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Université de Technologie de Compiègne
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Abstract

Machine learning classifiers have achieved impressive success in a wide range of

domains such as natural language processing, image recognition, medical diagno-

sis, and financial risk assessment. Despite their remarkable accomplishments, their

application to real-world problems still entails challenges.

Traditional classifiers make precise decisions based on estimated posterior prob-

abilities; this becomes problematic when dealing with limited data and in complex,

uncertain scenarios where making erroneous decisions is costly. As alternatives,

cautious classifiers, also known as imprecise classifiers, provide subsets of classes

as predictions. We propose in this thesis a cautious classifier called cautious ran-

dom forest, within the framework of belief functions. It combines imprecise decision

trees constructed by the imprecise Dirichlet model and aims at achieving a better

compromise between the accuracy and the cautiousness of predictions. Cautious

random forests can be regarded as generalizations of classical random forests, where

the usual aggregation strategies (averaging and voting) are replaced with a cautious

counterpart.

However, making imprecise predictions has a cost, since indeterminacy must be

resolved via further analysis. Therefore, it seems crucial to understand what led to

an indeterminate prediction, and what could be done to turn it into a determinate

one. To address this problem, we propose in this thesis a framework for providing

explanations so as to discover which features contribute the most to improving the

determinacy of the cautious classifier and how we can modify the feature values so

as to achieve a determinate prediction (counterfactual explanations).

Keywords: cautious classification, imprecise Dirichlet model, belief functions,

ensemble learning, explainable AI, counterfactual explanation
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Résumé

L’apprentissage automatique a connu un succès impressionnant dans des do-

maines variés comme le traitement du langage naturel, la reconnaissance d’images,

ou le diagnostic médical. Malgré ces résultats remarquables, son application à cer-

tains problèmes réels soulève encore des questions.

Les classifieurs traditionnels choisissent une classe unique parmi un ensemble de

classes possibles (prédiction déterminée), en se basant sur une estimation ponctuelle

des probabilités des classes. Cette stratégie peut être problématique lorsque les

données sont limitées et dans des scénarios complexes dans lesquels les décisions

erronées sont coûteuses. Comme alternative, les classifieurs prudents (classifieurs

imprécis) fournissent des sous-ensembles de classes comme prédictions. Nous avons

proposé dans cette thèse un classifieur prudent appelé forêt aléatoire prudent développé

dans le cadre des fonctions de croyance. Il combine des arbres de décision imprécis

construits grâce au modèle de Dirichlet imprécis et vise à atteindre un meilleur

compromis entre la précision et la prudence des prédictions. Les forêts aléatoires

prudentes peuvent être considérées comme des généralisations des forêts aléatoires

classiques, où les stratégies d’agrégation habituelles (calcul de la moyenne et vote)

sont remplacées par leurs équivalentes prudentes.

Cependant, faire des prédictions indéterminées a un coût puisque l’indétermination

doit être résolue par une analyse plus approfondie. Il semble donc essentiel de com-

prendre ce qui a conduit à une prédiction indéterminée et ce qui pourrait être fait

pour la transformer en une prédiction déterminée. Pour résoudre ce problème, nous

avons proposé dans cette thèse un cadre permettant de comprendre d’où provient

l’imprécision dans les sorties de notre modèle. En particulier, nous avons proposé

l’utilisation d’explications contrefactuelles pour les classifieurs prudents à déterminer

comment modifier les entrées du classifieurs pour obtenir une sortie déterminée.

Mots-clés : classification prudente, modèle de Dirichlet imprécis, fonctions de

croyance, apprentissage ensembliste, forêts aléatoires, IA explicable, explications

contrefactuelles
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Introduction

Background

Classifiers have demonstrated impressive success in a wide range of domains [130].

From natural language processing to image recognition, from medical diagnosis to

financial risk assessment, classifiers are not only an important part of efficient auto-

mated decision-making processes, but also achieve accuracy beyond human capabil-

ities in many tasks. However, the challenges they face when dealing with real-world

problems still cannot be ignored.

Uncertainty modeling and cautiousness

A major challenge stems from the complexity and uncertainty inherent to real-

world problems. Traditionally, classifiers make precise decisions, in the form of a

single class, according to the posterior probabilities of classes estimated based on

the available information. However, enforcing the assignment of a given instance

to a single class is questionable when the available information from which the

decision is made is scarce (insufficient evidence), because in this case, the estimated

posterior probabilities may not be reliable. As well, in ensemble learning, a large

conflict between the outputs of individual learners should lead to avoiding reaching

a definitive conclusion.

Considering this issue, in some critical systems where wrong decisions may have

serious consequences such as in medical diagnosis, an alternative is to produce im-

precise predictions such as sets of plausible classes (or intervals in regression), to
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reduce the risk of making erroneous predictions. This specific approach is referred

to as cautious classification or imprecise classification [164]. Cautious classifiers can

be based on precise probabilities, such as classification with a reject option [36, 81],

conformal prediction [208] or the so-called nondeterministic classifier [48]. In addi-

tion, imprecise probabilities, which can better model the uncertainty in the available

information and provide different imprecise decision-making criteria, can also be ap-

plied to constructing cautious classifiers [14]. Some of the most prominent cautious

classification representatives are the naive credal classifier [226], imprecise Gaussian

discriminant analysis [8], evidential K-nearest neighbors [55], evidential neural net-

works [197], imprecise credal decision trees used on their own or in an ensemble [2,

142], etc.

However, producing indeterminate predictions comes with a cost: the uncertainty

associated with predictions involving multiple plausible classes requires human in-

tervention to be resolved. Therefore, the challenge of achieving a balance between

cautiousness (the ability to avoid making wrong decisions) and determinacy (the

ability to make informative predictions) seems essential to cautious classification

approaches.

Explainability

Another challenge is the explainability of classifiers. With the development of AI

technology, machine learning models play a key role in an increasing number of

fields, and their decisions may have a direct impact on human life. However, many

modern machine learning models are often described as “black boxes” because their

inner workings are concealed or elusive to users, and therefore difficult to be ex-

plained and understood, which poses serious challenges to the accountability and

credibility of models [141]. In critical scenarios, such as medical diagnosis, financial

decision-making, or legal judgments, model predictions often need to meet strict in-

terpretation requirements to ensure transparency and fairness in the decision-making

process. In these domains, the lack of explainability even becomes a barrier to their

deployment and application [124, 140].
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To overcome this problem, eXplainable Artificial Intelligence (XAI) aims to re-

veal the inner workings of models, facilitating a deeper understanding of their pre-

dictive principles. Through XAI, users may attain clearer and more transparent

insights into both the model and its predictions, thus enhancing the model’s credi-

bility and accountability [13].

In traditional machine learning, a lot of explanation methods have been pro-

posed and extensively applied. These methods can generally be categorized into ap-

proaches that establish connections between input features and model outputs (such

as feature importance and feature visualization), case-based explanations (such as

counterfactual and prototype explanations), and surrogate models with intrinsic

interpretability (such as linear regression and decision trees) [5].

However, in the domain of cautious classification, very few works address the

problem of explaining the indeterminacy of set-valued predictions, and none of them

involve computing feature importance degrees or counterfactual explanations.

Contributions

In this thesis, we detail two main contributions that respectively address the afore-

mentioned challenges in cautious classification.

First, we propose a strategy within the framework of belief functions where we

combine imprecise decision trees induced by the imprecise Dirichlet model to con-

struct a cautious classifier, called cautious random forest [234, 230]. This strategy

aims to reach a better compromise between the accuracy and the cautiousness of

predictions than state-of-the-art aggregation methods for imprecise trees. Addition-

ally, we introduce a cost function specifically designed for binary cautious classifiers

to assign weights to trees in the ensemble.

Second, this thesis aims to provide tools to reduce the cost of indeterminacy in

imprecise (set-valued) predictions. We address this problem with XAI. More pre-

cisely, for any instance for which an indeterminate prediction has been made, we
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propose to generate counterfactual examples with desired determinate predictions,

which directly allows users to know how to modify certain feature values to resolve

the indeterminacy. For this purpose, we propose a framework for generating coun-

terfactual examples, taking into account all desirable properties (validity, proximity,

plausibility, actionability, and efficiency) of counterfactual explanations. This frame-

work also makes use of feature importance metrics to accelerate the generation of

counterfactual examples.

Structure of the thesis

This thesis is divided into two parts. The first one addresses cautious classification

and more particularly cautious random forests. It is structured as follows:

• in Chapter 1, we review the decision-making problem and its operation within

different uncertainty modeling frameworks such as precise probabilities, im-

precise probabilities, and belief functions.

• In Chapter 2, we give an overview of precise and imprecise (cautious) classifi-

cation: we outline the problems, we introduce evaluation metrics for classifiers

and model comparison, and we discuss some common classifiers for both tra-

ditional and cautious classification problems.

• In Chapter 3, we detail our first contribution, a new aggregation method to

construct cautious random forests in a binary imprecise classification setting

based on pre-trained traditional random forests, the imprecise Dirichlet model,

and belief functions.

• In Chapter 4, we extend our contribution to multi-class cautious classification

problems by generalizing the averaging and the voting strategies proposed

for precise tree ensembles. In both cases, we aim at providing set-valued

predictions by maximizing the lower expected utility.

The second part deals with providing explanations for cautious random forests:
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• in Chapter 5, we review the concepts of explainable artificial intelligence. Af-

ter a discussion on the importance of explanations and the desirable properties

of explanation methods, we present the most prominent explanation methods

and classify them from different perspectives. Additionally, we illustrate dif-

ferent ways to provide explanations for random forests in precise classification

problems.

• In Chapter 6, we propose a framework that uses counterfactual examples to

explain indeterminate predictions made by a cautious random forest model,

which makes it possible to answer the question of why a given input instance

is classified indeterminately and how feature values can be identified and mod-

ified to achieve a determinate prediction.

Finally, a chapter of Conclusion and perspectives summarizes our main results and

presents possible future works.

Publications

Journal papers

1. Haifei Zhang, Benjamin Quost, and Marie-Hélène Masson. “Cautious weighted

random forests.” Expert Systems with Applications 213 (2023): 118883 [230].

International conference papers

1. Haifei Zhang, Benjamin Quost, and Marie-Hélène Masson. “Cautious Decision-

Making for Tree Ensembles.” The 17th European Conference on Symbolic and

Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2023)

[229].

2. Vu-Linh Nguyen, Haifei Zhang, and Sébastien Destercke. “Learning Sets of

Probabilities through Ensemble Methods.” The 17th European Conference on
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Symbolic and Quantitative Approaches to Reasoning with Uncertainty (EC-

SQARU 2023) [150].

3. Haifei Zhang, Benjamin Quost, and Marie-Hélène Masson. “Explaining Cau-

tious Random Forests via Counterfactuals.” The 10th International Conference

on Soft Methods in Probability and Statistics (SMPS 2022) [231].

4. Haifei Zhang, Benjamin Quost, and Marie-Helène Masson.“Cautious Ran-

dom Forests: a new decision strategy and some experiments.” The 12th In-

ternational Symposium on Imprecise Probability: Theories and Applications

(ISIPTA 2021) [234].

French national conference papers

1. Haifei Zhang, Benjamin Quost, and Marie-Hélène Masson. “Explications con-

trefactuelles pour les forêts aléatoires prudentes.” La 31ièmes Rencontres Fran-

cophones sur la Logique Floue et ses Applications (LFA 2022) [232].

2. Haifei Zhang, Benjamin Quost, and Marie-Hélène Masson. “Forêts aléatoires

prudentes: une nouvelle stratégie de décision et quelques expériences.” La

31ièmes Rencontres Francophones sur la Logique Floue et ses Applications

(LFA 2022) [233].

Available codes

Explainable cautious random forest: the python codes with scikit-learn style

for a cautious random forest model and its explainer including feature importance

measures and counterfactual generators are accessible on GitHub via the link

https://github.com/Haifei-ZHANG/Explainable-Cautious-Random-Forest

https://github.com/Haifei-ZHANG/Explainable-Cautious-Random-Forest
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Many of the problems encountered in everyday life involve making choices and

decisions. Decision-making is the process resulting in the selection of an action

among several alternatives. Common decision-making examples include deciding

what is the best medical treatment for a patient, the best product to recommend to

a customer, the best train to take, etc An action may have different consequences

(outcomes), depending on the state of nature, e.g., the actual condition of the pa-

tient. The best action is determined by the state of nature and by the desirability

or the utility of its consequences. For example, recommending a treatment for a

person in good health is clearly not appropriate.

In many real-life problems, the state of nature is not known with certainty or,

even worse, it is sometimes completely ignored. These two situations are respec-

tively referred to as decision-making under uncertainty and decision-making under

complete ignorance. In order to address the problem of decision-making under un-

certainty, the theoretical framework of probabilities is often used. However, in some

situations, the precise probability of each state of nature is difficult or even impos-

sible to evaluate. Therefore, theoretical frameworks such as imprecise probabilities

[14], credal sets [119] and belief functions [50, 180] have been proposed to deal with

quantifying the uncertainty in complex systems, in presence of limited data, under

subjective judgments.

In this chapter, we present a review of decision-making strategies using various

theoretical frameworks and introduce the notion of cautious decision-making, which

is a central notion of this thesis. Section 1.1 presents the basic concepts of classi-

cal decision theory, for which we rely on the survey article [58]. Then, imprecise

probabilities are introduced in Section 1.2, with a focus on credal sets, the impre-

cise Dirichlet model, and the corresponding decision-making principles. Finally, we

introduce the theory of belief functions in Section 1.3, including the representation

and the combination of evidence, and finally decision-making with belief functions.



1.1 Decision-making 11

1.1 Decision-making

A decision-making problem consists in selecting an action f from a set of finite pos-

sible alternatives A = {f1, . . . , fN} according to a preference relationship [67]. The

desirability of each action fi ∈ A given each state of nature ck ∈ Ω = {c1, . . . , cK}

is usually quantified via a utility function u : A×Ω→ R. Then, a utility matrix U

of dimension N ×K can be constructed, in which the general term uik = u(fi, ck),

i = 1, . . . , N , k = 1, . . . , K, represents the utility if action fi is picked whereas ck

holds.

In real-world decision-making problems, the true state of nature is unknown.

Therefore, besides the utility matrix, some description of the uncertainty about

the state of nature is necessary to construct the preference relation over actions in

A. In the following sections, decision-making under complete ignorance (maximum

uncertainty) and decision-making under probabilistic uncertainty will be presented.

We refer to the work of Denœux [58] for this part of the literature review.

1.1.1 Preference relation among actions

In order to select the most desirable action, a preference relation should be built

over the actions in A. The notation f ≽ f ′ means that the action f is at least as

desirable as f ′ for the decision-maker. Respectively, strict preference (f is strictly

more desirable than f ′) and indifference (f and f ′ are equally desirable) relations

are written as ≻ and ∼.

If a preference relation ≽ is reflexive (for any f ∈ A, f ≽ f) and transitive (for

any f, f ′, f ′′ ∈ A, if f ≽ f ′ and f ′ ≽ f ′′, then f ≽ f ′′), it is called a preorder.

Additionally, if a preorder is anti-symmetric (for any f , f ′ ∈ A, f ≽ f ′ and f ′ ≽ f

imply f = f ′), it becomes an order. A preorder is complete if, for any pair of

actions f, f ′ ∈ A, the preference between them is known, i.e., either f ≽ f ′ or

f ′ ≽ f . Otherwise, it is partial.

In a partial order, an action f is the greatest element if it is at least desirable as
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any other action, i.e., ∀f ′ ∈ A, f ≽ f ′. If there is a greatest element for a partial

order, it must be unique. An action f is a maximal element if no other action in

A is strictly preferred to (or dominates) f , i.e., ̸ ∃f ′ ∈ A, such that f ′ ≻ f . For

a partial order, there may be multiple maximal elements. Therefore, the greatest

element is always a maximal element, but the converse is usually not true [58, 129].

1.1.2 Decision-making under ignorance

In some situations, the decision-maker may be totally ignorant of the uncertainty

about the states of nature, which means that the decision-making is only based on

the given utility matrix. We will enumerate some criteria and principles to construct

a partial or a complete preference relationship among actions from A for this case.

Partial preorder

For a pair of actions fi and fj from A, fi is dominated by fj if fj is always at least

as desirable than fi, which means that ∀ck ∈ Ω, we have ujk ≥ uik and ∃ck ∈ Ω,

such that ujk > uik. The non-domination principle is often used to build a partial

preorder, according to which dominated actions should never be selected as desirable

actions [191]. However, the preference among the remaining non-dominated actions

is unknown. Thus, the preorder is said to be partial.

Complete preorder

We present here some criteria to establish a complete preorder among the non-

dominated actions.

• The maximax rule [191] compares actions in terms of their most favorable util-

ity across all states of nature, which reflects an extremely optimistic attitude

of the decision-maker. Thus, fi ≽ fj if and only if

max
k=1...K

uik ≥ max
k=1...K

ujk. (1.1)
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• The maximin rule [210] considers the least favorable utility across all states

of nature for each action. It reflects an extremely pessimistic attitude of the

decision-maker. Thus, fi ≽ fj if and only if

min
k=1...K

uik ≥ min
k=1...K

ujk. (1.2)

• The Hurwicz criterion [100] convexly combines the maximum and the mini-

mum utilities of each action so as to find a compromise between both. Thus,

fi ≽ fj if and only if

α min
k=1...K

uik + (1− α) max
k=1...K

uik ≥ α min
k=1...K

ujk + (1− α) max
k=1...K

ujk, (1.3)

where α ∈ [0, 1] is called the pessimism index.

• The Laplace criterion regards each state of nature as having the same im-

portance and calculates the average utility across all states of nature for each

action: fi ≽ fj if and only if

1

K

K∑
k=1

uik ≥
1

K

K∑
k=1

ujk. (1.4)

• The minimax regret rule [168] considers action fi to be at least as desirable

as fj if it has a smaller or equal maximum regret compared with fj. Thus,

fi ≽ fj if and only if

max
k=1...K

rik ≤ max
k=1...K

rjk, (1.5)

where rik = maxl=1...N(ulk − uik) is the maximum regret of fi if ck occurs, i.e.,

the difference between the utility of the best action and the utility of fi when

the state of nature ck occurs.

As noted in [58], the Laplace, maximax, maximin, and Hurwicz criteria are

special cases of the Ordered Weighted Average (OWA) operator, which proceeds,

for each action, by defining a distribution of weights for states of nature so as to

compute a weighted sum [223]. Suppose states of nature are sorted by descending
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order of utility for a certain action f , the above criteria may be retrieved as follows:

• Laplace, by assigning equal weights to all states of nature: ( 1
K
, 1
K
, . . . , 1

K
);

• Maximin, by considering the lowest utility: (0, 0, . . . , 1);

• Maximax, by considering the highest utility: (1, 0, . . . , 0);

• Hurwicz, by computing a convex sum of the highest and lowest utilities: (1−

α, 0, . . . , α).

The weight wk, k = 1, . . . , K, can be interpreted as the probability that the state

with the k-th best outcome will happen. Besides the aforementioned weight as-

signments, Yager proposed in [223] to determine the weight assignment w⋆ that

maximizes the entropy under the constraint of the given degree of optimism β:

w⋆ = arg max
w∈RK

+

K∑
k=1

−ωk logωk s.t.
K∑
k=1

K − k

K − 1
ωk = β,

K∑
k=1

ωk = 1. (1.6)

Example 1.1 (Decision-making under complete ignorance). In a football match,

there are three different outcomes for the home team: win (W), draw (D), and loss

(L). Assume that there are three different gambles (actions): different rewards for

different outcomes. As a decision-maker, without any other information (under com-

plete ignorance), we need to choose the most desirable gamble according to different

decision criteria.

Table 1.1: Payoff matrix for the football match and calculation for the maximax,
maximin, Hurwicz with α = 0.5, Laplace and minimax regret criteria. The symbol
↑ indicates that higher values correspond to more desirable actions. The symbol ↓
represents the opposite.

fi W D L max(ui·) ↑ min(ui·) ↑ 0.5(max(ui·) + min(ui·)) ↑ ave(ui·) ↑ max(ri·) ↓
f1 6 -2 -2 6 -2 2 2/3 9
f2 -4 7 -4 7 -4 1.5 -1/3 10
f3 -1 -1 3 3 -1 1 1/3 8

We can find that different decision-making criteria may yield different preference

relations: Maximax: f2 ≻ f1 ≻ f3, Maximin: f3 ≻ f1 ≻ f2, Hurwicz with α = 0.5:

f1 ≻ f2 ≻ f3, Laplace: f1 ≻ f3 ≻ f2, Minimax regret: f3 ≻ f1 ≻ f2.
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1.1.3 Decision-making under probabilistic uncertainty

Assume now that the probabilities p = {p1, . . . , pK} over Ω and the utility matrix

U are known: it is therefore possible to compute the expected utility of any action

fi ∈ A as

Ep(fi,U) =
K∑
k=1

uikpk. (1.7)

This expected utility can be interpreted as the average of utilities weighted by the

probabilities of the possible states when action fi is taken. The maximum expected

utility principle leads to preferring the action with the highest expected utilities:

fi ≽p fj if and only if

Ep(fi,U) ≥ Ep(fj,U). (1.8)

Example 1.2 (Decision-making under precise probabilities). Considering again the

payoff matrix in Example 1.1, and historical information about these two teams is

used to calculate the probability of each outcome of the match: p(W ) = 0.45, p(D) =

0.3, p(L) = 0.25. Then, according to Eq. (1.7), the expected utilities for these three

actions are Ep(f1,U) = 1.6, Ep(f2,U) = −0.7, Ep(f3,U) = 0. In this case, the

action f1 is the most desirable.

1.1.4 Decision-making in classification problems

Classification in machine learning is a special kind of decision-making problem.

Considering the set of finite possible classes Ω = {c1, . . . , cK} (states of nature), the

action of a classifier (decision-maker) consists in assigning a singleton class or more

generally a subset of classes to a given test instance.

In a precise classification problem, each action fi generally corresponds to as-

signing a single class of Ω to a test instance. Therefore, there are only K possible

actions, and the utility matrix U is of dimension K × K. The general term uik

represents the utility of assigning ci ∈ Ω to an instance when its real class is ck ∈ Ω.

A commonly used utility function is the 0/1 utility (the utility of misclassification

is zero, and that of a correct decision is one), which forms an identity matrix of
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dimensions K ×K as utility matrix U.

However, if assigning a subset of classes to a test instance is allowed, then we

consider a cautious classification problem, also called imprecise or partial classifica-

tion [164]. In this case, the number of possible actions is 2K and the dimension of

the corresponding utility matrix is 2K ×K. Chapter 2 will review several strategies

to fix the utility values in such a case.

Hereafter, we use fi and fA to denote the action of assigning a singleton ci ∈ Ω

and a non-empty subset A ⊆ Ω to a given instance, respectively. Following [129],

the former is called precise assignment and the latter partial assignment.

There is only one way to achieve a precise classification, which amounts to deter-

mining a complete preorder over all precise assignments. Nevertheless, there are two

strategies to perform an imprecise classification: one consists in building a partial

preorder over precise assignments and the other in building a complete preorder over

all possible partial assignments. In the context of imprecise probabilities, the former

strategy is commonly employed, whereas in the framework of belief functions, both

strategies are often used. In the following sections, we will thoroughly review these

two frameworks.

1.2 Imprecise probability theory

Imprecise probability theory provides a framework for expressing uncertainty in a

more nuanced and realistic way than classical probability theory. Imprecise proba-

bilities define sets of possible probability values to an event, capturing the inherent

vagueness and ambiguity that often accompanies real-world uncertainty [14].

The motivation behind specifying imprecise probabilities lies in the observation

that in many practical situations, complete knowledge about the underlying proba-

bilities is unattainable. Complex systems, limited data, subjective judgments, and

various sources of uncertainty can make it challenging to quantify probabilities pre-

cisely. Imprecise probabilities offer a way to handle such situations by explicitly
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acknowledging and incorporating the inherent uncertainty [212].

There are many frameworks of imprecise probabilities, among which lower pre-

visions [201], credal sets [119], probability intervals [47], belief functions [50, 180]

offer different perspectives and tools for dealing with uncertainty. In this section, we

detail credal sets and probability intervals, before proceeding with belief functions

in the next section.

1.2.1 Credal sets and probability intervals

Let Ω = {c1, . . . , cK} be a finite set of possible alternatives. A credal set P(Ω) is

a closed set of probability distributions on Ω. It is often assumed to be convex.

In a credal set, there are some probability distributions p ∈ P that can not be

represented as a strictly convex combination of other probability distributions in

the same credal set. They are called extreme points of the credal set.

Example 1.3 (Probability simplex). A probability distribution p on Ω = {c1, . . . , cK}

is a vector (p(c1), . . . , p(ck), . . . , p(cK)) such that ∀ck ∈ Ω, p(ck) ≥ 0 and
∑
ck∈Ω

p(ck) =

1, which can be regarded as a point in the space of a simplex of K − 1 dimension.

If Ω = {c1, c2, c3}, each probability distribution p can be represented in an equi-

lateral triangle. The probability for ck is defined as the distance between p and the

edge that excludes ck. Fig.1.1 provides an illustration.

p(c1) = 1

p(c2) = 1 p(c3) = 1

∝
p(c

3 )

∝
p
(c

1
)

∝ p(
c2

)

Figure 1.1: Representation of a probability distribution for Ω with three states.
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Example 1.4 (Credal set). Suppose a credal set P on Ω = {c1, c2, c3} defined by

the following two constraints:

p(c1) ≥
1

3
, p(c2)− 2p(c3) ≥ 0,

which corresponds to the region in green represented in Fig. 1.2. Correspondingly, the

union of the green and the blue regions is the credal set constrained by p(c1) ≥ 1
3
, and

the union of the green and the red regions is the one constrained by p(c2)−2p(c3) ≥ 0.

A convex credal set can be equivalently represented by its extreme points. In this

example, there are only three extreme points:

p1 = (1, 0, 0), p2 = (
1

3
,
2

3
, 0), p3 = (

1

3
,
4

9
,
2

9
).

p(c1) = 1

p(c2) = 1 p(c3) = 1

P

Figure 1.2: Example of credal set.

As a special case of credal sets, probability intervals represent a piece of proba-

bilistic knowledge on Ω via a set of probability intervals on singletons:

I(Ω) = {Ik = [lk, uk], k = 1, . . . , K}, (1.9)

where lk and uk are, respectively, the lower and upper probability bounds of alter-

native ck ∈ Ω, such that 0 ≤ lk ≤ uk ≤ 1. Obviously, the credal set associated with

I is

P(I) = {p | lk ≤ p(ck) ≤ uk, k = 1, . . . , K;
K∑
k=1

p(ck) = 1}. (1.10)
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A set of probability intervals I(Ω) is said to be proper if the sum of the lower

probabilities bounds is less than or equal to 1 and the sum of upper probability

bounds is larger than or equal to 1:

K∑
k=1

lk ≤ 1 ≤
K∑
k=1

uk. (1.11)

If a set of probability intervals is proper, its associated credal set is guaranteed to

be nonempty. A proper set of probability intervals I(Ω) is said to be reachable if

and only if
K∑

j=1,j ̸=k

lj + uk ≤ 1, ∀k = 1, . . . , K,

K∑
j=1,j ̸=k

uj + lk ≥ 1, ∀k = 1, . . . , K.

(1.12)

If a set of probability intervals I(Ω) is proper and reachable, the lower and upper

coherent probabilities of each alternative are defined as

p(ck) = lk, p(ck) = uk, ∀k = 1, . . . , K. (1.13)

Example 1.5 (Set of probability intervals). We consider a set of probability inter-

vals on Ω = {c1, c2, c3} defined as follows:

p(c1) ∈ [0.2, 0.5], p(c2) ∈ [0.3, 0.6], p(c3) ∈ [0.1, 0.4].

It is easy to check that the given set of probability intervals is proper and reachable.

The corresponding credal set P is illustrated as the green region in Fig. 1.3.

Since each probability interval can be seen as two constraints on a single state, the

edges of the credal set formed by a set of probability intervals are always parallel to

one edge of the equilateral triangle (simplex). In this example, there are six extreme

points for the credal set:

p1 = (0.5, 0.4, 0.1), p2 = (0.3, 0.6, 0.1), p3 = (0.2, 0.6, 0.2),

p4 = (0.2, 0.4, 0.4), p5 = (0.3, 0.3, 0.4), p6 = (0.5, 0.3, 0.2).
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p(c1) = 1

p(c2) = 1 p(c3) = 1

P

Figure 1.3: Example of credal set induced by probability intervals.

1.2.2 Imprecise Dirichlet model

Proposed by Walley [211], the imprecise Dirichlet model (IDM) is a tool to construct

proper and reachable sets of probability intervals based on observations.

Let Ω = {c1, . . . , cK} be the aforementioned set of K ≥ 2 mutually exclusive

alternatives or classes, and let πk = p(ck), with πk ≥ 0 and
∑K

k=1 πk = 1, for k =

1, . . . , K. Assume that N independent and identically distributed (iid) observations

have been sampled from an unknown multinomial distribution M(N ; π1, . . . , πK):

let nk denote the corresponding number of occurrences of ck, with
∑K

k=1 nk = N .

For the sake of simplicity, we write n = {n1, . . . , nK} and π = {π1, . . . , πK}. The

likelihood of the parameter vector writes as

L(π|n) ∝
K∏
k=1

πnk
k . (1.14)

In a standard Bayesian setting, prior knowledge over the probabilities πk can be

specified using the conjugate Dirichlet distribution Dir(s,α), with α = (α1, . . . , αK)

and
∑K

k=1 αk = s:

p(π|α) ∝
K∏
k=1

παk−1
k . (1.15)

Note that each parameter can be decomposed into αk = s tk, with s ≥ 0, 0 ≤ tk ≤ 1,

and
∑K

k=1 tk = 1: then, the parameters tk, k = 1, . . . , K, are the prior frequencies

with E(πk) = tk, whereas s corresponds to the prior’s global strength. The posterior
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distribution then writes as

p(π|n,α) ∝
K∏
k=1

πnk+stk−1
k , (1.16)

which is also a Dirichlet distribution Dir(N + s, t∗) due to conjugacy, where t∗k =

(nk + stk)/(N + s).

In standard Bayesian inference, the parameters s and t = {t1, . . . , tK} are deter-

mined in advance, which results in point estimates for the frequencies πk. However,

in the IDM, a set of Dirichlet distributions is defined by considering all vectors t

satisfying the constraints 0 ≤ tk ≤ 1 and
∑K

k=1 tk = 1. Taking this set as a prior

amounts to making as few assumptions as possible regarding π, i.e., the prior is

near-ignorant [131]. As a result, the posterior information is no longer a single dis-

tribution, but a set of distributions, from which it is possible to deduce posterior

lower and upper bounds on the probabilities of alternatives, reached respectively

when tk → 0 and tk → 1:

E(πk|n, s) =
nk

N + s
, E(πk|n, s) =

nk + s

N + s
, i = 1, . . . , K. (1.17)

The set of probability intervals is denoted as

I(Ω|n, s) =

{
Ik =

[
p
k
, pk

]
=

[
nk

N + s
,
nk + s

N + s

]
, k = 1, . . . , K

}
. (1.18)

Note that the parameter s remains to be chosen in advance: it can be interpreted

as a number of virtual instances with unknown class information. Although several

studies have been conducted with regard to choosing an appropriate value for s [4],

this problem remains open. In practice, values of s = 1 or s = 2 are often picked

[211].

1.2.3 Decision-making with imprecise probabilities

Let P be a credal set on Ω = {c1, . . . , cK} and fi be a precise assignment associated

with a utility matrix U. The expected utility defined in Eq. (1.7) can be extended
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to the lower and upper expected utilities [14], defined as

EP(fi,U) = min
p∈P

Ep(fi,U) = min
p∈P

K∑
k=1

uikpk, (1.19)

and

EP(fi,U) = max
p∈P

Ep(fi,U) = max
p∈P

K∑
k=1

uikpk. (1.20)

The lower and upper expected utilities can be used to build a complete preorder

among all singleton alternatives in Ω. Then, the maximin and the maximax criteria

can be applied, respectively, on EP and EP to select the most desirable action.

The lower and upper expected utilities can also be used to build a partial preorder

among all singleton alternatives of Ω. For instance, the interval dominance rule

states that

fi ≽id fj, if EP(fi,U) ≥ EP(fj,U). (1.21)

With this criterion, all pairs of actions have to be compared, and non-dominated

actions form the final choice. It is a very cautious criterion, which often leads to

considering many pairs of actions as incomparable.

We mention here two other decision criteria that are less cautious than the

interval dominance rule. For the maximality criterion [212], the preference between

two actions is defined as

fi ≽max fj, if EP(fi − fj,U) ≥ 0, (1.22)

which means that in order to be more desirable, action fi must have a higher or

equal utility compared with action fj for any distribution in P .

The E-admissibility criterion considers an action as more desirable if there exists

a probability distribution p ∈ P such that all other actions have a smaller expected

utility than fi [119]. In other terms, fi is E-admissible if

∃p ∈ P , s.t. ∀fj ∈ A, Ep(fi) ≥ Ep(fj). (1.23)
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In the framework of imprecise probabilities, we can find that the three afore-

mentioned decision-making criteria induce cautious (set-valued) predictions by con-

structing partial preorders among precise assignments. Let F∗
e-ad, F∗

max, F∗
id be the

sets of finally selected maximal actions according to the E-admissibility, maximality,

and interval dominance criteria, respectively; we have

F∗
e-ad ⊆ F∗

max ⊆ F∗
id, (1.24)

which means that the interval dominance criterion is the most cautious, followed by

the maximality criterion, and the E-admissibility criterion is the least cautious [55].

1.3 Theory of belief functions

The theory of belief functions, also referred to as Dempster-Shafer theory (DST) or

the theory of evidence, is a mathematical framework for dealing with uncertainty

and reasoning with incomplete or conflicting information [50, 180]. It provides a

formal way to combine and reason with uncertain information from multiple sources,

allowing for a more robust and cautious approach to decision-making. DST has

found applications in various fields, such as information fusion [64, 121, 221], pattern

recognition [55, 56, 97, 197], semantic segmentation [198], fault diagnosis [220, 222,

235], etc.

In this section, some basic concepts of the theory of belief functions will be

reviewed, including different representations of evidence, approaches to combining

pieces of evidence, and decision-making strategies based on belief functions.

1.3.1 Representation of evidence

Let Ω = {c1, . . . , cK}, K ≥ 2, be a finite set that contains all the possible, mutually

exclusive states of nature for a question, referred to as the frame of discernment.

Given a piece of evidence, the information is represented by a mass function, also

referred to as a basic probability assignment (BPA) or a basic belief assignment
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(BBA), which is a mapping m : 2Ω → [0, 1], such that

m(∅) = 0 and
∑
A⊆Ω

m(A) = 1. (1.25)

The value m(A) measures the degree of evidence supporting the fact that the

true state is in A, but no more specific proposition (any subset of A). A subset

A ⊆ Ω is called a focal set or focal element if m(A) > 0. If there is only one focal

element, then m is said to be logical ; and if furthermore, the unique focal element

is Ω, m is said to be vacuous (it represents a total ignorance). A mass function

is Bayesian if all of its focal elements are singletons, in which case it is reduced

to a precise probability distribution. This framework can therefore be seen as an

extension of both set theory and classical probability theory.

For any subset A ⊆ Ω, the uncertainty of the proposition that the true state lies

in A can be quantified by the degrees of belief Bel(A) and plausibility Pl(A), which

are defined, respectively, as:

Bel(A) =
∑
B⊆A

m(B), ∀A ∈ Ω, (1.26)

and

Pl(A) =
∑

B∩A ̸=∅

m(B), ∀A ∈ Ω. (1.27)

Bel(A) and Pl(A) measure the support (belief) and compatibility (plausibility),

respectively, associated with the proposition that the truth lies in A. For a normal

mass function, i.e., m(∅) = 0, it is obvious that Bel(∅) = Pl(∅) = 0, Bel(Ω) =

Pl(Ω) = 1, and Bel(A) ≤ Pl(A). The belief and plausibility measures are also

dual since for ∀A ⊆ Ω, Bel(A) = 1 − Pl(A), and Pl(A) = 1 − Bel(A), with A the

complement of A. Belief and plausibility functions can also be transferred to a mass

function through the inverseMöbius transform:

m(A) =
∑
B⊆A

(−1)|A|−|B|Bel(B), ∀A ⊆ Ω, (1.28)
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or equivalently

m(A) =
∑
B⊆A

(−1)|A|−|B|+1Pl(B), ∀A ⊆ Ω. (1.29)

Therefore, there is a one-to-one correspondence between mass, belief, and plausi-

bility functions. Besides, a mass function can be transformed into a probability

distribution through the pignistic transformation [185, 186]:

BetP (ck) =
∑

A⊆Ω,ck∈A

m(A)

|A|
, ∀ck ∈ Ω, (1.30)

in which the mass of focal sets is equally assigned to their elements.

1.3.2 Combination of evidence

Sometimes, different pieces of evidence may be provided about the same variable of

interest. They have to be combined into a single mass function which will then be

exploited for reasoning. There are several available combination methods, among

which Dempster’s rule is the fundamental one [50]. Given two independent mass

functions m1 and m2 defined on the same frame of discernment Ω, Dempster’s

combination rule combines them into one mass function m via

m(A) = (m1 ⊕m2)(A) =
1

1−K
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω, (1.31)

where K is the degree of conflict between the two mass functions, defined as:

K =
∑

B∩C=∅

m1(B)m2(C)). (1.32)

Dempster’s combination rule is sometimes called the orthogonal sum of m1 and m2,

and requires that the mass functions to be combined are independent and their

conflict is smaller than one. This operation is commutative and associative, which

makes it possible to sequentially combine a series of evidence in any order.

However, due to the fact that Dempster’s combination rule discards conflict, it

may produce counter-intuitive results when facing highly conflicting mass functions.
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Therefore, several alternative combination rules have been proposed by considering

different strategies to deal with conflict [65, 118, 184, 187, 224]. Each method

has its strengths and limitations, and selecting the most appropriate one involves

considering the context and characteristics of the problem at hand.

1.3.3 Decision-making with belief functions

Assume now the knowledge of the class of the test instance is represented by a mass

function m; there are several criteria to make decisions under the framework of belief

functions [58].

If only singleton assignments are considered, a convenient way to build a complete

preference order is to transform the mass function m into a probability distribution

according to Eq. (1.30), then calculate the expected utility of each action that assigns

a singleton class. This expected utility is called the pignistic expected utility, which

is defined as:

EBetP (fi,U) =
K∑
k=1

BetP (ck)uik. (1.33)

However, actions fi may not be restricted to assigning a single class: we may

consider subsets A ⊆ Ω of classes. Under this setting, the expected utility criterion

may be extended to the lower and upper expected utilities, respectively defined as

the weighted averages of the minimum and maximum utility within each focal set:

Em(fA,U) =
∑
B⊆Ω

m(B)min
ck∈B

uAk, (1.34)

and

Em(fA,U) =
∑
B⊆Ω

m(B)max
ck∈B

uAk. (1.35)

It is obvious that E(m, fi,U) ≤ E(m, fi,U) and only when m is Bayesian, the

equality applies, as we retrieve the probabilistic case. The Hurwicz expected utility

is a convex combination of Em(fA,U) and Em(fA,U), defined as:

Em,α(fA,U) = αE(m, fi,U) + (1− α)E(m, fi,U), (1.36)
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where α ∈ [0, 1] is called the pessimism index.

The minimax regret criterion can also be extended to belief functions. The regret

that action fA is chosen whereas state ck occurs is defined as rAk = maxB uBk, ∀B ⊆

Ω. The expected maximal regret of action A is defined as

Rm(fA,U) =
∑
B⊆Ω

m(B) max
ck∈B

rAk. (1.37)

It should be noted that if the class assignments for Eq. (1.34) to Eq. (1.37) are

restricted to singletons, i.e., |A| = 1, then, all these four expected measures lead to

computing complete preorders among all possible precise assignments and the one

that reaches the highest expected utility or the lowest expected maximal regret will

be selected, which results in precise predictions [57].

Otherwise, if all possible partial assignments are considered, i.e., any subset

A ⊆ Ω, the lower, upper, Hurwicz expected utilities, and the expected maximal

regret establish complete preorders among partial assignments, and the selection of

the subset that reaches the highest expected utility or the lowest expected maximal

regret leads to set-valued cautious predictions [129].

1.4 Conclusion

In this chapter, we reviewed the decision-making problem within different frame-

works. Starting with the basic definition of the decision problem and the concept of

preference relationship, we explored decision-making in the absence of uncertainty,

under a probabilistic framework, and for classification tasks. Furthermore, we pre-

sented the important framework of imprecise probabilities, focusing on the notion

of credal set, and a convenient way of obtaining credal sets: the imprecise Dirichlet

model. We also provided decision-making criteria based on imprecise probabilities.

Finally, we introduced fundamental concepts of the theory of belief functions and

associated decision-making strategies.
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Machine learning algorithms have been applied to various fields with remarkable

success, such as loan approval [16, 10], medical diagnosis [74], recommendation sys-

tems [102], and autonomous driving [135]. In this chapter, we will review machine

learning algorithms from the perspective of precise and imprecise (cautious) clas-

sification problems. For each kind of classification problem, we provide reminders

about the problem, performance evaluations, as well as several commonly used clas-

sifiers. Section 2.1 deals with traditional precise classification and Section 2.2 is

devoted to cautious classification.

2.1 Precise classification

Traditional classification algorithms aim to learn a model to predict the class of

new observations based on training data. With a large amount of training data and

complex model design, this paradigm has achieved great success in classification

tasks and has been deployed in many fields [130].

2.1.1 Problem statement

A traditional classification problem consists in assigning a single class to a given in-

put instance based on its feature values. To do so, a classifier should be learned from

training data, for which both the input vectors and class values have been observed.

Assume the problem is related to an input random vector X = {X1, . . . ,XM} of

M dimensions and an output random variable Y, whose possible values (classes)

belong to Ω = {c1, . . . , cK}, K ≥ 2. More formally, let us write the input space

as X = {X 1, . . . , XM}, and the output space as Y = Ω. The objective of the

classification problem is to learn a function (classifier) h : X → Y by minimiz-

ing a predefined cost (risk) measurement function on the observed training dataset

Dtrain = {(xi, yi), i = 1, . . . , Ntrain}. In this section, we only consider the 0/1 cost,

i.e., for (x, y) and ŷ = h(x), c(ŷ, y) = 1(ŷ ̸= y), where 1(.) is the indicator function.
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2.1.2 Evaluation metrics

A classifier is commonly evaluated on a separate test set Dtest = {(xi, yi), i =

1, . . . , Ntest}. Considering a binary classification problem, i.e., Ω = {c1, c2}, where

c1 and c2 are the positive and negative classes, respectively, the results obtained on

the test set can be presented via a confusion matrix, as presented in Table 2.1.

Table 2.1: Confusion matrix.

Actual y = c1 Actual y = c2
Predicted ŷ = c1 True Positive (TP) False Positive (FP)
Predicted ŷ = c2 False Negative (FN) True Negative (TN)

Based on the confusion matrix, several evaluation metrics can be defined as

follows:

• the accuracy counts the proportion of test instances correctly classified,

Accuracy =
1

Ntest

Ntest∑
i=1

1(h(xi) = yi) =
TP + TN

TP + FP + FN + TN
; (2.1)

• the precision indicates, among the instances predicted as the positive class,

the proportion of them that are actually positive,

Precision =
TP

TP + FP
; (2.2)

• the recall reveals the proportion of actually positive instances that are correctly

classified,

Recall =
TP

TP + FN
; (2.3)

• the F1 score is the harmonic mean of precision and recall, which is appropriate

when the positive and negative classes are unbalanced,

F1 =
2 · Precision ·Recall

Precision + Recall
. (2.4)
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In binary classification problems, the receiver operating characteristic (ROC)

curve is also commonly used to evaluate the performance of binary classifiers [139,

240]. The ROC curve illustrates the true positive rate (TPR) against the false posi-

tive rate (FPR) at various threshold settings that determine the assignment of class

in a binary classification problem. The area under the ROC curve (AUC) measures

the classifier’s ability to distinguish between positive and negative instances, and it

serves as an effective measure of classification performance, particularly in unbal-

anced binary classification scenarios where the consequences of false negatives or

false positives are different [91].

In order to evaluate the aforementioned metrics, cross-validation is often applied.

The idea is to repeatedly divide the dataset into different disjoint batches of training

and test instances to train and test the classifier successively, so as to calculate

average performance metrics to evaluate the generalization ability of the classifier.

Common cross-validation techniques include K-fold cross-validation and leave-one-

out cross-validation. Based on cross-validation, hypothesis testing is a usual way to

determine whether there are significant differences between classifiers [51]. When

confronted with a single dataset, the paired t-test, McNemar’s test [136], and the

Wilcoxon signed-rank test [215] emerge as applicable tools for studying whether the

observed differences in performance are significant. On the other hand, if multiple

datasets are used in the comparison procedure, ANOVA [189], the Friedman test

[79], and the Nemenyi test [147] can be employed.

2.1.3 Single classifiers

We can distinguish between discriminative and generative models. Given an in-

put instance x, a discriminative model directly undertakes the task of estimating

the posterior probabilities p(ck|x), ∀ck ∈ Ω. Conversely, a generative model pro-

ceeds by estimating the joint distribution of the feature vector and the class label

p(ck,x), ∀ck ∈ Ω. Subsequently, it can also provide the class-conditional posterior

probabilities using Bayes theorem. We review in the following some of the most

popular classifiers.
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Discriminative classifiers

The K-nearest neighbors (KNN) [38] method is introduced as a simple yet effec-

tive non-parametric algorithm, which identifies the K-nearest neighbors based on

a chosen distance metric and chooses the majority class among these neighbors as

the predicted class. The number of nearest neighbors determines the level of lo-

cal generalization: smaller values tend to capture fine-grained details, while larger

values provide a smoother decision boundary. In contrast, logistic regression [113]

postulates a parametric model of the posterior probabilities, which are obtained by

applying successively a linear transform and the logistic (or sigmoid) function to

an instance; the model is estimated by maximizing the likelihood of the training

data. A decision tree [24] recursively partitions the input data (and thus the input

space) based on an impurity criterion until the input data in each region are pure

(or almost pure); a prediction is made based on the decision associated with the

region in which a test instance falls. Support vector machines (SVM) [93] seek to

find an optimal hyperplane that separates the training data into different classes

with the maximum margin. In cases where linear separation is unattainable, SVM

employs kernel functions to map the input space into a higher-dimensional feature

space, enabling nonlinear decision boundaries.

Generative classifiers

The naive Bayesian classifier [175] is a widely adopted generative model in the

domain of machine learning. Its core assumption, referred to as the “naive” as-

sumption, assumes the conditional independence of features given the class label.

This assumption allows naive Bayes models to calculate the conditional probabili-

ties of features given each class and subsequently employs Bayes’ theorem to derive

the posterior probabilities of classes for the given input. The classification process

entails assigning the input to the class with the highest posterior probability.

Linear and quadratic discriminant analysis (LDA and QDA) [194], are other

examples of generative probabilistic techniques. LDA operates under the assump-
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tion that the conditional probability distributions of features given each class are

multivariate Gaussian distributions, characterized by equal covariance matrices. It

endeavors to learn a linear separation between the classes, aiming to identify a linear

decision boundary that maximizes the ratio of between-class variance to within-class

variance. In contrast, QDA relaxes the assumption of equal covariance, enabling

each class to be characterized by a specific covariance matrix. Consequently, QDA

estimates quadratic decision boundaries between the classes.

Beyond classification problems, generative models find utility in diverse domains,

including clustering and density estimation, e.g., Gaussian mixture models [172], as

well as time series processing, with hidden Markov models [66] being frequently

employed.

2.1.4 Ensemble learning

Ensemble learning refers to algorithms that combine the predictions of several classi-

fiers so as to improve classification accuracy. Ensemble learning can be divided into

two categories, based on the classifiers being trained independently from each other

or not. Dependent methods include boosting [75] and stacking [219] algorithms.

Independent approaches notably include bagging [23] and random forest [25].

Boosting is a family of ensemble algorithms that can leverage “weak classifiers”

to build strong classifiers through a sequential concatenation approach, e.g., Ad-

aBoost [76], XGBoost [33], etc. The underlying mechanism of boosting involves

training a base classifier on the initial dataset and adjusting the distribution for the

training instances based on the performance of the base classifier. This adjustment

aims to provide more attention to the samples that are previously misclassified by

the base classifier in the subsequent classifiers. The adjusted training set is then

used to train the next base classifier. This process is repeated until reaching the

predetermined number of base classifiers. In the prediction phase, an aggregation of

the predictions from all base classifiers is performed by applying appropriate weights

for base classifiers.
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Stacking employs meta-learning algorithms to learn how to combine the outputs

of base classifiers. In the stacking approach, the classifiers trained on the training

set are referred to as base classifiers, while the classifier used to fuse the predictions

of the base classifiers is known as the meta-classifier. Stacking begins by training

the base classifiers on the original training set. Subsequently, the outputs of the

base classifiers on the training set are utilized as input features to train the meta-

classifier. However, this implementation method carries a higher risk of over-fitting.

To mitigate this, a common practice is to employ K-fold cross-validation on base

classifiers. This involves using samples that were not used to train the base classifiers

as training samples for the meta-classifier, thus reducing the risk of over-fitting.

Bagging employs bootstrap sampling, a method of sampling with replacement,

to construct multiple datasets of the same size as the original training sets. In

each of these datasets, some samples may appear multiple times, while others may

never appear. The idea behind bagging is to train base classifiers on each of these

sampled datasets and subsequently aggregate their predictions to make decisions.

The introduction of sample randomness by bootstrap sampling aims to enhance

diversity among the base classifiers, thereby reducing the variance of final predictions

and improving its generalization capability.

Random forests

A random forest [25], a variant of bagging, is an ensemble learning technique based

on the combination of decision trees. This approach is very popular due to its

ability to reach excellent generalization performances and avoid over-fitting issues,

compared to a single decision tree. Each decision tree in a random forest is trained

without pruning on a bootstrap replicate of the original training set. Training sam-

ples that are not selected for training a specific tree are called “out-of-bag samples”

for that tree. Trees in a random forest are classically grown, i.e., by determining the

split which achieves the highest homogeneity (using, e.g., information gain for ID3

[166], information gain ratio for C4.5 [165], or the Gini index for CART [24]). The

main difference between a tree in a random forest, with respect to a single tree, is
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that the candidate features for each split are randomly selected among all features.

If a node cannot be split (homogeneity cannot be improved, the maximum depth

has been reached, or the minimum node size is attained), it will be regarded as a

terminal node or a leaf that is used to classify test samples.

The number of candidate features for each split thus directly impacts the di-

versity of trees in the ensemble. Besides, the minimum size of terminal nodes, or

alternatively the maximum depth of the tree, makes it possible to control the tree

complexity and therefore its ability to fit the training data (low bias). In a random

forest, trees are constructed so as to have very low bias and are consequently gen-

erally not pruned. The total number T of trees in the forest influences the variance

of predictions (the larger the forest, the more stable the predictions). Combining a

large number of decision trees makes it possible to exploit the diversity granted by

both feature and sample randomness, and helps to limit the detrimental influence

of outliers [85], ultimately improving generalization performances.

Let H be a random forest of T decision trees ht: H = {ht, t = 1, . . . , T}. For

a given test instance x ∈ X , let ntk(x) denote the number of training samples of

class ck falling into the same leaf as x for tree ht. The probability of each class

ck ∈ Ω = {c1, . . . , cK} estimated by each tree is then defined as

ptk = p(ck|x,ht) =
ntk(x)∑K
k=1 ntk(x)

. (2.5)

In order to aggregate the trees, the averaging strategy computes the mean class

probabilities across all trees:

pavek =
T∑
t=1

wt · ptk, (2.6)

where wt denotes the weight of tree ht such that wt > 0 and
∑T

t=1 wt = 1. Alterna-

tively, the voting strategy requires trees to make their own decisions first and then
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counts the proportion of votes for each class:

pvotek =
T∑
t=1

wt · 1(ptk > ptk′ ,∀k′ ̸= k). (2.7)

One natural choice is to assume all weights to be equal across trees, i.e., weights are

set to wt = 1/T for t = 1, . . . , T . We stress that both approaches give an estimate

of the posterior probability distribution over the classes. Thus, a decision can be

made for x by picking the most probable class that maximizes the expected utility.

Fig. 2.1 represents the decision-making process for a given instance x and a trained

random forest H.

xInput instance

h1

. . .

ht

. . .

hT

Decision trees

p11, . . . , p1K pt1, . . . , ptK pT1, . . . , pTK. . . . . .Probability
distributions

Averaging or voting

Maximizing an expected utility

Singleton prediction

Figure 2.1: Decision-making process of random forests.
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2.2 Cautious classification

Traditionally, classification models make precise (determinate) decisions, in the form

of a single class (or a point prediction in regression). However, enforcing the assign-

ment of the instance to a single class is questionable when the available information

(i.e., from which a decision is made) is scarce. As well, in ensemble learning, a

large conflict between the outputs of individual classifiers should lead to avoiding

reaching a definitive conclusion. Therefore, in some critical systems where wrong

decisions may have serious consequences, an alternative is to produce imprecise (in-

determinate) predictions such as sets of plausible classes (or intervals in regression)

when excessive uncertainty occurs. Following [164], when imprecise predictions are

allowed to be made for a classifier, we will refer to the corresponding model as a

cautious classifier.

2.2.1 Problem statement

A cautious classification problem, also referred to as an imprecise classification or

partial classification problem, aims to assign a set-valued prediction consisting of

several probable classes to input instances based on their feature values, when the

uncertainty from the data or the model is too high. The main objective of cau-

tious classification is to reduce the risk of making wrong decisions. Assume an

input random variable X = {X1, . . . ,XM} of M dimensions and an output ran-

dom vector Y, whose possible values (classes) are in Ω = {c1, . . . , cK} with K ≥ 2.

As before, the input space is written as X = {X 1, . . . ,XM}, whereas the out-

put space is now Y = P(Ω), where P(Ω) is the power set of Ω. The goal of

cautious classification is to learn a function (classifier) h : X → P(Ω) by min-

imizing a predefined cost (risk) measurement function on observed training data

Dtrain = {(xi, yi), i = 1, . . . , Ntrain}. Different from the output of precise classifiers,

for an instance x, the prediction of a cautious classifier is denoted as Ŷ = h(x).
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2.2.2 Evaluation metrics

In contrast to traditional classifiers, cautious classifiers can generate indeterminate

(set-valued) predictions. Obviously, a cautious classifier which always produces Ω

as prediction is never wrong but also of no practical use. Thus, classical evaluation

criteria are inadequate in this context. In light of this, given a test set Dtest =

{(xi, yi), i = 1, . . . , Ntest}, we mention here several evaluation criteria proposed to

evaluate the quality of such set-valued predictions:

• the determinacy (det) counts the proportion of samples that are determinately

classified (i.e., the classifier outputs a single class):

det =
1

Ntest

Ntest∑
i=1

1(|h(xi)| = 1), (2.8)

where |h(xi)| is the cardinality of the prediction, and where Cautiousness can

be defined as cau = 1−Determinacy;

• single-set accuracy (ssa) measures the proportion of correct determinate de-

cisions:

ssa =
1

Npre

Ntest∑
i=1

1(h(xi) = yi), (2.9)

where Npre =
∑Ntest

i=1 1(|h(xi)| = 1), indicating the number of instance deter-

minately classified;

• set accuracy (sa) measures the proportion of indeterminate predictions con-

taining the actual class:

sa =
1

Nimpre

Ntest∑
i=1

1(|h(xi)| > 1) · 1(yi ∈ h(xi)); (2.10)

where Nimpre =
∑Ntest

i=1 1(|h(xi)| > 1), indicating the number of instance been

indeterminately classified;
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• set size (ss) gives the average size of indeterminate predictions:

ss =
1

Nimpre

Ntest∑
i=1

|h(xi)| · 1(|h(xi)| > 1); (2.11)

• discounted utility (du) calculates the expected utility of making a correct (not

wrong) decision, discounted by the size of the predicted set:

du =
1

Ntest

Ntest∑
i=1

dr(|h(xi)|)) · 1(yi ∈ h(xi)), (2.12)

where dr(·) is the discount ratio.

Let Ŷ = h(x) be the set-valued prediction made by h for a given test sample x,

a natural choice of discount ratio is defined as

dracc(|Ŷ |) =
1

|Ŷ |
. (2.13)

The discounted utility based on dracc(·) is called the discounted accuracy. However,

Zaffalon et al. [227] argued that abstaining from making a decision is preferable to

random guessing, i.e., the reward of an indeterminate prediction Ŷ should be greater

than 1/|Ŷ |. Therefore, they proposed the following discounted utility functions:

dru65(|Ŷ |) =
1.6

|Ŷ |
− 0.6

|Ŷ |2
, (2.14)

and

dru80(|Ŷ |) =
2.2

|Ŷ |
− 1.2

|Ŷ |2
. (2.15)

The discounted utilities based on dru65(·) and dru80(·) are called the u65 and u80

scores, respectively. Finally, the Fβ score can also be used as a discounting ratio:

drFβ
(Ŷ ) =

β2 + 1

β2 + |Ŷ |
. (2.16)

The discounted utilities that use drF1(·) and drF2(·) are called F1-measure and

F2-measure, respectively [48].
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Table 2.2: Example of different discounted utility functions on three classes.

Ŷ
1/|Ŷ | dru65(|Ŷ |) dru80(|Ŷ |) drF1(Ŷ )

c1 c2 c3 c1 c2 c3 c1 c2 c3 c1 c2 c3

{c1} 1 0 0 1 0 0 1 0 0 1 0 0

{c2} 0 1 0 0 1 0 0 1 0 0 1 0

{c3} 0 0 1 0 0 1 0 0 1 0 0 1

{c1, c2} 0.5 0.5 0 0.65 0.65 0 0.8 0.8 0 0.667 0.667 0

{c1, c3} 0.5 0 0.5 0.65 0 0.65 0.8 0 0.8 0.667 0 0.667

{c2, c3} 0 0.5 0.5 0 0.65 0.65 0 0.8 0.8 0 0.667 0.667

{c1, c2, c3} 0.333 0.333 0.333 0.467 0.467 0.467 0.6 0.6 0.6 0.5 0.5 0.5

2.2.3 Cautious classifiers based on precise probabilities

As mentioned above, based on the maximum expected utility principle and using the

0/1 loss, traditional classifiers choose the class that achieves the highest posterior

probability p(ck|x), ck ∈ Ω to any given test instance x. However, sometimes, the

conditional probabilities are very close, which means that the aleatoric uncertainty

in the estimated probability distribution is very high. For example, x is an instance

from a binary dataset, i.e., Ω = {c1, c2}, and its estimated conditional probabilities

are p(c1|x) = 0.49 and p(c2|x) = 0.51. In this case, the assignment of c2 to x is

questionable because the two classes are almost equally likely: the instance can be

called ambiguous. Therefore, in this section, we will introduce some strategies to

address the problem of decision-making under high aleatoric uncertainty.

Reject option

A simple and direct way to deal with a high uncertainty is to abstain from making a

decision. The reject option can be divided into ambiguity rejection and novelty (or

distance) rejection. The former avoids making decisions in the overlapping regions

in the input space where the class of a given instance is ambiguous (high aleatoric

uncertainty); and the latter abstains from making decisions in low-density regions

where the instance is very dissimilar to the observed training data [94] (high epis-

temic uncertainty). We will detail the ambiguity rejection because it is related to

our proposed cautious decision-making framework.
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In [36], Chow proposed to abstain from making a decision if the maximum esti-

mated posterior probability across all classes is less than a given threshold t > 1
K

:

h(x) =


arg max

ck∈Ω
p(ck|x) if max

ck∈Ω
p(ck|x) ≥ t,

reject else.

(2.17)

The parameter t controls the cautiousness of the reject option. The larger t is,

the more cautious the model will be, i.e., more instances will not be classified. In

practical applications, the value of t should be carefully selected [81].

The main drawback of the reject option is that nothing is said about possible

classes. An alternative is to only reject some specific classes that are not plausible

enough and return the non-rejected classes as predictions [90].

In [89], Gupta proposed a strategy called “constant risk”, which fixes an accept-

able risk threshold r and selects the smallest number of best classes with cumulative

probability exceeding 1− r. Formally, for instance x, the prediction is defined as:

h(x) = arg min
ℓ∈{1,...,K}

|Aℓ| s.t. Pr(Aℓ|x) ≥ 1− r, (2.18)

with Aℓ = {c(1), . . . , c(ℓ)} the subset of the ℓ most probable classes, i.e. the set of

classes {c(k), k = 1, . . . , K} is ordered by decreasing probability: p(c(1)|x) ≥ · · · ≥

p(c(K)|x).

Nondeterministic classifier

Different from the fixed risk threshold in the reject option, Del Coz et al. [48]

proposed the nondeterministic classifier (NDC) to directly compute the set of classes

that achieves the lowest expected risk (equivalent to the highest expected utility)

based on the distribution of posterior probabilities of classes for a given instance.

The NDC aims to maximize the discounted utility Fβ-measure that is defined in

Eq. (2.16). In the inference phase, given the posterior probability distribution of
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classes for x, the set-valued prediction returned by h is

h(x) = arg max
A⊆Ω

1 + β2

β2 + |A|
·
∑
ck∈A

p(ck|x). (2.19)

As demonstrated in [48, 143], if the posterior probability distribution of classes is

known, this problem can also be solved in linear time complexity as a function of the

number of classes. The method consists in sorting the classes in descending order

according to posterior probabilities and adding one by one classes in the set-valued

prediction until the addition of the next class decreases the expected utility.

Conformal prediction

Conformal prediction is a framework that constructs cautious predictions through

reliable confidence measures [208]. For a given underlying classifier that can estimate

the posterior probability distribution of classes for x and a fixed probability of

error ε, the objective of conformal prediction is to produce a set-valued prediction

Ŷ ⊆ Ω, Ŷ ̸= ∅ that contains the real class y with probability at least 1 − ε, i.e.,

p(y ∈ Ŷ ) ≥ 1− ε.

In the setting of inductive conformal prediction, a calibration data set Dcalib =

{(xi, yi), i = 1, . . . , Ncalib} is required, in which none of its samples were present in

the training set of the underlying classifier. Then, a nonconformity measure (NCM)

is computed for each sample in Dcalib (e.g., nci = 1− p(yi|xi), i = 1, . . . , Ncalib) and

the 1 − ε quantile q̂ among these nonconformity scores is calculated, which means

that a proportion of samples equal to 1 − ε have a nonconformity score no larger

than q̂. It should be noted that there are other different strategies to construct the

calibration dataset, different nonconformity measures and that the 1 − ε quantile

may be adjusted according to the number of samples in the calibration dataset [181].

In the inference phase, for a given instance x, the estimated posterior probabil-

ities of classes are provided by the underlying classifier. For each class ck ∈ Ω, the
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p-value for the hypothesis ŷ = ck is defined as follows:

pkvalue = p(NCM > 1− p(ck|x)) ≈ 1

Ncalib

Ncalib∑
i=1

1(nci > 1− p(ck|x)). (2.20)

If ck reaches a p-value pkvalue > ε, the hypothesis ŷ = ck should not be rejected at

the significance level ε, and thus ck has to be included in the set-valued prediction.

Therefore, the prediction provided by the conformal prediction classifier is

h(x) = {ck : pkvalue > ε, ∀ck ∈ Ω}. (2.21)

An equivalent representation of this decision-making strategy is

h(x) = {ck : 1− p(ck|x) < q̂, ∀ck ∈ Ω}. (2.22)

Example 2.1 (Cautious classification with precise probabilities). Assume Ω =

{c1, c2, c3, c4} and a given instance x with actual class y = c1, its estimated pos-

terior probabilities p(c1|x) = 0.45, p(c2|x) = 0.05, p(c3|x) = 0.4 and p(c4|x) = 0.1.

The predictions taken by different models are explained as follows:

• reject option: suppose the threshold is set to t = 0.6, then max
ck∈Ω

p(ck|x) =

0.45 < t and therefore Ŷ = {c1, c2, c3, c4};

• constant risk: suppose the fixed risk is r = 0.1, then we have Ŷ = {c1, c3, c4} as

prediction because it is the smallest set having a sum of posterior probabilities

larger than 1− r = 0.9;

• nondeterministic classifier: we suppose β = 1. The order of the classes ac-

cording to the posterior probabilities is c1, c3, c4, c2, then we add them one by

one to the prediction and calculate the expected F1-measure measurement:

EF1 [Ŷ = {c1}] =
2

1 + 1
× 0.45 = 0.45, continue,

EF1 [Ŷ = {c1, c3}] =
2

1 + 2
× (0.45 + 0.4) = 0.567 > 0.45, continue,

EF1 [Ŷ = {c1, c3, c4}] =
2

1 + 3
× (0.45 + 0.4 + 0.15) = 0.475 < 0.567, stop,
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since it is sure that EF1 [Ŷ = {c1, c3, c4, c2}] < 0.475. Therefore, the set of

classes maximizing the expected F1-measure is Ŷ = {c1, c3};

• conformal prediction: suppose that ε = 0.1 and q̂ = 0.65 (calculated with the

calibration set), then the prediction should be Ŷ = {c1, c3} since we have only

1− p(c1|x) < q̂ and 1− p(c3|x) < q̂.

2.2.4 Cautious classifiers based on imprecise probabilities

Several cautious classifiers have been explicitly developed in different frameworks.

Rooted in the theoretical framework of belief functions, the evidential KNN model

regards the nearest neighbours as pieces of evidence with respect to their correspond-

ing classes [55]. These evidences are discounted by the distances to the test data

point and combined via Dempster’s rule. The resulting mass functions can be used

to make either precise or imprecise predictions. A similar treatment (distance-based

discounting) is applied in the evidential neural network, which uses an evidence layer

to learn prototypes in the latent space and calculates a mass function on the set of

possible classes [56]. Based on this, in [197], the Hurwicz criterion is used to select

the best partial assignment to produce cautious predictions. However, the number

of potential partial assignments grows exponentially with the number of classes. To

address this issue, the authors proposed in [197] to reduce the number of potential

partial assignments by clustering the set of classes based on the confusion matrix

provided by a precise CNN classifier. In [101], training data are relabeled by as-

signing set-valued labels to instances in overlapping or isolated regions, based on

which an evidential classifier is trained. Finally, the NDC decision rule is used on

the pignistic probabilities to provide set-valued predictions.

In the imprecise-probabilistic setting, the construction of cautious classifiers is

mainly based on replacing the point-valued estimation of a probability distribution

with a set-valued one and building partial orders among classes. The naive credal

classifier [226], credal networks [39, 46], credal sum-product networks [134], credal

decision trees [3] and imprecise credal decision trees [2] make use of credal sets
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to define cautious models which provide in turn imprecise predictions. The lower

prevision KNN [59] leverages distance-based discounting to make a lower prevision of

each class. The imprecise Gaussian discriminant analysis adopts a robust Bayesian

analysis and near-ignorance priors to imprecisely estimate the centroid of each class,

leading to imprecise posterior probability estimations [8]. For multi-class cautious

classifications, nested dichotomies, a special binary decomposition technique, are

extended to imprecise probabilities in [225], and in [60, 167], the lower and upper

probabilities of each class are calculated by solving linear programs where the binary

cautious classifier outputs are interpreted as constraints.

2.3 Conclusion

In this chapter, we have provided an overview of precise and cautious classification,

recalling the problem statement, and providing evaluation metrics for classifiers as

well as for model comparison. Additionally, we have also presented several commonly

used traditional and cautious classifiers.

In the next chapter, we will present the proposed cautious random forest model

with only two classes, which cooperates with random forests, the imprecise Dirichlet

model and the theory of belief functions to make cautious predictions when the

uncertainty is high.
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The main objective of cautious classifiers is to identify (test) instances that

are prone to errors and mitigate the risk of wrong predictions by retaining sets of

classes in the presence of uncertainty. However, this comes with a cost: set-valued

predictions make the classifier less informative. Therefore, it is essential to achieve a

balance between risk (proportion of wrong predictions) and cautiousness (proportion

and cardinality of set-valued predictions).

To address this problem, we propose a strategy within the framework of belief

functions where we combine imprecise decision trees induced by the imprecise Dirich-

let model to construct a cautious classifier, called cautious random forest [230, 234].

This strategy aims to achieve a better compromise between the accuracy and the

cautiousness of predictions than existing aggregation methods for imprecise trees.

Additionally, we introduce a cost function specifically designed for cautious classi-

fiers to assign weights to trees in the ensemble. We stress that this chapter deals

with binary classification problems. The extension to multi-class problems will be

considered in Chapter 4.

This chapter is organized as follows. Section 3.1 presents imprecise trees con-

structed using the imprecise Dirichlet model and the existing aggregation approaches.

Then, we detail our proposed imprecise tree aggregation scheme and the cost func-

tion used to learn tree weights in Section 3.2. Section 3.3 reports experiments con-

ducted on 25 datasets and discusses the corresponding results. Finally, we conclude

the chapter in Section 3.4.

3.1 Imprecise random forests: state of the art

3.1.1 Imprecise trees via the imprecise Dirichlet model

Walley’s imprecise Dirichlet model (IDM) [211] is a simple yet powerful approach

to propagate epistemic uncertainty, i.e., arising from a data sample of small size.

Assuming that we have a set of instances, the classical inference is based on the esti-

mated (multinomial) posterior probabilities over the classes. In a Bayesian setting,
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a specific prior may be considered, for which a typical choice would be the Dirichlet

distribution, being conjugate to the multinomial posterior probabilities. The IDM

rather makes use of a set of Dirichlet distributions as a prior, thus resulting in a

set of distributions (in the form of probability intervals) after updating [19]. These

posterior probability intervals across the classes are as wide as the limited amount

of data.

In this chapter, we focus on binary classification problems, i.e., we consider a

training set D = {(xi, yi), i = 1, . . . , N}, where yi ∈ {c1, c2}. Let H be a random

forest of T decision trees : H = {ht, t = 1, . . . , T} trained on D. For a given test

instance x, let nt1(x) and nt2(x) denote the number of training samples of classes

c1 and c2 falling into the same leaf as x for tree ht. The posterior probabilities

estimated by each tree ht are then noted as pt1(x) = p(c1|x,ht) and pt2(x) =

p(c2|x,ht), respectively.

Obviously, the reliability of an individual estimate (or decision) provided by a

tree strongly depends on the sample size Nt(x) = nt1(x)+nt2(x) in the leaf attained

by x, and might therefore differ from the actual probability for some small leaves

(e.g., with only one or two samples). In order to reflect epistemic uncertainty (i.e.,

the lack of information at the tree leaf level), the IDM can be used to produce

interval-valued probability estimates. According to Eq. (1.18), for t = 1, . . . , T , the

IDM intervals of the estimated posterior probabilities for ck ∈ {c1, c2} are defined

as

Itk(x) =
[
p
tk

(x), ptk(x)
]

=

[
ntk(x)

Nt(x) + s
,
ntk(x) + s

Nt(x) + s

]
, (3.1)

where p
tk

(x) and ptk(x) are the lower and upper bounds of p(ck|x,ht). By duality,

we have p
t1

(x) = 1− pt2(x) and pt1(x) = 1− p
t2

(x).

3.1.2 Aggregation of imprecise trees

The joint use of the IDM and decision trees is not new: it has previously been ex-

plored in two directions. First, it has been used to improve the training of single trees

or tree ensembles. Credal decision trees (CDT) [3, 132] and credal random forests
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(CRF) [1] use a maximum entropy principle to select split features and values from

the probability intervals obtained via the IDM, thus improving robustness to data

noise. To enhance the generalization performance of tree ensembles trained on small

datasets, data sampling, and augmentation based on the IDM probability intervals

have been proposed to train deep forests [202] and to learn weights associated with

trees in the ensemble in order to further optimize their combination [203].

Second, the probability intervals given by the IDM can also be used to make

cautious decisions, thereby reducing the risk of prediction error [19, 164], which

is the focus of our study. A cautious decision is a set-valued one, i.e., a cautious

classifier may return a set of classes instead of a single one when the uncertainty is

too high. An imprecise credal decision tree (ICDT) [2] is a single tree where set-

valued predictions are returned by applying the interval dominance principle [200]

to the probability intervals obtained via the IDM.

In tree ensembles, applying cautious decision-making strategies becomes more

complex. One approach consists in aggregating the probability intervals given by

the trees, for example using conjunction, disjunction, or averaging, before making

cautious decisions via computing a partial order among classes [47, 72]. Another

approach consists in allowing each tree to make a cautious decision first, before

pooling them. The Minimum Vote Against (MVA) is such an approach, where the

classes with minimal opposition are retained [142]. It should be noted that MVA

generally results in precise predictions, whereas disjunction and averaging often

turn out to be inconclusive. Even worse, using conjunction very frequently results

in empty predictions due to conflict.

To address the shortcomings of the aforementioned imprecise tree aggregation

methods, in Chapter 3 and Chapter 4, we propose new aggregation strategies under

the framework of belief functions for imprecise decision trees and cautious decision-

making processes based on the aggregated information. The main objective is to

achieve a better compromise between the accuracy and the cautiousness of the

model. Fig. 3.1 provides an overview of the proposed cautious random forests.



3.2 New aggregation scheme 51

xInput instance

h1

. . .

ht

. . .

hT

Decision trees

[
p
11
, p11

]
. . .[

p
1K

, p1K

]
[
p
t1
, pt1

]
. . .[

p
tK
, ptK

]
[
p
T1
, pT1

]
. . .[

p
TK

, pTK

]. . . . . .Imprecise
Dirichlet model

Aggregation into a belief function

Cautious decision-making

Set-valued prediction

Figure 3.1: Decision-making process of cautious random forests.

3.2 New aggregation scheme

3.2.1 Imprecise tree aggregation strategy

In this section, we adopt the theoretical framework of belief functions induced by

random intervals [49] to aggregate imprecise decision trees.

Let U and V be two random variables such that U ≤ V ; they may be regarded as

determining a random interval [U, V ] and defining a belief and plausibility function

on R:

Bel(A) = P([U, V ] ⊆ A), (3.2)

Pl(A) = P([U, V ] ∩ A ̸= ∅), (3.3)
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for any element A of the Borel sigma-algebra B(R) of the real line [49]. Let Ii =

[ui, vi] with i = 1, . . . , N , and let m be the mass function from the set I of closed

real intervals on [0, 1] such that m(Ii) = mi with i = 1, . . . , N and
∑N

i=1mi = 1.

Under this setting, the belief and plausibility functions are

Bel(A) =
∑
Ii⊆A

mi, P l(A) =
∑

Ii∩A ̸=∅

mi, ∀i = 1, . . . , n. (3.4)

The intervals Ii are called focal intervals of m [54]. This definition provides a basis

for pooling pieces of information provided by the trees with respect to the class

probabilities.

Bssed on the definition above, we propose to interpret the tree outputs as pieces

of evidence about the actual class of a test instance in the form of closed random

intervals defined on [0, 1] [230, 234]. These posterior probability intervals can be

aggregated into belief and plausibility degrees that can then be used in a cautious

decision-making process to indicate whether one of the two classes is strictly prefer-

able to the other or not.

More precisely, the proposed aggregation strategy consists in computing the

belief and plausibility of the event “p1(x) ∈ [0.5, 1]”. We regard each probability

interval provided by a tree as a focal element on the unit interval [0, 1], which

provides evidence regarding the proposition that instance x belongs to class c1. The

belief and plausibility degrees across the classes are defined as

bel1(x) = Bel({c1}|x) = Bel(p1(x) ∈ [0.5, 1]) =
T∑
t=1

wt · 1(p
t1
≥ 0.5), (3.5)

and

pl1(x) = Pl({c1}|x) = Pl(p1(x) ∈]0.5, 1]) =
T∑
t=1

wt · 1(pt1 > 0.5), (3.6)

where wt is the weight for tree ht, and can actually be interpreted as the degree

of support m(It1(x)) of each interval It1(x) provided by the tree ht. It should be

remarked that by duality, bel2(x) = 1− pl1(x) and pl2(x) = 1− bel1(x).
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Based on the final interval [bel1(x), pl1(x)], the interval dominance decision rule

can be applied to make a decision:

Ŷ =


{c1}, if bel1(x) ≥ 0.5,

{c2}, if pl1(x) < 0.5,

{c1, c2}, otherwise.

(3.7)

Algorithm 1 describes the inference process of our cautious random forest strat-

egy. This aggregation strategy can be seen as a generalized voting scheme of binary

classification, i.e., each tree can vote on {c1}, {c2}, or {c1, c2}.

Algorithm 1: Binary cautious random forest inference procedure.

Input: random forest H, tree weights w1, . . . , wT , IDM parameter s, test
instance x

Output: prediction Ŷ for the given test instance
1 Ŷ ← {}
2 for ht ∈ H do
3 Compute It1(x, s) via Eq. (3.1)

4 Calculate bel1(x) via Eq. (3.5)
5 Calculate pl1(x) via Eq. (3.6)
6 if bel1(x) ≥ 0.5 then

7 Ŷ ← {c1}
8 else if pl1(x) < 0.5 then

9 Ŷ ← {c2}
10 else

11 Ŷ ← {c1, c2}
12 Return Ŷ

3.2.2 Learning the tree weights

In this section, we investigate assigning weights to trees in our combination scheme.

As in [202, 203], we propose to automatically learn the tree weights wt so as to

optimize the tree ensemble performances. However, to the best of our knowledge,

all existing approaches are based on tree accuracy [31, 112, 120, 202, 203], and are

therefore not well-suited to our imprecise classification setting, since they would
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amount to give indeterminate predictions the same status as faults. We propose

here to make use of a cautious criterion, which rewards both the cautiousness (asso-

ciated with indeterminate predictions) and the correctness (associated with accurate

determinate predictions) of the cautious classifier. For this end, we propose to learn

tree weights by replacing the classically optimized accuracy measure with a utility-

discounted accuracy metric [230].

Let us define

w = [w1, . . . , wT ]⊤ , (3.8a)

δ(x) = [1(p
11

(x) ≥ 0.5), . . . ,1(p
T1

(x) ≥ 0.5)]⊤, (3.8b)

and

δ(x) = [1(p11(x) > 0.5), . . . ,1(pT1(x) > 0.5)]⊤ . (3.8c)

Here, w, δ(x) and δ(x) are all column vectors of T elements, with w the vector of

variables to be identified. Using these notations, Equations (3.5) and (3.6) can be

rewritten as

bel1(x) = w⊤δ(x), (3.9a)

pl1(x) = w⊤δ(x). (3.9b)

Note that the vectors δ(x) and δ(x) of binary values are constant once the random

forest has been trained and the value of parameter s is given. Remark also that

the duality property holds: bel2(x) = 1 − pl1(x), and pl2(x) = 1 − bel1(x). In the

following, for the sake of simplicity, we will write beli1 = bel1(xi), pli1 = pl1(xi),

δi = δ(xi) and δi = δ(xi), for any training instance xi in the training set D =

{(xi, yi), i = 1, . . . , T}. For the sake of simplicity, we introduce new class labels:

zi =

1, if yi = c1,

0, if yi = c2.

(3.10)
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We may naturally define an optimization criterion based on the log-loss:

L(w) =− 1

N

N∑
i=1

{zi ln(beli1) + (1− zi) ln(beli2)}+ λ ∥ w ∥22 ,

s.t.
T∑
t=1

wt = 1, wt ≥ 0, ∀t = 1, . . . , T.

(3.11)

A similar cost function was introduced in [202] as

L(w) =− 1

N

N∑
i=1

{zi beli1 + (1− zi) beli2}+ λ ∥ w ∥22

s.t.
T∑
t=1

wt = 1,
1− ϵ

T
≤ wt ≤

1− ϵ

T
+ ϵ, ∀t = 1, . . . , T.

(3.12)

While Eq. (3.11) is akin to a cross-entropy loss, Eq. (3.12) can be regarded as

a kind of hinge loss; both are convex. However, both methods tend to produce

determinate predictions, since they prefer that the belief of actual class tends to

one, and indeterminate predictions are penalized as errors. In a cautious setting,

the cost of an indeterminate prediction should be lower than that of a determinate

but erroneous one.

Therefore, we propose to optimize a cost function that considers both determi-

nate and indeterminate predictions:

L(w) =
1

N

N∑
i=1

{ziH(0.5− beli1) + (1− zi)H(pli1 − 0.5)

−γH((0.5− bli1)(pli1 − 0.5))} ,

(3.13)

where H(·) is the Heaviside function. In this cost function, determinate predictions

cost nothing if they are correct, and are penalized (cost 1) if they are wrong. All in-

determinate predictions cost 1−γ. Optimizing this cost function amounts to looking

for a compromise between making precise predictions and avoiding making mistakes.

To this extent, the criterion in Eq. (3.13) can be seen as a utility-discounted accuracy

measure [227]. The parameter γ can be considered as the utility of being indeter-

minate, which can be tuned to adjust the cautiousness of the model (the larger the
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value of gamma, the more cautious the model).

Example 3.1. Consider an instance xi with actual label yi = c1, thus zi = 1: if the

model return beli1 = 0.1 and pli1 = 0.2, the prediction would be Ŷi = {c2} (wrong

prediction) with a cost equal to 1, since ziH(0.5−beli1) = 1 and all other components

in the cost function are zero. Conversely, if beli1 = 0.8 and pli1 = 0.9, the prediction

would be {c1} (correct) and costs 0. Eventually, if beli1 = 0.4 and pli1 = 0.6, the

indeterminate prediction Ŷi = {c1, c2} would cost 1 − γ, since ziH(0.5 − beli1) = 1,

(1− zi)H(pli1 − 0.5) and γH((0.5− bli1)(pli1 − 0.5)) = γ.

It is known that the Heaviside function is neither continuous nor differentiable.

Therefore, we propose to use the sigmoid function as an approximation to it:

H(x) ≈ σ(x) =
1

1 + exp(−αx)
. (3.14)

This approximation is reasonable if α is large enough. However, the sigmoid function

is non-convex, and this cost function is prone to local minima. A solution to this

issue consists in minimizing a surrogate (upper bound) Lsup(w) of L(w) [61]. Using

the inequality x ≤ − ln(1− x), ∀x < 1, the equality σ(−x) = 1− σ(x) and σ(x) <

1, ∀x ∈ R, we have

σ(0.5− beli1) ≤ − ln(σ(beli1 − 0.5)), (3.15a)

σ(pli1 − 0.5) ≤ − ln(1− σ(pli1 − 0.5)), (3.15b)

and

−σ ((0.5− bli1)(pli1 − 0.5)) ≤ − ln (1− σ ((beli1 − 0.5)(pli1 − 0.5)))− 1. (3.15c)

We remark that a regularization term should be taken into account in the cost

function, so as to avoid over-fitting. We finally obtain the following regularized
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upper bound cost function:

Lsup(w) = − 1

N

N∑
i=1

{
zi ln

(
σ(w⊤ δi − 0.5)

)
+ (1− zi) ln

(
1− σ(w⊤ δi − 0.5)

)
+γ ln

(
1− σ((w⊤ δi − 0.5)(w⊤ δi − 0.5))

)}
+

1

2
λ ∥ w ∥22

s.t.
T∑
t=1

wt = 1, wt ≥ 0, ∀t = 1, . . . , T.

(3.16)

In Eq. (3.16), the first and the second terms within the summation correspond

to the penalty incurred for not assigning an instance to the right class. However,

in case of an indeterminate decision, this penalty would be partially compensated

(depending on the γ value) by the third term in the summation. The last term out

of the summation is a regularization term to avoid over-fitting. The gradient, the

Hessian matrix, and the proof of the convexity of Eq. (3.16) are given in Appendices

A and B. It can therefore be easily minimized using any convex optimization solver.

3.3 Experiments and results

In this section, we detail the experiments conducted on 25 public datasets from the

UCI repository [15] to show the interest of our approach. All datasets are collected

for binary classification problems and cover a large range of sample sizes and number

of features (see Table 3.1). Experiments are reported in two steps:

• in Section 3.3.1, the different tree aggregation strategies providing cautious

predictions are compared on normal data, noisy data, and small training data;

• in Section 3.3.2, it illustrates the advantage of our proposed strategy for learn-

ing tree weights compared to other weight assignment methods and studies

the influence of the hyper-parameter tuning the compromise between the risk

and the informativeness of the model.

We adopt evaluation metrics defined in Section 2.2.2, including cautiousness,

single-set accuracy, u65 score, and u80 score to evaluate different cautious classifiers.
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Table 3.1: Datasets used in the experiments, with abbreviation ABB, numbers of
instances (N) and of features (nominal/numerical).

Dataset ABB N Feat Nom Num

adult ADT 45222 11 0 11
banknote BKT 1372 4 0 4
biodeg BID 1053 41 0 41
breast-cancer BRC 568 30 0 30
cardiac CAD 889 12 0 12
compas COP 2652 6 0 6
credit CRD 690 15 9 6
diabetes DIB 768 8 0 8
german GER 1000 24 0 24
heart HRT 303 13 0 13
heloc HLC 10459 23 0 23
ionosphere INS 351 34 0 34
liver LIV 345 6 0 6
magic MGC 2300 57 0 57
mammographic MMG 830 5 0 5
occupancy OCP 2665 6 1 5
phishing PHS 11054 30 0 30
pima PMA 768 8 0 8
post-operative POP 88 8 7 1
ringnorm RNO 7400 20 0 20
seismic SSC 2584 18 4 14
sonar SNR 208 60 0 60
spam SPM 4594 57 0 57
vote VTE 435 16 16 0
wine WNE 1599 11 0 11

The set accuracy is not considered here because it always equals to one for binary

cautious classification.

In order to compare multiple models over multiple datasets, we followed the rec-

ommendation of [51]. First, the Friedman test [79], which is a non-parametric test

that scores the algorithms independently for each data set, is performed to deter-

mine whether the classifiers are significantly different or not. The top-performing

algorithm receives a rank of 1, the second-best receives a rank of 2, and so on. If the

null hypothesis (all algorithms are equivalent) is rejected, a Nemenyi test [147] can

be applied in a second step to identify the significant differences between models.
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3.3.1 Comparison of tree aggregation strategies

Compared models

In this first phase of experiments, we benchmark different tree aggregation strategies

in random forests, all tree weights being considered to be equal. The methods

compared are:

• AVE: AVErage, where, following [146] and [72], we average the lower and

upper probabilities provided by the trees at hand, i.e., bel1(x) = 1
T

∑T
t=1 pt1(x)

and pl1(x) = 1
T

∑T
t=1 pt1(x), before applying interval dominance defined in

Eq. (1.21);

• MV: Majority Voting is adapted to our imprecise classification setting, by

applying interval dominance to each tree, and considering indeterminate pre-

dictions {c1, c2} as a possible outcome when counting the votes [72];

• RO: in Reject Option, we first estimate the probability p1(x) of class c1 as

the number of trees providing a probability pt1(x) ≥ 0.5, and we predict class

c1 whenever p1(x) > 0.5 + θ, class c2 whenever p1(x) < 0.5 − θ, and {c1, c2}

otherwise (with θ a hyper-parameter to be set) [36];

• MVA: Minimum Vote Against counts the number of classifiers that predict a

class as dominated (vote against), the final non-dominated set of classes being

made of the classes with the lowest amount of votes against [142];

• CRF: our proposed cautious random forest strategy, where we first pool the

trees by computing the belief and plausibility degrees according to Eq. (3.5)

and Eq. (3.6) (with equal tree weights), before applying interval dominance.

Experimental setting and procedure

The experiments were realized using the random forest classifier from the scikit-learn

[157] python library. Each tree in the ensemble is trained to its full depth, i.e., the

minimum number of training samples allowed in a leaf is one. Since the library made
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it possible to handle numeric features only, all categorical features were converted

by one-hot encoding. The forest consists of T = 100 trees.

We implemented the following protocol to compare the aggregation strategies.

For each dataset, for our method (CRF) we selected by cross-validation the value

of the IDM parameter s which maximizes u65 score; we used the same s for the MV

strategy. For AVE, the value was fixed to s = 1, following the recommendations in

[211]. For RO, the threshold was set to θ = 0.05 for all datasets, which was found

to give good results across all datasets.

Tests have been carried out in three directions. First, we applied our protocol to

the standard UCI datasets. In the second step, we introduced noise in the training

data by flipping a fixed proportion of labels drawn at random. In the experiments,

we considered various levels of label noise (0%, 5%, 10%, 15%, 20%). Average

cautiousness, single-set accuracy, u65, and u80 scores were computed by averaging

the measures made on ten repetitions of 10-fold cross-validation according to the

selected parameters. Last, we studied the effect of the training set size on the results.

For different sizes of the training set (N ∈ {20, 30, 50, 100, 150, 200}), each metric

was computed by averaging 100 independent repetitions according to the selected

parameters. The training samples were randomly selected from the whole dataset

and the remaining ones were used as the test set.

Results and discussion

First, we discuss the results obtained on standard datasets, which are reported in

Tables 3.2 to 3.5. As it can be seen from Table 3.2, CRF appears to be the most

cautious of all models and yields very similar results to AVE. MVA is the least

cautious on all datasets, reaching a level of cautiousness of less than 1%.

All cautious classifiers outperform the precise random forest (RF) — often by

a significant amount — in terms of single-set accuracy, thanks to their ability to

classify some difficult samples as indeterminate. However, according to the results

in Table 3.3, CRF is able to achieve the highest single-set accuracy, which indicates

that it is the most reliable model when determinate predictions are made. Tables 3.4
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Table 3.2: Cautiousness (%) of different aggregation strategies on each dataset
(without label noise) where the best result is printed in bold.

Data AVE MV RO MVA CRF

ADT 13.43 15.79 4.82 0.26 18.66
BKT 0.40 0.03 0.37 0.02 0.26
BID 8.69 0.93 5.64 0.25 10.32
BRC 2.36 0.05 1.88 0.07 1.51
CAD 3.98 8.73 1.62 0.18 8.05
COP 35.58 31.03 8.91 0.72 37.40
CRD 10.67 8.15 4.48 0.17 13.32
DIB 18.30 2.59 9.74 0.50 20.88
GER 27.32 15.47 11.82 0.56 33.13
HRT 16.31 4.98 7.60 0.56 20.07
HLC 19.61 1.41 11.45 0.46 21.90
INS 2.45 0.23 1.77 0.00 3.42
LIV 27.36 0.46 13.50 0.58 17.56
MGC 3.98 0.28 2.39 0.13 2.95
MMG 14.65 27.28 3.40 0.24 25.03
OCP 0.58 0.67 0.30 0.02 0.94
PHS 6.18 1.86 2.42 0.14 5.63
PMA 18.59 2.40 10.29 0.48 21.08
POP 29.53 39.14 6.25 0.35 29.04
RNO 4.99 0.32 4.70 0.22 5.41
SSC 1.98 0.06 1.13 0.01 1.29
SNR 18.48 0.77 14.47 0.67 11.64
SPM 3.71 0.20 2.48 0.05 2.61
VTE 3.95 1.20 1.42 0.09 3.70
WNE 14.42 0.61 8.30 0.37 10.01

Average 12.30 6.59 5.65 0.28 13.03
#Highest 10 3 0 0 12
#Lowest 0 2 0 23 0
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Table 3.3: Single-set accuracy (%) of different aggregation strategies on each
dataset (without label noise) where the best result is printed in bold.

Data AVE MV RO MVA RF CRF

ADT 87.79 88.93 84.63 84.18 83.60 89.73
BKT 99.42 99.29 99.46 99.36 99.63 99.37
BID 90.10 87.36 89.19 87.02 87.04 90.94
BRC 97.03 95.90 96.87 96.04 96.02 96.93
CAD 78.98 79.75 78.42 77.90 77.82 79.94
COP 64.57 61.77 60.61 59.66 60.11 64.64
CRD 91.18 90.01 89.22 87.18 87.51 92.15
DIB 81.24 77.25 79.14 76.77 76.36 82.26
GER 83.51 79.47 79.63 76.26 77.28 84.78
HRT 87.30 84.11 84.67 82.75 82.66 88.47
HLC 74.59 71.01 72.75 70.87 70.75 75.15
INS 94.47 93.56 94.27 93.53 93.34 94.81
LIV 78.65 73.74 76.37 74.22 73.68 77.05
MGC 95.92 94.48 95.57 93.35 94.62 95.89
MMG 84.94 88.00 80.24 81.30 79.89 87.49
OCP 98.78 98.88 98.61 98.62 99.09 98.97
PHS 96.39 94.59 95.19 94.28 94.84 96.11
PMA 81.02 76.94 79.06 76.48 76.24 81.79
POP 67.24 62.98 65.14 65.00 65.05 67.91
RNO 95.16 93.13 95.09 93.27 93.72 95.03
SSC 93.87 93.25 93.64 93.25 93.76 93.73
SNR 89.00 83.27 88.26 83.40 84.69 87.58
SPM 95.82 94.49 95.43 94.42 95.00 95.37
VTE 97.53 96.40 96.40 96.27 95.86 97.68
WNE 86.05 82.32 84.88 82.25 82.43 85.17

Average 87.62 85.64 86.11 84.71 84.84 87.96
#Highest 9 1 0 0 2 13
#Lowest 0 6 1 9 10 0
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Table 3.4: u65 score (%) of different aggregation strategies on each dataset
(without label noise) where the best result is printed in bold.

Data AVE MV RO MVA CRF

ADT 84.72 85.13 83.67 84.13 85.09
BKT 99.29 99.28 99.33 99.35 99.29
BID 87.93 87.14 87.82 86.96 88.26
BRC 96.27 95.88 96.26 96.02 96.44
CAD 78.38 78.43 78.18 77.88 78.72
COP 64.70 62.72 61.00 59.70 64.74
CRD 88.43 88.00 88.16 87.14 88.57
DIB 78.23 76.91 77.73 76.71 78.62
GER 78.38 77.18 77.86 76.19 78.14
HRT 83.66 83.16 83.21 82.64 83.75
HLC 72.69 70.93 71.85 70.85 72.92
INS 93.73 93.48 93.74 93.53 93.77
LIV 74.89 73.70 74.73 74.14 74.87
MGC 94.68 94.40 94.83 93.31 94.98
MMG 82.00 81.72 79.71 81.27 81.86
OCP 98.58 98.65 98.51 98.62 98.65
PHS 94.44 94.03 94.46 94.23 94.34
PMA 78.00 76.66 77.60 76.42 78.22
POP 65.86 63.02 65.11 65.02 66.17
RNO 93.65 93.04 93.67 93.21 93.40
SSC 93.30 93.24 93.31 93.25 93.36
SNR 84.53 83.12 84.86 83.28 84.90
SPM 94.67 94.43 94.67 94.41 94.57
VTE 96.25 96.02 95.96 96.24 96.48
WNE 83.01 82.21 83.22 82.19 83.15

Average 85.61 84.90 85.18 84.67 85.73
#Highest 4 2 4 1 16
#Lowest 0 9 4 12 0
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Table 3.5: u80 score (%) of different aggregation strategies on each dataset
(without label noise) where the best result is printed in bold.

Data AVE MV RO MVA CRF

DT 86.74 87.50 84.40 84.17 87.89
BKT 99.35 99.29 99.38 99.35 99.32
BID 89.23 87.28 88.66 87.00 89.81
BRC 96.62 95.89 96.54 96.03 96.67
CAD 78.98 79.74 78.43 77.91 79.93
COP 70.04 67.38 62.34 59.81 70.35
CRD 90.03 89.23 88.83 87.17 90.57
DIB 80.97 77.30 79.19 76.78 81.76
GER 82.48 79.50 79.64 76.28 83.11
HRT 86.11 83.91 84.35 82.73 86.76
HLC 75.63 71.15 73.57 70.92 76.21
INS 94.10 93.52 94.01 93.53 94.28
LIV 78.99 73.77 76.75 74.23 77.51
MGC 95.28 94.44 95.19 93.33 95.42
MMG 84.20 85.81 80.22 81.30 85.61
OCP 98.67 98.75 98.56 98.62 98.79
PHS 95.37 94.31 94.83 94.26 95.19
PMA 80.79 77.02 79.14 76.49 81.38
POP 70.29 68.89 66.04 65.07 70.52
RNO 94.40 93.09 94.38 93.24 94.21
SSC 93.60 93.25 93.48 93.25 93.55
SNR 87.30 83.23 87.03 83.38 86.64
SPM 95.23 94.46 95.05 94.42 94.96
VTE 96.84 96.20 96.18 96.25 97.03
WNE 85.17 82.30 84.47 82.24 84.65

Average 87.46 85.89 86.03 84.71 87.68
#Highest 7 1 1 0 16
#Lowest 0 7 3 16 0
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Table 3.6: Friedman statistic and p-value (left), Nemenyi p-values for pairwise
model comparison on noise-free data (right). The best result for Friedman rank is
printed in bold.

(a) Friedman rank and test

AVE MV RO MVA CRF p-value

cau 1.96 3.08 3.48 4.48 1.64 5.21× 10−8

ssa 2.08 3.08 3.84 4.44 1.56 7.99× 10−9

u65 2.36 2.96 3.80 4.12 1.76 1.74× 10−7

u80 2.16 3.28 3.68 4.40 1.48 9.01× 10−9

(b) Nemenyi test

CRF vs. AVE vs. MV vs. RO vs. MVA

cau 0.90 0.001 0.007 0.001
ssa 0.90 0.001 0.005 0.001
u65 0.49 0.001 0.020 0.001
u80 0.90 0.001 0.002 0.001

and 3.5 show that in terms of utility-discounted accuracy (both u65 and u80), which

measures a trade-off between cautiousness and single-set accuracy, CRF outperforms

all other baselines in the great majority of cases. This is confirmed by the Friedman

test and Nemenyi test in Table 3.6(a) and 3.6(b). CRF outperforms significantly all

other models (with a p-value less than 0.05) except AVE, for which the differences

are not significant. This first round of experiments thus shows that our combination

and decision strategy based on the theory of belief functions provides an interesting

way of making cautious and reliable decisions.

We now move on to the second part of this first phase of experiments, designed

to study the robustness of CRF against noisy data. The ability to perform well in

the presence of noisy data is an important feature of a good classifier. In our case,

the classifier is expected to become more cautious when facing low-quality data. In

these experiments, we investigate the impact of label noise on model performance, by

introducing a given percentage of erroneous labels in the training samples. Figures

3.2(a) to 3.2(d) display the behavior of the four evaluation metrics for the compared

models, averaged over all datasets, as a function of label noise.

As expected, the cautiousness of all models increases as the level of noise in-
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(a) cautiousness (b) single-set accuracy

(c) u65 score (d) u80 score

Figure 3.2: Average cautiousness, single-set accuracy, u65, and u80 scores computed
over all datasets, as a function of label noise.

(a) cautiousness (b) single-set accuracy

(c) u65 score (d) u80 score

Figure 3.3: Average cautiousness, single-set accuracy, u65 and u80 scores computed
over all datasets, as a function of training set size.
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creases. However, the effect is strongest for CRF and AVE: with 20% of noisy

labels, cautiousness increases by about 15%, which indicates that CRF and AVE

perform better in the presence of noise compared to MV, RO, and MVA. For MV

and RO, cautiousness only increased by about 5%. Even worse, MVA seems to be

insensitive to noise and always maintains cautiousness around 0.5%. It should be

noted that CRF is even more cautious than AVE for very high levels of label noise.

From 0% to 20%, the single-set accuracy of the traditional random forest drops by

5%, and by 3% for MV, RO, and MVA, whereas the results of CRF and AVE suffer

a decrease of about 1% only. Note also that CRF always keeps a slight advantage

over AVE. The same can also be noticed with the u65 and u80 metrics.

These results show that CRF performs well in cases of high aleatoric uncertainty

in the data. Another crucial type of uncertainty is epistemic uncertainty, which is

mainly caused by a lack of training data [99]. In general, a cautious classifier facing

a high epistemic uncertainty should maintain a high degree of cautiousness to reduce

the risk of making incorrect decisions. As the training set size increases (i.e., more

data are collected), cautiousness should decrease and the uncertainty in the outputs

should mainly be of an aleatoric nature. Thus we carried out some experiments to

study this point. Figure 3.3(a) presents the average cautiousness computed over all

datasets for the four compared methods when varying the size of the training set. It

can be seen that all models tend to be more cautious as the size of the training set

gets smaller, but CRF and AVE are far more sensitive to this parameter. This makes

it possible for CRF and AVE to reach a higher single-set accuracy, and therefore

higher u65 and u80 scores, regardless of the amount of training data, as shown in

Figures 3.3(b) to 3.3(d).

3.3.2 Comparison of weight assignment strategies

Compared models

The second phase of experiments evaluates the interest of learning tree weights by

optimizing the proposed cost function (3.16). For this purpose, the aggregation
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strategy used for all models is the one defined by Eq. (3.7) and Eq. (1.21). Different

weighting strategies are compared to each other:

• EW: the Equal Weight strategy assigns a weight 1/T to each tree;

• OOBACC: the Out-Of-Bag ACCuracy approach assigns a weight to each tree

according to its accuracy, estimated using out-of-bag samples;

• OOBU65: this approach is similar to OOBACC, except that the performance

of each tree is determined using the u65 criterion;

• IRF: tree weights are learned using the cost function proposed by [203], which

corresponds to Eq. (3.12);

• AW: our proposed tree weight allocation strategy, where weights are obtained

so as to minimize Equation (3.16).

Experimental setting and procedure

In order to evaluate the various tree-weighting strategies, we used the following

procedure. For all weight assignment strategies, we used the same values of s as in

the first phase of experiments.

For CRF with AW, and for each dataset, we selected the value for the param-

eter γ in Eq. (3.16) that maximizes the u65 score via cross-validation and fix the

corresponding parameter λ to 10 for all datasets. Regarding the IRF approach, it

is proposed to avoid over-fitting by grouping the trees, and computing a weight for

each group instead of each tree. We followed this procedure and performed grid

search cross-validation to select the best combination of the two hyper-parameters

ϵ ∈ {0.25, 0.5, 0.75} and G ∈ {5, 10, 20, 25, 100}; however, we maximized the u65

score instead of accuracy, since we compare here cautious classification strategies.

The parameter λ in Eq. (3.12) was set to 0.5 for all datasets in the experiments.

Cautiousness, single-set accuracy, u65 and u80 were evaluated by averaging the re-

sults obtained on 10 repetitions for each of the weight assignment methods compared

after the parameters were selected (in each repetition) using 10-fold cross-validation.
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Results and discussion

In this subsection, the results obtained for various tree weight assignments in a

cautious random forest are presented and analyzed. The influence of the parameter

γ in the learning process is also discussed.

Tables 3.7 to 3.10 report the performances of CRF with different weight assign-

ment methods. Thanks to the introduction of a specific utility value for indeter-

minate predictions, CRF with automatically-learned weights (AW) always makes it

possible to reach a good compromise between single-set accuracy and cautiousness:

for all datasets, it yields the highest cautiousness degree, and at the same time the

highest single-set accuracy, u65 and u80 values. The differences are significant (all

p-values being less than 0.05), which is confirmed by the Friedman and Nemenyi

tests reported in Tables 3.11(a) and 3.11(b).

It is worth noting that the three weight assignment methods EW, OOBACC, and

OOBU65 achieve almost identical performances. This may be due to the fact that

the differences between the trees are not significant enough to result in different

decisions being made after normalization, especially since a voting mechanism is

used. By contrast, the proposed weight assignment strategy better fits the decision

trees in the forest, which results in higher accuracy scores. Remember that as

illustrated by [203], the cost function in IRF is advantageous for precise classification

problems: in an imprecise classification setting, considering only accuracy leads to

designing classifiers that are not cautious enough, hence resulting in lower single-set

accuracy, u65 and u80 values.
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Table 3.7: Cautiousness (%) of different weight assignment methods on each
dataset (without label noise) where the best result is printed in bold.

Data EW OOBACC OOBU65 IRF AW

ADT 18.66 18.84 18.90 17.75 20.27
BKT 0.26 0.18 0.17 0.14 0.27
BID 10.32 10.13 10.20 9.97 10.54
BRC 1.51 1.65 1.63 1.69 1.83
CAD 8.05 8.03 8.02 7.94 10.00
COP 37.40 37.07 37.18 35.61 38.77
CRD 13.32 12.91 13.01 12.78 13.17
DIB 20.88 20.37 20.50 19.20 20.90
GER 33.13 33.20 33.28 32.95 33.49
HRT 20.07 20.00 20.07 18.65 19.84
HLC 21.90 21.72 21.79 21.33 22.06
INS 3.42 3.65 3.68 3.33 3.73
LIV 17.56 16.93 17.10 16.55 18.76
MGC 2.95 3.01 3.01 2.88 3.17
MMG 25.03 25.21 25.21 22.93 25.25
OCP 0.94 0.95 0.95 0.95 1.26
PHS 5.63 5.37 5.38 5.37 5.63
PMA 21.08 21.08 21.12 20.30 21.84
POP 29.04 28.25 28.37 23.36 30.03
RNO 5.41 5.51 5.51 5.43 5.69
SSC 1.29 1.17 1.15 1.26 1.37
SNR 11.64 11.70 11.65 10.67 13.11
SPM 2.61 2.53 2.51 2.41 2.78
VTE 3.70 3.54 3.54 3.13 3.95
WNE 10.01 9.49 9.55 9.58 9.85

Average 13.03 12.90 12.94 12.25 13.50
#Highest 4 0 1 0 22
#Lowest 3 2 1 20 0
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Table 3.8: Single-set accuracy (%) of different weight assignment methods on each
dataset (without label noise) where the best result is printed in bold.

Data EW OOBACC OOBU65 IRF AW

ADT 89.73 90.28 90.27 89.60 91.69
BKT 99.37 99.35 99.34 99.21 99.34
BID 90.94 90.88 90.89 90.50 92.08
BRC 96.93 97.20 97.16 96.91 98.34
CAD 79.94 80.03 80.05 79.68 81.95
COP 64.64 65.01 64.93 64.46 66.67
CRD 92.16 92.19 92.18 91.89 93.45
DIB 82.26 81.74 81.89 81.17 83.08
GER 84.78 84.81 84.83 84.37 86.04
HRT 88.47 88.64 88.65 87.80 89.64
HLC 75.15 75.14 75.21 74.77 76.27
INS 94.81 94.92 94.93 94.71 96.00
LIV 77.05 76.90 76.89 76.38 78.71
MGC 95.89 94.74 94.74 94.39 95.90
MMG 87.49 87.71 87.72 87.30 88.84
OCP 98.97 99.18 99.16 98.95 99.31
PHS 96.11 96.46 96.44 96.17 97.67
PMA 81.79 81.97 81.97 81.58 83.35
POP 67.91 65.84 66.23 65.39 68.30
RNO 95.03 95.41 95.46 95.14 96.71
SSC 93.73 94.05 94.07 93.77 95.23
SNR 87.58 86.95 86.82 86.26 88.61
SPM 95.37 95.53 95.56 95.21 96.75
VTE 97.68 97.76 97.75 97.37 99.00
WNE 85.17 85.02 85.05 84.75 86.26

Average 87.96 87.91 87.93 87.51 89.17
#Highest 1 0 0 0 24
#Lowest 3 0 0 22 0
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Table 3.9: u65 score (%) of different weight assignment methods on each dataset
(without label noise) where the best result is printed in bold.

Data EW OOBACC OOBU65 IRF AW

ADT 85.09 85.50 85.48 85.22 86.26
BKT 99.29 99.29 99.28 99.16 99.25
BID 88.26 88.25 88.25 87.94 89.22
BRC 96.44 96.67 96.63 96.37 97.73
CAD 78.72 78.81 78.84 78.51 80.26
COP 64.74 64.96 64.91 64.62 65.99
CRD 88.57 88.68 88.65 88.45 89.71
DIB 78.62 78.32 78.40 78.02 79.28
GER 78.14 78.20 78.20 77.96 78.96
HRT 83.75 83.92 83.89 83.54 84.77
HLC 72.92 72.92 72.97 72.67 73.76
INS 93.77 93.82 93.82 93.71 94.82
LIV 74.87 74.79 74.75 74.42 76.08
MGC 94.98 93.85 93.85 93.54 94.92
MMG 81.86 81.95 81.96 82.16 82.79
OCP 98.65 98.92 98.89 98.63 99.07
PHS 94.34 94.76 94.74 94.49 95.82
PMA 78.22 78.36 78.36 78.20 79.31
POP 66.17 65.62 65.81 65.44 67.26
RNO 93.40 93.74 93.78 93.51 94.91
SSC 93.36 93.70 93.73 93.40 94.81
SNR 84.90 84.35 84.27 84.07 85.51
SPM 94.57 94.76 94.79 94.47 95.87
VTE 96.48 96.60 96.59 96.36 97.66
WNE 83.15 83.11 83.13 82.86 84.16

Average 85.73 85.75 85.76 85.51 86.73
#Highest 2 1 0 0 23
#Lowest 5 0 0 20 0
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Table 3.10: u80 score (%) of different weight assignment methods on each dataset
(without label noise) where the best result is printed in bold.

Data EW OOBACC OOBU65 IRF AW

ADT 87.89 88.32 88.32 87.88 89.30
BKT 99.32 99.31 99.31 99.18 99.29
BID 89.81 89.77 89.78 89.44 90.80
BRC 96.67 96.92 96.88 96.62 98.00
CAD 79.93 80.02 80.04 79.70 81.76
COP 70.35 70.52 70.49 69.96 71.81
CRD 90.57 90.62 90.60 90.37 91.68
DIB 81.76 81.37 81.48 80.90 82.42
GER 83.11 83.18 83.19 82.90 83.98
HRT 86.76 86.92 86.90 86.33 87.75
HLC 76.21 76.18 76.23 75.87 77.07
INS 94.28 94.36 94.37 94.21 95.39
LIV 77.51 77.33 77.32 76.90 78.89
MGC 95.42 94.30 94.30 93.98 95.40
MMG 85.61 85.73 85.74 85.60 86.58
OCP 98.79 99.04 99.02 98.77 99.07
PHS 95.19 95.56 95.54 95.29 96.66
PMA 81.38 81.52 81.53 81.24 82.58
POP 70.52 69.86 70.06 68.94 71.76
RNO 94.21 94.56 94.60 94.32 95.76
SSC 93.55 93.88 93.90 93.59 95.02
SNR 86.64 86.11 86.02 85.67 87.48
SPM 94.96 95.13 95.17 94.84 96.29
VTE 97.03 97.13 97.12 96.83 98.25
WNE 84.65 84.53 84.56 84.29 85.64

Average 87.68 87.69 87.70 87.34 88.75
#Highest 2 0 0 0 23
#Lowest 3 0 0 22 0
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Table 3.11: Phase 2: Friedman statistic and p-value (left), Nemenyi p-values for
pairwise model comparison. The best Friedman rank is printed in bold.

(a) Friedman rank and test

EW OOBACC OOBU65 IRF AW p-value

cau 2.64 3.64 3.08 4.52 1.12 5.85× 10−8

ssa 3.08 3.36 2.88 4.64 1.04 3.89× 10−9

u65 2.96 3.60 2.96 4.40 1.08 1.32× 10−8

u80 3.04 3.48 2.76 4.64 1.08 2.20× 10−8

(b) Nemenyi test

AW vs. EW vs. OOBACC vs. OOBU65 vs. IRF

cau 0.004 0.001 0.001 0.001
ssa 0.001 0.001 0.002 0.001
u65 0.001 0.003 0.001 0.001
u80 0.001 0.001 0.005 0.001

(a) Determinacy and single-set accuracy (b) u65 and u80

Figure 3.4: Average metrics computed over the 25 datasets, as a function of γ.

Our last experiment focuses on the influence of parameter γ, which was fixed

using cross-validation in previous experiments. As explained above, this parameter

has been introduced in the cost function to adjust the level of cautiousness in the

model, so as to choose a specific behavior according to the user’s needs: in general,

the larger the value of γ, the more cautious the model, i.e., the lower the determinacy.

Ideally, for each dataset, picking an appropriate value of γ would make it possible

to reach the best compromise between determinacy and single-set accuracy.

Figures 3.4(a) and 3.4(b) illustrate the influence of γ on average determinacy,

single-set accuracy, u65 and u80, computed over all datasets. These metrics behave as

expected: determinacy appears to be a decreasing function of γ, whereas single-set
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accuracy is increasing. When the value of γ is too large (for example for γ = 100),

single-set accuracy slightly decreases; an explanation for this behavior would be that

the cost function then highly favors indeterminate predictions: turning determinate,

correct predictions into indeterminate ones then leads to a decrease in accuracy. The

u65 and u80 both present an optimum, obviously attained for different values of γ,

which could be determined for instance by cross-validation.

3.4 Conclusion

In this chapter, we have proposed a new aggregation method of imprecise trees

using belief functions to construct a cautious random forest for binary imprecise

classification. Each tree in the forest provides intervals of probabilities obtained

via the imprecise Dirichlet model, rather than point estimates. Our aggregation

strategy can be regarded as an extension of the voting mechanism. We have also

proposed a strategy for assigning weights to trees by optimizing a cost function that

takes both determinacy and accuracy into account, which thus allows us to reach a

better compromise between cautiousness and accuracy.

Our experiments showed that our aggregation method compares favorably to

other aggregation operators leading to cautious decisions, such as averaging, ma-

jority voting (with indeterminate predictions), and reject option with a threshold.

Experiments also show that our approach is robust to label noise and to the scarcity

of training data. In a second series of experiments, we showed that our strategy for

learning tree weights results in a more cautious model compared to the other four

baselines, and achieves the best performances in terms of single-set accuracy, as well

as u65 and u80 scores. In a nutshell, our strategy makes it possible to reach a good

compromise between informativeness and cautiousness, by avoiding mistakes when

the tree outputs appear to be too conflicting or too indeterminate.

The proposed imprecise tree aggregation strategy is only adapted to binary data.

In the following chapter, we will introduce a more general aggregation scheme for

multi-class data, of which the approach proposed in this chapter is a special case.
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In the previous chapter, we have proposed an aggregation strategy for imprecise

trees in the context of binary cautious classification problems, within the framework

of belief functions. In this chapter, we extend these previous works and address the

multi-class case. For this purpose, we propose two cautious decision-making strate-

gies (always in the belief functions framework) which generalize averaging and voting

for tree ensembles. These strategies are axiomatically principled: they amount to

maximizing the lower expected discounted utility rather than the expected utility

as done in the conventional case. From the decision-making perspective, it makes

cautious predictions by constructing partial preorders among partial assignments of

classes for a given instance. Note that our approach can be applied to any kind of

classifier ensemble where individual classifier outputs are probability intervals.

The structure of this chapter is as follows. In Section 4.1, we explain the dis-

counted utility metric that we aim to maximize. Section 4.2 and 4.3 present the

generalization of averaging and voting schemes in traditional random forests to the

cautious random forests. We report experimental results and conduct an analysis

in Section 4.4. Finally, a conclusion is drawn in Section 4.5.

4.1 Lower discounted utility maximization

Let m be a mass function defined on the frame of discernment Ω = {c1, . . . , cK} with

K ≥ 2. Let us consider a given instance x and assume the associated prediction is

set-valued, in the form of a non-empty subset A ⊆ Ω. The lower expected utility of

A associated with a utility matrix U is defined as follows:

Em(A,U) =
∑
B⊆Ω

m(B)min
ck∈B

uAk. (4.1)

The discounted utility of decision A when the real label of x is ck is defined as

uAk = dr(|A|)1(ck ∈ A), (4.2)
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with dr(·) being a discounted utility function, such as dracc, dru65 , dru80 or drFβ

defined by Eq. (2.13) to Eq. (2.16). In this chapter, we only consider dru65 and dru80

since dracc does not reward cautious decisions and drFβ
is an intermediate between

dru65 and dru80 . Hereafter, we will use the simplified notation druα as the discount

ratio, where α is equal to 65 or 80 (examples of which are provided in Table 2.2).

Using such a utility matrix, the calculation of the lower expected utilities of any

A ⊆ Ω is equivalent to calculating the product of its belief degree Bel(A) and the

corresponding discounted utility druα(|A|), as demonstrated in Theorem 4.1.

Theorem 4.1. Given the utility matrix U of general term uAk = druα(|A|)1(ck ∈ A)

where ck refers to the actual class and A ⊆ Ω to an imprecise decision, the lower

expected utility Em(A,U) is equal to druα(|A|)Bel(A).

Proof. Following Eq. (4.1), and taking any A ⊆ Ω as action, we have

Em(A,U) =
∑
B⊆Ω

m(B)min
ck∈B

uAk

=
∑
B⊆Ω

m(B) min
ck∈B

[druα(|A|)1(ck ∈ A)]

= druα(|A|)
∑
B⊆Ω

m(B) min
ck∈B

1(ck ∈ A)

= druα(|A|)
∑
B⊆A

m(B)

= druα(|A|)Bel(A).

Indeed, for any B ∩A ̸= ∅ such that B ⊈ A, there obviously exists ck ∈ B such that

ck /∈ A: thus, minck∈B 1(ck ∈ A) = 1 if, and only if, B ⊆ A.

4.2 Generalization of averaging

We assume that the output of each decision tree ht is a set of probability intervals as

defined by Eq. (3.1), written Itk(x) =
[
p
tk

(x), ptk(x)
]
, t = 1, . . . , T, k = 1, . . . , K.

According to [53], the corresponding quasi-Bayesian mass function associated with
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Itk(x) is

mt({ck}) = p
tk
, k = 1, . . . , K; mt(Ω) = 1−

K∑
k=1

mt({ck}). (4.3)

These masses can then be averaged across all trees:

m({ck}) =

∑T
t=1mt({ck})

T
, k = 1, . . . , K; m(Ω) =

∑T
t=1mt(Ω)

T
. (4.4)

To make a decision based on this mass function, we build a sequence of nested

subsets A ⊆ Ω by repeatedly aggregating the class with the highest mass, and we

choose the subset A⋆ which maximizes E(A) := Em(A,U) over all A ⊆ Ω. This

procedure makes it possible to determine A⋆ in linear complexity, as shown by

Theorem 4.2.

Theorem 4.2. Consider the mass function in Eq. (4.4) with classes sorted by de-

creasing mass: m({c(k)}) ≥ m({c(k+1)}), for k = 1, . . . , K − 1. Scanning the se-

quence of nested subsets {c(1)} ⊂ {c(1), c(2)} ⊂ · · · ⊆ Ω makes it possible to identify

the subset A⋆ = arg maxE(A) in complexity O(K).

Proof. Since the masses m({c(k)}) are sorted in decreasing order, the focal element

with the highest belief among those of cardinality i is A⋆
i = {c(k), k = 1, . . . , i},

i.e., Bel(A⋆
i ) =

∑i
k=1m({c(k)}) ≥ Bel(B), for all B ⊆ Ω such that |B| = i. Since

druα(|A|) only depends on |A|, A⋆
i maximizes the lower expected utility over all

subsets of size i. As a consequence, keeping the subset with maximal lower expected

utility in the sequence of nested subsets defined above computes the maximizer A⋆

in time complexity O(K).

The overall procedure, hereafter referred to as CDM Ave, extends classical av-

eraging for precise probabilities to averaging mass functions across imprecise trees.

It is summarized in Algorithm 2.

Note that a theorem similar to Theorem 4.2 was independently proven in [143],

which addressed set-valued prediction in a probabilistic framework for a wide range
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Algorithm 2: Cautious Decision Making by Averaging

Input: Tree outputs
{

(p
tk

(x), ptk(x)), t = 1, . . . , T, k = 1, . . . , K
}

,

discount ratio druα

Output: Decision A
1 for k = 1, . . . , K do

2 m({ck}) = 1/T ×
∑T

t=1 ptk

3 m(Ω) = 1−
∑K

k=1m({ck})
4 Sort classes by decreasing mass: m({c(1)}) ≥ m({c(2)}) ≥ · · · ≥ m({c(K)})
5 A = ∅
6 bel = 0
7 mleu = 0 // maximum lower expected utility

8 for i = 1, . . . , K do
9 bel = bel + m({c(i)})

10 leu = druα(i)× bel // lower expected utility of {c(1), . . . , c(i)}
11 if leu > mleu then
12 mleu = leu
13 A = A ∪ {c(i)}

14 Return A

of utility functions. Since the masses considered here are quasi-Bayesian, the pro-

cedure described in Algorithm 2 is close to that described in [143]. The overall

complexity of Algorithm 2 is O(K logK) due to sorting the classes by decreasing

mass.

Example 4.1 (Cautious decision-making via generalised averaging). Assume the

averaged mass function on Ω = {c1, c2, c3, c4} is given as follows:

m({c1}) = 0.32, m({c2}) = 0.48, m({c3}) = 0.04, m({c4}) = 0.06, m(Ω) = 0.05.

The classes ordered by decreasing mass are thus {c2, c1, c4, c3}. These classes are

added to the prediction one by one and the corresponding expected lower discounted

utilities (using dru65) are calculated:

• E({c2}) = dru65(1)Bel({c2}) = 1× 0.48 = 0.48;

• E({c2, c1}) = dru65(2)Bel({c2, c1}) = 0.65× 0.8 = 0.52;

• E({c2, c1, c4}) = dru65(3)Bel({c2, c1, c4}) = 0.4667× 0.86 = 0.401;
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• E({c2, c1, c4, c3}) = dru65(4)Bel(Ω) = 0.3625× 1 = 0.3625.

We can find that {c2, c1} reaches the maximum expected lower discounted utility:

thus, the cautious prediction made is A⋆ = {c2, c1}.

4.3 Generalization of voting

We now address the combination of probability intervals via voting. Our approach

consists of identifying first, for each tree, the set of non-dominated classes according

to the interval dominance criterion, which amounts to letting each tree vote for the

corresponding subset of classes. Then, we combine the trees, again by computing

the subset A⋆ maximizing E(A) over all A ⊆ Ω. Algorithm 3 describes how interval

dominance criterion can be used to aggregate all tree outputs into a single mass

function m, in time complexity O(TK2).

In this approach, the focal elements of m obtained can be any subset of Ω. Since

m is not quasi-Bayesian anymore, maximizing the lower expected utility requires in

principle checking all subsets of Ω in the decision step: this check has a worst-case

complexity of O(2K), which prohibits using this strategy for datasets with large

numbers of classes. In order to reduce the complexity, we introduce three tricks:

(i) we arbitrarily restrict the decision to subsets A ⊆ Ω with cardinality |A| ≤

K < K, which reduces the complexity to O(
∑K

k=1

(
K
k

)
);

(ii) when searching for a maximizer of the lower expected utility by scanning sub-

sets of classes of increasing cardinality, we show that the procedure can be

stopped when larger subsets are known not to further improve the lower ex-

pected utility (see Proposition 4.1);

(iii) during this search, for a given cardinality i, only subsets A composed of classes

appearing in focal elements B such that |B| ≤ i need to be considered (see

Proposition 4.2).
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Algorithm 3: Tree aggregation via interval dominance

Input: Tree outputs
{

(p
tk

(x), ptk(x)), t = 1, . . . , T, k = 1, . . . , K
}

Output: Mass function m
1 m(A) = 0,∀A ⊆ Ω
2 for t = 1, . . . , T do
3 DC = ∅ // set of dominated classes

4 for k = 1, . . . , K do
5 for j = 1, . . . , K and j ̸= k do
6 if ptk < p

tj
then

7 DC = DC ∪ ck
8 break

9 NDC = Ω \DC // non-dominated classes

10 m(NDC) = m(NDC) + 1
T

11 Return m

Proposition 4.1. If the lower expected utility of a subset A ⊆ Ω is (strictly) greater

than druα(i) for some i > |A|, then it is (strictly) greater than the lower expected

utility of any subset B ⊆ Ω with cardinality |B| ≥ i.

Proof. Let A ⊆ Ω be a subset of classes (typically, the current maximizer of the

lower expected utility in the procedure described in Algorithm 4). Assume that

E(A) > druα(i) for some i > |A|. Since Bel(B) ≤ 1 for all B ⊆ Ω, then E(A) > E(B)

for all subsets B such that |B| = i. The generalization to all subsets B such that

|B| > i comes from druα(i) being monotone decreasing in i.

Proposition 4.2. The subset A⋆
i ⊆ Ω maximizing the lower expected utility among

all A such that |A| = i is a subset of Ωi that consists of classes appearing in focal

elements B such that |B| ≤ i.

Proof. Let Ωi be the set of classes appearing in focal elements of cardinality less

than or equal to i, for some i ∈ {1, . . . , K}. Assume a subset A of cardinality i is

such that A = A1 ∪ A2, with A ∩ Ωi = A1, then, Bel(A) = Bel(A1). If A2 ̸= ∅,

then E(A) < E(A1) since |A1| < |A|: classes ck /∈ Ωi necessarily decrease E(A).

Moreover, since Bel(A) sums masses m(B) of subsets B ⊆ A, any focal element B

such that |B| > i does not contribute to Bel(A).
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Algorithm 4: Cautious Decision Making by Voting

Input: Tree outputs Itk =
{

(p
tk

(x), ptk(x)), t = 1, . . . , T, k = 1, . . . , K
}

,

cardinality bound K, discount ratio druα

Output: Decision A
1 Obtain m via Alg 3(Itk, t = 1, . . . T , and k = 1, . . . , K)
2 FE = ∅ // focal elements

3 Ωi = ∅ // considering classes

4 A = ∅
5 mleu = 0 // maximum lower expected utility

6 for i = 1, . . . ,M do
// trick 1

7 dr = druα(i)
8 if mleu > dr then
9 Return A // trick 2, see Proposition 4.1

10 else
11 FE = FE ∪ {B : m(B) > 0, |B| = i, B ⊆ Ω}
12 Ωi = Ωi ∪ {c : c ∈ B,B ∈ FE} // trick 3, see Proposition 4.2

13 for all B ⊆ Ωi and |B| = i do
14 bel =

∑
C∈FE, C⊆B m(C)

15 leu = dr × bel // lower expected utility for B
16 if leu > mleu then
17 mleu = leu
18 A = B

19 Return A

The procedure described in Algorithm 4, hereafter referred to as CDM Vote,

extends voting when votes are expressed as subsets of classes and returns the subset

A⋆ = arg maxE(A) among all subsets A ⊆ Ω such that |A| ≤ K ≤ K. It gener-

alizes the method proposed in Chapter 3 for binary cautious classification, which

amounts to maximizing the discounted accuracy dracc for binary cases. CDM Vote

is computationally less efficient than CDM Ave by design, even if the time com-

plexity can be controlled. However, as it will be shown in the experimental part,

this approach remains able to deal with cautious classification problems of a large

number of classes.
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Example 4.2 (Cautious decision-making via generalised voting). Assume the mass

function on Ω = {c1, c2, c3, c4} obtained via Algorithm 3 is as follows:

m({c1}) = 0.15, m({c2}) = 0.25,m({c1, c2}) = 0.35, m({c1, c3}) = 0.05,

m({c2, c3}) = 0.1, m({c2, c3, c4}) = 0.05, m(Ω) = 0.05.

Let us apply Algorithm 4 to make a decision (using dru65):

• for subsets of Ω with cardinality 1, we only consider classes that appear in focal

elements with cardinality 1, i.e., Ω1 = {c1, c2}:

E({c1}) = dru65(1)Bel({c1}) = 1× 0.15 = 0.15,

E({c2}) = dru65(1)Bel({c2}) = 1× 0.25 = 0.25,

the current maximum lower expected utility is reached by {c2} with value 0.25 <

dru65(2) = 0.65, continue;

• for subsets of Ω with cardinality 2, we only consider classes that appear in focal

elements with cardinality smaller than or equal to 2, i.e., Ω2 = {c1, c2, c3}:

E({c1, c2}) = dru65(2)Bel({c1, c2}) = 0.65× 0.75 = 0.4875,

E({c1, c3}) = dru65(2)Bel({c1, c3}) = 0.65× 0.2 = 0.13,

E({c2, c3}) = dru65(2)Bel({c2, c3}) = 0.65× 0.35 = 0.2275,

the current maximum lower expected utility is reached by {c1, c2} with value

0.4875 > dru65(3) = 0.4667, stop.

The final set-valued prediction is then A⋆ = {c1, c2} since any subset B ⊆ Ω with

|B| > 2 has a smaller lower expected utility than A⋆. Here, class c4 has never been

considered because it first appears in focal element {c2, c3, c4} with a cardinality of

three, which was known not to ameliorate the lower expected utility.
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4.4 Experiments and results

In order to illustrate the performance of our imprecise tree aggregation approaches,

we compare them with two other existing aggregation methods on various datasets

using different evaluation metrics for cautious classification problems. The two ex-

isting approaches used for comparison are Minimum Vote Against (MVA) and Aver-

aging (AVE), which can respectively be considered as generalizations of voting and

averaging for random forests. Evaluation metrics include determinacy, single-set

accuracy, set accuracy, set size, u65 score, and u80 score. Details about the datasets

used in experiments are presented in Table 4.1.

Table 4.1: Description of datasets, including the number of instances, features, and
classes.

Datasets n instance n feature n class

Balance-scale 625 4 3
Ecoli 366 7 7

Letter 2000 16 26
Optdigits 5620 64 10

Page-blocks 5473 10 5
Pendigits 10992 16 10
Segment 2310 19 7

Spectrometer 531 100 48
Vehicle 946 18 4

Vowel 990 11 11
Waveform 5000 40 3

Wine 101 13 3

For all experiments, we used the scikit-learn implementation of random forests

[157] with the default parameter setting. To construct imprecise decision trees,

we chose s = 2 for the IDM. The CDM Vote and CDM Ave procedures use the

d65 discounted ratio to make decisions. Each metric on each dataset and each

aggregation approach is evaluated through 10 times 10-fold cross-validation and

presented with mean and standard deviation values. It should be noted that the

same imprecise trees are used to compare the different aggregation approaches.
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4.4.1 Decision-Making efficiency

Figure 4.1: Decision-making time complexity of CDM Vote according to the
number of labels (for 100 samples). Up to down: vowel, letter, and spectrometer ;
left: ID+MLEDU, right: MLEDU only.

First, we studied the time complexity of CDM Vote strategy as a function of

the number of labels. For a given integer i, we first picked i labels at random

and extracted the corresponding samples from original dataset. Then, we trained

a random forest with the parameter s of the IDM set to one, and processed the

test data using CDM Vote. During the test phase, we recorded for each sample

the elapsed time of the entire process (interval dominance plus maximizing lower

expected discounted utility), and the elapsed time needed to maximize the lower

expected utility after having applied interval dominance, respectively referred to

as ID+MLEDU and MLEDU. For each i, we report average elapsed time per 100
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inferences, computed over 10 repetitions of the above process. Since for high values

of i, decision-making would be intractable without any control of the complexity, we

compared the efficiency when using all tricks in Section 4.2 with that when using

only the two first ones.

Fig. 4.1 shows that for a small number of labels (less than 15), trick 3 (filtering

out subsets A ̸⊆ Ωi) does not significantly improve the efficiency, as the time required

for applying interval dominance prevails. However, for a large number of labels, the

time required for maximizing the lower expected utility dominates, and filtering

out subsets A ̸⊆ Ωi accelerates significantly the procedure. Apart from interval

dominance, this filtering step accelerates the decision-making process regardless of

the number of labels, as shown in the right column of Fig. 4.1. This experiment

demonstrates that CDM Vote remains applicable with a large number of labels.

4.4.2 Performance comparison on original data

In this section, the results obtained for the various aggregation approaches on origi-

nal data are illustrated from Table 4.2 to Table 4.7 and analyzed. For each evaluation

metric, the best average result is marked in bold.

Table 4.2: Comparison of aggregation approaches using the determinacy on each
multi-class dataset (without label noise).

Dataset MVA AVE CDM Vote CDM Ave

Balance-scale 0.9934±0.0099 0.7201±0.0575 0.7472±0.0563 0.7390±0.0566
Ecoli 0.9958±0.0119 0.7756±0.0633 0.8889±0.0521 0.8788±0.0591
Letter 0.9882±0.0080 0.7726±0.0263 0.8163±0.0261 0.8114±0.0262

Optdigits 0.9977±0.0033 0.8679±0.0234 0.9405±0.0176 0.9374±0.0175
Page-blocks 0.9994±0.0018 0.9675±0.0124 0.9786±0.0101 0.9778±0.0101
Pendigits 0.9990±0.0022 0.9329±0.0160 0.9601±0.0113 0.9583±0.0110
Segment 0.9992±0.0021 0.9541±0.0138 0.9653±0.0118 0.9637±0.0127

Spectrometer 0.9786±0.0231 0.5443±0.0712 0.4796±0.0629 0.4989±0.0636
Vehicle 0.9910±0.0105 0.6303±0.0495 0.7238±0.0485 0.7069±0.0489
Vowel 0.9943±0.0076 0.6704±0.0494 0.8590±0.0380 0.8596±0.0355

Waveform 0.9950±0.0044 0.7690±0.0324 0.7338±0.0319 0.7261±0.0329
Wine 1.0±0.0 0.9746±0.0367 0.9652±0.0461 0.9629±0.0444

Average 0.9943 0.7983 0.8382 0.8351
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Table 4.3: Comparison of aggregation approaches using the single-set accuracy on
each multi-class dataset (without label noise).

Dataset MVA AVE CDM Vote CDM Ave

Balance-scale 0.8894±0.0390 0.9888±0.0167 0.9844±0.0209 0.9861±0.0182
Ecoli 0.8745±0.0517 0.9259±0.0465 0.8990±0.0505 0.9017±0.0504
Letter 0.8607±0.0259 0.9642±0.0163 0.9428±0.0176 0.9487±0.0164

Optdigits 0.9651±0.0136 0.9952±0.0051 0.9857±0.0083 0.9875±0.0076
Page-blocks 0.9690±0.0121 0.9824±0.0088 0.9787±0.0101 0.9796±0.0097
Pendigits 0.9716±0.0099 0.9894±0.0077 0.9870±0.0074 0.9879±0.0073
Segment 0.9742±0.0117 0.9912±0.0072 0.9879±0.0073 0.9890±0.0072

Spectrometer 0.5497±0.0681 0.6942±0.0737 0.6998±0.0759 0.6897±0.0769
Vehicle 0.7456±0.0413 0.9166±0.0396 0.8613±0.0419 0.8725±0.0444
Vowel 0.9436±0.0254 0.9942±0.0105 0.9831±0.0149 0.9872±0.0124

Waveform 0.8464±0.0268 0.9192±0.0238 0.9281±0.0225 0.9304±0.0225
Wine 0.9825±0.0273 0.9883±0.0234 0.9905±0.0218 0.9911±0.0213

Average 0.8810 0.9458 0.9357 0.9376

Table 4.4: Comparison of aggregation approaches using the set accuracy on each
multi-class dataset (without label noise).

Dataset MVA AVE CDM Vote CDM Ave

Balance-scale 0.9286±0.1750 0.8844±0.0826 0.9547±0.0607 0.9910±0.0263
Ecoli 1.0±0.0 0.9691±0.0616 0.9625±0.0930 0.9559±0.0963
Letter 0.7173±0.2588 0.9491±0.0296 0.7098±0.0782 0.7284±0.0713

Optdigits 0.9459±0.1553 0.9983±0.0076 0.9332±0.0654 0.9431±0.0675
Page-blocks 1.0±0.0 0.9632±0.0941 0.9652±0.0967 0.9672±0.0800
Pendigits 1.0±0.0 0.9941±0.0210 0.9386±0.0866 0.9494±0.0805
Segment 1.0±0.0 0.9705±0.0569 0.9218±0.1040 0.9101±0.1178

Spectrometer 0.7410±0.2803 0.8167±0.0796 0.7221±0.0973 0.7124±0.0895
Vehicle 0.9362±0.1559 0.9873±0.0208 0.9636±0.0357 0.9795±0.0312
Vowel 0.9919±0.0514 0.9990±0.0055 0.9509±0.0612 0.9641±0.0529

Waveform 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0
Wine NA 1.0±0.0 1.0±0.0 1.0±0.0

Average 0.9328 0.9610 0.9185 0.9251
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Table 4.5: Comparison of aggregation approaches using the set size on each
multi-class dataset (without label noise).

Dataset MVA AVE CDM Vote CDM Ave

Balance-scale 2.0294±0.1690 2.7213±0.1199 2.9450±0.0666 2.9892±0.0316
Ecoli 2.0833±0.2764 4.7917±1.1838 2.1552±0.5295 2.0267±0.1590
Letter 2.0774±0.2081 12.1968±1.3898 2.1390±0.0584 2.1627±0.0623

Optdigits 2.0±0.0 6.6066±0.7170 2.0574±0.0747 2.0607±0.0681
Page-blocks 2.0±0.0 2.8837±0.5161 2.2613±0.4691 2.1976±0.4148
Pendigits 2.0±0.0 4.5456±0.9741 2.0273±0.0591 2.0383±0.0871
Segment 2.0±0.0 3.0340±0.6089 2.0231±0.1119 2.0082±0.0305

Spectrometer 2.0667±0.2222 9.5821±3.2134 2.1317±0.0722 2.1210±0.0653
Vehicle 2.0189±0.1361 2.7920±0.1511 2.5447±0.1975 2.7308±0.2051
Vowel 2.0233±0.1507 6.1601±0.7814 2.0488±0.0573 2.0428±0.0547

Waveform 2.0±0.0 2.0153±0.0200 2.0393±0.0271 2.0775±0.0340
Wine NA 2.0270±0.1622 2.0426±0.1727 2.1599±0.3531

Average 2.0272 4.9464 2.2013 2.2180

Table 4.6: Comparison of aggregation approaches using the u65 score on each
multi-class dataset (without label noise).

Dataset MVA AVE CDM Vote CDM Ave

Balance-scale 0.8859±0.0396 0.8363±0.0350 0.8487±0.0350 0.8496±0.0328
Ecoli 0.8736±0.0521 0.8097±0.0523 0.8672±0.0475 0.8672±0.0470
Letter 0.8548±0.0256 0.8094±0.0231 0.8518±0.0206 0.8562±0.0201

Optdigits 0.9641±0.0135 0.9071±0.0171 0.9626±0.0099 0.9634±0.0095
Page-blocks 0.9688±0.0120 0.9671±0.0111 0.9704±0.0110 0.9712±0.0107
Pendigits 0.9710±0.0098 0.9536±0.0129 0.9719±0.0084 0.9723±0.0087
Segment 0.9738±0.0116 0.9699±0.0097 0.9743±0.0088 0.9745±0.0087

Spectrometer 0.5453±0.0656 0.5384±0.0497 0.5706±0.0512 0.5683±0.0517
Vehicle 0.7438±0.0417 0.7709±0.0298 0.7744±0.0318 0.7721±0.0321
Vowel 0.9418±0.0255 0.7895±0.0357 0.9301±0.0219 0.9353±0.0197

Waveform 0.8454±0.0267 0.8562±0.0189 0.8521±0.0185 0.8496±0.0184
Wine 0.9825±0.0273 0.9797±0.0265 0.9785±0.0276 0.9776±0.0269

Average 0.8792 0.8490 0.8794 0.8798
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Table 4.7: Comparison of aggregation approaches using the u80 score on each
multi-class dataset (without label noise).

Dataset MVA AVE CDM Vote CDM Ave

Balance-scale 0.8864±0.0397 0.8701±0.0303 0.8809±0.0296 0.8841±0.0263
Ecoli 0.8742±0.0517 0.8336±0.0504 0.8829±0.0460 0.8844±0.0453
Letter 0.8562±0.0258 0.8263±0.0221 0.8709±0.0197 0.8763±0.0189

Optdigits 0.9645±0.0134 0.9192±0.0155 0.9709±0.0088 0.9722±0.0084
Page-blocks 0.9689±0.0120 0.9713±0.0103 0.9734±0.0105 0.9743±0.0102
Pendigits 0.9712±0.0098 0.9613±0.0120 0.9775±0.0078 0.9782±0.0080
Segment 0.9739±0.0116 0.9758±0.0087 0.9790±0.0083 0.9794±0.0081

Spectrometer 0.5463±0.0657 0.5802±0.0516 0.6264±0.0552 0.6211±0.0547
Vehicle 0.7449±0.0418 0.8203±0.0275 0.8115±0.0311 0.8112±0.0313
Vowel 0.9426±0.0255 0.8224±0.0325 0.9501±0.0193 0.9554±0.0170

Waveform 0.8462±0.0267 0.8908±0.0183 0.8919±0.0171 0.8903±0.0171
Wine 0.9825±0.0273 0.9835±0.0241 0.9837±0.0237 0.9831±0.0231

Average 0.8798 0.8712 0.8999 0.9008

From the perspective of determinate predictions, according to Table 4.2 and

Table 4.3, we can conclude that MVA often results in determinate decisions, whereas

AVE tends to be very cautious; our proposed CDM Vote and CDM Ave methods

turn out to be in-between. The same can be observed for the single-set accuracy,

which is negatively correlated to determinacy. Our proposed approaches have a

much higher single-set accuracy than MVA but slightly lower than AVE. CDM Ave

is a little bit more cautious than CDM Vote, but the difference is very small.

Table 4.4 and Table 4.5 make it possible to compare the aggregation methods

based on indeterminate predictions. MVA only makes indeterminate predictions for

a few samples, achieving a high set accuracy as expected. In addition, due to the

design of the model, almost all indeterminate predictions contain only two class

labels. AVE makes indeterminate predictions for more samples, but its set accuracy

still remains very high because each indeterminate prediction contains much more

labels than other methods. Our proposals do not perform as well as MVA and AVE

regarding set accuracy but remain comparable. Remark that the indeterminate

predictions made by CDM Ave and CDM Vote are overall more precise than those

made by AVE, containing fewer labels, which is very significant over datasets of a

large number of labels, e.g., Letter, Spectrometer, and Vowel.
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The results in Table 4.6 and Table 4.7 lead to the conclusion that CDM Vote

and CDM Ave achieve a better compromise between accuracy and determinacy than

MVA and AVE. It should be noted that the u65 score of either of our proposals

is similar to that of MVA since the majority of datasets here are quite easy to

classify: the single-set accuracy is therefore quite high, and u65 compensates less

for indeterminate predictions. For relatively difficult datasets, such as Spectrometer,

Vehicle and Waveform, CDM vote and CDM Ave significantly outperform MVA in

terms of u65. According to the u80 score, they outperform the other two methods,

because u80 compensates more for indeterminate predictions and AVE turns out to

be too cautious on these datasets.

Overall, there does not seem to be any significant difference between CDM Vote

and CDM Ave. CDM Ave seems to be slightly more cautious than CDM Vote, this

difference being more obvious on difficult datasets. Beyond performance, another

huge advantage of CDM Ave is that its time complexity for prediction-making is

much lower than that of CDM Vote. Therefore, CDM Ave seems more adequate

when facing datasets with a large number of classes.

4.4.3 Performance comparison on noisy data

Here, we study the behavior of the aggregation methods in the presence of label

noise, by averaging the evaluation metrics computed for various noise levels over the

10 datasets considered. Label noise is introduced by randomly selecting a given pro-

portion of training samples and replacing each corresponding label with a randomly

selected label different from the actual one. According to Fig. 4.2(a) to Fig. 4.2(f),

we can find that our proposed methods are more robust to noise in labels than both

MVA and AVE.

Compared to MVA, even though the determinacy of CDM Vote and CDM Ave

decreases when the level of noise gets high, their single-set accuracy and set ac-

curacy remain at the same high level, meaning that whenever the decisions made

by CDM Vote and CDM Ave are determinate, they are more reliable than those of

MVA. Another serious shortcoming of MVA is that it does not decrease determinacy
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(a) Determinacy (b) Single set accuracy

(c) Set accuracy (d) Set size

(e) u65 score (f) u80 score

Figure 4.2: Evaluation metrics averaged across all datasets in the function of noise
levels in training labels.
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or increase the size of the set of predicted classes when facing a high level of noise

or difficult data.

Compared to AVE, our model predictions decrease in terms of determinacy and

increase in size, but less than AVE, which leads to higher u65 and u80 scores. AVE

is very sensitive to label noise: as the noise level increases, determinacy significantly

decreases, and the average set size dramatically increases. This disadvantage makes

the informativeness of the model predictions decrease.

4.5 Conclusion

In this chapter, we have proposed two aggregation strategies to make cautious de-

cisions from imprecise trees for multi-class cautious classification problems. In this

setting, each tree provides probability intervals as outputs, which are typically ob-

tained by using the imprecise Dirichlet model. The two strategies respectively gen-

eralize averaging and voting for classical tree ensembles. In both cases, they aim

at making decisions by maximizing the lower expected discounted utility, thus pro-

viding set-valued predictions. These algorithms also generalize those presented in

Chapter 3 for binary classification. The experiments conducted on different datasets

confirm the interest of our proposals in order to achieve a good compromise between

model accuracy and determinacy, especially for difficult datasets. Furthermore, by

restricting the cardinality of the set-valued predictions, and by leveraging two tricks

that avoid scanning all subsets of classes, our cautious decision-making procedure is

able to process datasets with a large number of classes in a limited computational

complexity.
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Artificial intelligence algorithms, including machine learning and deep learning

algorithms, are nowadays widely deployed in many fields, such as recommendation

systems, healthcare, and finance [130]. These deployments have achieved significant

success, owing to their complex algorithmic design and the abundance of training

data. However, evaluating models exclusively based on their accuracy is not suffi-

cient, since in a wide range of applications, the decision-making process needs to be

explainable [62]. For instance, in criminal justice, knowing why a person is guilty

or not is more critical than the court judgment; as well, in medical diagnosis, giving

the basis for the diagnosis is a key factor in choosing treatments [140]. Therefore,

the research field of eXplainable Artificial Intelligence (XAI), which aims at making

artificial intelligence algorithms more transparent, interpretable, and accountable to

humans, has received increasing attention since its recent emergence [124].

In this chapter, we provide an introduction to XAI and a review of the main

explanation methods. In Section 5.1, we start from the definition of explainability

and its importance. Then, we discuss the prominent properties of good explana-

tions, establish a taxonomy of explanation methods, and investigate different types

of explanations for machine learning models. In Section 5.2, we focus on explanation

methods for random forests and provide a mind map to choose the proper explana-

tion method according to the context requirements. Finally, a conclusion is drawn

in Section 5.3.

5.1 Introduction to XAI

5.1.1 Explainability and its necessity

Interpretability and explainability

Defining interpretability or explainability in a mathematical manner is challenging

due to their subjective and context-dependent nature, as well as the absence of a

uniform framework or consensus across different domains [145]. Nevertheless, several

popular non-mathematical definitions have been proposed. According to Miller,
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interpretability can be defined as the extent to which a human can understand the

cause behind a decision [140]. Another definition proposed by Kim in [111] states

that interpretability is the degree to which a human can consistently predict the

results produced by a model.

In XAI, interpretability and explainability are often used interchangeably, but

there are indeed subtle differences between them [13]. Interpretability refers to

the degree to which a model or system’s behavior can be understood by humans. It

focuses on providing insights into how the system functions, which factors or features

it considers, and how it produces its predictions or decisions. Interpretability allows

humans to form mental models or mental representations of the system’s behavior,

enabling them to trust, validate, and potentially modify or improve its functioning.

Explainability, on the other hand, aims at providing explanations or justifications for

specific outputs or decisions made by the system. It aims to provide understandable

reasons for why a particular prediction or outcome was produced. Explainability

focuses on the “why” aspect rather than the overall understanding of the model

operation. In our research, we use the terms explainability and explanation since we

mainly focus on providing explanations for the model outputs rather than its inner

functioning.

In the remainder of this section, we investigate the importance of explainability

as well as the properties of good explanations. We also establish a taxonomy of

explanation methods according to different perspectives and present different types

of explanations for machine learning model outputs.

Importance of explainability

The importance and the necessity for explainability have been emphasized by many

previous works [62, 88, 140, 141], which can be summarized as follows.

1. Fairness : by default, artificial intelligence models tend to reproduce biases

that present in the training data. This fact can result in decision-making pro-

cesses being influenced with respect to sensitive features, such as race, gender,
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or religion. The COMPAS algorithm is a well-known example of a predictive

model for “risk of criminal recidivism”, which was found to exhibit significant

ethnic bias against black people. XAI aims at facilitating the detection of such

biases [163, 179, 190].

2. Reliability and robustness : the trained machine learning models may work

well on large-scale test data, but they may also make errors in some situations,

either facing corner cases or adversarial attacks. XAI technologies can improve

robustness, i.e., avoiding that small changes in the input samples result in large

changes in the predictions, for the sake of model reliability [158].

3. Regulation requirements : the regulations on artificial intelligence are rapidly

evolving, as governments and organizations strive to ensure that these tech-

nologies are used ethically and responsibly [195]. The General Data Protection

Regulation (GDPR), which went into effect in 2018, requires agencies to pro-

vide explanations for automated decisions that impact individuals, called “the

right to explanation” [188, 209]. Then, in 2019, the Algorithmic Accountabil-

ity Act was introduced in the United States Congress, requiring companies

to conduct impact assessments for their algorithms to ensure they are fair,

transparent, and accountable [138].

4. Trust : if the model can only provide the user with a prediction, but cannot

explain how the result was derived, then it may be difficult for the user to

trust the model, even though the model is highly accurate [45]. XAI enables

users to access more information provided by the model, combined with their

own perceptions to make the final decision. Compared to black-box models,

it is easier for users to trust models with explainability [171, 239].

5. Knowledge discovery : artificial intelligence algorithms are designed to learn

and extract implicit structures and patterns from the data. These structures,

in turn, can be seen as a form of knowledge acquired by the algorithm [70,

103]. It is not efficient to make use of these models only to generate predictions

while ignoring the implicit knowledge captured during the learning process.
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Explanation allows it to extract and formalize this knowledge captured by

models [107].

6. Causality : statistical machine learning is limited to learning associations be-

tween features and outputs based on a large amount of data, and cannot easily

discover cause-to-effect relationships that are essential in certain critical ap-

plications [156]. However, explainable AI techniques can be used to discover

some cause-to-effect relationships by leveraging the data and the model [169].

Conversely, the results obtained from causal inference can also be used to

validate the model with the aid of XAI [193].

5.1.2 Explanations and explanation methods

Desirable properties of explanations

As mentioned before, explanations are subjective and context-dependent, making it

difficult to define what constitutes a good explanation. Here, from the perspective

of users and from a social psychological standpoint, we explore some properties that

seem to be desirable for explanations to be of practical use. The importance of each

property may vary according to the use case.

1. Ease of understanding : the most critical property of explanation is arguably

comprehensibility. An explanation that cannot be understood is meaning-

less to its receiver. Different kinds of explanations may have different levels

of comprehensibility [141]. For example, for ordinary users, IF-THEN rules,

sample-based explanations, and feature importance are easier to understand

than mode-internals-based explanations. On another hand, due to the limita-

tions of their cognitive abilities, people often do not desire to obtain complex,

thorough explanations of an event but tend to select a few main causes [199].

As a consequence, explanations provided for a prediction should refer to several

features, rather than all of them [109, 216, 217].

2. Actionability : explanations should provide actionable insights or recommen-
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dations based on which users can act [17]. They should guide users in taking

appropriate actions based on the explanation. For example, when a counter-

factual explanation suggests modifications of the feature vector, the selected

features should be actionable (and the corresponding modifications should be

reasonable).

3. Fidelity : it refers to how accurately and faithfully the provided explanations

reflect the actual behavior and decision-making process of a machine learning

model being explained. If the explanations are faithful to the model’s internal

workings, users can better understand why a certain prediction was made and

can judge whether the reasoning of the model is sound and aligned with their

expectations, thus, helping users build trust in the outputs of the model [176].

4. Compatibility : due to the effect of “confirmation bias”, humans may ignore

explanations that are inconsistent with their prior beliefs and knowledge [151].

Therefore, explanations should be compatible with such prior beliefs. In ma-

chine learning, it is extremely important, to avoid users perceiving the model

as behaving strangely and thus do not trust it. However, integrating such prior

beliefs into the generation of explanations is very difficult due to the diversity

of prior beliefs among users [105].

5. Social interaction: the explainer providing explanations to the explainee is

an interactive process of a social nature, in which knowledge is transferred

[140]. This social character requires that explanations of different extents be

provided to different people. In machine learning, attention needs to be paid

to the characteristics of the audience group and the social context [32].

Taxonomy of explanation methods

The classification of explanation methods can vary depending on the criteria used,

as outlined in [141]. We can nevertheless point out three general perspectives:

1. Intrinsic vs. Post-hoc: intrinsic explainable models are inherently interpretable

by design, which means that their internal mechanisms can be easily under-



5.1 Introduction to XAI 103

stood by a human. These models, such as decision trees and linear regression,

can provide transparent explanations about how they arrived at a particu-

lar decision or prediction. Post-hoc explanation methods, on the other hand,

are used to provide explanations for machine learning models that are not

inherently interpretable. These latter methods analyze the input and output

behavior of the model after training and try to understand its decision-making

process.

2. Model-agnostic vs. Model-specific: explanation methods that are designed to

provide insights into a particular AI model are referred to as model-specific.

Intrinsic explanation methods, as discussed earlier, are all model-specific, since

they are tailored to the unique structure and properties of the model under con-

sideration. In contrast, model-agnostic explanation methods can be used for

any model. These latter methods generally examine the association between

input and output features but do not have access to the internal workings of

the model.

3. Global vs. Local : global model explainability refers to the ability to explain

the overall behavior of a model. This typically involves understanding the

key factors or features that are considered by the model to make predictions.

Global explanations provide a high-level understanding of the model decision-

making process, but they do not necessarily provide insight into the specific

reasons why a particular prediction was made for a given input. Local model

explainability, on the other hand, focuses on providing explanations to indi-

vidual model predictions. Such explanations are particularly useful when a

model prediction differs from what a human would expect. Local explanations

can help identifying the specific features that are driving the model prediction

for a particular input, which can be helpful in identifying errors or biases in

the model.
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Review of explanation methods

Apart from these general characteristics, the nature of the explanation can vary

from one method to another. We list the following different kinds of explanation

methods.

1. Model internals : as mentioned above, for intrinsically explainable models,

the model internals are often used as explanations, such as the weight coeffi-

cients learned by linear models, the decision paths of decision trees, the if-then

statements of rule-based models, etc. For convolutional neural networks, the

learned high-level internal features and concepts in the hidden layers can be

displayed as explanations for their behaviors [148, 149, 152, 153].

2. Feature importance: this is the most common kind of explanation, where each

feature of the input space is associated with a measure of its contribution, of-

ten referred to as feature importance. For inherently explainable models, such

as linear regression and logistic regression, the learned weights can be seen as

a direct measure of feature importance. For decision trees, the importance of a

given feature can be computed as the average decrease in the impurity (such as

the Gini index) of the nodes where the feature is selected as the split feature,

weighted by the proportion of the sample number in the nodes to the total

number of samples [24, 122]. For tree ensembles, feature importance is com-

puted as the average or weighted average feature importance across trees. As

a post-hoc explanation method, the Permutation Feature Importance (PFI),

which can be seen as a sensitivity analysis approach, evaluates the feature

importance by the difference between the baseline performance metric (often

the accuracy) and the one obtained from the same data set with one permuted

column [25, 73]. At the local level, LIME (Local Interpretable Model-agnostic

Explanations) [173] and SHAP (SHapley Additive exPlanations) [128] are two

popular feature importance evaluation methods for single query instances.

LIME learns a sparse linear model based on instances sampled around the

query instance to approximate the local classification boundary and uses the
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learned weights as feature importance measures. SHAP starts from a com-

pletely different idea based on game theory and identifies the importance of

a feature with its contribution to the predictions. Evaluating the interactions

among features can also be interesting to explain model outputs [78, 127].

3. Feature visualization: the Partial Dependence Plot (PDP) shows the marginal

effects of one (or two) features on the predictions of the model [77]. In the

single-feature PDP, the x-axis corresponds to the variation of the feature Xj

that needs to be explained. For a given x-value of Xj, the corresponding y

value is the average across all predictions obtained by replacing the value of Xj

of all samples with the given x-value. However, PDP depends on the assump-

tion that features are independent. Accumulated Local Effects plots (ALE)

are a fast and unbiased alternative to PDPs [12], which calculate the effect

of a feature based on the conditional distribution of the features to eliminate

the effect of correlated features. To the side of local explanations, Individual

Conditional Expectation plots (ICE) display one curve for each instance, indi-

cating how the prediction changes as a feature changes while the others are

kept fixed, which is intuitive and easy to understand [83]. It is equivalent to

the PDP calculated on a single instance. In deep learning, especially for im-

age classification, some pixel-level importance visualization methods have also

been proposed. Saliency maps [183, 228], feature inversion [63], and class ac-

tivation mapping [178, 237] all evaluate the importance of a pixel by mapping

the gradient information of a neural network to the input pixels through the

back-propagation algorithm. These methods intuitively indicate to the user

which part of the image determines the classification result of the image.

4. Example-based explanation methods : following the philosophy of “similar ques-

tions, similar answers”, prototypes are used as a global model-agnostic explana-

tion method that aims to approximate the entire data distribution by selecting

a small number of representative samples from the training data [111, 192]. For

a query instance, the nearest prototype is used as the explanation. A concept

similar to prototypes is influential instances. If deleting one of the training
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instances would have an impact on the model, the instance is said to be influ-

ential. It can be found through deletion diagnosis [37] or influence functions

[114]. Another well-known local case-based explanation technique consists in

producing counterfactual explanations. A counterfactual explanation describes

a causal relationship (if some cause had not happened, then the result would

have been different as well). In counterfactual explanations, the causes are the

feature values and the result is the model output. The counterfactual expla-

nation of a model output describes the minimum change in feature values so

as to make the prediction change to a predefined one [209]. A large number

of model-specific and model-agnostic methods for generating counterfactuals

can be found in the survey of Guidotti [86]. A concept akin to counterfactual

examples is that of adversarial instances, which differ only slightly (impercep-

tibly to humans) from the real ones [20]. In general, these differences from

intentional perturbations are used to attack and fool the model. However, in

model diagnosis, they are mainly used to improve robustness and increase the

safety.

5. Simplified models : when the structure of the model is too complex, it is very

difficult to understand the decision process as a whole. An effective way to

solve this problem is to use low-complexity interpretable models, such as linear

models, decision rules, decision trees, shallow neural networks, etc., to approx-

imate the original model. For tree ensembles, a rule extraction algorithm is

usually applied to select the rules with an appropriate length, a high coverage,

and high accuracy from all the decision rules of the trees to form a decision

rule model [18, 22, 52, 92, 133]. For neural networks, model distillation is

often adopted, the core idea of which is to use the original model to label the

data, using which a simple model (called surrogate model) can be trained [29,

40, 80, 95]. However, this methodology has an obvious pitfall: the simplified

model may not inherit the properties and performance of the original model.



5.2 Explanations for random forests 107

5.2 Explanations for random forests

A random forest is an efficient and highly accurate classifier. However, its integra-

tion of numerous unpruned decision trees renders it a “black box” model, thereby

sacrificing explainability. In the past years, extensive research efforts have been de-

voted to enhancing the explainability of random forests and their outputs. In this

section, we provide a review of commonly used explanation methods for random

forests. Fig. 5.1 provides a visual representation of these methods that are catego-

rized based on model dependencies, scope of explanation, and types of explanations.

5.2.1 Model-agnostic explanation methods

As a machine learning model, random forests can benefit from model-agnostic expla-

nation methods. In terms of global explanations, we consider two categories: feature

importance and model simplification. Section 5.1.2 already covered methods of the

first kind, such as Permutation Feature Importance (PFI) [25], Partial Dependence

Plots (PDP) [77], Individual Conditional Expectation (ICE) [83], and Accumulated

Local Effects (ALE) [12], which will not be covered again here. Model simplification

involves approximating a less interpretable model with interpretable ones, such as

decision trees [18]. The main idea is to replace the original labels of the training set

with the predictions given by the model that need to be explained and build a new

training set used to train the simplified model.

Local explanation methods can be categorized into feature importance approaches,

surrogate models, prototypes, and counterfactual explanations. SHAP [128], LIME

[173], and prototypes [111] were reviewed in Section 5.1.2. In the case of surrogate

models, LEAFAGE [6] provides explanations similar to LIME and considers the

“most similar examples” as additional explanations to predictions. The Counterfac-

tual Local Explanations via Regression (CLEAR) [214] method employs counterfac-

tual samples to build a local surrogate model with increased faithfulness. Anchors

[174] utilizes reinforcement learning and graph search techniques to find an if-then

rule that “anchors” a particular prediction, i.e., changes in features that are not
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involved in the rule have no influence on the prediction. The Local Rule-Based Ex-

planation (LORE) [87] method employs genetic algorithms for sampling around the

query instance and trains a decision tree based on the labels given by the original

model on the sampled instances to proxy the local behavior of the model.

Overall, model-agnostic counterfactual generation methods can be classified into

four categories: methods that search for counterfactual samples in the training data,

methods that generate such samples, methods based on local surrogate models, and

methods that involve solving optimization problems. Searching for counterfactuals

in the training data is efficient and faithful. The Feasible and Actionable Counter-

factual Explanations (FACE) [162] method searches for counterfactual samples in

the training set that satisfy density and user constraints. DisCERN [218] searches

for the nearest counterfactual in the training set and replaces the feature values of

the query instance one by one with the values of this nearest counterfactual based

on feature importance until the desired prediction is obtained. Instead of using

the training set, the Growing Sphere method [116] proposes a data-agnostic sam-

ple generation approach and feature selection process to find sparse counterfactuals.

However, these methods often generate counterfactuals that are far away from the

query instance. CLEAR and LORE generate counterfactual examples using local

linear models and decision trees trained on generated samples, respectively. A no-

table drawback of methods based on local surrogate models is that the generated

“counterfactual” samples may not necessarily be classified into the desired class

by the original model, i.e., fidelity is low. To address these issues, optimization-

based approaches are employed. The Model-Agnostic Counterfactual Explanation

(MACE) [108] method solves a series of satisfiability problems to generate counter-

factual examples, representing the distance function and the model to be explained

as logical formulae. The Distribution-Aware Counterfactual Explanation (DACE)

[106] method formulates the counterfactual generation problem as a mixed-integer

optimization problem, considering the correlation between features using the Ma-

halanobis distance and reducing the risk of generating outlier counterfactuals using

local outlier factor [27]. It should be remarked that methods based on optimization

problems are not efficient and even not applicable to large-scale tree ensembles.
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5.2.2 Model-specific explanation methods

Due to the good performances and special structure of random forests, numerous

specifically designed explanation methods have been proposed, both global and local.

Global explanation methods

Feature importance and feature visualization are indeed important global expla-

nation methods for random forests. Feature importance is typically based on the

special characteristics of trees, such as the impact of splits on reducing impurity

[25, 125, 154, 159] and the frequency of feature usage for splitting [68]. In some

applications, the importance of each value of each feature is considered, in addition

to the overall feature importance [69]. In terms of visualization, different methods

exist to represent the relationship between input features and the random forest out-

put. Some examples include multidimensional scaling [123], weighted networks[84],

self-organizing maps [161], mapping structure [213], and summarizing decision paths

[236]. These visualization techniques aim to provide insights into the relationships

and patterns within the random forest model and its predictions.

Feature importance helps in understanding the relative significance of different

features in the model decision-making process. It allows us to identify the key

variables that have the most impact on the model predictions. Visualization, on the

other hand, provides a visual representation of the relationships between features

and the predictions made by the random forest. Through visualizations, the users

can gain a deeper understanding of how the model operates and identify patterns

or trends in the data. They both play a crucial role in explaining the model and in

enhancing its interpretability.

Model simplification techniques, as another form of global explanation, can be

divided into two categories in the context of random forests: constructing a single

surrogate decision tree or extracting rules to approximate the original random forest.

There are broadly three methods for constructing a surrogate decision tree from a

given random forest. The first one is based on sample approximation: the surrogate
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decision tree is trained using the original training samples or samples generated

through sampling, with labels provided by the random forest [26, 204]. The second

one uses the decision paths of the decision trees as training samples to train the

surrogate decision tree [177, 207]. The last one constructs the surrogate decision

tree using the splits in the decision trees as training samples [205, 238]. In contrast,

extracting rules from the original random forest is more straightforward. It involves

selecting a small subset of decision paths from all decision trees in the forest as a

partition of the entire sample space based on certain criteria and processes, such

as quadratic programming [137], sparse linear programming [133], Bayesian model

selection [92], or ranking decision paths based on their coverage, accuracy, and

complexity [7, 22, 52, 160].

These model simplification methods aim to provide a more interpretable repre-

sentation of the random forest by capturing its decision-making process through a

single decision tree or a set of extracted rules. Simplifying the model allows to gain

insights into the underlying patterns and rules that contribute to the random forest

predictions, thus enhancing its interpretability and facilitating communication of its

behavior to stakeholders and end-users.

Local explanation methods

The local explanation methods for random forests are mainly case-based, e.g., pro-

totypes and counterfactuals. In random forests, the selection of prototypes relies on

different similarity measures, such as the proportion of trees in the random forest in

which two samples end up in the same leaf [192], the tree-ensemble kernel function

based on decision paths, and leaf outputs.

There are also different methods for generating counterfactual explanations [28].

The simplest and most straightforward approach is to generate samples close to

the query instance in each leaf of the decision trees, and then determine their pre-

dictions using the random forest [196]. The closest sample that meets the desired

prediction is selected as the counterfactual explanation. Alternatively, the random

forest can be transformed into a network by replacing the split in each node with
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a differentiable sigmoid function, and counterfactuals can be obtained by solving

an optimization problem [126]. The main drawback of these two methods is that

they may not generate the proximal counterfactual explanations. Methods based on

integer linear programming [42] and mixed-integer programming [155] convert the

tree structure into integer constraints that can be used to compute counterfactu-

als, which theoretically guarantees the generation of the proximal counterfactuals.

However, these methods suffer from low efficiency and are not suitable for large-

scale random forests composed of a large number of trees with a significant depth.

Another solution is to search counterfactuals around the query instance, with the

search range determined by the initialized counterfactual example that is typically

obtained from the training set or using heuristic algorithms [21, 71]. However, this

approach also has a drawback: for samples far from the decision boundary, the

search range can be very large, resulting in low efficiency.

In summary, each counterfactual generation method has its own advantages and

limitations. The choice of a method should consider practical factors such as prox-

imity requirements and computational aspects (which mainly depend on the number

of trees in the random forest as well as on their depth).

5.3 Conclusion

In this chapter, we have reviewed the concepts of explainable artificial intelligence,

and discussed its importance, and desirable properties of explanations We have

also presented the main explanation methods according to the type of provided

explanations.

Additionally, we have presented different ways of providing explanations for ran-

dom forests, which is the classification technique we mainly considered in our works.

We have classified explanations based on their dependency on a specific classifica-

tion algorithm, their ability to provide global or local explanations, and the types

of explanations provided. Furthermore, we have analyzed the advantages and dis-

advantages of each type of explanation method. An attempt to summarize all these
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methods with pointers to the main references is presented in Fig. 5.1.

In the next chapter, based on the aforementioned tools in XAI, we will introduce

our proposed framework to provide diverse explanations (mainly counterfactuals)

for indeterminate predictions made by cautious random forests. This framework

will encompass both local and global feature importance assessments to guide the

generation of meaningful counterfactual samples, i.e., instances that elucidate how

indeterminate predictions can be turned into desired determinate ones.
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Figure 5.1: Mind-map of methods for explaining random forest.
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This chapter focuses on explaining the outputs of cautious random forests that

can produce set-valued predictions when making a precise decision seems to entail

risks. However, making imprecise predictions carries a cost, as resolving indetermi-

nacy typically requires further analysis and manual intervention [231]. More pre-

cisely, in the context of cautious classifiers, it seems crucial for users to understand,

for an input instance, what leads to an imprecise decision, and what could be done

to turn it into a determinate one. Such questions fall under the emerging topic of

eXplainable Artificial Intelligence (XAI). This general objective is similar to that

of CLUE (Counterfactual Latent Uncertainty Explanations ) [11], developed for ex-

plaining uncertainty estimates in differentiable probabilistic models, like Bayesian

Neural Networks.

In this chapter, we propose to use counterfactual examples to explain the indeter-

minate predictions made by a cautious random forest. These generated counterfac-

tual examples allow us to identify the minimal modifications on some feature values

so as to obtain a desired determinate prediction and resolve the indeterminacy of the

prediction. To address this problem, we first define counterfactual explanations for

cautious predictions and then propose a model to generate counterfactual examples

for indeterminate instances.

Our counterfactual generator is based on Blanchard’s work, which divides the

feature space into “pure regions” where all data points belong to one class and then

uses branch-and-bound strategy in a search tree to find the closest counterfactual

samples for a given query instance [21, 206]. Compared to the initial algorithm of

Blanchard, we have improved the counterfactual example generation process in the

following ways:

1. we simplified the decomposition of the feature space into “pure regions”;

2. we introduced different distance measures that consider the scale difference of

features to search for the closest counterfactual examples [209];

3. we improved the initialization of counterfactual examples to narrow the search

region [231] and integrated feature constraints to ensure the actionability of
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the generated counterfactual examples[104, 105];

4. we showed that the generated counterfactuals are consistent with the query

instances, e.g., in terms of feature types;

5. we introduced a plausibility metric in the counterfactual generation process,

so that the generated counterfactuals are as plausible as possible;

6. we proposed to use feature importance to determine the order of features

and their levels in the search tree to accelerate the counterfactual example

generation process.

This chapter is organized as follows. Section 6.1 provides the definition of coun-

terfactual explanation and its application in cautious classification problems. Then,

we describe our proposed approach of counterfactual example generation in Sec-

tion 6.2: we explain how to generate proximal, plausible, and actionable counterfac-

tuals for indeterminate instances in a given cautious random forest model and illus-

trate the effectiveness of our proposed approach with experiments. In Section 6.3,

we show how to use feature importance to accelerate the counterfactual example

generation process and present the experimental results about the acceleration im-

pacts.

6.1 Counterfactual explanations for indeterminate

predictions

The indeterminacy (cautiousness) of a prediction is designed to reduce the risk of

making wrong decisions. However, it is natural for a user to ask for information

on how indeterminacy can be resolved so that a precise decision is made. In real-

world applications, leaving the entire responsibility of resolving the indeterminacy

to the user would result in the decision process being very demanding. Therefore, we

provide counterfactuals with known classes for each instance with an indeterminate
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Figure 6.1: Flowchart of explanations for cautious random forests.

prediction, so that users know how to modify the values of some features to resolve

indeterminacy in either way.

6.1.1 Counterfactual explanations for predictions

In the context of causality, a counterfactual explanation describes a causal relation

in the form of “if a contradictory cause had occurred, a different event would have

happened” [156]. In XAI, a counterfactual explanation for a prediction describes

the smallest change to the feature values that turns the prediction into a predefined

class [141]. For a given classifier h, an instance x and a desired prediction y′ ̸= h(x),

the counterfactual sample x′ in the input space X can be described as:

x′ = arg min
z∈X

d(x, z), s.t. h(z) = y′, h(x) ̸= y′, (6.1)

where d(·) is a proximity measure that is usually based on a distance. As argued in

[209], the Manhattan distance weighted with the inverse median absolute deviation
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(MAD) is recommended. It is defined as follows:

d(x, z) = Lmad
1 (x, z) =

M∑
j=1

|xj − zj|
MADj

, (6.2)

where xj denotes the value of x on feature Xj and MAD is calculated on training

set as

MADj = median
i∈{1,...,N}

(|xj
i − median

l∈{1,...,N}
(xj

l )|). (6.3)

This distance captures scale difference among features and is more robust to outliers.

Due to the properties of the L1 norm, it results in sparser counterfactual samples (less

features need to be modified). An alternative is the Euclidean distance weighted

with the inverse standard deviation (STD) to adjust scale difference of the input

features:

d(x, z) = Lstd
2 (x, z) =

√√√√ M∑
j=1

(xj − zj)2

STDj
. (6.4)

6.1.2 Counterfactuals in binary cautious classification

In our binary cautious classification setting with Ω = {c1, c2}, we define the problem

as the search of counterfactuals xc1 and xc2 for a given instance x such that h(x) =

{c1, c2} (indeterminate):

xc1 = arg min
z∈X

d(x, z) s.t. h(z) = {c1}, (6.5a)

xc2 = arg min
z∈X

d(x, z) s.t. h(z) = {c2}, (6.5b)

where the distance is defined by Eq. (6.2) or Eq. (6.4). The utility of these counter-

factual examples can be summarized as follows:

1. they help determining the minimal modifications needed to obtain a desired

precise prediction;

2. they help identifying the closest class to an indeterminate instance;

3. they facilitate understanding the differences between two classes.
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Example 6.1 (Counterfactuals for indeterminate predictions). Based on the defini-

tion Eq.(6.5), we provide here two examples (on tabular and image data) to illustrate

our counterfactual procedure for indeterminate predictions.

The first example focuses on the Pima dataset that can be used to predict whether

a patient has diabetes or not, based on various measurements: Pregnancies (PGs):

number of times pregnant; Glucose; Blood Pressure (BP); Skin Thickness (ST);

Insulin: 2-Hour serum insulin (mu U/ml); BMI: body mass index; Diabetes Pedigree

Function (DPF); Age. The class is c1 = 0 for a non-diabetic, c2 = 1 for a diabetic.

Here, Age, number of pregnancies, DPF values, and Skin Thickness are difficult to

change (considered as protected features), while Glucose, Insulin, BMI, and blood

pressure are actionable (mutable) features.

Table 6.1: Examples of counterfactual explanations from Pima dataset.

PGs Glucose BP ST Insulin BMI DPF Age

x1 0 165 90 33 680 52.3 0.427 23

x0
1 0 154↓ 90 33 680 47.7↓ 0.427 23

x1
1 0 166↑ 90 33 680 52.3 0.427 23

x2 1 122 90 51 220 49.7 0.325 31

x0
2 1 121↓ 90 51 128↓ 49.05↓ 0.325 31

x1
2 1 127↑ 90 51 220 49.7 0.325 31

In Table 6.1, the query instance x1 corresponds to a non-diabetic patient (actual

label). First, note that x1 is close to being classified as diabetic since the counter-

factual x1
1 of this class is very close. Note that this demonstrates how the cautious

random forest can help managing the uncertainty arising around the classification

boundary. Second, the non-diabetic counterfactual x0
1 suggests a possible way to

maintain a healthy condition, i.e., reducing BMI and Glucose level. The query in-

stance x2 corresponds to a diabetic patient (real label). The Glucose feature is the

key to resolve imprecision since we can get a correct prediction (diabetic) by only

modifying its value. On the other hand, to obtain the non-diabetic counterfactual

x0
2, an important decrease of Insulin is needed, which is coherent with the fact that

high 2-hour serum insulin levels are common for type-II diabetic patients.
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The second example is based on the MNIST dataset, which is a large database of

handwritten numbers containing about 60,000 training cases and 10,000 test cases.

Samples corresponding to classes “4” and “9” are selected to construct a binary

classification problem. In the dataset, we can find that some of the pictures are

ambiguous, as it is difficult to tell whether the number is “4” or “9”. The generation

of counterfactuals of an ambiguous query instance helps in understanding which

parts of the image are responsible for the indeterminacy of the decision. This point

is illustrated using two instances drawn in Figure 6.2. We can see how the two

indeterminate instances (center) could be modified to be determinately classified as

either a “4” or as a “9”, and that these modifications make sense.

Indeterminate sampleCounterfactual of 4#change=13 Counterfactual of 9 #change=32

Indeterminate sampleCounterfactual of 4#change=45 Counterfactual of 9 #change=47

Figure 6.2: Examples of indeterminate numbers (center) and corresponding
counterfactuals of class 4 (left) and 9 (right). Left- and right-most images display
pixels to be added (green) and to be deleted (blue) in order to obtain the
counterfactual.

6.1.3 Counterfactuals in multi-class cautious classification

In the multi-class setting, we can straightforwardly generalize the problem of finding

a counterfactual example with a desired precise prediction ck ∈ Ω for a given instance

x with an indeterminate prediction h(x) = A ⊆ Ω and |A| > 1, as follows:

xck = arg min
z∈X

d(x, z) s.t. h(z) = {ck}, ck ∈ Ω, (6.6)

where the distance is defined by Eq. (6.2) or Eq. (6.4).
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However, the problem of generating counterfactual explanations with multi-class

cautious classifiers appears to be potentially much richer. We summarize some ideas

and discussions based on the so-called set-valued counterfactuals proposed in [82].

We denote the indeterminate prediction for x as h(x) = A (which may be precise)

and the desired prediction as A′ ⊆ Ω, A′ ̸= ∅. There are several ways to generalize

the problem:

• case 1: find x′ such that an exact target prediction is reached, i.e., h(x′) =

A′, A′ ̸= A (the problem defined in Eq. (6.6) is a special case);

• case 2: find x′ such that h(x′) ⊂ A′ (restrict the possible classes to A′, i.e.,

refine the set of possible classes);

• case 3: find x′ such that h(x′) ⊃ A′ (enlarge the set of possible classes to A′).

If the purpose is to reduce the indeterminacy of the current prediction, the problem

can be formalized as finding the closest instance x′ such that h(x′) ⊂ h(x), for

which finding a determinate counterfactual example (|h(x′)| = 1) is a special case.

The above points may be further examined and discussed, especially when it

comes to defining set-valued counterfactual explanations according to the application

considered, and addressing how to generate them. In this thesis, we focus on the

counterfactuals in binary cautious classification defined in Eq. (6.5).

6.2 Algorithmic resolution for counterfactual gen-

eration

Solving the counterfactual search problem defined in Eq. (6.5) is quite complex. A

common approach is to construct a loss function without constraint and minimize

it by a gradient-based optimization method. Wachter et al. [209] proposed the

following optimization problem:

x′ = arg min
z∈X

λL(h(z), y′) + d(x, z), (6.7)
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where λ is usually large to guarantee that the counterfactuals obtained are valid

(as ensured by minimizing the first term) while being close to the query instance

(second term).

Besides validity and proximity, counterfactual explanations are often required to

satisfy the following supplementary properties: sparsity (only a few features should

be changed), plausibility (consistency with the underlying data distribution), diver-

sity (it should make it possible to generate several distinct counterfactuals), and

actionability (it should lead to reasonable feature changes, both in terms of feature

choice and modification magnitude) [34, 86, 206]. These properties make counter-

factual explanations user-friendly, i.e., contrastive, selective, and compatible. To

address these issues, Dandl et al. combined terms accounting for validity, proxim-

ity, sparsity, and plausibility into a single loss function and solved a multi-objective

optimization problem to generate good counterfactuals [43], while Mothilal et al.

plugged the diversity term in Eq. (6.7) to generate diverse counterfactuals [115,

144]. Moreover, Jeyasothy et al. proposed a general framework to integrate user

knowledge into post-hoc explanations [104].

However, for models without gradient information such as tree-based models,

generating counterfactual explanations based on loss functions is difficult. In this

case, either model-agnostic counterfactual explanation methods or counterfactual

approaches designed specifically for tree-based ensembles can be applied—we re-

fer the reader to Section 5.2 for a review. However, these methods either cannot

generate valid and proximal counterfactuals or are inefficient. Moreover, almost no

method considers the issues of plausibility and actionability of counterfactuals in

tree ensembles.

To address these issues, we propose an approach based on a branch-and-bound

algorithm [21] for generating counterfactuals in cautious random forests, taking into

account the desirable properties (validity, proximity, plausibility, actionability, and

efficiency) of counterfactual explanations. The main flowchart is shown in Fig. 6.3.
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Representation of 
Cautious Random Forest

Distance Measure d(,)

Query Instance x
Desired Class y'

Preprocessing
Filtering Split Intervals

Branch-and-Bound
Search for Counterfactuals

Feature 
Importance

Outlier
Detector

Counterfactual

Feature Restrictions

Figure 6.3: Overview of counterfactual generation framework for cautious random
forest.

6.2.1 Representation of cautious random forests

The first step of our branch-and-bound method consists in converting each path

from the root node to the leaf node in the tree structure into a multi-dimensional

box form. Let H = {ht, t = 1, . . . , T} be a cautious random forest consisting of

T imprecise decision trees, trained on a binary classification dataset of M features,

i.e., X ∈ RM and Y ∈ Ω = {c1, c2}.

For each imprecise tree ht, following the implementation of scikit-learn, we sup-

pose all features to be numerical, and for each feature Xj, its domain is noted as

Dj = [Dj, D
j
]. In ht, each leaf corresponds to a partial region of the input space,

which is determined by a series of split tests from the root to the leaf. For instance,

a leaf determined by (X1 ≤ 4 ∧ X2 > 3 ∧ X1 > 2) can be represented as a region

defined by a multi-dimensional box as {X1 ∈]2, 4],X2 ∈]3, D
2
]}. As we can see, if

a feature is used several times for splitting in a root-leaf decision path, it can be

summarized into a single interval. If a feature Xj is never used, it is represented as

]Dj − ϵ,D
j
], where ϵ is a small positive number to guarantee that Dj is included in

the interval.

Formally, the decision path of leaf Ll is defined as

dpl = {]bjl , b
j

l ], j = 1, . . .M}, (6.8)
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where bjl < b
j

l , b
j
l ∈ Dj ∪ {Dj − ϵ} and b

j

l ∈ Dj. In addition to its location, each

leaf Ll is also associated with an estimated probability, or in our case the interval-

valued probabilities defined by Eq. (3.1), denoted here as epl = {[p
lk
, plk], k = 1, 2}.

Therefore, Lt = {{dpl, epl}, l = 1, . . . , Nt} is an equivalent representation of the

imprecise decision tree structure ht, where Nt is the number of leaves of the tree.

All leaves from different trees can be concatenated together, i.e., L =
⋃T

t=1Lt, and

the total number of leaves is denoted as NL =
∑T

t=1 Nt.

From the set of leaves L, for each feature Xj, all of its corresponding split values

can be extracted as follows:

SV j = {vji , i = 1, . . . , N j
V } = unique(bjl , b

j

l , l = 1, . . . , NL) (6.9)

where N j
V is the number of split values for feature Xj, and NL is the total number

of leaves in the forest. The split values in SV j are then sorted in ascending order.

Based on split values, the domain Dj is split into N j
V − 1 intervals, defined as

SIj = {]vji , v
j
i+1], i = 1, . . . , N j

V − 1}. (6.10)

Hereafter, for the sake of simplification, SIj = {]svji , ev
j
i ], i = 1, . . . , N j

I } is used

as notation for split intervals, where N j
I is the number of split intervals for feature

Xj, and sv and ev respectively denote the start and end values. In this case, for a

given instance x and the set of split intervals SIj, the split interval of feature Xj

that contains xj can be found by using a location function:

SIjx = Loc(xj, SIj) such that xj ∈ SIjx. (6.11)

Finally, we define a function to retrieve the set of leaves associated with a given

split interval of feature Xj associated with x as follows:

L|xj = R(SIjx, j,L) = {Ll : SIjx ⊆ dpjl , l = 1, . . . , NL}, j = 1, . . . ,M. (6.12)
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The information of leaves (decision paths and estimated probabilities) and the set

of leaves associated with each split interval are an equivalent representation of the

trained cautious random forest because any partial region defined as {sij : j =

1, . . . ,M, sij ∈ SIj} is a minimum decision region (in which all samples have the

same prediction) and their union spans the whole input space.

Computing the prediction associated with a given instance x can be done by

applying the following steps:

1. computing the location of each feature value xj by SIjx = Loc(xj, SIj);

2. retrieving the associated leaves of each feature via L|xj = R(SIjx, j,L);

3. computing the intersection L|xj, j = 1, . . . ,M to obtain the set of leaves

where x falls into the trees, i.e., L|x = ∩L|xj, j = 1, . . . ,M ;

4. returning the prediction by applying the corresponding decision-making strat-

egy to the estimated probability information in L|x.

Example 6.2 (Representation of cautious random forests). We consider an example

of a cautious random forest consisting of two trees learned over a 2D input space,

as displayed in Fig. 6.4. The information about the leaves is listed in Table 6.2.

X1

X2

0 1 2 3 4 5

1

2

3

4

X1

X2

0 1 2 3 4 5

1

2

3

4

Figure 6.4: Example of two decision trees for the partition of the feature space.

Knowing that D1 = [0, 5] and D2 = [0, 4], we can find that SV 1 = {0− ϵ, 2, 4, 5}

and SV 2 = {0 − ϵ, 1, 3, 4}. Thus SI1 = {]0 − ϵ, 2], ]2, 4], ]4, 5]} and SI2 = {]0 −

ϵ, 1], ]1, 3], ]3, 4]}. Then, the leaves associated with each split interval are given in

Table 6.3.
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Table 6.2: Example of leaves in a cautious random forest.

L dp1 dp2 ep1 ep2

L1 ]0− ϵ, 2] , ]0− ϵ, 4] [0.8, 0.9] , [0.1, 0.2]

L2 ]2, 5] , ]0− ϵ, 1] [0.4, 0.6] , [0.4, 0.6]

L3 ]2, 5] , ]1, 4] [0.1, 0.2] , [0.8, 0.9]

L4 ]0− ϵ, 4] , ]0− ϵ, 3] [0.7, 0.8] , [0.2, 0.3]

L5 ]4, 5] , ]0− ϵ, 3] [0.3, 0.4] , [0.6, 0.7]

L6 ]0− ϵ, 5] , ]3, 4] [0, 0.2] , [0.8, 1]

Table 6.3: Example of leaves associated with each split interval.

Feature X1 Feature X2

R(]0− ϵ, 2], 1,L) = {L1, L4} R(]0− ϵ, 1], 2,L) = {L1, L2, L4, L5}

R(]2, 4], 1,L) = {L2, L3, L4, L6} R(]1, 3], 2,L) = {L1, L3, L4, L5}

R(]4, 5], 1,L) = {L2, L3, L5, L6} R(]3, 4], 2,L) = {L1, L3, L6}

A test instance x = (1, 2), is located in SI1x =]0−ϵ, 2] and SI2x =]1, 3]. Therefore,

leaves associated with x are

L|x = R(SI1x, 1,L) ∩R(SI2x, 2,L) = {L1, L4} ∩ {L1, L3, L4, L5} = {L1, L4}.

According to the probabilities estimated in these leaves via Eq. (3.5), Eq. (3.6) and

Eq. (3.7), the associated prediction is {c1}.

6.2.2 Preprocessing

Assuming that each feature has NI split intervals, a cautious random forest has

a total of (NI)
M minimum decision regions. Searching for the best counterfactual

sample is intractable when M is large.

However, the search procedure can be initialized using some simple methods,

based on which some far-away regions can be filtered out. In addition, considerations



128 Chapter 6. Resolving indeterminacy via counterfactuals

of actionability will also help to filter out some parts of the space. This is often the

case in real applications, where some restrictions have to be applied to features, so as

to guarantee actionability. Therefore, in this section, some preprocessing techniques

are proposed to reduce the search region in the feature space and to satisfy possible

feature restrictions.

Three kinds of restrictions on features can be considered: the value of the feature

is immutable (it cannot be modified), or can be only increased or decreased. First,

we remark that a counterfactual that satisfies all feature restrictions can be found

or generated using simple heuristic methods to determine the upper bound on the

distance between the query instance and its counterfactuals, noted as dsup. One

popular method is called the Minimum Observable (MO) approach, which searches

in the training set for the closest counterfactual that satisfies feature restrictions.

Alternatively, the One-Feature-Changed Counterfactual (OFCC) approach tries to

vary the value of only one feature and keeps the remaining features unchanged

to generate counterfactuals. Experimental results [231] showed that OFCC can

generate closer counterfactual samples than MO, thus achieving a smaller initial

distance dsup.

Since the initial counterfactual sample satisfies feature restrictions, the distance

of the closest counterfactual to x is no more than dsup, which means that dsup can

be used to narrow down the search region in the feature space. Together with the

feature restrictions due to actionability, split intervals of features can be filtered as

follows:

1. if feature Xj has no restrictions, split intervals whose distance to xj are larger

than dsup should be filtered out, i.e., the remaining split intervals are SIjrem =

{SIji : afd(xj, SIji ) ≤ dsup, i = 1, . . . , N j
I }.

2. If a feature Xj is immutable, this means that the value xj of a query instance

x and the value x′j of its counterfactual sample should be the same. Thus,

all split intervals in SIj that do not contain xj should be filtered out, i.e, the

remaining split intervals are SIjrem = {SIji : xj ∈ SIji , i = 1, . . . , N j
I }. This is

equivalent to removing a dimension in the feature space.
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3. If a feature Xj can be only increased, all split intervals whose upper bounds

are smaller than xj can be filtered out, i.e., the remaining split intervals are

SIjrem = {SIji : evji ≥ xj, afd(xj, SIji ) ≤ dsup, i = 1, . . . , N j
I }.

4. If a feature Xj can be only decreased, all split intervals whose lower bounds

are larger than xj can be filtered out, i.e., the remaining split intervals are

SIjrem = {SIji : svji ≤ xj, afd(xj, SIji ) ≤ dsup, i = 1, . . . , N j
I }.

Here, afd(·) is the adjusted distance along a single feature, defined as

afd(xj, ]svj, evj]) =
fd(xj, ]svj, evj])

MADj
, (6.13)

or

afd(xj, ]svj, evj]) =

√
fd(xj, ]svj, evj])2

STDj
, (6.14)

where

fd(xj, ]svj, evj]) =


0 if svj < xj ≤ evj,

svj − xj + ϵ if xj ≤ svj,

xj − evj if xj > evj,

(6.15)

and

ϵ =
1

2
min{evji − svji ,∀j = 1, . . . ,M, i = 1, . . . , N j

I }. (6.16)

The parameter ϵ is also used in the representation of the cautious random forest. If

feature Xj is an integer, then

fd(xj, ]svj, evj]) =

⌈sv
j + ϵ⌉ − xj if xj ≤ svj,

⌈xj − evj⌉ if xj > evj.

(6.17)

Algorithm 5 compiles the preprocessing steps presented above and returns the re-

gions constructed by the remaining split intervals, where the closest counterfactuals

are located.
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Algorithm 5: Preprocessing

Input: Query instance x; initial upper bound distance dsup; leaves of
cautious random forest L; feature restrictions; distance measure
afd(·).

Output: Remaining split intervals SIrem.
1 SIrem = {}
2 for j = 1, . . . ,M do
3 SIjrem = {}
4 if Xj is immutable then

5 for i = 1, . . . , N j
I do

6 if svji < xj ≤ evji then

7 SIjrem = SIjrem ∪ SIji

8 else if Xj is only increasing then

9 for i = 1, . . . , N j
I do

10 if evji ≥ xj AND afd(xj, SIji ) ≤ dsup then

11 SIjrem = SIjrem ∪ SIji

12 else if Xj is only decreasing then

13 for i = 1, . . . , N j
I do

14 if svji ≤ xj AND afd(xj, SIji ) ≤ dsup then

15 SIjrem = SIjrem ∪ SIji

16 else

17 for i = 1, . . . , N j
I do

18 if afd(xj, SIji ) ≤ dsup then

19 SIjrem = SIjrem ∪ SIji

20 SIrem = SIrem ∪ SIjrem

21 return SIrem

Example 6.3 (Preprocessing procedure). Fig. 6.5 illustrates the preprocessing pro-

cedure with an example applied to a cautious random forest trained on 2D binary

classification data.

The two classes are depicted by the blue and orange regions, while the gray re-

gions correspond to indeterminate decisions. The problem at hand involves finding

a counterfactual of the orange class for a query instance x (represented by the black

point) with an indeterminate prediction.

The initial counterfactual can be obtained through the MO method (as denoted
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Query instance

Initial counterfactual
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Figure 6.5: An example of a cautious random forest based on 2D data.
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no need to go deeper

Figure 6.6: An example of search tree and the corresponding brand-and-bound
search process for the closest counterfactual example based on Fig. 6.5.
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by the green point), and the initial upper bound distance dsup can be computed. Sub-

sequently, it can be affirmed that the optimal counterfactual must necessarily lie

within the circle centered on x with a radius of dsup (or within the hyper-sphere for

high-dimensional data).

The red point is the closest counterfactual sample classified into the orange class.

If there are no constraints on the features, then the search can be limited to the

textured area in the graph, consisting of 25 bins, rather than the entire feature space

of 64 bins. Additionally, if it is assumed that the values of two features cannot be

decreased, the search range can be further narrowed down to the area with a wavy

texture, consisting of only 9 bins.

6.2.3 Branch-and-bound search for counterfactuals

We present here our branch-and-bound algorithm for counterfactual generation,

given a set of split intervals and leaf information. The main idea of this algorithm

is to start from the region containing x and expand the search to further regions.

The distance of the explored region to x cannot exceed the currently known upper

bound distance dsup.

This process can be represented by a search tree, where each level corresponds

to a feature (the depth being at most M), and where each node on a given level

is a split interval for the corresponding feature. Thus, the path from the root to

the leaf corresponds to a sequence of M split intervals, leading to a decision region

where the prediction is pure. Assume that for each feature Xj, split intervals in

SIjrem (after preprocessing) are sorted in ascending order according to their distance

to xj. Then, the leftmost node on each level in the search tree is the split interval

where the corresponding feature value of x is located. In this way, the generation of

counterfactuals can be achieved by a pre-order traversal of the search tree. Exam-

ple 6.4 and Fig. 6.6 provide an example for this search process for the query instance

displayed in Fig. 6.5.

Example 6.4 (Branch-and-bound search for the closest counterfactuals). Assume
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the search tree has been constructed using the information related to the query in-

stance and to the additional actionability constraints (explained in Fig.6.5).

The search starts at the root, and explores the regions such that 3 < X1 ≤ 4,

corresponding to the leftmost node at the first level. The first child of this node

corresponds to the region [X1,X2] ∈]3, 4]×]3, 4], which is within the upper-bound

distance but does not correspond to the desired prediction—as its two sibling nodes.

The search therefore goes back to the previous level in the tree and proceeds with

exploring the regions such that 4 < X1 ≤ 5, corresponding to the children of the

central node. The first child does not give the desired prediction. However, the

second one ([X1,X2] ∈]4, 5]×]4, 5]) produces the desired one and is within the upper-

bound distance. A counterfactual sample is generated here and the upper-bound

distance is updated. We note that the third child exceeds the upper-bound distance.

The search goes back again to the first level to explore the rightmost node, i.e.,

the regions such that 5 < X1 ≤ 6. Since the distance to the root exceeds the current

upper-bound distance, there is no need to explore its subtree and the search finishes

with going back to the root.

In order to apply the branch-and-bound search strategy, the cumulative distance

from the root to any node in the search tree should be kept track of. Suppose that

the search process arrives at level J ≤M of the search tree, then the path from the

root to current node can be represented by a region in the form of J-dimensional box

RJ = {]sv1, ev1], . . . , ]svJ , evJ ]}, where each element ]svj, evj] is the corresponding

node of level j. Based on RJ , the cumulative distance is defined according to the

given distance measurement type as follows:

cd(x,RJ , Lmad
1 ) =

J∑
j=1

fd(xj, ]svj, evj])

MADj
, (6.18)

or

cd(x,RJ , Lstd
2 ) =

√√√√ J∑
j=1

fd(xj, ]svj, evj])2

STDj
, (6.19)

where fd(·) is defined by Eq. (6.15).
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Based on the cumulative distance, the forward and backward movements of the

branch-and-bound search can be easily managed. If the sub-tree of the current node

is incompletely explored and the cumulative distance from the root node to the

current node does not exceed the upper bound distance dsup, then the unexplored

sub-tree should be prioritized for forward movement. Conversely, if the sub-tree of

the current node is entirely explored, the algorithm should step back to the previous

level and select a new subtree to explore. In cases where the cumulative distance

from the root node to the current node exceeds dsup, the exploration of all remaining

subtrees of its parent node should be terminated, given that those subtrees to its

right are guaranteed to be further away, and the cumulative distance of any node in

these remaining sub-trees is consequently guaranteed to exceed dsup.

Upon arriving at a leaf node of the search tree with a cumulative distance

smaller than the current upper bound distance, the algorithm checks the predic-

tion of the corresponding decision region. If the prediction matches the given de-

sired class, a counterfactual instance is generated within this region, and the upper

bound distance dsup is updated to the (smaller) current cumulative distance be-

fore resuming the search. To generate a counterfactual instance x′ of the query

instance x in this multivariate decision region represented by a M -dimensional box

RM =]sv1, ev1], . . . , ]svM , evM ]}, we define

x′j =


xj if svj < xj ≤ evj,

svj + ϵ if xj ≤ svj,

evj if xj > evj,

(6.20)

where j = 1, . . . ,M and ϵ is defined by Eq (6.16), which prevents the feature value

from spanning entire intervals to ensure that the counterfactual feature value must
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be within the intervals. If feature Xj is an integer, then

x′j =


xj if svj < xj ≤ evj,

⌈svj + ϵ⌉ if xj ≤ svj,

⌊evj⌋ if xj > evj.

(6.21)

In order to guarantee the plausibility of the counterfactual instances produced by

the algorithm, outlier detection techniques such as the Local Outlier Factor [27, 9]

and the connectedness of counterfactual instances to training data [117] are employed

in the process prior to updating x′ and dsup.

Algorithm 6 encapsulates all of the branch-and-bound search based counterfac-

tual generation procedures presented above. Algorithm 7 presents the complete

process for generating counterfactuals. It features a reconstruction step, which is

required to further ensure the generated counterfactuals are effective. The justifi-

cation for this is twofold. First, since the order of features may be different to the

original one (for example ordered according to the feature importance), the feature

order needs to be reset to the default one in the dataset. Second, the counterfactual

samples generated using Eq. (6.20) do not consider the data type of the features.

Notably, as the implementation is based on the scikit-learn random forest model, it

only supports numerical features. Thus, the reconstruction process should take into

account discrete numerical features, such as integers, to ensure the plausibility of

the generated counterfactuals. Additionally, some groups of features derived from

the encoding should be checked, e.g., in a set of one-hot encoding features, there

should be one and only one feature equal to one, while the others should be zero.

6.2.4 Comparison of counterfactual generation methods

In this subsection, we evaluate the effectiveness of the counterfactuals generated by

our method and their efficiency in handling large-scale problems by comparing them

with those produced by different approaches.
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Algorithm 6: Branch-and-bound search for counterfactual

Input: Query instance x; desired class y′; intial counterfactual cfinit; initial
upper bound distance dsup; Sorted split intervals SI, leaves of
cautious random forest L; distance measure along a single feature
fd(·); outlier detector OD(·).

Output: Counterfactual example x′.
1 x′ = cfinit
2 n intervals = [NI1, . . . , NIM ]
3 n checked interval = [0, . . . , 0]
4 cumu dist = 0
5 dim dist = [∅, . . . , ∅]
6 dim leaves = [∅, . . . , ∅]
7 region = [∅, . . . , ∅]
8 j = 1
9 while True do

10 if j = 0 then
11 return x′

12 else if n checked intervalsj = n intervalsj then
13 n checked intervalsj = 0
14 j = j − 1

15 else
16 n checked intervalsj = n checked intervalsj + 1
17 i = n checked intervalsj

18 interval = SIji
19 regionj = interval
20 dim distj = fd(xj, interval)
21 cumu dist = cumu dist(dim dist1, . . . , dim distj)
22 if cumu dist > dsup then
23 n checked intervalsj = 0
24 j = j − 1

25 else
26 dim leavesj = R(interval, j, L)
27 if j=M then
28 leaves = dim leaves1 ∩ · · · ∩ dim leavesM

29 if predict(leaves) = y′ then
30 cf candidate = generate cf in region(x, region) via

Eq. (6.20)
31 if OD(cf candidate) is plausible then
32 x′ = cf candidate
33 dsup = cumu dist

34 else
35 j = j + 1



6.2 Algorithmic resolution for counterfactual generation 137

Algorithm 7: Counterfactual Generation

Input: Query instance x; classes Ω = {c1, c2}; leaves of cautious random
forest L; distance measure d(·); feature restrictions FR; feature
ordering FO; outlier detector OD(·).

Output: Counterfactuals cfs{xc1 ,xc2}.
1 cfs = {}
2 for ck ∈ Ω do
3 Initialize xck via MO or OFCC method taking ck
4 dsup = d(x,xck)
5 SI = Preprocessing(x, dsup, L, RF , d(·))
6 Sort SIj according to fd(x, SIji ), j = 1, . . . ,M, i = 1, . . . , N j

I

7 Reorder features in x, SI, and L according to feature ordering FO
8 xck = Branch-and-Bound Search(x, ck, dsup, SI, L, d(·), OD(·))
9 xck = Reconstruction(xck , FI, FR) cfs = cfs ∪ xck

10 return cfs

Table 6.4: Datsets used in experiments.

Data name Abbreviation n-feature n-sample
Adult ADLT 11 45222
Biodeg BIOD 41 1053
Compas COMP 6 2652
German GERM 24 1000
Heloc HELO 23 10459
Liver LIVR 6 345
Mammographic MAMO 5 830
Pima PIMA 8 768
Spam SPAM 57 4594
Wine WINE 11 1599

The experiments are performed on ten distinct binary classification datasets

sourced from the UCI repository. Table 6.4 provides a summary of their character-

istics, giving their numbers of features and samples. Each cautious random forest

is made of 100 decision trees, all trained to maximum purity (i.e., purity of 1 in

each leaf), and the imprecise Dirichlet model parameter is set to s=2. The random

state of the scikit-learn implementation is set to 42 for all experiments. The reported

results are the average of five-fold cross-validation. Evaluated results are reported

from Table 6.5 to Table 6.9. In each table, the best result for each dataset is printed

in bold.

In this section, different counterfactual generation methods are compared in
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terms of the properties of counterfactual samples. The evaluation is based on the

following criteria:

1. proximity (Lstd
2 and Lmad

1 ): the average distance between query instances and

their generated counterfactual examples;

2. sparsity: the average number of modified features to obtain desired counter-

factual examples;

3. plausibility: the proportion of generated counterfactual examples that are de-

tected as non-outlier by the Local Outlier Factor method;

4. efficiency: the average elapsed time to generate counterfactual examples.

Since all methods implemented here generate valid counterfactuals by design, the

validity is not reported. The compared methods in this experimentation are:

1. MO (Minimum Observable), which searches for the closest counterfactual in

the training set [71];

2. DisCERN (Discovering Counterfactual Explanations using Relevance Features

from Neighbourhoods), which replaces feature values ordered by feature im-

portance with the corresponding feature values from MO until valid counter-

factuals are returned [218];

3. OFCC (One-Feature-Changed Counterfactual), which tries to vary the value

of only one feature while keeping the remaining ones unchanged to generate

counterfactuals [231].

The results in Table 6.5 and Table 6.6 show that whatever the choice of the

distance metric, the proposed approach generates the closest counterfactual sam-

ples. This is due to initializing the search with the results of DisCERN and OFCC

before proceeding with exploring finer regions. These results indicate that our ap-

proach makes it possible to reduce the efforts of modifications to obtain desired

counterfactual examples.
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Table 6.5: Comparison of different counterfactual generation approaches in terms
of Lstd

2 . The values in parentheses indicate the ratio between the distance to the
counterfactuals generated by the different methods and the ones generated by our
approach.

Data MO DisCERN OFCC Ours
ADLT 2.638 (2.76) 1.935 (2.03) 2.899 (3.04) 0.955 (1.00)
BIOD 2.800 (6.89) 0.891 (2.19) 0.419 (1.03) 0.406 (1.00)
COMP 0.926 (2.40) 0.731 (1.89) 0.552 (1.43) 0.386 (1.00)
GERM 4.142 (3.05) 2.700 (1.99) 1.625 (1.20) 1.358 (1.00)
HELO 9.733 (6.13) 5.415 (3.41) 1.789 (1.13) 1.589 (1.00)
LIVR 3.415 (6.54) 2.184 (4.18) 0.729 (1.40) 0.522 (1.00)

MAMO 0.935 (1.43) 0.807 (1.23) 0.784 (1.20) 0.655 (1.00)
PIMA 4.605 (6.61) 3.051 (4.38) 0.855 (1.23) 0.697 (1.00)
SPAM 5.301 (27.07) 1.986 (10.14) 0.202 (1.03) 0.196 (1.00)
WINE 1.479 (18.14) 0.734 (9.01) 0.133 (1.63) 0.082 (1.00)

Table 6.6: Comparison of different counterfactual generation approaches in terms
of Lmad

1 . The values in parentheses indicate the ratio between the distance to the
counterfactuals generated by the different methods and the ones generated by our
approach.

Data MO DisCERN OFCC Ours
ADLT 2.172 (10.29) 1.507 (7.14) 0.212 (1.00) 0.211 (1.00)
BIOD 17.024 (15.60) 4.154 (3.81) 1.095 (1.00) 1.091 (1.00)
COMP 0.413 (3.54) 0.351 (3.01) 0.150 (1.28) 0.117 (1.00)
GERM 7.981 (5.91) 3.828 (2.84) 1.393 (1.03) 1.350 (1.00)
HELO 16.564 (16.14) 5.007 (4.88) 1.073 (1.05) 1.026 (1.00)
LIVR 4.735 (12.72) 2.095 (5.63) 0.459 (1.23) 0.372 (1.00)

MAMO 0.475 (2.32) 0.346 (1.69) 0.250 (1.22) 0.205 (1.00)
PIMA 5.467 (12.44) 2.434 (5.54) 0.474 (1.08) 0.439 (1.00)
SPAM 7.796 (82.84) 1.820 (19.34) 0.146 (1.55) 0.094 (1.00)
WINE 7.638 (21.01) 2.569 (7.07) 0.393 (1.08) 0.364 (1.00)
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Sparsity (see Table 6.7) is hard to satisfy by searching counterfactual samples

in the training data, especially for datasets with a high number of continuous fea-

tures such as the Wine dataset, while generating counterfactual instances via MO

requires modifying almost all features. DisCERN significantly reduces the number

of modified features by using feature importance, which nevertheless remains rela-

tively high. OFCC is designed to modify only one feature, but for some samples, it

is insufficient to alter the prediction. To ensure the validity in the implementation,

if OFCC fails to generate valid counterfactuals, it returns the counterfactuals gen-

erated by DisCERN. This is why the average number of features changed by OCCF

on some datasets may slightly exceed one. Our approach is reasonable in terms of

the number of features changed, which overall does not exceed three features. This

level of sparsity is consistent with the cognitive constraints of the human brain.

Additionally, owing to the characteristics of the L1-norm, it can be observed that

the counterfactual instances generated using Lmad
1 are sparser in terms of features

to be modified compared to those generated using Lstd
2 .

Table 6.7: Number of modified features in average (L0-norm or sparsity) when
optimizing Lstd

2 and Lmad
1 , respectively.

Data
When optimizing Lstd

2 When optimizing Lmad
1

MO DisCERN OFCC Ours MO DisCERN OFCC Ours
ADLT 3.235 2.083 1.000 1.181 2.600 1.813 1.000 1.004
BIOD 18.575 5.681 1.856 2.081 18.425 5.981 1.888 1.950
COMP 1.916 1.514 1.018 1.176 1.680 1.464 1.021 1.078
GERM 8.216 4.041 1.367 1.680 6.644 3.431 1.326 1.423
HELO 16.305 5.519 1.470 1.584 14.435 5.034 1.382 1.411
LIVR 5.346 2.331 1.000 1.723 4.992 2.246 1.000 1.323
MAMO 1.730 1.404 1.070 1.189 1.578 1.337 1.056 1.152
PIMA 6.551 2.826 1.000 1.464 6.444 2.719 1.000 1.242
SPAM 15.673 2.615 1.000 3.978 15.038 2.942 1.000 1.038
WINE 10.155 3.158 1.048 2.951 10.030 3.075 1.040 2.381

In Table 6.8, the plausibility of counterfactuals generated via our approach is

often less than MO and DisCERN because these latter return existing samples or

mixtures of existing samples. However, checking the plausibility before updating the

upper bound distance dsup can guarantee that our approach generates counterfactual

samples that are equally or more plausible than the initialization method.
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Table 6.8: Plausibility of generated counterfactuals.

Data MO DisCERN OFCC Ours
ADLT 0.976 0.954 0.906 0.908
BIOD 0.962 0.947 0.938 0.938
COMP 0.899 0.884 0.792 0.807
GERM 0.998 0.996 0.978 0.986
HELO 0.998 0.998 0.998 1.000
LIVR 0.988 0.981 0.962 0.962

MAMO 0.978 0.974 0.974 0.974
PIMA 0.988 0.975 0.978 0.978
SPAM 0.981 0.875 0.846 0.846
WINE 0.982 0.930 0.933 0.938

Table 6.9 reports the average time for generating a counterfactual sample. MO

and DisCERN exhibit the highest efficiency and are contingent upon the training

set size. OFCC also exhibits strong performance, contingent upon both the number

of features present in the data and the corresponding number of split values for

each feature. Although our approach does not appear to be particularly efficient,

we believe that generating the closest counterfactual instances within ten seconds

using a random forest composed of 100 decision trees trained to maximum depth

remains very acceptable. On most datasets, the generation of counterfactuals takes

less than five seconds, and some only require approximately one second. This level

of efficiency is highly favorable when compared to optimization-based counterfactual

generation methods for large random forests.

Table 6.9: Average time to generate one counterfactual sample (seconds).

Data MO DisCERN OFCC Ours
ADLT 0.228 0.266 0.388 0.570
BIOD 0.010 0.142 3.555 5.232
COMP 0.012 0.034 0.481 0.570
GERM 0.006 0.057 0.503 2.116
HELO 0.048 0.098 1.880 5.518
LIVR 0.006 0.036 0.439 1.180

MAMO 0.006 0.034 0.128 0.191
PIMA 0.006 0.036 1.720 5.040
SPAM 0.038 0.126 3.957 7.574
WINE 0.006 0.041 2.120 8.324
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6.3 Increasing efficiency using feature importance

The efficiency of the approaches proposed above for generating counterfactuals is

heavily related to the order of features, i.e., the levels at which they are located

in the search tree. If a decisive feature (a feature that needs to be modified in

order to get the desired prediction) is at the top of the search tree, then searching

all sub-trees of the node containing the value of the query instance on the decisive

feature would be pointless. If the number of split intervals for each feature is N ,

the complexity would be O(NM) in the worst case. Conversely, if J < M decisive

features are at the bottom of the search tree, exploring all the split intervals of the

decisive features would only require the exploration of the minimum sub-tree, which

is equivalent to decreasing the depth of the search tree and thus reducing the search

complexity to O(NJ).

Therefore, to improve the efficiency of the procedure, features that are more likely

to be modified to obtain counterfactuals should be located close to the bottom of

the search tree. Thus, effective counterfactuals can be encountered earlier in the

search process, allowing the upper bound distance to be updated to a smaller value

quickly. This, in turn, quickly narrows the search range and eliminates unnecessary

regions.

In previous works, feature importance is widely used for assessing which features

may need to be mutated to generate counterfactuals. For example, Keane et al.

proposed in [110] to mutate only features guided by the counterfactuals of instances

close to the query instance, as they believe that similar instances already queried

for are significant to obtain a counterfactual. In [170, 218], the authors proposed

to mutate only features that contribute against the desired predictions, i.e., fea-

tures with negative SHAP values associated with the query instance and the desired

prediction.

We propose establish the feature order by evaluating feature importance, i.e.,

features with a higher importance are more likely to be modified during counter-

factual generation and should be positioned close to the bottom of the search tree.
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Given a list of feature importance values Φ = {ϕ1, . . . , ϕM}, the feature ordering

⪯Φ is defined as

Xj ⪯Φ Xj′ if ϕj ≤ ϕj′ , ∀j ∈ {1, . . . ,M}, j ̸= j′, (6.22)

where the estimated feature importance can be obtained via the methods described

in the following sections. In addition to determining the order of features in the

search tree, the feature importance assessed here is an explanation in itself, since it

amounts to point out the features that are expected to be important.

6.3.1 Local feature importance assessment

Indeterminacy measures in predictions

Feature importance must be associated with an evaluation metric, such as the accu-

racy in precise classification problems. In our case, we focus on the indeterminacy

of predictions. Thus, we propose two measures of indeterminacy, one written Imp1

which indicates whether the prediction is determinate or not, and the other written

Imp2 which is a measure of uncertainty based on the prediction intervals. If the

output h(x) for an instance x consists of a set of classes, we propose to define Imp1

as follows:

Imp1(h,x) =

0 if |h(x)| = 1,

1 otherwise.

(6.23)

If we consider interval-valued outputs (I1 = [p
1
, p1] = [bel1(x), pl1(x)] and I2 =

[p
2
, p2] = [bel2(x), pl2(x)]), following the definition in [98], we may alternatively

define the indeterminacy measure Imp2 as

Imp2(h,x) = min(p1, p2). (6.24)

By duality, the uncertainty quantification can calculated either using I1 or I2 due

to the relationship p1 = 1− p
2

and p2 = 1− p
1
, i.e., Imp2(h,x) = min(p1, 1− p

1
) or

Imp2(h,x) = min(1− p
2
, p2).
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Remark 6.1. Since p1 = p1 + p
1
− p

1
and 1− p

1
= 1− p

1
+ p1 − p1, we have

Imp2(h,x) = min(p1, 1− p
1
)

= min(p
1

+ p1 − p
1
, 1− p1 + p1 − p

1
)

= min(p
1
, 1− p1) + p1 − p

1

= min(p
1
, p

2
) + p1 − p

1
.

The former part is called aleatoric uncertainty and the latter, representing the length

of the probability intervals I1 and I2, is known as the epistemic uncertainty in the

prediction.

According to the decision strategy in Eq. (3.7), all determinate predictions (p
1
≤

0.5 or p
2
≤ 0.5) yield a valeur of Imp2 less than or equal to 0.5, and Imp2 ap-

proaches zero when p
1
tends to 1 or p1 tends to 0. In contrast, the value of Imp2 for

indeterminate predictions (p1 > 0.5 and p2 > 0.5) is greater than 0.5 and tends to 1

when p
1
tends to 0 and p1 tends to 1.

Local permutation feature importance

Assume that x∼j is an observation (of the random vector X∼j) obtained by con-

ducting an aleatory modification on the feature Xj of x while all other features are

kept unchanged, i.e., the j-th element xj of vector x is replaced by a new value zj,

a conditional distribution can be generated as follows:

fX∼j = fXj |x-j(zj) = P(Xj = zj|Xj′ = xj′ ,∀j′ ̸= j), (6.25)

where x-j represents the sub-vector observation consisting of all elements of x except

the j-th one. Respectively, the random vector X-j is obtained by marginalizing the

random variable Xj out of X.

Example 6.5. Assume that x = (3, 4, 2)T and we want to calculate the feature
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importance of X2, the random variable X∼2 should be considered:

fX∼2(z) = P(X2 = z|X1 = 3,X3 = 2).

Remark 6.2. In general, the conditional distribution fX∼j is difficult to calculate

analytically; a notable exception is the Gaussian case, where any conditioning of a

Gaussian random vector by a sub-vector is Gaussian, with the conditional distribu-

tion allowing an analytic expression.

Given a test instance x, we can define the local feature importance of Xj as the

expected gain on determinacy if only feature value xj associated with instance x is

allowed to be modified:

ϕ(j;h,x) = EX∼j

[
Imp(h(x))− Imp(h(X∼j))

]
(6.26a)

= Imp(h(x))− EX∼j

[
Imp(h(X∼j))

]
. (6.26b)

In practice, for each of these instance x, we can estimate the local feature im-

portance (6.26) by averaging the determinacy gain over the instances similar to x

except for the value xj , i.e., obtained by replacing the j-th value of x by values

sampled according to the conditional distribution of the random variable X∼j. Al-

ternatively, from a sufficiently large validation set, we can also estimate the local

feature importance by selecting samples similar to x except for value xj.

Local Interpretable Model-agnostic Explanations (LIME)

For a given query instance x and a given model h to be explained, the idea of LIME

is to locally approximate h by an interpretable surrogate model ξ. For this pur-

pose, LIME creates a new dataset by generating samples around x and collects the

corresponding predictions provided by h. A new interpretable model, e.g., linear

regression, is trained using the new dataset in which each sample is then weighted ac-

cording to its proximity to x. The search for the best surrogate model is formulated
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mathematically as follows:

ξ(x) = arg min
h′∈H

L(h,h′,πx) + O(h′), (6.27)

where L(·) is a loss function measuring the fidelity of h′ to h, O(·) measures the

model complexity, and πx measures the proximity between x and the instances

sampled around it. In our case, the outputs of model h and h′ are replaced by

the indeterminacy measures of predictions, which are defined in Eq. (6.23) and

Eq. (6.24).

SHapley Additive exPlanations (SHAP)

Unlike LIME, which learns an approximate model, SHAP makes use of the Shapley

value [182], a concept from cooperative game theory that measures the contribution

of each player to the total payoff of a game. The basic idea behind SHAP is to

assign a score ϕ(x, j) to each feature Xj that measures its contribution to the model

prediction for a given instance x. This score is based on the difference between the

model prediction for the instance with and without the feature Xj. More precisely,

the SHAP score for feature Xj and instance x is defined as:

ϕ(j;x,h) =
∑

S⊆{1,2,...,M}\{j}

|S|!(M − |S| − 1)!

M !
(fh(xS∪{j})− fh(xS)), (6.28)

where M is the total number of features, S is a subset of the features excluding

feature Xj, fh(xS) is a function associated with model h for instance x with only

the features in S, and fh(xS∪{j}) is the one associated with model h for instance x

with the feature Xj added to S. In our case, the payoff function fh(·) is replaced by

the indeterminacy measures of predictions, i.e., Imp1(h(·)) and Imp2(h(·)) that are

defined in Eq. (6.23) and Eq. (6.24), respectively.

Intuitively, the SHAP score measures the average marginal contribution of fea-

ture Xj across all possible subsets of features that do not contain Xj. It can be

interpreted as the importance of feature Xj for explaining the prediction of the

model output for x. In order to estimate the SHAP score, Lundberg et al. proposed
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Kernel SHAP [128] and Tree SHAP [127], which are respectively model-agnostic and

specific to tree-based models. Actually, Kernel SHAP connects LIME and Shapley

values, i.e., it is a kind of LIME if the proximity measurement πx in LIME is no

longer based on distance but replaced by the SHAP kernel.

6.3.2 Global feature importance measurements

In addition to the feature importance at the individual level, a global feature im-

portance may be more helpful for the purpose of understanding the model. The

following three different methods are the most applied to global feature importance

evaluation.

Mean Decrease in Impurity (MDI)

The strategy of growing a decision tree is to determine the best splits in internal

nodes in order to decrease the impurity in their descendant nodes. For a given

feature, its MDI is the average decrease in the impurity of the nodes where it is

selected as the split feature, weighted by the proportion of samples in the nodes [24,

122]. Intuitively, features achieving a great decrease of impurity across a tree are

more discriminative and are important for the separation of the feature space. The

MDI of a random forest can be defined as the average MDI across all trees. MDI is

a model-specific method, only suitable for tree-based models.

Features with a large MDI generally appear in the shallow layers of the trees,

corresponding to regions that are easy to separate, while features of small MDI often

appear at the bottom, corresponding to areas where different classes are highly mixed

in the feature space, where the indeterminacy of our cautious random forests comes

from. Therefore, features with a high MDI are likely to be helpful in resolving

indeterminacy.
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Permutation Feature Importance (PFI)

It measures the decrease in the prediction accuracy of the model after the feature

values have been swapped. It is also referred to as the mean decrease in accuracy

[141]. Machine learning models learn the association between input features and

outputs. Therefore, if there is a significant decrease in the prediction accuracy when

a feature in the dataset is perturbed, it indicates that the model prediction highly

relies on this feature [24]. PFI is a model-agnostic method, and the performance

measurement can also be different from the accuracy.

In our case, we apply PFI to explain the relationship between the features and

the indeterminacy of the cautious random forest model. Since our purpose is to

resolve indeterminacy of set-valued predictions, we consider only observations x

such that |h(x)| > 1, i.e., consider the conditional distribution defined as follows:

fX | |h(X)|>1(x) = P(X = x | |h(x)| > 1). (6.29)

The global feature importance of Xj is defined as the expected gain of deter-

minacy associated with a classifier output based on the conditional distribution

fX | |h(X)|>1:

Φ(j;h) = EX | |h(X)|>1 [ϕ(j;h,x)] , (6.30)

where ϕ(j;h,x) is the measure of local feature importance of Xj associated with a

specific observation x of conditional distribution fX | |h(X)|>1.

The theoretical calculation of the global feature importance is generally difficult.

However, Eq. (6.30) can be practically estimated by replacing the expectation with

an empirical average calculated on the instances of a set (e.g., test or validation set)

for which the model outputs are indeterminate.
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SHAP Feature Importance (SHAP-FI)

Since Shapley values are considered to be consistent, the local feature importance

measures can be used to construct a global one. This is not the case for LIME

that estimates feature importance using perturbed data. The SHAP feature impor-

tance measure (SHAP-FI) is calculated by averaging the absolute Shapley values

per feature across all instances with indeterminate predictions:

Φ(j;h) =
1

Nimp

∑
x | |h(x)|>1

|ϕ(j;h,x)|, (6.31)

where Nimp is the number of instances with imprecise predictions in the dataset and

ϕ(j;h,x) is defined by Eq. (6.28). Besides, SHAP-FI can provide a summary plot

for all features to illustrate the relation between SHAP values and feature effects,

which enables us to better understand the model dependency on features.

6.3.3 Evaluation of counterfactual generation acceleration

Since we aim at using feature importance as a guide for resolving the indetermi-

nacy in predictions, we compare different feature importance measures via their

proneness to accelerate the generation of counterfactual examples for instances with

indeterminate predictions.

This section focuses on evaluating the effectiveness of three global feature im-

portance assessment methods (MDI, PFI, and SHAP-FI) and two local methods

(SHAP and LIME) in accelerating the branch-and-bound search for valid counter-

factual instances without a preprocessing step. For LIME and SHAP, we use Imp2

defined in Eq. (6.24) as a measure of indeterminacy because it is stated that LIME

and SHAP are more capable to deal with continuous outputs.

Table 6.10 displays the time and efficiency improvements achieved by incorpo-

rating a feature ordering based on these feature importance methods in comparison

to the default feature order. Remarkably, global feature importance plays a more

significant role in improving the efficiency of branch-and-bound search, without any



150 Chapter 6. Resolving indeterminacy via counterfactuals

Table 6.10: Impact of the use of feature importance for the acceleration of the
branch-and-bound search for counterfactuals, reported with the average elapsed
time (seconds) and the percentage of improvement in parentheses (%). The best
results are printed in bold.

Data Original MDI
(Global)

PFI
(Global)

SHAP-FI
(Global)

SHAP
(Local)

LIME
(Local)

ADLT 0.3019 0.2022
(33.02)

0.2162
(28.39)

0.2555
(15.37)

0.2743
(9.14)

0.3076
(-1.89)

BIOD 2.3946 0.0100
(99.58)

0.0353
(98.53)

0.0626
(97.39)

1.6894
(29.45)

1.2866
(46.27)

COMP 0.0161 0.0122
(24.22)

0.0123
(23.60)

0.0123
(23.60)

0.0133
(17.39)

0.0588
(-265.22)

GERM 2.2392 0.0279
(98.75)

0.0280
(98.75)

0.0280
(98.75)

0.2275
(89.84)

0.3108
(86.12)

HELO 5.2826 2.6608
(49.63)

2.8008
(46.98)

2.8615
(45.83)

3.7376
(29.25)

4.5674
(13.54)

LIVR 0.9362 0.8745
(6.59)

0.8639
(7.72)

0.8119
(13.28)

0.9183
(1.91)

0.9839
(-5.10)

MAMO 0.0046 0.0006
(86.96)

0.0008
(82.61)

0.0009
(80.43)

0.0010
(78.26)

0.0035
(23.91)

PIMA 3.9084 3.6413
(6.83)

3.6650
(6.23)

3.6688
(6.13)

4.4324
(-13.41)

4.1295
(-5.66)

SPAM 4.3789 3.9231
(10.41)

4.2194
(3.64)

3.7764
(13.76)

3.4110
(22.10)

3.7912
(13.42)

WINE 8.2288 7.9983
(2.80)

7.8751
(4.30)

7.9673
(3.18)

8.3679
(-1.69)

8.1653
(0.77)

counterpart in terms of sacrificing efficiency. Among the three global feature im-

portance assessment methods considered, MDI exhibits the best performance. This

is due to the way MDI calculates feature importance being based on the tree splits

and impurity information, allowing it to identify features that are frequently used

for splitting and thus that can quickly reduce impurity, which is directly linked to

the elimination of indeterminacy in predictions.

Note also that local feature importance may lead to a reduction in terms of

search efficiency, i.e., feature orderings determined by them for some samples to

be highly inconsistent with the features actually needed to resolve indeterminacy.

One possible reason may be that local feature importance measures are unstable.

Another reason may be that LIME and SHAP build the linear surrogate model based

on binary feature values (1 means including that feature and 0 without), which biases
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the evaluation of feature importance. Using a global feature importance measure

mitigates these shortcomings, resulting in a better overall performance across the

entire dataset.

6.4 Conclusion

In this chapter, we have proposed a framework where counterfactual examples are

used to explain indeterminate predictions made by a cautious random forest. The

generated counterfactual explanations aim to address the questions of why a given

input instance is classified indeterminately and how to modify some feature values

to achieve a determinate prediction. We have proposed a branch-and-bound ap-

proach to search for the closest counterfactual examples and integrated plausibility

and actionability considerations into the process. For accelerating the generation

of proximal counterfactual examples, we have proposed to use local and global fea-

ture importance measures to determine the features that are more probable to be

modified to get determinate predictions.

By comparing our counterfactual generation method with other methods, we

have demonstrated the advantages of our method in terms of the proximity, sparsity,

and plausibility of generated counterfactual examples, and a slight lack of efficiency.

We have also shown that feature importance plays a significant role in enhancing

the generation of counterfactual examples.
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Conclusion and perspectives

Summary of the contributions

This thesis focuses on two important challenges in modern machine learning: mak-

ing cautious under uncertainty and interpreting models and model outputs. We

proposed a cautious random forest, a robust and explainable classifier, rooted in the

imprecise probabilistic (the imprecise Dirichlet model) and belief-theoretic frame-

works. This classification strategy can make indeterminate predictions when the

uncertainty is too high, especially for test instances near the classification bound-

aries, which is essential to reduce the risk of making wrong decisions. In addition,

by leveraging explainable AI concepts, we can provide explanations for indetermi-

nate classifier outputs, including evaluating the importance of features for resolving

indeterminacy and generating counterfactual samples to help users resolve indeter-

minacy.

Cautious random forests

When the available data or the information learned by the model is not sufficient to

make reliable decisions, or when the outputs of the individual base learners in en-

semble learning exhibit high levels of conflict, we advocate using a cautious approach

where reliability is preserved, possibly at the expense of determinacy. A cautious

classifier makes indeterminate (set-valued) predictions for such samples which pose

challenges in terms of classification, thereby reducing the risk of making incorrect

decisions.
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In Chapter 3, we proposed a novel aggregation strategy to learn a cautious

random forest within the context of binary imprecise classification. Our approach

is formalized within the theory of belief functions, interpreting the imprecise tree

outputs as pieces of evidence about the actual class of a test instance in the form of

closed random intervals defined on [0, 1]. These posterior probability intervals are

then aggregated into belief and plausibility degrees that can subsequently be used

in a cautious decision-making process (such as the interval dominance principle) to

indicate whether one of the two classes is strictly preferable to the other or not. Our

strategy for aggregating these imprecise trees can be viewed as an extension of the

weighted voting mechanism. Additionally, we developed a method to assign weights

to individual trees by optimizing a novel cost function that takes both determinacy

and accuracy into account. This weight assignment strategy allows us to strike a

better balance between cautiousness and accuracy.

In Chapter 4, we extended the concept of cautious random forests to encompass

multi-class classification problems. We introduced two cautious decision-making

strategies to combine imprecise trees. They can be regarded as generalizations of

averaging and voting in tree ensembles, which construct a mass function by either

averaging probability intervals or applying the interval dominance principle. Sub-

sequently, based on the obtained mass function, both of these strategies amount

to maximizing the lower expected discounted utility to select the optimal subset of

classes as indeterminate predictions, rather than the expected utility as done in the

conventional case. It should be noted that this approach can be applied to any kind

of classifier ensemble where classifier outputs are probability intervals; however, it

is particularly well-suited to tree ensembles.

Explaining indeterminate predictions

In Chapter 6, we developed a framework to provide insights into indeterminate pre-

dictions made by a cautious random forest model. We make use of counterfactual

examples to explain these indeterminate predictions; essentially, this amounts to

answering two fundamental questions: why a particular input instance receives an
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indeterminate classification and how the feature values can be adjusted to achieve

a definitive prediction. To generate the nearest counterfactual examples, we imple-

mented a branch-and-bound approach, incorporating considerations on the action-

ability of the features and the plausibility of the instances to be generated into the

process. Additionally, to accelerate the generation of counterfactual examples, we

leveraged both local and global feature importance measures to identify the features

that are most likely to be modified to achieve determinate predictions.

Perspectives

1. Efficient cautious decision-making under belief functions

As mentioned in the first chapter, there are two strategies to perform imprecise clas-

sification: building partial preorders among precise assignments or building complete

preorders among all possible partial assignments. The latter turns out to be very

costly.

Our proposed cautious decision-making approach based on the theory of belief

functions maximizes the lower expected discounted utility, which corresponds to

a conservative or pessimistic decision-making strategy. This results in a partial

preorder among all possible partial assignments from which the greatest partial

assignment can be selected as the prediction. The high efficiency of the decision-

making process relies on the special property of the definition and calculation of

the belief degree of a given subset of the frame of discernment: only a part of focal

elements need to be considered.

One of the drawbacks of our proposed approach is the difficulty of adjusting

the level of cautiousness of the model. In future work, we may consider using the

Hurwicz criterion to make decisions with different levels of cautiousness, so as to

adapt to the needs of users or the specificities of datasets. The Hurwicz criterion

takes both belief and plausibility degrees into account. However, the calculation

of the plausibility degree of a given subset of the frame of discernment requires
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considering all focal elements that have a nonempty intersection with it, which is

expensive. Therefore, implementing this approach requires to identify an efficient

way to compute the plausibility degrees.

2. Set-valued counterfactual examples

In precise classification problems, counterfactual examples are associated with de-

terminate (precise) predictions. However, in cautious classification problems, the

desired predictions can be imprecise [82].

This extension broadens the spectrum of the counterfactual generation frame-

work. A user may desire to generate counterfactual examples with either a specific

set-valued prediction or any subset (superset) of such a specified set. In this case,

the existence of such counterfactual examples is questionable. Being able to evalu-

ate the degree to which users’ requirements are (possibly partially) fulfilled seems

to be an important step in proposing a loss function for counterfactual example

generation.

In future work, based on the proposals and discussions in [82], we may con-

sider providing a theoretical formulation of the set-valued counterfactual generation

problem for various kinds of user demands. Besides, a practical study of the real

settings, in which set-valued counterfactual examples would be of interest, should

be conducted, as the exact meaning of set-valued counterfactual explanations is not

straightforward and may highly depend on the setting.

3. Efficiency of counterfactual example generation

The cautious random forest model captures instances near the classification bound-

ary and assigns imprecise predictions to them due to class ambiguity. Therefore,

the region where we search for counterfactual examples can be greatly narrowed by

the preprocessing presented in Chapter 6, allowing the branch-and-bound approach

to efficiently find the closest counterfactual examples.

However, for samples far from the classification boundary, the above preprocess-
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ing cannot significantly narrow the range of the search for counterfactual examples.

This happens in the following two kinds of scenarios. In precise classification, all

samples may be screened so as to find counterfactual examples, among which a

significant number may lie far from the classification boundary. In imprecise classi-

fication, some cautious classifiers are able to capture epistemic uncertainty, i.e., to

assign indeterminate predictions to samples in low-density regions that are usually

far from the classification boundary.

In future work, we may investigate new efficient preprocessing procedures to pro-

vide an efficient way of counterfactual generation for samples in low-density regions

from the classification boundary.

4. Causality for counterfactual explanations in XAI

In causality, the cognitive ability of knowledge organization is described through

three distinct levels (ladder of causation): association, intervention, and counterfac-

tuals [156]. Conventional AI approaches stand on the first level (association), which

means that models learn correlations rather than cause-effect relations. The second

level (intervention) involves predicting the effects of actions on the environment.

The highest level (counterfactuals) corresponds to modifying the course of events.

As we have seen in this manuscript, XAI gives a different meaning to the term

“counterfactual” [30, 41, 44], which refers to the minimal modifications that must

be made to a feature vector so as to change the prediction for an instance with a

classifier.

Recently, several researchers argued that in order to achieve human-level explain-

ability for a black-box machine learning model or its predictions, explanations should

reflect causal relationships [96]. However, few counterfactual generation algorithms

in XAI consider causality, especially model-agnostic ones, which leads to the ex-

planations generated by these methods reflecting correlations rather than causality

[35].

Therefore, the following research directions may be considered. First, the def-
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initional ambiguity around the notion of counterfactual explanations and counter-

factuals should be elucidated. A precise definition and an alignment of these two

concepts would help bridging the gaps between the two fields. Based on this, it

is essential to investigate how causality could be leveraged for counterfactual ex-

planations as intended in XAI [41, 44]. Finally, it would be interesting to explore

which kind of additional information is needed when using counterfactuals (i.e., at

the highest level of causality) so as to explain machine learning outputs (and thus

at a lower level of causality).
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Appendix

A Gradient of the cost function

In this appendix, we provide the expression for the gradient of the proposed cost

function. Considering the sigmoid function σ(x) defined by Equation (3.14), it

should be noted that

σ′(x) = ασ(x)(1− σ(x)). (32)

If we write

µ
i

= σ(w⊤δi − 0.5), (33a)

µi = σ(w⊤δi − 0.5), (33b)

µi = σ
(
(w⊤δi − 0.5)(w⊤δi − 0.5)

)
, (33c)

the cost function (3.16) can be rewritten as:

L(w) = − 1

N

N∑
i=1

{
zi ln(µ

i
) + (1− zi) ln(1− µi) + γ ln(1− µi)

}
+

1

2
λ||w||22. (34)

Obviously, we have

∇wzi ln(µ
i
) = αzi(1− µ

i
)δi, (35a)

∇w(1− zi) ln(1− µi) = −α(1− zi)µiδi, (35b)

∇w ln(1− µi) = −αµi

[
(δiδ

⊤
i + δiδ

⊤
i )w − 0.5(δi + δi)

]
. (35c)
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If we write δi = (δiδ
⊤
i + δiδ

⊤
i )w − 0.5(δi + δi), the gradient for the cost function

writes as

∇wL(w) = − α

N

N∑
i=1

{
zi(1− µ

i
)δi − (1− zi)µiδi − γµiδi

}
+ λw. (36)

B Hessian and convexity of the cost function

In this appendix, we provide the Hessian matrix of the cost function (3.16) and

the proof that it is positive semi-definite, so as to prove the convexity of the cost

function. First, the Hessian matrix can be calculated separately for each part of the

cost function:

H(zi ln(µ
i
)) = −α2ziµi

(1− µ
i
)δiδ

⊤
i , (37a)

H((1− zi) ln(1− µi)) = −α2(1− zi)µi(1− µi)δiδ
⊤
i , (37b)

H(
1

2
λ||w||22) = λI, (37c)

H(γ ln(1− µi)) = −α2γµi(1− µi)δiδ
⊤
i − αγµi(δiδ

⊤
i + δiδ

⊤
i ). (37d)

Consequently, the complete Hessian matrix writes as:

H(L(w)) =
α2

N

N∑
i=1

{
ziµi

(1− µ
i
)δiδ

⊤
i + (1− zi)µi(1− µi)δiδ

⊤
i

+γµi(1− µi)δiδ
⊤
i +

1

α
γµi(δiδ

⊤
i + δiδ

⊤
i )

}
+ λI.

(38)

All the matrices of the form ξaa⊤, where ξ is a non-negative real number and a is

a vector, are symmetric positive semi-definite. Moreover, λI is obviously symmetric

positive definite. According to the theorem stating that the sum of two symmetric

positive semi-definite matrices is also symmetric positive semi-definite, a sufficient

and necessary condition for H(J(w)) to be a symmetric positive semi-definite matrix

is that the last term in the sum be symmetric positive semi-definite as well.

Since (δiδ
⊤
i + δiδ

⊤
i )⊤ = δiδ

⊤
i + δiδ

⊤
i , it is symmetric. Suppose we have two
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non-zero vectors a, b ∈ Rn, and let A = ab⊤. All rows of A are linearly dependent.

Therefore, detA = 0, and Rank(A) = 1. Since the rank of a matrix is equal to the

number of non-zero eigenvalues and its trace is equal to the sum of its eigenvalues,

matrix A has only one non-zero eigenvalue and its value is equal to its trace, which

is Tr(A) = a⊤b.
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[99] Eyke Hüllermeier and Willem Waegeman. “Aleatoric and Epistemic Uncer-

tainty in Machine Learning: An Introduction to Concepts and Methods”. In:

Machine Learning 110.3 (2021), pp. 457–506.

[100] Leonid Hurwicz. “The generalized Bayes minimax principle: a criterion for

decision making under uncertainty”. In: Cowles Comm. Discuss. Paper Stat

335 (1951), p. 1950.

[101] Abdelhak Imoussaten and Lucie Jacquin. “Cautious classification based on

belief functions theory and imprecise relabelling”. In: International Journal

of Approximate Reasoning 142 (2022), pp. 130–146.

[102] Folasade Olubusola Isinkaye, YO Folajimi, and Bolande Adefowoke Ojokoh.

“Recommendation systems: Principles, methods and evaluation”. In: Egyp-

tian informatics journal 16.3 (2015), pp. 261–273.

[103] Raban Iten, Tony Metger, Henrik Wilming, Ĺıdia Del Rio, and Renato Ren-
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