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Multi-scale modeling of fiber orientation in coupled
fiber-reinforced viscous polymer systems

Abstract: Overmolding, a technique involving the injection of short fiber ther-
moplastics (SFT) over a continuous fiber reinforced thermoplastic composite insert,
is gaining traction across various industries, including automotive, aeronautics, and
electronics. However, the precise prediction of insert displacement and fiber orien-
tation during overmolding requires robust numerical simulation tools. This study
proposes a multi-scale fiber-flow model that incorporates mesoscopic fiber orienta-
tion dynamics into macroscopic flow equations.

To address the challenges of fiber orientation modeling, the direct solver tech-
nique is introduced, employing the Fokker–Planck equation to describe the evolution
of fiber orientation probability density. This approach captures the intricate rela-
tionship between fiber orientation and flow kinematics. The proposed technique
involves two types of discretization: angular discretization over an unit circle (2D)
and spatial discretization. The computed orientation tensor is integrated into the
Stokes equations to form a coupled multi-scale fiber-flow model. Additionally, a
spatial advection equation is solved to track the dynamic motion of fibers within
the domain, providing insights into fiber-flow interactions. The research extends to
developing a two-phase flow model, accurately simulating real-world overmolding
scenarios. This multi-scale model aims to enhance the accuracy of industrial simu-
lations, enabling process optimization and design optimization.

Keywords: Overmolding process, numerical simulation, multiphase flow, fiber
suspension, fiber orientation, multiscale modeling, finite element method



Modélisation multi-échelle de l’orientation des fibres dans des
systèmes polymères visqueux

Résumé: L’injection de plastiques thermoplastiques à fibres courtes (SFT) sur un
insert composite thermoplastique renforcé par des fibres continues, communément
appelée surmoulage, est une technique en plein essor dans divers secteurs industriels,
notamment l’automobile, l’aéronautique et l’électronique. Cependant, la prédiction
précise du déplacement de l’insert et de l’orientation des fibres pendant le procédé
de surmoulage nécessite des outils de simulation numérique robustes. Cette étude
propose un modèle multi-échelle de fibre-écoulement qui intègre la dynamique de
l’orientation des fibres à l’échelle mésoscopique dans les équations de l’écoulement
à l’échelle macroscopique.

Pour relever les défis de la modélisation de l’orientation des fibres, la technique
de résolution directe est introduite, en utilisant l’équation de Fokker-Planck pour
décrire l’évolution de la densité de probabilité d’orientation des fibres. Cette ap-
proche capture la relation complexe entre l’orientation des fibres et la cinématique de
l’écoulement. La technique proposée implique deux types de discrétisation : la dis-
crétisation angulaire sur un cercle unité (2D) et la discrétisation spatiale. Le tenseur
d’orientation calculé est intégré aux équations de Stokes pour former un modèle
multi-échelle de fibre-écoulement couplé. De plus, une équation d’advection spatiale
est résolue pour suivre le mouvement dynamique des fibres dans le domaine, four-
nissant des informations sur les interactions fibre-écoulement. La recherche s’étend
au développement d’un modèle d’écoulement biphasique, capable de simuler avec
précision des scénarios de surmoulage réels. Ce modèle multi-échelle vise à améliorer
la précision des simulations industrielles, permettant l’optimisation des processus et
la conception des produits.

Mots clés: Procédé de surmoulage, simulation numérique, écoulement multi-
phasique, suspension de fibres, orientation des fibres, modélisation multiéchelle,
méthode des éléments finis
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The plastics processing industry is in constant progress despite the effects of
the cycle due to the lack of stability of raw materials and the very strong pressure
exerted downstream by the customer markets, which are the major contractors.
This relatively young industry is developed mainly after the Second World War.
However, according to the different professional branches, there are some differences
of evolution. In 2000, plastic packaging, elements for the building industry and
even technical parts such as reinforced materials have might experienced sustained
growth despite the increase in raw materials. Only a few miscellaneous consumer
products have suffered competition from countries with low labor costs for several
years. For composite materials (reinforced materials), the positioning of the market
in France is rather on the high end due to the significant weight of aeronautics
(22% in value) just behind the automotive industry (31%) but ahead of building
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and construction (14%) and electricity (10%). These four markets represent around
75% of the use of composites in France. Chapter I is devoted to the presentation
of the essential bibliographic concepts necessary for the study of fiber suspensions.
The injection process and its impact on the induced microstructure are described.
Special attention is also paid to orientation descriptors, the main models used for
its prediction, and a selection of mesoscopic simulation approach.

I.1 Industrial motivation

The thesis work is a part of an industrial chair collaboration between Centrale
Nantes and Faurecia (Forvia Group). Faurecia is a french global automotive sup-
plier and automotive parts manufacturer for vehicle interiors and emission control
technology. Overmolding process is used at Faurecia, in order to not be limited with
thermo-stamping where a trimming part edge for the latter can be needed which
causes a loss of materials to produce vehicle components with complex shapes made
by composites. The premier process is preferable to the company as it eliminates
costly assemblies, captures one composite part inside another without fasteners and
adds flexibility to rigid parts areas. Overmolding is done by injecting molten ther-
moplastics with short/long fibers over a continuous fiber reinforced composite insert.
A Moldflow numerical software is used by Faurecia as simulation tool to track the
injection’s flow in the mold and to analysis the residual stresses and the deformation
at the interface to the thermo-stamped continuous fiber reinforcement sheet due the
fibers orientation. A numerical model is developed at Ecole Centrale de Nantes
using Stokes equation, assuming a type of fluid flow where advective inertial forces
are small compared with viscous forces, coupled with Fokker-Planck equation, as
the latter describes the dynamic motion of fibers during the injection phase. The
solver is implemented using ICI-Tech library that is built inside the lab. A study
is done on numerical and theoretical sides to understand the physical behaviour of
fluid injected represented by the molten thermoplastics at macro and microscales
in order to tackle the problem caused by the defects such as deformation, displace-
ment and penetration that come out at the interface between the molded composite
materials affecting the mechanical properties of the final product.

I.2 Composite materials

The modern use of composites began in the mid-1960s and mainly in the aeronau-
tical industry, its aim of which is to lighten structures and reduce costs. Over the
decades and until today, these new composites have revolutionized the field and are
starting gradually to replace the metallic materials. A remarkable rise in power
of composites in the aeronautical field is also observed in the automotive industry.
Thus, composite materials have gained popularity and their shares increased in the
market especially in the aeronautical fields where major companies such Airbus and
Boeing nowadays launch scientific programs in order to study and improve these ma-
terials where they seek for high-performance products that need to be lightweight,
yet strong enough to take harsh loading conditions. Also, the automotive industries
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have witnessed the revolution in the use of composite materials over the last few
years to create components that have unique characteristics, such as being strong
and light as the trend in using composites is accelerating to meet light-weighting
requirements to meet the next generation of fuel economy standards. So, compos-
ite materials have invested heavily in the automotive field for parts that do not
undergo significant mechanical loads (bodywork, interior trim, tailgate, front end).
For example, carbon fiber composites are now used widely in many of the Formula

Figure I.1: The use of composites in automotive companies [1]

F1 components as almost 85 percent of the volume of a typical F1 race car is made
up of them where technological advancements in materials have enabled the racing
cars to become lighter, safer and faster. As well, Boeing has expanded the use of
composites, particularly in the highly tension-loaded environment of the airplane’s
fuselage, which greatly reduces the maintenance due to fatigue when compared with
an aluminum structure. Also Airbus, with introducing the composites into its man-
ufacturing process, expresses that an aircraft’s airframe can be both sturdier and
lighter. Meanwhile, like how Boeing points out, less maintenance is also required
for the frame when in service due to reduced wear down. For instance, the A350 re-
quires 50% fewer structure maintenance tasks. Classically, composite materials are

Figure I.2: The use evolution of composites in commercial aircrafts Airbus [2]
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defined as the constitution of the assembly of two or more materials of different na-
ture, complementing each other and making it possible to achieve a material whose
overall performance is superior to that of the components taken separately. In gen-
eral, it also consists of one or more discontinuous phases distributed in a continuous
phase. The continuous phase is called the matrix. The discontinuous phase called
the reinforcement or reinforcing material which is mainly in fibrous or filamentary
form, has usually mechanical properties (rigidities and resistances) superior to those
of the matrix. The properties of composite materials result from the properties of
the constituent materials, the geometric distribution of the reinforcements, the vol-
ume ratio of reinforcement, the nature of the reinforcement/matrix interfaces, and
the manufacturing process. The matrix acts as a binder in order to protect the

Figure I.3: A Fiber-Reinforced Polymer composite[3]

reinforcement from the environment, to maintain it in its initial position and to
ensure the transmission of forces. Composite materials can be classified according
to the nature of their matrix: composite material with organic matrix, composite
material with ceramic matrix or composite material with metal matrix. Between
the reinforcement and the matrix, there is a connection zone called the interface. A
composite material is mostly heterogeneous and anisotropic.

I.2.1 The reinforcement

In general, the reinforcements are fibers such as fiberglass (which is the most com-
mon), carbon fiber, aramid fiber or even vegetable fiber (which is renewable). The
reinforcement can also take the form of particles. Reinforcements make the material
even more efficient. Glass fibers are the most commonly used reinforcements for
composite materials [4]. It is an inexpensive reinforcement assembled in the form of
a wick containing about 200 fibers having a diameter of 15 µm and a length of 25
mm on average. Due to their quick processing times and simplicity of production
in complex geometries, short fibers are more frequently employed as reinforcement.
Short fibers help to resist impact loads [7, 8], however because of their structural
imperfections, it can be difficult to achieve other mechanical qualities, such tensile
and bending capabilities. Tensile and bending strength are closely related to con-
tinuous fiber reinforcement [9]. The reinforcement can be alone within a matrix
(homogeneous composite) or combined with a reinforcement of a different nature
(hybrid composite).
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(a) Chopped glass fiber [5] (b) Continuous carbon fiber tows [6]

Figure I.4: Different types of reinforcement

I.2.2 The matrix

Another very important component of a composite material is the matrix which is a
light and deformable organic material. The main roles of a matrix are the protection
of the loads, the distribution of the mechanical load on the reinforcements and the
cohesion of the loads which has a very important role for the homogenization of
the composite [10, 11, 12], as it also determines the shape and surface finish of the
composite component. In general, organic matrices are classified into two groups
which are thermosetting and thermoplastic matrices. Most matrices are made of
polymers (mainly utilized for fiber reinforced plastics):

• Thermoset polymers [13, 14] are cured polymers that take on a solid form
and can never revert to their uncured state. Thermoset matrices are used
to create robust composites with excellent fatigue resistance. They have low
impact-toughness making and are quite fragile. Due to the thermoset matrix’s
resistance to melting unlike thermoplastics, they are frequently utilized in
high-heat applications. Thermoset composites are exceedingly challenging to
recycle because they cannot be remolded or reshaped.

• Thermoplastic polymers [15, 16] may be shaped, melted, and remolded
without losing their physical characteristics. In comparison to thermosets,
thermoplastic matrix composites are tougher and less brittle, with excellent
impact resistance and damage tolerance. Composite materials can be more
easily repaired, remolded, and recycled since the matrix can be melted. Be-
cause they are less dense than thermosets, thermoplastic composites are a
good choice in applications where weight is an important factor.

I.2.3 Fiber-matrix interface

The importance of the bond between fiber and matrix is so crucial for the properties
of the composite material and its lifetime [18, 19] to the point that it is considered
as a third constituent of a composite material although its volume fraction is the-
oretically zero or practically low. Indeed, it allows the transfer of stresses while
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(a) Thermoplastic polymers (b) Thermoset polymers

Figure I.5: Polymer intermolecular structures [17]

avoiding the relative displacement of one in relation to the other, as the interfacial
bond strength must be strong enough. Therefore, the Young’s modulus, interlam-
inar shear strength, bending stiffness, compressive strength, and many features of
composite behavior can all be influenced by the interfacial bond [20].

I.2.4 Short summary

□✓ Composite materials stand out for their lightness and ease of use. Their
mechanical strength, physics and chemistry offers a wide range of pos-
sibilities in terms of use, design, geometry and integration functions.

□✓ From a mechanical point of view, they offer excellent tensile, bending,
compression, plane shear and and excellent shock absorption. Their
mechanical strength combined with their low density make it an essential
element of current designs, whether structural or not.

□✓ The automotive industry, alongside aerospace, remains a major field of
investigation for composite materials. To date, more than 30000 tons
plastics and composites are used for the manufacture of body parts, in
particular in bumpers, wings, side doors, rear doors, parts under hood
and seats.

I.3 Injection molding process

In the development of making parts from composites, different process have been
applied in order to get well finished complex shapes. One of the most significant
procedures in the manufacturing sector is known by the general name "injection
molding" [21, 22]. This procedure calls for a mold, which is commonly made of
metal and has a cavity formed to the shape of the desired object. The mold is filled
with molten plastic, which is then ejected [23, 24]. To create thousands of identical
pieces, the process is repeated. Given the various advantages of adopting injection
molding for production, it is safe to assume that every large-volume plastic compo-
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nent on the market was produced using an injection molding machine. Therefore,
the vast majority of consumer products use it, a flexible and affordable manufactur-
ing production technique that also includes the sub-processes of two-shot molding,
insert molding and overmolding. Comparing injection molding to other production
processes like computer numerical control (CNC) machining and even 3D printing,
it frequently delivers the lowest cost per part [25].

I.3.1 Two-shot molding

Double shot molding, also known as two-shot molding, is a manufacturing technique
that involves molding plastic around a prefabricated metal or plastic insert to cre-
ate complex molded parts from two different materials. The procedure is rather

Figure I.6: Two-Shot molding process [26]

straightforward: once one material is injected into a mold to create the product’s
initial component, another substance that is compatible with the original material
is injected into the mold once more. Then, the multi-resin molded part is cooled and
ejected, following the formation of a molecular link between the two plastic resins.
Particularly in a scenario of a high-volume manufacturing, double shot molding is
an exemplary technique for complicated, multi-material, and multi-colored plastic
products.

I.3.2 Insert molding

The technique of forming or molding plastic pieces around non-plastic parts, or
inserts, is known as insert injection molding. It is mainly considered as a subset
of injection molding processes, in which metal components are inserted into a mold
cavity prior to the injection of plastic. Either manually or with the help of a robotic
arm, the insert is carefully placed into the mold. A single part is then produced once
the mold closes and plastic is formed over the insert. There are several advantages
to using insert molding, like improving component reliability and its strength and
structure. It renders the final part combine the features of both plastic and metal
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materials as for example metal inserts can be utilized when stiffness and strength
are needed, while to reduce the weight, the rest of the part can be made of plastic.

Figure I.7: Insert Molding Process [27]

I.3.3 Overmolding

In essence, overmolding is a form of insert molding. Overmolding, as opposed to

Figure I.8: Overmolding process

insert molding, involves molding plastic over another molded part. So as part of the
first step, a plastic substrate is either molded or thermoformed, then a second step
involves the injection of another layer of plastic on top and around of the first layer
in order to create one product. Using this technique, multiple plastics are combined
for either practical or aesthetic reasons. As figure I.8 depicted, the case that will be
mainly studied is the overmolding phase where molten short fiber-reinforced ther-
moplastics are injected onto a pre-molded insert made of continuous fiber-reinforced
thermoplastics in order to investigate on the defects of this process occurred at this
point. So consequently, as it is mentioned, the bases of overmolding are close to
those of conventional molding, but with constraints due to the nature of the in-
sert and the need to use suitable molds and / or presses. We may thus encounter
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problems such as: displacement of insert, deformation of insert and penetration of
polymer.

• The displacement of the insert can be caused by unequal force transmission
and the pressure gradient applied on the insert surface of the flowing molten
thermoplastics injected into the mold’s cavity. Therefore it is due to injection

Figure I.9: Displacement of insert

pressure. In other word, core shift can be defined as the spatial deviation of
the position of the mold inserts caused by the imbalance of polymer pressure
and from asymmetric filling during injection molding.

• Deformation can be caused as stated in the previous paragraph and by varia-
tions in shrinkage throughout the insert, while varying pressure and tempera-
ture as main parameters coupled with the frozen layer growth to determine it.
Knowing that the insert is made of continuous fiber reinforced thermoplastics,
it affects significantly its ways of deformation. A continuous fiber reinforced
composite insert acts as an insulator and delays the cooling and solidification
of the injected polymer in the cavity which affects the temperature and pres-
sure fields, thus affecting the deformation. Therefore, the injected plastic can

Figure I.10: Deformation of insert

solidify around the insert while still being hotter than the insert. The sub-
sequent differential shrinkage between the injected polymers and anisotropic
composite inserts becomes a source of warpage and deformation for injection
over-molded parts. And if the insert is thermoformed by the closing action
of the mold, residual stresses in the insert itself may influence the final part
shape after ejection. The analysis of the deformation in this sequential over-
molding probably results from thermal residual stresses. In addition, due to



10 Chapter I. State of art

the molten injected thermoplastics with high temperature, it causes to soften
the composite insert that leads to some sort of deformation.

• A penetration into the insert is a typical defect which appears when short
fiber reinforced thermoplastic is injected over continuous fiber reinforced ther-
moplastic part and it is able to pass through the thermoformed plastic insert
to reach the aesthetic side of the part. A combination of a minimum injec-

Figure I.11: Penetration of polymer

tion temperature and minimum injection pressure in the exact point in which
defect appears, can characterize the penetration.

I.3.4 Short summary

□✓ The injection molding process makes it possible to obtain parts of vari-
ous geometrical sizes and complexities and remains an economical pro-
cess, well adapted to large series, giving dimensional tolerances generally
sufficient to avoid machining operations.

□✓ Overmolding is the most common method used to make two-material
parts with stiffness and flexibility. In addition, overmolding has many
advantages, such as low tooling costs and short cycle times. Some de-
faults are displacement, deformation or penetration of the insert during
overmolding.

□✓ The anisotropy, induced by the presence of the fibers, is an important
property that it must be taken into account when designing the parts
and the mold. Indeed, the fiber has a major role in the strength and
rigidity of a part. At the same time, the heterogeneity induced by a
length distribution of the fibers and non-homogeneous concentration in
the flow is often a source of defects which may lead to parts being warped
which is difficult to predict or which may induce early fatigue of the
composite material.

□✓ It therefore seems essential to monitor or at least to provide for the
orientation of the fibers during the shaping phase. Numerical simulation
finds its place in this research, given its ability to predict the flow of
matter and therefore the orientation of the fibers in the mold.
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I.4 Fiber orientation mechanism in suspension media

Based on the fiber orientation distribution, the anisotropic mechanical properties
of a discontinuous fiber reinforced polymer can be interpreted. This orientation
distribution of fiber has in most cases strong impact on the final micro-structure of
the manufactured part, which at the same time controls its mechanical performance.
A description of the orientation of the particles in a suspension during the shaping
process is detailed. More specifically, the mechanisms that govern the orientation
of the fibers during the filling phase is described. The first part is devoted to the
qualitative analysis of the different orientation mechanisms encountered during the
filling phase. Thereafter, an analyze is made to characterize all the parameters likely
to influence the orientation of the fibers. Then, mathematical expressions, as well
as the main models that describe the evolution of short fiber orientation at different
scales, are introduced.

I.4.1 Analysis of flow-induced fiber orientation

From the aforementioned section, injection is a process that involves different phys-
ical phenomena. It is carried out in a non-isothermal manner with a free boundary
and generally in tools of complex geometry. During this process, fiber orientation
and flow are coupled. In fact, the fluid applies stresses to the fibers and transports
them. On the other hand, the presence of the fibers disturbs the flow profile around
them. The flow present during injection is a generally mixed flow that combines
elongation and shear. Those two latter act as stresses that will preferentially orient
the fibers during the filling step. Shear is present mainly in the injection gate, a
section of the melt flowing passage from the nozzle of the injection molding ma-
chine to the cavity, or in the thin cavities. On the other hand, elongation is locally
dominant in certain regions such as the injection gate, at the front of the material
during injection or in some 3D regions. Therefore, during the filling process, the
fibers will orient in preferred directions as a function of the applied stress. In order
to understand the phenomena that govern the orientation of the fibers, illustrations
focusing on the description of the movement of a fiber subjected to a shear and
elongation flow, respectively, are made.

• Studies made in [28, 29, 30] point out that a single isolated fiber, in shear
flow with a Newtonian fluid, has an infinite periodic rotational motion in an
extended period of time in the direction of flow. This period T is inversely
proportional to the generalized shear rate and approximately proportional to
the aspect ratio β of the fiber, defined as the ratio between the length and the
diameter of the fiber:

T =
2π

γ̇
β(1 + β) (I.1)

The rotational speed of the fiber is not constant, it becomes maximum when
the fiber is perpendicular to the direction of flow as shown in figure I.12.
With a non-Newtonian fluid, the fiber also undergoes a rotational movement.
However, the rotation period increases strongly with the pseudo-plasticity of
the fluid [31].
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Figure I.12: Motion of a single fiber induced by a Poiseuille flow [30]

• Contrary to the latter finding, in elongational flow, the fiber orientation de-
pends on whether the rate of elongation is negative or positive. So during a

Figure I.13: Motion of a single fiber induced by an elgonational flow [30]

pure elongation flow, a fiber tends towards a stable equilibrium position par-
allel to the flow for a case of a convergent nozzle and perpendicularly for a
case of a divergent nozzle, figure I.13.

The flows involved in the injection processes combine and sometimes oppose shear
and elongation. The orientation of the fibers, for a thermoplastic filled with short
glass fibers, then presents a rather particular structure in the thickness of the part,
as the micro-structure of the injected parts is highly heterogeneous as a function of
the thickness and shows a characteristic aspect of the injection process known as a
skin-shell-core formation. As shown in figure I.14, the micro-structure obtained is
arranged in layers in a symmetrical manner:

• A skin layer: thin and randomly oriented. During filling, in contact with the
cold walls of the mold, a solidified layer develops due to the high temperature
gradient. Consequently, the fibers solidify with an isotropic orientation, as
the shear effect is neglected due to the restricted time before the solidification.
This layer is thin in relation to the others and therefore difficult to observe,
its thickness depends on the filling time and on the thermal conductivity of
the polymer.

• A shell layer: it is relatively thick and contains fibers oriented parallel to
mold flow direction (MFD).
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• A core layer: it is located in the central zone whose fibers are oriented
perpendicular to the flow. At core, the generalized shear rate is very low, so
the elongational flow diverging around the injection gate is maintained and
the fibers align transversely to the flow.

• A intermediate transition layer: it is located between the skin and the
heart and constitutes the transition between them. For this reason, it is char-
acterized by a random distribution of the orientation of the fibers.

Figure I.14: Skin–shell–core micro-structure formation [32]

I.4.2 Analysis of parameters influencing fiber orientation

From the previous section, it is deduced that the mold fill parameters control the
mechanisms of formation of the micro-structure layers and orientation. These are
related to design and injection parameters and the nature of the matrix, some of
which are listed below.

I.4.2.1 Influence of main process parameters of injection molding

To ensure the quality of plastic parts and stable qualification, the influence of tem-
perature, pressure and injection speed play a big role. The orientation of the fibers
is governed by the latter variables related to the injection process. Various studies
have been conducted in the literature [33, 34, 30] to understand their influence on
the final orientation of fibers.

• The injection speed: studies [35, 36] have shown that a higher injection rate
results in a larger core area and a reduced shell area. On the other hand,
the shell layer becomes thinner since the fibers do not have time to orient.
In addition, for high injection rates, the area of shell affected by the fountain
effect is reduced, thus shifting the region with a high generalized shear rate
towards the walls of the mold.

• The mold temperature: a reduction in the mold temperature increases the
solidified polymer layer, which induces maximum shear values offset towards
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the center of the molded part. This reduction in temperature thus leads to an
increase in the thickness of the shell layer [37], where the fibers are generally
considered to be aligned in the direction of flow. The phenomena observed
are mainly related to the fountain effect, which is accentuated by the rate of
cooling of the polymer.

• The packing pressure: Following a complete cavity filling, pressure distri-
bution affects fiber orientation. At the point of full filling, packing pressure
aims to lessen the degree of fiber alignment in the flow direction [38], thus
increasing the thickness of the core area [39].

I.4.2.2 Influence of reinforcement and matrix

The main focus has been on the three essential parameters that can influence the
orientation of the fibers in a molded part by injection: the rheology of the matrix,
the fiber concentration and the aspect ratio of the fibers.

• The matrix rheology: The nature of the velocity profile in the mold results
from the rheothinning nature of the polymers used. The pseudo-plastic nature
of the polymers gives rise to a flow characterized by a velocity profile which
is much more flattened than in the case of Newtonian fluids. It appears that
the thickness of the core zone is an increasing function of the pseudo-plasticity
index of the polymer. At the same time, the addition of fibers will contribute
to increasing the pseudo-plasticity of the matrix [40]. It should also be noted
that, in the vast majority of cases, these studies remain qualitative.

• The fiber concentration and its aspect ratio: An in-depth study of glass
fiber reinforced polypropylene (short and long) with several reinforcing rates
revealed that the width of the core layer increases with fiber concentration and
length [41]. In the case of a low fiber percentage (<15% by mass), the core-skin
structure can completely disappear and leave its place to an isotropic micro-
structure over the entire thickness of the part. Another study [42], carried out
on a glass fiber reinforced polypropylene with different fiber lengths (fibers
initially of 4 and 12 mm), also showed an increase in the width of the core
zone with the aspect ratio of the fibers.

I.4.2.3 Influence of mold design

The geometry of the flow such as the injection gate and the mold cavity, is an
important parameter and has a major role on the orientation of the fibers [43].

• The injection molding gate: It appears that the presence of the injection
gate governs the initial orientation of the fibers which are transported during
the flow in the core layer because the generalized shear rate there is practically
zero [44]. The flow around the injection gate governs the initial orientation
that will be transported to the core layer. In fact, when a rectangular part
is injected into a sheet, a shear flow is established from the start of filling,
giving rise to an orientation at the core in the direction of the flow. On the
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other hand, in the case of a point injection, a radial elongation flow is initially
established, inducing a transverse orientation to the core.

• The mold cavity: The geometry of the mold cavity plays an important role
in defining the orientation. Qualitative microscopic observations [45, 46] show
that the orientation of the fibers in the core zone may be affected by a reduction
in the thickness of the cavity. So a reduction in the thickness of the cavity
by factor of two results in a direction that is almost in line with the flow. On
the other hand, a reduction in the thickness of the cavity also has the effect
of reducing the thickness of the core layer. In fact, the flows in thin parts
create high generalized shear rates which are the site of a quasi-unidirectional
orientation in the direction of flow.

I.4.3 Fiber orientation modeling

The bibliographic work has highlighted the complexity of the phenomena that gov-
ern the orientation of fibers. By definition, a fiber suspension is a complex fluid
consisting of a non-miscible mixture of a solid phase (fibers) with a liquid phase
(polymer). The study of these suspensions cannot be carried out without intro-
ducing certain definitions related to orientation and concentration. In order to
understand these mechanisms, this section also covers the mathematical description
that stands behind the study of the modeling of the orientation of the fibers.

I.4.3.1 Representation of a single fiber orientation

A single fiber is classically modelled as an axisymmetric particle. In a 3D coordinate
system (x, y, z), its orientation is described by means of a unit vector p carried by
its main axis, as illustrated in figure I.15. This vector is expressed by equation (I.2)
using the angles (θ,ϕ). The angle θ, called the angle of inclination, is the angle
formed from the z-axis to the fiber direction, while the angle ϕ, called the azimuthal
angle, is the angle formed from the x axis at the projection of the fiber direction in
the plane (x, y). Knowing that no convention is made on the definition of the ends of

p =

pxpy
pz

 =

cosϕ sin θ

sinϕ sin θ

cos θ

 (I.2)

Figure I.15: 3D description of fiber orientation
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the fiber, the direction of p is completely arbitrary. For this reason, θ and ϕ belong
to the intervals [0; π] and [-π/2; π/2 ], respectively, and equation (I.2) confirms that
p remains unchanged by the operations θ → π-θ and ϕ → ϕ+π. Similarly, a 2D
representation of a fiber orientation can be also described through only one angle θ.
So each orientation vector is contained in a sphere (3D) or in a circle (2D) of unitary
radius. Hence, each possible state of orientation corresponds to a point located on
the surface of the unit sphere or circle. Thus, to study the movement of the fiber, it
is necessary to follow the evolution of the angles (θ,ϕ) running through time [47].

Figure I.16: 2D description of fiber orientation

I.4.3.2 Orientation distribution function

In a fiber reinforced thermoplastic, the particles can orient in different directions. A
first study was made in [48], that focus on particle orientation statistics by defining
an orientation distribution function. Indeed, a complete description of the orienta-
tion state of the composite requires the call of an orientation distribution function
φ(p,t) or equivalently φ(θ,ϕ) which expresses the probability of obtaining a fiber
having a certain orientation between (p and dp) at time t. So the probability is
written as follows:

P =

∫ p+dp

p
φ(p)dp (I.3)

In other words, depending on the angles (θ,ϕ) P is written:

P (θ1 ≤ θ ≤ θ1 + dθ, ϕ1 ≤ ϕ ≤ ϕ1 + dϕ) =

∫ θ+dθ

θ

∫ ϕ+dϕ

ϕ
φ(θ, ϕ) sin(θ)dθdϕ (I.4)

The orientation distribution function φ is an even function (i.e., unchanged by p→-p
transformation) whose integral over all possible orientations is equal to 1.

I.4.3.3 Introduction to orientation tensors

The distribution function φ provides a general and precise description of the orienta-
tion state of a suspension at a given material point. However, its use in an industrial
setting proves very complicated to set up since the resolution of the equations of
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motion involving this distribution function requires the use of significant computer
resources. To calculate the fiber orientation and its evolution for industrial appli-
cations, a more compact description is needed [49]. This can be achieved by using
the notion of orientation tensors. These latter are used to describe the orientation
state of a fiber population using a reduced number of discrete values.
Knowing that the function φ must satisfy some conditions such as periodicity, nor-
malization and continuity condition, these tensors are obtained by integrating the
tensor products of the vector p with itself over the orientation space and by using φ

as a weighting function. Since φ is even, only even order tensors are non-zero. An
orientation tensor, commonly noted a2, is introduced expressing the spatial mean
of the double tensor product of p [50], by:

a2 =

∫
φ(θ, ϕ)p⊗ p dp (I.5)

Orientation tensors have interesting properties, they are completely symmetrical
(axy=ayx), all the more so, therefore at the normality property of φ, their trace is
unitary (axx+ayy+azz = 1). The diagonal terms of a2 express the alignment of the
fibers with respect to the directions x, y, z, while the extra diagonal terms quantify
the asymmetry of the distribution of the orientations. In other words, if axx =
1 all fibers are aligned along the x-axis, while if axx = 0 all fibers are located in
the plane (y,z). Figure I.17 illustrates, for a three-dimensional configuration, some
examples of tensor and the micro-structures associated therewith. For instance, if

(a) 3D-random
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0 0 0
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Figure I.17: 3D orientation tensor representation

(axx=ayy=azz=1/3), the tensor is called isotropic as it represents a random orienta-
tion of the fibers, as shown in figure I.17a. In the two-dimensional case, the isotropy
results in diagonal components equal to 1/2, where the extra-diagonal components
being zero. So like any average description, the definition of a tensor representation
derived from the orientation distribution function φ results in a loss of information
and prevents a complete description of the orientation state. To improve this de-
scription, the use of a fourth order orientation tensor a4 defined by equation (I.6)
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is common in the literature [50, 51, 49]. The tensor a4 increases the number of
parameters describing the orientation. Of its 81 components, it has 14 independent
components and it also contains all the information of second order tensor a2.

a4 =

∫
φ(θ, ϕ)p⊗ p⊗ p⊗ p dp (I.6)

To approximate the loss of information related to tensor descriptions, different stud-
ies in [49, 52, 53] propose different methods for reconstructing the φ function from
the orientation tensors. The results were compared with experimental orientation
distribution measures. None of the methods can be described as more precise than
another, regardless of the nature of the probability function taken for the iden-
tification (spherical harmonic functions or others). Indeed, the reliability of the
reconstructions depends strongly on the orientation state of the micro-structure, on
the other hand, the reconstitution of φ is all the better in the case of the involvement
of tensor of order greater than 2.

I.4.3.4 Concentration regimes

A suspension is characterized, among other things, by its concentration of particles,
in this case fibers. It is essential to define and differentiate the different concentration
regimes that characterize fiber suspensions in order to construct a domain of validity
for the laws of behavior used. Fiber suspensions are typically classified into three
concentration regimes: dilute, semi-dilute, and concentrated. These regimes are
presented as concentration regimes based on their volume fraction and fiber aspect
ratio [54]. Most of the composites usually have a high volume fraction of fibers,

Figure I.18: Different areas of concentration regimes for fiber suspensions [55]

which is the ratio between the total volume of the fibers and the volume of the
suspension, that typically ranges from 0.005 to 0.5 with a high aspect ratio β = L/D

that typically ranges from 10 to 103 [56], where L and D are the characteristic
fiber length and diameter, respectively, and with random to quasi-ordered fiber
orientations. Indeed, if the fiber is considered as a cylindrical particle of length L
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and diameter D, the volume fraction of fibers ϕf , in the case of a unit volume using
number n as fiber density in a volume V, can be expressed as follows:

ϕf = nπ
D2L

4
(I.7)

The three regimes can be defined from the following conditions represented in table
I.1. Figure I.18 summarizes the criteria used to distinguish each regime and illus-

Dilute Semi-dilute Concentrated
ϕf ≤ 1

β
1
β2 ≤ ϕf ≤ 1

β ϕf > 1
β

n ≤ 1
L3

1
L3 ≤ n ≤ 1

DL2 n > 1
L3

Table I.1: Conditions of concentration regimes [46]

trates the hypothetical boundaries drawn between them. This figure highlights the
close relationship between the aspect ratio β and the fraction ϕf in the definition of
the concentration regime. For a given ϕf , the suspension is considered to be more
concentrated if the aspect ratio of the fibers is greater. The characteristics of each
regime can be briefly outlined as follows:

• The dilute regime: There is no interaction between the fibers as they move
independently due to the fact that the distance between a fiber and its nearest
neighbor is therefore greater than or equal to the length of the fiber. As a
result, flow is governed simply by fluid-fiber interactions.

• The semi-dilute regime: The fiber can be displaced in the direction of its axe
of rotation and the distance between a fiber and its nearest neighbor therefore
varies from the length of a fiber to its diameter. Thus, the fibers interact with
each other [57], most of the time, through hydrodynamic forces, but also, with
a small occurrence, contact interactions can take place.

• The concentrated regime: The orientation of the fiber population tends
towards a unidirectional distribution for concentrated regime and the average
distance between fibers is smaller than the diameter of the fibers and the latter
can no longer move without entanglement.

It should be noted that some studies [58] also define a hyper-concentrated regime
for which the average distance between the axes of the fibers is less than twice their
diameter. The disorientation of a fiber with respect to the mean direction is very
limited. The periodic movement of the fibers encountered in shear flow is no longer
possible.

I.4.3.5 Orientation evolution models

For the structural simulation of the fabricated part, the final fiber orientation in-
duced by the manufacturing process plays a big role as an important parameter.
Therefore, this section provides an overview of the several so-called fiber orientation
evolution models at different scales that have been developed in recent years.
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Microscale model: Jeffery equation

At this scale, a single fiber orientation evolution model is adopted as the dynamic
motion of each fiber is investigated separately, where the effect of fibers intersection
is not introduced in this model (case of dilute regime). So, a study done in [47],
was one of the first to describe the orientation dynamics of a particle. It provides
a relatively correct description of the movement of an ellipsoidal object (whether
prolate or oblate) in a flow, and consequently coming out with an equation for
the evolution of orientation for dilute solutions of rigid spheroidal particles. Since
then, this description has been considered essential for all work on the study of
orientation phenomena despite its many restrictive assumptions. Indeed, in this
work [47], numerous assumptions have been made about particle, flow, and contact.
It considers first that the particle is rigid ellipsoidal, its center of gravity moving at
the same speed of translation as the fluid. Also, the dimensions of the particle are
small so that the velocity field of deformation is homogeneous at a large distance.
The flow is known, stationary and homogeneous (except for a zone of disturbance
around the particle) and occurs in an infinite medium formed by an incompressible
Newtonian fluid. Lastly, the contact between the fluid and the particle is sticky,
thus making it possible to connect the kinematics of the fluid to that of the particle.
Solving the Stokes equations, the following model for the evolution of the orientation
vector is proposed:

ṗ = −ω.p+ λ(E.p−E : p⊗ p⊗ p) (I.8)

where ṗ is material derivative of p, E and ω are the strain rate and vorticity tensors
respectively and λ is the shape factor which depends on the geometry of the fiber,
defined by:

λ =
β2 − 1

β2 + 1
(I.9)

Equation (I.8) shows two contributions, the first is the rotational movement about
the axis of vorticity expressed by the term ω.p and the second term E.p−E : p⊗p⊗p

presents the movement which tends to align the fibers in the direction of the velocity.

Analytical solution: application in the case of a simple shear flow

In the case of a simple shear flow governed by a velocity field u=(γ̇y,0,0), where
(γ̇>0) is the generalized shear rate, the Jeffery equation accepts at time t the fol-
lowing analytical solution for a fiber initially collinear to the x-axis:

p =
1√

cos2(2πtT ) + 1−λ
1+λ sin2(2πtT )

 cos(2πtT )

−
√
1−λ2

1+λ sin(2πtT )

0

 (I.10)

The fiber is oriented by an angle of θ, as shown in the figure I.19: Figure I.20 shows
that the particle (fiber) undergoes a periodic rotational movement, “tumbling”, which
depends on the aspect ratio β, the generalized shear rate γ̇ and the initial orientation,
thus highlighting the trajectory of the particle commonly known as Jeffery’s orbit.
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Figure I.19: Simple shear flow case
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Figure I.20: Jeffery solution in a simple shear flow: effect of β on fiber orientation

It can be also found that the fiber spends most of the time oriented in the direction
of the flow velocity. Its residence time in this direction is greater as the generalized
shear rate is smaller and the aspect ratio β is larger. Thus, the solution also indicates
that if β → ∞, then the trajectory of the particle becomes stable. So, the time taken
by the particle during rotation is small compared with the time elapsed when the
particle remains aligned with the current lines.

Mesoscale model: Fokker-Planck equation

As already discussed above, Jeffery’s model is only valid for diluted suspensions,
which is far from being the case for the majority of industrial suspensions involving
fibers. It is imperative to take into account at least the interactions between fibers
which strongly influence the state of orientation. Hence, an evolution model describ-
ing the orientation of a population of fibers is needed, where it is more reasonable
to group fibers within an angle range, rather than tracking the angle variation of
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each fiber individually. The mesoscopic scale is an intermediate scale between the
part and the particle. Consequently, the fibers are not considered individually, but
the fiber population is taken into account through its statistical distribution φ. A
study done in [59] describes the evolution of the orientation distribution function φ

by adapting the Fokker-Planck equation to fiber suspensions as follows:

Dφ

Dt
= −∇p · (φṗ) +Dr∇2

pφ (I.11)

where (D/Dt) is the material derivative and Dr is the rotational diffusion coefficient.
The latter has been introduced to represent hydrodynamic interactions that induce
an effect similar to that of a Brownian diffusion, however, the choice of the value of
this parameter is rather tricky. Thus, although φ allows a complete description of the
state of orientation, the study of its evolution through the resolution of equation
(I.11) has long been avoided in the literature. The multidimensional nature of
this equation made its treatment inadequate by standard discretization methods
except for simple problems. In contrast, in recent decades, many studies [60, 61]
have shown the possibility of solving this equation by different methods, under
certain conditions. Afterwards the macroscopic model is presented briefly, while the
mesoscopic method will be detailed in the following chapter.

Macroscale model: Folgar and Tucker equation and its improvements

Modeling of fiber orientation in a semi-concentrated medium has been the subject
of some studies [62]. In contrast, there are very few macroscopic models that can
account for the evolution of fiber orientation during flow. To model particle motion
in semi-concentrated solutions, macroscopically, the orientation state is described
by a phenomenological approach that allows the evolution of the tensor a2 to be
tracked. Thus, the degree of finesse of the representation of physics is reduced in
favor of the speed of calculation. The most famous model is represented in [59] and
described by equation (I.12).

Da2

Dt
= −(a2.ω − ω.a2) +

1

2
λ(E.a2 + a2.E− 2E : a4)︸ ︷︷ ︸

Hydrodynamic contributor

+ 2CI γ̇(I− 3a2)︸ ︷︷ ︸
Isotropic rotary diffusion contributor

(I.12)

Many studies were done later in order to improve the model since the simulated
orientation of the fiber shows a deviation from the experimentally determined ori-
entation of the fiber, as the first model had an inexact prediction with a faster
response rate of fiber orientation. Thereby a work made in [63] proposed a reduced
strain closure (RSC) model based on the decomposition of the eigenvalue λ and the
eigenvector e, written as follows:

Da2

Dt
=

1

2
(ω.a2 − a2.ω) +

1

2
λ(E.a2 + a2.E− 2[a4 + (1− k)(L4 −M4 : a4)] : E)

+ 2kCI γ̇(I− 3a2) (I.13)

where k ∈ [0, 1] is a constant slow-down factor fit by experimental data, M4 and L4

are fourth order tensors which depend on the eigenvalues and eigenvectors, expressed
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as:

M4 =
3∑

i=3

eieieiei

L4 =
3∑

i=3

aieieiei

(I.14)

The anisotropic rotary diffusion (ARD) model was later introduced in [64], where
the isotropic rotary diffusion contribution in (I.12) was modified by replacing CI

with anistropic rotary tensor C. The ARD model is then given as:

Da2

Dt
=

1

2
(ω.a2 − a2.ω) +

1

2
λ(E.a2 + a2.E− 2E : a4)

+ γ̇(2C− 2tr(C)a2 − 5(C · a2 + a2 ·C) + 10a4 : C) (I.15)

where C can be computed based on different modeling approaches that are found in
[65, 66, 64]. At present, many commercial injection molding simulation softwares,
such as Moldex 3D and Autodesk Moldflow have integrated a ARD-RSC model [67]
which is developed by combining equations (I.13) and (I.15):

Da2

Dt
=

1

2
(ω.a2 − a2.ω) +

1

2
λ(E.a2 + a2.E− 2[a4 + (1− k)(L4 −M4 : a4)] : E)

+ γ̇(2[C− (1− k)M4 : C]− 2ktr(E)a2 − 5(C · a2 + a2 ·C)

+ 10[a4 + (1− k)(L4 −M4 : a4)] : C) (I.16)

Nevertheless, there are two major difficulties in solving these models. In addition to
the first mentioned for equation (I.11), which is linked to the choice of the parameter
modeling the degree of interaction, and it is also observable that the evaluation of
the equation of orientation tensor must contain the next higher even-order tensor,
so the presence of the orientation tensor a4 of order 4 is added. The latter can
only be solved by means of its evolution equation which involves a tensor of order
6 and so on. For that reason, a standard approach is brought in form of a closure
approximation which is needed to close the set of the evolution equations of the
orientation tensors. The approach is defined in a way that the fourth order tensor
is approximated as function of the second order orientation tensor.
In the literature, there are several forms for these closure methods [68, 69, 70, 71], but
none of them is conclusive in predicting the direction of actual flows. For this reason,
identifying a closure approximation presents a challenge that continues to motivate
researchers to date. Despite these difficulties, this tensor description remains the
most used, especially in an industrial context. For this reason, some researches are
still made in order to improve the accuracy of their uses [72, 73]. For an injected
part, equation (I.12) makes it possible to predict the orientation in the shell zone
well, but this is far from the case for the core zone where significant differences
in prediction are observed. A review of objective and non-objective models for
improving the results from equation (I.12) is presented in [74]. Some examples of
closure equations that can be incorporated into a calculation code to predict the
orientation state of the fibers are concisely explained.
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• The linear approximation: It was first introduced in [49], and known as
one of the simplest closure approaches. It is represented as a summation of
all products of orientation tensor aij and kronecker delta function δij , as the
symmetry and normalization conditions are applied:

aLINijkl =
1

7
(aijδkl + aikδjl + ailδjk + aklδij + ajlδik + ajkδil)

− 1

35
(δijδkl + δikδjl + δilδjk) (I.17)

• The quadratic approximation: A study made in [75] has implemented an
exact quadratic closure approximation for flows that orient fibers in a single
direction. It takes the following form:

aQUAD
ijkl = aijakl (I.18)

The quadratic closure equation is widely used for its compact expression, how-
ever it does not respect all the symmetry conditions of the fourth order tensor.
Furthermore, it is known to overestimate the alignment of the fibers in the
direction of flow.

• The orthotropic approximation: The orthotropic closure approximations
had been developed in the literature [69], [76]. The orthotropic closure satisfies
the full symmetry condition. It is built on that all fourth-order closure formu-
las are necessarily orthotropic, with principal axes that match the principal
axes of the second order tensor. In the orthotropic closure, three independent
components of a4 (A1, A2, and A3) in the eigenspace system, are taken to be
depend on the eigenvalues of a2 as follows:

Ak = C1
K + C2

Ka1 + C3
K(a1)

2 + C4
Ka2 + C5

K(a2)
2 + C6

Ka1a2 (I.19)

where (K∈ [1,3]). Two largest eigenvalues of a2 are represented by a1 and a1,
and Ci

K ,where (i∈ [1,6]), are eighteen fitting parameters. Several versions of
the orthotropic closure approximations were developed in order improve the
accuracy and to overcome some nonphysical behaviors of the original model.
From numerical aspect, an additional computation is required for tensor trans-
formations between the global coordinate and the principal coordinate, which
is its drawback in terms of the computational efficiency.

• The neural-network based approximation: The neural-network based clo-
sure approximation was developed recently, which assumes two-layer neural
network between the second and fourth order orientation tensors as follows:

a4 = f2(W2f1(W1a2 + b1) + b2) (I.20)

where (f1, f2) are transfer functions which can be linear or tangent hyperbolic
and (W1,W2) are weighting coefficients, and (b1,b2) are bias coefficients.
The neural network closure is accurate for a wide range of the flow fields, and
also its computational time is a lot decreased compared to the orthotropic
closures.
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• The Invariant-based optimal fitting (IBOF) approximation [68]: It is
a fitted closure derived from the natural closure (NAT) [77] that expands the
fourth-order tensor aijkl in terms of the second-order orientation tensor, aij ,
and the velocity gradient, Lij [77]. It was developed to address the singularity
problems encountered with the natural closure and to improve its accuracy.
IBOF achieves this by employing principal invariants, which can be readily
calculated in any coordinate system, rather than eigenvalues.

aIBOF
ijkl = β1S(δijδkl) + β2S(δijakl) + β3S(aijakl) + β4S(δijbkl)

+ β5S(aijbkl) + β6S(bijbkl) (I.21)

where bij=aim.amj and βi, i=1,..,6 are functions of aij .
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I.4.4 Short summary

□✓ During the phase of flow of the charge into the mold, each fiber is trans-
ported by the flow and its orientation changes as a function of the stresses
imposed by the matrix, the other particles and the walls of the mold.
This results in a distribution of complex orientation, varying consid-
erably in the workpiece, in particular according to the thickness, thus
affecting the mechanical properties: the elastic modulus, the breaking
strength, and the impact strength will depend on this distribution of
orientation but also on the local concentration of the fibers and on the
heterogeneity of the length distribution of the fibers.

□✓ The Jeffery equation provides a description of particle orientation for
a dilute fiber solution that supports several experimental studies. The
Jeffery model hypotheses are rather restrictive (Newtonian fluid, dilute
solution of fibers, neglected hydrodynamic interactions).

□✓ The most widely used model in the industrial field is that of Folgar and
Tucker. In this model, variables are the moment tensors derived from
the fiber distribution function whose equation describes the evolution of
the second order orientation tensor with respect to time.

□✓ A closure approximation is needed for Folgar and Tucker equation where
a dependency of the lower even order fiber orientation tensor on the
tensor of the next higher even-order is recurred, but often resulting in
inaccuracy and loss of information.

□✓ Fokker-Planck equation resolution, is required in order to predict with-
out approximations the fiber orientation.

I.5 Conclusion and research plan

I.5.1 A synopsis

Throughout this chapter, some notions on the definition and concepts in the field
of composite materials have been given. Some general information on the different
types of composite materials, the different types of fibers and their mechanical prop-
erties as well as their use in industry, and the difference between the thermoplastic
and the thermosetting polymers were presented. The main terminology relating
to the field of injected fiber suspensions has been introduced. This chapter have
also discussed the highly anisotropic microstructure generated by the flow involved
in the production of a composite with discontinuous reinforcement. In fact, it has
defined the parameters of the process as well as the rheology that govern this mi-
crostructure. The difficulty of predicting such a microstructure was also reported
and special attention was paid to Jeffery’s theory on which all orientation models
are based.



I.5. Conclusion and research plan 27

I.5.2 Industrial context

Recalling that this work is held within an industrial research chair between Cen-
trale Nantes and Faurecia, its focus is made on understanding at first the over-
molding process which is used at Faurecia company as technique to fabricate parts
with complex shapes made of composite materials, where it targets to manufacture
lightweight automotive parts with better mechanical properties. So the company
aims to understand the drawbacks of the overmolding techinque causing the defor-
mation, displacement and penetration of the insert that are explained detailedly (see
section I.3.3) in order to manage fixing them by controlling the machine parameters
during the filling stage such as pressure. Thus, depending on the defects that occur
during overmolding and the needs of the company, it is important to have a code
that performs simulations to calculate the displacement and deformation at the in-
terface between the molten injected thermoplastics and the insert. This will make
it easier for the company to predict defects in order to ensure a better final shape
of the manufactured composite parts.

I.5.3 Study objectives and approach

The purpose of the thesis is to develop a numerical method enriching ICI-Tech
library that is capable to simulate the filling stage of overmolding, as figure I.21

Figure I.21: Illustration on the research methodology conduction
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depicts the research plan in the logical order. It therefore seems essential to control
or at least to provide at first for the orientation of the fibers during the shaping phase
as this can be achieved through the resolution of the Fokker-Planck equation (FPE)
(see chapter II). So the numerical simulation finds its place in this research, given
its ability to predict the flow of the material and thus the orientation of the fibers
in the mold where the stress constitutive equation, representing the behavior of the
material, is then needed to be constructed (see chapter III). Thus, the stress field of
the material is expressed as a function of the orientation distribution. A fluid/solid
model is then built, where the constitutive relation, that takes into account the fiber
orientation, is implemented for the two phases in order to compute the stress and
strain deformation, thereby getting information on what happens on the interface
between the injected molten thermoplastics (phase 1: fluid) and the insert (phase
2: solid).

I.5.4 Thesis structure

This thesis is mainly structured around three parts, each of which contributes to the
understanding of orientation mechanisms via numerical simulation and their effect
on the mechanical properties of the final fabricated part.

• Chapter II: It is dedicated to the description of the microscopic model for
the modeling of the mechanisms of orientation of fibers in flow. Its aim is to
develop a new numerical method to study the orientation of fibers by solving
the Fokker-Planck equation using the finite element method (FEM) in the
orientation space.

• Chapter III: It details the constitutive laws generally used to model the
behavior of a suspension loaded with fibers. So it will be devoted to the de-
scription of the numerical model used in the context of the resolution of the
coupling problem of evolution of the orientation and the law of rheological be-
havior at the macroscale level. It is therefore mainly dedicated to the coupling
between rheology and fiber orientation.

• Chapter IV: It provides an extension of the analysis of the fiber-flow coupling
problem to more complex domains. Additionally, it delves into the construc-
tion of a two-phase flow-fiber coupling model aimed at simulating real-case
scenarios, such as overmolding process.
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Solving Fokker-Planck equation
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In the complex fluid family, including polymer-short fiber suspensions, mate-
rials have characteristic lengths that are significantly larger than those of simple
fluids. The coupling between microstructures (fiber concentration and orientation)
and flows often leads to specific rheological behaviours. Short fiber suspensions are
extensively involved in the composite industry. Knowledge of the final microstruc-
ture of the parts is essential for predicting mechanical properties. Similarly, the
prediction of such a microstructure can also be used to optimize the processes in
order to obtain the desired final properties. The quality of such a prediction de-
pends on mastering many different aspects. One of these aspects, which is covered
in the following chapter, is the mechanical modeling of the suspension, in other
words, the resolution of the fiber angular motion. To predict the fiber orientation,
a macroscopic model based on Folgar and Tucker equation [59], which defines so-
called orientation tensors, was introduced. For this model, closure approximations
were needed to solve the equation, but these methods usually result in implicit er-
rors. Chapter II presents a direct numerical simulation (DNS) technique which is
applied in order to overcome the mentioned inaccuracies. It discusses in detail the
simulation of the fiber orientation through a finite element approach to solve the
Fokker-Planck equation at mesoscale level.
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II.1 Introduction

From the aforementioned chapter, thermoplastics reinforced with short fibers are
popular engineered materials, particularly in the automotive sector. These materials
make it possible to meet the challenges of massive weight reduction and reduction in
manufacturing costs, while optimizing the characteristics and mechanical behavior
[78, 79]. The latter depend closely on the microstructure induced by the manu-
facturing process [80]. In the case of injected parts, the orientation distribution of
short fibers plays an important role [81, 82]. It influences the mechanical properties
of the final molded composite part, such as its tensile strength. Therefore, predict-
ing orientation using numerical approaches has been a topic of significant research
interest [46, 83].
Many theoretical formulations have been established to describe the orientation of a
fiber population [49, 84, 85]. The probability distribution function (PDF), φ(x,p,t),
allows to describe more widely the state of orientation of a population of fibers at
a material point [49], since it is not feasible to study the motion of each fiber in a
part. The PDF φ(x,p,t) presents at a time t and a position x the probability P of
finding fibers orienting in the direction p where the latter is defined as a unit vector
that describes the orientation of each fiber. This distribution function is a complete
and accurate representation of the orientation state of the fibers, it is expressed in
equation (I.3). As early as 1922, the motion of a rigid ellipsoidal particle immersed
in an incompressible Newtonian fluid was well predicted thanks to the work of Jef-
fery [47]. Since then, several authors have studied the impact of the geometry of
the particle [86] and the behaviour of the suspending flow on the evolution of its
motion. However, flows arising in industrial applications are more complex than
the diluted cases described above, where interactions between fibers must be taken
into account. Nevertheless, in the early 90s, solving a model that describes fiber
dynamics whose governing equation is analogous to Fokker-Planck equation was im-
practicable on existing computing resources due to the large numbers of unknowns
to be determined at each spatial node. The latter equation is introduced by the rate
of change of the PDF with respect to time t and fiber direction p.
For an industrial application, a more compact description is needed to calculate the
evolution of the fiber orientation in a medium. The concept of orientation tensor
was introduced in [50, 51, 49] to condense the information contained in φ and thus
obtain a representation of the orientation state of the fibers which depends only on
position and time. The most widely used model in this case is that of Folgar and
Tucker [59], introducing a diffusion coefficient inspired by considerations of Brown-
ian motion [87] with a determination that remains rather delicate. In this model,
variables are the moment tensors derived from the fiber distribution function whose
equation describes the evolution of the second order orientation tensor with respect
to time, it is expressed in equation (I.12). Thus, a closure approximation is needed
where a dependency of the lower even order fiber orientation tensor on the tensor of
the next higher even-order is recurred, as the fourth order tensor in the Folgar and
Tucker equation is a function of a six order tensor and so forth. Hence, different
closure approximations have been proposed in the literature [68, 69, 70, 71], but
often resulting in inaccuracy and loss of information [88, 89].
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To circumvent these drawbacks, Fokker-Planck equation resolution, is required in
order to predict without approximations the fiber orientation. Advani and Tucker
[90] attempted to solve the Fokker-Planck equation using a finite difference tech-
nique with a central differencing scheme to approximate the differential operator
with respect to p and an implicit time derivative. At each time step, Gauss–Seidel
relaxation method was set to compute the solution in the orientation and physi-
cal spaces. It was required to re-normalize the PDF φ(p,t) at each time iteration,
due to imposed boundary conditions where φ is assumed to be zero at angles 0
and π. This means that the probability of finding fibers orientated in both angles
is negligible, which is not always true. Thus, the conservation properties of the
PDF were not preserved. Chinesta et al. [60] applied the meshless particle method
to discretize the advection-dominated Fokker-Planck equation. This technique has
also been adopted to address a convection-diffusion equation with the diffusive term
modeled by random motions [91, 92]. However, its use was restricted to quite slight
diffusion effects due to the massive number of particles needed in order to maintain
a good stabilization of the solution, which makes this method useless for complex
industrial applications. On the other hand, a spherical harmonic Galerkin approach
was proposed in [93, 94] in order to solve the Fokker-Planck equation. In case of
a negligible or weak Brownian motion, which corresponds to a high Peclet number
Pe (generalized shear rate/rotary diffusivity), the probability distribution function
φ could feature a high gradient in the solution which requires additional degrees
of freedom in the orientation space to better describe the PDF and obtain more
accurate results. Also, solutions up to a certain Pe could be non-achievable due
to the ill-conditioning of the modal matrix. Therefore this method is limited and
only applicable for strong Brownian motion. Férec et al. [61] and Johnson et al.
[95] also used an approximation method by implementing Fokker-Planck resolution
in a finite volume framework, as their methods were only applied in the case of a
homogeneous flow.
This chapter focuses only on the numerical simulation of orientation mechanisms
and not on their impacts on the induced mechanical performance. Its aim is to
present a new numerical method that is developed to study the orientation of fibers
by solving the Fokker-Planck equation using the FEM in the orientation space as
for the physical space. This approach is meant to ease the transition of the prob-
lem, solving from meso to macro-scale and the implementation of message passing
interface (MPI) based parallel simulation algorithm using Open MPI library. The
outline of chapter II is as follows. Section II.2 describes the methodology developed
to compute the evolution equation of the probability distribution function on a 2D
domain. Hence, the reformulation and the discretization through a full FEM of
the Fokker-Planck equation are explained. Then, numerical results are presented
in section II.3, where simple tests illustrate the solution obtained with our method.
Furthermore, results on more advanced cases are shown to check the flow-induced
fiber orientation. Finally before concluding, the physical interpretation and the
prediction of the fiber motion determined from solving Fokker-Planck equation are
discussed, as well as the influence of some parameter on its behaviour and evolution.
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II.2 Mathematical modeling

Several evolutionary equations are used to model the suspensions of short fibers.
From a microscopic point of view, the evolution of fiber orientation in a Newtonian
fluid is described by the Jeffery Equation (I.8). Nevertheless this equation does
not take into account fiber interactions. Therefore, a model in [59] introduces the
Fokker-Planck equation adapted to fiber suspensions that describes the evolution of
the orientation distribution. The physical interpretation of this equation is detailed
in the following sections.

II.2.1 Fokker-Planck equation

Generally, in statistical mechanics, the Fokker-Planck equation is defined as a partial
differential equation that describes the temporal evolution of the probability density
function of the particle’s velocity under the impact of drag forces. In short fiber
reinforced thermoplastic processing, fibers can orient in different directions induced
by the injection flow. Prager [48] was the first to get interested in the statistics of
particle orientations by defining an orientation distribution function. In kinetic the-
ory, a complete description of the orientation state of the composite requires calling
an orientation distribution function φ(p,t) which, as discussed above, expresses the
probability of a fiber for having a certain orientation p at time t. From Bird et al.
[96], if ṗ (dp/dt) denotes the material time derivative of p, then the conservation
equation of φ is written, neglecting the Brownian motion of the fibers as follows:

∂φ

∂t
= −∇p · (ṗφ) (II.1)

This equation is valid in the particular case of dilute fiber suspensions. On the other
hand, in the case of semi-diluted or concentrated fiber suspensions, the hydrody-
namic type interactions should be taken into account by adding in equation (II.1) a
term analogous to a pseudo-Brownian diffusivity. In order to take into account fiber
interactions, Folgar and Tucker [59] added to the Jeffery equation a phenomenolog-
ical diffusion term. Consequently, the time evolution of particles can be expressed
generally as [49]:

ṗFT = −ω.p+ λ(E.p−E : p⊗ p⊗ p)︸ ︷︷ ︸
ṗJeffery

−Dr

φ
∇φ (II.2)

where E and ω are the strain rate and vorticity tensors respectively, γ̇ is the scalar
magnitude of strain tensor rate known as the generalized shear rate, λ is the shape
factor, expressed in equation (I.9), which depends on the geometry of the fiber and
β is the aspect ratio of the fiber (length/diameter).

E =
1

2
(∇u+∇uT )

ω =
1

2
(∇uT −∇u)

γ̇ =
√
2E : E

(II.3)
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By combining equation (II.1) with equation (II.2), a new well known Fokker-Planck
equation is introduced as:

∂φ

∂t
= −∇p · (ṗφ) +Dr∇2

pφ (II.4)

where ṗ is the orbital velocity and Dr is the rotary diffusivity coefficient. The
expression of the latter is given in [49]:

Dr = CI γ̇ (II.5)

where CI is the interaction coefficient which is empirically determined and describes
the rate of interaction. After all the Fokker-Planck equation (II.4) expresses the
rate of change for the probability distribution function (PDF), using the Jeffery
equation for a single fiber (I.8) and the continuity equation (II.1). Fibers are molded
as independent random variables with identical distribution and zero mean. Each
interaction results in a change of orientation in both fibers. So the right hand side
of equation (II.4) is the sum of two contributions: the convection and the diffusion
parts. An illustration of PDF time evolution is shown in figure II.1.

Figure II.1: Illustration: time evolution of PDF with ∆t = 0.5s, γ̇ = 1s−1, λ = 0.8,
and CI = 0.01

II.2.2 Reformulation of Fokker-Planck Equation

This model poses difficulties in the evaluation of the parameters and the large num-
ber of particles required leads to calculation costs that are often too high. For that
in this section, the methodology used in order to reduce the complexity of equation
(II.4) is described, which leads to minimize the computational cost of its resolution.
Nonetheless, it should be pointed out that Fokker-Planck equation is resolved for
one spatial node.
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II.2.2.1 Equation recasting

So at first, equation (II.4) is reformulated. By knowing that the divergence is
a linear operator and employing the product rule that can be derived from the
ordinary differentiation rules of calculus [97], the convective term is expanded and
re-written in this form:

∇p · (ṗφ) = ṗ.(∇pφ) + φ∇p · ṗ (II.6)

Noting that the orientation of the vector is defined as the angle that its line seg-
ment makes with the horizontal axis, an orientation of a single fiber is represented,
as it is mentioned above, by the normal direction vector p. So p defined in a polar

Figure II.2: 2D polar domain where all the possibilities of a fiber orientation exist

coordinates is described as function of angles (θ in 2D) and (θ, ϕ in 3D) and radius
(r = 1). Let us consider a fiber which is initially orientated at an angle θ0 and
gradually rotated to an angle θ1. As depicted in figure II.2, p0 and p1 describe the
fiber at θ=θ0 and θ=θ1, respectively. Determining the slope (gradient) of p through
trigonometric expressions related to the polar angle, the change of p direction rep-
resenting the fiber orientation corresponds to the change of its angle of rotation.
Therefore, a link between p and θ is established under the forms ∇p 7→ ∇θ and
p 7→ θ . Thus, in 2D, φ can also be expressed as a function of the orientation
angle θ. So combining the latter expression with equation (II.6), the reformulated
Fokker-Planck equation is obtained:

∂φ

∂t
+ θ̇.(∇θφ) + φ.∇θ · θ̇ −Dr∇θ · (∇θφ) = 0 (II.7)

II.2.2.2 Angular velocity calculation

The orbital velocity ṗ contributes to fiber motion, both in terms of rotation and de-
formation. Thus, the first term in equation (I.8) leads to pure rotation of the fibers,
the second term generates deformation(elongation) which causes also a rotation and
the third term contributes to only elongation. This can be mathematically proven
by simple calculations of each term of ṗ. Taking for example a simple 2D shear flow
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in the x direction, its velocity profile can be given by:

u =

[
ux
uy

]
= γ̇.

[
y

0

]
(II.8)

where u has one non-zero component, ux, whose gradient is perpendicular to the
velocity itself and equal to γ̇. For that case, this implies that equation (II.7) can be
solved separately for each single spatial node as the velocity gradient is constant over
the domain, which means that all fibers orient themselves with the same rotation
rate. Firstly, vorticity and deformation tensors are computed from expressions (II.3),
knowing that (∇u)ij is expressed as ∂ui/∂xj in index notation (with i, j ∈ [x, y]),
and then plugged into Jeffery’s part of equation (II.2) to calculate each term of ṗ,
respectively. The components of the vector p are expressed in polar coordinates,
and the expressions of the first two terms in equation (II.2) can be determined:

E.p =
1

2

[
0 γ̇

γ̇ 0

]
.

[
cos θ

sin θ

]
=

1

2
γ̇

[
sin θ

cos θ

]

ω.p =
1

2

[
0 −γ̇

γ̇ 0

]
.

[
cos θ

sin θ

]
=

1

2
γ̇

[
− sin θ

cos θ

] (II.9)

The third term is re-written in a simpler manner form to facilitate its calculation,
without necessarily computing the third order tensor resulting from the tensor prod-
uct between the three unit vectors p:

E : p⊗ p⊗ p = (pT .E.p).p (II.10)

where pT is the transposed vector of p. Then, similarly:

(pT .E.p).p = γ̇(cos θ sin θ).

[
cos θ

sin θ

]
(II.11)

A vector field is defined as a function that maps points to vectors, thus the fields
in equations (II.9) (II.11) which describe the physical motions of a fiber, can be
sketched by plugging some coordinates of different points as shown in the following
table:

fields
θ 0 π/4 π/2 π

E.p (0,ζ) (ζ
√
2
2 ,ζ

√
2
2 ) (ζ, 0) (0,−ζ)

ω.p (0,ζ) (−ζ
√
2
2 ,ζ

√
2
2 ) (−γ̇, 0) (0,−ζ)

(pT .E.p).p 0 (γ
√
2
2 ,γ

√
2
2 ) 0 0

Table II.1: Representation of vector fields

where ζ=γ̇/2 and γ=γ̇(cos θ sin θ). So starting from the configuration presented in
figure II.2, contributions of the three terms on the vector fields are drawn in figure
II.3. Furthermore, the vector field corresponding to equation (II.11) and the unit
vector p are shown to be collinear, physically meaning that the fiber experiences
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(a) Pure rotation (b) Elongation+rotation

(c) Pure elongation

Figure II.3: ṗ-effect applied to fiber motion: (a) pure rotation (equation (II.9)); (b)
elongation+rotation (equation (II.9)); (c) pure elongation (equation (II.10))

only deformation considering the effect of (II.11). This implies that this term can
be negligible if fibers are very stiff. Hence, equation II.5 is recast as follows:

ṗ = −ω.p+ λ(E.p) (II.12)

With the help of equation (II.3), equation (II.12) is written in the index notation
where Eij and ωij are the components of the strain rate and the vorticity tensors
respectively. This results in:

ṗ =

[
cos θ(λExx − ωxx) + sin θ(λExy − ωxy)

cos θ(λEyx − ωyx) + sin θ(λEyy − ωyy)

]
(II.13)

where (ωxx=ωyy=0). As aforementioned, the rotational effect of ṗ is only sought
in order to predict the fiber orientation. Thus, the angular velocity θ̇, which is the
rate of change of angle in time, is determined in order to compute the fiber rotation.
As seen in figure II.4, ṗ can be decomposed into radial and tangential orientation
velocities by projecting it on unit vectors Vr and Vt respectively. So, the projection
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Figure II.4: Projection of ṗ

of θ̇ is determined from the following formula:

projVtṗ = (
ṗ.Vt

∥Vt∥2
).Vt (II.14)

where (∥Vt∥2=1) in case of the unit circle. Equation (II.13) is plugged into expres-
sion (II.14), ṗ is projected and θ̇ is computed as follows:

θ̇ = cos2 θ(λExy − ωyx)− sin2 θ(λExy − ωxy) + λ cos θ sin θ(Eyy − Exx) (II.15)

The final form of the reformulated Fokker-Planck equation, which will be later
discretized in the θ-space, is:

∂φ

∂t
+ φ∇θ · θ̇ + θ̇(∇θφ)−Dr∇θ · (∇θφ) = 0 (II.16)

II.2.3 Discretization of Fokker-Planck equation

II.2.3.1 2D-1D configuration

Initially, the configurational domain is represented by a unit circle in the 2D plane,
to reduce the complexity and the computational effort. The 2D domain is converted
into a 1D domain by projecting the unit circle into a 1D segment whose length is
2π, as shown in figure II.5. As seen in table II.2, the numbers of nodes and elements
are equal, where the last node is connected to the first node.

II.2.3.2 Finite element approach

As mentioned previously, there are a large number of studies in the literature con-
cerning the numerical calculation of fiber orientation by solving FPE. On the con-
trary, few of them were able to get an accurate solution while maintaining its sta-
bilization. The discretization of the geometries plays a key role for an accurate
resolution of the FPE. The initial step is the definition of a proper computational
domain (see figure II.5), representing as good as possible the characteristics and
shape of the simulated problem. Also the choice of a formulation for the FPE also
has a big impact on the accuracy of the results obtained.
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Figure II.5: Projecting 2D to 1D discretization domain

Element Topology
1 1,2

2 2,3
. .
. .
. .
N N-1,N
N N 1

Table II.2: Nodal connectivity matrix

Thus, the FEM was used in this work to compute the FPE which allows theoretical
studies such as uniqueness, existence, consistency, and stability of solution to be
performed, due to its strong mathematical developments. Also it assists in taking
advantages from techniques like parallelization, a technique that use full capacity
of the modern day computers for obtaining quick results, which have also been
developed for enhancing in particular the FEM discretization technique; the par-
allelization technique will be advantageous especially in the coupling problem (see
chapter III).
So FEM considers cells for its resolution, as the equations are written on a whole
element. The approach is based on linearization of the solution on each element,
using basis functions for interpolation and the solutions at each node of the mesh.
The strong formulation which consists of mathematical equations and boundary
conditions for a physical system, is not directly solved in FEM. Weak formulations,
an alternative version of the problem, is constructed from the integral on a strong
formulation element multiplied by the arbitrary functions. The entire problem, ex-
ercised to all the elements simultaneously, is written in a matrix formulation and
solved, as FEM meshes can be structured (in this case) or unstructured. It is worth
to be mentioned that the accuracy of the results is linked directly to the number of
grid points set (see section II.3.2) or to the order of interpolation.
The existence of a time derivative in the FPE requires a time discretization. The
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FPE problem is solved at different instants of the time, separated by a time step ∆t.
The choice of ∆t at each instant needs to be well thought to capture the time rate
of change of fiber orientation required by both the the variational formulation and
θ-space discretization. Different temporal discretization techniques can be found
in the literature [98], where the choice of a method depends on its implementation
complexity, its computational time and its accuracy. For example, the algorithm of
the forward Euler (explicit) method is considered to be faster than the backward
Euler (implicit) but it introduces some limitations to the size of ∆t. In section II.3.2,
three approaches (Rosenbrock, backward Euler and Crank-Nicolson) were chosen for
the convergence study. The resolution of the Ax = b system for the two latter at
time step n+1 is written:

xn+1 = (I−∆tA)−1xn + (I−∆tA)−1b (Backward Euler)

(M1 +M2)xn+1 = (M1 −M2)xn + 2b (Crank-Nicolson)
(II.17)

where M1 = (I−0.5∆tA)−1 and M2 = (I+0.5∆tA)−1. It should be noted that the
temporal discretization has commonly a big effect on the accuracy of the simulation
for solving a non-linear problem in time. So as known, the numerical schemes can
provide some convergence issues when the chosen ∆t is significantly large. For that
the Courant-Friedrichs-Lewy (CFL) condition is required to guarantee the conver-
gence. It is written in our case as follows:

∆t
∑
i

θ̇xi

hi
< Cmax (II.18)

where hi is the mesh size and Cmax is a constant parameter depending on the scheme
used. So in order to solve equation (II.16), the streamline upwind Petrov–Galerkin
(SUPG) approach [99] instead of the standard Galerkin method, as the latter either
produces excessive numerical diffusion, or non-physical oscillations as a first order
differential operator also appears for FPE. The SUPG consists in disturbing the
test functions for the convection terms by adding a term which is similar to the
artificial diffusion:

φ̃supg = φ̃+ γθ̇ · ∇φ̃ (II.19)

where γ is a stabilizing coefficient that controls the artificial diffusion, expressed as:

γ =
h

(2|θ̇|+ 2Dr
h )

(II.20)

To begin with, the various spaces needed to express the weak formulation of FPE’s
physical problem, are introduced. The spaces used in ICI-tech are recalled:

• C0(Ωθ): the space of functions continuous on Ωθ

• P1(Ωθ): the space of polynomials of degree 1 on Ωθ

• L2(Ωθ): the Lebesgue space of square-integrable functions on Ωθ

L2(Ωθ) = {w,
∫
Ωθ

w2dΩθ} (II.21)
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• H1(Ωθ): the Sobolev space of functions whose order 1 derivatives belong to
L2(Ωθ)

H1(Ωθ) = {w ∈ L2(Ωθ), Dw ∈ L2(Ωθ)} (II.22)

Thus, the spaces for the PDF and its arbitrary function are defined as:

V = {φ ∈ H1(Ωθ)}
W = {φ̃ ∈ H1(Ωθ), θ̇ · ∇φ̃ ∈ H1(Ωθ)}

(II.23)

Galerkin’s variational (or weak) formulation of the problem is then constructed by
multiplying the equation (II.16) by the test function φ̃(x) ∈ W and integrating over
the entire domain Ωθ, results in:

(∂tφ, φ̃) + (γθ̇ · ∂tφ,∇θφ̃) + (∇θθ̇ · φ, φ̃) + (θ̇ · ∇θφ, φ̃)

+ (θ̇ · ∇θφ, γθ̇ · ∇θφ̃) +Dr(∇θφ,∇θφ̃) = 0 (II.24)

where the notation (·, ·) defines the scalar product in the sense of the L2(Ωθ):

∀(u, v) ∈ L2(Ωθ), (u, v) =

∫
Ωθ

uvdΩθ (II.25)

To solve this problem, the domain is discretized and broken down into simplices
K formed by 1D-elements (see figure II.5). Thus, the preceding spaces of contin-
uous functions are approximated on K by discrete sub-spaces of finite dimensions
constituted by piece-wise continuous linear functions.

Vh = {φh|φh ∈ C0(Ωθ), ∀K, φh|K ∈ P1(K)}
Wh = {φ̃h|φ̃h ∈ Vh}

(II.26)

The full-discrete Galerkin problem consists of finding φh ∈ Vh such as φ̃h ∈ Wh for
the following problem:

(∂tφh, φ̃h) + (γθ̇ · ∂tφh,∇θφ̃h) + (∇θθ̇ · φh, φ̃h) + (θ̇ · ∇θφh, φ̃h)

+ (θ̇ · ∇θφh, γθ̇ · ∇θφ̃h) +Dr(∇θφh,∇θφ̃h) = 0 (II.27)

The approximation of the solution on an element is determined using the values at
the nodes. Then the solution is approached by:

φh|K =

DK∑
i=1

φi(t)N
i(x)

φ̃h|K =

DK∑
j=1

φ̃j(t)N
j(x)

(II.28)

where i represents the node, N(x) the shape function on that node and DK the num-
ber of nodes in the K-simplex. It is also noted that the accuracy of the results is
directly linked to the order of interpolation,i.e, the degree of the polynomials N(x).
Eventually equation (II.28) is introduced into equation (II.27), which generates a



II.3. Numerical results 41

linear system of algebraic equations.
So once the stabilized weak formulation is well written, the equivalent matrix for-
mulation is deduced. In ICI-tech, the method adopted for the resolution of the
system is an iterative method of conjugate gradient type resolution. To do this,
the library Portable, Extensible Toolkit for Scientific computation (PETSc) is used.
PETSc [100] is a library of algorithms for solving linear and non-linear systems,
both sequentially and in parallel, using iterative numerical methods. In the context
of solving partial differential equations such as ours, PETSc offers interesting meth-
ods including preconditioners. Local arrays are created in ICI-tech as local solvers.
Subsequently, PETSc supports them for preconditioning. A preconditioner, using
an incomplete factorization method called the decomposition ILU(k) of a matrix
A in the form A=LU, is used. The parameter k makes it possible to control the
filling ratio of the hollow matrix (sparse matrix), thus making it possible to solve
even problems of a poorly conditioned nature. It should be noted that the resolu-
tion time with such an iterative process varies according to the number of iterations
performed at the end of the resolution. C++11 is used as a programming language
to write the FEM code of solving the probability distribution function.

II.2.4 Short summary

□✓ The Fokker-Planck equation depends on kinematic parameters.

□✓ For simplicity, 1D domain is discretized representing a 2D configuration
of fiber orientation.

□✓ The angular velocity of fiber correlated with the generalized shear rate
in the field of the flow is determined.

□✓ The Fokker-Planck equation is solved at each spatial grid independently
in a finite element framework.

II.3 Numerical results

II.3.1 Validation tests

Within this section, a validation test was carried out using a simple shear flow case
characterized by a constant generalized shear rate (γ̇ = 1s−1). The primary objec-
tives of this validation are to confirm the accuracy of the computed angular velocity
obtained from the equation (II.15) and to verify the reliability of the numerical so-
lution of the Fokker-Planck equation. The validation process involves checking the
normalization condition and examining the impact of the shape factor λ and the
interaction coefficient CI parameters on the numerical results.

II.3.1.1 Normalization condition

The 2D orientation distribution function is introduced, as described above, to rep-
resent the probability of finding a fiber between the angles (θ and θ + dθ), given
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as:

P =

∫ θ+dθ

θ
φ(θ)dθ (II.29)

Moreover, the integral over all possible orientations of the distribution function must
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Figure II.6: Time evolution and error analysis of φ integral for different λ: ensuring
normalization

be equal to unity satisfying the normalization condition induced by the definition
of a probability:

P =

∫ 2π

0
φ(θ)dθ = 1 (II.30)

The latter expression has been checked, as illustrated in figure II.6. When solving
a pure convection Fokker-Planck equation (Dr = 0) across the entire domain Ωθ,
the integral of the probability distribution function exhibits remarkable constancy,
remaining close to 1 throughout varying time t for different shape factors λ. Upon
analyzing figure II.6, it is evident that the error is extremely small, fluctuating
within the order of 10−11 for varying shape factors λ. A distinct pattern emerges
in the error plot when λ = 1, exhibiting significant fluctuations in contrast to other
shape factors. This observed behavior results from the physical phenomenon of fiber
concentration or a high gradient in the resolution of the Fokker-Planck equation.
Under such circumstances, the fibers tend to align at a specific moment, leading
to a concentration of the solution at a particular orientation angle. Nevertheless,
despite these fluctuations, the error magnitude remains remarkably small and within
the order of 10−11 for all shape factor values. This observation serves to emphasize
the effectiveness of the Streamline-Upwind/Petrov-Galerkin (SUPG) finite element
method in stabilizing critical convection-dominated cases, ensuring the preservation
of the normalization condition.

II.3.1.2 Influence of λ-parameter

Figure II.8 shows the variation of the angular velocity for different values of λ pa-
rameter. When λ=0, the fiber is represented by a circular shape (figure II.7), and
it rotates with an uniform circular motion as the angular velocity remains constant
at any angle θ. The fibers will keep subsequently rotating over themselves with a
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steady velocity if fibers do not intersect. As for λ=1, the case where the fibers are
assumed quasi-infinite, the angular velocity is zero at 0 and π. Therefore, the fibers

(a) λ=0 (b) 0<λ<1 (c) λ=1

Figure II.7: λ-effect on fibers shape

that are oriented in the direction of the velocity field will not rotate. This is logical
as the velocity gradient along the y-axis does not affect the rotation of fibers as their
thickness tends to be zero. Therefore, we conclude that fibers initially oriented at a
small angle with respect to the flow, will take longer to rotate in the case of shear
flow if λ value is close to 1. In other words, it could be verified that the angular
velocity values will be the highest for λ=1 when θ ∈ ]π/4,3π/4[ ∪ ]5π/4,7π/4[. It is
also noticeable that the maximum angular velocity is always at π/2 and 3π/2 where
the torque exerted by the flow on a fiber is at its maximum and the latter state is
perpendicular to the velocity streamlines.
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Figure II.8: Variation of θ̇ versus θ

The Fokker-Planck equation has been computed in order to determine the prob-
ability distribution function that evolves over time to understand the change of
fiber orientation with respect to time. The Fokker-Planck equation is an advection-
diffusion equation, where the advection term represents the deterministic dynamics
of the fibers, and the diffusion term represents the stochastic effects due to the
interaction between the fibers. When examining the Fokker-Planck equation, the
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initialization of a probability distribution function at t = 0 corresponds to a scenario
of fiber alignment, as depicted in figure II.9. This range accounts for the periodicity
in the domain at angle 0, where 2π−∆θ returns to 0, signifying that the angle 2π is
equivalent to the angle 0. Thus, the complete representation of the total probability
for this alignment scenario is defined by the integral equation:

Ptotal_alignement = P (θ ≤ 0 + c∆θ) + P (θ ≥ 2π −∆θ(1 + c))

+P (π + c∆θ ≥ θ ≤ π + c∆θ)
(II.31)

Then, the Fokker-Planck equation is resolved, and from its solution of the proba-

Figure II.9: Initialization of probability distribution function at t=0 with c=32 and
∆θ= 2π

2048

bility distribution function, the probability of finding fibers oriented around angles
0 and π is computed at each time step. The range is deliberately kept small with
(c=32 and ∆θ= 2π

2048) in order to effectively capture the variation of the probability
of finding aligned fibers over time. The shape factor of fibers plays a significant
role in the evolution of the probability distribution function over time as it is shown
in figure II.10. Starting with an initial distribution function that depicts a unidi-
rectional fiber orientation case, where most of the fibers (about 90%) are oriented
with angles spanning both 0 and π, the probability distribution function decreases
proportional to different values of shape factor of fibers over time. Physically, the
fibers tend to orient faster around 0 and π as the shape factor gets smaller (λ → 0)
representing a more circular shape of fibers, compared to fibers with a shape factor
approaching 1, which is consistent with previous results (see figure II.8). This is
due to the fact that with shape factors (λ → 1) represent more elongated fibers,
they have a greater tendency to remain aligned and oriented in the direction of the
flow, in this case in both 0-direction and π-direction, for a longer period of time.
Conversely, fibers with small shape factors tend to orient slower than fibers with
quasi-infinite shape factors when far from angles 0 and π, which leads to a slower
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Figure II.10: Time evolution of the total probability of finding fibers oriented around
angles 0 and π for different λ

alignment with the initial angles 0 and π. This interpretation holds true in the ab-
sence of the diffusion term. However, when the diffusion term is included, depicted
in figure II.10, fibers with shape factors closer to zero undergo subsequent rotation
until the probability distribution function becomes more uniform, indicating a more
isotropic orientation. In contrast, fibers with a shape factor (λ=1) tend to remain
aligned with angles 0 and π, serving as a counterforce to the diffusion term, even
though a decrease of the peak of the probability distribution function near angles 0

and π occurred, but still resulting in a higher probability of finding fibers oriented
in both angles 0 and π compared to the case of shape factors less than 1. These
results demonstrate the important role of the shape factor in the evolution of fiber
orientation over time.

II.3.1.3 Influence of CI-parameter

An analysis is also done on the effect of the diffusion term on the fiber orientation
to understand how it affects the probability distribution function. Thus, figure II.11
represents the evolution of the probability distribution centered around 0 andπ with
some degree of spread c∆θ with (c=32 and ∆θ= 2π

2048) by solving the full Fokker-
Planck equation (advection-diffusion equation), with different interaction coefficients
CI to investigate their effects on the solution of the Fokker-Planck equation. The
initial probability distribution function represents a scenario where a large majority
of fibers (approximately 90%) are oriented around angles of 0 and π. The diffusion
term arises from the Brownian motion of fibers and causes the distribution to spread
out over time, resulting in a decrease in the peak of the distribution. This behavior
can be observed by comparing the solutions of the Fokker-Planck equation with and
without the diffusion term. Figure II.11 demonstrates the effect of the interaction
coefficient on the evolution of the probability of finding fibers oriented around angles
0 and π. When the CI is set to zero, the probability exhibits a periodic behavior
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Figure II.11: Time evolution of the total probability of finding fibers oriented around
angles 0 and π for different CI

where it returns to its initial value after a fixed period of time. However, when the
CI is increased, the probability evolves in a way that results in a decrease in the
peak value before flattening out as it is illustrated in figure II.12. This is because

Figure II.12: Variation of the probability distribution function φ at time t=10s for
different CI

diffusion acts to smooth out fluctuations in the fiber orientation and promotes a more
uniform distribution of orientations indicates an isotropic distribution. As a result,
the probability distribution becomes less peaked and more scattered, indicating
that the fibers will be oriented in a wider range of angles meaning that there is no
preferred orientation and the orientation of the fibers is considered to be random.
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This effect is particularly evident in the long-term behavior of the system, where
the probability distribution tends to approach a steady state that is less sensitive to
the initial conditions. Thus, knowing that the diffusion term in the Fokker-Planck
equation captures the stochasticity of the system and describes how the probability
density evolves over time due to random fluctuations, the diffusion term plays a
role in the stabilization phenomenon, by allowing the system to explore different
orientations of the fiber and eventually converge to a stationary distribution, as the
diffusion term represents the stochastic effects of the fiber-fiber interactions.

II.3.2 Numerical convergence analysis and computational efficiency

In this section, we present numerical results regarding the resolution of the Fokker-
Planck equation within the context of a Poiseuille flow scenario. This scenario is
characterized by a position-dependent generalized shear rate, denoted as γ̇, which
varies spatially along the y-axis. Its specific form is expressed as:

γ̇ =
y

H2
Vmax (II.32)

where H is the distance between the two horizontal parallel plates, Vmax is the
maximum axial velocity. Throughout this section, the parameter values remain
consistent, with H set to 1m, Vmax set to 10m/s, while the shape factor λ is as-
signed a value of 0.98, and the interaction coefficient CI is held at 0. The scope
of these numerical results encompasses a thorough convergence analysis, focusing
on both mesh refinement and time discretization schemes. Furthermore, a com-
prehensive comparison is drawn to discern the distinct impact of these schemes on
computational efficiency.

Figure II.13: Fibers orientation for the Poiseuille flow case

II.3.2.1 Convergence study: mesh and time discretization schemes

Knowing that function φ must satisfy some conditions such as periodicity, normal-
ization and continuity and by integrating dyadic products with the PDF function,
the even order orientation tensors (a2, a4,.. a2N ) can be calculated. An orientation
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tensor, commonly noted a2, has been proposed to express the spatial mean of the
double tensor product of p, by [50]:

a2 =

∫
Ωθ

φ(θ)p⊗ p dp (II.33)

Thus, by computing φ(θ) using equation (II.16), the planar orientation of the second
order tensor is determined from equation (II.33), which describes the fiber orienta-
tion state in the direction of the main flow without a loss of accuracy due to the use
of a closure approximation. So the components of the a2 tensor can be written:

axx =
N∑
i=1

φi cos
2(θi)

ayy =
N∑
i=1

φi sin
2(θi)

(II.34)

where the alignment of the fibers is expressed by axx and ayy with respect to the
main directions.
In pursuit of a comprehensive numerical convergence assessment, depicted in figure
II.14, the time evolution of the orientation tensor a2 is computed at y=0.5, corre-
sponding to a generalized shear rate γ̇=5s−1 based on equation (II.32). The initial
condition is set to represent an isotropic state, with axx=ayy=0.5, and the period of
its evolution is T=4πs. To validate the results, a comparative analysis is performed,
involving a comparison between the obtained numerical results and the analytical
solution derived in [101].
A comparative study, depicted in figure II.14a, is initially conducted using various
temporal discretization schemes, seeking to assess the sensitivity of the obtained nu-
merical solution to various time discretization approaches. This study reveals that
the employment of the backward Euler scheme "beuler", recognized as a first-order
technique, results in significant loss of information and introduces inaccuracies that
amplify over time, compared to the analytical solution. In contrast, the Crank-
Nicolson scheme "cn" and the Rosenbrock-W scheme "rosw" exhibit improved per-
formance. The observed discrepancies can be attributed to the inherent limitations
of the backward Euler method in accurately capturing swift variations or oscillatory
patterns. The Crank-Nicolson and Rosenbrock-W methods, distinguished by their
respective local truncation errors of second and third order [102, 103], exhibit sim-
ilar solution trends, apparent from the overlapping curves. Despite this, they yield
better solutions with less damping, with their curves approaching the analytical so-
lution and displaying smaller errors.
Figure II.14b examines the influence of altering ∆t on the time evolution solution of
axx. Employing the Crank-Nicolson time discretization scheme, the time step order
is adjusted across the range of (2 × 10−2 to 2 × 10−4s). Interestingly, decreasing
the time step does not contribute to the convergence or enhancement of solution
accuracy. This observation may be attributed to the circumstance that in situations
where dominant effects are associated to convection or rapid changes, reducing the
time step might not result in significant improvements, particularly if the underlying
numerical scheme already provides adequate accuracy.
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Figure II.14: Numerical convergence analysis: second Order orientation evolution
with varied temporal schemes, time steps, and mesh sizes

Lastly, an investigation into mesh convergence is conducted, as illustrated in Figure
II.14c, involving a range of mesh sizes from ( 2π

512 to 2π
2048). The objective is to address

damping effects in the results. The plot demonstrates that as mesh refinement is
undertaken, the numerical results progressively align with the analytical solution.
Notably, for the case of a mesh size of h= 2π

2048 , the curves of the analytical and
numerical results coincide, signifying the importance of mesh refinement to mitigate
damping. This necessity arises due to the solution of the Fokker-Planck equation,
which encompasses a probability distribution function with sharp gradients occur-
ring at different time points around angles θ = 0 and θ = π. Thus, neglecting
mesh refinement can lead to compromised solution accuracy. So to demonstrate
the origins of the damping phenomenon, figure II.15 captures the evolution of φ at
half the period (t = 2πs), corresponding to the state of axx at its minimum value
(axx = 0.5), representing randomly oriented fibers. Notably, as the mesh size is
reduced, the oscillations in the probability distribution function become more sta-
bilized, approaching a constant value of 1/(2π) with refined meshes. This trend
aligns with the isotropic orientation distribution state, thereby converging toward
the analytical solution.
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isotropic orientation state

(a) h = 2π
512

isotropic orientation stateisotropic orientation state

(b) h = 2π
1024

isotropic orientation state

(c) h = 2π
2048

Figure II.15: Evolution of φ at isotropic orientation state ( t
T = 0.5) with varying

mesh refinement

II.3.2.2 Computational efficiency: impact of refinement and higher or-
der temporal discretization schemes

A comprehensive computational cost analysis has been conducted, covering a com-
parison of various mesh sizes h and distinct time discretization schemes. Notably,
the examination of different time steps has been excluded, as evidenced by the find-
ings in figure II.14b, where it was established that altering the time step does not
significantly affect the accuracy of Fokker-Planck equation resolution. As a result,
the focus of the time computation comparative study will remain on a fixed time
step of ∆t = 2 × 10−2, ensuring a thorough exploration of the impact of mesh re-
finement and time discretization schemes on computational efficiency.
It is worth noting that the computation time for solving the Fokker-Planck equa-
tion on one spatial node (fluid domain) is relatively small. To better understand
the effects of mesh refinement and time schemes, the comparative study will be con-
ducted relative to the last case, where the time discretization scheme is considered
Rosenbrock-W and the mesh size h is 2π

2048 , representing the largest computational
time (tcomputed = 0.915 s). This approach provides a comprehensive overview of the
computational time impact, serving as a baseline for the work related to coupling
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problems (see chapter III), where the Fokker-Planck equation will be computed for
all spatial nodes in the fluid domain.

h

Scheme
beuler cn rosw

512 0.16 0.172 0.365
1024 0.24 0.265 0.524
2048 0.423 0.469 1

Table II.3: Computational cost analysis: comparison of mesh sizes and time dis-
cretization schemes for Fokker-Planck equation resolution

Table II.3 presents first the relative computational time variations resulting from
transitioning from the backward Euler (beuler) scheme to the Crank-Nicolson (cn)
scheme and the Rosenbrock-W (rosw) scheme. Interestingly, the shift to the Crank-
Nicolson scheme leads to a slight increase in computational time compared to the
Rosenbrock-W scheme, observed across all three distinct mesh sizes. Conversely,
with the refinement of the mesh via a decrease in h, a substantial increase in rela-
tive computational time is evident, scaling by a factor of approximately 1.7 for all
cases of temporal schemes. The combined insights from figure II.14 and the data
within table II.3 indicate that opting for higher accuracy in solution while maintain-
ing computational efficiency is best achieved by employing a mesh size of h = 2π

2048

coupled with the Crank-Nicolson time discretization scheme. Notably, the Crank-
Nicolson scheme demonstrates enhanced accuracy results with nearly equivalent
computational time compared to the backward Euler scheme, and it significantly
outperforms the Rosenbrock-W scheme, by consuming almost half the computa-
tional time for providing the same accuracy. Furthermore, for h = 2π

2048 , despite its
relatively higher computation time, it offers notably better results compared to the
other two mesh sizes. It is noteworthy that the computational time discrepancy can
be managed through the implementation of mesh adaptive methods, which strate-
gically refine the mesh in specific regions of interest, thereby effectively mitigating
the increased computational time associated with finer mesh sizes.

II.3.3 Fiber orientation-flow

In this section, the domain considered to perform the flow simulations is a square
of dimension 1. Figure III.4 illustrates the solution of the velocity as a no-slip
condition is applied at the upper and lower walls, and a pressure (P0 = 10 Pa) is
imposed at the inlet while it is kept zero at outlet to get a pressure-driven flow.
The fluid dynamic viscosity η is set to 0.25 Pa.s. The advection term (vf .∇xφ),
where vf is the fluid velocity and ∇x is the spatial derivative, is not added to the
Fokker-Planck equation (FPE). This implies that fibers are considered as fixed
particles in the spatial domain, rotating on their own axis without being convected
by the flow. Here, the effect of generalized shear rate γ̇ on the fiber orientation is
studied. Thus, Stokes equation is solved first to compute γ̇ over the domain for a
fine mesh (3250 triangular elements) and then the transient FPE is solved at each
spatial node on its discretized domain of 1024 nodes independently. Knowing that
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Figure II.16: Solution of the velocity on the square domain
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Figure II.17: generalized shear rate effect on the variation of a11 with respect to
time : (a) fiber orientation near the center region ; (b) fiber orientation near the
boundary region

the rate of deformation of the fluid is not homogeneous in the flow, therefore the
orientation velocity of the fibers is different from one point to another. Starting
with an isotropic orientation (axx = ayy = 0.5), figure II.17 shows a fairly slow
reorientation of the fibers at the center of the domain and much faster for the fibers
close to the bounding walls. Indeed, fibers located in the center have a maximum
velocity, as the generalized shear rate experienced in this zone is low, which explains
the slow orientation of the fibers. Fibers located close to the upper and lower
edges have relatively low velocity and the corresponding generalized shear rate is
maximum, consequently the fibers orient more quickly. The fibers are therefore
oriented according to the flow field and the generalized shear rate they undergo.
Note that the entry conditions, governed in particular by the initial orientation of
the fibers at time t=0, affect the orientation of the fibers in the core.
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II.3.4 Short summary

□✓ The kinematics problem is governed by the classical fluid dynamics equa-
tions, while the microscopic problem is governed by a Fokker-Planck
equation.

□✓ Shape factor plays an important role in limiting the rotation of fibers,
as for slender fibers (λ=1), they tend to align with the flow direction
after a relatively short period of time.

□✓ A mesh refinement is needed for accuracy in order to well capture the
solution with a high gradient.

□✓ The resolution of the microscopic problem makes it possible to calcu-
late directly the orientation tensor of order 4 which is taken up in the
kinematic calculation (see in chapter III).

II.4 Discussion

The anticipation of fiber orientation in industrial contexts, as previously elucidated,
relies upon a constructed model employing a tensorial framework. This entails
the resolution of the Folgar-Tucker equation to calculate the temporal evolution
of a2 [104, 105, 106, 107, 108]. However, the computational advantage of directly
addressing the Fokker-Planck equation lies in its capacity to compute the higher-
order orientation tensor a4 without necessitating recourse to closure approximations.
Thus, a4 is considered to be a better choice than a second-order tensor a2, as it
provides more detailed information on the distribution of fiber orientations within
the material, which can be used to well understand the changes in fiber orientation
over time and its influence on the flow during the during the injection process. As a
result, using the fourth-order tensor is likely to be more effective in order to resolve
the complex coupling problem in the upcoming work (see section III.2).
In a manner analogous to the computation of the second order orientation tensor a2
in (section II.3.2.1), we proceeded to calculate the fourth order orientation tensor
a4, defined as follows:

a4 =

∫
Ωθ

φ(p, t)p⊗ p⊗ p⊗ p dp (II.35)

To validate the numerical results, an analytical solution from [101] was employed
for comparison. The comparative analysis was carried out under the conditions of a
simple shear flow with a generalized shear rate γ̇= 1 s−1, an interaction coefficient
CI=0, and two different shape factor values: λ=1 and λ=0.98. The initial orien-
tation was set to an isotropic state. For the numerical Fokker-Planck resolution,
following the insights obtained in (section II.3.2.2), the Crank-Nicolson scheme was
used for time discretization, with a time step ∆t of 2 × 10−2 and a mesh size h of
2π
1024 .
The results, depicted in figure II.18 for the λ=1 case demonstrate a high level of
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accuracy, evidenced by the nearly seamless alignment between the analytical and
numerical solutions for all plotted components of a4. As for the results presented in
figure II.19, they highlight the behavior of the numerical solutions for the λ = 0.98

case. A notably small error is observed when comparing it with the analytical solu-
tion, particularly within the periodicity zone of the time evolution of a4, where each
period of evolution is completed. As previously discussed in section II.3.2.1, this
error is attributed to the damping phenomenon, which can be mitigated through
mesh refinement. Contrary, this damping phenomenon is absent in the λ = 1 case,
where the time evolution of a4 exhibits non-periodic behavior, and the fibers tend
to align over time.
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Figure II.18: Analytical vs numerical: a comparative study of fourth order fiber
Orientation tensor solutions for λ=1 and CI=0

Thus, in both cases of λ=0.98 and λ=1, the computed results exhibited significantly
improved accuracy with minimal error when compared to the results obtained from
solving the Folgar and Tucker equation using closure approximations as demon-
strated in [101]. This validates the effectiveness of the direct solver approach using
the finite element method FEM-SUPG to solve the Fokker-Planck equation for de-
termining the evolution of the fiber fourth-order orientation tensor. The results also
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provide confidence in the ability of the approach to accurately capture the complex
coupling between fiber orientation and flow in the injection process.
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Figure II.19: Analytical vs numerical: a comparative study of fourth order fiber
Orientation tensor solutions for λ=0.98 and CI=0

II.5 Conclusion

A 2D numerical model has been constructed, embedded within a finite element
framework employing the SUPG method as an alternative to the standard Galerkin
method. This model is tailored to explore the intricate motion of fibers, with the
potential for future integration into the broader context of flow-fiber coupling, par-
ticularly within the scope of molten thermoplastics during the injection phase within
mold cavities. The devised Direct Numerical Simulation (DNS) approach is specifi-
cally aimed at resolving the Fokker-Planck equation, providing a deeper insight into
fiber orientation at the mesoscopic scale. Unlike conventional methods reliant on
pre-averaged quantities like the second and fourth order orientation tensors (a2, a4),
which often introduce inaccuracies and information loss due to closure approxima-
tions, this DNS approach offers a more accurate and detailed representation of fiber
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orientation dynamics.
The numerical approach accuracy is validated, as a series of rigorous validation
tests were conducted. The normalization condition, ensuring the integral of the
probability distribution function equals 1, was consistently met. Exploration of pa-
rameter dependencies, such as λ and CI , yielded results consistent with established
expectations. A comprehensive convergence study identified optimal mesh sizes
and time steps, striking a balance between accuracy and computational efficiency.
Furthermore, comparisons with existing literature, including analytical solutions,
underscored the proposed solver’s better precision and remarkable agreement with
theoretical predictions, affirming its robustness and effectiveness. Some tests of fiber
orientation in a case of Poiseuille flow have been also studied. Furthermore, we have
meticulously computed the fourth-order tensor a4 and compared it with analytical
solutions. This comparison serves as compelling evidence of the effectiveness of our
resolution method for the Fokker-Planck equation. The computed a4 tensor plays a
pivotal role in our work, as it is integrated later with the fluid problem (see chapter
III). This integration forms the cornerstone of constructing a comprehensive model
for a full flow-fiber coupling problem.
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Injection process modelling requires the construction of a general constitutive
equation that represents the behaviour of the material for the different flow cases
encountered. In the case of a fiber-reinforced thermoplastic composite, it is necessary
to express the stress field of the material according to the orientation distribution,
the deformation rate and the parameters of the reinforced polymer such as the den-
sity fraction of fiber, the fiber-to-shape ratio and the viscosity of the matrix. The
chapter will first focus on the different rheological laws that apply to fiber suspen-
sions. The macroscopic behaviour of a material is obtained after a homogenization
step which consists in averaging quantities obtained by means of a micro-mechanical
formalism. Once the numerical tool is in place, a numerical validation of the compu-
tational code is performed. This numerical tool will be tested within the framework
of simple geometries of academic types in order to evaluate the contribution of rhe-
ology/orientation coupling on the results of the numerical simulation. Thus, the
numerical methods and the calculation code that have been developed to simulate
the flow of reinforced fiber thermoplastics are presented. Chapter III describes the
numerical methods used to solve the global problem. The coupling between the
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fibers and the kinematics is taken into account via a constitutive equation for the
stress field which has been solved by a mixed P1+/P1 finite element method. The
orientation tensor is then assumed to be known through the resolution of FPE and
the coupling is explicitly considered, that is to say that the viscous flow problem
and the orientation problem are solved successively.

III.1 Introduction

Several studies have pointed out the complexity of fiber orientation phenomena. The
formation of a core-skin structure characteristic of discontinuous fiber-reinforced
composites was highlighted. During the filling of an injection mould, the glass fibers
orient themselves under the influence of the flow. Conversely, the rheological prop-
erties of the shaped material are very largely influenced by the orientation state of
the fibers and this in turn affects the flow profile. The overall behaviour of the fiber
suspension is therefore a complex problem. Therefore the origin of these arrange-
ments is complex, linked to a number of interactions that appear during the flow.
The challenge lies in exposing these interactions. In fact, hydrodynamic fiber-fluid
interactions, fiber-to-wall interactions, the nature of the flow, the concentration of
particles are all phenomena that can be the cause of the final orientation of the
particles. Fiber suspensions are model suspensions capable of imitating composite
materials filled with reinforcement. Considerable efforts have been made by many
researchers to try to provide an understanding of the phenomena of the flow of sus-
pensions, whether from an experimental or theoretical point of view.
Therefore the numerical simulation of fiber orientation has been the subject of much
work over the past twenty years [67]. Advances in computing power have allowed
large-scale problems to be simulated. Mainly, the studies have been done on two
types of calculations on very different spatial scales. The first approach is about
the macroscopic simulation of existing models, notably those of Jeffery or Folgar
and Tucker with or without coupling with kinematics. The second approach is built
based on the micromechanical scale simulation. The work involves the direct sim-
ulation of the orientation of a single fiber or a population of fibers. This includes
predicting the orientation of solid particles in a Newtonian fluid, while quantifying
all hydrodynamic interactions in a fluid-particle flow. Thus, there are many studies
in the literature concerning the numerical calculation of the orientation of fibers
in a given flow. Various types of shaping processes were studied: extrusion [109],
flow around a sphere [110], squeeze flows [111], flows in a channel or radial between
disks [112, 113], and finally injection [114, 104]. The number of publications on this
subject is very abundant. In the literature, the works have been developed mainly
on three categories of numerical models. First, the decoupled models where the
equations of the kinematics are solved without the consideration of the fibers. Once
the speed field is obtained, the equation for the orientation of the fibers is resolved
for each iteration in time. The literature is full of articles on the simulation of the
orientation of fibers not coupled to the flow [77, 40]. Various types of flows and
geometries were used by this model such as in the case of injection process. Then a
number of research [115] dealt with models coupled with the assumption that fibers
are aligned along current lines. And finally there are the coupled models [116] where
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the equations of kinematics are function of the orientation of the fibers, the latter
being governed by an evolutionary equation.
For an extrusion flow case, a research work done in [117] studies the insulated ex-
trusion of a semi-diluted solution of fibers in a Newtonian fluid. Coupling is taken
into account via a Dinh and Armstrong constitutive law (see section III.2) and the
resolution incorporates a 2D finite element method. The orientation of the fibers
is calculated after the resolution of the orientation distribution function following
specific current lines. The method used pairs the calculation of the velocity field and
the current lines with the calculation of the fiber orientation by a Newton algorithm.
A study carried out in [118] also uses an anisotropic behaviour law to model the
flow of liquid crystalline polymers in the chain. They describe the orientation state
of the fibers from the Ericksen and Jeffery equations. A finite difference calculation
method is used to resolve the problem. For the case of flow with recirculation zones,
a research [119], an extension of what has been done in [84] where the coupling
between orientation and kinematics was taken into account via a constitutive equa-
tion and the stress field is thus reduced to a nonlinear function of the velocity field,
studies the case of a diluted suspension using a finite difference method. The numer-
ical results obtained corroborate the trends gotten in [84] and thus emphasise the
importance of rheological coupling. However, it should be borne in mind that the
local fiber alignment hypothesis is very reductive, since for elongational flows, the
fiber orientation is not carried out along current lines. For case of flows in a complex
geometry, a finite element solver for fiber suspension [120] were developed for the
benchmark 4:1 contraction problem, where an enhancement in the magnitude of the
zone of recirculation has been reproduced with an increasing concentration of fibers.
A model introduced in [121], have used a fully coupled solution to predict the flow
of fiber suspensions across a variety of complex geometries, including expansion,
center-grid disk, and the axisymmetric contractions. In the case of injection flow,
a work done in [122] have studied the filling of a 2D cavity. Its originality stems
from the fact that the matrix is no longer considered Newtonian but is governed by
a law of pseudoplastic anisotropic behaviour. The determination of the orientation
is made after the resolution of the evolutionary equation of the written orientation
in the Lagrangian form, valid for diluted concentrations of fibers. Another study
was also carried out for the injection of 3D parts [68], disregarding the hypothesis
of Hele and Shaw. The behaviour law refers to the model of Dinh and Armstrong
coupled with Folgar and Tucker equation. The advection equation is solved using a
SUPG method while the Stokes problem uses a continuous finite element technique.
The numerical model thus developed is valid in the context of axisymmetric flows
for application to the filling of a disk injected by the centre as well as a threshold
plate.
However, as it is mentioned before, at the time of injection phase, there is a strong
coupling between the distribution of the fibers and the flow of the suspension formed
by the fibers scattered in the polymer matrix in the liquid state. Therefore, a con-
stitutive law or rheological equation mathematically expresses stresses based on the
history of deformation and/or the reaction rates for a given material [123]. In order
to properly model a molding process, it is important to have a global constitu-
tive equation, which best represents the behaviour of the material for a multitude
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of stresses (single shear, elongation or combination of the two) and for particular
regimes (steady state or transient). In the case of axisymmetrical particle suspen-
sions, it seems important to consider the effects of fiber orientation. Thereby, there
are two steps to obtaining a law of behaviour for the case of reinforced thermoplas-
tic materials. The first one is to get the macroscopic quantities associated with the
microscopic behaviour of the material. It is a classic step of spatial homogenisation
that allows to obtain average quantities from a micromechanical formalism. And
the second step is a statistical homogenisation that allows the average macroscopic
quantities to be obtained from the particle orientation state obtained through sta-
tistical formalism. Some works done on the approach frequently used to obtain a
model of macroscopic behaviour using a micromechanical approach can be found in
[124]. So considering the incompressible composite (fiber and fluid), the total stress
σ in the material is the contribution of a hydrostatic pressure P and a deviatoric
part representing the field of the extra stresses τ . Generally, hydrostatic pressure is
negligible. For a composite, it is customary to break the field of the stresses down
to a sum of the contributions from the polymer (a Newtonian or non-Newtonian
matrix fluid) and the fibers.

III.2 Rheological models of fiber suspensions

Fiber suspensions are model suspensions capable of imitating composite materials
filled with reinforcement. Considerable efforts have been made by many researchers
to try to provide an understanding of the phenomena of the flow of suspensions,
from a theoretical point of view. Thus, building a model of suspension behaviour
law, is like finding a relationship between the total suspension stress tensor and the
shear rate tensor. Moreover, the total stress of the suspension is the result of the
contribution of the stress due to the suspended fluid, and of the contribution of the
fibers themselves. So the purpose of this section is to present a bibliographic study
on the main rheological models taking into account the contribution of fibers to the
tensor of macroscopic stresses.

III.2.1 Newtonian matrix suspensions

Several behavioural laws have been proposed for suspensions of rigid fibers placed
in a fluid. Nevertheless, it should be noted that most of the work encountered
refers to behaviour laws that take into account a Newtonian matrix for diluted to
semi-diluted concentration regimes.

III.2.1.1 A generic model

In all theories, the particle is assumed to be small compared to the flow dimensions.
Several behaviour models have been proposed for rigid fiber suspensions in a New-
tonian fluid. These models are derived from a micromechanical approach. So as it
is explained before, the behaviour law is obtained by conventional homogenisation
techniques: the macroscopic quantities are defined as the spatial averages, on a cer-
tain representative volume V , of the associated microscopic quantities. Thus the
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field of macroscopic velocities u and its strain rate E are written:

u =< v >=
1

V

∫
V
vdv

E(u) =
1

2
(∇u+∇uT ) =

1

V

∫
V
E(v)dv =

1

2V

∫
V
(∇v +∇vT )dv

(III.1)

where v represents the microscopic velocity and E(v) is the associated strain rate,
as the microscopic velocity field is expressed by:

v = u+ v′ (III.2)

where the v′ symbolises velocity fluctuations such as < v′ >= 0, then the macro
stress tensor is defined as follows:

σ =
1

V

∫
V
(τ − ρv′ ⊗ v′)dv (III.3)

where τ the tensor of the microscopic constraints and ρ the mean density of the
suspension considered. If the matrix of viscosity η has a Newtonian behaviour, then
the microscopic stress in the fluid is expressed as:

τ = 2ηE(v)− pI (III.4)

where p is the microscopic pressure, then the rate of macroscopic deformation is
expressed in terms of contributions due to the fluid and the contribution of fibers:

E(u) =
1

V

∫
V
E(v)dv =

1

V

∫
V−

∑
Vi

E(v)dv +
∑
i

∫
Vi

E(v)dv (III.5)

where Vi is the volume occupied by fiber i. Since the fibers are assumed to be rigid,
(III.5) is simplified and written:

E(u) =
1

V

∫
V−

∑
Vi

E(v)dv (III.6)

Using equations (III.3), (III.4), (III.6) and assuming that the Reynolds number is
smaller than 1 (which is generally the case in polymer implementation), the macro-
scopic stress tensor writes:

σ = −P I+ 2ηE(u) + τf (III.7)

where P represents the macroscopic pressure, η refers to the viscosity of the neat
matrix without charge and τf is the contribution of particles (fibers) to the tensor of
the macroscopic stresses. Thus, the difficulty lies in expressing the particle-related
stress,τf , which contains the essential information about the nature of the fiber-
fluid and fiber-fiber interaction and involves the orientation tensors of the fibers,
a2 and a4 (see section I.4.3.3). Thus, in order to obtain an estimate of the fiber
contribution to the macroscopic stress tensor, it is necessary to make assumptions
about the shape of the particles and the concentration of the solution. Classic
models are presented in the following sections. In all cases, the relationship between
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the stress tensor and macroscopic strain rates for axisymmetric particle suspension
can be set as follows according to [125]:

σ = −P I+ 2η(E+Ns[E · a2 + a2 ·E] +NpE : a4) (III.8)

The terms η, Np, and Ns are rheological parameters representing the viscosity of
the fluid, the concentration of the suspension and the shape factor of the fibers,
respectively. The last term describes the coupling between hydrodynamic forces
and fiber orientation. For large shape factors, the parameter Ns is negligible with
respect to Np.

III.2.1.2 Slender-body theory

Many suspension models incorporate in their development the results of the slender
body theory [126, 124]. The results of this theory are used to calculate the pertur-
bation due to the presence of a body in a low Reynolds number viscous fluid flow,
Stokes flow. The basic hypothesis of this theory is that the perturbation due to the
presence of particles in the fluid is described by an adequate linear force distribu-
tion of the Stokes singularities. A Stokes singularity represents the effect of a force
applied at a point in the fluid on the flow. In slender body theory, the main effect of
the body on the surrounding fluid is due to the distribution of the resultant forces
on the contour of the section of a length element. In the approximations based
on this theory, the term η is equal to the viscosity of the fluid and the rheological
parameter Ns is zero.

Batchelor model

Batchelor [124] proposes a law of rheological behavior for rigid particles of ellipsoidal
shape in a dilute suspension. It is an extension to the case of particles of non-circular
section of the work of Cox [126]. Thus, the approach used is divided into two main
steps, where the perturbation due to the presence of the particle is replaced by a
linear density of intensity forces to be determined and the intensity of the forces
is calculated so as to best verify the boundary conditions. Thus in this model,
the contribution of the particles to the macroscopic stress field is calculated in the
particular case of a dilute solution of fibers having the same orientation, where it
considers that the particles are independent from a hydrodynamic point of view and
that there is no contact between fibers. Therefore, the law of constitutional behavior
states:

σ = −P I+ 2η(E+NpE : a4)

Np =
ϕβ2

3 lnβ

(III.9)

where β is the aspect ratio of the fibers and ϕ is their volume fraction. This rela-
tionship is valid only in the case of dilute suspensions of rigid particles. In order to
extend this behavior law to more concentrated suspensions, it is essential to take
into consideration interactions of the hydrodynamic type which are predominant for
this type of concentration regime. Still considering the theory of slender bodies,
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Batchelor [124] models stresses in a semi-dilute suspension of fibers during elonga-
tional flow, and in the case where the fibers are aligned in the elongation direction
of the fluid. An empirical relationship, expressing the rheological parameter Np, is
found in the form:

Np =
ϕβ2

9[ln (2β)− ln (1 + 2β
√

ϕ
π )− 1.5]

(III.10)

Hydrodynamic interactions between particles are represented by an effective medium.
Each fiber is within a "cell" created by the surrounding environment. In order to
determine the evolution of a hydrodynamic perturbation, this study introduces the
concept of the screen effect of hydrodynamic interactions. The basic hypothesis of
this approach is to assume that the perturbation created by a fiber will decrease with
an order distance of the mean distance between the particles, as if at this distance
the other fibers in the presence formed a "screen" that prevents the propagation of
the perturbation. In particular, it shows that there is a screening length beyond
which a hydrodynamic disturbance has no effect on the surrounding fluid.

Dinh-Armstrong model

The model developed in [127] is based on the works done in [124] to get extended to
semi-diluted suspensions. A test fiber is considered to be in an effective medium that
includes the influence of other fibers, where the hydrodynamic interactions between
the fibres are always taken into account. Also, the average distance between two
neighbouring particles determines the size of the cell. Thus, the final behaviour law
takes the following form:

σ = −P I+ 2η(E+NpE : a4)

Np =
ϕβ2

3 ln (2hD )

(III.11)

where h represents the characteristic distance between two neighbor fibers. This
distance depends on the orientation of the particles and has the value:

haligned =
D

2

√
π

ϕ
for aligned orientation

hrandom =
πD

4ϕβ
for random orientation

(III.12)

For intermediate fiber orientation situations, a study done in [128] determines the
average distance in this form:

h = (1− f)hrandom + fhaligned for
π

4β2
< ϕ <

π

4β

h = haligned for
π

4β
< ϕ <

π

4

(III.13)

so h is assumed to be linear in terms of the scalar measure of orientation f , as the
latter is expressed as:

f = 1−Ndet(a2) (III.14)

where N=4 and N=27 in a two-dimensional and three-dimensional case, respec-
tively.
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Shaqfeh-Fredrickson model

A theory has been developed in [129] to describe the effective transport properties of
a fiber suspension. It determines the contribution to the tensor of the macroscopic
stresses for dilute and semi-dilute regions. The approach is based on the calculation
of a propagation tensor that describes the average velocity field created by a point
force in the suspension. Using this theory, it has been demonstrated that there is a
screening effect corresponding to a rapid damping of the hydrodynamic perturbation
created by a test fiber due to the presence of the neighboring fibers. In contrast
to the Dinh-Armtrong model, the hydrodynamic interactions between the fibers are
calculated explicitly and summed by a diagrammatic method. The law of behavior
retains a form similar to the preceding laws and the rheological parameter Np is
expressed:

Np =
2ϕβ2

3[ln ( 1ϕ) + ln (ln ( 1ϕ)) + ζ]
(III.15)

where ζ = −0.664 for an isotropic fiber orientation and ζ = 0.158 for an aligned
orientation. For the dilute suspensions, the use of this model retrieves the results
of Batchelor. In the semi-diluted case, the explicit calculation refines the results
of Dinh and Armstrong showing, among other things, that the influence of the
orientation state of the particles on the rheological parameters is small.

III.2.1.3 Slender ellipsoidal theory

Using Jeffery’s work [47] which gives the solution of the velocity field around an
ellipsoidal particle, the latter is used to compute the shear viscosity of a dilute
suspension [50, 130]. Based on their results, the work is extended by [131, 84] in order
to establish a behavioral relationship for diluted solutions. Thus the constitutive
equation has the following form:

σ = −P I+ 2ηI(E+Ns[E · a2 + a2 ·E] +NpE : a4)

ηI = η(1 + ϕ)
(III.16)

The exact but complex expressions of the coefficients Np and Ns are given in [124,
130]. Based on ellipsoidal particles theory [131, 84], the following asymptotic forms
are used:

Np =
ϕβ2

[1 + 2ϕ][2(ln (2β)− 1.5)]

Ns =
6ϕ ln (2β)− 11ϕ

β2[1 + 2ϕ]

(III.17)

These asymptotic forms of rheological parameters give good results for large aspect
ratio (less than 1% error for β = 50). For an aspect ratio β = 10, the error is in the
order of 15%. Moreover, for this model, the term Ns is smaller than the term Np as
the aspect ratio gets greater. Extensions of this model have also been proposed in
order to refine the results when approaching the semi-diluted concentration regimes.
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Particularly, a study done in [132] developed a phenomenological constitutive equa-
tion that states that, at high volume fraction, the effective viscosity diverges, leading
them to obtain the coefficients empirically:

ηI = η

Ns = 0

Np =
ϕβ2

[
2− ϕ

ϕm

]
2(1− ϕ

ϕm
)2
[
ln (2β)− 1.5

] (III.18)

where ϕm describes the maximum volume packing (ϕm = 0.53− 0.013β). This law
is valid for an aspect ratio (5 < β < 30).

III.2.2 Non-Newtonian matrix suspensions

It should be noted that there are also few models that take into account the non-
Newtonian behavior and the shear thining nature of the polymer matrix.

III.2.2.1 Pseudoplastic matrix

According to the same principle of dividing the total volume in volume occupied by
the matrix plus a volume occupied by the fibers, the stress field in a pseudoplastic
fluid is of the type:

σ = −P ′I+ 2K|2I2|
m−1

2 E+ τf (III.19)

where P ′ is the contribution of the matrix to the homogenized pressure, K denotes
the consistency of the neat matrix, m is the pseudoplasticity index, and I2 is the
second invariant of E.

Souloumiac model

Using the same steps as in [127], [133] has built a stress expression, represented by a
power-law, that takes into account the shear-thinning behavior of the matrix. Using
the cell model [134], the contribution of the fibers to the stress field is determined,
as the hydrodynamic interactions between the fibers are assumed to be weak. The
total stress field is the sum of the contributions of the matrix and the fibers. In this
work [133], it is noted that the homogenization of the matrix contribution with a
nonlinear power-law is not straightforward, where the power-law index is assumed
to be the same as that used for the matrix. Thus, for a fiber suspension, the total
stress of a power-law fluid is expressed as follows:

σ = −P I+K|γ̇|m−1γ̇ +Kϕη1

∫
p
φ(p, t)|γ̇ : p⊗ p|m−1(γ̇ : p⊗ p)p⊗ pdp

(III.20)

where K is the matrix consistency and η1 is the coupling effect, written as:

η1 =
βm+1

2m−1(m+ 2)

 1−m

m[1− ( D
2h)

1−m
m ]

m

(III.21)
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where h is the size of the cell, beyond which the velocity is no longer disturbed by
the fiber.

Other models

Among the models, we can mention the Goddard’s model [135] which is an extension
of the work of Batchelor [136]. However, these models only address only the prob-
lem of matrices whose behavior is non-linear through a power law. A study in [137]
also presented a non-local relationship for stress generation in a planar rod suspen-
sion, characterized by power-law drag laws governing local interactions. Literature
equations for fiber suspensions typically involve local stress fields, in other words,
stresses at a material point are only influenced by deformation rates at the same
point. In the case of homogeneous flows of statistically homogeneous suspensions,
the result can be reduced to the equation (III.20). On the other hand, based on the
written works, equation (III.20) is seldom used, presumably because of its limited
computational interest due to the impractical inclusion of the strain rate tensor in
the orientation integral. According to the research done in [138], simple shear flows
involving fibers with an isotropic orientation have some analytical solutions.

III.2.2.2 Viscoelastic matrix

Due to the complexity of modeling such suspensions, the constitutive equations dis-
cussed above are unable to accurately describe the viscoelastic properties of melt
polymer composites. Numerous theoretical investigations have shown that the Jef-
fery equation (I.8) is no longer accurate for fiber suspensions in viscoelastic fluids.
In the analysis of the motion of a single fiber suspended in a second-order fluid [139],
it has been demonstrated that the fiber rotation orbit deviates from the Jeffery orbit
and that this deviation is inversely proportional to the second normal-stress coeffi-
cient. In order to extend the Jeffery equation, [140] developed a rheological model
for fiber suspensions in viscoelastic fluids using Poisson bracket formalism for both
the matrix and the fiber. Understanding these complex behaviors is expected to
be aided by mathematical modeling of viscoelastic suspensions using fundamental
equations governing particle and fluid dynamics [141, 142]. Several studies on the
modeling of the rheological characteristics of suspensions in viscoelastic matrices
[143, 144, 145] have demonstrated that in this case the stress tensor can be written
in the following form:

σ = σsol + τp + τf (III.22)

in which, the fluid’s contribution to the stress tensor of suspension is represented
as the sum of the contributions from the solvent σsol and the polymer τp and
the fiber contribution τf is calculated by taking the whole viscosity (solvent and
polymer) as in for taking into consideration of non-Newtonian part. Other models
can be stated that take into account the viscoelastic nature of the suspension. Petrie
[146] presents a description of these models, Olroyd B fluid, FENE-CR model [147],
Giesekus model [147]. Also, the multimode Giesekus model [96] was utilized by
studies made in [148, 149] to predict the strain rate-dependent viscoelastic behavior
of the polymer matrix.
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III.2.3 Short summary

□✓ It turns out that the calculation of the contribution of the fibers to the
tensor of the macroscopic stresses represents a delicate point.

□✓ Several empirical models are proposed to describe the rheological be-
havior of fiber-filled suspensions in dilute or semi-dilute cases.

□✓ The theory of slender bodies makes it possible to construct macroscopic
models valid for suspensions in a semi-dilute regime but, on the other
hand, the thickness of the particles are being neglected.

□✓ The model based on the theory of slender body is derived from Jeffery’s
work and could be generally limited to the dilute regime.

□✓ There are not many models in the literature that consider the nonlinear
behavior of the suspending fluid.

III.3 Multiscale modeling for injection molding process

Multiscale modeling is a simulation technique used to study injection molding pro-
cesses . It involves the development of models that capture the interaction of various
physical phenomena, from the macroscopic scale of the entire injection molding pro-
cess down to the microscopic scale of the material microstructure. This allows for a
more detailed and accurate prediction of the process behavior, as well as the ability
to optimize process parameters for improved efficiency and quality. This section
presents the various numerical simulation techniques that can be used to solve the
overall problem of injecting fiber-filled materials. In particular, the chosen numer-
ical methods for solving the mechanical problem are described, typically here the
solution of the generalized Stokes problem and numerical techniques for solving the
advection equation (evolution of the fiber orientation).

III.3.1 Generalities on the resolution of the flow-fiber coupling
problem

The resolution of the flow-fiber coupling problem involves the development of math-
ematical models and simulation techniques that can accurately predict the behavior
of the fluid flow and fiber structure, and how they influence each other. This can
be a complex task, as it involves multiple length scales, from the microscopic scale
of the individual fibers to the macroscopic scale of the composite material and the
use of the DNS which is a simulation technique used to solve the flow-fiber coupling
problem in fiber-reinforced composite materials.

III.3.1.1 Change of scales: from macro to microscopic and vice versa

In the context of the flow-fiber coupling problem, it is often necessary to consider
multiple length scales in order to accurately predict the behavior of the system. At
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the macroscale, the fluid flow through the composite material is typically modeled
using traditional fluid dynamics equations, such as the Navier-Stokes equations. At
the microscale, the orientation and deformation of the individual fibers within the
material must also be taken into account, as this is done by solving FPE and then
redefining the stress constitutive equation in order to consider the influence of fibers
on the flow at macroscale. Thus, to solve the flow-fiber coupling problem at both the
macroscale and microscale, it is necessary to change scales between the two levels
of modeling.

III.3.1.2 DNS technique

DNS involves the direct solution of the governing equations of fluid flow and fiber
structure, without the need for any simplifying assumptions or approximations. This
allows for a highly accurate prediction of the behavior of the fluid and fibers, and how
they influence each other. So this numerical approach consists of solving exactly the
Stokes equations for the fluid, and the FPE for the fibers. Direct simulation methods
allow to reproduce the intrinsic physics of fluid-fiber flows by taking into account all
interactions that occur during the flow. Therefore the advantage of this approach is
that the velocity and pressure fields of the fluid phase are calculated exactly without
any simplifying hypothesis. In other words, the fluid’s flow is directly modified by
the presence of the particles.

III.3.2 Construction of the physical model

The physical model of the fluid-fiber coupling problem refers to the mathematical
description of the system being studied, including the governing equations and the
associated boundary and initial conditions. The construction of this model is an
important step in the simulation of the flow-fiber coupling problem, as it allows
for the prediction of the behavior of the system based on the underlying physical
phenomena at play. Thus, these phenomena are typically described using a set of
governing equations, which can be derived from fundamental physical principles. In
addition, the model must also account for the boundary and initial conditions of the
system, which define the state of the system at the start of the simulation and the
constraints on its behavior.

III.3.2.1 Governing equations

The resin flow around the fibers can be described by the Navier-Stokes equations
[150] at macroscale level. The latter provide the best mathematical description,
known to date, of the flows of real fluids. On the domain of the material Ω ∈ R2

and the time interval [0, t], the Navier-Stokes problem consists of two equations:

• The first stems from the application of the fundamental principle of dynamics
and is written as follows:

ρ(
∂u

∂t
+ u · ∇u) = f +∇ · σ in Ω × [0, t] (III.23)

with f the sum of the volumetric forces, σ the Cauchy stress tensor, ρ the
density and u the velocity vector of the fluid.
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• The second comes from the conservation of mass principle and guarantees
the continuity of the solutions obtained. In the case of incompressible fluids,
the density is constant in time and space. The conservation equation for
incompressible fluid of constant density is reduced to:

∇ · u = 0 in Ω × [0, t] (III.24)

In addition, in injection molding, polymers have a high viscosity and flow slowly.
In this case, the viscous effects dominate the inertial effects and we can consider a
simplified form of the Navier-Stokes equations. This form is known in the literature
as Stokes equations. Considering a steady state and neglecting volumetric forces,
this system takes the following form:

∇ · u = 0 in Ω

∇ · σ = 0 in Ω
(III.25)

Equation (III.25) can be adopted for different behavioral laws introduced through
the term σ. So the system is closed by a constitutive equation between stresses
and deformations given by the law introduced in equation (III.9). This behavior
law reveals a descriptor of the orientation via the tensor a4. It is then necessary
to compute it by using the evolution equation of the fiber orientation (FPE). By
substituting the expression of σ in the system (III.25), and using the definition of
strain rate tensor in (II.3), it is shown that the flow problem to be solved is reduced
to a generalized Stokes problem:

η∇2u−∇p+ 2ηNp∇ · (E : a4) = 2η∇ ·E−∇p+ 2ηNp∇ · (E : a4) = 0 in Ω

∇ · u = 0 in Ω

(III.26)

The first equation of system (III.26) expresses well the balance of the different forces
present in a viscous fluid by linking of the pressure forces ∇p and the viscous forces
resulting from the characterization of fluid itself η∇2u and ηNp∇ · (E : a4) derived
from the contribution of fibers to the fluid viscosity. It can be seen from the Stokes
equation that the influence of the fiber contribution of the injection process can be
significant, because the fibers can affect the flow behavior of the polymer and the
filling of the mold. For example, if the fibers are oriented in a particular direction,
they may exert a force on the fluid in that direction. It is worth recalling that FPE
is used to compute the fiber orientation tensor at each time step and then the fibers
are being advected by the flow of the fluid employing an advection equation that
can be written as follows:

∂φ

∂t
+ u∇φ = 0 (III.27)

Equation (III.27) describes the transport of a quantity by the fluid. In the context
of the injection process, it can be used to describe the transport of fibers in the melt
polymer as it is injected into the mold. During the injection process, the fibers can
rotate as they are transported. So it can be modeled using an advection equation,
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which describes how the fibers move through the plastic while also rotating. To
use equation (III.27) to model the transport of rotating fibers during the injection
process, it is necessary to specify the velocity field u of the polymer, by solving the
Stokes equations (III.26).

III.3.2.2 Boundary conditions

In order to complete the Stokes problem, the system (III.26) is accompanied by
a set of boundary conditions. These conditions can be of the Dirichlet type, i.e.
assigning a value to the velocity u (or to certain of its components) on the boundary
ΓD ⊂ ∂Ω, and/or of the Neumann type, i.e. imposing the stress exerted by the
external medium σ.n on the boundary ΓN ⊂ ∂Ω. In a single-phase context, these
conditions are imposed at the boundaries of the computational domain to define the
nature of the flow (see figure III.1). The boundary conditions are as follows:

• on Γin, a pressure condition is imposed: (σn).n = −pin where n is the external
unit normal and pin is the pressure at the inlet.

• on Γin, an planar random orientation of fiber is imposed: a4=a4
t0 where a4

t0

is computed from equation (I.6) by taking φ= 1
2π .

• on Γend, a pressure condition is imposed: (σn).n = −pend = 0, where pend is
the pressure at the right end of the domain.

• on Γbord, no-slip boundary condition is imposed, which results in u = 0.

Figure III.1: Representation of different boundaries

where Γin, Γbord and Γend respectively designate the boundaries of the domain cor-
responding to the injection zone and to the zone of contact with the walls of the
injection mold with Γin∪Γbord∪Γend = ∂Ω. It is noted also that Eulerian approach
is used in this case. Similar to the work done in [151], the free surface condition is
eliminated by extending the Stokes equations to the entire domain. This allows for
the resolution of a confined Stokes flow problem.

III.3.3 Finite element approach to resolving a flow-fiber coupling
model

In order to develop the finite element method used to solve the velocity/pressure
problem, it is necessary to proceed with a weak formulation of the equations.
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III.3.3.1 Classical mixed formulation

A Finite-Element approach is used to solve the system (III.26). Initially, the distinct
spaces required to articulate the weak formulation of the Stokes physical problem
while taking into account within its equation the effect of fiber orientation are in-
troduced. Thus, the spaces are recalled as follows:

• C0(Ω): the space of functions continuous on Ω

• P1(Ω): the space of polynomials of degree 1 on Ω

• L2(Ω): the Lebesgue space of square-integrable functions on Ω

L2(Ω) = {w,
∫
Ω
w2dΩ} (III.28)

• H1(Ω): the Sobolev space of functions whose order 1 derivatives belong to
L2(Ω)

H1(Ω) = {w ∈ L2(Ω), Dw ∈ L2(Ω)} (III.29)

The function spaces for velocity, pressure, and velocity weighting are defined as
follows:

V = {u ∈ H1(Ω),u|ΓD = g}
Q = {p ∈ L2(Ω)}

V0 = {v ∈ H1(Ω),v|ΓD = 0}
(III.30)

After applying the divergence theorem and considering the aforementioned bound-
ary conditions, the Galerkin variational formulation (or weak formulation) of the
problem is constructed by multiplying the equations of the (III.26) system by the
test functions (v, q)∈ V0 ×Q and integrating over the domain Ω. The result is as
follows:

(2ηE(u) : E(v)) + (ηNp[E(u) : a4] : E(v))− (p,∇ · v) = 0

(∇ · u, q) = 0
(III.31)

where the notation (·, ·) defines the scalar product in the sense of the L2(Ω):

∀(u, v) ∈ L2(Ω), (u, v) =

∫
Ω
uvdΩ (III.32)

To solve this problem, the domain is discretized and broken down into simplices
K formed by tetrahedral elements in 3D (triangular elements in 2D). Thus, the
aforementioned spaces of continuous functions are approximated on K by discrete
subspaces of finite dimensions consisting of piecewise continuous functions.

Vh = {uh|uh ∈ C0(Ω),∀K,uh|K ∈ P1(K)}
Qh = {ph|ph ∈ C0(Ω), ∀K, ph|K ∈ P1(K)}

Vh,0 = {vh|vh ∈ Vh,vh = 0}
(III.33)
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Thus, the discrete Galerkin problem consists of finding (uh, ph) ∈ Vh × Qh such
that (vh, qh) ∈ Vh,0 ×Qh for the following mixed problem:

(2ηE(uh) : E(vh)) + (ηNp[E(uh) : a4] : E(vh))− (ph,∇ · vh) = 0

(∇ · uh, qh) = 0
(III.34)

The approximation of the solution on an element is determined using the values at
the nodes. Then the solution is approached by:

uh|K =

DK∑
i=1

uiN
i

ph|K =

DK∑
i=1

piN
i

(III.35)

where i represents the node, Ni is the shape function at that node, and DK is the
number of nodes of simplex K. In the context of such a mixed formulation, the
choice of element types and interpolation function orders is never random since this
choice affects both the accuracy of the results and the stability of the approach. It is
also worth noting that in order for the formulation to be well-posed and stable, the
pair of finite elements chosen for the velocity-pressure approximation must satisfy
a compatibility condition leading to the Ladyzhenskaya-Babuška-Brezzi condition
(discrete inf-sup condition)[152]:

inf
qh∈Qh

sup
uh∈Vh,0

(∇ · uh, qh)

∥uh∥Vh,0
∥qh∥Qh

≥ C > 0 (III.36)

with C being a constant independent of the discretization. For example, if P1/P1
elements (linear and continuous per element) are used, the standard Galerkin for-
mulation of equations (III.34) will suffer from instability. Thus, low-order elements
do not satisfy condition (III.36). The instability of this approximation is manifested
by the appearance of a spurious pressure mode in the computed solution. How-
ever, low-order finite elements, particularly those of equal order, are widely used
since they are the easiest to implement in practice. To address the issue of con-
dition (III.36), several stabilization methods have been proposed in the literature
[153, 154, 155].

III.3.3.2 Stable mixed variational formulation

An existing Stokes finite element solver at ICI-tech has been integrated into our
numerical scheme. One approach, already implemented at ICI-tech, to stabilize the
solution of the Stokes equation involves the use of a modified finite element method,
known as the MINI-element or P1+/P1 element [154]. In this method, the function
space for velocity is enriched with a bubble function, which is defined at the element
level and takes the value of 1 at the barycenter of the element and 0 at its edges. This
modification aims to satisfy the discrete inf-sup condition, which is necessary for the
stability of the Galerkin method, by introducing additional degrees of freedom in
the velocity approximation. So the velocity and pressure fields are considered as
follows:
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• the pressure is linear and continuous.

• the velocity is broken down into a linear part u and a bubble part b. This
decomposition is unique.

Figure III.2: Element P1+/P1

Like in the previous section, the finite element discretization of the Stokes prob-
lem (III.26) involves computing the solution of its variational formulation (III.31)
in subspaces of finite-dimensional approximations Vh and Qh, whereas Vh can be
written in form of:

Vh = Vh ⊕ Bh (III.37)

and then the approximation subspaces (Vh,Qh,Bh) are expressed in the following
form:

Vh = {uh|uh ∈ C0(Ω),∀K,uh|K ∈ P1(K)}
Bh = {bh|bh ∈ C0(Ω), bh|∂K = 0, bh|K ∈ P1(Ki), 1 ≤ i ≤ 3}

Qh = {ph|ph ∈ C0(Ω), ∀K, ph|K ∈ P1(K)}
(III.38)

Hence, the discrete Galerkin Stokes-fiber problem can be formulated as the search
for a triplet of finite-dimensional approximation spaces (Vh, Bh, Qh) to obtain a trio
solution (uh, bh, ph) ∈ Vh × Bh ×Qh such that (vh, b∗h, qh) ∈ Vh × Bh ×Qh:

(2ηE(uh) : E(vh)) + (ηNp[E(uh) : a4] : E(vh))− (ph,∇ · vh) = 0

(2ηE(bh) : E(b∗h)) + (ηNp[E(bh) : a4] : E(b∗h))− (ph,∇ · b∗h) = 0

(∇ · uh, qh) + (∇ · bh, qh) = 0

(III.39)

It should be noted that the bubble functions possess the following properties [156]:

(∇ · bh, qh) = −(bh,∇qh)

(C : ∇bh) = 0, for all constant tensor C
(III.40)

The aforementioned properties have enabled the decoupling of the first two equations
of the system (III.39).
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III.3.3.3 Algebraic formulation

Traditionally, the system arising from the discrete weak formulation can be expressed
locally in the form of an algebraic system:Auu 0 Bup

0 Abb Bbp

BT
up BT

bp 0

 ·

U

Ub

P

 =

F

Fb

0

 (III.41)

where U denotes the vector containing the velocity components at each vertex of
the triangular element (2D) or the tetrahedron (3D), Ub is the vector containing the
bubble velocity components at each barycenter of the triangular element (2D) or
the tetrahedron (3D) and P is the vector of pressure degrees of freedom. Notably,
Auu and Abb respectively denote the symmetric matrices associated with the discrete
form of the terms:

Auu = (2ηE(uh) : E(vh)) + (ηNp[E(uh) : a4] : E(vh))

Abb = (2ηE(bh) : E(b∗h)) + (ηNp[E(bh) : a4] : E(b∗h))
(III.42)

Finally, the matrices Bup and Bbp are associated with the terms b(uh, ph) and b(bh,
ph), respectively. Since the bubble is local to each triangle, it can be substituted
using the standard technique of static condensation:

AbbUb +BbpP = Fb ⇒ Ub = A−1
bb (Fb −BbpP ) (III.43)

Thus, a classic mixed velocity-pressure formulation is obtained, in which the un-
known vector is solely composed of the velocity and pressure fields at the nodes:[

Auu Bup

BT
up Cup

]
·

[
U

P

]
=

[
F

Fp

]
(III.44)

with Cup=−BT
bpA

−1
bb Bbp and Fp=−BT

bpA
−1
bb Fb. Then similar to what was done in

the previous chapter II, the system obtained (III.44) is solved using the library of
PETSc, which offers useful methods such as preconditioners in the resolution of
partial differential equations.

III.3.4 Solution algorithm

The flowchart presented in figure III.3 illustrates the sequence of steps involved
in the algorithm. Initially, the orientation tensor is set to an isotropic state, and
the probability distribution function φ is initialized at time t = 0. Subsequently,
the orientation tensor is integrated into the Stokes equation to solve the fiber-flow
coupling problem. Following the computation of the Stokes equation, the gradient
of velocity ∇u and the norm of the generalized shear rate γ̇ are determined. These
values, along with the initial probability distribution function φtn , serve as input
field for solving the Fokker-Planck equation. In turn, the resolution of the Fokker-
Planck equation generates a new distribution function φtn+1 and computes the new
orientation tensor a4

tn+1 at time tn+1 = tn +∆t.
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Solving the flow-fiber coupling problem
over a time interval t ∈ [0, tend]

Initializing:
a4

t0 → isotropic

φt0 → 1
2π

Defining input parameters and boundary conditions for the Stokes:
a4

tn → input

(u, p)→ B.C.

Computing the coupled Stokes problem:
2η∇ ·E−∇p+ ηNp∇ · (E : a4

tn) = 0

∇ · u = 0

Finding: u, ∇u, γ̇

Defining input fields for the Fokker-Planck equation:
(φtn ,∇u, γ̇) → inputs

Computing the Fokker-Planck equation:
∂φ
∂t + φ∇`θ̇ + θ̇(∇`φ)−Dr∇2

`φ = 0

Updating:
φtn → φtn+1

Defining input field for the Transport equation:
u → input

Computing the Transport equation:
∂φ
∂t + u∇φ = 0

Updating:
a4

tn → a4
tn+1

tn < tend

End of simulation

No

Yes

Figure III.3: Algorithm scheme
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An advection equation is then calculated for the probability distribution, taking the
velocity of the Stokes fluid u as a input in order to transport the fibers. The newly
computed orientation tensor a4

tn+1 , obtained from the solution of the Fokker-Planck
equation, is again used as a input field in the calculation of the Stokes equation.
This iterative process continues until the final time is reached.

III.3.5 Short summary

□✓ Multiscale modeling is a well-established simulation technique used to
study injection molding processes, which involves considering various
length scales (Macro-Micro).

□✓ The constitutive equation of the Stokes equation is modified to account
for fiber orientation by integrating a fourth-order orientation tensor into
it in order to capture the influence of fiber orientation on the fluid flow.

□✓ A transport (advection) equation is incorporated into the set of equa-
tions, comprising the Fokker-Planck equation and the Stokes equation,
in order to account for the fiber advection based on the fluid velocity
field.

□✓ The MINI-element or P1+/P1 element method is used for approximating
the velocity and pressure fields in the Stokes equation in order to provide
a stable and accurate discretization of the equations.

□✓ The algorithm is based on linking three solvers (Stokes, Fokker-Planck
and Transport) that run consecutively, where the outputs of one solver
are used as inputs for the next solver in the sequence.

III.4 Numerical results

III.4.1 Parallel computing

Parallel computing is an advanced technology that has revolutionized scientific re-
search, allowing for faster and more efficient computations. By harnessing the power
of multiple processors or computing nodes, parallel computing enables tasks to be ex-
ecuted simultaneously, resulting in improved performance and the ability to handle
large-scale datasets. This approach involves breaking down complex computational
problems into smaller, independent tasks, where the workload is enabled through
parallel computing to be distributed among the available processing units, allowing
for concurrent processing and reducing the overall computational time. This method
is particularly advantageous when dealing with computationally intensive tasks or
large amounts of data that would be impractical or time-consuming to process se-
quentially. As it is aforementioned in chapter II, the MPI technique using Open
MPI library is implemented to effectively distribute the computational workload,
optimizing efficiency.
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Therefore the MPI technique is employed to solve the fiber-flow coupling problem, a
computational task that can be time-consuming, often taking several hours or even
days to complete, particularly when employing fine meshes for the Fokker-Planck
(II.16) equation and the Stokes (III.26) and advection (III.27) equations. It is impor-
tant to note that the individual solvers for the Fokker-Planck, Stokes, and advection
equations independently do not require significant computation time, with results
available within seconds. However, the coupling between these solvers involves sig-
nificantly higher computation time. As it is discused in the previous chapters, to
accurately predict fiber orientation throughout the configurational domain in the
context of solving the Stokes problem, the Fokker-Planck equation must be resolved
at each node within this domain. To speed up this process and improve computa-
tional efficiency, the use of MPI technique is essential. By leveraging the power of
multiple cores, the computations are distributed among them. For instance, if the
configurational domain of the Stokes problem is discretized into (nbStokes = 900

nodes) and there are (nf = 4 available cores), each core will handle the computa-
tion of the Fokker-Planck equation for a subset of nodes (900/4) in parallel. This
parallelization effectively reduces the computational burden by enabling multiple
cores to simultaneously solve the Fokker-Planck equation, significantly speeding up
the overall process compared to using a single core to solve the equation for all
(nbStokes = 900 nodes) sequentially.
In order to simulate the translational motion of fibers within the flow, the advection
equation needs to be solved. This equation is computed for each component of the
probability distribution function across the entire configurational domain, utilizing
the results obtained from solving the Fokker-Planck equation. Similarly to what has
been done above and to speed up this process, the MPI technique is also employed
to distribute the computations across multiple cores. For instance, if the proba-
bility distribution function consists of (nbFokker = 1024 components) and there
are (na = 4 available cores), each core will handle the computation of the advec-
tion equation for a subset of (1024/4) components in parallel. This parallelization
significantly reduces the overall computation time, enhancing the efficiency of the
fiber-flow coupling simulation.

nbStokes

nbFokker 24 128 256 1024 2048

9
t(1,1)=1mn6s

t(1,4)=41s
t(4,4)=22s

t(1,1)=4mns33s
t(1,4)=1mn29s
t(4,4)=1mn15s

t(1,1)=8mns37s
t(1,8)=1mn41s
t(8,8)=1mn31ss

t(1,1)=33mns6s
t(1,16)=2mns39s
t(16,16)=2mns29s

t(1,1)=1h4mns52s
t(1,16)=5mns5s

t(16,16)=4mns50s

146
t(1,1)=5mns33s
t(4,1)=2mns10s
t(4,4)=1mn36s

t(1,1)=9mns49s
t(4,4)=2mns36s
t(8,8)=1mn32s

t(1,1)=12mns48s
t(4,8)=2mns30s
t(8,8)=1mn56s

t(1,1)=36mns58s
t(4,16)=3mns49s
t(16,16)=3mns3s

t(1,1)=1h9mns9s
t(4,16)=6mns14s
t(16,16)=5mns26s

825
t(1,1)= 30mns52s
t(8,4)=3mns56s
t(8,8)=3mns40s

t(1,1)=34mns18s
t(8,4)=5mns22s
t(8,8)=4mns49s

t(1,1)=38mns7s
t(8,4)=6mns21s
t(8,8)=5mns27s

t(1,1)=1h9mns53s
t(8,16)=6mns42s
t(16,16)=4mns45s

t(1,1)=1h35mns18s
t(8,16)=9mns29s
t(16,16)=7mns16s

2092
t(1,1)=1h14mns41s
t(16,4)=5mns12s
t(16,16)=5mns12s

t(1,1)=1h18mns32s
t(16,4)=6mns15s
t(16,8)=5mns52s

t(1,1)=1h23mns4s
t(16,8)=8mns5s
t(16,16)=7mns7s

t(1,1)=1h47mns38s
t(16,8)=12mns26s
t(16,16)=11mns31s

t(1,1)=2h13mns48s
t(16,8)=18mns30s
t(16,16)=12mns37s

(.,.):(number of cores used for fokker-planck, number of cores used for advection)

Table III.1: Computation time for fiber-flow coupling: Impact of varying number of
cores
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To assess the impact of utilizing the MPI technique in the implementation of solvers
for full fiber-flow coupling simulations, the complete code linking all the solvers was
executed for a single time step across various scenarios. The problem was formu-
lated with specific parameter values for solving the Stokes equation in the fiber-flow
coupling simulations. The fluid viscosity η and the pressure drop ∆p were set to
1 Pa.s and 2 Pa, respectively. The initial orientation tensor a4 was assumed to
be isotropic, and the number of fibers Np in the system was set to 100. For the
Fokker-Planck equation, the chosen parameters were a lambda value λ of 0.98 and
a coefficient of interaction CI of 0.1. By altering the number of nodes used in solv-
ing the Fokker-Planck and advection equations, and adjusting the number of cores
dedicated for each case, the effect of parallel computing could be evaluated. It is
worth noting that these two equations require a significant amount of computation
time within the fiber-flow coupling problem.
The total time taken to resolve the full fiber-flow coupling problem for one iteration
was then determined, allowing for the deduction of the parallel technique’s influence
on computational efficiency and speed. By conducting these analyses, the benefits
and effectiveness of parallel computing in improving the overall performance and
time efficiency of the fiber-flow coupling simulations can be quantitatively assessed
as it is illustrated in table III.1. The results presented in the table III.1 clearly
demonstrate that the total computational time required to solve a fiber-flow cou-
pling problem increases with mesh refinement for both the Fokker-Planck and Stokes
equations. For instance, in the first case, the Fokker-Planck equation and advec-
tion equation were solved 9 and 24 times, respectively, for a single iteration. In
contrast, in the last case, the Fokker-Planck equation and advection equation were
solved 2092 and 2048 times, respectively, for a single iteration. It is noteworthy that
each run of either the Fokker-Planck or advection equation took approximately 2
seconds. This is evident in the total computation time for solving the fiber-flow cou-
pling problem, which was 1 minute and 6 seconds for the first case (nbFokker=24,
nbStokes=9) with a single core used, and increased to 1 hour, 4 minutes, and 52
seconds for the last case of the first row in the table (nbFokker=2048, nbStokes=9)
with the same number of cores employed. Furthermore, the results presented in
table III.1 highlight the significance of utilizing multiple cores to reduce the overall
computational time. It is evident that the total computation time can be signifi-
cantly decreased by a factor equal to the number of cores used. For example, in
the last case (nbFokker=2048, nbStokes=2092), where the reduction in computa-
tion time is most pronounced, employing 16 cores for both the Fokker-Planck and
advection equations resulted in a decrease in total time from 135 minutes to 12 min-
utes. This represents a substantial gain in computational efficiency. Similarly, using
a higher number of cores demonstrated a consistent decrease in computation time
across all the cases presented in the table III.1. These findings highlight the impact
of mesh refinement on the computational time and emphasize the importance of
parallel computing in accelerating the solution of fiber-flow coupling problems and
demonstrate its potential for significantly reducing computation time.
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III.4.2 Effect of rheological coupling coefficient Np on flow and fiber
orientation

The investigation of the influence of the rheological coupling coefficient, Np, on
both the fiber orientation within the flow and the flow itself represents a central
component of this study. To comprehensively address this influence, simulations
were conducted under Poiseuille flow conditions, employing the Stokes equation.
The computational domain adopted for these simulations featured a rectangular

Figure III.4: Rectangular domain: FE mesh

configuration with a height of 2 m and a length of 4 m, discretized into 3123 nodes,
as depicted in Figure III.4. Boundary conditions were precisely defined: the pressure
at the inlet, denoted as P0, was set to 12.5 Pa, while the outlet pressure, P1, was
established at 0 Pa. A non-slip boundary condition was imposed along the top
and bottom walls. The dynamic viscosity of the fluid, η, was assigned a value of
1 Pa·s. In terms of the advection equation, a fully randomized fiber orientation
distribution was enforced at the inlet, constituting a Dirichlet boundary condition
(φ = 1

2π ), while an initial planar random orientation was also mandated across the
entire domain. Within the framework of the Fokker-Planck equation, the angular
domain underwent discretization with a mesh size h of 2π

1024 . Temporal discretization
was executed via the Rosenbrock-W scheme, employing a time step ∆t of 5× 10−2

s. Additional parameters included a shape factor λ set at 1 and an interaction
coefficient CI established at 0.001. Notably, these simulations encompassed a range
of rheological coupling coefficients, specifically Np values of 0, 10, 20, 30, and 40,
allowing for a comprehensive exploration of the coupling effect’s impact.

III.4.2.1 Uncoupled flow case

The exploration of fiber orientation predictions begins within the framework of an
uncoupled flow field scenario, specifically when Np = 0. In this case, as mentioned
above, a steady flow under Poiseuille flow conditions is assumed, where streamlines
remain consistently parallel both to each other and to the channel walls. Simulations
were conducted until a state of steady flow was reached, indicating that all fiber ori-
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entations within the domain have settled into a stable equilibrium. As illustrated
in figure III.5, this scenario reveals the evolution of fiber orientation within the flow
over time. It is noteworthy that in the absence of coupling effects, the velocity
profile remains unchanged throughout the simulation, preserving the characteristic
parabolic distribution along the y-direction (vertical) in the fluid domain. The el-

(a) t = 0s (b) t = 0.25 s

(c) t = 0.75 s (d) t = 1.25 s

Figure III.5: Evolution of fiber orientation within flow: time-dependent changes in
fiber alignment and distribution with Np = 0

lipses, serving as representations of average fiber orientations, are derived from the
second-order orientation tensor a2. The eigenvalues and eigenvectors of a2 govern
the major axes of these ellipses in the xy-plane, signifying the degree of orientation
along these axes. The coloration of the ellipses indicates the magnitude of the eigen-
value in the θ-direction, with white signifying isotropic conditions (axx = ayy = 0.5)
and black representing full fiber alignment. Interestingly, in proximity to the cen-
terline axis, fiber orientation appears quasi-random due to the absence of ∇u, while
closer to the wall, the ellipses progressively flatten and align. Additionally, partial
alignment arises due to the nonzero value of CI , which prevents the achievement of
perfect fiber alignment along the streamlines. This observation is consistent with
the predictions of the Folgar-Tucker model [59]. Moreover, in the absence of cou-
pling effects (Np = 0), a fiber suspension flowing between plates can be considered
spatially uniform, enabling the calculation of dynamic orientation history along a
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streamline when moving with the fluid.

III.4.2.2 Coupled flow case

The investigation examines the influence of the rheological coupling coefficient Np

when considering the coupling effect (Np ̸= 0) on both the fiber orientation and
the velocity profile within the simulation domain. It is important to note that all
previous numerical and boundary conditions remained consistent throughout these
simulations, with the sole alteration being the adjustment of Np to observe its impact
in the context of coupled flow.

Temporal evolution of fiber orientation with varying Np

(a) Np = 10 (b) Np = 20

(c) Np = 30 (d) Np = 40

Figure III.6: Fiber orientation evolution over time at t = 0.75 s for various Np

Notably, one significant effect becomes apparent as fiber concentration increases
with higher Np values, which implies a more substantial coupling between the fibers
and the fluid. This, in turn, potentially leads to longer relaxation times required
for the fibers to align with the flow. To illustrate this phenomenon, we examine the
time evolution of fiber orientation at different time intervals for various Np values,
including the time at which they reach a steady state. As observed in figures III.6
through III.9, it becomes apparent that achieving a steady state in fiber orientation
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(a) Np = 10 (b) Np = 20

(c) Np = 30 (d) Np = 40

Figure III.7: Fiber orientation evolution over time at t = 2.5 s for various Np
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Figure III.8: Time evolution of axx for different Np at y = 0.95m

requires significantly more time as Np increases. For example, in the case of Np = 10,
it took approximately 7.5 seconds to reach a steady state. In contrast, for Np = 20

and Np = 30, this duration extended to around 12 and 15 seconds, respectively.
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Notably, for Np = 40, the steady state took roughly 20 seconds to establish. In
addition, figure III.8 illustrates the time-dependent evolution of the first component
of the orientation tensor, axx, for various Np values near the upper wall. It is evident
that as Np increases, fibers require more time to fully align with the flow direction.
These observations highlight the substantial influence of the coupling coefficient Np

on the dynamics of fiber orientation and the time required for these orientations to
stabilize under varying conditions. Similar to the previous section (section III.4.2.1),
the ellipses, which depict the average fiber orientations, are determined using the
second-order orientation tensor a2. These ellipses’ coloration corresponds to the
magnitude of eigenvalues in the θ-direction. White color denotes isotropic conditions
(axx = ayy = 0.5), while black signifies complete alignment of the fibers representing
the highest level of anisotropy.

(a) Np = 10 (t = 7.5 s) (b) Np = 20 (t = 12 s)

(c) Np = 30 (t = 15 s) (d) Np = 40 (t = 20 s)

Figure III.9: Fiber orientation at steady state for various Np

Impact of Np on the velocity profile

Moreover, the consideration of the coupling effect (Np ̸= 0) has also a noticeable
impact on the velocity profile. This transformation occurs as the fiber suspension
transitions into a non-Newtonian fluid due to the introduction of particle stress
contributions in the momentum equation (III.26). In fact, anisotropic viscosities
are obtained once average fiber orientations deviate from their initial 2D random
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configuration. Consequently, the total viscosity, particularly within the core region,
increases, leading to changes in flow behavior. In all figures III.6 to III.9, a Newto-
nian profile is observed at the inlet due to the imposed boundary condition. Since
an isotropic orientation is assumed at the inlet (x = 0), the equivalent viscosity
remains homogeneous. However, beyond the entrance, streamlines experience slight
disturbances for all different Np values, gradually returning to parallel alignment
as they approach the outlet. The transition to non-Newtonian behavior becomes
evident across figures III.6 to III.9, with increasing Np corresponding to a reduction
in maximum velocity and a flatter velocity profile within the core, compared to the
result obtained from the decoupled problem. This is clearly illustrated in figure
III.10, which depicts the velocity profiles at the outlet (x = 3m) for all different Np

values.

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

Figure III.10: Velocity profile variations at the outlet (x = 3m) for different Np

Fiber orientation changes with increasing Np

Furthermore, the interaction between the flow and fibers introduces another signifi-
cant influence on the pattern of the fiber orientation. To illustrate this phenomenon,
we examine the evolution of the first component of the second-order orientation ten-
sor, axx, across the domain for various values of Np. These results are presented
in figure III.11. It is notable that as Np increases, a distinctive shift in fiber orien-
tation patterns happens, particularly within the core region. This shift results in
fibers gradually aligning transversely to the flow direction. The emergence of a ver-
tical velocity component, uy, is important in this process. Interestingly, even under
Poiseuille flow conditions, a slight increase in the vertical velocity uy is observed
due to the coupling problem. This increase in vertical velocity exerts an influence
on the fibers, causing them to align in the y-direction.
In figure III.12, an analysis of the variation in axx at x = 1.5 between the coupled
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(a) Np = 10 (b) Np = 20

(c) Np = 30 (d) Np = 40

Figure III.11: Fiber orientation axx at steady state for various Np

and decoupled solutions (∆axx = acoupledxx − adecoupledxx ) is presented. The results
reveal that ∆axx exhibits the most significant decrease in the shell region between
the skin and the core regions, with a comparatively smaller reduction observed in
the central core region. Interestingly, this difference is not notably evident in the
vicinity of the channel walls. These findings are in line with those obtained in figure
III.11. Several factors contribute to these outcomes. Firstly, in the context of the
coupled solution, the continuity equation drives a flattening of the velocity profile
(as depicted in figure III.10), leading to a mass flow relocation towards the channel
walls. Consequently, the shear components of ∇u promote changes in ayy, result-
ing in a decrease in axx from the centerline towards the shell region, as evident in
figure III.11. Conversely, the flattening of the velocity profile decreases the shear
component E12 in the central region, as reported in [157], which subsequently leads
to a slower alignment in the horizontal direction. Importantly, the asymptotic state
remains unaltered by the coupling effect. As a consequence, the difference ∆axx
becomes negligible in the wall region and even in the limiting case of an infinitely
long channel. The variation in fiber orientation attributed to coupling falls within
the range of -13.5% and 0.5% on the [0.33, 0.99] scale.

Influence of Np on generalized shear rate γ̇

Figure III.13 presents the variation of the generalized shear rate γ̇ along the y-
axis, specifically at the center of the domain (x = 1.5 m). It shows a substantial
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Figure III.12: Variation of axx difference at x = 1.5: coupled vs uncoupled solutions
for different Np
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Figure III.13: Variation of γ̇ at the center (x = 1.5m) for different Np

reduction in γ̇ for the coupled solution (Np ̸= 0) in comparison to the uncoupled
solution (Np = 0), with the most pronounced decline occurring in the skin and
shell regions. The results also reveal that as the rheological coupling coefficient Np

increases, the γ̇ profile widens significantly within the core region. In contrast, for
the case of Np = 0, the profile exhibits a distinct triangular sharp edge, which is
clearly demonstrated in figure III.13. An interesting observation is a minor reduction
in the shear rate for the case of the coupled solution, particularly near the boundary
wall. This drop can be attributed to the fountain flow effect.
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III.4.3 Effect of interaction coefficient CI on fiber orientation

In a manner similar to the approach employed in the previous section, simulations
were conducted for a channel flow case within the domain illustrated in figure III.4,
while maintaining the same boundary conditions. This investigation focuses, while

(a) CI = 0 (b) CI = 0.01

(c) CI = 0.1

Figure III.14: Evolution of axx in flow for different CI

setting Np = 0, on the critical analysis of the influence of the interaction coefficient
CI on fiber orientation within the flowing medium. To ensure consistency and rigor,
the numerical parameters will remain as follows: a Rosenbrock-W scheme will be
used for time integration, and a time step of ∆t = 5 × 10−2 s will be employed
for resolving both the Fokker-Planck and spatial advection equations. This setup
ensures a robust and controlled environment for the exploration of the relationship
between the interaction coefficient CI and fiber orientation in the context of fluid
flow. Figure III.14 offers a comprehensive insight into the influence of the interac-
tion coefficient CI on fiber orientation, particularly after a prolonged period during
which the fiber orientation reaches a steady state. This examination involved three
distinct simulations, varying the interaction coefficient from 0 to 0.1, with a primary
focus on tracking the evolution of the first component of the second-order orienta-
tion tensor, axx. Notably, when CI = 0, corresponding to the elimination of the
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Figure III.15: Variation of axx at the outlet (x = 3m) for different CI

diffusion term within the Fokker-Planck equation, a distinctive pattern emerges.
Fibers tend to align themselves predominantly along the flow direction near the
walls, whereas within the core region where the generalized shear rate γ̇ approaches
zero, fiber orientation becomes more random. In this regime, the orientation dy-
namics are primarily governed by the advection term of the Fokker-Planck equation.
As we increase CI , the diffusion term plays a more prominent role, leading to ob-
servable changes. Figures III.14b and III.14c vividly illustrate this transition. As
CI increases, the alignment of fibers near the walls is hindered, and the orientation
distribution becomes more isotropic. Particularly, in Figure III.14c with a higher
CI value, the zone of isotropic orientation expands further into the core region.
In order to thoroughly clarify the influence of the interaction coefficient CI , a de-
tailed examination of the evolution of axx was conducted along the outlet’s y-axis, as
demonstrated for varying CI values in figure III.15. The findings reveal a discernible
pattern: as the interaction coefficient increases, the alignment of fibers along the
wall with the direction of flow progressively decreases, as the value of axx goes down
from 0.99 to 0.75, for CI values of 0 and 0.1 respectively. Conversely, the orientation
of the fibers within the core region appears to be much less sensitivity to fluctua-
tions in the interaction coefficient. Intriguingly, there is an observable increase in
the value of axx within the transitional zone situated between the wall and the core.
This phenomenon can be explained as a result of the interplay between the advection
and diffusion terms inherent to the Fokker-Planck equation. Consequently, it can
be inferred that within this intermediate region, the advection term plays a central
role in influencing the state of the fiber orientation. Conversely, closer to the wall,
the diffusion term tends to slightly dominate, reflecting the involved dependence of
both terms on the generalized shear rate γ̇. A similar trend was observed in the
studies conducted both numerically and experimentally as reported in [158, 159].
These intricate observations contribute to a more thorough understanding of the
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interrelationship between the interaction coefficient and the spatial distribution of
fiber orientation across the domain.

III.4.4 Short summary

□✓ Parallel computing using the MPI library is employed in the code to
reduce computational time.

□✓ Distributing the computation of the fiber-flow coupling problem across
multiple nodes results in a time reduction of up to 25 times per iteration.

□✓ The rheological coupling coefficient Np plays a central role in the velocity
profile as it causes the fluid to transition into a non-Newtonian state due
to the contribution of fibers to the fluid’s viscosity.

□✓ Increasing Np induces a notable shift in fiber orientation, particularly
in the core region, driven by the emergence of a vertical velocity com-
ponent, uy, even under Poiseuille flow conditions, influencing fibers to
align in the y-direction.

□✓ As expected, a higher interaction coefficient leads to less alignment of
fibers near the wall in the direction of flow. An increase in the CI

factor results in a greater average misalignment of fibers. However, the
orientation of fibers within the core region is much less influenced by the
value of the interaction coefficient.
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III.5 Conclusion

In conclusion, this study addresses a 2D fiber-flow coupling problem employing
a multiscale modeling approach, which finds applications in understanding com-
plex processes like injection molding, encompassing macro to micro interactions. A
modified constitutive equation for the Stokes equation is introduced, incorporating
a fourth-order orientation tensor to capture fiber orientation’s influence on fluid
flow. Additionally, an advection equation is integrated into the governing equa-
tions to account for fiber spatial motion within the fluid domain at the macroscale.
These components link three solvers (Stokes, Fokker-Planck, and Transport) oper-
ating consecutively. Parallel computing via the MPI library significantly enhances
computational efficiency, distributing tasks across multiple nodes, thus accelerating
simulations.
Our investigation into the rheological coupling coefficient Np and the interaction
coefficient CI reveals their substantial impact on both the fluid behavior and fiber
orientation evolution within the fluid domain. Specifically, Np emerges as a criti-
cal determinant of the velocity profile, transforming the fluid into a non-Newtonian
state due to fiber-induced viscosity alterations. Conversely, higher CI values result
in reduced fiber alignment near the wall in the direction of flow, leading to greater
average misalignment. Notably, the orientation of fibers within the core region re-
mains relatively unaffected by changes in CI . These findings highlight the central
role of the coupling coefficient in controlling the fiber alignment within the flow,
crucial for modeling complex fluid-fiber interactions.
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In the previous chapter, the investigation of the fiber-flow coupling problem fo-
cused on a simple rectangular geometry. While this provided valuable insights, it
is necessary to extend the analysis to more complex domains that better represent
real-world scenarios encountered in injection molding processes. Thus, the present
chapter is dedicated to conducting simulations on complex geometries, such as a
contraction and L-shaped regions that roughly emulates the geometry of a mold
used in actual injection molding processes, and then extending the study to de-
velop a foundational model for describing an overmolding process. The objective of
this chapter is to describe the obtained results, specifically examining the impact
of different geometries on fiber motion during the injection phase, and to extend
the analysis to a two-phase model, considering the injected thermoplastic, which is
considered as a complex fluid. By exploring these different models and their descrip-
tions of the complex behavior of the injected thermoplastic, a more comprehensive
understanding of the fiber-flow coupling phenomenon and its behavior in realistic
injection molding scenarios can be achieved.

IV.1 Introduction

Understanding the motion of fibers within the injected fluid during the injection
phase is crucial for optimizing the manufacturing process and enhancing the me-
chanical properties of the final product. The distribution and alignment of fibers
significantly influence the mechanical strength, stiffness, and other functional prop-
erties of fiber-reinforced composite materials. Moreover, the interaction between
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fibers and the surrounding fluid can impact the filling behavior, flow front advance-
ment, and pressure drop during injection molding.
By simulating fiber-flow coupling in complex geometries that closely resemble real
injection molding scenarios, we can obtain a comprehensive understanding of the
underlying mechanisms governing the behavior of fiber-reinforced composites. This
understanding is vital for constructing accurate predictive models that can be used
to optimize the injection process, predict fiber alignment, estimate the mechanical
properties of the final product such as strength, stiffness, and other functional prop-
erties of composite materials, and guide the design of composite materials for specific
applications. Thus, the study of fiber-flow coupling in injection molding processes
plays a crucial role in comprehending the dynamics of complex fluid systems and
their influence on the overall manufacturing process.
Consequently, one of the objective of this chapter is to emphasize the importance
of applying fiber-flow coupling in complex geometries to investigate fiber motion
during the injection phase and its effect on the surrounding fluid. In the past
years, researchers have developed numerical techniques for predicting fiber orienta-
tion within intricate geometries by addressing the coupling between fluid flow and
fiber orientation distribution. The work done in [84] developed a numerical method-
ology to analyze streamlines in a 4.5:1 axisymmetric contraction at low Reynolds
numbers, using a Newtonian fluid with sparse, high aspect ratio fibers. Remark-
ably, their results correlated quantitatively with experimental observations despite
using the aligned-fiber approximation. A fully coupled solution is employed in [121]
to predict fiber suspension flow in various complex geometries, encompassing axi-
symmetric contractions, expansions, and center-gated disks. Another work done
in[160] emphasized the impact of three-dimensional flow and fountain flow on fiber
orientation during the injection molding of thick wall parts. Ranganathan and Ad-
vani [40] explored fiber-fiber interactions based on the Folgar-Tucker model [59] in
axisymmetric diverging radial flow.
Through computational simulations and comprehensive analysis, we aim to con-
struct a robust model capable of accurately capturing the intricate dynamics in-
volved in real-world injection molding processes. The knowledge derived from this
research is expected to advance manufacturing techniques, facilitate improved ma-
terial designs, and enhance the overall performance of fiber-reinforced composites in
diverse industrial sectors.
This chapter’s second section outlines a model tailored to emulate a real-case sce-
nario encountered in the injection molding process. The primary objective of this
research endeavor was to develop a versatile model capable of simulating overmold-
ing processes—a frequently encountered application involving the injection of short
fiber-reinforced thermoplastics over a thermoformed insert filled with continuous
fiber-reinforced thermoplastics.
In practice, this process presents various complexities and challenges, including the
potential occurrence of defects such as insert displacement, insert displacement, and
polymer penetration. These defects, which have been comprehensively detailed in
chapter I, can significantly impact the quality and integrity of the final product.
To gain a deeper understanding of these issues and their implications, numerical
simulations were conducted. These simulations allow for the interpretation of the
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observed defects and their correlation with experimental results from previous stud-
ies. Numerically, this complex problem was addressed through the development of
a comprehensive two-phase flow model. Within this model, one phase distinctly
represents the insert, while the other characterizes the injected thermoplastic mate-
rials, capturing their dynamic interplay.
Thus, by simulating this intricate scenario, valuable insights into the physical in-
teractions at the interface between these two phases can be gained. Computational
analyses encompass critical parameters such as stress and displacement occurring at
this interface. This knowledge, in turn, is critical to understanding the mechanical
properties of the final product once the injection molding process is complete. Addi-
tionally, the study involves a detailed analysis of how variations in phase properties,
achieved through parameter adjustments like viscosity η and the fiber interaction
coefficient CI , impact the overall process and product outcomes. This investiga-
tion further enhances our understanding of the complexities inherent in real-world
injection molding scenarios.

IV.2 Configurations of fluid-fiber coupling in diverse ge-
ometries

This section initiates an in-depth investigation into the dynamic behavior of fiber
orientation and the substantial influence of fiber-flow coupling within two complex
geometrical contexts: the 2D contraction and the L-shape domains, as depicted in
figure IV.1. Through rigorous analyses and simulations, the aim is to explain the
underlying mechanisms that dictate fiber orientation and coupling phenomena in
these challenging spatial configurations.

IV.2.1 Complex shape models

IV.2.1.1 2D planar contraction model

The study of contraction flow has gained significant attention due to its crucial
industrial applications. So this type of flow frequently manifests in practical mold-
ing processes, thus serving as vital benchmark scenarios of notable significance.
Consequently, numerous numerical investigations have focused on fluid suspensions
flowing through channels featuring sudden contractions [161, 162, 157] or expansions
[163, 164, 165]. In the numerical simulations, a model similar to the one detailed
for standard planar channel flow in section III.3.2 is employed. Consequently, the
governing equations for continuity and momentum, applicable to fiber suspension
flows within a 2D planar contraction domain, remain unchanged and are presented
in the system of equations (III.26). Additionally, for the spatial advection of fibers
into the domain, equation (III.27) is also used. Within the numerical results section,
the behavior of fiber suspensions within a 4:1 contraction geometry is explored.

IV.2.1.2 2D L-shaped model

Solving the fiber-flow coupling problem in L-shaped injection molding domains is
crucial for understanding mechanical properties, such as residual stress. The final
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orientation state of fibers plays a significant role in studies related to these properties
within such domains. The complex geometry of an L-shape can set down some
challenges not found in simpler cases, making it a valuable representation of real-
world scenarios. Accurate simulation of fiber orientation in such complex shapes
validates our numerical approach, providing a foundation for advanced studies and
enhancing applicability in practical molding simulations. The same model used
in previous cases is employed, maintaining continuity and momentum and spatial
advection equations outlined for fiber suspension flows in a 2D planar contraction
domain (section IV.2.1.1). It is worth noting that there is limited numerical research
concerning this specific domain, making this study valuable for validating numerical
approaches.

IV.2.1.3 Boundary conditions

Similarly to the discussion in section III.3.2.2 concerning boundary conditions for
simple channel flow domains, the consideration of complex flow domains (whether
contraction or L-shape) introduces a similar necessity for defining appropriate bound-
ary conditions to complete the Stokes problem. Thus, the governing system of
equations for these both complex domains must also be supplemented with bound-
ary conditions. These conditions are necessary in specifying the behavior of the flows

(a) Contraction boundary conditions (b) L-shape boundary conditions

Figure IV.1: Representation of different boundaries and domains

at the boundaries of the computational domains and they are detailed as follows:

• on Γin, a pressure condition is imposed: (σ · n).n = −pin where n is the
external unit normal and pin is the pressure at the inlet.

• on Γin, an isotropic orientation of fiber is imposed: a4=a4
t0 where a4

t0 is
computed from equation (I.6) by taking φ= 1

2π .

• on Γend, a pressure condition is imposed: (σ · n).n = −pend = 0, where pend
is the pressure at the right end of the domain.
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• on Γedge, no-slip boundary condition is imposed, which results in u = 0.

where Γin, Γedge and Γend respectively designate the boundaries of the domain cor-
responding to the injection zone and to the zones of contact with the walls of the
injection mold with Γin ∪ Γedge ∪ Γend = ∂Ω.

IV.2.2 Numerical results

IV.2.2.1 Contraction flow domain

In the simulations, pressure-driven flow conditions were initiated by solving the
Stokes equation. The computational domain, considered for these simulations was
designed to represent a contraction geometry by assembling two rectangles, where
the left rectangle section measuring 4 m of height and 6 m of length connects to
the right rectangular section with a height of 1 m and a length of 6 m. For analysis
purposes, simulations were conducted using two types of meshes: a coarse mesh with
1139 nodes and a fine mesh with 6066 nodes, as depicted in figure IV.2. Boundary

(a) Fine mesh

(b) Coarse mesh

Figure IV.2: Contraction domain: FE mesh

conditions were rigorously defined to accurately model the physical system. At the
inlet (x=-6), we specified the pressure as P0, set to 275 Pa, while at the outlet
(x=6), the pressure was established as P1, which was set to 0 Pa. Along the four



96 Chapter IV. Application: complex geometries

walls, non-slip boundary conditions were imposed. The dynamic viscosity of the
fluid, denoted as η, was assigned a value of 1 Pa·s. Concerning the advection equa-
tion for fibers, a completely randomized fiber orientation distribution was enforced
at the inlet, serving as a Dirichlet boundary condition (φ = 1

2π ). Additionally,
an initial isotropic orientation was applied across the entire computational domain.
Within the framework of the Fokker-Planck equation, the angular domain under-
went discretization, featuring a mesh size h of 2π

1024 . Temporal discretization was
accomplished through the use of the Rosenbrock-W scheme, employing a time step
∆t of 75× 10−3s. Other essential parameters included a shape factor λ set at 1 and
an interaction coefficient CI established at 0.01. These simulations also included
different values of Np, namely 0, 10, and 30.

Influence of Np on fluid streamlines (coarse mesh)

Numerical results at steady state for both the uncoupled solution (Np = 0) and
coupled solutions (Np = 10 and 30) using a Newtonian suspending fluid are illus-
trated in figure IV.3. In this visualization, the background color corresponds to
the magnitude of the x-component of velocity ux, and select streamlines are drawn
to provide further interpretation. Additionally, ellipses represent the average fiber
orientation, as explained in the previous chapter.
Figure IV.4 representing, a closer examination of the zoomed-in region outlined by
the red dashed-line rectangle in figure IV.3, reveals the presence of a recirculation
zone (vortex) near the top corner of the contraction zone at x=0. When considering
fiber-fluid coupling, it becomes evident that the size of this corner vortex increases
as Np varies from 0 to 30. This observation highlights that the introduction of
fibers, even at relatively low concentrations, significantly influences the size of these
recirculation zones. This finding is consistent with the results reported in [166] by
Yasuda et al., who employed polymeric fibers made from cellulose acetate propionate
in a suspension made of glycerin and polyethylene glycol. Consequently, the vortex
boundary takes on a more convex shape relative to the main flow in the case of cou-
pled fiber flow (Np ̸= 0), in contrast to the pure Newtonian flow (Np = 0), where
it exhibits a more concave shape, as reported in some studies done in [167, 168].
Similar conclusions were drawn from the experimental work presented in [84], where
it was observed an enlargement of the vortex when slender fibers were introduced
into a Newtonian fluid, even at low Reynolds numbers.
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(a) Np = 0

(b) Np = 10

(c) Np = 30

Figure IV.3: Velocity distribution and streamline patterns for different Np
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(a) Np = 0 (b) Np = 10

(c) Np = 30

Figure IV.4: Zoomed-in view of streamline patterns in vortex zone for various Np
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Impact of Np on fiber orientation and fluid velocity(coarse mesh)

(a) Np = 0

(b) Np = 10

(c) Np = 30

Figure IV.5: Variation of axx for different Np
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Furthermore, it is evident that the presence of the vortex has a clear impact on the
fiber orientation. In this region, most fibers align themselves parallel to the stream-
lines, as indicated in figures IV.3 and IV.4. However, the alignment is not perfect,
primarily due to the nonzero fiber-fiber interaction coefficient (CI = 0.01). As the
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Figure IV.6: Variation of axx along y-axis at different positions x for different Np

value of Np increases, the anisotropy of fiber distribution in both the main flow and
vortex regions decreases. In figure IV.5, it is clear that the area characterized by an
anisotropic fiber distribution (as precisely indicated by the black dashed-line boxes)
gradually shrinks as Np rises from smaller values (indicative of dilute/semi-dilute
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conditions) to higher concentrations (indicative of a more concentrated state), as
this evolution is consistent with the findings reported in [169]. It can be also clearly
seen by plotting the variation of axx at different x-positions near the observed re-
gions, as depicted in figure IV.6. This trend can be attributed to the strengthening
random interactions between fibers, particularly pronounced with increasing Np,
which decreases the influence of flow velocity on fiber orientation. Simultaneously,
the fibers’ distribution tends to be more isotropic towards the center of the vortex,
as shown in figure IV.4.

(a) ∂ux
∂x (b) ∂uy

∂y

Figure IV.7: Variation of velocity gradient diagonal components in the throat region
for Np=10

It is important to note that fibers at the entrance of the contraction region experi-
ence elongational flow. This can be interpreted through the plotting of the diagonal
terms of the velocity gradients (∂ux

∂x , ∂uy

∂y ) in this region, as depicted in figure IV.7.
Another observation from the simulations (figure IV.8) reveals that as Np increases,
the vertical velocity in the narrow channel becomes more consistent and uniform.
Thus, the interaction between fibers and the flow, influenced by higher Np, results
in a more even distribution of vertical velocity uy.
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(a) Np = 0

(b) Np = 10

(c) Np = 30

Figure IV.8: Variation of uy for different Np

Mesh refinement analysis: influence on solution accuracy

A mesh analysis has been undertaken to investigate its influence on the dynamic
motion of fibers and the coupling dynamics between fibers and the flow. It is
well acknowledged that refining the angular domain directly affects the solution
of the Fokker-Planck equation, and hence the accuracy of fiber orientation predic-
tion. Therefore, it is also important to examine mesh dependency in the spatial
domain for solving the full coupling problem, particularly in complex geometries.
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(a) Np = 0 (b) Np = 10

(c) Np = 30

Figure IV.9: Vortex zone for different Np (fine mesh)

The first noticeable effect can be seen by plotting the recirculation zone, as shown
in figure IV.9. Notably, the vortices intensity increases with a finer mesh, thus the
vortices exhibit larger sizes and a more convex shape compared to those obtained
with a coarser mesh (see figure IV.4). This effect is consistently proportional to the
value of Np. Consequently, the vortex centers expand, and the fibers tend to orient
more randomly within these regions.
Another impact of the mesh refinement on the solution of the fiber-flow coupling
problem is the effect on the variation of the velocity profile. It was deduced in
the previous chapter III that the presence of fibers in the flow causes the fluid to
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Figure IV.10: Effect of mesh size on velocity profile at x = −4 for different Np

adopt non-Newtonian behavior. Figure IV.10 illustrates a comparison of the vari-
ation of velocity profile at x = −4 between a coarse and a fine mesh for coupled
and decoupled solutions. As shown, for a coarse mesh in the contraction domain,
this transition was not well captured. On the other hand, when decreasing the
mesh size, the coupling effect can be seen more obviously as the velocity profile
starts to flatten when increasing Np. However, even with a coarse mesh, it can be
observed that the overall flow velocity has decreased, taking into account the drag
force on the fluid exerted by the fibers on the flow, while approximately maintaining
its parabolic profile. Thus, it can be said that to capture the full effect of fibers
on the flow, especially in complex domains like the contraction domain, sufficient
spatial nodes should be used. Despite the limitations of a coarse mesh, essential
information regarding the influence of fibers on the flow can still be obtained.
The use of a smaller mesh size can also exert an influence on the evolution of fiber
orientation within the domain. Figure IV.11 shows the variation of axx in the narrow
channel region. Analyzing the behavior of fibers at the entry of the throat region
orientation can be divided into four zones, starting from the upper and lower wall
zones where fibers exhibit similar behavior. In these regions, fibers initially align
with the flow direction before gradually relaxing slightly towards the exit zone. This
behavior is driven by the effect of CI and is observed for both coupled and uncou-
pled solutions.
In the lower shell region, fibers display similar horizontal orientation at the entry
but tend to shift their orientation slightly above the x-axis due to the influence of
positive shear rate. Increasing Np, delays this effect as fibers are advected in the
narrow channel, attributed to the lower shear rate when Np is non-zero. A similar
interpretation can be drawn for the upper shell region, where the high and rapid
twist in the magnitude of the components of ∇u results in less oriented fibers en-
tering the flow direction. For Np ̸= 0 , fibers tend to orient more in the y-direction,
but as they flow in the channel, the negative shear rate counteracts this orientation,
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(a) Np = 0

(b) Np = 10

(c) Np = 30

Figure IV.11: Variation of axx for different Np in the narrow channel (fine mesh)

aligning them more with the x-direction. Notably, fibers take a longer time to reach
a steady orientation state for the coupled solution compared to the uncoupled solu-
tion.
Compared to the results presented in Figure IV.5, the variation of axx in the nar-
row channel region exhibits distinct behavioral patterns, particularly in the upper
shell region, for the two different mesh sizes. This can be inferred from the fact
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Figure IV.12: Variation of axx difference at x = 0.5: coarse vs fine mesh for different
Np

that a significant shift in shear components of ∇u occurs in this region, leading
consequently to a rapid change in the evolution of fiber orientation. As a result,
a refined mesh is required in this region to accurately capture these variations, as
a coarse mesh with insufficient nodes cannot provide an accurate solution through
interpolation. To quantify the error, an analysis of the variation in axx along y-axis
between the two mesh sizes is done by plotting ∆axx = afinexx − acoarsexx at a position
near the entry of the throat region (x=0.5), as depicted in figure IV.12. The results
reveal that ∆axx exhibits the most pronounced decrease in the upper shell region, as
previously mentioned. Interestingly, the error becomes comparatively higher when
increasing Np. The difference ∆axx is considered negligible in the wall region. The
variation in fiber orientation attributed to the choice of mesh size falls within the
range of -30% and 10%.

IV.2.2.2 L-shaped flow domain

To address this problem, similarly to the previous section, simulations were initial-
ized under Poiseuille flow conditions. The computational domain for these simula-
tions was designed in the shape of an "L", composed of two connected rectangles.
The horizontal rectangle featured dimensions of 1 m in height and 3 m in length,
while the vertical rectangle had dimensions of 2 m in height and 1 m in length. This
complex domain was discretized into 4077 nodes, as illustrated in figure IV.13. For
the boundary conditions, the flow is expected to enter from the top, with the pres-
sure P0 set to 100 Pa at the inlet (y=3), with the flow direction going downwards.
At the outlet (x=3), the pressure P1 was 0 Pa. Non-slip boundary conditions were
imposed along all other walls. The dynamic viscosity of the fluid, η, was given a
value of 1 Pa·s. Similar to our approach in the 2D contraction flow model, a fully
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Figure IV.13: L-shape domain: FE mesh

randomized fiber orientation distribution was prescribed at the inlet and maintained
across the entire domain. The angular domain for fibers is discretized using a mesh
size h of 2π

1024 and performed temporal discretization with a Rosenbrock-W scheme
using a time step ∆t of 75× 10−3s. We also kept the values of λ and CI consistent
at 1 and 0.01, respectively, while solutions were also obtained for Np values of 10,
20, and 30.

Influence of Np on vortex and fiber orientation

The first numerical result that can be discussed for this geometry is related to the
phenomenon of recirculation zone formation and the influence of Np on this zone.
As shown in figure IV.14, a vortex zone emerges at the lower-left corner of the do-
main for the three different selected Np values. The obtained result is consistent
with the findings in the previous study (case of contraction domain), which suggest
that higher Np contributes to the expansion of the vortex zone. Within this region,
the fibers exhibit a more isotropic orientation state.
The fiber orientation state around the lower-right corner, designated as a zone of
interest, is important to understanding and explaining the effect of flow dynamics on
fibers. Similar to the observations in the contraction domain, the velocity gradient,
particularly its shear components, varies rapidly within the shell zone. Figure IV.15
illustrates the variation of total shear stress (τtotal = µ(∂ux

∂y +
∂uy

∂x )) in this zone, rep-
resented by color intensity, and the ellipses depicting the average fiber orientation.
While the ellipses for all Np cases, espacially for Np=0, suggest a gradual relaxation
of fibers before reorienting to favor the x-direction, this representation is somewhat
challenging to interpret due to the complexity of this problem for this type of do-
main, where numerous interacting physical parameters influence fiber orientation.
Nevertheless, one plausible interpretation of this phenomenon is that in the region
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(a) Np = 0 (b) Np = 10

(c) Np = 30

Figure IV.14: Vortex zone for different Np

surrounding this corner, the effect of fibers being advected by the fluid’s velocity
has a more significant impact on fiber orientation, particularly for Np=0. In other
words, fibers have less time to reorient along the x-direction. Conversely, this effect
has less influence on Np ̸= 0 cases, where an increase in fiber concentration leads
to a reduction in velocity magnitude. As a result, the shear rate has a more pro-
nounced impact on fiber orientation in this zone when Np increases. Additionally,
it is worth noting from figure IV.15 that fibers tend to relax slightly before entering
the horizontal channel for the uncoupled case compared to the coupled cases.
To illustrate the distribution of fiber orientation near the zone of interest, figure
IV.16 shows the variation of axx along the y-axis at two positions: x = 1.05 (close
to the entry of the horizontal channel) and x = 1.5 (near the center). This allows
us to observe the difference in fiber orientation between a critical and a non-critical
position. In the lower region, axx varies expectedly, with fibers aligned near the wall
and gradually reorienting into an isotropic state as they move towards the center.
This profile is similar for all Np values. In the upper region, however, the corner
effect becomes apparent. Fibers remain in an isotropic state for a longer y-distance,
particularly for Np=0, before starting to reorient and align in the x-direction. At x
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(a) Np = 0

(b) Np = 10

(c) Np = 30

Figure IV.15: Shear stress and fiber orientation distribution for different Np
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Figure IV.16: Variation of fiber orientation along the y-axis at two different x-
positions for various Np

= 1.5, the fiber orientation distribution starts to take its standard variation along
the y-axis, as seen in figure IV.16b for all different Np. This variation is character-
istic of channel flow in rectangular domains. Thus, as the flow moves downstream,
the fiber orientation distribution gradually transitions to its standard profile. It
is worth noting that the core region, where most fibers are randomly oriented, is
shifted slightly higher. The latter phenomenon can be explained by plotting the dis-
tribution of generalized shear rate γ̇ within the domain. As shown in figure IV.17,
the region of zero shear rate has also shifted slightly upwards in the y-direction.
This shift coincides with the upward shift of the core region in fiber orientation
distribution. The evolution of fiber orientation along the entry channel in the L-
shaped domain is also noteworthy. Figure IV.18 depicts the variation of axx along
the x-axis for different Np, with the velocity flowing downward. This indicates that
the shear rate varies perpendicular to the flow direction along the x-axis, as shown
in figure IV.17. The left-hand side plot, IV.18a, illustrates the variation of axx near
the entry zone at y=2.5. It is evident that at this distance from the entry, most
of the fibers still retain a random orientation. However, as axx begins to decrease
below 0.5 towards the region near the wall, it suggests that the fibers are starting to
align in the y-direction. This trend for axx is similar for all Np cases. The right-hand
side plot depicts the variation of axx near the corner at y=1.05. Interestingly, no
particular behavior is observed in this zone. The region where the fibers are in an
isotropic state has decreased as the distance from the entry zone has increased. The
only notable feature is that the core region for Np=0 is slightly shifted compared to
the cases of Np ̸= 0.
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(a) Np = 0

(b) Np = 10

(c) Np = 30

Figure IV.17: Shear rate distribution
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Figure IV.18: Variation of fiber orientation along the x-axis at two different y-
positions for various Np

Impact of Np on velocity profile

Another analysis that can be performed for this domain is to investigate the cou-
pling effect on the fluid velocity. As depicted in figure IV.19, the evolution of the
velocity profiles for diverse Np values at various positions has been plotted. Figures
IV.19a and IV.19b illustrate the velocity profiles at different positions along the en-
try channel, one close to the flow inlet and the other near the corner region. It has
been observed that the influence of increasing Np on the velocity is evident at both
positions. As anticipated, the velocity peak decreases due to the drag force exerted
by the fibers on the flow, causing the fluid to transition into a non-Newtonian state
by flattening the velocity profile’s peak. Moreover, this flattening becomes more
pronounced when the velocity profile is plotted near the corner zone. Similarly,
figures IV.19c and IV.19d depict the variation of the velocity profiles through the
horizontal channel at two distinct positions: one near the corner zone and the other
close to the exit zone. Notably, it has been observed that the velocity profile ap-
pears to revert to its parabolic shape towards the exit, while the velocity magnitude
remains reduced due to the presence of fibers in the flow.
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Figure IV.19: Variation of velocity profile at different positions for various Np
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IV.2.3 Short summary

□✓ Contraction and L-shaped domains are used to test the validity of the
developed method in solving fiber-flow coupling problems in complex
geometries.

□✓ The rheological coupling coefficient Np widens the size of the vortex
zone that can be formed in complex geometries, thus affecting the fibers
orientation within this zone.

□✓ The high shear rates caused by the acceleration of the flow near the
throat in the contraction region cause the fibers to experience elonga-
tional flow.

□✓ Refining the spatial mesh can capture the effects of high shear rates on
fiber orientation distribution, particularly near the throat region of a
contraction domain. This, in turn, can affect the transition of the fluid
from Newtonian to non-Newtonian behavior.

□✓ Fiber relaxation in an L-shape domain near the throat zone, acknowl-
edging the difficulty of interpretation it due to the complexity of the
problem and the numerous interacting physical parameters.

□✓ It is noticed that in L-shaped domain, the effect of Np in transition-
ing the fluid into non-Newtonian is more prominent through the entry
vertical channel than the horizontal exit channel.

IV.3 Problem setup for a real-case injection molding sce-
nario

IV.3.1 Two-phase flow model

We first recall that the initial goal of this work is to develop a comprehensive simu-
lation framework that closely mirrors real-world scenarios encountered in the over-
molding process. To achieve this, a detailed analysis of the dynamic behavior of
fibers is incorporated into a two-phase model. This model allows us to gain critical
insight into the complex interactions that occur at the interface between the molten
thermoplastic material being injected and the pre-molded or thermoformed insert
composed of fiber-reinforced thermoplastics. By delving into the intricate dynamics
of this interface, our goal is to improve our understanding of the overmolding process
and its potential impact on various applications.
Therefore, different perspectives have been considered to emulate the overmolding
process problem. One well-established approach is the fluid-structure interaction
(FSI) model, where the fluid component represents the injected material and the
solid component represents the insert. This model involves solving two sets of equa-
tions: one for fluid viscosity and another for elasticity. However, an alternative
method has been adopted in which a two-phase flow model is used instead of the
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FSI model. In this approach, both the injected and the preformed parts are repre-
sented as one fluid phase, which significantly reduces the complexity of the equations
to be solved. Specifically, this is achieved by solving a full-domain viscous problem
for the two phases. The solid component is represented by simply setting a very high
viscosity when solving the viscous equations for that phase, while a low viscosity is
used for the fluid phase. This approach effectively introduces a substantial difference
in viscosity between the two phases, thereby facilitating an accurate representation
of the solid component.

IV.3.1.1 Governing equations

In the specific context of the two-phase flow model developed to describe the over-
molding process problem, the Stokes equations are used to characterize the flow
behavior. It is important to note that in this particular scenario, the interfacial
exchange terms within the Stokes equations are typically considered to be signifi-
cantly smaller than the other terms, indicating the dominance of viscous forces over
inertial forces. This predominance allows to neglect the interfacial exchange terms,
leading to the decoupling of the equations (IV.1). Consequently, the Stokes equa-
tions can be solved independently for each phase, allowing a more tractable and
efficient approach to simulating the system.

∇ · uk = 0 in Ω

∇ · σk = 0 in Ω

σk = 2ηkEk − pkI+ ηkNp(Ek : a4k) = 0 in Ω

(IV.1)

where k = 1, 2 denotes the two phases, pk is the pressure of phase k, ηk is the
dynamic viscosity of phase k, uk is the velocity vector of phase k, σk is the stress
tensor of phase k and a4k is the orientation tensor of phase k.
A fully implicit approach is adopted in the simulations, where the interface is defined
using a level set function, denoted as Φ. In addition, a convection equation for the
level set is needed to be solved to analyze and capture the displacement at the
interface throughout the simulation. This is done by tracking the evolution of the
interface between the two phases.

∂Φ

∂t
+ u · ∇Φ = 0 (IV.2)

The level set function Φ smoothly spans the interface with a characteristic thickness
represented by E. To identify the materials on either side of the interface and
account for their distinct properties, such as viscosity η, within this finite thickness
E. A discontinuous Heaviside function H is introduced, defined as 1 in one phase
and 0 in the other phase, in order to distinguish between the two phases. While it is
inherently discontinuous, a smoothed representation is employed to avoid numerical
instabilities. The Heaviside function H is defined as follows:

H =


1 if Φ > E

1
2(1 +

Φ
E ) if − E < Φ < E

0 if Φ < E

(IV.3)
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where in this case, the level set function ΦE is approximated as:

ΦE ≃ Φ = E tanh

(
Φ

E

)
(hyperbolic tangent level set function) (IV.4)

Any properties that transition between phases, denoted as ξ, can be represented as
a variable field within the mesh, using the Heaviside function to ensure that they
vary appropriately between phases:

ξ = ξphase1H + ξphase2(1−H) (IV.5)

It is worth noting that we used the Adaptive Mesh Refinement feature within the
ICI-Tech library to optimize the mesh. In this approach, finer resolution is applied
specifically around the interface level set, while coarser mesh is used in the remaining
domain. A finer mesh is necessary at the interface to reduce the width of the
transition region where properties of the two phases mix when employing hyperbolic
tangent interpolation.

IV.3.1.2 Boundary conditions

Parallel to the discussion of boundary conditions for single-phase flow in section
III.3.2.2, the consideration of two-phase flow introduces a similar requirement for
defining appropriate boundary conditions to complete the Stokes problem. As shown
in equation (IV.1), the governing system of equations for this two-phase flow must be
supplemented with boundary conditions. These conditions are critical in specifying
the behavior of the two flows at the boundaries of the computational domain, as
depicted in figure IV.20. The prescribed boundary conditions for this scenario are
detailed below:

• on Γin,k, a pressure condition is imposed: (σk · n).n = −pin,k where n is the
external unit normal and pin,k is the pressure at the inlet of phase k.

• on Γin,k, an isotropic orientation of fiber is imposed: a4k=a4
t0
k in which a4

t0
k

is in phase k, where an isotropic and an alignment orientation are prescribed
for k =1 and k=2, respectively.

• on Γend,k, a pressure condition is imposed: (σk · n).n = −pend,k = 0, where
pend,k is the pressure of phase k at the right end of the domain.

• on Γedge,k, no-slip boundary condition is imposed, which results in uk = 0.

• on Γinterf , a continuity condition for the velocity field and normal stress is
imposed: [u]Γinterf

= 0, [n.σ.n]Γinterf
= 0, and a zero level-set function is

imposed: ΦΓinterf
= 0, where ΦΓinterf

is the level set function at the interface.

where Γin,k, Γedge,k and Γend,k respectively designate the boundaries of the domain
corresponding to the injection zone for each phase k and to the zone of contact with
the walls of each injection mold, and Γinterf refers to the boundary at the interface
zone, with Γin,k ∪ Γedge,k ∪ Γend,k ∪ Γinterf = ∂Ω.
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Figure IV.20: Representation of different boundaries and domains.

IV.3.2 Numerical results

A comprehensive investigation into the influence of fiber concentration and fiber
orientation on the displacement behavior at the interface between two phases was
conducted using numerical simulations. The Stokes equation was employed to model
the fluid flow over the two phases, which were discretized into 5397 nodes to form
a rectangular computational domain with a height of 2 m and a length of 3 m.
The lower phase represented the insert domain, as depicted in figure IV.21. The
thickness of the refined mesh around the interface region was set to 0.14. Boundary
conditions were carefully defined: the inlet pressure P0 for both phases was set to
40 Pa, while the outlet pressure, P0, was established at 0 Pa. Non-slip boundary
conditions were imposed along the top and bottom walls. A significant viscosity

Figure IV.21: FE mesh

difference was introduced between the two phases: the upper phase had a viscosity
of 1 Pa·s, while the lower phase was assigned a viscosity of 250 Pa·s, representing a
more solid-like behavior. At the inlet of the upper phase, a fully randomized fiber
orientation distribution was imposed. For the lower phase inlet, two cases were
studied, with probability distribution functions favoring alignment of fibers in the
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x-direction for the first case and in the y-direction for the second case. Within
the framework of the Fokker-Planck equation, the angular domain was discretized
with a mesh size h of 2π

1024 , and the temporal discretization was executed via the
Rosenbrock-W scheme, employing a time step ∆t of 5×10−2 s. Figure IV.22 shows a
representation of the key parameters change across the two phases in the numerical
simulations. Two different shape factors λ and interaction coefficient CI were set:

(a) µ field distribution (b) CI field distribution

(c) λ field distribution (d) µNp field distribution

Figure IV.22: Representation of material scalar fields across the two phase using
level set

for phase 1, λ=0.98 and CI=0.01 to allow fibers to orient more freely, and for phase
2, representing the insert with unidirectional orientation, λ=1 and CI=0.001 to
limit fiber orientation. Notably, these simulations encompassed three different fiber
volume fractions for phase 2, specifically ϕ values of 40% 50% and 65%, and one
ϕ for phase 1 with a value of 15%, allowing for a comprehensive exploration of the
impact of concentration. It should be noted that figure IV.22d represents the case
of ϕ=50%), and the value of Np is calculated based on the equation III.9 for phase
1 (dilute suspension) and the equation III.11 for phase 2 (semi-dilute suspension).



IV.3. Problem setup for a real-case injection molding scenario 119

IV.3.2.1 Effect of concentration on interface displacement behavior

Before getting into the analysis of the displacement behavior at the interface, it is
also important to study the effect of the presence of the fibers in the flow on the ve-
locity profile, and conversely the influence of the fluid flow on the fiber orientation in
the two phase flow case, as it has been done in all previous cases, while maintaining
a good stability of level set to track the changes across the two phases. Figure IV.23
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Figure IV.23: Velocity profile at different x-positions for various ϕ

illustrates the variation of velocity profiles along y-axis for various ϕ at three distinct
x locations. Interestingly, it can be seen that the profiles are nearly identical for all
three cases of fiber concentration. This observation can be attributed to the high
viscosity of phase 2 (insert) with a µ set to 250 Pa.s, which approximates a solid-like
behavior. Consequently, even slight changes in ϕ are unlikely to significantly alter
the flow characteristics of the phase 1 (injected thermoplastics). In other words,
the simulations resemble a fluid flowing over a solid, where the changes in the solid
properties primarily affect its own behavior due to the external force (originating
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from phase 1) exerted on it.
It can be also noted that the velocity profiles obtained are consistent with the con-
ditions imposed in the problem in order to build a model that can represent an
overmolding process scenario. The velocity in the insert phase is indeed almost
zero, representing the solid-like behavior of the insert. In contrast, the injected
thermoplastics phase exhibits a standard parabolic velocity profile, as expected for
a low-viscosity fluid flowing through a confined channel. This parabolic profile arises
from the relatively low fiber volume concentration employed for the injected ther-
moplastics, with ϕ=15% corresponding to Np ≃10. As Np increases, the viscosity of
the injected thermoplastics increases transforming the fluid into non-newtonian be-
havior as discussed in all previous results. Furthermore, the velocity profile exhibits
slight variations for different x positions. As seen in figure IV.23c, the zero-velocity
distance covered along the y-axis appears to be less than that depicted in figure
IV.23b. This difference can be attributed to the presence of a "dead zone" (u ≃0)
at x=1.5 (region between the two ribs). At x=1, the zero-velocity covered distance
along the y-axis is expected to be the greatest, as it encompasses the entire height
of the rib. In addition, it is worth noting that numerically, the level set function
ensures continuity in the velocity profile across the two phases.
Figure IV.24 showcases the variation of axx along y-axis for different ϕ at three
various x positions. First, it is noteworthy that the plots for different ϕ values are
also superposed, which is consistent with the findings in the velocity profiles. This
observation is consistent with the previously discussed mutual influence of fiber ori-
entation and fluid velocity.
A notable distinction emerges in the evolution of axx across different x locations.
Figure IV.24a clearly demonstrates that the imposed unidirectional fiber orientation
condition is accurately maintained within the insert domain, where axx remains con-
sistently equal to 1 along the rib’s height. When traversing the insert area, a distinct
region called the "interphase" is created due to penetration phenomena at the in-
terface. Within this relatively narrow region, a mixed fiber orientation state exists,
exhibiting a coexistence of fibers aligned with the fiber flow and randomly oriented
fibers. This is visually evidenced by the zigzag variation of axx across the interface
as shown in Figure IV.24a.
In figure IV.24b, near the interface of the injected thermoplastic phase, axx shows a
slight decrease below 0.5. This phenomenon can be attributed to the appearance of
tiny vertical velocity fluctuations in the dead zone at x=1.5 as seen in figure IV.25.
Conversely, at x=2.75, the fiber orientation remains in an isotropic state near the
interface, as shown in figure IV.24c. Moving away from the interface zone and into
the upper phase, the evolution of axx follows a consistent pattern for different x

positions. Fiber orientation remains isotropic near the core region, where the gen-
eralized shear rate approaches zero. As we progress towards the skin-shell region,
fibers tend to align parallel to the fluid direction. Finally, akin to the continuity
observed in the velocity profile, the level set function effectively ensures a seamless
transition in the evolution of fiber orientation throughout the two-phase system.
Figure IV.26 visualizes the level set displacement at the interface relative to the
initial position and the calculated maximum displacement for different ϕ. It is ev-
ident that with increasing ϕ, the level set shifts less towards the right, implying
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Figure IV.24: Evolution of axx at different x-positions for various ϕ

that the insert phase experiences a diminished impact from the force exerted by the
fluid phase. This translates to a more rigid lower phase in physical terms. This
observation can be attributed to the heightened stiffness and strength reached by
incorporating a higher fiber volume concentration, which effectively slows down the
displacement. Figure IV.26b quantifies the variation of maximum displacement with
respect to ϕ. Notably, as ϕ increases from 40% to 65%, the maximum displacement
∆x decreases from 92.875 mm to 78.5 mm. Interestingly, the rate of decrease does
not remain constant with a higher slope observed when ϕ is between 40% and 50%
compared to when it increases from 50% to 65%. This suggests that there exists a
limit to stiffness, implying that after a certain ϕ value, the material’s stiffness and
strength will no longer exhibit significant improvement. This realization aligns with
the common industrial practice of employing fiber volume concentrations within the
range of 40% to 65% for unidirectional composites.
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Figure IV.25: Representation of velocity field in the dead zone

(a) Level set

40 45 50 55 60 65
78

80

82

84

86

88

90

92

94

(b) Max displacement

Figure IV.26: Measuring the evolution of interface geometry under varying ϕ

IV.3.2.2 Influence of fiber orientation on interface displacement

Another study was conducted to validate the developed model by investigating the
influence of fiber orientation on the insert displacement. Seven simulations were
carried out, each with a different initial fiber orientation represented by a4. All
simulations were conducted with a constant fiber volume fraction of ϕ=50%. The
fiber orientations considered were 0, 10, 30, 45, 60, 80, and 90 degrees. Figure IV.27
shows the level set displacement relative to the initial position and the computed
maximum displacement for different θ. The results showed that the variation of dis-
placement followed a parabolic pattern with respect to θ (angle of fiber orientation),
as depicted in figure IV.27b. The maximum displacement occurred when the fibers
were oriented parallel to the flow direction, with a value of ∆x=82 mm. This is
attributed to the smoother flow of the fluid in this configuration compared to other
cases. Interestingly, the displacement was significantly reduced as θ increased to-
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Figure IV.27: Measuring the evolution of interface geometry under varying θ

wards 45◦, reaching a minimum value of ∆x=6 mm. Intriguingly, it is worthy noted
that case of fibers oriented at θ=45◦ with respect to the flow direction demonstrated
the most robust resistance to displacement. Then as θ increases towards 90◦, the dis-
placement started to increase again, reaching a value of ∆x=78 mm. These findings
demonstrate that the arrangement of fibers significantly impacts the flow behavior
and the displacement of the insert. The fibers act as physical barriers to the flow,
and their orientation modulates the flow resistance, which in turn affects the layer
displacement at the interface.
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IV.3.3 Short summary

□✓ Instead of a standard fluid-solid interaction model, a two-phase flow
model is used to simulate an overmolding process by treating the solid
phase as a very viscous fluid. This simplification reduces the number of
equations required to be solved, making the simulation more computa-
tionally efficient.

□✓ The study for this model mainly focuses on the displacement of the
interface in relation to two factors: fiber volume concentration ϕ and
the initial fiber orientation in the insert phase.

□✓ Increasing fiber volume concentration leads to enhancing the stiffness
and strength of the insert phase resulting in reduced interface displace-
ment, but this improvement is limited up to a certain fiber volume con-
centration.

□✓ The layer displacement at the interface is influenced by the initial ori-
entation of fibers within the insert phase, as their arrangement shapes
the flow resistance and velocity distribution within the insert phase,
ultimately affecting the displacement at the interface.

IV.4 Conclusion

This study presents two main contributions. Firstly, the flow-fiber coupling model
was validated in more complex geometries, specifically 2D contraction and L-shaped
flow domains. The simulations revealed that increasing the rheological coupling pa-
rameter Np leads to an expansion of recirculation zones where fibers align their
streamlines, except in the vortex center where they tend to orient randomly. For
the contraction domain, the velocity profile flattens as Np increases, resembling the
patterns observed in a standard 2D channel flow domain. For L-shaped domain, the
effect of Np on the transition of the fluid into non-Newtonian behavior was more
pronounced through the entry vertical channel than the exit channel. Mesh refine-
ment studies demonstrated that finer meshes better capture the size of vortices and
fiber orientation evolution with greater precision, particularly at the throat region
with high shear rates.
Secondly, a two-phase flow model was constructed for simulating overmolding pro-
cesses. The model uses a Newtonian fluid for the fluid phase and a highly viscous
fluid for the solid phase, representing the injected thermoplastic and the thermo-
formed insert, respectively. This simplification reduces computational complexity
compared to conventional fluid-solid interaction (FSI) models that require solv-
ing two sets of equations. The distinction between the two phases properties was
achieved using the level set function. The model was validated by investigating the
impact of fiber concentration and fiber orientation on the displacement behavior
of the insert. The results showed that increasing fiber volume fraction ϕ resulted
in the formation of a barrier within the lower phase, which disrupted the smooth
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flow of the fluid, ultimately leading to a decrease in interface displacement. This
is attributed to the increased rigidity of the insert, enabling it to better withstand
the flow force. Similarly, varying the initial orientation of fibers in the rigid phase
through a4 significantly influenced the layer displacement. Remarkably, an orienta-
tion of θ=45◦ with respect to the flow direction exhibited the strongest resistance
to displacement.
All test cases done in this chapter can provide a robust foundation for conduct-
ing more sophisticated simulations, encompassing complex scenarios involving both
mono- and two-phase systems.
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Conclusion and perspectives
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Chapter V of this thesis is dedicated to the conclusions and future perspectives
of the work conducted on solving the Fokker-Planck equation to comprehend and
predict fiber orientation, as it also addresses the integration of fiber orientation into
the Stokes equation in the form of an orientation tensor, with the aim of constructing
a model for simulating fiber orientation and motion within fluid flow. The developed
model has potential applications in real-world scenarios, particularly in simulating
processes such as injection molding, which facilitates the understanding of defects
that occur during the fabrication of parts.

V.1 Synthesis and conclusion

Resolution of Fokker-Planck equation

A new numerical model is designed to investigate the dynamic motion of fibers,
specifically targeting its rotation during the injection phase of molten thermoplastics
within a mold cavity. The developed approach (DNS) is focused on the resolution of
the Fokker-Planck equation, offering insight into fiber orientation at the mesoscopic
level, rather than relying on pre-averaged quantities such as the second and fourth
order orientation tensors (a2,a4) which introduces inaccuracies and information loss
due to the utilization of closure approximations. The proposed numerical model is
implemented within a finite element framework.

A modified version of the Fokker-Planck equation has been formulated, enabling
a simplified solution approach. In this reformulation, a simplification is introduced
by replacing the vector p, which represents the unit vector describing fiber orien-
tation, with a single angle θ. This angle can effectively capture the rotation of the
fiber and serves as a concise descriptor of its orientation. As a result, the original
two-dimensional Fokker-Planck equation is reduced to a simpler one-dimensional
advection-diffusion equation, where the angular velocity θ̇ at which the fibers rotate
is easily calculated rather than explicitly considering the two-dimensional orbital
velocity ṗ.
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Thus, in the initial formulation, the configurational domain for solving the Fokker-
Planck equation was represented by a 2D unit circle. However, to simplify the
computational process, a transformation is applied to convert this 2D domain into
a 1D domain. This transformation involves projecting the unit circle onto a 1D
segment, specifically a segment of length 2π. This new 1D domain serves as the
basis for discretization.

In order to address the challenges posed by the Fokker-Planck equation, the SUPG
approach is employed as an alternative to the standard Galerkin method. As the
Fokker-Planck equation is characterized as an advection-diffusion equation, using
the standard Galerkin method alone can lead to undesirable effects such as exces-
sive numerical diffusion or non-physical oscillations in the computed solution. By
adopting the SUPG approach, a stabilization term is introduced that explicitly con-
siders the advective nature of the equation. This additional term enhances the
accuracy and stability of the numerical solution.

Validation tests were performed to ensure the accuracy of the Fokker-Planck equa-
tion solver. The normalization condition, indicating that the probability distribution
function’s integral remains 1, was satisfied. Investigations into parameter influences
(λ, Dr) yielded logical and expected results. A convergence study determined op-
timal mesh sizes and time steps for accurate solutions with minimal computational
cost. Comparisons with existing literature, including analytical solutions, showed
the solver’s higher accuracy and similarity to analytical results, confirming its reli-
ability and effectiveness.

Resolution of Stokes-fiber coupled problem

In order to incorporate the effects of fibers on the macroscopic stresses in the con-
stitutive equation and establish a flow-fiber coupling problem, various empirical
models have been developed in the literature to describe the rheological behavior
of fiber-filled suspensions. In this study, the theory of slender bodies is employed,
specifically the Batchelor model, which enables the construction of a macroscopic
model applicable to suspensions in a dilute or semi-dilute regime. All simulations
have been conducted based on this model, providing a comprehensive understanding
of the flow behavior and interactions between the fibers and the surrounding fluid.

Numerically, the compressible Stokes-fiber coupled problem was solved using the
mixed finite element method. The computational domain was discretized employ-
ing triangular elements in two dimensions (2D), and a continuous approximation
of velocity and pressure was considered, with velocity enriched by bubbles. It has
been demonstrated that this interpolation satisfies the stability conditions of the
problem, even in the incompressible limit.

The utilization of the MPI technique in solving the fiber-flow coupling problem
proved to be highly advantageous. By distributing the computational workload
across multiple cores, parallel processing enabled by MPI significantly enhances com-
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putational efficiency and reduces the overall computation time. With the ability to
simultaneously solve the Fokker-Planck equation at each node of the configurational
domain and compute the advection equation for multiple components of the proba-
bility distribution function, the MPI technique effectively accelerates the simulation
of fiber orientation and translational motion within the flow.

2D channel flow simulations were performed to investigate the impact of fiber pres-
ence on fluid flow and the influence of fluid flow on fiber orientation. Specifically,
the rheological coupling coefficient Np and interaction coefficient CI were controlled
to observe how changes in these parameters affected the system. The results showed
that when Np=0, the fibers preferentially aligned near the wall region and main-
tained random orientation in the core region. Increasing Np led to longer relaxation
times for the fibers to align with the flow, a flatter velocity profile due to a tran-
sition into non-Newtonian fluid behavior, a shift of fiber orientation patterns from
the flow direction to the transverse direction around the core, a slight decrease in
generalized shear rate γ̇ for both the skin and shell regions, and a widening of the γ̇

profile within the core region. Further, increasing CI resulted in a decrease in fiber
alignment near the walls and an expansion of the isotropic orientation zone.

Up to applications (Injection molding/Overmolding)

In this study, simulations were performed first using the constructed flow-fluid cou-
pling model on 2D complex domains like contractions and L-shaped, to emulate
real-world scenarios encountered in the injection molding process. The aim was to
capture the intricate flow behavior and fiber-fluid interaction within these represen-
tative geometries.

The study for the 2D contraction flow domain focused on the impact of Np and
the mesh size on the solution of the coupling problem from both physical and nu-
merical perspectives. It was found that increasing Np led to an expansion of the
recirculation zones, as fibers align with the vortex streamlines, except in the vortex
center where they tend to orient randomly. Additionally, the velocity profile flattens
as Np increases, demonstrating similar trends to those observed in a standard 2D
channel flow domain. Moreover, increasing Np resulted in more uniform vertical ve-
locity distribution in the narrow channel region at the throat of the domain. From
a numerical standpoint, mesh refinement plays a crucial role in this domain. Finer
meshes produce larger, more convex vortices with increased intensity compared to
those obtained with coarser meshes. Refining spatial mesh improved representation
of high shear rate effects on fiber orientation distribution, particularly near throat
region.

For the L-shaped domain, similar effects of Np on the vortex zone and fiber orienta-
tion in this zone were observed compared to the contraction domain. The focus was
mainly on the throat region, where fiber orientation was studied. It was interpreted
that in this region, the effect of fibers being advected by the fluid’s velocity had a
more significant impact on fiber orientation, particularly for Np=0. Conversely, this
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effect had less influence on Np ̸= 0 cases, where an increase in fiber concentration
resulted in a reduction in velocity magnitude. As a result, the shear rate had a more
pronounced impact on fiber orientation in this zone when Np. An investigation on
the coupling effect on the fluid velocity has been done, and it was noticed that in the
L-shaped domain, the effect of Np in transitioning the fluid into non-Newtonian was
more prominent through the entry vertical channel than the horizontal exit channel.

To accurately simulate the overmolding process, the used approach deviates from
the conventional fluid/solid interaction model in favor of a fluid/fluid interaction
model. This innovative choice streamlines the computational process by solving a
single equation across the entire domain with only varying viscosities in the two
phases, contrasted with the more typical approach of solving two equations. In this
model, the insert part (thermoformed) is depicted as a phase with high viscosity,
while the injected short fiber reinforced thermoplastic is represented by a phase with
lower viscosity.

To validate the two-phase model, simulations were conducted to investigate the
impact of fiber concentration and fiber orientation on the displacement behavior at
the interface between the two phases. The level set method was employed to assign
different parameters (λ, CI , µ, ϕ, a4) to each phase to replicate the respective be-
haviors of the injected thermoplastics and the undirectional composite insert. The
results revealed that an increase in fiber volume fraction ϕ within the insert phase
resulted in enhanced stiffness and strength, leading to a reduction in interface dis-
placement. This is attributed to the increased rigidity of the insert phase, enabling
it to better withstand the force exerted by the flow upon the insert surface. In
addition, the arrangement of fibers within the insert phase significantly impacts the
layer displacement, as their orientation influences the flow resistance and velocity
distribution within the insert phase. This, in turn, affects the displacement at the
interface. A counter-intuitive observation has been made, as fibers oriented at θ=45◦

with respect to the flow direction exhibit the strongest resistance to displacement
can be attributed to the fact that fibers at this angle effectively impede the flow.

V.2 Perspectives and improvements

Resolution of Fokker-Planck equation

In the context of solving the Fokker-Planck equation, an improvement can be achieved
by exploiting the symmetric property of the problem. Instead of fully discretizing
the angular domain from 0 to 2π, it is possible to limit the angular discretization
to the range of −π/2 to π/2. This approach effectively reduces the computational
effort and saves valuable computation time. By leveraging the symmetric nature of
the problem, accurate results can still be obtained while optimizing the computa-
tional resources required for solving the Fokker-Planck equation.

In this study, the Fokker-Planck equation has been successfully solved in a 1D
domain to represent a 2D configuration. However, further development can be un-
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dertaken to extend the approach to higher dimensions, specifically by solving the
Fokker-Planck equation in a 2D domain that can better represent a 3D configura-
tion. This can be accomplished by representing the orbital velocity ṗ as a function
of two angular velocities (θ̇, ϕ̇). By considering additional dimensions, the model
can capture the intricate dynamics of fibers in a more realistic and accurate manner,
paving the way for enhanced simulations and predictions in complex 3D systems.

Resolution of Stokes-fiber coupled problem

While this study has made significant progress in understanding the dynamics of
the flow-fiber coupling problem, it’s important to note that certain aspects remain
unexplored. Specifically, the influence of changing the fiber shape factor λ on the
behavior of the fluid within the flow-fiber coupling problem has not been thoroughly
investigated in this study. Future research endeavors could focus on systematically
varying the fiber shape factor λ to comprehensively assess its impact on the coupling
dynamics.

Moreover, a promising avenue for future research involves delving into the dynam-
ics of non-Newtonian fluids within the context of the flow-fiber coupling problem.
These fluids showcase distinct rheological behaviors, introducing intriguing com-
plexities into the system and offering a captivating area of study. Additionally,
considering the thermal impact on the fluid, where viscosity responds to tempera-
ture fluctuations, adds another layer of intricacy and practical relevance. Integrating
thermal effects into the flow-fiber problem holds significant potential, especially in
fields like industrial processes (injection or overmolding process).

Up to applications (Injection molding/Overmolding)

An interesting perspective for future work is the creation of realistic 3D shapes
resembling complex geometries found in actual injection molding processes. For ex-
ample using computer-aided design (CAD) software enables accurate representation
of these shapes. Importing these 3D shapes into the solver allows extensive testing
and validation of the fiber-flow coupling model. Comparing simulation results with
experimental tests assesses the model’s accuracy and reliability. Research in this
direction aims to refine and optimize the fiber-flow coupling model, enhancing its
practical applicability and advancing understanding in fiber-filled composite manu-
facturing.

A potential avenue for further work involves the study of the interphase region
between the two phases, which is formed due to the penetration phenomenon that
occurs during the overmolding process. Within this small region, a complex mixture
of different fiber orientations is observed. The developed direct numerical simula-
tion DNS method in this work for solving Fokker-Planck equation can be used to
examine the fiber orientation within this region, enabling a more thorough under-
standing of the fiber-fiber interactions in a two phase problem and their impact on
the mechanical properties of the final composite. This information can be used to
optimize the overmolding process and produce composites with enhanced properties.
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Another prospective work can involve constructing and integrating a new model
into the current model using tensor-based anisotropic constitutive behavior to pre-
dict the various viscosity components of an anisotropic two-phase fluid. This would
enable a more realistic simulation of the behavior of a unidirectional composite
during the overmolding process.
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Titre :   Modélisation multi-échelle de l'orientation des fibres dans des systèmes polymères 
visqueux renforcés de fibres 
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Résumé :  Les thermoplastiques renforcés par 
des fibres courtes ont acquis une notoriété 
croissante en ingénierie, notamment dans les 
applications automobiles. La prédiction précise 
de l'orientation des fibres est cruciale car elle 
influence les caractéristiques mécaniques. Les 
travaux de recherche antérieurs dans ce 
domaine ont mis en exergue la complexité 
inhérente à l'orientation des fibres au sein d'un 
écoulement. La majorité des simulations 
industrielles s'appuient sur des modèles 
macroscopiques qui font usage de quantités 
préalablement moyennées et d'approximations 
de fermeture, engendrant fréquemment des 
inexactitudes dans la prédiction de l'orientation 
des fibres. Afin de relever ce défi, la présente 
étude propose une nouvelle approche reposant 
sur la résolution de l'équation de Fokker-Planck 
à l'échelle mésoscopique. 

La méthode des éléments finis (MEF) est 
utilisée pour calculer l'orientation des fibres, 
permettant une représentation plus précise du 
comportement des fibres. Le tenseur 
d'orientation ainsi calculé est intégré aux 
équations de Stokes, engendrant un modèle 
multi-échelle de l'interaction entre les fibres et 
l'écoulement environnant, ce qui enrichit 
considérablement notre compréhension de 
cette dynamique complexe. Finalement, un 
modèle d'écoulement à deux phases est 
étudié, reproduisant fidèlement des situations 
réelles telles que le processus de surmoulage. 
En exploitant ce modèle multi-échelle, cette 
étude vise à améliorer la précision des 
simulations dans les applications industrielles, 
offrant de nouvelles perspectives pour 
l'optimisation des processus et la conception. 

 

Title :   Multi-scale modeling of fiber orientation in coupled fiber-reinforced viscous polymer 

systems 
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Abstract :  Thermoplastics reinforced with 
short fibers have gained prominence in 
engineering, notably in automotive applications. 
Accurate prediction of fiber orientation is crucial, 
as it profoundly influences mechanical 
characteristics. Previous research in this field 
has highlighted the complexity of fiber 
orientation within a flow. Most industrial 
simulations rely on macroscopic models that use 
pre-averaged quantities and closure 
approximations, often resulting in inaccuracies 
in predicting fiber orientation. To address this 
challenge and enhance accuracy, this study 
presents a novel approach based on resolving 
the Fokker-Planck equation at the meso-scale 
level, offering a more detailed and accurate 
model for predicting fiber orientation. 

In this work, the finite element method (FEM) is 
used to compute fiber orientation, providing a 
more precise representation of fiber behavior. 
Subsequently, the computed orientation tensor 
is integrated into the Stokes equations, 
creating a multi-scale fiber-flow model which 
enhances our understanding of the dynamic 
interaction between fibers and the surrounding 
flow. Furthermore, the research extends its 
scope to develop a two-phase flow model, 
reflecting real-world scenarios such as 
overmolding process. By leveraging the multi-
scale model, this work aims to improve the 
accuracy of simulations in industrial 
applications, providing valuable insights for 
process optimization and design. 
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