesion and 0

else.
• The degree of the node, corresponding to the number of edges linked to the node.
• The Euclidean distance to the contour, used to help the GNN locate the voxel in the

overall lesion.
• The label at the (x, y, z) in the segmentation map, which is used to indicate if the voxel

has been labeled as a lesion (label 1) or as background (label 0). Voxels labeled as 0
typically correspond to the voxels surrounding the lesion.

III.5.2.3 Using a Graph Isomorphism Network as auxiliary classifier

The task at hand here is graph classification, as the goal is to determine the label y of the
lesion (TPles or FPles) based on its graph representation. To perform this task, a GNN can
be employed to learn a representation of the entire graph hG, such as y = f(hG). In the
following, the operating principle of GNNs is presented.

A convenient way to introduce GNNs is to draw an analogy with the functioning of standard
CNN models. Both principles are illustrated in Figure III.5.2. A CNN operates on images,
which follow a grid-like, Euclidean data structure. In 2D, a pixel is associated with the
coordinates (px, py) in the Euclidean space, where px represents the horizontal position and
py is the vertical position. When applied to a pixel, a 2D convolutional filter has access to
adjacent pixels to compute the filter response. For instance, a 3 × 3 convolutional kernel
applied to a pixel C will have access to the 8 adjacent pixels (Figure III.5.2, left). In practice,
the CNN can be seen as a special type of GNN where nodes correspond to the image pixels,
and edges are added only between adjacent pixels in the image.

GNNs can be seen as a generalization of standard CNNs to handle any structure data, even if
it cannot be represented in an Euclidean fashion. It is thus more versatile than the standard
CNN. To learn the graph representation, GNNs operate using a neighbors aggregation scheme
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Figure III.5.2: Analogy between Convolutional and Graph Neural Networks. Left: a 3x3 convolution is applied at pixel C,
belonging to a grid of 4x4 pixels. The convolution kernel output is obtained by aggregating information from neighboring pixels
(N1-N8). Right: a graph composed of 5 nodes is represented (C, N1, N2, N3, N4). Each node is defined by a set of node features
h. The update of the representation hkv of the central node C is further detailed. The first step is to aggregate the representations
of the neighboring nodes. Then, a combine function is applied to compute hk+1

v , the update node representation.
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akin to the one performed in a CNN. More precisely, the node representation hv is iteratively
updated based on the representation of its neighbors (Figure III.5.2, right). This process is
called message passing and is the core principle of GNN [255].

At the GNN input, the representation of the node is initialized to its node feature vector
h0v = Xv. Then, after k GNN layers, the node representation incorporates the information
from the nodes k-steps away from it. More formally, the k-th layer of a GNN updates the
representation hkv of the node v by performing the following operations [256, 257]:

akv = AGGREGATEk{hk−1
u : u ∈ N (v)} (III.5.1)

hkv = COMBINEk(hk−1
v , akv) (III.5.2)

where N (v) is the set of nodes in the neighborhood of v. In practice, the AGGREGATE
function allows the gathering of the representations of nodes in the vicinity of v to compute an
aggregated feature vector akv . Then, the COMBINE function updates the node representation
at step k by relying on akv and the preceding representation of the node (step k − 1, hk−1

v ).
Finally, at the last layer K of the GNN, a READOUT operation is necessary to aggregate the
representations of each node and obtain a global graph representation allowing to perform
classification:

hG = READOUT({hKv |v ∈ G}) (III.5.3)

Several options can be found in the literature for the AGGREATE, COMBINE, and READ-
OUT functions [256, 258]. Here, the Graph Isomorphism Network (GIN) paradigm is adopted,
proposed by Xu et al. in 2018 for graph classification [256]. In GIN, the AGGREGATE and
COMBINE functions are performed by MLP layers. To obtain the final graph representation
(READOUT), the node representations at each different layer are first summed and then
concatenated. This produces a graph representation hG that is finally fed to a last FC
layer that produces the class probabilities. The architecture of the GIN model used in the
experiments is further detailed in Figure III.5.3.

hkv = MLPk(hk−1
v +

∑
u∈Nv

hk−1
u ) (III.5.4)

hg = CONCAT(

|V|∑
v=0

h0v, ...,

|V|∑
v=0

hKv ) (III.5.5)

III.5.3 Implementation details

The graph framework is implemented using the Deep Graph Library library [259], allowing
the construction of graphs and the training of GNN models. The GIN model used here is
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composed of 5 layers. Each layer is a succession of 2 FC layers interspersed with 1D batch
normalization and ReLU activation (see Figure III.5.3). The hidden dimension is 32. To
perform the graph readout, the input and hidden representations are concatenated, yielding
a latent vector of dimensions 133. In total, the GIN model has 26700 parameters, which
is low enough to authorize training to be performed on the CPU. To train the GIN model,
the same training objective used for the bounding-box CNN is used, namely the weighted
cross-entropy is used (Equation III.4.2).
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Figure III.5.3: Proposed pipeline for the graph-based approach, starting from the graph
building using voxel-wise maps, followed by inference in the GIN model. FC: Fully-
connected layer. BN: Batch Normalization.
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III.6 Lesion-level metrics

III.6.1 Detection quality metrics

Voxel-level metrics are straightforward to compute as it simply involves comparing the
predicted and ground truth value, for each voxel. At the lesion level, an extra step of lesion
matching is required to identify TPles, FNles, and FPles. This matching generally starts by
performing a CCA of the predicted and ground truth masks. Then, from the two sets of
individual lesions, the intersection between each possible pair is computed [129, 168, 170]. A
predicted lesion is considered to be a TPles if its overlap ratio with ground truth lesions reaches
a sufficient amount. A loose definition is to set the threshold to any non-null intersection
[170], but tighter definitions use a 25% [168] or 50% [129] minimum overlap ratio, estimated
using the Dice or IoU scores. If the condition is not matched, then the lesion is flagged
to be a FPles. While these tighter definitions are motivated, there are some cases where
they can mistakenly flag lesions as FPles, although the detection is correct. This typically
happens when there is a strong mismatch between the size of the predicted lesion and the
reference lesion. In these cases, the Dice or IoU between the lesions will be low, leading to an
estimation of a FPles, even if the lesion is correctly detected. Examples of these edge cases
are illustrated in Appendix A.1.1. Thus, to prevent these edge cases, the loose definition
will be used in the experiments, and a lesion will be considered as TPles if it has a non-null
intersection with ground truth lesions.

When dealing with lesion segmentation, it is common that there is not a strict one-to-one
relation between the predicted and ground truth lesions. Instead, many-to-one and one-to-
many cases are frequent, especially for confluent Multiple Sclerosis lesions. In cases where
many predicted lesions intersect one single ground truth lesion, the risk is to count each
predicted lesion as distinct TPles, thus inflating the count of true positives. To account for
these situations, we opt for the graph-based lesion-matching algorithm proposed by Bhat
et al. [169]. The concept is to build a graph connecting the predicted and reference lesions.
Each lesion in the prediction and ground truth masks is associated with a node, and edges
are added between lesions sharing a non-null intersection. This requires computing the
intersection between each possible pair of predicted and reference lesions. Thus, the total
number of comparisons is n×m, with n and m the number of reference and predicted lesions,
respectively. Figure III.6.1 presents two examples of many-to-one and one-to-many settings,
with the corresponding lesion-matching graph. The IoU between each pair of overlapping
lesions is presented on top of the edges. To count the number of TPles, the algorithm counts
the number of reference nodes with at least one edge, thus accounting for many-to-one
cases. FPles and FNles then correspond to the count of predicted and reference solitary nodes,
respectively.

From the counts of TPles, FNles, and FPles extracted from the lesion matching graph, several
lesion-wise detection metrics can be computed to estimate the lesion detection accuracy of
the segmentation algorithm: the Lesion True Positive Rate (LTPR) and the Lesion False
Discovery Rate (LFDR) [230]:
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Figure III.6.1: Two examples of lesion matching. Top row: example of a many-to-one
case plus one False Positive lesion. Bottom row: example of a one-to-many case plus
one False Negative lesion. Predicted lesions are labeled as Px and reference lesions as Rx.
Edges are constructed between lesions that have a non-null intersection (estimated using
the IoU score, indicated on top of the connecting edge).

LTPR =
TPles

TPles + FNles
(III.6.1)

LFDR =
FPles

TPles + FPles
(III.6.2)

III.6.2 Structural uncertainty quality metrics

The preferred approach to evaluate the quality of lesion-level uncertainty estimates is to
measure the differentiability of TPles and FPles lesions based on their uncertainty scores [168,
250, 129]. Ideally, TPles lesions should be associated with lower uncertainty than FPles lesions,
as illustrated in Figure III.6.2. Thus, by reviewing the most uncertain ones, the user of the
software would be able to reject potential incorrect detections. In contrast, an uninformative
lesion uncertainty score would not allow for this distinction. Nair et al. [129] and Molchaniva
et al. [168, 250] assess this property through a lesion retention paradigm. Similar to the
voxel-wise retention curves used previously, the idea is to rank the lesions from the most
uncertain to the most certain. Then, each lesion in the scan is sequentially removed based on
its uncertainty ranking, and the updated count of TPles and FPles is computed. Ideally, FPles

lesions should be associated with higher uncertainty than their TPles counterparts, hence by
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removing the most uncertain ones, the number of FPles should decrease quicker than the
number of TPles. Lesion retention curves are obtained by plotting the number of TPles versus
the number of FPles for each step of the stratification procedure. In this thesis, an evaluation
paradigm based on the same criteria (FPles lesions being associated with higher uncertainties
than TPles lesions) is proposed, based on standard classification metrics to ease clarity and
interpretation. This evaluation strategy is presented in the following.

To evaluate the pertinence of the computed uncertainty score, a 2-class classification setting
is adopted. FPles are associated with the label 1, and TPles with the label 0. At test time,
each lesion in the test images is further associated with an uncertainty score, allowing to rank
lesions from the most confident to the most uncertain. A binary decision (certain/uncertain)
can be obtained by thresholding the uncertainty scores. By varying this threshold, standard
classification metrics can be computed such as the Area under the Receiver Operating
Characteristic curve (AUROC) or the Area Under the Precision-Recall curve (AUPR). For
each threshold, the True Positive Rate (TPR) and False Positive Rate (FPR) are computed
to draw the ROC curve:

TPR = UTP/(UTP + UFN) (III.6.3)
FPR = UFP/(UFP + UTN) (III.6.4)

whereas for the precision-recall curve, the FPR is replaced by the precision (Pre):

Pre = UTP/(UTP + UFP) (III.6.5)

Here, the confusion matrix is obtained by matching the uncertainty status (certain/uncertain)
and the correctness of the lesion detection (TPles/FPles):

• UTP: a lesion that is uncertain AND a FPles.
• UFP: a lesion that is uncertain AND a TPles.
• UTN: a lesion that is certain AND a TPles.
• UFN: a lesion that is certain AND a FPles.

Note that the precision-recall curve is more suitable for imbalanced settings, which is typically
the case for cross-sectional MS lesions where FPles are less common than TPles. In this
setting, the ROC curves tend to present an optimistic view of the performance, as it takes
into account the UTN lesions (certain and true positive lesions) that are predominant in the
cross-sectional MS experiment.

III.6.3 Results of the cross-sectional MS experiment

For the MS experiments, recall that three different test datasets are defined. Test ID contains
images sharing the same distribution as the training images. MSLUB is a domain-shift dataset
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Figure III.6.2: Illustration of ideal lesion uncertainty quantification, where TPles lesions
are associated with lower uncertainties than FPles lesions.

containing images acquired in a different imaging center, and with a different MRI device
than the ones used in the training dataset. Finally, the 1.5 Tesla is a second domain-shift
dataset with images acquired with a lower-quality MRI device. For each segmentation and
uncertainty metric, bootstrapping [260] is performed to estimate the mean (µ), the standard
error on the mean (SEM), and 90% confidence intervals (CI).

Table III.3 presents the quality of the segmentation provided by the Deep Ensemble (voxel-
level and lesion-level metrics), as well as the counts of each type of lesions (TPles, FPles, and
FNles). Table III.4 and Figure III.6.3 present the quality of lesion-level uncertainty estimates
(AUROC and AUPR) for each tested aggregation approach. Figure III.6.4 presents the
distribution of lesion uncertainty scores for TPles and FPles, respectively, for each dataset
and method. Finally, Figure III.6.5 provides illustrations of the computed lesion uncertainty
scores.

Additionally to the Mean Entropy and classifier approaches (Logistic, CNN and GNN),
the performance of a naive Size approach is presented for comparison. It is obtained by
defining the lesion uncertainty U score as the inverse of its size S, expressed in the number of
voxels, such that U = 1/S. The goal of this approach is to serve as a naive baseline, as small
lesions are generally more likely to be FPles. This simple technique does not consider any
voxel-wise uncertainty score, hence it is expected to be outperformed by all other methods.

First, in terms of lesion-level segmentation metrics (Table III.3) on in-distribution data (Test
ID), around 80% of the segmented lesions are TPles, while the remaining 20% are FPles.
There are roughly the same amount of FNles lesions as FPles lesions. While the Dice scores
are equivalent on the two shifted datasets (MSLUB and 1.5 Tesla), the lesion-level metrics
tell a different story. On MSLUB, the DE produces very few FPles, while the number of FNles

increases drastically (1413). On the opposite on the 1.5 Tesla dataset, the model has a low
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number of FNles, but an increased rate of FPles. This highlights two different trends that are
not visible when considering voxel-level metrics only.

Regarding lesion uncertainty quality (Table III.4), the Size approach provides as expected the
worst lesion uncertainty scores on the Test ID and MSLUB datasets. This can be explained
by the fact that in the context of MS lesions, small lesions can be segmented with high
confidence. In contrast, the Mean Entropy score is a more robust baseline, achieving higher
AUROC and AUPR scores in all settings, as compared to the Size scores. On the Test
ID dataset, both the Logistic and GNN approaches offer a slight gain over the Mean
Entropy baseline, on both metrics (AUROC and AUPR). This indicates that they offer
a better distinction of TPles and FPles based on the predicted uncertainty scores, for test
samples close to the training distribution. Additionally, the proposed GNN approach also
outperforms Mean Entropy on the MSLUB dataset, on both metrics, showing that the
GNN-based scores generalize well on this shifted dataset. On the 1.5 Tesla dataset, the GNN
is also better on the AUROC metric, but not on the AUPR score. Overall, CNN offers
weaker results than the other classification-based methods. It still outperforms the Mean
Entropy baseline regarding AUPR scores on Test ID and MSLUB, but not on the AUROC
scores. On the 1.5 Tesla dataset, it appears that the top AUPR scores are achieved by the
Size and Mean Entropy scores, that the more sophisticated classifier-based approaches
fail at outperforming. It may be due to the fact that for this dataset, most small lesions are
actually FPles, and thus the trivial Size score provides very competitive results. Finally, the
density plots of lesion uncertainty scores (Figure III.6.4) provide interesting results. For TPles

lesions (blue histogram), the auxiliary classifiers (Logistic, CNN, and GNN) attribute
uncertainty scores that are close to 0. In a clinical setting, lesions attributed with FPles

probabilities close to 0 could thus be overlooked as they predominantly correspond to TPles

lesions, allowing the clinician to focus on the lesions with high FPles probabilities. This type
of prioritization is less obvious for Mean Entropy, as the scores are much more uniformly
distributed for TPles samples.



Voxel metrics Lesion metrics Lesion Counts
Dice (%) LTPR (%) LFDR (%) TPles FPles FNles

Dataset µ SEM CI µ SEM CI µ SEM CI Σ Σ Σ
Test ID 79.0 1.3 [−2.1, 2.1] 78.0 1.4 [−2.3, 2.3] 20.9 1.6 [−2.6, 2.8] 2196 528 563
MSLUB 68.0 3.2 [−5.5, 5.1] 54.2 2.4 [−3.9, 3.9] 10.9 1.9 [−3.0, 3.3] 1640 121 1413
1.5 Tesla 67.8 3.5 [−6.1, 5.2] 90.3 3.8 [−7.3, 5.0] 33.4 3.7 [−5.7, 6.5] 1016 382 71

Table III.3: Voxel-level and lesion-level performance for cross-sectional MS lesions segmentation. LTPR: Lesion True Positive
Rate. LFDR: Lesion False Discovery Rate. SEM: Standard Error on the Mean. CI: 90% confidence intervals.

Method Dataset AUROC (%) AUPR (%)
µ SEM CI µ SEM CI

Test ID 79.9 1.0 [−1.7, 1.7] 46.9 2.1 [−3.6, 3.5]
Size MSLUB 78.0 2.1 [−3.5, 3.4] 20.2 2.6 [−4.1, 4.3]

1.5 Tesla 86.5 1.1 [−1.8, 1.7] 69.7 2.6 [−4.3, 4.1]
Test ID 85.7 0.8 [−1.3, 1.3] 52.3 2.3 [−3.7, 3.7]

Entropy MSLUB 88.0 1.2 [−2.1, 1.9] 29.0 3.2 [−5.1, 5.5]
1.5 Tesla 86.0 1.0 [−1.7, 1.7] 69.8 2.5 [−4.2, 4.0]
Test ID 86.8 0.8 [−1.3, 1.2] 56.7 2.3 [−3.9, 3.8]

Logistic MSLUB 87.8 1.2 [−2.1, 2.0] 33.8 4.1 [−6.6, 6.9]
1.5 Tesla 86.6 1.0 [−1.6, 1.6] 66.1 2.8 [−4.5, 4.5]
Test ID 85.1 0.8 [−1.3, 1.3] 54.4 2.3 [−3.9, 3.8]

CNN MSLUB 86.1 1.4 [−2.4, 2.3] 36.3 4.3 [−7.2, 7.2]
1.5 Tesla 87.6 1.0 [−1.6, 1.5] 66.7 2.7 [−4.5, 4.4]
ID 86.5 0.8 [−1.3, 1.3] 57.2 2.3 [−3.9, 3.8]

GNN MSLUB 88.8 1.2 [−2.1, 2.0] 35.7 4.2 [−6.8, 7.1]
1.5 Tesla 87.2 1.0 [−1.6, 1.5] 66.8 2.8 [−4.5, 4.5]

Table III.4: Quality of lesion-wise uncertainty estimates for cross-sectional MS lesions. Top performing approaches are highlighted
in bold, for each dataset. SEM: Standard Error on the Mean. CI: 90% confidence intervals.



Figure III.6.3: Receiver operating characteristic (top row) and precision-recall curves (bottom row) for lesion uncertainty
estimates on cross-sectional MS lesions. TPR: True Positive Rate. FPR: False Positive Rate.



Figure III.6.4: Densities of lesion uncertainty scores for each dataset and approach on cross-sectional MS lesions. Blue indicates
TPles samples, while red indicates FPles samples. An ideal uncertainty quantification module should enable a clear separation of
the two classes.



Figure III.6.5: Examples of lesion uncertainty quantification for the different tested approaches, for cross-sectional MS lesions
detection. For each case, a red overlay indicates that the lesion is a FPles, while blue indicates TPles. Next to each image, a spider
chart indicates the uncertainty scores estimated by each method.



III.7. Application to lung nodules segmentation in chest CT 111

LTP probability = 0.988
(Axial)

LTP probability = 0.981
(Axial)

LTP probability = 0.980
(Sagittal)

LTP probability = 0.970
(Axial)

LTP probability = 0.962
(Axial) LTP probability = 0.961

(Sagittal)

LTP probability = 0.943
(Sagittal)

LTP probability = 0.939
(Sagittal)

LTP probability = 0.938
(Axial)

LTP probability = 0.933
(Axial)

LTP probability = 0.919
(Axial)

LTP probability = 0.909
(Axial)

Figure III.6.6: Examples of lesions considered confident by the GNN model while being
labeled as false positives. In each case, the FLAIR image presents a hyperintensity signal
that may indicate the presence of a lesion and if so, incomplete ground truths.

III.6.4 Identification of annotation mistakes using lesion uncertainty
scores

One limit of the explored classifier-based structural uncertainty quantification is that it is
sensible to the accuracy of the ground truths. Indeed, if lesions are not seen by the annotator,
it will result in a lesion labeled as a FPles, although the model may be correct. This is
particularly likely to happen for small lesions, that may be overlooked by the rater. As a
result, the training of the auxiliary classifier becomes more unstable due to label noise. To
highlight this phenomenon of lesions missed by the raters, the GNN model is used. More
precisely, we propose to examine samples that are labeled as a FPles, but that are associated
with a low FPles probability. In other words, we are interested here in lesions that the auxiliary
classifier perceives as being likely a TPles, while the actual status is FPles. In Figure III.6.6,
we present the 12 FPles lesions in the Test ID dataset with the highest TPles probability.
It appears that in all cases, hyperintensity signals are visible in the FLAIR image, which
may indicate that the ground truth is incomplete. By analyzing the errors of the auxiliary
classifier on the test dataset, it could thus be possible to catch annotation oversights and
proceed to the needed corrections.

III.7 Application to lung nodules segmentation in chest
CT

The second investigated application of lesion uncertainty is the segmentation of lung nodules
in chest CT. This experiment allows us to evaluate the protocol in a different imaging modality
(CT instead of MRI) and with a different distribution of lesions.
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Axial Sagittal Coronal

Figure III.7.1: Example of a CT scan of a patient presenting a lung nodule, indicated
by the orange arrows.

III.7.1 Pathology description

Lung cancer is the first cause of cancer-related deaths in the world, responsible for 27% of
cancer deaths in the USA, in 2014 [261]. The diagnosis of lung cancer is supported by imaging
of the lungs, with volumetric chest CT being preferred to chest X-ray due to the superior
spatial resolution [262]. Imaging helps identify suspicious findings, which are denoted as lung
nodules if the shape is inferior to 3 cm in diameter, and lung masses else [263]. An example
of a CT scan of a patient presenting a lung nodule is presented in Figure III.7.1.

Visually, lung nodules appear as round opacity appearing in chest CT scans. They are
common in the adult population: approximately 30% of scans present such findings [264].
While the majority (95%) of these nodules are benign [264], detecting them remains crucial
for early cancer detection. The malignancy of the identified nodules is evaluated in light of
the patient’s status: history of tobacco smoking, age, or past lung cancer. Yet, this detection
is particularly difficult due to the small size of the nodules. A study carried out in the USA
indeed concluded that 35% of lung cancers were associated with nodules with a diameter
smaller to 10mm [265]. A chest CT typically contains millions of voxels, meaning that nodules
may occupy only an infinitesimal part of the imaged volume [266]. Thus, automated detection
algorithms could greatly assist the clinician examine the scan. However, computer-aided
nodules detection tools are known to produce numerous false positives [172, 267], hence
a proper structural uncertainty quantification is desired to help the clinician review the
segmentation.

III.7.2 Materials and preprocessing

This experiment relies on the LIDC-IDRI dataset [268], a large-scale dataset focusing on
lung nodules in chest CT. It consists of a collection of 1018 helical thoracic CT scans of
1010 patients, acquired in seven imaging centers. Images were labeled through a two-phase
annotation process performed by four experts, yielding voxel-level annotations of lung nodules
larger than 3mm. This dataset is particularly interesting as nodule-level scores were provided
by the experts, including a subtlety score. This subtlety score corresponds to the nodule
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detection difficulty perceived by the rater. The score is an integer in the range 1 to 5, where 1
indicates Extremely Subtle, and 5 indicates Obvious. Moreover, the inter-rater variability
(IRV) can be computed for each nodule, corresponding to the number of experts (between
1 and 4) that annotated the finding as a nodule. Both these nodule-level scores (subtlety
and inter-rater variability) can be interpreted as a form of structure-level uncertainty ground
truth for the lesion uncertainty evaluation. In this experiment, a single CT scan per patient
is used, reducing the number of available images from 1018 to 1010. The dataset is randomly
split into a training part (710 images), a validation part (50 images), and a testing part (250
images).

A simple preprocessing strategy is adopted here, similar to Yu et al. [269]. First, the image
intensity (expressed in Houndfield units for CT scans) is clipped in the range [−1000, 400].
Second, chest CTs are resampled to a voxel spacing of 3mm × 1.5mm × 1.5mm (in the
axial, coronal and sagittal planes, respectively).

III.7.3 Experimental protocol

The experimental protocol used for lung nodule detection is strictly identical to the one
employed for the cross-sectional MS experiments. A DE composed of 5 identical Dynamic
U-Nets is used to generate predictions (entropy and segmentation) for each image in the
training, validation, and test datasets. For training and validation nodules, the three proposed
structural representations (features, bounding box, and graph) are extracted, leading to a
nodule-level training dataset of 3058 instances (1467 TPles and 1591 FPles) and a nodule-level
validation dataset of 192 (78 TPles and 114 FPles). It can be noted that the proportion of
FPles is different from the one obtained for cross-sectional MS lesions. Here, the number of
FPles is slightly superior to the number of TPles, in contrast to the previous experiment.

From these nodule datasets, the three different auxiliary classifiers are trained (the Logistic
Regression model, the CNN model, and the GNN). No modifications are made regarding
their implementation, hyper-parameters, and training strategy. Additionally to AUROC and
AUPR scores, the Spearman’s correlation between the predicted uncertainty scores and the
nodule uncertainty ground truths (subtlety and IRV) are also provided. These correlations can
however only be computed for TPles lesions. Indeed, FPles lesions do not have corresponding
subtlety and IRV scores, and FNles lesions do not have associated predicted lesion uncertainty
scores.

Appendix A.3.2 presents the top 10 features ranked by their order of importance for the
Logistic Regression model trained to detect FPles nodules. As for the cross-sectional MS
experiment, the top 10 features include a mix of intensity features (4 features), shape features
(5 features), and an uncertainty feature. Interestingly, 4 features are common to the Logistic
Regression model trained on cross-sectional MS lesions: the entropy of the lesion interior,
Maximum2DDiameterSlice, Maximum2DDiameterColumn, and Maximum3DDiameter. This
mainly indicates that small lesions with high average interior entropy are likely to be FPles,
for both pathologies.
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Figure III.7.2: Receiver operating characteristic (left) and precision-recall curves (right)
for lung nodules uncertainty estimates. TPR: True Positive Rate. FPR: False Positive
Rate.

Figure III.7.3: Densities of lung nodule uncertainty scores for each approach. Blue
indicates TPles while red indicates FPles. The best separation of the two classes is provided
by the GNN approach.

III.7.4 Results of the lung nodule experiment

Table III.5 presents the segmentation quality metrics of the DE trained to detect lung nodules.
Table III.6 and Figure III.7.2 present the nodule-level uncertainty quality for each tested
approach. Figure III.7.4 presents the correlation between the computed structural uncertainty
scores and the ground truth uncertainty scores (IRV and subtlety). Figure III.7.5 presents
examples of nodule-level uncertainty scores computed with each approach. Finally, Figure
III.7.3 displays the densities of nodule-level uncertainty scores for each approach.

First, the DE produces numerous FPles on the test dataset, following the same trend observed
on the training and validation datasets, with slightly more FPles than TPles. However, the
number of FNles is low, with only 121 FNles for the 250 test subjects (roughly 0.5 FNles per
scan). The Dice is rather low which can be explained by the small size of nodules and the
sensibility of the metric to the size of the objects [31]. Regarding the quality of nodule-level
uncertainty estimates, the Size approach remains the weakest estimator, as expected. The



Voxel metrics Lesion metrics Lesion Counts
Dice (%) LTPR (%) LFDR (%) TPles FPles FNles

Dataset µ SEM CI µ SEM CI µ SEM CI
∑ ∑ ∑

Test ID 47.0 1.9 [−3.1, 3.1] 70.3 2.5 [−4.1, 4.0] 50.3 2.2 [−3.6, 3.6] 497 542 121

Table III.5: Voxel-level and lesion-level performance for lung nodules segmentation in CT scans. LTPR: Lesion True Positive
Rate. LFDR: Lesion False Discovery Rate. TPles: True Positives lesions. FPles: False Positive lesions. FNles: False Negative
lesion. The mean (µ), the Standard Error on the Mean (SEM), and 90% confidence intervals (CI) are estimated using bootstrap.

Method AUROC (%) AUPR (%) Correlation Subtlety (↓) Correlation IRV (↓)
µ SEM CI µ SEM CI µ SEM CI µ SEM CI

Size 80.2 1.4 [−2.3, 2.2] 79.8 1.9 [−3.1, 3.0] -0.46 0.04 [−0.06, 0.07] -0.56 0.03 [−0.05, 0.06]
Entropy 84.2 1.2 [−2.1, 2.0] 82.5 1.9 [−3.1, 3.0] -0.39 0.04 [−0.06, 0.06] -0.51 0.03 [−0.06, 0.06]
Logistic 84.9 1.2 [−2.0, 2.0] 82.9 1.9 [−3.1, 3.0] -0.49 0.04 [−0.06, 0.06] -0.59 0.03 [−0.05, 0.05]
CNN 84.1 1.2 [−2.0, 2.0] 82.2 1.9 [−3.2, 3.1] -0.51 0.04 [−0.06, 0.06] -0.58 0.03 [−0.05, 0.05]
GNN 85.9 1.2 [−1.9, 1.9] 84.1 1.8 [−3.0, 2.9] -0.46 0.04 [−0.06, 0.06] -0.61 0.03 [−0.05, 0.05]

Table III.6: Quality of lesion-wise uncertainty estimates for lung nodules. Top performing approaches are highlighted in bold,
for each dataset. The mean (µ), the Standard Error on the Mean (SEM), and 90% confidence intervals (CI) are estimated using
bootstrap.
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Mean Entropy provides more informative nodule-level uncertainty scores. Following the
same trend as the cross-sectional MS experiment, it is yet outperformed by both the Logistic
and GNN models, on both AUROC and AUPR. Overall, the best quality of uncertainty is
obtained by the GNN, with the top AUROC and AUPR metrics. As in the cross-sectional
MS experiment, the CNN is the weakest classifier-based approach, with a performance below
Mean Entropy.

The high performance of the GNN can be explained by the cleaner ground truths available
in this experiment. Indeed, in the LIDC-IDRI dataset, the annotation procedure contains 2
steps. In the first one, the raters annotate the scans independently, while in the second step,
they have access to their colleague’s annotations to correct their decision if needed. As a
result, overlooked nodules can be caught. Then, the training of the auxiliary classifiers is more
efficient, as label noise is reduced. Another possible reason is that the ratio between TPles

and FPles is much more balanced in the nodules experiments, contrary to the cross-sectional
MS experiment.

The correlation study (Figure III.7.4), in which the link between predicted and ground truth
uncertainty scores is studied, shows interesting findings. It appears that the average entropy
is weakly correlated with the expert scores, being even outperformed by the Size method. All
auxiliary classifiers (Logistic, CNN, GNN) demonstrate superior Spearman’s correlation
scores, indicating that they more accurately match with the human notion of uncertainty.
Concerning the IRV, the best correlation is achieved by the GNN model (SP= −0.611), while
for the Subtlety scores the CNN offers the best correlation (SP=−508).



Figure III.7.4: Relationship between predicted nodule and ground truth nodule uncertainty scores (subtlety and Inter-rater
Variability) on the 250 test subjects. SP = Spearman’s correlation.



Figure III.7.5: Examples of lesion uncertainty quantification for the different tested approaches, for lung nodules detection.
For each case, a red overlay indicates that the lesion is a FPles, while blue indicates TPles. Next to each image, a spider chart
indicates the uncertainty scores estimated by each method.



III.8. Application to longitudinal Multiple Sclerosis lesions segmentation in brain MRI 119

III.8 Application to longitudinal Multiple Sclerosis lesions
segmentation in brain MRI

Analyzing MR images of MS patients in a cross-sectional setting is interesting as it allows
to quantify the extent of the disease (number of lesions and total lesion load). However, to
monitor the progression of the disease, longitudinal evaluation has to be carried out. In this
setting, the goal is to detect evolving lesions between two consecutive time points, usually
separated over several months or years. More particularly for MS, new lesions are a crucial
biomarker. Indeed, the absence or appearance of new lesions allows clinicians to determine
the efficiency of the anti-inflammatory drug, and modify the treatment if necessary [63].

These new lesions are usually very small, subtle, and rare. To detect them automatically,
two approaches can be adopted. The first approach consists of the separate analysis of each
time point independently, using a cross-sectional segmentation model such as the ones used
in the previous section [270]. Then, by comparing the two segmentations, changes can be
detected. However, this approach may lack accuracy. For instance, a stable lesion can be
considered as new if it is a False Negative in the first visit, and a True Positive in the second
visit. Moreover, this approach requires the precise pairing of individual lesions between each
visit, which is not trivial. This motivated the development of direct longitudinal models, that
take as inputs both co-registered visits, and directly provide a delineation of the new lesions.
In the MSSEG-2 challenge [63] focusing on new MS lesions segmentation, this approach was
the most popular one, being implemented by 21 out of 28 participating teams.

Developing longitudinal new MS lesions segmentation models is not straightforward because
of the scarcity of open-source longitudinal data. Three datasets can be found in the literature.
The more recent dataset is the MSSEG-2 dataset [63] that comprises 100 patients (40 for
training, 60 for testing) with two imaging visits. The ground truth annotations correspond to
the delineation of the new lesional voxels. However, 40% of the patients are stable and thus
the corresponding ground truth masks are empty. Second, the ISBI 2015 dataset comprises
multiple visits (4 or 5) of 5 different patients. However, ground truth masks do not correspond
directly to the new lesions, but instead contain the total WMH load for each visit (thus
including a majority of stable lesions). The MSLUB-LONG dataset [230] is a longitudinal
dataset comprising 2 visits of 20 MS patients. However, the ground truths correspond to
the WMH changes between the 2 visits, comprising new but also shrinking, growing, and
disappearing lesions. Due to this inhomogeneity in annotation policies, using these datasets
altogether is impractical. To solve this problem, a data synthesis approach can be adopted
to train longitudinal MS lesions segmentation networks. This strategy is presented in Section
III.8.1.

Once a model has been developed using real and synthetic datasets, the evaluation is
carried out using the testing split of MSSEG-2. Interestingly for this dataset, the ground
truth annotations of 4 experts are available. This enables the computation of the inter-
rater variability as a form of ground truth lesion uncertainty, as done in the lung nodules
experiments.
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Figure III.8.1: Principle of the synthetic creation of longitudinal cases from a single MRI
visit. By erasing one or several lesions (green), a prior visit can be simulated. Alternatively,
by injecting new lesions (red), a posterior visit is simulated. In both cases, a perfect
ground truth mask can be obtained to eventually train a segmentation model.

III.8.1 Longitudinal cases synthesis using a Generative Adversarial
Network

In contrast to longitudinal annotated data, annotated cross-sectional MS data is more
abundant. A possible way to circumvent the lack of annotated longitudinal MS cases is
to use cross-sectional MS data to create synthetic longitudinal examples. This concept is
illustrated in Figure III.8.1. More formally, from a single cross-sectional case labeled as visit
T , a prior visit T − 1 can be created by erasing lesions in the original scan, or alternatively a
posterior visit T + 1 can be obtained by adding lesions. This concept was initially presented
in Manjon et al. [271] and further developed in Kamraoui et al. [272], where authors develop
two different inpainting autoencoders to perform the erasing and addition operations. This
technique is particularly interesting as multiple longitudinal cases can be obtained from a
single cross-sectional image, by varying the number and the location of the added/removed
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lesion. Moreover, the resulting ground truth is perfect, because the synthetic image matches
perfectly the inpainting mask used as input, thus alleviating the problem of noisy, partially
incorrect ground truths. Adding lesions in a cross-sectional image is more cumbersome than
erasing lesions, as it requires 1) creating an artificial lesion mask to be added or using one
from another scan, and 2) injecting it in a realistic area. In Kamraoui et al., the authors used
a probabilistic atlas to identify realistic regions. However, this approach implies registering
images to a common atlas, which requires an extra preprocessing step. For simplicity, this
work thus focuses on the erasure of lesions, that can be easily implemented without the need
for atlases.

A lesion erasure model operates as follows. During training, healthy tissue voxels are
randomly inpainted with Gaussian noise. The model receives as input the noisy image as
well as the inpainting mask S, corresponding to the binary mask of altered voxels. The
task of the autoencoder is to recover the intensity of the inpainted healthy tissue, thus
behaving as a denoising autoencoder. During inference, the process is different as this time,
white matter hyperintensities are filled with Gaussian noise. By carrying inference with
the denoising autoencoder trained to convert noise into healthy white matter, the lesion
is removed. The model is only allowed to modify the image inside the inpainting mask:
Imageout = Modelout × S + Imagein × (1− S).

Intuitively, the realism of the generated longitudinal cases seems crucial to guarantee that the
model benefits from these synthetic data during training. If the inpainted area is unrealistic
and presents artifacts, then the model could simply learn this pattern during training instead
of focusing on meaningful differences between the two visits. By reproducing the autoencoder
proposed in [272], it appeared that the inpainted area lacked details and the erasing was
visually obvious (see Figure III.8.3). It could be hypothesized that a longitudinal model
trained on this synthetic data could minimize the error function by learning to recognize
this blurred area in place of details more relevant to the detection of new lesions. Thus, an
enhancement of the synthesis method is proposed here as a contribution, by incorporating an
adversarial training strategy, illustrated in Figure III.8.2 and presented in the following.

III.8.2 Adversarial training with voxel-level counterfactual scores

To improve the quality of the generated samples, an adversarial training paradigm based on
an auxiliary discriminator model is proposed. The task of the discriminator during training
is to distinguish between real and inpainted areas, produced by the erasure model (here, the
generator). Usually, a discriminator is a classifier that outputs an image-level realism score
[273]. Alternatively, a patch discriminator [274] can be used, that predicts a realism score for
each sub-patch of the input image. However, in this setting, both options are not satisfying.
Indeed, most voxels of inpainted patches are real voxels, as the erasure model can only modify
the input image inside the inpainting mask, which only occupies a limited portion of the
image. Thus, in inpainted patches, most voxels are actually real, unaltered voxels. Thus,
training the discriminator to predict an image-wise score may result in unstable learning.
To circumvent this, an encoder-decoder discriminator is proposed here, which produces a
voxel-level counterfactual score. Ideally, the discriminator should predict high counterfactual
scores in the inpainted region of predicted patches and low counterfactual scores elsewhere.
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Figure III.8.2: Proposed inpainting framework using an adversarial approach. The
Generator (E1-D1) receives a patch inpainted with noise along with the binary inpainting
mask. It produces a reconstruction of the original patch. This prediction is presented
to the Discriminator model (E2-D2) which predicts a realism score for each voxel in the
patch, with a score of 1 for realistic voxels and 0 for unrealistic voxels.
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Figure III.8.3: Comparison of lesion erasing approaches. The top 4 rows are axial views,
while the last one is a sagittal view. Orange arrows indicate blur artifacts in the baseline
model, that are eliminated with the proposed one.
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More formally, given a 3D input image X ∈ RH×W×D, the voxel-level discriminator produces
a realism map of dimension R̂ ∈ RH×W×D where a value close to 1 indicates a voxel judged
as real, whereas a value close to 0 indicates a voxel judged as fake (meaning generated by
the erasure model).

Adding a discriminator to guide training requires a modification of the training objective. In
its original formulation, the lesion inpainting model is trained solely using a reconstruction
loss corresponding to the Mean Squared Error (MSE) between the original input and the
output of the denoising model [271]. However, using this loss for image prediction is known
to be suboptimal in terms of realism, as the MSE is not directly linked to the perception
of image quality of human raters [275]. Here, a mode sophisticated reconstruction loss is
adopted, corresponding to the sum of the MSE, the Mean Average Error (MAE), and the
Structural Similarity Image Index (SSIM) loss [276]:

LMAE(X, Y ) =
1

N

N∑
i=1

|Xi − Yi|

LMSE(X, Y ) =
1

N

N∑
i=1

|Xi − Y i|2

LSSIM(X, Y ) =
[2µXµY + (k1L)

2][2σXY + (k2L)
2]

[µ2
X + µ2

Y + (k1L)2][σ2
X + σ2

Y + (k2L)2]

where µX (respectively µY ) is the voxel mean of X (respectively Y ), σX (respectively σY )
is the variance of X (respectively Y ), σXY is the covariance of X and Y , L is the dynamic
range of the voxel values, and k1 and k2 are constants set to 0.01 and 0.03 respectively. For
the SSIM loss, the score is computed using a moving window approach, using a window size
of (5, 5, 5). The final reconstruction loss Lrec is the sum of these three terms.

The voxel-level discriminator is trained using a MSE loss. This is thus akin to the Least
Squares GAN proposed in Mao et al. [277], aiming at alleviating the instability of GAN
training. Here, we set the ground truth realism map R as the opposite of the inpainting
mask S: R = 1− S. In other words, the goal of the discriminator is to detect the parts of
the input patch that have been altered by the generator. Writing D the proposed voxel-level
discriminator, Y the original input image and X the output of the generator, the discriminator
loss is expressed as:

LD,real = MSE(D(Y ), J)

LD,fake = MSE(D(X), R)

LD,total = LD,real + LD,fake
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where J is a matrix filled with ones, as for real input images, all voxels are real. The
discriminator predictions are also used to guide the generator G training, using the following
adversarial loss:

LAdv = MSE(D(X), J)

For the generator, the task is to fool the discriminator into predicting the inpainted voxels
as real (target equals to one). Thus, for this loss, the target is the J matrix. To further
improve the realism of the inpainted zones, a feature matching loss is employed, which has
been introduced in the Pix2pix HD model [278]. The idea is that the discriminator model
should produce similar features for unaltered images and realistic generated images. This
loss thus forces the generator to produce images that appear natural at multiple scales, as
the features are collected from different layers of the discriminator. More specifically, the
latent representations produced by the original input image Zreal,k and the generated on
Zfake,k at the k-th layer of the discriminator are gathered. Then, the discrepancy between
both representations is estimated using a MAE term:

LFeat =
1

k

∑
k

MAE(Zreal,k, Zfake,k) (III.8.1)

For the proposed voxel-level discriminator, the features are collected in each layer of the
encoder and decoder. The total generator loss is finally expressed as:

LG = λ1LRec + λ2LFeat + λ3LAdv (III.8.2)

where λ1 = 1, λ2 = 0.01, λ3 = 10. The resulting training curves are provided in Figure
III.8.4.

III.8.3 Implementation details

The framework is implemented using MONAI’s generative AI library [279]. A Residual U-Net
is employed, enhanced with SPADE normalization layers [280] to conserve the semantic
information (here, the inpainting binary mask) throughout the network. The discriminator
follows the same residual architecture, except for the SPADE normalization layers that are
replaced with standard batch normalization. Training is performed using a patch-based
setting with a patch size of 32 × 32 × 32 and a batch size of 16. This reduced patch size
has two motivations. First, most MS lesions fit in this reduced bounding box as new lesions
are usually small. Second, this helps reduce the imbalance between real voxels (indeed most
of the image) and inpainted voxels. This has a beneficial impact on training stability.[37]
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Figure III.8.4: Training losses for the proposed inpainting Generative Adversarial
Network. It can be noticed that in the early steps of training, the adversarial loss
(LAdversarial) has a value close to 0, indicating that at the beginning of training, the generator
successfully fools the discriminator. However, as training progresses, the discriminator
becomes more performant in detecting altered voxels, and as a result the adversarial loss
augments.
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Figure III.8.5: Examples of generated longitudinal cases obtained with the proposed
approach. The orange arrows indicate the lesion that is removed. V0: prior generated
visit. V1: original current visit.
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are used for the generator and discriminator, respectively, with a learning rate of 2× 10−4.
Training is performed until the loss seizes to improve on the validation set for 50 epochs.

III.8.4 Generation parameters

In this section, the design choices for the synthesis of longitudinal cases from cross-sectional
MS data are presented. First, all available cross-sectional images (N=274) are collected. For
each cross-sectional image1, 20% of the lesions are randomly inpainted, focusing on lesions in
the range [10mm3, 500mm3] as new lesions are usually small. The original cross-sectional
FLAIR will correspond to the second time point, while the output of the inpainting model
will correspond to the first one. To mimic the natural variability in image contrast between
the two visits, random gamma alterations are further applied to the generated first visit. This
process generates a total of 274 synthetic longitudinal cases. Several examples of synthetic
longitudinal cases are presented in Figure III.8.5 for our GAN approach.

Two versions of the synthetic dataset are generated, one using the baseline AE model
(Kamraoui et al. [272]), and one with the proposed GAN extension. By fixing the random
seed used to generate the scans, two strictly equivalent datasets are obtained, in terms of new
lesion masks and gamma alterations. Thus, if noticeable differences are observed between
the two synthetic datasets, it will be possible to conclude that it is because of the inpainting
model only. The two datasets are referred to as SynAE and SynGAN in the following.

The longitudinal ensembles are trained using the same hyperparameters as the ones previously
used in this thesis: 5 Dynamic U-Nets are trained with a combination of the cross-entropy and
Dice++ losses (Equation II.6.3), followed by post-hoc Temperature Scaling on the validation
dataset. A patch training is adopted with a patch size of 1283 and a batch size of 6. The
learning rate is set to 2× 10−4.

III.8.5 Performance of the longitudinal MS lesions segmentation

Table III.7 presents the segmentation performance of the different longitudinal Deep Ensembles
trained with and without synthetic data. More specifically, several settings have been tested:
training using only MSSEG-2, training using only synthetic data (SynAE or SynGAN),
and pretraining on synthetic data followed by finetuning on the training split of MSSEG-2.
Figure III.8.6 displays the training curves for models trained with each strategy.

Interestingly, it can be observed that the models trained using only synthetic data achieve
an interesting performance on the real test data. More particularly, the models have a high
detection rate (high number of TPles and low number of FNles). However, they also make a
lot of FPles detection, especially for the models trained only using the SynGAN dataset. This
can be due to the fact that the pairs of visits used in the synthetic datasets only differ on new

1The reader may find it surprising that all available cross-sectional images are used to generate the
synthetic longitudinal dataset, as a proportion of this cross-sectional dataset has been used to train the
inpainting models. However, the inpainting tasks are totally disjoint during training and testing. During
training, inpainting areas correspond to healthy white matter, whereas during inference the inpainting areas
are white matter hyperintensities. Thus, there is no risk of overfitting.
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Figure III.8.6: Loss functions and Dice scores monitored during training and validation
for the longitudinal models trained without pretaining (No Pretrain), with pretraining
on SynAE, and with pretraining on SynGAN. It can be seen that models trained with
synthetic data converge faster than models trained without synthetic data.

MS lesions voxels, as the inpainting models can only modify the image within the erasure
mask. This can make the models trained on synthetic data too sensitive when confronted
with real longitudinal cases, where intensity changes can be observed in both visits, unrelated
to the presence of a new lesion. Thus, these models are of little practical use, but it is
interesting to note that models trained without real longitudinal data manage to generalize
on real data.

Second, it can be observed in the training curves (Figure III.8.6) that models that are not
pretrained on synthetic data take about 1000 training steps to reach a validation Dice superior
to 0, while models pretrained on synthetic data achieve a high validation Dice right from the
start of the finetuning. Moreover, both training and validation losses reach a lower value,
as compared to the baseline model without pretraining. Then, on the testing dataset, the
models that were pretrained on synthetic data achieved a higher Dice than the baseline model
(see Table III.7). The increase is statistically significant when comparing the baseline model
and the model pretrained on Syn-GAN (p-value=0.002, Wilcoxon test). Lesion-wise, a gain
with respect to the LTPR is also observed, paired with a decrease in the subject-level LFDR.
At the dataset level, the models pretrained on synthetic data can detect about 15 additional
TPles, and miss 15 lesions less (reduction of the count of FNles). When comparing the DE
pretrained on SynAE and SynGAN, a slight advantage is observed for SynGAN in terms
of Dice and LTPR. However, a higher volume of FP voxels for lesion-free subjects is observed
for the SynGAN, as compared to SynAE. Overall, the improvement of the realism of the
synthetic data achieved by the proposed adversarial model (SynGAN) does not lead to
a clear boost in terms of new MS lesions segmentation performance, as compared to the
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baseline approach (SynAE). This may indicate that although the synthetic areas produced
by the baseline inpainting AE model are blurry, it still helps the model learn meaningful
features that are useful for real longitudinal data processing, such as the difference in contrast
between the two visits.

As the MSSEG-2 challenge results are provided2, these results can be compared to competition
participants. The higher Dice obtained by the participants was 0.507, achieved by the MedICL
team, while the second best Dice score was 0.500, achieved by team LaBRI. Regarding the
average FP volume on lesion-free subjects, the best result (i.e. lower volume) was achieved
by team LYLE with a volume of 0.470mm3, and the second best was 0.498mm3, achieved by
Neuropoly-2 team. To conclude, the proposed strategy making use of synthetic data allows to
slightly outperform the challenge participants concerning the Dice, yet exhibiting an increase
for the FP detections on lesion-free subjects.

III.8.6 Quality of lesion-level uncertainty for new MS lesions

Now that an effective longitudinal segmentation model has been developed with the help of
synthetic data, the lesion uncertainty quantification pipeline can be implemented. However,
one important challenge arises concerning the training of the auxiliary classifiers, which
require a sufficient amount of TPles and FPles in the training dataset to allow for training.
The training split of MSSEG-2 only includes 33 subjects, and inference with the trained DE
model yields to a total of 103 TPles and only 28 FPles instances for the training of the auxiliary
classifiers. This seems inappropriate for learning-based approaches, more particularly the
CNN and GNN approaches which contain more trainable parameters than the Logistic
Regression model. As an attempt to circumvent this limitation, Data Augmentation is used
to generate 10 variants of each of the 33 training images, leading to an extended dataset
of 330 images. The same augmentation strategy used during training of the segmentation
models is employed, comprising contrast, spatial, and artifact augmentations. This allows
the construction of a lesion training dataset containing 983 TPles and 317 FPles.

Another particularity of this longitudinal experiment is that here two MRI sequences are used
as inputs to the segmentation model. Thus, for the Logistic Regression model, intensity-based
radiomics are extracted from both MRIs, for each lesion. This increases the number of
features from 110 to 203. Similarly, the CNN model now receives a total of 4 bounding boxes
for each lesion (one for each MRI visit, one for the entropy map, and one for the lesion mask)
and the GNN model now receives an extra intensity node feature. Besides this change, all
hyper-parameters are kept identical for the auxiliary classifiers. Appendix A.3.3 presents the
top 10 features of the Logistic Regression model trained on the new MS lesions dataset. It
presents a mix of intensity features from both MRI visits, as well as shape and uncertainty
features (average interior entropy).

The qualities of lesion-wise uncertainty estimates for each proposed technique (Size, Mean
Entropy, Logistic Regression, CNN, and GNN) are presented in Table III.8. The correlation
of lesion uncertainty with respect to inter-rater variability is presented in Figure III.8.7.
Finally, Figure III.8.8 reports the densities of lesion uncertainty scores for each method. It

2https://files.inria.fr/empenn/msseg-2/Challenge_Day_MSSEG2_Results_2021.pdf

https://files.inria.fr/empenn/msseg-2/Challenge_Day_MSSEG2_Results_2021.pdf


Voxel metrics Lesion metrics Lesion Counts
Dice (%) ↑ LTPR (%) LFDR (%) TPles FPles FNles

Strategy µ SEM CI µ SEM CI µ SEM CI
∑ ∑ ∑

MSSEG-2 Only 46.8 5.4 [−9.0, 8.8] 33.7 5.5 [−8.8, 9.2] 72.2 4.8 [−8.1, 7.8] 168 106 65
SynAE Only 42.8 4.7 [−7.9, 7.6] 39.6 5.9 [−9.7, 9.8] 82.7 3.0 [−5.1, 4.9] 197 687 36

SynGAN Only 33.0 4.4 [−7.3, 7.3] 44.6 6.2 [−10.2, 10.3] 93.8 1.4 [−2.3, 2.2] 215 2771 18
Pretain on Syn-AE

Finetune on MSSEG-2 49.5 5.4 [−9.2, 8.6] 36.1 5.8 [−9.2, 9.7] 70.5 5.0 [−8.3, 8.0] 185 121 48

Pretain on Syn-GAN
Finetune on MSSEG-2 50.9 5.4 [−9.0, 8.7] 37.2 5.7 [−9.4, 9.3] 70.7 4.9 [−8.1, 7.8] 186 120 47

Table III.7: Performance of the Deep Ensembles trained with and without synthetic longitudinal data for new Multiple Sclerosis
lesions segmentation. LTPR: Lesion True Positive Rate. LFDR: Lesion False Discovery Rate. TPles: True Positives lesions. FPles:
False Positive lesions. FNles: False Negative lesion. The mean (µ), the Standard Error on the Mean (SEM), and 90% confidence
intervals (CI) are estimated using bootstrap.

Method AUROC (%) AUPR (%) Correlation IRV
µ SE CI µ SE CI µ SE CI

Size 70.5 3.0 [−5.0, 4.9] 61.7 4.6 [−7.7, 7.5] -0.42 0.06 [−0.10, 0.11]
Entropy 77.9 2.6 [−4.4, 4.2] 66.4 4.7 [−8.0, 7.6] -0.51 0.06 [−0.09, 0.10]
Logistic 74.1 2.9 [−4.9, 4.7] 61.8 4.8 [−8.0, 7.8] -0.43 0.06 [−0.10, 0.11]
CNN 69.0 3.0 [−5.1, 4.9] 56.2 4.6 [−7.7, 7.7] -0.44 0.06 [−0.10, 0.10]
GNN 73.4 2.8 [−4.8, 4.6] 64.8 4.3 [−7.4, 6.9] -0.48 0.06 [−0.10, 0.10]

Table III.8: Quality of lesion-level uncertainty estimates for new Multiple Sclerosis lesions detection. The top-performing scores
are highlighted in bold for each metric. IRV: Inter-rater variability. The mean (µ), the Standard Error on the Mean (SEM), and
90% confidence intervals (CI) are estimated using bootstrap.
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Figure III.8.7: Correlation of lesion uncertainty with respect to inter-rater variability for
new MS lesions segmentation on the 60 test subjects. SP = Spearman’s Correlation.

appears that the scores derived from auxiliary classifiers fail to outperform the Mean Entropy
baseline which ranks first for each metric (AUROC, AUPR, correlation with IRV). This lack
of performance can be explained by the reduced FPles examples, which Data Augmentation
alone fails to fully alleviate. This highlights one major limitation of the investigated classifier
approaches, which is the need for a sufficient amount of TPles and FPles examples to allow for
proper training. Regarding the correlation with the lesion-level inter-rater variability (Figure
III.8.7), a moderate Spearman’s correlation is observed for each of the compared estimators,
with an advantage for the Mean Entropy, achieving a correlation of −0.512. The second best
in terms of correlation is the GNN model.

As a side note, we can remark that the ground truths annotations of new MS lesions are
noisy, similar to what was observed in the cross-sectional MS datasets (Section III.6.4). This
is visible in Figure III.9.1. For lesions labeled as FPles (red overlays), we can often see a
hypersignal in the second image that was absent from the first image. This could thus
indicate incomplete ground truths, although validation by a radiologist is necessary for these
suspected cases.
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Figure III.8.8: Densities of lesion uncertainty scores for each approach on new MS lesions
segmentation. Blue indicates the density of TPles lesions, while red stands for FPles lesions.
The classifier approaches (Logistic, CNN, and GNN) fail at accurately distinguishing TPles

from FPles, which manifest by overlapping densities.



Figure III.8.9: Receiver operating characteristic (left) and precision-recall curves (right) for lesion uncertainty estimates on new
MS lesions segmentation. In this experiment, the classifier-based approaches (Logistic, CNN, GNN) fail at outperforming the
baseline entropy method.
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III.9 Chapter conclusion

In this chapter, the problem of quantifying uncertainty at the lesion level was investigated,
through three different lesion-oriented applications: cross-sectional and longitudinal MS lesions
detection in FLAIR MRI, and lung nodules detection in CT. The goal was to determine
if sophisticated lesion models based on features, bounding boxes, or graphs, can offer a
better quantification of lesion uncertainty, as compared to a simple aggregation of the voxel
uncertainties (Mean Entropy). To this aim, the ability to distinguish TPles and FPles instances
based on their uncertainty score is monitored.

The results collected from the experiments show that the GNN approach is an efficient
framework to quantify lesion uncertainty, with successful results on the cross-sectional MS
and lung nodules experiments. It is particularly powerful when lesion instances are abundant
and the annotation of lesions is consistent, which is the case on the LIDC-IDRI lung nodules
dataset. In this setting, there is a performance gain as compared to the Mean Entropy.
This translates into a gain in terms of AUROC and AUPR, as well as an increased correlation
with human-level uncertainties (IRV and subtlety). Modeling lesion instances by graph is
very convenient, as it can handle smoothly the complex geometry of these objects. This gain
was also observed in the cross-sectional MS experiment, although it does not translate in all
domain-shift settings (1.5 Tesla dataset). In contrast, the Logistic model performed well
on the MS cross-sectional experiment but had weaker results on lung nodules. Finally, the
CNN model provides overall weaker results in terms of classification-based lesion uncertainty
quantification. This may indicate that using a standard DL classification approach is not
suitable for this task, due to the limited size of the training data which leads to overfitting.

Performing training directly on lesion instances, as done for the Logistic, CNN, and GNN
approaches, seems like an intuitive way to quantify uncertainty at the instance level. However,
it is based on the assumption that a training dataset of lesion instances can be created
with enough examples of TPles and FPles. When it is not the case, as in the longitudinal
MS experiment, the performance of the auxiliary classifiers degrades and they no longer
present a gain in performance compared to the baseline Mean Entropy. Moreover, these
methods seem to be sensitive to label noise, which can occur when a TPles is labeled as FPles

because of errors in the ground truth segmentations, which perturbates their learning. In
these situations, the Mean Entropy that does not require any auxiliary training, offers
a very competitive baseline. It is also paired with low complexity, as the Mean Entropy
baseline only requires a CCA followed by lesion-wise averaging, a very efficient procedure.

Yet, one advantage of the developed classifier-based approaches is that they offer an inter-
pretable uncertainty score, which is the probability that the lesion is a false detection. For
clinicians, this may be easier to grasp than averaged entropy scores. Finally, the evaluation
procedure (AUROC and AUPR scores) focused on the ranking of the uncertainty scores,
which may not fully grasp the usefulness of the lesion-level uncertainty scores in clinical
routine. An open lead would be to monitor the performance of the AI-clinician pair with and
without these lesion-level uncertainty scores to determine their real clinical benefit.



Figure III.9.1: Examples of lesion uncertainty quantification for the different tested approaches, for new MS lesions detection.
For each case, from left to right, we present the first visit, the second visit, and a spider chart indicating the uncertainty scores
estimated by each method. Red overlays indicates that the lesion is a FPles, while blue overlays indicates TPles. Note that in
many cases, lesions labeled as FPles present a clear hyperintensity signal in the second visit that was not present in the first one,
which may indicate errors in the ground truth segmentations.
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IV.1 Motivations

The previous voxel and lesion-level experiments highlighted one major weakness of DL
models, which is the lack of robustness in the presence of domain shifts. More formally,
this occurs when test samples differ significantly from the training samples, in which case
the segmentation quality generally drops, leading to misleading predictions. By default,
DL segmentation models are not equipped with an abstention mechanism, meaning that
when confronted with an image far from their training distribution they will still produce
a segmentation, sometimes with high confidence. An illustration of this phenomenon is
provided in Figure IV.1.1, in which a DL ensemble trained to segment glioblastoma in brain
T1w MRI is applied to a lumbar T1w MRI. The ensemble classified an important part of
the image as brain tumor, even though there is no clear pattern explaining the error in the
input image. More worryingly, the entropy map highlights an area of low voxel uncertainty
(blue areas) within the predicted foreground. This area is highlighted by the yellow arrow
overlayed on the entropy map.

At Pixyl, the daily number of analyses is quickly increasing, with a number approaching 200
analysis per day at the moment of writing of this thesis (see Figure IV.1.2). This means
that a visual inspection of each input image is not humanly feasible before sending the result
of the analysis to the clients. Moreover, due to human mistakes or misunderstanding of
the software specifications, it is frequent that a non-conform image is sent to be analyzed,
such as a FLAIR MRI for a model expecting a T1w MRI. One promise of UQ is to be
able to automatically detect these pathological cases using the model uncertainty. Ideally,
image-level uncertainty scores should be higher for out-of-distribution (OOD) images than
for in-distribution (ID) images, allowing for their detection. This would allow automatically
alerting the user that the sent image does not conform to what the model was trained for,
and warn that results may be suboptimal. In this chapter, we aim to investigate how reliable
uncertainty estimates are for this task of OOD detection. To do so, a complete benchmark
comprising various scenarios of data shifts is proposed, allowing benchmarking of standard
UQ techniques as well as more recent OOD detectors, including reconstructed-based and
latent-based approaches. For the latter, we propose an investigation on the sensitivity of the
approach with respect to the choice of the layer used for feature extraction, and the choice of
the segmentation architecture.
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Lumbar T1w MRI Segmentation Entropy map

0

0.7

Figure IV.1.1: Illustration of an extreme OOD case. A T1w MRI brain tumor segmenta-
tion ensemble is applied to an image far from its training distribution (tumor-free lumbar
MRI). Without an abstention mechanism, it detects a tumor volume of 136mL. The yellow
arrow on the entropy map indicates a region of overconfident error.
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Figure IV.1.2: Evolution of the average daily number of analysis requests at Pixyl, over
the period 2020 to autumn 2023. At the time of writing this thesis, approximately 200
automatic analyses are performed daily.
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IV.2 Additional contributions to the paper "Multi-layer
Aggregation as a Key to Out-of-distribution Detec-
tion"

This chapter is based on the work previously presented in the paper Multi-layer Aggregation
as a Key to Out-of-distribution Detection [155]. Several additions are presented here. First,
a new category of OOD data is included, namely Population shifts, corresponding to
shifts in the imaged population or disease subtype. The uncertainty baseline, which was
the MC dropout model in the original paper, is replaced by the DE approach for a stronger
uncertainty quality. The most recent version of the BraTS dataset is used (BraTS 2023)
instead of BraTS 2021. A reconstruction-based baseline is added as an additional contribution,
namely the Memory-guided Normality for Anomaly Detection (MNAD) model, for which a
3D implementation is proposed. For latent-space OOD detection, the discussion focuses on
the use of the Mahalanobis Distance due to its high performance on several medical image
applications. A deeper dive into the dependence of the layer selection, multi-layer aggregation
function, and incidence of the neural network architecture is presented. Finally, the second
part of the chapter focusing on the link between OOD detection and segmentation quality
assessment is a novel addition.

IV.3 Out-of-distribution detection for medical-image seg-
mentation

IV.3.1 In and out-of-distribution datasets

In this chapter, we aim to explore in detail various domain-shift scenarios, including variations
in the imaged population, disease, modality, and noise level. To allow for many OOD settings,
the choice is made to focus on T1w MRI as the expected modality, which is widely available
in open-source repositories, as compared to T2-weighted FLAIR MRI for example. In terms
of predictive task, the brain tumor segmentation exercise is selected, as it allows the usage of
a large open-source, multi-center imaging dataset (BraTS 2023 [226, 281]), allowing robust
conclusions to be drawn. Thus, in-distribution data will correspond to brain T1w MRI
of adult patients with glioblastoma. In our experimental setting, the tumor delineation has
to be carried from a single T1w MRI sequence. Thus, the task is made easier by focusing
on the binary segmentation of the whole tumor, corresponding to the concatenation of the
3 tumor tissue classes (necrosis, edematous, and enhancing tumor). Additionally, control
samples are added in the experimental protocol, corresponding to a cohort that shares the
same properties as the training samples (same modality, organ, and pathology), but that
were acquired in a different imaging center. An effective model should be able to generalize
to these images and thus, the OOD detection module should identify them as ID samples
to prevent false alarms. In this direction, we propose to use the LUMIERE glioblastoma
dataset [282] as a Control dataset, from which we select 74 pre-operative T1w brain MRIs.
The images were acquired at the University Hospital of Bern, Switzerland.

To develop the segmentation models, we use the same train/validation/test stratification of
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the BraTS 2023 dataset as the one used in the voxel-level experiments (Section II.6.1): 876
subjects for training, 30 for validation, and 227 for testing. The testing split is called Test ID
in the following. Then, 24 OOD datasets, categorized into 5 types of shifts, are investigated.
Each OOD dataset is presented in the following.

IV.3.1.1 Transformation shifts

A very frequent type of shifted data in medical image analysis corresponds to noisy images,
presenting artifacts. However, gathering a sufficient amount of these noisy data points for the
OOD experiments is cumbersome. Fortunately, recent advances in data augmentation allow
the generation of artifact images from clean images with high realism [72]. Interestingly, this
allows total control over the strength of the injected artifacts. To generate Transformation
shifts datasets, the 227 Test ID images are corrupted with artifacts. Several augmentations
are investigated:

• Motion artefact. Acquiring a 3D MRI is a time-consuming process, making it
sensitive to the subject’s motion during the acquisition. Motion artifacts can then
appear, manifesting primarily as the blurring of sharp edges in the image. To simulate
motion artifacts, the k-space of the image can be altered [283]. Specifically, 2 head
movements are emulated, as if the head had moved with a rotation comprised in the
range [−10, 10] degrees and with a translation comprised in the range [−10, 10] mm, in
a random direction.

• Ghost artifacts correspond to a replication of the imaged region along one or several
axes of the image. They mainly originate from periodic motion during the MRI
acquisition, including cardiac or respiratory movements.

• Bias artifact are very frequent MRI artifacts that cause nonuniform illumination
within the acquired image. As a result, some parts of the image can appear darker
(respectively brighter) than the rest of the image. This is due to the inhomogeneity
of the MRI magnetic field that yields variations in low frequencies across the volume.
This can be emulated using a linear combination of polynomial basis functions [284].

• Spike artifacts (also called Herringbone artifact) corresponds to periodic stripes
appearing in the image, due to aberrant points in the k-space, that can be caused by,
among other things, Radio-Frequency pulse abnormalities.

• Gaussian Noise perturbation is an easy and popular approach to degrading the quality
of an image. Here, images are first normalized so that their mean intensity is 0, and the
standard deviation equals to 1. Then, Gaussian noise with a mean of 0 and a standard
deviation of 0.5 is added to the image.

• Downsampling. Due to time constraints, MRIs can be acquired at low resolutions or
with anisotropic voxel sizes. For instance, MRIs are often acquired with a slice thickness
superior to the axial resolution (e.g. a voxel resolution of 1× 1× 3, meaning that the
slice thickness is 3 times superior to the in-plane resolution). This anisotropy can be
simulated by downsampling the image along one or several axes, then interpolating the
image back to its original resolution [285], effectively decreasing the image resolution in
the concerned directions, making the analysis more ambiguous.

• Scaling Perturbation leverages scaling modification of the image to augment or
shrink the appearance of the imaged region. In 50% of cases, the brain doubles in size,
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Figure IV.3.1: Illustration of the different out-of-distribution datasets used in the exper-
iments. Five categories are explored: Transformation, Modality, Population, Diagnostic,
and Far OOD.
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whereas in the rest of cases, the brain shrinks by a factor of half.

Additionally to these standard MRI perturbations that are implemented in the TorchIO library
[246], several additional types of perturbations are implemented for the OOD experiments:

• Gamma alterations correspond to extreme contrast alteration of the image, obtained
by raising the intensity values to the power γ. More specifically, two gamma values are
employed, respectively γ1 = 4.5 and γ2 = −4.5.

• Truncation corresponds to a random cropping of half of the image, in a random
direction. This emulates errors in the file transfer or download, which can thus contain
missing slices.

• Erroneous Registration. Image registration is a widespread preprocessing step of
medical images, aiming at aligning images to a common reference atlas. For instance,
the BraTS images are registered to the SRI24 atlas of healthy adult brains [286].
However, this registration can be erroneous, yielding to deformed brains. To mimic
this process, the registration matrix is corrupted by adding noise to it. More precisely,
the T1w on the Test ID are registered on the SRI24 to obtain a 3D affine registration
matrix A, which corresponds to a 4× 4 matrix:

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
0 0 0 1


where blue indices quantify the rotation, shearing, and scaling applied to the original
image, whereas the red indices stipulate the amount of translation. From this matrix,
an erroneous registration matrix is obtained by applying noise to the matrix elements.
For rotation, shearing and scaling indices, the perturbation nij follows a Gaussian
distribution N (0, 0.1). For translation, the perturbation uij is drawn from an uniform
distribution U(−5, 5). The final perturbed registration matrix is obtained via:

Anoise =


a11 + n11 a12 + n12 a13 + n13 a14 + u14
a21 + n21 a22 + n22 a23 + n23 a24 + u24
a31 + n31 a32 + n32 a33 + n33 a34 + u34

0 0 0 1


Finally, registration is recomputed using Anoise instead of A on both the T1w and
ground truth segmentation to generate the OOD dataset.

• Adversarial Attacks corresponds here to perturbations added to the input image
to hack the functioning of the DL model and yield overconfident mistakes. More
particularly, the Fast Gradient Sign Method (FGSM) [287] is employed, following which
the adversarial noise η is proportional to the gradient of the image x with respect to
the loss used to train the network L(y,x, θ):

η = ϵsign(∆xL(y,x, θ)) (IV.3.1)
x̃ = x+ η (IV.3.2)
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where y is the ground truth, θ the parameters of the trained network, and x̃ the altered
image. Note that the original FGSM implementation, proposed for 2D image classifiers,
expects that the ground truth y is available at the moment of the attack, akin to a
white-box attack. However, for a more realistic setting, it is considered here that the
ground truth is not accessible at the moment of inference. Thus, the prediction of the
model ŷ is used as pseudo ground truth. As a result, the FGSM will apply a destructive
perturbation pushing the prediction far from the one obtained on the unaltered image.

IV.3.1.2 Population shifts

DL models are usually trained with a dataset representative of a single population, for
example, adult patients with glioblastoma in the context of the BraTS Adult Glioblastoma
dataset. This population represents the model’s optimal operating domain, and deviation
from this target population may result in suboptimal results. However, when the model is
deployed, all test samples will likely not exactly match the training population, especially
in industrial software. Thus, several population shift settings are included in the OOD
experiments, relying on the BraTS 2023 auxiliary datasets:

• Pediatric subjects [288] corresponds to MR images of pediatric subjects diagnosed
with glioblastoma. The dataset includes 99 cases of infants older than one month of age.
Although these two distributions (adult population on one side, pediatric population
on the other) appear to be very different, the images in the pediatric database are
pre-processed in the same way as the images in the adult database, including the
registration to the SRI25 healthy adult template [286]. As a result, variations in brain
size are partly eliminated.

• Metastase is a type of brain tumor that originates from cancer cells migrating from
their original organ to the brain [289]. The BraTS 2023 Metastases dataset comprises
238 cases. Brain metastases are generally smaller than glioblastoma, hence their
segmentation represents an important challenge for the segmentation models.

• Meningioma corresponds to brain tumors originating from meninges in the brain,
thus distinguishing themselves from glioblastoma from their location in the brain. For
this setting, a subset of 250 cases from the BraTS 2023 Meningioma dataset [290] is
employed.

• The Sub-Saharan Africa BraTS 2023 dataset [238] dataset comprises 60 subjects,
which mainly differ from the BraTS Adult Glioblastoma distribution from the lower
quality of MRI and the more advanced stage of the disease, due to late diagnosis.

Samples from each dataset are provided in Appendix A.3.1 to highlight the heterogeneity
between the populations.

IV.3.1.3 Modality shifts

Medical images are generally saved in DICOM formats, whose meta-data (headers) may be
incorrectly filled [291]. As a consequence, mismatches between the expected input modality
(here, brain T1w) and the test image modality (e.g CT or T2w) may be undetected. To
represent this scenario, 3 different Modality shift OOD datasets are proposed:
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• The FLAIR and T1ce sequences corresponding to the 227 Test ID subjects are used
to mimic errors in the input MRI sequence. While FLAIR sequences are visually very
different from the expected T1w sequences, the injected T1ce should be more difficult
to distinguish automatically from the standard T1w images.

• To illustrate a more drastic modality error, brain CT scans are employed in place of
brain MRIs. To implement this, 250 subjects from CQ500 dataset [292] are employed,
which contains brain CT scans of patients undergoing intracranial hemorrhage or cranial
fractures.

IV.3.1.4 Diagnostic shifts

DL segmentation models are usually trained to handle a single pathology (e.g. brain tumor,
MS, strokes). Yet, once the model is deployed in the real world, it can be confronted with
images exhibiting unseen anomalies, which can lead to misleading predictions. To test OOD
detection methods on this scenario, T1w brain MRIs that do not present a tumor are used:

• The Multiple Sclerosis dataset corresponds to the 170 T1w MRIs from the WHM
2017 dataset [293].

• The Stroke dataset corresponds to 250 T1w MRIs selected from the ATLAS-2 dataset
[242].

• The EPISURG dataset [294] corresponds to the patients who underwent brain resection
as a treatment for epilepsy. It corresponds to 162 brain T1w MRIs.

• The Healthy dataset corresponds to 250 T1w brain MRIs from young and healthy
adults collected from the IXI dataset [295].

IV.3.1.5 Far Out-of-Distribution

Finally, OOD methods are evaluated in extreme cases that correspond to non-brain MR data.
It should be imperatively detected as OOD data. Two settings are tested:

• The Abdominal dataset corresponds to 80 abdominal T1w MRI from the CHAOS
dataset [296].

• The Lumbar dataset corresponds to 250 images extracted from the Lumbar Spine
MRI dataset [297].

IV.3.2 Data preprocessing

All brain OOD data follow a preprocessing pipeline similar to the one applied to BraTS data.
More specifically, all brain data are skull-stripped using the HD-Bet algorithm [232]. Then,
images are registered to the SRI-24 atlas [286], resulting in an isotropic voxel resolution of
1mm3 and an image size of 240×240×155. For non-brain data (abdominal and lumbar MRI),
a resampling to 1mm3 is used followed by a center cropping to match the target volume size
of 240× 240× 155. This ensures that the images share the same spatial dimensions as the
in-distribution data.
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IV.3.3 OOD detection metric

OOD detection is usually cast as a binary classification problem, where ID samples are labeled
as 0, and OOD samples as 1. The tested OOD detection methods provide a continuous non-
conformity score, where higher values should correspond to higher degrees of non-conformity.
To compute classification metrics, the scores on the OOD data are compared to the scores
obtained on the Test ID dataset, allowing the computation of the areas under the ROC curve
(AUROC) and PR curve (AUPR) for each of the OOD datasets. Additionally, Dice scores
are reported for images where the manual delineation of the whole tumor is available (i.e. all
Transformation and Population shifts, as well as the FLAIR and T1ce images in the Modality
shifts). For the rest of the OOD datasets (Diagnostic shifts, Far OOD, the CT scan dataset),
all segmented voxels will correspond to false positive voxels. Thus, the average false positive
volume per subject is reported in place of the Dice.

IV.3.4 Pitfalls of classic UQ methods for OOD detection

As a first attempt at this benchmark, an OOD score derived from the standard UQ method-
ology is tested. The DE approach proved to be a powerful voxel and lesion-level uncertainty
estimator. Naturally, an immediate idea for OOD detection is to derive the entropy maps
computed by the DE to obtain an image-level OOD score. Following the experimental protocol
used throughout this thesis, we train 5 Dynamic U-Nets using the cross-entropy and Dice++
losses (Equation II.6.3) to build a DE. The particularity is that data augmentation is reduced
here to simple spatial (flip, mirroring) and gamma alterations. Artefact augmentations are
discarded as they are used to simulate OOD data (e.g. Bias, Motion, Ghosting, Spikes).

A simple image-level score derived from the DE is adopted, which consists of the computation
of the average entropy over the entire volume as an image-level OOD score. Another solution
would be to use the average foreground entropy, however, this supposes that the DE will
classify as foreground at least one voxel in the image, which may not be always the case.
Moreover, focusing on the foreground voxels will discard all uncertain voxels that can be
present in the background. Thus, the following image-level OOD score is used for the DE:

OODDE =
1

N

N∑
n=1

Hn (IV.3.3)

where Hn is the entropy value at the n-th voxel of the image.

Figure IV.3.4 presents the segmentation performance for all ID and OOD datasets for
the Dynamic U-Net ensemble. Dice scores are reported for datasets where expert manual
delineations of tumors are available. For the rest, the average FP volume per subject is
reported. In Figures IV.3.2 and IV.3.3, the performance of this score concerning OOD
detection on the different proposed scenarios is illustrated, along with the performance of a
random classifier.

First, the AUROC and AUPR scores on Control samples are similar to the one of a random
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classifier, which indicates that Control and Test ID samples are indistinguishable based on
the uncertainty-based OOD score. This is an expected property of the OOD detector, as
Control samples should indeed be considered as ID samples. Then, it appears that heavy
shifts are well detected, including Adversarial, FLAIR, CT, Lumbar and Abdominal
datasets. Several OOD datasets are moderately well-detected (Motion, Ghost, and Bias).
The remaining OOD samples are poorly detected, with performance being sometimes inferior
to the one of a random classifier (Diagnosis shifts and most Population shifts). Averaging
the OOD detection performance on the 24 OOD datasets yields an average AUROC of 0.66
and an average AUPR of 76, which is not satisfying enough for our OOD detection module.



Figure IV.3.2: Receiver Operating Characteristic curves for the Deep Ensemble (blue) on the OOD benchmark, along with the
performance of a random classifier (orange).



Figure IV.3.3: Precision-recall curves for the Deep Ensemble (blue) on the OOD benchmark, along with the performance of a
random classifier (orange).



152
Chapter IV. Out-of-distribution detection and

quality control for medical image segmentation

These observations are in line with previous work on OOD detection using uncertainty
approaches. For instance, Ulmer et al. [298] showed that ReLU models fail at OOD detection
as the confidence level of the NN extrapolates to out-of-distribution data, which hinders
their usefulness for OOD detection tasks. For real-world use, the OOD detection algorithm
should not only detect extreme OOD cases but also more subtle shifts (such as population
and diagnosis shifts). This first observation thus motivates the evaluation of other OOD
detection solutions.

IV.3.5 An unsupervised anomaly detection baseline for OOD detec-
tion

IV.3.5.1 Concept

A popular paradigm for anomaly detection is to use the reconstruction error of an autoen-
coder (AE) model, trained on ID data only, as an OOD score. The hypothesis is that the
reconstruction error on OOD data will be higher than for ID data, as the model was not
trained to reconstruct OOD data during training. This approach requires building a model
dedicated to OOD detection, contrary to the uncertainty paradigm that uses the outputs of
the segmentation models. Interestingly, it is a fully unsupervised approach as the AE only
needs ID images to be trained, alleviating the need for manual annotations, and does not
require access to OOD data during training.

However, one limitation of this approach is that DL AEs demonstrate a powerful generalization
capability, making them able to reconstruct OOD at test time with high fidelity, thus violating
the basic assumption of reconstruction-based approaches. As an attempt to alleviate this
weakness, several improvements have been proposed to hinder the generalization of AE,
including memory-augmented AEs [299, 300]. In Learning Memory-guided Normality for
Anomaly Detection (MNAD for short), Park et al. [300] propose to build an AE model
that explicitly learns prototypes of the ID images during training. At test time, the model
reconstructs the input using the learned prototypes, thus lessening the generalization capacity
of the DL model. These patterns are stored using a dedicated module, called memory module.

The MNAD architecture has been proposed for video images, thus making use of 2D convolu-
tions. Here, a 3D adaptation is proposed for 3D image processing, illustrated in Figure IV.3.5.
As in standard AE models, the MNAD model is composed of an encoder and a decoder.
Additionally, a memory module is added to the bottleneck of the model. The memory receives
as input the feature maps computed by the encoding part. This corresponds to a 4D array of
shape 64×H×W ×D where H×W ×D is the size of the 3D image. This array contains the
so-called queries of shape 64×1×1×1, each being associated with a voxel in the feature map.
The memory modules then operate two distinct operations, namely reading and updating,
using the M memory items pm ∈ R64 containing the ID data prototypes learned during
training. Reading consists of the computation of matching probabilities wm,k for each memory
item and each query, where high weights indicate that the currently observed query is similar
to the memory item. This is followed by the computation of updated features rk ∈ R64 using
a weighted average (one rk per voxel in the feature map output by the encoder):
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Figure IV.3.4: Segmentation performance of the Dynamic U-Net Ensemble on the
different datasets used in the OOD experiments. The average Dice is presented for datasets
where the ground truth delineation of the whole tumor is available (top row). For the rest
of the datasets, we present the average False Positive volume per subject, in milliliter.
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wm,k =
exp((pm)

Tqk)∑M
m′=1 exp((p

′
m)

Tqk)
(IV.3.4)

and rk =
M∑

m′=1

wk,m′pm′

The queries and updated features are concatenated and serve as inputs to the decoder. Finally,
the memory items are updated using queries as follows:

pm ← ∥pm +
K∑
k=1

v′k,mqk∥2 (IV.3.5)

with v′k,m =
vk,m

maxk v′k,m

and vk,m =
exp((pm)

Tqk)∑K
k′=1 exp((p

′
m)

Tqk)

In practice, the memory items are updated by using a weighted sum of the queries, emphasizing
the queries that are near to the memory item. Training is performed using a 3-terms loss
objective, composed of a reconstruction term (L2 distance) as in standard AE models, as
well as two auxiliary losses, namely the feature compactness and separateness losses. The
compactness loss aims at ensuring that the queries will be close to the nearest memory item.
It is defined as:

Lcompactness =
K∑
k=1

∥qk − pi∥2 (IV.3.6)

with i = argmax
m∈M

wk,m

where i is the index of the nearest memory item for query qk. However, this compactness
term can push queries and memory items to be alike, as the former is used to update the
latter. To prevent this, a separateness term is computed between the queries and pi and pj,
its closest and second closest memory items:

Lseparateness =
K∑
k=1

max(∥qk − pi∥2 − ∥qk − pj∥2 + α, 0) (IV.3.7)

with j = argmax
m∈M,m̸=i

wk,m
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where α corresponds to a margin set to 0.1. The overall loss is finally obtained by computing
the weighted sum of the three terms:

LMNAD = LRec + λ1Lcompactness + λ1Lseparateness (IV.3.8)

where the weighting factors λ1 and λ2 are set to 0.01.

IV.3.5.2 Implementation details and training parameters

The proposed MNAD 3D builds on the original 2D implementation1, and is obtained by
replacing 2D convolutions per their 3D counterparts. The number of memory items M is
kept to its default value of 10. Instance normalization is used in each block. Training is
carried out in a full 3D manner, using a batch size of 1 and the ADAM optimizer [37] with a
learning rate of 2× 10−4. The training dataset corresponds to the T1w of the BraTS 2023
training split. As for the DE, data augmentation is kept to a minimal setting comprising
spatial (rotation and mirroring) as well as gamma alterations. Figure IV.3.6 presents the loss
functions monitored during training for the MNAD model.

IV.3.5.3 Performance of the MNAD model in the OOD benchmark

Figure IV.3.7 displays two examples of reconstruction predicted by the MNAD model, for
an ID and an OOD image. First, the reconstruction error on ID data is low, and the
reconstruction is accurate (although a little bit blurry, a known limitation of AE models).
For the OOD data that exhibit a spike artifact, the MNAD model did not reconstruct the
artifact, resulting in a high reconstruction error in the background of the image. Overall,
the reconstruction error of the OOD sample is much higher than the one obtained on the ID
image (see Figure IV.3.10), allowing for its detection.

The performance of the MNAD model on the OOD benchmark is presented in Figures IV.3.8
and IV.3.9, along with the performance of the DE. In terms of OOD detection (AUROC
and AUPR scores, Figure IV.3.8 and IV.3.9), the MNAD model outperforms the DE on 8
out 10 Transformation Shifts, 2 out of 3 Modality Shifts, 3 out of 4 Diagnosis Shifts.
Detection of Far OOD is perfect, as for the DE. However the performance on Population
Shifts is still disappointing, with a performance close to the one of a Random Classifier.
Finally, it can be noticed a performance above chance is obtained on the Control dataset,
which is an undesired property of the OOD score. It indicates that Control samples are
associated with higher reconstruction errors than Test ID samples, although they present
similar properties (T1w brain MRI of adults with glioblastoma). This may indicate that
the reconstruction-based OOD score is too sensitive, which would result in FP detection at
test time. Averaging the performances on the 24 test datasets yields to an average AUROC
of 0.78 and an average AUPR of 0.76, which although being a net increase compared to
Deep Ensemble, could still be improved. Figure IV.3.10 presents a polar visualization of
reconstruction errors for ID and OOD data points, on each tested setting. The distance of
the point to the center (0, 0) indicates the reconstruction error. For extreme OOD settings
(e.g. Lumbar, Abdominal), the reconstruction error allows to perfectly separate ID (blue)

1https://github.com/cvlab-yonsei/MNAD

https://github.com/cvlab-yonsei/MNAD
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Figure IV.3.5: Architecture of the 3D MNAD model for Unsupervised OOD Detection.
An encoder part (blue) maps the input volume into a set of queries, combined with memory
items to produce the input to the decoder. These memory items correspond to learned
prototypes. The decoder (yellow blocks) then produces a reconstruction of the input.
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Figure IV.3.6: Training loss functions for the MNAD model trained on T1w data of
glioblastoma subjects.
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Figure IV.3.7: Reconstruction examples of the 3D MNAD model. The top row displays
an ID test image, for which the reconstruction is accurate. As a result, the reconstruction
error is low. In contrast, the OOD sample (bottom row) is poorly reconstructed as the
spike artifact is not present in the training dataset. As a result, the reconstruction error
for this image is high.
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and OOD (red) data points. However, this is not the case for more subtle anomalies (e.g.
WMH, Epileptic, Meningioma).



Figure IV.3.8: Receiver Operating Characteristic curves for the MNAD model (green) on the OOD benchmark, along with the
performance of the Deep Ensemble (blue).



Figure IV.3.9: Precision-recall curves for the Deep Ensemble (green) on the OOD benchmark, along with the performance of
the Deep Ensemble (blue).
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Optimal OOD detection performance could not be achieved with either uncertainty-based or
reconstruction-based approaches. This motivates the exploration of a novel efficient OOD
approach that has extensively gained attention lately, in and outside the domain of medical
image processing: latent-space OOD detection. This framework is introduced in the next
section.



Figure IV.3.10: Reconstruction errors for in and out-of-distribution samples, for each tested setting. Blue points represent the
Test ID samples, while red indicates the OOD images. The distance to the center (0, 0) indicates the reconstruction error. For
ease of visualization, the reconstruction errors are clipped to a range of [−2, 2].
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IV.3.6 Latent-space OOD detection

When a neural network processes an image, it generates lower-dimensional representations of
the input due to the consecutive downsampling operations applied in the convolutional layers.
In principle, these representations should capture the essential features of the input data. Two
samples sharing similar latent representations should thus be equivalent in the original image
space. Latent-space OOD detection builds on this principle. The main hypothesis of latent-
space OOD detectors is that ID and OOD samples are more easily distinguishable from the
latent-space of a trained model, rather than in the input image domain (reconstruction-based
model) or output model’s uncertainty (uncertainty-based score).

Latent-space OOD detection is appealing on paper, as it allows the detection of non-conform
inputs using the trained model only. In contrast to reconstruction-based approaches, no
additional model dedicated to OOD detection is needed. Moreover, it can be implemented
on a single model, alleviating the need to train several models as for the Deep Ensemble
approach.

All latent-based OOD detectors rely on the same principle. First, they are plugged on top
of a trained DL model, here the segmentation model that performs the delineation of the
whole tumor from brain T1w MRI. To operate, the latent-based detectors require access to a
dataset of ID samples, which is generally taken as the training datapoints [151, 153, 154].
By making inferences on these ID data points with trained models, a set of feature maps
Fi ∈ RNi×Hi×Wi×Di is collected for one specific convolution layer i (single-layer methods)
or all convolution layers (multi-layer methods). Here, Ni corresponds to the number of
convolutional filters in the i-th layer, and Hi ×Wi × Di to the spatial dimensions of the
feature map. These features can be seen as embeddings of the training images in the latent
space of the trained model. Second, at inference time, a metric is computed to estimate the
distance between the test features and the train features to detect OOD samples. Recently,
this approach to OOD detection has gained a lot of interest, and various ways of computing
this feature-based distance have been proposed. Section II.2.11 presented an overview of
these methods. In this chapter, the focus is on the Mahalanobis Distance which is becoming
the preferred latent-space framework for OOD detection in medical image processing [72, 301,
151, 153, 150].

IV.3.7 The Mahalanobis distance

IV.3.7.1 Mathematical definition

The Mahalanobis Distance (MD) is a popular distance metric in ML allowing to compute the
distance between a distribution and a test point. MD essentially estimates the distance of
the test datapoint xtest to the center of a training distribution given its mean µ ∈ RM and
covariance matrix Σ ∈ RM×M , estimated using D training data points (x1, ..., xD):
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MD(    ) = MD (    ) < MD(    )

Figure IV.3.11: Illustration of the Mahalanobis distance (MD) in a two-dimensional
setting. Points on the same ellipse share identical MDs.

µ =
1

D

D∑
i=1

xi (IV.3.9)

Σ =
1

D

D∑
i=1

(xi − µ)(xi − µ)T (IV.3.10)

MD(xtest;µ,Σ) = (xtest − µ)TΣ−1(xtest − µ) (IV.3.11)

In a simple one-dimensional setting, the MD simplifies to MD = xtest−µ
σ

, which is equivalent
to the number of standard deviations σ the test sample xtest is away from the mean µ. With
two dimensions, MD can be visualized in a plot (Figure IV.3.11) as the distance of the test
point to the center of the training dataset. Points can be placed onto an ellipse whose main
directions are determined by the train samples. Points on the same ellipse share the same
Mahalanobis distances [302].

IV.3.7.2 Mahalanobis distance on latent representations

In our setting case, we seek to compute the MD on latent representations generated by the
segmentation model. Thus, the training distribution corresponds to the distribution of the
latent representations of training images, and the test point is the latent representation of
the test image. For 3D CNNs, the feature maps are 4D tensors (3 spatial dimensions plus a
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dimension equal to the number of convolution filters in the layer). Computing the MD from
these high-dimensional matrixes is cumbersome, as the estimation of the inverse covariance
matrix becomes intractable. Thus, a dimensionality reduction step is generally carried out.
For instance, Gonzalez et al. [72] used consecutive average pooling to reduce the size of the
feature map, until the number of elements falls below a defined threshold, set to 104 elements.
More drastic reductions can be applied. For instance, Woodland et al. [153] used principal
component analysis to further reduce the size of the feature maps. Finally, Calli et al. [150]
and Anthony et al. [151] propose to perform a spatial averaging of the feature map. Given a
4D feature map of shape Fi ∈ RNi×Hi×Wi×Di , the compressed latent representation zi ∈ RNi

is obtained as:

zi =
1

Hi

1

Wi

1

Di

Hi∑
h=1

Si∑
w=1

Di∑
d=1

Fi(h,w, d) (IV.3.12)

IV.3.7.3 Layer selection

One crucial challenge when computing the MD is the choice of the convolution layer to gather
the latent representations. Generally, a single layer is selected to perform the OOD detection,
selected for its sensitivity to non-conform inputs. Gonzalez et al. [301, 72] and Woodland
et al. [153] used the feature map from the bottleneck layer of the U-Net, which is generally
the layer with the higher number of convolutional filters in encoder-decoder architectures.
Other studies focusing on OOD detection in the latent space rather used the penultimate
convolution layer [33, 68]. There is no clear consensus, and several studies have thus focused
on the impact of layer selection for OOD detection in 2D image processing. For natural
2D image classification, Wang et al. [303] argue that the first layers of a DL architecture
essentially focus on low-level features such as texture and shape, while the ultimate layers
extract more complex features. Consequently, they show that latent-based OOD detectors
plugged into early layers in the net are efficient at detecting color or texture-based OOD
samples, while more complex OOD samples are best detected for the last hidden layers.
Similarly, Anthony et al. [151] showed that there is not one single best layer to perform
latent-based OOD detection, but rather the optimal layer depends on the type of abnormality.
Their study focuses on 2D medical image classification. Drawing similar conclusions, Calli et
al. [150] showed that fitting one detector by layer and computing the final OOD score as the
average of the individual layer’s scores was more robust. The authors observed that the MD
scales with the number of features in the layer. Thus, to avoid deep layers dominating the
averaged score, the layer scores are first divided by the number of features in the layer before
being averaged.:

OODmulti =
1

L

L∑
l=1

1

Nl

MDl (IV.3.13)

where Nl and MDl are the number of features in the layer L and the corresponding MD,
respectively. However, these 3 studies are limited to 2D image classification, for which the
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neural architectures are sensitively different from the ones used for 3D segmentation. It is
thus unclear how that translates to our 3D medical image segmentation setting. Moreover,
previous studies on latent-space OOD detection usually use a single neural network in the
experiment [151, 153, 154]. However, it seems that latent-space OOD detection performance
may be dependent on architectural choices within the model.

Several questions thus remain open. First, can latent-space OOD detection based on the MD
outperform the uncertainty and reconstruction baselines? If so, what is the optimal layer
to perform the detection? Can any gain be obtained by aggregating the scores of multiple
layers, as compared to the single-layer baseline? Is the choice of the segmentation model
architecture determining OOD detection performance?

IV.3.8 Multi-layer aggregation of Mahalanobis distances

Intuitively, it seems that each convolution layer extracts different sets of features, and thus
their relevance regarding OOD detection can be heterogeneous. In the Dynamic U-Net used
throughout this thesis, there are 9 blocks: one input block, followed by 3 downsampling blocks,
a bottleneck block, and 4 upsampling blocks (see Figure II.6.2 for the overall architecture).
Two convolution layers are used in each block, resulting in a total of 18 convolutions, excluding
the final one responsible for producing the probabilities. There are thus two ways of computing
the MD. The first approach would consist of the selection of one of these 18 convolutions to
perform the OOD detection. The second approach would be to fit the parameters required
for MD computation (mean and covariance) for each layer separately. Then, at test time,
one MD is computed by layer and a final aggregation step is responsible for computing the
overall image conformity score. Two aggregation techniques have been investigated in the
literature, namely the mean or the max. The mean approach is investigated by Calli et al.
[150], which computes one MD score per layer before computing the average. It essentially
supposes that each layer contributes equally to the overall image score. However, some layers
may be not provide interesting information for OOD detection, for each type of OOD setting.

Alternatively, the max aggregation was investigated by Wang et al. [303] for 2D natural
image classification. Their work is not based on the MD, but rather they fit a one-class SVM
(OCSVM) model for each layer. Briefly, OCSVMs are outlier detection models that can be
fit using only samples from the normal class, here the features of the ID points. At test time,
they thus obtain one abnormality score per layer in their classification network. Finally, the
overall score is taken as the max of the layer’s scores. It is based on the intuition that there
is one optimal layer for each OOD setting. It keeps the highest non-conformity score among
all the layers and drops out the contribution of the others.

To evaluate how these different techniques perform on our proposed 3D MRI segmentation
benchmark, the MD is computed in different ways. The first one is the standard single-layer
setting, where the MD is computed for each of the convolution layers, independently. It will
allow to determine if there exists an optimal layer to perform OOD detection. Then, as
illustrated in Figure IV.3.12, the Mean and Max of the layer’s scores are also computed. To
do so, the layer scores are first scaled by the number of features in the layer before computing
the mean or the max. This will allow us to determine if multi-layer aggregation can improve
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Figure IV.3.12: Illustration of mean and max aggregation for multi-layer OOD detectors,
yielding to different grading of the test case.

OOD detection.

Finally, one last important design choice, generally underlooked in latent-space OOD detection
studies, is the choice of the neural network architecture. To determine the incidence of this
choice, the experiment is replicated for 4 popular medical image segmentation backbones:
the Dynamic U-Net, the Attention U-Net [16], the V-Net [15] and the Residual U-Net. These
architectures notably differ by the number of convolution layers (18 for Dynamic U-Net, 14
for Attention U-Net, 19 for V-Net, 23 for Residual UNet) as well as the number of parameters
(16.5 million for Dynamic U-Net, 16.7 million for Attention U-Net, 45.6 million for V-Net and
18 million for Residual U-Net). For each architecture, 5 models are individually trained, with
the same hyper-parameters, to compose the ensemble. To fit the MD detectors, inferences are
carried out on the training images once training ends, to gather the latent representations of
ID data points.

IV.3.9 Aggregated Mahalanobis distances for Deep Ensembles

The experimental setting used throughout this thesis relies on the use of Deep Ensemble
for both its positive impact on predictive performance, as well as the state-of-the-art voxel
uncertainties it can provide. However, all the presented latent-based detectors have been
initially proposed for single models. A straightforward approach is used here, following which
an OOD score is computed for each model in the ensemble. Then, the final ensemble’s score
is taken as the average of the model’s scores.
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IV.3.10 Results

Tables IV.1 and IV.2 present the performance (AUROC and AUPR) of each MD detector, on
each OOD setting. The same tables for the Attention U-Net ensemble, the V-Net ensemble
and the Residual U-Net are provided in Appendix A4. Figure IV.3.13 shows the OOD
detection metrics (AUROC and AUPR) averaged over the 24 test datasets depending on
the convolution layer selected for the MD computation, for each ensemble (Dynamic U-Net,
Attention U-Net, V-Net, and Residual U-Net).

First, the latent-space OOD detection based on the MD offers excellent overall OOD detection
performance. The highest quality is obtained for the MD computed at the 18th convolution
of the Dynamic U-Net model, with an average AUROC of 0.91 and an average AUPR of 86.
It represents an impressive gain over the uncertainty and reconstruction baselines. Overall,
MD detectors provide excellent detection capabilities on Transformation shifts, Modality,
and Far OODs. For these settings, the OOD is global, meaning that the entire image is OOD.
It can thus be expected that latent representations of these OOD samples are significantly
different from the ones of ID samples. The performance on Population and Diagnosis shifts
is largely improved as compared to the Deep Ensemble and MNAD, although not reaching
the same level of performance as the other types of OOD. For Diagnosis and Population,
the OOD is actually more subtle and does not cover the entire scan. More precisely, the OOD
area is restricted to a limited region of the input MRI (generally, the lesion area). The rest
of the brain conforms to what has been observed during training. Thus, it can be expected
that the latent representations of these images are closer to the ones of ID images, making
them less easily detectable. This can also be a side-effect of the dimensionality reduction
that we operate on the feature maps before calculating the MD, which may discard subtle
anomalies in intermediate activations.

Second, Figure IV.3.13 highlights the importance of the layer choice on the robustness of the
OOD detection. Indeed, the performance is heterogeneous for each backbone, based on the
convolutional layer used to compute the MD. For each backbone, the MD computed at the
first layer provides poor results, which can be explained by the fact that the first convolution
extracts very generic features that may not be useful for outlier detection. Bottleneck layers
(in yellow) do not exhibit the highest OOD detection quality, although they are popular
choices for latent representation extraction [301, 153]. The highest performance is obtained
at the penultimate convolutional layer in the decoder (18-th layer) for the Dynamic U-Net.
This last layer is particularly efficient in detecting Population and Diagnosis shifts. However,
for the other architectures, the optimal detection is not reached at the penultimate layer.
For Attention U-Net, the top performance is reached by the fifth convolution of the encoder,
while for V-Net it’s the 16th convolution, located in the decoder. This highlights the fact
that layer selection is crucial to the final OOD detection quality, and the optimal layer is not
consistent across segmentation backbones.

To prevent having to determine the optimal layer for each model, the multi-layer aggregations
(Mean and Max) are promising. Indeed, it can be noticed that these approaches obtain
high AUROC and AUPR scores for each backbone, although they are outperformed by
some single-layer scores. There is no clear advantage for one or the other, as the Max
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aggregation outperforms the Mean for the Dynamic U-Net, Residual U-Net, and Attention
U-Net ensembles, while the opposite is observed for the V-Net ensemble. To conclude,
multi-layer aggregation can be used to alleviate the cumbersome layer selection problem as it
performs consistently well and outperforms most of the single-layer scores.

Regarding the backbones, our experiments indicate that architecture choices have an impact
on latent-based OOD detection performance. More precisely, the highest OOD detection
performance is obtained by the Dynamic U-Net, while lower AUROC and AUPR values are
obtained for the V-Net, Attention U-Net, and Residual U-Net. Moreover, the Dynamic U-Net
exhibits a slightly superior segmentation performance as compared to the other backbones
(Tables A.4.1, A.4.2, and A.4.3). This may indicate a link between the performance on the
downstream task (here, brain tumor segmentation) and the performance of outlier detection.

Lastly, we analyze in more detail the OOD scores computed by the MD Max aggregation
approach for the Dynamic U-Net ensemble. It achieves top-quality performance on the
OOD benchmark, with an AUROC above 90 for 14 out of the 24 OOD datasets. Figure
IV.3.16 presents a visual representation of the OOD scores computed with this approach. In
the figure, the distance to the center (0, 0) is representative of the Mahalanobis Distance,
with higher values indicating higher degrees of non-conformity. In most settings, the OOD
samples (red) are clearly separated from the ID samples (blue) based on their MD scores,
which is particularly visible for the Spikes, Bias, or Gaussian Noise datasets. Finally,
we also present the ROC and PR curves associated with this approach in Figures IV.3.14
and IV.3.15, along with the performance of the Deep Ensemble baseline, which exhibits the
drastic improvement achieved with the proposed latent-space detector.
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Attention UNetDynamic UNet

Residual UNetVNet

Figure IV.3.13: Average OOD detection performance for Mahalanobis Distance detectors
depending on the selected convolutional layer, for each architecture. The performance of
the multi-layer aggregation (Mean and Max) is indicated with dashed lines.
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Deep Ensemble 52 84 98 73 73 67 64 88 62 100 54 82 100 75 100 3 20 9 23 82 39 47 48 100 100 66
MNAD 78 71 99 98 100 100 29 99 85 87 65 98 88 85 99 53 76 71 56 61 47 43 70 100 100 78

MD Conv 1 32 52 71 98 88 76 44 97 99 54 66 100 69 64 60 33 53 76 45 58 60 40 60 100 100 68
MD Conv 2 49 94 96 100 100 100 94 97 99 99 76 99 94 93 100 45 58 85 59 85 63 74 63 100 100 85
MD Conv 3 49 93 99 100 100 100 91 99 100 96 75 100 93 95 99 55 71 94 58 88 64 77 68 100 100 87
MD Conv 4 54 96 100 100 100 100 91 100 100 98 83 100 95 96 99 50 64 86 80 91 68 78 73 100 100 88
MD Conv 5 60 96 100 100 100 100 93 100 100 99 80 100 97 98 98 48 65 85 84 93 67 78 79 100 100 89
MD Conv 6 56 96 100 100 100 100 91 100 100 99 80 100 99 98 99 40 65 86 76 93 66 76 82 100 100 88
MD Conv 7 62 96 100 100 100 100 86 100 100 98 74 100 99 96 99 37 54 68 61 88 66 79 86 100 100 86
MD Conv 8 59 95 100 100 100 100 86 100 100 98 81 100 99 96 100 52 68 77 67 90 67 78 85 100 100 88
MD Conv 9 42 92 100 100 99 98 70 100 100 88 83 100 100 93 100 30 55 67 52 82 64 64 86 100 100 83

MD Conv 10 49 91 100 100 100 99 68 100 100 87 82 100 100 92 100 33 47 60 54 91 68 71 84 100 100 83
MD Conv 11 46 92 100 100 98 97 67 100 100 91 81 100 100 92 100 28 46 56 58 85 65 65 86 100 100 82
MD Conv 12 44 85 100 98 97 92 59 100 100 84 80 100 100 91 100 32 41 55 49 83 64 63 85 100 100 80
MD Conv 13 57 96 100 100 100 99 84 100 100 99 76 100 100 96 99 50 60 73 76 91 70 78 92 100 100 88
MD Conv 14 57 91 100 100 98 98 71 100 100 95 72 100 100 97 100 42 57 71 53 87 70 70 87 100 100 85
MD Conv 15 54 95 100 100 100 100 88 100 99 98 80 100 99 97 99 67 74 88 84 92 73 78 84 100 100 90
MD Conv 16 48 94 100 100 99 100 87 100 99 97 70 100 99 97 99 75 77 89 83 90 74 76 83 100 100 89
MD Conv 17 49 91 99 100 100 100 90 99 100 92 68 100 96 96 99 92 87 96 86 90 77 81 79 100 100 91
MD Conv 18 46 91 100 100 100 99 81 99 99 95 65 100 99 94 99 96 91 97 93 86 79 80 85 100 100 91

MD Mean 52 95 100 100 100 100 90 100 100 98 79 100 99 97 99 62 71 90 78 92 74 81 84 100 100 90
MD Max 51 94 100 100 100 100 87 100 100 99 77 100 98 97 99 88 82 94 85 91 79 83 87 100 100 92

Table IV.1: OOD detection performance (AUROC, expressed in percentage) for each OOD detector and dataset, for the Dynamic
U-Net ensemble. The highest score for each dataset is indicated in bold. MD: Mahalanobis Distance.
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Deep Ensemble 25 83 97 72 74 65 62 88 56 100 54 84 100 75 100 33 38 26 28 58 47 50 35 100 100 66
MNAD 56 71 99 99 100 100 39 99 89 80 70 98 90 86 99 53 75 60 48 31 53 49 56 100 100 76

MD Conv 1 18 50 65 93 89 72 45 97 98 53 66 99 64 59 61 41 52 58 38 27 59 46 47 100 100 64
MD Conv 2 24 88 91 100 100 100 86 97 98 98 72 98 92 93 99 48 59 76 51 53 59 71 38 100 100 80
MD Conv 3 23 87 98 99 100 100 84 98 100 94 72 100 89 93 97 51 71 89 51 57 62 71 44 100 100 81
MD Conv 4 26 92 98 99 100 100 81 99 100 96 78 100 93 95 98 49 61 71 62 61 63 71 50 100 100 82
MD Conv 5 30 94 98 99 100 99 85 100 99 98 77 100 94 96 97 46 63 70 66 69 65 71 57 100 100 83
MD Conv 6 29 93 98 99 100 99 81 99 99 98 77 100 97 96 98 44 64 73 60 69 64 69 62 100 100 83
MD Conv 7 33 93 98 99 100 98 76 100 99 97 72 100 97 95 98 43 55 54 45 62 64 76 67 100 100 81
MD Conv 8 30 92 98 99 100 99 76 100 100 96 79 100 99 94 98 50 62 59 49 69 65 73 69 100 100 82
MD Conv 9 21 91 100 100 99 98 64 100 100 83 82 100 100 92 100 40 55 53 41 58 64 62 74 100 100 79

MD Conv 10 25 92 100 100 100 99 62 100 100 81 84 100 100 92 100 41 49 46 41 74 68 69 72 100 100 80
MD Conv 11 23 92 100 100 99 96 61 100 100 87 81 100 100 91 100 39 50 46 43 63 64 60 75 100 100 79
MD Conv 12 21 87 100 98 98 91 57 100 100 82 81 100 100 91 100 40 46 44 38 63 64 59 74 100 100 77
MD Conv 13 29 94 98 99 99 98 74 100 99 97 74 100 99 95 98 49 59 58 59 66 68 73 79 100 100 83
MD Conv 14 27 89 98 100 98 96 63 99 100 92 70 100 99 96 98 45 57 56 43 62 66 65 73 100 100 80
MD Conv 15 27 92 98 99 100 99 79 100 99 95 76 100 97 96 98 59 68 74 67 69 67 70 64 100 100 84
MD Conv 16 24 92 98 99 99 98 79 99 98 95 68 99 98 96 98 65 73 76 67 63 69 69 63 100 100 83
MD Conv 17 24 84 96 99 100 100 81 98 100 86 66 100 94 94 98 81 81 88 72 60 73 74 55 100 100 84
MD Conv 18 22 90 99 100 100 99 73 98 99 92 66 100 98 92 98 89 88 92 85 56 78 77 71 100 100 86

MD Mean 25 92 98 99 100 100 81 99 100 97 76 100 97 96 98 55 68 79 62 67 69 73 65 100 100 84
MD Max 25 90 98 99 100 100 77 99 100 97 74 100 97 95 98 76 76 84 70 64 73 74 68 100 100 85

Table IV.2: OOD detection performance (AUPR, expressed in percentage) for each OOD detector and dataset, for the Dynamic
U-Net ensemble. The highest score for each dataset is indicated in bold. MD: Mahalanobis Distance.



Figure IV.3.14: Receiver Operating Characteristic curves for the Mahalanobis Distance detector with Max aggregation (magenta)
on the OOD benchmark, along with the performance of the Deep Ensemble (blue).



Figure IV.3.15: Precision-recall curves for the Mahalanobis Distance detector with Max aggregation (magenta) on the OOD
benchmark, along with the performance of the Deep Ensemble (blue).



Figure IV.3.16: Mahalanobis distances for in and out-of-distribution samples, for each tested setting. Blue points represent the
Test ID samples, while red indicates the OOD images. The distance to the center (0, 0) indicates the Mahalanobis distance.
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IV.4 From out-of-distribution detection to quality control

In the previous section, OOD detection has been defined as the task of detecting input
samples that are far from the training distribution, for which the functioning of the model
is expected to be degraded. In this setting, an image is flagged as OOD if it presents a
characteristic not represented in the training dataset (e.g. unseen pathology or MRI artifact).
However, this definition does not take into account the performance of the model on the
OOD data points. For example, in the previous section, the Deep Ensemble is able to provide
satisfying segmentations on several OOD datasets, including Downsample, Motion, SSA,
and even T1ce (see Figure IV.3.4). Yet these samples are classified as OOD with high
accuracy. This is because the latent space methods do not explicitly consider the output of
the model, but rather the representation of the input in the latent space. As an effect, an
image can be flagged as OOD because of an unusual pattern, despite being segmented with
high accuracy. To get a better view of this phenomenon, we investigate in Figure IV.4.1 the
relationship between MD scores and segmentation adequacy (Dice scores) for each test image
where the ground truth of brain tumors is available, representing 3825 MRI volumes. The
scatter plot highlights a lack of clear correlation between both quantities.

It could be argued that if the input image includes an artifact that does not prevent the
proper functioning of the DL model, it should not be labeled as an OOD sample to prevent
false alarms. The concept of defining OOD images with respect to the performance of the
downstream task (here, segmentation) was first proposed in Shaw et al. [43], where authors
estimate the conformity of an MRI image with respect to the model’s ability to provide the
correct output. The same redefinition is explored in three recent studies focusing on OOD
detection in medical image segmentation [304, 153, 305]. Instead of defining OOD inputs as
images presenting artifacts or missing attributes, they cast OOD images as cases for which the
associated segmentation is poor, thus allowing them to take into account the generalization
power of the network. On the other hand, it will also be considered as OOD an ID image
poorly segmented by the model. Moreover, this definition is task and model-dependent. For
two models A and B, an image can be OOD for model A but not for model B, based on the
chosen performance threshold.

Thus, it appears that there are two possible definitions of OOD samples, one considering the
conformity of the input of the model using user-defined rules (e.g. image resolution, presence
of artifacts), and one considering the associated output prediction provided by the model. So
far, the presented methods have been introduced for input QC, and thus are not optimal
for assessing the quality of the segmentation. More generally, QC methods proposed in the
literature either focused on the conformity of the input image, or alternatively on the quality
of the output prediction, and the connection between these two levels of QC is overlooked. In
the second part of this chapter, we will investigate how QC decision-making can be enriched
by considering simultaneously both input and output-level quality.

IV.4.1 Unified input-output QC for medical image segmentation

In this section, we aim to investigate the relationship between input and output QC in the
context of medical image segmentation. The input score will be the multi-layer MD with
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Figure IV.4.1: Scatter plot of Mahalanobis distances (with max multi-layer aggregation)
with respect to Dice scores, for the Dynamic U-Net Ensemble. It exhibits a lack of
correlation between the two metrics, with a fraction of images being well segmented (high
Dice scores) while being attributed with high Mahalanobis distances.

max aggregation, which previously proved to be a performant input-level OOD detector. It
remains to decide on an estimator to perform output QC. As presented in the literature
review, the most preferred approach is to consider the variability among a set of plausible
masks, for each input sample. These samples are typically generated using standard UQ
methodologies, such as MC dropout, TTA, or DE. The selected pipeline is illustrated in
Figure IV.4.2. First, the majority vote MV is obtained from the 5 segmentation masks
generated by the Ensemble. Then, the Dice scores between each individual segmentation
mask and the majority vote are computed. The final output QC score, called Ensemble
Prediction Agreement (EPA) [306] corresponds to:

EPA =
1

K

K∑
i=1

Dice(Sk,MV ) (IV.4.1)

The intuition is that a high-quality segmentation should be associated with a high level of
agreement between the individual ensemble members, leading to a high EPA. In contrast, if
the segmentation deviates significantly from one model to the other, the prediction is likely
uncertain, and its overall quality should be rather low. In practice, to have a score that grows
as the non-conformity increases, we use 1− EPA as the output QC score.

Now that the DE is equipped with an input-level QC score (MD with max aggregation)
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Figure IV.4.2: Illustration of the proxy output QC score derived from the Deep Ensemble.
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and an output-level QC score (1 - EPA), each pair of test image and segmentation can
be positioned in the QC prediction space. More specifically, 4 cases are possible using the
proposed protocol (see Figure IV.4.3), listed below in increasing priority:

• Region A - Input QC and Output QC : optimum operating regime; corre-
sponding to the ideal setting where the image is conform and the output prediction is
estimated as performing. It is expected that this subgroup will contain the top-quality
predictions of the model.

• Region B - Input QC and Output QC : Robust operating regime; corre-
sponding to images that may contain an anomaly (artifact), but for which the output
QC is successful. This could represent images that the model is able to process even
though their quality is not perfect.

• Region C - Input QC and Output QC : Dysfunctional regime, corresponding
to images that have passed the input QC, but for which the disagreement in the
ensemble is high (low EPA). This could represent images that are conform in terms of
quality but are still poorly segmented.

• Region D - Input QC and Output QC : Divergent regime, corresponding to
the worst-case scenario where both input and output QC failed. This could represent
out-of-distribution images for which the prediction is highly sub-optimal. This subgroup
should be reviewed with top priority.

Building this confusion matrix requires setting two thresholds on the input and output quality
scores, respectively. To determine them automatically, the validation dataset split can be
used. More specifically, the scores (MD and 1-EPA) are computed for each validation image.
The thresholds are then taken as the 95-th percentiles on the validation images. It signifies
that if the MD is superior to the 95-th percentile of validation MDs, the input QC will
be considered as failed. Similarly, if the test image has a (1-EPA) score above the 95-th
percentile, the output QC score is considered as failed. Selecting the 95-th percentile relies
on the underlying assumption that abnormal occurrences (poor quality image or poor quality
segmentation) are rare, and thus most of the data points should pass both input and output
QCs [304].

IV.4.2 Prediction space stratification for cross-sectional MS lesions
segmentation

To test the relevance of the proposed prediction space stratification, we employ the ensemble
of Dynamic U-Nets trained to perform MS lesions segmentation. This ensemble has been
previously employed in the voxel-level and lesion-level experiments (Chapter II and III). In
this setting, 3 test datasets of MS subjects are available (Test ID, MSLUB, and 1.5 Tesla
datasets, introduced in Table II.1), and previous experiments showed that the segmentation
performance decreased on the MSLUB and 1.5 Tesl datasets due to the generalization gap
(Tables II.5, III.3). The protocol is as follows: input and output-level QC scores (MD
and 1-EPA, respectively) are computed for each of the 103 test images with non-empty
ground truth segmentations, and predictions are assigned to one of the 4 regions using the
thresholds optimized on validation images. Then, the segmentation performance in each
region is assessed using 3 segmentation metrics: the Dice score, the Surface Dice, and the 95%
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Figure IV.4.3: Proposed stratification of the prediction space using input and output
QC estimates.

Haussdorf distance. For this application, a slight modification is needed for the computation
of the MD score (input-level QC). Indeed, the MS models are patch-based, meaning that
they process the input 3D MRI by first dividing the volume into patches of a fixed size
of 128× 128× 128. As a result, for a single input MRI, several latent representations are
extracted (one per patch). As in Gonzalez et al. [72], the final volume score is obtained by
averaging the Mahalanobis distances of the patches.

The resulting stratification of the prediction space is presented in Figure IV.4.4. Four
colormaps are proposed, 3 indicating the value of the segmentation metric (Dice, Surface
Dice, and Haussdorf) as well as a colormap indicating the dataset source of the test point
(Test ID, MSLUB or 1.5 Tesla datasets). The input and output QC thresholds fit on the
validation dataset are represented by black dashed lines. Figure IV.4.5 presents boxplots of
segmentation metrics in each region (A: optimum, B: robust, C: dysfunctional, D: divergent),
and corresponding averaged metrics are presented in Table IV.3. First, the MDs are moderated
for each test image, with a max value around 0.30. For comparison, the Far OOD images
in the OOD benchmark received MD of around 2 (see Figure IV.3.16). Then, it appears
that region A, corresponding to the expected optimum operating regime, includes most data
points (roughly 50% of test samples). This region contains the top-quality predictions, for
each metric. It appears in Figure IV.4.4 that most Test ID data points in practice fall within
this region. Then region B (robust operating regime) contains approximately 25% of the test
samples, with a slight decrease in segmentation performance. Region C (dysfunctional regime)
is the less populated bin with about 5% of test points. Here, the performance is inferior
to the one obtained in regions A and B. Finally, region D, corresponding to the divergent
regime, regroups the remaining data points. Performance in this bin is weak (average Dice
around 0.50). It can be seen in Figure IV.4.4 that this region mostly regroups images from
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Region Proportion Dice ↑ Surface Dice ↑ 95% Haussdorf ↓
A 53/103 (51.46%) 0.791± 0.086 0.960± 0.039 4.718± 4.763
B 27/103 (26.21%) 0.754± 0.090 0.930± 0.069 6.722± 5.710
C 6/103 (5.83%) 0.732± 0.105 0.902± 0.070 10.073± 5.091
D 17/103 (16.50%) 0.541± 0.163 0.766± 0.149 21.545± 12.552

Table IV.3: Average segmentation performance in each region of the prediction space for
the cross-sectional MS lesions Deep Ensemble. A: optimum operating regime. B: robust
operating regime. C: Dysfunctional regime. D: Divergent regime.

the MSLUB and 1.5 test data points. These images are both distant from the training
distribution (high MDs) and the intra-ensemble variability is high (low EPA).

Thus, it appears that empirically the proposed stratification of the prediction space respects
the expected behavior, with top-quality predictions in region A (optimum), and progressively
decreasing quality of segmentation in regions B (robust), C (dysfunctional), and D (divergent).
Figure IV.4.6 presents 3 examples of test data points in regimes A, B, and D, respectively.
They correspond to the points P1, P2, and P3 indicated in the lower right plot in Figure
IV.4.4. P1 (optimum operating regime) corresponds to a data point with low input and
output non-conformity scores, and it is indeed associated with a high-quality prediction (high
Dice, Surface Dice, and low 95% HD). P2 (robust operating regime) is the datapoint with the
higher MD over the test samples (MD = 0.28). Inspection of the FLAIR indeed reveals the
presence of an important motion artifact, particularly visible in the ventricles. However, it
does not prevent the correct functioning of the model (acceptable segmentation performance).
Finally, P3 (divergent regime) is the point with the worst output QC score (1−EPA = 0.34).
The associated segmentation is poor, with a Dice score of only 0.23. The FLAIR is also noisy,
explaining the high estimated MD.

IV.4.3 Prediction space stratification for glioblastoma segmentation

The second experiment relies on the ensemble of Dynamic U-Nets used for glioblastoma
segmentation in the previous voxel-level experiments (Section II.6). As a reminder, this
ensemble takes as input 4 brain MRI sequences (FLAIR, T2, T1, T1 with contrast agent) and
outputs 3 tumor classes: necrosis, edematous, and GD-enhancing tumor. A total of 5 test
datasets are used here: the in-distribution test split (Test ID, N=227), and 4 domain-shift
datasets originating from auxiliary BraTS 2023 dataset: Sub-Saharan Africa [238](N=60),
Meningioma [290](a subset of N=250 cases is used), Metastases [289] (N=238), and Pediatric
[288] (N=99). All these datasets are challenging to segment because of shifts in the appearance
of the tumor and/or the tumor size and location.

The protocol is similar: input and output QC scores are computed on the validation images
to determine decision thresholds for the input and output QC scores, set to be the 95-th
percentiles. It allows to associate each test image with a regime (A, B, C, or D). The
resulting stratification of the prediction space is presented in Figure IV.4.7. In some cases,
the Haussdorf Distance was undefined because of an empty prediction mask. To allow the



182
Chapter IV. Out-of-distribution detection and

quality control for medical image segmentation

Figure IV.4.4: Prediction space stratification for the cross-sectional MS ensemble. The
y-axis is plotted on a logarithmic scale. P1, P2, and P3 indicate cases that are further
detailed in Figure IV.4.6.
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Figure IV.4.5: Box-plots of segmentation metrics (Dice, Surface Dice, 95% Haussdorf
Distance) for each region of the prediction space, for cross-sectional MS lesions segmenta-
tion.

Regime Proportion Dice ↑ Surface Dice ↑ 95% Haussdorf ↓
A 264/874 (30.21%) 0.828± 0.141 0.886± 0.152 8.410± 14.49
B 400/874 (45.77%) 0.707± 0.206 0.732± 0.226 12.851± 15.544
C 20/874 (2.29%) 0.678± 0.196 0.575± 0.151 16.536± 22.189
D 190/874 (21.74%) 0.334± 0.355 0.259± 0.264 24.552± 28.279

Table IV.4: Average segmentation performance in each region of the prediction space
for the glioblastoma Deep Ensemble. A: optimum operating regime. B: robust operating
regime. C: Dysfunctional regime. D: Divergent regime.

visualization of these cases, the distances were mapped to the maximum Haussdorf distance
obtained on the test images (HD = 50). Figure IV.4.8 presents boxplots of segmentation
metrics in each region (A, B, C, D), and corresponding averaged metrics are presented
in Table IV.4. Figure IV.4.9 presents 2 examples of test data points in regime B and D,
respectively.

As for the cross-sectional MS experiment, the 4-regimes stratification presents a gradually
decreasing level of quality. Regime A (optimum regime, 30.21% of samples) mostly contains
images from the in-distribution test split, with top-quality segmentations. Regime D (divergent
regime, 21.74%) interestingly regroups the majority of extremely poor predictions (Dice and
Surface Dice of 0, represented as black dots). Regimes B (robust regime) and C (dysfunctional)
present intermediate performance levels. Note that in this experiment, only 227 images out
of 874 are in-distribution samples, which explains why regime A only contains roughly 30%
of the data points. Regarding the two examples provided in Figure IV.4.9, sample P1 is
representative of the robust functioning regime. A massive artifact may be responsible for the
high associated MD, however the artifact does not intersect the tumor. Thus, the ensemble
provides a high-quality segmentation. Example P2 is a sample from the SSA dataset with a
low image quality. The tumor is small and located in the infratentorial region of the brain.
The ensemble predicts an empty tumor mask for this subject, thus associated with a null
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P2
Robust Operating Regime

Dice = 0.77 / Surface Dice = 0.97 / 95% HD = 2.23
MD = 0.28 / 1-EPA = 0.09

P3 
Divergent Regime

Dice = 0.23 / Surface Dice = 0.58 / 95% HD = 19.21
MD = 0.20 / 1-EPA = 0.34

P1
Optimum Operating Regime

Dice = 0.88 / Surface Dice = 0.99 / 95% HD = 1.41
MD = 0.09 / 1-EPA = 0.07

FLAIR Prediction Ground truth

Figure IV.4.6: Examples of data points in Regime A, B, and D for the cross-sectional
MS ensemble. P1 is a high-quality FLAIR MRI, associated with low input and output
QC scores. It is also nearly perfectly segmented. On the contrary, P2 has a lower quality,
particularly visible in the ventricles. Yet, the associated segmentation is valid which
explains its location in the robust operating regime. Finally, P3 is a sample from the
MSLUB dataset, with a lower quality and a poor prediction.
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Figure IV.4.7: Prediction space stratification for the glioblastoma ensemble. Both the
x-axis and y-axis are represented on logarithmic scales. P1 and P2 correspond to cases
that are further detailed in Figure IV.4.9.
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Figure IV.4.8: Box-plots of segmentation metrics (Dice, Surface Dice, 95% Haussdorf
Distance) for each region of the prediction space, for glioblastoma segmentation.

P1
Robust Operating Regime

Dice = 0.91 / Surface Dice = 0.93 / 95% HD = 9.25
MD = 0.56 / 1-EPA = 0.04

FLAIR T1 Prediction Ground truth

P2
Divergent Regime

Dice = 0.00 / Surface Dice = 0.00 / 95% HD is undefined
MD = 0.23 / 1-EPA = 1.00

Figure IV.4.9: Examples of data points in Regime B and D for the glioblastoma ensemble.
The first subject (P1) presents a heavy artifact visible in both FLAIR and T1w sequences,
indicated by orange arrows. However, it does not prevent the proper functioning of the
image, being associated with high metrics. The second example (P2) is a subject from the
SSA dataset, with a missed tumor lesion. It is associated with a high output QC score.



IV.4. From out-of-distribution detection to quality control 187

Dice and Surface Dice, as well as an undefined Haussdorf distance. It is also linked with the
highest possible output QC score (1− EPA = 0).

IV.4.4 Prediction space stratification for polyp segmentation in 2D
colonoscopy

Until now, all experiments have focused on 3D medical image processing. To verify that the
results hold for 2D applications, a novel task is introduced here: polyp segmentation in 2D
colonoscopy images. This also allows us to evaluate the approach on large-scale datasets, as
2D images are more widely available than their 3D counterparts.

IV.4.4.1 Pathology description and datasets

Polyps correspond to abnormal growths of a mucous membrane and are most often located
in the colon and rectum. The majority of polyps are benign, but they can change over time
and become cancerous, leading to colorectal cancer. Thus, the early detection and staging
of polyps is a key to early cancer treatment. Polyp detection is generally carried out using
colonoscopy, a technique following which a flexible tube called a colonoscope is inserted into
the rectum and advanced through the entire colon, providing 2D images of the large intestine.
Automated tools are needed to assist clinicians in detecting polyps during colonoscopy, as
they may overlook polyps due to fatigue or lack of experience [307].

To explore this task, a training dataset is created using data collected from different open
data hubs: Kvasir [308] (1000 images), ETIS-LaribPolyp [309] (196 images), CVC-ColonDB
[310] (380 images) and CVC-ClinicDB [311] (612 images). This results in a set of 2188
endoscopic images with associated binary polyp mask, from which a random split is made:
60% for training (1312 images), 20% for validation (438 images) and 20% (438 images) for
in-distribution test (Test ID). All images are resized to a shape of 768× 512. To simulate
domain-shift scenarios, the PolypGen dataset [312] is employed. This dataset comprises
endoscopy images from 6 different centers, exhibiting a heterogeneous population and acquired
with different endoscopic systems. 251 samples are used from Center 1, 270 for Center 2, 456
for Center 3, 146 for Center 4, 206 for Center 5, and 83 for Center 6. With the Test ID split,
this represents a test set of 1849 samples to evaluate the QC strategy.

IV.4.4.2 2D polyp segmentation ensemble

To process the 2D colonoscopy images, a dedicated 2D segmentation architecture is used.
The backbone is in all points equivalent to the 3D Dynamic U-Net used so far, except 3D
convolutions are replaced with their 2D counterparts. The model contains an input block
followed by 4 downsampling blocks and 4 upsampling blocks. Two convolutions are used in
each block, for a total of 18 convolutions. A last convolution is in charge of producing the
class probabilities. The model takes as input the 3-channel 2D images (for red, green, and
blue channels). Batch normalization is used in each block. In total, the 2D UNet contains
2 million trainable parameters. An ensemble of polyp segmentation models is formed by
training 5 individual U-Nets, with the L3 loss (Chapter II, Equation II.6.3). The rest of the
pipeline is strictly identical: input and output level scores are computed on the validation
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Regime Proportion Dice ↑ Surface Dice ↑ 95% Haussdorf ↓
A 748/1849 (40.45%) 0.897± 0.104 0.748± 0.210 52.68± 73.68
B 508/1849 (27.47%) 0.850± 0.169 0.663± 0.257 76.890± 94.558
C 99/1849 (5.35%) 0.656± 0.211 0.388± 0.190 162.959± 102.400
D 494/1849 (26.72%) 0.470± 0.286 0.278± 0.221 217.790± 122.244

Table IV.5: Average segmentation performance in each region of the prediction space for
the polyp Deep Ensemble. A: optimum operating regime. B: robust operating regime. C:
Dysfunctional regime. D: Divergent regime.

split, allowing to define thresholds as the 95-th percentiles. Then, each test image is associated
with a regime (A, B, C, or D).

IV.4.4.3 Results

The stratification of the prediction space for polyp segmentation is presented in Figure
IV.4.10. Figure IV.4.11 presents boxplots of segmentation metrics in each region (A, B, C,
D), and corresponding averaged metrics are presented in Table IV.5. Figure IV.4.12 presents
3 examples of test data points in regimes A, B and D, respectively. Similar to the previous
experiments, the optimum operating regime (regime A) in practice regroups the top-quality
predictions, with an average Dice score of around 0.90. It can be observed in Figure IV.4.10
that most Test ID samples fall within this regime. For domain-shift data points (PolypGen),
the segmentation quality is heterogeneous depending on the imaging center. For instance,
images from Center 3 (C3) are generally associated with high-quality segmentation metrics,
while images from Center C4 are for the majority in the divergent regime, associated with
low-quality segmentations. Three examples of pairs of images and predictions are presented
in Figure IV.4.12. The sample P1 is a data point originating from the Test ID, close to the
training distribution. It is associated with a high-quality segmentation, representative of the
expected functioning of the model. Sample P2 is a data point from Center 2 of the PolypGen
dataset, attributed to the robust functioning regime (high MD but high EPA). Its color is
more unusual, with a blue tone. This probably perturbates the segmentation models, as the
associated segmentation is poor. Finally, sample P3 originates from Test ID but is associated
with the divergent regime (high MD and low EPA). Indeed, the image is extremely unusual.
The resulting segmentation is poor, as can be expected for this extremely particular image.
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Figure IV.4.10: Prediction space stratification for the polyp ensemble. Both the x-axis
and y-axis are represented in logarithmic scales. P1, P2, and P3 correspond to cases that
are further detailed in Figure IV.4.12.
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Figure IV.4.11: Box-plots of segmentation metrics (Dice, Surface Dice, 95% Haussdorf
Distance) for each region of the prediction space, for polyp segmentation.
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P1
Optimum Operating Regime

Dice = 0.98 / Surface Dice = 0.92 / 95% HD = 20.94
MD = 0.12 / 1-EPA = 0.03

Image Prediction Ground truth

P2
Robust Operating Regime

Dice = 0.15 / Surface Dice = 0.04 / 95% HD = 264.89
MD = 0.61 / 1-EPA = 0.16

P3
Divergent Regime

Dice = 0.0 / Surface Dice = 0.0 / 95% HD = 341.48
MD = 0.30 / 1-EPA = 0.74

Figure IV.4.12: Examples of data points in Regime A, B and D for the polyp ensemble.
The first subject (P1) presents a clear delineation of the polyp, allowing for a top-quality
segmentation. In contrast, the second example (P2) presents an unusual illumination with
a blue-ish tone. As a result, the segmentation is erroneous, with a large quantity of false
positive voxels. The associated MD is extremely high, however, the output QC score
(1-EPA) is not excessive, which explains the attribution to regime B. The last example
(P3) is a sample with a high output QC score. The image is artifactual and blurry, and
the segmentation doesn’t intersect the ground truth.
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IV.5 Chapter conclusion

In this chapter, the crucial problem of detecting non-conform inputs has been investigated.
In commercial solutions such as Pixyl.Neuro, the volume of analysis is too large to perform a
visual validation of the input image before sending the automated analysis to the radiologist.
Moreover, non-conform inputs are common due to human error or misunderstanding of
the software specifications. In such cases, it is essential to inform the radiologist analyzing
automatic results that the inputs sent were non-conform. To tackle this challenge, image-level
conformity scores were evaluated, comprising uncertainty-based, reconstruction-based, and
latent-based approaches. On a wide benchmark comprising 24 OOD scenarios built around
the task of whole tumor segmentation in brain T1w, the superiority of latent-space OOD
detection has been demonstrated. This approach, built around the Mahalanobis Distance,
achieves top OOD detection performance on various types of shifts, such as artifacts, modality,
or pathology shifts. It is also particularly interesting as it can be implemented in any trained
model, requiring only access to the intermediate feature maps generated by the model. One
pitfall of the MD is its sensitivity to the layer selection. More particularly, the optimal layer
is dependent on the neural network architecture, which requires a layer selection procedure
using OOD test data. However, experiments showed that it can be alleviated by using a
multi-layer strategy, consisting of the combination of the individual layer scores using the max
or mean operation. These aggregation strategies achieve high and consistent performances
for each segmentation backbone.

Yet, it has been shown that OOD detection alone is not sufficient. Indeed, OOD detection
focuses on the conformity of the input image, not on the quality of the output segmentation.
This has two weaknesses: conform images that are poorly segmented are not flagged to
the user, and OOD images correctly segmented can lead to false alarms. Additionally, we
showed that the MDs are poorly correlated with the actual quality of the output (assessed
using Dice scores, see Figure ??). It highlights an important gap in the UQ literature,
that is the distinction between input-level and output-level QC. Both goals are generally
pursued separately in the literature. We argue that benefit can be gained by talking both
QC simultaneously. To implement this, the MD is complemented with an output-level
score, namely the level of agreement between the members of the deep ensemble (EPA).
By combining these two scores, we propose a stratification of the prediction space in 4
areas: optimum operating regime, robust operating regime, dysfunctional regime, and lastly
divergent regime. The proposed stratification has been challenged on 3 tasks: cross-sectional
MS lesions segmentation in FLAIR brain MRI, glioblastoma segmentation in multi-modal
brain MRI, and polyp segmentation in colonoscopy images. For each experiment, the optimum
operating regime contains the top-quality predictions of the model, generally associated with
in-distribution images. The divergent regime, in contrast, contains the poorest predictions.
They are associated with images distant from the training dataset. Thus, this dual-level QC
strategy has the potential to automatically assess the quality of a prediction, while providing
knowledge about the distance of the test point to the training distribution. This could bring
additional information to the user, by alerting them about pitfalls of the algorithm, in which
case the reviewing of the case is imperative. Interestingly, both metrics (MD and EPA) are
efficient to compute using a Deep Ensemble, allowing a seamless integration in AI-based
software.
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V.1 Motivations

Segmentation tasks are often an initial step to a more in-depth analysis. More particularly,
segmentation masks can be used to derive several high-level metrics meaningful for the
clinician, such as volumetry measures. In the context of Multiple Sclerosis, segmentation
is used to assess the total lesion volume (called lesion load), and the count of the lesions.
These metrics are useful to determine the extent and progression of the disease, and can
even be used to predict the disability of the patient [313]. The lesion volume is also an
important imaging biomarker to predict the patient’s neurological outcome after a stroke
[314] or to assess the grade of a glioblastoma [315]. In the case of neurodegenerative diseases
such as Alzheimer’s disease, brain atrophy is quantified by estimating the volume of different
anatomical regions (e.g. hippocampus or amygdala) compared to normative values [316].
Apart from neurological applications, volumetry can also be applied to organs to detect
abnormal growth or in aging studies [317].

In the context of Pixyl software, each automated analysis yields an automatic report in
which these high-level metrics (volumes and/or lesion counts) are reported. This is the first
information presented to the user, who can then check the automatic segmentation to confirm
its suitability. However, to this date, these metrics are reported without predictive intervals
(PIs), which affects the trustworthiness, reliability, and accountability of the automatic results.
For quality insurance, equipping the reported high-level metrics with proper PIs appears as a
required property to improve the usefulness of automatic reports.

This form of uncertainty quantification, focusing on high-level metrics, has gained little
attention in the medical image UQ literature. Indeed, PI construction for ML models has
been mainly studied in the context of 1D regression tasks [318, 319, 320] and applications in
the context of medical image processing are very scarce. Reference work by Eaton et al. [81]
proposes either a sampling approach or a regression model to compute PIs for lesion counting
in 2D medical images. In the former, several plausible and diverse segmentation masks are
generated for the same input image, forming a distribution over the quantity of interest (e.g.
lesion volume or number), from which the mean and the standard deviation can be extracted
to define a PI. For this, standard UQ methods such as Test Time Augmentation (introduced
in Section II.2.10) or MC dropout (introduced in Section II.2.6) can be employed. With the
regression approach, a network is trained to directly predict the PI’s components: the mean
value as well as the lower and upper bounds from the data themselves, using a dedicated loss
function, the Quantile loss (also called Pinball loss) [321].

Recently, the Conformal Prediction framework [75, 76] has been gaining attention, as a
distribution-free, model-agnostic uncertainty quantification tool offering statistical guarantees
in finite samples. CP has been essentially applied in classification and regression problems,
where predictive sets are constructed around the notion of coverage. Coverage refers to the
probability that a given interval contains the true value of the quantity being predicted. In
other words, it measures how well the interval captures the uncertainty associated with the
prediction. In practice, CP can be implemented as a post-processing step of the predictive
intervals to make sure that they will encompass the desired fraction of the true test scores,
with popular choices being 90%, 95%, or 99% PIs. Due to its promising results outside
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the medical image field, this chapter proposes to explore the usage of CP to equip volume
estimation with predictive intervals.

V.1.1 Additional contributions to the paper "TriadNet: Sampling-
free predictive intervals for lesional volume in 3D brain MR
images"

The work presented in this chapter is based on the paper TriadNet: Sampling-free predictive
intervals for lesional volume in 3D brain MR images [322], which has been presented at the
UNSURE workshop, a satellite event of the MICCAI 2023 conference. Several additions are
presented here. Firstly, the framework is tested on cross-sectional MS lesions segmentation
in addition to the brain tumor application. Secondly, a deeper discussion on the impact of
the size of the calibration dataset is proposed, and robustness testing is investigated by using
two domain-shift datasets for the MS experiment, and one domain-shift dataset for brain
tumors. Finally, weighted conformal prediction to tackle domain shifts is investigated in the
last section.

V.2 Conformal prediction for lesion volumes

V.2.1 Problem formulation

In this section, CP is explored to obtain PIs associated with volumes in medical images. We
are addressing a 3D segmentation problem involving N − 1 foreground classes, excluding the
background class. Our objective is to estimate the true volumes, denoted as Y ∈ RN−1, for
each foreground class based on the predicted segmentation. In this scenario, considering an
estimation X ∈ RN−1 of the volumes as a random variable, we define a predictive interval,
denoted as Γα(X), as a range of values intended to encompass Y , the actual volumes, with a
specified degree of confidence, typically denoted as 1-α (e.g., 90% or 95%). In essence, given
a set of estimated volumes X1 . . . Xn and their corresponding ground truth volumes Y1 . . . Yn,
Γα(·), the predictive interval Γα(·) should be modeled to satisfy the following condition:

1− α ≤ P (Ytest ∈ Γα(Xtest)) ≤ 1− α +
1

n+ 1
(V.2.1)

for any (Ytest, Xtest) following the same distribution as the (Yi, Xi)’s. This property is called
the marginal coverage, as the probability takes into account the randomness in the calibration
and test dataset. That is to say, by randomly sampling multiple calibration and test datasets,
the coverage is guaranteed to be at least 1−α in average [76]. In this section, 90% confidence
intervals are used, corresponding to an error rate α = 0.1. In practice, a PI is composed
of 3 components: the estimated volume Xi, the lower bound li, and the upper bound ui.
There are two main methodologies to estimate the bounds, namely sampling-based or direct
estimation, presented in the following.
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Figure V.2.1: A Gaussian distribution with a mean of 0 (represented by the black
dashed line) and a variance of one, with different confidence intervals represented: 90%
(green), 95% (blue), and 99% (red). The corresponding numbers of standard deviations
are indicated on the x-axis.

V.2.1.1 PI estimation via sampling

Standard UQ methodologies (e.g. TTA, MC dropout) allow to sample a set of plausible
segmentation masks for each input image. A natural idea to compute a predictive interval is
to exploit this set of predictions. In practice, the mean and the standard deviation of the
target volume can be derived using the set of segmentations. This allows to obtain predictive
intervals in the form:

Γα(X) = [µ(X)− zσ(X), µ(X) + zσ(X)] (V.2.2)

where z stipulates the degree of confidence of the interval. For instance, for a 90% confidence
interval, z corresponds to 1.65 (see Figure V.2.1 in green). In practice, this approach
supposes that Ytest|Xtest = X follows a Gaussian Distribution N (µ(X), σ(X)), which may
be a simplifying assumption. However, it allows the computation of PIs using any sampling
approach (MC dropout, DE, TTA) which is thus convenient.

V.2.1.2 Direct PI estimation

In contrast to sampling-based PI estimation, direct PI estimators are models that directly
predict the mean value X as well as the t̂α/2 and t̂1−α/2 quantiles, allowing the computation
of (1− α%) PIs:
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Γα(X) = [t̂α/2(X), t̂1−α/2(X)] (V.2.3)

For example, with 90% PIs, the ground truth volume Y is supposed to land below t̂0.05(X)
with 5% probability and above t̂0.95(X) with 5% probability.

It is interesting to note that with direct PI estimation, PIs are not necessarily symmetrical
with respect to the mean, and are thus in principle more flexible than sampling-based PI
estimators.

V.2.2 Conformal calibration of predictive intervals

At this stage, there is no statistical guarantee that the computed PIs will achieve the user-
defined level of coverage, i.e. 90% or 95%, on the test dataset. Indeed, To ensure this,
Conformal Prediction (CP) can be used. It operates by first defining a score function s(X, Y )
[76], to estimate the degree of conformity of the estimate X with respect to the true quantity
Y , with larger scores indicating larger deviations. The score function takes the following
form for sampling-based PI:

s(X, Y ) =
|Y − µ(X)|

σ(X)
(V.2.4)

and the following one for direct PI estimators:

s(X, Y ) = max{t̂α/2(X)− Y, Y − t̂1−α/2(X)} (V.2.5)

These scores reflect the ability of the interval to capture the ground truth quantity. In the
CP framework, they are used to estimate a corrective value q̂ to be applied on the PIs to
match the target coverage level on a calibration dataset (Xi, Yi)i=1,...,n comprising images
and associated ground truth volumes. In practice, the corrective value q̂ is computed as the
⌈(n+1)(1−α)⌉

n
-th quantile of the empirical scores q̂ = Quantile(s1, s2, ..., sn; ⌈(n+1)(1−α)⌉

n
). At test

time, the calibrated PI is computed as follows for sampling-based PI:

Γα(X) = [µ(X)− q̂σ(X), µ(X) + q̂σ(X)] (V.2.6)

and as follows for direct PI estimates:

Γα(X) = [t̂α/2(X)− q̂, t̂1−α/2(X) + q̂] (V.2.7)

As q̂ increases, the intervals expand. Supposing the test samples are exchangeable with
the calibration samples, the marginal coverage property is guaranteed. To recap, CP can
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be essentially seen as a post-hoc calibration step applied to the PIs to achieve the desired
level of coverage. A larger level of coverage will yield to larger interval widths. Additional
mathematical details about the link between the score functions and the target coverage are
provided in Appendix A5.

V.2.3 TriadNet: sampling-free predictive intervals

Sampling-based PI estimation is straightforward when a standard UQ methodology such as
TTA or MC dropout can be employed. However, they require sampling multiple predictions
to allow the estimation of the mean and standard deviation, which is not in line with real-
world applications where inference time is crucial. Moreover, it is based on the underlying
hypothesis that the sampling distribution of the volume follows a normal distribution, which
may not in practice be systematically valid. This motivates the development of a direct PI
approach specially tailored for medical image processing.

The starting point is to notice that the PI can be constructed using 3 different delineations
of the same lesion, one permissive (higher volume), one restrictive (lower volume), and a
balanced one (mean volume). One can think of using an ensemble of 3 models to generate
these 3 masks: the first one with a high precision and a low recall to generate the lower volume
estimation; the second with a low precision and a high recall to generate the upper volume
estimation, and a last one with balanced precision and recall for the mean volume estimation.
However, this implies reproducing the training three times, increasing the computational cost.
Here, we argue that the same result can be obtained with a single multi-head architecture,
trained to output the three different masks simultaneously. This architecture, which we name
TriadNet, is represented in Figure V.2.2.

Essentially, TriadNet follows a classic encoder-decoder architecture, except it possesses 3
different output heads: one for each element of the PI. The lower-bound volume is obtained by
computing the sum of the voxels segmented as lesions in the restrictive mask. Similarly, the
upper-bound volume is obtained by summing lesion voxels in the permissive mask. Finally, the
same process is applied to the balanced mask for the average volume estimation. Interestingly,
any segmentation backbone (e.g. V-Net, Attention U-Net) can be turned into a triad-like
version by simply duplicating the output convolution 3 times. In the following experiment, the
Dynamic U-Net backbone is adopted to be consistent with the rest of the thesis. Interestingly,
this has a very low impact on the complexity of the segmentation model, adding just a few
thousand learnable parameters. Thus, the training and inference time is not increased. Then,
a special loss function is defined to train TriadNet to output the three distinct masks. The
key idea is to adjust the penalties applied to False Positive (FP) and False Negative (FN)
voxels to obtain restrictive or permissive masks. To achieve this, we propose to employ the
Tversky loss [29], as it provides a direct control on the trade-off between recall and precision.

The Tversky loss Tα,β is a variant of the standard soft Dice loss [15], with two additional
hyperparameters α and β which respectively control the weighting of FP and FN predictions.
With α = β = 0.5, the Tversky loss is strictly equivalent to the standard Dice loss. Moreover,
the Tversky loss can be implemented with a third hyper-parameter γ to penalize over-confident
errors and thus favor calibration, as done in the Dice++ loss (see Equation II.6.3). This
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yields to the following implementation of a Tversky++ loss (T +):

T +
α,β,γ =

∑N
i=1 p1ig1i∑N

i=1 p1ig1i + β
∑N

i=1 p0ig
γ
1i + α

∑N
i=1 p1ig

γ
0i

=
2TP

2TP + αFP γ + βFNγ
(V.2.8)

The γ is set to 2 as done in the original Dice++ implementation [50]. In the following, the γ
is omitted to simplify the notations. Writing plower, pmean and pupper the outputs of each head
and y the ground truth segmentation, we defined the Triad loss as:

TriadLoss = T +
1−ϵ,ϵ(plower,y) + T +

0.5,0.5(pmean,y) + T +
ϵ,1−ϵ(pupper,y) (V.2.9)

with ϵ a hyper-parameter in the range [0, 0.5] controlling the penalties applied to FP and FN
during the training of the lower and upper bound heads. With ϵ values close to 0, the lower
and upper-bound masks will diverge significantly from the mean mask. In contrast, a value
of ϵ close to 0.5 will increase the similarity between the three masks. In practice, we found
that a value of ϵ = 0.2 worked well in practice and provided sufficient variability to efficiently
approximate the bounds of the intervals.

In summary, the mean decoder is trained using a conventional Dice Loss. To generate
more restrictive masks (resulting in smaller volumes), the lower bound decoder is trained to
minimize FP at the expense of a higher FN rate. Conversely, aiming for more permissive
masks (resulting in larger volumes), the upper bound decoder is trained to minimize FN at
the expense of a higher number of FP voxels. To visualize the differences between the three
delineations, the three delineations can be superposed, as shown in Figure V.2.3. It provides
interpretability concerning the uncertainty about the exact delineation of the target object
(here, MS lesions).

V.2.4 Comparison with known approaches

The proposed TriadNet framework is compared with 3 sampling-based approaches: Confidence
Thresholding (CT), Monte Carlo dropout (MC), and Test Time Augmentation (TTA). For
sampling-based approaches, the same budget of T = 50 samples is allocated, which allows
robust estimation of the mean and standard deviation.

Confidence Thresholding [81] is a straightforward approach to obtain PI’s from the
output probability estimates produced by a trained segmentation model. For each class,
the probability map is binarized with progressively increasing thresholds. As the threshold
increases, fewer voxels are segmented, thus the volume decreases. More specifically, T different
thresholds uniformly distributed in the range [0.05, 0.95] are used to binarize the probability
maps, for each class. This method only works if the model is properly calibrated. Otherwise,
if the produced probabilities are binary (extreme over-confidence), the sampled volumes will
be homogenous and will not allow for a proper estimation of the standard deviation. Thus,
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Figure V.2.2: Illustration of the TriadNet model. A segmentation backbone is enhanced
by adding 3 output heads at the end of the decoder. Each one is responsible for the
computation of an element of the predictive interval: the lower bound (blue), the upper
bound (red), and the average volume (green). The lower-bound mask is more restrictive
than the balanced mask, which is itself more restrictive than the upper-bound mask.
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Figure V.2.3: Superposition of the lower, mean, and upper masks produced by TriadNet
on a MS subject. Only the contours of the lesion delineations are presented. The restrictive
mask (blue) is included within the mean mask (green), which is itself included in the
permissive mask (red).
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calibration is guaranteed by training a standard Dynamic U-Net with the L3 loss which has
been introduced in the calibration benchmark (Section II.6.3).

Monte Carlo Dropout is used as a baseline to extract PI from a single model. This
popular framework has been previously introduced in Section II.2.6. Here, it is implemented
by performing T forward passes of the same input image with dropout activated to obtain 20
different estimations of volumes, from which the mean and standard deviation are extracted.
A dedicated MC dropout Dynamic U-Net is trained to implement this approach, with a
dropout rate of p = 0.10 after each convolution layer.

Test Time Augmentation, presented in Section II.2.10, is a popular way to generate
various predictions for the same case, by generating variants of the input image. To implement
the TTA baseline, T random augmentations for each input MRI are created using flipping,
rotation, translation, and contrast augmentation with randomized parameters, implemented
using the TorchIO Data Augmentation library [246]. Importantly, these augmentations do
not modify the size of the target classes so that the estimation of volume is coherent from
one augmentation to the other.

V.2.5 Evaluating the quality of predictive intervals

Evaluating the quality of predictive intervals requires the definition of dedicated metrics.
First, PIs are constructed for a target level of coverage, set to 90% in these experiments.
This means that empirically on the test set, 90% of the ground truth volumes should thus
be contained in the intervals. Any deviation from this target level of coverage indicates a
miscalibration of the intervals. A coverage lower than the target coverage (under-coverage)
means that the PIs miss too many ground truth volumes and are thus probably too narrow.
A coverage larger than the target coverage (over-coverage) means that PIs may be too large
and thus, less informative. Second, PIs should be as narrow as possible to be informative.
The second metric, W , is thus defined as the average distance between the lower and upper
bounds of the intervals. An optimal PI should match the target level of coverage while being
as narrow as possible. It should be noted that these two measures (coverage and with) are
interdependent, as an increase in interval width leads to an increase in coverage. In practice,
if the CP calibration is successful, all PI predictors will match the target coverage level.
However, for poor PI predictors, the target coverage can only be reached using excessively
large intervals to compensate for the poor bounds estimation. Thus, in CP studies, methods
are generally ranked based on the size of the intervals [78]. Third, we report the Mean
Average Error (MAE) between the estimated volume and the ground truth one. Finally, the
average inference time to compute the PI is measured, to evaluate the compatibility of each
method with industrial applications.

V.2.6 The importance of the size of the calibration dataset

A key element of the proposed PI framework is the conformal procedure that aims at calibrating
the intervals so that they match the target coverage. In the literature, conformal calibration is
generally carried out using the validation dataset. Yet, in 3D medical image applications, the
validation dataset is usually small as the overall number of available annotated cases is scarce.
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Figure V.2.4: Theoretical distribution of coverages for varying sizes of calibration datasets.
The black vertical dashed line indicates the target coverage of 0.90.

For example, in the voxel-level experiments, n = 21 images composed the validation dataset
for cross-sectional MS models and n = 30 for glioblastoma segmentation models. This is not
in line with the standard conformal methodology that relies on calibration datasets that are
several magnitudes larger. Typically, a size of n = 1000 is proposed as a guideline number
for 2D image classification or regression tasks [76]. To analyze in more detail the importance
of the calibration dataset size for conformal procedures, an analytic form of the distribution
of coverages has been proposed by Vovk et al. [323]. It takes into account the user-defined
error rate α and the size n of the calibration dataset {(Xi, Yi)

n
i=1}. It is formulated as:

P(Ytest ∈ Γα(Xtest)|{(Xi, Yi)
n
i=1}) ∼ Beta(n+ 1− l, l) (V.2.10)

where l = ⌊(n+ 1)α⌋. This theoretical distribution is plotted for a target coverage of 0.90 in
Figure V.2.4, for increasing sizes of calibration sets: 20, 50, 100, 200, and 1000. It appears
that for n = 1000, the usual guideline, the coverage is between 0.88 and 0.92, thus indeed
extremely close to the target coverage of 0.90. However, for smaller calibration datasets,
the distributions of coverage are more dispersed around the 0.90 value. For n = 100, a
coverage between 0.85 and 0.95 can be expected, and the dispersion increases heavily with
lower values of n. Additionally, as the analytic form follows a Beta distribution, the mode of
the distribution can be computed, corresponding to the most likely value of the distribution
(i.e. the peak in the probability distribution function). It is computed as n−l

n−1
. The resulting

values for each value of n are provided in Table V.1. For small calibration datasets (n ≤ 100),
the most likely value is superior from 0.90, and the deviation increases as the number of
calibration samples shrinks. Thus, for small calibration datasets, it is expected that the
actual coverage will be higher than the target one (0.90).
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n Mode
20 0.947
50 0.918
100 0.909
200 0.905
1000 0.901

Table V.1: Most likely coverage for different sizes of the calibration dataset. This
corresponds to the mode of the analytic Beta distribution of coverages.

Thus, these theoretical results are not encouraging for our 3D medical image setting, with
validation datasets typically containing a few dozen images. Using the original validation
datasets would result in imprecise conformal calibration procedures. To alleviate this, a
dedicated train/calibration/test stratification is adopted in this chapter to allow for an
increase in the number of calibration data points. For the cross-sectional MS experiment, the
set of 219 in-distribution images is distributed into 120 for training, 50 for validation, and 49
for a testing set (which is kept identical to the one used in the previous thesis experiments).
For glioblastoma segmentation, the 1133 in-distribution images are distributed into 679 for
training, 227 for calibration and 227 for testing.

Then, the recommended protocol to evaluate the quality of conformal procedures is adopted
[76]. Recall that Ntest + Nval data points are available to calibrate and test the PIs. The
coverage guarantee in Equation V.2.1 says that the coverage should be at least 1 − α in
average, for different realizations of the validation/test stratification. Thus, to robustly
evaluate the conformal procedure, the experiment is reproduced for R = 15000 trials, with a
random split of the Ntest +Nval datapoints into validation and test. This can be implemented
efficiently by caching the predictions. This process allows to estimate the average coverage,
interval width, MAE, as well as confidence estimates (Standard Error on the Mean, SEM)
for these metrics.

V.2.7 Exchangeability of calibration and test datapoints

The conformal framework makes no assumptions about the model or the data. Yet, it is still
based on a strong hypothesis that calibration and test data points are exchangeable. To
follow the definitions used throughout this thesis, there should not be any domain shifts
between the calibration and test datasets. This is because the conformal strategy is rooted
in the principle that the errors on the calibration and test datasets have the same magnitude,
which allows to achieve the desired coverage on the test dataset using the calibration samples.
However, in most real-world applications and especially medical imaging, domain-shifts are
extremely common. Thus, there is no guarantee that a conformal strategy calibrated on
images from Hospital A will achieve the desired coverage on images from Hospital B. To
analyze this phenomenon, domain-shift scenarios are explored. For MS lesions segmentation,
we use the previously introduced MSLUB and 1.5 Tesla test datasets (Section II.1). For
glioblastoma segmentation, we rely on the Sub-Saharan Africa test dataset (Section II.6.1).
In this setting, the intervals are calibrated on in-distribution images, and the coverage is
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Figure V.2.5: Distribution of volumes for sampling-based approaches (CT, TTA, and
MC) for the first 8 validation images. The red line indicates the average of the sampled
volumes. In each case, a Shapiro-Wilk test is performed to test the normality hypothesis.
The corresponding p-value is indicated on top of each plot. It is displayed in blue when
the hypothesis cannot be rejected (p-value ≥ 0.01). Otherwise, it is indicated in red.

then estimated on a separate domain-shift dataset. The same evaluation metrics (coverage,
average interval width, MAE) are then reported.

V.2.8 Application to lesion load estimation in MS patients

The first application investigated is the cross-sectional MS lesions segmentation task, which
has already been investigated in detail for voxel-level, lesion-level, as well as quality control
experiments. Here, the task is to compute the total lesion load of the patient, corresponding
to the volume of identified white matter hyperintensities.

For sampling-based approaches (CT, TTA, MC), the distribution of the sampled volumes is
presented for the first 8 validation images in Figure V.2.5. For each subject, the Shapiro-Wilk
statistical test [324] is performed to verify if the distribution follows a normal distribution.
More specifically, the null hypothesis is that the sampled volumes come from a normal
distribution. Small p-values (e.g. ≤ 0.01) are evidence of departure from normality. It
appears that in most cases, the normality hypothesis is indeed verified with a 0.01 level of
significance. When it is not valid, it is associated with low lesion loads. In this setting, the
distribution is indeed not Gaussian as the volume cannot be negative, leading to skewed
distributions.

Then, the PI metrics (coverage, width, MAE) for each method are presented in Table V.2.
Figure V.2.6 presents a visualization of the PIs for each method on the three test datasets.
After calibration, all methods exhibit close coverages on in-distribution test data, with
an average empiric coverage close to 0.92. Interestingly, this exactly corresponds to the
theoretical mode of the analytic Beta distribution of coverages for a calibration dataset
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of n = 50 samples. Thus, the experimental results perfectly match the expected results
discussed in the previous section. All methods are thus equivalent in terms of coverage, which
essentially validates the correctness of the conformal calibration procedure. The width of the
intervals, however, is more heterogeneous across methods. More particularly, MC and TTA
provide larger intervals as compared to CT and TriadNet. This can be observed in Figure
V.2.6. This may be because the sampled volumes obtained via TTA or MC exhibit a low
standard deviation. Thus, the q̂ are generally much larger for MC and TTA than for CT,
which produces more diverse sampled volumes. This phenomenon can be observed in Figure
V.2.5. Then, intervals produced by TriadNet are slightly narrower than the ones produced
by CT. In terms of MAE (estimation of the lesion load), TriadNet achieves the best result
in the in-distribution test split. Finally, in terms of inference speed, the MC and TTA are
largely slower than CT and TriadNet. For both sampling approaches, it takes roughly one
minute to generate the interval. This is because T = 50 inferences are needed for MC and
TTA. Contrarily, CT is very efficient as a single inference is needed. Sampling is then applied
to the predicted probability map, which is computationally efficient. TriadNet, which does
not require any sampling, is slightly faster (on average 1.35 seconds per MRI).

Regarding domain-shift datasets (MSLUB and 1.5 Tesla datasets), it can be noticed that
there is a loss of coverage for each method. More particularly, the coverage approaches 100%
for MSLUB for CT, MC, and TriadNet. This indicates that for MSLUB data, narrower
intervals could be enough to encompass 90% of the ground truth volumes. For the 1.5T
dataset, the coverages of CT and TTA fall around 85% on average, which shows the opposite
tendency: larger intervals are needed for this dataset. This demonstrates the expected loss of
guarantees due to the non-exchangeability of the data, which CP fails to tackle.



Coverage (%) W (ml) MAE (ml) Dice (%) Time (s)
Method Dataset µ SEM µ SEM µ SEM µ SEM µ

ID 92.03 5.29 14.92 2.18 3.55 0.43 77.69 0.95
CT MSLUB 99.95 0.53 12.50 1.66 2.20 - 69.39 - 1.42

1.5T 86.32 6.97 10.38 1.38 3.69 - 67.58 -
ID 91.98 5.45 15.38 2.31 3.79 0.83 77.32 1.03

MC MSLUB 100.00 0.00 23.16 2.33 1.82 - 69.81 - 53.22
1.5T 100.00 0.00 14.47 1.45 2.67 - 66.21 - X

ID 92.01 5.34 17.64 3.46 3.12 0.42 77.54 0.94
TTA MSLUB 94.39 2.26 14.82 2.34 1.44 - 68.70 - 62.93

1.5T 84.18 9.10 10.56 1.67 3.04 - 68.00 -
ID 92.06 5.34 14.46 1.58 3.08 0.46 77.93 0.97

Triad MSLUB 99.98 0.54 13.23 1.53 1.87 - 68.98 - 1.35
1.5T 96.04 1.48 11.48 1.48 2.51 - 67.89 -

Table V.2: Quality of predictive intervals for cross-sectional MS lesions segmentation. Intervals are calibrated for a target
coverage of 90%. Results are averaged over R = 15000 trials. W: average interval width. MAE: Mean Average Error on volume
estimation. ml: milliliter. SEM: Standard Error on the Mean. ID: in-distribution test set. Note that the domain-shift test
datasets (MSLUB and 1.5 Tesla) are fixed for each trial, hence the SEM is not estimated.



Figure V.2.6: Visualization of the predictive intervals for each method and on the three Multiple Sclerosis test datasets, for
a randomly selected trial. Volumes are ordered from the smallest to largest for easier visualization. The red line indicates the
ground truth volumes and the blue line indicates the predicted ones. The grey area indicates the predictive interval for each
subject.
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V.2.9 Application to brain tumor volume estimation

The second investigated application is the segmentation of glioblastoma in 3 tissue classes:
Necrotic (label 1), Edematous (label 2), and GD-enhancing tumor (label 3). Intervals are
estimated for each class independently. In practice, this implies that a distinct corrective
value q̂i is fitted for each class i on the calibration dataset (N=227 samples). Interval metrics
are provided in Table V.3.

As for the cross-sectional MS experiment, the experimental results follow with great precision
the theoretical results, with an average coverage between 90.7% and 90.8% for each class and
method on the in-distribution dataset. The mode of the Beta distribution for a calibration
dataset of n = 200 is 90.5 (Table V.1), thus very close to the empirical coverages. Now, in
terms of interval width, MC and TTA also produce larger intervals than CT and TriadNet,
which confirms the trend observed for MS lesions. The narrower intervals are provided by
TriadNet for the Necrosis and GD-enhancing classes, while CT is the best approach for
edematous. The same ranking of methods is observed for the MAE metric. On domain-shift
data (SSA dataset), there is an important loss of coverage regarding the GD-enhancing tumor
class, with coverages falling to around 50% for CT, TTA, and TriadNet. This phenomenon
is clearly visible in Figure V.2.8, where it can be observed that the predicted volumes of
GD-enhancing tumors (blue) are far from the true ones (red). This miscalibration is also
observed for the necrosis and edematous classes (label 1-2) although more moderate. This is
also linked to an increase in the MAE for each class and method. As the volumes are less
accurately estimated, the quality of the PI degrades. Finally, in terms of inference speed,
TriadNet produces the segmentation and associated intervals for the three classes in only
0.28 second. Note that this is faster than for the MS experiment as inference is carried in a
fully 3D approach, while the MS models are based on patches. CT is slower (2.57 second
on average) as the confidence thresholding is repeated for each class independently. Then,
MC and TTA exhibit extended inference times. TTA is particularly slow for this brain
tumor experiment as each MRI sequence (T1, T2, FLAIR, T1ce) has to be altered, for each
inference.



Coverage (%) W (ml) MAE (ml) Dice (%) Time (s)
Method Dataset Class µ SEM µ SEM µ SEM µ SEM µ

1 90.78 2.75 11.37 1.35 3.12 0.46 79.63 1.21
CT ID 2 90.82 2.73 31.03 3.12 7.54 0.52 85.65 0.59

3 90.78 2.71 8.06 0.76 1.86 0.20 86.36 0.89
1 81.97 2.54 44.57 4.50 14.51 - 54.20 - 2.57

SSA 2 90.09 3.47 64.37 6.28 17.29 - 77.39 -
3 50.21 0.89 16.23 1.39 12.14 - 72.14 -
1 90.79 2.68 13.70 1.49 3.56 0.47 78.22 1.24

MC ID 2 90.82 2.69 38.94 3.27 9.75 0.61 84.93 0.63
3 90.80 2.71 8.04 0.42 2.15 0.19 85.01 0.94
1 95.94 1.62 47.47 2.77 10.39 - 58.97 -

SSA 2 92.57 2.13 80.22 6.06 21.72 - 78.05 - 12.76
3 62.60 1.37 20.19 0.75 8.93 - 79.0 -
1 90.76 2.70 20.64 2.93 3.29 0.47 79.16 1.20

TTA ID 2 90.77 2.75 44.09 4.61 7.55 0.55 85.51 0.60
3 90.83 2.67 12.02 1.44 1.87 0.20 86.06 0.80
1 89.05 2.75 64.95 7.05 14.47 - 53.73 -

SSA 2 78.54 2.26 66.33 6.25 18.24 - 77.31 - 45.3
3 50.94 3.87 13.54 1.47 12.24 - 72.08 -
1 90.78 2.71 9.92 0.99 3.10 0.46 79.85 1.18

Triad ID 2 90.76 2.70 32.36 2.85 8.22 0.57 85.19 0.60
3 90.79 2.71 7.70 0.48 1.73 0.19 86.02 0.89
1 77.01 2.32 22.03 1.08 10.57 - 60.00 -

SSA 2 84.15 2.26 51.58 3.00 19.81 - 78.30 - 0.28
3 48.87 2.66 14.36 0.42 9.79 - 74.82 -

Table V.3: Quality of predictive intervals for multi-class glioblastoma segmentation for a target coverage of 90%. Results are
averaged over R = 15000 trials. W: Average interval width. MAE: Mean Average Error on volume estimation. ml: milliliter. SEM:
Standard Error on the Mean. ID: in-distribution test dataset. SSA: Sub-Saharan Africa test dataset. Note that the domain-shift
test dataset (SSA) is fixed for each trial, hence the SEM is not estimated.



Figure V.2.7: Visualization of the predictive intervals for each method on the in-distribution brain tumor test dataset, for a
randomly selected trial. Volumes are ordered from the smallest to largest for easier visualization. The red line indicates the
ground truth volumes and the blue line indicates the predicted ones. The grey area indicates the predictive interval for each
subject.



Figure V.2.8: Visualization of the predictive intervals for each method on the Sub-Saharan Africa (SSA) brain tumor test
dataset, for a randomly selected trial. Volumes are ordered from the smallest to largest for easier visualization. The red line
indicates the ground truth volumes and the blue line indicates the predicted ones. The grey area indicates the predictive interval
for each subject.
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V.2.10 Discussion on TriadNet

In this first part of the chapter, CP is investigated to calibrate PIs on lesion volumes. It
can be applied to both sampling-based and direct PI estimation. In the latter direction,
we propose a novel approach called TriadNet that directly predicts the three elements of
the interval: lower bound, volume estimation, and upper bound. On two applications (MS
lesions and glioblastoma), we show that CP performs an accurate calibration of the intervals
to match the target coverage level on ID test data. Regarding inference time, TriadNet
is extremely efficient as it does not require any sampling, contrary to the other proposed
baselines. It could be argued however that the longer inference time of sampling-based
approaches (especially MC and TTA) is due to the choice of T the number of sampling steps
(set to T = 50 in these experiments). Indeed, it can be expected that the inference time of
sampling-based approaches is linear with respect to T . However, smaller values of T would
result in less precise estimations of the mean and standard deviation of the volumes.

Although very efficient on ID test data, our experiments show that when the test distribution
is shifted (MSLUB, 1.5 Tesla, or SSA dataset), then there is a loss of the coverage guarantee.
This appears as a major drawback for medical applications where this type of shift is common.
It motivates the exploration of an enhancement of the CP framework, called weighted CP,
explored in the rest of the chapter.

V.3 Perspectives on weighted conformal prediction to
tackle domain shifts

V.3.1 Mathematical framework

As previously mentioned, the conformal framework is based on the hypothesis that calibration
and test data points are exchangeable. As a consequence, its accuracy degrades when the
test distribution shifts (MSLUB, 1.5 Tesla, and SSA datasets). This motivated the extension
of the CP procedure in the setting of non-exchangeable data [76, 84, 325]. This framework is
introduced below.

In the baseline formulation of CP, each calibration sample contributes equally to the overall
conformal procedure. The core concept of weighted conformal prediction (WCP) is to reweight
calibration conformal scores according to their likelihood under the observed test distribution.
As an effect, we obtain a pseudo-calibration dataset that more accurately matches the target
one. This is achieved by estimating the density ratio w = dPtest/dPtrain for each calibration
and test sample. In practice, writing (X1, ..., Xn) the n calibration samples and x the fresh
test point, importance weights are computed as:
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pwi (x) =
w(Xi)∑N

i=1w(Xj) + w(x)
(V.3.1)

pwtest(x) =
w(x)∑N

i=1w(Xj) + w(x)
(V.3.2)

Essentially, pwi (x) is large when the calibration sample Xi is likely under the test distribution.
Then, the corrective value q̂ can be reframed as the 1−α quantile of the weighted distribution:

q̂(x) = inf

{
sj :

j∑
i=1

pwi (x)1{si ≤ sj} ≥ 1− α
}

(V.3.3)

Note that when all weights are equal to 1
n+1

, the standard CP procedure is recovered and
we end up choosing the ⌈(n + 1)(1 − α)⌉ quantile. It can also be noted that the baseline
CP procedure produces an identical corrective value q̂ for all test samples. Contrarily with
WCP, there is now a dependence on w(x), the density ratio estimated for the test sample x.
However, this weighted formulation is not free. Indeed, it acts as an importance sampling
protocol, alleviating more weights to calibration samples that look like test samples. As a
downside, there is a reduction of the effective sample size [326] that can be estimated through
the heuristic:

neff =
[
∑N

i=1 |w(Xi)|]2∑N
i=1 |w(Xi)|2

(V.3.4)

As an effect, when weights deviate significantly from 1, the size of the calibration dataset
virtually shrinks, which increases the variance of the CP procedure [325].

Importantly, this formulation was initially proposed to tackle covariate shifts. A covariate
shift is intuitive when the input data correspond to covariate vectors. In this setting, the
covariate shift manifests by one or several covariates that have different distributions in the
calibration and test datasets (e.g. the sex or age of the patient). In our setting, the covariates
are instead high-dimensional medical images and covariate shifts can be more ambiguous to
interpret. In practice, shifts in the image space can occur because of variations in the image
acquisition parameters or population demographics [327]. Importantly, the predictive task
(e.g. segmentation of MS lesions or glioblastoma) must remain the same, meaning that there
is no label shift between the calibration and test samples.

There are however several challenges in implementing WCP in our setting. Indeed, it supposes
that i) the density ratio between the calibration and test distributions can be estimated and
ii) Ptest is absolutely continuous with respect to Ptrain, which is akin to say that the domain
shift is not too important. Informally, when there are no samples in the calibration set that
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are representative of the test dataset, then there is no hope of accounting for the covariate
shift [328]. Second, unless in synthetic settings, the density ratio is never exactly known
and must be estimated. A flourishing literature can be found for density ratio estimation.
Popular approaches include training a classifier to distinguish between training and test
distributions [329], moment matching [326], or ratio matching [330]. In the original proposal
of WCP, Tibshirani et al. [325] propose to use an auxiliary classifier that only requires that
unlabeled samples from the test distribution are available during the calibration step. The
idea is to train a probabilistic classification model to classify samples between the training
and test distributions. That is, writing X1, ..., Xn and Xn+1, ..., Xn+m the training and test
data points, one can form a classification dataset composed of the pairs {Xi, Ci} where Ci = 0
for i = 1, ..., n and Ci = 1 for i = n + 1, ..., n +m. Writing p̂(x) = P(C = 1|X = x) the
probability predicted by a classifier model trained on the {Xi, Ci} dataset that the input
sample x belongs to the test distribution, the weight function can be expressed as:

ŵ(x) =
p̂(x)

1− p̂(x)
(V.3.5)

However, this approach has several limitations. First, it requires access to a sufficient
amount of calibration and test samples to allow for a supervised classification strategy.
More particularly, having access to only one or several test images is not enough to allow
for training the auxiliary classifier. Second, it heavily builds on the calibration of the
auxiliary classifier as the predicted probabilities are used to compute the weights [328].
Moreover, training the classifier is efficient when the input data is a feature vector [325], but
becomes cumbersome when dealing with high-dimensional medical images. In this setting,
the dedicated classification approach would be the training of a deep learning CNN, requiring
numerous examples of both classes (calibration and test). Moreover, recall that the training
of the auxiliary classifier should be performed during the CP procedure to allow for the
weight estimation. Incorporating the training of a CNN in the CP procedure is thus highly
inefficient. Finally, if the domain shift is important, the weights estimated by the classifier
will likely diverge, as can be easily stated from Equation V.3.1 when p̂(x) converges to 1.
As a conclusion, this classification task is computationally too costly when dealing with
3D medical images, and it may fail to provide accurate weights if the auxiliary classifier is
miscalibrated or if the classification task is too easy, typically when the domain shift between
calibration and test samples is high. Building on these limitations, we next investigate a
more efficient approach making use of the latent representations extracted by the deployed
segmentation model.

V.3.2 Investigation of an efficient approach to weight estimation in
3D MRI

As training the auxiliary classifier directly from the input images is too costly, more efficient
approaches have to be investigated. In Chapter 3, it was shown that the latent representations
extracted by trained segmentation models are efficient in detecting shifts in input images.
One idea would be to train the classifier on these low-dimensional latent representations
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directly, instead of on the high-dimensional 3D MRIs. To test this framework, we collect
the activations of the penultimate convolution layer ϕ, which has 32 convolution kernels.
The feature map has a shape of 32 × H ×W × D, where H, W , and D are the spatial
dimensions of the MRI. This feature map is reduced to a covariate vector z(x) of dimension
32 by performing an averaging over the spatial dimensions, as done in Chapter 3 to compute
the Mahalanobis distance:

z(x) =
1

H

1

W

1

D

H∑
h=1

W∑
w=1

D∑
d=1

ϕ(x)(h,w, d) (V.3.6)

This approach allows to perform classification on a compressed representation of the input
MRI, which alleviates the curse of dimensionality. As a result, the classification can be
performed efficiently during the WCP procedure and in practice should require fewer training
examples than CNNs.

V.3.3 Proof-of-concept on a synthetic dataset with controlled co-
variate shift

To prove the relevancy of the proposed approach, we first rely on a synthetic setting allowing
us to control covariate shift precisely. It allows us to have access to oracle values for the
density ratio, as the shift between train and test distributions is closely controlled. Moreover,
synthetic data allow the creation of large datasets, which is particularly interesting for the
accuracy of the conformal procedure.

V.3.3.1 Synthetic Data description

The task that we propose here is the segmentation of spheres inside cubic volumes of shape
32× 32× 32. The uncertainty task is to compute a predictive interval for the volume of each
sphere. The covariate of interest is the signal-to-noise ratio (SNR) between the background of
the image and the foreground spheres. For this experiment, the testing dataset will contain
images with lower SNRs than the training images, which emulates a covariate shift setting.
The SNR is defined here as:

SNR =
µspheres

σbackground
(V.3.7)

where µspheres is the average intensity of the foreground spheres, and σbackground is the standard
deviation of the background noise.

In each image, a sphere is generated by picking a random center and a diameter in the
range [6, 14] mm. To increase variability, the spheres are deformed using TorchIO’s Elastic
deformation function [246]. Then, we uniformly sample a random target SNR from the range
[1, 20] (low SNR corresponds to noisy images, in principle harder to segment). The next
step is to convert the binary mask into an intensity image matching the predefined SNR.
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SNR=4.5 SNR=5.5 SNR=18.0SNR=10.0

Figure V.3.1: Illustration of synthetic images (top row) with varying Signal-to-Noise
ratios (SNRs) and associated ground truth (bottom row).

This is achieved by setting the background intensity to 0, the sphere intensity to 1, and then
injecting an additive random Gaussian noise to the image following N (0, 1

SNR
). As a result,

the generated image has an SNR that matches the target one. Several examples of synthetic
images with varying SNRs are presented in Figure V.3.1.

We generate a total of N = 4000 synthetic images with varying SNRs. We then split this
dataset into an in-distribution split (3000 images) containing images with high SNRs, and a
shifted dataset (1000 images) containing images with lower SNRs. To select the 1000 shifted
test images, a sampling probability is assigned to each image Xi, proportional to :

w(Xi) =
1

SNR(Xi)
(V.3.8)

This allows the non-uniform sampling of images to favor low SNRs in the shifted test
set. Because of this non-uniform sampling, we have dPtest(Xi) ∝ 1

SNR(Xi)
dPtrain(Xi). As a

result, we can consider Equation V.3.8 as the oracle weights. Then, the in-distribution split
corresponds to the remaining 3000 images. The densities of SNRs in both splits are presented
in Figure V.3.2. The in-distribution dataset is further split into training, calibration, and
in-distribution test parts, with 1000 images each.
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Figure V.3.2: Distribution of signal-to-noise ratios in the training and test synthetic
datasets, allowing to emulate a covariate shift.

V.3.3.2 Experimental Setting

A TriadNet model with a Dynamic U-Net backbone is trained on the training split for 20
epochs, using the Triad loss and the ADAM optimizer [37] with a learning rate of 2× 10−4.
Then, the WCP procedure is performed with a target coverage of 95%. We use here a higher
coverage level (95% versus 90% for the real-world MRI tasks) because the model achieves
high segmentation performance on the synthetic images, and the calibration dataset is larger
(1000 images) allowing for higher coverage levels. Three ways of estimating the density ratio
are investigated:

• W-Oracle uses the oracle weights w(X) = 1
SNR(X)

. Note that in our synthetic setting,
we have access to Oracle weights as we control the data generation process. In real-world
problems, we have no oracle knowledge of the density ratio.

• W-Image uses a CNN classifier to predict p̂(x) = P(C = 1|X = x) the probability
that the input image x belongs to the shifted test distribution. To do so, a shallow
CNN is used with three convolutional layers (with 2, 4, and 8 kernels, respectively),
followed by a fully-connected layer. The model is trained on a separate dataset of 4000
images following the same generation process as the one previously presented. The
Cross-entropy loss (Equation I.2.3) is used to perform training. To mitigate overfitting,
a dropout rate of 50% is used after each layer. The predicted probabilities are clipped
in the range [0.01, 0.99] to avoid infinite weights.

• The W-Latent approach uses the latent representation of the image (Equation V.3.6),
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Figure V.3.3: The TriadNet framework enhanced for Weighted Conformal Prediction.
Compressed latent representations are extracted at the penultimate convolutional layer,
allowing an efficient estimation of the density ratio between the training and test distribu-
tions.

which has a dimension of 32. The overall framework is illustrated in Figure V.3.3.
This low-dimensional feature vector is used to train an auxiliary Logistic Regression
classification model to predict p̂(x). It is trained using a 20-fold cross-validation
paradigm. The predicted probabilities are clipped in the range [0.01, 0.99] to avoid
infinite weights.

We next report several metrics: the classification accuracy achieved by the auxiliary classifi-
cation model on each dataset, the effective sample size (ESS, Equation V.3.4), the empirical
coverage, and the average interval width. These metrics are estimated by running the experi-
ments for R = 250 trials, by shuffling the in-distribution calibration and test samples. The
shifted test set remains fixed for each trial.



Figure V.3.4: Results of the simulation on synthetic data for standard and weighted conformal prediction. Top row (left to
right): oracle calibration weight for Test ID and Test Shift, histograms of coverages on the Test ID dataset, and Shift Test.
Middle row (left to right): distribution of estimated weights using W-Image on Test ID, comparison of estimated and oracle
weights on Test Shift for W-Image, histograms of coverages on the Test ID and Shift datasets for W-Image. Bottom row (left to
right): distribution of estimated weight using W-Latent on Test ID, comparison of estimated and oracle weights on Test Shift for
W-Latent, and histograms of coverages on the Test Id and Shift datasets for W-Latent.
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V.3.3.3 Results

Results of this experiment on synthetic data are presented in Table V.4 and Figure V.3.4.
We start by commenting in detail Figure V.3.4.

• Top row, left to right: we start by presenting the oracle weights on ID data. When
calibration and test data points are exchangeable, the density ratio is exactly one, so
the pwi (Equation V.3.1) is set to 1

n+1
with n = 1000 the size of the calibration dataset.

When there is a covariate shift between calibration and test image, the density ratio is
proportional to 1

SNR , and thus the pwi increase proportionally to 1
SNR . We then present

the empirical distribution of coverages for standard CP (green) and W-Oracle (red)
over the 250 trials. On Test ID, W-Oracle is strictly identical to standard CP, and in
both cases, we have an average empirical coverage of exactly 0.95. In the presence of
shift (Test Shift dataset), the standard CP undercover (average coverage of 0.88) while
W-Oracle recovers the target coverage (0.96 on average).

• Middle row: we start by presenting the weights estimated on Test ID using W-CNN. The
red line indicates the average. The expected behavior would be to have a distribution
peaked around 1

n+1
, corresponding to equivalent weights for all calibration samples.

However here it can be observed that the weights deviate from this value. As an effect
the empirical coverage on Test ID is significantly above the target 95%, being 0.98 on
average. It is also linked to an increase in the average interval width on Test ID and
a reduction of the ESS (see Table V.4). This misestimation of the weights may be
due to poor calibration of the CNN or due to overfitting. For Test Shift, we present
the relationship between the weights estimated by W-Image and the oracle weights.
The blue dashed line corresponds to the identity function. It can be observed that the
weight estimation is not very accurate when taking the oracle weights as a reference,
with the dispersion increasing with larger weights. Despite that, W-Image reduces the
coverage gap on Test Shift, achieving an empirical coverage of around 0.93 versus 0.88
for standard CP.

• Bottom row is equivalent to the middle row but with W-Latent instead of W-Image.
This time, the weights on Test ID follow the expected behavior with weights centered
on the value 1

n+1
. The weights on Test Shift are also closer to the Oracle weights. On

Test ID, W-Latent provides a distribution of coverages closely matching the standard
CP procedure. On Test Shift, it reduces the coverage gap similarly to W-Image.

Overall, this controlled synthetic experiment shows that WCP recovers the target coverage
level when oracle weights are known (W-Oracle). When oracle weights are unknown, two
variants can be considered, namely W-Image and W-Latent. Our results show that W-Image
is not fully satisfying for the weight estimation. While it efficiently reduces the coverage gap
on Test Shift, we observed that the weight estimation in the absence of covariate shift (Test ID)
is not reliable, with estimated density ratios deviating from the unit value. This phenomenon
may thus be due to the miscalibration of the CNN, producing unreliable probabilities and
thus poor estimations of the density ratios. Our proposed latent approach (W-Latent) is
more satisfying in this regard, providing density ratios close to the unit on ID data.

Regarding the ESS, it can be noticed that all versions of WCP are associated with a reduced
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CP version Dataset Accuracy ESS Coverage Width (mm3) Dice
Standard - 1000± 0.0 95.11± 0.93 86.18± 3.00
W-Oracle ID - 1000± 0.0 95.01± 1.01 86.06± 2.95 0.92±
W-Image 0.50± 0.01 505± 45.71 98.31± 0.61 118.94± 9.27 0.07
W-Latent 0.50± 0.01 985.91± 21.30 95.03± 0.93 86.45± 3.79

Standard - 1000.0± 0.0 87.47± 1.08 94.76± 2.77
W-Oracle Shift - 98.20± 0.0 95.22± 1.57 153.28± 23.52 0.89±
W-Image 0.58± 0.01 162.09± 14.20 93.40± 0.83 128.56± 9.82 0.11
W-Latent 0.72± 0.01 122.92± 13.92 93.39± 0.90 128.89± 11.34

Table V.4: Comparison of standard and weighted Conformal Prediction on the synthetic
task, for a target coverage of 95%. Results are averaged over R = 250 trials. CP=Conformal
Prediction, ESS=Effective Sample Size. ID=In-Distribution.

ESS on the shifted test set. It is a drawback of the importance sampling that is operated.
With W-Oracle, the ESS is reduced from 1000 to around 98. The reduction is less pronounced
for W-Image and W-Latent. Note that there is an immediate link between the accuracy of
the auxiliary classifiers (CNN for W-Image, Logistic Regression for W-Latent) and the ESS.
If the accuracy is high, it means that the calibration and test distributions are far apart
and thus the classification task is easy. In this setting, the predicted probabilities will likely
diverge to extreme values (close to 0 or 1). As an effect, the estimated density ratios will be
large (Equation V.3.1), and thus the ESS will shrink (Equation V.3.4). For instance, the
auxiliary Logistic Regression reaches an accuracy of around 72% on Test Shift, showing that
it can accurately distinguish the calibration and test data points. As a side effect, the ESS is
reduced from 1000 to 123 approximately. The CNN only reaches an accuracy of 58% on Test
Shift, linked with a smaller reduction of the ESS (around 162).

Lastly, it can be observed that the width of the intervals for the weighted version of CP is
larger than for the standard CP, showing that in practice the reduction of the coverage gap
is at the expense of the enlarging of the intervals.

To summarize, this experiment allows us to validate the relevancy of W-Latent on a controlled
synthetic covariate shift. More particularly, we show that using the latent representations
generated by the segmentation model allows a valid estimation of the density ratio. However,
this framework can only work if there exist calibration samples that look like the test samples.
In practice, if there were no calibration samples with low SNRs, there is no hope of accounting
for the covariate shift. In the following, we investigate how our approach behaves on real
MRI processing tasks.

V.3.3.4 Tackling unknown shifts on real-world MRI datasets

We now evaluate WCP in our two tasks (segmentation of MS lesions and glioblastoma) with
the different domain-shift datasets (MSLUB and 1.5 Tesla datasets for MS lesions, SSA
for glioblastomas). The target coverage is set to 90% (akin to set α = 0.10). Intervals are
estimated using the TriadNet technique. The W-Latent version of WCP is implemented as
we do not have access here to Oracle weights, and W-Image proved to be unreliable. As
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Figure V.3.5: Histograms of estimated density ratios for each Multiple Sclerosis dataset,
using the logistic regression model.

CP version Test set Accuracy (%) ESS Coverage (%) Width (ml)
Standard ID - 50.0± 0.0 92.06± 5.34 14.46± 1.58

Weighted-Latent ID 0.50± 0.07 46.1± 9.8 90.97± 5.51 13.84± 1.97
Standard MSLUB - 50.0± 0.0 99.98± 0.54 13.23± 1.53

Weighted-Latent MSLUB 0.90± 0.02 0.9± 0.3 100.00± 0.00 23.86± 0.64
Standard 1.5T - 50.0± 0.0 96.04± 1.48 11.48± 1.48

Weighted-Latent 1.5T 0.74± 0.05 18.9± 8.0 93.44± 3.86 11.15± 4.15

Table V.5: Comparison of standard and weighted Conformal Prediction on MS lesion
load estimation for a target coverage of 90%. Results are averaged over R = 250 trials.
CP=Conformal Prediction, ESS=Effective Sample Size, MS=Multiple Sclerosis, ID=In-
distribution. ml: milliliter. Metrics are estimated over 250 trials.

for the synthetic experiment, we use a standard Logistic Regression model to estimate the
density ratio from the latent representations generated by the TriadNet model. We report the
same metrics: the classification accuracy achieved by the classification model on each setting,
the effective sample size, the empiric coverage, and the average interval width. These metrics
are estimated by running the experiments for R = 250 trials, by shuffling the in-distribution
calibration and test samples. They are presented in Table V.5 for the MS experiment and
Table V.6 for glioblastoma. Figure V.3.5 presents the histograms of weights for each MS
dataset (ID, MSLUB, and 1.5 Tesla).

First, for the MS experiment (Table V.5), it can be observed that when there is no domain
shift (Test ID dataset), the accuracy of the classifier is 50% as expected. This means that
calibration and test samples are indeed indistinguishable based on their latent representations.
In this setting, the estimated density ratios are centered around 1 for each calibration and test
sample (see Figure V.3.5, left). Both standard CP and W-Latent reach the target coverage
level of 0.90, with standard CP being closer to the expected mode (0.92, see Table V.1) for a
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calibration dataset of 50 samples.

Now, on the MSLUB dataset, it can be observed that the Logistic Regression model achieves
a very high accuracy (90% on average) which means that calibration and test latent rep-
resentations are extremely different. As a result, the weights diverge as dPtest << dPtrain

for calibration samples, and dPtest >> dPtrain for test samples. It can be observed in Figure
V.3.5, center, where most calibration samples are associated with a density ratio extremely
close to 0. This has a dramatic effect on the Effective Sample Size which shrinks below the
unit. In practice, we observed in this setting that most sets computed using Equation V.3.1
were empty: there exist no corrective values sj such as the reweighted distribution is superior
to 1− α. For these cases, we set the corrective value to a large default value of 10mL, which
translates to uninformative intervals. Thus, as a result, the interval width for the weighted
CP algorithm jumps to an average of 23.86mL on the MSLUB dataset, as compared to the
13.23mL interval width achieved with the standard CP procedure.

A different tendency can be observed for the 1.5 Tesla test dataset. Here, the classifier reaches
a moderate accuracy of 74% on average, showing that the latent representations are more
alike between calibration and test samples. As a result, the ESS is more moderately reduced:
roughly 19 on average (50 for the unweighted CP). Estimated density ratios are still close
to 0 for calibration samples (Figure V.3.5, right) although this is less extreme than for the
MSLUB dataset. Then, the coverage is closer to the target 90% than with the standard CP
procedure, although the dispersion of coverages is higher. This is an expected downside of
the reduced effective size, which makes the conformal procedure less precise.

Second, for the multi-class tumor segmentation task (Table V.6), the accuracy of the Logistic
Regression model reaches 83% on average, which empirically divides by 4 the ESS (from 227
for standard CP to about 51 for weighted CP). On the SSA dataset, the coverage gap is
reduced for all classes, yet the gain is minimal for class 2 (edematous). For classes 1 and 3
(necrosis and GD enhancing tumor), the gap is more efficiently reduced, which is linked to an
increase in the interval widths.

To conclude, several insights can be noted from these experiments with weighted CP. First,
estimating the weights from the latent representations (W-Latent) seems like an efficient
and practical alternative to the density estimation on high-dimensional images (W-Image),
which is computationally too costly. Moreover, the experiments on synthetic data showed
that W-Image provided unreliable weights in the absence of covariate shifts, which may be
due to a miscalibration of the probabilities and potential overfitting.

Importantly, WCP does not increase the coverage nor interval width when data are exchange-
able (Test ID). When the shift is moderated (1.5 Tesla and SSA datasets), the coverage gap
and interval width are reduced. This correspond to settings where the classifier does not
perfectly distinguish between calibration and test samples. However, when the shift is more
important (MSLUB dataset), then the estimated weights diverge because the classification
task is too easy. In this setting the WCP procedure becomes highly unstable due to the
reduced ESS. Then, the computed intervals are extremely large and uninformative. This is a
downside of the weighted approach which assumes that the calibration and test distributions
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Class CP version Test set Accuracy % ESS Coverage (%) Width (ml)
Standard ID - 227.0± 0.0 90.78± 2.71 9.92± 0.99

1 W-Latent ID 0.50± 0.04 219.9± 14.7 90.20± 2.65 9.46± 1.07
Standard SSA - 227.0± 0.0 77.01± 2.32 22.03± 1.08
W-Latent SSA 0.83± 0.02 51.4± 8.1 82.92± 2.49 27.16± 2.77

Standard ID - 227.0± 0.0 90.76± 2.70 32.36± 2.85
2 W-Latent ID 0.50± 0.04 219.9± 14.7 90.03± 2.81 31.14± 2.17

Standard SSA - 227.0± 0.0 84.15± 2.26 51.58± 3.00
W-Latent SSA 0.83± 0.02 51.4± 8.1 84.35± 2.24 52.58± 2.54

Standard ID - 227.0± 0.0 90.79± 2.71 7.70± 0.48
3 W-Latent ID 0.50± 0.04 219.9± 14.7 90.14± 2.66 7.52± 0.41

Standard SSA - 227.0± 0.0 48.87± 2.66 14.36± 0.42
W-Latent SSA 0.83± 0.02 51.4± 8.1 56.76± 3.56 15.40± 0.47

Table V.6: Comparison of standard and weighted Conformal Prediction on multi-class
tumor volume estimation for a target coverage of 90%. CP=Conformal Prediction,
ESS=Effective Sample Size, ID=In-distribution. Class 1: Necrosis, Class 2: Edematous,
Class 3: Gadolinium-enhancing tumor. ml: milliliter. Metrics are estimated over 250
trials.

are not too far, in which case the density ratio is not defined anymore. Importantly, we used
a simple Logistic Regression model for these experiments. It can be anticipated that more
efficient classifiers (e.g. Random Forest or Support Vector Machines) could achieve improved
accuracies in distinguishing between calibration and shifted test samples. As an effect, the
ESS will be reduced more heavily, which adds up to the instability of the weighted conformal
procedure. This emphasizes the difficulty of implementing weighted CP in our medical image
setting, as calibration datasets are rather small. Implementing the weighted CP is linked
with an additional reduction effect of the calibration size, and then CP becomes intractable,
as shown on MSLUB where the ESS converges to 0. In future work, improvement of the
weight computation step could result in a more efficient reduction of the coverage gap on
domain-shift settings. We note that there are recent studies tackling the problem of density
ratio estimation when the two distributions are far apart [331, 332]. These methodological
developments could partly alleviate the issues we face with the WCP procedure when the
test data is significantly different from the training one.

V.4 Chapter conclusion

In this chapter, the building of predictive intervals for lesion volumes has been investigated.
This application of uncertainty is currently overlooked in the medical DL literature, although
being of crucial importance for real-world applications. At Pixyl, automated segmentations are
used to generate reports displaying the total lesion volumes, and associating these estimations
with proper intervals is important to build user trust.

Experiments carried out on MS lesions and brain tumor segmentation show that sampling-
based approaches based on MC or TTA are time-consuming and thus not compatible with
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industrial applications where the inference time is key. Moreover, the variability of the
sampled volumes is low, which is compensated by large values of q̂ and larger intervals.

This motivated the development of TriadNet, a framework allowing the direct estimation
of intervals. Moreover, the framework is interpretable as the 3 masks can be provided to
the user, allowing the visualization of the restrictive, balanced, and permissive masks (as
shown in Figure V.2.3). Overlapping the three masks allows to visualize uncertain areas at
the boundaries between classes, for instance, due to the partial volume effect in MRI. Finally,
TriadNet is a simple framework that can be adapted with any segmentation backbone. It is
associated with a marginal augmentation of the network parameters, which do not increase
training or inference time.

This work also proposed the first investigation of conformal calibration for predictive intervals
on lesion volumes in medical images. The framework provides interesting statistical guarantees
and experimental results followed the theory with great precision when calibration and test
data are exchangeable. However, two weak points of CP were highlighted. The first one is the
requirement for a large calibration dataset, which is not possible in most 3D medical-image
applications. The current guideline is to use 1000 data points for calibration [76], but our
results demonstrate that useful intervals can be achieved with as low as 50 calibration datasets
(MS experiment). In this setting, the average coverage is a few percent superior to 90%.
With more calibration samples (tumor experiment), the coverages are centered at 90% with
a smaller standard deviation. The second limitation is the assumption that calibration and
test data points are exchangeable, which is rarely the case for industrial medical applications.
Typically, if the distribution of lesion volumes in the test dataset changes or if the model
produces poor segmentations on the test set, the coverage can diverge from the target,
calibrated one. This could potentially be alleviated with a weighted formulation of CP, which
has been investigated. This is based on the estimation of the density ratio between calibration
and test distributions, for which we propose an efficient approach making use of the latent
representations of the input images generated by the trained TriadNet model. This allows
the reduction of the high-dimensional MRI to a small latent vector, which allows the use of
a standard Logistic Regression model to estimate the weights. However, when the shift is
too important, we show that the weights diverge which causes an important reduction of the
effective sample size. It can even converge to 0 if the weights are too extreme. As a result,
the weighted CP produces uninformative and excessively large intervals.

Despite this drawback, CP has proven to be a simple and practical tool for calibrating intervals
without making any assumptions about the way they were generated or about the data
distribution. In this chapter, CP has been investigated solely around the notion of coverage,
which can be framed as a 0− 1 error: the ground truth volume is either contained or not in
the PI. While being the main application of CP, the conformal framework is more general
and can also be applied to control any monotone loss function, which has potentially many
applications in the medical domain. The resulting framework, called Conformal Risk Control,
can for instance be used to optimize decision thresholds of medical image segmentation
networks. We propose an investigation of such a paradigm in Appendix A6.



General Conclusion

Deep Learning models have revolutionized the field of medical image analysis, but to be
adopted and trusted in the clinic by healthcare professionals, confidence estimates should be
provided alongside predictions. This thesis proposes a series of methodological developments
intended to enhance the raw predictions with uncertainty estimates operating at different
levels of radiological analysis.

At the voxel level, various popular uncertainty estimators were first compared on three
different brain lesion segmentation tasks in MRI: MS lesions, glioblastoma, and strokes. A
particular care was attributed to inference time, a crucial parameter for industrial applications.
This series of experiments highlighted the relevancy of the Deep Ensemble technique to provide
voxel-level uncertainty estimates, as well as boosting the segmentation accuracy in both
in-distribution and out-of-distribution settings. Deep Ensemble is associated with an overhead
of computation during the model development stage, however, it is very efficient at inference
time as compared to other sampling-based techniques such as the popular Monte Carlo
Dropout.

Building from voxel-level predictions, we then proposed to study the quantification of
uncertainty at the lesion level. For applications revolving around the detection of multiple
lesion instances per subject, as is typically the case for MS, instance-level confidence scores
are preferred for a rapid overview of the automated prediction. Then, the clinician can
directly review the uncertain lesions and discard them if judged inappropriate. To solve
this challenge, we proposed a framework based on the training of an auxiliary classifier
that predicts the status of the identified lesion (true positive or false positive) based on an
extracted lesion representation. This representation choice is important, and three options
were investigated: a Radiomics representation, a bounding-box representation, and finally
graphs. The latter allows a flexible modelization of lesions and can naturally handle their
heterogeneity while being frugal in terms of parameters. The interest of these approaches
was demonstrated in three different lesion-oriented tasks: cross-sectional and longitudinal MS
lesions detection, and lung nodules detection. One limit is the need for a sufficient amount
of true and false positive lesions for training, which was found as a major drawback for the
longitudinal experiment, for which lesion instances are particularly scarce.

The voxel and lesion-level experiments also allowed us to identify one important weakness of
DL models, which is the robustness under domain shift. This has been investigated with two
domain-shift scenarios for MS, one with data acquired in a different center (MSLUB), and
one with a lower MRI quality (1.5 Tesla). For glioblastoma segmentation, it is investigated
using a dataset comprising lower-quality MRI and more advanced stages of the disease
(SSA dataset). In each case, the segmentation quality dropped. There is little hope of
correcting this deficiency using standard data augmentation alone. Indeed, contrast and
spatial transformations can not generate enough variability to account for all the differences
between MRI scanners and acquisition protocols. Thus, being able to automatically flag
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non-conform inputs is crucial to prevent suboptimal predictions. This has been investigated
in detail in the third chapter focusing on out-of-distribution detection. Latent-space detectors
based on the Mahalanobis distance were found particularly efficient, as well as being associated
with low computational overhead. Indeed, it can be implemented in any trained segmentation
model, only requiring access to the intermediate layer activation. Using a large benchmark of
24 OOD settings, we showed that this technique outperformed uncertainty and reconstruction-
based approaches. However, this technique is highly dependent on the layer selection to
gather the latent representations. This optimal layer is moreover dependent on the choice of
the segmentation backbone. We show that the cumbersome layer selection can be alleviated
by using a multi-layer aggregation strategy, which was found to perform consistently well
across segmentation architectures.

OOD detection can be seen as a form of input-level QC, aiming at detecting images far from
the training distribution. However, another definition of OOD is possible by taking into
account the performance of the model on the OOD sample. This redefinition of OOD states
that a sample is OOD if the associated segmentation is poor, regardless of the distance to the
training database. This is akin to output-level QC, aiming at detecting segmentations that
do not meet predefined standards. We explored how input and output level QC scores can
be intertwined to provide a richer QC strategy. More specifically, we proposed to stratify the
prediction space into 4 regions that present progressively degrading qualities of prediction.
This unified QC strategy could be used to give insights to the user concerning the expected
adequacy of the automated result.

Lastly, automated segmentations are used to extract high-level metrics such as lesion vol-
umes, which are crucial bio-markers for many neurological diseases. Complementing these
estimations with predictive intervals is a key to avoid misleading the reader. We proposed
the first investigation of conformal prediction for lesion volume estimation in 3D brain MRI.
Our approach called TriadNet is versatile and enables the construction of intervals without
relying on sampling. Moreover, the approach is interpretable as three masks are provided
to the user allowing them to visualize bounds in the form of restrictive and permissive
delineations. The development of this module allowed us to emphasize several limitations of
the conformal prediction framework in 3D medical image analysis pipelines. First, it requires
a large calibration dataset that is usually unavailable due to the scarcity of medical-image
datasets. Second it is based on the optimistic assumption that calibration and test data
are exchangeable. A weighted version of conformal prediction can be adopted, but it is
only efficient when the domain shift is not too important. In this direction, we propose an
approach to estimate the gap between calibration and test samples relying on compressed
latent representations.
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230 General Conclusion

In conclusion, the methodologies developed during this Ph.D. project enable a complete
estimation of uncertainties in medical image segmentation pipelines (see Figure ??). It starts
with voxel-level uncertainties that can be visualized next to the segmentation. Instance-level
scores allow for confidence estimates aligned with the clinician’s attention for lesion-based
diseases such as MS. An overall appreciation concerning the conformity of the input image
and quality of the output is provided to identify poor analyses. Finally, automatic reports
displaying lesion volumes are enriched by predictive intervals for a more trustworthy estimation.
Overall, particular attention was given to the development of versatile and robust tools. This
is why each module has been evaluated on various pathologies and domain-shift settings when
possible (in Appendix, Tables A.9.1 and A.9.2 present the complete list of databases used
in the thesis). As inference time is key in industrial applications, the developed solutions
are efficient and can be seamlessly incorporated into the inference pipeline. Incorporation
of these tools in Pixyl workflow will ensure wiser decision-making and increase trust in the
automated reports.

More generally, this Ph.D. project was the opportunity to investigate in detail exciting
methodology developments in Deep Learning, such as Graph Neural Networks, Generative
Adversarial Networks, and Conformal Predictions. The skills acquired in this thesis have also
enabled us to take part in medical image segmentation challenges (Appendix A7-A8).

As a perspective, we note that the evaluation of uncertainty is generally limited to the
detection of errors. Voxel uncertainty is used to detect incorrect voxels, lesion uncertainty is
used to identify false positive lesions, and output QC aims at the detection of poor overall
segmentations. This is because ground truth uncertainty labels are not available in most
cases. Evaluating uncertainty estimates by their beneficial impact on decision-making would
be an interesting future lead to validate the usefulness of the developed methods. Lastly,
our different experiments stressed the limited generalization of DL models when the test
distribution differs from the training one. Even if the drift seems moderate, such as the
MSLUB or SSA datasets used throughout the thesis experiments, segmentations become
suboptimal. This also manifested in the last part of this thesis during which the Conformal
Prediction framework was investigated. While it provides provable statistical guarantees
on in-distribution data, it no longer holds when the distribution shifts. For a software like
Pixyl.Neuro processing hundreds of cases per day, it is crucial to guarantee the robustness of
the algorithm to make sure that the same level of quality is met in each imaging center. Data
Augmentation alone, used systematically to train the models in this thesis, is not sufficient
to mimic the variability of the real world. This open the leads to exciting research on the
amelioration of the generalization capacity of Deep Learning models.



Bibliography

[1] Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning MIT Press, 2016.
[2] Christy JW Ledford, Dean A Seehusen, Alexander W Chessman and Navkiran K

Shokar, How We Teach US Medical Students to Negotiate Uncertainty in Clinical: A
CERA Study. Family Medicine 47 (2015), 31.

[3] Marieka A Helou, Deborah Diaz-Granados, Michael S Ryan and John W Cyrus,
Uncertainty in decision-making in medicine: a scoping review and thematic analysis
of conceptual models, Academic medicine: journal of the Association of American
Medical Colleges 95 (2020), 157.

[4] George Cybenko, Approximation by superpositions of a sigmoidal function, Mathe-
matics of control, signals and systems 2 (1989), 303.

[5] Chris Olah, Alexander Mordvintsev and Ludwig Schubert, Feature Visualization, 2017,
url: https://distill.pub/2017/feature-visualization.

[6] Fionn Murtagh, Multilayer perceptrons for classification and regression, Neurocom-
puting 2 (1991), 183.

[7] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton, ImageNet classification with
deep convolutional neural networks, Communications of the ACM 60 (2017), 84.

[8] Adam Paszke et al., PyTorch: An Imperative Style, High-Performance Deep Learning
Library, Advances in Neural Information Processing Systems 32 (2019), 8024.

[9] Martin Abadi et al., TensorFlow: a system for Large-Scale machine learning, 12th
USENIX symposium on operating systems design and implementation (2016), 265.

[10] Zhou and Chellappa, Computation of optical flow using a neural network, IEEE 1988
international conference on neural networks (1988), 71.

[11] Gao Huang, Zhuang Liu, Laurens Van Der Maaten and Kilian Q Weinberger, Densely
connected convolutional networks, Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2017), 4700.

[12] Mingxing Tan and Quoc Le, Efficientnet: Rethinking model scaling for convolutional
neural networks, International Conference on Machine Learning (2019), 6105.

[13] Olaf Ronneberger, Philipp Fischer and Thomas Brox, U-net: Convolutional networks for
biomedical image segmentation, International Conference on Medical image computing
and computer-assisted intervention (2015), 234.

[14] Eric Kerfoot, James Clough, Ilkay Oksuz, Jack Lee, Andrew P King and Julia A
Schnabel, Left-ventricle quantification using residual U-Net, International Workshop
on Statistical Atlases and Computational Models of the Heart (2018), 371.

[15] Fausto Milletari, Nassir Navab and Seyed-Ahmad Ahmadi, V-net: Fully convolutional
neural networks for volumetric medical image segmentation, 2016 fourth international
conference on 3D vision (2016), 565.

[16] Ozan Oktay et al., Attention u-net: Learning where to look for the pancreas, Medical
Imaging with Deep Learning (2018).

[17] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen and Klaus H Maier-
Hein, nnU-Net: a self-configuring method for deep learning-based biomedical image
segmentation, Nature methods 18 (2021), 203.

https://distill.pub/2017/feature-visualization


232 Bibliography

[18] Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang, Holger R Roth and
Daguang Xu, Swin unetr: Swin transformers for semantic segmentation of brain tumors
in mri images, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain
Injuries: 7th International Workshop, Held in Conjunction with MICCAI 2021 (2022),
272.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser and Illia Polosukhin, Attention is all you need, Advances in
neural information processing systems 30 (2017).

[20] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang, Andriy Myronenko,
Bennett Landman, Holger R Roth and Daguang Xu, Unetr: Transformers for 3d
medical image segmentation, Proceedings of the IEEE/CVF winter conference on
applications of computer vision (2022), 574.

[21] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, et
al., TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation,
arXiv preprint arXiv:2102.04306 (2021).

[22] Kelei He et al., Transformers in medical image analysis, Intelligent Medicine 3 (2023),
59.

[23] Sergey Ioffe and Christian Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, International conference on machine
learning (2015), 448.

[24] Hongwei Yong, Jianqiang Huang, Deyu Meng, Xiansheng Hua and Lei Zhang, Mo-
mentum batch normalization for deep learning with small batch size, Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XII 16 (2020), 224.

[25] Dmitry Ulyanov, Andrea Vedaldi and Victor Lempitsky, Improved texture networks:
Maximizing quality and diversity in feed-forward stylization and texture synthesis,
Proceedings of the IEEE conference on computer vision and pattern recognition (2017),
6924.

[26] Lei Jimmy Ba, Jamie Ryan Kiros and Geoffrey E. Hinton, Layer Normalization, CoRR
abs/1607.06450 (2016).

[27] Yuxin Wu and Kaiming He, Group normalization, Proceedings of the European
Conference on Computer Vision (ECCV) (2018), 3.

[28] Jun Ma, Jianan Chen, Matthew Ng, Rui Huang, Yu Li, Chen Li, Xiaoping Yang and
Anne L Martel, Loss odyssey in medical image segmentation, Medical Image Analysis
71 (2021), 102035.

[29] Seyed Sadegh Mohseni Salehi, Deniz Erdogmus and Ali Gholipour, Tversky loss func-
tion for image segmentation using 3D fully convolutional deep networks, International
Workshop on Machine Learning in Medical Imaging (2017), 379.

[30] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin and M Jorge Car-
doso, Generalised dice overlap as a deep learning loss function for highly unbalanced
segmentations, Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support: Third International Workshop, DLMIA 2017, and 7th
International Workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017
(2017), 240.

[31] Lena Maier-Hein, Bjoern Menze, et al., Metrics reloaded: Pitfalls and recommendations
for image analysis validation, Nature Methods 2 (2022), 195.



Bibliography 233

[32] Hoel Kervadec, Jihene Bouchtiba, Christian Desrosiers, Eric Granger, Jose Dolz and
Ismail Ben Ayed, Boundary loss for highly unbalanced segmentation, International
conference on medical imaging with deep learning (2019), 285.

[33] Davood Karimi and Septimiu E Salcudean, Reducing the Hausdorff distance in medical
image segmentation with convolutional neural networks, IEEE Transactions on medical
imaging 39 (2019), 499.

[34] Rosana EL Jurdi, Caroline Petitjean, Paul Honeine, Veronika Cheplygina and Fahed
Abdallah, A surprisingly effective perimeter-based loss for medical image segmentation,
Medical Imaging with Deep Learning (2021), 158.

[35] Robert Hecht-Nielsen, Theory of the backpropagation neural network, Neural networks
for perception (1992), 65.

[36] John C. Duchi, Elad Hazan and Yoram Singer, Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization, J. Mach. Learn. Res. 12 (2011), 2121.

[37] Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic Optimization,
3rd International Conference on Learning Representations, ICLR 2015, Conference
Track Proceedings (2015).

[38] Yann LeCun, Léon Bottou, Genevieve B Orr and Klaus-Robert Müller, Efficient
backprop, Neural networks: Tricks of the trade (2002), 9.

[39] Devansh Arpit et al., A closer look at memorization in deep networks, International
conference on machine learning (2017), 233.

[40] Yarin Gal et al., Uncertainty in deep learning, PhD thesis, University of Cambridge,
2016.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever and Ruslan
Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting,
The journal of machine learning research 15 (2014), 1929.

[42] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht and Oriol Vinyals,
Understanding Deep Learning (Still) Requires Rethinking Generalization, Commun.
ACM 64 (2021), 107–115.

[43] Richard Shaw, Carole H Sudre, Sebastien Ourselin, M Jorge Cardoso and Hugh G
Pemberton, A Heteroscedastic Uncertainty Model for Decoupling Sources of MRI
Image Quality, Machine Learning for Biomedical Imaging 1 (2021), 1.

[44] Jiheon Jeong, Ki Duk Kim, Yujin Nam, Kyungjin Cho, Jiseon Kang, Gil-Sun Hong
and Namkug Kim, Generating High-Resolution 3D CT with 12-Bit Depth Using a
Diffusion Model with Adjacent Slice and Intensity Calibration Network, International
Conference on Medical Image Computing and Computer-Assisted Intervention (2023),
366.

[45] Wei Peng, Ehsan Adeli, Tomas Bosschieter, Sang Hyun Park, Qingyu Zhao and Kilian
M Pohl, Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic
Model, International Conference on Medical Image Computing and Computer-Assisted
Intervention (2023), 14.

[46] Xinyi Yu, Guanbin Li, Wei Lou, Siqi Liu, Xiang Wan, Yan Chen and Haofeng
Li, Diffusion-based data augmentation for nuclei image segmentation, International
Conference on Medical Image Computing and Computer-Assisted Intervention (2023),
592.

[47] Lingting Zhu, Zeyue Xue, Zhenchao Jin, Xian Liu, Jingzhen He, Ziwei Liu and
Lequan Yu, Make-a-volume: Leveraging latent diffusion models for cross-modality



234 Bibliography

3d brain mri synthesis, International Conference on Medical Image Computing and
Computer-Assisted Intervention (2023), 592.

[48] Daniel P Huttenlocher, Gregory A. Klanderman and William J Rucklidge, Comparing
images using the Hausdorff distance, IEEE Transactions on pattern analysis and
machine intelligence 15 (1993), 850.

[49] Chuan Guo, Geoff Pleiss, Yu Sun and Kilian Q Weinberger, On calibration of modern
neural networks, International Conference on Machine Learning (2017), 1321.

[50] Michael Yeung, Leonardo Rundo, Yang Nan, Evis Sala, Carola-Bibiane Schönlieb and
Guang Yang, Calibrating the Dice loss to handle neural network overconfidence for
biomedical image segmentation, Journal of Digital Imaging 36 (2023), 739.

[51] Anh Nguyen, Jason Yosinski and Jeff Clune, Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images, Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2015), 427.

[52] Roger Allan Ford, W Price and II Nicholson, Privacy and accountability in black-box
medicine, Mich. Telecomm. Tech. L. Rev. 23 (2016), 1.

[53] Moloud Abdar et al., A review of uncertainty quantification in deep learning: Tech-
niques, applications and challenges, Information Fusion 76 (2021), 243.

[54] Sana Tonekaboni, Shalmali Joshi, Melissa D McCradden and Anna Goldenberg, What
clinicians want: contextualizing explainable machine learning for clinical end use,
Machine learning for healthcare conference (2019), 359.

[55] Eyke Hüllermeier and Willem Waegeman, Aleatoric and epistemic uncertainty in
machine learning: An introduction to concepts and methods, Machine Learning 110
(2021), 457.

[56] Andrey Malinin, Uncertainty estimation in deep learning with application to spoken
language assessment, PhD thesis, University of Cambridge, 2019.

[57] Alex Kendall and Yarin Gal, What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision?, Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017 (2017), 5574.

[58] Zhiyun Xue, Feng Yang, Sivaramakrishnan Rajaraman, Ghada Zamzmi and Sameer
Antani, Cross Dataset Analysis of Domain Shift in CXR Lung Region Detection,
Diagnostics 13 (2023), 1068.

[59] Anton S Becker, Krishna Chaitanya, Khoschy Schawkat, Urs J Muehlematter, Andreas
M Hötker, Ender Konukoglu and Olivio F Donati, Variability of manual segmentation
of the prostate in axial T2-weighted MRI: A multi-reader study, European journal of
radiology 121 (2019), 108716.

[60] Leo Joskowicz, D Cohen, N Caplan and Jacob Sosna, Inter-observer variability of
manual contour delineation of structures in CT, European radiology 29 (2019), 1391.

[61] Jiachen Yao, Yikai Zhang, Songzhu Zheng, Mayank Goswami, Prateek Prasanna
and Chao Chen, Learning to Segment from Noisy Annotations: A Spatial Correction
Approach, International Conference on Learning Representations (2023).

[62] Miguel Angel Gonzalez Ballester, Andrew P Zisserman and Michael Brady, Estimation
of the partial volume effect in MRI, Medical image analysis 6 (2002), 389.

[63] Olivier Commowick, Frédéric Cervenansky, François Cotton and Michel Dojat, MSSEG-
2 challenge proceedings: Multiple sclerosis new lesions segmentation challenge using
a data management and processing infrastructure, MICCAI 2021-24th International



Bibliography 235

Conference on Medical Image Computing and Computer Assisted Intervention (2021),
126.

[64] Benjamin Lambert, Florence Forbes, Senan Doyle, Harmonie Dehaene and Michel
Dojat, Trustworthy clinical AI solutions: A unified review of uncertainty quantification
in Deep Learning models for medical image analysis, Artificial Intelligence in Medicine
(2024), 102830, issn: 0933-3657.

[65] Ananya Kumar, Percy Liang and Tengyu Ma, Verified Uncertainty Calibration, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019 (2019), 3787.

[66] Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song
and Peter Flach, Beyond temperature scaling: Obtaining well-calibrated multi-class
probabilities with dirichlet calibration, Advances in neural information processing
systems 32 (2019).

[67] Balamurali Murugesan, Bingyuan Liu, Adrian Galdran, Ismail Ben Ayed and Jose
Dolz, Calibrating segmentation networks with margin-based label smoothing, Medical
Image Analysis 87 (2023), 102826.

[68] Zhaoshuo Diao, Huiyan Jiang and Tianyu Shi, A unified uncertainty network for
tumor segmentation using uncertainty cross entropy loss and prototype similarity,
Knowledge-Based Systems 246 (2022), 108739.

[69] Alain Jungo, Fabian Balsiger and Mauricio Reyes, Analyzing the quality and challenges
of uncertainty estimations for brain tumor segmentation, Frontiers in neuroscience 14
(2020), 282.

[70] Terrance DeVries and Graham W Taylor, Leveraging uncertainty estimates for pre-
dicting segmentation quality, arXiv e-prints (2018).

[71] Christoph Berger, Magdalini Paschali, Ben Glocker and Konstantinos Kamnitsas,
Confidence-based out-of-distribution detection: a comparative study and analysis,
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal
Imaging, Placental and Preterm Image Analysis (2021), 122.

[72] Camila González, Karol Gotkowski, Moritz Fuchs, Andreas Bucher, Armin Dadras,
Ricarda Fischbach, Isabel Jasmin Kaltenborn and Anirban Mukhopadhyay, Distance-
based detection of out-of-distribution silent failures for Covid-19 lung lesion segmenta-
tion, Medical Image Analysis 82 (2022), 102596.

[73] Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh and Alastair
Burt, Deep learning uncertainty and confidence calibration for the five-class polyp
classification from colonoscopy, Medical Image Analysis 62 (2020), 101653.

[74] Gongbo Liang, Yu Zhang and Nathan Jacobs, Neural network calibration for medical
imaging classification using dca regularization, International Conference on Machine
Learning, Workshop on Uncertainty and Robustness in Deep Learning (2020).

[75] Vladimir Vovk, Alexander Gammerman and Glenn Shafer, Algorithmic learning in a
random world, 29 (2005).

[76] Anastasios N. Angelopoulos and Stephen Bates, Conformal Prediction: A Gentle
Introduction, Foundations and Trends in Machine Learning 16 (2023), 494.

[77] Anastasios Angelopoulos, Stephen Bates, Jitendra Malik and Michael I Jordan, Uncer-
tainty sets for image classifiers using conformal prediction, 9th International Conference
on Learning Representations, ICLR 2021 (2021).



236 Bibliography

[78] Yaniv Romano, Evan Patterson and Emmanuel Candes, Conformalized quantile
regression, Advances in neural information processing systems 32 (2019), 3538.

[79] Jonathan Alvarsson, Staffan Arvidsson McShane, Ulf Norinder and Ola Spjuth, Pre-
dicting with confidence: using conformal prediction in drug discovery, Journal of
Pharmaceutical Sciences 110 (2021), 42.

[80] Daniel Csillag, Lucas Monteiro Paes, Thiago Ramos, João Vitor Romano, Rodrigo
Schuller, Roberto B Seixas, Roberto I Oliveira and Paulo Orenstein, AmnioML:
amniotic fluid segmentation and volume prediction with uncertainty quantification,
Proceedings of the AAAI Conference on Artificial Intelligence 37 (2023), 15494.

[81] Zach Eaton-Rosen, Thomas Varsavsky, Sebastien Ourselin and M Jorge Cardoso, As
easy as 1, 2... 4? uncertainty in counting tasks for medical imaging, Medical Image
Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International
Conference (2019), 356.

[82] Yizhe Zhang, Shuo Wang, Yejia Zhang and Danny Z Chen, RR-CP: Reliable-Region-
Based Conformal Prediction for Trustworthy Medical Image Classification, Interna-
tional Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical
Imaging (2023), 12.

[83] Hendrik Mehrtens, Tabea Bucher and Titus J Brinker, Pitfalls of Conformal Predictions
for Medical Image Classification, International Workshop on Uncertainty for Safe
Utilization of Machine Learning in Medical Imaging (2023), 198.

[84] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas and Ryan J Tibshirani,
Conformal prediction beyond exchangeability, The Annals of Statistics 51 (2023), 816.

[85] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu and Daan Wierstra, Weight
uncertainty in neural network, International Conference on Machine Learning (2015),
1613.

[86] Hao Wang and Dit-Yan Yeung, A survey on Bayesian deep learning, ACM Computing
Surveys (CSUR) 53 (2020), 1.

[87] Tyler LaBonte, Carianne Martinez and Scott A Roberts, We know where we don’t
know: 3d bayesian cnns for credible geometric uncertainty, arXiv e-prints (2019).

[88] Laurent Valentin Jospin, Hamid Laga, Farid Boussaid, Wray Buntine and Mohammed
Bennamoun, Hands-on Bayesian neural networks—A tutorial for deep learning users,
IEEE Computational Intelligence Magazine 17 (2022), 29.

[89] Kumar Shridhar, Felix Laumann and Marcus Liwicki, A comprehensive guide to
bayesian convolutional neural network with variational inference, arXiv preprint
arXiv:1901.02731 (2019).

[90] Angelos Filos, Sebastian Farquhar, Aidan N Gomez, Tim GJ Rudner, Zachary Ken-
ton, Lewis Smith, Milad Alizadeh, Arnoud De Kroon and Yarin Gal, A systematic
comparison of bayesian deep learning robustness in diabetic retinopathy tasks, 4th
Workshop on Bayesian Deep Learning (NeurIPS 2019) (2019).

[91] Hendrik A. Mehrtens, Alexander Kurz, Tabea-Clara Bucher and Titus J. Brinker,
Benchmarking common uncertainty estimation methods with histopathological images
under domain shift and label noise, Medical Image Analysis 89 (2023), 102914.

[92] Pankaj Dhakal and Sashidhar Ram Joshi, Uncertainty Estimation in Detecting Knee
Abnormalities on MRI using Bayesian Deep Learning, Proceedings of 10th IOE
Graduate Conference 10 (2021).



Bibliography 237

[93] Haixing Li and Haibo Luo, Uncertainty Quantification in Medical Image Segmentation,
2020 IEEE 6th International Conference on Computer and Communications (ICCC)
(2020), 1936.

[94] Moritz Fuchs, Camila Gonzalez and Anirban Mukhopadhyay, Practical uncertainty
quantification for brain tumor segmentation, Medical Imaging with Deep Learning
(2021).

[95] Jadie Adams and Shireen Y Elhabian, Benchmarking Scalable Epistemic Uncertainty
Quantification in Organ Segmentation, International Workshop on Uncertainty for
Safe Utilization of Machine Learning in Medical Imaging (2023), 53.

[96] Michael Dusenberry, Ghassen Jerfel, Yeming Wen, Yian Ma, Jasper Snoek, Katherine
Heller, Balaji Lakshminarayanan and Dustin Tran, Efficient and scalable bayesian
neural nets with rank-1 factors, International conference on machine learning (2020),
2782.

[97] Yarin Gal and Zoubin Ghahramani, Dropout as a Bayesian approximation: Represent-
ing model uncertainty in deep learning, International Conference on Machine Learning
(2016), 1050.

[98] Yongchan Kwon, Joong-Ho Won, Beom Joon Kim and Myunghee Cho Paik, Uncer-
tainty quantification using Bayesian neural networks in classification: Application
to biomedical image segmentation, Computational Statisticsand Data Analysis 142
(2020), 106816.

[99] Alain Jungo et al., Towards uncertainty-assisted brain tumor segmentation and survival
prediction, International MICCAI Brainlesion Workshop (2017), 474.

[100] José Ignacio Orlando, Philipp Seeböck, Hrvoje Bogunović, Sophie Klimscha, Christoph
Grechenig, Sebastian Waldstein, Bianca S Gerendas and Ursula Schmidt-Erfurth,
U2-net: A bayesian u-net model with epistemic uncertainty feedback for photoreceptor
layer segmentation in pathological oct scans, IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019) (2019), 1441.

[101] Robin Camarasa, Daniel Bos, Jeroen Hendrikse, Paul Nederkoorn, Eline Kooi, Aad
van der Lugt and Marleen de Bruijne, Quantitative comparison of monte-carlo dropout
uncertainty measures for multi-class segmentation, Uncertainty for Safe Utilization
of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis:
Second International Workshop, UNSURE 2020, and Third International Workshop,
GRAIL 2020, Held in Conjunction with MICCAI 2020 (2020), 32.

[102] Biraja Ghoshal, Allan Tucker, Bal Sanghera and Wai Lup Wong, Estimating uncer-
tainty in deep learning for reporting confidence to clinicians when segmenting nuclei
image data, 2019 IEEE 32nd International Symposium on Computer-Based Medical
Systems (2019), 318.

[103] Yarin Gal, Jiri Hron and Alex Kendall, Concrete dropout, Advances in neural infor-
mation processing systems 30 (2017).

[104] Patrick McClure et al., Knowing what you know in brain segmentation using Bayesian
deep neural networks, Frontiers in neuroinformatics 13 (2019), 67.

[105] Aryan Mobiny, Pengyu Yuan, Supratik K Moulik, Naveen Garg, Carol C Wu and
Hien Van Nguyen, Dropconnect is effective in modeling uncertainty of bayesian deep
networks, Scientific reports 11 (2021), 1.



238 Bibliography

[106] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun and Rob Fergus, Regularization
of neural networks using dropconnect, International conference on machine learning
(2013).

[107] Balaji Lakshminarayanan, Alexander Pritzel and Charles Blundell, Simple and Scalable
Predictive Uncertainty Estimation using Deep Ensembles, Annual Conference on
Neural Information Processing Systems 2017 (2017), 6402.

[108] Andrey Malinin and Mark Gales, Uncertainty Estimation in Autoregressive Structured
Prediction, International Conference on Learning Representations (2020).

[109] Alireza Mehrtash, William M Wells, Clare M Tempany, Purang Abolmaesumi and
Tina Kapur, Confidence calibration and predictive uncertainty estimation for deep
medical image segmentation, IEEE Transactions on Medical Imaging 39 (2020), 3868.

[110] Jeppe Thagaard, Søren Hauberg, Bert van der Vegt, Thomas Ebstrup, Johan D Hansen
and Anders B Dahl, Can you trust predictive uncertainty under real dataset shifts
in digital pathology?, International Conference on Medical Image Computing and
Computer-Assisted Intervention (2020), 824.

[111] Hamzeh Asgharnezhad, Afshar Shamsi, Roohallah Alizadehsani, Abbas Khosravi, Saeid
Nahavandi, Zahra Alizadeh Sani, Dipti Srinivasan and Sheikh Mohammed Shariful
Islam, Objective evaluation of deep uncertainty predictions for covid-19 detection,
Scientific Reports 12 (2022), 1.

[112] Jasper Linmans, Jeroen van der Laak and Geert Litjens, Efficient Out-of-Distribution
Detection in Digital Pathology Using Multi-Head Convolutional Neural Networks.
Medical Imaging with Deep Learning (2020), 465.

[113] Kaisar Kushibar, Victor Campello, Lidia Garrucho, Akis Linardos, Petia Radeva and
Karim Lekadir, Layer Ensembles: A Single-Pass Uncertainty Estimation in Deep Learn-
ing for Segmentation, Medical Image Computing and Computer Assisted Intervention–
MICCAI 2022: 25th International Conference (2022), 514.

[114] Lorena Qendro, Alexander Campbell, Pietro Lio and Cecilia Mascolo, Early exit
ensembles for uncertainty quantification, Machine Learning for Health (2021), 181.

[115] Gengyan Zhao, Fang Liu, Jonathan A Oler, Mary E Meyerand, Ned H Kalin and
Rasmus M Birn, Bayesian convolutional neural network based MRI brain extraction
on nonhuman primates, Neuroimage 175 (2018), 32.

[116] Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov and Andrew
Gordon Wilson, A simple baseline for bayesian uncertainty in deep learning, Advances
in neural information processing systems 32 (2019).

[117] Markus Lindén, Azat Garifullin and Lasse Lensu, Weight averaging impact on the
uncertainty of retinal artery-venous segmentation, Uncertainty for Safe Utilization
of Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis:
Second International Workshop, UNSURE 2020, and Third International Workshop,
GRAIL 2020, Held in Conjunction with MICCAI 2020 (2020), 52.

[118] Yumin Liu, Claire Zhao and Jonathan Rubin, Uncertainty Quantification in Chest X-
Ray Image Classification using Bayesian Deep Neural Networks. Knowledge Discovery
in Healthcare Data, European Conference on Artificial Intelligence (2020), 19.

[119] Pablo M Granitto, Pablo F Verdes and H Alejandro Ceccatto, Neural network ensem-
bles: evaluation of aggregation algorithms, Artificial Intelligence 163 (2005), 139.



Bibliography 239

[120] Ludmila I Kuncheva and Christopher J Whitaker, Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy, Machine learning 51
(2003), 181.

[121] Agostina J Larrazabal, César Martínez, Jose Dolz and Enzo Ferrante, Orthogonal
ensemble networks for biomedical image segmentation, Medical Image Computing and
Computer Assisted Intervention–MICCAI 2021: 24th International Conference (2021),
594.

[122] Mariana-Iuliana Georgescu, Radu Tudor Ionescu and Andreea Iuliana Miron, Diversity-
Promoting Ensemble for Medical Image Segmentation, The 38th ACM/SIGAPP
Symposium On Applied Computing (2022).

[123] Moloud Abdar et al., Uncertainty quantification in skin cancer classification using
three-way decision-based Bayesian deep learning, Computers in biology and medicine
135 (2021), 104418.

[124] Moloud Abdar et al., UncertaintyFuseNet: Robust uncertainty-aware hierarchical
feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection,
Information Fusion 90 (2023), 364.

[125] Wei Ji, Wenting Chen, Shuang Yu, Kai Ma, Li Cheng, Linlin Shen and Yefeng Zheng,
Uncertainty quantification for medical image segmentation using dynamic label factor
allocation among multiple raters, MICCAI on QUBIQ Workshop (2020).

[126] Sabri Can Cetindag, Mert Yergin, Deniz Alis and Ilkay Oksuz, Meta-learning for Medi-
cal Image Segmentation Uncertainty Quantification, International MICCAI Brainlesion
Workshop (2022), 578.

[127] Yanwu Yang, Xutao Guo, Yiwei Pan, Pengcheng Shi, Haiyan Lv and Ting Ma,
Uncertainty Quantification in Medical Image Segmentation with Multi-decoder U-Net,
International MICCAI Brainlesion Workshop (2022), 570.

[128] Shi Hu, Daniel Worrall, Stefan Knegt, Bas Veeling, Henkjan Huisman and Max
Welling, Supervised uncertainty quantification for segmentation with multiple annota-
tions, International Conference on Medical Image Computing and Computer-Assisted
Intervention (2019), 137.

[129] Tanya Nair, Doina Precup, Douglas L Arnold and Tal Arbel, Exploring uncertainty
measures in deep networks for multiple sclerosis lesion detection and segmentation,
Medical image analysis 59 (2020), 101557.

[130] Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, Sébastien Ourselin and M Jorge
Cardoso, Towards safe deep learning: accurately quantifying biomarker uncertainty in
neural network predictions, International Conference on Medical Image Computing
and Computer-Assisted Intervention (2018), 691.

[131] Mark S Graham, Carole H Sudre, Thomas Varsavsky, Petru-Daniel Tudosiu, Parashkev
Nachev, Sebastien Ourselin and M Jorge Cardoso, Hierarchical brain parcellation with
uncertainty, Uncertainty for Safe Utilization of Machine Learning in Medical Imaging,
and Graphs in Biomedical Image Analysis: Second International Workshop, UNSURE
2020, and Third International Workshop, GRAIL 2020, Held in Conjunction with
MICCAI 2020 (2020), 23.

[132] Thierry Judge, Olivier Bernard, Woo-Jin Cho Kim, Alberto Gomez, Agisilaos Chartsias
and Pierre-Marc Jodoin, Asymmetric Contour Uncertainty Estimation for Medical
Image Segmentation, International Conference on Medical Image Computing and
Computer-Assisted Intervention (2023), 210.



240 Bibliography

[133] Richard McKinley, Micheal Rebsamen, Katrin Daetwyler, Raphael Meier, Piotr Rado-
jewski and Roland Wiest, Uncertainty-driven refinement of tumor-core segmentation
using 3D-to-2D networks with label uncertainty, International MICCAI Brainlesion
Workshop (2020), 401.

[134] Ziyin Liu, Zhikang Wang, Paul Pu Liang, Russ R Salakhutdinov, Louis-Philippe
Morency and Masahito Ueda, Deep gamblers: Learning to abstain with portfolio
theory, Advances in Neural Information Processing Systems 32 (2019).

[135] Till J Bungert, Levin Kobelke and Paul F Jäger, Understanding Silent Failures in
Medical Image Classification, International Conference on Medical Image Computing
and Computer-Assisted Intervention (2023), 400.

[136] Simon Kohl et al., A Probabilistic U-Net for Segmentation of Ambiguous Images,
Advances in Neural Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018 (2018), 6965.

[137] Simon AA Kohl, Bernardino Romera-Paredes, Klaus H Maier-Hein, Danilo Jimenez
Rezende, SM Eslami, Pushmeet Kohli, Andrew Zisserman and Olaf Ronneberger, A
hierarchical probabilistic u-net for modeling multi-scale ambiguities, arXiv e-prints
(2019).

[138] Christian F Baumgartner, Kerem C Tezcan, Krishna Chaitanya, Andreas M Hötker,
Urs J Muehlematter, Khoschy Schawkat, Anton S Becker, Olivio Donati and Ender
Konukoglu, Phiseg: Capturing uncertainty in medical image segmentation, Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention
(2019), 119.

[139] Marc Gantenbein, Ertunc Erdil and Ender Konukoglu, Revphiseg: A memory-efficient
neural network for uncertainty quantification in medical image segmentation, Uncer-
tainty for Safe Utilization of Machine Learning in Medical Imaging, and Graphs in
Biomedical Image Analysis (2020), 13.

[140] MM Amaan Valiuddin, Christiaan GA Viviers, Ruud JG van Sloun, Peter HN de
With and Fons van der Sommen, Improving Aleatoric Uncertainty Quantification in
Multi-annotated Medical Image Segmentation with Normalizing Flows, Uncertainty
for Safe Utilization of Machine Learning in Medical Imaging, and Perinatal Imaging,
Placental and Preterm Image Analysis: 3rd International Workshop, UNSURE 2021,
and 6th International Workshop, PIPPI 2021, Held in Conjunction with MICCAI 2021
(2021), 75.

[141] Christiaan GA Viviers, Amaan MM Valiuddin, Peter HN de With and Fons van der
Sommen, Probabilistic 3D segmentation for aleatoric uncertainty quantification in full
3D medical data, Medical Imaging 2023: Computer-Aided Diagnosis 12465 (2023),
343.

[142] Raghavendra Selvan, Frederik Faye, Jon Middleton and Akshay Pai, Uncertainty
quantification in medical image segmentation with normalizing flows, International
Workshop on Machine Learning in Medical Imaging (2020), 80.

[143] Miguel Monteiro, Loïc Le Folgoc, Daniel Coelho de Castro, Nick Pawlowski, Bernardo
Marques, Konstantinos Kamnitsas, Mark van der Wilk and Ben Glocker, Stochastic
segmentation networks: Modelling spatially correlated aleatoric uncertainty, Advances
in Neural Information Processing Systems 33 (2020), 12756.

[144] Tomer Amit, Shmuel Shichrur, Tal Shaharabany and Lior Wolf, Annotator Consensus
Prediction for Medical Image Segmentation with Diffusion Models, Medical Image



Bibliography 241

Computing and Computer Assisted Intervention – MICCAI 2023 (2023), ed. by Hayit
Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan,
Tanveer Syeda-Mahmood and Russell Taylor, 544.

[145] Murat Seckin Ayhan and Philipp Berens, Test-time Data Augmentation for Estimation
of Heteroscedastic Aleatoric Uncertainty in Deep Neural Networks, International
conference on Medical Imaging with Deep Learning (2018).

[146] Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin and Tom
Vercauteren, Aleatoric uncertainty estimation with test-time augmentation for medical
image segmentation with convolutional neural networks, Neurocomputing 338 (2019),
34.

[147] Laura Mora Ballestar and Veronica Vilaplana, MRI brain tumor segmentation and
uncertainty estimation using 3D-UNet architectures, Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes
2020, Held in Conjunction with MICCAI 2020 (2021), 376.

[148] Golara Javadi et al., Towards targeted ultrasound-guided prostate biopsy by incor-
porating model and label uncertainty in cancer detection, International Journal of
Computer Assisted Radiology and Surgery 17 (2022), 121.

[149] Janis Postels, Mattia Segu, Tao Sun, Luc Van Gool, Fisher Yu and Federico Tombari,
On the practicality of deterministic epistemic uncertainty, International Conference
on Machine Learning (2021).

[150] Erdi Calli, Bram Van Ginneken, Ecem Sogancioglu and Keelin Murphy, FRODO:
An In-Depth Analysis of a System to Reject Outlier Samples From a Trained Neural
Network, IEEE Transactions on Medical Imaging 42 (2022), 971.

[151] Harry Anthony and Konstantinos Kamnitsas, On the use of Mahalanobis distance for
out-of-distribution detection with neural networks for medical imaging, International
Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging
(2023), 136.

[152] Mickael Tardy, Bruno Scheffer and Diana Mateus, Uncertainty measurements for the
reliable classification of mammograms, International Conference on Medical Image
Computing and Computer-Assisted Intervention (2019), 495.

[153] McKell Woodland, Nihil Patel, Mais Al Taie, Joshua P. Yung, Tucker J. Netherton,
Ankit B. Patel and Kristy K. Brock, Dimensionality Reduction for Improving Out-of-
Distribution Detection in Medical Image Segmentation, International Workshop on
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (2023), 147.

[154] Davood Karimi and Ali Gholipour, Improving calibration and out-of-distribution
detection in deep models for medical image segmentation, IEEE Transactions on
Artificial Intelligence (2022).

[155] Benjamin Lambert, Florence Forbes, Senan Doyle and Michel Dojat, Multi-layer
Aggregation as a key to feature-based OOD detection, Uncertainty for Safe Utilization
of Machine Learning in Medical Imaging - 5th International Workshop, UNSURE
2023, Held in Conjunction with MICCAI 2023, Lecture Notes in Computer Science
14291 (2023), 104.

[156] Arthur P Dempster, A generalization of Bayesian inference, Journal of the Royal
Statistical Society: Series B (Methodological) 30 (1968), 205.

[157] Ke Zou, Xuedong Yuan, Xiaojing Shen, Meng Wang and Huazhu Fu, TBraTS: Trusted
Brain Tumor Segmentation, International Conference on Medical Image Computing



242 Bibliography

and Computer-Assisted Intervention, Lecture Notes in Computer Science 13438
(2022), 503.

[158] Murat Sensoy, Lance M. Kaplan and Melih Kandemir, Evidential Deep Learning
to Quantify Classification Uncertainty, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems 2018 (2018),
3183.

[159] Wei Fu, Yufei Chen, Wei Liu, Xiaodong Yue and Chao Ma, Evidence Reconciled
Neural Network for Out-of-Distribution Detection in Medical Images, International
Conference on Medical Image Computing and Computer-Assisted Intervention (2023),
305.

[160] Ling Huang, Su Ruan, Pierre Decazes and Thierry Denoeux, Evidential segmentation
of 3D PET/CT images, International Conference on Belief Functions (2021), 159.

[161] Ling Huang, Su Ruan and Thierry Denoeux, Belief function-based semi-supervised
learning for brain tumor segmentation, 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI) (2021), 160.

[162] Florin C Ghesu, Bogdan Georgescu, Eli Gibson, Sebastian Guendel, Mannudeep K
Kalra, Ramandeep Singh, Subba R Digumarthy, Sasa Grbic and Dorin Comaniciu,
Quantifying and leveraging classification uncertainty for chest radiograph assess-
ment, International Conference on Medical Image Computing and Computer-Assisted
Intervention (2019), 676.

[163] Florin C Ghesu et al., Quantifying and leveraging predictive uncertainty for medical
image assessment, Medical Image Analysis 68 (2021), 101855.

[164] Tareen Dawood, Emily Chan, Reza Razavi, Andrew P King and Esther Puyol-Anton,
Addressing deep learning model calibration using evidential neural networks and
uncertainty-aware training, 2023 IEEE 20th International Symposium on Biomedical
Imaging (ISBI) (2023).

[165] Martin Holm Jensen, Dan Richter Jørgensen, Raluca Jalaboi, Mads Eiler Hansen
and Martin Aastrup Olsen, Improving uncertainty estimation in convolutional neural
networks using inter-rater agreement, Medical Image Computing and Computer
Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China,
October 13–17, 2019, Proceedings, Part IV 22 (2019), 540.

[166] Santiago Toledo-Cortés, Melissa De La Pava, Oscar Perdómo and Fabio A González,
Hybrid deep learning gaussian process for diabetic retinopathy diagnosis and uncer-
tainty quantification, International Workshop on Ophthalmic Medical Image Analysis
(2020), 206.

[167] Lin Wang et al., Medical matting: a new perspective on medical segmentation with
uncertainty, Medical Image Computing and Computer Assisted Intervention–MICCAI
2021: 24th International Conference (2021), 573.

[168] Nataliia Molchanova, Vatsal Raina, Andrey Malinin, Francesco La Rosa, Henning
Muller, Mark Gales, Cristina Granziera, Mara Graziani and Meritxell Bach Cuadra,
Novel structural-scale uncertainty measures and error retention curves: application to
multiple sclerosis, 2023 IEEE 20th International Symposium on Biomedical Imaging
(ISBI) (2022).

[169] Ishaan Bhat, Hugo J Kuijf, Veronika Cheplygina and Josien PW Pluim, Using uncer-
tainty estimation to reduce false positives in liver lesion detection, 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI) (2021), 663.



Bibliography 243

[170] Ishaan Bhat, Josien PW Pluim, Max A Viergerver and Hugo J Kuijf, Influence of
uncertainty estimation techniques on false-positive reduction in liver lesion detection,
Machine Learning for Biomedical Imaging 1 (2022), 1.

[171] Joost JM Van Griethuysen et al., Computational radiomics system to decode the
radiographic phenotype, Cancer research 77 (2017), e104.

[172] Onur Ozdemir, Rebecca L Russell and Andrew A Berlin, A 3D probabilistic deep
learning system for detection and diagnosis of lung cancer using low-dose CT scans,
IEEE Transactions on Medical Imaging 39 (2019), 1419.

[173] Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab, Christian Wachinger, Alzheimer’s
Disease Neuroimaging Initiative, et al., Bayesian QuickNAT: Model uncertainty in
deep whole-brain segmentation for structure-wise quality control, NeuroImage 195
(2019), 11.

[174] Simon Graham, Hao Chen, Jevgenij Gamper, Qi Dou, Pheng-Ann Heng, David Snead,
Yee Wah Tsang and Nasir Rajpoot, MILD-Net: Minimal information loss dilated
network for gland instance segmentation in colon histology images, Medical image
analysis 52 (2019), 199.

[175] Yuta Hiasa, Yoshito Otake, Masaki Takao, Takeshi Ogawa, Nobuhiko Sugano and
Yoshinobu Sato, Automated muscle segmentation from clinical CT using Bayesian U-
net for personalized musculoskeletal modeling, IEEE Transactions on Medical Imaging
39 (2019), 1030.

[176] Xiaobin Hu, Rui Guo, Jieneng Chen, Hongwei Li, Diana Waldmannstetter, Yu Zhao,
Biao Li, Kuangyu Shi and Bjoern Menze, Coarse-to-fine adversarial networks and
zone-based uncertainty analysis for NK/T-cell lymphoma segmentation in CT/PET
images, IEEE journal of biomedical and health informatics 24 (2020), 2599.

[177] Sarahi Rosas-Gonzalez, Taibou Birgui-Sekou, Moncef Hidane, Ilyess Zemmoura and
Clovis Tauber, Asymmetric Ensemble of Asymmetric U-Net Models for Brain Tumor
Segmentation With Uncertainty Estimation, Frontiers in Neurology (2021), 1421.

[178] Guotai Wang, Wenqi Li, Sébastien Ourselin and Tom Vercauteren, Automatic brain
tumor segmentation based on cascaded convolutional neural networks with uncertainty
estimation, Frontiers in computational neuroscience 13 (2019), 56.

[179] Anjali Balagopal et al., A deep learning-based framework for segmenting invisible
clinical target volumes with estimated uncertainties for post-operative prostate cancer
radiotherapy, Medical image analysis 72 (2021), 102101.

[180] Alain Jungo, Raphael Meier, Ekin Ermis, Evelyn Herrmann and Mauricio Reyes,
Uncertainty-driven Sanity Check: Application to Postoperative Brain Tumor Cavity
Segmentation, Medical Imaging with Deep Learning (2022).

[181] Sambuddha Ghosal, Audrey Xie and Pratik Shah, Uncertainty quantified deep learning
for predicting dice coefficient of digital histopathology image segmentation, arXiv
e-prints (2021).

[182] Evan Hann, Ricardo A Gonzales, Iulia A Popescu, Qiang Zhang, Vanessa M Fer-
reira and Stefan K Piechnik, Ensemble of deep convolutional neural networks with
monte carlo dropout sampling for automated image segmentation quality control
and robust deep learning using small datasets, Annual Conference on Medical Image
Understanding and Analysis (2021), 280.

[183] Tewodros Weldebirhan Arega, Stéphanie Bricq, François Legrand, Alexis Jacquier,
Alain Lalande and Fabrice Meriaudeau, Automatic uncertainty-based quality controlled



244 Bibliography

T1 mapping and ECV analysis from native and post-contrast cardiac T1 mapping
images using Bayesian vision transformer, Medical image analysis 86 (2023), 102773.

[184] Ziyi Huang, Yu Gan, Theresa Lye, Haofeng Zhang, Andrew Laine, Elsa D Angelini and
Christine Hendon, Heterogeneity measurement of cardiac tissues leveraging uncertainty
information from image segmentation, International Conference on Medical Image
Computing and Computer-Assisted Intervention (2020), 782.

[185] Kristoffer Wickstrøm, Michael Kampffmeyer and Robert Jenssen, Uncertainty and
interpretability in convolutional neural networks for semantic segmentation of colorectal
polyps, Medical image analysis 60 (2020), 101619.

[186] Parth Natekar, Avinash Kori and Ganapathy Krishnamurthi, Demystifying brain
tumor segmentation networks: interpretability and uncertainty analysis, Frontiers in
computational neuroscience 14 (2020), 6.

[187] Bernhard Föllmer, Federico Biavati, Christian Wald, Sebastian Stober, Jackie Ma,
Marc Dewey and Wojciech Samek, Active multi-task learning with uncertainty weighted
loss for coronary calcium scoring, Medical Physics (2022).

[188] Amelia Jiménez-Sánchez, Diana Mateus, Sonja Kirchhoff, Chlodwig Kirchhoff, Peter
Biberthaler, Nassir Navab, Miguel A González Ballester and Gemma Piella, Curricu-
lum learning for improved femur fracture classification: Scheduling data with prior
knowledge and uncertainty, Medical Image Analysis 75 (2022), 102273.

[189] Lie Ju, Xin Wang, Lin Wang, Dwarikanath Mahapatra, Xin Zhao, Quan Zhou,
Tongliang Liu and Zongyuan Ge, Improving Medical Images Classification With
Label Noise Using Dual-Uncertainty Estimation, IEEE Trans. Medical Imaging 41
(2022), 1533.

[190] Chaoyi Li, Meng Li, Can Peng and Brian C Lovell, Dynamic Curriculum Learning via
In-Domain Uncertainty for Medical Image Classification, International Conference on
Medical Image Computing and Computer-Assisted Intervention (2023), 747.

[191] Soufiane Belharbi, Jérôme Rony, Jose Dolz, Ismail Ben Ayed, Luke McCaffrey and
Eric Granger, Deep interpretable classification and weakly-supervised segmentation of
histology images via max-min uncertainty, IEEE Transactions on Medical Imaging 41
(2021), 702.

[192] Jinyi Xiang, Peng Qiu and Yang Yang, FUSSNet: Fusing Two Sources of Uncertainty
for Semi-supervised Medical Image Segmentation, Medical Image Computing and
Computer Assisted Intervention–MICCAI 2022: 25th International Conference (2022),
481.

[193] Suman Sedai, Bhavna Antony, Ravneet Rai, Katie Jones, Hiroshi Ishikawa, Joel
Schuman, Wollstein Gadi and Rahil Garnavi, Uncertainty guided semi-supervised
segmentation of retinal layers in OCT images, International Conference on Medical
Image Computing and Computer-Assisted Intervention (2019), 282.

[194] Lequan Yu, Shujun Wang, Xiaomeng Li, Chi-Wing Fu and Pheng-Ann Heng, Uncertainty-
aware self-ensembling model for semi-supervised 3D left atrium segmentation, Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention
(2019), 605.

[195] Xuyang Cao, Houjin Chen, Yanfeng Li, Yahui Peng, Shu Wang and Lin Cheng, Uncer-
tainty aware temporal-ensembling model for semi-supervised abus mass segmentation,
IEEE transactions on medical imaging 40 (2020), 431.



Bibliography 245

[196] Wenjing Lu, Jiahao Lei, Peng Qiu, Rui Sheng, Jinhua Zhou, Xinwu Lu and Yang Yang,
UPCoL: Uncertainty-Informed Prototype Consistency Learning for Semi-supervised
Medical Image Segmentation, International Conference on Medical Image Computing
and Computer-Assisted Intervention (2023), 662.

[197] Raghav Mehta, Thomas Christinck, Tanya Nair, Paul Lemaitre, Douglas Arnold
and Tal Arbel, Propagating uncertainty across cascaded medical imaging tasks for
improved deep learning inference, Uncertainty for Safe Utilization of Machine Learning
in Medical Imaging and Clinical Image-Based Procedures (2019), 23.

[198] Leonhard F Feiner, Martin J Menten, Kerstin Hammernik, Paul Hager, Wenqi Huang,
Daniel Rueckert, Rickmer F Braren and Georgios Kaissis, Propagation and Attribution
of Uncertainty in Medical Imaging Pipelines, International Workshop on Uncertainty
for Safe Utilization of Machine Learning in Medical Imaging (2023), 1.

[199] Roger D Soberanis-Mukul, Nassir Navab and Shadi Albarqouni, Uncertainty-based
graph convolutional networks for organ segmentation refinement, Medical Imaging
with Deep Learning (2020), 755.

[200] Meng Wang, Lianyu Wang, Xinxing Xu, Ke Zou, Yiming Qian, Rick Siow Mong
Goh, Yong Liu and Huazhu Fu, Federated Uncertainty-Aware Aggregation for Fundus
Diabetic Retinopathy Staging, Medical Image Computing and Computer Assisted
Intervention – MICCAI 2023 (2023), ed. by Hayit Greenspan, Anant Madabhushi,
Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood and
Russell Taylor, 222.

[201] Jiayi Zhu, Bart Bolsterlee, Brian VY Chow, Yang Song and Erik Meijering, Uncertainty
and Shape-Aware Continual Test-Time Adaptation for Cross-Domain Segmentation of
Medical Images, International Conference on Medical Image Computing and Computer-
Assisted Intervention (2023), 659.

[202] Alireza Norouzi, Ali Emami, Kayvan Najarian, Nader Karimi, SM Reza Soroushmehr,
et al., Exploiting uncertainty of deep neural networks for improving segmentation accu-
racy in MRI images, ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (2019), 2322.

[203] Glenn W Brier, Verification of forecasts expressed in terms of probability, Monthly
weather review 78 (1950), 1.

[204] Sora Iwamoto, Bisser Raytchev, Toru Tamaki and Kazufumi Kaneda, Improving the
Reliability of Semantic Segmentation of Medical Images by Uncertainty Modeling with
Bayesian Deep Networks and Curriculum Learning, Uncertainty for Safe Utilization of
Machine Learning in Medical Imaging, and Perinatal Imaging, Placental and Preterm
Image Analysis (2021), 34.

[205] Rajeev Kumar Singh, Rohan Gorantla, Sai Giridhar Rao Allada and Pratap Narra,
SkiNet: A deep learning framework for skin lesion diagnosis with uncertainty estimation
and explainability, Plos one 17 (2022), e0276836.

[206] Thierry Judge, Olivier Bernard, Mihaela Porumb, Agisilaos Chartsias, Arian Beqiri and
Pierre-Marc Jodoin, CRISP-Reliable Uncertainty Estimation for Medical Image Seg-
mentation, Medical Image Computing and Computer Assisted Intervention–MICCAI
2022: 25th International Conference (2022), 492.

[207] Biraja Ghoshal and Allan Tucker, Estimating uncertainty and interpretability in deep
learning for coronavirus (COVID-19) detection, arXiv e-prints (2020).

http://www.worldcat.org/search?qt=worldcat_org_all&q=978-3-031-43895-0
http://www.worldcat.org/search?qt=worldcat_org_all&q=978-3-031-43895-0


246 Bibliography

[208] Saul Calderon-Ramirez et al., Improving uncertainty estimation with semi-supervised
deep learning for covid-19 detection using chest x-ray images, IEEE Access 9 (2021),
85442.

[209] Ruotao Zhang, Constantine Gatsonis and Jon Arni Steingrimsson, Role of calibration
in uncertainty-based referral for deep learning, Statistical Methods in Medical Research
32 (2023), 927.

[210] Jörg Sander, Bob D de Vos, Jelmer M Wolterink and Ivana Išgum, Towards increased
trustworthiness of deep learning segmentation methods on cardiac MRI, Medical
imaging 2019: image Processing 10949 (2019), 324.

[211] Lisa Herzog, Elvis Murina, Oliver Dürr, Susanne Wegener and Beate Sick, Integrating
uncertainty in deep neural networks for MRI based stroke analysis, Medical Image
Analysis 65 (2020), 101790.

[212] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens and Siegfried
Wahl, Leveraging uncertainty information from deep neural networks for disease
detection, Scientific reports 7 (2017), 1.

[213] Raghav Mehta et al., QU-BraTS: MICCAI BraTS 2020 Challenge on QuantifyingUncer-
tainty in Brain Tumor Segmentation-Analysis of Ranking Scores and Benchmarking
Results, Journal of Machine Learning for Biomedical Imaging 1 (2022).

[214] Andrey Malinin et al., Shifts 2.0: Extending The Dataset of Real Distributional Shifts,
arXiv preprint arXiv:2206.15407 (2022).

[215] Marc Combalia, Ferran Hueto, Susana Puig, Josep Malvehy and Veronica Vilaplana,
Uncertainty estimation in deep neural networks for dermoscopic image classifica-
tion, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (2020), 744.

[216] Katharina Hoebel, Vincent Andrearczyk, Andrew Beers, Jay Patel, Ken Chang, Adrien
Depeursinge, Henning Müller and Jayashree Kalpathy-Cramer, An exploration of
uncertainty information for segmentation quality assessment, Medical Imaging 2020:
Image Processing 11313 (2020), 381.

[217] Vatsal Raina, Nataliia Molchanova, Mara Graziani, Andrey Malinin, Henning Muller,
Meritxell Bach Cuadra and Mark Gales, Tackling Bias in the Dice Similarity Coef-
ficient: Introducing nDSC for White Matter Lesion Segmentation, 2023 IEEE 20th
International Symposium on Biomedical Imaging (ISBI) (2022).

[218] Alain Jungo, Raphael Meier, Ekin Ermis, Marcela Blatti-Moreno, Evelyn Herrmann,
Roland Wiest and Mauricio Reyes, On the effect of inter-observer variability for
a reliable estimation of uncertainty of medical image segmentation, International
Conference on Medical Image Computing and Computer-Assisted Intervention (2018),
682.

[219] Parinaz Roshanzamir, Hassan Rivaz, Joshua Ahn, Hamza Mirza, Neda Naghdi, Meagan
Anstruther, Michele C Battié, Maryse Fortin and Yiming Xiao, How inter-rater
variability relates to aleatoric and epistemic uncertainty: a case study with deep
learning-based paraspinal muscle segmentation, International Workshop on Uncertainty
for Safe Utilization of Machine Learning in Medical Imaging (2023), 74.

[220] Yoav Wald, Amir Feder, Daniel Greenfeld and Uri Shalit, On calibration and out-of-
domain generalization, Advances in neural information processing systems 34 (2021),
2215.



Bibliography 247

[221] Muhammad Akhtar Munir, Muhammad Haris Khan, M Sarfraz and Mohsen Ali,
Towards improving calibration in object detection under domain shift, Advances in
Neural Information Processing Systems 35 (2022), 38706.

[222] Christian Tomani, Sebastian Gruber, Muhammed Ebrar Erdem, Daniel Cremers and
Florian Buettner, Post-hoc uncertainty calibration for domain drift scenarios, Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), 10124.

[223] Yunye Gong, Xiao Lin, Yi Yao, Thomas G Dietterich, Ajay Divakaran and Melinda
Gervasio, Confidence calibration for domain generalization under covariate shift,
Proceedings of the IEEE/CVF International Conference on Computer Vision (2021),
8958.

[224] Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa
Eschenhagen, Richard E. Turner and Rio Yokota, Practical Deep Learning with
Bayesian Principles, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019 (2019), 4289.

[225] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov and Dmitry P. Vetrov, Pit-
falls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning, 8th
International Conference on Learning Representations, ICLR 2020 (2020).

[226] Bjoern H Menze et al., The multimodal brain tumor image segmentation benchmark
(BRATS), IEEE Transactions on Medical Imaging 34 (2014), 1993.

[227] Clare Walton et al., Rising prevalence of multiple sclerosis worldwide: Insights from
the Atlas of MS, Multiple Sclerosis Journal 26 (2020), 1816.

[228] Anthony L Traboulsee and DK Li, The role of MRI in the diagnosis of multiple
sclerosis. Advances in neurology 98 (2006), 125.

[229] Olivier Commowick et al., Multiple sclerosis lesions segmentation from multiple experts:
The MICCAI 2016 challenge dataset, Neuroimage 244 (2021), 118589.

[230] Aaron Carass, Snehashis Roy, Amod Jog, Jennifer L. Cuzzocreo, et al., Longitudinal
multiple sclerosis lesion segmentation: Resource and challenge, NeuroImage 148 (2017),
77.

[231] Žiga Lesjak, Alfiia Galimzianova, Aleš Koren, Matej Lukin, Franjo Pernuš, Boštjan
Likar and Žiga Špiclin, A novel public MR image dataset of multiple sclerosis patients
with lesion segmentations based on multi-rater consensus, Neuroinformatics 16 (2018),
51.

[232] Fabian Isensee et al., Automated brain extraction of multisequence MRI using artificial
neural networks, Human brain mapping 40 (2019), 4952.

[233] Kathy Rock, O McArdle, P Forde, M Dunne, D Fitzpatrick, B O’Neill and C Faul, A
clinical review of treatment outcomes in glioblastoma multiforme—the validation in a
non-trial population of the results of a randomised Phase III clinical trial: has a more
radical approach improved survival?, The British journal of radiology 85 (2012), e729.

[234] Neil Grech, Theresia Dalli, Sean Mizzi, Lara Meilak, Neville Calleja and Antoine
Zrinzo, Rising incidence of glioblastoma multiforme in a well-defined population,
Cureus 12 (2020).

[235] Farina Hanif, Kanza Muzaffar, Kahkashan Perveen, Saima M Malhi and Shabana
U Simjee, Glioblastoma multiforme: a review of its epidemiology and pathogenesis
through clinical presentation and treatment, Asian Pacific journal of cancer prevention:
APJCP 18 (2017), 3.



248 Bibliography

[236] Gaurav Shukla, Gregory S Alexander, Spyridon Bakas, Rahul Nikam, Kiran Talekar,
Joshua D Palmer and Wenyin Shi, Advanced magnetic resonance imaging in glioblas-
toma: a review, Chin Clin Oncol 6 (2017), 40.

[237] Ujjwal Baid et al., The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor
segmentation and radiogenomic classification, arXiv preprint arXiv:2107.02314 (2021).

[238] Maruf Adewole et al., The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma
Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa), ArXiv (2023).

[239] Valery L Feigin et al., Global, regional, and national burden of stroke and its risk
factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019,
The Lancet Neurology 20 (2021), 795.

[240] Jong S Kim, tPA helpers in the treatment of acute ischemic stroke: are they ready for
clinical use?, Journal of Stroke 21 (2019), 160.

[241] Keith W Muir, Alastair Buchan, Rudiger von Kummer, Joachim Rother and Jean-
Claude Baron, Imaging of acute stroke, The Lancet Neurology 5 (2006), 755.

[242] Sook-Lei Liew et al., A large, curated, open-source stroke neuroimaging dataset to
improve lesion segmentation algorithms, Scientific data 9 (2022), 320.

[243] Vladimir S Fonov, Alan C Evans, Robert C McKinstry, C Robert Almli and DL
Collins, Unbiased nonlinear average age-appropriate brain templates from birth to
adulthood, NeuroImage 47 (2009), S102.

[244] The MONAI Consortium, Project MONAI, Dec. 2020, doi: 10.5281/zenodo.4323059,
url: https://doi.org/10.5281/zenodo.4323059.

[245] Michał Futrega, Alexandre Milesi, Michał Marcinkiewicz and Pablo Ribalta, Optimized
U-Net for brain tumor segmentation, International MICCAI Brainlesion Workshop
(2021), 15.

[246] Fernando Pérez-García, Rachel Sparks and Sébastien Ourselin, TorchIO: a Python
library for efficient loading, preprocessing, augmentation and patch-based sampling of
medical images in deep learning, Computer Methods and Programs in Biomedicine
208 (2021), 106236.

[247] Silvia Seidlitz et al., Robust deep learning-based semantic organ segmentation in
hyperspectral images, Medical Image Analysis 80 (2022), 102488.

[248] Dan Hendrycks and Kevin Gimpel, A baseline for detecting misclassified and out-of-
distribution examples in neural networks, arXiv preprint arXiv:1610.02136 (2016).

[249] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He and Piotr Dollár, Focal Loss
for Dense Object Detection, IEEE Transactions on Pattern Analysis and Machine
Intelligence 42 (2020), 318.

[250] Nataliia Molchanova et al., Structural-Based Uncertainty in Deep Learning Across
Anatomical Scales: Analysis in White Matter Lesion Segmentation, arXiv preprint
arXiv:2311.08931 (2023).

[251] Benjamin Lambert, Florence Forbes, Senan Doyle, Alan Tucholka and Michel Dojat,
Beyond Voxel Prediction Uncertainty: Identifying brain lesions you can trust, Inter-
pretability of Machine Intelligence in Medical Image Computing: 5th International
Workshop, iMIMIC 2022, Held in Conjunction with MICCAI 2022, Lecture Notes in
Computer Science 13611 (2022), 61.

[252] Matthias Rottmann, Pascal Colling, Thomas Paul Hack, Robin Chan, Fabian Hüger,
Peter Schlicht and Hanno Gottschalk, Prediction error meta classification in semantic

https://doi.org/10.5281/zenodo.4323059
https://doi.org/10.5281/zenodo.4323059


Bibliography 249

segmentation: Detection via aggregated dispersion measures of softmax probabilities,
2020 International Joint Conference on Neural Networks (IJCNN) (2020), 1.

[253] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal of Machine
Learning Research 12 (2011), 2825.

[254] Thomas Lewiner, Hélio Lopes, Antônio Wilson Vieira and Geovan Tavares, Efficient
implementation of marching cubes’ cases with topological guarantees, Journal of
graphics tools 8 (2003), 1.

[255] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals and George E
Dahl, Message passing neural networks, Machine learning meets quantum physics
(2020), 199.

[256] Xiyuan Wang and Muhan Zhang, How Powerful are Spectral Graph Neural Networks,
International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore,
Maryland, USA, Proceedings of Machine Learning Research 162 (2022), 23341.

[257] Byung-Hoon Kim and Jong Chul Ye, Understanding graph isomorphism network for
rs-fMRI functional connectivity analysis, Frontiers in neuroscience 14 (2020), 630.

[258] Si Zhang, Hanghang Tong, Jiejun Xu and Ross Maciejewski, Graph convolutional
networks: a comprehensive review, Computational Social Networks 6 (2019), 1.

[259] Minjie Yu Wang, Deep graph library: Towards efficient and scalable deep learning on
graphs, ICLR workshop on representation learning on graphs and manifolds (2019).

[260] Rosana El Jurdi and Olivier Colliot, How Precise are Performance Estimates for
Typical Medical Image Segmentation Tasks? (2023), 1.

[261] Rebecca Siegel, Jiemin Ma, Zhaohui Zou and Ahmedin Jemal, Cancer statistics, 2014.
CA: a cancer journal for clinicians 64 (2014), 9.

[262] Edwin JR van Beek, Saeed Mirsadraee and John T Murchison, Lung cancer screening:
Computed tomography or chest radiographs?, World journal of radiology 7 (2015),
189.

[263] Konstantinos Loverdos, Andreas Fotiadis, Chrysoula Kontogianni, Marianthi Iliopoulou
and Mina Gaga, Lung nodules: a comprehensive review on current approach and
management, Annals of thoracic medicine 14 (2019), 226.

[264] Peter J Mazzone and Louis Lam, Evaluating the patient with a pulmonary nodule: a
review, Jama 327 (2022), 264.

[265] Denise R Aberle et al., Results of the two incidence screenings in the National Lung
Screening Trial, New England Journal of Medicine 369 (2013), 920.

[266] Geoffrey D Rubin, Lung nodule and cancer detection in CT screening, Journal of
thoracic imaging 30 (2015), 130.

[267] Jinglun Liang, Guoliang Ye, Jianwen Guo, Qifan Huang and Shaohui Zhang, Reducing
false-positives in lung nodules detection using balanced datasets, Frontiers in Public
Health 9 (2021), 671070.

[268] Samuel G Armato III et al., The lung image database consortium (LIDC) and image
database resource initiative (IDRI): a completed reference database of lung nodules
on CT scans, Medical physics 38 (2011), 915.

[269] Hui Yu, Jinqiu Li, Lixin Zhang, Yuzhen Cao, Xuyao Yu and Jinglai Sun, Design of
lung nodules segmentation and recognition algorithm based on deep learning, BMC
bioinformatics 22 (2021), 1.

[270] Saurabh Jain et al., Two time point MS lesion segmentation in brain MRI: an
expectation-maximization framework, Frontiers in neuroscience 10 (2016), 576.



250 Bibliography

[271] José V Manjón, José E Romero, Roberto Vivo-Hernando, Gregorio Rubio, Fernando
Aparici, Maria de La Iglesia-Vaya, Thomas Tourdias and Pierrick Coupé, Blind MRI
brain lesion inpainting using deep learning, Simulation and Synthesis in Medical
Imaging: 5th International Workshop, SASHIMI 2020, Held in Conjunction with
MICCAI 2020 (2020), 41.

[272] Reda Abdellah Kamraoui, Boris Mansencal, José V Manjon and Pierrick Coupé, Lon-
gitudinal detection of new MS lesions using deep learning, Frontiers in Neuroimaging
1 (2022), 948235.

[273] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville and Yoshua Bengio, Generative adversarial networks,
Communications of the ACM 63 (2020), 139.

[274] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou and Alexei A Efros, Image-to-image transla-
tion with conditional adversarial networks, Proceedings of the IEEE conference on
computer vision and pattern recognition (2017), 1125.

[275] Lin Zhang, Lei Zhang, Xuanqin Mou and David Zhang, A comprehensive evaluation
of full reference image quality assessment algorithms, 2012 19th IEEE International
Conference on Image Processing (2012), 1477.

[276] Zhou Wang, Alan C Bovik, Hamid R Sheikh and Eero P Simoncelli, Image quality
assessment: from error visibility to structural similarity, IEEE transactions on image
processing 13 (2004), 600.

[277] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang and Stephen
Paul Smolley, Least squares generative adversarial networks, Proceedings of the IEEE
international conference on computer vision (2017), 2794.

[278] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz and Bryan
Catanzaro, High-resolution image synthesis and semantic manipulation with condi-
tional gans, Proceedings of the IEEE conference on computer vision and pattern
recognition (2018), 8798.

[279] Walter HL Pinaya et al., Generative AI for medical imaging: extending the MONAI
framework, arXiv preprint arXiv:2307.15208 (2023).

[280] Taesung Park, Ming-Yu Liu, Ting-Chun Wang and Jun-Yan Zhu, Semantic image syn-
thesis with spatially-adaptive normalization, Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition (2019), 2337.

[281] The BraTS 2023 Challenge website url: https://www.synapse.org/#!Synapse:
syn51156910/wiki/622461.

[282] Yannick Suter, Urspeter Knecht, Waldo Valenzuela, Michelle Notter, Ekkehard Hewer,
Philippe Schucht, Roland Wiest and Mauricio Reyes, The LUMIERE dataset: Longi-
tudinal Glioblastoma MRI with expert RANO evaluation, Scientific data 9 (2022),
768.

[283] Richard Shaw, Carole Sudre, Sebastien Ourselin and M. Jorge Cardoso, MRI k-Space
Motion Artefact Augmentation: Model Robustness and Task-Specific Uncertainty,
Proceedings of The 2nd International Conference on Medical Imaging with Deep
Learning, Proceedings of Machine Learning Research 102 (2019), 427.

[284] Koen Van Leemput, Frederik Maes, Dirk Vandermeulen and Paul Suetens, Automated
model-based tissue classification of MR images of the brain, IEEE transactions on
medical imaging 18 (1999), 897.

https://www.synapse.org/#!Synapse:syn51156910/wiki/622461
https://www.synapse.org/#!Synapse:syn51156910/wiki/622461
https://www.synapse.org/#!Synapse:syn51156910/wiki/622461


Bibliography 251

[285] Benjamin Billot, Eleanor Robinson, Adrian V Dalca and Juan Eugenio Iglesias, Partial
volume segmentation of brain MRI scans of any resolution and contrast, Medical Image
Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International
Conference (2020), 177.

[286] Torsten Rohlfing, Natalie M Zahr, Edith V Sullivan and Adolf Pfefferbaum, The SRI24
multichannel atlas of normal adult human brain structure, Human brain mapping 31
(2010), 798.

[287] Ian J Goodfellow, Jonathon Shlens and Christian Szegedy, Explaining and harnessing
adversarial examples, arXiv preprint arXiv:1412.6572 (2014).

[288] Anahita Fathi Kazerooni et al., The Brain Tumor Segmentation (BraTS) Challenge
2023: Focus on Pediatrics, ArXiv (2023).

[289] Ahmed W Moawad et al., The brain tumor segmentation (brats-mets) challenge 2023:
Brain metastasis segmentation on pre-treatment mri, ArXiv (2023).

[290] Dominic LaBella et al., The ASNR-MICCAI Brain Tumor Segmentation (BraTS)
Challenge 2023: Intracranial Meningioma, arXiv preprint arXiv:2305.07642 (2023).

[291] Mark Oliver Gueld, Michael Kohnen, et al., Quality of DICOM header information for
image categorization, Medical imaging 2002: PACS and integrated medical information
systems: design and evaluation 4685 (2002), 280.

[292] The Head CT CQ500 dataset url: http://headctstudy.qure.ai/dataset.
[293] Hugo J Kuijf et al., Standardized assessment of automatic segmentation of white matter

hyperintensities and results of the WMH segmentation challenge, IEEE transactions
on medical imaging 38 (2019), 2556.

[294] Fernando Pérez-García, Roman Rodionov, et al., Simulation of brain resection for
cavity segmentation using self-supervised and semi-supervised learning, Medical Image
Computing and Computer Assisted Intervention (MICCAI) 2020 (2020), 115.

[295] The Information eXtraction from Images (IXI) dataset url: https : / / brain -
development.org/ixi-dataset.

[296] A Emre Kavur et al., CHAOS challenge-combined (CT-MR) healthy abdominal organ
segmentation, Medical Image Analysis 69 (2021), 101950.

[297] Friska Natalia, Hira Meidia, et al., Development of Ground Truth Data for Automatic
Lumbar Spine MRI Image Segmentation, HPCC/SmartCity/DSS 2018 (2018), 1449.

[298] Dennis Ulmer and Giovanni Cinà, Know your limits: Uncertainty estimation with relu
classifiers fails at reliable ood detection, Uncertainty in Artificial Intelligence (2021),
1766.

[299] Dong Gong, Lingqiao Liu, Vuong Le, Budhaditya Saha, Moussa Reda Mansour, Svetha
Venkatesh and Anton van den Hengel, Memorizing normality to detect anomaly:
Memory-augmented deep autoencoder for unsupervised anomaly detection, Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (2019), 1705.

[300] Hyunjong Park, Jongyoun Noh and Bumsub Ham, Learning memory-guided normality
for anomaly detection, Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition (2020), 14372.

[301] Camila Gonzalez, Karol Gotkowski, Andreas Bucher, Ricarda Fischbach, Isabel
Kaltenborn and Anirban Mukhopadhyay, Detecting when pre-trained nnu-net models
fail silently for covid-19 lung lesion segmentation, Medical Image Computing and
Computer Assisted Intervention–MICCAI 2021: 24th International Conference (2021),
304.

http://headctstudy.qure.ai/dataset
http://headctstudy.qure.ai/dataset
https://brain-development.org/ixi-dataset
https://brain-development.org/ixi-dataset
https://brain-development.org/ixi-dataset


252 Bibliography

[302] Richard G Brereton, The Mahalanobis distance and its relationship to principal
component scores, Journal of Chemometrics 29 (2015), 143.

[303] Haoliang Wang, Chen Zhao, Xujiang Zhao and Feng Chen, Layer Adaptive Deep Neural
Networks for Out-of-Distribution Detection, Pacific-Asia Conference on Knowledge
Discovery and Data Mining (2022), 526.

[304] Anton Vasiliuk, Daria Frolova, Mikhail Belyaev and Boris Shirokikh, Redesigning
Out-of-Distribution Detection on 3D Medical Images, International Workshop on
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (2023), 126.

[305] Jonathan Lennartz and Thomas Schultz, Segmentation Distortion: Quantifying Seg-
mentation Uncertainty Under Domain Shift via the Effects of Anomalous Activations,
International Conference on Medical Image Computing and Computer-Assisted Inter-
vention (2023), 316.

[306] Evan Hann et al., Quality control-driven image segmentation towards reliable automatic
image analysis in large-scale cardiovascular magnetic resonance aortic cine imaging,
Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd
International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part
II 22 (2019), 750.

[307] Khaled ELKarazle, Valliappan Raman, Patrick Then and Caslon Chua, Detection
of colorectal polyps from colonoscopy using machine learning: A survey on modern
techniques, Sensors 23 (2023), 1225.

[308] Konstantin Pogorelov et al., Kvasir: A multi-class image dataset for computer aided
gastrointestinal disease detection, Proceedings of the 8th ACM on Multimedia Systems
Conference (2017), 164.

[309] Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray and Bertrand Granado,
Toward embedded detection of polyps in wce images for early diagnosis of colorectal
cancer, International journal of computer assisted radiology and surgery 9 (2014), 283.

[310] Jorge Bernal, Javier Sánchez and Fernando Vilarino, Towards automatic polyp detec-
tion with a polyp appearance model, Pattern Recognition 45 (2012), 3166.

[311] Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina
Rodríguez and Fernando Vilariño, WM-DOVA maps for accurate polyp highlighting
in colonoscopy: Validation vs. saliency maps from physicians, Computerized medical
imaging and graphics 43 (2015), 99.

[312] Sharib Ali et al., A multi-centre polyp detection and segmentation dataset for general-
isability assessment, Scientific Data 10 (2023), 75.

[313] P Roca, A Attye, et al., Artificial intelligence to predict clinical disability in patients
with multiple sclerosis using FLAIR MRI, Diagnostic and Interventional Imaging 101
(2020), 795.

[314] Ahmed Ghoneem, Michael T Osborne, et al., Association of socioeconomic status
and infarct volume with functional outcome in patients with ischemic stroke, JAMA
Network Open 5 (2022), e229178.

[315] Mustafa Mahmut Baris, Ahmet Orhan Celik, et al., Role of mass effect, tumor volume
and peritumoral edema volume in the differential diagnosis of primary brain tumor
and metastasis, Clinical neurology and neurosurgery 148 (2016), 67.

[316] José Contador, Agnès Pérez-Millán, et al., Longitudinal brain atrophy and CSF
biomarkers in early-onset Alzheimer’s disease, NeuroImage: Clinical 32 (2021), 102804.



Bibliography 253

[317] Jakob Wasserthal et al., Totalsegmentator: Robust segmentation of 104 anatomic
structures in ct images, Radiology: Artificial Intelligence 5 (2023).

[318] Danijel Kivaranovic, Kory D Johnson and Hannes Leeb, Adaptive, distribution-
free prediction intervals for deep networks, International Conference on Artificial
Intelligence and Statistics (2020), 4346.

[319] Tim Pearce, Alexandra Brintrup, et al., High-quality prediction intervals for deep
learning: A distribution-free, ensembled approach, International Conference on Machine
Learning (2018), 4075.

[320] Natasa Tagasovska and David Lopez-Paz, Single-model uncertainties for deep learning,
Advances in Neural Information Processing Systems 32 (2019).

[321] Youngseog Chung, Willie Neiswanger, Ian Char and Jeff Schneider, Beyond pinball
loss: Quantile methods for calibrated uncertainty quantification, Advances in Neural
Information Processing Systems 34 (2021), 10971.

[322] Benjamin Lambert, Florence Forbes, Senan Doyle and Michel Dojat, TriadNet:
Sampling-Free Predictive Intervals for Lesional Volume in 3D Brain MR Images,
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging - 5th Inter-
national Workshop, UNSURE 2023, Held in Conjunction with MICCAI 2023, Lecture
Notes in Computer Science 14291 (2023), 32.

[323] Vladimir Vovk, Conditional validity of inductive conformal predictors, Asian conference
on machine learning (2012), 475.

[324] Samuel Sanford Shapiro and Martin B Wilk, An analysis of variance test for normality
(complete samples), Biometrika 52 (1965), 591.

[325] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes and Aaditya Ramdas,
Conformal prediction under covariate shift, Advances in neural information processing
systems 32 (2019).

[326] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten Borgwardt,
Bernhard Schölkopf, et al., Covariate shift by kernel mean matching, Dataset shift in
machine learning 3 (2009), 5.

[327] Sotirios Panagiotis Chytas, Vishnu Suresh Lokhande, Peiran Li and Vikas Singh,
Pooling Image Datasets With Multiple Covariate Shift and Imbalance, arXiv preprint
arXiv:2403.02598 (2024).

[328] Jérôme Dockès, Gaël Varoquaux and Jean-Baptiste Poline, Preventing dataset shift
from breaking machine-learning biomarkers, GigaScience 10 (2021), giab055.

[329] Steffen Bickel, Michael Brückner and Tobias Scheffer, Discriminative learning for dif-
fering training and test distributions, Proceedings of the 24th international conference
on Machine learning (2007), 81.

[330] Takafumi Kanamori, Shohei Hido and Masashi Sugiyama, A least-squares approach to
direct importance estimation, The Journal of Machine Learning Research 10 (2009),
1391.

[331] Benjamin Rhodes, Kai Xu and Michael U Gutmann, Telescoping density-ratio estima-
tion, Advances in neural information processing systems 33 (2020), 4905.

[332] Kristy Choi, Chenlin Meng, Yang Song and Stefano Ermon, Density ratio estimation
via infinitesimal classification, International Conference on Artificial Intelligence and
Statistics (2022), 2552.

[333] Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei and Tal Schuster,
Conformal risk control, arXiv preprint arXiv:2208.02814 (2022).



254 Bibliography

[334] António Farinhas, Chrysoula Zerva, Dennis Ulmer and André FT Martins, Non-
exchangeable conformal risk control, arXiv preprint arXiv:2310.01262 (2023).

[335] Félix Quinton et al., A Tumour and Liver Automatic Segmentation (ATLAS) Dataset
on Contrast-Enhanced Magnetic Resonance Imaging for Hepatocellular Carcinoma,
Data 8 (2023), 79.

[336] Benjamin Lambert, Florence Forbes, Senan Doyle and Michel Dojat, Anisotropic Hy-
brid Networks for liver tumor segmentation with uncertainty quantification, Resource-
Efficient Medical Image Analysis - 2nd International Workshop, REMIA 2023, Held in
Conjunction with MICCAI 2023, Lecture Notes in Computer Science 14394 (2023).

[337] Maria Reig et al., BCLC strategy for prognosis prediction and treatment recommen-
dation: The 2022 update, Journal of Hepatology 76 (Mar. 2022), 681, (visited on
04/11/2022).

[338] Maarten LJ Smits, Mattijs Elschot, Daniel Y Sze, Yung H Kao, Johannes FW Nijsen,
Andre H Iagaru, Hugo WAM de Jong, Maurice AAJ van den Bosch and Marnix GEH
Lam, Radioembolization dosimetry: the road ahead, Cardiovascular and interventional
radiology 38 (2015), 261.

[339] Siqi Liu et al., 3D anisotropic hybrid network: Transferring convolutional features
from 2D images to 3D anisotropic volumes, Medical Image Computing and Computer
Assisted Intervention: 21st International Conference (2018), 851.

[340] Pedro Furtado, Loss, post-processing and standard architecture improvements of liver
deep learning segmentation from Computed Tomography and magnetic resonance,
Informatics in Medicine Unlocked 24 (2021), 100585.

[341] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, et al., SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17
(2020), 261.

[342] Ziyan Huang et al., STU-Net: Scalable and Transferable Medical Image Segmen-
tation Models Empowered by Large-Scale Supervised Pre-training, arXiv preprint
arXiv:2304.06716 (2023).

[343] Patrick Bilic et al., The liver tumor segmentation benchmark (lits), Medical Image
Analysis 84 (2023), 102680.

[344] Kamrul SM Hasan and Cristian A Linte, A Multi-Task Cross-Task Learning Archi-
tecture for Ad Hoc Uncertainty Estimation in 3D Cardiac MRI Image Segmentation,
2021 Computing in Cardiology (CinC) 48 (2021), 1.

[345] Muhammad Ahtazaz Ahsan, Adnan Qayyum, Adeel Razi and Junaid Qadir, An active
learning method for diabetic retinopathy classification with uncertainty quantification,
Medical and Biological Engineering and Computing (2022), 1.

[346] Łukasz Rączkowski, Marcin Możejko, Joanna Zambonelli and Ewa Szczurek, ARA:
accurate, reliable and active histopathological image classification framework with
Bayesian deep learning, Scientific reports 9 (2019), 1.

[347] Bofan Song et al., Bayesian deep learning for reliable oral cancer image classification,
Biomedical Optics Express 12 (2021), 6422.

[348] SM Kamrul Hasan and Cristian A Linte, Calibration of cine MRI segmentation prob-
ability for uncertainty estimation using a multi-task cross-task learning architecture,
Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling
12034 (2022), 174.



Bibliography 255

[349] Parisa Mojiri Forooshani et al., Deep Bayesian networks for uncertainty estimation
and adversarial resistance of white matter hyperintensity segmentation, Human brain
mapping 43 (2022), 2089.

[350] Xiaohong Gou, Xuenong He, et al., Deep learning-based detection and diagnosis of
subarachnoid hemorrhage, Journal of Healthcare Engineering 2021 (2021).

[351] Xuyang Cao, Houjin Chen, Yanfeng Li, Yahui Peng, Shu Wang and Lin Cheng, Dilated
densely connected U-Net with uncertainty focus loss for 3D ABUS mass segmentation,
Computer Methods and Programs in Biomedicine 209 (2021), 106313.

[352] Yidong Zhao, Changchun Yang, Artur Schweidtmann and Qian Tao, Efficient Bayesian
Uncertainty Estimation for nnU-Net, Medical Image Computing and Computer As-
sisted Intervention–MICCAI 2022: 25th International Conference (2022), 535.

[353] Ge Zhang, Hao Dang and Yulong Xu, Epistemic and aleatoric uncertainties reduction
with rotation variation for medical image segmentation with ConvNets, SN Applied
Sciences 4 (2022), 1.

[354] Biraja Ghoshal, Allan Tucker, Bal Sanghera and Wai Lup Wong, Estimating un-
certainty in deep learning for reporting confidence to clinicians in medical image
segmentation and diseases detection, Computational Intelligence 37 (2021), 701.

[355] Jiawei Yang, Yuan Liang, Yao Zhang, Weinan Song, Kun Wang and Lei He, Explor-
ing instance-level uncertainty for medical detection, 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI) (2021), 448.

[356] Yongkai Liu, Guang Yang, Melina Hosseiny, Afshin Azadikhah, Sohrab Afshari Mirak,
Qi Miao, Steven S Raman and Kyunghyun Sung, Exploring uncertainty measures in
Bayesian deep attentive neural networks for prostate zonal segmentation, IEEE Access
8 (2020), 151817.

[357] Ishaan Bhat and Hugo J Kuijf, Extending Probabilistic U-Net Using MC-Dropout to
Quantify Data and Model Uncertainty, International MICCAI Brainlesion Workshop
(2022), 555.
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Appendix

A1 Lesion matching edge cases

Edge case #1 : Inclusion
IoU = 1 / 9 = 0.111

Edge case #2 : Many-to-one or One-to-many
(1) IoU = 2 / 9 = 0.222
(2) IoU = 1 / 9 = 0.111
(3) IoU = 1 / 9 = 0.111

1
2

3

Reference Prediction Reference Prediction 

Figure A.1.1: Illustration of two edge cases that can occur when matching predicted and
reference lesions. In these cases, using a rigorous IoU threshold of 25% or above would
consider all predicted lesions as FPles, although the detection is correct.

A2 Hyper-parameters of lesion classifiers

Model Parameters Tested values
Logistic Regression C 1, 2, 5, 10
Random Forest N trees 10, 20, 50, 100, 150

SVC
Kernel

C
Degree

Linear, RBF, Poly
1, 2, 5, 10

3, 4, 5

Table A.2.1: Hyper-parameters tested during the grid-search cross-validation for the
lesion ML classifiers.

A3 Feature importance of Machine Learning classifiers



II Bibliography

Feature Name Category Coefficient
glrlm RunEntropy FLAIR 1.82
Average Interior Entropy Entropy 1.79
Maximum2DDiameterRow Shape 1.45
Maximum2DDiameterSlice Shape 1.20
Average Contour Entropy Entropy 1.18
glcm MaximumProbability FLAIR 1.06
Maximum3DDiameter Shape 0.91
glrlm RunLengthNonUniformityNormalized FLAIR 0.86
glrlm RunPercentage FLAIR 0.80

Table A.3.1: Weight of the top 10 features in the Logistic Regression model trained on
cross-sectional MS lesions.

Feature Name Category Coefficient
gldm DependenceVariance CT 1.06
Surface Area Shape 1.06
glszm SizeZoneNonUniformityNormalized CT 0.93
Least Axis Length Shape 0.83
ngtdm Complexity CT 0.79
Maximum2DDiameter Slice CT 0.73
Average Interior Entropy Entropy 0.72
glcm ClusterProminence CT 0.69
Maximum2DDiameterColumn CT 0.64

Table A.3.2: Weight of the top 10 features in the Logistic Regression model trained on
lung nodules.

Feature Name Category Coefficient
First order TotalEnerg FLAIR V1 1.27
First order Energy FLAIR V1 1.27
glcm Imc2 FLAIR V0 1.21
First order RootMeanSquared FLAIR V1 1.17
First order 90Percentile FLAIR V1 0.91
First order Median FLAIR V0 0.90
Average Interior Entropy Entropy 0.86
glszm ZonePercentage FLAIR V0 0.86
glcm DifferenceVariance FLAIR V0 0.81

Table A.3.3: Weight of the top 10 features in the Logistic Regression model trained on
new MS lesions. FLAIR V0 designates the prior FLAIR while FLAIR V1 designates the
posterior FLAIR.
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Samples from BraTS 2023 datasets
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Adult Glioblastoma Dataset Pediatric Glioblastoma Dataset Sub-Saharan Africa Glioblastoma Dataset Meningioma Dataset Brain metastases Dataset

Figure A.3.1: Samples from BraTS 2023 datasets, exhibiting the variability in tumor appearance, location, and size according
to the dataset. Pediatric brain MR exhibits important differences in appearance as compared to adult brain MR, for instance,
due to the overabundance of gray matter in early childhood. Images from the sub-saharan dataset have a lower resolution and
present artifacts. Meningiomas are challenging due to the difference in their location and appearance as compared to glioblastoma.
Metastases exhibit heterogeneous sizes and lesions can be particularly small.
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A4 Additional OOD benchmark results

This section presents the results of the OOD benchmark with the Attention U-Net, V-Net
and Residual U-Net ensembles, respectively. More particularly, the segmentation performance
of each ensemble on each OOD dataset is presented in Figures A.4.1, A.4.2, A.4.3.
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Figure A.4.1: Segmentation performance of the V-Net Ensemble on the different datasets
used in the OOD experiments. The average Dice is presented for datasets where the
ground truth delineation of the whole tumor is available. For the rest of the datasets, we
present the average False Positive (FP) volume per subject, in milliliter.
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Figure A.4.2: Segmentation performance of the Attention U-Net Ensemble on the
different datasets used in the OOD experiments. The average Dice is presented for datasets
where the ground truth delineation of the whole tumor is available. For the rest of the
datasets, we present the average False Positive (FP) volume per subject, in milliliter.
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Figure A.4.3: Segmentation performance of the Residual U-Net Ensemble on the different
datasets used in the OOD experiments. The average Dice is presented for datasets where
the ground truth delineation of the whole tumor is available. For the rest of the datasets,
we present the average False Positive (FP) volume per subject, in milliliter.
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Deep Ensemble 52 58 69 97 95 91 64 100 52 98 53 64 100 83 100 29 46 65 42 80 53 56 55 100 100 72
MNAD 78 71 99 98 100 100 29 99 85 87 65 98 88 85 99 53 76 71 56 61 47 43 70 100 100 78

MD Conv 1 29 54 73 98 88 79 45 97 95 52 61 98 71 67 62 46 63 84 56 43 59 37 58 100 100 69
MD Conv 2 34 71 77 100 100 100 88 99 94 75 71 97 88 83 94 37 70 95 62 61 62 68 62 100 100 80
MD Conv 3 51 84 88 100 100 100 84 100 96 72 60 98 99 92 99 87 88 97 87 79 79 81 83 100 100 88
MD Conv 4 41 82 91 100 100 100 85 100 93 79 81 94 92 90 96 36 70 94 62 75 64 70 68 100 100 83
MD Conv 5 50 85 92 100 100 100 83 100 91 73 89 94 93 91 96 49 70 93 74 81 65 73 73 100 100 85
MD Conv 6 56 82 85 100 100 100 79 100 92 67 71 95 98 95 99 78 83 95 76 85 78 81 81 100 100 87
MD Conv 7 55 87 92 100 100 100 87 100 91 70 88 93 95 94 97 42 68 92 76 85 68 76 80 100 100 85
MD Conv 8 56 85 93 100 100 100 88 100 90 73 83 93 96 93 97 39 68 92 76 85 69 74 81 99 99 85
MD Conv 9 50 87 92 100 100 100 88 100 91 72 75 94 97 94 97 41 79 93 66 83 71 73 84 99 99 85

MD Conv 10 59 85 92 100 100 100 88 100 89 70 81 93 95 94 96 37 69 92 74 86 69 73 81 99 99 85
MD Conv 11 56 85 92 100 100 100 89 100 87 69 80 93 97 93 97 41 69 90 79 87 69 73 83 100 100 85
MD Conv 12 50 88 94 100 100 100 83 99 94 75 73 95 98 91 98 23 59 84 56 82 58 61 82 100 100 82
MD Conv 13 54 84 93 100 100 100 87 100 92 68 80 94 97 92 97 33 62 84 67 85 66 69 85 100 100 84
MD Conv 14 52 86 93 100 100 100 84 100 92 69 77 93 97 93 97 28 59 82 63 87 64 67 82 100 100 83

MD Mean 52 86 92 100 100 100 87 100 93 74 82 95 97 93 97 55 77 94 75 84 73 78 81 100 100 87
MD Max 54 83 90 100 100 100 83 100 93 72 80 96 97 93 98 83 86 96 84 82 78 81 83 99 100 88

Table A.4.1: OOD detection performance (AUROC, expressed in percentage) for each OOD detector and dataset, for the
Attention U-Net ensemble.
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Deep Ensemble 25 56 66 96 94 90 61 100 52 98 53 71 100 83 100 39 55 64 38 53 55 55 44 100 100 70
MNAD 56 71 99 99 100 100 39 99 89 80 70 98 90 86 99 53 75 60 48 31 53 49 56 100 100 76

MD Conv 1 17 52 68 94 90 76 45 97 93 52 59 98 67 63 60 46 60 68 45 18 59 45 44 100 100 65
MD Conv 2 19 67 77 100 100 100 77 99 88 68 66 94 87 81 91 45 76 93 61 26 64 63 38 100 100 75
MD Conv 3 26 79 84 100 100 100 75 100 92 66 57 95 98 89 98 75 86 93 77 41 76 75 63 100 100 82
MD Conv 4 21 76 87 100 100 100 74 100 86 71 73 88 90 86 93 43 75 92 61 34 66 62 42 100 99 77
MD Conv 5 24 77 87 100 100 100 72 100 83 66 82 88 90 86 92 48 73 89 65 40 65 66 45 100 100 77
MD Conv 6 27 76 80 100 100 100 68 100 86 61 64 90 96 91 95 67 80 89 64 49 75 75 58 99 100 80
MD Conv 7 26 79 86 100 100 100 76 100 83 64 81 86 92 89 93 44 71 88 66 45 66 68 54 99 99 78
MD Conv 8 27 77 87 100 100 100 76 100 82 66 74 85 92 89 92 44 72 88 66 45 67 67 56 99 95 78
MD Conv 9 24 80 86 98 100 100 78 100 83 67 67 87 94 89 93 44 77 88 58 45 67 66 61 98 95 78

MD Conv 10 29 77 87 99 100 100 76 100 80 64 73 86 92 89 92 43 71 87 64 47 66 66 56 98 95 77
MD Conv 11 28 77 86 99 100 100 77 100 78 63 73 86 93 89 93 46 70 84 67 49 67 67 60 99 99 78
MD Conv 12 25 82 88 99 100 100 73 99 87 69 67 89 95 86 94 38 64 79 52 47 60 58 60 100 99 76
MD Conv 13 27 78 88 99 100 100 76 100 84 64 73 88 93 86 92 43 65 79 58 46 65 64 62 100 99 77
MD Conv 14 26 79 88 100 100 100 73 99 85 64 71 86 93 88 93 41 64 79 55 49 64 63 61 100 99 77

MD Mean 24 78 86 100 100 100 75 100 86 67 73 89 94 88 93 51 76 89 65 44 69 69 56 100 100 79
MD Max 26 76 83 100 100 100 72 100 87 65 72 89 95 88 94 70 83 90 72 42 74 73 59 99 99 80

Table A.4.2: OOD detection performance (AUPR, expressed in percentage) for each OOD detector and dataset, for the Attention
U-Net ensemble.
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Deep Ensemble 49 57 69 91 83 70 57 92 45 97 55 59 100 83 99 0 17 11 12 81 30 35 53 100 100 62
MNAD 78 71 99 98 100 100 29 99 85 87 65 98 88 85 99 53 76 71 56 61 47 43 70 100 100 78

MD Conv 1 33 53 69 98 88 77 44 97 99 51 64 100 70 65 61 38 57 80 50 59 60 42 60 99 100 69
MD Conv 2 41 68 70 100 100 94 68 99 99 55 86 99 94 95 99 38 62 77 41 80 58 56 61 100 100 78
MD Conv 3 41 74 74 100 100 99 76 100 97 52 92 99 98 96 100 52 72 83 76 80 63 62 67 100 100 82
MD Conv 4 54 71 70 100 100 100 82 100 99 58 93 97 97 96 100 44 71 90 81 85 64 70 73 100 100 84
MD Conv 5 59 82 78 100 100 99 89 100 97 56 93 99 98 97 100 47 71 90 84 88 66 74 80 100 100 86
MD Conv 6 60 85 83 100 100 100 91 100 94 54 86 97 98 97 100 41 66 86 75 89 66 75 82 100 100 85
MD Conv 7 55 87 83 100 100 100 90 100 97 54 90 98 99 97 100 37 67 88 70 90 65 75 81 100 100 85
MD Conv 8 57 85 86 100 99 99 90 100 96 54 88 98 99 97 100 41 67 86 72 89 65 72 84 100 100 85
MD Conv 9 55 84 87 100 99 98 82 100 95 52 82 98 98 95 100 44 70 91 69 84 65 67 78 100 100 84

MD Conv 10 45 82 86 100 98 97 78 100 96 53 76 98 98 95 99 45 68 92 63 81 66 63 78 100 100 82
MD Conv 11 52 81 83 100 99 99 83 100 99 55 84 98 99 97 100 33 59 82 60 88 62 63 83 100 100 82
MD Conv 12 43 81 87 100 99 98 80 100 98 55 84 99 99 97 100 31 60 85 58 87 61 60 83 100 100 82
MD Conv 13 44 83 89 100 98 97 77 100 97 54 75 98 99 93 99 28 49 73 48 82 56 53 79 100 100 79
MD Conv 14 51 87 92 100 99 99 91 100 96 54 82 98 99 97 100 60 75 92 78 87 67 70 86 100 100 86
MD Conv 15 51 88 91 100 99 99 90 100 96 53 75 97 99 95 100 59 76 92 70 87 69 70 88 100 100 86
MD Conv 16 53 89 91 100 100 100 88 100 97 57 85 98 99 96 100 57 78 94 78 88 68 73 87 100 100 87
MD Conv 17 51 88 91 100 99 99 83 100 97 58 80 98 99 96 100 51 74 92 73 87 70 71 89 100 100 86
MD Conv 18 50 87 91 100 100 99 82 100 98 59 82 99 100 97 100 57 75 91 71 88 72 72 87 100 100 86
MD Conv 19 41 84 89 100 99 97 78 100 99 58 69 100 99 91 100 61 71 92 67 81 73 72 82 100 100 84

MD Mean 49 84 86 100 100 99 86 100 99 56 88 99 99 97 100 45 69 90 70 87 67 70 82 100 100 85
MD Max 49 83 86 100 100 99 81 100 99 56 87 99 99 96 100 49 69 89 71 84 67 69 83 100 100 85

Table A.4.3: OOD detection performance (AUROC, expressed in percentage) for each OOD detector and dataset, for the V-Net
ensemble.
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Deep Ensemble 23 55 66 90 86 67 55 93 49 97 55 68 100 80 99 33 37 27 26 58 43 45 34 100 100 63
MNAD 56 71 99 99 100 100 39 99 89 80 70 98 90 86 99 53 75 60 48 31 53 49 56 100 100 76

MD Conv 1 18 51 63 94 89 73 45 97 98 51 63 99 65 61 62 42 55 63 41 28 60 46 47 99 100 64
MD Conv 2 20 61 65 100 100 92 57 99 98 53 83 98 92 93 97 42 59 63 39 46 53 50 37 100 100 72
MD Conv 3 23 68 70 100 100 98 66 100 94 53 89 97 97 95 99 49 66 70 64 47 61 55 49 100 100 76
MD Conv 4 29 66 69 100 100 99 73 100 99 56 91 95 96 95 98 45 71 86 71 57 65 64 52 100 100 79
MD Conv 5 31 78 76 100 100 99 83 100 95 54 92 97 97 95 98 46 70 84 74 65 65 69 61 100 100 81
MD Conv 6 33 79 79 100 100 99 84 100 92 52 82 95 97 96 99 44 66 79 64 64 63 70 63 100 100 80
MD Conv 7 30 83 81 100 100 99 84 100 95 52 87 96 98 96 98 42 69 83 62 63 65 71 62 100 100 81
MD Conv 8 29 81 83 100 99 99 83 100 93 53 86 97 98 95 98 44 69 81 64 61 64 68 63 100 100 80
MD Conv 9 26 80 84 100 99 97 73 100 92 51 78 96 97 93 98 46 73 88 62 50 65 61 52 100 100 79

MD Conv 10 22 78 83 100 98 96 69 100 92 52 71 96 97 93 98 45 73 89 58 48 66 58 51 100 100 77
MD Conv 11 28 79 81 100 99 98 76 100 97 54 82 96 99 96 99 41 65 80 57 62 63 60 67 100 100 79
MD Conv 12 23 79 84 100 99 98 72 100 96 54 83 97 99 95 99 41 67 83 56 58 63 57 66 100 100 79
MD Conv 13 22 81 86 100 99 97 70 100 94 53 72 96 98 91 99 39 57 69 48 51 57 51 57 100 100 75
MD Conv 14 27 83 87 100 99 99 85 100 94 53 80 96 99 96 98 54 75 88 69 59 66 65 70 100 100 82
MD Conv 15 26 85 88 100 99 98 83 100 93 52 72 95 99 94 98 54 76 88 63 59 67 65 72 100 100 81
MD Conv 16 28 87 88 100 100 99 80 100 95 55 83 96 99 95 98 52 77 90 69 58 67 67 70 100 100 82
MD Conv 17 26 86 88 100 99 99 76 100 95 55 77 97 99 95 98 49 75 88 66 58 68 65 72 100 100 81
MD Conv 18 25 85 89 100 100 99 75 100 96 56 78 97 99 95 98 52 75 87 63 62 69 64 69 100 100 81
MD Conv 19 20 81 86 100 99 97 70 100 97 57 67 98 98 90 98 54 72 87 60 49 70 64 59 100 100 79

MD Mean 26 80 83 100 100 99 77 100 97 54 85 97 98 96 98 45 70 85 62 58 65 63 62 100 100 80
MD Max 25 80 82 100 100 99 71 100 98 54 85 97 98 95 98 47 69 83 61 52 64 62 60 100 100 79

Table A.4.4: OOD detection performance (AUPR, expressed in percentage) for each OOD detector and dataset, for the V-Net
ensemble. The highest score for each dataset is indicated in bold.
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MNAD 78 71 99 98 100 100 29 99 85 87 65 98 88 85 99 53 76 71 56 61 47 43 70 100 100 78
MD Conv 1 29 51 71 91 83 80 39 93 100 98 60 99 65 63 57 26 46 66 38 60 55 38 60 100 100 67
MD Conv 2 48 97 99 100 100 100 96 99 100 100 81 100 93 93 100 42 62 86 68 85 61 75 64 100 100 86
MD Conv 3 45 95 99 100 100 100 94 100 99 93 71 100 95 95 99 62 65 89 74 91 63 77 70 100 100 87
MD Conv 4 25 52 71 96 86 81 39 96 100 97 58 99 68 66 59 32 52 75 44 55 56 36 59 100 100 68
MD Conv 5 47 93 100 100 100 100 90 100 100 98 71 100 97 95 99 57 67 85 70 86 67 75 75 100 100 87
MD Conv 6 50 96 99 100 100 100 90 100 99 97 74 100 97 95 99 68 72 91 75 84 71 76 80 100 100 89
MD Conv 7 54 98 100 100 100 100 86 100 99 99 69 100 99 94 99 73 75 91 73 81 72 78 85 100 100 89
MD Conv 8 54 95 100 100 100 100 91 100 100 99 76 100 97 96 99 61 68 87 75 89 68 78 77 100 100 88
MD Conv 9 53 97 100 100 100 100 90 100 100 99 73 100 99 95 100 64 72 90 69 88 71 79 84 100 100 89

MD Conv 10 50 97 100 100 100 100 88 100 100 98 79 100 99 96 100 63 73 91 70 87 68 75 84 100 100 89
MD Conv 11 51 97 100 100 100 100 80 100 100 96 77 100 100 95 100 56 66 87 67 87 68 72 86 100 100 87
MD Conv 12 52 97 100 100 100 100 89 100 100 99 73 100 99 96 100 60 70 88 70 88 71 78 83 100 100 88
MD Conv 13 42 94 100 100 100 100 78 100 100 99 75 100 99 96 100 36 60 82 50 86 65 69 84 100 100 85
MD Conv 14 42 96 100 100 100 100 81 100 100 98 85 100 99 95 100 48 62 85 56 90 66 69 84 100 100 86
MD Conv 15 39 89 99 100 100 99 69 100 100 92 84 100 99 93 99 34 46 71 51 87 61 58 83 100 100 82
MD Conv 16 41 92 100 100 100 100 77 100 100 99 75 100 99 96 100 35 61 83 50 86 64 69 84 100 100 84
MD Conv 17 41 94 100 100 100 100 83 100 100 98 81 100 99 94 100 40 59 85 52 90 69 72 84 100 100 86
MD Conv 18 37 89 100 100 100 99 69 100 100 90 86 100 100 93 100 34 49 77 48 90 64 63 84 100 100 83
MD Conv 19 44 81 98 100 97 90 57 100 100 81 78 100 100 85 100 34 38 57 38 87 63 60 81 100 100 79
MD Conv 20 42 91 100 100 100 100 78 100 100 99 75 100 99 96 99 38 61 82 49 86 66 70 84 100 100 85
MD Conv 21 42 84 99 100 100 99 68 100 100 84 78 100 99 94 100 59 64 86 59 82 62 64 85 100 100 84
MD Conv 22 51 89 99 100 100 99 79 100 100 89 71 100 100 95 100 86 84 96 78 83 75 79 88 100 100 90
MD Conv 23 51 86 98 100 100 99 76 100 99 85 66 100 99 93 100 85 84 94 81 81 78 80 89 100 100 89

MD Mean 44 95 100 100 100 100 88 100 100 99 75 100 99 95 100 59 67 89 68 87 69 76 81 100 100 88
MD Max 49 95 99 100 100 100 92 100 100 99 72 100 99 95 99 80 80 92 77 89 76 82 86 100 100 90

Table A.4.5: OOD detection performance (AUROC, expressed in percentage) for each OOD detector and dataset, for the
Residual U-Net ensemble. The highest score for each dataset is indicated in bold.
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MNAD 56 71 99 99 100 100 39 99 89 80 70 98 90 86 99 53 75 60 48 31 53 49 56 100 100 76
MD Conv 1 17 48 65 80 78 68 41 92 100 98 61 99 56 57 55 38 46 48 33 24 52 43 40 100 100 62
MD Conv 2 22 95 97 100 100 100 91 98 100 99 78 100 91 92 99 45 62 77 54 54 58 71 40 100 100 81
MD Conv 3 22 91 98 100 100 100 88 99 99 89 68 100 92 93 98 55 64 78 56 63 59 73 45 100 100 81
MD Conv 4 16 48 64 89 84 72 42 95 99 97 57 99 60 60 56 40 51 56 37 23 54 43 41 100 100 63
MD Conv 5 23 90 98 99 100 99 83 100 99 95 68 100 95 94 98 52 66 72 56 52 62 67 53 100 100 81
MD Conv 6 23 93 98 100 100 99 81 100 99 94 69 100 96 92 97 59 71 84 62 48 66 68 58 100 100 82
MD Conv 7 25 96 98 100 100 98 76 100 99 97 67 100 98 93 98 62 72 83 61 46 67 70 65 100 100 83
MD Conv 8 26 93 98 99 100 100 85 100 100 97 73 100 95 94 98 54 66 75 59 57 63 70 56 100 100 82
MD Conv 9 26 95 98 99 100 100 83 100 100 97 71 100 98 94 98 57 72 83 58 56 67 72 65 100 100 83

MD Conv 10 24 95 98 99 100 99 79 100 99 96 77 100 98 94 98 56 74 85 59 58 65 69 65 100 100 83
MD Conv 11 25 95 98 99 99 98 73 100 99 93 75 99 99 94 98 52 70 83 58 59 66 67 69 100 100 83
MD Conv 12 26 94 98 99 100 100 82 100 100 98 72 100 98 94 98 54 70 81 58 56 67 72 65 100 100 83
MD Conv 13 22 92 99 100 100 100 72 100 100 97 74 100 98 95 98 42 63 75 45 58 63 64 68 100 100 81
MD Conv 14 21 94 99 100 100 99 75 100 99 96 84 100 98 94 99 47 66 81 50 66 65 64 67 100 100 83
MD Conv 15 19 87 98 99 99 97 64 100 98 87 83 99 98 91 98 41 52 60 44 62 60 55 66 100 100 78
MD Conv 16 22 90 98 100 100 100 72 100 100 97 73 100 98 95 98 41 64 76 44 57 62 64 69 100 100 81
MD Conv 17 22 91 99 100 100 100 76 100 100 95 79 100 98 93 99 43 64 79 47 64 66 66 67 100 100 82
MD Conv 18 19 88 100 100 100 98 64 100 100 87 85 100 99 91 99 41 56 67 42 68 63 58 69 100 100 80
MD Conv 19 21 80 97 100 97 88 55 100 100 78 77 100 99 83 99 41 44 45 34 58 60 57 63 100 100 75
MD Conv 20 23 89 98 100 100 100 73 100 100 97 73 100 98 95 98 42 64 75 44 57 64 65 68 100 100 81
MD Conv 21 23 83 98 100 100 97 64 100 100 82 76 100 99 93 99 55 67 80 53 57 64 61 71 100 100 81
MD Conv 22 25 87 97 99 99 98 72 100 99 85 69 99 98 94 98 76 81 91 67 55 72 74 74 100 100 84
MD Conv 23 23 82 96 99 100 98 68 100 98 79 63 99 98 91 98 73 78 85 65 50 73 71 73 100 100 82

MD Mean 21 93 98 100 100 100 80 100 100 97 73 100 97 94 98 53 68 81 56 56 64 68 61 100 100 82
MD Max 23 91 98 100 100 100 84 100 99 98 70 100 98 93 98 67 73 81 59 58 69 74 65 100 100 84

Table A.4.6: OOD detection performance (AUPR, expressed in percentage) for each OOD detector and dataset, for the Residual
U-Net ensemble. The highest score for each dataset is indicated in bold.
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A5 Additional notes on conformal score functions

In this Appendix section, we motivate the choice of the score functions used to find the
corrective values q̂ on the predictive intervals (PIs). We also clarify the link between the
choice of the quantile q̂ and the target (1− α) coverage level.

Sampling-based Intervals

For sampling-based intervals, a PI on the volume X has the following form:

Γα(X) = [µ(X)− zσ(X), µ(X) + zσ(X)]

where µX and σX are the mean and the standard deviation estimated by sampling, respectively,
and z is the number of standard deviations to match the target confidence level (e.g. z = 1.65
for 90% PIs). The ground truth volume Y is contained within the interval if:

µX − σ(X)× z ≤ Y ≤ µ(X) + σ(X)× z

which can be written equivalently as:

|Y − µ(X)| ≤ σ(X)× z ⇒ |Y − µ(X)|
σ(X)

≤ z

which is exactly the score function used to calibrate sampling-based PIs:

s(X, Y ) =
|Y − µ(X)|

σ(X)

Writing (Xi, Yi)i=1,...,n the calibration dataset, the multiplicative corrective value q̂ is computed
as q̂ = Quantile(s1, s2, ..., sn, (n+1)(1−α)

n
). The conformalized PIs are further obtained by

replacing z by q̂:

[µi − σiq̂, µi + σiq̂]

It makes sure that at least 1 − α of the PIs will encompass the ground truth values on
the calibration dataset. Now, writing (Xtest, Ytest) a fresh test datapoint and Γα(Xtest) the
corresponding PI, we have the following result:
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P (Ytest ∈ Γα(Xtest)) ≥ 1− α⇒ P (
|Ytest − µ(test)|

σ(test)
≤ q̂) ≥ 1− α⇒ P (s(Xtest ≤ q̂) ≥ 1− α

Direct PI estimation

In sampling-free PI estimation, a (1− α)% PI on the volume X has the following form:

Γα(X) = [t̂α/2(X), t̂1−α/2(X)]

where t̂α/2 and t̂1−α/2 are the estimated quantiles, allowing to get (1− α%) coverages. For
90% PI, the ground truth volume Y is supposed to land below t̂0.05(X) with 5% probability
and above t̂0.95(X) with 5% probability. The Y is contained within the interval if t̂α/2(X) ≤
Yi ≤ t̂1−α/2(X). The score function is defined as the difference between Yi and its nearest
quantile:

s(X, Y ) = max{t̂α/2(X)− Y, Y − t̂1−α/2(X)}

The interpretation of the score is as follows. When Y is below the lower bound, the magnitude
of the error is |Y − t̂α/2(X)|. Alternatively, if Y is superior to the upper bound, the magnitude
of the error is |Y − t̂1−α/2(X)|. If Y is correctly bounded by the interval, then the score
corresponds to the larger of the two negative numbers {t̂α/2(X)− Y, Y − t̂1−α/2(X)}. This
formulation allows to correct for both potential under and over-coverages.

As for sampling-based PI, the corrective value is taken as q̂ = Quantile(s1, s2, ..., sn, (n+1)(1−α)
n

)
and the conformalized PIs are further obtained as :

Γα(X) = [t̂α/2(X)− q̂, t̂1−α/2(X) + q̂]

Now, we have the following equivalence [78]:

{Ytest ∈ Γα(Xtest)} ⇔ {stest ≤ q̂}

and thus:

P (Ytest ∈ Γα(Xtest)) ≥ 1− α⇒ P (stest ≤ q̂ ≥ 1− α)
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A6 Disgression on conformal risk control for thresholds
tuning

Conformal Risk Control (CRC) has been proposed as a generalization of the standard
Conformal Prediction framework to control any monotone loss function [333]. In this
appendix, we propose to investigate how that can be used in practice to control the decision
thresholds of segmentation models.

Motivations

One limit of our investigation of CP for lesion volumes (Chapter V) is that we do not consider
the prediction adequacy at the voxel level, but only at the image level. Let’s consider a simple
setting where a ground truth mask contains 10mL of lesions. If a segmentation model makes
10mL of FP predictions and 10mL of FN predictions, it will end up predicting the correct
lesion load of 10mL, even though there is no intersection between the predicted and reference
masks. Moreover, coverage can be seen as a 0− 1 loss, as the ground truth (e.g. volume) is
either contained in the predictive interval or not. Yet, in many real-world problems including
image segmentation, the notion of error is continuous, with different mistakes having different
costs (e.g. FNR, FDR). For example, in the context of medical image segmentation, we
may want to control the proportion of false positive or negative voxels in a segmentation.
These quantities are continuous and depend on the decision threshold of the neural network,
generally set to 0.5 for binary problems. Reducing the threshold with increase the number
of FP and decrease the number of FN. In contrast, increasing the threshold results in more
conservative predictions with higher FNs but lower FPs. This concept is illustrated in Figure
A.6.1. To solve this challenge, Conformal Risk Control (CRC) [333] has been proposed as a
generalization of split conformal prediction to control the expectation of any monotone loss
function (here, FDR or FNR). CRC acts as a quality-assurance policy, providing statistical
guarantees that the loss on unseen test data will be, in expectation, equal or inferior to a
user-defined threshold (e.g. 5%, 10%).

Mathematical Framework

In this section, the concept of Conformal Risk Control is introduced, as presented in [333],
and we discuss how it can be implemented in the setting of medical image segmentation. We
focus on simplicity in binary segmentation tasks, although the described procedure could
be applied with multi-class segmentation networks. Additionally, we introduce our method
for 2D images, although the process is strictly identical for 3D images, which have an extra
spatial dimension d.

We consider a trained segmentation model f that maps input images x ∈ X to a probability
map f : X → [0, 1]h×w. Using a calibration dataset {Xi, Yi}ni=1 composed of pairs of images
and associated ground truth segmentations, we aim at building a predictive region C by
post-processing the probability map predicted by f such as:
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E[ℓ(Cλ(Xn+1), Yn+1)] ≤ α (.6.1)

where ℓ ∈ [−∞, B] is a bounded loss function, and λ is the parameter that we want to optimize,
controlling the size of the predictive region. In the following we will write Li(λ) = ℓ(Cλ(Xi), Yi)
for simplicity. The CRC algorithm will find the optimal λ to control the risk ℓ at a user-defined
threshold α, using the n calibration data points, by solving:

λ̂ = inf
{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
where R̂n =

1

n

n∑
i=1

Li(λ)

(.6.2)

Concretely, for segmentation models, λ corresponds to the decision threshold used to binarize
the probability map. We will apply CRC to control two antagonist losses separately, namely
the FNR and FDR, which are meaningful for medical image analysis. The CRC procedure
takes the following forms for FNR and FDR control:

ℓFNR(Cλ(Xi), Yi) = 1− |Yi ∩ Cλ(Xi)|
|Yi|

=
FN

FN + TP

with Cλ(Xi) = {y : f(Xi) ≥ 1− λ}
(.6.3)

ℓFDR(C ′λ(Xi), Yi) =
|Yi ∩ C ′λ(Xi)|
|C ′λ(Xi)|

=
FP

FP + TP

with C ′λ(Xi) = {y : f(Xi) ≥ λ}
(.6.4)

where FP, TP, and FN correspond to False Positive, True Positive, and False Negative
predictions respectively. Note that this procedure is extremely similar to the usual CP
procedure performed on predictive intervals. The principal difference is that the 0 − 1
miscoverage loss 1{Ytest ̸∈ C(Xtest)} is replaced by the monotone risk ℓ(Cλ(Xtest), Ytest).

Experimental setting

We illustrate the CRC procedure on a task of polyp segmentation in 2D colonoscopy images.
The datasets have been presented in Chapter 3 IV.4.4 and a summary of the polyp datasets
is presented in Table A.9.1. Briefly, a dataset composed of 1312 images is used to train a 2D
segmentation DynU-Net, trained with the Dice++ loss II.6.3. After training, CRC is used to
control the FDR and FNR at a level of α = 0.10 using the calibration split composed of 438
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Input image (H x W x D)

Segmentation network

FNR Control
p2 > 0.50

Probability map Without Control
p0 = 0.50

FDR Control
p1 < 0.50

Decision threshold tuning using
 Conformal Risk Control 

Target risk
level

Figure A.6.1: Illustration of threshold tuning using Conformal Risk Control (CRC).
In a standard segmentation network, the probability map is binarized using a default
threshold of p0 = 0.50 for binary problems. Alternatively, the decision threshold can be
tuned to control the False Negative Rate (FNR) or False Discovery Rate (FDR), based on
a user-defined risk level. Controlling the FDR yields to a decision threshold p1 ≤ p0, while
controlling the FNR yields to a decision threshold p2 ≥ p0.
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I

II

III

IV

Figure A.6.2: Illustration of Conformal Risk Control in the context of polyp segmentation.
I: input images, II: baseline segmentation with TP in white, FP in cyan, and FN in red,
III: segmentation obtained by controlling the FDR rate at 10%, IV: segmentation obtained
by controlling the FNR rate at 10%.

Dataset Mean Dice (%)
In-distribution 89.22

PolypGen - Center 1 78.42
PolypGen - Center 2 73.51
PolypGen - Center 3 84.50
PolypGen - Center 4 55.70
PolypGen - Center 5 53.12

Table A.6.1: Average segmentation performance on the polyp test datasets.

images. The accuracy of the conformal procedure is tested on an in-distribution test split
of 438 images. Finally, we evaluate the robustness of the approach to domain-shift settings
using the PolypGen datasets comprising images from 6 different imaging centers, exhibiting
important variability. Figure A.6.2 presents a visualization of the different decision thresholds
obtained with and without CRC. The experiment is reproduced for 25 trials by shuffling the
in-distribution calibration and test splits.

Results

The average segmentation performance of the model is presented in Table A.6.1 for each
test dataset. The model reaches top-quality segmentation on the in-distribution test split,
however the performance is very variable on the PolypGen datasets. While images from
Center 3 are well-segmented, Centers 4 and 5 are much more challenging. Regarding the CRC
procedure, the empirical FDR and FNR are exactly 0.10 on the ID test set, showing that the
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a

b

Figure A.6.3: False Discovery Rate (a, FDR) and False Negative Rate (b, FNR) control
on the polyp test datasets. The graphs present the histograms (blue) of empirical risks
over the 25 trials. The red dashed line indicates the average risk over the trials. The
numerical value is indicated above the line. ID: in-distribution test dataset. Centers 1 to 6
correspond to the PolypGen dataset, used for domain-shift robustness evaluation.
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Figure A.6.4: Relationship between the risk gap (distance between the empirical risk
and the target risk α = 0.10) and the average segmentation performance (Dice). As
segmentation quality drops, the gap to the target risk increases.

conformal decision threshold tuning is highly precise. However, the precision is degraded on
the PolypGen datasets. The shift is proportional to the drop in segmentation accuracy: in
Centers 4 and 5, the empirical FDR and FNR are very distant from the target level of α = 0.10.
The gap is less pronounced for Centers 1 and 3, for which the segmentation model is more
robust. Overall, conclusions similar to Chapter V can be drawn here. When the test data
is exchangeable with calibration data, the conformal procedure is highly efficient. However,
when the exchangeability hypothesis is violated, the CP procedure precision highly degrades.
For CRC, we can further show that this gap is proportional to the drop in segmentation
quality (see Figure A.6.4).

Discussion

Conformal Risk Control is an interesting generalization of the conformal framework to control
any monotone loss function. Here, we illustrate how it can be used to tune the decision
threshold of segmentation models to control the rate of FP and FN predictions, respectively
(note that the exact same procedure can be used for medical image classification models).
As a contribution, we test the robustness of the procedure to domain-shift settings, and our
experiments show that the risk gap increases as the segmentation quality drops. Note that a
weighted formulation of conformal risk control can be framed [333, 334], similar to the WCP
framework presented in this thesis (Section V.3).
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A7 Participation in the SHIFT Challenge on WMH seg-
mentation uncertainty

The Shift 2.0 Challenge1 [214] has taken place between September 2022 and March 2023. The
scope of this challenge is to evaluate the robustness and quality of uncertainty estimates on
real-world problems. For this second edition, the challenge included a task of White Matter
Hyperintensities (WMH) segmentation in brain T2 FLAIR MRI, thus fitting perfectly into
the scope of this thesis. In this section, we present our proposed contribution which ranked
in second position in the leaderboard.

Challenge Objectives

The challenge aims at the development of models that 1) are robust under various domain
shifts, and 2) provide useful uncertainty estimates. For the WMH segmentation task, the
training dataset proposed in this challenge is a subset of the data used in the thesis cross-
sectional MS experiments. It relies on the ISBI 2015 dataset [230], MSSEG [229], MSLUB
[231], and a private MS dataset acquired at the Swiss universities of Lausanne and Basel.
The main difference with the MS dataset used in this thesis is that the WMH 2017 dataset is
not included, which reduces the number of available scans to 33 for training, 7 for validation,
and 33 for in-distribution test. MSLUB is used for out-of-distribution test (N=25) for phase
I of the challenge, while the private Lausanne dataset (N=74) is used for out-of-distribution
test for phase II. Note that the challenge does not evaluate models on in-distribution data.

The participants had to provide a Docker producing a segmentation of the WMH and a
voxel-level uncertainty map. To evaluate the quality of uncertainty estimates, a metric similar
to the R-AUC used in Chapter 2 of this thesis is used. The only difference is that challenge
organizers used the normalized Dice score (nDSC) [217] instead of the Dice to construct the
performance versus retention curve. This metric is named nDSC R-AUC.

Proposed Algorithm

The proposed algorithm is based on an ensemble of 5 individually trained Attention UNets
[16]. The particularity is that we do not use directly the entropy derived from the predicted
probabilities of each member, as done in the thesis. Instead, this challenge was the occasion
to experiment with a learning paradigm for uncertainty. More particularly, each model has
two outputs: one for the segmentation and one for a predicted uncertainty map. This is
akin to the learned uncertainty framework introduced as a baseline in the thesis (II.2.7).
More specifically, models are trained using the Focal Labelflip loss II.6.4. As a result, each
member of the ensemble produces a segmentation paired with its associated uncertainty map.
Then, the ensemble uncertainty map is obtained by averaging the individual maps. Data
Augmentation is used extensively to account for the small size of the training dataset.

1https://shifts.grand-challenge.org/

https://shifts.grand-challenge.org/
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Algorithm Ranking nDSC R-AUC ↓ nDSC ↑
Ours 1 0.0102± 0.0075 0.5944

martakaczmarska 2 0.0126± 0.0109 0.6057
umaimarahman.ai 3 0.0160± 0.0152 0.7084

Table A.7.1: Performance of the top 3 algorithms during Phase I. The test dataset is
MSLUB.

Algorithm Ranking nDSC R-AUC ↓ nDSC ↑
agaldran 1 0.0128± 0.0169 0.5110

Ours 2 0.0134± 0.0147 0.5832
martakaczmarska 3 0.0136± 0.0138 0.6611

Table A.7.2: Performance of the top 3 algorithms during Phase II. The test dataset is
the private Lausane dataset.

Implementation Details

The framework is implemented in PyTorch [8]. Models are trained with the usual paradigm
used throughout this thesis: the ADAM optimizer is used with a fixed learning rate of 2×10−4

until the validation Dice seizes to improve to 60 epochs. The Attention U-Nets operate on
patches extracted from the input FLAIR MRI, with a fixed size of 128× 128× 128. Data
Augmentation is implemented using the TorchIO library [246].

Ranking and Discussion

The different algorithms were benchmarked by the challenge organizers with respect to the
nDSC R-AUC metric that quantifies the quality of uncertainty. For Phase I, the test data
corresponds to the MSLUB dataset which is provided to the participants. Thus participants
could optimize their algorithms so that the performance on MSLUB is optimized. Then,
during Phase II, the test dataset is the private Lausanne dataset, not provided to participants.
It was thus not possible to tune the algorithm directly for this test set. The final retained
ranking is the one of Phase II. The performances of the top 3 teams in each phase are
presented in Tables A.7.1 and A.7.2, respectively.

It can be noticed that segmentation performance (estimated using the normalized Dice) is
quite poor for each algorithm. This is because only 33 images for training were provided,
and moreover, the test data were not in-distribution samples. Thus the predictive task was
particularly challenging. Finally, it was possible to optimize the quality of uncertainty (nDSC
R-AUC) while having poor segmentation accuracy. As a result, our algorithm achieved
the best uncertainty quality in Phase I while proving the poorest nDSC. Similarly, the top
algorithm in Phase 2 with respect to uncertainty was also the worst in terms of nDSC. This
can be seen as a limitation of the challenge, which rewards poor segmentation models that
generate a lot of errors. When these incorrect voxels are associated with high uncertainties,
the nDSC R-AUC metric can be minimized. This echoes the observations presented in the
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voxel-level uncertainty benchmark (Chapter 2), where we argued that evaluation uncertainty
separately from segmentation accuracy was cumbersome.

A8 Participation in the ATLAS Challenge on liver tumor
segmentation

As a side project to this thesis, a contribution was developed for the ATLAS Challenge [335]
organized in the context of MICCAI 2023. The challenges focus on the segmentation of liver
tumors in MRI. This participation was the subject of a publication at the Resource-Efficient
Medical Image Analysis (REMIA) workshop at MICCAI 2023 [336]. Here, we present a
summary of the proposed algorithm. This work has been carried out in collaboration with
Dr. Pauline Roca (Pixyl).

Challenge Objective

Liver cancer ranks as the sixth most prevalent form of cancer globally and is the fourth
leading cause of cancer-related mortality. More particularly, hepatocellular carcinoma (HCC)
is the primary type affecting adults. When the tumor cannot be surgically removed, the
treatment involves transarterial radioembolization (TARE), inducing tumor necrosis through
radiation-induced DNA damage and cell death [337]. To calculate dosimetry and plan the
intervention, the volume and location of the tumor need to be precisely estimated [338].
This can be done from contrast-enhanced magnetic resonance imaging (CE-MRI) with four
phases (precontrast, arterial, portal venous, delayed phases). However, manual delineation is
time-consuming and error-prone and could thus benefit from automatic tools.

The goal of the ATLAS challenge is to develop accurate segmentation algorithms that should
carry the simultaneous segmentation of the liver and the tumors. For each patient, one of
the 4 MRI phases is provided. In this setting, the challenges are multiple. First, the training
dataset is limited for model development (60 cases for training and validation) and there
is a lot of variability between the MRI phase (precontrast, arterial, portal venous, delayed
phases). This variability concerns the image contrast, tumors appearance, and also the image
resolution (see Figure A.8.1). More precisely, training images exhibit a resolution ranging
from 0.6841.4mm in the XY plane, and from 24.6mm in the Z-axis. Then, there is also a
large variability in terms of MRI acquisition device [335]. The last challenge is that the
hidden test dataset (30 subjects) was acquired more recently, and as an effect the overall
quality of MRIs is superior to the one of the training images.

Proposed Pipelines

For this challenge, we propose 2 different pipelines: a multi-class model that performs the
simultaneous segmentation of the liver and the tumors. It operates in a patch-based approach,
with a patch size set to 256× 256× 64. The second pipeline is composed of two models, one
segmenting the overall liver, and one the tumors. The motivation is that segmenting tumors
is much more challenging than segmenting the liver, thus potential benefit could be gained by
disentangling both tasks. For the binary liver model, the patch size of 256× 256× 64 is kept.
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Figure A.8.1: Variability in voxel resolution based on the MRI phase for the 60 training
subjects.

For the binary tumor model, a smaller patch size of 128× 128× 64 is employed as it allows
to reduce the imbalance between background and tumor voxels. At inference, the input MRI
is processed by each binary model. The two resulting binary masks are then aggregated to
reconstitute the final 3-class segmentation.

For each pipeline, we use an Anisotropic Hybrid U-Net (AHUNet) [339] as the segmentation
backbone to tackle the anisotropy of the data, with the Z resolution being up to 4 times
that in the plane. This alleviates the need for resampling to a uniform resolution, which
inevitably increases interpolation blur in the images. This model is composed of a pre-trained
2D convolutional encoder that ignores between-slice information. It is followed by a 3D
convolutional decoder that incorporates the 3D context.

Post-processing module

Post-processing is a crucial step for the automated segmentation of the liver in CT and MRI
[340]. The raw predictions of our algorithms are post-processed using a 3-steps procedure:

• First, only the largest connected component for the liver is kept. Then, eventual holes
in the liver mask are filled [341].

• Tumor lesions outside the liver mask are discarded.
• Binary closing is applied to remaining lesions to improve the smoothness of their

borders.
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Pipeline Multi-class

Binary Liver
Anisotropic UNet

Pipeline Binary

Multiclass
Anisotropic UNet

Post-
Processing
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Module

Binary Tumor
Anisotropic UNet

Input CE-MRI

Input CE-MRI Output Mask

Output Mask

Figure A.8.2: Illustration of our two proposed pipelines, namely multi-class and binary.
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Lesion uncertainty quantification

As the predictive task involves the detection of lesions, the lesion-uncertainty paradigm
developed for this thesis can be explored. However, the number of lesions is rather low in
this dataset, and the methodology using auxiliary classifiers to quantify lesion uncertainty is
ill-adapted in these conditions, as shown in Chapter 3 of this thesis. Thus we opt for a simple
baseline to compute lesion uncertainty. More particularly, we collect the tumor probabilities
pi,tumor (i ∈ [1, N ]) for each of the N voxels of the lesion, as produced by the Ensemble of
Anisotropic UNets. The lesion-wise uncertainty score is then taken as:

Lunc = 1− 1

N

N∑
i=1

pi,tumor

Ranking and discussion

The challenge algorithms were evaluated based on a panel of segmentation metrics: the
Dice, the 5mm surface Dice, the symmetric surface distance, and the Hausdorff distance,
which were calculated for both the liver and tumor classes. The Root Mean Square Error on
tumor burden was also calculated to assess the precision of the tumor volume estimation.
The performances of our pipelines in the private test dataset are presented in Table A.8.1,
along with the performance of the challenge winner. Figure A.8.3 displays the histogram of
uncertainty scores for true positives and false positives lesions.

Regarding segmentation metrics, our proposed pipelines and the winner algorithm produce
similar results on the liver class, for each metric. However, ours produce significantly lower
results on the tumor class. There are several design choices in the winning algorithm that
explain this success:

• Data are resampled to a uniform voxel spacing. It appears that other teams followed
this approach. Thus our design choice to use an anisotropic model on the raw data
may not be optimal.

• They used a model called Scalable and Transferable U-Net (STU-Net) [342] which is a
large pre-trained segmentation backbone. More precisely the model is pretrained on the
TotalSeg dataset [317] that contains 1204 CT images with the manual segmentation of
104 anatomical structures, including 27 organs.

• They extend the training dataset with the LiTs 2017 dataset [343] which contains CT
scans of patients diagnosed with liver tumors.

In summary, a net gain in tumor segmentation accuracy could be gained by extending the
ATLAS training dataset with images from another modality (CT). Pretraining was according
to the authors an important feature of their winning algorithm. In future work, we will
include these concepts in our liver tumor segmentation pipelines to see if they translate well
with our Anisotropic UNet models.

Regarding the lesion-wise uncertainty scores (Figure A.8.3, left), it can be observed that true
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Figure A.8.3: Qualitative evaluation of the tumor lesion uncertainty obtained with the
multi-class pipeline. Left: histogram of uncertainty estimates with respect to the lesion
status (True Positive, TP or False Positive, FP). Right: lesion uncertainty with respect to
the lesion volume (in log-scale).

positive lesions are associated with lower uncertainty scores than false positive lesions, which
follows the same observations presented in this thesis for MS lesions and lung nodules. A
strong correlation with the lesion size can be noted (Figure A.8.3, right).
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Multi-class Dual binary Winner (Jin Ye et al.)
Li

ve
r

ASD ↓ 1.7 1.5 1.5
Dice ↑ 0.95 0.95 0.96
HD (×101) 2.6 2.5 2.4
SD ↑ 0.95 0.95 0.96

Tu
m

or

ASD (×101) ↓ 3.0 4.0 0.7
Dice ↑ 0.60 0.59 0.75
HD (×101) ↓ 7.8 9.3 0.4
SD ↑ 57.4 55.3 75.4
RMSE (×10−2) ↓ 0.4 0.6 0.2

Table A.8.1: Performance on the hidden test dataset for both pipelines, as reported in
the public leaderboard. ASD = Asymmetric Surface Distance, HD: Haussdorf Distance,
SD: Surface Dice.

A9 Datasets summary

In this section, the different datasets used throughout this thesis are summarised (Tables
A.9.1 and A.9.2).



Pathology Usage in Thesis Dataset Modalities Size Task # Centers # Annotators

Multiple
Sclerosis

Calibration benchmark II.6.3
Voxel uncertainty II.5
Lesion uncertainty III
Quality Control IV.4.2
Predictive Intervals V.2.8
Data synthesis III.8.1

MSSEG 2016 [229]

3D T1-w
3D T2-w
3D FLAIR
2D PD-T2-w

53 Cross-sectional
WMH segmentation 4 7

ISBI 2015 [230]

3D T1-w
3D T2-w
3D FLAIR
2D PD-T2-w

21 Cross-sectional
WMH segmentation 1 2

Ljubljana [231]
2D T1-w
2D T2-w
3D FLAIR

30 Cross-sectional
WMH segmentation 1 3

WMH 2017 [293] 3D T1-w
3D FLAIR 170 Cross-sectional

WMH segmentation 3 2

Lesion uncertainty III.8 MSSEG-2 [63] 3D FLAIR
(2 visits) 100 Longitudinal

WMH segmentation 15 4

Lung
cancer Lesion uncertainty III.7 LIDC-IDRI [268] Helical thoracic CT 1018 Nodules segmentation Multi 4

Strokes
Calibration benchmark II.6.1.3
Voxel uncertainty II.7
Out-of-distribution IV

ATLAS-2 [242] T1-w 655 Stroke lesion
segmentation 11 2

Polyps Quality Control IV.4.4
Conformal Risk Control A6

Kvasir [308] 2D RGB images 1000 Polyp
segmentation 4 ≥ 1

ETIS-LaribPolyp [309] 2D RGB images 196 Polyp
segmentation 1 N/A

CVC-ColonDB [310] 2D RGB images 380 Polyp
segmentation 1 N/A

CVC-ClinicDB [311] 2D RGB images 196 Polyp
segmentation 1 N/A

PolypGen [312] 2D RGB images 1412 Polyp
segmentation 6 6

Healthy Out-of-distribution IV IXI [295] 3D brain T1-w 600 N/A 3 N/A
CHAOS [296] Abdominal T1-w MRI 80 Organ segmentation 1 3

Table A.9.1: Summary of the datasets used in this thesis (Part I). WMH: White-Matter Hyperintensities, PD: Proton Density.



Pathology Usage in Thesis Dataset Modalities Size Task # Centers # Annotators

Brain
Tumors

Calibration benchmark II.6.3
Voxel uncertainty II.6
Out-of-distribution IV
Quality Control IV.4.3
Predictive Intervals V.3

BraTS Adult Gliomas [226]

T1-w
T2-w
FLAIR
T1-ce

1133
Multi-class
Glioblastoma
segmentation

Multi Multi

BraTS SSA [238]

T1-w
T2-w
FLAIR
T1-ce

60
Multi-class
Glioblastoma
segmentation

Multi Multi

Quality Control IV.4.3
Predictive Intervals V.3
Out-of-distribution IV

BraTS Meningioma [290]

T1-w
T2-w
FLAIR
T1-ce

944
Multi-class
Glioblastoma
segmentation

Multi Multi

Quality Control IV.4.3
Out-of-distribution IV BraTS Metastases [289]

T1-w
T2-w
FLAIR
T1-ce

238
Multi-class
Glioblastoma
segmentation

Multi Multi

Quality Control IV.4.3
Out-of-distribution IV BraTS Pediatric [288]

T1-w
T2-w
FLAIR
T1-ce

99
Multi-class
Glioblastoma
segmentation

Multi Multi

Out-of-distribution IV LUMIERE [282]

T1-w
T2-w
FLAIR
T1-ce

74
Multi-class
Glioblastoma
segmentation

Multi Multi

Epilepsy Out-of-distribution IV EPISURG [294] 162 T1-w Resection cavity
segmentation 1 3

Critical
Findings Out-of-distribution IV CQ-500 [292] 491 Head CT

Detection of bleeds,
fractures,
and mass effects

1 3

Lumbar stenosis Out-of-distribution IV Lumbar MRI dataset [297] Lumbar T1-w MRI 568 Lumbar spine
segmentation > 1 N/

Table A.9.2: Summary of the datasets used in this thesis (Part II).
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Uncertainty Frameworks Count Studies

Monte Carlo Dropout 118

[172] [179] [344] [90] [68] [146] [345] [216] [69] [346]
[175] [347] [173] [251] [348] [110] [176] [109] [71] [206]
[188] [349] [73] [350] [186] [351] [352] [112] [353] [207]
[354] [355] [356] [347] [357] [358] [184] [154] [189] [204]
[165] [208] [359] [211] [360] [104] [70] [212] [361] [362]
[111] [218] [363] [364] [197] [365] [366] [367] [368] [205]
[157] [210] [130] [148] [99] [100] [185] [369] [215] [92]
[370] [193] [152] [371] [372] [373] [123] [98] [181] [374]
[194] [199] [375] [376] [169] [195] [94] [72] [147] [101]
[105] [102] [114] [377] [378] [379] [380] [170] [301] [81]
[381] [382] [132] [383] [135] [209] [304] [95] [384] [385]

[322] [219] [183] [182] [386] [387] [91] [388]

Deep Ensemble 55

[90] [216] [389] [69] [177] [110] [390] [109] [71] [352]
[112] [391] [192] [358] [392] [165] [113] [393] [168] [111]
[394] [162] [163] [395] [157] [396] [370] [371] [127] [123]
[375] [397] [117] [118] [121] [114] [170] [81] [381] [398]
[399] [209] [304] [95] [384] [219] [400] [401] [306] [182]

[402] [386] [387] [91] [388]

Softmax 44

[90] [68] [216] [69] [67] [71] [206] [191] [73] [352]
[391] [403] [208] [359] [404] [70] [74] [363] [405] [370]
[406] [407] [408] [72] [409] [170] [410] [301] [81] [381]

[411] [412] [413] [414] [415] [416] [135] [417] [304] [384]
[322] [336] [387] [50]

Learned Uncertainty 28
[43] [68] [187] [164] [69] [418] [206] [419] [355] [129] [420]

[70] [126] [421] [128] [130] [422] [125] [372] [93] [133]
[423] [131] [132] [424] [135] [198] [425]

Test Time Augmentation 24
[68] [146] [178] [391] [202] [358] [165] [366] [205] [145]
[148] [215] [375] [72] [147] [174] [170] [426] [382] [132]

[385] [322] [219] [91]

Generative Models 15 [136] [137] [68] [357] [138] [139] [143]
[157] [206] [142] [140] [94] [141] [427] [144]

Features 14 [68] [71] [150] [154] [208] [152] [72]
[305] [301] [381] [151] [153] [304] [155]

Evidential Deep Learning 14 [164] [160] [162] [163] [157] [152]
[161] [380] [190] [200] [428] [159] [429] [388]

Dropout Ensemble 11 [90] [354] [111] [370] [371] [123]
[124] [209] [182] [430] [91]

Bayesian Neural Networks 7 [90] [92] [431] [94]
[432] [95] [91]

Conformal Prediction 5 [81] [80] [433]
[434] [322]

Other 4 [69] [166]
[165] [167]

Total 338

Table A.9.3: Resume of the papers included in the literature review of this thesis,
classified according to the uncertainty framework. The same study can be present in
different rows, if several uncertainty approaches have been compared.
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Evaluation Frameworks Count Studies

Error Detection - Referral 70

[172] [90] [68] [146] [345] [69] [346] [177]
[347] [251] [110] [206] [73] [353] [207] [354]
[391] [355] [347] [129] [358] [166] [204] [208]
[359] [211] [104] [212] [393] [168] [111] [364]

[162] [163] [367] [368] [205] [395] [157] [145] [210]
[215] [370] [152] [371] [372] [373] [123] [133]
[124] [423] [131] [397] [147] [101] [105] [432]
[118] [377] [174] [170] [132] [424] [209] [417]

[95] [384] [91] [388]

Qualitative Assessment 61

[344] [187] [389] [418] [348] [390] [176] [188]
[349] [191] [186] [351] [419] [160] [202] [356] [192] [184]

[189] [404] [360] [420] [361] [362] [421] [197]
[394] [405] [130] [99] [422] [396] [185] [92]
[193] [125] [98] [374] [194] [199] [375] [431]
[169] [407] [195] [102] [378] [379] [161] [190]
[411] [383] [200] [412] [413] [428] [398] [198]

[336] [430] [429]

Quality Control 32

[43] [179] [146] [216] [69] [177] [175] [178]
[173] [109] [206] [104] [113] [70] [366] [100]
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Introduction

L’établissement d’un diagnostic médical est par nature sujet à l’incertitude. Le manque de
données, leur incomplétude ou les informations conflictuelles peuvent mener le docteur à
douter et à être incertain concernant la cause des symptômes observés. Confrontés à une
pathologie rare, différents experts peuvent être en désaccord concernant le traitement adéquat.
En imagerie médicale également, une image faiblement résolue ou présentant un artefact peut
rendre son analyse ambiguë. Il est donc communément admis que l’incertitude fait partie du
quotidien du corps médical, et leur formation implique d’apprendre à prendre des décisions
éclairées en prenant en compte cette incertitude.

Il serait donc attendu d’un algorithme analysant automatiquement les images médicales
de pouvoir raisonner avec l’incertitude d’une manière similaire, afin d’éviter d’induire en
erreur les utilisateurs du logiciel. Cependant, les modèles prédictifs basés sur les réseaux
de neurones profonds sont typiquement incapables d’exprimer le doute. En général, toute
prédiction est effectuée avec un niveau de confiance absolu, ce qui met en question leur
fiabilité. Dans le cadre d’applications critiques comme l’analyse d’images médicales, il est
donc crucial d’améliorer ces algorithmes complexes afin qu’ils puissent avertir l’utilisateur
quand le résultat automatique est incertain. Cela est nécessaire afin d’éviter d’induire en
erreur le praticien, ce qui pourrait avoir des conséquences négatives pour le patient, comme
une prise en charge retardée de la pathologie.

La quantification de l’incertitude d’un réseau de neurones profonds est une tâche complexe. En
effet, ces modèles sont généralement composés de millions de paramètres dont l’interprétation
par l’humain est laborieuse. Par ailleurs, leur mode d’entraînement implique l’apprentissage
automatique de caractéristiques à partir des données brutes, sans supervision humaine
concernant le choix de cesdites caractéristiques. Par conséquent, le processus de décision
d’un réseau de neurones est opaque pour le développeur et l’utilisateur du logiciel. Cet effet
boîte noire peut rendre l’utilisateur réticent à l’utilisation de l’outil.

L’objectif de cette thèse est le développement de méthodologies permettant de quantifier
l’incertitude liée aux analyses automatiques d’images médicales par réseaux de neurones
profonds. Concernant la segmentation d’images médicales 3D, l’incertitude est utile à divers
niveaux pour quantifier de manière complète la confiance du résultat automatique:

• À l’échelle du voxel, des cartes d’incertitudes peuvent être construites pour associer
chaque voxel de l’image à un score de confiance. Ce score correspond au degré de
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confiance que l’on peut attribuer au modèle concernant le label associé au voxel dans
la segmentation (ex: lésion ou sain). Ces cartes peuvent être superposées à l’image
d’entrée pour visualiser les zones qui ont suscité l’hésitation du modèle.

• Pour des pathologies cérébrales comme la Sclérose-en-Plaques, la segmentation au-
tomatique du cerveau permet généralement de mettre en évidence plusieurs dizaines
de lésions individuelles. Dans ce cadre, des scores d’incertitude à l’échelle de la
lésion sont désirés. Ces scores permettraient à l’utilisateur de contrôler directement
les lésions les plus incertaines afin de rejeter les potentiels faux positifs. Ce niveau de
quantification de l’incertain est aligné avec l’attention du clinicien, qui est à l’échelle de
la lésion dans le cadre de la SEP.

• En guise de troisième niveau, l’incertitude peut également être quantifiée à l’échelle du
cas. Cela peut être considéré comme une forme de contrôle qualité. Plus précisément, ce
contrôle qualité peut être effectuée sur l’image d’entrée, avec pour objectif d’identifier les
images qui ne conforment pas à ce pour quoi le modèle a été entraîné. Par exemple, un
modèle entraîné à partir de séquences d’IRM pondérées T1 sera a priori incompétent sur
des séquences d’IRM pondérées T2. Dans cette situation, il est attendu que l’incertitude
du modèle soit élevée, permettant de détecter ce cas anormal et d’alerter l’utilisateur.
De plus, le contrôle qualité peut également être appliqué sur la segmentation produite
par le modèle. L’idée est de détecter automatiquement une segmentation qui n’atteint
pas le degré attendu de qualité afin d’alerter l’utilisateur.

• Enfin, la segmentation est généralement utilisée afin d’extraire des métriques de haut-
niveau comme le volume des lésions identifiées. Ces informations sont présentées à
l’utilisateur sous la forme d’une rapport textuel. À l’heure actuelle, ces estimations ne
sont pas complémentées par des intervalles prédictifs. La dernière échelle envisageable
est donc l’échelle des volumes estimés. L’objectif est d’associé à ces estimations
des intervalles prédictifs, construits de manière à contenir le vrai volume avec un degré
de confiance donné (par exemple 90%).

Organisation de la thèse

Cette thèse contient 5 chapitres. Le premier chapitre permet d’introduire plusieurs notions
clés du Deep Learning en se concentrant sur les techniques utilisées dans l’analyse d’images
médicales. Le second chapitre permet d’introduire l’étude bibliographique qui a été effectuée
dans le cadre de cette thèse, permettant une revue systématique des méthodes proposées pour
quantifier l’incertitude des modèles d’analyse d’images médicales. Ce chapitre est également
l’occasion d’effectuer deux études comparatives différentes. La première est dédiée à l’étude
de la calibration des probabilités des modèles de segmentation. Cette propriété désirée
permet de s’assurer que les probabilités en sortie du modèle de segmentation soient bien
représentatives de la confiance du modèle. La seconde étude s’intéresse à la comparaison de
diverses techniques pour quantifier l’incertitude à l’échelle du voxel. Cette expérience permet
de mettre en avant l’intérêt de l’assemblage de modèle, qui consiste à entraîner plusieurs
instances d’un même réseau de neurones puis d’agréger leurs prédictions. Les chapitres 3, 4 et
5 présentent ensuite les différentes méthodologies développées pour quantifier l’incertitude des
lésions, des sujets et des volumes estimés, respectivement. Ces contributions sont détaillées
plus en avant ci-dessous.
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Chapitre 3 : Quantification de l’incertitude des lésions à
partir de classificateurs auxiliaires

La première étape à la quantification de l’incertitude à l’échelle des lésions est d’effectuer
une analyse des composantes connexes de la segmentation, permettant d’identifier chaque
instance unique de lésion. Ensuite, une approche simple et directe consiste à moyenner
l’incertitude des voxels qui composent la lésion. Néanmoins, cette approche standard suppose
que chaque voxel contribue uniformément au niveau global d’incertitude de la lésion. Dans ce
chapitre, nous cherchons à déterminer si une approche plus sophistiquée permet d’améliorer
l’estimation de la confiance de chaque lésion.

L’angle proposé pour quantifier l’incertitude à l’échelle des lésions est l’utilisation de clas-
sificateurs auxiliaires. Plus précisément, un modèle est entraîné à prédire la probabilité que
la lésion détectée soit un faux positif. Ce score est utilisé comme marqueur d’incertitude.
La motivation est qu’il est souhaité que les fausses détections soient plus incertaines que les
vrais positifs. Cela requiert de développer des classificateurs opérant à l’échelle des lésions.
Trois variantes sont proposées ici. La première consiste à l’extraction de caractéristiques à
partir de l’image d’entrée, de la segmentation et de la carte d’incertitude. Cela permet de
construire des vecteurs de variables représentatives de la lésion, permettant ensuite d’entraîner
un modèle de régression logistique pour prédire le statut de la lésion (vrai positif ou faux
positif). La deuxième technique testée est l’utilisation d’un réseau de neurones convolutif qui
travaille à partir de boîtes englobantes centrées sur la lésion. Enfin, une technique faisant
usage de graphe est présentée. L’idée est de représenter chaque lésion par un graphe, ce qui
permet de prendre en compte l’hétérogénéité des formes de lésion. Le graphe est composé
de nœuds qui correspondent aux voxels composant la lésion. Une série de caractéristiques
est ensuite définie pour chaque nœud à partir de l’intensité de l’image d’entrée et du niveau
d’incertitude des voxels et de la géométrie de la lésion. Enfin, un réseau de neurones opérant
sur les graphes prédit la probabilité que le graphe corresponde à une lésion fausse positive.

Ces différentes techniques sont évaluées sur 3 tâches impliquant la détection de lésions
multiples : la segmentation de lésions SEP en IRM transversale (une image à la fois) et
longitudinale (comparaison de deux images du même patient séparées dans le temps), ainsi
que la détection de nodules pulmonaires en scanner.

Les scores d’incertitude à l’échelle de la lésion sont évalués par leur capacité à séparer les
vrais positifs des faux. Nous montrons que ces approches basées sur la classification des
lésions sont efficaces quand une base de données suffisamment grande peut être construite,
contenant suffisamment d’exemples de lésions correctes et incorrectes. Par ailleurs, ces scores
sont corrélées aux scores d’incertitude définies par les experts (score de subtilité et variabilité
inter-expert). Cependant, quand peu de lésions sont disponibles, comme dans le cas de
l’analyse longitudinale de patients SEP, ces méthodes sont mises en défaut. Cela vient du fait
qu’elles reposent sur un apprentissage supervisé qui est sous-optimal quand peu d’exemples
sont disponibles.
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Chapitre 4 : Détection des images hors-distribution et
Contrôle qualité des segmentations

Dans ce chapitre, l’objectif est de développer un module capable de détecter automatiquement
les images qui ne correspondent pas à ce qui a été vu pendant l’apprentissage du modèle.
En imagerie médicale, de nombreuses anomalies peuvent se glisser dans l’image d’entrée et
rendre son analyse sous-optimale. Plus particulièrement, nous avons identifié 5 catégories
différentes. Tout d’abord, la présence d’artefact (mouvement, biais) dans l’image est commune
en IRM, ce qui peut rendre la lecture de l’image ambiguë. Ensuite, les modèles d’IA sont
entraînés à partir de séquences IRM bien spécifiées (par exemple T2 FLAIR pour les modèles
SEP ou T1 pour les modèles segmentant le cerveau en régions anatomiques). Il est donc
important de pouvoir détecter quand la séquence en entrée ne correspond pas à ce qui est
attendu. En troisième place, la présence d’un type de lésion cérébrale non vue pendant
l’apprentissage cause généralement des erreurs dans la segmentation. Ainsi un modèle de
tumeur risque de segmenter des lésions AVC car ces lésions sont typiquement absentes de la
base d’apprentissage. Ce type de cas est donc évalué dans notre banc d’essai. Une situation
plus subtile ou la pathologie reste la même (glioblastome par exemple) mais que la population
change (par exemple des sujets mineurs pour un modèle entraîné à partir de patients adultes)
est étudié. Enfin, des cas extrêmes ou l’image ne présente pas l’organe attendu sont inclus
dans le banc d’essai (par exemple, des IRMs abdominales pour un modèle opérant sur le
cerveau).

Ces divers cas sont étudiés sur une tâche portant sur la segmentation de tumeur dans des
IRMs T1 du cerveau. Le choix est fait de se concentrer sur des IRMs T1 car elles sont
facilement accessibles et permettent d’étudier de nombreux cas d’images hors-distribution.
Nous commençons par évaluer l’approche standard qui dérive un score pour l’image à partir de
la carte d’incertitude à l’échelle du voxel. Cette méthode se montrant limitée, une technique
plus avancée faisant usage des représentations latentes du modèle de segmentation est explorée.
Cette dernière s’avère particulièrement robuste, tout en étant peu coûteuse en termes de
calcul. Néanmoins nous montrons que la performance de l’approche dépend fortement du
choix de la couche de convolution permettant d’extraire les représentations latentes. Ce
choix est particulièrement sensible et dépend de l’architecture de segmentation sélectionnée.
Nous montrons donc qu’une solution évitant la sélection de la couche de convolution est
l’agrégation des scores des différentes couches. Cette solution permet d’obtenir des résultats
performants peu importe l’architecture de segmentation utilisée.

Ensuite, notre étude s’intéresse à une seconde définition des images hors-distribution, qui
consiste à définir une image comme hors-distribution si la segmentation correspondante n’est
pas de bonne qualité. Cette définition est intéressante car elle permet de prendre en compte la
capacité de généralisation du modèle qui peut segmenter correctement une image présentant
un artefact. En général, la détection des segmentations de mauvaise qualité se fait avec des
techniques différentes que celles utilisées pour détecter les images hors-distribution. Ici, nous
proposons d’utiliser un cadre unifié faisant appel à deux estimées de qualité : une portant sur
l’image d’entrée, une portant sur la segmentation de sortie. Cela permet de stratifier l’espace
des prédictions en quatre régimes de fonctionnement: optimal, robuste, dysfonctionnel ou
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divergent. Nous montrons à travers différents exemples que ces régimes permettent une
estimation graduée de la qualité de la segmentation.

Chapitre 5 : Construction d’intervalles prédictifs pour
l’estimation de volumes lésionnels

La segmentation automatique peut être utilisée pour générer des rapports d’analyse reportant
les volumes des lésions identifiées ainsi que le volume de régions anatomiques. Cela peut
être vu comme une tâche de régression des volumes à partir des segmentations. Néanmoins
il n’existe pour le moment pas de méthode fiable pour équiper ces estimations avec des
intervalles prédictifs, cruciaux pour éviter d’induire en erreur l’utilisateur du logiciel. Dans ce
chapitre, nous proposons une nouvelle méthodologie pour estimer des intervalles de confiance
à 90% pour l’estimation de volumes lésionnel. Ce modèle nommé TriadNet permet la
construction d’intervalles sans besoin d’échantillonner les prédictions, permettant donc une
nette réduction du temps d’inférence. L’intérêt de ce modèle est démontré à travers deux
tâches: la segmentation des lésions SEP, et la segmentation multi-classes des glioblastomes.

Pour garantir que les intervalles construits contiennent bien la fraction désirée des vrais
volumes (ex: 90%), nous utilisons le concept des prédictions conformes. Proposé dans les
années 80, ce cadre mathématique regagne en popularité et est revisité principalement dans
des problématiques de classification d’images 2D, ou en régression à uni-dimension. Nous
proposons la première investigation de ce principe pour l’analyse d’images médicales 3D.
Le concept est le suivant : les intervalles sont calculés sur une base de calibration, et leur
couverture est mesurée. Sans calibration, il y a très peu de chance que la couverture atteigne
la cible de 90%. Une calibration est possible avec les prédictions conformes, en calculant un
facteur correctif q̂ qui vise à corriger les intervalles pour qu’ils atteignent, une fois calibrés,
la couverture désirée. Un challenge immédiat en imagerie 3D et la taille de la base de
calibration, qui doit être suffisamment grande pour atteindre avec précision les 90% de
couverture souhaités. Dans nos applications, il est impossible d’atteindre ce chiffre. Nous
montrons cependant que des intervalles informatifs peuvent être obtenus avec aussi peu que
50 images de calibration.

Enfin, les prédictions conformes reposent sur l’hypothèse que les données de calibration et de
test sont échangeables. Hors, en imagerie médicale, les données de test sont souvent d’une
distribution différente (différent appareil d’acquisition, différente population imagée). Dans
ce cadre, nous montrons que la couverture des intervalles se dégrade quand les données ne
sont pas échangeables. Nous proposons enfin une investigation d’une version pondérée des
prédictions conformes, qui repose sur l’estimation du ratio des densités entre distribution
de calibration et de test. Comme l’estimation de ce ratio directement sur les images est
insoluble en raison de leur dimension, nous proposons une alternative plus frugale basée sur
les représentations latentes des images. Cela permet une estimation du ratio des densités
rapide et à faible coût en calculs. Quand la distance entre la base de calibration et de test est
modérée (faible déplacement des variables), la méthode est efficace pour diminuer l’erreur de
couverture. Néanmoins quand la différence est plus marquée, le ratio ne peut plus être estimé
correctement et les intervalles deviennent trop larges et non informatifs. Cela nous permet de
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souligner deux limitations des prédictions conformes qui sont un frein à leur utilisation dans
un contexte d’imagerie médicale. Tout d’abord, le besoin pour de grandes bases d’images pour
la calibration n’est pas compatible avec la réalité des datasets d’images médicales 3D, qui
sont souvent très limités en taille. Secondement, il est impossible de garantir que les données
de calibration et de test seront strictement échangeables, ce qui compromet la pertinence des
intervalles prédictifs.

Conclusion

Les modèles de Deep Learning ont révolutionné l’analyse d’images médicales, mais leur
adoption reste encore à être obtenue. Pour cela, il est essentiel que les algorithmes soient
capables d’exprimer le doute afin d’alerter leur utilisateur quand le cas à analyser est incertain.
Dans cette thèse, nous avons proposé plusieurs développements méthodologiques visant à
compléter les prédictions brutes des modèles avec des marqueurs d’incertitudes opérants à
différents niveaux.

Au niveau du voxel, nous avons pu démontrer l’intérêt de l’assemblage de modèles, qui permet
à la fois d’améliorer la qualité de la segmentation et de produire des estimations d’incertitude
de qualité. Pour cela, nous nous sommes appuyés sur un banc d’essai comportant 3 tâches
de segmentation d’anomalie en IRM cérébrale : la segmentation de lésions SEP, d’AVC,
et de tumeurs. Cette technique d’assemblage est associée à un surcoût de calcul lors de
l’entraînement des modèles, néanmoins la procédure est efficace au moment de l’inférence.

À partir de ces estimées à l’échelle du voxel, nous avons ensuite proposé d’estimer l’incertitude
à l’échelle des instances de lésion. Cela est pertinent pour des applications telles que la
Sclérose-en-Plaques, ou un seul cerveau peut contenir plusieurs dizaines de lésions individuelles.
Ces scores à l’échelle des lésions permettent à l’utilisateur de directement contrôler les lésions
les plus incertaines qui ont des chances d’être des faux positifs. Pour cela, nous proposons
un paradigme construit autour de l’utilisation de classificateurs auxiliaires qui opèrent
directement sur les lésions. Ces modèles prédisent pour chaque lésion la probabilité qu’elle
soit un faux positif, que nous utilisons comme une estimation de l’incertitude. Trois variantes
sont explorées : un modèle de Régression Logistique faisant usage de caractéristiques extraites
de l’image d’entrée, de l’incertitude des voxels et du masque de la lésion. Un modèle de
classification convolutif est également testé, travaillant à partir de boîtes englobantes centrées
sur les lésions. Enfin, pour adresser l’hétérogénéité des lésions, nous mettons à l’essai un
modèle de graph. Plus particulièrement, un graphe représentant chaque lésion est construit,
permettant d’utiliser un modèle de classification des graphes. Ce dernier modèle est intéressant
car il permet une modélisation flexible des lésions tout en étant frugal en termes de calcul.
Ces techniques sont mises à l’essai sur 3 tâches : la segmentation transversale et longitudinale
des lésions SEPs, ainsi que la détection des nodules pulmonaires en CT-scan. Une limite de
ce paradigme est cependant le besoin de suffisamment d’exemples de lésions vraies positives
et fausses positives pour entraîner les classificateurs.

Ces expériences nous ont également permis d’identifier une limite connue des réseaux de
neurones profonds, qui est leur manque de robustesse quand l’image de test ne correspond
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pas parfaitement à ce qui a été vu pendant l’apprentissage. Nous avons donc travaillé sur le
développement d’un module permettant d’estimer la conformité de l’image d’entrée. Pour
cela, une approche se basant sur l’espace latent des modèles de segmentation entrainés
s’est montrée particulièrement adéquate sur un banc d’essai comportant 24 types d’images
hors-distribution. Cependant, la technique dépend du choix de la couche sélectionnée pour
générer les représentations latentes. Pour éviter d’avoir à sélectionner pour chaque réseau la
couche optimale, nous proposons d’agréger les scores des différentes couches, ce qui fonctionne
bien en pratique pour les différentes architectures testées. Pour finir, nous proposons de
compléter ce score avec une estimation de la qualité de la segmentation. En combinant ces
deux scores, nous montrons qu’il est possible d’estimer la qualité de l’analyse de manière
automatique, permettant d’avertir l’utilisateur en cas de prédictions sous-optimales.

Pour terminer, nous avons étudié la construction d’intervalles prédictifs pour l’estimation
du volume des lésions cérébrales. En mêlant une architecture multi-tête et les prédictions
conformes, des intervalles de 90% sont obtenus. Cela permet de compléter les rapports
automatiques d’analyses avec des barres d’erreur permettant de mieux quantifier l’erreur
possible sur l’estimation des volumes.

En conclusion, les méthodologies développées au cours de cette thèse permettent une es-
timation complète de l’incertitude dans les pipelines d’analyse d’images médicales. Cela
commence par une visualisation des zones incertaines à l’aide des cartes d’incertitude opérant
au niveau du voxel. Ensuite, des scores à l’échelle des instances de lésion permettent d’aligner
l’incertitude avec l’attention du clinicien pour des pathologies comme la Sclérose-en-Plaques.
Enfin, une estimation globale sur la conformité de l’image d’entrée et sur la qualité de la
segmentation associée permettent de détecter les analyses ratées. Pour finir, les rapports
automatiques qui rapportent les volumes totaux de lésions sont enrichis avec des intervalles
prédictifs pour une analyse plus sûre. Au cours de cette thèse, un soin particulier a été apporté
au développement de solutions versatiles et robustes. C’est pourquoi les différentes solutions
ont été évaluées sur différentes pathologies et avec des images hors distribution dès que
possible. L’incorporation de ces divers outils dans la suite de logicielle développée par Pixyl
permettra d’améliorer la prise de décision assistée par AI et augmenter la confiance accordée
dans les rapports automatisés. En guise de perspective, il peut être noté que l’évaluation de
l’incertitude demeure un problème délicat. En effet, l’incertitude est généralement évaluée par
sa corrélation avec les erreurs du modèle. Il pourrait être intéressant de considérer l’utilité de
l’incertitude en routine clinique, par exemple par son impact bénéfique sur la prise de décision.
Enfin, les différentes expériences ont démontré que les réseaux de neurones souffraient d’une
baisse de performance sur des images éloignées de la distribution d’apprentissage. Pour
des applications industrielles comme celles développées par Pixyl, un soin particulier doit
être donné à la capacité de généralisation des algorithmes en dehors de la distribution pour
laquelle ils ont été explicitement entraînés, afin de garantir que des performances optimales
soient atteintes dans chaque site où le logiciel est déployé. L’augmentation des données,
une procédure devenue standard lors du développement des modèles d’analyses d’images
médicales, est néanmoins insuffisante pour reproduire la variabilité observée dans le monde
réel. Cela ouvre le champ à des recherches innovantes pour l’amélioration de la généralisation
des modèles de Deep Learning.





Abstract

Quantifying the inherent uncertainty in an automated medical image analysis is crucial to guarantee the safe deployment of deep
learning models. However, these models, often referred to as black boxes, are known to produce errors with high confidence, potentially
leading to misinformed conclusions.

The operative goal of Pixyl, Grenoble Institute of Neurosciences, and Inria for this Ph.D. is to develop flexible uncertainty quantification
tools that would address the opacity of deep learning models. In medical image analysis, uncertainty estimates are useful at different
levels: the voxel, the lesion, the subject (input image or output segmentation), and the estimated volumes.

At the voxel level, there is a multitude of solutions proposed in the literature. Through three different brain lesion segmentation tasks,
we show the adequacy of the Deep Ensemble framework to detect incorrectly classified voxels. The resulting uncertainty map can be
overlayed on the input image to identify the ambiguous regions. Second, specifically tailored for diseases involving the detection of
multiple lesions such as Multiple Sclerosis, we propose a lesion-level uncertainty module that associates each identified brain lesion
with a confidence score. This allows to draw the clinician’s attention to these uncertain lesion instances, which may correspond to false
positive detections.
Then, as deep learning models lack robustness when the test image is not represented in the training dataset, we build two different
subject-level quality control tools. Non-conform inputs are detected using a compressed latent representation, allowing to efficiently
compute its distance to the training distribution in a low-dimensional manifold. Yet, this approach focuses on the conformity of
the input image and thus is unhelpful in detecting poor-quality segmentations. To alleviate this, a second quality check focusing on
segmentation quality is implemented, allowing to enrich the informativeness of the case-level uncertainty quantification.
Lastly, we leverage the conformal prediction framework to equip lesional volume estimations with robust predictive intervals. The
proposed framework, TriadNet, computes the segmentation and associated predictive intervals in a second, thus being ideal for
industrial software.

The tools developed during this PhD will allow to enhance medical image analysis software with useful uncertainty estimates, allowing
increased trust in the automated results and enabling informed decision-making.

Keywords: Uncertainty, Segmentation, Quality Control, Brain, MRI, Robustness, Predictive Intervals

Résumé

La quantification de l’incertitude inhérente à une analyse d’image médicale automatisée est cruciale pour garantir le déploiement
sécurisé des logiciels basés sur les réseaux de neurones profonds. Cependant, ces modèles, souvent considérés comme des boîtes noires,
sont connus pour produire des erreurs avec une grande confiance, pouvant potentiellement conduire à des conclusions erronées.

L’objectif opérationnel de Pixyl, de l’Institut des Neurosciences de Grenoble et de l’Inria pour cette thèse est de développer des outils
de quantification de l’incertitude flexibles qui permettraient de pallier l’opacité des réseaux de neurones profonds. Pour l’analyse
automatique d’images médicales, les estimations d’incertitude sont utiles à différents niveaux pour les radiologues: le voxel, la lésion, le
sujet (image d’entrée ou segmentation de sortie), et les volumes estimés.

Au niveau du voxel, une multitude de méthodes ont été proposées dans la littérature. À travers un banc d’essai comportant 3 tâches
différentes de segmentation de lésions cérébrales, nous montrons l’adéquation de l’assemblage de modèles pour détecter les voxels
incorrects. La carte d’incertitude résultante peut être superposée sur l’image d’entrée pour identifier les régions ambiguës. Ensuite,
spécifiquement conçu pour les maladies impliquant la détection de lésions multiples telles que la Sclérose-en-Plaques, nous proposons
un module d’incertitude au niveau de la lésion qui associe chaque lésion cérébrale identifiée à un score de confiance. Cela permet
d’attirer l’attention du clinicien sur ces instances de lésions douteuses, qui peuvent correspondre à des détections de faux positifs.
Ensuite, comme les réseaux de neurones profonds manquent de robustesse lorsque l’image de test n’est pas représentée dans l’ensemble
de données d’entraînement, nous construisons deux outils de contrôle qualité au niveau du sujet. Les entrées non conformes sont
détectées en utilisant une représentation latente compressée de l’image, permettant de calculer efficacement sa distance à la distribution
d’entraînement dans un espace de dimension réduite. Cependant, cette approche se concentre sur la conformité de l’image d’entrée et
est donc peu utile pour détecter les segmentations de mauvaise qualité. Pour remédier à cela, un deuxième contrôle qualité axé sur la
qualité de la segmentation est mis en œuvre, permettant d’enrichir l’utilité de la quantification de l’incertitude à l’échelle du sujet.
Enfin, nous explorons le cadre des prédictions conformes pour doter les estimations de volume lésionnel d’intervalles prédictifs robustes.
Le modèle proposé, TriadNet, calcule la segmentation et les intervalles prédictifs correspondant en une seconde, ce qui en fait un
algorithme idéal pour les logiciels industriels.

Les outils développés au cours de cette thèse permettront d’améliorer les logiciels d’analyse d’images médicales avec des estimations
utiles de l’incertitude, permettant ainsi une plus grande confiance dans les résultats automatisés tout en promouvant la prise de
décision éclairée.

Mots-clés : Incertitude, Segmentation, Contrôle Qualité, Cerveau, IRM, Robustesse, Intervalles Prédictifs
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