
HAL Id: tel-04673679
https://theses.hal.science/tel-04673679

Submitted on 20 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Models for Human Locomotion and Interaction
in Natural Environments

Eduardo Alvarado

To cite this version:
Eduardo Alvarado. Efficient Models for Human Locomotion and Interaction in Natural Environments.
Formal Languages and Automata Theory [cs.FL]. Institut Polytechnique de Paris, 2023. English.
�NNT : 2023IPPAX158�. �tel-04673679�

https://theses.hal.science/tel-04673679
https://hal.archives-ouvertes.fr

626

N
N

T
: 2

02
3I

PP
A

X1
39 Une approche syntactique à la sémantique

dirigée des programmes
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à École Polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Mathématiques et Informatique

Thèse présentée et soutenue à Palaiseau, le 8 Décembre 2023, par

Aly-Bora Ulusoy

Composition du Jury :

Jean-Cristophe Filliâtre
Directeur de recherche, ENS Paris-Saclay (LMF) Président

Georg Struth
Professeur, University of Sheffield Rapporteur

Jean Goubault-Larrecq
Professeur, ENS Paris-Saclay (LSV) Rapporteur

Lisbeth Fajstrup
Associate Professor, Aalborg University Examinateur

Claudia Faggian
Chargée de recherche, IRIF Examinateur

Samuel Mimram
Professeur, École Polytechnique (LIX) Directeur de thèse

Emmanuel Haucourt
Professeur, École Polytechnique (LIX) Co-directeur de thèse

Paul-André Melliès
Directeur de recherche, IRIF Invité

ii

iii

Not startled, like a lion at sounds
Not snared, like the wind in a net

Not soiled, like a lotus by water
Like the horn of the rhinoceros

Wander alone

Without resistance in all directions
Content with whatever you get
Enduring troubles undismayed

Like the horn of the rhinoceros
Wander alone

However, should you find a companion
Upon whose soul you can rest yours

Across all manner of adversity
Brimming with joy

Wander with him

– Extracts from the Rhinoceros Sutra

iv

v

Acknowledgments

“If something seems impossible, you probably haven’t tried asking for help.”

– Meeting of Minds

This thesis is not the product of a lone existence, existing in a perfect frictionless void.
This work is the accumulation of a thousand insignificant everyday events that piled up
to become science. So without further ado, and in no particular order, I would like to
express my thanks to all those who have accompanied me during these three and a half
years, through the good times and the not so good times.

Although I just announced that I would not play favourites, it doesn’t feel quite right
not starting by thanking my family. For the twenty-seven years of love and support, for
always believing in me, for giving me everything that I could ever want or need, I don’t
think there are enough words to thank you, Mom. And Joy, my dear sister, although
we bicker and fight all the time, you should know that you have always inspired me, and
without you paving the way, I probably wouldn’t be here today, so take my thanks, and
please don’t be too smug about it.

Now, although some might jest that I wasn’t seem much, I want to thank all my fellow
doctoral students from the lab. First to Roman and Mehdi, with whom I shared office
and tips on surviving the thesis and its administrative maze. To Nan, who never failed
to show up during the rough covid times so that people wouldn’t be alone in the lab. To
Bernardo and Nathan, who listened to me ramble on about my life while stealing some
snacks. To Martin and Ricardo, and all the others who brought board games to the office.
To Maria for all the times when you reminded me of some important administrative task
I had forgotten. And to all others for making the lab an amazing place. Thank you.

Unto those, which fate has brought close and far, I have the privilege to call friends.
First to my oldest friend, Makarije, a hundred thanks for staying all these years. I hope
this friendship can last for the next fifteen years. Then the same for Nathan and Etienne,
for being the amazing people and flatmates that they are. Pierre, Martin, Andrey and
Raphaël for being equally awesome and sharing our daily lives. Valentin and Eve, for
lending their ears to my problems. Yann and Thibault for all the game sessions that
may or may not have been during my working hours. Athénaïs, for the pickles. Mateï,
for following me in my dumbest ideas and never failing to out dumb me. And the many
others, for being who they are, for being my friends.

As we arrive towards the end, I want to thank all the members of my jury. Jean-
Cristophe, Paul-André, Claudia and Lisbeth, great researchers whose name I am very
proud to have figure in this thesis. I would also like to particularly thank both my

vi

reviewers, Jean and Georg, who generously accepted to make some room in their packed
scheduled, with little time to spare, to review my thesis. Their advice helped achieve
the manuscript you read today. A thesis, that, thanks to their guidance, I am proud to
present today.

Finally, the last but not least, a great thanks to the best supervisors, Sam and Manu,
who helped me reach the end of this three year odyssey.

CONTENTS vii

Contents

Introduction (Français) 1

Introduction 9

1 Directed topological models of concurrency 19
1.1 Concurrent programming languages . 19

1.1.1 A toy language for concurrent programs 19
1.1.2 Operational semantics . 21
1.1.3 Toward verification of programs . 25

1.2 Control flow graphs . 28
1.2.1 Transition graphs . 28
1.2.2 Introducing resources . 31
1.2.3 Conservative programs . 33
1.2.4 Pruned transition graph . 35

1.3 Directed geometric semantics . 37
1.3.1 Asynchronous semantics . 37
1.3.2 Geometric semantics . 45
1.3.3 Homotopy in directed algebraic topology 50

1.4 The boolean algebra of cubical regions . 56
1.4.1 Cubical cover of simple programs 57
1.4.2 Maximal cubical covers . 58
1.4.3 Computing deadlocks . 60

2 Factoring models of programs 67
2.1 Factorisation à la Ninin . 68

2.1.1 Independent processes . 68
2.1.2 The free commutative monoid of cubical covers 69
2.1.3 Factorization and partition . 71

2.2 The category of components . 73
2.2.1 Category of components of loop-free programs 73
2.2.2 Computing the category of components of loop-free programs . . . 77

2.3 Factoring loop-free categories . 78
2.3.1 Properties of loop-free categories 79
2.3.2 Hashimoto’s theorem for loop-free categories 81

3 A syntactic model of programs 99
3.1 Syntactic semantics of concurrent programs 100

viii CONTENTS

3.1.1 Positions in programs . 100
3.1.2 A partial order on positions . 106
3.1.3 Syntactic semantics properties . 109

3.2 The boolean algebra of syntactic regions 113
3.2.1 Cubes and regions of posets . 113
3.2.2 Finitely complemented regions . 118
3.2.3 Boolean algebra of finitely complemented regions 125

3.3 Syntactic covers of programs . 129
3.3.1 Computing covers and complements 129
3.3.2 Implementation . 133

4 Handling programs with loops 153
4.1 Finite unfolding of concurrent programs 154

4.1.1 Finite unfolding techniques in directed models 154
4.1.2 Slight adjustment to the syntactic model 160
4.1.3 2-unfolding of programs: syntactic version 166

4.2 Syntactic cubical covers for programs with loops 169
4.2.1 Generalizing syntactic cubes . 171
4.2.2 Characterizing cubes of the unfolding 179
4.2.3 Covers and normal forms . 189

4.3 Unfolding conservative covers of loops . 190
4.3.1 Conservative regions and covers . 191
4.3.2 Lifting covers of loops . 197
4.3.3 Maximal cubical cover as a quotient of the 2-unfolding 201

4.4 Deadlock detection algorithm for looped programs 213
4.4.1 Cubical partition and loops . 214
4.4.2 Cubical partition as a quotient of the 2-unfolding 219
4.4.3 Deadlock computation for programs with loops 244

5 Perspectives 253

A Technical Background 257
A.1 Category theory . 257
A.2 Order theory . 261
A.3 Topology . 263

INTRODUCTION - FR 1

Introduction (Français)

Vérification de programmes concurrents

Le Dîner des Philosophes

Nous sommes en l’an 2000. Le monde est très différent depuis la révolte robotique de la
fin des années 90. Trois philosophes, Hume, Wittgenstein et Russell, ramenés à la vie
pour lutter contre la menace mécanique, sont en train de diner. Cependant, l’humanité
est en train de perdre la guerre et leurs vivres s’amenuisent.

À leur table, seules trois baguettes ont été placées. Une entre chacune de leurs places.
Chacun des philosophes suit un ordre strict pour leur dîner qu’ils ne briseront pour rien
au monde :

1. Prendre la baguette à leur droite.
2. Prendre la baguette à leur gauche.
3. Manger leur repas.
4. Reposer la baguette à leur droite.
5. Reposer la baguette à leur gauche.

Si l’un des philosophes arrive à saisir deux baguettes, alors tous les philosophes pourront
manger leur diner et reprendre leurs efforts pour sauver l’humanité. Cependant, si tous
récupèrent la baguette à leur droite en même temps, ils seront piégés éternellement à
attendre que leur voisin respectif libère sa baguette. Têtus comme ils sont, l’humanité
finira par périr avant qu’un seul des philosophes ne commence son repas.

Programmes concurrents

Dans le cas hautement probable qu’une telle situation se produise, nous nous devons
d’étudier de tels problèmes. Heureusement, ceux-ci sont liés à au cas plus concret d’accès
concurrent aux ressources en programmation parallèle. En effet, le dîner des philosophes
est un problème qui fut présenté par Dijkstra dans [12]. Dans cet exemple, chaque
philosophe représente un processus en parallèle et les baguettes, une ressource qu’ils
peuvent protéger (verrouiller) avant d’effectuer leurs tâches pour s’assurer qu’aucun autre
processus n’ait accès à la même ressource au même moment. Lorsque l’accès et l’écriture
à la mémoire ne sont pas des opérations atomiques, la modification de la mémoire peut
avoir des résultats incontrôlables. D’où l’importance d’utiliser de telles pratiques.

L’utilisation de programmes concurrents est de plus en plus répandue, mais ces pro-
grammes sont notoirement plus complexes à concevoir et à vérifier. Les propriétés du

2 INTRODUCTION - FR

programme (comme l’atteignabilité d’un état) doivent être vérifiées indépendamment de
l’ordre relatif dans lequel chaque instruction des différents processus en parallèle est exé-
cutée.

Historiquement, les premiers modèles de la concurrence furent les modèles d’entrelace-
ments. Ces modèles sont construits à partir de toutes les différentes exécutions possibles
d’un programme. Par exemple, en considérant le programme x:=1‖y:=2, composé de
deux instructions d’affectation exécutées en parallèle. Le modèle d’entrelacement associé
serait le graphe suivant avec quatre sommets et quatre arêtes.

x:=1

x:=1

y:=2 y:=2

Les deux ordonnancements potentiels des affectations x:=1 et y:=2 sont données par les
chemins maximaux libellés par x:=1 · y:=2 et y:=2 · x:=1. En théorie, il serait possible
d’appliquer des techniques de vérifications classiques de programmation séquentielle sur
chacun des ordonnancements possibles. En pratique, ceci n’est pas faisable, car le nombre
d’entrelacements grandit exponentiellement avec la taille du programme.

La sémantique ci-dessus ne distingue pas si deux actions sont indépendantes ou non.
En effet, dans notre cas, les deux exécutions mènent au même état à la fin des instructions
x:=1 et y:=2, que nous définissons comme étant indépendantes. Ce ne serait pas le cas si,
par exemple, nous remplacions l’instruction y:=2 par l’instruction x:=2. En effet, dans
ce cas, la dernière instruction exécutée détermine l’état final de la mémoire

Lorsque deux ordonnancements sont identiques à permutation d’instructions indépen-
dantes près, on dit qu’ils sont équivalents. Dans un tel cas, au lieu de vérifier chaque
ordonnancement, il suffit d’en vérifier un seul par classe d’équivalence.

True Concurrency

La remarque du dessus suggère qu’un modèle des programmes concurrent ne devrait pas
seulement prendre en compte tous les ordonnancements possibles d’un programme, mais
également la commutation d’instructions indépendantes, appelé True Concurrency. À
fin de distinguer les chemins indépendants de ceux qui ne le sont pas, les graphes sont
équipés d’une relation ∼ sur les chemins, qui indique leur équivalence. Nous obtenons
ainsi, ce qu’on appelle des graphes asynchrones. Celui associé à notre exemple précédent
est fourni ci-dessous.

x:=1

x:=1

y:=2 y:=2∼

x:=1

x:=1

x:=2 x:=2

INTRODUCTION - FR 3

La plupart des systèmes d’exploitations, fournissent un cas particulier des ressources
abordées précédemment, appelées des mutex, qui ne peuvent être verrouillées par au plus
un seul processus à la fois. Étant donné un mutex a, un processus peut soit verrouiller
le mutex avec l’instruction Pa, soit le libérer avec l’instruction Va. À l’instar de nos
philosophes attendant leur baguette, un processus essayant de verrouiller un mutex qui
l’est déjà sera figé en l’attente de celui-ci. L’utilisation de ces instructions a deux effets sur
la sémantique de nos programmes : elle interdit l’accès à certains états de la mémoire (ceux
qui correspondent au verrouillage d’un mutex par deux processus distinct simultanément)
et par cette action déclare certains chemins comme explicitement non-équivalents. La
sémantique des programmes (A;B)‖(A;B) et (Pa; Va)‖(Pa; Va) est respectivement donnée
ci-dessous.

A B

A B

A

B

A

B

∼

∼

∼

∼

Pa Va

Pa Va

Pa

Va

Pa

Va

Dans le graphe de gauche, toute paire de chemin du début à la fin du graphe est équiv-
alente, alors que dans le graphe de droite (obtenu en retirant les positions “interdites”),
il n’y a plus aucun chemin équivalent. La plupart des modèles de la concurrence que
nous présentons dans cette thèse supposeront que la consommation (la différence entre
le nombre de fois qu’une ressource donnée est verrouillée et libérée) ne dépend pas du
chemin choisit, mais uniquement de ses extrémités. De tels programmes sont appelés
conservatifs. Ceci peut paraitre restrictif, mais en plus d’être théoriquement très utile,
c’est aussi une pratique standard imposée par beaucoup de systèmes concurrents.

Géométrie des programmes

Dans les graphes asynchrones présentés précédemment, l’exécution de programme corre-
spond à des chemins sur les graphes. Les carrés commutatifs peuvent être vus comme
des carrés “remplis”, qui intuitivement permettent d’effectuer des déformations continues
entre les chemins sur les extrémités de ce carré. Ces modèles auraient donc une structure
algébrique avec une interprétation géométrique agréable. Ils correspondent à des espaces
topologiques dans lesquels l’exécution correspond à des chemins et les équivalences d’in-
structions correspond à l’homotopie de chemin, c’est-à-dire une équivalence à déformation
continue près.

Par exemple, nous pouvons associer au programme (Pa; Pb; Vb; Va)||(Pb; Pa; Va; Vb), ap-
pelé la Croix Suisse l’espace topologique ci-dessous, qui correspond au complémentaire
de la région grisée dans l’espace [0, 1] × [0, 1]. Les points de la région grisée correspon-
dent aux positions interdites précédemment mentionnées, qui sont obtenues par double
verrouillage d’un mutex.

4 INTRODUCTION - FR

Pa Pb Vb Va

Pa Pb Vb Va

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pb∼

Va

Vb ∼

Va

Pb ∼

Vb

Pa

∼

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

Dans cet espace, les chemins qui commencent dans le coin en bas à gauche et qui sont
“croissants”, c’est-à-dire ceux qui vont vers le haut et la droite, correspondent aux exé-
cutions. Par exemple, le chemin en pointillés correspond à l’ordonnancement où toutes
les instructions du premier processus sont exécutées en premier, puis toutes celles du
deuxième processus.

Les chemins qui ne sont pas croissants ne correspondent pas à l’exécution d’un pro-
gramme, qui ne peut se faire que dans une direction, celle du temps. C’est pourquoi
nous avons besoin de considérer une variante dirigée des espaces topologiques, équipés de
structure supplémentaire qui spécifie la direction du temps et quels chemins sont crois-
sants.

On peut donc étudier une notion d’homotopie dirigée, qui doit une fois de plus cor-
respondre aux classes d’équivalence d’exécution. Le sémantique topologique dirigée peut
être reliée à nos graphes asynchrones, en effet en comparant notre exemple précédent, il
semble y avoir un lien fort entre les deux.

Vérification de programmes

Cette connexion entre la topologie algébrique et la sémantique de programmes concurrents
nous fournit un nouveau point de vue sur ces programmes et permet de formuler de
nouveaux algorithmes pour leur vérification.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

d

Pb

Pa

Va

Vb

Dans la sémantique ci-dessus, le point d est un deadlock. De ce point, il n’y a aucun
chemin strictement croissant, c’est-à-dire qu’aucune instruction ne peut être exécutée.
Ce problème est spécifique aux programmes concurrents et arrive lorsque des processus
(ou des philosophes) attendent mutuellement que l’autre libère une ressource (ou une
baguette) Tous les points qui peuvent atteindre un deadlock par un chemin “dirigé” sont
appelés à risque. Ils sont représentés par le carré en bas à gauche. Des points qui ne

INTRODUCTION - FR 5

peuvent qu’atteindre un deadlock sont appelés condamnés. Les points du carré en haut
à droite sont inatteignables. Ils ne peuvent pas être atteint depuis un chemin dirigé
partant du début de notre exécution. Ces points ne sont pas aussi problématiques que
les précédents, mais peuvent révéler des défauts de conception dans le code (dont toutes
les instructions devraient avoir une utilité).

Une autre application des techniques géométriques est la réduction du nombre de
chemins et d’états à explorer. Ces méthodes sont basées sur l’idée que des chemins équiv-
alents correspondent à des chemins homotopes. De la sémantique topologique dirigée
d’un programme, une description compacte peut être obtenue par la catégorie de com-
posantes qui identifie les parties du programme où “rien ne se passe” du point de vue de
la concurrence. Reprenons l’exemple de la Croix Suisse. Sa catégorie de composante est
donnée plus bas, où la commutation des diagrammes est signalée par ∼.

∼

∼

Représentation efficace des programmes

Un des problèmes des modèles topologiques est que l’espace d’états est infini, et donc
difficilement implémentable. Ceci a motivé la recherche d’une représentation efficace des
espaces topologiques dirigés. Dans le cas de la composition parallèle de n processus
séquentiels (sans branchements, ni boucles), appelé un programme simple, la sémantique
géométrique associée est une version dirigée du n-cube standard [0, 1]n, duquel un nombre
fini de cube de dimension n ont été retirés. Dans cette situation, il est possible de recouvrir
l’espace par un ensemble fini de n-cubes, que l’on appelle un recouvrement cubique. Un
espace admettant un tel recouvrement est appelé une région cubique. Ces régions sont
d’un intérêt particulier, car les régions interdites et leur complémentaire sont des régions
cubiques.

− −Pa Va

−

−

Pa

Va

− −Pa Va

−

−

Pa

Va

Nous remarquons facilement que toutes les représentations d’un même espace X ⊆ [0, 1]n

par un recouvrement cubique ne sont pas d’une qualité égale. En effet, dans les recouvre-
ments de l’exemple ci-dessus, le recouvrement de gauche, composé de 8 est moins efficace
que celui de droite qui ne contient que 4 cubes. Nous verrons qu’il existe en effet une
notion naturelle de “meilleure” représentation cubique pour un espace donné, qui corre-

6 INTRODUCTION - FR

spond à tous les n-cubes maximaux par la taille qu’il contient. Dans l’exemple ci-dessus,
cela correspond au recouvrement sur la droite.

Cette représentation est le fondement des algorithmes de détection de deadlocks ex-
istant sur les modèles géométriques et contiennent une grande quantité d’information
sur l’indépendance des instructions, qui permet de définir la catégorie de composante
susmentionnée à partir de la donnée du recouvrement maximal.

Factorisation des programmes concurrents

Une autre approche pour réduire l’espace d’états d’un programme simple est de le sé-
parer en plusieurs groupes de processus indépendants. Des processus sont dit indépen-
dants quand n’importe laquelle de leurs instructions peuvent être permutées dans un
ordonnancement sans effet sur l’état du programme.

Ceci implique que pour deux processus P1 et P2, indépendants selon la définition ci-
dessus, la sémantique géométrique de leur composition parallèle sera obtenue comme le
produit de la sémantique de P1 et de celle de P2. Cette propriété s’étend également à la
catégorie de composantes et d’autres invariants dirigés de nos programmes. En un sens,
cette indépendance est une généralisation de la notion d’indépendance des instructions
présentée précédemment. Nous pourrons remarquer que l’existence d’une telle factorisa-
tion permet de décrire l’espace d’états de façon beaucoup plus compacte.

Contributions

Programmes concurrents et le théorème d’Hashimoto

Dans son papier [26], Hashimoto prouve un puissant théorème sur les ordres partiels dont
tous les éléments sont connectés par des zigzags de comparaison. En effet, pour de tels
ordres partiels, toute paire isomorphe de décomposition sous forme de produit admet une
décomposition “plus fine”.

Plus précisément, dans un ordre partiel connecté, pour toute paire
∏
α∈AXα et∏

β∈B Yβ de décomposition en produit, il existe une décomposition
∏
α∈A

∏
β∈B Zα,β

telle que Xα
∼=
∏
b∈B Zα,b et Yβ ∼=

∏
a∈A Za,β pour tout α, β. Cette propriété est appelée

propriété de raffinement forte et implique, entre autre que pour tout ordre partiel fini,
il existe une unique décomposition, à isomorphisme près, sous forme de produit d’ordres
partiels irréductibles. Ce résultat est cependant beaucoup plus fort car la propriété de
raffinement existe également pour des produits infinis.

Considérons l’espace euclidien R3 se décomposant des deux façons suivantes R2 × R
et R × R2. Nous avons le raffinement suivant R × R × R = R × R × {∗} × R avec les
affectations suivantes:

Z1,1 = R Z1,2 = R Z2,1 = {∗} Z2,2 = R

Dans le chapitre 2, nous élargissons ce résultat pour le cas des catégories connectées
sans boucles, qui sont des catégories sans endomorphismes non triviaux. Les catégories
sans-boucles sont des généralisations directes des ensembles partiellement ordonnés, qui
vérifient la même propriété (une sorte d’anti-symétrie généralisée). Contrairement aux
ordres partiels, les catégories sans boucles peuvent admettre plusieurs morphismes en
parallèles, les rendant plus complexes à étudier. Beaucoup des invariants mentionnés

INTRODUCTION - FR 7

précédemment, comme la catégorie de composante, sont des catégories sans boucle lorsque
le programme est lui-même sans boucle, ce qui motive notre approche.

L’existence d’une décomposition sous forme de produit de cette catégorie non seule-
ment réduit la taille des catégories à étudier, et donc de notre représentation, mais donne
également une factorisation de notre programme comme parallélisation de processus in-
dépendants.

Approche syntactique des programmes

Les modèles topologiques permettent l’utilisation d’outils et de résultats théoriques très
puissants. Cependant, ceux-ci n’amènent pas toujours aux algorithmes les plus simples
à implémenter. Nos travaux commencent par l’observation que pour beaucoup des outils
utilisés dans les sémantiques topologiques, très peu découlent des propriétés topologiques
de nos espaces, mais de la syntaxe des programmes. Dans le chapitre 3, nous définis-
sons un nouveau modèle de programmes, représenté par un ordre partiel induit par des
graphes dirigés. Au lieu de construire l’espace des états de façon globale, nous fournissons
des constructions inductives pour les états du programme qui permettent de représenter
plus efficacement l’espace d’états. Cela nous donne une représentation très intuitive des
positions de nos ordres partiels comme des préfixes d’une exécution.

Pour une unique instruction, nous ne considérons que deux états : ⊥ (l’instruction
n’a pas été exécutée) et > (l’instruction a été exécutée). Pour des constructions plus
complexes, par exemple la composition séquentielle P ;Q, nous définissons inductivement
deux ensembles d’états possibles : p;⊥, où p est un état de P et >;q, où q est un état
de Q. Pour la parallélisation P‖Q, les états sont définis par des paires d’états p‖q.

Nous obtenons des modèles très proches des graphes asynchrones, à la différence que
nous ne retirons pas les positions interdites, mais que nous vérifions si celles-ci font parties
des cubes que nous considérons. Même si cela ne parait pas très efficace, c’est ce qui nous
permet de retrouver les constructions des modèles géométriques avec une implémentation
efficace.

Pa Va

Pa Va

Pa

Va

Pa

Va

− −Pa Va

−

−

Pa

Va

>;>‖>;⊥

⊥;⊥‖>;⊥⊥;⊥‖⊥;⊥

>;⊥‖⊥;⊥

>;>‖⊥;⊥

⊥;⊥‖>;>

>;⊥‖>;>

>;>‖>;>

Ensuite nous réimplémenterons la représentation compacte des régions autorisées et in-
terdites des programmes par des ensembles de cubes. Dans notre modèle, ces cubes sont
naturellement définis par des paires de positions (p, q) de nos programmes qui recouvrent
des régions, que l’on appelle leur support, qui contient toutes les positions x telles que
p ≤ x ≤ q. Nous obtenons des résultats similaires quant à l’existence d’une “meilleure
représentation” des régions par une couverture maximale dans le cas des programmes
conservatifs. Nous obtenons également un algorithme de détection de deadlock utilisant
les positions et cubes syntaxiques, dont une implémentation est donnée sur notre site
internet1. Notre implémentation supporte un grand nombre de programme conservatifs,

1https://smimram.github.io/sparkling/

https://smimram.github.io/sparkling/

8 INTRODUCTION - FR

dont une petite librairie est donnée en exemple pour que le lecteur curieux puisse s’y
essayer. Notre implémentation, par la nature inductive de nos positions est très efficace
et plus intuitive que l’approche géométrique.

Vérification des programmes avec des boucles

La vérification des programmes avec des boucles est d’une complexité notoire et les pro-
grammes concurrents ne font pas exception à la règle.

Nombre des outils présentés dans le chapitre 1 échouent en présence de boucles. Dans
le chapitre 4, nous allons élargir notre modèle syntaxique afin de pouvoir appliquer les
algorithmes de détection de deadlock dans le cas de programmes avec des boucles. L’idée
derrière cette méthode est assez simple. Chaque boucle est remplacée par deux copies du
code qu’elle contient, composées de façon séquentielle.

P Q

L

− − − − − −

P L L Q

Une piste similaire a déjà été explorée sur un algorithme de détection différent dans
le papier [17]. Cependant, la borne supérieure du nombre de dépliages nécessaire pour
obtenir la région à risque et condamnée est élevée.

Nous prouverons, qu’avec notre méthode, il suffit de déplier chaque boucle deux fois
afin d’obtenir les régions concernées. Nous obtenons ce résultat en élargissant la corre-
spondance entre les points du dépliage et du programme de base aux recouvrements cu-
biques de ceux-ci. Cette approche est bien plus compliquée, puisqu’elle implique d’élargir
la notion d’intervalle et de cube aux préordres.

INTRODUCTION 9

Introduction

Verification of concurrent programs

Dining Philosophers:

It is the distant future, the year 2000. The world is vastly different since the robotic up-
rising of the mid-nineties. Three philosophers, Hume, Wittgenstein and Russell, brought
back to life to fight against the machine threat, are having dinner. But the forces of
humanity are losing the war and supplies are running low. At their table, only three
chopsticks are set. One between each seat. The philosophers each follow a very strict
order for their dinner, that they shall never break:

1. They take the chopstick to their right.
2. They take the chopstick to their left.
3. They eat their meal.
4. They put back the chopstick to their right
5. They put back the chopstick to their left.

Should one of the philosophers get access to both chopsticks, then all the philosophers
can have their meal and resume their quest to free mankind. However, should they all get
hold of the chopstick on their right at the same time, they will all be locked in a deadly
contest, each waiting on each other to release the fateful cutlery on their left before doing
anything else. Stubborn as they are, humanity shall perish at the hand of its unfeeling
oppressor before a single philosopher has started its meal.

Concurrent programs:

In case of such a highly probable situation ever occurring, we must study these problems,
which are thankfully linked to the more concrete problem of concurrent access to resources
in parallel programming. Indeed, the dining philosophers was an example introduced by
Dijkstra in [12] to represent multiple processes running in parallel. In this example each
of our philosopher represent a process and the chopsticks a resource, which they can
protect (lock) before performing tasks to ensure that no other process accesses the same
resource at the same time. This is important as in most models of memory, where access
and writing to the memory is not an atomic operation, concurrent modification of the
memory can have undefined results (two processes incrementing a variable by 1 at the
same time might increase it by only 1 instead of 2).

10 INTRODUCTION

The use of concurrent programs has become more and more widespread in order to
exploit the features of more recent architectures (multicore processors, clouds, etc.), but
they are notoriously complex to design and conceptualize. Properties of the program (such
as not reaching a certain memory state) have to hold regardless of the relative order in
which each instruction of the different processes constituting the program is executed.

Historically, the first models of concurrent programs were the interleaving models.
These models essentially consist of all different possible executions of a program. For
instance, considering the program x:=1‖y:=2, consisting of two assignment instruction
executed in parallel, the associated interleaving model would be the following graph with
four vertices and four edges.

x:=1

x:=1

y:=2 y:=2

The two possible interleaving of the assignments x:=1 and y:=2 are given by the maximal
paths labelled by x:=1 · y:=2 and y:=2 · x:=1. In theory, we could apply traditional
verification techniques for sequential program on each potential ordering. This is not
feasible in practice because of the sheer number of these executions, which may grow
exponentially with the size of the program.

One could remark that the semantics above does distinguish whether two actions are
independent or not. Indeed, in our case both executions lead to the same state at the end
of x:=1 and y:=2, which we define as being independent. This would not be the case if,
for example we replace the instruction y:=2 with the instruction x:=2. Indeed, in that
case, whichever instruction is executed last determines the final state of the memory.

When two schedulings are the same up to permutation of independent instructions,
we say that they are equivalent. Then, instead of checking all the potential executions,
one can simply check a single execution in each equivalence class to verify the properties
of the program.

True concurrency:

This suggests that a model for concurrent programs should not only incorporate all pos-
sible schedulings of a program (as in traditional interleaving semantics), but also the
commutation of independent instructions, following the principle of what is now called
true concurrency. In order to distinguish between paths that are independent and those
that are not the graphs are equipped with a relation ∼ on paths, indicating whether they
are equivalent in the way explained above. We thus obtain what are called asynchronous
graphs, given for our previous examples below:

INTRODUCTION 11

x:=1

x:=1

y:=2 y:=2∼

x:=1

x:=1

x:=2 x:=2

Most operating systems offer a particular kind of resource, called a mutex, which
can be held by at most one process at a time: given a mutex a, a process has either
the option of locking or releasing the mutex by respectively performing the instructions
Pa or Va. Like our philosophers waiting on their chopsticks, a process trying to lock a
mutex held by another process will remain frozen until that resource is released. The
usage of these instructions has two effects on the semantics: it forbids some states (any
states that corresponds to two different process locking the same resource a with the
instruction Pa has to be removed) and through this process explicitly declares some paths
as not equivalent. For instance, the semantics of (A;B)‖(A;B) and (Pa; Va)‖(Pa; Va) are
respectively:

A B

A B

A

B

A

B

∼

∼

∼

∼

Pa Va

Pa Va

Pa

Va

Pa

Va

In the first graph, any two paths from start to finish are equivalent, while in the second
graph, (which can be obtained by removing the “forbidden” central position and related
vertices), there are no equivalent paths. Most of the models of concurrency we will present
assume that two paths on our state space reaching the same point will have locked/released
a given resource the same number of times. Meaning that the “consumption” of resources
does not depend on the path but only the endpoints. We say that such programs are
conservative. This is a very useful consideration in our study of concurrent programs
which is also generally enforced in practice.

Geometry of programs:

In the asynchronous graph semantics presented above, the executions of the program
correspond to paths in the graph. Moreover, squares equipped with ∼ can be seen as
“filled squares” in which intuitively, there is room to allow for a deformation between
the paths on the extremities of this square. This means that the resulting models bear
algebraic structure with a nice geometric interpretation: roughly, they correspond to
topological spaces, in which executions correspond to paths and the equivalence between
two executions corresponds to a homotopy of paths, i.e. equivalence up to continuous
deformation.

For instance, to the program (Pa; Pb; Vb; Va)||(Pb; Pa; Va; Vb), called the Swiss Cross, is
associated the topological space on the right below, which correspond to the complement

12 INTRODUCTION

of the darkened region in the space [0, 1]× [0, 1]. Points in the darkened region correspond
to the forbidden states mentioned above, which correspond to mutexes being locked twice.

Pa Pb Vb Va

Pa Pb Vb Va

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pb∼

Va

Vb ∼

Va

Pb ∼

Vb

Pa

∼

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

In this space, paths that start from the lower-left corner and which are “increasing”,
i.e. they only go up and to the right, correspond to executions. As an example, the dotted
path traced above, will correspond to the scheduling where all instructions of the first
process are executed first followed by all instructions of the second process.

Paths which are not increasing do not make sense from a computational point of view,
they cannot correspond to the execution of a program. Indeed, going in any other direction
would be equivalent to “un-executing” an instruction. That is why, to study program one
needs to consider a directed variant of topological spaces, which comes equipped with a
notion of direction of time and extra structure that specifies which paths are directed.

One can then study the geometry of these spaces, and in particular the structure of
these directed paths up to a suitable notion of homotopy, which should once again cor-
respond to equivalence classes of executions, up to commutation of independent actions.
The directed topological semantics can also be related to the asynchronous semantics.
Indeed, if we compare our space to the asynchronous graph, there seems to be a strong
link between the two.

Verification of programs:

This connection between algebraic topology and the semantics of concurrent program
provides us with a new point of view on those programs and allows for the formulation
of new algorithms for their verification.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

d

Pb

Pa

Va

Vb

In the semantics above, the point d is a deadlock point. Starting from this point, there is
no strictly increasing path, i.e. no instructions can be executed. This kind of undesirable

INTRODUCTION 13

behaviour is specific to concurrent programs, and occurs when processes (or philosophers)
are waiting on each other to free up a resource (the chopsticks). All points that can reach
a deadlock by a “directed” path, are called unsafe. They are represented in the lower left
corner. They are states from which an execution might lead to a deadlock. If the only
points that can be eventually reached are deadlocks, then the states are called doomed.
Points, in the upper right corner, are called unreachable, they cannot be reached by a
directed path from the initial state of the program, i.e. they are states that will never
appear in an execution. While this is not a concern in itself, it reflects poor design in the
programming (or worse). Based on the geometric characterization of these states, we can
derive algorithms to compute them, providing guarantees about the programs’ safety.

Another application of the geometric techniques is to reduce the number of paths and
states to explore based on the idea that equivalent paths (in the sense of permutation
of independent actions) correspond to homotopic paths. From the directed topologi-
cal semantics of a program, a compact description can be obtained by the category of
components which identifies portions of the program where “nothing happens” from the
concurrent point of view. This is done be reducing these paths to identities. As an ex-
ample, consider the Swiss Cross from above. We give below its category of components,
where commutation of actions is expressed by ∼. In any of the regions delimited by
dotted lines, any path we take does not change how we could have reached its endpoint
state or the states we can reach later on.

∼

∼

Efficient representation of programs:

One problem with our topological models is that the state space is infinite and thus
difficult to implement. This, amongst other things, has motivated the quest for an efficient
representation of the directed topological spaces we are dealing with. In the case of a
parallel composition of n sequential processes, i.e. processes with no conditional branching
or loops, called simple programs, the geometric semantics associated correspond to a
directed version of the standard n-cube [0, 1]n, which consists of the product of n copies
of the unit interval, with a finite number of cubes removed. In this situation we can
cover the space with a finite set of n-cubes (product of n intervals), called a cubical cover,
as shown in the example below. When a space admits a cubical cover, we say it is a
cubical region, which will be of special interest as the set of forbidden positions and its
complement do correspond to such regions.

14 INTRODUCTION

− −Pa Va

−

−

Pa

Va

− −Pa Va

−

−

Pa

Va

To represent a specific space X ⊆ [0, 1]n we can use a set of n-cubes, called a cover, which
cover the space. Indeed, in the example above, the cover on the left with 8 cubes is less
efficient, as it uses more intervals to talk about the same space as the cover on the right
(which only has 4). We will see that there is indeed a natural notion of maximal cover for
a given space, corresponding to all the maximal intervals that cover it. In the example
above, it does indeed correspond to the cover given on the right.

This representation is the basis of the existing deadlock detection algorithm imple-
mented on these geometric models, and also encodes much information about indepen-
dence of instructions, which allows one to define the category of components of the geo-
metric semantics of a simple program from the maximal cover.

Factorization of concurrent programs:

Another way of reducing the size of the state space of a simple program, is to split
it into several groups of processes running independently of each other. We say that
two processes are independent when any of their instructions can be permuted in any
scheduling without changing the outcome. What this implies is that for two processes
P1 and P2, independent in the sense above, the geometric semantics of their parallel
composition P1‖P2 can be obtained as the product of the geometric semantics of P1 and
the geometric semantics of P2. This also extends to the category of components and
other invariants of our programs. In a sense, this is a generalization of the notion of
independence of instructions presented above. One should note that the existence of such
a factorization allows one to describe the state space in a much more compact way. This
process introduced in [31], is very similar to the factorization of integers as products of
prime factors or of polynomials as products of monomials, and it relies on the maximal
covers introduced above.

Contributions

Hashimoto’s theorem and concurrent programs:

In [26], Hashimoto has proved a powerful theorem, stating that, for partial orders where
all elements are connected by a “zigzag” of comparisons, which we call connected posets,
for any pair of isomorphic product decomposition, there exists a “finer” decomposition.

More precisely, in a connected poset, for any pair of product decompositions
∏
α∈AXα

and
∏
β∈B Yβ that are isomorphic, there exists a decomposition

∏
α∈A

∏
β∈B Zα,β such

that Xα
∼=
∏
b∈B Zα,b and Yβ ∼=

∏
a∈A Za,β for any α, β. This is called the strict refine-

ment property, and it implies, among other things, that for any finite connected poset,
there exists a unique decomposition as a product of irreducible factors (up to isomor-
phism). But this result is much more powerful than this, as it also gives a “better”
factorization for any pair of infinite products.

INTRODUCTION 15

For example, if we look at the Euclidean space R3, for the decompositions R2 × R
and R×R2, we have a refinement R×R×R = R×R×{∗}×R of these two decompositions
by assigning:

Z1,1 = R Z1,2 = R Z2,1 = {∗} Z2,2 = R

In Chapter 2, we extend this result to the case of connected loop-free categories, which
are categories with no non-trivial endomorphisms. Loop-free categories are a natural
generalization of posets, which when seen as categories verify the same condition (which
can be seen as more general notion of antisymmetry). But contrary to posets, loop-
free categories might admit multiple parallel morphisms. These categories are a natural
setting in which most of the topological invariants used in practice naturally appear. One
very important example is the category of components mentioned earlier, which gives a
compact representation of our programs.

The existence of a product decomposition for this category not only naturally reduces
the size of the categories to study, and thus of our representation of the state space, but
will also give a factorization of our program as a composition of independent processes
(whose actions can be freely permuted in the scheduling of an execution).

A syntactic approach to programs:

Although topological models bring with them quite powerful tools and theoretical results,
the resulting algorithms they lead to are notoriously hard to implement. Our work starts
by observing that many of the tools that are actually used in the directed topological
models (cubical covers, category of components...) can be directly defined from the dis-
crete syntax of the program. Most constructions are consequences of the directed nature
of this syntax, and the very restrictive structure of programs. In Chapter 3 we define a
new model of programs, represented by partial orders induced by directed graphs, but
instead of constructing the state space globally, we provide an inductive construction for
the states themselves, which allows us to represent the state space more efficiently. This
gives us a very natural interpretation of positions in our posets as prefixes of executions.

For a simple instruction, we consider only two positions ⊥ (not executed) and >
(already executed). For more complex constructions, for example sequential composition
P ;Q, we define inductively the possible positions: p;⊥, where p is a position of P and
>;q, with q a state of Q. For parallel composition P‖Q, the positions are defined as pairs
of positions p‖q.

We obtain models very close to asynchronous graphs, except that we do not remove
the forbidden positions, but check if our cubes intersect with the set of forbidden cubes.
This might appear less efficient, but not removing these positions is what allows us to
get back the tools from directed topology efficiently, as the resulting sets of positions are
extremely simple to define and intersection is not costly. Below, we can compare from left
to right the asynchronous graph, directed geometric semantics and syntactic semantics of
the program Pa; Va‖Pa; Va.

16 INTRODUCTION

Pa Va

Pa Va

Pa

Va

Pa

Va

− −Pa Va

−

−

Pa

Va

>;>‖>;⊥

⊥;⊥‖>;⊥⊥;⊥‖⊥;⊥

>;⊥‖⊥;⊥

>;>‖⊥;⊥

⊥;⊥‖>;>

>;⊥‖>;>

>;>‖>;>

Then, we re-implement the efficient representation of programs as sets of cubes, that
are naturally defined by pairs of positions (p, q) in our programs covering regions, that
we call their supports comprising all points x such that p ≤ x ≤ q. We obtain similar
result for the existence of “best representation” of regions by a maximal cover in the
case of conservative programs. We also obtain a similar deadlock detection algorithm
using syntactic positions and cover, of which we give an implementation on our website2

which handles all conservative programs, with a small library of examples for the curious
reader to try out. By the inductive nature of our syntactic states, we get a very efficient
implementation of the verification algorithms of the geometric approach in the context of
our syntactic model.

Verification of program with loops:

The verification of concurrent programs with loops is notoriously more complicated, even
in the topological setting which has inspired our work.

Many tools and algorithms that we will present in Chapter 1 fail in the presence of
loops. In Chapter 4 we upgrade our new syntactic model to extend the deadlock detection
algorithm that we adapted in Chapter 3. The idea behind the extension is quite simple.
We replace each loop of our program by two copies of the code in the body of the loop,
composed sequentially.

P Q

L

− − − − − −

P L L Q

A similar idea has already been explored on a different algorithm in [17]. But the upper
bound on the number of time a single loop must be unfolded in order to find the correct
unsafe region is quite high.

We will prove that, with our method, all loops must be unfolded at most twice to
recover the correct unsafe and doomed region of our program with loops. We obtain this
by not only defining a correspondence between points of the state space of a program
and its unfolding, but also proving that this correspondence extends to the cubical cov-
ers of these regions. This is much harder to do, as it requires extending the notion of
cube/interval to states with loops.

2https://smimram.github.io/sparkling/

https://smimram.github.io/sparkling/

INTRODUCTION 17

Notations

We follow standard notation and write N for the set of positive integers, Z for the set
of all integers and R for the set of real numbers. We write P(X) for the powerset of a
set X; Y c = X \ Y for the complement of any subset Y of X. We write [1 : n] for the
set {1, . . . , n}; and]x, y[(resp. [x,y]) for open (resp. closed) intervals (Following French
convention). All the classical concepts and definitions used throughout the thesis can be
found in Appendix A

18 INTRODUCTION

1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY 19

Chapter 1
Directed topological models of
concurrency

The story so far: In the beginning the Universe was created. This has made a
lot of people very angry and been widely regarded as a bad move.

– Douglas Adams, The Restaurant at the End of the Universe

In this chapter, we introduce models based on the trace space (the set of all possible
executions and their effect on the memory) and verification techniques for concurrent
programming languages. We introduce these models on the PIMP language, introduced
in [18] which is a slightly modified a version of the IMP language [53], equipped to handle
threads running in parallel. This language was chosen as a good compromise between more
theoretical approaches (CCS, π-calculus [40]) and real world implementations (e.g. Java,
POSIX) of parallel computing. After a brief introduction of the language and verification
of programs (Section 1.1) we introduce a first simple model of programs (Section 1.2)
and adapt it to deal with the specific problems of concurrent programming. Finally, we
introduce a more complex model of programs from [18, Chapter 4] based on directed
topology in Section 1.3 in order to introduce powerful algorithms based on topological
tools to verify programs. In later chapters, we will present our new model of programs,
aiming to conserve the powerful tools introduced in this last topological model. All the
material of this chapter is heavily sourced and inspired from the presentation in [18].

1.1 Concurrent programming languages

1.1.1 A toy language for concurrent programs
Definition 1.1.1. Let Var be a fixed, countable set of variables. We define the language
PIMP from four kinds of syntactic expressions, defined by their grammar:

• The set A of arithmetic expressions:

a ::= x | n | a + a | a * a

where x is a variable in Var and n ∈ N.

20 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

• The set B of boolean expressions, or conditions:

b ::= true | false | a < a | b and b | ¬b | skip

• The set X of actions:
cact ::= x := a | skip

• The set C of commands, or programs:

c ::= c;c | while b do c | if b then c else c | c||c | cact

A program is executed with regard to an environment (a certain state of the memory)
consisting of the values of each variable, in other terms a function σ : Var → Z. In
PIMP, variable values are restricted to integers for the sake of simplicity. Arithmetic
(resp. boolean) expressions evaluate to integers (resp. boolean) in the usual way. Programs
that do not contain the constructor ‖ are called sequential program. We refer to standard
textbooks [53] for details about these.
Remark 1.1.2. For any arithmetic (resp. boolean) function symbol f : Ak → A (respec-
tively g : Bk → B) of arity k, we could extend the grammar of X (resp. B) with the
constructors f(a, . . . , a) (resp. g(b, . . . , b)). The rules we have given can also be seen as a
special case of this definition.

The actions have an effect on the memory of the program and commands define the
control flow (the structure) of the program. Their meaning is given in Section 1.1.1

x:=a assign the evaluation of a to the variable x
skip do nothing
c1;c2 sequentially execute c1 and then c2
if b then c1 else c2 evaluate the boolean expression b and execute c1 (resp. c2)

if the result is true (resp. false)
while b do c execute the command c as long as the boolean expression

b evaluates to true
c1||c2 execute the command c1 in parallel with the command c2

We will focus our study on concurrent programs, in which subprograms (also called
threads or processes) run in parallel. These programs are used to exploit shared computing
resources to their full potential, to take advantage of distributed architecture or to be more
reactive to external events. This structure is the most prevalent in parallel computing
and can be used to represent most parallel tasks.
Example 1.1.3. A simple instance of a parallel program would be distributed computing
where a task (for example processing an image) is first separated by a sequence of in-
structions pi into multiple smaller tasks p1, . . . , pk (processing a small part of the image)
and then assembled back together by a sequence pf . This program would look like

pi; (p1‖ . . . ‖pk); pf

Remark 1.1.4. In this thesis, we will suppose that the parallel execution of process is
sequentially consistent. That is that “the result of any execution is the same as if the
operations of all the processors were executed in some sequential order, and the operations

1.1. CONCURRENT PROGRAMMING LANGUAGES 21

of each individual processor appear in this sequence in the order specified by its program”,
as phrased in [34]. This is not the case for real multiprocessors with relaxed memory
models [50]. We will nonetheless make this assumption for the sake of simplicity, but this
approach could be refined to encompass semantics with relaxed memory models, even
though most modern compilers help ensure sequentially consistent semantics at a higher
level.
Remark 1.1.5. In the rest of this thesis, we only consider programs with finitely many
threads. Although real programming languages allow for threads to be defined recursively,
this would not cover much more practical cases and would introduce a lot more problems
and technical details that we would have to work around. Indeed, the reachability of a
state for finitely multithreaded programs is already PSPACE-complete [32], and becomes
undecidable with recursive threads [47].

1.1.2 Operational semantics
Now that we have a language and programs, we need to describe in a formal way what it
means to execute the program. We do this by describing a semantics for the language [53].
As described before, our programs consists mostly of actions, boolean expressions and
arithmetic expression. These commands are executed w.r.t. to a state, which corresponds
to the state of the memory (variables, etc.) and other resources available to the programs,
and affect said state by their execution or return a value depending on it. For example,
the execution of an action x := 1 would modify the memory cell corresponding to x and
replace its value by 1. Similarly, a boolean expression such as x == 1 would check the
cell where x is stored and return true or false depending on its value.

Definition 1.1.6. We write Σ = ZVar for the set of states, consisting of functions assigning
an integer to each variable. The initial state σ0 ∈ Σ is the constant function equal to 0.
The operational semantics of our programming language consists of three functions:

• J−KA : A → (Σ→ Z) describing the evaluation of arithmetic expressions,

• J−KB : B → (Σ→ B) describing the evaluation of boolean expressions,

• J−KX : X → (Σ→ Σ) describing the effect of actions on the state.

as well as a reduction relation → on pairs 〈σ, c〉 consisting of a command c ∈ C and a
state σ ∈ Σ, which formally describes how a command evaluates in a given environment.

Thus, for instance, J−KA sends each arithmetic expression to a function from the set
of states Σ to the set of integers (corresponding to the evaluation of the expression where
the variables of the program have the values given in the state). Given a ∈ A, we thus
write JaKA : Σ→ Z for its semantic interpretation and similarly for the other functions.

Definition 1.1.7. Let x ∈ Var, n ∈ N, f (resp. g) an arithmetic (resp. boolean) function
of arity k. Given a state σ ∈ Σ. The evaluation of arithmetic expressions is defined as:

JxKA(σ) = σ(x) JnKA(σ) = n Jf(a1, . . . , ak)KA(σ) = f(Ja1KA(σ), . . . , JakKA(σ))

The evaluation of boolean expressions is defined as:

JtrueKB(σ) = > JfalseKB(σ) = ⊥ Jg(b1, . . . , bk)KB(σ) = g(Jb1KB(σ), . . . , JbkKB(σ))

22 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

And the evaluation of actions is defined as:

Jx := aKX (σ) = σ[x 7→ JaKA(σ)]

where σ[x 7→ n] is the function which associates n to x and σ(y) to each y 6= x.

In the following, when the context is clear we will drop the subscripts for J−K. The
skip actions plays a particular role in the reduction.

Definition 1.1.8. Let x ∈ Var, b ∈ B, a ∈ A. The reduction relation → is defined
inductively by the following inference rules:

〈σ, c1〉 → 〈σ′, c′1〉
〈σ, c1;c2〉 → 〈σ′, c′1;c2〉 〈σ, skip;c〉 → 〈σ, c〉

〈σ, c1〉 → 〈σ′, c′1〉
〈σ, c1||c2〉 → 〈σ′, c′1||c2〉

〈σ, c2〉 → 〈σ′, c′2〉
〈σ, c1||c2〉 → 〈σ′, c1||c′2〉

〈σ, skip||c〉 → 〈σ, c〉 〈σ, c||skip〉 → 〈σ, c〉

JbK(σ) = >
〈σ, if b then c1 else c2〉 → 〈σ, c1〉

JbK(σ) = ⊥
〈σ, if b then c1 else c2〉 → 〈σ, c2〉

JbK(σ) = >
〈σ, while b do c 〉 → 〈σ, c;while b do c〉

JbK(σ) = ⊥
〈σ, if b then c〉 → 〈σ, skip〉

c ∈ X \ {skip}
〈σ, c〉 → 〈JcK(σ), skip〉

We write→∗ for the reflexive, transitive closure of→. Notice that for a given language,
there can be many different semantics. Most of the constructions that follow depend on
our choices and would be (slightly) different had we chosen a different semantics.

We will define the state space as the graph whose vertices are the states and the edges
are the transitions, between states. Here we briefly recall, and fix some notations for
directed graphs that will be used throughout the book.

Definition 1.1.9. A directed graph G = (V,E, ∂−, ∂+) consists of a set V of vertices (or
states), a set E of edges and two functions ∂−, ∂+ : E → V respectively sending each edge
to its source and target in V .

Definition 1.1.10. A labelled graph is a graph together with a set L of labels and a
function l : E → L associating a label to each edge.

We sometimes write x
A→ y for the edge eA such that l(eA) = A, ∂−(eA) = x and

∂+(eA) = y.
Example 1.1.11. We give a simple example of a graph G, where V = {w, x, y, z} E =
{eA, eB , eC , eD} such that l(eω) = ω, and

w = ∂−(eA) x = ∂+(eA) = ∂−(eB) = ∂−(eC)

y = ∂+(eB) = ∂+(eD) z = ∂+(eC) = ∂−(eD)

We can represent such a graph in the classical way below, associating to each vertex a
point and each edge an arrow from its source to it target

1.1. CONCURRENT PROGRAMMING LANGUAGES 23

w
x

y

z

A

B

C

D

Definition 1.1.12. Given a graph G, a path π on G is

• a finite non-empty sequence e1 · · · · ·en of edges ei of G such that ∂+(ei) = ∂−(ei+1),

• or the empty path εx on a vertex x.

The source (resp. target) of a non-empty path π is the source of e1 (resp. target of en).
The source and target of the empty path on a vertex x, εx are defined to be x.

Given two paths π, τ such that ∂−(τ) = ∂+(π), we write π · τ for their concatenation.

Definition 1.1.13. Given a graph G, given two vertices x, y of G, we say that x is
reachable from y when there exists a path with source x and target y.

Definition 1.1.14. Given a program P , the state space GP of this program is the graph
whose vertices are the states 〈σ, c〉 and edges are the reductions from Definition 1.1.8.

Definition 1.1.15. Given a program P , its initial state is the state 〈σ0, P 〉 with σ0

defined in Definition 1.1.6. Its terminal states are any states of the form 〈σ, skip〉.

Definition 1.1.16. A path on GP is a morphism of the free category G∗P over the graph GP .
It is equivalent to a sequence π = (〈σi, ci〉 → 〈σi+1, ci+1〉)1≤i<n of reductions. We

write π : 〈σ1, c1〉 →∗ 〈σn, cn〉 to say that π is a path from c1 to cn.

Definition 1.1.17. We call an execution of a command c a sequence of reductions
〈σ0, c〉 →∗ 〈σ′, c′〉. We say that an execution is maximal for a command c when it is
a path of the form 〈σ0, c〉 →∗ 〈σ′, skip〉.

Definition 1.1.18. Given a program P , a state 〈σ, c〉 of GP is said to be reachable when
there exists an execution with 〈σ, c〉 as its target, i.e. there exists a path π : 〈σ0, P 〉 →∗

〈σ, c〉. Otherwise, it is said to be unreachable.

As each of the reductions in Definition 1.1.8, comes from the evaluation of at most
single action or boolean expression, we can label each reduction by this evaluation. In all
other cases (mostly when removing skip instructions), it is labelled by the empty word.
The executions can then be represented by the sequence of actions and boolean conditions
that are executed along the path. More precisely, they will be represented by words on
the alphabet consisting of actions and boolean expression of the program, called the trace
of an execution.

Definition 1.1.19. A word w of length n > 1 over an alphabet A is a finite sequence
w1 . . . wn of elements of A. The empty word ε is the only word of length 0.

We write An for the set of words of length n and A∗ =
⋃
n∈N

An for the set of all words.

24 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Definition 1.1.20. Given two words w = w1 . . . wp and w′ = w′
1 . . . w

′
q on an alphabet

A∗, their concatenation is
w · w′ = w1 . . . wpw

′
1 . . . w

′
q

We extend this to sets of words by setting

R ·R′ = {w · w′ | w,∈ R,w′ ∈ R′} ≈ R×R′.

Where R×R′ is the standard cartesian product of sets.

Definition 1.1.21. To each path π we associate a word tr(π) of (X t B)∗, called the
trace of π, where ε is the empty word

• When π corresponds to the one-step reduction
c ∈ X \ {skip}

〈σ, c〉 → 〈JcK(σ), skip〉
, tr(π) = c.

• When π corresponds to a one-step reduction with JbK(σ) = > as premise, tr(π) = b.
Such a reduction corresponds to choosing a branch in a conditional branching or
entering a while loop.

• When π corresponds to a one-step reduction with JbK(σ) = ⊥ as premise, tr(π) = ¬b.
Such a reduction corresponds to exiting a while loop, or exploring the else branch
of a conditional branching.

• For each reduction π, different from the ones above, deduced with a rule of Defini-
tion 1.1.8 with no premise we have tr(π) = ε.

• For each reduction π deduced with a rule of Definition 1.1.8 with one reduction π′

as premise, we have tr(π) = tr(π′).

• The word associated to a concatenation of reductions is the concatenation of their
associated labels tr(π′ · π) = tr(π′) · tr(π).

• The empty word ε is associated to the empty path, i.e. tr(ε) = ε.

When π : 〈σ0, c〉 →∗ 〈σ, c′〉 is an execution of c (Definition 1.1.17), we call tr(π) an
execution trace of c. It is a maximal execution trace when π is a maximal execution. We
often do not distinguish π and tr(π) and refer to both as execution traces.

We write T (c, σ) the set of all traces of paths π starting from 〈σ, c〉, and simply T (c)
for the set of execution traces.

Example 1.1.22. Let us consider the program (x:=0 || x:=1); if x==0 then c0 else
c1, where the == operator compares two integer values for equality. Because of paral-
lelism, there are two family of maximal executions traces

x:=1 · x:=0 · x==0 · tr(c0)
x:=1 · x:=0 · ¬x==0 · tr(c1)

where tr(ci) is a maximal execution trace of the command ci.

1.1. CONCURRENT PROGRAMMING LANGUAGES 25

Definition 1.1.23. Let π : x→ y a path in GP . Let lπ = (l1, . . . , lk) the subword of tr(π)
obtained by removing all letters not included in X . We define the evaluation of the path
π as

JπK = JlkK ◦ · · · ◦ Jl1K(σ)

Definition 1.1.24. Two commands c1, c2 are contextually equivalent, written c1 ≈ c2,
when for every state σ ∈ Σ, we have T (c1, σ) = T (c2, σ)

Two contextually equivalent commands will have the same effect on the state and
memory of the program, and can thus be simplified.

Proposition 1.1.25. For all commands c, c′, c′′, the following commands are contextually
equivalent:

skip;c ≈ c (c‖c′)‖c′′ ≈ c‖(c′‖c′′)
skip‖c ≈ c ≈ c‖skip c‖c′ ≈ c′‖c

Proof. For the case skip‖c ≈ c, it is proved by directly remarking that the reduction
〈σ, skip‖c〉 → 〈σ, c〉 does not have a premise, so the set of all traces will be the same.

All other contextual equivalences with a skip are treated similarly.
The case (c‖c′)‖c′′ ≈ c‖(c′‖c′′) can be proved by remarking that the executions traces

of a‖b are the interweaving of the execution traces of a and b.

Remark 1.1.26. In this language, the following classical equivalence holds:

while b do c ≈ if b then (c;while b do c)

Thus, when only considering verification up to a certain depth, loops can be unrolled into
a finite number of conditional branching for the purposes of verification

1.1.3 Toward verification of programs
The most common properties we aim at verifying in programs can be regrouped in the
two following categories:

1. Functional properties which describe compliance of the program with a mathemat-
ical specification. For instance, ensuring that an implementation of the factorial
actually associates for each integer n as input, the factorial n! as a result. These
usually describe invariants of the program, expressed in proof-theoretic form [35]
and generally verified using proof assistants, model-checking [8] or abstract inter-
pretation [44].

2. Reachability properties, which correspond to checking that a set of forbidden posi-
tions/states X cannot be reached (Definition 1.1.18) from the initial state through
a series of reductions (execution of our program). When there is no such execution
trace from the initial state of our program to a state of X, we say that the program
is correct w.r.t. the set X. The set of positions could be an error instruction in a
program, and we want to guarantee that it will never be reached. Sometimes we
will also be interested in knowing which states of a program can be reached.

26 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

In this thesis we will focus on reachability properties which are a particular case of
a liveness property (properties that stipulate that “something happens infinitely often”,
detailed in [2]). A naive solution to verifying the correctness of a program would be to
explore all the reduction paths using our favourite tree exploration strategy (e.g. depth-
first, breadth-first…). Then for every state reached during the exploration, we could
check whether it does belong to the set of forbidden positions. This, of course, is terribly
inefficient, as we are essentially exploring all the possible schedulings of the program,
and it may not even terminate when considering programs with loops as shown in the
Example 1.1.27.
Example 1.1.27. Let us consider the following program, computing the Syracuse Sequence
starting from x, described by the command below.

x := n ;
while x!=1 do

i f x mod 2 !=0 then
x := 3∗x +1

else
x := x/2

We want to check that this program terminates, i.e. the state 〈x 7→ 1, skip〉 is always
reached. Then we will need to check the infinite number of traces of the language on the
following regular expression which describes all possible maximal executions:

(x:=n) ·
(
(x! = 1) ·

(
(x//2!=0) · (x:=3x+1)

)
+
(
¬(x mod 2!=0) · (x:=x/2)

))∗

· ¬(x!=1)

These problems come from the loops and are not specific to concurrent programs.
For traditional sequential programs there already exist quite a number of techniques to
deal with these problems (either by considering correctness properties of execution traces
of bounded length and unrolling loops, or use widening operators associated to abstract
interpretation domains [10]).

1.1.3.1 Verification of concurrent programs

In the rest of this thesis, we will focus on the verification of properties specific to concur-
rent programs, and more precisely, on reachability properties of such programs. In this
context, one of the biggest problems we face is the state space explosion problem [7]: in
order to prove that a program is correct, we have to check out all the possible execution
traces coming from all the potential schedulings of the different threads. Even without
loops, the number of traces generated by a parallel composition of threads is exponential
in the size of the program as shown in the Example 1.1.28.
Example 1.1.28. Consider the following program P = A‖ . . . ‖A, composed of n copies of
threads that are a single action A. Finding a scheduling amounts to finding an order on
these n copies. Thus, there are n! different schedulings, and as many execution traces.

Definition 1.1.29. A state 〈σ, c〉 of a program P is called:

• unreachable, if there are no execution traces from the initial state to this state,

1.1. CONCURRENT PROGRAMMING LANGUAGES 27

• deadlocked when the state 〈σ, c〉 does not correspond to a terminal state of the
program (Definition 1.1.15) and there is an execution from the initial state to the
state 〈σ, c〉 that is not a proper prefix of another execution trace,

• unsafe when there is an execution trace with 〈σ, c〉 as target which is the prefix of
an execution trace with a deadlock as target,

• doomed when there is an execution trace with 〈σ, c〉 as target which is not a prefix
of an execution trace reaching the terminal state of the program.

Unreachable positions are positions that may never be reached during the execution of
a program. These don’t seem to be problematic at first, if they are never reached, they
should not pose any problem. But these positions are witnessing the presence of dead
code, that will never be executed. In critical systems, every line of code is there for a
reason, so there should be no such unreachable positions. Finding these positions can
help detect a misconception from the part of the programmer.

Deadlocks pose a much bigger problem. They are positions of the program in which it is
blocked, or “frozen”, and cannot progress at all. This situation generally arises when two
or more threads are waiting on each other to free up a resource before they do anything
else. They are locked in place and functionally dead, hence the term “deadlock” [13].

Finally, unsafe positions are the positions from which it is possible to eventually reach
a deadlock and doomed positions, are the positions that can only reach deadlocks or loop
on forever. This precision is important as we will eventually be considering programs
with loops.

Definition 1.1.30. A program P is safe when its initial state is not unsafe.

In such a program P , there are no execution traces that reach a deadlock. There
might be other problems as shown in the Example 1.1.31 below. The term safe here
is specifically for concurrent related problems and might miss some problems that are
specific to sequential programs. It is good to keep this in mind going forward.
Example 1.1.31. Let’s look at the classical blunder of programming: non-terminating
loops. The program P =x:=2 ; while x>0 do x:=x is technically safe. Even though it
will be stuck in the while loop. If we look at the set of states and transitions, writing
L =while x>0 do x:=x for the loop:

〈x→ 0, x:=2;L〉 x:=2 〈x→ 2, L〉 〈x→ 2, x:=x;L〉

x > 0

x:=x

We see that all executions traces are words of the language x:=2 · (x > 0 ·x:=2)∗ and thus
can always be extended. The program is thus safe in the sense of Definition 1.1.30 even
though a program that loops indefinitely might not be the desired result.

28 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Remark 1.1.32. Deadlocks, unsafe and doomed positions are specific to concurrent pro-
grams. Sequential programs can be shown to not have deadlock positions. An example
of such positions is given later on in Example 1.2.37.
Remark 1.1.33. For deadlocks (and similarly for unsafe and doomed regions) we do not
require all executions reaching our deadlock to not have an extension. A point where
any execution cannot be extended is considered a deadlock. This choice of definition is
because we will, in the following consider programs where the properties of a position
does not depend on the execution trace leading to it (Definition 1.2.23).
Remark 1.1.34. In the rest of this section, we will consider only finite executions. There
are a lot of subtle differences that can arise from the presence of infinite executions (such as
executions that are stuck in a loop, which would not count as deadlocks). More generally
loops bring a lot of problems to the table that we will try to deal with.

The search for deadlocks, unsafe and doomed positions will be the main goal of the
following chapters, as well as dealing with the state explosion problem.

1.2 Control flow graphs
In this section, we present a first model of programs based on a graph representation of
the structure of our program: the transition graph (or a control-flow graph) [1]. This
classical construction allows us to abstract away from the syntax of the programming
language, and present in a simple fashion the subtleties of concurrent languages.

1.2.1 Transition graphs
The first model we introduce is based on directed graphs. Their definition was previously
introduced in Definition 1.1.9. In the following, we will need some additional operations
for combining graphs, to represent more elaborate programs.

Definition 1.2.1. Given three graphs G = (V,E, ∂−, ∂+), G1 = (V1, E1, ∂
−
1 , ∂+

1) and
G2 = (V2, E2, ∂

−
2 , ∂+

2). We define the following operations:

• The disjoint union G = G1 tG2 = (V1 t V2, E1 t E2, ∂
−, ∂+) where

∂−(e) =

{
∂−
1 (e) if e ∈ E1

∂−
2 (e) if e ∈ E2

∂+(e) =

{
∂+
1 (e) if e ∈ E1

∂+
2 (e) if e ∈ E2

• The tensor product G1 ⊗G2 = (V1 × V2, (E1 × V2) t (V1 × E2), ∂
−, ∂+) where

∂−|E1×V2 = ∂−
1 × id ∂+|E1×V2 = ∂+

1 × id

∂−|V1×E2
= id × ∂−

2 ∂+|V1×E2
= id × ∂+

2

• Given x, y ∈ V , the quotient graph G[x = y] is the graph obtained by identifying
the vertices x and y in G

• Given V ′ ⊆ V , the induced subgraph G|V ′ is the restriction of the graph G to the
vertices of V ′ i.e.

G|V ′ = (V ′, E′ = {e ∈ E | ∂−(e) ∈ V ′ and ∂+(e) ∈ V ′}, ∂−|E′ , ∂+|E′)

1.2. CONTROL FLOW GRAPHS 29

As we previously stated, each of the commands in C give rise to a structure in the
code and allows us to easily formalize the notion of a transition graph (or control-flow
graph) associated to a program of our language.

Definition 1.2.2. The transition graph Gc = (Gc, lc, sc, tc) associated to a command c
is a graph Gc with labels in the set L = X

∐
B, equipped with two distinguished vertices

sc, tc ∈ E called the start and end. It is defined inductively as follows.

• Gskip is the graph with a single vertex and no edge:

tskipsskip •

• GA with A ∈ X is the graph with two vertices and a single edge from sA to tA
labelled A.

AsA tA

• Gc1;c2 = (Gc1 tGc2)[tc1 = sc2] is the graph obtained by identifying tc1 and sc2 .

sc1;c2 = sc1 tc1 sc2 tc2 = tc1;c2Gc1 Gc2

• Gc, with c = if b then c1 else c2 is the following graph, obtained by disjoint
union of Gc1 and Gc2 adding a new vertex sc and two labelled transitions b (resp. ¬b)
from sc to sc1 (resp. sc2). Finally we identify tc1 and tc2 .

sc

b

b

sc1

sc2

tc1 = tc2 = tc

Gc1

Gc2

• Gc, with c = while b do c′ is obtained from Gc′ by adding a vertex tc, adding an
edge from tc′ to tc albelled ¬b, and adding an edge tc′ to sc′ labelled b, and sc = tc′ .

sc = tc′ sc′Gc′

b

¬b tc

• Gc1||c2 = Gc1 ⊗Gc2 . where sc1||c2 = (sc1 , sc2) and tc1||c2 = (tc1 , tc2)

30 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

We call a vertex of GP a position of the program P .

The edges labelled by conditions in transition graphs are drawn with dotted arrows to
distinguish them from those labelled by actions. This is only a drawing convention; there
is no difference between the two types of edges except the sets in which they are labelled.
Example 1.2.3. Let us revisit our program of Example 1.1.22:

(x:=0 || x:=1); if x==0 then c0 else c1

For now let us suppose that c0 and c1 are actions in X . It has the following transition
graph:

sc tc

x:
=0

x:=1
x:
=0

x:=1

x
=
=
0

¬x
=
=
0

c 1

c
0

If we count the paths, there are four different paths from sc to tc, whereas there are only
two maximal execution traces.
Remark 1.2.4. For a program P , by construction, there is always a path from sP to any
of its positions p and from p to tP .

There are usually more paths than execution traces as defined in Definition 1.1.21, as
shown in the Example 1.2.3 above. Nonetheless, there is a link between execution traces
and paths on the graph starting at sP , but some refinement must be made.

Definition 1.2.5. A potential execution of a program P is a path in GP starting from
sP . It is maximal when its target is tP

Definition 1.2.6. Given a potential execution π of a program P , the associated potential
execution trace tr(π) is defined as the concatenation of the labels of π.

Determining which traces are actual executions traces of our program and will occur
during its execution depends on the semantics we chose for our programming language,
as formalized in Definition 1.1.6. In our case, it comes down to verifying that all boolean
conditions are verified.

Definition 1.2.7. Given a potential execution π of a program P , we say that it is valid
when its trace tr(π) is of the following form:

• the empty word ε.

• Or tr(π′) ·A, with A ∈ X and π′ a valid execution.

• Or tr(π′) · b, with b ∈ B, π′ a valid execution and JbK ◦ Jπ′K(σ0) = >.

Definition 1.2.8. Given a program P , we define the execution traces T (P) of our pro-
gram P as the set of all valid potential traces.

1.2. CONTROL FLOW GRAPHS 31

Example 1.2.9. Consider the following program

while b do A; if b then B else C

Its set of potential executions are the paths with labels in the language associated to the
regular expression: (

(b ·A)∗ · ¬b · b ·B
)
+
(
(b ·A)∗ · ¬b · ¬b · C

)
The boolean conditions appearing in those traces should be thought of assumptions on
the state of the memory, under which the path is valid. This is why they are called
potential. Here it is easy to determine which are the maximal executions traces. As ¬b
and b cannot both hold without any effect on the memory in between, all traces in the
sub-language (b ·A)∗ · ¬b · b ·B cannot be maximal.

1.2.2 Introducing resources
As we have seen in Example 1.1.22, the execution of a concurrent program can be non-
deterministic, which is a problem unique to these types of programs. This problem is
not only linked to the scheduling of the actions as previously seen. Let us consider the
following program in which two threads try to access and increment the same shared
resource:

x:=0; (x:=x+1||x:=x+1) (1.1)

In a weak memory model (when sequential consistency is not enforced), this is an unspec-
ified outcome [51]. Indeed, one might first think that at the end of the execution x will
be equal to 2, but because of how memory access is implemented in practice, the variable
could contain 1 or a completely unrelated value.
Example 1.2.10. If we suppose that x:=x+1 is not atomic, for example if fetching x from
memory and writing to x can be interleaved with other actions we could have the following
“trace” for the 1.1:

1. The first thread fetches the value of x (= 0) and writes it to a new fresh temporary
variable

2. The second thread fetches the value of x (= 0) and writes it to a new fresh temporary
variable

3. First and second thread increment there respective fresh variable (both equal to 1)
4. First thread writes 1 to x
5. Second thread writes 1 to x

Which would give x = 1 at the end of the execution.
In order to avoid such unpredictable behaviour when using shared memory, most

systems come with constructions called mutex restricting access to portion of codes. Given
a mutex a, a thread may perform the following operations [11], called synchronization
primitives:

• lock the associated resource, modelled by the instruction Pa

• unlock the associated resource, modelled by the instruction Va

32 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

The system then guarantees that the mutex may not be locked more than once. Threads
attempting to lock an already locked thread will be “frozen” and will not progress further
until the resource is unlocked, and they manage to lock it themselves. Thus, to guarantee
the predictability of the behaviour of the program of 1.1, it should be re-written:

x:=0;
(
(Pa; x:=x+1; Va)||(Pa; x:=x+1; Va)

)
Mutexes ensure that the sequence of instruction between Pa and Va, called a blocking
section, is atomic, i.e. it will not be interleaved with instruction from another thread
using the mutex a in the same way. For other examples of programs with resources we
refer to [15].
Remark 1.2.11. The uses of mutexes do not decrease the number of execution traces of
the Example 1.1.22. This non-determinism is intrinsic to parallel programs.

We extend our language (Definition 1.1.1) with a set R = {a, b, . . . } of resources (or
semaphores), together with a function κ : R → N associating with each resource a its
capacity (the number of times it can be locked) κa ∈ N.

Definition 1.2.12. We extend the syntax of PIMP programs with two additional actions
in X for each resource in R:

cact ::= X | Pa | Va

Remark 1.2.13. This also extends the sets of labels and constructions rules for the tran-
sition graph GP in accordance with the rules defined for actions:

PasPa tPa
VasVa tVa

Remark 1.2.14. Mutexes are a particular case of semaphores where κa = 1.
We must also extend the operational semantics of our language introduced in Defini-

tion 1.1.6 to encompass this new notion.

Definition 1.2.15. A state σ for the language PIMP is now the data of two functions
σv : Var → Z and σr : R → Z. Where σv (resp. σr) associates to each variable (resp. re-
source) its content (resp. availability). The initial state σ0 is the function associating to
each variable and each resource 0. We write Σ = ZVar × ZR for the set of states.

Remark 1.2.16. The assumption that resources are at their maximum capacity in the
initial state can be made without loss of generality. Indeed, if for a ∈ R, σ0(a) > 0,
studying P is the same as studying the program P ′ = Pa; . . . ; Pa︸ ︷︷ ︸

σ0(a) times

;P where the program

P ′ starts at maximum capacity for a.
Given x ∈ Var (resp. a ∈ R), we will often write σ(x) (resp. σ(a)) for σv(x) (resp. σr(a))

when the context makes it clear.

Definition 1.2.17. Let x ∈ Var, e ∈ A, a ∈ R. Given a state σ ∈ Σ. The previous
Definition 1.1.7 of the evaluation for the following case is replaced by:

Jx := eKX (σ) = (σv[x 7→ JeKA(σ)], σr)

1.2. CONTROL FLOW GRAPHS 33

The evaluation of the actions Pa and Va are defined as follows:

JPaKX (σv, σr) = (σv, δ
+
a (σr)) JVaKX (σv, σr) = (σv, δ

−
a (σr))

where δ+a (σ)(a) = σ(a)+1, δ−a (σ)(a) = σ(a)−1, and δ+a (σ)(b) = δ−a (σ)(b) = σ(b) if b 6= a.

Definition 1.2.18. Let a ∈ R. We extend the reduction relation with special rules for
the actions Pa and Va which overrides the previous rules in Definition 1.1.8

σr(a) < κa

〈σ, Pa〉 → 〈JPaK(σ), skip〉
σr(a) > 0

〈σ, Va〉 → 〈JVaK(σ), skip〉

The notion of validity of Definition 1.2.7 is extended accordingly to express that in a
valid execution trace, the locked resources have to be available and one cannot add more
instances of a resource of a resource than its capacity.

Definition 1.2.19. Given a potential execution π of a program P with resources, we say
that it is valid when its trace tr(π) is of the following form:

• the empty word ε.

• Or tr(π′) · Pa, with a ∈ R, π′ a valid execution and Jπ′K(σ0)(a) < κa.

• Or tr(π′) · Va, with a ∈ R, π′ a valid execution and Jπ′K(σ0)(a) > 0.

• Or tr(π′) ·A, with A ∈ X \ {Pa, Va} and π′ a valid execution.

• Or tr(π′) · b, with b ∈ B, π′ a valid execution and JbK ◦ Jπ′K(σ0) = >.

Remark 1.2.20. The primitives Pa and Va could have been implemented as features of the
language, but it is much more complicated [11]. Similarly, we could have restricted to
mutex without loss of generality.
Remark 1.2.21. We have chosen semaphores as our synchronization primitives. There are
many other such mechanisms used in practice (e.g. monitors, barriers,…) used to simplify
implementation of some structures. As they can be modelled by semaphores, we do not
lose any generality in our approach.

1.2.3 Conservative programs
Consider the program if b then Pa else skip. Depending on the maximal path we
follow, the number of times the resource a was locked/released depends on whether b is
true or not. As we do not want to have to consider the whole trace space when verifying
the program we will restrict our study to programs where the consumption of resources
does not depend on the path, but only on its endpoints.

Definition 1.2.22. The consumption of a path π w.r.t. a resource a ∈ R and a state σ
is defined as JπK(σ)(a) ∈ Z.

Definition 1.2.23. A program P is conservative when for any pair of paths π, τ : x→ y
in GP with same source and target we have for any state σ ∈ Σ and any resource a ∈ R:

JπK(σ)(a) = JτK(σ)(a)

34 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Definition 1.2.24. Given a conservative program P , its initial state σ0 and a vertex x
in GP , we define the consumption of x, written JxK : R → Z as the restriction of J−K to
the set of resources R:

JxK = JπK(σ0)|R

for some path π : sP → x

The above definition is well-defined. Indeed, the chosen path π does not matter as the
program P is explicitly chosen to be conservative and all vertexes of GP are reachable by
Remark 1.2.4. Furthermore, for any resource a, JxK(a) corresponds to its consumption
w.r.t. the resource a from Definition 1.2.22.

Definition 1.2.25. Given a conservative program P , a vertex of its transition graph GP
is valid (and otherwise forbidden) when for every a ∈ R, we have O ≤ JxK(a) ≤ κa.

Proposition 1.2.26. Given a conservative program P and a path π : x →∗ y in GP , a
state σ ∈ Σ and a resource a ∈ R, then JπK(σ)(a) = σ(a) + JyK(a)− JxK(a).

Proof. See [18, Proposition 3.12].

This shows that, in a conservative program, the number of times a resource has been
locked during a potential execution path π depends only on the target of π.

Proposition 1.2.27. Given a conservative program P and an execution trace π : sP → x
on GP . Then x is a valid vertex, in the sense of Definition 1.2.25.

Proof. See [18, Proposition 3.15].

For conservative programs, we can define a notion of global consumption, directly on
the syntax.

Definition 1.2.28. The consumption of a program P is the partial function ∆(P) : R→
Z defined by induction on P by

∆(Pa) = δa ∆(Va) = −δa ∆(A) = 0

∆(P;Q) = ∆(P||Q) = ∆(P) + ∆(Q)

∆(if b then P else Q) = ∆(P) if ∆(P) = ∆(Q)

∆(while b do P) = 0 if ∆(P) = 0

where 0 is the constant function equal to 0 and δa the indicator function of a.

Proposition 1.2.29. The function ∆ is only partially defined on programs. A program
P is conservative if and only if ∆(P) is well-defined.

Proof. See [18, Proposition 3.8].

The resource consumption ∆(P) gives the amount of times each resource has been
locked or released, i.e. the difference between the global number of instructions Pa and Va
encountered in an execution of P .

1.2. CONTROL FLOW GRAPHS 35

Example 1.2.30. Given a single mutex a, the program if b then Pa else skip is not
conservative. The two paths b·Pa and ¬b·skip from sP to tP have a different consumption.
Indeed,

Jb · PaK(a) = 1 J¬b · skipK(a) = 0

Remark 1.2.31. Checking that a program is conservative is thus linear in the size of the
program as it suffices to check ∆(P).

1.2.4 Pruned transition graph
In the rest of the thesis, we will always suppose that the program we are considering are
conservative. By Proposition 1.2.27, no valid execution trace visits an invalid state. Thus,
we can remove all invalid states from the transition graph, and any associated vertices
without removing any valid paths. This gives us the pruned transition graph defined
below.

Definition 1.2.32. The pruned transition graph GP is obtained from the transition graph
GP by removing all invalid vertices (in the sense of Definition 1.2.25), keeping the terminal
position tP . Formally, with V ′

P the set of valid vertices,

GP =

{
GP |V ′

P
if tp ∈ V ′

P

GP |V ′
P
t tP if tp 6∈ V ′

P

With tP the graph with a single vertex and no edge.

Remark 1.2.33. For future definitions, a program needs an initial and terminal position.
That is why we ensure that tP is not removed in Definition 1.2.32. As the starting position
is always valid, such concerns are unnecessary for sP .

Lemma 1.2.34. The inclusion GP ↪−→ GP induces a bijection between valid paths from
the initial vertex (i.e. execution traces) in both graphs.

Proof. See [18, Lemma 3.18].

The Remark 1.2.4 about reachability of all vertices no longer holds in the pruned
transition graph. This allows us to discover the troublesome positions described in Defi-
nition 1.1.29.

Proposition 1.2.35. Given a conservative program P :

• Let x ∈ GP such that there is no path sP →∗ x. Then x is unreachable.

• Let x ∈ GP \ {tP }. If x is reachable and there is no edge in GP with x as its source,
then x is a deadlock

• Let x ∈ GP , such that there is a path sP →∗ x →∗ y where y is a deadlock, then x
is unsafe.

• Let x ∈ GP , such that there is a path sP →∗ x and no path x →∗ tP . Then x is
doomed.

36 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Proof. See [18, Proposition 3.19].

The above Proposition 1.2.35 allows us to define a less naive verification method for
the properties described in Definition 1.1.29.

Proposition 1.2.36. Properties of Definition 1.1.29 can be discovered from the pruned
transition graph GP of the program P as follows:

• a position which is not reachable in GP from the beginning position is unreachable

• a position in GP \{tP } which is not unreachable and from which there is no transition
is a deadlock

• a position from which there is a path to a potential deadlock is unsafe

• a position from which there is no path to tp is doomed

Proof. See [18, Proposition 3.19].

In the Proposition 1.2.36 we have to consider the position as “potential” candidates as
they might be unreachable in the sense of Definition 1.1.29 (even though they might be
reachable in GP). Unreachable positions in GP are a subset of all unreachable positions,
as shown in Remark 1.2.38, because of properties other than the structure of the program
(i.e. how semaphores are used). This algorithm is still very inefficient, as it searches
through all the vertices of the graph. Much of our focus in the thesis will be on methods
of representing these valid positions in a more compact way.
Example 1.2.37. Let us consider the program P with two mutexes a, b of capacity κa =
κb = 1:

(Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb)

On the left we see its transition graph, and on the right its pruned transition graph (only
exterior edges are labelled for clarity). The transition sP → x is labelled by Pa which
has the effect of increasing the consumption of a. Thus, JxK(a) = 1 = κa. Similarly,
the transition x → y is labelled by Pb which increments the consumption of b. Then
JyK(b) = 1 = κb = κa = JyK(a). Then, by the same argument on the transition y → z we
can see that JzK(a) = 2 > κa, which implies that z is not valid. A similar argument may
be used for the rest of the pruned vertices.

Pa Pb Vb Va

Pa Pb Vb Va

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

y

u

sP

w

x

z

Pa Pb Vb Va

Pa Pb Vb Va

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

y

u

sP

w

x

1.3. DIRECTED GEOMETRIC SEMANTICS 37

Then y is a deadlock as it is not tP and there are no transitions from y. The points
x,w, sP are unsafe as there is a path to y from these vertices. The vertex u is unreachable,
and no positions, except for the deadlock, are doomed.
Remark 1.2.38. Not all undesirable positions are discovered by the Proposition 1.2.36.
Indeed, let us consider the program P = while true do x:=x+1. Its pruned transition
graph can be represented as:

sP

true

x:=x+1

¬ true tP

The position tp is unreachable because the condition ¬true is never true. We could prune
more by removing vertices following branching that are never satisfied, but it would make
pruning our graph undecidable [18]. Furthermore, the non-reachability of these point
does not come from concurrent program features, so we will not dwell on it more than
necessary.

1.3 Directed geometric semantics

1.3.1 Asynchronous semantics
As explained in Section 1.1.3, the number of paths one has to check in order to verify a
program might be exponential in the size of the program. To lower this number, we take
an approach, historically called true concurrency, of considering schedulings of all actions
up to a certain notion of commutation of these actions. Two actions commute when their
effect on any state does not depend on the order in which they are executed.

Definition 1.3.1. We write Sn for the symmetric group of order n composed of all the
permutations of the elements of the set {1, . . . , n}.

Definition 1.3.2. Given n actions A1, . . . , An, we say that A1, . . . , An commute if for
any permutation σ ∈ Sn we have:

JA1K ◦ · · · ◦ JAnK = JAσ(1)K ◦ · · · ◦ JAσ(n)K

When two actions commute, we indicate this on their transition graph in the following
way, by writing ∼ in the centre of the square formed by these paths:

A

A

B B∼

38 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Example 1.3.3. The two actions x:=x+1, x:=x*2 do not commute. Indeed, Jx:=x+1K ◦
Jx:=x*2K(σ0)(x) = 1 which is different from Jx:=x*2K ◦ Jx:=x+1K(σ0)(x) = 2.

On the contrary, it is easy to check that y:=y+1 and x:=x+1 commute.

x:=x*2

x:=x*2

x:=x+1 x:=x+1

y:=y+1

y:=y+1

x:=x+1 x:=x+1∼

Remark 1.3.4. The only paths we are interested in verifying are the execution traces.
Thus, the “correct” notion of commutation we would like to study would be a looser one:
Two actions A,B commute when for each path π : sP → x, we have:

JBK ◦ JAK ◦ JπK(σ0) = JAK ◦ JBK ◦ JπK(σ0)

Unfortunately, this notion of commutativity is undecidable ([36]). Moreover, commuta-
tion in the sense of Definition 1.3.2 implies this commutation, which makes it a suitable
over-approximation.

In the following Section 1.3.1.1, we will enhance the transition graph model by filling
in the cubes of the graph to take into account this notion of commutation as in the
Example 1.3.5 below. To do this we introduce precubical sets and new semantics.
Example 1.3.5. Consider the following program

P = Pa; Va‖Pa; Va‖Pa; Va

Depending on the capacity κa of the resource a,

• If κa = 0 then, there are no transitions between states, and thus the semantics
consists of 8 disjoint vertices.

• If κa = 1, then the transition graph is the skeletal cube, and there are no commu-
tation/independence tiles.

• If κa = 2, then each smaller subdivided face has a commutation tile.

• If κa = 3 then we should fill the whole cube with commutation tiles.

κa = 0 κa = 1 κa = 2 κa = 3

1.3. DIRECTED GEOMETRIC SEMANTICS 39

1.3.1.1 Cubical semantics

A precubical set consists of sets of n-dimensional cubes, for all n ∈ N, together with the
data of their faces (i.e. which n − 1 dimensional cube of the precubical set corresponds
to one of its face): each cube has two faces in each direction i with 0 ≤ i < n, a front
face and a back face. We would also like these higher order cubes to encode notions of
commutation presented in the start of this section.

Definition 1.3.6. A precubical set C consists of a family (Cn)n∈N of sets whose elements
are called n-cubes together with maps

∂+
n,i : Cn → Cn−1 and ∂−

n,i : Cn → Cn−1 (1.2)

for all indices n, i ∈ N such that 0 ≤ i < n. ∂+
n,i and ∂−

n,i respectively associate each
n-cube to its back and front face in the i-th direction such that for 0 ≤ i ≤ j < n and
α, β ∈ {+,−}

∂βn,j ◦ ∂
α
n+1,i = ∂αn,i ◦ ∂

β
n+1,j (1.3)

The 0-cubes and 1-cubes of a precubical sets are often called its vertices and its edges
respectively. Given a set L of labels, a labelled precubical set (C, l) consists of a precubical
set C equipped with a function l : C1 → L associating to each 1-cube (edges) a label and
such that

l ◦ ∂−
2,0 = l ◦ ∂+

2,0 and l ◦ ∂−
2,1 = l ◦ ∂+

2,1

Example 1.3.7. A labelled precubical set C, where Ci = ∅ for all i ≥ 2, is equivalent to a
labelled graph:

• C0 can be seen as the set of its vertices,

• C1 can be seen as the set of its edges,

• ∂+
1,0, ∂

−
1,0 are respectively the source and target functions.

If we have 2-cubes, i.e. C2 6= ∅, then its elements are cells differentiating the empty square
on the left (no 2-cubes) to the “filled” square on the right (corresponding to a 2-cube γ):

f

f

g g

f

f

g gγ

All 2-cubes of our precubical sets are of this form by the conditions on the labelling
function l. We will use n-cubes to indicate that the actions labelling the 1-cubes which
are used in their construction commute.

There is a nice categorical structure that will be of technical interest later on.

40 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Definition 1.3.8. If we define the precubical category � to be the opposite of the category
whose objects are natural numbers and whose morphisms are generated by morphisms of
the form in Eq. (1.2) quotiented by the congruence relations Eq. (1.3). Then the category
of precubical sets �̂ can be defined as the category of presheaves over �, i.e. the category
of functors �op → Set.

Remark 1.3.9. There is a full and faithful embedding of the category of transition graphs
into the category of precubical sets [52] (cf Example 1.3.7).

Definition 1.3.10. Given two precubical sets C and D, the operations previously defined
on graphs can be extended to precubical sets, while coinciding with previous operations
on the embedding of transition graphs.

• The disjoint union C tD is the precubical set defined by

(C tD)n = Cn tDn

with face maps induced by those of C and D

• The tensor product C ⊗D is the precubical set defined by

(C ⊗D)n =
∐

i+j=n

Ci ×Dj

with face maps ∂αn,k : (C⊗D)n → (C⊗D)n−1 defined on (x, y) ∈ Ci×Dj such that
i+ j = n by:

∂αn,k(x, y) =

{
(∂αn,k(x), y) if 0 ≤ k < i

(x, ∂αn,k−i(y)) if i ≤ k < n

• The quotient C[c = c′] is the precubical sets obtained by identifying the 0-cubes c
and c′.

• The restriction C|C′
0

of a precubical sets to a subset C ′
0 ⊆ C0 is defined as the

precubical sets where we remove from each Cn all cubes cn such that there exists
(αi)i≤n and (ij)j≤n such that ∂α1

1,i1
· · · ∂αnn,in(cn) 6∈ C ′

0

These operations naturally extend to labelled precubical sets.

Example 1.3.11. We write I for the precubical set corresponding to the directed graph
with a single edge f between two vertices x, y. Then S1 = I[x = y] is the precubical set
with a single vertex and edge i.e. ∂−

1,0(f) = ∂+
1,0(f) = x.

I = x y
f

S1 =

x

f

1.3. DIRECTED GEOMETRIC SEMANTICS 41

Then the tensor product I ⊗ I correspond to the filled square (which differs from the
underlying graph by the 2-cube in grey). I ⊗ I ⊗ S1 on the right below is the filled torus
where each arrow is a 1-cube, each face of the torus is a 2-cube and the interior is the
only 3-cube.

(f, x)

(f, y)

(x, f) (y, f)

(x, x) (y, x)

(x, y) (y, y)

(f, f)

I ⊗ I I ⊗ I ⊗ S1

Definition 1.3.12. A path π in a precubical set is either :

• a non-empty finite sequence c1, . . . , cn of 1-cubes such that for every 1 ≤ i < n.

∂+
1,0(ci) = ∂−

1,0(ci+1)

• the empty path εx on a 0-cube x.

For the empty path εx, we define ∂+
1,0(εx) = ∂−

1,0(εx) = x. Given two paths π = (ci)1≤i≤n
and τ = (dj)1≤j≤p such that ∂+

1,0(cn) = ∂−
1,0(d1) we write π · τ for their concatenation

defined as the sequence c1 . . . cnd1 . . . dp.

Definition 1.3.13. The precubical transition set associated to a command c is the pre-
cubical set Gc with labels in the set L = X

∐
B, equipped with two distinguished 0-cubes

sc, tc ∈ E called the start and end. It is defined inductively as follows, similarly to
Definition 1.2.2.

• Gskip is the 0-cube.

• GA for A ∈ X is precubical set with the 1-cubes labelled A with ∂−
1,0(A) = sP and

∂+
1,0(A) = tP

AsA tA

• Gc1;c2 = Gc1 tGc2 [tc1 = sc2]

sc1;c2 = sc1 tc1 sc2 tc2 = tc1;c2Gc1 Gc2

• With c = if b then c1 else c2,

Gc = (Gc1 tGc2 tGb tG¬b)[sb = s¬b, tb = sc1 , t¬b = sc2 , tc1 = tc2]

where

42 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Gb =
bsb tb G¬b =

¬bs¬b t¬b

Such that

Gc = sc

b

¬b

sc1

sc2

tc1 = tc2 = tc

Gc1

Gc2

• With c = while b do c′, Gc is obtained similarly to the trnasition graph:

sc = tc′ sc′Gc′

b

¬b tc

• Gc1||c2 = Gc1 ⊗Gc2 . where sc1||c2 = (sc1 , sc2) and tc1||c2 = (tc1 , tc2)

The pruned precubical transition set Gc or cubical semantics of c is then obtained by
restricting to valid vertices (i.e. 0-cubes) in the sense of Definition 1.2.25.

Example 1.3.14. Consider the program P = A||B where A and B are arbitrary actions.
Its asynchronous semantics is shown below:

A

A

B B∼

Most of the two cubes of the precubical transition set are obtained by adding a 2-cube
to each square of this form in the transition graph of the program. Notice that there is a
2-cube introduced by the tensor product GA ⊗GB in the precubical transition set, even
though the actions A and B might not commute. If the actions do not commute, these
cubes will be pruned in the cubical semantics.

Definition 1.3.15. Given a precubical set C, the dihomotopy relation ∼ on paths is
the smallest equivalence relation on path, which is a congruence w.r.t. concatenation and
such that for all h ∈ C2

(∂+
2,1(h) · ∂

−
2,0(h)) ∼ (∂+

2,0(h) · ∂
−
2,1(h))

i.e. for any figure of the following form, the paths are dihomotopic.

1.3. DIRECTED GEOMETRIC SEMANTICS 43

∂−
2,0(h)

∂+
2,0(h)

∂−
2,1(h) ∂+

2,1(h)h

Example 1.3.16. Let us consider the program P = p1‖ . . . ‖pn with n + 1 resources
(ai)0≤i≤n, where a0 = an and pi = Pai ;Pai+1

;Vai ;Vai+1
, commonly know as the “Dining

Philosophers”. For n = 2 its semantics is given below. For n philosophers there are more
than 22n states and more than 2(n−1)2 total traces. In comparison, there are only 2n − 2
maximal traces up to dihomotopy. Below we give the cubical semantics associated to the
case of two philosophers:

Pa1 Pa2 Va1 Va2

Pa1 Pa2 Va1 Va2

Pa2

Pa1

Va2

Va1

Pa2

Pa1

Va2

Va1

Pa1

Pa2∼

Va2

Va ∼

Another example is the program P = p1‖ . . . ‖pn where pi = Pai ;Vai , where all ai are
distinct resources. There are (2n)! maximal traces, but only a single dihomotopy class.

Since the dihomotopy relation is a congruence by definition, the following fundamental
category can be associated to any precubical set.

Definition 1.3.17. The fundamental category ~Π1(C) associated to a precubical set C is
the category whose objects are the vertices of C and morphisms are paths up to dihomo-
topy.

This gives us a more compact representation, of all possible paths up to dihomotopy
and will prove useful in Section 1.3 in relating our models.

1.3.1.2 Coherent programs

Although it was the case in most of the examples up to now, nothing guarantees that
the dihomotopy in the cubical semantics as defined in Definition 1.3.15 corresponds to
the semantic one in Definition 1.3.2, i.e. two paths are homotopic when they can be
transformed into each other by permuting commuting actions as seen in Example 1.3.14.
Programs for which this property holds are called coherent: in these programs, two
dihomotopic paths have the same semantics.

44 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Definition 1.3.18. A conservative program P is said to be coherent when for every pair
of dihomotopic paths π, τ : x →∗ y in GP , π is an execution trace if and only if τ is an
execution trace.
Remark 1.3.19. Furthermore, for any pair of execution dihomotopic execution traces
π, τ : x→∗ y, we have JπK = JτK ([18, 3.42]).
Example 1.3.20. The program x:=1||x:=2 whose cubical semantics is given below is not
coherent.

x:=1

x:=1

x:=2 x:=2∼

Indeed, the two paths π = x:=1 ·x:=2 and τ = x:=2 ·x:=1 are related by a 2-cube and are
thus dihomotopic, but their semantics are not the same JπK(σ0)(x) = 1 6= 2 = JτK(σ0)(x).
Remark 1.3.21. Every sequential program is coherent. Indeed, dihomotopic paths are
generated by the constructor ‖, which gets interpreted as a tensor product of precubical
sets. In sequential programs, the dihomotopy relation is reduced to equality.

Coherent programs have a very nice property: two dihomotopic paths in a coherent
program have the same effect on the state. Thus, in order to verify the executions of
the program, it is enough to check a single representative for each dihomotopy class.
This allows us to reduce the space of traces to explore during verification, giving results
comparable to partial order reduction techniques [23].

Even when compared up to dihomotopy, a program might generate an exponential
number of maximal execution traces, for example the program P = (Pa; Va)‖ . . . ‖(Pa; Va)
of n parallel threads, whose cubical semantics is the skeletal cube of dimension n has n!
dihomotopy classes of execution traces.

In the following, we suppose that all programs are coherent. Following the POSIX
philosophy, we leave to the programmer to make sure this assumption is verified. This
is necessary as the property of being coherent is undecidable in general. Indeed, this
property implies the ability to check if two pointers are referencing the same variable,
also known as the may-alias property, which is undecidable when allowing arithmetic of
pointers [46, Theorem 2.3] (based on work from [36]).
Remark 1.3.22. Given a program P , we can make it coherent by placing instructions Pa
and Va, where a is a fresh mutex, around each action that is not locking or unlocking a
resource as shown in the example below. This translation might seem naïve and partic-
ularly simple, but it is sometimes used in practical applications such as in the OCaml
language [37]. Of course this translation is not optimal, and we refer to [18] for some
possible optimizations.
Example 1.3.23. Let us consider the program x:=1||x:=2. It is not coherent since x:=1
and x:=2 do not commute. Its cubical semantics is shown on the left below and both
maximal execution traces are dihomotopic.

1.3. DIRECTED GEOMETRIC SEMANTICS 45

x:=1

x:=1

x:=2 x:=2∼

Pa x:=1 Va

Pa x:=1 Va

Pa

x:=2

Va

Pa

x:=2

Va

The transformed program is (Pa; x:=1; Va)||(Pa; x:=2; Va). Its pruned cubical semantics is
shown on the right above. As no two paths are dihomotopic, it is coherent.

1.3.2 Geometric semantics
In this section we will present our final model of concurrent programs of our introductory
chapter. This model is based on representing programs by topological spaces, equipped
with a notion of direction, that we call directed spaces. The aim of this model is to
import tools and techniques from algebraic topology in order to simplify the verification
of programs. In those models, execution of a program is naturally assimilated to a path
in the associated space. The reason we add a notion of direction is to encompass the
causality of a program, the order in which operations must be executed (paths should
not go back in time). This is why we define a notion of directed paths, a subset of all
paths, respecting this causality. Many variants of this notion have been proposed, but we
will mainly focus here on d-spaces as introduced by Grandis [25], as they provide more
tractable results and are more widely accepted.

1.3.2.1 Directed spaces

Let us first recall some standard notions of classical topology:

• The unit interval I is the topological space I = [0, 1] with the standard euclidean
topology.

• A path f in a topological space is a continuous map f : I → X. f(0) (resp. f(1)) is
called the source (resp. target) of f .

• We sometimes write f : x → y when talking about the path f when x = f(0) and
y = f(1)

• A loop is a path where f(0) = f(1)

• A path εx is constant when its image is a single point {x}

A directed topological space is then a topological space in the usual sense of the term,
endowed with a coherent set of paths we call its directed paths

Definition 1.3.24. A d-space (X, dX) consists of a topological space X together with a
set dX of paths of X - the directed paths, or d-paths of X - such that:

46 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

• All constant paths are in dX

• Given a directed path f and a weakly increasing function γ : I → I called a partial
reparametrization, then f ◦ γ is also a directed path

• Given f, g two directed paths, such that f(1) = g(0) the concatenation f · g defined
as follows is also a directed path

f · g(t) =

{
f(2t) if 0 ≤ t ≤ 1/2

g(2t− 1) otherwise

A subspace (Y, dY) of a d-space (X, dX) is a subset Y ⊆ X with the topology inherited
from X and where dY = {f ∈ dX | f(I) ⊆ Y }.

The second condition implies in particular that dX is closed under taking sub-paths.

Definition 1.3.25. A morphism of d-spaces, or d-map, h : (X, dX) → (Y, dY) is a con-
tinuous map h : X → Y such that for each f ∈ dX, h ◦ f ∈ dY . We write dTop for the
category of d-spaces and d-maps between them.

Example 1.3.26. The first example of a directed space is the directed unit interval ~I =
(I, dI), with I = [0, 1] the unit interval and dI the set of weakly increasing paths of I.
This structure is of course not unique, for example, we could have equipped I with the
set of constant paths and still got a valid d-space.
Example 1.3.27. Many directed spaces can be generated from pospaces, that is, topological
spaces X equipped with a partial order, whose graph is a closed subspace of X×X i.e. that
is compatible with the topology of the space. The set dX for such a d-space will simply
be the subset of weakly increasing paths. The directed interval from Example 1.3.26 is
an example of such a d-space. Another example is the directed n-cube ~In, generated by
In, equipped with the product order.

An important property of dTop is that it has all limits and colimits [25, Section 1.4.1].
Furthermore, these should behave somewhat similarly to the (co)limits in the underlying
category Top as shown by the following proposition.

Proposition 1.3.28. The category dTop is both complete and co-complete. It has all
limits and colimits. Furthermore, the forgetful functor U : dTop → Top has both a left
and a right adjoint. Thus, it preserves both limits and colimits.

Proof. See [18, Proposition 4.5].

This allows us to give a concrete definition of some (co)limits on directed space, which
will be useful constructors for the topological semantics.

Definition 1.3.29. By Proposition 1.3.28, we can construct some usual (co)limits, as
topological analogues of the operations on graph, as follows:

• The terminal d-space 1 is the space containing a single point ?.

• The cartesian product X×Y of two d-space X and Y is defined as (X×Y, d(X×Y))
where d(X × Y) is the set of paths h : I → X × Y such that the projection π1 ◦ h,
π2 ◦ h are respectively in dX and dY .

1.3. DIRECTED GEOMETRIC SEMANTICS 47

• The disjoint union XtY of two d-space X,Y is defined as (XtY, d(XtY)), where
d(X t Y) is the set of paths h : I → X t Y such that h(I) ⊆ X (resp. h(I) ⊆ Y)
and h when considered as a function from I to X (resp. Y) is in dX (resp. dY).

• The quotient X[x = y] of a d-space X is defined as (X[x = y], dX[x = y]), where
X[x = y] is the space obtained by identifying x and y and dX[x = y] is the set
of the concatenation (up to reparametrization) of finite sequences of directed paths
(fi : si → ti)0≤i≤n in X such that si, ti ∈ {x, y}, except possibly for s1 and tn.

Example 1.3.30. The product ~S1 × ~I of the directed circle and the directed interval gives
the filled cylinder on the left. The product ~S1 × ~S1 gives the empty torus on the right.
The product ~S1 × ~I × ~I would give a filled square toroid similarly to Example 1.3.11.

1.3.2.2 Geometric semantics

The constructions of Section 1.3.2.1 allow us to define semantics of programs in directed
topological spaces. These constructions are extremely similar to the constructions of the
Definition 1.3.31 and Definition 1.2.2, adding a function to keep track of the consumption
of resources.

Definition 1.3.31. Given an operational semantics, to any conservative program P ,
we associate a quadruple (GP , sP , tP , JKP) consisting of a directed topological space GP
equipped with two distinguished points sP , tP ∈ GP , the beginning and the end, as well as
a function J−KP : GP → (R → Z), the resource consumption. This quadruple is defined
inductively as follows:

• For skip, writing 1 = {?} for the terminal d-space:

Gskip = 1 sskip = ? tskip = ? JxK = 0

• For the locking Pa. Only 1 unit of a is consumed and nothing else at the halfway
point 0.5 of the segment

GPa = ~I sPa = 0 tPa = 1 JxK(b) = 1x>0.51b=a

• For the unlocking Va. Similarly, 1 unit of a is released at 0.5.

GVa = ~I sVa = 0 tVa = 1 JxK(b) = −1x≥0.51b=a

48 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

• For any other action A ∈ X ,

GA = ~I sA = 0 tA = 1 JxK = 0

• P = p;q.

Gp;q = (Gp tGq)[tp = sq] sp;q = sp tp;q = tq

JxKp;q(a) =

{
JxKp(a) if x ∈ Gp

JxKp(tp) + JxKq(a) if x ∈ Gq

• P = if b then p else q

GP = (Gp tGq tGb tG¬b)[sb = s¬b, tb = sp, t¬b = sq, tp = tq]

Where given a condition b we have Gb = (~I, 0, 1, 0).

sP

b

¬b

sp

sq

tP

Gp

Gq

sP = sb tP = tp JxKP (a) =


0 if x ∈ Gb ∪G¬b

JxKp(a) if x ∈ Gp

JxKq(a) if x ∈ Gq

• P = while b do q.

GP = (Gq tGb tG¬b)[sq = tb, tq = s¬b, sb = tq]

Where given a condition b we have Gb = (~I, 0, 1, 0).

sP = tq sqGq

b

¬b tP

sP = sb tP = t¬b JxKP (a) =

{
0 if x ∈ Gb ∪G¬b

JxKq(a) if x ∈ Gq

1.3. DIRECTED GEOMETRIC SEMANTICS 49

• P = p||q

Gp||q = Gp ×Gq sp||q = (sp, sq) tp||q=(tp,tq) J(x, y)Kp||q = JxKp + JyKq

The forbidden region is defined as the subspace

Rp = {x ∈ GP | ∃a ∈ R, JxK(a) > κa or JxK(a) < 0}

The geometric semantics GP of a program P is the d-space defined as GP = GP \RP
Remark 1.3.32. The resource consumption for all the above constructions is well-defined
only because we suppose that we are working with conservative programs [18, Remark
4.14].

The geometric semantics of a program can be seen as a “continuous” counterpart to
the semantics we have presented up to now. To each program, we associate a d-space
whose directed paths are the executions of a program.

The commutation of the actions will be transposed as the equivalence of path up
to continuous deformation, a version of “directed” homotopy, or dihomotopy. And we
will prove that this notion of dihomotopy is actually equivalent to the one introduced in
Definition 1.3.15.
Example 1.3.33. The geometric semantics of the dining philosophers from Example 1.3.16
is given below in dimension 2 and 3 respectively on the left and right. On each axis, the
half-integer coordinates have been labelled by the corresponding action being performed.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa1 Pa2 Va1 Va2

Pa2

Pa1

Va2

Va1

- -

-

-

-

-

-

-

-

-

-

-Pa1 Pa2
Va1 Va2

Pa2

Pa3

Va2

Va3

Pa3

Pa1

Va3

Va1

Example 1.3.34. Below we give an example of the geometric semantics for the slightly
less intuitive case of a program with loops

P = (Pa; while b do (Va; Pa))‖(Pa; Va)

Pa
Va

Pa

b
VaPa

¬b

50 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

1.3.3 Homotopy in directed algebraic topology
1.3.3.1 Classical homotopy theory

The notion of homotopy is central to algebraic topology. Two maps with the same (co)do-
main are said to be homotopic when they can be continuously deformed into one another.
We simply introduce basic notions to better introduce the study of dihomotopy, homotopy
for directed spaces in the following section. We refer to the standard textbooks [4, 27] for
more details.

Definition 1.3.35. Given two continuous maps between topological spaces f, g : X → Y ,
a homotopy from f to g is a continuous map h : I ×X → Y such that h(0,−) = f and
h(1,−) = g. When such an h exists, the maps f and g are said to be homotopic, written
f ∼ g.

Remark 1.3.36. If X = I, then f, g : I → Y are paths on Y . And we can thus talk of
homotopy of paths. Such a homotopy is said to be endpoint preserving when h(−, 0) is
the constant function f(0) and h(−, 1) = f(1).

In the following homotopy between two paths is always assumed to be endpoint-
preserving.
Example 1.3.37. Let us consider X = I × I. Then for any two paths f, g : x → y, if
we define h(t, x) = (1 − t)f(x) + tg(x), then h : I × I → X is an endpoint-preserving
homotopy between f and g

In directed spaces, the notion of endpoint preserving homotopy between directed paths
still makes sense, and we could define homotopy classes of directed paths, and an equiv-
alent of the fundamental category associated to a d-space. However, Example 1.3.38
suggests that when only considering directed paths, the notion of homotopy is not the
right one.
Example 1.3.38. We give the respective geometric realization of the programs

Pa; Va; Pb; Vb‖Pa; Va; Pb; Vb and Pa; Va; Pb; Vb‖Pb; Vb; Pa; Va

We consider all directed paths which are homotopic. This gives us on the left 4 homotopy
classes, and on the right only 3 different directed paths up to homotopy. A representative
from each class has been given on the semantics.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Va Pb Vb

Pa

Va

Pb

Vb

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Va Pb Vb

Pb

Vb

Pa

Va

However, both underlying spaces are homeomorphic, and this implies that the homo-
topy types are similar, i.e. we should have the same homotopy classes.

1.3. DIRECTED GEOMETRIC SEMANTICS 51

1.3.3.2 Homotopy in directed spaces

Let us consider the program P = (Pa; Va)‖(Pa; Va)‖(Pa; Va). Its cubical semantics is the
empty cube, with each cube of dimension 2 “filled”, represented on the left of the figure
below, while its geometric semantics is represented on the right.

Pa

Pa

Va

Pa
Va Pa

Va

Va

Pa
Va

Pa

Va

sp

tp

Now let us consider the two paths highlighted in the cubical and geometric semantics.
In the cubical semantics, they are not dihomotopic, whereas in the geometric semantics
there is a homotopy between both paths as shown in the following figures.

Some paths used in the homotopy are not directed. And it would not be difficult to
prove that it is not possible to build a homotopy between the paths that would only go
through directed paths. In order for the relation to match the dihomotopy relation of
cubical semantics, we will need a directed version of homotopy from [24], that would be
restricted to directed paths, preserving the idea that we cannot go back in time during
execution.

Definition 1.3.39. Given a d-space X and two directed paths f, g : ~I → X, a dihomotopy
between the two directed path f, g is an endpoint-preserving homotopy h : I × ~I → X
from f to g such that for every t ∈ I, the path h(t,−) is directed. In this case, f and g
are called dihomotopic, written f ∼ g.

Remark 1.3.40. The set of directed paths dX of a d-space X is in bijection with d-maps
from ~I to X i.e. dX ≈ dTop(~I,X) similarly to how the set of (non-directed) maps in X
is by definition Top(I,X). Thus, f, g in the definition above are indeed directed paths
of X.

Proposition 1.3.41. The dihomotopy relation ∼ satisfies the following properties:

• The relation ∼ is an equivalence relation

• The relation ∼ is compatible with concatenation of paths. Given f, f ′ : x → y and
g, g′ : y → z:

f ∼ f ′ g ∼ g′ implies f · g ∼ f ′ · g′

52 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

• Up to dihomotopy, concatenation of paths is associative and admits the empty path
ε as identity. Given directed paths f : w → x, g : x→ y and h : y → z we have

f · (g · h) ∼ (f · g) · h and εx · f ∼ f · εy

Proof. See [18, Lemma 4.32].

We can define the category of directed paths up to dihomotopy in a given topological
space. Indeed, Proposition 1.3.41 guarantees that composition (concatenation) is well-
defined and that the categorical axioms are well-defined.

Definition 1.3.42. The fundamental category ~Π1(X) of a directed space X is the cate-
gory whose objects are the points of X and whose morphisms are the directed paths up
to dihomotopy.

Remark 1.3.43. The same applies to the homotopy relation. Instead of having a category,
we get a groupoid as the lack of direction allows us to define an inverse for each path.

1.3.3.3 Geometric realization

In this section, we will relate our geometric model with our precubical model presented
in Section 1.3.1 by showing how these precubical sets can be seen as topological spaces
obtained by gluing cubes according to the data in the face maps.

Definition 1.3.44. The topological space In is called the standard n-cube.

. . .

I0 I1 I2 I3 . . .

As seen in the Example 1.3.27, we have a similar notion for directed spaces, and we’ll call
~In, called the standard directed n-cube, whose underlying space is In and directed paths
are the weakly increasing maps.

Each standard n-cube has 2n faces, like n-cubes of precubical sets, a front and a back
face in each direction, which are (n − 1)-cubes included in ~In that can be described by
the following inclusion maps:

ι−n,i : I
n−1 → In ι+n,i : I

n−1 → In

such that
ιαn,i(x0, . . . , xn−1) = (x0, . . . , xi−1,1α=+, xi, . . . , xn−1)

These face maps extend to directed standard n-cubes. It is thus natural to think of these
directed standard n-cube as a directed topological counterpart of an n-cube. Then, a
precubical set is simply a gluing of such cubes.

Formally, this means there is a functor ~I− : � → dTop associating to each element
n a standard directed n-cube ~In, that can be extended to a functor | − | : �̂ → dTop
defined as follows:

1.3. DIRECTED GEOMETRIC SEMANTICS 53

Definition 1.3.45. The directed geometric realization functor | − | : �̂ → dTop is the
functor associating a precubical set C to

|C| =
∐
n∈N

(Cn × ~In)/ ≈

Where

• Cn is equipped with the discrete topology and the discrete d-space structure (i.e.
only constant paths are directed).

• ≈ is the equivalence relation generated by the relations (∂αn,i(x), y) ≈ (x, iαn−1,i(y))

for n ∈ N, x ∈ Cn and y ∈ ~In−1.

Every 0-cube x ∈ C0 is canonically associated to a point in |C|, denoted by |x|,
elements of C1 to segments. . . For further theoretical background on geometric realization
we refer to [39, 22].

Example 1.3.46. The geometric realization of the precubical set corresponding to the
cylinder and the torus given in Example 1.3.11 are the directed cylinder and directed
torus described in Example 1.3.30.

This directed geometrical realization functor gives us a nice way of embedding precu-
bical sets e.g. cubical semantics, in directed topological spaces, e.g. geometric semantic.

Proposition 1.3.47. The directed geometric realization functor |−| preserves all colimits
and sends tensor products of finite precubical sets to cartesians products of their directed
geometric realization.

Proof. See [18, Proposition 4.12].

Proposition 1.3.48. Given a conservative program P such that for each vertex x of the
associated precubical set Cp, JxK(a) ≥ 0 for all resources a. Then, the directed geometric
realization of its cubical semantics CP embeds as a topological space in GP :

|CP | ↪→ GP

Proof. See [18, Proposition 4.19].

Remark 1.3.49. The condition JxK(a) ≥ 0 implies that no resources is released more than
its capacity. This is in general good practice and can be considered to be enforced in
practical cases.

Remark 1.3.50. By slightly modifying the definitions, the above embedding could be
turned into an isomorphism, but would make it harder to understand. This can be safely
assumed for the rest of the thesis.

Example 1.3.51. Consider the program P = (Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb). From left to
right we show its cubical semantics, its directed geometric realization and its geometric
semantics: the embedding of the realization into the geometric semantics is trivial.

54 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Pa Pb Vb Va

Pa Pb Vb Va

Pb

Pa

Va

Vb

Pb

Pa

Va

Vb

Pa

Pb∼

Va

Vb ∼

Va

Pb ∼

Vb

Pa

∼

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

In Proposition 1.3.48, we saw that the geometric semantics GP corresponds to the
cubical semantics CP via its directed geometric realization. Formally, |CP | = GP . In
particular, we can associate to each vertex x ∈ CP a point |x| ∈ GP . We will now show
that both the geometric and cubical semantics model the execution of programs in the
same way. That is to say, they have the same directed paths. This correspondence on
paths will only hold up to dihomotopy (as they are much more paths on GP than CP).
This would not be true should we consider paths simply up to homotopy.

Theorem 1.3.52. Given a conservative program P with CP (resp. GP) as its cubical
(resp. geometric) semantics. The functor induced by the directed geometric realization
between the fundamental category of CP (Definition 1.3.17) and that of GP (Defini-
tion 1.3.42) is full and faithful:

~Π1(CP) ↪→ ~Π1(GP)

This is equivalent to saying that for each vertex x, y ∈ CP , there is a bijection between
paths from x to y (in the cubical sense) and paths from |x| to |y| in GP (up to dihomotopy).

Proof. See [18, Theorem 4.38].

Example 1.3.53. Let us consider the program P = Pa; Va; Pb; Vb‖Pa; Va; Pb; Vb. Its cubical
and geometrical semantics is respectively shown on the left and the right below.

Pa Va Pb Vb

Pa Va Pb Vb

Pa

Va

Pb

Vb

Pa

Va

Pb

Vb

Pa

Pb Vb

∼∼

∼ ∼Pa Va

Vb∼

∼ ∼

∼

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Va Pb Vb

Pa

Va

Pb

Vb

The dotted path in the geometric semantics is dihomotopic to the dashed path, which
corresponds to the image of a path in the cubical semantics.

1.3. DIRECTED GEOMETRIC SEMANTICS 55

The embedding above cannot be directly extended to an equivalence of categories.
Indeed, considering a portion of the dotted path in Example 1.3.53, no dihomotopic path
which is the image of a cubical path can be found. However, it is always possible to
extend a path in the geometric semantics so that it is dihomotopic to the realization of a
cubical path.

Proposition 1.3.54. Given a conservative program P , for every path f : x → y in GP ,
there exists a path g : v1 → v2 in CP and paths f1 : |v1| → x and f2 : y → |v2| such that
the paths f2 · f · f1 and |g| are dihomotopic:

x y

|v1| |v2|

f

f2f1

|g|

Moreover, if x (resp. y) is the realization of a point in CP then v1 (resp. v2) can always
be chosen to be that point.

Proof. See [18, Proposition 4.40].

Remark 1.3.55. The extensions f1 and f2 provided in Proposition 1.3.54 are not canonical.
For instance, consider the geometric semantics of the floating cube P = Pa; Va‖Pa; Va
depicted on the left. The path f can be extended in two different ways f2 and f ′

2:

f
f ′
2

f2

sP

tP

The path f · f2 and f · f ′
2 are respectively dihomotopic to each of the two maximal

path of the geometric realization of CP .
We can now define the geometric semantics of a path by reusing the semantics devel-

oped in Section 1.3.1 as follows.

Definition 1.3.56. Given a coherent conservative program P and two vertices x, y ∈ CP ,
the operational semantics of a path f : |x| → |y| is the function JfK : Σ → Σ defined as
JfK = JgK for some path g : x→ y in CP such that |g| = f

The existence of g is guaranteed by Theorem 1.3.52. Furthermore, the definition
does not depend on the choice of g. Indeed, two paths with the same realization are
dihomotopic (in the cubical sense). As the program is coherent, their semantics are the
same.

56 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Remark 1.3.57. Extremal points such as deadlocks and the starting and ending points in
the geometric realization of the cubical semantics are the geometric realization of a vertex
in CP , so the above definition covers the majority of interesting paths. We refer to [18,
Section 4.2.3] for more details.
Remark 1.3.58. If we consider a program of the form P = A‖B. Its cubical and geometric
semantics are respectively shown on the left and right below.

CP =

A

A

B B∼ GP =

−

A

−B f

A

The path f is dihomotopic to the geometric realization of both maximal paths in the
cubical semantics B ·A and A·B. Then we could define JfK = JAK◦JBK or JfK = JBK◦JAK.
If the program is not coherent, then there is no guarantee that JAK ◦ JBK = JBK ◦ JAK and
that the semantics of f can be defined.

The Proposition 1.3.54 allows us to consider the geometric counterparts of the “unde-
sirable positions” introduced in Definition 1.1.29 and Proposition 1.2.35.

Definition 1.3.59. Given a conservative program P , the points x of its geometric se-
mantics GP corresponding to Definition 1.1.29 can be identified as follows:

• If there is no directed path f : sp → x, then x is unreachable.

• If x 6= tP and the only directed path from x is the empty path εx, then x is a
deadlock.

• If there exists a directed path f : x→ y, where y is a deadlock, then x is unsafe.

• If there is no dipath f : x→ tP , then x is doomed.

The subspace of GP consisting of unreachable (resp. unsafe, resp. doomed) points is called
the unreachable (resp. unsafe, resp. doomed) region.

Remark 1.3.60. We remind that these are only potential deadlock, unsafe, doomed points
as they might be unreachable (in the sense that they might correspond to state that might
not be reached by the program).

1.4 The boolean algebra of cubical regions
We present here the work of [18], which exhibits an algorithm for detecting deadlocks,
unsafe and doomed positions in parallel programs. We will restrict our presentation to the
cases of simple programs (Definition 1.4.1) and refer to [18] for the extension to parallel
composition of more complex threads. The idea of this section is to represent subspaces
of the geometric semantics GP by a set of “maximal” cubes that covers the underlying
subspace. These sets of cubes give a finite representation with some nice properties of
geometric realization of programs which is what we will be manipulating in the algorithms
of Section 1.4.3 to find the deadlocks, unsafe and doomed regions.

1.4. THE BOOLEAN ALGEBRA OF CUBICAL REGIONS 57

1.4.1 Cubical cover of simple programs
Definition 1.4.1. A simple program is a program of the form P = p1‖ . . . ‖pn, where
the programs pi consists purely of sequences of actions (i.e. they do not contain any
conditional branching, loops or parallel composition). In this case, the programs pi are
called processes, and n is called the dimension of the program.

Simple programs are nice and easy to use as their geometric semantics correspond to
a standard directed n-cube, with some cubes carved out as shown in Proposition 1.4.2.

Proposition 1.4.2. The geometric semantics of a simple program P of dimension n is
isomorphic to a d-space of the form

GP = In \
⋃

0≤i≤k

Ri with Ri =

n∏
j=1

]xij , y
i
j [

with l ∈ N and for all i ∈ [1 : n], xij < yij ∈ {−∞} ∪ ~In ∪ {∞}.

Proof. See [18, Equation (5.1)].

Furthermore, the regions Ri in Proposition 1.4.2 can be chosen to correspond to a
conflict on a particular resource ai. For a program with two threads and mutexes, this
means that the lower bound of Ri will correspond to a thread trying to lock ai while it
is already locked up to its capacity. Similarly, the upper bound of Ri will correspond to
an instruction Vai from both threads as in Example 1.4.3 below.
Example 1.4.3. Let us consider the program P = Pa; Va‖Pa; Va. Its geometric semantics,
shown below is clearly isomorphic to ~I2\] 13 ,

2
3 [×]

1
3 ,

2
3 [, where] 13 ,

2
3 [×]

1
3 ,

2
3 [clearly corre-

sponds to the conflict on a. The precise coordinates of the forbidden region do not matter
as we always consider up to isomorphism of d-space.

− −Pa Va

−

−

Pa

Va

For the rest of Section 1.4, we will only consider simple programs for ease of presen-
tation, but the algorithms could be adapted to any programs without loops. See [18,
Section 5.1] for more details.

Definition 1.4.4. Given a space X ⊆ ~In, a cubical cover R = (Ri)i∈I of X is a finite
family of n-cubes with open or closed boundaries in X such that

⋃
i∈I

Ri = X.

Definition 1.4.5. A space X which admits a cubical cover is called a cubical region. We
write Cn (resp. Rn) for the set of cubical covers (resp. regions) included in ~In

Remark 1.4.6. The results presented in [18] and in this section are for cubes that can
have both open and closed boundaries. This has some effects on computations that will
not be detailed here.

58 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

Finite cubical covers provide a nice way of representing the associated cubical region
and manipulating them algorithmically. In the next Chapter 3, we will give a more precise
implementation of these operations on cubes.

Proposition 1.4.7. The set of cubical regions is closed under union, intersection and
complement in ~In. It is thus a boolean subalgebra of the power set P(~In).

Proof. See [18, Proposition 5.3].

1.4.2 Maximal cubical covers
A cubical region generally admits multiple cubical covers, however there is always a
canonical one which represents the cubical region, and usual operations can be performed
quite efficiently on this representation.

Intuitively, a cover that uses bigger intervals is “more economical” than one that uses
smaller intervals, as it requires less of those intervals to cover the same region. This gives
us a first criterion for finding a most economical region, by ordering regions by inclusion
of their intervals.

Definition 1.4.8. Let R and S be two cubical covers of a space X. The relation �
defined as follows is a preorder on the cubical covers of X

R � S ⇐⇒ ∀Ri ∈ R, ∃Sj ∈ S,Ri ⊆ Sj

Example 1.4.9. Let us consider the space X ⊆ ~I2 on the left. Both R = {R1, R2, R3, R4}
and S = {R1, R2} are cubical covers of X, but S � R, as we consider that R carries more
information about the region, as it has more of the maximal cubes included in X.

R1

R2
R3 R4

This is not enough to define the normal form as a maximal element. Indeed, taking
from the previous Example 1.4.9, adding any cube included in R1 to our cover gives an
equivalent cover w.r.t. �. We not only need covers that contain all maximal cubes, but
we need a way of identifying covers that are more economical than others.

Definition 1.4.10. For the finite cubical covers of a space X, we can define a partial
order ≤ from the preorder � as follows. Given R,S two cubical covers, we define

R ≤ S ⇐⇒ R � S � R and S ⊆ R

It can be shown that the poset of cubical covers of X, equipped with ≤ defined above
admits a maximum element. We will call this maximum element the normal form of the
cubical region X, which consists of all the maximal n-cubes included in X. We will write
Cmax
n ⊆ Cn for the set of cubical covers in normal form.

1.4. THE BOOLEAN ALGEBRA OF CUBICAL REGIONS 59

Proposition 1.4.11. Let us consider the functions Un : Cn → Rn which associate to
a cubical cover R the region Un(R) =

⋃
Ri∈R

Ri and Cmax
n which associate to a cubical

region X, the finite set Cmax
n (X) of its maximal cubes w.r.t. to inclusion. Then there

is an adjunction of functors, between the posets (Cn,≤) and (Rn,⊆), called a Galois
connection, written

(Cn,≤) (Rn,⊆)
Cmax
n

Un

When restricting to Un to Cmax
n , this Galois connection induces a bijection between the

cubical regions Rn and the cubical covers in normal form Cmax
n .

Proof. See [18, Proposition 5.6].

Among other things, this implies that Cmax
n (X) is the maximal cubical cover of a

cubical region X w.r.t. to ≤, which we will define as the normal form of the cubical
region X. The Galois connection above extends the boolean algebra structure to the
normal forms, but it is not very useful in practice because we do not have yet a way of
computing the normal cover associated to a region. But as we will see, we can compute
“pre-normal” covers of the complement of cubical covers.

Definition 1.4.12. Given two n-cubes R1 =
∏n
k=1[x

1
k, y

1
k] and R2 =

∏n
i=1[x

2
k, y

2
k] of ~I,

we define their intersection R1 ∩R2 as follows:

R1 ∩R2 =

n∏
k=1

[max(x1
k, x

2
k),min(y1k, y

2
k)]

Definition 1.4.13. Given two cubical covers R = (Ri)i∈I , S = (Sj)j∈J , we define their
intersection R ∩ S as follows:

R ∩ S = {Ri ∩ Sj | Ri ∈ R,Sj ∈ S}

Proposition 1.4.14. Given an n-cube C =
∏n
j=1]xj , yj [of ~In. The maximal cubical

cover of its complement is given by

Cc = {
n∏
i=1

I0i,j | 0 ≤ j ≤ n} ∪ {
n∏
i=1

I1i,j | 0 ≤ j ≤ n}

where

I0i,j =

{
I if i 6= j

[0, xj] if i = j
I1i,j =

{
I if i 6= j

[yj , 1] if i = j

Proof. It is trivial to check that all the cubes are in the complement. And by definition
they can’t be included in any other cube of the complement and any other cube will be
included in such a cube.

Remark 1.4.15. A similar property holds in the case where some boundaries of R are
closed.

60 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

A cover is said to be prenormal if it contains the normal cover. This implies that we
can obtain the normal cover by removing all the cubes that are included in another cube
of the prenormal cover.

The intersection in Definition 1.4.13 of two prenormal region can be shown to still be
prenormal. Then, a prenormal cover of the complement of any cubical cover R = (Ri)i∈I
can be computed as the intersection of the normal (a fortiori prenormal) forms Rc

i of the
complements of Ri of Proposition 1.4.14.

Proposition 1.4.16. The complement of a cubical cover R of a cubical region X as given
in Proposition 1.4.14 is a pre-normal cover of the region Xc.

Proof. As discussed in the description of [18, Algorithm 5.7], it can be shown that inter-
section and complement of a prenormal cover are still prenormal. Thus, the complement
of a cubical cover R computed as the intersection of the normal (a fortiori prenormal)
forms Rc

i of the complements of Ri of Proposition 1.4.14 is prenormal.

Example 1.4.17. Let us apply this to the Swiss Cross, whose semantics has already been
described in Example 1.3.51. The forbidden region has two maximal cubes, whose com-
plement are respectively shown on the two figures on the right and left.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb
−

−

−

−

−

−

−
−

−

−

−

−

−
−

−
−

−

−

−
−

−
−

−

−

−
−

−
−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

By computing the intersections of all the cubes above in light grey, we get the following
maximal cubes, as well as 4 unnecessary cubes shown on the right.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−
−

−
−

−

−

−
−

−
−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

Thus, by taking the twice complemented region Rcc, and removing all the cubes that are
not maximal, we get the normal form Cmax

n (X) of the cubical region X.
Computing the normal cover of X will allow us to compute the doomed and unsafe

regions in Algorithm 1.4.33.

1.4.3 Computing deadlocks
1.4.3.1 Cubical partitions

The algorithm from [18, Section 5.1] works by first computing a suitable cubical par-
tition of our allowed space X, then defining a relation between cubes of this partition
corresponding to a notion of “directed connectedness”.

1.4. THE BOOLEAN ALGEBRA OF CUBICAL REGIONS 61

Definition 1.4.18. Let R = (Ri)i∈I be a cubical cover of X, such that the disjoint union∐
i∈I

Ri = X. Then we say that R is a cubical partition of X. We say that a partition R is

coarser than a partition R′ if R 4 R′.

Definition 1.4.19. A partition R is compatible with a cubical cover C if for each Cj ∈ C,
Ri ⊆ Cj or Ri ∩ Cj = ∅.

Let us suppose given a set X, and a subset R = (Ri)i∈I of P(X), such that R covers
X. The coarsest partition of X that is compatible with R is obtained by the following
method:

1. For each i ∈ I, we define Si = Ri or its complement Si = Rc
i .

2. We perform the intersection of all Si for i ∈ I.

For each different choice of Ri’s, unless we chose the complement for each Ri, the in-
tersection generates a subset of X. The set of all these intersections, where we exclude the
case where only the complements have been chosen, then generates the coarsest partition
of X compatible with R.
Example 1.4.20. Let us consider the following subset of [0, 1] × [0, 1] in grey below, and
the associated maximal cover:

R2

R1

The method described above gives us the following three subsets

Rc
1 ∩R2 R1 ∩Rc

2 R1 ∩R2

In our case we are not actually dealing with a subset Y of P(X), but with its associated
cubical cover R. We would like the partition we obtain, to be a cubical cover, that is

62 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

compatible with R and that it remains a partition when we consider the cubes of the
cover. As we have explained that the underlying region already form a partition, the only
thing to check is that we can find a maximal cubical cover of each element of the partition
with no overlapping cubes.

We define a first try at a cubical cover compatible with a given partition

Definition 1.4.21. Given a cubical cover R of a set X, we define the generic 1-dimensional
cubical partition:

Γm1 (R) =
⋃

UqV=R
U 6=∅

Cmax(ZU,V)

with ZU,V =
⋂
u∈U

[u]
⋂
v∈V

[v]c

Example 1.4.22. Let us consider the Example 1.4.20 above. Each of the subsets generated
by the intersections does indeed admit a cubical cover, where none are overlapping.
Example 1.4.23. If the initial cover R of X was not maximal, this process does not give
a proper cubical partition. Indeed, let us look at the region covered by {R1, R2} below.
The subsets of X generated by the partition do admit a cubical cover, but their cubes
overlap.

R1

R2

Cmax(Rc
1 ∩R2)

Remark 1.4.24. It is important to find a partition as coarse as possible as the Algo-
rithm 1.4.33 scales quadratically with the size of the cubical partition.

Unfortunately, this formula is not applicable beyond dimension 2. Indeed, even for
maximal cubical covers of cubical regions of ~I3, the method above does not give a cubical
partition as shown in Example 1.4.26 below.
Remark 1.4.25. In dimension 1, the method above does produce a cubical partition.
Indeed, the complement of an interval [x, y] ⊆ I is a region [0, x[×]y, 1], which is covered
by two disconnected cubes. Then, the iterated intersection of cubes and their complements
in dimension 1 will always lead to sets of disconnected cubes.
Example 1.4.26. Let us consider the program

P = (Pa; Pb; Vb; Va)‖(Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb)

where a, b are two semaphores of arity 2. The two cubes R1, R2 given below on the left
form a cover of its forbidden region. Now, if we consider the intersection Rc

1 ∩R2 on the
right, we can see that the two maximal cubes S1 and S2 overlap in the lower right corner.

1.4. THE BOOLEAN ALGEBRA OF CUBICAL REGIONS 63

R1

R2

S2

S1

As we previously explained in Remark 1.4.24, it is important to find a partition as
coarse as possible for efficiency, but actually computing the coarsest cubical partition is
not necessary by any means, and any cubical partition will suffice.

For now, the best partition we can reasonably implement is the following “generic
partition”. Let us suppose given a subset X ⊆ In, and a cubical cover R = (Ri)i∈I of X.
The generic cubical partition is obtained by the following steps:

1. For each axis 1 ≤ k ≤ n, project each cube Ri ∈ R on the axis k, i.e. for each cube
Ri =

∏n
j=1[x

i
j , y

i
j], take the projection [xik, y

i
k].

2. For each axis 1 ≤ k ≤ n, compute the coarsest cubical partition Γm1 (([xik, y
i
k])i∈I)

associated to the cover ([xik, y
i
k])i∈I

3. Compute cartesian product of all covers Γm1 (([xik, y
i
k])i∈I).

4. Remove all the cubes that are not included in X.

Definition 1.4.27. Given a cubical cover R of a region X ⊆ ~In, we define the generic
cubical partition Γm(R) compatible with R as:

Γm(R) =

(n∏
i=1

Γm1
(
{ci | ∃(rk)1≤k≤n ∈ R, ri = ci}

))⋂
Cn(R)

with Γm1 the generic 1-dimensional generic partition defined in Definition 1.4.21.

It is clear that this gives a partition compatible with the cover, and is what is used in
[18, Chapter 5].

Example 1.4.28. Let us consider the Swiss Cross P = (Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb), whose
geometric semantics, and associated maximal cover R are given below on the left. Then,
in the middle, we get the projection R1 and R2 of the cubes of R on both axes. Finally, on
the right, the coarsest cubical partition Γm1 (Ri), i = 1, 2 compatible with the projections.

64 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

− − − −
−
−
−
−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−
−
−
−
−

− − − − −

Pb

Pa

Va

Vb

Pa Pb Vb Va

Computing the product Γm1 (R1)× Γm1 (R2), we obtain the partition on the left below.
We see that this partition is not only a partition of the authorized region but of all ~I2.
Then by removing the cubes whose associated cubical region is not in X, we get the
partition of X on the right.

− − − −

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb
− − − −
−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

This method gives a cubical partition of the original subset X, which in practice, is
quite close to the coarsest cubical partition. Of course some cubes might be partitioned
too finely. One could think of trying to fuse cubes and see if the partition remains
compatible. In practice the cost of the union and checking proves too great compared
with simply executing Algorithm 1.4.33 on a suboptimal cover.

Furthermore, one can check that even for simple programs, the “coarsest cubical
partition” might not be properly defined. In particular, going back to Example 1.4.26,
there is no single maximal partition in terms of coarseness as shown below:

Example 1.4.29. Let us consider the Example 1.4.26, and more precisely, the region Rc
1 ∩

R2, which is the square torus given below. In this case we have two maximal covers
S = (Si)1≤i≤4 on the left and S′ = (S′

i)1≤i≤4 on the right. The two partitions given
below are both local maximum in terms of coarseness.

1.4. THE BOOLEAN ALGEBRA OF CUBICAL REGIONS 65

S4

S2

S3

S1

S′
4

S′
2

S′
3

S′
1

Remark 1.4.30. As we have defined the intersection and complement of cubes and cubical
covers, the computation can be performed directly on the cover for greater efficiency.

1.4.3.2 Ordering elements of the partition

The algorithm is based on a “reachability” order defined on the cubes of the coarsest
partition. We say that a cube Ri is in the past of Rj , when every point of Ri is the origin
of a directed path of X that reaches Rj . “Being in the past of” is actually the reflexive
and transitive closure of the following relation.

Definition 1.4.31. Let R = (Ri)i∈I be a cubical partition of the space X. We define the
pre-order C∗ on elements of R as the reflexive transitive closure of the following relation:
Ri C Rj if and only if for all x ∈ [Ri] there exists y ∈ [Rj] and a path of [Ri] ∪ [Rj] from
x to y.

The relation C can be algorithmically computed by suitably comparing the boundaries.

Proposition 1.4.32. Given a topological space X ⊆ ~In, and two cubes R and S of X:

R C S if and only if R ⊆↓ ((R ∩ S) ∪ (R ∩ S))

where, for any set Y , Y correspond to the topological closure of Y and ↓ Y = {x ∈
X | ∃y ∈ Y, x ≤ y} is the downwards closure of Y .

Proof. [30, Proposition 7.5]

In the case of simple programs, the condition for being in the past is even stronger.
Indeed, if R C S, we can even ask the upper bound of R to be in the set (R∩S)∪ (R∩S)
[30, Corollary 7.1]. Then it is only a matter of computing intersection of cubes (being
careful around open borders).

It is on this resulting graph that we find the deadlocks using [18, Algorithm 5.7].
Indeed, the upper corner of an n-cubes Ri of this partition that is not the terminal cube
of our program and such that there are no cubes Rj such that Ri C Rj is a deadlock [18,
Section 5.2].

Algorithm 1.4.33. Let Xc be the forbidden region of a program P . X ⊆ ~In. We can
compute:

66 1. DIRECTED TOPOLOGICAL MODELS OF CONCURRENCY

1. The normal cubical cover Cmax
n (X) of X as maximal cubes of the complement of

Xc.

2. The generic cubical partition Γm(Cmax
n (X)) that is compatible with Cmax

n (X).

3. Deadlocks are the cubes of Γm(Cmax
n (X))\Rmax that are maximal (w.r.t. C∗), where

Rmax is the only cube of Γm(Cmax
n (X)) containing the maximal point of ~In.

4. A cubical partition U(X) of the unsafe region as the downward closure (w.r.t. C∗)
of the deadlocks.

5. A cubical partition D(X) of the doomed region as U(X) \ E(X), where E(X) is the
downwards closure (w.r.t. C∗) of Rmax.

Example 1.4.34. Let us take the Swiss cross once more, P = Pa; Pb; Vb; Va‖Pb; Pa; Va; Vb
whose maximal cover has already been computed in Example 1.4.17. Then we can com-
pute the coarsest partition of the allowed region, as shown on the left. From this we find
the unsafe region U and doomed region D.

H H H H

H H

H H

H H H H

O O O O

O O

O O

O O O O

H
H

H
H

H
H

H
H

H
H

H
H

O
O

O
O

O
O

O
O

O
O

O
O

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−
−

−

−

−

−

−
−

−
−

Pa Pb Vb Va

Pb

Pa

Va

Vb

U

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pb

Pa

Va

Vb

D

This algorithm works well for programs without loops, but is quite complicated to
implement (because of all the edge cases for the open and closed boundaries). Further-
more, this algorithm does not handle loops, although another algorithm from [18, Section
5.2] can handle some simple cases with some trade-offs. This will be explored later in
Section 4.1.1.2. In Chapter 3, we will develop a new model of programs, based directly
on the syntax of our programs, in order to make it easier to implement. We will show
that even though we forewent the topological tools, we can still get back similar results,
such as the deadlock detection Algorithm 1.4.33, with much more tractable results.

2. FACTORING MODELS OF PROGRAMS 67

Chapter 2
Factoring models of programs

A coconut is just a nut.

– Oliver Lugg, 27 Unhelpful Facts About Category Theory

One way of reducing the size of the state space of a concurrent program is to split it
into several groups of processes running independently of each other, i.e. the execution
of each group has no effect on the execution of the others. In such situations, we can
analyse the processes independently and thus reason modularly on those. This process is
very similar to the factorization of integers as products of prime factors or of polynomials
as products of monomials.

In order to address this question, Ninin [45, 5] has provided an algorithm in order to
factorize isothetic regions (as products of smaller regions), which covers in particular the
geometric semantics of concurrent programs as introduced in Chapter 1. From this, we
can deduce a factorization of the original program as a product of independent processes.
In this chapter, we adopt another point of view and consider factorization of the category
of components (instead of the geometric semantics). Informally, this category describes
all the possible executions of the program, in a very compact way, by trivializing all
transitions which have no real impact on the control flow of the program. For loop-free
programs, such categories have the property of being loop-free, which roughly means that
there is no non-trivial endomorphism. This motivates our quest for the more general
question of factorizing loop-free categories.

In the 50s, Hashimoto has proved a very strong refinement result for posets [26,
49]: any two decompositions of a connected poset as a cartesian product of posets have
a common refinement. In this chapter, we generalize this and show that this result
in fact holds more generally for connected loop-free categories. This thus provides us
with another approach to the decomposition of the semantics of concurrent (loop-free)
programs.

We will first present the existing factorization techniques and framework introduced
for program verification. Then we will motivate our extension of Hashimoto’s theorem by
introducing the category of components, a directed topological invariant which preserves
products, and whose factorization leads to the factorization of programs. Finally, we
will detail the proof of our refinement theorem for loop-free categories and the larger
implications of this property for these categories.

68 2. FACTORING MODELS OF PROGRAMS

2.1 Factorisation à la Ninin

2.1.1 Independent processes
Two process are independent when their execution can be freely interleaved without any
effect on their evaluation, i.e. when the geometric semantics of their parallel composition
is equal to the product of their geometric semantics:

Definition 2.1.1. In a program P‖Q, the processes P and Q are independent when

GP‖Q = GP × GQ.

Once this notion has been introduced, it is natural to investigate decompositions of pro-
grams as products of independent processes, which are maximal in the sense they have
the greatest number of non-trivial factors. For some special classes of programs (parallel
compositions of conservative programs), such decompositions have been shown to ex-
ist [5]. Similar decompositions have also been investigated in various related formalisms
such as CCS [41] or π-calculus [16]. Such decompositions are useful because we can show
they provide normal forms for programs (up to reordering of processes), similar to the
decomposition of integers as products of prime factors.

In some cases, it is very simple to determine when two processes are independent. For
instance, a simple criterion is given in [5, 31]: two processes are independent when the
sets of resources occurring in each of the two processes are disjoint.
Example 2.1.2. Consider the following program P :

P = Pa;Va
‖ Pb;Vb
‖ Pb;Vb
‖ Pa;Va

It is easy to see that the program P can be factorized in two minimal concurrent programs

P =

(
Pb;Vb||Pb;Vb

)
||
(
Pa;Va||Pa;Va

)
Indeed, the two subprograms have no mutex in common (the first one uses only b and
the second one only a).
Of course, the above condition is sufficient but not necessary, as illustrated in the following
example.
Example 2.1.3. Fix two mutexes a, b and a semaphore c of arity 2, and consider the
program

P = Pa;Pc;Vc;Va
‖ Pa;Pc;Vc;Va
‖ Pb;Pc;Vc;Vb
‖ Pb;Pc;Vc;Vb

2.1. FACTORISATION À LA NININ 69

This program can ba factorized as

P =

(
Pa;Pc;Vc;Va||Pb;Pc;Vc;Vb

)
||
(
Pa;Pc;Vc;Va||Pb;Pc;Vc;Vb

)
since the mutexes a, b prevent c from being taken more than twice at the same time. We
will study this example in more details below.

2.1.2 The free commutative monoid of cubical covers
The setting in which factorization properties are best studied is the one of free commu-
tative monoids that we now recall.

Definition 2.1.4. A monoid (M, ·, e) is a set M equipped with an internal multiplication
− · − : M ×M →M and an element e such that the following properties are satisfied:

• associativity: for any x, y, z ∈M , (x · y) · z = x · (y · z)

• unitarity: for any x ∈M , x · e = e · x = x

We say that the monoid is commutative when x · y = y · x for every x, y ∈M .

Example 2.1.5. (N,+, 0) is a commutative monoid.
Example 2.1.6. ({e, a, b}, ·, e) with · defined as follows is a non-commutative monoid.

a · b = a b · a = b

a · a = a b · b = b

Definition 2.1.7. Let (M, ·, e) a monoid. An element x of M is said to be invertible
when there exists an element x−1 of M such that x · x−1 = x−1 · x = e. When such an
element exists, it is unique and called the inverse of x.

Definition 2.1.8. Let (M, ·, e) a monoid. A non-invertible element x ∈M is said to be
irreducible if for all elements y, z ∈M , x = y · z implies y or z is invertible.

We recall that a word w on an alphabet A is a finite sequence of elements of A and that
we write A∗ for the set of all words over A. The concatenation of two words w = w1 . . . wp
and w′ = w′

1 . . . w
′
q is given by w · w′ = w1 . . . wpw

′
1 . . . w

′
q.

Definition 2.1.9. Given a set S, the free monoid over the set S is the monoid (S∗, ·, ε),
where S∗ is the set of all words over S, equipped with concatenation.

The sets of n-cubes of the geometric semantics of a program as defined in Chapter 1
is a commutative monoid when we consider it as the set of homogenous (of the same size)
words over the alphabet A consisting of the set of all sub-intervals of ~I [18, 31]. Indeed,
let A be the set of subintervals of ~I, then an n-cube is precisely a word of size n on the
alphabet A. Furthermore, a cubical cover is a homogenous finite set of such words.

The concatenation operator Definition 1.1.20 induces a monoidal structure on cubical
covers which is itself induced by the cartesian product (equivalent to parallel composition
of processes).

70 2. FACTORING MODELS OF PROGRAMS

Example 2.1.10. The cubes [0, 1]× [0, 1]× [0, 1
2] and [12 , 1]× [0, 1] can be respectively seen

as words of length 3 and 2 over the set of sub-intervals of [0, 1]. Their concatenation is
simply given by the usual cartesian product

[0, 1]× [0, 1]× [0,
1

2
] · [1

2
, 1]× [0, 1] = [0, 1]× [0, 1]× [0,

1

2
]× [

1

2
, 1]× [0, 1]

Definition 2.1.11. The group Sn of all permutations of the set [1 : n] is equipped with
the tensor product ⊗ defined, for all σ ∈ Sp and τ ∈ Sq by σ ⊗ τ ∈ Sp+q where:

(σ ⊗ τ)(i) =

{
σ(i) if i ≤ p

τ(i− p) + p if p < i ≤ p+ q

We have an action of Sn on the set of n-cubes is given on an n-cube c by

σ.c = (cσ−1(1), . . . , cσ−1(n))

This action extends to all homogenous sets of cubes (i.e. cubical covers) R,

σ.R :− {σ.c | c ∈ R}

The tensor product is compatible with the cartesian product of topological spaces:

Lemma 2.1.12. Given two spaces X ⊆ ~Ip and Y ⊆ ~Iq, and two permutations σ ∈
Sp, τ ∈ Sq we have (σ.X)× (τ.Y) = (σ ⊗ τ).(X × Y).

Proof. See [18, Lemma 5.23].

We also have the expected analogous compatibility property for regions. First we recall
the definition of a quotient.

Definition 2.1.13. Given a group S acting over a set X, we define the quotient X/S
as the set of all orbits of elements of X under the action of S:

X/S = {{σ.c | σ ∈ Sn} | c ∈ X}

We can then define the following monoids.

Definition 2.1.14. Let Gp be the geometric semantics of a program P and Rn (resp. Cn)
be the set of all cubical regions (resp. cubical covers in normal forms) of n-cubes.

• Then RS =
∐
n∈N
Rn/Sn, equipped with the concatenation of Definition 1.1.20 (in-

duced by the cartesian product) is the monoid of cubical regions over Gp (up to
permutation). Its neutral element is the non-empty 0-dimensional cubical region.

• Similarly, CS =
∐
n∈N
Cmax
n /Sn is the monoid of cubical covers in normal form (up to

permutation) of Gp.

Proposition 2.1.15. The monoid RS is isomorphic to CS.

Proof. [18, Theorem 5.25]

2.1. FACTORISATION À LA NININ 71

Theorem 2.1.16. In the commutative monoid RS of cubical regions, every element can
be uniquely factored as a product of irreducible elements.

Proof. [18, Theorem 5.26]

Given a program P , Theorem 2.1.16 imply that every cubical region, and in particular
GP can be factored as a product of irreducible elements. Furthermore, the fact that RS

are isomorphic CS allows us to perform our computation on the maximal cover of GP
instead.

2.1.3 Factorization and partition
We have seen above that cubical covers can be factored uniquely as products of irreducible
elements. To make a use of this result in practice, we need to be able to compute this
factorization.

For implementation matters, it is convenient to represent such factorizations as par-
titions of [1 : n], which are linked to factorization of a homogenous set of elements of a
monoid by Lemma 2.1.19 below.

Definition 2.1.17. Given an alphabet A and a word w = w1 . . . wn ∈ A∗. Let I be a
subset of [1 : n], we write w|I for the subword of w consisting of letters with indices in I.
Given a set R ⊆ An, we define R|I = {w|I | w ∈ R}.

Definition 2.1.18. Let w = w1 . . . wn ∈ An, let I ⊆ [1 : n]. We write

πI : An → A|I|

w 7→ w|I

for the canonical projection.

Lemma 2.1.19. Given I ⊆ [1 : n], we write Ic = [1 : n] \ I. For a homogenous set
R ⊆ An of cubes, we have R = R|I×R|Ic if and only if for all u, v ∈ R there exists w ∈ R
such that w|I = u|I and w|Ic = v|Ic .

Proof. See [18, Lemma 5.27].

In order to find a factorization of a cubical cover R ⊆ A∗ it is enough to check all the
subsets I of [1 : n] of cardinality less than n/2 and, for each of those, check if there is a
decomposition of R as R|I × R|Ic using the characterization given by the above lemma.
This gives us the following algorithm ([18, Algorithm 5.28]), with complexity exponential
in the size of the program, which brutally checks all possible decomposition of a set of
cubes R as a product of R|I ×RIc (up to permutation), for a given subset I ⊆ [1 : n].

Algorithm 2.1.20. Given R ⊆ An a cubical cover of the state space in normal form.

1. Choose a set I ⊆ [1 : n] such that its cardinal p ≤ n/2.

2. Compute SI = {πIc(π−1
I (w)) | w ∈ πI(R)}.

3. If SI is a singleton then R factorizes as R|I ×R|Ic . Otherwise, go back to the first
step and pick another I.

72 2. FACTORING MODELS OF PROGRAMS

4. Proceed recursively with the same algorithm on R|I and R|Ic .

5. Once all sets I are depleted, R is no longer factorizable.
If I = [1 : p], then the set πIc(π

−1
I (w)) associated to a prefix w ∈ πI(R) of size p, is

the set of all suffixes of size n− p of words starting by the prefix w. Then, the fact that
SI , which is a set of sets, is a singleton means that we get the same set πIc(π

−1
I (w)) for

all words w, which correspond to the fact, that any concatenation w · w′ of such a prefix
and suffix is a cube of R.
Example 2.1.21. Let us consider the Example 2.1.3 once more. We remind ourselves that
we have two mutexes a, b and a semaphore c of arity 2 and a program

P = π1 = Pa;Pc;Vc;Va
‖ π2 = Pb;Pc;Vc;Vb
‖ π3 = Pa;Pc;Vc;Va
‖ π4 = Pb;Pc;Vc;Vb

As seen in Example 2.1.3, even though the independence criterion is not respected, it is
possible to factorize this program. The normal cubical cover R of the geometric semantics
has the following 16 cubes, where we use [0, 5]4 instead of ~I4 for readability:

[0, 5]× [4, 5]× [0, 1]× [0, 5] [4, 5]× [0, 5]× [0, 1]× [0, 5]

[0, 5]× [4, 5]× [0, 5]× [0, 1] [4, 5]× [0, 5]× [0, 5]× [0, 1]

[0, 5]× [4, 5]× [0, 5]× [4, 5] [4, 5]× [0, 5]× [0, 5]× [4, 5]

[0, 5]× [4, 5]× [4, 5]× [0, 5] [4, 5]× [0, 5]× [4, 5]× [0, 5]

[0, 5]× [0, 1]× [0, 1]× [0, 5] [0, 1]× [0, 5]× [0, 1]× [0, 5]

[0, 5]× [0, 1]× [0, 5]× [0, 1] [0, 1]× [0, 5]× [0, 5]× [0, 1]

[0, 5]× [0, 1]× [0, 5]× [4, 5] [0, 1]× [0, 5]× [0, 5]× [4, 5]

[0, 5]× [0, 1]× [4, 5]× [0, 5] [0, 1]× [0, 5]× [4, 5]× [0, 5]

Now it is easy to see that independently of the first half of our cubes we consider, the set
of associated suffixes will always be the following ones:

[0, 1]× [0, 5] [0, 5]× [0, 1] [0, 5]× [4, 5] [4, 5]× [0, 5]

This is precisely the condition SI = {πIc(π−1
I (w)) | w ∈ πI(R)} is a singleton for I =

{1, 2}, i.e.

R = R|1,2 ×R|3,4
And indeed, the subprograms π1‖π2 and π3‖π4 are independent. The algorithm, will then
proceed recursively on subsets of {1, 2} and {3, 4} without finding suitable subsets as the
program cannot be factorized further.
This algorithm is not limited to programs whose semantics are n-dimensional cubes, but
can be extended to any simple program, i.e. any program of the form P1‖P2‖ . . . ‖Pn
where each Pi does not contain parallel composition, but might contain branchings and
even loops [18].

2.2. THE CATEGORY OF COMPONENTS 73

2.1.3.1 A more efficient factorization algorithm

Algorithm 2.1.20 can be further improved, thanks to a result by Haucourt and Ninin [31],
by exploiting the fact that the n-dimensional cubical regions form a boolean algebra.

Proposition 2.1.22. Let R ⊆ An be the cubical cover in normal form of the complement
of the state space X ⊆ ~In. The prime factorization of X is

X = π|I1(X)× . . .× π|In(X)

such that I1, . . . , In is the finest partition of [1 : n] whose elements are unions of subsets
of the form {i | πi(u) 6= ~I}.

Proof. See [45, Proposition 2.4.10].

We can then refine our Algorithm 2.1.20 to be used on the forbidden region which is
generally much smaller.
Example 2.1.23. Let us restart Example 2.1.21. The forbidden region of the program is

{]1, 4[×]1, 4[×[0, 5]× [0, 5], [0, 5]× [0, 5]×]1, 4[×]1, 4[}

From Proposition 2.1.22, the factorization immediately follows. The associated partition
of [1 : 4] being {{1, 2}, {3, 4}}.

2.2 The category of components

2.2.1 Category of components of loop-free programs
A major contribution of algebraic topology is to provide invariants of topological spaces
up to homotopy, such as homotopy groups or homology groups. One of the simplest
such invariants is the set of connected components of a space. This is very coarse, as for
example it does not distinguish between a disk and a circle, which are both connected.

As explained in [18, Section 6] we can refine this invariant by considering both the
connected components, and the associated fundamental group for each of the connected
components. More abstractly, this invariant can be obtained by taking the skeleton of
the fundamental groupoid. The resulting category is often quite small compared to the
fundamental groupoid, while retaining much information about the original groupoid. In
the example of the disk, whose fundamental groupoid is infinite, the skeleton only has
a single object, and a single morphism. For the circle, the skeleton of the fundamental
groupoid is reduced to the fundamental group Z.

For directed topological spaces, the notion of fundamental groupoid is replaced by the
fundamental category, and the operation of taking the skeleton has to be replaced by the
notion of category of components. This notion was introduced in [20] and is now well
understood for loop-free categories [28]. Indeed, transposing the category of components
in the directed setting is non-trivial: the fundamental category of a d-space often has no
non-trivial isomorphisms, meaning that the category is isomorphic to its skeleton. This
means that it is necessary to collapse a wider class of morphisms in order to obtain a
more compact representation. Intuitively, we collapse all the morphisms which do not
change the future or the past of other morphisms.

74 2. FACTORING MODELS OF PROGRAMS

Definition 2.2.1. Given a category C, we say that an object y is in the future (resp. past)
of an object x if C(x, y) 6= ∅ (resp. C(y, x)) 6= ∅.

Given a morphism f : x → y in a category C, we write f∗ : C(y, z) → C(x, z) (resp. f∗ :
C(z, x)→ (z, y)) for the pre-composition (resp. post-composition) by the morphism f .

Definition 2.2.2. A morphism f : x→ y is a weak isomorphism if

• for any z ∈ C, such that C(y, z) 6= ∅, f∗ : C(y, z)→ C(x, z) is a bijection,

• for any z ∈ C, such that C(z, x) 6= ∅, f∗ : C(z, x)→ C(z, y) is a bijection.

Remark 2.2.3. For any isomorphism f , both f∗ and f∗ are bijections: any isomorphism
is a weak isomorphism.
Example 2.2.4. Let us consider the category C = ~Π1(GP) associated to the fundamental
category of the directed semantics of the program

P = Pa; x:=1; Va‖Pa; x:=2; Va

Let us focus on the morphisms f : x→ y and f ′ : x′ → y′ given below.

-

-

-

-

-

-

Pa x:=1 Va

Pa

x:=2

Va

x

f

y

zg

h

-

-
-

-

-

-

Pa x:=1 Va

Pa

x:=2

Va
f ′

x′

y′

We can see that f is not a weak isomorphism. Indeed, the morphism f∗(g) = g◦f ∈ C(x, z)
is not dihomotopic to the path h ∈ C(x, z). Thus, f∗ cannot be an isomorphism. It can
be shown that the morphism on the right is a weak isomorphism.
Intuitively, the fact that f is not a weak isomorphism corresponds to the fact that when
“executing” f , we made an irreversible choice during our execution, namely here x:=2
will be executed first, changing the value of x in the final state. Then f ′ being a weak
isomorphism could be interpreted from a computing point of view as being the only
possible path, up to dihomotopy, between x′ and y′.

We have seen that programs with while loops are difficult to handle so that it makes
sense to first discard them. A similar phenomenon also occurs for categories, motivating
the introduction of the following definition of loop-free category [18, Section 6.2, p. 107].

Definition 2.2.5. A morphism f : x → y in a category C is said to be without return
when the hom-set C(y, x) is empty. Otherwise, we say that f admits a return. A category
C is said to be loop-free when all its morphisms, except identities, are without return. We
write LFCat for the category of all small loop-free categories.

2.2. THE CATEGORY OF COMPONENTS 75

Lemma 2.2.6. Given a loop-free category C, a morphism f : x→ y is a weak isomorphism
implies that C(x, y) = {f}.

Proof. See [18, Lemma 6.6].

However, this is not exactly what we want from this class of morphisms. Indeed, being
the only execution possible from a point to another is not the same as not having made
any irreversible choice, i.e. our notion of inessential transitions, as shown in the example
Example 2.2.7, from [18, Ex. 6.9].
Example 2.2.7. Let us revisit the Swiss Cross Example 1.3.51.

y

x

f

tP

−

−

−

−

−
−

−

−

−

−

−
−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pa

Pb

Vb

Va

The morphism f drawn above is a weak isomorphism, but should not be considered
as inessential. Indeed, executing along f makes an “irreversible choice”: the terminal
position cannot be reached from y but can be from x.

In order to rule out morphisms that are weak isomorphisms, but do not correspond
to inessential transitions, we need to restrict the class of weak isomorphisms we are
considering by imposing further restrictions to make it closer to the class of isomorphisms.
One property of isomorphisms is that they are stable under pushouts and pullbacks, which
is not the case for weak isomorphisms in general. And indeed, the collections of weak
isomorphisms satisfying this property rule out the previous Example 2.2.7 and correspond
to our notion of “inessential executions”.

Definition 2.2.8. Given a category C, a system of weak isomorphisms is a collection Σ
of weak isomorphisms of C, which is stable under pushouts and pullbacks, and contains
all isomorphisms. We write SWI(C) the collection of all such systems.

Since the composite of weak isomorphisms is still a weak isomorphism, it is easy to see
that given a system of weak isomorphisms, its closure under composition is still a system
of weak isomorphisms. We will therefore suppose that the systems we consider are closed
under composition.
Example 2.2.9. In the geometric semantics of the Swiss Cross in Example 2.2.7, the
morphism f cannot be in a collection stable by pushout as there is no pushout with any
path g : x → tP . For example, we can see that there is no possible pushout between f
and the dotted path in Example 2.2.7
The set SWI(C) is partially ordered by inclusion. This gives rise to a complete lattice
structure, where greatest lower bound is the set-theoretic intersection and the greatest
upper bound is the smallest system w.r.t. inclusion containing the set-theoretic union.

76 2. FACTORING MODELS OF PROGRAMS

Proposition 2.2.10. Given a loop-free category (C), the set SWI(C) forms a complete
lattice, with maximal element noted Σm.

Proof. [18, Proposition 6.12]

For loop-free categories which are finitely presented, such as fundamental categories of
loop-free programs, this maximal system can be computed algorithmically by computing
the pushouts from the coarsest cubical partition compatible with the normal cover. This
is discussed in more details in [18, Section 6.1.4]

This maximal class of weak isomorphisms is precisely what we are aiming to “remove”
out of our fundamental category: morphisms that preserve past and future while not
interfering with “choices” (i.e. pullback and pushouts). This operation is done by taking
the quotient of our category by this maximal class.

Definition 2.2.11. The quotient of a category C by a set of morphisms Σ is a category
C/Σ together with a quotient functor Q : C → C/Σ sending all morphisms in Σ to identities
and such that any functor F : C → D factors uniquely through Q if and only if it sends
all morphisms in Σ to identities.

C D

C/Σ

Q

F

Such a category always exists, see [6], but the resulting category does not necessarily
preserve the properties we care about.

Example 2.2.12. Let us consider the two following categories. On the left we have a
category G with two objects E, V and two arrows s, t from E to V . Taking the quotient
G/{t} gives us the category the free category over the graph on the right, which has a
countable number of arrows.

E V
s

t
·

Definition 2.2.13. The category of components ~Π0(C) of a loop-free category C is the quo-
tient category C/Σm, where Σm is the greatest system of weak isomorphisms of SWI(C).
Given a directed topological space X, we write ~Π0(X) for ~Π0(~Π1(X)).

When Σ is not maximal, the category C/Σ can be thought of an over-approximation of
the category of components ~Π0(C), in the sense that the latter is a quotient of the former.

Example 2.2.14. Below are figured three directed spaces corresponding to geometric re-
alizations of programs, together with the generators of their category of components in
superimposition.

2.2. THE CATEGORY OF COMPONENTS 77

∼

∼

Remark 2.2.15. Another possible way of defining the category of components w.r.t. the
system of weak isomorphisms consists in using the localization [18, Definition 6.25] instead
of the quotient. Both these definitions coincide on loop-free categories [18, Theorem 6.30],
and none of these definitions give the expected results on categories with loops.

2.2.2 Computing the category of components of loop-free pro-
grams

The methods for computing the category of components given in [28] and [18] are both
extremely costly, and it makes sense to try to reduce the size of the categories when we
can. We have seen in Section 2.1 a method to factor programs in terms of independent
processes (Definition 2.1.1), whose associated geometric semantics can then be factored,
i.e. for two independent programs P,Q,

GP‖Q = GP × GQ

Additionally, the functor computing the fundamental category and the one computing
the category of components both preserve binary products.

Proposition 2.2.16. The fundamental category functor ~Π1 : dTop → Cat preserves
binary products i.e.

~Π1(X × Y) = ~Π1(X)× ~Π1(Y)

Proof. See [29, Proposition 5.2.12].

Proposition 2.2.17. The category of components functor ~Π0 : LFCat → LFCat pre-
serves binary products, i.e.

~Π0(C × D) = ~Π0(C)× ~Π0(D)

Proof. See [29, Proposition 8.5.11].

Thus, the fundamental category ~Π1(GP‖Q) and category of components ~Π0(GP‖Q) of a
loop-free program P‖Q, where P and Q are independent, can be computed as the product
of their category of components.

Proposition 2.2.18. Given two independent programs P,Q i.e. such that GP‖Q = GP ×
GQ, we have:

~Π1(GP‖Q) = ~Π1(GP)× ~Π1(GQ)
~Π0(GP‖Q) = ~Π0(GP)× ~Π0(GQ)

78 2. FACTORING MODELS OF PROGRAMS

Another approach to the factorization of programs would be to directly find factoriza-
tions of its model, and from there deducing a factorization of the program. The category
of components, being finite, is a good candidate to try and find a product decomposition.

In the case of partial orders, the existence of a refinement for any pair of isomorphic
product decomposition is a well-known result to which we refer as Hashimoto’s theorem
[26]. The category of (small) loop-free categories contains all the partially ordered sets,
all the fundamental categories, and all the categories of component of the models of loop-
free programs. These remarks motivate our successful attempt to extend Hashimoto’s
theorem to connected loop-free categories (Section 2.3). Theorem 2.3.36 even guarantees
the existence of a maximal refinement for any finite loop-free category (in particular, for
any category of component of a loop-free program).

2.3 Factoring loop-free categories
In this section we will introduce Hashimoto’s Theorem (Theorem 2.3.3), which states that
any pair of decompositions of a connected partial order have a common refinement. This is
what we call the strict refinement property (Definition 2.3.2). We prove in Theorem 2.3.36
that this property extend to the more general case of loop-free categories. The structure
of our proof diverges from Hashimoto’s original paper [26] and instead follows more closely
the presentation found in [49, Chapter 10].

We say that a poset is connected when any two pair of elements is connected by a
“zigzag” of elements:

Definition 2.3.1. A poset is connected when for all elements x and y we have a sequence
x = z0, z1, . . . , zn = y such that zi and zi−1 are comparable for every i ∈ {1, . . . , n}.

Definition 2.3.2. A connected poset X satisfies the strict refinement property if when
the following isomorphism holds in the category Pos of posets:

X ∼=
∏
α∈A

Xα
∼=

∏
β∈B

Yβ

we have a family of posets
{
Zα,β

∣∣ α ∈ A ; β ∈ B
}

such that the isomorphisms

Xα
∼=

∏
β∈B

Zα,β and Yβ ∼=
∏
α∈A

Zα,β

hold for every α ∈ A and every β ∈ B.

Theorem 2.3.3 (Hashimoto’s Theorem, [26]). Every connected poset has the strict re-
finement property.

A poset X is said to be irreducible when X ∼= A × B implies that either A or B has
a single element (but not both!). One easily shows that every finite connected poset can
be written as a finite product of irreducible posets in a unique way, up to reordering of
factors. Indeed, for a finite poset, there exists a finite number of product decompositions,
which are all isomorphic by definition. With the strict refinement property, we can then
construct the refinement of all decomposition in a finite number of steps, which is still a
product decomposition and cannot be refined any further.

2.3. FACTORING LOOP-FREE CATEGORIES 79

Example 2.3.4. Let us consider the two following isomorphic decomposition of R3:

R2 × R = X1 ×X2 R× R2 = Y1 × Y2

Then R × R × R = R × R × {∗} × R is a refinement of these two decompositions by
assigning:

Z1,1 = R Z1,2 = R
Z2,1 = {∗} Z2,2 = R

2.3.1 Properties of loop-free categories
Given an object X of a category C, we write idX for the identity morphism on X. We
generally omit the subscript when clear from the context. Given a morphism f : X → Y ,
we write f = X (resp. f = Y) for its source (resp. target).

The category of loop-free categories LFCat (Definition 2.2.5) is a full subcategory
of the category of small categories Cat. LFCat contains the category Pos of partial
orders as a full subcategory. The embedding Pos ↪→ LFCat has a left adjoint which
to a category associates the poset obtained by identifying any two arrows with the same
source and the same target.

Lemma 2.3.5. Given two morphisms f, g of a loop-free category C, we have that f ◦g = id
implies f = g = id

Proof. If f ◦ g = id, then both f and g have a return; it follows that both are identities
because C is loop-free.

Definition 2.3.6. Given a category C and any set of its objects {Xi}{i∈I}, the product
of {Xi}{i∈I} is, if it exists, an object denoted∏

i∈I
Xi ∈ C

and equipped with morphisms
πj :

∏
i∈I

Xi → Xj

called projections for all j ∈ I, such that for any family of morphisms {fi : Q → Xi}i∈I ,
there exists a unique morphism

(fi)i∈I : Q→
∏
i∈I

XI

such that all the following diagrams commutes:

Q

∏
i∈I Xi Xi

∃!(fi)i∈I
fi

πi

80 2. FACTORING MODELS OF PROGRAMS

Proposition 2.3.7. LFCat has all products.

Proof. LFCat is an epireflective subcategory of Cat ([28, Proposition 1.8]), a cartesian
closed category. Thus, it has all products.

Definition 2.3.8. In LFCat, consider a family {fα : Xα → Yα}α∈A of morphisms. The
product map f :

∏
α∈AXα →

∏
α∈A Yα is the unique morphism such that παf = fα for

every α ∈ A.

For the rest of the chapter we will often write f = (fα)α∈A for the product map of
the family {fα : Xα → Yα}α∈A. For binary products, we write (f, g) the product map of
f and g.

Proposition 2.3.9. Given a category C with all products, and two morphisms f1 : X1 →
Y1 and f2 : X2 → Y2 of C, the following diagram commutes:

X1 ×X2

Y1 ×X2 X1 × Y2

Y1 × Y2

f1, id id, f2

f1, f2

id, f2 f1, id

Lemma 2.3.10. Given an isomorphism of small, loop-free categories Φ: C1×C2 → D1×
D2 and an object X of C1, for all morphisms (f, g) of D1×D2 such that π1Φ

−1(f, g) = idX ,
we have:

π1Φ
−1(f, idg) = π1Φ

−1(f, idg) = π1Φ
−1(idf , g) = π1Φ

−1(idf , g) = idX .

Proof. By definition of the product, the following diagram on the left commutes:

• •

• •

(id, g)

(f, id)

(id, g)

(f, g) (f, id)
πP◦Φ−1

=⇒

• •

• •

π1Φ
−1(id,g)

π1Φ
−1(f,id)

π1Φ
−1(id,g)

id π1Φ
−1(f,id)

The category P is loop-free, thus by applying Lemma 2.3.5 we have

π1Φ
−1(idf , g) = π1Φ

−1(f, idg) = id

We prove in the same way that π1Φ
−1(idf , g) = π1Φ

−1(f, idg) = id.

Definition 2.3.11. A fence is a family (fi)1≤i≤n of morphisms of C such that:

• f2i = f2i+1 and f2i−1 = f2i

• or f2i = f2i+1 and f2i−1 = f2i

2.3. FACTORING LOOP-FREE CATEGORIES 81

The length of a fence (fi)1≤i≤n is its cardinal n

Definition 2.3.12. Two morphisms f and g of a category C are said to be connected if
there exists a fence (fi)i∈[1,n] such that f = f1 and fn = g. A category C is said to be
connected if all its morphisms are connected.

Proposition 2.3.13. The set of objects Obj(C) of a (small) loop-free category C is equipped
with a partial order ≤ defined by

X ≤ Y ⇐⇒ C(X,Y) 6= ∅.

Proof. Let X, Y , Z in Obj(C).

• Reflexivity: idX ∈ C(X,X), thus X ≤ X.

• Transitivity: X ≤ Y and Y ≤ Z implies the existence of f ∈ C(X,Y) and g ∈
C(Y, Z). Thus, f ◦ g ∈ C(X,Z) i.e. X ≤ Z.

• Anti-symmetry: Directly by the loop-freeness property.

Proposition 2.3.14. For C in LFCat, C is connected implies Obj(C) is connected as a
poset.

Proof. Let X,Y ∈ Obj(C). By definition, idX , idY ∈ C, connected category. Such that
there exists a fence (fi)i∈I between idX , idY . Then fi = fi + 1 implies fi ≤ fi ≥ fi+1 by
definition of the order. Thus, if we fix (Xi)1≤i≤2n with X2k = fk and X2k+1 = fk+1, we
have a sequence X1 ≥ X2 ≤ . . . ≥ X2n−1 ≤ X2n connecting X,Y ∈ Obj(C).

Proposition 2.3.15. Let Φ: C → D be a morphism of connected loop-free categories. Let
≤ be the canonical order defined in Proposition 2.3.13. Then

Φ|Obj : (Obj(C),≤)→ (Obj(D),≤)

is an order-preserving morphism of connected posets. Furthermore, if Φ is an isomor-
phism, so is Φ|Obj.

Proof. Let X, Y in Obj(C) such that X ≤ Y . Thus, there exists f ∈ C(X,Y) and by
functoriality of Φ, Φ(f) ∈ D(Φ(X),Φ(Y)) i.e. Φ(X) ≤ Φ(Y).

Remark 2.3.16. The property above comes from the adjunction between LFCat and Pos
talked about at the beginning of the section.

2.3.2 Hashimoto’s theorem for loop-free categories
Definition 2.3.17. A (product) decomposition of a loop-free category C is an isomorphism
Ψ from C to a product

∏
α∈AXα of loop-free categories Xα for α ∈ A.

Note that if C is non-empty, connected, and loop-free, then so are the categories Xα.

82 2. FACTORING MODELS OF PROGRAMS

Definition 2.3.18. A category C is said to have the strict refinement property if for any
two decompositions ΨA : C →

∏
α∈AXα and ΨB : C →

∏
β∈B Yβ , there exists a family

of loop-free categories Zα,β with α ∈ A and β ∈ B, and for every α ∈ A and β ∈ B,
decompositions

aα : Xα →
∏
β∈B

Zα,β and bβ : Yβ →
∏
α∈A

Zα,β

such that the following diagram commutes:

C

∏
α∈AXα

∏
β∈B Yβ

∏
α∈A

∏
β∈B Zα,β

∏
β∈B

∏
α∈A Zα,β

ΨA ΨB

(aα)α∈A

ΨB◦Ψ−1
A

(bβ)β∈B

γ

(2.1)

where γ :
∏
α∈A

∏
β∈B Zα,β →

∏
β∈B

∏
α∈A Zα,β is the natural isomorphism sending

((zα,β)β∈B)α∈A to ((zα,β)α∈A)β∈B .

Hashimoto’s Theorem [26] states that every connected poset has the strict refinement
property; we generalize this result to all connected loop-free categories:

Theorem 2.3.36. Every connected loop-free category has the strict refinement property.

As previously stated, we will follow the proof from [49], generalizing the key lemmas to
the case of connected loop-free categories. We will first give a rough idea of the different
steps of the proofs, before introducing some key technical lemmas, that will be used along
the proof, before proving all the major steps.

2.3.2.1 Sketch of the proof

To prove Theorem 2.3.36 we will need to find the decompositions (aα)α∈A and (bβ)β∈B of
Eq. (2.1). For this we will first define some notions, that will be used in the presentation
of the proof.

Definition 2.3.19. Given an element s of a set product
∏
i∈I Si, an index j ∈ I, and an

element xj ∈ Sj , we define (s, xj , j)i∈I as the element of
∏
i∈I Si obtained by substituting

xj to sj in s; in other words:

(s, xj , j)i =

{
xj if i = j

si otherwise.

2.3. FACTORING LOOP-FREE CATEGORIES 83

Definition 2.3.20. Given an object s of a loop-free category
∏
α∈AXα, and an index

λ ∈ A, the λ-section at s is the functor from Xλ to
∏
α∈AXα defined by{

xλ 7→ (s, xλ, λ) if xλ is an object
fλ 7→ (ids, fλ, λ) if fλ is a morphism

We denote by Ξsλ : Xλ
∼= Xs

λ the isomorphism induced by the λ-section at s on its image.
We denote by Φsλ the restriction of Φ to Xs

λ for every functor Φ defined over
∏
α∈AXα.

Definition 2.3.21. Given an isomorphism Φ:
∏
α∈AXα →

∏
β∈B Yβ , indexes λ ∈ A,

µ ∈ B, and an object s ∈
∏
α∈AXα, we define

Xµ
λ := πλΦ

−1ΞΦ(s)
µ (Yµ) and Y λ

µ := πµΦΞ
s
λ(Xλ)

with πλ :
∏
α∈AXα → Xλ and πµ :

∏
β∈AXβ → Xµ the projections.

As we will see, the refinement (but not its existence) Zα,β (with α ∈ A and β ∈ B)
depends on an object s ∈

∏
α∈AXα that we arbitrarily fix now if the product is non-

empty. In [49], which proves the strict refinement property for connected posets, the
isomorphisms (aα)α∈A and (bβ)β∈B of Diagram 2.1 are obtained by decomposing the
expected isomorphisms into smaller morphisms, obtained with the notation introduced
above, which gives the Diagram 2.2 below.

∏
α∈AXα

∏
β∈B Yβ

∏
α∈AXs

α

∏
β∈B Y

φ(s)
β

∏
α∈A

∏
β∈B Y α

β

∏
α∈A

∏
β∈B Xβ

α

∏
β∈B

∏
α∈AXβ

α

Φ

(Ξsα)α∈A

(Φ|Xsα)α∈A

((παΦ
−1Ξ

Φ(s)
β)β∈B)α∈A

(Ξ
Φ(s)
β)β∈B

(Φ−1|
X

Φ(s)
β

)β∈B

γ−1

(2.2)

The first part of the proof is to prove that all the introduced morphisms, are in fact
isomorphisms and to prove that they are indeed product maps of isomorphisms. That is
to say that we have Ψ2 =

∏
α∈A

aα and Ψ1 =
∏
β∈B

bβ with

aα =
(
παΦ

−1Ξ
Φ(s)
β πβΦΞ

s
α

)
β∈B and bβ = Φ−1Ξ

Φ(s)
β

Most of the proofs rely heavily on the following proposition, which allows us to restrain
the coordinates of composite images.

84 2. FACTORING MODELS OF PROGRAMS

Lemma 2.3.24. Let Φ: P×Q → U×V an isomorphism of connected loop-free categories.
Let (u, v) and (u′, v′) two morphisms of U×V and p a morphism of P. Then πPΦ

−1(u, v) =
πPΦ

−1(u′, v′) = p implies πPΦ
−1(u, v′) = p.

Then, once this has been achieved, we need to prove that the diagram commutes to
conclude the proof. To do this, we will first prove the commutation on a restriction of
the diagram, by replacing for each α ∈ A the starting category Xα by the subcategory
Xµ
α as in Definition 2.3.21, for an arbitrary µ ∈ β, giving us the diagram below.

∏
α∈AXµ

α Y
φ(s)
µ

∏
α∈A

∏
β∈B Xβ

α

∏
β∈B

∏
α∈AXβ

α

Φ

γ−1

Ψ2 Ψ1
(2.3)

Then using the following Lemma 2.3.26, the commutation is extended along a given
λ ∈ A.

Lemma 2.3.26. Let Φ: P × Q → U × V be an isomorphism of connected loop-free
categories. Let Q′ a connected subcategory of Q. Let p a morphism of P. Then
πUΦ(p, q) = πUΦ(p, q

′) for all q, q′ ∈ Q′ implies, for all p′ ∈ P, πUΦ(p′, q) = πUΦ(p
′, q′)

for all q, q′ ∈ Q′.

This leads to the commutation of the Diagram 2.4 below.

∏
α∈A\λX

µ
α ×Xλ

∏
β∈B Yβ

∏
α∈A

∏
β∈B Xβ

α

∏
β∈B

∏
α∈AXβ

α

Φ

γ−1

(παΨ2)α 6=λ×πλΨ2 Ψ1
(2.4)

Using Lemma 2.3.26 once more the commutativity can be extended to the full domain∏
α∈AXα, thus ending the proof.
In our case a few necessary conditions that are less trivial will need to be detailed in

Lemma 2.3.34 to perform the last steps of the proof, but the broad strokes will remain
the same.

2.3.2.2 Technical Lemmas

The proof of Theorem 2.3.3 in [49] makes extensive use of the Proposition 2.3.22 and
Proposition 2.3.23, which we will respectively extend to connected elements of LFCat
in Lemma 2.3.24 and Lemma 2.3.26. As we have changed the formulation to make the
proofs easier to follow, we give them here and refer to the original work for the proof.

2.3. FACTORING LOOP-FREE CATEGORIES 85

These lemmas are at the core of the proof and are where the hypothesis that we are
using loop-free and connected categories really comes into play, so it is important to keep
them in mind.
Proposition 2.3.22. Given Φ: P ×Q→ U ×V an isomorphism of connected posets and
p ∈ P ,

πPΦ
−1(u, v) = πPΦ

−1(u′, v′) = p implies πPΦ
−1(u, v′) = p

Proof. [49, Lemma 10.4.5].

Proposition 2.3.23. Given Φ: P ×Q→ U × V an isomorphism of connected posets, if
there exists p ∈ P such that πUΦ(p, q) = πUΦ(p, q

′), then for each p′ ∈ P ,
πUΦ(p

′, q) = πUΦ(p
′, q′)

Proof. [49, Lemma 10.4.8]

In the two following proofs, as the objects in the commutative diagrams are of no
importance, we have omitted them, replacing them by • when not necessary.
Lemma 2.3.24. Let Φ: P×Q → U×V an isomorphism of connected loop-free categories.
Let (u, v) and (u′, v′) two morphisms of U×V and p a morphism of P. Then πPΦ

−1(u, v) =
πPΦ

−1(u′, v′) = p implies πPΦ
−1(u, v′) = p.

Proof. Given p, q, q′ such that Φ(p, q) = (u, v) and Φ(p, q′) = (u′, v′). Let us prove that
πPΦ

−1(u, v′) = p. We proceed by induction on the length of the fence between q and q′.
• A fence of length 2 implies q = q′ or q = q′. First, let us suppose q = q′, the other

case being solved dually.
Let us prove that πPΦ

−1(u, v′) = p.
First, let us define

Φ(p, idq) := (u∗, v∗) Φ(idp, q) := (uq, vq) Φ(idp, q
′) := (u′

q, v
′
q) (2.5)

such that:
u = uq ◦ u∗ u′ = u′

q ◦ u∗

v = vq ◦ v∗ v′ = v′q ◦ v∗

By the Proposition 2.3.9, the following diagram commutes:

• • •

• •

•

u∗,id

u,id

u,v′

u∗,v∗

id,v∗

id,v′

uq,id

id,v∗

id,v′q

uq,id

uq,v
′
q

86 2. FACTORING MODELS OF PROGRAMS

Following the outer arrows, we get

(u, v′) = (uq, v
′
q) ◦ (u∗, v∗)

By Eq. (2.5), πPΦ
−1(u∗, v∗) = p. We are thus left to prove πPΦ

−1(uq, v
′
q) = id. By

construction vq = v′q = v∗ such that by functoriality:

πPΦ
−1(uq, v

′
q) = πPΦ

−1(uq, v
′
q)

= πPΦ
−1(uq, vq)

= πPΦ
−1(uq, vq)

πPΦ
−1(uq, v

′
q) = p

By Proposition 2.3.15, Φ: Obj(P)×Obj(Q)→ Obj(U)×Obj(V) is an order-preserving
isomorphism of connected posets and such that πPΦ

−1(uq, vq) = πPΦ
−1(u′

q, v
′
q) = p.

Hence,

p = πPΦ
−1(uq, v′q) Proposition 2.3.22

p = πPΦ−1(uq, v′q) by functoriality

Thus, πPΦ
−1(uq, v

′
q) ∈ P(p, p), with P loop-free. This implies πPΦ

−1(uq, v
′
q) = idp,

such that

πPΦ
−1(u, v′) = πPΦ

−1(uq, v
′
q) ◦ πPΦ

−1(u∗, v∗)

πPΦ
−1(u, v′) = p

• Now let us suppose a fence · · · ·q′ r q of length n = 3 between q and q′.
Let

(u, v) := Φ(p, q) (x, y) := Φ(p, r) (u′, v′) := Φ(p, q′) (2.6)

such that Φ sends the commutative diagram on top to the one below.

• • •

• • •

id,q′

p,q′
p,id

id,r

p,r p,id
p,q

id,r id,q

=⇒

Φ
(2.7)

2.3. FACTORING LOOP-FREE CATEGORIES 87

• • •

• • •

u′
q,v

′
q

u′,v′
f∗,y∗

u′
r,v

′
r

x,y u∗,v∗
u,v

ur,vr uq,vq

We are going to use the same method as before, working on each 2-fence inside
the 3-fence above. For that we’ll decompose (u, v′) using the Diagram 2.7. By the
Proposition 2.3.9, the following diagram commutes:

• •

•

• •

id,v′

id,v′q

u,v′

u,id

u∗,idid,y∗

u∗,y∗

uq,id

such that

(u, v′) = (uq, idv′) ◦ (u
∗, y∗) ◦ (idu∗ , v′q) By following the outer arrows

(u, v′) = (uq, idvr) ◦ (u∗, y∗) ◦ (idu′
r
, v′q) By the Diagram 2.7

– Working on the 2-fence q← · r→, let us prove πPΦ
−1(uq, idvr) = id

By Eq. (2.6) we have πPΦ
−1(u, v) = πPΦ

−1(x, y) = p. Thus, as proved for
2-fences above

p = πPΦ
−1(u, y)

= πPΦ
−1((uq, vr) ◦ (u∗, v∗)) Diagram 2.7

= πPΦ
−1(uq, vr) ◦ πPΦ

−1(u∗, v∗) Functoriality
p = πPΦ

−1(uq, vr) ◦ p Diagram 2.7

By loop-free property of P, πPΦ
−1(uq, vr) = idp. Which implies by Lemma 2.3.10,

πPΦ
−1(uq, idvr) = idp

Similarly, πPΦ
−1(idu′

r
, v′q) = idp. Hence

πPΦ
−1(u, v′) = πPΦ

−1(uq, idvr) ◦ πPΦ
−1(u∗, y∗) ◦ πPΦ

−1(idu′
r
, v′q)

= idp ◦ πPΦ
−1(u∗, y∗) ◦ idp

πPΦ
−1(u, v′) = πPΦ

−1(u∗, y∗)

88 2. FACTORING MODELS OF PROGRAMS

– Let us prove now πPΦ
−1(u∗, y∗) = p. By commutativity of both projections

the central square:

(x, y) = (ur ◦ u∗, y∗ ◦ v′r)
= (ur, idu∗) ◦ (u∗, y∗) ◦ (idu∗ , v′r)

(x, y) = (ur, idvr) ◦ (u∗, y∗) ◦ (idu′
r
, v′r)

As πPΦ
−1(ur, vr) = idp, by Lemma 2.3.10, πPΦ

−1(ur, idvr) = idp. Similarly,
we have πPΦ

−1(idu′
r
, v′r) = idp. Thus

p = πPΦ
−1(x, y) = πPΦ

−1(u∗, y∗)

Such that

πPΦ
−1(u, v′) = p

• Now let us suppose that the property holds for all fences of length 1 ≤ k < n,
with n > 3. Let us suppose given q, q′, connected by a fence (qi)1≤i≤n. We define
(ui, vi) := Φ(p, qi), for each 1 ≤ i ≤ n and

(u, v) := (u1, v1) = Φ(p, q1) = Φ(p, q)

(u′, v′) := (un, vn) = Φ(p, qn) = Φ(p, q′)

By definition, ((p, qi))1≤i≤n−1 and ((p, qi))2≤i≤n are fences of length n − 1 respec-
tively connecting (p, q1), (p, qn−1) and (p, q2), (p, qn). By definition of (ui, vi) we
have,

p = πPΦ
−1(u1, v1) = πPΦ

−1(un−1, vn−1)

p = πPΦ
−1(u2, v2) = πPΦ

−1(un, vn)

Thus, by induction hypothesis, this implies

p = πPΦ
−1(u1, vn−1) p =πPΦ

−1(u2, vn) (2.8)

Now we suppose q1 = q2 (q1 = q2 can be treated dually). We’ll have to proceed
differently depending on the symmetry of the fence.

– If qn−1 = qn, by functoriality of Φ, un−1, vn−1 = un, vn, such that u2, vn =
u1, vn−1. This implies that (u1, vn−1) and (u2, vn) are connected by a fence of
length 2. Thus, πQΦ

−1(u1, vn−1) and πQΦ
−1(u2, vn) are connected by a fence

of length 2. By Eq. (2.8), we have p = πPΦ
−1(u2, vn) = πPΦ

−1(u1, vn−1). We
can then apply our induction hypothesis, such that

p = πPΦ
−1(u1, vn)

p = πPΦ
−1(u, v′)

Which concludes this case.

2.3. FACTORING LOOP-FREE CATEGORIES 89

– If qn−1 = qn, by functoriality of Φ, un−1, vn−1 = un, vn. Thus, if we define
q2,n = πQΦ

−1(u2, vn) and q1,n−1 = πQΦ
−1(u1, vn−1), we get the following

fences:
• •

• •

u2,vn
u1,vn

u1,vn−1

Φ−1

=⇒

• •

• •

p,q2,n
Φ−1(u1,vn) p,q1,n−1

Thus, q2,n et q1,n−1 are connected by a fence of length 3. We can apply our
induction case for k = 3 with the fence (p, q1,n−1), (p, πQΦ

−1(u1, vn)), (p, q2,n).
Indeed, we have Φ(p, q1,n−1) = (u1, vn−1) and Φ(p, q2,n) = (u2, vn) (Eq. (2.8)).
Thus, we get

πPΦ
−1(u1, vn) = p

Thus, πPΦ
−1(u, v) = πPΦ

−1(u′, v′) = p implies πPΦ
−1(u, v′) = p, proving the

induction step.

This Lemma 2.3.24 is not restricted to binary product and easily extends to arbitrary
products as shown in the following lemma.

Corollary 2.3.25. Let Φ:
∏
α∈AXα →

∏
β∈B Yβ an isomorphism of connected cate-

gories. Let f i = (f iα)α∈A a morphism of
∏
α∈AXα for i = 1, 2. Then for all λ ∈ A and

all µ ∈ B such that πλf1 = πλf
2

πλΦ
−1(Φ(f1),Φ(f2)µ, µ) = πλf

1 = πλf
2

Proof. This follows directly from Lemma 2.3.24 by defining:

P := Xλ Q :=
∏

α∈A,α 6=λ

Xα U := Yβ V :=
∏

β∈B,µ 6=β

Yβ

and by defining

(p, q) := δ−1
λ (f1) (p, q′) := δ−1

λ (f2)

(u, v) := δ−1
µ Φ(f1) (u′, v′) := δ−1

µ Φ(f2)

With δλ and δµ the natural isomorphisms:

δλ : Xλ ×
∏

α∈A,α 6=λ

Xα →
∏
α∈A

Xα δβ : Yµ ×
∏

β∈B,µ 6=β

Yβ →
∏
β∈B

Yβ

We get an isomorphisms Ψ = δ−1
β ◦Φ◦ δλ : P ×Q→ U ×V . Such that f iλ = πPΨ

−1(u, v′)
for i = 1, 2.

Lemma 2.3.26. Let Φ: P × Q → U × V be an isomorphism of connected loop-free
categories. Let Q′ a connected subcategory of Q. Let p a morphism of P. Then
πUΦ(p, q) = πUΦ(p, q

′) for all q, q′ ∈ Q′ implies, for all p′ ∈ P, πUΦ(p′, q) = πUΦ(p
′, q′)

for all q, q′ ∈ Q′.

90 2. FACTORING MODELS OF PROGRAMS

Proof. Let p a morphism of P Let Q′ a connected sub-category of Q, such that for all
morphisms q, q′ in Q′, πUΦ(p, q) = πUΦ(p, q

′). Let us prove that for all p′ morphism of
P, πUΦ(p′, q′) = πUΦ(p

′, q) by induction on the length n of a given fence connecting q, q′.

• n = 1. Trivial.

• n = 2. πUΦ(p, q) = πUΦ(p, q
′) for all morphisms q, q′ in Q′ implies

πUΦ(p, q) = πUΦ(p, q
′)

πUΦ(p, q) = πUΦ(p, q
′) for all q, q′ ∈ Mor(Q)

πUΦ(p,Q) = πUΦ(p,Q
′) for all Q,Q′ ∈ Obj(Q)

By Proposition 2.3.15 Φ|Obj is an isomorphism between Obj(P)×Obj(Q) and Obj(U)×
Obj(V). By Proposition 2.3.23

for all Q,Q′ ∈ Obj(Q), πUΦ(p′, Q) = πUΦ(p
′, Q′) (2.9)

Thus for q ∈ Mor(Q′) we have

πUΦ(idp′ , q) = πUΦ(p
′, q)

= πUΦ(p
′, q) By Eq. (2.9)

= πUΦ(idp′ , q)

πUΦ(idp′ , q) = πUΦ(idp′ , q)

As Q′ is loop-free, this implies πUΦ(idp′ , q) = id. Similarly, πUΦ(idp′ , q′) = id.

Let us suppose that q = q′, the other case being dual. By the above argument, the
following diagrams commute

•

• •

•

(idp′ ,q)
(p′,q)

(p′,idq)

(idp′ ,q
′)

(p′,q′)

πUΦ
=⇒

•

• •

•

id
πUΦ(p′,q)

πUΦ(p′,idq)

id
πUΦ(p′,q′)

Therefore, πUΦ(p′, q′) = πUΦ(p
′, idq) = πUΦ(p

′, q).

• Now suppose a fence (q = q0, q1 · · · , qn = q′) and the property true for all integers
strictly smaller than n. Then there is a n−1-fence (q1, · · · , qn) and a 1-fence (q0, q1).
By induction hypothesis, πUΦ(p′, qn) = πUΦ(p

′, q1) = πUΦ(p
′, q0).

Q′ is connected so for all p′ ∈ P, for all q, q′ ∈ Q′, πUΦ(p′, q′) = πUΦ(p
′, q′).

2.3. FACTORING LOOP-FREE CATEGORIES 91

2.3.2.3 Proof of Theorem 2.3.36

For the remainder of section, we will consider that Φ is an isomorphism of connected
loop-free categories, (Xα)α∈A and (Yβ)β∈B families of connected loop-free categories.

As stated before, we will first prove that all the morphisms of the Diagram 2.2 are
isomorphisms.

Lemma 2.3.27. Given a category X =
∏
α∈AXα, λ ∈ A, s a morphism of X and Ξsλ as

defined in Definition 2.3.20, then

πλ ◦ Ξsλ = idXλ

We say that Ξsλ is a section of the canonical projection πλ :
∏
α∈AXα → Xλ. Furthermore,

Ξsλ is a full and faithful functor

Proof. Let f ∈
∏
α∈AXα((s, xλ, λ), (s, yλ, λ)). Then Xα loop-free implies, παf = idsα if

α 6= λ and πλf := fλ ∈ Xλ(xλ, yλ). Such that f = Ξsλ(fλ). This proves that Ξsλ is full.
Furthermore, it is clearly faithful.

Corollary 2.3.28. Given a category X =
∏
α∈AXα, λ ∈ A, s a morphism of X then

Xs
λ = Ξsλ(X) is a connected, loop-free full sub-category of X isomorphic to Xλ. Further-

more
πλ ◦ Ξsλ = idXλ Ξsλ ◦ πλ|Xsλ = idXsλ

One last proposition that we will need from [49] is the fact that for any λ ∈ A, sλ
object of Xλ, the object part of the functor Φ|Xsλ : X

s
λ →

∏
β∈B Y λ

β is an isomorphism of
the underlying objects of the category.

Proposition 2.3.29. [49, Lemma 10.4.7]
Let Φ:

∏
α∈AXα →

∏
β∈B Yβ be an isomorphism of connected posets. Let s ∈

∏
α∈AXα

and λ ∈ A and Xs
λ be as in Lemma 2.3.27. Let Y λ

β = πβΦ[X
s
λ], then

Φ|Xsλ : X
s
λ →

∏
β∈B

Y λ
β

is an isomorphism of posets.

This proposition also translates to an isomorphism of connected categories.

Proposition 2.3.30. Let Φ:
∏
α∈AXα →

∏
β∈B Yβ be an isomorphism of connected

loop-free categories. Let s ∈
∏
α∈AXα and λ ∈ A and Xs

λ be as in Lemma 2.3.27. Let
Y λ
β = πβΦ[X

s
λ], then

Φ|Xsλ : X
s
λ →

∏
β∈B

Y λ
β

is an isomorphism of connected loop-free categories.

92 2. FACTORING MODELS OF PROGRAMS

Proof. Let us show that Φ|Xsλ : X
s
λ →

∏
β∈B Y λ

β is essentially surjective. By Proposi-
tion 2.3.15, ΦObj|Xsλ is an isomorphism of posets. Thus, by Proposition 2.3.29,

ΦObj[X
s
λ] =

∏
β∈B

πβΦObj[Obj(X
s
λ)]

=
∏
β∈B

Obj(πβΦ[X
s
λ])

ΦObj[X
s
λ] = Obj(

∏
β∈B

πβΦ[X
s
λ])

Thus Φ|Xsλ is essentially surjective. Furthermore, Φ|Xsλ is full and faithful as the restriction
of a full and faithful functor to a full subcategory (Lemma 2.3.27 and Corollary 2.3.28).
Thus, Φ|Xsλ is a fully faithful and essentially surjective functor, thus an isomorphism in
LFCat

Proposition 2.3.31. Let Φ:
∏
α∈AXα →

∏
β∈B Yβ an isomorphism of connected loop-

free categories. Fix α ∈ A and β ∈ B. With

Y α
β := πβΦ[X

s
α] Xβ

α := παΦ
−1[Y

Φ(s)
β]

The two following morphisms are inverse of each other

πα ◦ Φ−1 ◦ ΞΦ(s)
β : Y α

β → Xβ
α πβ ◦ Φ ◦ Ξsα : Xβ

α → Y α
β

Proof. Let us prove that

πβΦ ◦ Ξsαπα ◦ Φ−1Ξ
Φ(s)
β |Y αβ : Y α

β → Y α
β is the identity.

First let us remark that πβΦ ◦Φ−1Ξ
Φ(s)
β = idY αβ and Ξsαπα|Xsα = idXsα (Corollary 2.3.28).

But this contraction can only be made if we prove that Φ−1Ξ
Φ(s)
β sends Y α

β to a subcate-
gory of Xs

α. As πβΦΞ
s
α : Xα → Y α

β is full and essentially surjective by Proposition 2.3.30,
it is equivalent to proving that Φ−1Ξ

Φ(s)
β πβΦΞ

s
α sends Xα to a subcategory of Xs

α

Let fα ∈ Xα and λ ∈ A, λ 6= α. By definition, πλids = πλΞ
s
αf . Thus, by Corol-

lary 2.3.25,

πλΦ
−1(Φ(ids),Φ(Ξ

s
αf)β , β) = πλids

i.e. πλΦ
−1Ξ

Φ(s)
β πβΦΞ

s
αf = πλids

Thus, Φ−1Ξ
Φ(s)
β πβΦΞ

s
α sends Xα to a subcategory of Xs

α. Such that,

πβΦ ◦ Ξsαπα ◦ Φ−1Ξ
Φ(s)
β |Y αβ = πβΦ ◦ Ξsαπα︸ ︷︷ ︸

=idXsα

◦Φ−1Ξ
Φ(s)
β |Y αβ︸ ︷︷ ︸

maps to Xsα

= πβ ◦ Φ ◦ Φ−1 ◦ ΞΦ(s)
β |Y αβ

= πβΞ
Φ(s)
β |Y αβ

πβΦ ◦ Ξsαπα ◦ Φ−1Ξ
Φ(s)
β |Y αβ = idY αβ Corollary 2.3.28

Similarly, παΦ−1Ξ
Φ(s)
β ◦ πβΦΞsα|Xβα = idXβα

2.3. FACTORING LOOP-FREE CATEGORIES 93

With this we have all we need to build the isomorphism Ψ1 = (bβ)β∈B :
∏
β∈B Yβ →∏

α∈A,β∈B Xβ
α and Ψ2 = (aα)α∈A :

∏
α∈AXα →

∏
α∈A,β∈B Xβ

α from Definition 2.3.18,
i.e. all the morphisms in Diagram 2.2 are isomorphisms.

Proposition 2.3.32. With the previous notations and with

Ψ1 =

(∏
β∈B

Φ−1 ◦ ΞΦ(s)
β

)
Ψ2 =

∏
α∈A

(∏
β∈B

(
πα ◦ Φ−1 ◦ ΞΦ(s)

β

)
◦ Φ ◦ Ξsα

)
Ψ ◦ Φ and Ψ2 are isomorphisms of connected loop-free categories. Furthermore, for all
α ∈ A, β ∈ B, πβΨ1 and παΨ2 are isomorphisms.

Proof. • Ψ1 is an isomorphism. Indeed, by Corollary 2.3.28 Ξ
Φ(s)
β : Yβ → Y

Φ(s)
β is

an isomorphism. By 2.3.30, so is Φ−1 : Y
Φ(s)
β →

∏
α∈AXβ

α . Thus, as products of
isomorphism, all arrows in the following diagram are isomorphisms.

∏
β∈B

Yβ

∏
β∈B Ξ

Φ(s)
β−−−−−−−−→

∏
β∈B

Y
Φ(s)
β

∏
β∈B Φ−1

−−−−−−−→
∏
β∈B

∏
α∈A

Xβ
α

• Let us prove that Ψ2 is an isomorphism. Indeed, by Corollary 2.3.28, resp. Propo-
sition 2.3.30 resp. 2.3.31, the following functors are all isomorphisms:

Xα
Ξsα−−→ Xs

α
Φ−→
∏
β∈B

Y α
β

∏
β∈B πα◦Φ

−1◦ΞΦ(s)
β−−−−−−−−−−−−−−→

∏
β∈B

Xβ
α

It follows that Ψ2 =
∏
λ∈A

(∏
β∈B

(
πα ◦ Φ−1 ◦ ΞΦ(s)

β

)
◦ Φ ◦ Ξsα

)
is an isomor-

phism by composition and product of isomorphisms. Furthermore, each παΨ2 is an
isomorphism

Now let us prove the commutativity of the Diagram 2.3.

Proposition 2.3.33. Let µ ∈ B, f ∈
∏
α∈AXµ

α =
∏
α∈A παΦ

−1[Y
Φ(s)
µ], with Ψ1 and Ψ2

as defined in Proposition 2.3.32. Then for all β ∈ B and α ∈ A

πβπα(γ
−1 ◦Ψ1 ◦ Φ)(f) = πβπαΨ2(f) =

{
fα if β = µ

sα otherwise

Proof. By definition of γ, the equality of Proposition 2.3.33 above is equivalent to

(Ψ1 ◦ Φ(f)β)α = ((γ ◦Ψ2(f))β)α =

{
fα if β = µ

sα otherwise

Let f = (fα)α∈A ∈
∏
λ∈AXµ

λ . By Proposition 2.3.30, Φ(f) ∈ Y
Φ(s)
µ with Φ(f) =

(Φ(ids),Φ(f)µ, µ) and Φ(f)µ ∈ Yµ.

94 2. FACTORING MODELS OF PROGRAMS

• For Ψ1 ◦ Φ =
∏
β∈B Φ−1 ◦ ΞΦ(s)

β ◦ πβΦ

πβΨ1 ◦ Φ(f) = Φ−1 ◦ ΞΦ(s)
β ◦ Φ(f)β

= Φ−1(idΦ(s),Φ(f)β , β) Definition 2.3.20
= Φ−1(idΦ(s), (idΦ(s),Φ(f)µ, µ)β , β)

πβΨ1 ◦ Φ(f) =

{
Φ−1(idΦ(s)) = ids if µ 6= β

Φ−1(idΦ(s),Φ(f)µ, µ) = f if µ = β

• For γ ◦Ψ2 =
∏
α∈A

(∏
β∈B παΦ

−1 ◦ ΞΦ(s)
β

)
(Φ ◦ Ξsα)

– β 6= µ.
By definition, ids = Φ−1Φ(ids) ∈ Φ−1[Y

Φ(s)
µ] =

∏
α∈AXµ

α , such that for all
α ∈ A, Ξsαfα ∈

∏
α∈AXµ

α i.e. Φ ◦ Ξsα(fα) ∈ Y
Φ(s)
µ and thus for all β 6= µ,

πβΦ ◦ Ξsα(fα) = Φ(ids)β .
Thus, for all β 6= µ

παπβ ◦ γ ◦Ψ2(f) = παΦ
−1Ξ

Φ(s)
β

(
πβΦ ◦ Ξsα(fα)

)
= παΦ

−1Ξ
Φ(s)
β (Φ(ids)β)

παπβ ◦ γ ◦Ψ2(f) = παids

– µ = β. Then, f ∈
∏
λ∈AXµ

λ therefore Φ(f) = (Φ(ids),Φ(f)β , β). It follows
that

∀gβ ∈ Yβ , (Φ(f), gβ , β) = (Φ(ids), gβ , β) (2.10)

Furthermore παΦ
−1Φ(f) = παΦ

−1Φ(ids, fα, α) = fα. Hence,

fα = παΦ
−1(Φ(f), (Φ(ids, fα, α))β , β) By Corollary 2.3.25

= παΦ
−1(Φ(ids), (Φ(ids, fα, α))β , β) By Eq. (2.10)

fα = παπβγ ◦Ψ2(f) By definition of Ψ2

.

Now that commutativity of Diagram 2.3 is proven, we extend the commutativity along
one of the λ ∈ A, thus proving the commutativity of the Diagram 2.2. First as explained
in the outline, we will to prove the faithfulness of the restriction, which is less trivial in
our case.

Lemma 2.3.34. With the previous notation, γ :
∏
β∈B

∏
α∈AXβ

α →
∏
α∈A

∏
β∈B Xβ

α the
natural isomorphism and with s̃λ the singleton category for a given λ ∈ A , the following
restrictions are faithful functors.

πλγ
−1Ψ1 ◦ Φ|Xsλ π{α∈A|α 6=λ}γ

−1Ψ1 ◦ Φ|∏
α6=λXα×s̃λ

πλΨ2|Xsλ π{α∈A|α 6=λ}Ψ2|∏
α6=λXα×s̃λ

2.3. FACTORING LOOP-FREE CATEGORIES 95

Proof. • Ψ1 ◦ Φ =

(∏
β∈B Φ−1 ◦ ΞΦ(s)

β

)
◦ Φ

Let f = (fα)α∈A ∈ Xs
λ, then παf = παids for all α 6= λ. Thus, by Corollary 2.3.25,

for all β ∈ B and all α 6= λ,

παΦ
−1(Φ(ids),Φ(f)β , β) = παids

i.e. παπβΨ1 ◦ Φ(f) = παids. Thus

Ψ1(f) ◦ Φ = (ids,
(
πβΨ1(f)

)
λ
, λ)β∈B

= (Ξsλ(πλπβΨ1(f)))β∈B

=

(∏
β∈B

Ξsλ

)
(πλπβΨ1(f))β∈B

Ψ1 ◦ Φ(f) =
(∏
β∈B

Ξsλ

)
◦
(
πλγ

−1Ψ1 ◦ Φ
)
(f)

This is true for all f ∈ Xs
λ, thus:

Ψ1 ◦ Φ|Xsλ =

(∏
β∈B

Ξsλ

)
◦
(
πλγ

−1Ψ1 ◦ Φ
)
|Xsλ

By faithfulness of Ψ1 ◦Φ (Proposition 2.3.32) and Ξsλ (Lemma 2.3.27), this implies
πλγ

−1Ψ1 ◦ Φ|Xsλ faithful.

Now let f ∈ (fα)α∈A ∈
∏
α6=λXα× s̃λ, then πλf = πλids. By Corollary 2.3.25, this

implies for all β ∈ B

πλΦ
−1(Φ(ids),Φ(f)β , β) = πλids

i.e. πλπβΨ1 ◦ Φ(f) = πλids such that

Ψ1 ◦ Φ(f) = (πβΨ1 ◦ Φ(f), idsλ, λ)β∈B Corollary 2.3.25
= ((παπβΨ1 ◦ Φ(f))α∈A, idsλ, λ)β∈B

Ψ1 ◦ Φ(f) = ((πβπαγ
−1Ψ1 ◦ Φ(f))α∈A, idsλ, λ)β∈B

Faithfulness of Ψ1 ◦Φ then implies the faithfulness of ((πβπαγ−1Ψ1 ◦Φ(.))α 6=λ)β∈B ,
i.e. the faithfulness of πα6=λγ−1Ψ1 ◦ Φ on the subcategory

∏
α6=λXα × s̃λ

• Ψ2 =
∏
α∈A

(∏
β∈B

(
πα ◦ Φ−1 ◦ ΞΦ(s)

β

)
◦ Φ ◦ Ξsα

)
By Proposition 2.3.32, each παΨ2 is an isomorphism, thus a fortiori, the restriction
παΨ2|Xsα is faithful. Hence, π{α∈A|α 6=λ}Ψ2|∏

α 6=λXα×s̃λ is faithful as a product of
faithful functors.

Proposition 2.3.35. With the previous notation, Ψ1 ◦ Φ = γ ◦Ψ2

96 2. FACTORING MODELS OF PROGRAMS

Proof. Let Ψ ∈ {Ψ2, γ
−1 ◦Ψ1 ◦ Φ} and µ ∈ B. Let fµλ ∈ Xµ

λ . By Proposition 2.3.33, Ψ2

and γ−1 ◦ Ψ1 ◦ Φ are equal when we restrict to
∏
α∈AXµ

α . As explained above, we wish
to extend this equality to the full domain. Proposition 2.3.33 also implies that for all
gµ ∈

∏
α∈AXµ

α , πλΨ(gµ, fµλ , λ) = πλΨ(s, fµλ , λ). Thus, by Lemma 2.3.26, for all fλ ∈ Xλ,
for all gµ ∈

∏
α∈AXµ

α

πλΨ(gµ, fλ, λ) = πλΨ(s, fλ, λ) = πλΨΞsλ(fλ)
def
:= Ψλ(fλ) (2.11)

We want to prove that for all λ ∈ A, µ ∈ B, gµ ∈
∏
α∈AXµ

α , fλ ∈ Xλ, the projection on
any α 6= λ of Ψ(gµ, fα, α) depends only on gµ, i.e.

(gµ, fλ, λ) = Ψ−1(Ψ(gµ),Ψλ(fλ), λ)

• For α 6= λ, παΨ−1Ψ(gµ, fλ, λ) = gµα = παΨ
−1Ψ(gµ). Thus, by Corollary 2.3.25,

παΨ
−1(Ψ(gµ),Ψ(gµ, fλ, λ)λ, λ) = gµα

By definition of Ψλ(fλ) (Eq. (2.11))

παΨ
−1(Ψ(gµ),Ψλ(fλ), λ) = gµα (2.12)

• For λ, By Eq. (2.12), Ψ−1(Ψ(gµ),Ψλ(fλ), λ) ∈ (Xµ
α , Xλ, λ), such that by Eq. (2.11)

πλΨΞsλ(πλΨ
−1(Ψ(gµ),Ψλ(fλ), λ)) = πλΨΨ−1(Ψ(gµ),Ψλ(fλ), λ)

= Ψλ(fλ)

πλΨΞsλ(πλΨ
−1(Ψ(gµ),Ψλ(fλ), λ)) = πλΨΞsλ(fλ) Eq. (2.11)

By faithfulness of πλΨΞsλ (Lemma 2.3.34),

πλΨ
−1(Ψ(gµ),Ψλ(fλ), λ) = fλ (2.13)

By Eq. (2.12) and Eq. (2.13), we have (gµ, fλ, λ) = Ψ−1(Ψ(gµ),Ψλ(fλ), λ) i.e.

Ψ(gµ, fλ, λ) = (Ψ(gµ),Ψλ(fλ), λ) (2.14)

So far Eq. (2.14) only holds when gµ ∈
∏
α∈AXµ

α . Let us prove that it is in fact valid for
all g ∈

∏
α∈AXα, i.e. for all λ ∈ A and for all fλ ∈ Xλ

Ψ(g, fλ, λ) = (Ψ(g),Ψλ(fλ), λ)

Let ρ ∈ A, ρ 6= λ. By Eq. (2.14), for all fλ ∈ Xλ, πρΨ(gµ, fλ, λ) = πρΨ(gµ). By
Lemma 2.3.26 this implies, for all g ∈

∏
α∈AXα, for all fλ ∈ Xλ

πλ̄Ψ(g, fλ, λ) = πλ̄Ψ(g) := Ψλ̄(g) (2.15)

where πλ̄ is the projection on A \ {λ}.
Thus, proving Ψ(g, fλ, λ) = (Ψ(g),Ψλ(fλ), λ) is equivalent to proving,

(Ψ(g, fλ, λ),Ψλ(fλ), λ) = Ψ(g, fλ, λ)

i.e.

Ψ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ) = (g, fλ, λ)

Let us look at the different projections

2.3. FACTORING LOOP-FREE CATEGORIES 97

• On Xλ.
πλΨ

−1(Ψ(g, fλ, λ)) = πλΨ
−1(ΨΞsλ(fλ)) = fλ implies by Corollary 2.3.25

πλΨ
−1(Ψ(g, fλ, λ), πλΨΞsλ(fλ), λ) = fλ

πλΨ
−1(Ψ(g, fλ, λ),Ψλ(fλ), λ) = fλ Eq. (2.11)

• On
∏

α 6= λXα

By Eq. (2.15), for all h ∈
∏
α∈AXα, πλ̄Ψ(h, idsλ, λ) = πλ̄Ψ(h). Applying this to

the element h = Ψ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ) we get

πλ̄Ψ(Ψ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ), idsλ, λ) = πλ̄ΨΨ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ)

= πλ̄(Ψ(g, fλ, λ),Ψλ(fλ), λ)

= πλ̄Ψ(g, fλ, λ)

πλ̄Ψ(Ψ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ), idsλ, λ) = πλ̄Ψ(g, idsλ, λ) Eq. (2.15)

By faithfulness of πλ̄Ψ|(∏α∈AXα,s̃λ,λ)
(Lemma 2.3.34),

(Ψ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ), idsλ, λ) = (g, idsλ, λ)

πλ̄Ψ
−1(Ψ(g, fλ, λ),Ψλ(fλ)) = πλ̄g

Thus Ψ−1(Ψ(g, fλ, λ),Ψλ(fλ), λ) = (g, fλ, λ) and as such, for all fλ ∈ λ, for all g ∈∏
α∈AXα,

Ψ(g, fλ, λ) = (Ψ(g),Ψλ(fλ), λ)

As this is true for any f, g ∈
∏
α∈AXα, and any λ, we get

Ψ(f) = (Ψα(fα))α∈A

All that is left to do is to prove that Ψα(fα) is the same whether Ψ = Ψ2 or Ψ =
γ−1 ◦Ψ1 ◦ Φ. By Eq. (2.11)

Ψλ(fλ) = πλΨΞsλ(fλ)

But, by definition

πβπλΨ2(Ξ
s
λfλ) = πβπλ(Φ

−1 ◦ ΞΦ(s)
β ◦ πβ ◦ Φ ◦ Ξsλ)(πλ(Ξsλfλ))

= πβπλ(Φ
−1 ◦ ΞΦ(s)

β ◦ πβ ◦ Φ ◦ Ξsλ)(fλ) Lemma 2.3.27

= πβπλ(Φ
−1Ξ

Φ(s)
β)(πβΦ)(Ξ

s
λfλ)

πβπλΨ2(Ξ
s
λfλ) = πβπλγ

−1 ◦Ψ1 ◦ Φ(Ξsλfλ) by Definition of Ψ1

This is true for all λ and β, thus Ψ2 = γ−1 ◦Ψ1 ◦ Φ

Finally, we have proven all the steps to prove our extension of Hashimoto’s theorem.

Theorem 2.3.36. Every connected loop-free category has the strict refinement property.

98 2. FACTORING MODELS OF PROGRAMS

3. A SYNTACTIC MODEL OF PROGRAMS 99

Chapter 3
A syntactic model of programs

“I’m significant!…Screamed the dust speck.”

– Bill Watterson, Calvin & Hobbes

Although topology offers a lot of interesting and powerful tools, programs are dis-
crete objects, and we believe that such heavy machinery should not be necessary when
studying them. In this chapter we present our result from [43] which introduces a new
model of conservative programs. This model is based directly on the syntax of programs,
and has as principal objective of making implementation of the tools introduced in the
previous Section 1.3 much more practical. We follow the presentation of Section 1.3 to
present our model and will translate all the different objects used in topological directed
models according to the following table. Our main objective is to get back the powerful
deadlock detection algorithms in our syntactic setting, which necessitates the compact
representation by covers of the regions. Once again our first concern is to make these
tools easier to implement and work with in practice and will influence many choices in
the following sections.

Geometric semantics Syntactic semantics

Directed topological spaces Partially ordered sets
Pruned state space Authorized positions

Points Positions
Paths Paths
n-cubes (Syntactic) cubes

Cubical covers (Syntactic) covers
Cubical regions Support

Maximal cubical covers Normal forms

In order to study and present this model, we first introduce a variant of the PIMP
language we call NPIMP, focusing purely on the concurrent nature of the programs
considered. Making full use of the nature of the language NPIMP, and of the notion

100 3. A SYNTACTIC MODEL OF PROGRAMS

of conservativity, we represent the state (and execution traces) as positions of a partially
ordered set, corresponding to prefixes of executions of our program.

Then to efficiently manipulate and describe the set of authorized positions, we in-
troduce an analogous notion of cubical covers (Section 3.2.1) for the syntactic semantics
of our program, where a (potentially infinite) set of positions called a support is de-
scribed by a set of cubes (defined for generic posets) containing said points. We show
in Section 3.2.3 that these “syntactic covers”, under reasonable assumptions, inherit the
same boolean algebra structure as their topological equivalent. Using this structure, we
define a canonical representative for the supports corresponding to actual “forbidden”
and “authorized” region of programs, and explain how to implement its computation in
Section 3.3.

These constructions allow us to implement the deadlock detection Algorithm 1.4.33
for the syntactic model in a fully automated tool Sparkling, which can be found in [42].

3.1 Syntactic semantics of concurrent programs

3.1.1 Positions in programs
As seen in the previous Chapter 1, for most of the models we introduced previously, reach-
ability is undecidable, and many assumptions were made on the programs we consider in
order to circumvent this difficulty (coherence of programs Definition 1.3.18, conservativity
Definition 1.2.23) and focus on concurrency properties.

To further focus on the problems linked to the concurrent nature of our programs, we
will remove arithmetic variables and boolean conditions altogether from PIMP. Indeed,
the definitions for reachability, deadlocks, unsafe and doomed regions of Definition 1.3.59
does not take these into account, and we shall do the same.

In this chapter, we introduce a variant of the PIMP language: the non-deterministic
PIMP, or NPIMP for short. NPIMP uses similar constructors and actions but has no
arithmetic expressions, nor boolean conditions and no variables, thus focusing purely on
the parallel structure of the programs and their resource consumption.

Definition 3.1.1. Let R be a fixed, finite set of resources. Let a ∈ R. The language
NPIMP is generated by the following syntactic expressions, defined by their grammar:

• the set X of actions:

A ::= Pa | Va | skip | . . .

• the set C of commands, or programs:

P,Q ::= A | P;Q | P * | P+Q | P||Q

In this language, P * replaces while b do P and P+Q replaces if b then P else Q.
As explained above, we do not take variables into account, so that branching and looping
is non-deterministic, but we could handle proper conditional branching and while loops
in the same way that topological models do.

In a NPIMP program, we do not consider boolean conditions or arithmetic variables.
Thus, a state σ in our set of states Σ for a program in NPIMP should be a function
associating to each resource its consumption.

3.1. SYNTACTIC SEMANTICS OF CONCURRENT PROGRAMS 101

Definition 3.1.2. Given a program P in NPIMP, we write Σ = ZR for the set of states
of P , consisting of functions assigning an integer to each resource. The initial state σ0 is
the constant function equal to 0. The operational semantics of our programming language
consists of two functions:

• J−KX : X → Σ→ Σ, describing the evaluations of actions

• J−KC : C → Σ→ Σ, describing the evaluations of commands or programs.

As we only are considering resources, the function J−KX is easy to define. Pa increases
the consumption of a resource, while Va diminishes it. All other actions are considered to
have no effect.

Definition 3.1.3. Given a program P in NPIMP, the evaluation of the actions Pa and
Va are the functions JPaKX , JVaKX : Σ→ Σ defined as follows for each σ ∈ Σ:

JPaKX (σ) = δ+a (σ) JVaKX (σ) = δ−a (σ)

where

δ+a (σ)(b) =

{
σ(a) + 1 if b = a

σ(a) otherwise
δ+a (σ)(b) =

{
σ(a)− 1 if b = a

σ(a) otherwise

Instead of generating the state space inductively as in Definition 1.3.31 or Defini-
tion 1.3.13, we will instead generate the set of “states” or positions of our program di-
rectly.

By restraining ourselves to conservative programs, as in Section 1.2.3, the consumption
of resources of an execution will depend only on its endpoints. For NPIMP consumption
and evaluation of an execution is the same, as there is only resources. Thus, for such
programs, we can define the semantics of programs solely for their positions (states).

3.1.1.1 Positions of a program

A position in a program describes where we are during a potential execution of the
program and thus encodes the “prefix” of the program which has already been executed.
Formally, we begin by the following definition.

Definition 3.1.4. The pre-positions p are generated by the following grammar, with
n ∈ N:

p, q ::= ⊥ | > | p;q | pn | p+∅ | ∅+q | p||q

Those can be read as: we have not started (resp. we have finished) the execution (⊥,
resp. >), we are executing a sequence (p;q), we are in the n-th iteration of a loop (pn),
we are executing a branch of a conditional branching (p+∅, ∅+q) and we are executing
two programs in parallel (p||q).
Remark 3.1.5. Note that the syntax of positions is essentially the same as the one of
programs, except that actions have been replaced by ⊥ and > (and loops are “unfolded”
in the sense that we keep track of the loop number).

102 3. A SYNTACTIC MODEL OF PROGRAMS

Next, we single out the pre-positions which are actual positions (states) for a program.
For instance, we want that, in a program of the form P;Q, we can begin executing Q
only after P has been fully executed: this means that a pre-position of the form p;q with
q 6= ⊥ is a position only when p is >. Similarly, in a conditional branching P+Q, we
cannot execute both subprograms: that is why positions of P+Q are of the form p+∅ and
∅+q.

Remark 3.1.6. In [43], we had previously defined positions of P+Q as p+⊥ and ⊥+q. This
was changed in order to make some proofs easier to understand in Section 4.2. This has
no effect on the results of this section and all proofs have been suitably modified to take
this change into account.

Definition 3.1.7. Given a program P , we write P � p to indicate that a pre-position
p is a position of a program P , this predicate being defined inductively by the following
rules, for any program P,Q,R:

P 6= Q‖R
P � ⊥

P � p

P;Q � p;⊥
P � p

P+Q � p+∅
P � p

P * � pn

P 6= Q‖R
P � >

Q � q

P;Q � >;q
Q � q

P+Q � ∅+q
P � p Q � q

P||Q � p||q

For programs of the form P‖Q, we write ⊥ (resp. >) as a shorthand for ⊥||⊥ (resp. >||>)
We write P(P) for the set of positions of a program P .

Remark 3.1.8. Contrary to what we did in [43], we do not have the positions P||Q � ⊥
and P||Q � >. This makes it easier to represent parallel composition of processes as
multidimensional “cubes”. The surcharge of the notation ⊥ and > will be justified in
Proposition 3.1.24 as ⊥||⊥ and >||> serve the same role as ⊥ and > respectively as
lower and upper bound of the lattice P(P‖Q). All proofs from [43] have been adapted to
reflect this change.

3.1.1.2 Operational semantics

We will now, as in Section 1.1.2, introduce an intermediate reduction relation to describe
how our prefixes of executions (our positions, which are also our state) progress towards
another. Here, we do not restrict the transitions to those which would lock resources
more than their capacity or release unlocked resources as in Section 1.2.4. We will allow
such paths for now and filter them out afterwards.

3.1. SYNTACTIC SEMANTICS OF CONCURRENT PROGRAMS 103

Definition 3.1.9. The reduction relation is defined inductively by

P+Q � ⊥ → ∅+⊥
Q � q → q′

P+Q � ∅+q → ∅+q′ P+Q � ∅+> → >

P+Q � ⊥ → ⊥+∅
P � p → p′

P+Q � p+∅ → p′+∅ P+Q � >+∅ → >

P � p → p′ Q � q

P||Q � p||q → p′+q
P � p Q � q → q′

P||Q � p||q → p+q′

P;Q � ⊥ → ⊥;⊥
P � p → p′

P;Q � p;⊥ → p′;⊥
Q � q → q′

P;Q � >;q → >;q′ P;Q � >;> → >

P * � ⊥ → ⊥0

P � p → p′

P * � pn → p′n P * � >n → ⊥n+1 P * � >n → >

P � p → p′

P * � p* → p′*

A ∈ X
A � ⊥ → >

Remark 3.1.10. The above operational semantics is very “fine-grained” in the sense that
it features transitions which are not usually observable, such as P;Q � ⊥ → ⊥;⊥ which
corresponds to passing from a state where we have not yet started executing the program
to a state where we have started executing a sequence, but not yet its components. The
usual “real” actions correspond to executions of the lower left rule A � ⊥ → > which can
be interpreted as executing an action A.

Furthermore, the relation is well-defined as proven by the following lemma. Combined
with Corollary 3.1.26 this formalizes the fact that the positions in Definition 3.1.7 captures
exactly the expected states of our program.

Lemma 3.1.11. If P � p→ p′ holds then both P � p and P � p′ hold.

Proof. This is proved by an easy induction on the derivation of the reduction. For in-
stance, consider the case where the last rule is

P � p→ p′ Q � q

P||Q � p||q → p′||q

By induction hypothesis, we have a derivation of P � p → p′ and thus both P � p and
P � p′ hold. We can use the rules

P � p Q � q

P||Q � p||q
P � p′ Q � q

P||Q � p′||q

to show that both P||Q � p||q and P||Q � p′||q hold. Other cases are similar.

We can define the consumption of a path π. Each action Pa or Va modifies the consumption
according to intuition and the operational semantics already defined in Definition 3.1.3.

First, we recall and adapt some definitions from Section 1.1.2:

104 3. A SYNTACTIC MODEL OF PROGRAMS

Definition 3.1.12. Given a program P , the state space GP of this program is the graph
whose vertices are the positions of P (Definition 3.1.7) and edges are the reductions
(Definition 3.1.9).

Definition 3.1.13. Given a program P , a path on GP is a sequence of reduction π =
(P � pi → pi+1)0≤i<n also written P � π : p →∗

0 pn or π : p0 →∗ pn. With the following
constructions:

• Given two paths π : p →∗ q and π′ : q →∗ p′ we write π′ · π : p →∗ p′ for their
concatenation.

• The empty path on a state p is written εp : p→∗ p.

Furthermore, we say that

• An execution trace π of P is a path P � π : ⊥ →∗
P p. When p = >P , i.e. P � π :

⊥ →∗ >, we way that π is total.

• An execution trace π of P is maximal when it cannot be extended.

• An execution is elementary when it consists of one reduction step.

• A position p is reachable when there exists an execution trace π with p as target
i.e. P � π : ⊥ →∗

P p.

As customary, we also write P � p →∗ p′ (or sometimes simply p →∗ p′) when there
exists a path P � π : p→∗ p′.

Definition 3.1.14. Given an execution P � π : p →∗ p′, we write JP � π : p →∗ p′K :
Σ → Σ (or sometimes simply JπK) for its evaluation or consumption of mutexes. This
function is defined for elementary executions on each state σ ∈ Σ by:

• For a ∈ R, JPa � π : ⊥ → >K(σ) = JPaKX = δ+a (σ),

δ+a (σ)(b) =

{
σ(a) + 1 if b = a

σ(a) otherwise

• For a ∈ R, JVa � π : ⊥ → >K = JVaKX = δ+a (σ),

δ+a (σ)(b) =

{
σ(a)− 1 if b = a

σ(a) otherwise

• For each reduction π, different from the two above, deduced with a rule of Defini-
tion 3.1.9 with no premise we have JπK(σ) = σ.

• For each reduction π deduced with a rule of Definition 3.1.9 with one reduction π′

as premise, we have JπK = Jπ′K.

And extended as a morphism of the category of executions on the monoid of consumptions,
i.e. JεK = id and Jπ · π′K = Jπ′K + JπK.

3.1. SYNTACTIC SEMANTICS OF CONCURRENT PROGRAMS 105

Definition 3.1.15. A program P is conservative when for any pair of paths π, τ : x→∗ y
in GP with same source and target we have for any state σ ∈ Σ and any resource a ∈ R:

JπK(σ)(a) = JτK(σ)(a)

Example 3.1.16. Writing π for any total execution of the program Pa;(Pa||Vb), with a 6= b,
we have JπK(a) = 2, JπK(b) = −1 and JπK(c) = 0 for c 6= a and c 6= b. Thus, Pa;(Pa||Vb)
is not conservative.

Definition 3.1.17. The consumption of a program P is the partial function ∆(P) : R→
Z defined by induction on P by

∆(Pa) = δa ∆(Va) = −δa ∆(A) = 0

∆(P;Q) = ∆(P||Q) = ∆(P) + ∆(Q)

∆(P +Q) = ∆(P) if ∆(P) = ∆(Q)

∆(P *) = 0 if ∆(P) = 0

where 0 is the constant function equal to 0 and δa the indicator function of a.

Proposition 3.1.18. The function ∆ is only partially defined on programs. A program
P is conservative if and only if ∆(P) is well-defined.

Proof. See [43, Proposition 3.4].

As in Section 1.2.3, the consumption of any path is only defined by its endpoints.
Thus, we can define the consumption of mutexes directly on positions. Furthermore, for
a program NPIMP, consumption and evaluation of a path are the same thing, as the
states only contains information about the resources.

Definition 3.1.19. Given a conservative program P and a position p in P(P), we define
the consumption of p, written JpK : R→ Z as follows:

JpK = JπK(σ0)

for some path π : ⊥P → p and σ0 the initial state of P from Definition 3.1.2

The above definition is always well-defined as the consumption of a path in conserva-
tive program only depends on the endpoints and furthermore, such a path always exists
π : ⊥P → p. This second point will be proven later on in Corollary 3.1.26.

Definition 3.1.20. We say that a position p is valid when for all resources a ∈ R,
0 ≤ JpK < κa. We say that an execution π = (pi → pi+1)i∈I is valid when all positions pi
are valid.

A valid execution is namely compatible with the expected semantics of resources in
the sense that

• no resource is taken more than its capacity κa (without having been released in
between),

106 3. A SYNTACTIC MODEL OF PROGRAMS

• no resource is released without having been taken first.
Definition 3.1.21. Given a program P , the authorized region is defined as the set of
all valid position. Its complement is called the forbidden region and any position in the
forbidden region is said to be forbidden.

The authorized region corresponds to the pruned state space of Section 1.3, but in
our case we prefer not pruning the state formally, instead we designate the position as
forbidden and try to find which “cubes” intersect or not the forbidden region. This choice
is important to define a tractable definition of intervals/cubes on our state space.

Finally, we define J−KC , by the consumption of any path π : ⊥ →∗ >, or alternatively
simply by the consumption of >.
Definition 3.1.22. Given a program P in NPIMP, its evaluation JP KC : Σ → Σ is
defined as follows:

JP KC(σ) = J>K + σ

When considering execution traces, this reduces to

JP KC(σ0) = J>K

It is easy to check that JPaKC = JPaKX , and JVaKC = JVaKX .

3.1.2 A partial order on positions
In this section we will show that the reduction relation → from Definition 3.1.9 induces
a partial order on the set of positions (i.e. the state space) that is much more tractable
for computations and proofs. This will allow us to define the syntactic semantics of our
programs as simple posets. In this model, the partial order plays an analogous role to
the notion of direction in the geometric semantics of Section 1.3.
Definition 3.1.23. We write ≤ for the smallest reflexive relation on the positions of P
such that

P 6= Q‖R
⊥ ≤ p

p ≤ p′ q ≤ q′

p;q ≤ p′;q′
p ≤ p′ q ≤ q′

p||q ≤ p′||q′
p ≤ p′

pn ≤ p′n

P 6= Q‖R
p ≤ >

p ≤ p′

p+∅ ≤ p′+∅
q ≤ q′

∅+q ≤ ∅+q′ pm ≤ p′n

for m < n.
Proposition 3.1.24. Given a program P and a position p of P , we have ⊥ ≤ p (resp. p ≤
>)
Proof. Given a program P and a position p of P , let us prove that ⊥ ≤ p by induction
on the program P .

• P = Q‖R. Then ⊥ = ⊥‖⊥ (Definition 3.1.7). And by Definition 3.1.7, p = q‖r with
Q � q, R � r. By induction hypothesis, ⊥ ≤ q and ⊥ ≤ r. Thus, by the inference
rules of Definition 3.1.23, we have

⊥ ≤ q ⊥ ≤ r

⊥||⊥ ≤ q||r

Thus ⊥ = ⊥‖⊥ ≤ q‖r = p.

3.1. SYNTACTIC SEMANTICS OF CONCURRENT PROGRAMS 107

• Otherwise, the property is immediate by the rule
P 6= Q‖R
⊥ ≤ p

from Definition 3.1.23.

The property p ≤ > is proved in the same way.

Proposition 3.1.25. Given two positions p and p′ of P , we have p ≤ p′ if and only if
p→∗ p′.

Proof. We prove by induction on the program P that, given positions p and p′ of P ,
having the relation p ≤ p′ is equivalent to having reductions p→∗ p′. Let us proceed by
induction on P .

• A. Trivial.

• Q||R. Then p = q||r and p′ = q′||r′ for some q, q′ ∈ P(Q) and r, r′ ∈ P(R). By
the inference rules of Definition 3.1.23, we have that p||q ≤ q′||r′ is equivalent to
both q ≤ q′ and r ≤ r′ which, by induction hypothesis, is equivalent to q →∗ q′ and
r →∗ r′ which, by the rules

Q � q → q′ R � r

Q||R � q||r → q′||r
Q � q′ R � r → r′

Q||R � q′||r → q′||r′

is equivalent to q||r →∗ q′||r′.

For the rest of the cases, we suppose that p and p′ are both distinct from ⊥ and > below
(these cases are easily handled separately).

• Q+R. Then p = q+r and p′ = q′+r′ for some q, q′ ∈ P(Q) ∪ {∅} and r, r′ ∈
P(R) ∪ {∅}. We have q+r ≤ r′+r′ if and only if

– q ≤ q′ and r = r′ = ∅, or
– r ≤ r′ and q = q′ = ∅.

Both are treated the same way, so let us suppose q ≤ q′ and r = r′ = ∅. By
induction hypothesis, we have that q ≤ q′ is equivalent to q →∗ q′ and thus to
q+∅→∗ q′+∅ by the rule

Q � q → q′

Q+R � q+∅→ q′+∅

• Q;R. We separate the three following cases:

– p = q;⊥ and p′ = q′;⊥. Then q;⊥ ≤ q′;⊥ is equivalent, by the inference rules
of Definition 3.1.23, to q ≤ q′. By induction hypothesis, this is equivalent to
Q � q → q′. By the inference rule

Q � q → q′

Q;R � q;⊥ → q′;⊥

This is equivalent to Q;R � q;⊥ → q′;⊥.
– p = >;r and p′ = >;r′. Similar to the case above.

108 3. A SYNTACTIC MODEL OF PROGRAMS

– p = q;⊥ and p′ = >;r′. By definition q ≤ > and ⊥ ≤ r′. Hence, p ≤ p′

by inference rules. By induction hypothesis Q � q ≤ > and R � ⊥ ≤ r′ is
equivalent to q →∗ > and ⊥ →∗ r′ which, by the rules

Q � q → >
Q;R � q;⊥ → >;⊥

R � ⊥ → r′

Q;R � >;⊥ → >;r′

implies, by concatenation, Q;R � p→ p′.

• P = Q*. Then p = qn and p′ = q′m for some q, q′ ∈ P(Q) and n, n′ ∈ N.

– If n = m, we have by the inference rules of Definition 3.1.23, that qn ≤ q′n is
equivalent to q ≤ q′ which, by induction hypothesis, is equivalent to q →∗ q′

which, by the rule
Q � q → q′

Q* � qn → q′n

is equivalent to qn →∗ q′n.
– If n < m, by the inference rules, q ≤ > equivalent to qk →∗ >k and ⊥ ≤ q′

equivalent to ⊥k →∗ q′k. Thus, by concatenation of the following paths :

Q � q′ →∗ >
Q* � qn →∗ >n

, with for n ≤ k < m

Q � ⊥ →∗ >
Q* � ⊥k →∗ >k Q* � >k →∗ ⊥k+1

and finally the path
Q � ⊥ →∗ q′

Q* � ⊥m →∗ q′m

gives the equivalence.

By taking p = p′ we get the Corollary 3.1.26. The case where p or p′ equals > or ⊥ can
also be deduced this way.

Corollary 3.1.26. Given a program P , every position p of P is reachable for the relation
→∗.

Proof. By Proposition 3.1.24, we have ⊥ ≤ p for any position p of P . Thus, by Proposi-
tion 3.1.25 we have the proposition.

Proposition 3.1.27. The relation ≤ is a partial order on the set P(P) of positions of P .

Proof. The reflexivity and transitivity of ≤ follows, by Proposition 3.1.25, from the re-
flexivity and transitivity of →∗, which are satisfied by definition.

Let us show the antisymmetry of ≤. Given positions p and p′ of P such that both
p ≤ p′ and p′ ≤ p hold. The case where P 6= Q‖R and p or p′ is either ⊥ or > is immediate
by definition of the order. For other cases, we reason by induction on P .

3.1. SYNTACTIC SEMANTICS OF CONCURRENT PROGRAMS 109

• A. By definition, A � p implies that p is either ⊥ or > and this case is handled
above.

• R;Q. The two positions are of the form r;q and r′;q′ such that, r;q ≤ r′;q′ ≤ r;q
. By inference rules we have r ≤ r′ ≤ r and q ≤ q′ ≤ q which gives by induction,
r = r′ and q = q′.

• R+Q. Then as p, p′ are comparable, this implies that the two positions are of the
form r+∅ and r′+∅ or ∅+q and ∅+q′. Let us suppose that we are in the former
case (the latter being treated dually), such that, r+∅ ≤ r′+∅ ≤ r+∅ . By inference
rules we have r ≤ r′ ≤ r which gives by induction, r = r′.

• R||Q. The two positions are of the form r||q and r′||q′ such that, r||q ≤ r′||q′ ≤
r||q . By inference rules we have r ≤ r′ ≤ r and q ≤ q′ ≤ q which gives by induction,
r = r′ and q = q′.

• Q*. The positions are of the form rn and qm such that, rm ≤ qn ≤ rm. By inference
rules we have n ≤ m ≤ n. Thus, m = n and r ≤ q ≤ r by inference rules, which
implies, by induction hypothesis r = q.

Thus, we can define the syntactic semantics as the set of positions, equipped with the
partial order ≤ on positions. By Proposition 4.1.33, two states are comparable, if there
is an execution from one to the other.

Definition 3.1.28. The syntactic semantics associated to a program P is the partially
ordered set (P(P),≤P) associated with a subset PF of its forbidden positions (as in
Definition 3.1.21).

Example 3.1.29. Let us revisit the program P = Pa; Va‖Pa; Va from Example 1.4.3. Its
syntactic semantics is given below, with arrows indicating comparability. The central
point, whose associated transitions have been dotted corresponds to a “forbidden position”
of the program (one where the resource a has been taken more than its capacity). Contrary
to previous models, we do not prune these positions from the semantics.

⊥

⊥;⊥

>;⊥

>;>

>

⊥ ⊥;⊥ >;⊥ >;> >

3.1.3 Syntactic semantics properties
The posets of positions of programs naturally exhibits some interesting properties. First of
all incomparable elements are only generated by conditional branchings or parallelization

110 3. A SYNTACTIC MODEL OF PROGRAMS

of processes. As there is a finite amount of those, this means that every antichain of our
syntactic semantics is finite. Furthermore, from any state/position of our programs, there
can only have been a finite number of steps to reach this position, i.e. our semantics is
well-founded. These properties combined imply that we are dealing with a special class
of partial orders called well-orders [33]. These properties will be useful later on, when
we will prove that our syntactic equivalent of cubical covers form a boolean algebra in
Theorem 3.2.38.

Definition 3.1.30. Let (X,≤) a partially ordered set. We say that X is a well-order
when one of the following equivalent properties hold

• for every infinite sequence (xi)i∈N of elements of X, there are indices i < j such
that xi ≤ xj .

• X is well-founded and every antichain is finite.

• Every decreasing sequence (xi)i∈N of elements of X is stationary after a certain rank
and every set of pairwise incomparable element is finite.

Proof. See [33, Basic Definitions and Tree Theorem]

Proposition 3.1.31. The poset P(P) is a well-order.

Proof. The proof proceeds by induction on P . The inductive cases are easily deduced
from the fact that well-orders are closed under finite products, finite co-products and
contain (N,≤). A proof of this can be found in [48, Section 1.1.3].

Then, given a program P , we define

P(P)+ =

{
P(P) if P of the form Q‖R
P(P) \ {⊥,>} otherwise

It is much easier to reason inductively on this set of positions, so we will first prove

P(P) is a well-order if and only if P(P)+ is a well-order

Indeed both well-foundedness and finitude of antichains of these sets are equivalent:

• Given a decreasing sequence (pn)n∈N ∈ P(P)N. If there exists m ∈ N such that
pm = ⊥ or for each n ∈ N, pn = >, the sequence is trivially stationary after rank
m.

• Given an antichain A ∈ P(P)I indexed by some set I, we have that |A| < ∞ is
equivalent to |A

⋂
P(P)+| <∞.

By induction on the program P , we show that P(P)+ is a well-order.

• P = A. Since P(P) = {⊥,>} is finite, it is a well-order.

• For all following cases:

3.1. SYNTACTIC SEMANTICS OF CONCURRENT PROGRAMS 111

– P = R||Q. Using the inference rules

P � p Q � q

P||Q � p||q
p ≤ p′ q ≤ q′

p||q ≤ p′||q′

we have P(P)+ = P(P) = P(R)||P(Q) equivalent to P(R) × P(Q) with the
product order.

– P = R+Q. Using the inference rules

P � p

P+Q � p+∅
Q � q

P+Q � ∅+q
p ≤ p′

p+∅ ≤ p′+∅
q ≤ q′

∅+q ≤ ∅+q′

we have P(P)+ = P(R)+∅
⋃

∅+P(Q) equivalent to P(R) t P(Q) with the
canonical disjoint order.

– P = R;Q. Using the inference rules

P � p

P;Q � p;⊥
Q � q

P;Q � >;q
p ≤ p′ q ≤ q′

p;q ≤ p′;q′

we have P(P)+ = (P(R);⊥)\{>;⊥}
⋃
>;P(Q) is equivalent to ({0}×P(R)\

>)
⋃
({1} × P(Q)) equipped with the lexicographic order.

– P = R*. Using the inference rules

P � p

P * � pn
p ≤ p′

pn ≤ p′n
m < n

pm ≤ p′n

By the inference rules, P(P)+ = {rn | r ∈ P(R), n ∈ N} is equivalent to
N× P(R) equipped with the lexicographic order.

The posets P(R) and P(Q) are well-orders by induction hypothesis, {0, 1} and N
as well, and well-orders are closed by all the above operations [48, Section 1.1.3,
1.1..4].
Thus, P(P)+ is a well order.

Proposition 3.1.32. The partial order ≤ on P(P) is a bounded lattice, with ⊥ and >
as smallest and largest elements, with supremum being determined by

(p;q) ∨ (p′;q′) = (p ∨ p′);(q ∨ q′) pn ∨ p′n = (p ∨ p′)n (p+∅) ∨ (p′+∅) = (p ∨ p′)+∅
(p||q) ∨ (p′||q′) = (p ∨ p′)||(q ∨ q′) pm ∨ p′n = p′n (∅+q) ∨ (∅+q′) = ∅+(q ∨ q′)

(p+∅) ∨ (∅+q) = >

for m < n. The infimum admits a similar description.

Proof. Given a program P , let us prove that for any two positions P � p1, p2, p1 ∨ p2 cor-
responds to the supremum sup(p1, p2) of p1 and p2 in the classical sense, i.e. sup(p1, p2) =
min{p ∈ P(P) | p ≥ p1, p ≥ p2}.

We first remark that by Proposition 3.1.24, > ∨ p = > and ⊥ ∨ p = p corresponds to
the supremum of the positions. We will thus suppose both p1 and p2 distinct from ⊥ and
> when P is not of the form Q‖R and prove the property by induction on the program
P . We remind that we differentiate the case P = Q‖R because in this case ⊥ = ⊥‖⊥ and
removing it would complicate the argument.

112 3. A SYNTACTIC MODEL OF PROGRAMS

• R = A. Trivial.

• P = Q;R. The positions are of the form p1 = q1;r1 and p2 = q2;r2.
By induction hypothesis, for i = 1, 2, we have

q1 ∨ q2 ≥ qi and r1 ∨ r2 ≥ ri

and for every position q;r of P such that q;r ≥ pi for i = 1, 2, we have

q ≥ q1 ∨ q2 and r ≥ r1 ∨ r2

By the inference rules, we therefore have q;r ≥ (q1 ∨ q2);(r1 ∨ r2) ≥ qi;ri, which
proves

sup(p1, p2) = (q1;r1) ∨ (q2;r2) = (q1 ∨ q2);(r1 ∨ r2) = p1 ∨ p2

We still need to prove that P � (q1 ∨ q2);(r1 ∨ r2). By inference rules, this is
equivalent to q1 ∨ q2 = > or r1 ∨ r2 = ⊥.

– If q1 = > or q2 = >, by the inference rules, this implies q1 ∨ q2 = >.
– Otherwise, q1 6= > and q2 6= >. Thus, P � p1 and P � p2 implies r1 = ⊥ = r2.

Thus, r1 ∨ r2 = ⊥.

Thus, P � (q1 ∨ q2);(r1 ∨ r2).

• P = Q||R. Similar to the case above.

• P = Q+R. We have p1 = q1+r1 and p2 = q2+r2

– Suppose that r1 = r2 = ∅. By the inference rules, positions of P greater than
pi are p = q+∅ with q greater than qi or p = > (not the supremum since >+∅
is a smaller upper bound). Thus, similarly as above, the inference rules imply

sup(p1, p2) = (q1 ∨ q2)+∅ = (q1+∅) ∨ (q2+∅)

– The case where q1 = q2 = ∅ is similar.
– Otherwise, p1 = q1+∅, p2 = ∅+r2. By inference rules, p ≥ pi for i = 1, 2

implies p = >. Thus,
sup(p1, p2) = > = p1 ∨ p2

• P = Q*. We have p1 = qn1
1 and p2 = qn2

2 .

– If n1 > n2, then p1 > p2. Thus, sup(p1, p2) = p1 = p1 ∨ p2. The case n2 > n1

is symmetric.
– Otherwise, suppose n1 = n2 = n. By induction, q ≥ qi for i = 1, 2 implies

q ≥ q1 ∨ q2 and thus by inference rules, qn ≥ (q1 ∨ q2)
n. And by definition of

the supremum, the inference rules imply (q1 ∨ q2)
n ≥ qni . Thus

(q1 ∨ q2)
n = sup(qn1

1 , qn2
2)

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 113

3.2 The boolean algebra of syntactic regions

3.2.1 Cubes and regions of posets
In this section we define our representation of the state-space of programs, replacing
(maximal) cubical covers in geometric semantics of Section 1.4.1 by (normal) syntactic
covers. Instead of considering cubes between pairs of points, we consider cubes between
syntactic positions. This makes implementation easier, as we can rely on the inductive
nature of their definition for the different operators (intersection, complement, …).

We show that, under mild assumptions, these regions satisfy the same fundamen-
tal properties as cubical covers (forming a boolean algebra, supporting the existence of
canonical representatives, etc.) and provide explicit ways of computing corresponding
canonical operations on syntactic covers.

3.2.1.1 Intervals

We will replace the n-cubes of the directed topological models by a notion of cube on par-
tially ordered sets, simply defined as pairs of points in our posets which represents/covers
the set of points in between them.

Definition 3.2.1. Let (X,≤) a poset. A cube (x, y) in this poset is a pair of elements
such that x ≤ y. We denote by C(X), the set of all cubes of X.

To differentiate the cube as an object and as the set of point it represents, in the
same way we separate cubical regions and cubical covers in Section 1.4.1, we introduce
the support operator, which associate to a cube the associated region.

Definition 3.2.2. Let (X,≤) a poset. Let I = (x, y) ∈ C(X). We write [I] = [x, y] =
{z ∈ X | x ≤ z ≤ y} for the set of points it contains, also called its support.

When considering, ~In with the standard product order, then the set [x1×. . .×xn, y1×
. . .× yn] corresponds to the region

∏n
i=1[xi, yi]. The associated cube corresponds to the

associated n-cube.

Definition 3.2.3. Given a poset P, we call (syntactic) region of P any subset X ⊆ P

There is a natural ordering on cubes based on the inclusion order of the set of points
they represent.

Definition 3.2.4. Let (X,≤) a poset. Let I, J ∈ C(X). We define the partial order
relation ⊆ on cubes as follows:

I ⊆ J if and only if [I] ⊆ [J]

Remark 3.2.5. We write z ∈ I instead of z ∈ [I]: we have z ∈ (x, y) if and only if
x ≤ z ≤ y.

3.2.1.2 Syntactic covers

Now the syntactic equivalent of cubical covers (resp. cubical regions) is naturally defined
as the syntactic cubical covers (resp. their support).

114 3. A SYNTACTIC MODEL OF PROGRAMS

Definition 3.2.6. A syntactic (cubical) cover R of a poset X is a set of cubes of X. A
cover is finite, when it contains a finite number of cubes. We write R(X) = P(X ×X)
for the set of covers of X, where P(−) denotes the power set of a given set.

Definition 3.2.7. The support of a cover R is the set [R] defined as follows:

[R] =
⋃
I∈R

[I]

Two covers are equivalent when they have the same support.

Equivalent covers are the syntactic equivalent of cubical covers of the same cubical
regions. Such covers are different ways of describing the same underlying set of points of
the state space. Just as there exists a maximal cubical cover, we should be able to exhibit
a “most compact” representation of a region in its equivalence class.

We recall that for a syntactic cube, its maximal cubical cover is given by the set of all
maximal cubes Cmax

n (Y) included in the cubical region Y (Proposition 1.4.11). Intuitively,
the “best” syntactic cover with a given support Y ⊆ X will then consist of all the maximal
cubes (w.r.t. ⊆) contained in Y . We will call this region the normal form for a cover R
and say that a cover is in normal form when it is equal to its own normal form.

In order to formalize this, we re-introduce the (pre)order relation on n-cubes from
Definition 1.4.8 and Definition 1.4.10.

Definition 3.2.8. Let R and S be two covers of X. The relation � defined as follows is
a pre-order on R(X)

R � S ⇐⇒ ∀Ri ∈ R, ∃Sj ∈ S,Ri ⊆ Sj

Example 3.2.9. Let us consider the program P1;P2‖P1;P2. The set of its positions P(P)
is represented below. On the left, we consider the region X ⊆ P(P) in grey, and various
maximal cubes on this region.

⊥ ⊥
;⊥
>
;⊥
>
;>
>⊥

⊥;⊥

>;⊥

>;>

>

R1 = R2 =

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 115

R3 = R4 =

With

R1 = (>;⊥,>;>)× (⊥;⊥,>;⊥) R2 = (⊥;⊥,>;⊥)× (>;⊥,>;>)
R3 = (>;⊥,>;⊥)× (⊥;⊥,>;>) R4 = (⊥;⊥,>;>)× (>;⊥,>;⊥)

Both R = {R1, R2, R3, R4} and S = {R1, R2} are covers of X, but S � R, as we consider
that R carries more information about the region, as it has more of the maximal cubes
included in X

Example 3.2.10. Given a program P = P1+P2, let us consider the region X = P(P) as
well as the three following covers of support X:

R1 = {(⊥,>+∅), (∅+⊥,>)} R2 = {(⊥,>)} R3 = {(⊥,>), (>+∅,>)}

We have R1 ≺ R2 and R3 � R2, as well as R2 � R3.

Lemma 3.2.11. The support function [−] : R(X)→ P(X) is increasing if we equip the
first with � and second with ⊆ as partial orders.

Proof. Given R,S ∈ R(X), such that R � S. For every I ∈ R there exists JI ∈ S such
that I ⊆ JI , i.e. [I] ⊆ [JI]. Then

[R] =
⋃
I∈R

[I] ⊆
⋃
I∈R

[JI] ⊆
⋃
J∈S

[J] = [S]

Furthermore

Lemma 3.2.12. The functions [−] : R(X) → P(X) and C : P(X) → R(X) which
associate to a region the set of all of its cubes are increasing and [−] is left adjoint to C.
They form a Galois connection between the regions of X and the covers of X if we equip
the first with ⊆ and second with � as partial orders.

Proof. We will prove the existence of an adjunction of posets (called a Galois connection)
with [−] the left adjoint to C. First, we prove that both functions are increasing

116 3. A SYNTACTIC MODEL OF PROGRAMS

• [−] is increasing by Lemma 3.2.11.

• Given P,Q ∈ P(X) such that P ⊆ Q, we have that (x, y) ∈ C(P) is equivalent to
[x, y] ⊆ P ⊆ Q and thus (x, y) ∈ C(Q), which proves C(P) ⊆ C(Q).

And by definition R ∈ R(X), such that [R] ⊆ P is equivalent to R ⊆ C(P). This is
explicitly the definition of a Galois connection.

In Example 3.2.10, the cover R2 is clearly the most parsimonious way to represent the
whole space, in the sense explained above, and is a maximal element with respect to the
order. However, as we already explained in Section 1.4.2, there are many other maximal
elements such as R3 (or, in fact, any other cover obtained by adding cubes to R2: the
relation � is not antisymmetric). This motivates the introduction of the following refined
order on covers, which is such that R1 < R3 < R2:

Definition 3.2.13. We can define a partial order ≤ on the covers of a partial order X
from the preorder � as follows. Given R,S two covers:

R ≤ S ⇐⇒ R � S and S � R implies S ⊆ R

When R � S and R and S are equivalent, we think of S as being a “more economical
way” of describing the same support, because it uses bigger cubes: every cube of R is
contained in one of S.

Lemma 3.2.14. The relation ≤ is a partial order.

Proof. Consider R,S, T ∈ R(X) such that R ≤ S ≤ T .

• Reflexivity. By reflexivity of � and ⊆.

• Transitivity. Suppose R ≤ S and S ≤ T . Thus, R � S � T , i.e. by transitivity of
�,

R � T

Now suppose T � R, then by transitivity S � R (resp. T � S). By definition,
R ≤ S (resp. S ≤ T) implies R ⊆ S (resp. S ⊆ T). Thus, by transitivity of ⊆,

T � R implies R ⊆ T

• Antisymmetry. Suppose R ≤ S and S ≤ R. This implies R � S � R. By definition
of ≤, R ≤ S ≤ R thus implies R ⊆ S ⊆ R. Hence, R = S.

3.2.1.3 Normal form of regions

As in Section 1.4.2, we expect the “best description” of a subset of X by a cover to be
given by a right adjoint N : (P(X),⊆) → (R(X),≤) to the support function [−], with
N associating to a subset Y of X the normal cover describing it. We already have an
adjoint when R(X) is equipped with �, but as explained before, this is not enough to
define a good description.

The special adjoint functor theorem [38, V.8, Theorem 1] indicates that if such a right
adjoint exists it should be defined as a particular limit as explained in Proposition 3.2.15
below:

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 117

Proposition 3.2.15. Given a poset X, if N : P(X)→ R(X) is the right adjoint of the
functor [−] : R(X)→ P(X), it satisfies

N(Y) = max{R ∈ R(X) | [R] ⊆ Y }

Proof. [38, V.8, Theorem 1]

If all cubes of C(Y) are included in a maximal cube, then N(Y) corresponds to the
set of Cmax(Y) maximal cubes of Y . However, this condition is not always verified, and
the adjoint N is not always well-defined, as illustrated in Example 3.2.17 below.

The normal form of a region R is, when defined, the cover N([R]), although for
convenience’s sake we sometimes simply write N(R) (justified by the Lemma 3.2.16),
where N is defined by the formula of Proposition 3.2.15 above. We say that a region is
normalizable when it admits a normal form, and in normal form when it is further equal
to its normal form.

Lemma 3.2.16. Given Y ⊆ X such that N(Y) is defined, one has [N(Y)] = Y .

Proof. Given Y ⊆ X such that N(Y) is defined. The definition of a left adjoint states
that for each R ∈ R(X), we have [R] ⊆ Y if and only if R ≤ N(Y). By reflexivity of ≤,
N(Y) ≤ N(Y) holds, so

[N(Y)] ⊆ Y

Furthermore [−] increasing implies

Y = [C(Y)] ⊆ [N(Y)]

Thus N(Y) = Y .

Example 3.2.17. Consider the set X = [0, 1] ⊆ R equipped with the usual order. We
claim that the subset Y = X \ {1} does not have a normal form. By contradiction,
suppose that the cover N(Y) is well-defined. By the Lemma 3.2.16 below, [N(Y)] =
Y = [0, 1[. Given I ∈ N(Y), there exists ε, η with 0 ≤ ε ≤ 1 − η < 1 such that
I = [ε, 1 − η] and one easily checks that the cover R obtained from N(Y) by removing
this cube and replacing it by [0, 1− η/2] is such that [R] = [N(Y)] = Y and N(Y) < R,
contradicting Proposition 3.2.15. A very similar situation can be observed in the case of
programs, by considering the program P = A* for some action A. We write X = P(P)
for its poset of positions:

·⊥ ·⊥
0

·>
0

·⊥
1

·>
1

·⊥
2

·>

The subset Y = X \ {>} does not have a normal form for similar reasons as above.
Remark 3.2.18. In order to accommodate with situations such as in previous example,
one could think of allowing (semi-)open cubes in addition to closed ones in covers. This
would make it so that N is always well-defined. However, the operations on those quickly
become very difficult to handle because it turns out that, in the case of programs of the
form P||Q, we need to be able to specify whether bounds of cubes are open or not for
each component of the parallel composition [30, 9].

118 3. A SYNTACTIC MODEL OF PROGRAMS

In the general case, for a partial order X, it is not easy to characterize exactly the
supports Y ⊆ X that admit a normal form N(Y). Thankfully, as we will be considering
state spaces of programs and not any posets, we can impose further restrictions. First,
we have seen that the syntactic semantics of a program is a well order Proposition 3.1.31.
Sadly, as shown in Example 3.2.17 this is not enough to ensure that all supports will have
a normal form. What we do know is that, usually getting a cover of the forbidden region
of a program is much easier than getting a cover of the authorized region directly. In
Section 1.4.2, and especially for the Algorithm 1.4.33, the authorized region is computed
(in normal form) as the complement of the forbidden region, which is naturally obtained
in normal form. This suggests that the correct supports to be considering are the subsets
Y ⊆ X that admit a normal form and whose complement Y c = X \ Y also admits a
normal form. Formally:

Definition 3.2.19. Suppose given a partial order X. We define the set N (X) of normal
supports as follows:

N (X) = {Y ⊆ X | both N(Y) and N(Y c) exists and are finite}

Thankfully, regions of N (X) are much easier to work with. Indeed, we will prove in
Proposition 3.2.37 that, given suitable restrictions on X, these supports can be character-
ized as supports of a cover where all cubes admit a normalizable complement. This helps
a lot as it is easy to determine if a cube admits such a complement Proposition 3.2.26.
Furthermore, we will show that under reasonable assumptions the set N (X) forms a
boolean algebra, similarly to the cubical covers of Section 1.4.
Remark 3.2.20. Later, in Proposition 3.3.2, we will give criterion to determine which
supports are normal supports.

3.2.2 Finitely complemented regions
As explained before, for our practical applications, given a cover R in R(X), we need to
be able to compute a cover R which covers the complement of the cover, i.e. a cover R
such that [R] = [R]. Moreover, in Section 1.4.2, we are able to compute the normal
form of the complement, even when the cover is not in normal form. This suggests that
for a cover of an element of N (X), we can compute their normal form N([R]) as the
bi-orthogonal construction R.

In order to do this, we will first prove that we can define intersection and union operators
for cover with normal supports compatible with the standard operations on the supports
and conserving the property of having a normal support. In more specific terms, we will
show that – under suitable hypothesis – regions which admit a normal form (and whose
complement admit a normal form) have a boolean algebra structure, providing explicit
algorithmic constructions for the corresponding operations.

This generalizes the programs that are considered in [18] (which is limited to programs
whose geometric semantics are subsets of Rn) and in [30] (which is limited to products
of graphs). In order to ensure that our constructions are applicable in practice, we only
consider covers which are finite in the following (and showing that finiteness is preserved

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 119

by our constructions will be non-trivial). In particular, by a “normal form”, we always
mean a finite region in normal form.

3.2.2.1 The complement of a cube

We begin by remarking that a cover R = {I}, consisting of single cube, is already in
normal form (i.e. N(R) = R). Thus, R ∈ N (X) if and only if [I]c has a normal form.
Hence, in order to characterize regions of N (X) we will first begin by investigating the
covers corresponding to complements of a single cube.

As an example, let us consider the space X = [0, 5]2 ⊆ N2 and R = {I} with I =
[(2, 2), (3, 3)], as pictured on the left below:

R =
I

(0, 0)

(5, 5)

R =

y1

y2

⊥

>

x1

x2

Then with:

⊥ = (0, 0) y1 = (1, 5) y2 = (5, 1)

> = (5, 5) x1 = (0, 4) x2 = (4, 0)

The normal form of the complement [I]c of I is the cover

R = {[⊥, y1], [⊥, y2], [x1,>], [x2,>]}

Now if we define I lc (resp. Iuc) is the set of elements of X which are not above (2, 2)
(resp. below (3, 3)). Then, as shown in the figure below, [R]c = I lc ∪ Iuc.

[R]c = I lc =

y1

y2

⊥

Iuc =

>

x1

x2

Moreover, the set I lc (resp. Iuc) corresponds to all the points lower than an element
of the finite set {y1, y2} (resp. {x1, x2}).

120 3. A SYNTACTIC MODEL OF PROGRAMS

We will actually see that the set I lc (resp. Iuc) having a maximal (resp. minimal)
antichain is actually the key to the existence of the normal form of the complement, and
in that case we even have a description of the normal form (Proposition 3.2.26). First we
need to introduce a few definitions before we can formalize this characterization.

Definition 3.2.21. Given a set Y ⊆ X, its lower closure ↓Y and lower complement Y lc

are respectively the sets

↓Y = {x ∈ X | ∃y ∈ Y, x ≤ y} Y lc = (↑Y)c = {x ∈ X | ∀y ∈ Y, x 6≥ y}

The upper closure ↑Y and upper complement Y lc of Y are defined dually:

↑Y = {x ∈ X | ∃y ∈ Y, y ≤ x} Y uc = (↓Y)c = {x ∈ X | ∀y ∈ Y, x 6≤ y}

Definition 3.2.22. Given a set Y we write:

• maxY = {y ∈ Y | ∀z ∈ y, z 6> y} for the set of maximal elements of Y

• minY = {y ∈ Y | ∀z ∈ y, z 6< y} for the set of minimal elements of Y

Definition 3.2.23. Given a set Y ⊆ X we say that

• Y is finitely lower generated when there exists a finite set Y ′ such that Y = ↓Y ′

• Y is finitely upper generated when there exists a finite set Y ′ such that Y = ↑Y ′

By extension, we say that an element x of X is finitely lower (resp. upper) generated
when {x} is.

Lemma 3.2.24. If Y is finitely lower generated then maxY is finite and, we have
Y = ↓maxY .

Proof. Given a finitely lower generated poset (Y,≤). There exists a finite set X ⊆ Y such
that Y = ↓X. We want to prove that, maxY = maxX and that it is a lower generator
of Y . By finiteness of X, any strictly increasing sequence (zi)i∈N ∈ XN, is finite. This
implies

↓maxX = ↓X \ {z ∈ X | ∃z′ ∈ X, z < z′} = ↓X = Y

Given an element y ∈ maxY ⊆ Y = ↓maxX, there exists z ∈ maxX ⊆ Y such that
y ≤ z. Maximality w.r.t. inclusion of elements of maxY implies z = y. Thus,

maxY ⊆ maxX

Now given an element z ∈ maxX and y ∈ Y such that z < y. By definition, ↓maxX = Y
implies the existence of z′ ∈ maxX such that z < y ≤ z′. This contradicts the definition
of maxX. Thus, for all y ∈ Y, z 6< y, i.e. z ∈ maxY . And thus

maxX ⊆ maxY

Thus maxY = maxX, finite and ↓maxY = ↓maxX = ↓X = Y

Definition 3.2.25. Given a set Y ⊆ X, We say that Y is

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 121

• finitely lower complemented when Y lc is finitely lower generated i.e. there exists Y ′

a finite set such that (↓Y)
c
= ↓Y ′

• finitely upper complemented when Y uc is finitely upper generated i.e. there exists
Y ′ a finite set such that (↑Y)

c
= ↑Y ′

• finitely complemented when it is both finitely lower and upper complemented.

By extension, we say that an element x of X is finitely lower (resp. upper) complemented
when {x} is.

From this definition we can characterize the covers R = {I} corresponding to a single
cube, which are in N (X). Indeed, such a region [R] is in N (X) if and only if [I] is finitely
complemented.

Proposition 3.2.26. Given a lattice X, bounded by ⊥ and > and I a cube of X, the cover
R = {I} has a complement in normal form if and only if [I] is finitely complemented. In
this case, the normal form of its complement is

R = {[⊥, y] | y ∈ max(I lc)} ∪ {[x,>] | x ∈ min(Iuc)}

Proof. Suppose given a poset (X,≤), I = (s, t) a cube of X, and consider the cover R =
{I}.

Left-to-right implication. Suppose that R has a complement in normal form, i.e. we
have

[R] = [N([R])]

where N([R]) is a finite cover. We have to show that I is finitely complemented, which
means that the lower complement satisfies

I lc = ↓max(I lc)

with max(I lc) finite, and dually for complement (we only handle the case of the lower com-
plement here, the property for the upper complement being similar). By Lemma 3.2.24
and Definition 3.2.25, it is enough to show that I lc is finitely lower generated. We show
here that it is generated by the set

G = {x ∈ X | (⊥, x) ∈ N([R])}

i.e.
I lc = ↓G

where G is finite because N([R]) is supposed to be finite. We show the equality by showing
both inclusions.

• I lc ⊆ ↓G. Suppose given x ∈ I lc. Since I lc is downward closed, we have (⊥, x) ∈
C(I lc). Furthermore, as I lc ⊆ [R] and C is monotonic, we have

C(I lc) ⊆ C([R])

122 3. A SYNTACTIC MODEL OF PROGRAMS

Now, if I lc = [R], then by definition C(I lc) ≤ C([R]). Otherwise, if I lc ⊂ [R], we
have C(I lc) � C([R]) and C([R]) 6� C(I lc) such that C(I lc) ≤ C([R]). Thus, in both
cases, we have

C(I lc) ≤ C([R])

≤ C([N([R])]) by hypothesis

C(I lc) ≤ N([R]) by Proposition 3.2.15

This means that (⊥, x) ⊆ (a, b) for some element (a, b) ∈ N([R]). And thus a = ⊥
and x ≤ b with b ∈ ↓G.

• ↓G ⊆ I lc. Since I lc is downward closed, it is enough to show G ⊆ I lc. Fix x ∈ G.
We have (⊥, x) ∈ N([R]). In order to show x ∈ I lc, we have to show that x 6≥ s.
Namely, if x ≥ s, we would have [⊥, x] ∩ [I] 6= ∅, which contradicts the hypothesis
that (⊥, x) ∈ N([R]) and thus [⊥, x] ⊆ [R].

Right-to-left implication. Suppose that [I] is finitely complemented, i.e. both I lc and
Iuc are finitely generated. Let us show that the normal form of [R] is

R = {[⊥, y] | y ∈ max(I lc)} ∪ {[x,>] | x ∈ min(Iuc)}

We write

S = {[⊥, y] | y ∈ max(I lc)} T = {[x,>] | x ∈ min(Iuc)}

We first remark that
[R] = I lc ∪ Iuc = [S] ∪ [T] = [S ∪ T]

Namely, we have, by Lemma 3.2.24 since I supposed to be finitely lower complemented

I lc = ↓max(I lc) = [S]

and similarly Iuc = [T]. Therefore, R is a cover whose support is [R], and it remains to
be shown that the cover R is in normal form, i.e. R = N(R). We then proceed by using
the definition of N(R) as a maximum for the covers of [R]. Given a cover U such that
[U] ⊆ [R], let us show that [U] ≤ R.

• Let us prove U � R. By Lemma 3.2.12, we have U � C([U]) � C([R])), and it
suffices to show that C([R]) � R. We first show that we can express C([R]) =
C([I]) = C([s, t]) as

C([s, t]) = C(slc) ∪ C(tuc)

By definition of the complement, we have that [s, t] = slc ∪ tuc. Therefore,

C([I]) =C(I lc ∪ Iuc)

C([I]) =C(I lc) ∪ C(Iuc)
∪ {(a, b) | a ∈ slc \ tuc and b ∈ tuc \ slc}
∪ {(a, b) | a ∈ tuc \ slc and b ∈ slc \ tuc}

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 123

Given (a, b) ∈ {(a, b) | a ∈ slc \ tuc and b ∈ tuc \ slc}, we have a ≤ t, s ≤ b, thus
a ∨ s ≤ b ∧ t, and therefore [a, b] ∩ [s, t] = [a ∨ s, b ∧ t] 6= ∅, and thus (a, b) 6∈ C([I]).
Similarly, we have {(a, b) | a ∈ tuc \ slc and b ∈ slc \ tuc} ∩ C([I]) = ∅, from which
we conclude

C([I]) = C(I lc) ∪ C(Iuc)
Now we show that C(I lc) � S. Given (i, j) ∈ C(I lc). By definition of S, there exists
y ∈ max I lc such that i ≤ j ≤ y i.e. (i, j) ⊆ (⊥, y) ∈ S. Thus, C(I lc) � S. Similarly,
C(Iuc) � T . Thus,

C([R]) = C(I lc) ∪ C(Iuc) � S ∪ T = R

• If R � U , this implies R ⊆ U . We show that under those condition we have
S ⊆ U . Given (⊥, x) ∈ S, R � U trivially implies S � U , i.e. there exists [u, v] ∈
U, [⊥, x] ⊆ [u, v]. Immediately, we get u = ⊥ and v ∈ I lc (indeed v ≥ s implies
[I]∩ I ⊇ {(⊥, v)} ∩ I 6= ∅). Furthermore, by definition of S, for v ∈ I lc, there exists
y ∈ max I lc such that (⊥, v) ⊆ (⊥, y). Finally, (⊥, y) is a cube of S, such that

S 3 (⊥, x) ⊆ (u, v) = (⊥, v) ⊆ (⊥, y) ∈ S

By definition of max I lc this implies (⊥, x) = (u, v) = (⊥, y). Thus,

S ⊆ U

By the same reasoning we get T ⊆ U . Thus, R � U implies R ⊆ U

3.2.2.2 The complement of a cover

We now explain how to construct the complement of a cover by using the previous com-
plement of a cube. Then, the complement of the cover will be defined as the intersection
of all the complements of its cubes. Leveraging the fact that for a single cube, the com-
plement is in normal form, we will also show that the complement of a cover will contain
all maximal cubes of its support.

For the rest of this section we will suppose fixed an ambient bounded lattice X, in
which the construction will be performed. For technical reasons, it will be convenient to
suppose that X is also well-ordered, which, by Proposition 3.1.31, is a reasonable restric-
tion for the applications we have in mind. Our aim is now to generalize Proposition 3.2.26,
and characterize normalizable covers (as opposed to cubes) which admit a complement
in normal form. As we will show in Proposition 3.2.37, under suitable restrictions on X,
normal supports coincide with the subset of X corresponding to a cover containing only
finitely complemented cubes.

Definition 3.2.27. Given a poset X and a cover R on X. We say that R is finitely
complemented if it contains only cubes whose support are finitely complemented in the
sense of Definition 3.2.25. We write RF (X) for the set of finitely complemented covers
of X, defined as:

RF (X) = {R ∈ R(X) | R is finitely complemented}

And F(X) the set whose elements are the supports of covers in RF (X):

F(X) = {Y ⊆ X | Y = [R] for some finitely complemented cover R}

124 3. A SYNTACTIC MODEL OF PROGRAMS

Remark 3.2.28. We bring attention to the reader that this does not state that the support
of the cover should be finitely complemented.

In order to apply Algorithm 1.4.33, we need to be able to perform the intersection,
union and complementation of the cubical covers. In order to efficiently manipulate these
intermediary covers, we will need to be able to normalize them, and thus guarantee that
they do have a normal form. Thus, we will need to prove that N (X) forms a boolean
Algebra. This is not always the case as shown in Example 3.2.29 below.
Example 3.2.29. Let us construct an example of a well-ordered, bounded lattice, where
N (X) is not a boolean algebra. Consider the space X, on the left below, where the
arrows indicate comparability w.r.t. the order on X, and dotted arrows indicate an in-
finite countable chain of ordered points. It is easy to show that X verifies the required
properties. Now let us consider the cubes (⊥, s) and (⊥, t). As shown on the right below,
they are both normal supports i.e. in N (X).

⊥

s

t u

⊥

⊥

s

t u

⊥

⊥

s

t u

⊥

Then, if we consider the intersection [{(⊥, s)}] ∩ [{(⊥, t)}], we see that it is equal to
the single point s but, the complement of (s, s) does not have a normal form: Indeed, as
in Example 3.2.17 should we consider cubes of the form in the figure on the right below,
we can show that there is no maximal element.

[⊥, s] ∩ [⊥, t]c =

⊥

s

t u

⊥

slc =

⊥

s

t u

⊥

This implies that (s, s) is not in N (X) and as such N (X) is not a boolean algebra.
The condition which emerged in order to capture such situations is the following one:

Definition 3.2.30. A poset (X,≤) is finitely complemented if

1. given a finitely lower complemented element x ∈ X, every element of max({x}lc) is
finitely upper complemented,

2. given a finitely upper complemented element x ∈ X, every element of min({x}uc)
is finitely lower complemented.

Remark 3.2.31. In the case where X is a well-order, any upwards closed subset is nec-
essarily finitely upper generated: the set minX of minimal elements of X generates X
because it is well-founded, and is finite because it is an antichain. The first condition is
thus always satisfied.

In the next section we will show the following theorem, justifying the restriction we
imposed on X.

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 125

Theorem 3.2.38. Given a well-ordered bounded lattice X:

The poset N (X) is a boolean algebra if and only if X is finitely complemented

And furthermore, we will show that the set of normal support is, in fact, the set of
finitely complemented ones.
Proposition 3.2.37. Given a well-ordered bounded finitely complemented lattice X, the
finitely complemented supports coincide with normal ones, i.e. we have

F(X) = N (X)

3.2.3 Boolean algebra of finitely complemented regions
In this section, we will prove that finitely complemented supports (and thus normal
supports) form a boolean algebra (Theorem 3.2.38). We will also show that this extends
to finitely complemented covers and normalizable covers.

The plan of our proof for Theorem 3.2.38 is as follows: we first show that F(X)
forms a boolean algebra by explicitly constructing the required operations on finitely
complemented covers (Corollary 3.2.36) and then show that F(X) is isomorphic to N (X)
(Proposition 3.2.37).

In the rest of this section, we suppose that the poset X is finitely complemented.
Definition 3.2.32. Given a finitely complemented poset X, and two cubes I = (x, y)
and J = (u, v) of X, we define their intersection, written I ∩ J as the following cube,
when defined (i.e. when x ∨ x′ ≤ y ∧ y′):

(x, y) ∩ (u, v) = (x ∨ u, y ∧ v)

Definition 3.2.33. We define the following operations on covers R,S in RF (X):
• union: R ∪N S = R ∪ S

• intersection: R ∩N S = {I ∩ J | I ∈ R, J ∈ S and I ∩ J is defined}

• complement: RN =
⋂
N

(x,y)∈R
({(⊥, y′) | y′ ∈ max({x}lc)}∪{(x′,>) | x′ ∈ min({y}uc)})

Lemma 3.2.34. The above operations are well-defined on RF (X).
Proof. Given (X,≤), a finitely complemented bounded lattice.

• ∪N . Trivial.

• ∩N . Given R,S ∈ RF (X), (x, y) ∈ R∩NS. By definition, (x, y) = (xR∨xS , yR∧yS)
such that (xR, yR), (xS , yS) ∈ R× S both finitely complemented.

↓(maxxlc
R ∪maxxlc

S) = ↓maxxlc
R ∪ ↓maxxlc

S

= xlc
R ∪ xlc

S by Lemma 3.2.24
= {x ∈ X | x ≤ xR or x ≤ xs}

↓(maxxlc
R ∪maxxlc

S) = (xR ∨ xS)
lc

By finitude of, maxxlc
R and maxxlc

S , xR∨xS is finitely lower complemented. Dually,
yR ∧ yS is finitely upper complemented. Thus, (x, y) is finitely complemented for
each cube (x, y) ∈ R ∩N S. By definition, R ∩N S ∈ RF (X)

126 3. A SYNTACTIC MODEL OF PROGRAMS

• −N . Given R ∈ RF (X), and (x, y) ∈ R. We have (x, y) and (⊥,>) finitely
complemented. By definition of a finitely complemented poset, all y′ ∈ maxxlc

(resp. x′ ∈ min yuc) are finitely upper (resp. lower) complemented. Thus, (⊥, y′) and
(x′,>) finitely complemented. Furthermore, by definition {(⊥, y′) | y′ ∈ maxxlc}
and {(x′,>) | x′ ∈ min yuc} are finite. Thus, by the above proofs, as a result of a
finite number of operations of union and intersection of elements of RF , we have
R
N ∈ RF (X).

Lemma 3.2.35. The above operations are compatible with the corresponding ones on
supports: for covers R,S ∈ RF (X), we have

[R ∩N S] = [R] ∩ [S] [R ∪N S] = [R] ∪ [S] [R
N
] = [R]

Proof. Let X a bounded lattice. Let R,S ∈ RF (X).

• R ∪N S.

[R ∪N S] =
⋃

I∈R∪NS
[I] =

⋃
I∈R∪S

[I] =
⋃
I∈R

[I] ∪
⋃
J∈S

[J] = [R] ∪ [S]

• R ∩N S.

[R ∩N S] =
⋃

(I,J)∈R×S

[I ∩ J] =
⋃
I∈R

(
[I] ∩

⋃
J∈S

[J]

)
=
⋃
I∈R

[I] ∩
⋃
J∈S

[J] = [R] ∩ [S]

• R
N . Given R ∈ RF (X) and (s, t) ∈ R. We have s (resp. t) finitely lower (resp. up-

per) complemented.

[R
N
] = [∩N

(s,t)∈R
{(s, t)}

N
]

= [∩N
(s,t)∈R

({(⊥, x) | x ∈ max slc} ∪ {(y,>) | y ∈ min tuc})]

= ∩
(s,t)∈R

(∪
x∈max slc

[⊥, x] ∪ ∪
y∈min tuc

[(y,>)])

= ∩
(s,t)∈R

(∪
x∈max slc

↓x ∪ ∪
y∈min tuc

↑ y)

= ∩
(s,t)∈R

(↓max slc ∪ ↑min tuc)

= ∩
(s,t)∈R

(slc ∪ tuc) By Lemma 3.2.24

= ∩
(s,t)∈R

[s, t]

[R
N
] = [R]

The finitely complemented covers RF (X) thus form a sub-boolean algebra of P(X).

Corollary 3.2.36. The set F(X) is a boolean algebra.

3.2. THE BOOLEAN ALGEBRA OF SYNTACTIC REGIONS 127

Proposition 3.2.37. Given a well-ordered bounded finitely complemented lattice X, the
finitely complemented supports coincide with normal ones, i.e. we have

F(X) = N (X)

Proof. Given a finitely complemented well-order (X,≤), fix Y ⊆ X.

• F(X) ⊆ N (X).
Suppose Y ∈ F(X): there exists a cover R ∈ RF (X), such that [R] = Y . Let us
prove that N(Y) = maxR

N . By Proposition 3.2.15 it suffices to show that for all
covers S, such that [S] ⊆ Y , we have S � maxR

N . Now suppose given such a cover
S, we need to prove the following points:

– S � maxR
N . By Lemma 3.2.12, [S] ⊆ Y implies S � C(Y). Furthermore, by

finitude R
N � maxR

N . Thus, it suffices to show C(Y) � R
N .

Given x ∈ C(Y), we have x ∈ ∩
r∈R
C(r). By Proposition 3.2.26, for all r ∈ R

exists nr ∈ N(r) = {r}
N

such that x ⊆ nr i.e. x ⊆ ∩
r∈R

nr ∈ R
N . Thus,

C(Y) � R
N .

– maxR
N � S =⇒ maxR

N ⊆ S. Now suppose, maxR
N � S. Then for all

r ∈ maxR
N there exists sr ∈ maxR

N and rs ∈ S such that r ≤ sr ≤ rs. By
definition of max, r = rs = sr. Thus,

maxR
N � S =⇒ maxR

N ⊆ S

Finally, N(Y) = maxR
N . By Lemma 3.2.35, maxR

N ∈ RF (X). And by the same

reasoning, maxR
N
N

= N(Y) = N(Y). Thus,

Y ∈ F implies Y ∈ N (X) and N(Y), N(Y) ∈ RF

• F(X) ⊇ N (X).
Given Y ∈ N (X), There exists a cover R ∈ R(X) such that [(]R) = Y and R in
normal form. By 3.2.36, it then suffices to show that Y ∈ RF (X) i.e. there exists
a cover R ∈ RF (X) such that [R] = Y , namely N(Y). We first define an extension
of −N : R(X) → R(X) to covers which are not finitely complemented, which can
be seen as a sort of “best overestimation” of the normal form of the complement.

R
∞

=
⋂

N
(s,t)∈R

{(⊥, x) | x ∈ slc} ∪N {(x,>) | x ∈ max tuc}

We prove that for a cover in normal form R, N([R]) ⊆ R
∞ ∈ RF (X). By the

same method as for −N in the proof of Proposition 3.2.26 and Lemma 3.2.35 for
R ∈ R(X) and r ∈ R,

[R
∞
] = [R] and C(r) � {r}

∞

128 3. A SYNTACTIC MODEL OF PROGRAMS

By Remark 3.2.31, all elements of X are upper complemented i.e. all cubes (⊥, x)
and (x,>) with x ∈ max tuc, for t ∈ X are finitely complemented. Thus, for a finite
cover R,

R
∞ ∈ RF (X)

Suppose given Y ∈ N (X) and x ∈ C(Y), we have x ∈ ∩
r∈N(Y)

C(r). By the previous

remark, for all r ∈ N(Y) exists nr ∈ {r}
∞

such that x ⊆ nr i.e. x ⊆ ∩
r∈N(Y)

nr ∈

N(Y)
∞

. Thus,
N(Y) � C(Y) � N(Y)

∞

By definition of the normal form, N(Y) ⊆ N(Y)
∞

. Thus, N(Y) ∈ RF (X), finite
i.e. Y ∈ RF (X). By Lemma 3.2.34, the cover N(Y)also belongs to RF (X). i.e. Y ∈
F(X). And N(Y) and N(Y) are finitely complemented.

Theorem 3.2.38. Given a well-ordered bounded lattice X:

The poset N (X) is a boolean algebra if and only if X is finitely complemented

Proof. Let X a well-ordered bounded lattice.

• If X is finitely complemented, then by Corollary 3.2.36, the set F(X) of finitely
complemented supports form a boolean algebra, and by Proposition 3.2.37, F(X) =
N (X). Thus, N (X) forms a boolean algebra.

• Now suppose that X is not finitely complemented. By Remark 3.2.31, the condition
(i) in the Definition 3.2.30 is always satisfied, and therefore (ii) has to be falsified.
This means there exists an upper complemented element t such that there exists
s ∈ min tuc which is not finitely lower complemented. Let us prove that N (X) is
not stable by intersection, and therefore it is not a Boolean algebra. We first make
two remarks.

– By Remark 3.2.31, all elements are finitely upper complemented, namely, s
and t are both finitely upper complemented.

– Since ⊥lc = ∅, we deduce that ⊥ is finitely lower complemented.

Thus, both cubes [⊥, s] and [⊥, t] are finitely complemented, which implies by Propo-
sition 3.2.26, that they have a complement in normal form. Furthermore, the cover
{(⊥, s)} (resp. {(⊥, t)}) is trivially the normal form of [⊥, s] (resp. [⊥, t]). Thus,
both cubes [⊥, t] and [⊥, s] belong to N (X). Let us show that the intersection of
these two cubes of N (X) is not in N (X). Given x ∈ [⊥, t] ∩ [⊥, s], we have x ∈ tuc

and x ≤ s ∈ min tuc. By definition of min tuc, we deduce x = s. Since s is by defi-
nition not finitely lower complemented, the cube [s, s] is not finitely complemented
either. Thus, by Proposition 3.2.26,

[⊥, t] ∩ [⊥, s] = [s, s] 6∈ N (X)

By contraposition, we deduce the desired implication.

3.3. SYNTACTIC COVERS OF PROGRAMS 129

This thus shows that, in a finitely complemented poset, we can implement the usual
boolean operations on covers while preserving the property of being normalizable.
Remark 3.2.39. Both of these boolean algebras are atomic. Indeed, they are generated
by the set of supports of single cubes.

3.3 Syntactic covers of programs

3.3.1 Computing covers and complements
In the case of syntactic covers, i.e. covers on the poset of positions of a program, the op-
erations of boolean algebra can be effectively implemented, by induction on the structure
of programs, following Definition 3.2.33. Namely,

• the union of covers is immediate to implement,

• following Proposition 3.1.32, the supremum and infimum of positions can be com-
puted, from which we can compute the intersection of covers,

• we can compute the generators of the complement, from which we can compute the
complement of covers.

Let us detail the last point.

Definition 3.3.1. Given a position p of a program P , we define, by induction on P , the
following set infP (p) of positions of P :

infP (⊥) = ∅ infP;Q(>) = {>;>} infP+Q(>) = {>+⊥,⊥+>}
infA(>) = {⊥} infP||Q(>) = {>||>} infP *(>) = ∅

infP;Q(p;q) =


{⊥} if p = q = ⊥
{p′;⊥ | p′ ∈ infP (p)} if p 6= ⊥ and q = ⊥
{>;q′ | q′ ∈ infQ(q)} if p = > and q 6= ⊥

infP+Q(∅+q) =

{
{⊥} if p = ⊥
{∅+q′ | q′ ∈ infQ(q)} ∪ {>+∅} otherwise

infP+Q(p+∅) =

{
{⊥} if q = ⊥
{p′+∅ | p′ ∈ infP (p)} ∪ {∅+>} otherwise

infP||Q(p||q) =

{
{⊥} if p = q = ⊥
{p′||> | p′ ∈ infP (p)} ∪ {>||q′ | q′ ∈ infQ(q)} if p 6= ⊥ or q 6= ⊥

infP *(pn) =


{⊥} if n = 0 and p = ⊥
{>n−1} if n > 0 and p = ⊥
{p′n | p′ ∈ infP (p)} if p 6= ⊥

130 3. A SYNTACTIC MODEL OF PROGRAMS

Proposition 3.3.2. Given a position p of a program P , the set infP (p) is a well-defined
set of positions and, we have infP (p) = max(plc).

Proof. Given a program P , let us prove that by induction on x ∈ P(P), that max(xlc) =
infP (x).

• x = ⊥. Immediately,
max(⊥lc) = ∅ = inf

P
(⊥)

• x = >. Let us prove max(>lc) = infP (>) by induction on P .

– If P = Q*. We have >lc = {⊥} ∪ {qn | q ∈ P(Q), n ∈ N} such that for all
qn ∈ >lc, qn < qn+1 ∈ >lc. Thus,

max(>lc) = ∅ = inf
P
(>)

– For all other cases, >lc is trivially generated by the predecessors of> (e.g.>||>,
∅+> and >+∅ …).

Thus, max(>lc) = infP (>).

• P � ⊥;⊥, or P � ⊥0 or P � ⊥||⊥ or P � ⊥+⊥. By the inferences rules

max(xlc) = {⊥} = inf
P
(x)

• Q;R � q;⊥, with q 6= ⊥. We have q;⊥ ∈ ↓{>;v | R � v} i.e. xlc∩{>;v | R � v} = ∅.
Thus,

maxxlc = max{u;⊥ | u 6≥ q,Q � u}
= {P � u;⊥ | u ∈ max qlc}
= {P � u;⊥ | u ∈ inf

Q
(q)}

maxxlc = inf
P
(x)

• Q;R � >;r with r 6= ⊥. We have {q;⊥ | Q � q} ⊆ ↓{>;v | R � v}. Thus, by
inference rules,

maxxlc = max(xlc ∩ {>;v | R � v})
= {>;v | v ∈ max rlc}
= {>;v | v ∈ inf

R
(r)}

maxxlc = inf
P
(x)

• Q||R � x = q||r with q||r 6= ⊥||⊥. By the inference rules, q||r 6≤ u||v is equivalent
to r 6≤ v or q 6≤ u. Thus,

xlc = {P � u||v | q 6≤ u} ∪ {P � u||v | r 6≤ v}

xlc = ↓{P � u||> | u ∈ qlc}
⋃
↓{P � >||v | v ∈ rlc}

3.3. SYNTACTIC COVERS OF PROGRAMS 131

with both sets incomparable. Thus,

maxxlc = {P � u||> | u ∈ max qlc} ∪ {P � >||v | v ∈ max rlc}
= {P � u||> | u ∈ inf

Q
q} ∪ {P � >||v | v ∈ inf

R
r}

maxxlc = inf
P
(x)

• Q* � x. We have P(P)+ = {qn | n ∈ N, Q � q}

– Q* � ⊥n with n > 0. By the inference rule, n ≤ m equivalent to x = ⊥n ≤ qm.
Thus,

maxxlc = max({qm | Q � q,m < n}) = >n−1 = inf
P
(x)

– Q* � yn with y 6= ⊥ and n 6= 0.
By inference, m 6= n implies qm < ⊥n ≤ x, and m > n implies qm > x. Thus,
by inference rule

max(xlc) = max(xlc ∩ {qn | Q � q})
= {qn | q 6≤ y}
= {qn | q ∈ max ylc}
= {qn | q ∈ inf

Q
y}

max(xlc) = inf
P
(x)

• Q+R � x = q+∅. The inference rules give

(q+∅)lc = {P � u+∅ | q 6≤ u} ∪ {P � ∅+v | R � v} ∪ {⊥}
(q+∅)lc = ↓{P � u+∅ | u ∈ qlc} ∪ ↓{∅+>}

With {P � u+∅ | u ∈ qlc} ∩ ↓{∅+>} = {⊥} and all other elements incomparable.
Thus, by induction rules

maxxlc = {P � u+∅ | u ∈ max qlc} ∪ {∅+>}
= {P � u+∅ | u ∈ inf

Q
q} ∪ {∅+>}

maxxlc = inf
P
(x)

• Q+R � x = ∅+r. Similarly, max(xlc) = infP (x).

Thus, for all P and all x ∈ P(P), max(xlc) = infP (x).

Similarly, given a position p of a program P , one can define by induction on P a set
supP (p) of positions of P such that supP (p) = min(puc). We can finally show that the
poset of positions of a program satisfy the conditions of previous section:

132 3. A SYNTACTIC MODEL OF PROGRAMS

Proposition 3.3.3. Given a program P , its poset of positions P(P) is a finitely comple-
mented well-ordered lattice.

Proof. Essentially, the main position which is not finitely lower complemented is > in
programs on the form Q*. For each program P , we thus define a predicate ` on its
positions such that P ` p if and only if p not finitely lower complemented, by taking the
closure under context of the above position:

Q ` q

Q;R ` q;⊥
Q ` q

Q+R ` q+∅
Q ` q

Q||R ` q||r Q* ` >

R ` r

Q;R ` >;r
R ` r

Q+R ` ∅+r
R ` r

Q||R ` q||r
Q ` q n ∈ N

Q* ` qn

We can remark that for each p ∈ P(P) and x ∈ supP (p) we have P 6` x. As we already
proved that supP (p) = min(puc), to prove the finitely complemented nature of P(P)
we prove for all p ∈ P(P), P ` p if and only if p not finitely lower complemented, by
induction on p.

• p = ⊥. This implies plc = ∅. Trivially p 6` and p ∈ P(P)

• p = >. We remark for each t ∈ P(P), t ≤ >. This implies plc = ↓> \ {>}

– P = A. We have plc = {⊥} = ↓{⊥}. Thus, P 6` p and p finitely lower
complemented by Lemma 3.2.24.

– P = Q;R, P = Q+R and P = Q||R. Similarly, there exists a maximum for
↓ p (namely >;>, >+∅ and ∅+>, >||>).

– P = Q*. Given x ∈ >lc \ ⊥ = {qn | n ∈ N, Q � q}, such that x = yn. By
definition, x < yn+1 ∈ >lc. Thus, max>lc = ∅. And Q* ` > by definition

We now prove the induction step.

• p = q||r. Using the inference rule,

(q||r)lc = {y||z | y 6≥ q or z 6≥ r} ∪ {⊥}
= ↓({y||> | y 6≥ q} ∪ {>||z | z 6≥ q})
= (q||>)lc ∪ (>||r)lc

As, {y||> | y 6≥ q} and {>||z | z 6≥ q} disjoint, plc is finitely lower generated if
and only if both (q||>)lc and (>||r)lc are finitely lower generated. By induction
hypothesis this is equivalent to Q 6` q and R 6` r. And by the inference rules of `,
this is equivalent to Q||R 6` p.

• The other cases are treated with a similar argument (with a single variable) p finitely
lower generated equivalent to P 6` p.

The operations do not in general preserve the property of being normal for regions,
but Theorem 3.2.38 and Proposition 3.3.3 however ensure that the property of being
normalizable is preserved, and the normal form of a cover can be computed as follows.

3.3. SYNTACTIC COVERS OF PROGRAMS 133

Proposition 3.3.4. With the implementation of operations described above, the normal
form of a cover R is N(R) = max(R), i.e. it can be obtained by computing twice the
complement of R and only keeping cubes which are maximal w.r.t. inclusion.

Proof. It can be observed that the definition of the complement is such that it contains
all the maximal cubes.

Proposition 3.3.5. When the normal cover N(R) is defined, it is equal to the set of all
maximal cubes of the support, i.e.

N(R) = Cmax(R) = {c ∈ C(R) | ∀c′ ∈ C(R), c 6⊂ c′}

Proof. By definition Cmax(R) is maximal for the order Definition 3.2.13

Example 3.3.6. Let us illustrate the fact that the operations defined above do not preserve
normality (again, they only preserve normalizability), consider the following examples.
With the cover R and S below, the cover R ∪N S is not normal (the normal form is the
single cube covering the whole region):

R S R∪N

Similarly, with the covers R and S below, the cover R ∩N S is not normal because it
contains the cube I pictured on the right

R S R ∩N S I

(the normal form contains 3 cubes which do not include I).

3.3.2 Implementation
We will now explain how to implement the Algorithm 1.4.33 on our syntactic model. First
we will have to tweak the cubical partition from Definition 1.4.18 in order to go beyond
the scope of simple programs.

134 3. A SYNTACTIC MODEL OF PROGRAMS

3.3.2.1 Deadlock algorithm and cubical partition

For this algorithm, we will restrict ourselves to programs of the form P = P1‖ · · · ‖Pn,
where Pi is a sequential process (it may contain loops and conditional branchings, but no
parallel composition operator).

To implement the algorithm, we need a way to compute a cubical partition, compatible
with the normal cover of our allowed region.
Remark 3.3.7. With our definition of cubes (even it the case of non-looping programs)
it doesn’t make sense to talk about the coarsest partition compatible, as it does not
necessarily exist. Indeed, let us look at the program:

((Pa+Pa);Va)‖(Pa;Va)

There are two coarsest cubical partition (compatible with the normal cover) given below:

And fundamentally, there is no “right” choice of what should be the “good” partition,
between any of these partitions.

Thus, if we were to use Definition 1.4.18 directly, we would not get a partition, as
seen in Example 3.3.13 below. To get back a partition, we will iterate Γm until we reach
a fixpoint.

We recall the operators used in Definition 1.4.18.

Definition 3.3.8. Given a cover R on a sequential program P , we define the following
partition operator

Γm1 (R) =
⋃

UqV=R
U 6=∅

Cmax(ZU,V)

with ZU,V =
⋂
u∈U

[u]
⋂
v∈V

[v]c

Remark 3.3.9. If we compute the intersection of covers
⋂
u∈U

u
⋂
v∈V

vc, we get a cover on

ZU,V , and we can compute Cmax(ZU,V) using Proposition 3.3.4 using cubes

Definition 3.3.10. Given a cover R on the parallel composition of n sequential programs
P = P1‖ · · · ‖Pn, we define the pre-generic cubical partition

Γmn (R) =

n∏
i=1

Γm1
(
{ci | ∃(rk)1≤k≤n ∈ R, ri = ci}

)
Remark 3.3.11. When n = 1, Γmn = Γm1 , so we will simply write Γm when context makes
it clear.

3.3. SYNTACTIC COVERS OF PROGRAMS 135

Now we define the generic cubical partition associated to a cover R as the fixpoint of
the iterated composition by Γm

Definition 3.3.12. Given a cover R on a program P , we define then generic cubical
partition Γ∗(R) associated to a cover R as:

Γ∗(R) = lim
n→∞

Γm ◦ · · · ◦ Γm︸ ︷︷ ︸
n times

(R)

Example 3.3.13. If we reconsider the example from Remark 3.3.7, we give the iterated
application of Γm on the maximal cubes of the allowed cover below.

Γm(R) Γ∗(R) = Γm ◦ Γm(R)

In this case, Γ∗(R) = Γm ◦ Γm(R). We will prove later on, that this is the case for
any maximal cover R of a program.
Remark 3.3.14. When Γ∗ is the coarsest partition, it is obtained in a single iteration
(which is the case for simple programs).

For sequential programs, the generic cubical partition of a maximal cover is actually
the coarsest cubical partition i.e. we simply need to apply Γm once to the cover to recover
our partition. In itself, this is not very interesting, as we interested in parallel composition,
but it is a central argument to prove that Γ∗ can be computed in a finite number of steps
(Proposition 3.3.22).

Lemma 3.3.15. Let R a maximal cover on a program P(P +Q). Then

• Given (⊥, p′+∅) ∈ R, then (⊥, p′) ∈ Cmax({x | x+∅ ∈ [R]})

• Given (p+∅, p′+∅) ∈ R, then (p, p′) ∈ Cmax({x | x+∅ ∈ [R]})

Similar properties are easily deduced for the other cases.

Proof. Given a cover R on P(P +Q)

• Given (p+∅, p′+∅) ∈ R. Let us suppose (p, p′) ⊆ (q, q′) ∈ Cmax({x | x+∅ ∈ [R]}).
Then, by definition (q+∅, q′+∅) ⊆ [R], thus by maximality, p = q and p′ = q′.
Thus, (p, p′) is maximal.

• Given (⊥, p′+∅) ∈ R. Let us suppose (⊥, p′) ⊆ (q, q′) ∈ Cmax({x | x + ∅ ∈ [R]}).
Then, by definition q = ⊥ and (⊥+∅, q′+∅) ⊆ [R]. By induction rules, (⊥, q′+∅) ⊆
[R]. Thus, by maximality, p′ = q′. Thus, (⊥, p′) is maximal.

136 3. A SYNTACTIC MODEL OF PROGRAMS

Lemma 3.3.16. Let R a maximal cover on a program P(P ;Q). Then

• Given (p;⊥, q;⊥) ∈ R, then (p, q) ∈ Cmax({x | x;⊥ ∈ R})

• Given (⊥, p;⊥) ∈ R, then (⊥, q) ∈ Cmax({x | x;⊥ ∈ R})

• Given (p;⊥,>;q) ∈ R, then

(p,>) ∈ Cmax({x | x;⊥ ∈ R}) and (⊥, q) ∈ Cmax({x | >;x ∈ R})

Similar properties are easily deduced for the other cases.

Proof. Given a maximal cover R on P ;Q.

• Let us suppose (p, q) ⊆ (p′, q′) ∈ Cmax({x | x;⊥ ∈ [R]}). Then, by definition
(p;⊥, q′;⊥) ⊆ [R], thus by maximality, p = q and p′ = q′. Thus, (p, q) is maximal.

• Similarly, (⊥, q) ⊆ (p′, q′) ∈ Cmax({x | x;⊥ ∈ [R]}), implies (⊥, q′;⊥) ⊆ [R], and
the maximality of (⊥, q;⊥) implies q = q′ and thus, (⊥, q) = (p′, q′) maximal.

• Let us suppose (p,>) ⊆ (p′,>) ∈ Cmax({x | x;⊥ ∈ [R]}). Then, by definition
(p′;⊥,>;q) ⊆ [R], thus by maximality, p = q and p′ = q′. Thus, (p,>) is maximal.
Similarly, (⊥, q) is maximal.

We’ll say that two cubes are disconnected when there exists no path from an element
of the support of the first cube to the second one, that only crosses elements of their re-
spective support. This is important when considering the maximal cube of the partitions,
as two disconnected cubes/supports can never be joined together to form a bigger cube.

Definition 3.3.17. Let R = (Ri)i∈I be a cubical partition of the poset X. We define
the partial order C∗ on elements of R as the reflexive transitive closure of the following
relation: Ri C Rj if and only if for all x ∈ [Ri] there exists y ∈ [Rj] and a path of
[Ri]

⋃
[Rj] from x to y

Definition 3.3.18. Given a program P , two cubes i, j ∈ C(P), and C defined in Defini-
tion 3.3.17, we say that i and j are disconnected when {i} 6C {j} and {j} 6C {i}.

Proposition 3.3.19. Given a maximal cover R on a sequential program P .

Γ∗(R) = Γm(R)

Proof. To prove this, we only need to prove that the cubes of Γm(R) are all disjoint i.e. for
any partition U q V = R, U 6= ∅, the cubes of Cmax(ZU,V) are disjoint.

If (⊥,>) ∈ R. Then, by maximality R = (⊥,>). Thus, Γm(R) = R and Γ∗(R) =
Γm(R). For the rest of the proof we can then suppose

(⊥,>) 6∈ R

3.3. SYNTACTIC COVERS OF PROGRAMS 137

By Definition 3.2.32, as U 6= ∅, we know that there exists a cube c of P such that
⋂
u∈U

u = c.

Furthermore, (⊥,>) 6∈ U implies that c 6= (⊥,>). Now we will prove by induction on P
that for any v ∈ R and any c ⊆ u ∈ U , [c] ∩ [v]c =

∐
i∈I

[ci] where all ci are maximal and

pairwise disconnected.
First let us remark that if c or v is a singleton, the property is immediately verified.

Indeed,

• If [c] = {x} then[c] ∩ [v]c = {x} or ∅

• If [v] = {x} then

– {x} ⊂ [c] contradicts the maximality of v
– {x} = [c] implies [c] ∩ [v]c = ∅
– {x} ∩ [c] = ∅ implies [c] ∩ [v]c = c

Then

• P = α. OK.

• P = P;Q. Let us remark that the cubes of P;Q that are not (⊥,>) or singletons
are all are in one of the following sets:

C1 = {(⊥, q;⊥)} C7 = {(>;p,>)}
C2 = {(⊥,>;q) | q > ⊥} C6 = {(p;⊥,>) | p < >}
C3 = {(p;⊥, q;⊥) | p < q} C5 = {(>;p,>;q) | p < q}
C4 = {(p;⊥,>;q)}

– If c ∈ C1 i.e. c = (⊥, q;⊥)
∗ v ∈ C1 i.e. v = (⊥, q′;⊥). Then

[c] ∩ [v]c = [⊥, q;⊥] ∩ [⊥, q′;⊥]c

[c] ∩ [v]c = [⊥;⊥, q;⊥] ∩ [⊥, q′;⊥]c

Thus we have reduced to the case c ∈ C3, v ∈ C1.
∗ v ∈ C2. Then c ∩ vc = ∅.
∗ v ∈ C3. Then

[c] ∩ [v]c = {⊥} ∪
(
[∅+⊥,∅+q] ∩ [∅+p′,∅+q′]c

)
= {⊥} ∪

(
{x+∅ | x ∈ [⊥, q] ∩ [p′, q′]}

)
By the case c ∈ C3 and v ∈ C3, where we can apply the induction hypoth-
esis by Lemma 3.3.16,

{x+∅ | x ∈ [⊥, q] ∩ [p′, q′]} =
∐
i∈I

[ci]

With all ci maximal and disconnected.

138 3. A SYNTACTIC MODEL OF PROGRAMS

· If there are no i ∈ I such that ci = (⊥;⊥, qi). Then

[c] ∩ [v]c = [⊥,⊥]
∐
i∈I

[ci]

And all cubes are disconnected and maximal.
· Otherwise, there is at most a single j ∈ I such that cj = (⊥;⊥, qj).

Then

[c] ∩ [v]c = [⊥, qj]
∐
i∈I
i6=j

[ci]

and all cubes are disconnected and maximal.
∗ v ∈ C4 ∪ C6 i.e. v = (p′;⊥, q′), q′ ≥ >;⊥ Then

[c] ∩ [v]c = [⊥, q;⊥] ∩ [p′;⊥, q′]c

[c] ∩ [v]c = [⊥, q;⊥] ∩ [p′;⊥,>;⊥]c

Thus we have reduced to the case, v ∈ C3, where we can apply the induc-
tion hypothesis by Lemma 3.3.16.

∗ v ∈ C5 ∪ C7. Then c ∩ vc = c.
– If c ∈ C2 i.e. c = (⊥,>;q).

∗ v ∈ C1 ∪ C3. Then v ⊂ c, which contradicts maximality of v.
∗ v ∈ C2 i.e. v = (⊥,>;q′) Then

[c] ∩ [v]c = [⊥,>;q] ∩ [⊥,>;q′]c

[c] ∩ [v]c = [⊥;⊥,>;q] ∩ [⊥,>;q′]c

Thus we have reduced to the case c ∈ C4, v ∈ C1.
∗ v ∈ C4i.e. v = (p′;⊥,>;q′). Then

[c] ∪ [v] ⊆ [⊥,>;⊥] ∪ [>;⊥,>;q′] = [⊥,>;q′]

Such that v ⊂ (⊥,>;q′) ∈ C([R]), which contradicts its maximality.
∗ v ∈ C5 i.e. v = (>;p′,>;q′). Then,

· p′ = ⊥ implies

[c] ∪ [v] ⊆ [⊥,>;⊥] ∪ [>;⊥,>;q′] = [⊥,>;q′]

Such that v ⊂ (⊥,>;q′) ∈ C([R]), which contradicts its maximality.
· p′ > ⊥.

[c] ∩ [v]c = [⊥,>;q] ∩ [>;p′,>;q′]c

[c] ∩ [v]c = [⊥,>;⊥]
⋃

[>;⊥,>;q] ∩ [>;p′,>;q′]c

Then, by the case c ∈ C5, v ∈ c5, we have that there exists a family of
maximal disconnected cubes (ci)i∈I such that

[>;⊥,>;q] ∩ [>;p′,>;q′]c =
∐
i∈I

ci

3.3. SYNTACTIC COVERS OF PROGRAMS 139

Furthermore, >;⊥ ∈ [>;⊥,>;q] ∩ [>;p′,>;q′]c implies that there
exists a single j ∈ I such that cj = (>;⊥, qj). Then

[c] ∩ [v]c = [⊥, qj]
∐
i∈I
i6=j

[ci]

and all cubes are disconnected and maximal.
∗ v ∈ C6. Then [⊥,>] = [c]∪ [v] ⊆ [R] implies (⊥,>) ∈ R which contradicts

the maximality of v.
∗ v ∈ C7 i.e. v = (>;p′,>). Then,

[c] ∩ [v]c = [⊥,>;q] ∩ [>;p′,>]c

[c] ∩ [v]c = [⊥,>;q] ∩ [>;p′,>;>]c

Thus we have reduced to the case, v ∈ C5 or the singleton, where we can
apply the induction hypothesis by Lemma 3.3.16.

– If c ∈ C3, i.e. c = p;⊥, q;⊥
∗ v ∈ C1. i.e. v = (⊥, q′;⊥). Then

[c] ∩ [v]c = [p;⊥, q;⊥] ∩ [⊥, q′;⊥]c

[c] ∩ [v]c = [⊥;⊥, q;⊥] ∩ [⊥;⊥, q′;⊥]c

Thus we have reduced to the case, v ∈ C3, where we can apply the induc-
tion hypothesis by Lemma 3.3.16.

∗ v ∈ C2 ∪ C7. Then c ∩ vc = c.
∗ v ∈ C3 i.e. v = (p′;⊥, q′;⊥). Then

[c] ∩ [v]c = [p;⊥, q;⊥] ∩ [p′;⊥, q′;⊥]c

[c] ∩ [v]c = {x;⊥ | x ∈ [p, q] ∩ [p′, q′]}

By induction hypothesis (which can be applied, by Lemma 3.3.15), [p, q]∩
[p′, q′] =

∐
i∈I

[pi, qi] with all ((pi, qi))i∈I disconnected and maximal. Thus,

by construction,

{x;⊥ | x ∈ [p, q] ∩ [p′, q′]} =
∐
i∈I

[pi;⊥, qi;⊥]

with all ((pi;⊥, qi;⊥))i∈I disconnected and maximal.
∗ v ∈ C4 ∪ C6, i.e. v = (p′;⊥, q′), q′ ≥ >;⊥ Then

[c] ∩ [v]c = [p;⊥, q;⊥] ∩ [p′;⊥, q′]c

[c] ∩ [v]c = [p;⊥, q;⊥] ∩ [p′;⊥,>;⊥]c

Thus we have reduced to the case, v ∈ C3, where we can apply the induc-
tion hypothesis by Lemma 3.3.16.

∗ v ∈ C5 i.e. v = >;p′,>;q′

140 3. A SYNTACTIC MODEL OF PROGRAMS

· q, p′ 6= >,⊥ implies c ∩ vc = c

· Otherwise p < q = > implies v ⊂ p;⊥,>;q′ which contradicts its
maximality.

– If c ∈ C4.
∗ v ∈ C1 i.e. v = (⊥, q′;⊥). Then

[c] ∩ [v]c = [p;⊥,>;q] ∩ [⊥, q′;⊥]c

[c] ∩ [v]c = [p;⊥,>;q] ∩ [⊥;⊥, q′;⊥]c

Thus we have reduced to the case c ∈ C4, v ∈ C3, where we can apply the
induction hypothesis by Lemma 3.3.16.

∗ v ∈ C2 i.e. v = (⊥,>;q′), q′ > ⊥ Then

[c] ∩ [v]c = [p;⊥,>;q] ∩ [⊥,>;q′]c

[c] ∩ [v]c = [>;⊥,>;q] ∩ [⊥,>;q′]c

Thus we have reduced to the case c ∈ C5, v ∈ C2 or to the case of [c]
singleton.

∗ v ∈ C3 i.e. v = (p′;⊥, q′;⊥). Then q′ = > is a special case of the case of
v ∈ C4. So we can suppose q′ < >. Then

[c] ∩ [v]c = [p;⊥,>;q] ∩ [p′;⊥, q′;⊥]c

[c] ∩ [v]c = [p;⊥,>;⊥] ∩ [p′;⊥, q′;⊥]c
∐

[>;⊥,>;q]

Then, by the case c ∈ C2, v ∈ c3, where we can apply the induction
hypothesis by Lemma 3.3.16, we have that there exists a family of maximal
disconnected cubes (ci)i∈I such that

[p;⊥,>;⊥] ∩ [p′;⊥, q′;⊥]c =
∐
i∈I

ci

Furthermore, >;⊥ ∈ [p;⊥,>;⊥] ∩ [p′;⊥, q′;⊥]c implies that there exists
a single j ∈ I such that cj = (pj ,>+⊥). Then

[c] ∩ [v]c = [pj ,>+q]
∐
i∈I
i6=j

[ci]

and all cubes are disconnected and maximal.
∗ v ∈ C4 i.e. v = (p′;⊥,>;q′). Then

[c] ∩ [v]c = [p;⊥,>;q] ∩ [p′;⊥,>;q′]c

[c] ∩ [v]c = [p;⊥,>;⊥] ∩ [p′;⊥,>;⊥]c
∐

[>;⊥,>;q] ∩ [>;⊥,>;q′]c

With the cubes of [p;⊥,>;⊥]∩[p′;⊥,>;⊥]c and [>;⊥,>;q]∩[>;⊥,>;q′]c
disconnected, as >;⊥ in both complements. Thus, we reduced to the case
c ∈ C3, V ∈ C3 and c ∈ C5, v ∈ C5, where we can apply the induction
hypothesis by Lemma 3.3.16.

3.3. SYNTACTIC COVERS OF PROGRAMS 141

∗ v ∈ C5. Dual to v ∈ C3.
∗ v ∈ C6. Dual to v ∈ C2.
∗ v ∈ C7. Dual to v ∈ C1.

– If c ∈ C5. Dual to the case c ∈ C3.
– If c ∈ C6. Dual to the case c ∈ C2.
– If c ∈ C7. Dual to the case c ∈ C1.

• P = P+Q. Let us start by remarking that the cubes of P+Q that are not (⊥,>)
all are in one of the following sets:

C1 = {(⊥,∅+q)} C6 = {(∅+p,>)}
C2 = {(⊥, q+∅)} C5 = {(p+∅,>)}
C3 = {(p+∅, q+∅) | p ≤ q} C4 = {(∅+p,∅+q) | p ≤ q}

– If c ∈ C3 i.e. c = (p+∅, q+∅).
∗ v ∈ C1 ∪ C4 ∪ C6. Then [c] ∩ [v]c = [c].
∗ v ∈ C2 i.e. v = (⊥, q′+∅). Then

[c] ∩ [v]c = [p+∅, q+∅] ∩ [⊥, q′+∅]c

[c] ∩ [v]c = [p+∅, q+∅] ∩ [⊥+∅, q′+∅]c

Thus we have reduced this case to a special case of c ∈ C3 and v ∈ C3,
where the induction hypothesis can be applied by Lemma 3.3.15

∗ v ∈ C3 i.e. c = (p′+∅, q′+∅). Then

[c] ∩ [v]c = [p+∅, q+∅] ∩ [p′+∅, q′+∅]c

[c] ∩ [v]c = {x+∅ | x ∈ [p, q] ∩ [p′, q′]}

By induction hypothesis (which can be applied, by Lemma 3.3.15), [p, q]∩
[p′, q′] =

∐
i∈I

[pi, qi] with all ((pi, qi))i∈I disconnected and maximal. Thus,

by construction,

{x+∅ | x ∈ [p, q] ∩ [p′, q′]} =
∐
i∈I

[pi+∅, qi+∅]

with all ((pi+∅, qi+∅))i∈I disconnected and maximal.
∗ v ∈ C5. Dual to the case v ∈ C2.

– If c ∈ C1 i.e. c = (⊥,∅+q).
∗ v ∈ C1. i.e. v = (⊥,∅+q′). Then

[c] ∩ [v]c = [⊥,∅+q] ∩ [⊥,∅+q′]c

[c] ∩ [v]c = [∅+⊥,∅+q] ∩ [∅+⊥,∅+q′]c

This case is a special case of c ∈ C3 and v ∈ C3, where we can apply the
induction hypothesis thanks to the Lemma 3.3.15,

142 3. A SYNTACTIC MODEL OF PROGRAMS

∗ v ∈ C2 i.e. v = (⊥, q′+∅). Then [⊥,∅+q] ∩ [⊥, q′+∅]c = [∅+⊥,∅+q].
∗ v ∈ C3 ∪ C5. Then, [c] ∩ [v]c = [c].
∗ v ∈ C4 i.e. v = (∅+p′,∅+q′). Then

[c] ∩ [v]c = {⊥} ∪
(
[∅+⊥,∅+q] ∩ [∅+p′,∅+q′]c

)
= {⊥} ∪

(
{x+∅ | x ∈ [⊥, q] ∩ [p′, q′]}

)
By the case c ∈ C3 and v ∈ C3, where we can apply the induction hypoth-
esis by Lemma 3.3.15,

{x+∅ | x ∈ [⊥, q] ∩ [p′, q′]} =
∐
i∈I

[ci]

With all ci maximal and disconnected.
· If there are no i ∈ I such that ci = (∅+⊥, qi). Then

[c] ∩ [v]c = [⊥,⊥]
∐
i∈I

[ci]

And all cubes are disconnected and maximal.
· Otherwise, there is at most a single j ∈ I such that cj = (∅+⊥, qj).

Then

[c] ∩ [v]c = [⊥, qj]
∐
i∈I
i6=j

[ci]

and all cubes are disconnected and maximal.
∗ v ∈ C6 i.e. v = (∅+p′>). Then

[c] ∩ [v]c = {⊥} ∪
(
[⊥,∅+q] ∩ [∅+p′,∅+>]c

)
Thus we have reduced this case to the case v ∈ C4, where we can apply
the induction hypothesis thanks to the Lemma 3.3.15.

– If c ∈ C2. Symmetric to the case c ∈ C1

– If c ∈ C4. Symmetric to c ∈ C3.
– If c ∈ C5. Dual to c ∈ C2.
– If c ∈ C6. Dual to c ∈ C1

• P = Q*. By assimilating Q* to an infinite sequential composition of copies of Q
and applying the case Q;Q we obtain the desired result.

As we previously explained, for general programs of the form P = P1‖ · · · ‖Pn, the
generic cubical partition can be computed in only two steps of applying Γm.

Furthermore, as per the following Lemma 3.3.20 the computations of the iterated
applications of Γm to a cover R can be done directly on the different projections of R
along each axis. And for each of these projections, the second application of Γm can be
done on independent subsets of cubes of Γm(R) (Lemma 3.3.21)

3.3. SYNTACTIC COVERS OF PROGRAMS 143

Lemma 3.3.20. Given a cover R on a program P = P1‖ · · · ‖Pn, with Pk sequential for
all 1 ≤ k ≤ n. We have

Γm ◦ Γm(R) =

n∏
k=1

Γm ◦ Γm(Rk)

with Rk = {xk | ∃(ri)1≤i≤n ∈ R, rk = xk}.

Proof. This result is obtained directly by applying the Definition 3.3.12 twice

Γm ◦ Γm(R) = Γm(

n∏
k=1

Γm(Rk))

=

n∏
i=1

Γm
(
{xk | ∃(ri)1≤i≤n ∈

n∏
k=1

Γm(Rk), rk = xk}
)

=

n∏
i=1

Γm
(
{xi | ∃ri ∈ Γm(Ri), ri = xi}

)
Γm ◦ Γm(R) =

n∏
i=1

Γm(Γm(Ri))

As previously explained, computation of Γm(R) scales greatly with the number of
cubes. Furthermore, the number of cubes of Γm(R) will always be greater than or equal
to the number of cubes of R. Thus, when applying Γm multiple times, the following
Lemma 3.3.21 drastically reduce computation cost by instead allowing us to apply Γm to
subset of Γm(R).

Lemma 3.3.21. Given a cover R on P sequential, we have

Γm ◦ Γm(R) =
⋃

UqV=R
U 6=∅

Γm(Cmax(ZU,V))

Proof. By definition

Γm(R) =
⋃

UqV=R
U 6=∅

Cmax(ZU,V)

Furthermore, by definition, given (U, V) 6= (U ′, V ′), we have ZU,V ∩ ZU ′,V ′ = ∅ As the
ZU,V that are empty can be ignored, we can consider that

Γm(R) =
⋃
i∈I
Cmax(Ri)

with all Ri 6= ∅ and Ri ∩Rj = ∅. Now let us suppose given a partition X q Y = Γm(R),
X 6= ∅ and ZX,Y 6= ∅. We define

Xi = X ∩ Cmax(Ri) Yi = Y ∩ Cmax(Ri)

144 3. A SYNTACTIC MODEL OF PROGRAMS

such that

ZX,Y =
⋂
j∈I

ZXj ,Yj

Then by contradiction, let us prove that there exists a single i ∈ I such that Xi 6= ∅.

• First, as X =
⋃
i∈I

Xi, and X 6= ∅, there exists i ∈ I such that Xi 6= ∅.

• Now let us suppose by contradiction that there exists two distinct indices i 6= j such
that Xi and Xj are non-empty. Then let xi, xj ∈ Xi ×Xj . By definition,

ZX,Y ⊆ [xi] ∩ [xj] ⊆ Ri ∩Rj = ∅

Which contradicts our hypothesis ZX,Y 6= ∅.

Thus, there exists a unique i ∈ I, such that X ∩ Cmax(Ri) 6= ∅. Now, let us suppose
j ∈ I, j 6= i. Then as Ri ∩Rj = ∅, by definition,

ZXi,Yi ∩ ZXj ,Yj = ZXi,Yi ∩ Z∅,Cmax(Rj)

= ZXi,Yi ∩
⋂

y∈Cmax(Rj)

[y]c

= ZXi,Yi ∩ (
⋃

y∈Cmax(Rj)

[y])c

= ZXi,Yi ∩ [Rj]
c

ZXi,Yi ∩ ZXj ,Yj = ZXi,Yi

Then, for all X q Y such that X 6= ∅ and ZX,Y 6= ∅, we have

ZX,Y =
⋂
j∈I

ZXj ,Yj = ZXi,Yi

Thus, with YX = Γm(R) \X

{X ⊆ Γm(R) | X 6= ∅, ZX,YX 6= ∅} =
⋃
i∈I
{X ⊆ Cmax(Ri) | X 6= ∅, ZX,YX 6= ∅}

{X ⊆ Γm(R) | X 6= ∅, ZX,YX 6= ∅} =
⋃
i∈I
{X ⊆ Cmax(Ri) | X 6= ∅, ZX,Cmax(Ri)\X 6= ∅}

3.3. SYNTACTIC COVERS OF PROGRAMS 145

Now we can finally prove our result

Γm ◦ Γm =
⋃
XqY
X 6=∅

ZX,Y

=
⋃
i∈I

⋃
X⊆Cmax(Ri)

X 6=∅

ZX,Γm(R)\X

=
⋃
i∈I

⋃
X⊆Cmax(Ri)

X 6=∅

ZX,Cmax(Ri)\X

=
⋃
i∈I

Γm(Cmax(Ri))

Γm ◦ Γm(R) =
⋃

UqV=R
U 6=∅

Γm(Cmax(ZU,V))

Now we have everything to prove that the generic partition can indeed be obtained by
applying our operator Γm twice, with the previous lemmas mitigating the computation
costs of the second iteration.

Proposition 3.3.22. Given a maximal cover R on a program P = P1‖ · · · ‖Pn, with Pi
a sequential program we have that Γ∗(R) = Γm ◦ Γm(R)

Proof. We only need to prove that all cubes of Γm ◦ Γm(R) are disjoint to conclude the
proof. By Lemma 3.3.20 we have that

Γm ◦ Γm(R) =

n∏
k=1

Γm ◦ Γm(Rk)

with Rk = {xk | ∃(ri)1≤i≤n ∈ R, rk = xk}. By Lemma 3.3.21,

Γm ◦ Γm(Rk) =
⋃

UqV=Rk
U 6=∅

Γm(Cmax(ZU,V))

As all ZU,V are disjoint, we simply need to prove that the cubes of Γm(Cmax(ZU,V)) are
disjoint. By definition Cmax(ZU,V) is maximal, we can then apply Proposition 3.3.19,
which gives the desired result.

3.3.2.2 Algorithm and implementation

With what we have proven so far in the chapter, we can finally implement Algorithm 1.4.33
for syntactic region. The algorithm is the same as before, with C defined on syntactic
cubes in Definition 3.3.17.

Algorithm 3.3.23. Let R be the cover of the forbidden region of a program P , such
that X = R is the authorized region (pruned state space) of P . We can compute

1. The normal cubical cover N(X) of X as maximal cubes of the complement of Xc

146 3. A SYNTACTIC MODEL OF PROGRAMS

2. The generic cubical partition Γ∗(N(X)) compatible with N(X)

3. Deadlocks are the cubes of Γ∗(N(X)) \Rmax that are maximal (w.r.t. C∗). Where
Rmax is the only cube of Γ∗(N(X)) containing >P

4. A cubical partition U(X) of the unsafe region as the downward closure (w.r.t. C)
of the deadlocks

5. A cubical partition D(X) of the doomed region as U(X) \ E(X), where E(X) is the
downwards closure (w.r.t. C∗) of Rmax

Example 3.3.24. Let us reconsider the Swiss Cross (Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb) whose
maximal cubes are given below

Algorithm 3.3.23 gives the following ordering of the generic cubical partition w.r.t. the
maximal cover above.

H H H H

H H

H H

H H H H

O O O O

O O

O O

O O O O

H
H

H
H

H
H

H
H

H
H

H
H

O
O

O
O

O
O

O
O

O
O

O
O

In light grey in the figure above we see all cubes that do not have transition to another
cube. Then we obtain, the unique deadlock of our program as the upper corner of the
cube with no transitions that is not the cube in the upper corner (the end of our program).

Then, the unsafe region is obtained on the left as the downwards closure of this cube.
The downward closure of the maximal cube is given in the middle, and the doomed region,
which correspond to the intersection of its complement with the unsafe region can be seen
on the right.

3.3. SYNTACTIC COVERS OF PROGRAMS 147

H H H H

H H

H H

H H H H

O O O O

O O

O O

O O O O

H
H

H
H

H
H

H
H

H
H

H
H

O
O

O
O

O
O

O
O

O
O

O
O

H H H H

H H

H H

H H H H

O O O O

O O

O O

O O O O

H
H

H
H

H
H

H
H

H
H

H
H

O
O

O
O

O
O

O
O

O
O

O
O

H H H H

H H

H H

H H H H

O O O O

O O

O O

O O O O

H
H

H
H

H
H

H
H

H
H

H
H

O
O

O
O

O
O

O
O

O
O

O
O

The steps of the algorithm are performed the same way as in the Example 1.4.34.
Now let us recapitulate how to implement them. All these were effectively implemented
in [42], using the OCaml language.

Programs and positions Any inductive structure works well for implementing the
definitions of Section 3.1.

Calculating the normal form. The first step, calculating the normal form of a region,
requires implementing the operations in Definition 3.2.33:

• Union is union of list.

• Intersection can be implemented by Definition 3.2.32. This requires the implemen-
tation of ∨ and ∧ of Proposition 3.1.32, which is easily implemented with our data
structure.

• Complement .N requires:

– Intersection (which is not a problem per the point above)
– Comparison of cubes. Though, as:

(x, y) ⊆ (u, v) ⇐⇒ u ≤ x and y ≤ v ⇐⇒ u ∧ x = u and y ∨ v = v

comparison can be done with the implementation of ∨ and ∧ of Proposi-
tion 3.1.32.

– Calculating the generators of the lower and upper complement. This was
already done in Definition 3.3.1 and Proposition 3.3.2.

Calculating the coarsest cubical partition The second step, finding the normal
cubical partition requires only implementation of intersection, and the normal form of a
region, whose implementation is already explained above.

Deadlocks, unsafe and doomed regions To implement these step the only additional
operation to implement is comparing two cubes w.r.t. C. This can be done in the same
way as for cubical partition of the geometric semantics of a program (Proposition 1.4.32):

Proposition 3.3.25. Given a program P , and two cubes (p, q), (p′, q′) ∈ C(P), such that
(p, q) ∩ (p′, q′) = ∅ we have that

(p, q) C (p′, q′) ⇐⇒ ∃y′ ∈ (p′, q′), q → y′ or ∃x ∈ (p, q), x→ p′

148 3. A SYNTACTIC MODEL OF PROGRAMS

Proof. To prove this we will adapt [30, Proposition 7.5]. Given two disjoint cubes (p, q),
(p′, q′) on a program P , (p, q) C (p′, q′) is by definition equivalent to: for all u ∈ (p, q),
there exists v′ ∈ (p′, q′) such that u→∗ v′ i.e.

there exists v, u′ ∈ [p, q]× [p′, q′] such that u→∗ v → u′ →∗ v′ (3.1)

Let us prove that this is equivalent to

∃y′ ∈ (p′, q′), q → y′ or ∃x ∈ (p, q), x→ p′ (3.2)

The indirect implication 3.2 =⇒ Eq. (3.1) is evident. Let us prove the direct 3.1 =⇒
Eq. (3.2) by induction on P .

First let us remark that by definition:

(x, v′) ⊆ (p, q) and (u′, y′) ⊆ (p′, q′)

Then by the fact that the cubes are disjoint we also have

u′ 6∈ (p, q) and v 6∈ (p′, q′)

• P = α. OK.

• P = P1;P2. We will differentiate according to the value of v.

– v = ⊥. This implies by inference rules, u′ = ⊥;⊥. By our first remark, this
implies p′ ≤ ⊥;⊥. As v 6∈ (p′, q′), we have p′ > ⊥ i.e. p′ = ⊥;⊥. Thus taking
x = v concludes the case.

– v = v1;⊥, a < >. Then u′ = u′
1;⊥. Supposing that ⊥ < p and q′ < >, we

have p = p1;⊥ and two cases for q′:
∗ q′ = q′1;⊥. As p ≤ u ≤ q and p′ ≤ v′ ≤ q′ we have

u = u1;⊥ and v = v1;⊥

Then the existence of a path u →∗ v → u′ → v′ is by inference rules
equivalent to the existence of a path u1 →∗ v1 → u′

1 →∗ v′1. By induction
hypothesis this is equivalent to

∃y′1 ∈ (p′1, q
′
1), q1 → y′1 or ∃x1 ∈ (p1, q1), x1 → p′1

By inference rules this is equivalent to

∃ ∈ (p′1;⊥, q′1;⊥), q1;⊥ → y′1;⊥ or ∃x1;⊥ ∈ (p1;⊥, q1;⊥), x1;⊥ → p′1;⊥

This concludes the case.
∗ q′ = >;q′2. Remarking that (p1;⊥, q) C (p′, q′) is equivalent to (p1;⊥, q) C
(p,>;⊥) we reduce to the previous case.

Then, remarking that in the remaining case, (⊥, q) C (p′,>) is equivalent to
(⊥;⊥, q) C (p′,>;>) we conclude the case

– v = >;a, a < >. Similar to the case above.

3.3. SYNTACTIC COVERS OF PROGRAMS 149

– v = >;>. This implies u′ = > ad is dual to the case v = ⊥.

• P = P1+P2.

– v = ⊥. This implies by inference rules, u′ = ⊥+∅ or u′ = ∅+⊥. By our first
remark, this implies p′ ≤ ⊥+∅ or p′ ≤ ∅+⊥. As v 6∈ (p′, q′), we have p′ > ⊥
i.e. p′ = ⊥+∅ or p′ = ∅+⊥. Thus taking x = v concludes the case.

– v = v1+∅, v1 < >. Then u′ = u′
1+∅. Supposing that ⊥ < p and q′ < >, we

have p = p1+∅ and q′ = q′1+∅. As p ≤ u ≤ q and p′ ≤ v′ ≤ q′ we have

u = u1+∅ and v = v1+∅

By induction hypothesis this is equivalent to

∃y′1 ∈ (p′1, q
′
1), q1 → y′1 or ∃x1 ∈ (p1, q1), x1 → p′1

By inference rules this is equivalent to

∃ ∈ (p′1+∅, q′1+∅), q1+∅→ y′1+∅ or ∃x1+∅ ∈ (p1+∅, q1+∅), x1+∅→ p′1+∅

This concludes the case Then, remarking that in the remaining case, (⊥, q) C
(p′,>) is equivalent to (⊥+∅, q) C (p′,>+∅) we conclude the case

– v = ∅+v2, v2 < >. Symmetric to the case above.
– v = >+∅ or v = ∅+>. Remarking that this implies u′ = > it becomes dual to

the case v = ⊥

• P = Q*. By remarking that the set of positions of Q* is the same as the set of
positions of an infinite sequence of Q;Q;Q; · · · , we can treat this case in much the
same way as the case P = P1;P2.

• P = P1||P2 Remarking that (p1||p2, q1||q2) = (p1, q1)× (p2, q2), we have that

(p1||p2, q1||q2) C (p′1||p
′
2, q

′
1||q

′
2) ⇐⇒ (p1, q1) C (p′1, q

′
1) and (p′2, q

′
2) C (p′2, q

′
2)

We can directly apply the induction hypothesis, which concludes the case.

Remark 3.3.26. One way of checking the conditions of Proposition 3.3.25 is to check that

[{(p, y′) | q → y′} ∩ {(p′, q′)}] ∪ [{(p, q)} ∩ {(x, q′) | x→ p′}] 6= ∅

The set {x | p→ x} can be computed very easily using Definition 3.3.1.
Thus, we have shown that the algorithm is effectively implementable. Our implemen-

tation of this algorithm in the tool “Sparkling” can be found at [42]. This implementation
was done in Ocaml to fully maximize the use of the inductive structure of our positions.
In the Fig. 3.1 below, we can see the result given by the tool for the Swiss Cross from
previous examples. Many more examples of code are given in the tool, such as the floating
square and more complex programs such as a conservative version of the producer/con-
sumer problem [14, Section 4.1].

For now the tool doesn’t explicitly give the intermediate partition in output, but does
compute it to calculate the possible deadlocks. For programs with loops, cubes whose
endpoints only differ by the iteration of the loop have been regrouped, replacing the loop
number by ∗.

150 3. A SYNTACTIC MODEL OF PROGRAMS

Figure 3.1: Sparkling tool running on the Swiss Cross

3.3. SYNTACTIC COVERS OF PROGRAMS 151

Example 3.3.27. Let us look at the results of our tool Sparkling on the Swiss Cross
P = Pa; Pb; Vb; Va‖Pb; Pa; Va; Vb in more details. Its syntactic semantics is given below,
where the notations of positions have been simplified to ease presentation. The forbidden
regions in grey, is computed by looking at conflicts on the resources, giving us the two
cubes below.

⊥ ⊥
;⊥
>
;⊥
>
;>
>⊥

⊥;⊥

>;⊥

>;>

>

Then, the maximal cubes of the authorized region are given by Sparkling:

⊥ − ((�;⊥;_;_)‖(�;⊥;_;_))

(⊥‖(�;�;>;_)) − ((�;⊥;_;_)‖>)
((�;�;>;_)‖⊥) − �;�; (>‖(�;⊥;_;_))

((�;�;>;_)‖(�;�;>;_)) − >

These correspond to the maximal cubes in the semantics below on the left. The tool also
outputs the cubes

⊥ − (>‖(⊥;_;_;_)) ⊥ − ((⊥;_;_;_)‖>)
(⊥‖(�;�;�;>)) − > ((�;�;�;>)‖⊥) − >

with each column corresponding respectively to the middle and right cubes on the seman-
tics below.

We removed the first instructions �;� in the positions. These correspond to the
declaration of mutex, which for now are in the program in input, and clutters notations
without changing the structure of the program.

152 3. A SYNTACTIC MODEL OF PROGRAMS

3.3.2.3 Limitations

We chose to unfold all the loops in our model in the hope of dealing with programs with
loops more easily. Although it is true that this allows to implement the algorithm on
some program with loops, the only actual programs we can analyse are programs where,
for each loop, the positions corresponding to a loop is either totally inside or totally
outside the forbidden region. But this falls apart as soon as the forbidden region does
not strictly contain the loops as seen in the Example 3.3.28 below. This is due to the fact
that our algorithm only works when working with finite regions, and in such programs,
the (normal form of the) forbidden region is infinite.
Example 3.3.28. Let us consider the looped Swiss Cross (Pa; Pb; Vb; Va)∗‖(Pb; Pa; Va; Vb), a
representation of its state space is given below and extends infinitely on the right. We can
see that there will be an infinite number of cubes needed to cover the forbidden region
(as well as the authorized).

· · ·

But looking more closely at the Example 3.3.28, we can see that the cubes from the
forbidden and allowed regions are all iterations, of cubes of the loop “unfolded” only twice.
For example, let us examine the cubes in between the loops in the Example 3.3.28 above.
They are represented in the upper figure, and below is the 2-unfolding of the program.

· · ·

These notions are not new and have already been talked about in [17], where instead
of unfolding loops an infinite amount of time as we did, the authors prove that this can
be done in a finite number of unfolding. Thus, in the next chapter, we will try to see if
we can use these notions to apply our algorithm to programs with loops in our model.

4. HANDLING PROGRAMS WITH LOOPS 153

Chapter 4
Handling programs with loops

“We dug for months, years — an eternity. And we were rewarded with
madness.”

– Darkest Dungeon

The deadlock detection algorithm we introduced in Section 1.4.3 and Section 3.3.2
only works for programs without loops, or only when the forbidden region does not exist
within the loops. In theory, we could unfold loops an infinite number of times, using
the contextual equivalence from Remark 1.1.26, but this would not be satisfactory for
practical applications.

In [17] it is shown that we can unfold loops a finite number of time and still keep
the main properties of our state space. For example, if there is a deadlock in our base
program, it will be found in a finite unfolding of our program.

These deadlocks can be found using a different deadlock detection algorithm than
the one presented in Algorithm 1.4.33 that was introduced in [19], which was adapted
to work even in the presence of loops in [17] using this finite unfolding. This algorithm
works by computing intersections of maximal cubes of the cover of the forbidden region.
Unfortunately, the size of the forbidden region grows in O(kn) where k is the number of
unfolding done and n the number of parallel loops being unfolded.

Thus, keeping the number of unfolding to a minimum is crucial. For deadlock detection
this is not a problem as a single unfolding suffice, but for other tasks, such as detecting
the doomed region, only an upper bound is given in [17], which can get quite large.

Here, we improve upon their result, by showing that, for unsafe and doomed regions,
unfolding only twice is always enough, thus resulting in much faster computations in
theory. This necessitates the use of the slightly less efficient Algorithm 1.4.33 for detecting
deadlocks on the unfolding. This was done to exhibit a closer connection between the two
state spaces, showing that the unfolding can be done not only pointwise but can also be
done by lifting the maximal covers of our regions.

We start this chapter by presenting the Algorithm 4.1.6 from [19] and the follow-up
work [17] for deadlock detection in programs with loops using the unfolding.

Then we modify our syntactic model of programs from Chapter 3, folding back the
loops. We also redefine a notion of syntactic cubes that works in our new semantics

154 4. HANDLING PROGRAMS WITH LOOPS

(which are now pre-ordered sets instead of partial orders), and define the 2-unfolding of
a semantic program.

Next, we prove that, the covers of the forbidden and authorized regions of conservative
programs lifts from the base program to the unfolding and project back onto the correct
regions.

Finally, we prove that applying a slightly modified version of Algorithm 3.3.23 to the
unfolding of a program allows us to detect deadlocks, unsafe and doomed regions in the
base program.

4.1 Finite unfolding of concurrent programs

4.1.1 Finite unfolding techniques in directed models
4.1.1.1 A second deadlock detection algorithm

In this section, we present another algorithm for deadlock detection in loop-free concur-
rent programs introduced in [19], following the more recent description from [18]. This
algorithm uses the forbidden region (more precisely its cubical cover) instead of the ge-
ometric semantics of the program. In most cases, the forbidden region of a concurrent
program (especially program with mutexes only) is much smaller (in terms of size of the
cubical cover) than the geometric semantics of the program.

The algorithm only works for spaces which verifies the genericity condition of Defi-
nition 4.1.1 below, which is always satisfied by the forbidden regions (more precisely the
maximal cubical cover of the forbidden region) of a concurrent program.

Definition 4.1.1. Let R = {R1, . . . , Rm} be the cubical cover of a directed space X,
such that Rj =

∏
i≤n

[xji , y
j
i] for j ≤ m. Then, R is generic when for each j 6= k, Rj∩Rk = ∅

implies xji 6= xki for all i ≤ n.

Indeed, for a program with mutexes, the lower corner of cubes of the forbidden region
will always correspond to the concurrent locking of a certain mutex in the corresponding
projection (i.e. process) of the program. So, the fact that cubes share this coordinate
implies that both process lock the same mutex. Then the upper corners of the cubes
correspond to the instant where the mutex is released, meaning that both end at the same
point, which would imply that one is included in the other as in Example 4.1.2. Of course,
if their intersection is empty, then this is not a problem (as shown in Example 4.1.3), as
it is possible of locking, unlocking and then locking again the resource.
Example 4.1.2. Let us consider the following d-space, consisting of ~I \ (R1 ∪ R2) where
R1 ∪R2 is the greyed region below, consisting of the 2 maximal dotted cubes. Then, the
point z is the lower bound of an intersection of cubes, but is not a deadlock.

z

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 155

Example 4.1.3. Of course, this condition does not apply when the two cubes are disjoint,
as it is possible for a program to lock and release the same mutex multiple times. For
example, one could take the program Pa; Va; Pa; Va‖Pa; Va whose semantics is given below:

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Va Pa Va

Pa

Va

In the case of generic spaces, all deadlocks can be found as the lower bounds of the inter-
section

⋂
i≤nR

i of n cubes Ri of the forbidden region, where n is the number of processes
running in parallel in the program. Since the genericity condition above guarantees that
cubes of the forbidden region do not share any coordinates if their intersection is non-
empty, if we consider the lower bound of the resulting intersection, the progression of any
execution from this point is blocked by exactly one cube in each direction.

Example 4.1.4. Let us consider the Swiss Cross program from Example 1.3.51. As there
are two cubes R1, R2 in the maximal cover of the forbidden region, the only possible
intersection of two cubes has the point z as lower bound. In executions from this point,
the cube R1 prevents progression along the vertical axis and R2 along the horizontal axis:

z

R1

R2

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pa

Pb

Vb

Va

Computing deadlocks this way might give points that are not inside the state space
as in Example 4.1.5. Thus, for each of the points obtained this way, we need to check if
it is at the border of the forbidden region in order to really be considered a deadlock.

Example 4.1.5. Consider the program (Pa; Pb; Pc; Vc; Vb; Va)‖(Pc; Pb; Pa; Va; Vb; Vc), whose
geometric semantics is given below. The lower bound of the intersection of the two
dotted maximal cubes is inside the forbidden region, thus it should not be considered a
deadlock.

156 4. HANDLING PROGRAMS WITH LOOPS

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pc Pb Pa Va Vb Vc

Pa

Pb

Pc

Vc

Vb

Va

This gives us the following algorithm for detecting deadlocks ([18, Algorithm 5.13]).

Algorithm 4.1.6. For X a generic d-space of dimension n, and a maximal cubical cover
of its forbidden region R = {R1, . . . , Rm} of cardinal m, where Rjk =

∏
i≤n

[xjki , yjki]. The

deadlocks can be found as follows.

1. Take an intersection of n distinct cubes Rj1 , . . . , Rjn such that
⋂
k≤n

Rjk 6= ∅.

2. Take z such that zi = max{xjki | k ≤ n} (the lower bound of their intersection).

3. If for all k ≤ m, z 6∈ Rk then z is a “deadlock”.

We refer to Example 4.1.4 for a quick illustration of this algorithm.

Remark 4.1.7. What this algorithm really detects is points without future, but these are
not necessarily reachable (even when considering non-deterministic branchings). This
does also affect the unsafe and doomed regions and is particularly important in programs
with loops where reachability is harder to analyze, as illustrated below in Example 4.1.18.
Even in programs without loops accessibility of a given point is not easily computed.

In order to find the doomed region, we can extend this and use a similar argument.
Indeed, for each deadlock z, as long as a point is in the past along at least one coordinate
i of the lower corner of a forbidden cube that is itself lower than zi, there is a path going
“below” that cube (otherwise, it would contradict the maximality of the cubes). And
conversely, if a point is in between zi and all other cubes’ lower corner alongside i for
each coordinate, it is easy to see that all paths lead to the deadlock z eventually. Once
again we refer to [18, Theorem 5.11] for a more detailed proof.

Example 4.1.8. Consider the Swiss Cross from Example 4.1.4, with the singular deadlock z.
It is easy to see that any point below the dashed line (representing the past of the lower
corner of a cube of the forbidden region) is not doomed. Conversely, points in the past
of z above both dashed line and on the right of the dotted line are doomed.

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 157

z

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Va

Pa

Pb

Vb

Va

Then we can compute the doomed region with the following algorithm ([18, Algorithm
5.14]) by applying this method recursively (removing the cubes of the “doomed” regions
to the state space and iterating until we reach a fixed point).

Algorithm 4.1.9. For X a generic d-space of dimension n, as defined in 4.1.1, and a
maximal cubical cover R = {R1, . . . , Rm} of its forbidden region of cardinal m where
Rj =

∏
i≤n

[xji , y
j
i], the doomed region can be found as follows.

1. Compute all deadlocks z1, . . . , zp using Algorithm 4.1.6.

2. For each deadlock zk, compute uk where uki = max{xji | j ≤ m,xji 6= zki } for all
i ≤ n.

3. Add all cubes [uk, zk] to the doomed region.

4. Add all cubes [uk, zk] to the forbidden region and reiterate the algorithm until no
new cubes are found.

Example 4.1.10. Let us consider the following program

P = (Pa; Pb; Va; Pc; Vc; Vb)‖(Pc; Pa; Va; Pb; Vb; Vc)

At first there is a single deadlock z, the first round of the algorithm gives us the first
part of the doomed region, represented in the middle figure. Adding this new cube to the
forbidden region, we get a new “deadlock” z′, which generates a new cube of the doomed
region. As no more deadlocks exist, the algorithm terminates.

z

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Vc

z′

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Vc

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Va Pc Vc Vb

Pc

Pa

Va

Pb

Vb

Vc

158 4. HANDLING PROGRAMS WITH LOOPS

Remark 4.1.11. Unfortunately, this description of the doomed region is flawed: it might
intersect the forbidden region as shown in Example 4.1.10, which requires a lot more work
to get the correct cubical covering for later uses.

The deadlock detection also works in the case of loops contrary to the previous one,
but this simple algorithm fails for the unsafe and doomed regions in the case of programs
with even non-nested loops. In [17], a method is proposed to extend this algorithm to
programs with loops.

4.1.1.2 Unfolding loops in programs

In [17], Fajstrup defines the unfolding of programs with loops. In this section we will
present a sightly adapted version of her work, fitted to our previous notation. We only
define unfolding for processes of the form P ;L*;Q where P,Q,L are sequences of instruc-
tions (without branchings or loops), but this method extends to multiple loops and even
nested loops.

Definition 4.1.12. Let P be a process in a concurrent simple program of the form L*.
We define the k-unfolding of P , Uk(P) as the program where L* has be replaced by the
sequential composition of k copies of L sequentially composed:

Uk(P ;L*;Q) = P ;L; . . . ;L︸ ︷︷ ︸
k times

;Q

Remark 4.1.13. The unfolding U−(−) easily extends to the case where there are multiple
loops, with the possibility of giving a different index (number of delooping) for each loop.
It can also be extended to deal with nested loops by applying it recursively, with sets of
indexes to capture the nested loops. This fundamentally does not change the core interest
of the method, whose presentation we want to keep simple.

We recall that the geometric semantics of L* is obtained by identifying the initial and
terminal point of the geometric realization of L (with the associated quotient topology),
and that the sequential composition of two process corresponds to identifying the endpoint
of the geometric realization of the first with the starting point of the second.
Example 4.1.14. For a process of the form P ;L*;Q, the geometric semantics will be
equivalent to the space on the left. Then, its 2-unfolding will be equivalent to the space
on the right.

P Q

L

− − − − − −

P L L Q

Furthermore, all copies of L and their geometric realization can be naturally projected
onto the geometric realization of L* as previously mentioned by identifying the endpoints.
This means we can define a projection from an unfolding to the original program.

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 159

Definition 4.1.15. Let X the geometric realization of a program P ;L*;Q and Xk the
geometric realization of its k-unlooping Uk(P ;L*;Q). The projection πk : Xk → X is
given by identifying all k copies of L and identifying their endpoints.

This system of projections verifies some nice properties: it sends the forbidden region
of the unfolding onto the forbidden region of the base program [17, Lemma 4.7] and lifts
dipaths of the base program to a path in one of the k-unlooping [17, Lemma 4.5] but
most notably, as consequence of these properties, it sends the deadlocks of the unfolding
onto deadlocks of the base. Again, the method finds all points with no future without
care for reachability.
Proposition 4.1.16 ([17, Lemma 4.12]). A point p ∈ X is a deadlock if and only if all
points x ∈ π−1

1 (p), x are deadlocks in the 1-unfolding X1 (Definition 4.1.15).
Then to find the deadlocks in a program with loops, we can simply unfold once and

apply the deadlock detection Algorithm 4.1.6 to the unfolding. Then the projection will
give back all deadlocks in the original program.
Algorithm 4.1.17. Given a program P = P1‖ . . . ‖Pn with each Pi a sequential process
without branchings and possibly containing loops, the deadlocks of P can be found by
the following algorithm:

1. Calculate the 1-unfolding U1(Pi) of Pi for i ≤ n

2. Apply Algorithm 4.1.6 to U1(P1)‖ . . . ‖U1(Pn) to get the set of z1, . . . , zm deadlocks
of U1(P1)‖ . . . ‖U1(Pn).

3. Obtain the deadlocks of P as π1(z1), . . . , π1(zm).
To detect the doomed regions, a similar method can be used by applying Algo-

rithm 4.1.9 to the unfolding, but in this case, a simple 1-unlooping might not suffice
as shown in Example 4.1.18. Thankfully, it is shown in [17, Theorem 6.9] that the num-
ber of times one need to unfold is finitely bounded in the number of maximal cubes of the
original program. Intuitively, this bound corresponds to the greatest number of iteration
of the loop a path from a point has to go through before being able to exit the loop.

Example 4.1.18. Consider the conservative program P1‖P2 with

P1 = (Pa; Pb);L*; (Pc; Vc) L = Vb; Pb; Va; Pa
P2 = Pc; Pa; Va; Pb; Vb; Vc

Then if we look at the different successive unfolding of P1‖P2, we get the following doomed
regions. We see that it actually takes three iterations to find that no parts of the loop L
are doomed.

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Pb Va Pa Pc Vc Va Vb

Pc

Pa

Va

Pb

Vb

Vc

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Pb Va Pa Vb Pb Va Pa Pc Vc Va Vb

Pc

Pa

Va

Pb

Vb

Vc

160 4. HANDLING PROGRAMS WITH LOOPS

−
−

−
−

−

−

−

−

−

−

−

−

−
−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

Pa Pb Vb Pb Va Pa Vb Pb Va Pa Vb Pb Va Pa Pc Vc Va Vb

Pc

Pa

Va

Pb

Vb

Vc

This method has the downside of increasing the size of the forbidden region exponen-
tially in the number of loops in parallel. As Algorithm 4.1.17 scales quadratically with
its size [19], it is in our best interest to reduce the number of unfolding. For the next
part we will switch back to the Algorithm 1.4.33 as it gives much more tractable results,
especially for the unsafe and doomed regions. Following the idea explained in this section
we will first extend the notion of unfolding to the syntactic models of program. Then
we will deepen the projection to work on the cubes of the underlying posets. Lastly we
will prove that using our method we require only to unfold the program twice to get the
doomed and unsafe regions.

4.1.2 Slight adjustment to the syntactic model
In this section, we go back to the syntactic models of programs of Chapter 3 and define
a similar notion of unfolding for those. We use the same grammar for programs as in
Definition 3.1.1, but change how we represent the positions in a loop. In Chapter 3, we
used the contextual equivalence of Remark 1.1.26 to remove the looping paths and enforce
a partial order on the states. This was done at the cost of losing the finiteness of the
states in the presence of loops. In the following sections of this chapter, we will go back
to considering loops as a pre-order where the terminal and initial positions have been
identified.

As we are much more concerned with loops in this chapter, we will first define a few
subsets of the programs in NPIMP. First let us give a quick reminder of NPIMP.

Definition 3.1.1. Let R be a fixed, finite set of resources. Let a ∈ R. The language
NPIMP is generated by the following syntactic expressions, defined by their grammar:

• the set X of actions:

A ::= Pa | Va | skip | . . .

• the set C of commands, or programs:

P,Q ::= A | P;Q | P * | P+Q | P||Q

We will define three subsets of NPIMP that will be of particular interset for this
section: the processes Prcs, consisting of sequential and conditional branchings, the
looping processes Prcs∗ which are loops of processes, and the simple loop programs Pgrm,
which are the parallel composition of multiple processes. Formally,

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 161

Definition 4.1.19. We define, on the language NPIMP, with its set of actions X , three
sub-languages:

• The set of loop-free processes Prcs:

S, T ::= A ∈ X | S;T | S + T

• The set of process and single loops on them Prcs∗:

R ::= S | S*

• The set of simple loop programs Pgrm:

P,Q ::= P‖Q | R

4.1.2.1 Looped semantics

In the following, we redefine the semantics of syntactic models to take this modification
into account. In order to define the semantics, we will first need to redefine the evalua-
tion/consumption J−K, the states (positions of Definition 3.1.4) and the reduction relation
between states (Definition 3.1.9) starting with the Definition 3.1.4. As the actions of the
language have not changed, J−KX remains unchanged. We will then start to redefine the
core notions with the new states of the syntactic model, following the presentation of
Chapter 3.

Definition 4.1.20. Given a program P , pre-positions p are generated by the following
grammar:

p, q ::= ⊥ | > | p;q | p* | p+q | p||q

Where we identify ⊥* and >* (i.e. ⊥* = >*).

Then as in Definition 3.1.7, we extract from the pre-positions, the effective positions
(or states) of the program.

Definition 4.1.21. Given a program P , we write P � p to indicate that a pre-position
p is a (valid) position of a program P , this predicate being defined inductively by the
following rules:

P 6= Q‖R
P � ⊥

P � p

P;Q � p;⊥
P � p

P+Q � p+∅
P � p

P * � p*

P 6= Q‖R
P � >

Q � q

P;Q � >;q
Q � q

P+Q � ∅+q
P � p Q � q

P||Q � p||q

for any pair of programs Q,R. We write P(P) for the set of positions of a program P .
When there might be confusion we will write ⊥P (resp. >P) to indicate P � ⊥ (resp. P �
>). We write ⊥P‖Q (resp. >P‖Q) for P‖Q � ⊥‖⊥ (resp. P‖Q � >‖>)

Now we redefine the reduction relation between the states of Definition 3.1.9 and prove
that it preserves the properties we care about (reachability, equivalence with a pre-order)

162 4. HANDLING PROGRAMS WITH LOOPS

Definition 4.1.22. The reduction relation is defined inductively by the following rules.
All the rules not concerning loops remain the same as Definition 3.1.9.

P+Q � ⊥ → ∅+⊥ P+Q � ∅+> → >

P+Q � ⊥ → ⊥+∅
P � p → p′

P+Q � p+∅ → p′+∅
Q � q → q′

P+Q � ∅+q → ∅+q′ P+Q � >+∅ → >

P;Q � ⊥ → ⊥;⊥
P � p → p′

P;Q � p;⊥ → p′;⊥
Q � q → q′

P;Q � >;q → >;q′ P;Q � >;> → >

P � p → p′ Q � q

P||Q � p||q → p′;q
P � p Q � q → q′

P||Q � p||q → p||q′

α � ⊥ → >

While reductions between positions of loops are replaced by the following rules.

P * � ⊥ → ⊥*

P � ⊥ → p′

P * � ⊥* → p′*
P � p → >

P * � p* → >* P * � ⊥* → >

P � p → p′ p, p′ 6∈ {⊥,>}
P * � p* → p′*

Lemma 4.1.23. If P � p→ p′ holds then both P � p and P � p′ hold.

Proof. We refer to the proof of Lemma 3.1.11. The new reductions for loops do not
change the core argument of the proof.

Our model is no longer a partial order (because of the identification of ⊥* and >*), but
it still keeps the properties of being a well-quasi-order, although it is no longer useful, as
we are dealing with finite sets and thus always finitely complemented (Definition 3.2.25).

Definition 4.1.24. Given a program P , the state space GP of this program is the graph
whose vertices are the positions of P (Definition 3.1.7) and edges are the reductions
(Definition 3.1.9).

Definition 4.1.25. Given a program P , a path on GP is a sequence of reduction π =
(P � pi → pi+1)0≤i<n also written P � π : p →∗

0 pn or π : p0 →∗ pn. With the following
constructions:

• Given two paths π : p →∗ q and π′ : q →∗ p′ we write π′ · π : p →∗ p′ for their
concatenation.

• The empty path on a state p is written εp : p→∗ p.

Furthermore, we say that

• An execution trace π of P is a path P � π : ⊥ →∗
P p. When p = >P , i.e. P � π :

⊥ →∗
P >P , we way that π is total.

• An execution trace π of P is maximal when it cannot be extended.

• An execution is elementary when it consists of one reduction step.

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 163

• A position p is reachable when there exists an execution trace π with p as target
i.e. P � π : ⊥ →∗

P p.

Lemma 4.1.26. Every position p of P is reachable for →∗

Proof. See the proof of Corollary 3.1.26.

As customary, we also write P � p →∗ p′ (or sometimes simply p →∗ p′) when there
exists a path P � π : p →∗ p′. As before, consumption is equal to evaluation and is
defined in the exact same way as for our previous model in Definition 3.1.14.

Definition 4.1.27. Given an execution P � π : p →∗ p′, we write JP � π : p →∗ p′K :
Σ → Σ (or sometimes simply JπK) for its evaluation or consumption of mutexes. This
function is defined for elementary executions on each state σ ∈ Σ by:

• For a ∈ R, JPa � π : ⊥ → >K(σ) = JPaKX = δ+a (σ),

δ+a (σ)(b) =

{
σ(a) + 1 if b = a

σ(a) otherwise

• For a ∈ R, JVa � π : ⊥ → >K = JVaKX = δ+a (σ),

δ+a (σ)(b) =

{
σ(a)− 1 if b = a

σ(a) otherwise

• for each reduction π, different from the two above, deduced with a rule of Defini-
tion 4.1.22 with no premise we have JπK(σ) = σ,

• for each reduction π deduced with a rule of Definition 4.1.22 with one reduction π′

as premise, we have JπK = Jπ′K,

and extended as a morphism of the category of executions on the monoid of consumptions,
i.e. JεK = id and Jπ · π′K = Jπ′K + JπK.

The notion of conservative program remains unchanged.

Definition 3.1.15. A program P is conservative when for any pair of paths π, τ : x→∗ y
in GP with same source and target we have for any state σ ∈ Σ and any resource a ∈ R:

JπK(σ)(a) = JτK(σ)(a)

As before this implies that we can define consumption on positions instead of paths.

Definition 4.1.28. Given a conservative program P and a position p in P(P), we define
the consumption of p, written JpK : R→ Z as follows:

JpK = JπK(σ0)

for some path π : ⊥P → p and σ0 the initial state of P from Definition 3.1.2.

The consumption of a program stays the same as in Chapter 3.

164 4. HANDLING PROGRAMS WITH LOOPS

Definition 4.1.29. The consumption of a program P is the partial function ∆(P) : R→
Z defined by induction on P by

∆(Pa) = δa ∆(Va) = −δa ∆(A) = 0

∆(P;Q) = ∆(P||Q) = ∆(P) + ∆(Q)

∆(P +Q) = ∆(P) if ∆(P) = ∆(Q)

∆(P *) = 0 if ∆(P) = 0

where 0 is the constant function equal to 0 and δa the indicator function of a.

And the following proposition still holds

Proposition 4.1.30. The function ∆ is only partially defined on programs. A program
P is conservative if and only if ∆(P) is well-defined.

4.1.2.2 Properties of the state space

As we have loops in our state space, we can no longer hope to have a partial order. But,
the state space P(P) of a program P still retains a pre-order relation that is equivalent
to the reduction relation.

Definition 4.1.31. We write ≤ for the smallest reflexive relation on the positions of P
such that

P 6= Q‖R
⊥ ≤ p

p ≤ p′ q ≤ q′

p;q ≤ p′;q′
p ≤ p′ q ≤ q′

p||q ≤ p′||q′ p* ≤ p′*

P 6= Q‖R
p ≤ >

p ≤ p′

p+∅ ≤ p′+∅
q ≤ q′

∅+q ≤ ∅+q′

for any pair of programs Q,R.

Proposition 4.1.32. Given a program P and a position p of P , we have ⊥ ≤ p (resp. p ≤
>)

Proof. Given a program P and a position p of P , let us prove that ⊥ ≤ p by induction
on the program P .

• P = Q‖R. Then ⊥ is a shorthand for ⊥‖⊥ (Definition 3.1.7). And by Defini-
tion 3.1.7, p = q‖r with Q � q, R � r. By induction hypothesis, ⊥ ≤ q and ⊥ ≤ r.
Thus, by the inference rules of Definition 3.1.23, we have

⊥ ≤ q ⊥ ≤ r

⊥||⊥ ≤ q||r

Thus ⊥ = ⊥‖⊥ ≤ q‖r = p.

• Otherwise, the property is immediate by the rule
P 6= Q‖R
⊥ ≤ p

from Definition 3.1.23.

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 165

The property p ≤ > is proved in the same way.

Proposition 4.1.33. Given two positions p and p′ of P , we have p ≤ p′ if and only if
p→∗ p′.

Proof. This is proved by induction on P .

• P is not of the form L*. We can refer to the proof of Proposition 3.1.25, as for this
case, the reduction relation and induction rules for ≤ remain the same.

• P = L*. Let us suppose p, p′ 6∈ {⊥,>}, i.e. p = l* ≤ l′
*
= p′. Then the inference

rules for ≤ give:

l* ≤ l′
*

This implies that p ≤ p′ always hold. Let us show that it is similar for p →∗ p′.
By inference rules l ≤L > and ⊥ ≤L l′, i.e. l →∗ > and ⊥ →∗ l′. Then from the
following inference rules

L � p→∗ >
L* � p* →∗ >*

L � p→ p′ p, p′ 6∈ {⊥,>}
L* � p* → p′*

L � ⊥ →∗ p′

L* � ⊥* →∗ p′*

we can deduce:

L � p→∗ >
L* � p* →∗ >*

L � ⊥ →∗ p′

L* � ⊥* →∗ p′*

Thus, for p, p′ 6∈ {⊥,>}, we have

L* � p→∗ p′

Now if p = >, by inference rules, p ≤ p′ or p →∗ p′ implies p = p′ = >. Dually,
p′ = ⊥ implies p = p′ = ⊥. The remaining cases can be treated similarly to the
case p, p′ 6∈ {⊥,>} above, remarking that p ≤ p′ always holds, adding the following
rules in the construction of the path:

P * � ⊥ → ⊥* P * � ⊥* → >

Proposition 4.1.34. Let P be a program, then its set of positions (P(P),≤) is a bounded
preorder, with ⊥ (resp. >) as minimal (resp. maximal) element. Furthermore, if P ∈ Prcs
is a program without loops, then its set of positions P(P) is a well-ordered lattice.

Proof. By definition of →∗ as a reflexive and transitive closure, and Proposition 4.1.33.
When P is loop-free, we can fall back to the proof of Proposition 3.1.32 to prove that it
is indeed a lattice. By Proposition 4.1.32 and the fact that there are no reduction with
⊥ as a target, we have that ⊥ is the minimal element. The property for > is proved
dually.

166 4. HANDLING PROGRAMS WITH LOOPS

4.1.3 2-unfolding of programs: syntactic version
Following the method in [17] presented in Section 4.1.1.2, we define what it means to
unfold the syntactic model of a program. As previously stated we will show that a 2-
unfolding is enough to compute the doomed and unsafe regions. In [17], the n-unfolding
of a program L* is given by sequentially composing n copies L; . . . ;L of a program. Thus,
a 2-unfolding of L* correspond to the sequential constructor L;L. For more complex
programs, the unfolding is defined inductively as follows:

Definition 4.1.35. The 2-unfolding U : Pgrm → Pgrm of programs is defined induc-
tively as follows:

U(P||Q) = U(P)||U(Q) U(P;Q) = U(P);U(Q) U(α) = α

U(P *) = U(P);U(P) U(P+Q) = U(P)+U(Q)

Remark 4.1.36. U is the identity for all programs in Pgrm without loops.
By definition, the positions of L;L project naturally onto the positions of L. Indeed,

by the inference rules in Definition 4.1.21, a position of L;L is either ⊥, >, l;⊥ or >;l
with l ∈ L. Similarly, the positions of L*, are either ⊥, > or l*.

From this remark we can define a very natural function, mapping positions of a 2-
unfolding L;L onto its base program L* by sending l;⊥ and >;l to l*.

Definition 4.1.37. Given a program P , we define its folding projection ΦP : P(U(P))→
P(P) as follows

ΦP (⊥U(P)) = ⊥P ΦP *(p;⊥) = ΦP (p)
* ΦP+Q(p+∅) = ΦP (p)+∅

ΦP (>U(P)) = >P ΦP *(>;p) = ΦP (p)
* ΦP+Q(∅+q) = ∅+ΦQ(q)

ΦP||Q(p||q) = ΦP (p)||ΦQ(q) ΦP;Q(p;q) = ΦP (p); ΦQ(q)

Remark 4.1.38. By a simple albeit tedious proof by induction, ΦP : P(U(P)) � P(P) is
surjective.

One very nice property of the folding projection is that, for conservative programs, it
will preserve the consumption of resources of a given position (Definition 4.1.28). Meaning
that if we can compute the forbidden/authorized region in the 2-unfolding of a program
(which is loop-free), its pointwise image by the projection Φ will be the forbidden/autho-
rized region of the base program.

Proposition 4.1.39. Given a program P and a position in its 2-unfolding p ∈ P(U(P)),
then

JpK = JΦP (p)K

where J−K is the resource consumption of a position defined in Definition 4.1.28.

Proof. Let P ∈ Pgrm. Let us prove by induction on p that

∀p ∈ P(P), JpK = JΦ(p)K

First let us remark that by Definition 4.1.27 J⊥P K = 0 = J⊥U(P)K = JΦP (⊥P)K.

4.1. FINITE UNFOLDING OF CONCURRENT PROGRAMS 167

• Let P = α, then U(P) = P and Φ = id.

• Let P = S+T .

– p = s+∅ ∈ P(U(P)), then

JpK = Jπ : ⊥ →∗ pK Definition 4.1.28

= Jπ : ⊥ →∗ s+∅K
= J(⊥+∅→∗ s+∅) · (⊥ →∗ ⊥+∅)K Definition 4.1.27
= J⊥+∅→∗ s+∅K + J⊥ →∗ ⊥+∅K Definition 4.1.27

= J⊥ →∗ sK + 0 Definition 4.1.27
= JsK Definition 4.1.28
= JΦS(s)K Induction Hypothesis
= J⊥ →∗ Φ(s)K Definition 4.1.28
= JΦS(⊥)→∗ ΦS(s)K
= JΦP (⊥)+∅→∗ Φ(s)+∅K Definition 4.1.28
= J⊥ →∗ Φ(s)+∅K Definition 4.1.28
= JΦ(s)+∅K Definition 4.1.28

JpK = JΦP (p)K

– Similarly if p = ∅+t, then JpK = JΦ(p)K

– p = >U(P). Let π : ⊥U(P) →∗ >U(P),

J>U(P)K = JπK Definition 4.1.28
= J⊥U(P) →∗ >U(S)+∅K + J>S+∅>U(P)K
= J>U(S)+∅K + 0 Definition 4.1.28
= JΦ(>U(S)+∅)K By the case above
= JΦS(>U(S))+∅K
= J>S+∅K
= J⊥S+T →∗ >S+K∅+ J>S+∅→∗ >S+T K Definition 4.1.27
= J⊥S+T →∗ >S+T K Definition 4.1.27
= J>P K Definition 4.1.28

J>U(P)K = JΦP (>U(P))K

• The case P = S;T is treated in much the same way.

168 4. HANDLING PROGRAMS WITH LOOPS

• P = S||T .

Js||tK = Jπ : ⊥U(S)||U(T) →∗ s||tK Definition 4.1.28
= Jπ : ⊥||⊥ →∗ s||tK Definition 4.1.27
= J⊥||⊥s||⊥ →∗ s||tK by conservativity
= J⊥||⊥ →∗ s||⊥K + Js||⊥ →∗ s||tK
= J⊥ →∗ sK + J⊥ →∗ tK Definition 4.1.27
= JsK + JtK Definition 4.1.28
= JΦ(s)K + JΦ(t)K Induction hypothesis
= J⊥ →∗ Φ(s)K + J⊥ →∗ Φ(t)K Definition 4.1.28
= J⊥||⊥ →∗ Φ(s)||⊥K + JΦ(s)||⊥ →∗ Φ(s)||Φ(t)K
= J⊥||⊥ →∗ Φ(s)||Φ(t)K Definition 4.1.27
= J⊥S||T →∗ Φ(s)||Φ(t)K Definition 4.1.27

Js||tK = JΦ(s)||Φ(t)K Definition 4.1.28

• P = S*. Then U(P) = S;S. First let’s remark that for any conservative program
X, by Proposition 4.1.30

∆(X) = J>X*K = J>XK = 0 (4.1)

– p = s;⊥. As we consider conservative programs, the consumption is inde-
pendent of the path chosen (Definition 4.1.28), so we will choose a cycle-free

path π : ⊥ →lf Φ(p) to ensure that we only require the
P � p→ p′

P * � p* → p′*
rule for

reductions in the loop.

JpK = J⊥U(P) →lf pK Definition 4.1.28
= J⊥ → ⊥;⊥K + J⊥S;⊥S →lf s;⊥SK Definition 4.1.27
= 0 + J⊥S →lf sK Definition 4.1.27
= J⊥* →lf s*K Induction Hypothesis
= J⊥P →lf ⊥*

SK + J⊥* →lf s*K Definition 4.1.27
= J⊥P →lf Φ(p)K

JpK = JΦ(p)K Definition 4.1.28

– p = >;s. As Φ(>;s) = Φ(s;⊥), we will simply prove

J>;sK = Js;⊥K

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 169

Thus

J>;sK = J⊥ →∗ ⊥S;⊥SK + J⊥S;⊥S →∗ >S;⊥SK
+ J>S;⊥S →∗ >S;sK Definition 4.1.27

= J⊥S →∗ >SK + J⊥S →∗ sK Definition 4.1.27
= J⊥S →∗ sK Eq. (4.1)
= J⊥S;⊥S →∗ s;⊥SK Definition 4.1.27
= J⊥P →∗ s;⊥SK Definition 4.1.27

J>;sK = Js;⊥SK Definition 4.1.28

– p = >U(P).

J>U(P)K = JπK
= J⊥U(P) →∗ >U(S);>U(S)K

+ J>U(S);>U(S) → >U(P)K
= J>U(S);>U(S)K + 0 Definition 4.1.28
= JΦ(>U(S);>U(S))K By the case above
= J>S;>SK + 0

= J⊥P →∗ >S;>SK + J>S;>S →∗ >P K Definition 4.1.27
= J⊥P →∗ >P K Definition 4.1.27
= J>P K Definition 4.1.28

J>U(P)K = JΦ(>U(P))K

4.2 Syntactic cubical covers for programs with loops
Although we are now dealing with finite syntactic models, the state space might still be
large, and we would still like to have a compact representation of the different regions.
The simplest way to go about it is to reuse the representation of sets of positions by
cubical covers from Chapter 3.

The folding projection ΦP already gives a way of going from the unfolding to the base
program and back, and if we only wanted to implement Algorithm 4.1.6 we could stop at
that, but we hope that we can extend this projection further to make use of the efficient
representation given by (syntactic) cubical covers.

Thus, we want to extend the folding projection ΦP to a projection ΨP : C(U(P)) →
C(P), sending the cubes of the unfolding to the base program. This projection ΨP should,
at the very least, send a cube c of U(P) to a cube Ψ(c) whose underlying support is equal
to the projection by Φ of the support of c. That means for any cube c, we should have
[Ψ(c)] = Φ([c]).

Indeed, using the fact that the folding projection Φ: P(U(P)) → P(P) preserves
forbidden positions (Proposition 4.1.39), this would imply that covers of the forbidden
(resp. forbidden) regions of the unfolding are sent to covers of the forbidden (resp. for-
bidden) regions of the base program.

170 4. HANDLING PROGRAMS WITH LOOPS

Furthermore, as we are still working with implementability on mind, this projection
on cubes should not be too costly to compute.

As cubes are defined by pairs of positions, our first, very natural intuition is that we
could use Φ× Φ: P(U(P))× P(U(P))→ P(P)× P(P) as our projection on cubes ΨP .

Unfortunately, this approach does not work, but the fault lies not in our choice of
projection but more in the definition of our cubes. Indeed, for preorders, as seen in the
Example 4.2.1 and Example 4.2.2, there is no way of separating two equivalent elements
from being in the same cube. As all elements of a loop are equivalent, this makes it
impossible to project any cube onto the loop without increasing the underlying support.
In a first time, we should then try to adapt our definition of cubes so that they work in
the more general setting of partially ordered sets.

Example 4.2.1. Let us consider the preorder ({x, y, z},≤) where all elements are equiva-
lent, i.e. x ≤ y ≤ z ≤ x. Using Definition 3.2.1, (x, x) = {b | x ≤ b ≤ x} = {x, y, z}. The
same is true for all cubes.

Example 4.2.2. Let us consider the program P = (Pa; (Va; Pa)*)‖(Pa; Va) from Exam-
ple 1.3.34. Its syntactic semantics will give the space below, with the forbidden region in
grey.

(⊥;⊥)‖(⊥;⊥)

(>;>)‖(>;>)

As the inference rule
p* ≤ p′*

for ≤ has no premises, all elements of the loop are

equivalent. This means that taking any pair of positions within the loop results in a cube
whose support is the whole loop. This implies that the forbidden region, represented in
grey, cannot be described by cubes, as any cube trying to describe the loop will have a
support equal to the whole section of the loop.

In this section we first introduce the concept of trivial loops with regard to two posi-
tions, corresponding to loops that are a “level (of nested loop) below” the two positions
and can in a way be safely ignored. Then, based on this definition we generalize our
previous definition of syntactic cubes to give satisfying results in the case of loops, which
are defined as set of points cover by paths without any non-trivial loops. Then, we define
our cubical refolding projection ΨP by separating which cubes can be projected by Φ×Φ
and which cubes need more work, proving that [Ψ(−)] = Φ([−]) in Proposition 4.2.44.

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 171

4.2.1 Generalizing syntactic cubes
In this section we will define a new notion of syntactic cubes suitable for our new state
space for looped programs. Indeed, keeping the same definitions we used for syntactic
cubes when the state space was partially ordered leads to some strange results as shown
in Example 4.2.2. In most cases, it is impossible to cover a region inside the loop by
cubes, which is obviously bad.

Ideally, our new definition of syntactic cube/cubes should be the same as the previous
one when considering loop-free programs. Thus, we try to generalize our definition of
cubes from Definition 3.2.1.

4.2.1.1 Paths, loops and problems

One can remark that, given a loop-free program P and two positions p, q ∈ P(P), the
support [p, q] is not only the set of points {x ∈ P(P) | p ≤ x ≤ q}, but also the set of
points traversed by a path from p to q (Proposition 3.1.25). This implies that a cube
(p, q) can also be defined as the set {π : p →∗ q} while its support would be defined as
the union of the “supports” of those paths. This doesn’t change any of the properties of
our cubes.

Unfortunately, it also does not fix any of the problems for pre-orders. This might be
due to the fact, that in our partially ordered setting, any path was cycle-free, which for
pre-orders is no longer the case. We then give a first attempt at defining our syntactic
cubes as set of loop-free paths between two endpoints.

Definition 4.2.3. Let P be a finite set equipped with a binary relation →. Given two
elements p, q ∈ P, a path π on P from p to q is a (possibly empty) finite sequence of
reductions (pi → pi+1)0≤i≤n, such that p = p0 and q = pn+1.

We write π : p →∗ q for π is a path from p to q. If π is empty, then p = q and π is
called the empty path on p, denoted εP : p→∗ p

Definition 4.2.4. Let P be a finite set equipped with a binary relation→. Given a path
π = (pi → pi+1)0≤i≤n on P, we say that π is acyclic when for all 0 ≤ i 6= j ≤ n + 1,
pi 6= pj .

Definition 4.2.5. Let (P,→) as in Definition 4.2.4. Given two positions p, q ∈ P, we
define the cube (p, q) as the sets of all acyclic paths from p to q:

(p, q) = {π | π : p→∗ q with p, q ∈ P, π acyclic}

The supports of such cubes is defined as the union of the supports of the paths it
contains, i.e. the set of points that are visited by a path.

Definition 4.2.6. Let (P,≤) a finite preorder and two elements p, q ∈ P. Given a path
π : p→∗ q = (pi → pi+1)0≤i≤n,

• for p′ ∈ P, we write p′ ∈ π, when there exists 0 ≤ i ≤ n+ 1 such that p′ = p′i,

• we define the support [π] of π as {p′ ∈ P | p ∈ π}

172 4. HANDLING PROGRAMS WITH LOOPS

Then the support, i.e. the associated cubical region, of a cube (p, q) from Defini-
tion 4.2.5 is defined as [p, q] =

⋃
π∈(p,q)

[π]. Once again, this corresponds in the case of

loop-free programs, but as shown in Example 4.2.7, the cube (⊥,>) has some strange
behaviour. This suggests that excluding all loops might be a bit too brutal.
Example 4.2.7. Let us consider a very simple program P = (skip; skip)*. Its syntactic
semantics is given below, with the support of the cube (⊥,>) = {(⊥ → ⊥* → >)} in
grey.

⊥ ⊥* >

(>;>)* (⊥;⊥)*

(>;⊥)*

We would expect to be able to describe the whole set of positions simply with the cube
(⊥,>), as in the case of programs without loops. Furthermore, if we were to lift its
support with Φ−1 we would expect to get the support of the whole set of positions of the
unfolding, which would not be the case here.

4.2.1.2 Hierarchy of nested loops

The problem mentioned above comes from the fact that our cubes “see” too much detail
in the program. Indeed, in the Example 4.2.7 above, the positions outside (or “above”)
the loop, care about information of the path in the loop, and are severely restricted as a
consequence.

Using the idea that loops of a “smaller” scale than the edges of the cube can be
omitted, we will define a notion of trivial paths and define cubes as sets of paths with no
non-trivial loops, instead of simply excluding all loops.
Example 4.2.8. Let us consider the program P = ((skip;skip)*;skip)*, whose semantics
is given below. All positions in the loop are equivalent for the preorder relation. Nonethe-
less, we would like to distinguish between the level of loop-nesting d of the positions.

⊥ >
d = 0

d = 1

d = 2

⊥*

(⊥;⊥)*
(>;⊥)*

(>;>)*

((>;>)*;⊥)*

((>;⊥)*;⊥)*

((⊥;⊥)*;⊥)*

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 173

We are thus going to equip our preorders with a depth function, to differentiate to
which degree positions are equivalent for the preorder relation, this would correspond to
checking how many levels of nesting of loops there are for a selected instruction. Sub-
paths of a path that only explore positions at a greater depth are said to be trivial. The
base path should not concern itself with what happens during these sub-paths.

Definition 4.2.9. Given a preorder P equipped with a function d: P → N called a depth
function, and a path π : p →∗ q on elements of P. We say that a sub-path σ of π is
d-trivial in π if and only if for all x ∈ σ, d(x) > d(p) and d(x) > d(q).

Definition 4.2.10. Given a preorder P, we say that a path π on P has a non d-trivial
cycle when there exists a non-empty sub-path σ ⊆ π such that σ is not d-trivial and σ
is a cycle. When a path π : p →∗ q has no non d-trivial cycle, we say that π is without
trivial cycles or cycle-free, and we write π : p→lf q.

Definition 4.2.11. Given a sequential program P , we define the depth dP of the position
of P as follows.

dP * : P(P *)→ N

p 7→

{
1 + dP (q) if p = q*

0 otherwise

For all other cases

dP;Q(p;⊥) = dP (p) dP+Q(p+∅) = dP (p) dP (⊥) = 0

dP;Q(>; q) = dQ(q) dP+Q(∅+ q) = dQ(q) dP (>) = 0

For looped programs, the depth function d is exactly the greatest depth (level of
nesting) of the loop the position is in. And a loop is trivial only if it involves positions of
a greater depth than the extremities of the path.

For now, we only consider programs without nested loops, so a path π has a non-trivial
cycle (Definition 4.2.10) if and only if π : ⊥ →∗ > and π has a cycle.

Proposition 4.2.12. Given a program P ∈ Pgrm, and a path π : p →∗ q = (pi →
pi+1)1≤i≤n on P(P), is without non-trivial cycles if and only if π is empty or for all
i 6= j, pi = pj implies that pi is not equivalent to p or q.

Proof. By definition of dP and the inference rule
p*i ≤ q*j

two positions pi of P(P *) are

equivalent implies that they have the same depth. Thus, by definition of trivial cycles.
π is without trivial cycles only if i 6= j, pi = pj implies that pi is not equivalent to p or
q.

Coming back to Example 4.2.7, all cycles are trivial for a path π : ⊥ →∗ >, thus the
support of the cube (⊥,>) will give the whole program as expected.

Before we proceed any further we will remark some few interesting properties for paths
on the syntactic semantics of a program. First, paths contained in a single iteration of
a loop L* can be seen as path on the program L, with the property of being without
non-trivial loops transferring from one path to another.

174 4. HANDLING PROGRAMS WITH LOOPS

Definition 4.2.13. Let P ∈ Prcs, p, q ∈ P(P), p ≤ q, p, q 6= ⊥,>

• Given a path π = (xi → xi+1)i≤n : p →∗ q on positions of P , we define the path
π∗ = (x*i → x*i+1)i≤n : p

* →∗ q* on positions of P *.

• Given a path π∗ = (x*i → x*i+1)i≤n : p
* →∗ q* such that for all i 6∈ {0, n+1}, x*i 6= >*

we associate the path πlf = (xi → xi+1)i≤n : p→∗ q

Furthermore

• If π : p→lf q then, the associated path π∗ : p* →lf q* is also cycle-free

• If π∗ : p* →lf q* then, the associated path πlf : p→lf q is also cycle-free.

Proof. (Proof of Definition 4.2.13) Let P ∈ Prcs, p ≤ q ∈ P(P), p, q 6= ⊥,>. We
must prove that the path we construct are indeed valid paths and prove that cycle-free
properties are transferred.

• Let π = (xi → xi+1)i≤n : p →lf q a cycle-free path. Then by Definition 4.1.22,
π∗ = (x*i → x*i+1)i≤n : p

* →∗ q*. Let us suppose the existence of i 6= j such that
x*i = x*j . As all xi, xj are distinct (π cycle-free), this implies by Definition 3.1.7,
{xi, xj} = {⊥,>} ⊆ [π] This is not compatible with the fact that p, q 6= ⊥,>. Thus,
π∗ has no trivial loops.

• Let π∗ = (x*i → x*i+1)i≤n such that π∗ : p* →lf q*. p ≤ q and for all i 6∈ {0, n +
1}, x*i 6= >* implies

i 6= 0, xi 6= ⊥ and for all i 6= n+ 1, xi 6= >

This implies that for all i, the reduction x∗
i → x∗

i+1 is such that xi 6= > and
xi+1 6= ⊥. Thus, by Definition 4.1.22, this implies zi → zi+1. Thus, π = (xi →
xi+1)i≤n : p→lf q. And furthermore, this path is without non-trivial loops as P(P)
is a partial order (Proposition 4.1.34).

Furthermore, for certain paths of a looping program P *, we have a criterion for easily
determining if the core of the loop ⊥* belongs to the support. This criterion will be useful
later on to distinguish between the cubes of our preorder.

Lemma 4.2.14. Let P ∈ Prcs. Let p, q ∈ P(P) such that p ≤ q, and π∗ = (zi →
zi+1)i≤n : p

* →lf q* a cycle-free path on P(P). Then for all i 6∈ {0, n+ 1}, zi 6= >*.

Proof. First, let us remark that if p* or q* equals>* then the cycle-free properties conclude
the proof. Now let us suppose a path π∗ = (zi → zi+1)i≤n : p

* →lf q* that contains no
trivial loops such that there exists 0 < j ≤ n, zj = >* ∈ π∗. Thus, by definition for all
i 6= j, zi 6= >*. Furthermore, by definition of the reduction relation for all i ∈ I, zi = x*i .
Then splitting as such

π∗ = (x*i → x*i+1)j≤i≤n : ⊥* →lf q*︸ ︷︷ ︸
µ∗

◦ (x*i → x*i+1)i≤j : p
* →lf >*︸ ︷︷ ︸

ν∗

and applying the Definition 4.2.13 to µ∗ and ν∗, we get

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 175

• ν = (xi → xi+1)i≤j : p→lf >

• µ = (xi → xi+1)j≤i≤n : ⊥ →lf q

• σ : p→lf q (by Proposition 4.1.33 as p ≤ q)

Let a (resp. b) the greatest (resp. smallest) element such that there exists a path from a
to p and a ∈ µ (resp. from q to b and b ∈ µ). These exist as we have no loops. We get
the following

p b >

⊥ a q

σ

ν ν

µµ

By definition, for P ∈ Prcs the positions a and p (resp. b and q) are the start (resp. end)
of a conditional branching. Furthermore, by definition of a, (resp. b), a and q (resp. b
and p) are the start and end of the same branching. Hence, we have an inner branching
that was opened (at p) inside an outer branching (opened at a) but closed after that
the containing branching was closed. This is impossible by construction of the set of
positions.

4.2.1.3 Path-based cubes for preorders

Now, we can finally introduce our new notion of cubes as set of paths without non-trivial
loops. Although a great deal of effort was made to reach a satisfying definition, we still
need to extend our definition of cubes to consider composite cubes. Indeed, even with all
our efforts, there are simply too many different cubes in the unfolding to be able to project
them all via their endpoints. Composite cubes (and some adjustment to the projection
of cubes) are necessary in our model in order to ensure that cubes and their support are
projected to the same support, as detailed in Example 4.2.17.

Definition 4.2.15. Let (P,≤) a finite preorder. Let S ⊆ P.

• We call simple cube of P any non-empty subsets of all paths on P of the following
form (p, q) = {π | π : p→lf q with p, q ∈ P}

• For any two cubes (p, q) and (q, r) we call composite cubes (p, q, r) = {µ · ν | ν, µ ∈
(p, q)× (q, r)}.

The support [p, q] of the cube (p, q) is defined as

[p, q] =
⋃

π∈(p,q)

[π]

We write C(S) the set of all cubes of P whose support is included in S.

When considering programs, more precisely a looping process P ∈ Prcs∗ (Defini-
tion 4.1.19), we will impose a last restriction on its cubes. For composite cubes, we will
only allow composition of cubes of the form (p,⊥*) and (>*, r).

176 4. HANDLING PROGRAMS WITH LOOPS

Definition 4.2.16. Given a looped process P ∈ Prcs∗, the cubes of P , written C(P) are
a subset of the cubes of the poset C(P(P)) containing only cubes of the form:

• (p, q) = {π | π : p→lf q} or

• (p,⊥*, q) = (p,>*, q) = {π | π = µ ◦ σ, σ : p→lf >*, µ : ⊥* →lf q}

with p, q ∈ P(P).

Example 4.2.17. Let us consider the program P = (skip + skip)* and its unfolding
U(P) = (skip+ skip);(skip+ skip). We need to differentiate between the projections
of the two cubes

c = ((⊥+∅);⊥,>; (>+∅)) c′ = ((⊥+∅);⊥, (>+∅);⊥)

given in grey below, as they should correspond to the lifting of two different cubes, but
with the same endpoints.

⊥
⊥;⊥

(⊥+∅);⊥

>;⊥

>; (>+∅)

>;>
> ⊥

⊥;⊥

(⊥+∅);⊥ (>+∅);⊥

>;⊥

>;>
>

Then Φ([c]) is covered by ((⊥ + ∅)*,⊥*, (> + ∅)*) and Φ([c′]) is covered by ((⊥ +
∅)*, (>+∅)*).

⊥ >

(⊥+∅)*(>+∅)*

(∅+⊥)*(∅+>)*

⊥ >

(⊥+∅)*(>+∅)*

(∅+⊥)*(∅+>)*

Remark 4.2.18. In Example 4.2.17, one could find a non-composite cube that covers the
loop for instance (⊥*, (>+∅)*), but then, it would no longer be obtained as a projection
by Φ×Φ. Furthermore, the maximal cubes of such a region would be too numerous (three
in this case).
Remark 4.2.19. Any composition of more than two cubes is by our restriction equivalent to
a composition of only two. Indeed, the composition (p, q) ·(q, r) ·(r, s) implies q = r = >*.
Then (q, r) is the set containing only the trivial paths, such that (p, q) · (q, r) · (r, s) =
(p,>*, s).

Thankfully most of the composite cubes are actually equivalent to simple cubes as
shown in the following Lemma 4.2.20. The actual composite cubes will those of the
considered in Example 4.2.17 as well as the cube (⊥,>*,>).

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 177

Lemma 4.2.20. Let P ∈ Prcs, let p, q ∈ P(P). Then

1. (⊥,>*, q*) = (⊥, q*)

2. (p*,>*,>) = (p*,>)

3. p 6≤ q implies (p*, q*) = (p*,>*, q*)

Proof. Let P ∈ Prcs, p, q ∈ P(P) such that p 6≤ q

1. Let us prove (⊥,>*, q*) = (⊥, q*)
P * � ⊥ → ⊥* is the only reduction possible from ⊥. Thus, any path π : ⊥ →lf p* is
in fact a path π : ⊥ →lf ⊥* →lf p* and conversely.

2. Symmetrically, (p*,>*,>) = (p*,>)

3. Now let us prove (p*, q*) = (p*,>*)× (⊥*, q*).

• Let π∗ ∈ (p*, q*). Trivially π∗ = (z*i → z*i+1)i∈I . Then if >* 6∈ π, by induction
rules, this implies π = (zi → zi+1z)i∈I is in fact a path from p to q. By
Remark 4.2.26 this implies p ≤ q, which is excluded. Thus, >* ∈ π, such that
π : p* →lf >* → q* i.e.

(p*, q*) ⊆ (p*,>*)× (⊥*, q*)

• Now let us suppose σ · µ ∈ (p*,>*) × (⊥*, q*). Then if σ · µ contains a non-
trivial loop on a point x* (which by definition must be distinct from >*), this
implies µ : p* →lf x* →lf >* and σ : ⊥* →lf x* →lf q*. By the same argument
as above, this implies p ≤ x ≤ q, which contradicts our hypothesis. Thus

(p*,>*)× (⊥*, q*) ⊆ (p*, q*)

Now we can also define the cube for the parallel composition of processes. This cannot
be defined directly in the same manner as for single processes if we hope to achieve
consistent result with regard to unfolding as show in Example 4.2.22 below.

Definition 4.2.21. Given a program P||Q ∈ Pgrm, we define the cubes of P as the
product of the cubes of P and Q.

C(P||Q) = C(P)× C(Q)

The support of such cube c× d ∈ C(O||Q) is then defined as

[c× d] = {p||q | p ∈ [c], q ∈ [d]} = [c]× [d]

Example 4.2.22. Let us consider the program P = skip‖(skip; skip), and particularly
the cube c = (⊥||⊥*,>||⊥;⊥*)

On the left we can see the support of c if we kept the same definition for cubes of
parallel processes, and on the right, the support of c with the new definition.

178 4. HANDLING PROGRAMS WITH LOOPS

⊥‖⊥

>‖>

⊥‖⊥

>‖>

The loops combined with parallel composition, makes it very hard to restrain the
paths that can be taken, leading to the huge supports on the right. This would pose a
problem, as all cube of the form (⊥||p*,>||q*) would automatically cover all the loop.
Remark 4.2.23. By definition of Φ and Definition 4.2.21, Φ([x]× [y]) = Φ([x])× Φ([y])

Remark 4.2.24. If P has no loop, this definition coincides with our previous definition of
cubes.

Proposition 4.2.25. Let P ∈ Prcs∗. Let x, y ∈ P(P), then x ≤P y ⇐⇒ (x, y) 6= ∅
and (x,>*, y) 6= ∅.

Proof. First let us remark that there exists a finite path π � x →∗ y if and only if there
exists a path π′ : x →lf y without non-trivial loops. Indeed, any finite number of loops
can be added or removed to the path without changing the fact that it is a path from x
to y. To do this, replace any loop σ � p→∗ p ⊆ π by the trivial loop εp.
Then (x, y) 6= ∅ if an only if there exists π : x →lf y. By Proposition 4.1.33 and the
remark above this is equivalent to x ≤ y.

Remark 4.2.26. For P ∈ Prcs, C(P) = {(p, q) | p, q ∈ P(P), p ≤ q} and correspond to
the cubes defined in Chapter 3. Furthermore, a path π = (zi → zi+1)i≤n : p →lf q is a
strictly increasing sequence p = z0 < z1 < · · · < zn+1 = q of positions of P .
Example 4.2.27. Let x ∈ P(P *) then

• (x, x) = {εx} and [x, x] = {x}

• (⊥,>) is the sets of all paths from ⊥ to > and [⊥,>] = P

4.2.1.4 Order on cubes

As we have changed our definition of cubes, we will also be required to change how we
consider the inclusion of such cubes. But in doing so we must ensure that it is coherent
with Definition 3.2.4, at the very least, if i is a cube included in j, the support of i should
be in j.

Definition 4.2.28. Given a preorder P and two cubes i, j ∈ C(P), we define the relation
⊆ on cubes as follows:

i ⊆ j ⇐⇒ ∀π ∈ i there exists σ, µ such that σ ◦ π ◦ µ ∈ j

Proposition 4.2.29. (C(P),⊆) is a partial order.

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 179

Proof. Let (p, q) ⊆ (s, t) ⊆ (x, y) be three cubes of a program P .

• Reflexivity: Let π ∈ (p, q), then taking εp (resp. εq) the trivial loop on p (resp. q),
we have, εq · π · εp : p→lf q i.e. (p, q) ⊆ (p, q).

• Transitivity. Let us suppose (p, q) ⊆ (s, t) ⊆ (x, y).
Let π : p →lf q. Then (p, q) ⊆ (s, t) implies the existence of µ, ν such that µ · π ·
ν : s →lf t. Then (s, t) ⊆ (x, y) implies the existence of µ′, ν′ such that µ′ · (µ · π ·
ν) · ν′ : x→lf y. This implies (µ′ · µ) · π · (ν · ν′) : x→lf y, i.e. (p, q) ⊆ (x, y)

• Anti-symmetry. Let us suppose (p, q) ⊆ (x, y) ⊆ (p, q). Let π : p →lf q. Then
there exists µ, ν, µ′, ν′ such that (µ′ · µ) · π · (ν · ν′) : p →lf q. Thus, µ′ · µ : q →lf q
(resp. ν ·ν′ : p→lf p) implies µ′ ·µ = εq (resp. ν ·ν′ = εp), such that µ = µ′ = εy = εq
(resp. ν = ν′ = εx = εp) i.e. (p, q) = (x, y)

Corollary 4.2.30. Let i, j ∈ C(P), i ⊆ j implies [i] ⊆ [j].

Definition 4.2.31. Let P a preorder, we say that a cube i is maximal if it is maximal
for the inclusion i.e. ∀j ∈ C(P), i 6⊂ j. Given X ⊆ P, we write Cmax(R) for the set of
maximal cubes of X.

4.2.2 Characterizing cubes of the unfolding
Now that we have a satisfying definition of cubes, we can proceed to define the projection
Ψ sending the cubes of the unfolding, onto cubes of the base program. We will first
address the case of the unfolding of a single loop P *.

As we have seen before in Example 4.2.17, we could not simply define cubes as elements
of P(P *)×P(P *), introducing the need for composite cubes. We will need to decide when
a cube (x, y) of U(P) should be sent to a simple cube (Φ(x),Φ(y)) and when it should be
sent to a composite cube (Φ(x),>*,Φ(y)) instead.

Of course this projection should satisfy some elementary properties, namely, that
the support of a cube Ψ(c) should be equal to the image of its support Φ[c] (Proposi-
tion 4.2.44).

As shown below on the unfolding of P = (skip+skip)*, most of the cubes of U(P) =
(skip+ skip);(skip+ skip) do project onto cubes of P via Φ× Φ.

The following singletons all project naturally onto cubes of P *

S1 S3

S2R1 R2

⊥ ⊥;⊥

>;⊥

>;> >

Φ× Φ(Si)

Φ× Φ(R1) Φ× Φ(R2)

⊥ >>*

180 4. HANDLING PROGRAMS WITH LOOPS

Then, cubes starting at one of the extremities and ending before >;⊥ are sent to cubes
starting at one extremity and ending in the loop. It is important that the cubes end
before >;⊥ as otherwise, the support would no longer coincide

R1 R2

⊥ ⊥;⊥

>; (>+∅)

>

Φ× Φ(R1) Φ× Φ(R2)

⊥ >>*

(>+∅)*

The last type of cubes that are sent via Φ×Φ to simple cubes are the cubes in a single
iteration of a loop. These cubes are image of cubes whose endpoints are strictly between
⊥;⊥ and >;⊥ or strictly between >;⊥ and >;>.

R1 R2

⊥ >

Φ× Φ(Ri)

⊥ >

(⊥+∅)*(>+∅)*

As suggested by Example 4.2.17 the cubes of the form (p;⊥,>;q), where p ≤ q, need
to be projected onto composite cube, i.e. to a cube of the form Φ(p;⊥) × >* × Φ(>;q).
When p 6≤ q, the composite cube is actually a simple cube (in grey in the figures below)
by Lemma 4.2.20. Nonetheless, we will regroup both of these types of cubes going forward
as they share many properties.

⊥

(>+∅);⊥ >; (⊥+∅)

>
⊥ >

(⊥+∅)*(>+∅)*

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 181

Some cubes do not have a satisfying way of projecting them, even when considering
composite cubes. In the figure below we show such a cube, drawn with the dashed line.
Even if we project it on a composite cube, it doesn’t cover the projection of its support.

⊥ >
⊥ >

We could change once more our definition to take these into account, but this is
unnecessary in our context. These cubes all verify the property that they cover more
than a copy of the content of the loop in the unfolding. As we are studying conservative
programs, and more precisely maximal covers of the forbidden/authorized regions, we can
safely restrict our projection to ignore those cubes without losing anything.

Indeed, by conservativity, the consumption of the loop is null (Proposition 4.1.30).
Thus, if the forbidden region covers more than a copy of a loop in the unfolding, this
means that it covers the whole program as Φ and Φ−1 preserves the consumption of
positions.

Thus, we make the choice to not project these cubes, which we can do without loss of
generality for the study of programs, and will prove formally in Proposition 4.3.25 that
they disappear as we consider maximal covers later on.

We now characterize all cubes of P * and its unfolding U(P *). In a first time it allows
us to differentiate between cubes that should be sent by Ψ to simple cubes and those that
should be sent to composite cubes. It will also prove useful for the various proofs later
on, as each of the different subsets have their own unique quirks.

Proposition 4.2.32. Let P ∈ Prcs∗, then C(P *) =
∐

i∈J−1,5K
Li where the Li are defined

below

L−1 = {(⊥,>*,>)} L2 = {(⊥, p*) | p ∈ P(P) \ {>}}
L0 = {(⊥,⊥), (>,>), (⊥*,>*)} L3 = {(p*,>) | p ∈ P(P) \ {⊥}}
L1 = {(⊥,>)} L4 = {(p*,>*, q*) | p, q ∈ P(P) \ {>,⊥}}

L5 = {(p*, q*) | p ≤ q, (p, q) 6∈ {(⊥,⊥), (⊥,>), (>,>)}}

Proof. Given a program P ∈ Prcs the positions of P * can be separated into the following
disjoint sets:

P(P *) = {⊥}︸︷︷︸
=S1

∐
{>*}︸ ︷︷ ︸
=S2

∐
{p* | p ∈ P(P) \ {⊥,>}}︸ ︷︷ ︸

=S3

∐
{>}︸︷︷︸
=S4

182 4. HANDLING PROGRAMS WITH LOOPS

We define

Sji = {(x, y) | x ∈ Si, y ∈ Sj , x ≤ y} and Lji = {(x,>
*, y) | x ∈ Si, y ∈ Sj , x ≤ y}

By Proposition 4.2.25 and Definition 4.2.16, we know that

C(P *) = {(p, q) ∈ P(P *) | p ≤ q}
⋃
{(p,>*, q) ∈ P(P *) | p ≤ >* ≤ q}

Then by Definition 3.1.23 we have ⊥ < p < > and ⊥ < q < > for all p, q 6∈ {⊥,>} such
that

C(P *) = S ∪ L

where

S =

(∐
i∈J1,4K

Si1

)∐(∐
i∈J2,4K

Si2

)∐(∐
i∈J2,4K

Si3

)∐
S4
4

L =

(∐
i∈J2,4K

Li1

)∐(∐
i∈J2,4K

Li2

)∐(∐
i∈J2,4K

Li3

)

This makes a lot of cubes to check, we will first proceed by reducing the number of sets
to check by remarking that by Lemma 4.2.20, all Lji = Sji except for L3

3 and L4
1, i.e.

C(P *) = S
⋃

L3
3

⋃
L4
1

Now we separate S3
3 = {(p*, q*) | p, q 6∈ {⊥,>}} and L3

3 = {(p*,>*, q*) | p, q 6∈ {⊥,>}}
in the following sets

S3
3
≤
= {(p*, q*) | ⊥ < p ≤ q < >} S3

3
6≤
= {(p*, q*) | p, q 6∈ {⊥,>}, p 6≤ q}

L3
3
≤
= {(p*,>*, q*) | ⊥ < p ≤ q < >} L3

3
6≤
= {(p*,>*, q*) | p, q 6∈ {⊥,>}, p 6≤ q}

Such that

S3
3 = S3

3
≤∐

S3
3
6≤

L3
3 = L3

3
≤∐

L3
3
6≤

By Lemma 4.2.20 L3
3
6≤

= S3
3
6≤. And by Lemma 4.2.14, every element of L3

3
≤ contains a

loop, which implies that S ∩ L3
3
≤
= ∅. Furthermore, by comparing the supports of their

only cube, L4
1 ∩ S4

1 = ∅. Thus, we can reduce C(P *) to the disjoint union of the three
following sets:

C(P *) = S
∐

L3
3
≤∐

L4
1 (4.2)

By reorganizing the cubes, we get back all the Li, i ∈ [−1 : 8] \ {6}.

• L4
1 = L−1

• S1
1 ∪ S4

4 ∪ S2
2 = {(⊥,⊥), (>,>), (⊥*,⊥*)} = L0

• S4
1 = {(⊥,>)} = L1

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 183

• S2
1 ∪ S3

1 = L2. Indeed,

S2
1 ∪ S3

1 = {(⊥,⊥*)} ∪ {(⊥, p*) | p ∈ P(P) \ {⊥,>}}
= {(⊥, p*) | p ∈ P(P) \ {>}}

S2
1 ∪ S3

1 = L2

• Similarly S4
2 q S4

3 = {(p*,>) | p ∈ P(P) \ {⊥}} = L3

• L3
3
≤ ∪ S3

3
6≤
= L4

• As ⊥ ≤ p ≤ > for all p ∈ P(P) we have

S3
2 ∪ S2

3 ∪ S3
3
≤
= {(p*,>*) | p ∈ P(P) \ {⊥,>}}
∪ {(p*, q*) | ⊥ < p ≤ q < >} ∪ {(⊥*, q*) | q ∈ P(P) \ {⊥,>}}
= {(p*, q*) | (p, q) 6∈ {⊥,>}2, p ≤ q}

S3
2 ∪ S2

3 ∪ S3
3
≤
= L5

By combining everything in Eq. (4.2), we get C(P *) =
∐

i∈J−1,6K
Li

Proposition 4.2.33. Given a program P , then the non-empty cubes of P;P , can be split
in the following way: C(P;P) =

∐
i∈J−1,6K

Ci where the Ci are defined below

C−1 = {(⊥,>;p) | p ∈ P(P)} ∪ {(p;⊥,>) | p ∈ P(P)}
∪ {(⊥;⊥,>;⊥), (>;⊥,>;>), (⊥;⊥,>;>)}

C0 = {(⊥,⊥), (>,>), (>;⊥,>;⊥), (⊥;⊥,⊥;⊥), (>;>,>;>)}

C1 = {(⊥,>)} C4 = {(p;⊥,>;q) | p, q ∈ P(P) \ {⊥,>}}
C2 = {(⊥, p;⊥) | p ∈ P(P) \ {>}} C5 = {(p;⊥, q;⊥) | p× q 6∈ {⊥,>}2, p ≤ q}
C3 = {(>;p,>) | p ∈ P(P) \ {⊥}} C6 = {(>;p,>;q) | p× q 6∈ {⊥,>}2, p ≤ q}

Proof. Given a program P , we define the sets

S1 = {⊥} S2 = {⊥;⊥} S3 = {p;⊥ | p ∈ P(P) \ {⊥,>}} S4 = {>;⊥}
S7 = {>} S6 = {>;>} S5 = {>;p | p ∈ P(P) \ {⊥,>}}

Such that

P(P;P) =
∐
i∈[1:7]

Si

We define Sji = {(x, y) | x ∈ Si, y ∈ Sj , x ≤ y}. By Proposition 4.2.25,

C(P;P) = {(p, q) ∈ P(P;P) | p ≤ q}

Then by definition of the order on position (Definition 3.1.23)

C(P;P) =
∐
i≤j

Sji

184 4. HANDLING PROGRAMS WITH LOOPS

• C−1 =

(
S4
1 ∪ S5

1 ∪ S6
1

)
∪
(
S7
2 ∪ S7

3 ∪ S7
4

)
∪
(
S4
2 ∪ S6

2 ∪ S6
4

)
. Indeed,

– S4
2 ∪ S6

2 ∪ S6
4 = {(⊥;⊥,>;⊥), (⊥;⊥,>;>), (>;⊥,>;>)}

– S4
1 ∪ S5

1 ∪ S6
1 = {(⊥,>;q) | q ∈ P(P)}

– S7
2 ∪ S7

3 ∪ S7
4 = {(p;⊥,>) | p ∈ P(P)}

• C0 = S1
1 ∪ S7

7 ∪ S2
2 ∪ S4

4 ∪ S6
6

• C1 = S7
1

• C2 = S2
1 ∪ S3

1 Indeed

S2
1 ∪ S3

1 = {(⊥,⊥;⊥)} ∪ {(⊥, p;⊥) | p ∈ P(P) \ {⊥,>}}
= {(⊥, p;⊥) | p ∈ P(P) \ {>}}

S2
1 ∪ S3

1 = C2

• Similarly, C3 = S7
5 ∪ S7

6 .

• C4 = S5
3

• C5 = S3
2

∐
S3
3

∐
S4
3 . Indeed,

S3
2 ∪ S3

3 ∪ S4
3 = {(⊥;⊥, q;⊥) | q 6∈ {⊥,>}} ∪ {(p;⊥, q;⊥) | ⊥ < p ≤ q < >}⋃

{(p;⊥,>;⊥) | p 6∈ {⊥,>}}

= {(p;⊥, q;⊥) | (p, q) 6∈ {(⊥,⊥), (⊥,>), (>,>)}, p ≤ q}
S3
2 ∪ S3

3 ∪ S4
3 = C5

• Similarly C6 = S5
4 ∪ S5

5 ∪ S6
5

By combining everything we get C(P;P) =
∐

i∈J−1,7K
Ci

Now we properly define the sets ΠPLi (resp. ΠU(P)Ci) which are the sets of cubes of a
program P (resp. U(P)) that are built inductively using cubes of Li (resp. Ci). These will
come up often in proofs and lemmas using the inductive structure of our programs.

Definition 4.2.34. Let P ∈ Pgrm. We define the subsets ΠPLi of C(P) and ΠU(P)Ci
of CU(P).

ΠU(P)Ci =


∅ if P ∈ Prcs

Ci if P = Q*

(C(S)×ΠU(T)Ci)
⋃
(ΠU(S)Ci × C(T)) if P = S||T

ΠPLi =


∅ if P ∈ Prcs

Li if P = Q*

(C(S)×ΠTLi)
⋃
(ΠSLi × C(T)) if P = S||T

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 185

As previously stated, the cubes of C−1∩C(U(P)) do not project properly onto cubes of
P , and cubes of L−1 cannot be the image of a cube of U(P). Thus, they will be excluded
for now, and later on, we will justify this choice.
Definition 4.2.35. Let P ∈ Prcs, we define

ΨP * : C(P;P) \ C−1 → C(P *) \ L−1

(p, q) 7→

{
(Φ(p),>*,Φ(q)) if (p, q) ∈ C4
(Φ(p),Φ(q)) otherwise

ΨP : C(P) \ΠU(P)C−1 → C(P) \ΠPL−1

p 7→ p

Suppose P = S||T ∈ Pgrm

ΨS||T : C(U(S||T)) \ΠU(P)C−1 → C(S||T) \ΠPL−1

s× t 7→ ΨS(s)×ΨT (t)

By removing the sets C−1 (already proven to not have an effect) and L−1, Ψ becomes
surjective, and we can further restrain the surjection to be compatible with our partition
of C(P *) and C(U(P *)).
Proposition 4.2.36. Let P ∈ Prcs∗, ΨP * is surjective. More precisely,

• ΨP * : Ci → Li is a bijection for i ∈ J1, 5K \ 6.

• ΨP * : C6 → L5 is bijective.

• ΨP * : C0 → L0 is surjective.
Proof. Let P ∈ Prcs∗. Let p, q ∈ P(P)

• ΨP * : C0 → L0 is trivially surjective.

• ΨP * : C1 → L1 is trivially bijective.

• ΨP * : C4 → L4. First let us remark that

p* = q* implies p = q or p, q ∈ {⊥,>} (4.3)

– Surjectivity: Let c ∈ L4, such that c = (p*,>*, q*), p, q 6∈ {⊥,>}. Then
(p;⊥,>;q) ∈ C4 and

Ψ(p;⊥,>;q) = (Φ(p;⊥),>*,Φ(>;q)) = (p*,>*, q*) = c

With (p;⊥,>;q) 6= ∅ by the inference rules. Thus, ΨP * : C4 → L4 surjective
– Injectivity: Let c, d ∈ C4 such that c = (p;⊥,>;q), d = (x;⊥,>;y) with

p, q, x, y 6∈ {⊥,>}. Now let us suppose Ψ(c) = Ψ(d).

Ψ(c) = Ψ(d) =⇒ (p*,>*, q*) = (x*,>*, y*)

=⇒ p* = x*, q* = y*

=⇒ p = x, q = y (4.3)
Ψ(c) = Ψ(d) =⇒ c = d

Thus ΨP * : C4 → L4 injective.

186 4. HANDLING PROGRAMS WITH LOOPS

• ΨP * : C2 → L2 and ΨP * : C3 → L3 follow the same proof.

• ΨP * : C5 → L5.

– Surjectivity: Let c ∈ L5, such that c = (p*, q*), such that p ≤ q with p, q 6=
⊥,>. Then (p;⊥, q;⊥) ∈ C4 and

Ψ(p;⊥, q;⊥) = (Φ(p;⊥),Φ(q;⊥)) = (p*, q*) = c

With (p;⊥, q;⊥) 6= ∅ by the inference rules. Thus, ΨP * : C5 → L5 surjective
– Injectivity: Let c, d ∈ C5 such that c = (p;⊥,>;q), d = (x;⊥, q;⊥) with

(p, q), (x, y) 6∈ {(⊥,>), (⊥,⊥), (>,>)}. Now let us suppose Ψ(c) = Ψ(d).

Ψ(c) = Ψ(d) =⇒ (p*, q*) = (x*, y*)

=⇒ p* = x*, q* = y*

=⇒ p = x, q = y (4.3)
Ψ(c) = Ψ(d) =⇒ c = d

Thus ΨP * : C5 → L5 injective.

• ΨP * : C6 → L5 follows the same proof as previous case, using the fact that Φ(p;⊥) =
Φ(>;p) for all p ∈ P(P).

Definition 4.2.37. Given P ∈ Pgrm, we define the equivalence relation ≈P on cubes
of U(P), such that for all cubes c, d ∈ C(P),

c ≈P d ⇐⇒ ΨP (c) = ΨP (d)

In that case, we say that c, d are unfold-equivalent.

Example 4.2.38. Let us consider the program P = (skip+skip)*. Below are given the
semantics of its unfolding U(P) and of P respectively on the left and the right. The two
cubes R1 and R2 are equivalent, as they project on the same cube of P

R1 R2

⊥ >

Ψ(R1) Ψ(R2)

⊥ >

(⊥+∅)*(>+∅)*

The example above is actually the only case of equivalent cubes for a simple loop.
This implies that two cubes are equivalent if and only if they are both in the lifting of a
cube of the base program as we would expect (counting the singleton cube (⊥*,⊥*))

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 187

Remark 4.2.39. As a follow-up of the previous remark, proved in Proposition 4.2.40 below,
we have that Ψ is a discrete fibration, i.e. the antecedents of a cube by Ψ are either equal
or their support is disjoint.

Proposition 4.2.40. Given a program P ∈ Pgrm, and two cubes c, c′ ∈ C(U(P)), we
have

c ≈ c′, c 6= c′ =⇒ [c] ∩ [c′] = ∅

Proof. By induction on P .

• P ∈ Prcs. Nothing to do as Ψ is the identity on programs without loops.

• P = S||T . Then d ∈ C(P) implies d = d1 × d2. Let

c = c1 × c2 ∈ Ψ−1(d1)×Ψ−1(d2)

c′ = c′1 × c′2 ∈ Ψ−1(d1)×Ψ−1(d2)

such that c 6= c′. By definition of the support of parallel, this implies that

c1 6= c′1 or c2 6= c′2

Let us suppose c1 6= c′1. By induction hypothesis, [c1] ∩ [c′1] = ∅ i.e. [c] ∩ [c′] = ∅.
Similarly, if we suppose c2 6= c′2, we have [c] ∩ [c′] = ∅.

• P = Q*. Then for all c ∈ C(P), the only cubes that have multiple antecedents by
Φ are the cubes of L5 or (⊥*,⊥*).

– c = (⊥*,⊥*) implies Ψ−1(c) = {(⊥;⊥,⊥;⊥), (>;⊥,>;⊥), (>;>,>;>)} whose
supports are all pairwise disjoint.

– c ∈ L5 and c = (p*, q*) 6= (⊥*,>*). Then

Ψ−1(c) = {(p;⊥, q;⊥), (>;p,>;q)}

As (p*, p*) 6= (⊥*,>*), this implies that p;⊥ < >;⊥ < >;q i.e. that the
supports of the antecedents of c are disjoints.

An important property that justifies our choice of projection function Ψ for now is the
fact that given a cube c the support of its projection Ψ(c) correspond to the projection
by Φ of all positions in the support c. This suggests that we can study the forbidden and
authorized region in terms of cubes instead of looking at the set of all positions. We still
need to prove that the same holds for Ψ−1 and Φ−1, but this is much more complicated.

Theorem 4.2.41. Let P ∈ Pgrm, let c ∈ C(U(P)) \ΠU(P)C−1.

Φ[c] = [Ψ(c)]

Proof. By induction on P

• P ∈ Prcs. All functions are identities.

188 4. HANDLING PROGRAMS WITH LOOPS

• P = P1||P2. c ∈ C(U(P)) = C(U(P1)‖U(P2)) implies c = c1 × c2. Then by Defini-
tion 4.2.21,

Φ([c]) = Φ([c1 × c2])

= Φ([c1])× Φ([c2]) Remark 4.2.23
= [Ψ(c1)]× [Ψ(c2)] Induction hypothesis

Φ([c]) = [Ψ(c)]

• P = S*. Then U(P) = S;S, and using Proposition 4.2.33 we can separate the
following cases:

– c ∈ C0. Trivial.
– c ∈ C1. Trivial.
– c ∈ C2. If x = ⊥;⊥, Φ([c]) = {⊥,⊥;⊥} = [Ψ(c)] and we’re done. Now let us

suppose x 6= ⊥

Φ([⊥, x;⊥]) = Φ([⊥,⊥;⊥, x;⊥])

= Φ({⊥,⊥;⊥})
⋃

Φ([⊥;⊥, x;⊥])

= {⊥,⊥*}
⋃

[Ψ(⊥;⊥, x;⊥)] By the case C5

= [⊥,⊥*]
⋃

[⊥*, x*]

Φ([c]) = [Ψ(c)] Lemma 4.2.20

– c ∈ C3. Dual to the case C2.
– c ∈ C4. c = (x;⊥,>;y), ⊥ < x, y < >.

Φ([x;⊥,>;y]) = Φ([x;⊥,>;⊥] ∪ [>;⊥,>;y])

= Φ([x;⊥,>;⊥])
⋃

Φ([>;⊥,>;y])

= [Ψ(x;⊥,>;⊥)]
⋃

[Ψ(>;⊥,>;y)] By the cases C5, C6

= [x*,>*]
⋃

[⊥*, y*]

Φ([c]) = [Ψ(c)]

– c ∈ C5, c = (x;⊥, y;⊥) Then

v;⊥ ∈ [c] ⇐⇒ ∃π : x;⊥ →lf y;⊥, v;⊥ ∈ π

⇐⇒ ∃σ : x→lf y, v ∈ σ Definition 4.1.22
⇐⇒ ∃σ∗ : x* →lf y*, v* ∈ σ∗ Definition 4.2.13
⇐⇒ v* ∈ [x*, y*]

v;⊥ ∈ [c] ⇐⇒ Φ(v;⊥) ∈ [Ψ(c)]

– c ∈ C6. Similar to the previous case.

4.2. SYNTACTIC CUBICAL COVERS FOR PROGRAMS WITH LOOPS 189

Now we can proceed to define the covers of a given program P . Not much change in
this regard: they can still be defined as sets of cubes, and our modifications of the cubes
does not affect their definitions.

The fact that we now have a finite preorder does have some implications, notably,
there always exists a normal form.

4.2.3 Covers and normal forms
The notion of cover doesn’t change from our original definitions. It is still any set of
cubes; the order is still as defined in 3.2.13.

Definition 4.2.42. Let P a preorder. We define a cover on P as a set of cubes of P, and
we write R(P) for the set of all covers of P. The support [R] of a cover R is the union of
the support of its cubes i.e. [R] =

⋃
r∈R

[r].

We can then naturally extend the definition of the projection Ψ to covers of unfolded
program, as well as the equality between support of the projection and projection of the
support (Theorem 4.2.41).

Definition 4.2.43. Given a program P ∈ Pgrm, we define the projection on covers of
U(P) as follows:

ΨP : R(U(P))→R(P)

{ri | i ∈ I} 7→ {Ψ(ri) | i ∈ I}

This function is only properly defined for covers R such that R ∩ΠU(P)C−1 = ∅.

Proposition 4.2.44. Given a program P ∈ Pgrm and a cover R ⊆ C(U(P))\ΠU(P)C−1,
we have

Φ[R] = [Ψ(R)]

Proof. Given a program P ∈ Pgrm and a cover R ⊆ C(U(P)) \ ΠU(P)C−1, we have, for
all c ∈ R, c 6∈ ΠU(P)C−1. Hence, Φ([c]) = [Ψ(c)] by Theorem 4.2.41. Thus

Φ[R] =
⋃
c∈R

Φ([c]) =
⋃
c∈R

[Ψ(c)] = [Ψ(R)]

We now redefine the order on covers as in Definition 3.2.4. The definition stays the
same, as the definition is only dependent on the order defined on the cubes.

As a reminder, two covers are equivalent when they describe the same support. These
covers correspond to different ways of describing the same set of points. To correctly
manipulate covers it is important to determine when they are equivalent and to maximize
efficiency, there should be a most compact form of each region. We recall the 3.2.8 and
3.2.13 of the order on regions.

Definition 4.2.45. Let R and S be two covers of X. The relation � defined as follows
is a pre-order on R(X)

R � S ⇐⇒ ∀Ri ∈ R, ∃Sj ∈ S,Ri ⊆ Sj

with ⊆ defined in Definition 4.2.28

190 4. HANDLING PROGRAMS WITH LOOPS

Definition 4.2.46. We can define a partial order ≤ on the covers of a partial order X
from the preorder � as follows. Given R,S two covers:

R ≤ S ⇐⇒ R � S � R and S ⊆ R

Proposition 4.2.47. The relation ≤ on covers is a partial order.

Proof. Cf proof of 3.2.14.

As we are dealing with finite preorders, the normal form Section 3.2.1.3 of a region
is always defined. Thus, we no longer need to consider finitely complemented regions
(Definition 3.2.27) or normalizable regions as in Chapter 3.

Proposition 4.2.48. Let R be a region of a finite preoder P. Then R has a maximal
cover N(R) called its normal form and

N(R) = Cmax(R) = {c ∈ C(R) | ∀d ∈ C(R), c 6⊂ d}

Proof. Given a finite preorder P, the set P × P is also finite. This implies that its set
of cubes C(P) is also finite. Thus, so is the set C(R). Therefore, the set Cmax(R) is
correctly defined as the maximal antichain of the finite partially ordered set C(R). Then,
by definition of Cmax as the maximal antichain, for any cover C ⊆ R(R) = P(C(R)),
C ≤ Cmax(R).

4.3 Unfolding conservative covers of loops
As previously stated, we want to show that there is a close link between cubes of the base
program and cube of its 2-unfolding in order to perform the deadlock detection algorithm
Algorithm 3.3.23 on the unfolding of the program. More precisely, we want to perform
the three following steps.

1. We start from cubes of the forbidden region of the base program that we lift to the
cubes of forbidden region of its unfolding.

2. Then, we apply Algorithm 3.3.23 on the unfolding, which gives us the deadlocks, as
well as unsafe and doomed regions in terms of cubes.

3. Finally, we project these covers back to cubes of the base program.

And, at the end of the third step , we hope to recover the cubes of the unsafe/doomed
regions.

In order to guarantee this, we need an equivalence between “being in the past” in the
unfolding and in the base program for cubes. To prove the correctness of the method
above we need the projection and the lifting by Ψ to at least preserve the support of
cubes.

The fact that the projection commutes with the support is already proven by Propo-
sition 4.2.44, but proving that the lifting commutes is more complicated.

Indeed, just taking the naive lifting Ψ−1 as the inverse image by Ψ does not work on
all cubes. Indeed, if we look at the cubes in Example 4.3.1, we can see that lifting cubes
does not preserve their supports.

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 191

Example 4.3.1. Let us consider P = (skip+skip)*, whose semantics is given below. The
naive lifting of the cube (⊥,>*) does not cover the lifting of its support.

c

⊥ >

(⊥+∅)*(>+∅)*

(∅+⊥)*(∅+>)*

Ψ−1(c)

⊥ ⊥;⊥

>;⊥

>;> >

We could instead define the lifting of a cube c as the set Cmax(Φ1[c]) of all maximal
cubes on the lifting of its support. While this works in theory, using it would not be
usable in practice, or at least would ruin our efforts of manipulating the regions through
their covers.

Instead, we will prove that by considering lifting of covers instead of lifting of cubes we
can, under some restrictions that will always be validated by our conservative programs,
recover the lifting property.

In this section, we then start by defining a specific subset of regions, the conservative
regions, which include the forbidden and allowed region of conservative programs. Then,
we prove in Theorem 4.3.15 that when restraining to covers of these conservative regions,
the naive lifting Ψ−1 preserves the support of the associated region. Finally, we extend
this lifting property in Theorem 4.3.27 to prove that the maximal cover of the lifting is
actually equal to the lifting of the maximal cover of a conservative region.

4.3.1 Conservative regions and covers
When considering regions of conservative programs, the forbidden (resp. authorized) re-
gion can be defined as the set of positions whose consumption is negative (resp. positive).
As such, the endpoints of transition that have no effect on the consumption must both
be in the same region (forbidden/authorized). We will call these transitions pure, and
regions that respect these transitions conservative. Most of our results depend on the fact
that the regions considered are conservative. As the results presented are aimed towards
verification of programs, this is not a problem.

Definition 4.3.2. We say a transition is pure if it can be obtained inductively by the
following inference rules

P;Q � ⊥ → ⊥;⊥ P * � ⊥ → ⊥* P+Q � ⊥ → ∅+⊥ P+Q � ⊥ → ⊥+∅

P;Q � >;> → > P * � ⊥* → > P+Q � ∅+> → > P+Q � >+∅→ >
α 6= Pa, Va
α � ⊥ → >

192 4. HANDLING PROGRAMS WITH LOOPS

P � p→ p′

P+Q � p+∅→ p′+∅
Q � q → q′

P+Q � ∅+q → ∅+q′
P � p→ p′

P;Q � p;⊥ → p′;⊥

P � p→ p′ Q � q

P||Q � p||q → p′;q
P � p Q � q → q′

P||Q � p||q → p||q′
Q � q → q′

P;Q � >;q → >;q′

P � ⊥ → p′

P * � ⊥* → p′*
P � p→ >

P * � p* → >*
P � p→ p′ p, p′ 6∈ {⊥,>}

P * � p* → p′*

Definition 4.3.3. Given a program P and X ⊆ P(P), we say that X is conservative
when for all x, y, z ∈ P(P),

• x→ y is a pure transition implies x ∈ X ⇐⇒ y ∈ X

A cover R is said to be conservative when its underlying support [R] is.

Remark 4.3.4. The forbidden and authorized regions of a conservative programs (Def-
inition 1.2.23) are conservative. Indeed, as pure transition do not have any effect on
consumption, there is no pure transition between the forbidden region and the authorized
region, which are defined by the fact that the consumption differs.

Conservative regions have a lot of useful properties. Notably they form a boolean
algebra (Proposition 4.3.6). Furthermore, conservative regions, when split along each
process Pi of a program P1‖ . . . ‖Pn, preserve their conservativity. This will be very
important later on, when manipulating the cubes of parallel processes.

Proposition 4.3.5. Given a conservative region R on a program P , the region Φ−1([R])
on U(P) is also conservative.

Proof. First let us prove inductively on the pure transitions of Definition 4.3.2 that for
any x, y ∈ P(U(P)), x → y is pure implies Φ(x) → Φ(y) is pure. First, let us check all
the base cases:

• For the pure transition U(α) � ⊥ → >, we have Φ(⊥) = ⊥, Φ(>) = > such that

α � Φ(⊥)→ Φ(>) = α � ⊥ → >

which is a pure transition.

• For the pure transition U(P+Q) � ⊥ → ⊥+∅, we have

P+Q � Φ(⊥)→ Φ(⊥+∅) = P+Q � ⊥ → Φ(⊥)+∅ = P+Q � ⊥ → ⊥+∅

which is a pure transition.

• The transitions U(P+Q) � ⊥ → ∅+⊥, U(P+Q) � ∅+> → > and U(P+Q) � >+∅→
> are treated similarly

• The transitions U(P;Q) � ⊥ → ⊥;⊥, U(P;Q) � >;> → > are also treated
similarly.

• For the pure transition U(P *) � ⊥ → ⊥;⊥, we have Φ(⊥) = ⊥, Φ(⊥;⊥) = ⊥*, such
that

P * � Φ(⊥)→ Φ(⊥;⊥) = P * � ⊥ → ⊥*

which is a pure transition.

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 193

• The transition U(P *) � >;> → > is treated similarly.

All the inductive cases follow from the inductive structure of Φ, we only present here one
case, all remaining others being treated in a very similar manner. Let us look at the case

U(P||Q) � p||q → p||q′

By inference rules, it is pure, if and only if U(Q) � q → q′ is. Similarly, the following
transition

P||Q � Φ(p||q)→ Φ(p||q′) = P||Q � Φ(p)||Φ(q)→ Φ(p)||Φ(q′)

is pure if and only if Q � Φ(q) → Φ(q′) is. By induction hypothesis, U(Q) � q → q′

pure implies Q � Φ(q) → Φ(q′) pure. Thus, U(P||Q) � p||q → p||q′ pure implies
P||Q � Φ(p)||Φ(q) → Φ(p)||Φ(q′) pure. Now, in order to prove R conservative implies

Φ−1([R]) we proceed by contradiction. Let us suppose that R is conservative and Φ−1([R])
is not conservative. This implies that there exists x ∈ Φ−1([R]) and y 6∈ Φ−1([R]) such
that x → y is pure. As proved above, this implies that Φ(x) → Φ(y) is pure. By
definition Φ(x) ∈ [R], which is conservative by hypothesis. This implies Φ(y) ∈ [R]
and thus y ∈ Φ−1([R]), which contradicts our hypothesis. Thus, R conservative implies
Φ−1([R]).

Proposition 4.3.6. The conservative regions on a preorder P form a boolean algebra.

Proof. As a subset of P(P), we only need to prove that conservative regions are stable
by intersection, union and complement. But this arises naturally from the definition of a
conservative region. For the complement, it suffices to remark that x→ y is pure implies
x ∈ [R] ⇐⇒ y ∈ [R] which is equivalent to x ∈ [R]c ⇐⇒ y ∈ [R]c.

Proposition 4.3.7. Given a program P = P1‖ . . . ‖Pn ∈ Pgrm and R = (
∏n
i=1 c

j
i)j∈J a

maximal conservative cover on P , we have that for all i ∈ I and all j ∈ J :

πiRcj = {c ∈ C(Pi) | cj1 × · · · × c× · · · × cjn ∈ R}

are maximal conservative and cji ∈ πiRcj

Proof. Given a maximal cover R = (
∏n
i=1 c

j
i)j∈J on P1‖ . . . ‖Pn and j ∈ J , let us prove

that πiRcj = {c ∈ C(Pi) | cj1 × · · · × c× cjn ∈ R} is maximal and conservative.

• First let us prove that it is indeed maximal. Let us suppose a cube d ∈ Cmax[πiRcj],
such that there exists c ∈ πiRcj , c ⊆ d. This implies

cj1 × · · · × c× · · · × cjn ⊆ cj1 × · · · × d× · · · × cjn

Furthermore, by definition of [πiRcj], cj1 × · · · × d · · · × ×cjn ∈ C[R]. Then, by
maximality of R,

cj1 × · · · × c× · · · × cjn = cj1 × · · · × d× · · · × cjn

i.e. c = d. Thus, πiRcj is indeed maximal.

194 4. HANDLING PROGRAMS WITH LOOPS

• Now let us prove that it is conservative. To simplify the proof, we will first prove
that the set

πiRp = {q ∈ Pi | p1‖ . . . ‖q‖ . . . ‖pn ∈ [R]}
is conservative for any p = p1‖ . . . ‖pn ∈ P(P). By contradiction, let us suppose
that there exists q ∈ [πiRp] and q′ 6∈ [πiRp] such that q → q′ is pure. Then, by
Definition 4.3.2, the following transition is pure

p1‖ . . . ‖q‖ . . . ‖pn → p1‖ . . . ‖q′‖ . . . ‖pn

But, by definition of q′, p1‖ . . . ‖q′‖ . . . ‖pn 6∈ [R]. This contradicts the conservativity
of R. Thus, πiRp = {q ∈ Pi | p1‖ . . . ‖q‖ . . . ‖pn ∈ [R]} is conservative. Then as

πiRcj =
⋃
p∈cj

πiRp

and conservative regions form a boolean algebra (Proposition 4.3.6), πiRcj is con-
servative.

Corollary 4.3.8. Given a program P = P1‖ . . . ‖Pn ∈ Pgrm and R = (
∏n
i=1 c

j
i)j∈J a

conservative cover on P , we have that for all i ∈ I, πiR = (cji)j∈J is a conservative cover
on Pi.

Proof. We remark that πiR = (cji)j∈J =
⋃
cj∈R

πiRcj , which are all conservative by Propo-

sition 4.3.7. Then as conservative regions form a boolean algebra (Proposition 4.3.6), πiR
is conservative as a cover of the union of conservative regions.

We regroup here a few more properties of conservative regions of programs that will
be useful in some proofs later on.

Definition 4.3.9. Given a program P and a position p ∈ P(P), we define the predecessors
and successors of x respectively as

pred(p) = {q ∈ P(P) | q → p} succ(p) = {q ∈ P(P) | p→ q}

Remark 4.3.10. For P ∈ Prcs\Pa, Va with a region R on P *. Then R conservative implies

• succ(x) ∩ [R] 6= ∅ implies succ(x) ⊆ [R]

• pred(x) ∩ [R] 6= ∅ implies pred(x) ⊆ [R]

As by induction rules, the only transition in processes that share an endpoint with another
transition are pure.

By the remark above, and the definition of pure transition Definition 4.3.2, the core
>* is not a conservative region, and will “spread” inside the loop (if the loop is not of the
form P*a or V a*) and to the extremities of the program ⊥,>.

Then, in any maximal cover of such a region, provided the region isn’t the whole
program, it will always be possible to find a specific set of cubes which will ensure that
the cover lifts properly. If the region is the whole program, the maximal cover {(⊥,>)}
will also lift properly.

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 195

Example 4.3.11. Let us consider the program P = (Pa; Va)*, whose syntactic semantics is
given below. Using the inference rules from Definition 4.1.22, we obtain that the following
transition are all pure, as they are obtained using pure transitions.

P * � ⊥ → ⊥*
P;Q � ⊥ → ⊥;⊥
P;Q � ⊥* → ⊥;⊥*

P;Q � >;> → >
P;Q � >;>* → >;* P * � ⊥* → >

Thus a conservative region on this program containing the core >*, as shown on the left
actually contains all the positions shown on the right.

⊥ ⊥* >

(>;>)* (⊥;⊥)*

(>;⊥)*

⊥ ⊥* >

(>;>)* (⊥;⊥)*

(>;⊥)*

And in the maximal cover of such a region, we get the four following cubes:

⊥ ⊥* >

(>;>)* (⊥;⊥)*

(>;⊥)*

⊥ ⊥* >

(>;>)* (⊥;⊥)*

(>;⊥)*

Lemma 4.3.12. Given a program P ∈ Prcs \ {α} and R a conservative, maximal cover
on P * such that [R] 6= P(P). Then

⊥* ∈ R =⇒ ∃p, q ∈ P(P), p, q 6= ⊥,> such that {(⊥,>*,>), (⊥, p*), (q*,>)} ⊆ R

Furthermore, for any maximal conservative cover R

(q*,⊥*, p*) ∈ R ⇐⇒ {(⊥, p*), (q*,>)} ⊆ R

Proof. Let P ∈ Prcs \ {α}, R a conservative, maximal cover on P * such that [R]c 6= ∅,
i.e. there exists a conservative region X ⊂ P(P) such that R = Cmax(X).

• Let us first prove that
(⊥,>*,>) ∈ R

By Definition 4.3.3, >* ∈ [R]c implies >*,⊥,> ∈ [R], i.e.

(⊥,⊥*,>) ∈ C[R]

As [R] 6= P(P), (⊥,>) 6∈ C(R). This implies that (⊥,⊥*,>) is maximal in C[R] =
C(X), i.e.

(⊥,⊥*,>) ∈ Cmax(X) = R

196 4. HANDLING PROGRAMS WITH LOOPS

• Now let us prove that there exists p, q ∈ P(P), p, q 6= ⊥,> such that:

(⊥, p*), (q*,>) ∈ R

By Remark 4.3.10, ⊥* ∈ [R] implies succ(⊥∗), pred(>*) ⊆ [R]. As P 6= α, this
implies that the following sets are non-empty

X⊥ = {x ∈ P(P) | ⊥ < x < >, (⊥, x*) ∈ C(R)}
Y> = {x ∈ P(P) | ⊥ < x < >, (y*,>) ∈ C(R)}

Let us take p (resp. q) the maximal (resp. minimal) elements of X⊥, (resp. Y>).
Now let us suppose, that there exists a cube c ∈ R such that, (⊥, p*) ⊆ c. This
implies that

c = (⊥, x*),⊥ < x < > or c = (⊥,>)
As [R]c 6= ∅, this implies (⊥,>) 6∈ R. Thus, c = (⊥, x*),⊥ < x < > and x ∈ X⊥,
hence, x ≤ p i.e. c = (⊥, x*) ⊆ (⊥, p*). Such that

(⊥, p*) ∈ R

By a similar reasoning,
(q*,>) ∈ R

• Finally let us prove that

(q*,⊥*, p*) ∈ R ⇐⇒ {(⊥, p*), (q*,>)} ⊆ R

Let (⊥, p*), (q*,>) ∈ R, p*, q* 6= ⊥. Then by Lemma 4.2.20, (⊥*, p*), (q*,>*) ∈
C([R]), which is equivalent, by definition of composite cubes to

(q*,>*, p*) ∈ C([R])

Now let us prove by contradiction that (q*,>*, p*) is maximal, and thus in R. Let
us suppose c ∈ Cmax(R) = R, such that (q*,>*, p*) ⊆ c. This means that for any
pair of paths (σ1, σ2) ∈ (q*,>*) × (>*, p*) and any path π ∈ c, there exists paths
µ, ν such that

µ · σ1 · σ2 · ν = π

As q*, p* 6= >*, this implies that π contains >* and that it is not one of its endpoints.
By Lemma 4.2.14 that implies that there exists x, y ∈ P(P), ⊥ < x, y < > and

c = (y*,>*, x*) ∈ L4

Furthermore (q*,>*, p*) ⊆ (y*,>*, x*) is equivalent to

(q*,>*) ⊆ (y*,>*) and (>*, p*) ⊆ (>*, x*)

This is equivalent by Lemma 4.2.20 to

(⊥ = q*)(⊥,>*, q*) ⊆ (⊥,>*, y*) = (⊥, y*)
(p*,>) = (p*,>*,>) ⊆ (x*,>*,>) = (x*,>)

By maximality of (p*,>) and (⊥ = q*), p = x and q = y, which concludes the
proof.

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 197

4.3.2 Lifting covers of loops
As explained at the beginning of this section, the lifting by Ψ does not preserve the
support of cubes, but we will prove in this section that when considering the maximal
covers of conservative regions, we can make the naive lifting and the support commute
once more, which will give us the following theorem.

Theorem 4.3.15. Given a program P ∈ Pgrm and a maximal conservative cover R on
P , we have

Φ−1[R] = [
⋃
r∈R

Ψ−1(r)] = [Ψ−1(R)]

This will be proved later on. For now let us remark that both the hypothesis of maximality
and conservativity are crucial for Theorem 4.3.15 as shown in the examples below.

Let us consider the program P = (Pa; Va)* for a resource a of capacity 0, and its
unfolding U(P) = (Pa; Va);(Pa; Va), whose semantics are given below. Let us consider
their authorized region in grey (which is conservative by Remark 4.3.23) and a non-
maximal cover R = {R1, R2, r3}. We can see that Theorem 4.3.15 does not hold.

R1

R2

R3⊥

(⊥;⊥)*(>;>)*

⊥*

>;⊥*

>

Ψ−1(R1) Ψ−1(R2) Ψ−1(R3)

⊥ ⊥;⊥ >;⊥ >;> >

Now let us consider the program P = (skip+skip)* and its unfolding U(P) =
(skip+skip);(skip+skip) whose semantics are given respectively on the left and right
below. Let us consider the non-conservative region X, containing a single maximal cube
c, and Φ−1(X) are given in grey below. Once again, in this case, the conditions of
Theorem 4.3.15 do not hold.

c

⊥ >

(⊥+∅)*(>+∅)*

(∅+⊥)*(∅+>)*

Ψ−1(c)

⊥ ⊥;⊥

>;⊥

>;> >

198 4. HANDLING PROGRAMS WITH LOOPS

As we cannot lift cubes of ΠL−1 it is important to prove that they do not contribute
to the support of a maximal cover. This is a direct consequence of the Lemma 4.3.12.
Indeed, the presence of (⊥,>*,>) in a maximal conservative cover implies the existence
of other cubes that cover the same support ash shown in Example 4.3.13.
Example 4.3.13. Let us consider the program P = (skip; skip)* from Example 4.3.11,
whose semantics is given below. The region in grey on the left below is not conservative,
and by Lemma 4.3.12, a conservative region X such that [⊥,>*,>] ⊆ X will be of the
form on the left, spreading inside the loop.

⊥ ⊥* >

(>;>)* (⊥;⊥)*

(>;⊥)*

⊥ ⊥*

(>;⊥)*

>

R1 R2

Thus, a maximal cover of such a region will contain (⊥,>*,>), but also the cubes R1

and R2, which cover a bigger region than (⊥,>*,>).

Lemma 4.3.14. Let R a conservative cover on a program P , such that R maximal. Then

[R] = [R \ΠPL−1]

Proof. First let us note that If R ∩ΠL−1 = ∅. Then by definition [R] = [R \ΠL−1]. For
the rest of the proof, we can suppose, R ∩ΠL−1 6= ∅. Then by induction on P

• P ∈ Prcs. Then ΠL−1 = ∅. This concludes the proof.

• P = Q* Otherwise if (⊥,⊥*,>) ∈ R. Then >* ∈ [R]. By Lemma 4.3.12, this implies
that there exists p, q such that (⊥, q*), (p*,>) ∈ R. Furthermore,

{⊥,⊥*,>} ⊆ [⊥, q*] ∪ [p*,>] ⊆ [R \ L−1]

Thus

[R] ⊆ [R \ L−1] ∪ [L−1]

⊆ [R \ L−1] ∪ {⊥,⊥*,>}
⊆ [R \ L−1] ∪ [R \ L−1]

[R] ⊆ [R \ L−1]

And as the support is increasing, [R \ L−1] ⊆ [R]. Thus,

[R] = [R \ L−1]

• P = P1||P2. We define for all c = c1×c2 ∈ R the sets π1Rc = {c′ ∈ P(P1) | c′×c2 ∈
R} and π1Rc = {c′ ∈ P(P2) | c1 × c′ ∈ R}. By definition of the sets πiRc, we have

R =
⋃
c∈R

π1Rc × π2Rc

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 199

And furthermore, by definition

R \ΠPL−1 =
⋃
c∈R

π1Rc \ΠP1
L−1 × π2Rc \ΠP2

L−1

As R is maximal, the Proposition 4.3.7 implies that for all c ∈ R, we have π1Rc and
π2Rc are maximal and conservative respectively on P1 and P2. We can then apply
the induction hypothesis on πiRc for i = 1, 2 such that

[πiRc \ΠPiL−1] = [πiRc]

Thus, we get:

[R] = [
⋃
c∈R

π1Rc × π2Rc]

=
⋃
c∈R

([π1Rc]× [π2Rc])

=
⋃
c∈R

([(π1Rc) \ΠP1L−1]× [π2Rc \ΠP2L−1])

= [
⋃
c∈R

(π1Rc) \ΠP1
L−1 × π2Rc \ΠP2

L−1]

[R] = [R \ΠPL−1]

We can finally prove Theorem 4.3.15, which states that Ψ lifts conservative covers
to covers of their unfolding (in terms of regions). As forbidden regions of programs are
conservative (Remark 4.3.4), this implies that we can unfold the forbidden region via its
cover instead of lifting each position by Φ−1.

In the following, we will talk interchangeably about Cmax(Ψ−1(R)) and Cmax(Φ−1[R])
as they are the same set.

Theorem 4.3.15. Given a program P ∈ Pgrm and a maximal conservative cover R on
P , we have

Φ−1[R] = [
⋃
r∈R

Ψ−1(r)] = [Ψ−1(R)]

Proof. Let P ∈ Pgrm and R a maximal conservative cover. Let us prove the equality by
induction on P .

• P ∈ Prcs. Trivial

• P = P1||P2. We define for all c = c1×c2 ∈ R the sets π1Rc = {c′ ∈ P(P1) | c′×c2 ∈
R} and π1Rc = {c′ ∈ P(P2) | c1 × c′ ∈ R}. By definition of the sets πiRc, we have

R =
⋃
c∈R

π1Rc × π2Rc

200 4. HANDLING PROGRAMS WITH LOOPS

As R is maximal, the Proposition 4.3.7 implies that for all c ∈ R, we have π1Rc and
π2Rc are maximal and conservative respectively on P1 and P2. We can then apply
the induction hypothesis on πiRc for i = 1, 2. This gives us

Φ−1(πiRc) = Ψ−1(πiRc)

This implies

Φ−1[R] = Φ−1[
⋃
c∈R

π1Rc × π2Rc]

=
⋃
c∈R

Φ−1[π1Rc]× Φ−1[π2Rc]

=
⋃
c∈R

[Ψ−1(π1Rc)]× [Ψ−1(π2Rc)]

= [Ψ−1(
⋃
c∈R

π1Rc × π2Rc)]

Φ−1[R] = [Ψ−1(R)]

• P = Q*. First let us remark that [R] = P(P) implies by maximality of R that
R = {(⊥,>)}, and thus

Φ−1(R) = P(U(P)) = [⊥,>] = [Ψ−1(R)]

We can thus suppose [R] 6= P(P) for the rest of this case. We proceed to prove the
equality by double inclusion.

– First let us prove Φ−1([R]) ⊆ [Ψ−1(R)]. We will proceed by separating the
cases depending on the value of x ∈ [R].

∗ If x ∈ {⊥,>,⊥*}, by conservativity of R, this implies ⊥* ∈ R. Then, as
we suppose [R] 6= P(P), we can apply Lemma 4.3.12, which implies here
exists p, q ∈ P(Q), p, q 6= ⊥,> such that

(⊥, p*), (q*,>), (q*,>*, p*) ∈ R

By definition of Ψ, this implies

(⊥, p;⊥), (>;q,>), (p;⊥,>;q) ∈ Ψ−1(R)

Thus

Φ−1(x) ⊆ Φ−1({⊥,>,⊥*}) = {⊥;⊥,>;⊥,>;>} ⊆ [Ψ−1(R)]

∗ Otherwise x = y*, y 6= ⊥,>. Thus,

Φ−1(x) = {y;⊥,>;y}

· If x ∈ [p*, q*], (p*, q*) ∈ R ∩ L5. Then by Definition 4.2.13, y ∈ (p, q).
By inference rules on cubes of loop-free program, this implies

y;⊥ ∈ (p;⊥, q;⊥) and >;y ∈ (>;p,>;q)

Thus

Φ−1(x) ⊆ [{(p;⊥, q;⊥), (>;p,>;q)}] = [Ψ−1(p*, q*)] ⊆ [Ψ−1(R)]

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 201

· Otherwise, x ∈ [R] implies that there is a cube c of R that is not in
L5 ∪ L1 such that x ∈ [c]. By looking at the supports, c ∈ L4 ∪ L4 ∪
L2 ∪ L3, i.e. there exists p, q ∈ P(Q), p, q 6= ⊥,> such that

c = (⊥, p*) or c = (q*,>) or c = (q*,>*, p*)

By Lemma 4.3.12, if one of these cubes belongs to R, then we can
choose p or q such that they all belong to R. By definition of (q*,>*, p*)

x ∈ (q*,>*, p*) and
(
x ∈ (⊥, p*) or (q*,>)

)
Let us suppose x ∈ [⊥, p*]∩ [q*,>*, p*]. By Lemma 4.2.20 and Defini-
tion 4.2.13

Φ−1(x) = {y;⊥,>;y} ⊆ [{(p;⊥, q;⊥), (⊥, p;⊥)}] ⊆ [Ψ−1(R)]

Similarly if x ∈ [q*,>] ∩ [q*,>*, p*]

Thus for all x ∈ [R], Φ−1(x) ⊆ [Ψ−1(R)]. This implies

Φ−1([R]) ⊆ [Ψ−1(R)]

– Now let us prove [Ψ−1(R)] ⊆ Φ−1([R]).

[R] = [R \ΠL−1] Lemma 4.3.14

=
⋃

r∈R\ΠL−1

[r]

=
⋃

r∈R\ΠL−1,i∈Ψ−1(r)

[Ψ(i)]

=
⋃

r∈R\ΠL−1,i∈Ψ−1(r)

Φ([i]) Proposition 4.2.44

= Φ

(⋃
r∈R\ΠL−1

[Ψ−1(r)]

)
= Φ([Ψ−1(R \ΠL−1)])

[R] = Φ([Ψ−1(R)])

4.3.3 Maximal cubical cover as a quotient of the 2-unfolding
In Theorem 4.3.15, we have already proven that conservative regions, and hence the
authorized and forbidden region of a program, can be lifted to their unfolding not only
point-wise via Φ but also cover-wise via Ψ.

In this part we will extend this lifting property to the normal form of regions. Indeed,
as stated in the following Theorem 4.3.27, Ψ−1 sends the normal form of a conservative
region X to the normal form of its unfolding Φ−1(X).

202 4. HANDLING PROGRAMS WITH LOOPS

Theorem 4.3.27. Given a conservative program P ∈ Pgrm and R a conservative max-
imal cover of P , we have

Cmax(Ψ−1(R)) = Ψ−1(R)

Theorem 4.3.27 implies, for conservative programs, that the normal form of the for-
bidden region can be computed as the image by Ψ of the cover of the forbidden region of
the unfolding, which is loop free.

To prove Theorem 4.3.27, we will first prove that Ψ preserves the order on cubes (Def-
inition 4.2.28) in Proposition 4.3.19 and that Ψ reflects maximal cubes, up to equivalence,
in Proposition 4.3.24.

4.3.3.1 Ψ preserves inclusion of cubes

Before we can prove our result, we prove here two very important technical lemmas. First,
Lemma 4.3.16 which stipulates that the equivalence on paths defined in Definition 4.2.13
can be extended to cubes of P * that do not cross the core of the loop >*. This implies,
that inclusion is obtained inductively by looking at the inclusion of cubes on P .

Then, Lemma 4.3.17 which stipulates that when such cubes are included in a composite
cube, they are actually included in one of the two cubes of the composite.

Lemma 4.3.16. Let P ∈ Prcs, let p, q, x, y ∈ P(P) such that x ≤ y, and p ≤ q,

• If (x, y) 6= (⊥,>), then (p, q) ⊆ (x, y) =⇒ (p*, q*) ⊆ (x*, y*)

• If (x*, y*) and (p*, q*) 6= (>*,>*), then (p*, q*) ⊆ (x*, y*) =⇒ (p, q) ⊆ (x, y)

Proof. First, let us remark that (x*, y*), (p*, q*) 6= (>*,>*) or (x, y) 6= (⊥,>) implies
p, q 6= ⊥,> and x, y 6= ⊥,>.

• Let (p, q) ⊆ (x, y) and let π∗ ∈ (p*, q*). Thus, by Definition 4.2.13, π ∈ (p, q),
i.e. there exists ν, µ such that ν · π · µ ∈ (x, y). Once again by Definition 4.2.13,
(ν · π · µ)∗ = ν∗ · π∗ · µ∗ ∈ (x*, y*). Thus, (p*, q*) ⊆ (x*, y*)

• Let (p*, q*) ⊆ (x*, y*) and π ∈ (p, q). By Definition 4.2.13, π∗ ∈ (p*, q*). Such that,
there exists ν∗, µ∗ such that ν∗ · π∗ · µ∗ ∈ (x*, y*). By Lemma 4.2.14, we can apply
Definition 4.2.13, such that ν · π · µ ∈ (x, y). Thus, (p, q) ⊆ (x, y).

Lemma 4.3.17. Given a program P ∈ Prcs and positions p, q, x, y ∈ P(P) such that
p ≤ q, x, y 6∈ {⊥,>} we have

(p*, q*) ⊆ (x*,>*, y*) implies (p*, q*) ⊆ (x*,>*) or (p*, q*) ⊆ (⊥*, y*)

Proof. Let P ∈ Prcs. Let p, q, x, y ∈ P(P) such that p ≤ q, x, y 6∈ {⊥,>} and such that
(p*, q*) ⊆ (x*,>*)× (⊥*, y*).

• If (p*, q*) = (⊥*,⊥*), then

(p*, q*) = (⊥*,⊥*) ⊆ (x*,>*)

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 203

• Otherwise, (p*, q*) 6= (⊥*,⊥*). Let π ∈ (p*, q*) ⊆ (x*,>*) × (⊥*, y*). This implies
there exists ρ∗, σ∗ ∈ (x*,>*)× (⊥*, y*) and µ∗, ν∗ ∈ (x*, p*)× (y*, q*) such that

ν∗ · π∗ · µ∗ = σ∗ · ρ∗

By the contraposition of Lemma 4.2.14, ⊥* 6∈ π∗. Thus, ⊥* ∈ [µ∗] ∪ [ν∗]. As σ∗

and ρ∗ are cycle-free non-empty paths and >* is one of their respective extremities,
this implies that >* appears only once in σ∗ · ρ∗ = ν∗ ·π∗ ·µ∗. Thus, we have either
⊥* ∈ µ∗ or ⊥* ∈ ν∗.

– Let us suppose ⊥* ∈ µ∗. Then ⊥* 6∈ ν∗ · π∗. Then by Definition 4.2.13,
π, ν ∈ (p, q) × (q, y). Which implies for position of a program without loops,
⊥ ≤ p ≤ q ≤ y i.e. (p, q) ⊆ (⊥, y). Once again by Definition 4.2.13 (p*, q*) ⊆
(⊥*, y*)

– Similarly, if we suppose ⊥* ∈ ν∗, we can prove (p*, q*) ⊆ (x*,>*).

We are now ready to prove that Ψ preserves order on cubes (Proposition 4.3.19). This
property is first proved on single processes, then extended to parallel composition using
the Proposition 4.3.7.

Proposition 4.3.18. Given a program P ∈ Prcs, then

ΨP * : C(U(P *)) \ C−1 → C(P *) \ L−1

c 7→ ΨP *(c)

is a surjective morphism of posets, i.e. for all c, d ∈ C(U(P *)) \ C−1,

c ⊆ d =⇒ Ψ(c) ⊆ Ψ(d)

Proof. Let us suppose given a program P ∈ Prcs and c, d ∈ C(P;P) \ C−1 such that
c ⊆ d. Let us prove that Ψ(c) = Ψ(d) by differentiating on the subset of C(P;P) that c, d
belong to.

• c ∈ C0 = {(⊥,⊥), (>,>), (⊥;⊥,⊥;⊥), (>;⊥,>;⊥), (>;>,>;>)}

– c = (⊥,⊥). Then c ⊆ d implies ⊥ ∈ d. Hence, d ∈ C0
⋃
C2
⋃
C1.

∗ d ∈ C0. Then ⊥ ∈ d implies d = (⊥,⊥). Thus, Ψ(c) = Ψ(d)

∗ d ∈ C2, Then Ψ(c) = (⊥,⊥) ⊆ (⊥, p*) = Ψ(d).
∗ d ∈ C1, Then Ψ(c) ⊆ (⊥,>) = Ψ(d)

– c = (⊥;⊥,⊥;⊥). Similar to the case above.
– c = (>,>). Dual to the case c = (⊥,⊥).
– c = (>;>,>;>). Similar to the case above.
– c = (>;⊥,>;⊥). Then c ⊆ d implies (>;⊥) ∈ d, such that d ∈ C4

⋃
C4
⋃
C0.

∗ d = (x;⊥,>;y) ∈ C4
⋃
C4. Then by Lemma 4.2.20 Ψ(c) = (⊥*,⊥*) ⊆

(x*,>*)× (⊥*, y*) = Ψ(d)

∗ d ∈ C0. Then, c = d and Ψ(c) = Ψ(d).

• c ∈ C1 such that c = (⊥,>). Then c ⊆ d implies d = (⊥,>) = c.

204 4. HANDLING PROGRAMS WITH LOOPS

• c ∈ C2. Then c ⊆ d implies ⊥ ∈ d, d 6= (⊥,⊥) such that d ∈ C2
⋃
C1.

– Let d ∈ C2. Then c = (⊥,⊥;p) ⊆ (⊥,⊥;x) = d implies

(⊥;⊥,⊥;p) ⊆ (⊥;⊥,⊥;x)

By induction rules this implies (⊥, p) ⊆ (⊥, x). Furthermore, x 6= > by defini-
tion of C2. Hence,

Ψ(c) = (⊥, p*)
= (⊥,⊥*)× (⊥*, p*) Lemma 4.2.20
⊆ (⊥,⊥*)× (⊥*, x*) Lemma 4.3.16
= (⊥, y*) Lemma 4.2.20

Ψ(c) ⊆ Ψ(d)

– Let d ∈ C1. Then Ψ(c) ⊆ (⊥,>) = Ψ(d)

• c ∈ C3. Dual of the case c ∈ C2

• c ∈ C4, c = (p;⊥,>;q) = (p;⊥,>;⊥) × (>;⊥,>;q). Thus, >;⊥ ∈ c. Then c ⊆ d
implies >;⊥ ∈ d and thus d ∈ C4

⋃
C1.

– Let d ∈ C1. Then Ψ(c) ⊆ (⊥,>) = Ψ(d)

– Let d ∈ C4. Then d = (x;⊥,>;y) = (x;⊥,>;⊥)× (>;⊥,>;y). Furthermore,
c ⊆ d implies

(p;⊥,>;⊥)× (>;⊥,>;q) ⊆ (x;⊥,>;⊥)× (>;⊥,>;y)

By induction rules, we get

(p,>) ⊆ (x,>) and (⊥, q) ⊆ (⊥, y)

By Proposition 4.2.33, x 6= ⊥ and y 6= >. This implies

Ψ(c) = (p*,>*, q*) Lemma 4.2.20
= (p*,>*)× (⊥*, q*)

⊆ (x*,>*)× (⊥*, y*) Lemma 4.3.16
⊆ (x*,>*, y*)

Ψ(c) ⊆ Ψ(d) Lemma 4.2.20

• c ∈ C5. Then c ⊆ d implies d
⋂
{x;⊥ | x ∈ P(P) \ {>}} 6= ∅. Thus, d 6∈ C0

⋃
C3
⋃
C6

– d ∈ C0. Then c ⊆ d implies c = d.
– d ∈ C1. Then Ψ(c) ⊆ (⊥,>) = Ψ(d)

– d ∈ C2. Then c = (p;⊥, q;⊥) ⊆ (⊥;⊥, x,⊥;) ⊆ (⊥, x;⊥). By induction
rules (p, q) ⊆ (⊥, x). Furthermore, by definition of C2, x 6= >. Thus, by
Lemma 4.3.16, Ψ(c) = (p*, q*) ⊆ (⊥*, x*) ⊆ (⊥, x*) = Ψ(d).

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 205

– d ∈ C4. Then c = (p;⊥, q;⊥) ⊆ (p;⊥,>;⊥) ⊆ (x;⊥,>;⊥) ⊆ (x;⊥,>;y) = d.
By induction rules this implies (p, q) ⊆ (p,>) ⊆ (x,>). Furthermore, x 6= ⊥
by definition of C4. Hence,

Ψ(c) = (p*, q*)

⊆ (x*,>*) Lemma 4.3.16
⊆ (x*,>*)× (⊥*, y*)

⊆ (x*,>*, y*)

Ψ(c) ⊆ Ψ(d) Lemma 4.2.20

– d ∈ C5. Then c = (p;⊥, q;⊥) ⊆ (x;⊥, y,⊥;) = d implies by induction rules
(p, q) ⊆ (x, y) 6= (⊥,>). Thus, by Lemma 4.3.16, Ψ(c) = (p*, q*) ⊆ (x*, y*) =
Ψ(d).

• c ∈ C6. Similar to the case c ∈ C5.

Proposition 4.3.19. Given a program P ∈ Pgrm, we have that

Ψ: C(U(P)) \ΠU(P)C−1 → C(P) \ΠPL−1

c 7→ Ψ(c)

is a surjective morphism of posets.

Proof. By induction on P

• P ∈ Prcs. Then Ψ is the identity.

• P = Q*. By Proposition 4.3.18 and Proposition 4.2.36.

• P = S||T . Let s × t ⊆ x × y ∈ CmU(P) \ Φ
−1(R). Then s ⊆ x and t ⊆ y by

Definition 4.2.21. By induction hypothesis, this implies, Ψ(s) ⊆ Ψ(x) and Ψ(t) ⊆
Ψ(y). Then once again, by Definition 4.2.21

Ψ(s× t) ⊆ Ψ(x× y)

As ΨS||T = ΨS ×ΨT , by induction hypothesis, ΨS||T is surjective.

4.3.3.2 Ψ weakly reflects inclusion of maximal cubes

Before we prove our result, once again, we first prove a few characteristics of maximal
cubes of loops. Indeed, for a program P * ∈ Prcs∗ the subsets C0 and L0 of C(P *) are
never maximal. Furthermore, using Lemma 4.3.12 and the aforementioned properties, we
then get a characterization of any maximal cover R of P * in Proposition 4.3.21. Finally,
we will prove that Ψ weakly reflects inclusion of maximal cubes (i.e. up to the equivalence
ofDefinition 4.2.37)

Lemma 4.3.20. Given a program P ∈ Pgrm and R a maximal conservative cover on
P(P), we have

R
⋂

ΠPL0 = ∅

206 4. HANDLING PROGRAMS WITH LOOPS

Proof. Let P ∈ Pgrm and R a maximal conservative cover of P . If [R] = P(P), then
R = {(⊥,>)}, which concludes the proof. We can then suppose that [R] 6= P(P) for the
rest of the proof.

• P ∈ Prcs. Then ΠPL0 = ∅ by definition

• P = P *. Then ΠPL0 = {(⊥,⊥), (>,>), (>*,>*)}.

– If ⊥* 6∈ [R]. Then by conservativity of R, this implies ⊥,>,⊥* 6∈ [R], i.e.

[⊥,⊥] ∩ [R] = ∅ and [>*,>*] ∩ [R] = ∅ and [>,>] ∩ [R] = ∅

This implies R
⋂
ΠPL0 = ∅.

– If ⊥* ∈ [R], then by Lemma 4.3.12, (⊥,>*,>) ∈ R, furthermore by definition
of composite cubes,

(⊥,⊥) ⊆ (⊥,>*,>) and (>*,>*) ⊆ (⊥,>*,>) and (>,>) ⊆ (⊥,>*,>)

Thus no cubes of ΠPL0 are in R as they are not maximal.

• P = P1||P2. By Proposition 4.3.7, for all c = c1 × c2 ∈ R the sets

π1Rc = {c′ ∈ P(P1) | c′ × c2 ∈ R} and π1Rc = {c′ ∈ P(P2) | c1 × c′ ∈ R}

are conservative and maximal. By definition, ci ∈ πiRc for i = 1, 2 and by induction
hypothesis, this implies ci 6∈ ΠPiL0. Thus, c 6∈ ΠPL0

Proposition 4.3.21. Given a program P ∈ Prcs and R a conservative maximal region
on the program P *, we have the three mutually exclusive characterization of R:

• If [R] = P(P *), then R = {(⊥,>)}

• If [R] 6= P(P *) and ⊥* ∈ [R], then there exists ((pj , qj))j∈J1∪J2 , such that for all
j ∈ J1 ∪ J2, we have pj , qj ∈ P(P) \ {⊥,>} and

R =
⋃
j∈J1

{(p*j , q*j)}
⋃
j∈J2

{(⊥, q*j), (p*j ,>), (p*j ,>*, q*j), (⊥,>*,>)}

• Otherwise, there exists ((pj , qj))j∈J ∈ C(P)J , such that for all j ∈ J , pj , qj 6∈ {⊥,>}
and

R =
⋃
j∈J
{(p*j , q*j)}

Proof. Let us suppose R a conservative maximal region on a program P * ∈ Prcs∗.

• If [R] = P(P *), then (⊥,>) ∈ C([R]) and for any cube c ∈ C(P *), c ⊆ (⊥,>), thus
R = {⊥,>}.

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 207

• If [R] 6= P(P *) and ⊥* ∈ [R]. By Lemma 4.3.20 and Lemma 4.3.20,

R ⊆ L−1 ∪ L2 ∪ L3 ∪ (L4 ∪ L4) ∪ L5

Then, by Lemma 4.3.12, for every pair of positions p, q 6= ⊥,> such that (p*,>),(⊥, q*) ∈
R or (p*,>*, q*) ∈ R we have that

(p*,>), (⊥, q*), (p*,>*, q*), (⊥,>*,>) ∈ R

Furthermore as R is conservative, we can exclude the case where only (p*,>) or
(⊥, q*) would belong to R. Indeed, if we define

X⊥ = {x ∈ P(P) | ⊥ < x < >, (⊥, x*) ∈ C(R)}
Y> = {x ∈ P(P) | ⊥ < x < >, (y*,>) ∈ C(R)}

Let us take p (resp. q) the maximal (resp. minimal) elements of X⊥, (resp. Y>). We
have seen in the proof of Lemma 4.3.12 that these are correctly defined and

(⊥, p*), (q*,>) ∈ R

Now we only need to prove that the cubes of R∩L5 do not have >* as an endpoint.
By contradiction, let us suppose that there exists such a cube (⊥*, q*) ∈ R. Then
by definition

(⊥*, q*) ⊆ (⊥, q*) ∈ C([R])

This contradicts the definition of R as maximal. Thus, (⊥*, q*) 6∈ R (the case
(p*,>*) is dual).

• Otherwise, the only possible maximal cubes of R are cubes of L5 such that the
support does not intersect >*. By Lemma 4.2.14, this is precisely the cubes of the
form (p*, q*) such that p, q 6= ⊥,>.

Proposition 4.3.22. Given a program P ∈ Prcs such that P 6= Pa, Va, a maximal
conservative cover R of P * and c, d ∈ Cmax(Ψ−1(R)), we have

Ψ(c) ⊆ Ψ(d) =⇒ ∃k ∈ Ψ−1(Ψ(d)), i ⊆ k

Proof. Let us suppose given a program P ∈ Prcs, a maximal conservative cover R of P *

and c, d ∈ Cmax(Ψ−1(R)). Furthermore, let us suppose Ψ(c) ⊆ Ψ(d). Let us prove that

∃k ∈ Ψ−1(Ψ(d)), i ⊆ k

First let us remark that by definition of Ψ , and by Lemma 4.3.20

Ψ(c),Ψ(d) 6∈ L−1 ∪ L0

We will now proceed to check all cases depending on the subset of C(P *) in which c, d are
contained.

• Ψ(d) ∈ L1. Then by definition for all c ∈ C(Φ−1(R)), c ⊆ (⊥,>) = d.

• Ψ(d) ∈ L2, i.e. Ψ(d) = (⊥, y*). Then Ψ(c) ⊆ Ψ(d) implies by looking at the
supports: Ψ(c) 6∈ L3

⋃
L1.

208 4. HANDLING PROGRAMS WITH LOOPS

– Ψ(c) ∈ L2. Then Ψ(c) = (⊥, q*) ⊆ (⊥, y*) = Ψ(d) implies by Lemma 4.2.20
(⊥*, q*) ⊆ (⊥*, y*). Furthermore, we have y, q 6= >. Then

∗ y = ⊥ implies q = ⊥. Thus, c = d

∗ q = ⊥ implies c = (⊥,⊥;⊥) ⊆ (⊥, y;⊥) = d.
∗ Otherwise, y, q 6∈ {⊥,>} Thus by Lemma 4.3.16, (⊥, q) ⊆ (⊥, y) and by

induction rules c = (⊥, q;⊥) ⊆ (⊥, y;⊥) = d

– Ψ(c) ∈ L4, i.e. Ψ(c) = (p*,>*, q*), p, q 6∈ {⊥,>}. Let us prove by contradiction
that

Ψ(c) 6⊆ Ψ(d)

Let us suppose, Ψ(c) ⊆ Ψ(d), then for any σ · ρ ∈ Ψ(c), there exists µ, ν ∈
(⊥, p*)× (q*, y*) such that

ν · σ · ρ · µ ∈ (⊥, y*)

By definition, >* ∈ σ · ρ and >* ∈ µ. Furthermore, as >* is not the endpoint
of µ as p 6= ⊥,>. Thus, there is a non-trivial loop in ν ·σ · ρ ·µ contradicts the
fact that it is an element of (⊥, y*).

– Ψ(c) ∈ L5. Ψ(c) = (p*, q*) 6= (⊥*,⊥*). Then Ψ(c) = (p*, q*) ⊆ (⊥*, y*) =
Ψ(d) implies y 6= ⊥. As y 6= > by definition, this implies by Lemma 4.3.16,
(p, q) ⊆ (⊥, y).

∗ If c ∈ C5, this implies c = (p;⊥, q;⊥) ⊆ (⊥;⊥, y;⊥) ⊆ (⊥, y;⊥) = d.
∗ Otherwise, c ∈ C6. Then (p, q) ⊆ (⊥, y)

c = (>;⊥,>;q) ∈ Cmax(Ψ−1(R))

As P 6= Pa, Va, by Definition 4.3.2, there exists z ∈ P(P), such that
z;⊥ → >;⊥ is pure. As R is conservative, so is Ψ−1(R). This implies
that

c ⊂ (z;⊥,>;q) ∈ C([Ψ−1(R)])

which contradicts the fact that c is maximal.

• Ψ(d) ∈ L3. Symmetric to the case above.

• Ψ(d) ∈ L4, such that Ψ(d) = (x*,>*, y*) and x, y 6∈ {⊥,>}. Then Ψ(c) ⊆ Ψ(d)
implies Ψ(c) ∈ L4

⋃
L5.

– Ψ(c) ∈ L4. Ψ(c) = (p*,>*, q*), p, q 6∈ {⊥,>}. Then Ψ(c) ⊆ Ψ(d) implies
(p*,>*)× (>*, q*) ⊆ (x*,>*)× (>*, y*) i.e.

(p*,>*) ⊆ (x*,>*) and (>*, q*) ⊆ (>*, y*)

By Lemma 4.3.16, this implies (p,>) ⊆ (x,>) and (⊥, q) ⊆ (⊥, y). Thus, by
induction rules c = (p;⊥,>;q) ⊆ (x;⊥,>;y) = d

– Ψ(c) ∈ L5. Ψ(c) = (p*, q*) ⊆ (x*,>*, y*) = Ψ(d) implies by Lemma 4.3.17,

(p*, q*) ⊆ (x*,>*) or (p*, q*) ⊆ (⊥*, y*)

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 209

Let us suppose (p*, q*) ⊆ (x*,>*), and c ∈ C5. By definition (p*, q*) and
(⊥*, y*) 6= (>*,>*). Thus, by Lemma 4.3.16, (p, q) ⊆ (x,>) and by induction
rules,

c = (p;⊥, q;⊥) ⊆ (x;⊥,>;⊥) ⊆ x;⊥,>;y = d

The cases where (p*, q*) ⊆ (y*,>*) and/or c ∈ C6 follow the same proof.

• Ψ(d) ∈ L5. Ψ(d) = (x*, y*) 6= (⊥*,⊥*), p ≤ q. Then Ψ(c) ⊆ Ψ(d) implies by
looking at the supports that Ψ(c) can only belong to L4

⋃
L5

– Ψ(c) ∈ L4, i.e. Ψ(c) = (p*,>*, q*), p, q 6∈ {⊥,>}. Let us prove by contradiction
that

Ψ(c) 6⊆ Ψ(d)

Let us suppose Ψ(c) ⊆ Ψ(d), then for any σ · ρ ∈ Ψ(c) there exists µ, ν ∈
(x*, p*)× (q*, y*) such that

ν · σ · ρ · µ ∈ (x*, y*)

The contraposition of Lemma 4.2.14 implies > 6∈ ν · σ · ρ · µ, which contradicts
the fact that by definition >* ∈ σ · ρ.

– Ψ(c) ∈ L5. Ψ(c) = (p*, q*) 6= (⊥*,⊥*). Then Ψ(c) = (p*, q*) ⊆ (x*, y*) = Ψ(d)
implies by Lemma 4.3.16, (p, q) ⊆ (x, y) and by induction rules

(p;⊥, q;⊥) ⊆ (x;⊥, y;⊥) ≈ d

(>;p,>;q) ⊆ (>;x,>;y) ≈ d

As c ∈ {(p;⊥, q;⊥), (>;p,>;q)} by definition, this concludes the proof.

Remark 4.3.23. If the program P * is conservative, then P 6= Pa, Va, as otherwise ∆(P) 6=
0. Thus, for all P ∈ Pgrm, with P conservative there are no sub-programs of the form
P*a or V*a.

Proposition 4.3.24. Given a conservative program P =∈ Pgrm, a maximal conserva-
tive cover R of P and c, d ∈ Cmax(Ψ−1(R)), we have

Ψ(c) ⊆ Ψ(d) =⇒ ∃d′ ∈ Ψ−1(Ψ(d)) such that c ⊆ d′

Proof. By induction on P .

• P ∈ Prcs. Trivial.

• P ∈ Prcs∗. By Remark 4.3.23 we can apply Proposition 4.3.22.

• P = P1||P2. Let c, d ∈ C(Ψ−1(R)), i.e. c = c1 × c2, d = d1 × d2. Then, by
Proposition 4.3.7

c = c1 × c2 ∈ π1Rc × π2Rc

d = d1 × d2 ∈ π1Rd × π2Rd

with πiRc and πiRd conservative maximal. Then Ψ(c) ⊆ Ψ(d) implies

Ψ(c1) ⊆ Ψ(d1) and Ψ(c2) ⊆ Ψ(d2)

By induction hypothesis, there exists d′ = d′1 × d′2 ∈ Ψ−1(Ψ(d1)) × Ψ−1(Ψ(d2)) =
Ψ−1(Ψ(d)) such that c ⊆ d′.

210 4. HANDLING PROGRAMS WITH LOOPS

4.3.3.3 Maximal cubical cover as a quotient of the 2-unfolding

Given a conservative program P , ΨP actually lifts all cubes of a conservative region X
to the cubes of its unfolding Φ−1(X). But this lifting is not surjective, as all cubes in
ΠU(P)C−1 do not have an image by Ψ. This constraint disappears when considering the
maximal cubes, as cubes of ΠU(P)C−1 are not maximal in unfolding of conservative regions
(proved in Proposition 4.3.25 below).

One thing to remember is that the cube (⊥,>*,>) (and thus all cubes in ΠPL−1) do
not have an antecedent by Ψ.

Proposition 4.3.25. Given a program P ∈ Pgrm and R a maximal conservative cover
on P(P), we have

Cmax([Ψ−1(R)])
⋂

ΠU(P)C−1 = ∅

Proof. Let P ∈ Pgrm and R a maximal conservative cover of P . If [R] = P(P), then
R = {(⊥,>)} by Proposition 4.3.21, which concludes the proof. We can then suppose
that [R] 6= P(P) for the rest of the proof. Let us prove the property by induction on the
program P .

• P ∈ Prcs. Then ΠU(P)C−1 = ∅, which concludes the proof.

• P = Q*. Then CmU(P) \Ψ
−1(R) = CmQ;Q \ Φ−1(R).

– If [R] = P(P), then R = {(⊥,>)} and thus

Ψ−1(R) = {(⊥,>)} = Cmax([Ψ−1(R)])

– Otherwise, let us prove by contradiction that

Cmax([Ψ−1(R)])
⋂
C−1 = ∅

Let us suppose c ∈ C−1 ∩ Cmax(Φ−1[R]). This implies

[⊥;⊥,>;⊥] ⊆ Φ−1[R] or [>;⊥,>;>] ⊆ Φ−1[R]

In both cases, this implies {q* | q ∈ P(Q)} ⊆ Φ(Φ−1[R]) = [R]. By conserva-
tivity >* ∈ R also implies ⊥,> ∈ R. Thus, P(Q*) ⊆ R, which contradicts our
hypothesis on R. Thus,

C−1 ∩ Cmax(Φ−1[R]) = ∅

• P = P1||P2. By Proposition 4.3.5, Φ−1[R] is conservative, thus by Theorem 4.3.15,
S = Cmax(Ψ−1(R)) is also conservative. By Proposition 4.3.7, for all c = c1×c2 ∈ S
the sets

π1Sc = {c′ ∈ P(P1) | c′ × c2 ∈ S} and π1Sc = {c′ ∈ P(P2) | c1 × c′ ∈ S}

are conservative and maximal. By definition, ci ∈ πiRc for i = 1, 2 and by induction
hypothesis, this implies ci 6∈ ΠU(Pi)C−1. Thus, c 6∈ ΠU(P)C−1

4.3. UNFOLDING CONSERVATIVE COVERS OF LOOPS 211

Proposition 4.3.26. Given a conservative program P ∈ Pgrm and R a conservative
maximal cover of P , we have

C(Ψ−1(R)) \ΠU(P)C−1 = Ψ−1(C(R))

Proof. We recall that Ψ−1(C(R)) = Ψ−1
(
(C(R)) \ΠPL−1

)
. If [R] = ∅, then

C(Ψ−1(R)) = ∅ = Ψ−1(C(R))

Which concludes the proof. Thus, for the rest of the proof, we will suppose [R] 6= ∅.

• Let c ∈ Ψ−1(R). We want to prove that c ∈ C(Ψ−1(R)) \ ΠU(P)C−1. By definition
of Ψ, c 6∈ ΠU(P)C−1. Thus, we simply need to prove that

c ∈ C(Ψ−1(R))

Then c ∈ Ψ−1(R) implies that there exists d ∈ R such that Ψ(c) = d. Then,

Φ([c] ∩ [Ψ−1](R)) ⊆ Φ[c] ∩ Φ[Ψ−1(R)]

⊆ [Ψ(c)] ∩ Φ[Ψ−1(R)] Proposition 4.2.44
⊆ [Ψ(c)] ∩ Φ(Φ−1[R]) Theorem 4.3.15
⊆ [d] ∩ [R]

Φ([c] ∩ [Ψ−1](R)) ⊆ ∅

Thus by definition of Φ, this implies [c] ∩ [Ψ−1](R) = ∅ i.e.

c ∈ C(Ψ−1(R))

• Let us prove that
C(Ψ−1(R)) \ΠU(P)C−1 ⊆ Ψ−1(C(R))

i.e. for all c ∈ C(Ψ−1(R)) \ΠU(P)C−1, we have

Ψ(c) ∈ C(R)

As c 6∈ ΠU(P)C−1, Ψ(c) is correctly defined. Now, by contradiction let us suppose
there exists q ∈ [Ψ(c)] ∩ [R]. q ∈ [Ψ(c)] = Φ[c] (by Proposition 4.2.44) implies that
there exists p ∈ [c] such that Φ(p) = q, i.e.

p ∈ Φ−1(q) ⊆ Φ−1[R] = [Ψ−1(R)] Theorem 4.3.15

Then p ∈ [c]∩[Ψ−1(R)] = ∅ by definition. As this is impossible, we get [Ψ(c)]∩[R] =
∅, i.e.

Ψ((C(Ψ−1(R))) \ΠU(P)C−1) ⊆ C(R) \ΠPL−1

Thus by applying Ψ−1, we get

(C(Ψ−1(R))) \ΠU(P)C−1 ⊆ Ψ−1(C(R))

212 4. HANDLING PROGRAMS WITH LOOPS

Combining both Proposition 4.3.24 and Proposition 4.3.18, we can finally prove that
Ψ−1 sends maximal covers onto maximal covers. Thus, Ψ defines an equivalence between
the maximal cubes of a conservative region X of a program P and the quotient of the set
of maximal cubes of Φ−1(X) by the equivalence relation of Definition 4.2.37.

Theorem 4.3.27. Given a conservative program P ∈ Pgrm and R a conservative max-
imal cover of P , we have

Cmax(Ψ−1(R)) = Ψ−1(R)

Proof. We first remind ourselves that, by definition Ψ−1(R) = Ψ−1(R \ ΠPL−1). Thus,
we can instead prove

Cmax(Ψ−1(R)) = Ψ−1(R \ΠPL−1)

• Let us prove
Ψ−1(R \ΠPL−1) ⊆ Cmax(Ψ−1(R))

Let c ∈ R \ΠPL−1, d ∈ Ψ−1(c). By Proposition 4.3.26, d ∈ C(Ψ−1(R)). Now let us
prove that d is maximal. Let us suppose that there exists

d′ ∈ Cmax(Ψ−1(R)), d ⊆ d′

Then by Proposition 4.3.19

c = Ψ(d) ⊆ Ψ(d′) ∈ R \ΠPL−1

By maximality of c this implies, d′ ∈ Ψ−1(c). Thus, by the contraposition of
Proposition 4.2.40 for d, d′ ∈ Ψ−1(c), we get d = d′, thus d is maximal and

Ψ−1(R \ΠPL−1) ⊆ Cmax(Ψ−1(R))

• We want to show that

Cmax(Ψ−1(R)) ⊆ Ψ−1(R \ΠPL−1)

i.e. that for every c ∈ Cmax(Ψ−1(R)),Ψ(c) ∈ R. By Proposition 4.3.19, Ψ(c) ∈ C(R),
with R maximal. Thus, there exists d ∈ R, such that

Ψ(c) ⊆ d

By the inclusion Ψ−1(R \ ΠPL−1) ⊆ Cmax(Ψ−1(R)) proved above, there exists
c′ ∈ Cmax(Ψ−1(R)) such that d = Ψ(c′), which implies

Ψ(c) ⊆ Ψ(c′)

As c ∈ Cmax(Ψ−1(R)), we can apply Proposition 4.3.24, thus ∃r ∈ Ψ−1(Ψ(c′)), c ⊆ r.
By maximality of c, r = c, i.e. Ψ(c) = Ψ(r) = Ψ(c′) ∈ R.

For programs, in particular for Algorithm 3.3.23, we are given a cover of the forbidden
region, and we wish to compute the authorized region from there. This means that we
require a bit more than Theorem 4.3.27 if we wish to implement Algorithm 3.3.23 via the
unfolding.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 213

Theorem 4.3.28. Given a conservative program P ∈ Pgrm and R a conservative max-
imal cover of P , we have

(Ψ−1(R))c = Ψ−1(Rc)

where for any cover S, Sc = Cmax([S]c).

Proof. As R is conservative, by Proposition 4.3.6, so is Rc. Then by applying Theo-
rem 4.3.27 to Rc maximal conservative, we get

Ψ−1(Rc) = Cmax(Ψ−1(Rc))

= Cmax(Φ−1([Rc])) Theorem 4.3.15
= Cmax(Φ−1([R]c))

= Cmax((Φ−1[R])c)

= Cmax([Ψ−1(R)c]) Theorem 4.3.15
Ψ−1(Rc) = (Ψ−1(R))c by maximality of (Ψ−1(R))c

4.4 Deadlock detection algorithm for looped programs

In this section we finally implement the extension of Algorithm 3.3.23 for programs with
loops. We recall that the idea behind this algorithm is to first generate a cubical partition
of the authorized region that is compatible with the maximal cubical cover. Then, cubes
are arranged in order to reflect reachability but on the level of cubes instead of points.

This guarantees that the cubes that do not contain the terminal position > but do
not lead to another cube are deadlocks. Any cube that lead to a deadlock is unsafe, and
cubes leading only to deadlocks are doomed.

Now that cubes are properly defined on semantics of programs with loops, one could
implement intersection and complement of cubes for looped syntactic semantics. There
are some difficulties in setting up intersection and complements as they do not behave
very well in the case of loops, but it is entirely possible. Proving that the generic partition
is still a partition is also not trivial.

We do not opt for this approach, instead, we study the generic partition of the base
programs through the generic partition of its unfolding. Indeed, we already know that
the maximal covers of forbidden and authorized regions lift, so it is natural to check if
the generic partition also lifts directly to its unfolding. This is not the case, but through
some manipulation, which consists of separating the cubes at the lifting of the core of
the loop, we get the same lifting property for the cubical partition. This is detailed in
Example 4.4.1 below.

Example 4.4.1. Given a resource of capacity κa = 0, let us consider a very simple program
P = (Pa;Va)*, whose semantics is given below.

214 4. HANDLING PROGRAMS WITH LOOPS

⊥

(⊥;⊥)*(>;>)*

⊥*

>;⊥*

> ⊥

(⊥;⊥)*(>;>)*

⊥*

>;⊥*

>

Now if we consider the lifting, on its unfolding U(P) = (Pa;Va);(Pa;Va), of the generic
partition (on the bottom below) we can see that it is finer than the partition of the lifting
(on top below)

⊥ ⊥;⊥ >;⊥ >;> >

⊥ ⊥;⊥ >;⊥ >;> >

Remark 4.4.2. The same phenomena appear for more classical parallel programs. Indeed,
if one looks at P = (Pa;Va)*||Pa; Va, with κa = 1 which would be a “looped” version of
the floating square (Example 1.4.3), a similar result holds.

As the separation operations detailed above do not impact reachability of cubes, this
transformation does not affect the algorithm. Then to get the generic partition of the
base program, as well as the unsafe and doomed regions we simply apply the algorithm
on the unfolding.

We start by introducing formally the core-cutting operators before extending the lift-
ing property of Theorem 4.3.28 to the generic cubical partition, proving that the generic
cubical partition of the base program corresponds to the quotient of the cubical partition
of the unfolding.

Finally, we prove that there is an equivalence for the relation “being in the past of”
(Definition 1.4.31) between cubes of the base program and their lifting.

All this allows us to implement a modified version of Algorithm 3.3.23 on the unfolding
of a program, which allows us to detect deadlocks in the base programs (which potentially
has loops).

4.4.1 Cubical partition and loops
In this section we will prove that the lifting property of Theorem 4.3.27 extends to the
cubes of the generic partition (Definition 4.1.1) of the maximal cover. We recall that this
generic partition is the one we use to represent the set of positions in Algorithm 3.3.23
and compute deadlocks.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 215

Definition 4.4.3. Given a cover R on a sequential program P , we define the 1-dimensional
generic cubical partition as

Γm1 (R) =
⋃

UqV=R
U 6=∅

Cmax(ZU,V)

with ZU,V =
⋂
u∈U

[u]
⋂
v∈V

[v]c

Definition 4.4.4. Given a cover R on the parallel composition of n sequential programs
P = P1‖ · · · ‖Pn, we define the generic cubical partition as

Γ∗(R) = Γm ◦ Γm(R)

where Γm(R) is defined as

Γm(R) =

n∏
i=1

Γm1
(
{ci | ∃(rk)1≤k≤n ∈ R, ri = ci}

)
Remark 4.4.5. For now, we do not prove that the generic partition is a partition. That
is not necessary as it will be a consequence of Theorem 4.4.45.

As seen in Example 4.4.1, we cannot directly prove that the lifting and the generic
partition commute. In order to enforce the commutation, we define what we call the core-
cutting operators, which separates the cubes of the partition of the unfolding in order to
replicate what happens at the core of the loop in the base program.
Remark 4.4.6. Given a program P ∗, there is one maximal conservative cubical cover that
does not get cut when taking its cubical partition: that is the cover R = {(⊥,>)}. Here,
we will cut this cube in the unfolding, meaning that we will need to cut it in the final
partition. This should not be needed, but no proof circumventing this problem could be
found.

The idea is that for a loop, as shown in Example 4.4.1, conservative regions crossing
the core of the loop p* are separated in four disjoint regions by the generic partition:
before the loop, at the core of the loop, strictly inside the loop and after the loop.

In the unfolding, as the partition does not provide this kind of action, we need to do
it ourselves. Where we need to cut is given by the Example 4.4.1 and is quite naturally
at the lifting of the core >*, thus separating the cubes of the lifting in exactly the right
way.

This cutting operation is formalized through the operator Θ for the unfolding and χ
for the base program.

Definition 4.4.7. Given a program P ∈ Prcs∗, we define the unfolded-core-cutting
operator ΘP on cubes of P as follows.

ΘU(P) : C(U(P))→R(U(P))

c 7→


Cmax

(
[c] \ Φ−1(>*)

)
if P = Q*⋃

x∈Φ−1(>*)

Cmax
(
[c] ∩ {x}

)
{c} otherwise

216 4. HANDLING PROGRAMS WITH LOOPS

And for parallel composition P = U(P1)‖U(P2) we define

ΘU(P1)‖U(P2) : C(U(P1)‖U(P2))→R(U(P1)‖U(P2))

c1‖c2 7→ ΘU(P1)(c1)×ΘU(P2)(c2)

Then we can easily extend ΩP to regions of P as follows.

ΘU(P) : R(U(P))→R(U(P))

{ci | i ∈ I} 7→
⋃
i∈I

ΘU(P)(ci)

Definition 4.4.8. Given a program P ∈ Prcs∗, we define the ΠPL−1 core-cutting oper-
ator χP on cubes of P as follows.

χP : C(P)→R(P)

c 7→


Cmax

(
[c] \ {>*}

)
if c = (⊥,>) and P = Q*

∪ Cmax
(
[c] ∩ {>*}

)
{c} otherwise

And for parallel composition P = P1‖P2 we define

χP1‖P2
: C(P1‖P2)→R(P1‖P2)

c1‖c2 7→ χP1
(c1)× χP2

(c2)

Then we can easily extend χP to regions of P as follows.

χP : R(P)→R(P)

{ci | i ∈ I} 7→
⋃
i∈I

χP (ci)

Example 4.4.9. Let us consider the program (skip+skip);(skip+skip) whose semantics
is given below. On the left we see the result of Cmax

(
[⊥,>] \ Φ−1(>*)

)
and on the right

the result of
⋃

x∈Φ−1(>*)

Cmax
(
[⊥,>] ∩ {x}

)

⊥ >

⊥ > ⊥ >

Example 4.4.10. Let us consider the cube (⊥,>) on the program (skip+skip)* which
unfolds to the program of Example 4.4.9. Its semantics are shown on the left with the
support of (⊥,>) in grey. The result by the operator χ is given on the right.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 217

⊥ >

(⊥+∅)*(>+∅)*

(∅+⊥)*(∅+>)*

⊥ >

(⊥+∅)*(>+∅)*

(∅+⊥)*(∅+>)*

If Θ left the cube (⊥,>) untouched, the operator χ would be totally unnecessary, as
indeed the generic partition of the lifting is equal to (⊥,>) which is equal to the lifting
of the generic partition. Unfortunately, this breaks the fact that cubes included in the
support of a cube in the image of Θ are stable by Θ, which we needed in our proof of
Theorem 4.4.45 (more precisely Proposition 4.4.37 and accompanying lemmas).

With this choice, we can now formulate the first main theorem of this chapter

Theorem 4.4.45. Given a program P ∈ Pgrm and a maximal conservative cover R on
P we have

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗(χ(R))

This is a tall order, so we break down the proof in smaller proofs, each time proving
a step of the commutation.

We also introduce a third separation operator Ω that performs the same separation
as χ but to all cubes.

Definition 4.4.11. Given a program P ∈ Prcs, we define the core-cutting operator ΩP
on cubes of P as follows.

ΩP * : C(P *)→R(P *)

(p, q) 7→


Cmax

(
[c] \ {>*}

)
if c = (p, q)

∪ Cmax
(
[c] ∩ {>*}

)
Ω(p,>*) ∪ Ω(>*, q) if c = (p,>*, q)

Otherwise, when not dealing with loops, Ω sends each cube to the region containing only
that cube.

ΩP : C(P)→R(P)

c 7→ {c}

And for parallel composition P = P1‖P2 we define

ΩP1‖P2
: C(P1‖P2)→R(P1‖P2)

c1‖c2 7→ ΩP1(c1)× ΩP2(c2)

218 4. HANDLING PROGRAMS WITH LOOPS

Then we can easily extend ΩP to regions of P as follows.

ΩP : R(P)→R(P)

{ci | i ∈ I} 7→
⋃
i∈I

ΩP (ci)

Remark 4.4.12. For all operators we omit the subscript when it is obvious from the
context.

Example 4.4.13. Let us consider the program (skip+skip)* whose semantics is given
below. We show the action of the operator Ω on the cubes (⊥, (>+∅)*) and ((>+∅)*,⊥).

⊥ >>*

(>+∅)*

⊥ >>*

(>+∅)*

⊥ >>*

(>+∅)*

⊥ >>*

(>+∅)*

This operator will be very useful in the proof of Theorem 4.4.45. Indeed instead of
proving Theorem 4.4.45 we can first prove the weaker Proposition 4.4.38.

Proposition 4.4.38. Given a program P ∈ Pgrm and a maximal conservative cover R
on P we have

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗Ω(R)

The proof of Proposition 4.4.38 will consists in proving the commutativity of the
following diagram, in which we will prove all commutative squares individually.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 219

Γ∗(Ψ−1(R))

Ψ−1(R) Γ∗(Ψ−1(Ω(R)))

Ψ−1(Ω(R))

R Γ∗(Ω(R))

Ω(R)

Γ∗

Θ

Θ

Γ∗

Ω Γ∗

Ψ−1

Ψ−1

Ψ−1

We define an object that appears in most of our proofs. This corresponds to the cover
of one of the elements of our cubical partition. This was already introduced in previous
section, but is reminded here as it will be frequently used in the following proofs.

Definition 4.4.14. For a partition U q V = R of a cover R, the associated support
separation ZU,V is defined as follows

ZU,V =
⋂
u∈U

[u] ∩
⋂
v∈V

[v]c

4.4.2 Cubical partition as a quotient of the 2-unfolding
4.4.2.1 Ψ−1 ◦ Ω = Θ ◦Ψ−1

In this section we will prove the commutation of the lifting with the separation operators.

Proposition 4.4.21. Given a program P ∈ Prcs∗, R a maximal conservative cover on
P . Then

Ψ−1 ◦ Ω(R) = Θ ◦Ψ−1(R)

In order to do so, we will fully characterize the image of Θ and Ω in Proposition 4.4.17
and Proposition 4.4.18. Indeed, Θ actually creates a cubical partition when cutting the
cubes, and those can be computed by looking at the successors and predecessors of the
core’s lifting. Indeed, there is only a single pair of cubes that creates a non-empty-cube
w.r.t. the cube being cut.
Example 4.4.15. Let us look at the action of θ on some of the more problematic cubes of
the program P = U((skip+skip)*). The cube ((> + ∅);⊥,>) shown below on the left
is properly partitioned by θ as shown on the right. The fact that a copy of the loop is
separated in disjoint is a consequence of Lemma 4.4.16 as explained above.

⊥ > ⊥ >

220 4. HANDLING PROGRAMS WITH LOOPS

Unfortunately, such a property doesn’t hold for Ω as the separation of composite cubes
might lead to some overlapping as shown below on the cube ((>+∅)*,>*, (>+∅)*)

⊥ >>*

(>+∅)*

⊥ >>*

(>+∅)*

Then Proposition 4.4.20 allows us to link the cubes of Θ and Ω through these unique
antecedents.

Lemma 4.4.16. Let P ∈ Prcs \ α. Let p, q ∈ P(P) \ {⊥,>}. Then

• There exists a unique element ~>p ∈ pred>, such that a path p →∗ ~>p → > exists
and is without trivial loops.

• There exists a unique element ~⊥p ∈ succ⊥, such that a path ⊥ → ~⊥q → q exists
and is without trivial loops.

Proof. Let P ∈ Prcs \ α. Let p, q ∈ P(P) \ {⊥,>}. Let us prove the property for ~>p,
the other property being dual.

• If P = S;T . Then pred> = >;>. And it is easy to show that p < > implies
p ≤ >;> ≤ >. By Proposition 4.1.33, this implies p →∗ >;> → >. As the
program P is loop-free, the path is cycle-free and ~>p = >;>.

• If P = S+T . Then pred> = {∅+>,>+∅}. ⊥ < p < > implies p = s+∅ or p = ∅+t.

– If p = s+∅ Then s+∅ 6≤ ∅+>. Thus, by Proposition 4.1.33, there is no
path s+∅ →∗ ∅+>. By the same argument, as s+∅ ≤ >+∅ there is a path
s+∅ →∗ >+∅. As the program P is loop-free so are all the paths. Thus,
~>p = >+∅.

– If p = ∅+t, then, by a similar argument ~>p = ∅+>.

Proposition 4.4.17. Given a program U(P *), and two positions p, q of U(P *), such that
p, q 6∈ {⊥,>} and a cube c ∈ C0 we have

Θ(p;⊥, q;⊥) = {(p;⊥, q;⊥)} Θ(>;p,>;q) = {(>;p,>;q)}
Θ(⊥,⊥;⊥) = {(⊥,⊥), (⊥;⊥,⊥;⊥)} Θ(>;>,>) = {(>,>), (>;>,>;>)}

Θ(⊥;⊥, q;⊥) = {(⊥;⊥,⊥;⊥), (~⊥q;⊥, q;⊥)} Θ(>;⊥,>;q) = {(>;⊥,>;⊥), (>;~⊥q,>;q)}

Θ(p;⊥,>;⊥) = {(>;⊥,>;⊥), (p;⊥, ~>p;⊥)} Θ(>;p,>;>) = {(>;>,>;>), (>;p,>; ~>p)}
Θ(c) = {c}

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 221

Θ(⊥,>) = C0 ∪ {(x;⊥, ~>x;⊥), (>;x,>; ~>x) | x ∈ succ⊥}

Proof. Given a program U(P *), we have the first three cases directly by definition of Θ.

• The cases c ∈ C0, (⊥,⊥;⊥), (>;>,>) are easily deduced from the definition of Θ.

• Let us consider the case (p;⊥, q;⊥). Then, we have [p;⊥, q;⊥] ⊆ {>*}c. Thus, by
definition of Θ, Θ(p;⊥, q;⊥) = Cmax([p;⊥, q;⊥]) = {(p;⊥, q;⊥)}

• The case (>;p,>;q) is dual to the previous case.

• For the case (⊥,>), we first prove

Θ(⊥;⊥,>;⊥){(⊥;⊥,⊥;⊥), (>;⊥,>;⊥)} ∪ {(x;⊥, ~>x;⊥) | x ∈ succ⊥}

Indeed, by Lemma 4.4.16 for any p;⊥, q;⊥ there exist a unique pair, x, y such
that ⊥ → x →∗ p →∗ q →∗ y → >. Furthermore, y = ~>x;⊥ and by inference
rules we can show that the cubes (x;⊥, ~>x;⊥) are exactly the maximal cubes of
[⊥;⊥,>;⊥] \ {⊥;⊥,>;⊥}. Thus,

Θ(⊥;⊥,>;⊥){(⊥;⊥,⊥;⊥), (>;⊥,>;⊥)} ∪ {(x;⊥, ~>x;⊥) | x ∈ succ⊥}

Similarly

Θ(>;⊥,>;>){(⊥;⊥,⊥;⊥), (>;⊥,>;⊥)} ∪ {(>;x,>; ~>x) | x ∈ succ⊥}

then we conclude by remarking that we can decompose (⊥,>) as the composite of
the cubes (⊥,⊥;⊥), (⊥;⊥,>;⊥), (>;⊥,>;>) and (>;>,>).

• (⊥;⊥, q;⊥) follows a similar proof to the case Θ(⊥;⊥,>;⊥) in the case above,
where we take y = q.

• The case (>;⊥,>;q), (p;⊥,>;⊥), (>;p,>;>) are all treated similarly to the case
above.

Proposition 4.4.18. Given a program U(P *), two positions p, q of U(P *), such that
p, q 6∈ {⊥,>}, and a cube c ∈ L0, we have

Ω(c) = {c} Ω(p*, q*) = {(p*, q*)}

Ω(⊥,>*) = {(>*,>*), (⊥,⊥)} Ω(p*,>*) = {(p*, ~>p
∗
), (>*,>*)}

Ω(>*,>) = {(>*,>*), (>,>)} Ω(>*, q*) = {(~⊥∗
q , q

), (>,>*)}

Ω(⊥,>) = {(⊥,⊥), (>*,>*), (>,>)} ∪ {(x*, ~>x
∗
) | x ∈ succ>}

Proof. Given a program U(P *), we have the first three cases directly by definition of Ω.

• The cases c ∈ L0, (⊥,>*), (>*,>) are easily deduced from the definition of Ω.

222 4. HANDLING PROGRAMS WITH LOOPS

• Let us consider the case (p*, q*). Then, we have [p*, q*] ⊆ {>*}c. Thus, by definition
of Ω, Ω(p*, q*) = Cmax([p*, q*]) = {(p*, q*)}

• Let us consider the case (p*,>*). For all paths π ∈ (p*,>*), as p 6= ⊥,>, we have
π = σ∗ · τ∗ such that

σ∗ : p* →lf x* and τ∗ : x* → >*

By Definition 4.2.13, we have σ : p →lf x and by inference rules τ : x → >. Thus,
there is a cycle-free path p→∗ x→ >. By Lemma 4.4.16 x = ~>p. This implies

[p*,>*] = [p*, ~>p
∗
] ∪ {>*}

Thus by definition of Ω,

Ω(p*,>*) = Cmax([p*, ~>p
∗
]) ∪ Cmax({>*})

Ω(p*,>*) = {(p*, ~>p
∗
)} ∪ {(>*,>*)}

• (>*, q*). Dual to the case above.

• Let us consider the case (⊥,>). If P = α the proposition holds as {(x*, ~>x
∗
) | x ∈

succ>} is empty. Thus, for the rest of the proof, we will suppose

P(P) \ {⊥,>} 6= ∅

then, by definition, for any pair of positions (p, q) ∈ P(P) \ {⊥,>}, there is a pair
xp, yq ∈ succ⊥× pred> such that (p, q) ⊆ (xp, yq). Thus, by Lemma 4.3.16,

(p*, q*) ⊆ (x*p, y
*
q)

Furthermore, by Lemma 4.4.16, yq = ~>xp , and by inference rules xp ∈ succ> This
implies by Lemma 4.2.14 that Cmax(P(P *) \ {⊥,>,>*}) ⊆ {(x*, ~>x

∗
) | x ∈ succ>}

which concludes the proof.

Remark 4.4.19. The Proposition 4.4.18 and Proposition 4.4.17 also imply that Θ and Ω
can be computed if we know how to find the successors and predecessors of points as well
as intersection of cubes. This is much quicker in practice than using the definition of θ
which requires the calculation of many complements and intersection to obtain the same
result.

Proposition 4.4.20. Let P ∈ Prcs \ α. Let p, q ∈ P(P) \ {⊥,>}

Ψ−1(p*, ~>p
∗
) = {(>;p,>; ~>p), (p;⊥, ~>p;⊥)}

Ψ−1(~⊥∗
q , q

*) = {(>;~⊥q,>;q), (~⊥q;⊥, q;⊥)}

Proof. By definition ~>p, ~⊥q 6∈ {⊥,>}. Thus, (p*, ~>p
∗
), (~⊥∗

q , q
*) ∈ L5. By Proposi-

tion 4.2.36, we obtain our result.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 223

Proposition 4.4.21. Given a program P ∈ Prcs∗, R a maximal conservative cover on
P . Then

Ψ−1 ◦ Ω(R) = Θ ◦Ψ−1(R)

Proof. By induction on P

• P ∈ Prcs. OK.

• P = P1||P2. By Proposition 4.3.7, for all c = c1 × c2 ∈ R the sets

π1Rc = {c′ ∈ P(P1) | c′ × c2 ∈ R} and π1Rc = {c′ ∈ P(P2) | c1 × c′ ∈ R}

are conservative and maximal and R =
⋃
c∈R

π1Rc × π2Rc Thus,

Ψ−1 ◦ Ω(R) =
⋃
c∈R

Ψ−1 ◦ Ω(π1Rc)×Ψ−1 ◦ Ω(π2Rc)⋃
c∈R

Θ ◦Ψ−1(π1Rc)×Θ ◦Ψ−1(π2Rc)by induction hypothesis

Ψ−1 ◦ Ω(R) = Θ ◦Ψ−1(R)

• P = Q*. Then by definition of R,

– >* 6∈ [R]. Then, by Proposition 4.3.21,

R = {(p*i , q*i) | ∀i ∈ I, pi, qi 6= ⊥,>}

As >* 6∈ [R], a fortiori for all i ∈ I, >* 6∈ [(p*i , q
*
i)], i.e. Ω((p*i , q*i)) = {(p*i , q*i)}.

Thus, for all i ∈ I

Ψ−1(Ω(p*i , q
*
i)) = Ψ−1(p*i , q

*
i)

= {(pi;⊥, qi;⊥), (>;pi,>;qi)}
= Θ({(pi;⊥, qi;⊥), (>;pi,>;qi)}) as pi, qi 6= ⊥,>

Ψ−1(Ω(p*i , q
*
i)) = Θ(Ψ−1(p*i , q

*
i))

Thus, Ψ−1 ◦ Ω(R) = Θ ◦Ψ−1(R)

– R 6= {(⊥,>)} and >* ∈ [R]. Then by Proposition 4.3.21,

R =
⋃
j∈J1

{(p*j , q*j)}
⋃
j∈J2

{(⊥, q*j), (p*j ,>), (p*j ,>*, q*j), (⊥,>*,>)}

Such that p*j , q
*
j 6= >*. By the same argument as the case above we have,

Ψ−1 ◦ Ω(
⋃
j∈J1

{(p*j , q*j)}) = Θ ◦Ψ−1(
⋃
j∈J1

{(p*j , q*j)})

Then, for each j ∈ J2, we write

Rj = {(⊥, q*j), (p*j ,>), (p*j ,>*, q*j), (⊥,>*,>)}

Then

224 4. HANDLING PROGRAMS WITH LOOPS

∗ Ω(⊥, q*j) = {(⊥,⊥), (>*,>*), (~⊥∗
qj , q

*
j)}

∗ Ω(p*j ,>) = {(>,>), (>*,>*), (p*j ,
~>pj

∗
)}

∗ Ω(p*j ,>*, q*j) = {(>*,>*), (p*j ,
~>pj

∗
), (~⊥∗

qj , q
*
j)}

∗ Ω(⊥,>*,>) ⊆ Ω(Rj \ (⊥,>*,>))
With Ψ−1(Rj) = {(p;⊥,>;q), (⊥, q;⊥), (>;p,>)}, we have

∗ Θ(⊥, q;⊥) = {(⊥,⊥), (⊥;⊥,⊥;⊥), (~⊥q;⊥, q;⊥)}
∗ Θ(>;p,>) = {(>,>), (>;>,>;>), (>;p,>; ~>p)}
∗ Θ(p;⊥,>;q) = {(p;⊥, ~>p;⊥), (>;⊥,>;⊥), (>;~⊥q,>;q)}

Now as we have that
∗ By Proposition 4.4.20, Ψ−1(p*, ~>p

∗
) = {(p;⊥, ~>p;⊥), (>;p,>; ~>p)}

∗ By Proposition 4.4.20, Ψ−1(~⊥∗
q , q

*) = {(~⊥q;⊥, q;⊥), (>;~⊥q,>;q)}
∗ Ψ−1(>*,>*) = {(⊥;⊥,⊥;⊥), (>;⊥,>;⊥), (>;>,>;>)}
∗ Ψ−1(⊥,⊥) = (⊥,⊥) and Ψ−1(>,>) = (>,>)

We can conclude
Ψ−1 ◦ Ω(Rj) = Θ ◦Ψ−1(Rj)

Ψ−1 ◦ Ω(R) =
⋃
j∈J1

Ψ−1 ◦ Ω(R){(p*j , q*j)}
⋃
j∈J2

Ψ−1 ◦ Ω(R)(Rj)

=
⋃
j∈J1

Θ ◦Ψ−1{(p*j , q*j)}
⋃
j∈J2

Θ ◦Ψ−1(Rj)

Ψ−1 ◦ Ω(R) = Θ ◦Ψ−1(R)

– R = {(⊥,>)}. By Proposition 4.4.18, we have

Ω(⊥,>) = {(⊥,⊥), (>,>), (>*,>*)} ∪ {(~⊥∗
q , q

*) | q → >}

And Proposition 4.4.17, we have

Θ(⊥,>) = {(⊥,⊥), (>,>), (⊥;⊥,⊥;⊥), (>;⊥,>;⊥), (>;>,>;>)}

∪ {(~⊥q;⊥, q;⊥), (>;~⊥q,>;q) | q → >}

Using the same argument as the case above, we have thus,

Ψ−1 ◦ Ω(R) = Θ ◦Ψ−1(R)

4.4.2.2 Γ∗ ◦Θ = Θ ◦ Γ∗

In this section we prove the commutation of the separation operator Θ and the generic
partition.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 225

Proposition 4.4.29. Let P ∈ Pgrm, for any conservative cover R on a program U(P),

Θ ◦ Γ∗(R) = Γ∗ ◦Θ(R)

We begin by stating a few of the important properties about Θ, namely, the fact that
Θ defines a cubical partition of the support of cubes it cuts and that it preserves and
reflects inclusion of cubes to a degree.

Lemma 4.4.22. Given a program P ∈ Pgrm and a cube c ∈ C(U(P)), we have

[Θ(c)] =
∐

d∈ΘP (c)

[d] = [c]

Proof. By induction on P .

• P ∈ Prcs. Then Θ is the identity.

• P = P1||P2. Then, c ∈ C(U(P)) implies c = c1 × c2 and

[Θ(c)] = [Θ(c1)]× [Θ(c2)]

=
∐

d1∈ΘP (c1)

[d1]×
∐

d2∈ΘP (c2)

[d2] induction hypothesis

[Θ(c)] =
∐

d∈ΘP (c)

[d]

Furthermore,

[Θ(c)] = [Θ(c1)]× [Θ(c2)]

= [c1]× [c2] induction hypothesis
[Θ(c)] = [c]

Which concludes the proof.

• P = Q*. Then by definition of Θ,

[Θ(c)] = [Cmax
(
[c] \ Φ−1(>*)

) ⋃
x∈Φ−1(>*)

Cmax
(
[c] ∩ {x}

)
]

[Θ(c)] = [c] \ Φ−1(>*)
⋃

x∈Φ−1(>*)

[c] ∩ {x}[Θ(c)] = [c]

The fact that all cubes of Θ(c) are disjoint is a direct consequence of Proposi-
tion 4.4.17. The only case not directly treated c ∈ C−1 can be done so in the same
manner as the case (⊥,>).

Lemma 4.4.23. Given a program P ∈ Pgrm and a cube u ∈ Θ(C(P)), then we have

• ΘP ◦ΘP = ΘP

226 4. HANDLING PROGRAMS WITH LOOPS

• For any subset X ⊆ [u], C(X) ∈ Θ(C(P))

Proof. This holds directly by definition of Θ.

Lemma 4.4.24. Given a program P ∈ Pgrm and c, d ∈ C(U(P)), then c ⊆ d implies for
all x ∈ Θ(c), there exists y ∈ Θ(d) such that x ⊆ y

Proof. Let us prove the property by induction on P

• P ∈ Prcs. Then Θ is the identity.

• P = P1||P2. Let c = c1 × c2 ⊆ d1 × d2 = d. Then c1 ⊆ d1 and c2 ⊆ d2. By
induction hypothesis, this is implies for all x1, x2 ∈ Θ(c1) × Θ(c2) = Θ(c), there
exists y1×y2 ∈ Θ(d1)×Θ(d2) = Θ(d) such that x1×x2 ⊆ y1×y2. Which concludes
the proof.

• P = Q*. Then by definition of Θ,

Θ(c) = Cmax
(
[c] \ {Φ−1(>*)}

) ⋃
x∈Φ−1(>*)

Cmax
(
[c] ∩ {x}

)
≤ Cmax

(
[d] \ {Φ−1(>*)}

) ⋃
x∈Φ−1(>*)

Cmax
(
[d] ∩ {x}

)
Θ(c) ≤ Θ(q)

where ≤ is the order on region defined in Definition 4.2.46. Thus, the property
holds.

Lemma 4.4.25. Given a conservative cover X on a program U(P), P ∈ Prcs∗, such
that C(X) ∩ C−1 = ∅. Given c ∈ C(X), u ∈ Θ(c). Then u ⊆ v ∈ Θ(C(X)) implies that
there exists d ∈ C(X), such that c ⊆ d

Proof. By induction on P .

• P ∈ Prcs. Then, θ is the identity on all cubes, concluding the proof.

• P = L*, such that U(P) = L;L. Given s ∈ Θ(C(X)),

s ∈ C0 ∪ C({q;⊥ | q ∈ P(L) \ {⊥,>}}) ∪ C({>;q | q ∈ P(L) \ {⊥,>}})

Then as u ∈ Θ(c) ⊆ Θ(C(X)) and v ∈ Θ(C(X)) we can separate the different cases:

– u ∈ C0. Then v 6= u implies u 6⊆ v. Thus, v = u and d = c verifies the
conditions.

– u ∈ C({q;⊥ | q ∈ P(L) \ {⊥,>}}). Then u ⊆ v implies v is also a cube of
{q;⊥ | q ∈ P(L) \ {⊥,>}}. This implies:

∗ Either c = (p, q;⊥), p ≤ ⊥;⊥, q < >. This implies u = (~⊥q;⊥, q;⊥).
Then, u ⊆ v implies v = (~⊥q;⊥, t;⊥), t ≥ q. We define, d = (p, t;⊥).
Then c ⊆ d, and v ∈ Θ(C(X)) implies d ∈ C(X)

∗ or c = (p;⊥, q), p > ⊥ and >;⊥ ≤ q, which is dual to the case above.
– u ∈ C({>;q | q ∈ P(L) \ {⊥,>}}). Similar to the case above.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 227

Lemma 4.4.26. Given a cover R, and any partition U
∐

V = R, such that U 6= ∅. Then∐
Uθ∈SU

C(ZUθ,Vθ) = Θ(C(ZU,V))

With SU = {Uθ | U = {r ∈ R | Uθ ∩Θ(r) 6= ∅}, Uθ q Vθ = Θ(R)}

Proof. Let us suppose given a partition U qV = Ω(R) such that U 6= ∅. We will proceed
by double inclusion:

• Let c ∈ Θ(C(ZU,V)) i.e. c ∈ Θ(x), d ∈ C(ZU,V),

– If [d] ⊆ [v]c, then by Lemma 4.4.23, we have [c][Θ(d)] ⊆ [d] ⊆ [v]c ⊆ [Θ(v)]c

– d ⊆ u implies by Lemma 4.4.24 that there exists a unique uc ∈ Θ(u) such that
c ⊆ uc. Thus, for any w ∈ Θ(u) \ uc, [c] ⊆ [w]c

Thus, d ⊆
⋂
u∈U

[u]
⋂
v∈V

[v]c implies

[c] ⊆
⋂
u∈U

(
[uc]

⋂
w∈Θ(u)
w 6=uc

[w]c
)⋂
v∈V

[Θ(v)]c

[c] ⊆
⋂
u∈U

(
[uc]

⋂
w∈Θ(u)
w 6=uc

[w]c
)⋂
v∈V

⋂
w∈Θ(v)

[w]c

Then by defining Uθ = {uc | u ∈ U} and Vθ = Θ(V)
⋃
Θ(U)\Uθ, we have UθqVθ =

Θ(U) ∪Θ(V) = Θ(R) and

c ∈ C(ZUθ,Vθ)

• Given U
∐

V = R, let us show that for any Uθ
∐

Vθ = Θ(R) such that Uθ ∈ SU , we
have

ZUθ,Vθ ⊆ ZU,V

for all u ∈ U such that Uθ ∩Θ(u) 6= ∅, if there exists u1 6= u2 ∈ Uθ ∩Θ(u), then by
Lemma 4.4.22, [u1] ∩ [u2] = ∅ i.e.

ZUθ,Vθ = ∅

If that’s the case, then we can conclude the whole proof. Let us then suppose that
for all u ∈ U there exists a unique uθ ∈ Θ(u) such that uθ ∈ Θ(u) ∩ Uθ. Thus, by
definition of SU , we have:

Uθ = {uθ | u ∈ U} Vθ =
⋃
u∈U
{w ∈ Θ(u) | w 6= uθ} ∪Θ(V)

228 4. HANDLING PROGRAMS WITH LOOPS

Then,

ZUθ,Vθ =
⋂

u′∈Uθ

[u′]
⋂
v∈Vθ

[v]c

=
⋂

uθ∈Uθ

[uθ]
⋂
u∈U

(⋂
w∈Θ(u)
w 6=uθ

[w]c
) ⋂
v∈Θ(V)

[v′]c

=
⋂
u∈U

(
[uθ]

⋂
w∈Θ(u)\{uθ}

[w]c
)⋂
v∈V

(⋃
w∈Θ(v)

[w]

)c

=
⋂
u∈U

[uθ]
⋂
v∈V

[Θ(v)]c Lemma 4.4.22

⊆
⋂
u∈U

[u]
⋂
v∈V

[v]c Lemma 4.4.22

ZUθ,Vθ ⊆ ZU,V

Thus, C(ZUθ,Vθ) ⊆ C(ZU,V) and hence

Θ(C(ZUθ,Vθ)) ⊆ Θ(C(ZU,V))

By definition, there exists at least an element u ∈ Uθ. Thus, ZUθ,Vθ ⊆ [u], which
implies by Lemma 4.4.23,

C(ZUθ,Vθ) ⊆ Θ(C(ZUθ,Vθ)) ⊆ Θ(C(ZU,V))

Thus, for any cover R and any U q V = R such that C(ZU,V) ∩ C−1, we have∐
Uθ∈SU

C(ZUθ,Vθ) = Θ(C(ZU,V))

Lemma 4.4.27. Given a cover R and any partition U q V = R such that U 6= ∅, we
have ∐

Uθ∈SU

Cmax(ZUθ,Vθ) = Θ(Cmax(ZU,V))

With SU = {Uθ | U = {r ∈ R | Uθ ∩Θ(r) 6= ∅}, Uθ q Vθ = Θ(R)}

Proof. By the previous Lemma 4.4.26, we have∐
Uθ∈XU

C(ZUθ,Vθ) = Θ(C(ZU,V))

Let us prove that the equality holds on maximal cubes by double inclusion

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 229

• Let us suppose c ∈ Cmax(ZU0
θ ,V

0
θ
). By Lemma 4.4.26, we have that c ∈ Θ(i), i ∈

C(ZU,V). Now, let us suppose i ⊆ j ∈ Cmax(ZU,V), Then by Lemma 4.4.24, there
exists d ∈ Θ(j) ⊆

∐
Uθ∈XU

C(ZUθ,Vθ) such that

c ⊆ d

Furthermore, as the ZUθ,Vθ are disjoint, this implies d ∈ C(ZU0
θ ,V

0
θ
). Thus, by

maximality of c, we have c = d, which implies i = j, i.e.

c ∈ Θ(Cmax(ZU,V))

• Let us suppose c ∈ Θ(Cmax(ZU,V)) there exists i ∈ Cmax(ZU,V) such that c ∈ Θ(i),
By Lemma 4.4.26, we have that c ∈ C(ZUθ,Vθ), Uθ ∈ XU . Let us suppose d ∈
Cmax(ZUθ,Vθ), Uθ ∈ SU such that

c ⊆ d

By Lemma 4.4.26, d ∈ Θ(C(ZU,V)). Then by Lemma 4.4.25 there exists j ∈ C(ZU,V)
such that d ∈ Θ(j) and i ⊆ j. This implies by maximality of i that i = j, and by
Lemma 4.4.22 that c = d i.e.

c ∈ Cmax(ZUθ,Vθ)

Proposition 4.4.28. Let P ∈ Pgrm, for any conservative cover R on a program U(P),

Θ ◦ Γm(R) = Γm ◦Θ(R)

Proof. First we will write X =
⋃

UqV=R
U 6=∅

XU with

XU = {Uθ | U = {r ∈ R | Uθ ∩Θ(r) 6= ∅}, Uθ q Vθ = Θ(R)}

as previously defined. Let us prove that

X = {Uθ | Uθ 6= ∅, Uθ ⊆ Θ(R)}

By definition X ⊆ {Uθ | Uθ ⊆ Θ(R)}. Furthermore, given a partition UθqVθ, if we define

U = {r ∈ R | Uθ ∩Θ(r) 6= ∅} V = {r ∈ R | Uθ ∩Θ(r) = ∅}

We have, Uθ ∈ XU and U q V = R, such that {Uθ | Uθ ⊆ Θ(R)} ⊆ X. And thus,

X = {Uθ | Uθ 6= ∅, Uθ ⊆ Θ(R)} (4.4)

Now let us proceed by induction on the program P .

230 4. HANDLING PROGRAMS WITH LOOPS

• P ∈ Prcs∗. Given a cover R on P , we get

Θ ◦ Γm(R) =
⋃

U
⊔
V=R

U 6=∅

Θ(Cmax(ZU,V))

=
⋃

U
⊔
V=R

U 6=∅

∐
Uθ∈XU

Cmax(ZUθ,Vθ) Lemma 4.4.27

=
⋃

Uθ
⊔
Vθ=Θ(R)

Uθ 6=∅

Cmax(ZUθ,Vθ) Eq. (4.4)

Θ ◦ Γm(R) = Γm ◦Θ(R)

• P = P1‖ · · · ‖Pn, for all 1 ≤ i ≤ n, Pi ∈ Prcs∗. Then for any cover S on P , we have

Γm(S) =

(∏
1≤k≤n

Γm(Pk(S))
)⋂

C[S]

where Pk(S) = {ck | c1‖ . . . ‖cn ∈ S}. We can remark that by linearity

Θ(Pk(S)) = Pk(Θ(S))

We have for any 1 ≤ k ≤ n,

Θ ◦ Γm(Pk(R)) = Γm(Θ(Pk(R))) by the case above
Θ ◦ Γm(Pk(R)) = Γm(Pk(Θ(R)))

Furthermore, by Lemma 4.4.22

C(R) = C(Θ(R))

This is true for all 1 ≤ k ≤ n, then as Θ distributes over products, we get:

Θ ◦ Γm(R) =

(∏
1≤k≤n

Θ ◦ Γm(Pk(R))

)⋂
C(R)

=

(∏
1≤k≤n

Γm
(
Pk(Θ(R))

))⋂
C(Θ(R))

Θ ◦ Γm(R) = Γm ◦Θ(R)

Proposition 4.4.29. Let P ∈ Pgrm, for any conservative cover R on a program U(P),

Θ ◦ Γ∗(R) = Γ∗ ◦Θ(R)

Proof.

Θ ◦ Γ∗(R) = Θ ◦ Γm ◦ Γm(R) Proposition 3.3.22
= Γm ◦Θ ◦ Γm(R) Proposition 4.4.28
= Γm ◦ Γm ◦Θ(R) Proposition 4.4.28

Θ ◦ Γ∗(R) = Γ∗ ◦Θ(R)

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 231

4.4.2.3 Γ∗ ◦Ψ−1 = Ψ−1 ◦ Γ∗

Instead of directly proving the commutation of Γ∗ and Ψ−1 (bottom right square in the
diagram) we prove the commutation of the bottom part of the diagram, which corresponds
to the following commutation.

Proposition 4.4.37. Let P ∈ Pgrm, R a maximal conservative cover on P . Then

Ψ−1 ◦ Γ∗ ◦ Ω(R) = Γ∗ ◦Θ ◦Ψ−1(R)

We begin by a few technical lemmas, which are for most direct consequences of our
definition that are restated in this form for practicality.

Lemma 4.4.30. Given a cube u ∈ Ω(C(P)). Then

• Ω ◦ Ω = Ω

• For any subset X ⊆ [u], C(X) ∈ Ω(C(P))

Proof. Directly by definition of Ω

Corollary 4.4.31. Given a cover R and a partition U q V = Ω(R), U 6= ∅, then

C(ZU,V) = Ω(C(ZU,V))

Proof. As U 6= ∅, there exists u ∈ Ω(R) such that ZU,V ⊆ [u]. Thus, by Lemma 4.4.30
C(ZU,V) ∈ Ω(C(P)), and C(ZU,V) = Ω(C(ZU,V))

We have a complementary version of Proposition 4.3.22, that implies the reflection of
order on lifting of cut cubes.

Lemma 4.4.32. Let P ∈ Prcs, R a conservative cover of P *. Let i, j ∈ Ψ−1(Ω(R)).
Then

Ψ(i) ⊆ Ψ(j) =⇒ ∃k ∈ Ψ−1(Ψ(j)), i ⊆ k

Proof. First let us remark that Ψ(j) 6∈ L1∩Ω(R). As by definition, no cubes of Ω(R) can
contain >*, we are left with Ψ(i),Ψ(j) ∈ C0 ∪ L5.

• Ψ(i) ∈ C0. Then Ψ(i) ⊆ Ψ(j), Ψ(j) ∈ Ω(R) implies Ψ(i) = Ψ(j), and then i = j by
Proposition 4.2.36.

• Ψ(i) ∈ L5. Then Ψ(i) ⊆ Ψ(j) implies Ψ(j) ∈ L5. Then Ψ(i) = (p*, q*) 6= (⊥*,⊥*).
Then Ψ(i) = (p*, q*) ⊆ (x*, y*) = j implies by Lemma 4.3.16, (p, q) ⊆ (x, y) and by
induction rules

(p;⊥, q;⊥) ⊆ (x;⊥, y;⊥) ≈ j

(>;p,>;q) ⊆ (>;x,>;y) ≈ j

As i ∈ {(p;⊥, q;⊥), (>;p,>;q)} by definition, this concludes the case.

Lemma 4.4.33. Let P ∈ Pgrm, R a conservative cover on P . Let c, d ∈ Ω(R). Then

232 4. HANDLING PROGRAMS WITH LOOPS

• [c] ⊆ [d]c implies for all x ∈ Ψ−1(c), [x] ⊆
⋂

y∈Ψ−1(d)

[y]c

Proof. Let P ∈ Pgrm, R a conservative cover on P . Let c, d ∈ Ω(R).

• By contraposition, let us suppose that there exists x ∈ Ψ−1(c), y ∈ Ψ−1(d) such
that

[x] ⊆ [y]

=⇒ Φ[x] ⊆ Φ[y]

=⇒ [Ψ(x)] ⊆ [Ψ(y)] Proposition 4.2.44
=⇒ [c] ⊆ [d]

=⇒ [c] 6⊆ [d]c

Thus [c] ⊆ [d]c implies for all x ∈ Ψ−1(c), [x] ⊆
⋂

y∈Ψ−1(d)

[y]c

The core of the commutation is proven in the following lemmas by proving that the
maximal cover of the associated partition supports commute with Ψ−1

Lemma 4.4.34. Given a cover R on a program P ∈ Prcs∗, such that R = Ω(R) and
any partition U q V = R. ∐

Uψ∈XU

C(ZUψ,Vψ) = Ψ−1(C(ZU,V))

With XU = {Uψ | U = {r ∈ R | Uψ ∩Ψ−1(r) 6= ∅}, Uψ q Vψ = Ψ−1(R)}

Proof. Let us suppose given a partition UqV = Ω(R), U 6= ∅. We will proceed by double
inclusion:

• Let c ∈ Ψ−1(C(ZU,V)) i.e. c ∈ Ψ−1(x), x ∈ C(ZU,V) = Ω(C(ZU,V)) (by Corol-
lary 4.4.31)

– By Lemma 4.4.33 [x] ⊆ [v]c implies [c] ⊆ [Ψ−1(v)]c

– x ⊆ u implies by Lemma 4.4.32 that there exists uc ∈ Ψ−1(u) such that c ⊆ uc.
And, by Proposition 4.2.40, for any w ∈ Ψ−1(u), w 6= uc implies [c] ⊆ [w]c

Thus, x ⊆
⋂
u∈U

[u]
⋂
v∈V

[v]c implies

[c] ⊆
⋂
u∈U

(
[uc]

⋂
w∈Ψ−1(u)
w 6=uc

[w]c
)⋂
v∈V

[Ψ−1(v)]c

[c] ⊆
⋂
u∈U

(
[uc]

⋂
w∈Ψ−1(u)
w 6=uc

[w]c
)⋂
v∈V

⋂
w∈Ψ−1(v)

[w]c

Then by defining Uψ = {uc | u ∈ U} and Vψ = Ψ−1(V)
⋃
Ψ−1(U) \ Uψ, we have

Uψ q Vψ = Ψ−1(U) ∪Ψ−1(V) = Ψ−1(R) and

c ∈ C(Zuψ,Vψ)

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 233

• Given a partition U q V = Ω(R). Let c ∈ C(ZUψ,Vψ) such that Uψ ∈ XU .

– By Proposition 4.3.18, c ⊆ uψ implies Ψ(c) ⊆ Ψ(uψ)

– By definition of XU , we have that for any vψ ∈ Vψ, with v = Ψ(vψ), we have
that Ψ1(v) ⊆ Vψ. Thus, for any v ∈ V , [c] ⊆ [Ψ−1(v)]c. By contraposition of
Lemma 4.4.32, we get that [Ψ(c)] ⊆ [Ψ ◦Ψ−1(v)]c = [v]c

Thus we get

Ψ(c) ⊆
⋂

uψ∈Uψ

[Ψ(uψ)]
⋂
v∈V

[v]

Ψ(c) ⊆
⋂
u∈U

[u]
⋂
v∈V

[v]

i.e. c ∈ Ψ−1(C(ZU,V))

Lemma 4.4.35. Given a cover R, such that R = Ω(R) and any U q V = R such that
U 6= ∅ ∐

Uψ∈XU

Cmax(ZUψ,Vψ) = Ψ−1(Cmax(ZU,V))

With XU = {Uψ | U = {r ∈ R | Uψ ∩Ψ−1(r) 6= ∅}, Uψ q Vψ = Ψ−1(R)}

Proof. By the previous Lemma 4.4.34, we have∐
Uψ∈XU

C(ZUψ,Vψ) = Ψ−1(C(ZU,V))

Let us prove that the equality holds on maximal cubes by double inclusion

• Let us suppose c ∈ Cmax(ZU0
ψ,V

0
ψ
). By Lemma 4.4.34, we have that c ∈ Ψ−1(x), x ∈

C(ZU,V). Now, let us suppose x ⊆ y ∈ Cmax(ZU,V), Then by Lemma 4.4.32, there
exists d ∈ Ψ−1(y) i.e. d ∈

∐
Uψ∈XU

C(ZUψ,Vψ) such that

c ⊆ d

As the ZUψ,Vψ are disjoint, this implies d ∈ Cmax(ZU0
ψ,V

0
ψ
). Thus, c = d, which

implies x = y, i.e.
c ∈ Ψ−1(Cmax(ZU,V))

• Let us suppose c ∈ Ψ−1(Cmax(ZU,V)). By Lemma 4.4.34, we have that c ∈ C(ZUψ,Vψ),
Uψ ∈ XU . Let us suppose d ∈ Cmax(ZUψ,Vψ) such that

c ⊆ d

Then by Proposition 4.3.18 Ψ(c) ⊆ Ψ(d). This implies by maximality of Ψ(c) that
Ψ(c) = Ψ(d) and by Proposition 4.2.40, c ⊆ d implies c = d.

234 4. HANDLING PROGRAMS WITH LOOPS

Proposition 4.4.36. Let P ∈ Pgrm, R a maximal conservative cover on P . Then

Ψ−1 ◦ Γm(Ω(R)) = Γm ◦Θ ◦Ψ−1(R)

Proof. First we will write X =
⋃

UqV=R
U 6=∅

XU with

XU = {Uψ | U = {r ∈ R | Uψ ∩Ψ−1(r) 6= ∅}, Uψ q Vψ = Ψ−1(R)}

as previously defined. Let us prove that

X = {Uψ | Uψ 6= ∅, Uψ ⊆ Ψ−1(R)}

By definition X ⊆ {Uψ | Uψ ⊆ Ψ−1(R)}. Furthermore, given a partition Uψ q Vψ =,
Uψ 6= ∅, if we define

U = {r ∈ R | Uψ ∩Ψ−1(r) 6= ∅} V = {r ∈ R | Uψ ∩Ψ−1(r) = ∅}

We have, U 6= ∅ as Uψ 6= ∅. Thus, Uψ ∈ XU and U q V = R, such that {Uψ | Uψ ⊆
Ψ−1(R)} ⊆ X. And thus,

X = {Uψ | Uψ 6= ∅, Uψ ⊆ Ψ−1(R)} (4.5)

Now we will proceed by induction on P

• P ∈ Prcs∗. Given R a cover on P , such that R =
⋃
i∈I

Ri, with Ri maximal conser-

vative. As Ω(R) = Ω(Ω(R)), we can apply the previous lemmas

Ψ−1 ◦ Γm ◦ Ω(R) =
⋃

U
⊔
V=Ω(R)
U 6=∅

Ψ−1(Cmax(ZU,V))

=
⋃

U
⊔
V=Ω(R)
U 6=∅

∐
Uψ∈XU

Cmax(ZUψ,Vψ) Lemma 4.4.35

=
⋃

Uψ
⊔
Vψ=Ψ−1◦Ω(R)

Uψ 6=∅

Cmax(ZUψ,Vψ) Eq. (4.5)

= Γm ◦Ψ−1 ◦ Ω(R)

= Γm ◦Ψ−1 ◦ Ω(
⋃
i∈I

Ri)

= Γm ◦
⋃
i∈I

Ψ−1 ◦ Ω(Ri)

= Γm ◦
⋃
i∈I

Θ ◦Ψ−1(Ri) Proposition 4.4.21

Ψ−1 ◦ Γm ◦ Ω(R) = Γm ◦Θ ◦Ψ−1(R)

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 235

• P = P1‖ · · · ‖Pn, Pk ∈ Prcs∗. Then for any cover S on P , we have

Γm(S) =

(∏
1≤k≤n

Γm(Pk(S))
)⋂

C[S]

where Pk(S) = {ck | c1‖ . . . ‖cn ∈ S}. We can remark that by linearity

Pk(Ω(S)) = Ω(Pk(S)) Ψ−1(Pk(S)) = Pk(Ψ−1(S)) Pk(Θ(S)) = Θ(Pk(S))

As the case of sequential process above does not require R to be maximal, we have
for any 1 ≤ k ≤ n,

Ψ−1 ◦ Γm(Pk(Ω(R))) = Ψ−1 ◦ Γm ◦ Ω(Pk(R))

= Γm ◦Θ ◦Ψ−1(Pk(R)) by the case above
Ψ−1 ◦ Γm(Pk(Ω(R))) = Γm ◦ Pk(Θ ◦Ψ−1(R))

As R is maximal and conservative, by Proposition 4.3.26

Ψ−1(C(Ω(R))) = Ψ−1(C(R)) = C(Ψ−1(R)) \ C−1 = C(Θ ◦Ψ−1(R)) \ C−1

This is true for all 1 ≤ k ≤ n, then as Ψ−1 and Ω distribute over products, we get:

Ψ−1 ◦ Γm ◦ Ω(R) =

(∏
1≤k≤n

Ψ−1 ◦ Γm(Pk(Ω(R)))

)⋂
Ψ−1(C(Ω(R)))

=

(∏
1≤k≤n

Γm
(
Pk(Θ ◦Ψ−1(R))

))⋂
C(Θ ◦Ψ−1(R)) \ΠU(P)C−1

Ψ−1 ◦ Γm ◦ Ω(R) = Γm ◦Θ ◦Ψ−1(R)

As by definition, no cube of
∏

1≤k≤n Γ
m
(
Pk(Θ ◦Ψ−1(R))

)
are in ΠU(P)C−1

Proposition 4.4.37. Let P ∈ Pgrm, R a maximal conservative cover on P . Then

Ψ−1 ◦ Γ∗ ◦ Ω(R) = Γ∗ ◦Θ ◦Ψ−1(R)

236 4. HANDLING PROGRAMS WITH LOOPS

Proof.

Ψ−1 ◦ Γ∗(Ω(R)) = Ψ−1 ◦ Γm ◦ Γm(Ω(R)) Lemma 3.3.20

= Ψ−1
∐

UqV=Ω(R)
U 6=∅

Γm(Cmax(ZU,V)) Lemma 3.3.21

=
∐

UqV=Ω(R)
U 6=∅

Ψ−1 ◦ Γm(Cmax(ZU,V))

=
∐

UqV=Ω(R)
U 6=∅

Ψ−1 ◦ Γm ◦ Ω(Cmax(ZU,V)) Corollary 4.4.31

=
∐

UqV=Ω(R)
U 6=∅

Γm ◦Θ ◦Ψ−1(Cmax(ZU,V)) Proposition 4.4.36

= Γm
(∐
UqV=Ω(R)

U 6=∅

Θ ◦Ψ−1(Cmax(ZU,V))
)

by the remark below

= Γm ◦Θ ◦Ψ−1(
∐

UqV=Ω(R)
U 6=∅

Cmax(ZU,V))

= Γm ◦Θ ◦Ψ−1 ◦ Γm ◦ Ω(R)

= Γm ◦Θ ◦ Γm ◦ΘΨ−1(R) Proposition 4.4.36
= Γm ◦Θ ◦Θ ◦ Γm ◦Ψ−1(R) Proposition 4.4.28 as Ψ−1(R) maximal
= Γm ◦Θ ◦ Γm ◦Ψ−1(R)

= Γm ◦ Γm ◦Θ ◦Ψ−1(R) Proposition 4.4.28
Ψ−1 ◦ Γ∗(Ω(R)) = Γ∗ ◦Θ ◦Ψ−1(R)

We can now prove the full commutation announced at the start of the section

Proposition 4.4.38. Given a program P ∈ Pgrm and a maximal conservative cover R
on P we have

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗Ω(R)

Proof. Given a program P ∈ Pgrm and a maximal conservative cover R on P we have

Θ ◦ Γ∗ ◦Ψ−1(R) = Γ∗ ◦Θ ◦ ◦Ψ−1(R) Proposition 4.4.29
= Γ∗ ◦Ψ−1 ◦ Ω(R) Proposition 4.4.21

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗ ◦ Ω(R) Proposition 4.4.37

As Ω and Θ preserve reachability, this could be enough to define Algorithm 4.4.51,
but cutting through Ω really is quite costly in terms of number of cubes generated, and
we are going to prove that the only cube that Ω needs to cut is the cube (⊥,>) to comply
with the action of Θ.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 237

4.4.2.4 Γ∗ ◦ Ω = Γ∗ ◦ χ

In this section we prove that the operator Ω is entirely unnecessary when considering the
partition, and can instead be replaced by χ.

Proposition 4.4.44. Let P ∈ Pgrm, let R a conservative maximal cover of P . Then

Γ∗(Ω(R)) = Γ∗(χ(R))

The core of the proof lies in Proposition 4.4.41 which gives an equivalence between
partition of Ω(R) and χ(R).

Example 4.4.39. Indeed, by Proposition 4.3.21, the cubes of a maximal conservative cover
that cross the core will always be grouped in quadruplets of the form (p*,>*),(>*, q*),
(p*,>*, q*),(⊥,>*,>). In the figure below we show the cubical partition associated to
such a quadruplet.

⊥ >>*

(⊥+∅)*(>+∅)*

⊥ >>*

(⊥+∅)*(>+∅)*

Now we give the result of the operations of cutting with Ω.

⊥ >>*

(⊥+∅)*(>+∅)*

⊥ >>*

(⊥+∅)*(>+∅)*

Ω
(
(⊥+∅)*,>

)
Ω
(
⊥, (>+∅)*

)

238 4. HANDLING PROGRAMS WITH LOOPS

⊥ >>*

(⊥+∅)*(>+∅)*

⊥ >>*

(⊥+∅)*(>+∅)*

Ω
(
(⊥+∅)*,>*, (>+∅)*

)
Now if we apply the cubical partition to the union of these covers, we will obtain

exactly the same partition as before. This process generalizes to all maximal conservative
covers (Proposition 4.4.41), and all covers that are a union of maximal conservative cover
(Corollary 4.4.42). The reason χ appears is that we cut (⊥,>) whose partition is equal
to itself.

Lemma 4.4.40. Given a program P ∈ Pgrm and a cube c ∈ C(U(P)), we have

[Ω(c)] = [c]

Proof. By induction on P .

• P ∈ Prcs. Then Ω is the identity.

• P = P1||P2. Then, c ∈ C(U(P)) implies c = c1 × c2 and

[Ω(c)] = [Ω(c1)]× [Ω(c2)]

= [c1]× [c2] induction hypothesis
[Ω(c)] = [c]

Which concludes the proof.

• P = Q*.

– c 6∈ L4. The, by definition of Ω,

[Ω(c)] = [Cmax
(
[c] \ {>*}

)
∪ Cmax

(
[c] ∩ {>*}

)
]

[Ω(c)] = [c] \ {>*} ∪ ([c] ∩ {>*})
[Ω(c)] = [c]

– c = (p,>*, q*). Then, by definition of Ω,

[Ω(c)] = [Ω(p,>*)] ∪ [Ω(>*, q)]

= [p,>*] ∪ [>*, q] by the case above
= [(p,>*, q*)]

[Ω(c)] = [c]

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 239

Proposition 4.4.41. Let P ∈ Prcs∗, X ⊆ P(P) and R a maximal conservative cover
on P . Then, the existence of a partition U

∐
V = χ(R) such that

X =
⋂
u∈U

[u]
⋂
v∈V

[v]c

is equivalent to the existence of a partition UΩ

∐
VΩ = Ω(R) such that

X =
⋂

uΩ∈UΩ

[uΩ]
⋂

vΩ∈VΩ

[vΩ]
c

Proof. For any partition C qD = S of a cover, we write

ZC,D =
⋂
c∈C

[c]
⋂
d∈D

[d]c

Let us proceed by separating the case where our program has a loop.

• P ∈ Prcs. Then Ω is the identity on cubes. Taking UΩ = U and V Ω = V suffice.

• P = Q*. First let us remind that L0 ∩R = ∅.

– R = {(⊥,>)}. Then Ω(R) = χ(R) which concludes the proof.
– ⊥* 6∈ [R]. Then by Proposition 4.3.21, there exists ((pj , qj))j∈J ∈ C(P)J , such

that for all j ∈ J , pj , qj 6∈ {⊥,>} and

R =
⋃
j∈J
{(p*j , q*j)}

By Proposition 4.4.18, this implies Ω(R) = R = χ(R) which concludes the
proof.

– (⊥,>) 6∈ R,>* ∈ R. Then χ(R) = R, thus we simply need to prove the
equivalence between partitions of R and Ω(R).
By Proposition 4.3.21, there exists ((pj , qj))j∈J1∪J2 , such that for all j ∈ J1∪J2,
we have pj , qj ∈ P(P) \ {⊥,>} and

R =
⋃
j∈J1

{(p*j , q*j)}
⋃
j∈J2

{(⊥, q*j), (p*j ,>), (p*j ,>*, q*j), (⊥,>*,>)}

And we write

RJ1 =
⋃
j∈J1

{(p*j , q*j)} RJ2 =
⋃
j∈J2

Rj

with for all j ∈ J2

Rj = {(⊥, q*j), (p*j ,>), (p*j ,>*, q*j), (⊥,>*,>)}

240 4. HANDLING PROGRAMS WITH LOOPS

We define for all j ∈ J2,

U1 = RJ1 ∩ U Uj = Rj ∩ U U2 = RJ2 ∩ U

V1 = RJ1 ∩ V Vj = Rj ∩ V V2 = RJ2 ∩ V

By construction we have,

U = U1 q U2 V = V1 q V2

U = U1 q (
⋃
j∈J

Uj) V = V1 q (
⋃
j∈J

Vj)

Let us prove that for a fixed j ∈ J2 the existence of the partition UjqVj = Rj ,
is equivalent to the existence of a partition UΩ

j q V ω
j = Ω(Rj) such that

ZUj ,Vj = ZUΩ
j , V

ω
j .

Let us fix the notations, we write p = pj , q = qj , and

w = (p*,>) y =(p*,>*, q*)

x = (⊥, q*) z =(⊥,>*,>)

such that Rj = {w, x, y, z} By definition,

Ω(Rj) = Ω{(p*,>), (⊥, q*), (p*,>*, q*), (⊥,>*,>)}

Ω(Rj) = {(p*, ~>p
∗
), (⊥*,⊥*), (~⊥∗

q , q), (⊥,⊥), (>,>)}

∗ If Uj = {x, z} then we have UΩ
j = {(⊥,⊥)}. Indeed,

[p*, ~>p
∗
]c∩[⊥*,⊥*]c∩[~⊥∗

q , q]
c∩[⊥,⊥]∩[>,>]c = {⊥} = [w]c∩[x]∩[y]c∩[z]

∗ If Uj = {w, z} then we have UΩ
j = {(>,>)}. Indeed,

[p*, ~>p
∗
]c∩[⊥*,⊥*]c∩[~⊥∗

q , q]
c∩[⊥,⊥]c∩[>,>] = {>} = [w]∩[x]c∩[y]c∩[z]

∗ If Uj = {w, x, y, z} then we have UΩ
j = {(⊥*,⊥*)}. Indeed,

[p*, ~>p
∗
]c∩ [⊥*,⊥*]∩ [~⊥∗

q , q]
c∩ [⊥,⊥]c∩ [>,>]c = {⊥*} = [w]∩ [x]∩ [y]∩ [z]

∗ If Uj = {w, y} then we have UΩ
j = {(p*, ~>p

∗
)}. Indeed, by Proposi-

tion 4.4.18

[x]c ∩ [y] = [⊥,⊥]c ∩ [⊥*,⊥*]c ∩ [~⊥∗
q , q]

c ∩
(
[p*, ~>p

∗
] t [⊥*,⊥*] t [~⊥∗

q , q]

)
= ([⊥,⊥]c ∩ [⊥*,⊥*]c ∩ [p*, ~>p

∗
]) ∩ [~⊥∗

q , q]
c

[x]c ∩ [y] = [p*, ~>p
∗
] ∩ [~⊥∗

q , q]
c

Furthermore

[w] ∩ [z]c =
(
[p*, ~>p

∗
] t [⊥*,⊥*] t [>,>]

)
∩
(
[⊥,⊥]c ∩ [⊥*,⊥*]c ∩ [>,>]c

)
= [p*, ~>p

∗
] ∩
(
[⊥,⊥]c ∩ [⊥*,⊥*]c ∩ [>,>]c

)
[w] ∩ [z]c = [p*, ~>p

∗
]

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 241

Thus

[w] ∩ [x]c ∩ [y] ∩ [z]c = [p*, ~>p
∗
] ∩ [~⊥∗

q , q]
c

[w] ∩ [x]c ∩ [y] ∩ [z]c = [p*, ~>p
∗
] ∩ [⊥*,⊥*]c ∩ [~⊥∗

q , q]
c ∩ [⊥,⊥]c ∩ [>,>]c

∗ Dually, if Uj = {x, y} then we have UΩ
j = {(~⊥∗

q , q)}. Indeed, by the same
arguments

[w]c ∩ [x] ∩ [y] ∩ [z]c = [p*, ~>p
∗
]c ∩ [~⊥∗

q , q]

[w]c ∩ [x] ∩ [y] ∩ [z]c = [p*, ~>p
∗
] ∩ [⊥*,⊥*]c ∩ [~⊥∗

q , q]
c ∩ [⊥,⊥]c ∩ [>,>]c

∗ If Uj = {w, x, y} then we have UΩ
j = {(p*, ~>p

∗
), (~⊥∗

q , q)}. Indeed,

[w] ∩ [x] = ([p*, ~>p
∗
] t [⊥*,⊥*] t [>,>])

⋂
([~⊥∗

q , q] t [⊥*,⊥*] t [⊥,⊥])

[w] ∩ [x] = ([p*, ~>p
∗
] ∩ [~⊥∗

q , q]) t [⊥*,⊥*]

By Proposition 4.4.18, [z] = [>,>]t [⊥*,⊥*]t [⊥,⊥] i.e. [z]c = [⊥*,⊥*]c∩
([>,>] t [⊥,⊥])c, such that

[⊥*,⊥*] ∩ [z]c = ∅

Additionally [p*, ~>p
∗
] ⊆ [z]c and [~⊥∗

q , q] ⊆ [z]c. Thus,

[w] ∩ [x] ∩ [z]c = [p*, ~>p
∗
] ∩ [~⊥∗

q , q]

And once again by Proposition 4.4.18, [p*, ~>p
∗
], [~⊥∗

q , q] ⊆ [y]. This implies

[w] ∩ [x] ∩ [z]c ∩ [y] = [p*, ~>p
∗
] ∩ [~⊥∗

q , q]

[w] ∩ [x] ∩ [z]c ∩ [y] = [p*, ~>p
∗
] ∩ [⊥*,⊥*] ∩ [~⊥∗

q , q]
c ∩ [⊥,⊥]c ∩ [>,>]c

∗ For all other Uj or UΩ
f , the intersections of the supports are empty.

Thus, we have for all j ∈ J2, a partition UΩ
j q V Ω

j = ω(Rj) such that

ZUj ,Vj = ZUΩ
j , V

Ω
j

We define for all j ∈ J2,

UΩ
1 = Ω(RJ1) ∩ U U2 =

⋃
j∈J2

UΩ
j UΩ = UΩ

1 ∪ UΩ
2

V Ω
1 = Ω(RJ1) ∩ V V2 = RJ2 ∩ V V Ω = V Ω

1 ∪ V Ω
2

By the result above

ZU2,V2
=
⋂
j∈J

ZUj ,Vj =
⋂
j∈J

ZUΩ
j ,V

Ω
j

= ZUΩ
2 ,V

Ω
2

242 4. HANDLING PROGRAMS WITH LOOPS

By Proposition 4.4.18, this implies Ω(RJ1) = RJ1 = χ(RJ1), i.e. U1 = UΩ
1 and

V1 = V Ω
1 , which implies a fortiori

ZU1,V1
= ZUΩ

1 ,V
Ω
1

Furthermore, it also implies UΩ
1 qV q

1 = Ω(RJ1) and by construction UΩ
2 qV2 =

Ω(RJ2). Thus, we have

ZU,V = ZU1,V1
∩ ZU1,V1

= ZUΩ
1 ,V

Ω
1
∩ ZUΩ

2 ,V
Ω
2

= ZUΩ,V Ω

This concludes the proof.

Corollary 4.4.42. Let P ∈ Prcs∗, X ⊆ P(P) and R a cover on P , such that there
exists a family (Ri)i∈I of conservative maximal covers such that R =

⋃
i∈I

Ri. Then, the

existence of a partition U
∐

V = R such that

X =
⋂
u∈U

[u]
⋂
v∈V

[v]c

is equivalent to the existence of a partition UΩ

∐
VΩ = Ω(R) such that

X =
⋂

uΩ∈UΩ

[uΩ]
⋂

vΩ∈VΩ

[vΩ]
c

Proof. Let us suppose given U q V = R. Then if we define

Ui = U ∩Ri Vi = V ∩Ri

Then Ui q Vi = Ri and

U =
⋃
i∈I

Ui V =
⋃
i∈I

Vi

Then by definition,

ZU,V =
⋂
i∈I

ZUi,Vi

By Proposition 4.4.41, applied to all Ui q Vi = Ri with Ri conservative maximal, this is
equivalent to the existence of a partition UΩ

i q V ω
i = Ω(Ri) such that

ZUi,Vi = ZUΩ
i
V ω
i

Furthermore, Ω(R) =
⋃
i∈I

Ri implies

⋃
i∈I

UΩ
i q

⋃
i∈I

V Ω
i = Ω(R)

Hence by defining UΩ =
⋃
i∈I

UΩ
i and vω =

⋃
i∈I

V Ω
i we get

ZUΩ,Vω =
⋂
i∈I

ZUΩ
i ,V

Ω
i

=
⋂
i∈I

ZUi,Vi = ZU,V

This concludes the proof.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 243

Proposition 4.4.43. Let P ∈ Pgrm, let R a conservative maximal cover of P . Then

Γm(Ω(R)) = Γm(R)

Proof. As always, we will need to differentiate P ∈ Prcs∗ and P = P1‖ . . . ‖Pn.

• P ∈ Prcs∗. Given a cover R on P , such that R =
⋃
i∈I

Ri with Ri conservative

maximal. We get

Γm(Ω(R)) =
⋃

UΩ
∐
VΩ=Ω(R)

Cmax(ZUΩ,VΩ
)

=
⋃

U
∐
V=χ(R)

Cmax(ZU,V) Corollary 4.4.42

Γm(Ω(R)) = Γm(χ(R))

• P = P1‖ . . . ‖Pn, Pi ∈ Prcs∗ for all 1 ≤ i ≤ n. Then for any cover S on P , we have

Γm(S) =

(∏
1≤k≤n

Γm(Pk(S))
)⋂

C[S]

where Pk(S) = {ck | c1‖ . . . ‖cn ∈ S}, which is by Corollary 4.3.8 a union of conser-
vative maximal covers. We have for any 1 ≤ k ≤ n,

Γm ◦ Ω(Pk(R)) = Γm(χ(Pk(R))) by the case above

This is true for all 1 ≤ k ≤ n, then as Ω distributes over products, we get:

Γm ◦ Ω(R) =

(∏
1≤k≤n

Γm(Pk(Ω(R)))

)⋂
C(Ω(R))

=

(∏
1≤k≤n

Γm(Pk(Ω(R)))

)⋂
C(R)

=

(∏
1≤k≤n

ΓmΩ(
(
Pk(R)

)
)

)⋂
C(R)

=

(∏
1≤k≤n

Γm(Pk(R))

)⋂
C(χ(R))

Θ ◦ Γm(R) = Γm(χ(R))

Proposition 4.4.44. Let P ∈ Pgrm, let R a conservative maximal cover of P . Then

Γ∗(Ω(R)) = Γ∗(χ(R))

244 4. HANDLING PROGRAMS WITH LOOPS

Proof.

Γ∗(Ω(R)) = Γm ◦ Γm(Ω(R)) Proposition 3.3.22
= Γm ◦ Γm(χ(R)) Proposition 4.4.43

Γ∗(Ω(R)) = Γ∗(χ(R)) Proposition 3.3.22

4.4.2.5 Final Theorem

Finally, we can prove our main theorem on the commutation of the generic cubical par-
tition operator and the lifting of cubes.

Theorem 4.4.45. Given a program P ∈ Pgrm and a maximal conservative cover R on
P we have

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗(χ(R))

Proof. By Proposition 4.4.38, we have for any maximal conservative cover

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗(Ω(R))

By Proposition 4.4.44, this implies

Θ ◦ Γ∗ ◦Ψ−1(R) = Ψ−1 ◦ Γ∗(χ(R))

Remark 4.4.46. As Ψ−1(Rc) = Cmax([R]c) (Theorem 4.3.28) the Theorem 4.4.45 also
works when taking the complement.

4.4.3 Deadlock computation for programs with loops
We now have all the tools required to compute unsafe and doomed covers for programs
with loops using the previous algorithm of [18] on the finite unfolding of programs. This
algorithm is based on a “reachability” order defined on the cubes of the coarsest partition.
Once again, we say that a cube Ri is in the past of Rj , when every point of Ri is the origin
of a directed path of X that reaches Rj “Being in the past of” is actually the reflexive
and transitive closure of the following relation.

Definition 4.4.47. Let R = (Ri)i∈I be a cubical partition of a preorder P. We define
the preorder C on elements of R as the following relation: Ri C Rj if and only if for all
x ∈ [Ri] there exists y ∈ [Rj] and a path of [Ri]

⋃
[Rj] from x to y

Here is the moment where we need to stop seeing U(P) as a program in and of itself
but more as a lens in which we observe its underlying program P . When moving across
the cubical partition of U(P), we should really be thinking of being in both copies of P
at the same time. And naturally, when seen in this light, it makes sense to jump from
any member of an equivalence class to the other when thinking of “being in one’s past”.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 245

Definition 4.4.48. Let P ∈ Pgrm, let R be a conservative cover on P . Let u, v ∈
Γm(CmP \R), then we define C≈ on the quotient of ΘP (Γm(CmU(P) \Ψ

−1(R))) by ≈ as

Ψ−1(u) C≈ Ψ−1(v) ⇐⇒ ∃c, d ∈ Ψ−1(u)×Ψ−1(v), c C d

We define C∗
≈ as the reflexive, transitive closure of C≈

Remark 4.4.49. For conservative programs, loops have no global effect on the consumption
of resources, if one can reach one iteration of the loop, then one can reach it in any further
iteration of the loop, one simply needs to execute all the parallel loops sequentially,
skirting along the edges of the state space.

As an example, let us consider the program P = (Pa; Pb; Vb; Va)*‖(Pb; Pa; Va; Vb). Its
unfolding is given by the program

U(P) = (Pa; Pb; Vb; Va);(Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb)

Looking at its generic partition, the two cubes in grey are equivalent, and indeed, if the
first one can be reached, so can be the second one. Paths to each cube are given by the
line of cubes on the lower side of the semantics.

That is why we consider, with our definition, that a cube is, in a sense, both in the
past and in the future of any member of its equivalence class.

Now we can finally prove the intuition we have presented at the beginning of this
section. Indeed, the following Theorem 4.4.50 tells us precisely that a cube of the looped
program is in the past of another if and only if its equivalence class is in the past of the
equivalence class of the other.

Theorem 4.4.50. Let P ∈ Pgrm, let R be a conservative cover on P . Let u, v ∈
Γm(Cmax(R)), the following properties are equivalent

• u C v

• Ψ−1(u) C≈ Ψ−1(v)

• There exists c, d ∈ Ψ−1(u)×Ψ−1(v) such that c C d

Proof. • P ∈ Prcs. As usual Ψ is the identity, so everything works out.

246 4. HANDLING PROGRAMS WITH LOOPS

• P = S||T . Let c = s× t, d = u×v in ΘP (Γ
m(CmU(P) \Ψ

−1(R))) By Definition 4.1.22,
a path from a||b→ p||q is a path from a→ p and a path from b→ q such that

s× t C u× v ⇐⇒ s C u and t C v

Similarly

Ψ(s× t) C Ψ(u× v) ⇐⇒ Ψ(s) C Ψ(u) and Ψ(t) C Ψ(v)

Then by applying the induction hypothesis to Ψ(s) C Ψ(u) and Ψ(t) C Ψ(v). This
is equivalent to the existence of s′ ≈ s, u′ ≈ u and t′ ≈ t, v′ ≈ v such that

s′ C u′ and t′ C v′

Thus by the remark above it is equivalent to

c = s× t ≈ s′ × t′ C u′ × v′ ≈ u× v = d

• P = Q*. First let us remark that x ∈ ΘP (Γ
m(CmU(P)\Ψ

−1(R))) implies by definition
of Θ

– x ∈ C0
⋃
C0

– or x = (s;⊥, t;⊥) ∈ C5, ⊥ < s ≤ t < >
– or x = (>;s,>;t), ⊥ < s ≤ t < >

And by Theorem 4.4.45, x ∈ Γm(CmP \R) implies x ∈ Ψ ◦ΘP ◦ Γm(CmU(P) \Ψ
−1(R))

i.e.

– x ∈ {(⊥,⊥), (>,>), (⊥*,⊥*)}
– or x = (s*, t*) ∈ L5 such that ⊥ < s ≤ t < >

By reduction rules Definition 4.1.22 and by definition of pred· and succ· The only
reduction rules possible involving ⊥P ,⊥*,>P are

– ⊥ → ⊥* and ⊥* → >
– t* → ⊥*, with t ∈ pred⊥.
– ⊥* → s*, with s ∈ succ⊥.

Similarly, the only reduction rules involving ⊥P;P ,>P;P ,⊥;⊥,>;⊥,>;> are

– ⊥ → ⊥;⊥ and >;⊥ → >
– t;⊥ → >;⊥, with t ∈ pred⊥.
– >;t→ >;>, with t ∈ pred⊥.
– ⊥;⊥ → s;⊥, with s ∈ succ⊥.
– >;⊥ → >;s, with s ∈ succ⊥.

Such that the only transition by C involving cubes of {(⊥,⊥), (>,>), (⊥*,⊥*)} and
C0
⋃
C0 are the following (or transition on cubes in the same equivalence class)

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 247

– (⊥*,⊥*) C (>,>) and Ψ−1((⊥*,⊥*)) 3 (>;>,>;>) C (>,>) ∈ Ψ−1(>,>)
– (⊥,⊥) C (⊥*,⊥*) and Ψ−1(⊥,⊥) 3 (⊥,⊥) C (⊥;⊥,>;>) ∈ Ψ−1((⊥*,⊥*))

– (⊥*,⊥*) C (s*, t*) with s ∈ succ⊥ and

Ψ−1(⊥*,⊥*) 3 (⊥;⊥,⊥;⊥) C (s;⊥, t;⊥) ∈ Ψ−1(s*, t*)

– (s*, t*) C (⊥*,⊥*) with t ∈ pred⊥ and

Ψ−1(⊥*,⊥*) 3 (⊥;⊥,⊥;⊥) C (s;⊥, t;⊥) ∈ Ψ−1(s*, t*)

Thus for all these cubes

u C v ⇐⇒ ∃c, d ∈ Ψ−1(u)×Ψ−1(v), c C d

Now let c, d such that Ψ(c) C Ψ(d). The only case left are when Ψ(c) = (s*, t*) and
Ψ(d) = (u*, v*), such that

Ψ−1(Ψ(c)) = {(s;⊥, t;⊥), (>;s,>;t)}
Ψ−1(Ψ(d)) = {(u;⊥, v;⊥), (>;u,>;v)}

Then Ψ(c) C Ψ(d) implies for all x* ∈ [Ψ(c)] there exists y* ∈ [Ψ(d)] and a directed
path

π = (z*i)i∈I : x
* → y* ⊆ [Ψ(c)] ∪ [Ψ(d)]

Then by Lemma 4.2.14 >* 6∈ [Ψ(c)] ∪ [Ψ(d)], i.e. >* 6∈ π. Thus, we can apply Defi-
nition 4.2.13 which gives z*i ∈ [s*, t*] is equivalent to zi ∈ [s, t] which is equivalent
by reduction rule to

zi;⊥ ∈ [s;⊥, t;⊥]

Similarly z*i ∈ [u*, v*] is equivalent to

zi;⊥ ∈ [u;⊥, v;⊥]

Thus (zi;⊥)i∈I is a directed path of [s;⊥, t;⊥]∪[u;⊥, v;⊥] from x;⊥ ∈ (s;⊥, t;⊥) ≈
c to y;⊥ ∈ (u;⊥, v;⊥) ≈ d Similarly, (>;zi)i∈I is a directed path of [>;s,>;t] ∪
[>;u,>;v] from x;⊥ ∈ (>;s,>;t) ≈ c to y;⊥ ∈ (>;u,>;v) ≈ d

Now to compute the unsafe and doomed regions of our programs with loops, we simply
need to apply Algorithm 3.3.23 to the partition of the unfolding ordered with C as in
Section 1.4.3 and adding arrows in between all elements of a same equivalence class. From
this result, applying Ψ one last time will yield the doomed and unsafe regions.

Algorithm 4.4.51. Given a maximal cover R of the forbidden region of the program P .

1. We obtain the maximal cover of the forbidden region of the unfolding as Ψ−1(R).
Otherwise, compute Φ−1[R].

2. We obtain a cover of the maximal cubes of the authorized region in the same way
as in Algorithm 3.3.23.

248 4. HANDLING PROGRAMS WITH LOOPS

3. Compute the generic partition of the forbidden region as Θ ◦ Γm(Ψ−1(R)c).

4. Compute C≈ using Remark 3.3.26.

5. Compute the deadlocks/unsafe/doomed regions using Algorithm 1.4.33 with the
altered order

6. The deadlocks of the base programs are obtained by projecting the obtained dead-
locks by Φ. Similarly, for the cubes of the unsafe/doomed region we project using
Ψ the cubes obtained in the previous step.

An important thing to understand is that the program actually works in the quotient
of the unfolding, where each execution is simultaneously in both copies of the loop, that
is why the cubes that are equivalent are reachable from each other, we consider that if
we have reached one of the cubes, then we can reach the equivalent cube only in a matter
of considering a shift in the iteration we are looking at. This of course only works as we
are not considering any variables or boolean test for the programs. This method might
be possible to adapt to still work with the addition of these feature, but it would require
some efforts.

As an addition, our work not only produces the Algorithm 4.4.51 but also transmits
an equivalence between the cubical partition, that we hope in later works to carry further,
maybe to an eventual notion of category of components from Chapter 2.

Unfortunately visualization of this algorithm is quite complicated, as the simplest
of programs with deadlocks and loops necessitates 3D graphs (at least 2 dimensions for
the parallel compositions and one for the loops) which makes it very hard to actually
represent what is going on in a “real” conservative programs. An attempt has been made
in Example 4.4.52. This method is actually implemented in the tool Sparkling [42] made
in collaboration with Samuel Mimram, through the form of textual output.

Example 4.4.52. Let us consider the program

P = (Pa; Pb; Vb; Va)*‖(Pb; Pa; Va; Vb)

Its unfolding is given by the program

U(P) = (Pa; Pb; Vb; Va);(Pa; Pb; Vb; Va)‖(Pb; Pa; Va; Vb)

Now let us try to see what our algorithm would give on such a program. To make
the illustration more clear some transitions have been omitted. They do not change the
fundamental results. First and foremost, if we compute the maximal cubes of P we obtain
the following cubes.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 249

250 4. HANDLING PROGRAMS WITH LOOPS

One can see that the generic partition on the base program will separate each position
in its own interval. Indeed, if we look at the projection on (Pa; Pb; Vb; Va)* we obtain the
following partition.

Now if we look at the unfolding of the maximal cubes, we get the following cubes.

4.4. DEADLOCK DETECTION ALGORITHM FOR LOOPED PROGRAMS 251

Now, if we apply the generic cubical partition, we get the following cubes.

Then, applying Θ, we obtain the following partition.

We recall that the order is different from Algorithm 3.3.23. The two cubes in grey are
equivalent for C∗

≈, meaning we can jump from one to the other, which is the case for any
other cube that projects to the same cube on the base program.

The deadlock are easily obtained as the cubes with no transition other than equiva-
lences. Now if we compute the downwards closure of our deadlocks, only taking a single

252 4. HANDLING PROGRAMS WITH LOOPS

deadlock would give us the “correct” unsafe region to project, using the aforementioned
equivalence of cubes.

Finally, projecting back we get the correct deadlocks and unsafe region for our program
with loops.

Remark 4.4.53. In the examples we have that the generic partition separates all positions
into their own cubes. This is an artefact due to the fact that we are identifying a lot of
positions that would get grouped in the same cube for the sake of presentation.

5. PERSPECTIVES 253

Chapter 5
Perspectives

Scientists have calculated that the chances of something so patently absurd
actually existing are millions to one. But magicians have calculated that

million-to-one chances crop up nine times out of ten.

– Sir Terry Pratchett, Mort

In this thesis we have provided an extension of Hashimoto’s theorem about refining
product decompositions of partial orders to the case of loop-free categories. Many of the
useful topological invariants associated to loop-free programs are naturally expressed in
this larger setting. The factorization properties associated to this theorem can now be
used for the purpose of studying independent processes in concurrent programs.

We have also provided a new model of programs, based directly on the syntax of
programs, which imports powerful theoretical results from the directed topological models,
such as Algorithm 1.4.33, in a setting where implementation is much more natural.

We also provide an extension of the aforementioned algorithm in the case of simple
programs with non-nested loops, which offers greater theoretical complexity than the
previously known Algorithm 4.1.6 on programs with loops for the computation of doomed
and unsafe region, while also being easier to implement per our new setting.

Extension of the deadlock detection algorithm to more general
programs
Extending Algorithm 3.3.23 to more than simple programs of NPIMP only requires two
small steps to be effectively implemented.

The first would be to extend the definition of the generic partition Γ∗ to handle
programs whose semantics is not defined as a product. This could be done by calculating
these partitions locally for each n-dimensional product of semantics and gluing them at
the lower dimension cubes at the frontier. The algorithm could then, through iterated
computation, partition the space, starting from the most nested parallel composition and
reassemble the cubes.

The second step required would be to give an inductive characterization of cubes,
more particularly maximal cubes, in order to perform the separation. Indeed, for now,
the characterization of the cubes of a specific constructor, especially in the case of cubes

254 5. PERSPECTIVES

of loops and unfolding is done through the inductive nature of positions. We feel, that
is instead possible of defining cubes of programs inductively from cubes of their subpro-
grams. Results from Lemma 3.3.15, Lemma 3.3.16 and Lemma 4.4.22 even hint at the
fact that a certain notion of maximality could be preserved by these constructions.

For programs with nested loops, there is still much work to be done. While most of
the proofs are independent (or could easily be extended from the case) of nesting loops,
some properties (Definition 4.2.13, Lemma 4.3.16) would need some work to get right.
The notion of trivial loop is already defined with this extension in mind and should prove
useful in an eventual extension.

Abstracting properties of syntactic semantics
As announced before, most of the work in Chapter 4 is still in its early stages and the
proofs could benefit from some refining. For now, we quite brutally apply the inductive
nature of our programs to the proofs and manage to extract the results, with very few
results exploiting known facts in graph theory. However, we do believe that there is a
nice general setting in which the graphs associated to state space of programs exists.

Indeed, as already hinted at by Lemma 4.4.16 and the proof of Lemma 4.2.14, there
is a certain notion of “well-bracketedness” to the graphs of sequential programs: given
a main path π, any pair of paths that split from a vertex must wait for any pair of
paths that split further along π to rejoin before they can rejoin themselves. Furthermore,
paths are confluent (i.e. they always rejoin). On the left below we have an example of a
“well-bracketed” graph and on the right, one that does not have such a property.

This is due to the fact that we do not have jump instructions in our language, so that
when going through a conditional branching we cannot reach the other branches. One
can notice that this also extends to loops, and is what gives us the nice characterization
of maximal covers (Proposition 4.3.21) and the cutting properties than ensue from it.

Conservative regions and Alexandroff topology
In our works we had a lot of trouble in how to deal with the core of the loop. We had
to force intervals to somehow spread inside the loop, as we feel it is very important to
differentiate the different states near the core of the loop (being able to enter, being inside,
being able to leave, having left…). We dealt with this problem by forcibly separating these
positions through the consideration of conservative regions. This forced the existence of
some states (⊥ for P;Q that should not differ from ⊥;⊥ in principle but whose distinction
is important in our proofs when considering loops).

Alexandroff spaces [3] are topological space such that every point has a minimal neigh-
bourhood. For graphs, if we define the subset of its set of vertices E to be the opens,

255

we define an Alexandroff space, where the minimal neighbourhoods are the edges and
stars (a vertex with all initial and terminal edges for that vertex). The fact that minimal
neighbourhoods are stars and that we mostly consider edges might solve our problem of
discretization around the core of the loops.

Instead of considering positions as we did, one could also look at this topology, which
can be defined inductively on programs and could join some nice tools from directed
topological spaces and the implementability of our methods.

Equivalence between topological and syntactic models
Most tools developed in the case of syntactic models were heavily inspired from tools of
the directed topological models of concurrent programs. It is then natural to ask if there
exists an equivalence between the resulting objects it generates. One good candidate is
the category of components associated to a program.

This topological invariant can be constructed from the data of the maximal cover
of the topological space, a cubical partition compatible with this cover and the relation
C (Definition 1.4.31) (see [18, Section 6], [28] for more details). All of which have an
equivalent in our syntactic models. It is very reasonable to then ask ourselves if the
notion already defined have the same properties and can be used to define a “category of
components”. Furthermore, we would also need to know if this “category of components”
correspond to the classical notion.

We believe that the links we have stipulated above with the Alexandroff topology on
graphs might play an important part, in the equivalences between these models, as a
point where these different approach converge.

Extending lifting property to category of components
In Chapter 4, we have seen that maximal cubes of the base program can be seen as a
quotient of the 2-unfolding. The same was also proven for the generic cubical partition
(the use of the operator Θ when considering the generic partitions might complicate our
affairs) and the relation C.

If we can define a notion of category of components for syntactic semantics, it would
be interesting to see how this property translates. Even though we don’t expect it to
work with our current definitions, we have high hopes that many insights can be gained
from the attempt.

As previously stated it is still unknown what is the correct definition of the category
of components of a program with loops, so there is still much to learn in this direction.
Thus considering the quotient, or localization of the category of the 2-unfolding might
prove itself insightful in finding the correct way to go about this particular problem.

256 5. PERSPECTIVES

APPENDIX A. TECHNICAL BACKGROUND 257

Chapter A
Technical Background

A.1 Category theory
Here we give an informal primer and reminder on the categorical notion used throughout
this thesis. For a more in depth explanation on category theory we refer the reader to
the wealth of resources available [38], [21]. As we always deal with small categories in the
verification of programs, we have limited our presentation to this case.

Definition A.1.1 (Category). A (small) category C consists of the following data:

• A set Obj(C) of objects

• For each pair x, y ∈ Obj(C) a collection HomC(x, y), alternatively written C(x, y), of
morphisms (or arrows) from x to y, called a hom-set.

• For each object x a morphism idx ∈ HomC(x, x) called the identity morphism on x

• For each pair f, g ∈ C(y, z)×C(x, y), a morphism f ◦g ∈ C(x, z) called the composite
(or composition) of f and g such that:

– Composition is associative i.e. for any triplet f, g, h ∈ C(y, z)×C(x, y)×C(w, x),
we have: f ◦ (g ◦ h) = (f ◦ g) ◦ h

– For any f ∈ HomC(x, y), f ◦ idx = f = idy ◦ f

We sometimes write f : x→ y for f ∈ HomC(x, y).

Definition A.1.2. Given a morphism f : x→ y, in a category C. We call x (resp. y) the
source (resp. target) of f

Let g be a second morphism in C, we say that g and f are co-initial (resp. co-final) if
they have the same source (resp. target).

Definition A.1.3. Given the four morphisms f : A → C, g : C → D, h : A → B,
k : B → D, we say that the following diagram commutes when every path (represent-
ing composition of morphism) on the diagram is equal, i.e. g ◦ f = k ◦ h

258 APPENDIX A. TECHNICAL BACKGROUND

C D

A B

g

h

kf

Definition A.1.4. (Opposite Category) Given a category C, the opposite category Cop
has the same objects as C, but a morphism f : x → y in Cop is the same as a morphism
f : y → x in C, and a composite of morphism g ◦ f in Cop is defined to be the composite
f ◦ g ∈ C

Definition A.1.5 (Isomorphism). Given a category C, and f ∈ C(x, y). f is called an
isomorphism if there exists a morphism f−1 such that

f ◦ f−1 = idy f−1 ◦ f = idx

In this case, f−1 is unique and called the inverse of f .

Definition A.1.6 (Groupoid). A groupoid is a (small) category in which all morphisms
are isomorphism

Definition A.1.7 (Functor). A functor F from a category C to a category D is a map
sending each object x ∈ C to an object F (x) ∈ D and each morphism f : x → y in C to
morphism F (f) : F (x)→ F (y) in D, such that:

• F preserves composition: F (g ◦ f) = F (g) ◦ F (f) whenever the left-hand side is
well-defined

• F preserves identity morphisms: for each object x ∈ C, F (1x) = 1F (x).

Alternatively, a functor f : C → D sends commutative diagrams in C to commutative
diagrams in D

Definition A.1.8. The category Cat is the category which has:

• As objects, all (small) categories

• As arrows of HomCat(C,D) all functors F : C → D

• As composition the evident composition of functors

Definition A.1.9 (Natural transformation). Given two categories C,D and two functors
F,G : C → D, a natural transformation α : F ⇒ G is a family of maps (ηx : F (x) →
G(x))x∈Obj(C) such that for any morphism f : x→ y, the following diagram commutes:

F (x) F (y)

G(x) G(y)

αx

F (f)

αy

G(f)

A.1. CATEGORY THEORY 259

If each etax : F (x) → G(x) is an isomorphism in D, η is a natural isomorphism, and we
write F w G.

Definition A.1.10 (Presheaves). Given a small category S, a presheaf on C is a functor

F : Cop → Set

The category of presheaves on C, denoted [Cop,Set], SetC
op

, or simply Ĉ has:

• functors F : Cop → Set as objects,

• natural transformations between such functors as morphisms

Definition A.1.11 (Pullback, pushout). Given a category C, with f : a→ c and g : b→ c,
two co-terminal arrows of C. A pullback of f and g consists of an object x, together with
arrows pa : x→ a and pb : x→ b such that:

• The following diagram commutes:

b c

x a

g

fpb

pa

y

• For any object y together with a pair of arrows qya, q
y
b verifying the first condition,

there exists a unique h : x→ y making the following diagram commute:

b c

y a

x

g

fqyb

qya

pb

pa

hy

A pushout in C is a pullback in Cop

Definition A.1.12 (Product Category). Given a category C and any set of its objects
{Xi}{i∈I}, the product of {Xi}{i∈I} is, if it exists an object denoted∏

i∈I
Xi ∈ C

and equipped with morphisms
πj :

∏
i∈I

Xi → Xj

260 APPENDIX A. TECHNICAL BACKGROUND

called projections for all j ∈ I, such that for any family of morphisms {fi : Q → Xi}i∈I ,
there exists a unique morphism

(fi)i∈I : Q→
∏
i∈I

XI

such that all the following diagrams commutes:

Q

∏
i∈I Xi Xi

∃!(fi)i∈I
fi

πi

Example A.1.13. In Cat, all products are defined (we say that Cat has all products).
The product of two categories C,D is the category C × D which has:

• as set of objects the cartesian product Obj(C)× Obj(D)

• as hom-sets HomC×D(X × U, Y × V) = HomC(X,Y)× HomD(U, V)

• as composition, the natural composition on pairs i.e. (g, k) ◦ (f, h) = (g ◦ f, k ◦ h)

Definition A.1.14 (Product Preserving Functor). Given a functor F : C → D and
(Xi)i∈I a set of objects in C which admits a product

∏
i∈I Xi, equipped with projec-

tions πi :
∏
i∈I Xi → Xi. We say that F preserves this product if F (

∏
i∈I Xi), with

projections F (πi) is the product of the objects (F (Xi)i∈I)

Definition A.1.15 (Hom-Functor). Given a small category, its hom-functor is the func-
tor HomC(−,−) : Cop × C → Set from the product category of Cop and C to the category
of sets, which sends:

• each object (x, y) ∈ Cop × C to the hom-set HomC(x, y)

• each morphism (x, y) → (w, z) of Cop × C, i.e. each pair of morphism fop : x → w,
g : y → z to the function

HomC(x, y)→ HomC(w, z)

{q : x→ y} 7→ {g ◦ q ◦ f : w → z}

Definition A.1.16 (Adjoint Functors). Given two categories C,D and two functors
L : C → D and R : D → C We say that L is left adjoint to R (or R right adjoint to
L) when there exists a natural isomorphism between the hom-functors of the following
form:

HomD(L(−),−) w HomC(−, R(−))

Meaning that for all objects c ∈ C and all objects d ∈ D, there is a bijection of hom-sets:

HomD(L(c), d)
w→ HomC(c,R(d))

which is natural in c and d.

A.2. ORDER THEORY 261

Definition A.1.17 (Full, Faithful, Essentially Surjective). A functor F : C → D is called:

• full if for each pair of objects x, y ∈ C, the function F : C(x, y) → D(F (x), F (y))
between hom-sets is surjective

• faithful if for each pair of objects x, y ∈ C, the function F : C(x, y)→ D(F (x), F (y))
between hom-sets is surjective

• fully faithful if it is both full and faithful

• essentially surjective if for every object y of D, there is an object x of C such that
F (x) is isomorphic to y.

Definition A.1.18 (Subcategory). Given a category C, a subcategory D of C is a subset
of set the objects of C and a subset of the set of morphisms of C such that

• If f : x→ y is in D so are x and y

• If f : x→ y and g : y → z are in D, so is their composite g ◦ f .

• If x is an object of D, then idx is in D

Then D is a category in its own right and the inclusion D ↪→ C is a functor, called the
inclusion functor.

Definition A.1.19 (Skeleton). The skeleton of a category C is the unique subcategory
D of C such that:

• The inclusion functor ι : D ↪→ C is full,

• The inclusion functor ι is essentially surjective,

• D is skeletal, i.e. no two distinct objects of D are isomorphic.

Definition A.1.20 (Discrete Fibration). A functor F : C → B is a discrete fibration if for
every object c in C, and every morphism of the form g : b→ F (c) in B there is a unique
morphism h : d→ c such that F (h) = g.

A.2 Order theory
Definition A.2.1 (Pre-order). A pre-order (X,�) is a set X equipped with a relation
� defined on X ×X such that:

• � is transitive i.e. for any x, y, z ∈ X, x � y and y � z implies x � z

• � is reflexive i.e. x � x for all x ∈ X

Definition A.2.2 (Partial order). A partial order (X,≤) is a set X equipped with a
relation 5 defined on X ×X such that:

• (X,≤) is a pre-order

• ≤ is antisymmetric i.e. for any x, y ∈ X, x ≤ y and y ≤ x implies x = y.

262 APPENDIX A. TECHNICAL BACKGROUND

We say that X is a partially ordered set, or poset.

Definition A.2.3 (Bounded Preorder). A bounded pre-order (X,⊥,>) is a pre-order X
equipped with two distinguished elements ⊥,> such that

• For any x ∈ X, ⊥ � x and x 6� ⊥

• For any x ∈ L, x � > and > 6� x

⊥, > can be seen respectively as the smallest and greatest element of the set X.

Definition A.2.4 (Lattice). A lattice (L,≤,∧,∨) is a poset (L,≤) such that each two-
element subset {a, b} ⊆ L has:

• a least upper bound (or join) in L, denoted a ∨ b,

• and a greatest lower bound (or meet) in L, denoted a ∧ b

This is equivalent to requiring that every finite subset X ⊆ L has a join (resp. meet)
denoted

∨
X (resp.

∧
X)

Definition A.2.5 (Bounded lattice). A bounded lattice (L,⊥,>) is a lattice equipped
with two distinguished elements ⊥,> such that

• For any x ∈ L, x ∧ ⊥ = ⊥

• For any x ∈ L, x ∨ > = >

Equivalently, (L,⊥,>) is a bounded lattice if and only if (L,⊥,>) is a bounded pre-
order, where ⊥ and > are respectively the smallest and greatest elements.

Definition A.2.6 (Complete lattice). A complete lattice L is a lattice where any subset
X ⊆ L has a meet

∨
X and join

∧
X

By definition, a complete lattice L is bounded, with ⊥ =
∧

L, > =
∨

L

Definition A.2.7 (Monotone functions). Given two posets (C,≤C), (D, leqD) a function
f : C → D is monotone when for every x, y ∈ C, x ≤C y implies f(x) ≤D f(y)

Definition A.2.8. Every preorder X can be seen as a category, with Obj(X) = X and
each HomX(x, y) defined to contain a single element if x ≤ y, and otherwise it is empty.
We write Pos for the category of partially ordered sets.

With this definition, a monotone function f : C → D is a functor from C to D, i.e. a
morphism in Pos

Definition A.2.9 (Adjunction in posets). Given two posets C, D and a pair of monotone
functions l : CatC → D, r : D → CatC, then l is left adjoint to r if and only if for any
c, d ∈ C × D

l(x) ≤ y ⇐⇒ x ≤ r(y)

Alternatively, we say that there is a monotone Galois connection between C and D.

A.3. TOPOLOGY 263

Theorem A.2.10 (Adjunct functor theorem). Given two posets C, D and a pair of
monotone functions l : CatC → D, r : D → CatC such that l is left-adjoint to r, then

l(c) =
∨
{d ∈ D | r(d) = c} r(d) =

∧
{c ∈ C | l(c) = d}

Definition A.2.11 (Boolean algebra). A Boolean algebra (B,∧,∨) is a bounded lattice
(B,∧,∨) where ∧ and ∨ verify the following additional properties:

• ∧ and ∨ distribute over each other i.e. for any elements x, y, z ∈ B:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

• any element x ∈ B has a complement i.e. there exists xc ∈ B such that:

x ∧ xc = ⊥ x ∨ xc = >

Definition A.2.12 (Atomic boolean algebra). Given a Boolean algebra B, an atom is
an element a ∈ B, such that for any b ∈ B, b ≤ a implies b = ⊥ or b = a.

A Boolean algebra is atomic if for any element b ∈ B, there exists a set {ai}i∈Ib of
atoms of B such that b =

∨
{ai}i∈Ib .

A.3 Topology
Definition A.3.1 (Topological space). Given a set X, a topology τ on X is a collection
τ ⊆ P(X) of subset of X called the open subsets of X, such that:

• τ is closed under finite intersections,

• τ is closed under arbitrary union.

A topological space (X, τ) is a set X equipped with a topology τ

Definition A.3.2 (Metric space). A metric space (X, dX) is a set X equipped with a
distance function d : x×X → [0,+∞[such that for all x, y, z ∈ X:

• d(x, y) = 0 if and only if x = y

• d(x, y) = d(y, x)

• d(x, z) ≤ d(x, y) + d(y, z)

To any metric space X, we can assign a topology where the open sets of X are the open
balls Br(x) = {y ∈ X | d(x, y) < r} for all x ∈ X and all r ∈ R+

Definition A.3.3 (Euclidian topology). The euclidean topology on Rn, is the topology
associated to the metric space (Rn, d), where d(x, y) = ‖x − y‖, with ‖ · ‖ the standard
euclidean norm:

‖(x1, . . . , xn)‖ =
√
x2
1 + · · ·+ x2

n

264 APPENDIX A. TECHNICAL BACKGROUND

Definition A.3.4 (Continuous map). A continuous function f : (X, τX) → (Y, τY) be-
tween topological spaces is a function f : X → Y between the underlying sets, such that
for every open V , the inverse image by f is an open of X i.e. for all V ⊆ Y

V ∈ τY implies f−1(V) ∈ τX

Definition A.3.5 (Paths). We write I for the unit interval [0, 1] ⊆ R equipped with the
euclidean topology. A path on X is a continuous map f : I → X.

Definition A.3.6 (Concatenation of maps). Given f, g two paths on a topological space
X, such that f(1) = g(0) we call concatenation of g and f , the path g · f on X, defined
as follows:

f · g(t) =

{
f(2t) if 0 ≤ t ≤ 1/2

g(2t− 1) otherwise

Definition A.3.7 (Homotopy). Given two continuous maps between topological spaces
f, g : X → Y . A homotopy from f to g is a continuous map h : I × X → Y such that
h(0,−) = f and h(1,−) = g. When such an h exists, the maps f and g are said to be
homotopic, written f ∼ g.

The homotopy relation ∼ defines an equivalence relation

Definition A.3.8 (Fundamental groupoid). The fundamental groupoid Π1(X) associ-
ated to the topological space X is the groupoid:

• whose objects are the points of X,

• whose morphisms are the equivalence classes of endpoint preserving homotopy on
paths of X,

• whose composition is defined by concatenation of paths.

BIBLIOGRAPHY 265

Bibliography

[1] Frances E Allen. Control flow analysis. ACM Sigplan Notices, 5(7):1–19, 1970.

[2] Bowen Alpern and Fred B Schneider. Recognizing safety and liveness. Distributed
computing, 2:117–126, 1987.

[3] Francisco G Arenas. Alexandroff spaces. Acta Math. Univ. Comenianae, 68(1):17–25,
1999.

[4] Martin Arkowitz. Introduction to homotopy theory. Springer Science & Business
Media, 2011.

[5] Thibaut Balabonski and Emmanuel Haucourt. A geometric approach to the problem
of unique decomposition of processes. CoRR, abs/1004.2780, 2010. arXiv:1004.
2780.

[6] Marek A. Bednarczyk, Andrzej M. Borzyszkowski, and Wieslaw Pawlowski. Gen-
eralized congruences-epimorphisms in cat. Theory and Applications of Categories,
5(11):266–280, 1999.

[7] Edmund M Clarke. Model checking–my 27-year quest to overcome the state ex-
plosion problem. In International Conference on Logic for Programming Artificial
Intelligence and Reasoning, pages 182–182. Springer, 2008.

[8] Edmund M Clarke, E Allen Emerson, and A Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[9] Cosynus. Alcool, 2018. Available at http://www.lix.polytechnique.fr/cosynus/
alcool/.

[10] Patrick Cousot and Radhia Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In International Symposium
on Programming Language Implementation and Logic Programming, pages 269–295.
Springer, 1992.

[11] Edsger W Dijkstra. The structure of the “THE”-multiprogramming system. Com-
munications of the ACM, 11(5):341–346, 1968.

[12] Edsger W. Dijkstra. Hierarchical ordering of sequential processes. Acta informatica,
1:115–138, 1971.

https://arxiv.org/abs/1004.2780
https://arxiv.org/abs/1004.2780
http://www.lix.polytechnique.fr/cosynus/alcool/
http://www.lix.polytechnique.fr/cosynus/alcool/

266 BIBLIOGRAPHY

[13] Edsger W. Dijkstra. Cooperating Sequential Processes, pages 65–138. Springer New
York, New York, NY, 2002. doi:10.1007/978-1-4757-3472-0_2.

[14] E.W. Dijkstra. Co-operating sequential processes. In Programming languages :
NATO Advanced Study Institute : lectures given at a three weeks Summer School
held in Villard-le-Lans, 1966 / ed. by F. Genuys, pages 43–112, United States, 1968.
Academic Press Inc.

[15] Allen B Downey. The little book of semaphores. 2005.

[16] Jannik Dreier, Cristian Ene, Pascal Lafourcade, and Yassine Lakhnech. On Unique
Decomposition of Processes in the Applied π-Calculus. In 16th International Con-
ference on Foundations of Software Science and Computational Structures (FOS-
SACS 2013), Held as Part of the European Joint Conferences on Theory and
Practice of Software (ETAPS 2013), Rome, Italy, March 2013. URL: https:
//inria.hal.science/hal-01338002, doi:10.1007/978-3-642-37075-5_4.

[17] Lisbeth Fajstrup. Loops, ditopology and deadlocks. Mathematical Structures in
Computer Science, 10(4):459–480, 2000. doi:10.1017/S0960129500003157.

[18] Lisbeth Fajstrup, Éric Goubault, Emmanuel Haucourt, Samuel Mimram, and Mar-
tin Raussen. Directed Algebraic Topology and Concurrency. Springer International
Publishing, 2016. doi:10.1007/978-3-319-15398-8.

[19] Lisbeth Fajstrup, Eric Goubault, and Martin Raußen. Detecting deadlocks in con-
current systems. In Davide Sangiorgi and Robert de Simone, editors, CONCUR’98
Concurrency Theory, pages 332–347, Berlin, Heidelberg, 1998. Springer Berlin Hei-
delberg.

[20] Lisbeth Fajstrup, Martin Raussen, Éric Goubault, and Emmanuel Haucourt. Com-
ponents of the fundamental category. Applied Categorical Structures, 12:81–108,
2004.

[21] Brendan Fong and David I Spivak. An invitation to applied category theory: seven
sketches in compositionality. Cambridge University Press, 2019.

[22] Peter Gabriel and Michel Zisman. Calculus of fractions and homotopy theory, vol-
ume 35. Springer Science & Business Media, 2012.

[23] Patrice Godefroid. Partial-order methods for the verification of concurrent systems:
an approach to the state-explosion problem. Springer, 1996.

[24] Marco Grandis. Directed homotopy theory, i. Cahiers de Topologie et Géométrie
Différentielle Catégoriques, 44(4):281–316, 2003.

[25] Marco Grandis. Directed algebraic topology: models of non-reversible worlds, vol-
ume 13. Cambridge University Press, 2009.

[26] Junji Hashimoto. On direct product decomposition of partially ordered sets. Annals
of Mathematics, pages 315–318, 1951.

[27] Allen Hatcher. Algebraic topology. Cambridge University Press, 2005.

https://doi.org/10.1007/978-1-4757-3472-0_2
https://inria.hal.science/hal-01338002
https://inria.hal.science/hal-01338002
https://doi.org/10.1007/978-3-642-37075-5_4
https://doi.org/10.1017/S0960129500003157
https://doi.org/10.1007/978-3-319-15398-8

BIBLIOGRAPHY 267

[28] Emmanuel Haucourt. Categories of components and loop-free categories. Theory
and Applications of Categories, 16(27):736–770, 2006.

[29] Emmanuel Haucourt. Some Invariants of Directed Topology towards a Theoreti-
cal Base for a Static Analyzer Dealing with Fine-Grain Concurrency. PhD thesis,
Université Paris 7-Denis Diderot, 2016.

[30] Emmanuel Haucourt. The geometry of conservative programs. Mathemati-
cal Structures in Computer Science, 28(10):1723–1769, 2018. doi:10.1017/
S0960129517000226.

[31] Emmanuel Haucourt and Nicolas Ninin. Unique decomposition of homogeneous lan-
guages and application to isothetic regions. Mathematical Structures in Computer
Science, 29(5):681–730, 2019. doi:10.1017/S0960129518000294.

[32] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), pages 254–266. IEEE, 1977.

[33] Joseph B Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture.
Transactions of the American mathematical society, 95(2):210–225, 1960.

[34] Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE transactions on computers, 100(9):690–691, 1979.

[35] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE transactions
on software engineering, (2):125–143, 1977.

[36] William Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(4):323–337, 1992.

[37] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, Jérôme
Vouillon, et al. OCaml system release 4.02: Documentation and user’s manual (2014),
2017.

[38] Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer
Science & Business Media, 2013.

[39] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first intro-
duction to topos theory. Springer Science & Business Media, 2012.

[40] Robin Milner. Communication and concurrency, volume 84. Prentice hall Englewood
Cliffs, 1989.

[41] Robin Milner and Faron Moller. Unique decomposition of processes. Theoretical
Computer Science, 107(2):357–363, 1993. URL: https://www.sciencedirect.com/
science/article/pii/030439759390176T, doi:10.1016/0304-3975(93)90176-T.

[42] Samuel Mimram and Aly-Bora Ulusoy. Sparkling, 2021. Available at https://
smimram.github.io/sparkling/.

[43] Samuel Mimram and Aly-Bora Ulusoy. Syntactic regions for concurrent programs.
In MFPS, 2021.

https://doi.org/10.1017/S0960129517000226
https://doi.org/10.1017/S0960129517000226
https://doi.org/10.1017/S0960129518000294
https://www.sciencedirect.com/science/article/pii/030439759390176T
https://www.sciencedirect.com/science/article/pii/030439759390176T
https://doi.org/10.1016/0304-3975(93)90176-T
https://smimram.github.io/sparkling/
https://smimram.github.io/sparkling/

268 BIBLIOGRAPHY

[44] Antoine Miné. Static analysis of run-time errors in embedded critical parallel c
programs. In Programming Languages and Systems: 20th European Symposium
on Programming, ESOP 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26–April 3, 2011. Proceedings 20, pages 398–418. Springer, 2011.

[45] Nicolas Ninin. Factorisation des régions cubiques et application à la concurrence.
PhD thesis, École polytechnique, 12 2017.

[46] Ganesan Ramalingam. The undecidability of aliasing. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 16(5):1467–1471, 1994.

[47] Ganesan Ramalingam. Context-sensitive synchronization-sensitive analysis is unde-
cidable. ACM Transactions on Programming languages and Systems (TOPLAS),
22(2):416–430, 2000.

[48] Sylvain Schmitz and Philippe Schnoebelen. Algorithmic aspects of WQO theory.
2012.

[49] Bernd S.W. Schröder. Ordered sets. Springer, 29:30, 2003.

[50] Jaroslav Ŝevčik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan,
and Peter Sewell. Relaxed-memory concurrency and verified compilation. In Pro-
ceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 43–54, 2011.

[51] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and
Francesco Zappa Nardelli. Common compiler optimisations are invalid in the C11
memory model and what we can do about it. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
209–220, 2015.

[52] Rob J. van Glabbeek. On the expressiveness of higher dimensional automata. The-
oretical computer science, 356(3):265–290, 2006.

[53] Glynn Winskel. The formal semantics of programming languages: an introduction.
MIT press, 1993.

Titre : Une approche syntactique à la sémantique dirigée des programmes concurrents

Mots clés : Concurrence, Réalisation géométrique, Algèbre

Résumé : La vérification des programmes des systèmes
critiques est cruciale pour garantir qu’ils exécutent
avec précision les tâches désignées. Les programmes
concurrents, fonctionnant en parallèle avec un accès
mémoire partagé, présentent des défis uniques. Des
verrous sont utilisés pour prévenir les comportements
non déterministes, mais cela peut entraîner des dead-
locks dans les systèmes critiques. Pour étudier ces pro-
grammes, il faut vérifier toutes les exécutions possibles,
ce qui devient exponentiellement complexe.
Nous nous intéressons à un modèle récent où les
programmes sont représentés par des espaces topolo-
giques, équipés d’une notion de direction correspon-
dant à l’exécution du programme. Dans ces modèles,
déterminer la commutation des actions équivaut à dé-
terminer les classes d’équivalence d’homotopie. Cette
perspective géométrique introduit de nouveaux algo-
rithmes de détection de deadlock, ainsi qu’une repré-
sentation efficace de ces espaces à l’aide d’ensembles

de cubes maximaux.
Les algorithmes de détection de deadlock dans les mo-
dèles topologiques et la représentation efficace de la
région autorisée par des cubes ne résultent pas de l’ap-
proche topologique, mais uniquement de la structure
dirigée sous-jacente. C’est pourquoi nous introduisons
un nouveau modèle syntaxique de programmes dans
lequel nous réimplémentons les représentations et al-
gorithmes de l’approche topologique. Cette approche
offre des résultats beaucoup plus facilement utilisables
et implémentables, même dans le cas de programmes
avec des boucles, où nous proposons un nouvel algo-
rithme de détection d’états condamnés.
Nous fournissons également de nouveaux outils pour
la factorisation des programmes grâce à une extension
du théorème de Hashimoto au cas des catégories sans
boucles, qui constitue un cadre naturel pour de nom-
breuses invariants topologiques dans la sémantique di-
rigée des programmes.

Title : A syntactic approach to the directed semantics of concurrent programs

Keywords : Concurrency, Geometric Realization, Algebra

Abstract : Verification of critical systems’ programs
is crucial to ensure they perform designated tasks ac-
curately. Concurrent programs, operating in parallel
with shared memory access, present unique challenges.
Locks are used to prevent non-deterministic behavior,
but this can lead to deadlocks in critical systems. To
study these programs, one must verify all possible exe-
cutions, which becomes exponentially complex.
We are interested in a recent model where programs
are represented by topological spaces, equipped with
a notion of direction corresponding to program execu-
tion. In these models, determining the commutation of
actions is equivalent to determining homotopy equiva-
lence classes. This perspective introduces new deadlock
detection algorithms, as well as an efficient represen-
tation of these spaces using sets of maximal cubes.

The deadlock detection algorithms in topological mo-
dels and the efficient representation of the authorized
region by cubes do not result from the topological ap-
proach but only from the underlying directed struc-
ture. This is why we introduce a new syntactic model
of programs in which we re-implement the representa-
tions and algorithms of the topological approach. This
approach offers much more readily usable and imple-
mentable results, even in the case of programs with
loops, where we provide a new algorithm for detecting
doomed states.
We also provide new tools for factorization of programs
through an extension of Hashimoto’s theorem to the
case of loop-free categories, which is a natural setting
for many topological invariants in the directed seman-
tics of programs.

Institut Polytechnique de Paris
91120 Palaiseau, France

	 Introduction (Français)
	 Introduction
	Directed topological models of concurrency
	Concurrent programming languages
	A toy language for concurrent programs
	Operational semantics
	Toward verification of programs

	Control flow graphs
	Transition graphs
	Introducing resources
	Conservative programs
	Pruned transition graph

	Directed geometric semantics
	Asynchronous semantics
	Geometric semantics
	Homotopy in directed algebraic topology

	The boolean algebra of cubical regions
	Cubical cover of simple programs
	Maximal cubical covers
	Computing deadlocks

	Factoring models of programs
	Factorisation à la Ninin
	Independent processes
	The free commutative monoid of cubical covers
	Factorization and partition

	The category of components
	Category of components of loop-free programs
	Computing the category of components of loop-free programs

	Factoring loop-free categories
	Properties of loop-free categories
	Hashimoto's theorem for loop-free categories

	A syntactic model of programs
	Syntactic semantics of concurrent programs
	Positions in programs
	A partial order on positions
	Syntactic semantics properties

	The boolean algebra of syntactic regions
	Cubes and regions of posets
	Finitely complemented regions
	Boolean algebra of finitely complemented regions

	Syntactic covers of programs
	Computing covers and complements
	Implementation

	Handling programs with loops
	Finite unfolding of concurrent programs
	Finite unfolding techniques in directed models
	Slight adjustment to the syntactic model
	2-unfolding of programs: syntactic version

	Syntactic cubical covers for programs with loops
	Generalizing syntactic cubes
	Characterizing cubes of the unfolding
	Covers and normal forms

	Unfolding conservative covers of loops
	Conservative regions and covers
	Lifting covers of loops
	Maximal cubical cover as a quotient of the 2-unfolding

	Deadlock detection algorithm for looped programs
	Cubical partition and loops
	Cubical partition as a quotient of the 2-unfolding
	Deadlock computation for programs with loops

	Perspectives
	Technical Background
	Category theory
	Order theory
	Topology

