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Chapter 1

Introduction

This document has been written as a requirement to obtain the French Habilitation
degree Habilitation à Diriger des Recherches. Therefore, it is meant to allow the habili-
tation committee to appreciate the quality and originality of my research, my scientific
maturity, and my ability to independently supervise junior researchers. To this purpose,
the document summarizes my career, my research after my PhD thesis and my activities
as supervisor, in a critical perspective and with due reflection about their future.

Sketching this critical summary will be the main objective of this first chapter. Sec-
tion 1.1 contains an overview of what I consider to be the main themes, original features,
and overarching objectives of my research. Section 1.2 comments on my inclination to
collaborate with colleagues, even across disciplinary boundary lines. Section 1.3 zooms
in onto my fruitful experiences as advisors. This chapter will thus be rich in references
to my own work and pointers to later sections of this document.

In the 15 years since defending my PhD, I have worked on a broad range of research
questions and I have collaborated with more than a hundred researchers based in more
than a dozen countries, including a fair number of students whose work I have advised.
This work and these collaborations have led to many significant results, which have
been published in journals and conference proceedings and have been presented at sci-
entific audiences at conferences, workshops and schools. My publications include more
than sixty journal papers published in more than twenty different international journals,
which cater to a broad range of scientific communities, from my core domain of auto-
matic control to network science, transportation research, robotics, signal processing,
mathematical biology, sociology and media studies.

In view of the variety of this material, I will refrain from attempting to provide a
comprehensive account. Instead, I will try to highlight the fil rouge that runs through it:
the mathematical modeling of dynamics and interactions through notions from control
systems and network theory. In doing so, I will have to make difficult choices about
what to devote space to, and I will spare the readers almost all technical details. For
some topics, but not for all, I will use mathematical expressions and language, but I
have not striven to provide all the necessary background and I have not made notation
consistent across different chapters: I hope the readers will be forgiving and, most of
all, I am confident thy will manage to make their way through the material.

In the rest of this chapter, my objective will be to provide a concise account of the
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Figure 1.1: Representation of a network system as a graph with nodes (agents) and
arcs (interactions). Each agent i has a state xi that evolves dynamically per ẋi = fi(x),
where x is the stack vector of all agents states and fi only depends on the components
of x that correspond to agents j that are neighbors of i.

main overarching objectives, driving questions, techniques, and recurring themes of my
research. I will also aim to emphasize how advising junior researchers has been integral
to my work.

Later, in the chapters that constitute Part I of this manuscript, I will provide a more
detailed description of some selected lines of work: not all the research that is mentioned
in this introduction will be detailed in these chapters. After this perspective about the
past, I will present a research perspective in Part II. The document is completed by
relevant annexes, such as a detailed curriculum vitae and a full list of publications.

1.1 Motivations, themes, and methods of my research

Since my doctoral studies, my research interests have been at the intersection of network
science and control systems theory. I mostly worked on mathematical problems that
feature multiple dynamical systems that interact through a network. The network is
mathematically described by a graph, whose nodes represent the dynamical systems
and whose edges represent the interactions between the systems. I often refer to the
interacting dynamical systems as agents and to their whole interconnection as either a
multi-agent system or a network system. A graphical representation with some recurring
notation is given in Figure 1.1.

Depending on the context and the motivating application, these agents can represent
various entities, such as mobile robots, sensors, autonomous vehicles, flocking animals, or
individuals in a society. The states of the agents can represent their positions in space
or other relevant variables, such as the opinions of individuals in social applications.
The agents’ states evolve according to differential equations or discrete-time processes.
Interactions can be physical in nature or, more often, exchanges of information. The
topology of the interaction graph can either be fixed or depend on time and on the
agents’ states: for instance, interactions may be constrained to take place between
agents that are close to each other.

Within this framework, the main underlying question in my research has been to under-
stand how multiple dynamical agents interact and produce a collective behavior. This



1.1. MOTIVATIONS, THEMES, AND METHODS OF MY RESEARCH 3

general question can be seen either as an analysis question, where one aims to under-
stand the origins of an observed collective behavior or to deduce the consequences of an
interaction rule, or as a design question, where one tries to engineer the right interaction
rules to achieve a desired collective outcome.

Along the years, this general question has brought me to explore several application
domains, some of which are more extensively described in Chapter 6:

1. Sensor networks, for which I have studied distributed algorithms for the esti-
mation of global quantities from local measurements [234, 248].

2. Robotic teams, for which I have designed and implemented algorithms that en-
sure their optimal deployment and their cooperation with minimal, asynchronous,
and unreliable communication [100, 88].

3. Connected and autonomous vehicles, for which I have designed control meth-
ods to ensure stable platooning behavior notwithstanding unreliable communica-
tion [5, 4], heterogeneities [170] and nonlinearities [140].

4. Animal groups, in which I have highlighted (through theoretical and empiri-
cal work) the role of the communication patterns in defining the shapes of their
flocks [82, 14].

5. Epidemics on networks, for which I have studied stability and long-time behav-
ior on large graphs [280, 93], designed strategies for effective cure allocation [184],
and evaluated non-pharmaceutical interventions in a realistic simulation setting
for schools facing COVID-19 outbreaks [189].

6. Social networks, regarding which I have studied original models of opinion for-
mation [124, 62, 241] and social influence [274]. More recently, I have also exper-
imentally explored the attention dynamics in social media and, more specifically,
on YouTube [49].

In exploring these applications, I always strove to reach out and communicate my results
to the relevant scientific communities. This effort can be seen in my publication record,
which comprises a “core” of methodological publications in control systems journals,
together with publications in the fields that are associated to the above applications:
signal processing, robotics, transportation systems, biology, and social sciences.

These applications have motivated my interest in several methodological questions:
I describe here five major themes that are weaved into most of my research.

Distributed control of networks. In a network system, a (possibly time-varying)
graph defines which agents interact or communicate with each other. Therefore, the
network graph encodes the most fundamental communication constraints. In an engi-
neering perspective, we may take the set of agents and the graph as given, and design
control algorithms to achieve a collective task. These algorithms require coordination,
and therefore communication, between the agents. I say that an algorithm is distributed
when it satisfies the communication constraint given by the network. A prototypical
example of coordination problem is the average consensus problem, on which I have
worked extensively and which will be formally presented in Chapter 2: in the average
consensus problem, the agents have to coordinate to compute the global average of some
locally available quantities. For dynamical networks with distributed interactions, the
topology of the network determines the ability to achieve a coordination task and any
measure of collective performance. For instance, the average consensus problem can be
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solved so long as the network is connected, and the computation of the average will be
faster if the graph is “more connected”, in a sense that can be made precise [105].

Communication constraints. In addition to being constrained by the graph, com-
munication between agents in network systems can suffer from additional constraints.
For instance, in engineering applications, the implementation of control procedures is af-
fected by the need to communicate measurements and controls through digital channels.
Communication channels are subject to limited precision (because of using finite num-
bers of bits), delays, noise and message losses. The impact of these issues on coordination
algorithms has been one of my main research topics. One frequent issue is that commu-
nication can be unreliable because subject to unpredictable losses on the communication
channel: I extensively considered this issue both in consensus problems [45, 104, 120, 3]
(see Section 2.1) and in other coordination problems, such as string stability in lines of
vehicles [4] (see Section 6.4). In other cases, the exchange of information can be affected
by additive noise [281]. Another frequent issue is the presence of quantization effects.
In particular, I devoted a series of papers [46, 47, 117, 44, 59, 116, 61] to explore the
impact of limited precision in average consensus dynamics, both for discrete-time and
for continuous-time systems. Quantization issues are not limited to engineering systems,
but also appear in social systems, individuals may only exchange coarse signals during
social interactions [61]. Whether in social or engineering systems, quantization effects
that can degrade the ability of the multi-agent system to coordinate [117, 58, 116, 61].
Systems subject to quantization are described in Sections 3.5 and 3.6.

Minimal and gossiping interactions. Given the restrictions that affect the commu-
nication, and the costs (e.g. energy consumption) that communication entails, it makes
sense in an engineering perspective to push the design so to ensure that the collective
task is achieved with minimal coordination. In this engineering perspective, I have
particularly explored the framework of gossiping communications, which I discovered
through the seminal work [34]: the agents communicate in pairs and the pairwise in-
teractions take place according to a random process [36, 99, 236]. In my work, partly
described in Chapter 4, I have applied this framework to several different problems:
consensus, optimal deployment, PageRank computation, estimation from pairwise mea-
surements.

Heterogeneity. Heterogeneity is ubiquitous in multi-agent and network systems, but
is often disregarded in the theoretical analysis for the sake of simplicity. However, an
assumption of homogeneity may hide important features and prevent the understand-
ing of relevant phenomena. A remarkable example is the problem of synchronization.
Synchronization is an ubiquitous phenomenon whose mathematical representation in
the multi-agent system framework boils down to the agents’ states converging to each
other. Synchronization can be either a naturally emerging property or a design objec-
tive. When the agents are identical to each other (homogeneous case), synchronization
is quite natural to achieve through distributed interactions: it is enough for each agent
to use a static controller that combines the outputs of the neighbors into an input for
the agent. Heterogeneity, however, is a huge obstacle to synchronization and makes its
analysis rather delicate [214]: in fact, a landmark paper [291] has proved that achieving
asymptotically exact synchronization through continuous static couplings is impossible
between heterogeneous agents. Instead, the agents should either use non-smooth cou-
plings [78, 77] or use dynamic controllers that contain identical copies of a common
dynamical system (the so-called internal model). Since some heterogeneity is unavoid-
able in reality, its apparent ability to disrupt synchronization has struck my intellectual
curiosity. I have therefore investigated in detail the consequences of not using an inter-
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nal model and thus suffering some synchronization error [250] and I proposed a learning
approach to circumvent the need for the precise a priori knowledge of the internal
model [17].

Scalability to large networks. In networks, size matters and large networks are the
most challenging ground for network science and engineering. For this reason, I devoted
a special attention to performance analysis on large networks and to the scalability of
my methods (by scalability, I mean the feasibility of the approach on networks with any
number of nodes N). Distributed control methods, in which we design the interactions
between the agents, are naturally scalable in their implementation. However, their
performance may depend on N . Most performance measures are prone to degrade for
large N : for instance, the convergence rate of the linear consensus algorithm can grow
as N2 in poorly connected graphs [105]. Nevertheless, a large size can be beneficial
when it allows to “average out” undesired random effects [122], see Section 2.1. In
many engineering and natural systems, however, we are unable to design the network
or the interactions. In such cases, one has to ensure the scalability of the methods,
whether they are deployed for analysis, estimation, or control. Multiple design strategies
are possible, which resort to suitable approximations: one strategy is to approximate
the large graph by a smaller one, by clustering nodes together, and then work on the
clustered graph [183, 185]; another strategy is to approximate the large graph by a
continuum and then work in the continuous domain [280, 285, 208]. These approaches
are described in Chapter 5.

As per the mathematical instruments, I have resorted to many different tools, chiefly
from the theory of systems and control, but also from optimization, learning, and more
generally applied mathematics. In comparison with the typical control system toolbox,
my signature tools have been graph-theoretical methods to account for the network
structure, non-smooth dynamical systems and hybrid systems, and tools from probabil-
ity theory to deal with various sources of randomness.

Graph theory is obviously crucial for an effective modeling of networks and particu-
larly to achieve a precise understanding of the role of network topology. Therefore, I
have been extensively using graph theory in most of my research: for instance, I have
related the eigenvalues of the graph Laplacian to various measures of performance of
distributed algorithms [105]. In some occasions, I have provided contributions that may
be of independent interest to graph theory, for instance regarding the properties of the
Laplacian matrix and of its spectrum: on the relationship between graph dimension
and average effective resistance of the graph (a.k.a. Kirchoff index) [247] and on the
approximation of large dense graphs by graphons [285].

Nonsmooth systems, that is, systems of differential equations with a discontinuous
right-hand side, arise in my research because of two reasons. The first reason is quan-
tization, that is the compresence of continuous variables (representing the states of the
agents) and of discrete variables (representing discrete values for communication or
control inputs) [59, 86]. The second reason is that, when interactions are encoded by
a graph, topology changes can abruptly change the interaction laws. In mathematical
terms, such abrupt changes result in a discontinuity of the right-hand side of the differ-
ential equation that describes the dynamics. For instance, in many agent-based models
it is reasonable to assume that communication can take part only between agents that
are close to each other [60]. In some cases, quantization and topology changes are bet-
ter represented by discontinuities (i.e., jumps) of the state itself (as opposed to mere
discontinuities of the right-hand side): in this case the dynamics takes the form of a
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hybrid system, that is, a dynamics that involves both continuous flows and discon-
tinuous jumps. I have specifically dealt with hybrid systems on several occasions: in
[59] I have proposed a novel and effective quantizer that exploits hysteresis to ensure
the stabilization of consensus without chattering; in [87] I have used hybrid systems
to define a self-triggered consensus dynamics with ternary controls; and in [127] I have
exploited the flexibility of hybrid models in opinion dynamics. In this context of non-
smooth and hybrid systems, I have devoted special care to (technical, but important)
questions about the existence of solutions and the occurrence certain patologies, such as
having multiple (non-unique) solutions and having attractive points that are not equi-
libria [62]. Some results about nonsmooth consensus-seeking systems are described in
Chapter 3.

Randomness. In many relevant contexts, such as mobile robotic teams and social
dynamics, interactions between agents happen asynchronously, either because of the
absence of a common clock or because they only happen sporadically. The times of
asynchronous interactions and the consequent changes in the agent states are often well
described by a random processes. I have considered randomized interactions in several
papers [122, 237]. Furthermore, I have extensively used random models to describe
failures in communication [45, 4] or in sensing [118]: in fact, contrarily to much of the
control system community, I tend to prefer stochastic failure models and probabilistic
guarantees over deterministic worst-case analysis. In this context of modeling failures,
I often resort to traditional assumptions of independence in time and space: however,
I have also studied models with some degrees of correlation [104, 122]. Finally, I have
often used random graph models to describe or simulate networks [27, 93].

1.2 Collaborations, community spirit, and interdisci-
plinarity

My research has been marked by a strong drive towards collaborating with fellow scien-
tists. I have always had the sense that research is the collective outcome of the scientific
community’s labor and I have tried to behave accordingly. During my international
career that has developed across Italy, the Netherlands and France, my research has
been shaped by many fruitful collaborations with colleagues based not only in my host
countries but also all over Europe, in the USA, in China and in Japan.

My inclination towards interactions with colleagues is reflected in my involvement for
the scientific community in multiple aspects, including several national and international
committees (see Appendix A). One instance are several Technical Committees of the
International Federation of Automatic Control (IFAC) and of the IEEE Control Systems
Society: see the reports [233, 232, 72, 70, 71] of the IEEE CSS Technical Committee
on Networks and Communications. Another form of interaction that I prize is the peer
review process and, therefore, the editorial service. Besides an extensive service as
anonymous referee since 2009, I have been serving since 2013 as Associate Editor for
several journals, including (in chronological order) the International Journal of Robust
and Nonlinear Control, the Asian Journal of Control, the IEEE Control Systems Letters,
and Automatica.

Even though the above roles have been within the control systems community, in my
research I have actually always been keen on interdisciplinary collaborations. I have
explored collaborations both with disciplines that are traditionally closer to control
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systems, such as robotics, communications engineering, or data science, as well as with
disciplines that may seem further away, such as zoology, epidemiology, and sociology and
media science. Some of these collaborations are reflected in Sections 6.1, 6.2 and 8.2. In
fact, I believe that the theoretical perspective of dynamics, control, and networks offers a
powerful lens through which multiple real-world problems can be fruitfully approached.

1.3 Mentoring students

As I believe that research is done by people, I have always devoted a special atten-
tion to mentoring students and younger researchers. I have been (co)advisor to seven
doctoral students (two ongoing) and about fifteen master students. I have published
peer-reviewed research papers with all of my PhD students and postdocs and with ten
of my master students. Several of my master students have pursued PhD studies and
three of my former students (Luca Vassio, Wilbert Samuel Rossi, Nelson Chan) have
obtained Assistant Professor positions.

A full list of the students whom I have formally supervised is given in Section A.5. In
this section, I prefer to give an account of my mentoring experience by describing the
collaborative research work that I have done with ten selected students, including some
informal supervisions. For each of these students (in reverse chronological order), I will
briefly present their research topic and results and I will refer to our joint publications
and to the content of later chapters for more details.

Raoul Prisant (EEATS doctoral school, Grenoble, October 2023–ongoing)
Jointly advised with Federica Garin. Supported by ANR grant COCOON of which I
am Principal Investigator.
Raoul’s ongoing PhD deals with using graphons and other graph limits for the analysis
and control of large networks of interconnected dynamical systems (see Section 8.1).
Some preliminary results on opinion dynamics on large graphs are available in the
report [119].
Tommaso Toso (EEATS doctoral school, Grenoble, October 2021–ongoing)
Jointly advised with Alain Kibangou. Supported by IRGA (Initiative de Recherche
Grenoble Alpes) grant ON-ROUTE.
Tommaso’s ongoing PhD deals with online navigation systems and their impact on traffic
dynamics and mobility networks, through the route recommendations that they provide
to users. Crucial to his thesis is the definition of a mathematical model of traffic flows on
a network, which accounts for the users’ knowledge. Together with Tommaso, we have
identified a suitable class of dynamical models and obtained results about their stability
and steady-state behavior. These problems and results are described in Section 8.3 and
in a series of publications [267, 266].
Maria Castaldo (EEATS doctoral school, Grenoble, November 2019–November 2022).
Jointly advised with Tommaso Venturini and Floriana Gargiulo. Supported by CNRS
MITI 80 PRIME project “DOOM” (Disorders of Online Media) of which I was Principal
Investigator.
Title: “Attention dynamics on YouTube: conceptual models, temporal analysis of en-
gagement metrics, fake views”.
Maria’s PhD thesis [49] has focused on attention dynamics in social media [50], both
by the study of original mathematical models [52] and the analysis of empirical data
about engagement metrics in social media and more particularly on YouTube [53]. This
line of work, which is still ongoing, is presented in Section 8.2. Maria’s interdisciplinary
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work has been co-advised by two researchers in social science and more specifically in
media studies (Venturini) and in computational social sciences (Gargiulo). Our collab-
oration has also included a study of the collaboration dynamics within the Polymath
project [137]. After her graduation, Maria has joined Boston Consulting Group in Milan,
Italy, as a senior data scientist.
Renato Sebastian Vizuete Haro (University of Saclay, Greater Paris, September
2019–September 2022).
Jointly advised with Elena Panteley and supported by ANR project “HANDY– Hybrid
and Networked Dynamical Systems”.
Title: “Contributions to open multi-agent systems: consensus, optimization and epi-
demics”.
My collaboration with Renato has in fact taken place in two phases. In 2019, I co-advised
his Master thesis with Federica Garin: together we worked on graphon approximations
to large network systems [280, 285]. Renato’s internship effectively launched my research
on graphons, presented in Section 5.3.
Afterwards, I co-advised his PhD [144] on Open Multi-Agent Systems (OMAS), where
he explored several approaches to OMAS [281, 197, 198] and applications in large-scale
distributed optimization [279, 282, 198]. This ongoing line of work is presented in
Section 7.2. Renato Vizuete is now a FNRS researcher at the Université catholique de
Louvain, Belgium.
Denis Nikitin (EEATS doctoral school, Grenoble, September 2018–September 2021)
Jointly advised (50%) with Carlos Canudas De Wit and supported by ERC project
“Scale-freeBack”
Title: “Scalable large-scale control of network aggregates".
During his thesis [205], Denis has developed several original methods for scalable net-
work control, working mainly towards two directions. The first approach was based on
controlling local averages in the network [207], along the lines of the thesis of N. Mar-
tin (Section 5.1). The second approach involves constructing and studying a suitable
PDE approximation of the large network-based ODE system [208, 206, 209], Section 5.2.
After graduation, Denis has joined Wayze, an autonomous vehicles company based in
London, UK.
Nicolas Martin (EEATS doctoral school, Grenoble, December 2016–February 2020)
Jointly advised (50%) with Carlos Canudas De Wit and supported by ERC project
“Scale-freeBack”
Title: “Network partitioning algorithms with scale-free objective”.
Nicolas, my first student in France, developed graph-theoretical methods towards a
scale-free approach to large networks [183, 185]. In this approach, suitable regions of
the graph are lumped together into “super-nodes”, thus producing benefits for estimation
and control (Section 5.1). We have also explored applications to transportation networks
and to epidemics [184]. After his graduation [182], Nicolas has been working in the
popularization of science as a free-lancer.
Francesco Acciani (PhD student, University of Twente, September 2014–June 2022)
Jointly advised (50%) with Geert Heijenk and Anton Stoorvogel
Title: “Control over unreliable networks: Consensus and platooning”.
Francesco was my first formal PhD student: his work, coadvised with an expert in
networking and wireless communications (Heijenk), has introduced me to the problems
of vehicle coordination (Section 6.4), which I have later developed with several other
colleagues [139, 140]. The leitmotiv of his thesis has been accounting for packet losses
in the control loop, either for the sake of analysis or to design mitigation strategies.
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We published work on consensus algorithms [3] and string stable platooning [5, 4], in
which packet losses are modeled as a random process and control design is adapted to
their presence. Francesco completed his PhD [2] in 2022 while employed by Rabobank
in Utrecht.

Wilbert Samuel Rossi (Turin & Twente, 2010–2022)
Wilbert and I had a multifold and long collaboration. I first co-advised his master thesis
at Politecnico di Torino, then collaborated with him during his PhD, and finally had
him work with me as a postdoc at the University of Twente. We published work on
several topics: the effective resistance of graphs [247], the problem of estimation from
relative measurements [248], opinion dynamics with k-neighbor interactions [241, 244]
(Section 3.4), the convergence of message-passing algorithms for influence maximization
in social networks [243, 240, 242], and the closed-loop evolution of opinions and person-
alised recommendations in online social networks [249] (Section 7.3). After his postdoc
in Twente, Wilbert joined the University College, University of Groningen, Netherlands
as Assistant Professor.

Joey Durham & Rushab Patel (UC Santa Barbara, 2008–2015)
Joey and Rush were students at the University of California Santa Barbara under the
supervision of Francesco Bullo. During a series of extended visits there, I got deeply
involved in their research about coordination of robotic teams for optimal deployment
and coverage control. We eventually published three journal papers [220, 219, 99] and
several conference papers together: this material is described in Sections 4.1 and 6.1.
After graduation, Joey has become senior staff at Amazon Research, while Rush has
been with several US companies including Raytheon and Skyryse.

1.4 The rest of this document

The rest of this document is organized into two parts and two appendices. Part I
collects chapters that describe a few selected lines of research. I have chosen these lines
of research based on criteria of originality, impact, coherence with the rest of my work,
and whether they were developed through series of papers. These elements, as well as
the contributions of my students, are discussed in each relevant Chapter. The topics are
presented roughly in their chronological (and indeed also logical) order of development.

Chapter 2 contains results on randomized discrete-time consensus algorithms: this work
features a prominent role of randomness in discrete-time consensus algorithms, which
had previously been the main focus of my PhD thesis. Chapter 3 contains results on
continuous-time consensus dynamics with discontinuous right-hand side: this is a sub-
stantial body of work that I started right after my PhD and that I have been developing
until now. Chapter 4 contains results on other problems of distributed control and
computation, including coverage optimization, PageRank computation, and distributed
estimation: also in this chapter randomization plays a crucial role. Chapter 5 contains
results on scalable methods for the control of large networks: all of these methods in-
volve approximating the actual, large, network by another mathematical object, which
can be a smaller network or a continuum. Chapter 6 contains results that pertain to
specific application domains in engineering, biology, and social sciences. All chapters of
Part I discuss the contributions in light of the literature and, where I found it suitable,
present relevant open problems.

Part II is about future and ongoing work. Chapter 7 contains a general perspective,
in which I set to work on the control of large-scale socio-technical systems. Chapter 8
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contains some concrete research ideas, which I intend to develop in the near future
or which I am already pursuing to implement the general perspective. Both chapters
contain accounts about recent work of mine that is immediately relevant to the research
perspective.

The main body of the document is followed by two appendices. Appendix A contains
a detailed Curriculum Vitae, which includes the complete lists of my students (Sec-
tion A.5) and of the research grants that have supported my research (Section A.8).
Appendix B describes my publication output and in particular contains the complete
list of my publications.
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Sampling from my research past
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Chapter 2

Discrete-time consensus
algorithms

In the average consensus problem, each node of a network is given a number and has the
goal of computing the average of these numbers, with the constraint of communicating
with its neighbors only. That is, the averaging algorithm has to be distributed and
communication is only allowed following the links of the network1. This problem can
be solved by simple linear methods, which can take the form of discrete-time dynamics
or continuous-time dynamics. The former case is addressed in this chapter, the latter
will be addressed in the next one. In both cases, given a set of nodes I of cardinality
N , the state x shall take values in RI .

In discrete time the dynamics (also referred to as algorithm) is defined as

xi(t+ 1) =
∑
j∈I

aijxj(t) for all i ∈ I, t ∈ Z≥0, (2.1)

or more compactly the form
x(t+ 1) = Ax(t),

where for every i, j ∈ I, aij is nonnegative and can be different from zero only if i
can receive information from j (there is a link from j to i) and where

∑
ℓ∈I aiℓ = 1.

Matrix A thus has non-negative entries that sum to one along each row: matrices with
these properties are said to be stochastic matrices. This iterative dynamics converges to
consensus as long as the interaction parameters aijs encode a connected and aperiodic
network (in the sense that there is a globally reachable aperiodic2 node). If additionally3

1TP = 1T (for instance because the matrix is symmetric), then the convergence value
is the average of the initial values and thus the average consensus problem is solved.

1Until we explicitly say otherwise, the network is assumed to be static (independent of time). I will
not be recalling the basic graph-theoretic jargon and background, for which I refer to my exposition
in [105, Chapter 1].

2Given a graph G = (I, E) and i ∈ I, let the period of i be the greatest common divisor of the
lengths of the circuits (i.e. closed paths) in G to which i belongs. The node is said to be aperiodic if
its period is one. Notice that if a self-loop (i, i) is present, then i is certainly aperiodic.

3We denote by 1 a column vector of appropriate dimension whose entries are all equal to 1. For
matrix M , MT denotes its transpose.

13
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Extended background about this dynamics can be found in several textbooks including
the most recent revision of [35] and my own monograph [105]. In this manuscript I
will present some of my work on important variations on this basic dynamics. In this
chapter, Section 2.1, I will present a discrete-time variation in which the updates are
randomized (other randomized dynamics are presented in Section 4.3 and 6.1). Next,
in Chapter 3 I will present several continuous-time variations in which the right-hand
side is discontinuous.

2.1 The mean square error of randomized consensus
algorithms

In the average consensus problem, sample values are available at the nodes of a commu-
nication network, and their average is approximated by running an iterative algorithm
that has the sample data as the initial condition. Clearly, one should ensure that along
the iterations of the consensus algorithm, no (or little) deviation from the correct aver-
age is introduced. This guarantee is not always simple to achieve: one issue is that many
algorithms and dynamics over networks are not synchronous. In an average consensus
algorithm, lack of synchrony may prevent the preservation of the average: for instance,
if only one node changes its value at each update time, it is clear that preservation of
the global average is impossible [108]. In such a case, it is crucial to understand whether
these errors accumulate into a potentially large deviation between the computed average
and the initial one.

In a joint work [122] with Julien Hendrickx, I consider linear randomized asynchronous
averaging algorithms, and I analyze the mean square deviation of the consensus value
from the initial average. We want to ensure that this error is small, so that averages
are computed accurately. In particular, we provide conditions under which the mean
square error tends to zero when the number of samples, i.e. the number of nodes, grows.
More precisely, we consider discrete-time consensus systems with random updates that
preserve the average in expectation, and we provide new bounds on the mean square
deviation of the current average from the initial average. We show that under cer-
tain conditions the expected increase of the deviation is bounded proportionally to the
expected decrease of the disagreement.

Problem statement and results. Given a set of nodes I of finite cardinality N , we
consider the discrete-time random process x(·) taking values in RI and defined as

xi(t+ 1) =
∑
j∈I

aij(t)xj(t) for all i ∈ I, t ∈ Z≥0, (2.2)

where for every i, j ∈ I, we assume {aij(t)}t∈Z≥0
to be a sequence of independent and

identically distributed random variables such that aij(t) ≥ 0 and
∑

ℓ∈I aiℓ(t) = 1 for
all t ≥ 0. System (2.2) can be conveniently rewritten as

xi(t+ 1) = xi(t) +
∑
j∈I

aij(t)(xj(t)− xi(t))

for all i ∈ I and t ∈ Z≥0, or in matrix form as

x(t+ 1) = x(t)− L(t)x(t) t ∈ Z≥0, (2.3)
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where the matrix L(t) is defined so that Lij(t) = −aij(t) if i ̸= j and Lii(t) =∑
j:j ̸=i aij(t). Namely, L(t) is the Laplacian matrix of a (time-dependent) weighted

graph (I, E(t), A(t)) where the entries of matrix A(t) are defined as [A(t)]ij = aij(t)
and the set of edges E(t) contains all pairs (i, j) such that aij(t) > 0.

Let us remind that dynamics (2.2) is run in order to bring each node to a good estimate
of the initial average 1

N

∑
i∈I xi(0). It is then convenient to define the notation

xave(t) =
1

N

∑
i∈I

xi(t)

and observe that the average evolves according to xave(t + 1) = xave(t) − 1TL(t)x(t).
Since under our assumptions L(t) is independent from x(t), we immediately deduce
that the expected evolution of xave(t), conditional on the previous state, is such that
E[xave(t+1)|x(t)] = xave(t) if and only if 1TE[L(t)] = 0. In view of this fact, we assume
the average to be preserved in expectation, that is, we will assume 1TE[L(t)] = 0,
implying that

E[xave(t)] = xave(0) for all t ≥ 0.

Consequently, we are left with the problem of studying the mean square error, or vari-
ance of xave(t), that is E[(xave(t)− xave(0))

2
]. This study is the object of the following

key result, which was proved in [122, Thm 1]. Define Var(t) = 1
N

∑
i∈I

(
xi(t)−xave(t)

)2:
notice how this quantity naturally evaluates the dispersion of a vector around its aver-
age.

Theorem 2.1 (Mean square error estimate). Let x be a solution of system (2.3).

If 1TE[L(t)] = 0 and there exists γ > 0 such that

E[L(s)T11TL(s)] ≤ γ E[L(s) + L(s)T − L(s)TL(s)], (2.4)

then for every t ≥ 0, there holds

E[(xave(t)− xave(0))
2] ≤ γ

N + γ
Var(0).

Notice that this result holds true for every t and is unrelated to the convergence proper-
ties of (2.3), which have been addressed elsewhere in the literature and which depend on
the “average connectivity” of the network (see [107, 262] for convergence proofs and [95]
for a survey of related results). Our focus, instead, is on the quality of the convergence
value, in terms of its distance from the initial average, irrespective of convergence. If
additionally the system converges to consensus (that is, x(t) → x∞1, for x∞ ∈ R), then
Theorem 2.1 immediately implies that

E
[
(x∞ − xave(0))

2
]
≤ γ

N + γ
Var(x(0)).

The interest of this general result becomes apparent when we are able to find a constant
γ that is independent of N (or at least, such that γ = o(N)). In such a case, the mean
square error goes to zero as N grows to infinity: that is, the mean square error becomes
negligible for large networks.

Remarkably, this turns out to be possible in many relevant cases. Indeed, a constant γ
can be easily found for systems in which only one agent updates its state at each time
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step, or in which at most a bounded number of agents update their states simultaneously,
as well as for systems in which the updates have small statistical dependence across the
network: in all these case the mean square error tends to zero when the number of
nodes grows. One relevant example is the Broadcast Gossip Algorithm proposed in
[108, 107, 106]. As another application of this bound, I have shown that random packet
losses have a negligible impact on consensus performance of large networks [121]. The
impact of random independent packet losses is negligible in the sense that the consensus
algorithm still converges with probability 1 (albeit more slowly) and the mean square
deviation between the computed average and the initial average is O(1/N). If also this
deviation is undesired, it is possible to adapt the algorithm in order to compensate for
the losses and preserve the average, at the price of further slowing its convergence: see
my later work [3].

Discussion and impact. I am specially fond of on this result because it has been
one of the first ones that I obtained without my advisors or other senior collaborators.
I felt that the result was very innovative with respect to prior work, which focused on
preserving the average on expectation and had no effective way to estimate the mean
square error. Indeed, previous estimates [107, 262] are by-products of convergence
properties and therefore depend on global properties of the communication network,
like connectivity or graph spectrum. Instead, only local network properties, like the
degrees of the nodes, play a role in the application of our result. Moreover, Theorem 2.1
is also very general as it makes very mild assumptions on the dynamics: I had previously
obtained similar results under restrictive assumptions on the graph topology [104].

In summary, our result offers effective and easy-to-implement guidelines to the designer
who needs to choose a network and an algorithm to solve an estimation problem, thanks
to their generality and to their dependence on local network properties only. Due to
their attractive features, our work has been noted by several researchers: for instance,
they have been commended by the inaugural EUCA European Control Award laureate
Luca Schenato during his keynote address at the 2014 European Control Conference.



Chapter 3

Nonsmooth consensus-seeking
systems

In this chapter, I present several continuous-time consensus-seeking dynamics, in which
the right-hand side is discontinuous. The backbone of the presentation is based on
a tutorial exposition of mine [63], even though the scope of this chapter is broader
as it includes dynamics that feature bounded confidence interactions (Section 3.3), k-
neighbor interactions (Section 3.4), and quantized interactions (Sections 3.5 and 3.6).
Before discussing the role of discontinuities and introducing the discontinuous dynamics
that I have studied, let us begin by some background on the basic continuous-time
consensus dynamics, against which the other dynamics should be compared.

3.1 Basic consensus dynamics

The continuous-time counterpart of the discrete-time consensus dynamics (2.2) takes
the following form. Let a scalar xi be associated to an individual i ∈ I = {1, . . . , N}
and evolve in time according to the ordinary differential equation

ẋi =

N∑
j=1

aij
(
xj − xi

)
i ∈ I. (3.1)

Since we assume that the interaction weights aij are nonnegative, this linear dynam-
ics postulates that each individual is attracted by the other individuals with whom it
interacts. Under very mild assumptions on the interaction pattern, this dynamics con-
verges to a state of agreement, or consensus, where all components xi are equal. See an
illustration in Figure 3.1.

This dynamics can be written in vector form as

ẋ = −Lx,

where x is the vector of the state variables (one for each node) and L is a Laplacian
matrix that encodes the network structure, has nonnegative entries on the diagonal, has
nonpositive entries −aij outside the diagonal and its rows sum to zero. This Laplacian

17
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Figure 3.1: Evolution of a solution of (3.1) from random initial conditions on a cycle
graph with 25 nodes.

dynamics converges to consensus as long as the interaction parameters aijs encode a
connected network (in the sense that the network contains a globally reachable node).
If additionally 1TL = 0 (for instance because the Laplacian is symmetric), then the
convergence value is the average of the initial values and thus the average consensus
problem is solved1.

Theorem 3.1 (Basic consensus). If the graph underlying (3.1) is connected and the
adjacency matrix A is symmetric, then for any solution x(t) of (3.1) the following
properties hold true:

1. (contractivity and boundedness) co{xi(t), i ∈ I} ⊆ co{xi(0), i ∈ I};

2. (average preservation) xave(0) = xave(t);

3. (equilibria) x∗ is an equilibrium point of (3.1) if and only if x∗ is a consensus
point, that is, x∗

i = x∗
j for all i, j ∈ I;

4. (average consensus) lim
t→+∞

x(t) = xave(0)1.

More general versions of this result are available in the literature [35]: for instance, we
can relax the connectivity assumption by not requiring symmetry and just assume the
network to have a globally reachable node, at the price of the consensus value not being
the average of the initial conditions.

In this chapter I will introduce and study four dynamics that are variations of this basic
consensus dynamics. These variations, which are motivated either by coordination prob-
lems with communication constraints in engineering systems [37] or by opinion dynamics
in social networks [130], will feature equations whose right-hand side is discontinuous
(in fact, piecewise continuous). More generally, if we seek to model the dynamics of
multi-agent systems, there are multiple situations where discontinuities arise, often in
connection with discrete variables. I see two main categories of causes:

1Here and later in this document, given a subset S of the Euclidean space, we denote by S its
topological closure, by ∂S its border, and by coS its closed convex hull.
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• The presence of state-dependent limitations on the allowed interactions. This
includes the case of physical, technological, or cognitive constraints that limit
interactions to agents that are spatially or socially close to each other [146, 18,
37, 147, 13]).

• The presence of quantities taking values in discrete sets, when a finite number of
choices is given (e.g. whether or which product to buy) or when communication
takes place by means of a finite set of symbols ([67, 187, 62]).

When models are defined in discrete time, discontinuities of the right-hand side do not
necessarily cause mathematical difficulties. Instead, in continuous time discontinuities
give rise to technical difficulties, as the qualitative theory of ODEs is deeply based on
the notions of continuity and differentiability.

Given the difficulties they entail, one could wonder whether discontinuities of the right-
hand side are needed at all. Indeed, the discontinuities of some models can be avoided
by defining suitable smoothed counterparts, which contain continuous approximations
of the discontinuous functions. However, the connections between continuous and dis-
continuous variants are not trivial, as I have argued in [60]. Most importantly, discon-
tinuities cannot always be avoided. These unavoidable discontinuities include the cases
when the agents are allowed to interact with a fixed number of neighbors, but the set
of neighbors depends on the state (Section 3.4), or when the interactions depend on
“actions” taken from a finite set (Sections 3.5 and 3.6).

Since the rigorous analysis of differential equations with discontinuous right-hand side
requires specific tools, I will first briefly introduce them in the next section. In the
remaining sections of this chapter, I will define the dynamics of interest and state some
of the most relevant results about them2. We shall see that these variations of the
consensus dynamics can (and in most cases, will) actually fail to converge to consensus,
despite the fact that they describe phenomena of attraction between individuals. For
this reason, I refer to these dynamics more broadly as consensus-seeking systems.

3.2 Differential equations with discontinuous right-hand
side

In this section we summarize some notions which are essential in order to deal with
systems whose right-hand side is discontinuous with respect to the state variable. I
did produce a more extended introduction, tailored to the study of consensus-seeking
systems, in [63]. The readers are in any case advised to consult the rich literature on the
topic, including the tutorial [79] and the books [11, 112], as well as the original works
about stability [16] or generalized solutions [57].

Let us consider the Cauchy problem

ẋ = f(x) x(0) = x0 (3.2)

where x0 ∈ RN and f : RN → RN is measurable and locally bounded. We will denote
by ∆f the subset of RN where f is discontinuous. When facing system (3.2), one should
first of all choose which type of generalized solution is the most suitable for the system
of interest. We shall consider Carathéodory solutions and Krasovsky solutions.

2Most of these results are work of mine, often with students and almost always with my colleague
Francesca Ceragioli who has introduced me to the analysis of non-smooth systems
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The notion of solution nearest to the classical one is that of Carathéodory solution.

Definition 3.1 (Carathéodory solution). Let I ⊂ R be an interval with 0 ∈ I and let
x0 ∈ RN . An absolutely continuous function φ : I → RN is a Carathéodory solution
of equation (3.2) on I with initial condition x0 if φ(0) = x0 and if it satisfies (3.2) for
almost all t ∈ I or, equivalently, if it is a solution of the integral equation

φ(t) = x0 +

∫ t

0

f(φ(s))ds.

We say that a local Carathéodory solution corresponding to the initial condition x0 ∈ R
exists if there there exist a neighbourhood I(x0) of x0, an interval of the form [0, T ) and
an absolutely continuous function φ : [0, T ) → I(x0) such that φ(0) = x0 and φ(t) is a
Carathéodory solution of (3.2) on [0, T ).

As we shall see for some of the dynamics in this chapter, Carathéodory solutions may
easily fail to exist. In order to ensure existence of solutions, other generalized solu-
tions have been introduced in the literature. In the context described here, Krasovsky
solutions can be easily and successfully used.

Definition 3.2 (Krasovsky solutions). Let I ⊂ R be an interval with 0 ∈ I and let
x0 ∈ RN . An absolutely continuous function φ : I → RN is a Krasovsky solution of
(3.2) with initial condition x0 if φ(0) = x0 and if for almost all t ∈ I it satisfies the
differential inclusion

φ̇(t) ∈ Kf(φ(t)), (3.3)

where
Kf(x) =

⋂
δ>0

co{f(y) : y such that ∥x− y∥ < δ}.

We say that a local Krasovsky solution corresponding to the initial condition x0 ∈ RN

exists if there exist a neighbourhood I(x0) of x0, an interval of the form [0, T ) and an
absolutely continuous function φ : [0, T ) → I(x0) such that such that φ(0) = x0 and
φ(t) is a Krasovsky solution of (3.2) on [0, T ).

The following existence theorem is an immediate consequence of [11, Theorem 3, page
98], as the vector field f(x) is measurable and locally bounded.

Theorem 3.2. For any initial condition x0 ∈ RN there exists a local Krasovsky solution
of (3.2).

We underline that any Carathéodory solution is also a Krasovsky solution, even though
the set of Krasovsky solutions is much larger.

Remark 3.1 (Unicity of solutions & strong properties). For non-smooth systems, gen-
eralized solution typically fail to be unique. In my work (and therefore in this Chapter),
I have not much sought conditions to ensure uniqueness: instead, I have striven to deal
with multiple solutions by proving results that are valid for all solutions. I refer to such
results as strong, as opposed to weak results, which hold for some solutions only. For
instance, a set is strongly invariant if all solutions that originate inside it remain in it.

Remark 3.2 (Completeness of solutions). For all the dynamics considered in this chap-
ter, all solutions can easily be proved to be bounded. Therefore, following the argument
of [63, Proposition 2], they can always be extended to the time internal [0,+∞) (that
is, they are complete), as long as local solutions are guaranteed to exist for all initial
conditions.
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Since the equations that we consider here have complete solutions, the analysis of their
asymptotic behavior, for t going to infinity, is justified. In this perspective, the notion of
equilibrium is useful. Equilibria are points where a solution can remain indefinitely3. In
the context of generalized solutions, this general definition leads to distinguish between
Carathéodory equilibria and Krasovsky equilibria.

Definition 3.3 (Equilibria). A point x∗ is a Carathéodory (Krasovsky) equilibrium
of (3.2) if the function φ(t) ≡ x∗ is a Carathéodory (Krasovsky) solution of (3.2) for
t ≥ 0.

Carathéodory equilibria are characterized by the equation f(x) = 0 while Krasovskii
equilibria are characterized by the inclusion 0 ∈ Kf(x). Thanks to the multiplicity of
solutions, there are examples of non-costant solutions issuing from an equilibrium point.

3.3 Bounded confidence

An interesting case of state-dependent interactions is the following, which is termed
bounded confidence in the literature: two individuals are assumed to influence each
other if their states are closer than a certain threshold (that we choose to be equal to 1
for simplicity). This interaction rule translates into the following differential equation:

ẋi(t) =

N∑
j=1

a(xi(t), xj(t))
(
xj(t)− xi(t)

)
i ∈ I (3.4)

where a(y, z) =

{
1 if |y − z| < 1

0 if |y − z| ≥ 1.

This model4, which is a continuous-time counterpart of the opinion dynamics studied by
Hegselmann & Krause [146], has been proposed by [28] and further considered in [60].
Very similar models have been considered in [200, 157, 293, 66, 288], while other models
that involve assumptions of bounded confidence include [91, 193, 41, 295, 126, 127]. A
specific survey on this kind of models has recently appeared [24].

The Bounded Confidence dynamics (3.4) allows for the existence of complete Carathé-
odory solutions and all Krasovsky solutions are proved to converge to an equilibrium.
The structure of these equilibria is a set of separated clusters of individuals sharing the
same opinion: see Figure 3.2 for an illustration.

Theorem 3.3 (Properties of BC [60]). The following properties hold true for dynam-
ics (3.4):

• for every initial condition, there exist a complete Carathéodory solution;

• the set of Carathéodory equilibria coincides with the set of Krasovsky equilibria
of (3.4) and is equal to

F = {x ∈ RN : for every (i, j) ∈ I × I, either xi = xj or |xi − xj | ≥ 1};

• all Krasovsky solutions converge to a point in F .

3Note that this is a “weak” notion of equilibrium: in case of multiple solutions, we do not require
that all solutions remain at the equilibrium.

4This dynamics is sometimes referred to as metric bounded confidence, in order to distinguish it
from dynamics (3.5), which is referred to as topological [64].
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Figure 3.2: Evolution of a solution of (3.4) from a random initial condition on 25 nodes.

Dynamics (3.4) does not produce agreement, but instead clustering of individuals into
groups characterised by agreement within each group and disagreement between groups.
The equilibria are precisely those states in which individuals either agree or are enough
apart not to influence each other. In [28, 60] it is proved that, due to robustness
issues, one can expect the opinion values of different clusters to be approximately twice
the threshold apart. This conjecture has motivated quite some work [288] but hasn’t
been settled yet: actually, a fine understanding of how the final opinions depend on
the initial ones is still missing. However, some very interesting contribution has been
recently obtained by a mean-field approach on the closely related Deffuant dynamics
in [97].

3.4 k-neighbor interactions

The k-neighbor interaction model is obtained when agent i interacts only with a fixed
number k of neighbors, where 1 ≤ k ≤ N . More precisely, for every agent i ∈ V , his
neighborhood Ni(x) is defined in the following way: the elements of V \ {i} are ordered
by increasing values of |xj − xi|; then, the first k elements of the list (i.e. those with
smallest distance from i) form the set Ni(x) of current neighbors of i. Should a tie
between two or more agents arise, priority is given to agents with lower index:

ẋi =
∑

j∈Ni(x)

(xj − xi), (3.5)

This continuous-time topological5 interaction model was first pointed out in [13], while
several other models have considered topological interactions in different forms: see [82,
244] and references therein. Topological interactions can be motivated by the notion of

5The word “topological” is sometimes used to contrast this dynamics against others, like (3.4), which
feature purely “metric” interactions. These topological interaction are much harder to study. Notice
indeed that in (3.4), whether agents i and j interact only depends on xi and xj . Instead, in (3.5) the
presence or absence of interaction between i and j depends on the stats of all agents.
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Figure 3.3: A solution of (3.5) with k = 3 from random initial conditions. The non-
smooth nature of the trajectories is also very visible.

Dunbar number [98] that indicates a cognitive limit in the number of significant relation-
ships among individuals. This concept is particularly meaningful in the contemporary
world, where potential contacts and available information seem to be unlimited but the
attention span of the individuals is not6.

During the last several years I have devoted specific attention to dynamics (3.5) through
a series of papers [65, 64, 125]: the following result is a summary of what is currently
known about this dynamics.

Theorem 3.4 (Properties of k-neighbors). The following properties hold true for dy-
namics (3.5):

• For almost any initial condition there exists a Carathéodory solution and for any
initial condition there exists a Krasovsky solution.

• If k = 1, 2, then for any initial condition there exists a Carathéodory solution.

• If k = 1, then any Carathéodory solution converges to some x⋆. Moreover, the
limit vector is such that x⋆

i = x⋆
j if and only if there is a path from i to j or from

j to i in Ḡ, where Ḡ = (V, Ē) is the associated graph for t > 0.

In fact, in contrast with a good understanding of the case of with only one neighbor,
the convergence analysis is still completely open for k > 1 and for general Krasovsky
solutions.

3.5 Quantization in social interactions

Another relevant phenomenon is quantization, which occurs both in engineering and in
social systems. In social systems, quantization may originate because the state variable,
which is understood as a continuous opinion or belief of the agent, is “communicated”
by the display of an action or behavior, which can take on discrete values only: for

6See Section 8.2 for an account of my interests in the dynamics of online platforms.
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instance, the purchase of certain products. The discretization of the opinions in social
systems has been observed by social scientists [132, Chapter 10] and addressed in several
models including [271, 187, 67]. Quantization is also of relevance in opinion dynamics
that take place on social media, where individuals are unable to share the full shades
of their opinions, but instead typically react by stereotyped signals such as clicking like
buttons.

In this context, I have proposed [60, 61] to investigate the following “quantized behav-
iors” model:

ẋi(t) =

N∑
j=1

aij [q(xj(t))− xi(t)] i ∈ I = {1, . . . , N} (3.6)

where we define the quantization of a real number simply by rounding it to the closest
integer: q(s) = ⌊s+ 1

2⌋.

This dynamics has good properties in terms of existence of solutions.

Proposition 3.1 (Existence for QB). For any initial condition there exists a local
Carathéodory solution of (3.6).

However, more pathological behaviors arise when we consider the asymptotic properties
of Carathéodory solutions, which can converge to points that are not (Carathéodory)
equilibria7.

Definition 3.4 (Extended equilibrium). Let k ∈ Zn and fk be

(fk)i(x) =

n∑
j=1

aij(kj − xi).

An extended equilibrium is a point x∗ ∈ Rn such that there exists k∗ ∈ Zn such that
fk∗(x∗) = 0 and x∗ ∈ Sk∗ .

Notice that all (Carathéodory) equilibria are extended equilibria, but extended equilibria
need not be (Carathéodory) equilibria. Indeed, fk∗(x∗) = 0 does not imply that f(x∗) =
0 (where we use f to denote the right-hand side of (3.6) in vector form).

In [62] it was found that on complete and complete bipartite graphs, convergence to
consensus is achieved for all initial conditions. However, simulations suggest that, in
other type of graphs, solutions usually converge to non-consensus extended equilibria,
hence the importance of such points.

The presence of these pathological attractors motivates us to consider also Krasovsky
solutions, which have two important advantages. Firstly, Krasovsky’s definition is
more general than Carathéodory’s, meaning that Carathéodory solutions are partic-
ular Krasovsky solutions. Hence, results that are established for Krasovsky also apply
to Carathéodory. Secondly, Krasovsky solutions can not converge to points that are not
(Krasovsky) equilibria, thus solving the mentioned pathological convergence.

In case of the quantized behaviours equation (3.6) we do not have a characterization
of the set of equilibria, but we already have some significant information. First, we
observe that consensus points of the form h1 with h ∈ Z are Carathéodory equilibria.

7For smooth systems, if a (classical) solution converges to a point, then such point is a (classical)
equilibrium. This property is not necessarily true for Carathéodory solutions of systems with discon-
tinuous right-hand side. We refer the reader to [61] for the construction of these peculiar solutions.
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Second, there exist equilibria that are far from consensus and are attractive for some
Carathéodory solutions. An example (on cycle graphs) can be observed in Figure 3.4;
another (on path graphs) is provided in the next result.

Proposition 3.2 (Far-from-consensus equilibrium of QB). Consider (3.6) with an N-
node path as underlying graph and all non-zero entries of the adjacency matrix A equal
to 1. Then, there exists a Krasovsky equilibrium x∗ such that

x∗
N − x∗

1 =

{
(N−2)2

4 if N is even
(N−1)(N−3)

4 if N is odd.

Theorem 3.5 (Distance from consensus). If φ(t) is any Krasovsky solution of (3.6)
and

M =

{
x ∈ RN : inf

α∈R
∥x− α1∥ ≤ ||A||

λ∗

√
N

2

}
,

then dist(φ(t),M) → 0 as t → +∞.

We remark that this result is tight in the following sense: on some graphs, the estimate
on the limit set is asymptotically tight for large networks in the sense of the Euclidean
distance from the consensus. More precisely, if the graph is a path with N nodes and
weights are uniform, for all points in the attractor M it holds true that 1√

N
∥x−xave∥ =

O(N2) as N → ∞. At the same time, the equilibrium x∗ that was constructed in the
proof of Proposition 3.2 is such that (for odd N)

1√
N

∥x∗ − x∗
ave∥ =

1√
120

N2 + o(N2) as N → ∞.

Hence, the estimate of M can not be improved in general in terms of distance from
consensus. Details of these computations can be found in [62].

This model allows for the existence of complete Carathéodory solutions for every initial
conditions, but Krasovsky solutions are preferred to avoid the pathology of solutions
converging to non-equilibrium point. In general, a result of convergence to equilibria is
missing, but a tight result of convergence to a set is available. Remarkably, there can
be equilibria very far from consensus, in which the difference among different opinions
of individuals is proportional to N2.

The sociological interest of this dynamics, also recalled later in Section 6.3, is highlighted
by the following example, which is due to my student Raoul Prisant and is presented
in [227].

Example 3.1 (Hidden consensus). On an undirected ring graph, every node i interacts
with i− 1 and i+ 1 (modulo n). For x∗ to be an extended equilibrium, it must hold
that x∗

i = q(xi−1)+q(xi+1)
2 . If we consider Sk∗ = S(0,0,1,1,0,0,1,1), we have that x∗ =

( 12 ,
1
2 ,

1
2 , ...) ∈ Sk∗ is a non-integer consensus extended equilibrium. The peculiarity of

this point is that nodes agree on the opinion 1
2 , yet they actions behave differently. In

the solution shown in the left plot of Figure 3.5, four opinions converge to 1
2 from below,

and as such are quantized to 0, and four from above, and consequently take action 1.
From a social interpretation point of view, since only actions can be seen, not opinions,
this situation would appear as a disagreement scenario. Thus, this type of consensus is
undetectable.
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Figure 3.4: Evolution of a solution of (3.6), assuming the same initial conditions and
graph as Figure 3.1.

The dynamics presents a number of additional pathologies, which are just now starting
to be studied. My most recent contributions [227], which are joint work with my students
Luca Cataldo and Raoul Prisant, include

1. proving that, on any graph, each extended equilibrium has a basin of attraction
of positive measure;

2. proving convergence from any initial condition on line graphs: the limit point is
an extended equilibrium but needs not be a consensus ;

3. showing the existence of limit cycles and of Zeno solutions on directed ring graphs.
Interestingly, the constructions of these cyclic and Zeno solutions rely on the
properties of the golden ratio.

These results highlight the richness of the qualitative behavior of the dynamics and the
complexity of its study.

3.6 Quantization for the consensus problem

In engineering, quantization can represent communication constraints, where the state
variable is communicated between individuals via a digital channel with finite data rate,
and thus constrained to take on discrete values. In my paper [59], limited data rate is
described as a quantization of the communicated values, so that the values q(x) are
communicated across the links, instead of the actual values x.

In this context, an effective consensus-seeking system is the following “quantized states”
system studied in [59]:

ẋi(t) =

N∑
j=1

aij
(
q(xj(t))− q(xi(t))

)
i ∈ I. (3.7)

A simulation is provided in Figure 3.6. Note that the right-hand side features the
quantized values of both states xj and xi: the presence of the quantized state q(xi) is
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Figure 3.5: Quantized Dynamics on the undirected ring. Time evolution of the “hidden
consensus” solution in Example 3.1.

crucial to ensure the “good” properties of this dynamics, which will be discussed below.
Indeed, this dynamics preserves the average of the initial states. On the contrary, the
right-hand side of equation (3.6) featured the quantized value of xj , but not of xi, which
leads to more complex dynamics that may end up far from consensus.

Consensus dynamics with quantization have first been studied with engineering moti-
vations, while seeking controlled dynamics that could lead to (approximate) consensus
despite the constraint of quantization [48, 202]. Proposed in this context by me and
my coauthors Francesca Ceragioli and Claudio De Persis [59], dynamics (3.7) better fits
engineering applications than social dynamics, since in many engineering applications
we have freedom to design the right-hand side, so long as we satisfy the communication
constraints.

As per its mathematical properties, the quantized states dynamics (3.7) does enjoy
global existence of Carathéodory solutions and thus requires to consider Krasovsky
solutions. The best property is that all Krasovsky solutions converge to equilibria such
that the quantized opinions are equal. This is not exactly consensus, as individuals’
opinions may slightly differ, but they agree on their quantized values.

The most powerful theorem about the convergence properties of (3.7) has been proved
in [290], significantly refining my initial results [59].

Theorem 3.6 (Convergence to equilibria). Let

D = {x ∈ RN : ∃h ∈ Z such that h− 1

2
≤ xi < h+

1

2
, ∀ i ∈ I}

and assume that the graph has a globally reachable node. Then, the set of Krasovsky
equilibria of (3.7) is D and any Krasovsky solution to (3.7) converges to D.
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Figure 3.6: Evolution of a solution of (3.7) with the same initial conditions and graph
as Figure 3.1.



Chapter 4

Distributed multi-agent and
network systems

My research about distributed algorithm has not been limited to the important spe-
cial case of consensus and closely-related consensus-seeking systems. Instead, I have
considered several other problems and a variety of solutions and methods.

A natural extension of the consensus problem is the synchronization problem1, in
which the dynamics of the agents converge to a common trajectory. In essence, the con-
sensus problem is a special case in which synchronization is sought towards a constant
value (not evolving in time). Even though in this manuscript I will not discuss synchro-
nization at length, this important and well-established problem has been a reference in
my research. It has given to me the opportunity to address the issue of heterogeneity
in multi agent systems in [250, 17], as briefly described in Section 1.1, and a benchmark
problem to showcase the effectiveness of the continuation method that I described in
Section 5.2: the latter method has allowed me to study large arrays of non-isochronous
oscillators [209].

Further away from consensus and synchronization, there are distributed algorithms
that solve other problems of estimation, control, and optimization. An example is the
problem of controlling the average opinion of consensus-seeking systems in
large-scale networks in an optimal way. When stubborn agents, which do not change
their opinion, are mixed with agents that follow the usual consensus dynamics, the
opinions of the latter converge to a non-trivial profile [69, 278]. With my students
Luca Vassio [274], we studied the problem of optimally selecting stubborn nodes so to
maximally move the average opinion of the system. Interestingly, we came up with a
message-passing algorithm that allowed for a distributed solution. It was easy to show
that this algorithm was exact and convergent on trees, but its behavior on general graphs
with cycles was much harder to study. In subsequent papers with my postdoc Wilbert
Samuel Rossi [239, 243, 240], we provided a general convergence proof and an analysis
of the approximation error that is committed by the algorithm due to the presence of

1Notice how in an engineering perspective, synchronization is a control objective that requires steer-
ing the agents states or outputs towards each other by exploiting their interactions. Instead, in a natural
science perspective, synchronization is a phenomenon whose explanation is found in the interactions
between the agents.

29
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cycles. More recently, with my student Massimo Bini [27], we have also considered the
related problem of controlling the average opinion by optimally adding links.

In the rest of this chapter I will concentrate on three sets of contributions. In Section 4.1
I will focus on a class of distributed algorithms for the optimal deployment of groups
of robots (robotic networks considered again in Section 6.1 as an application domain).
Next, in Section 4.2 I will quickly describe my work on distributed estimation with
relative measurements: this problem has important similarities but also differences with
the consensus problem. Finally, in Section 4.3 I will present a unifying result about the
randomization of linear network dynamics.

4.1 Coverage control by gossiping robots

When I was working on robotic networks, we had a vision that in the not-too-distant
future, networks of coordinated autonomous robots and drones would perform a broad
range of environmental monitoring and logistic tasks. For example, groups of robots
would enable novel logistic capacities in the transportation of goods and the delivery
of services and resources to customers. For these future applications to see the light,
load balancing algorithms will need to dictate how the workload is shared and assigned
to the individual robots. In other words, robotic resources should be assigned and
deployed to competing requests in such a way as to optimize some performance metric.
Remarkably, load balancing problems in robotic networks are often equivalent to robotic
deployment and environment partitioning problems. Indeed, in the transportation of
goods or delivery of services, minimizing the customer waiting time is equivalent to a
multivehicle routing problem and, in turn, to computing optimal depot positions and
regions of responsibility.

Motivated by these scenarios, my award-winning paper [36] considers the two following
interrelated problems. The deployment problem for a robotic network amounts to the
design of coordination algorithms that lead the robots to be optimally placed in an
environment of interest. Deployment performance is characterized by an appropriate
network utility function that measures the deployment quality of a given configuration.
The partitioning problem is the design of coordination algorithms that lead the robots
to optimally partition the environment into subregions of interest. Each robot would
then be tasked with servicing events in its own subregion.

In [36], Francesco Bullo, Ruggero Carli and I tackle partitioning and coverage control
algorithms in innovative ways. First, we design algorithms that require only “gossip”
communication, i.e., asynchronous, pairwise, and possibly unreliable communication.
Gossip communication is a simple, robust, and effective protocol for noisy and uncertain
wireless environments and can be implemented in wandering robots with short-range
unreliable communication. Second, at a methodological level, we propose a change of
perspective in coverage control and multicenter optimization. In earlier works [80], the
state space for the coverage algorithms are the agents’ positions, i.e., as a function of
the agents’ positions the environment is divided into regions and regions are assigned to
each agent. Note that in this classical approach, every movement of an agent is reflected
in a change of both its own assigned region and its neighboring regions. Clearly, this
rigidity conflicts with allowing unreliable and asynchronous communication. Instead,
the agents’ positions are no longer a concern in our approach: the state space is the space
of partitions of the environment and the algorithm dictates how to update the regions.
As the space of partitions is much richer than the space of the agents’ positions, we gain



4.2. DISTRIBUTED ESTIMATION FROM RELATIVE MEASUREMENTS 31

Figure 4.1: Simulated configuration of a self-deployed network of sensors in a complex
environment (the campus of the University of California at Santa Barbara). For each
sensor, its own responsibility region is shown using the same colour. This is joint work
with UCSB student Joey Durham [100].

more freedom in the design of partition optimization algorithms and in particular the
possibility to use gossip communication.

Our partitions-based framework was originally developed for compact subsets of the
Euclidean space in [36], but can be naturally extended to partitioning of other metric
spaces. Indeed, the paper [100] studies partitioning of graphs and proposes its applica-
tion to partitioning non-convex environments with complex geometry. Crucial to this
endeavour is producing a discretization of the continuous state space into a network
of relevant points: our algorithm then operates on such network. In the example of
Figure 4.1 the network is obtained by using a regular mesh and considering adjacent
cells as neighbors. Paper [220] further extends this approach to cloud-based interactions
between the robots, by allowing for the additional flexibility of covering the environment
of interest with regions that can possibly overlap. The possibility to have overlapping
regions also allows to assign multiple robots to service an event, as I studied in the
context of Unmanned Aerial Vehicles [88].

4.2 Distributed estimation from relative measurements

In the problem of distributed estimation from relative measurements, we assume that
each agent is attributed an unknown value and that relative measurements are pairwise
(noisy) differences taken across the edges of a given graph. Possibly, also (noisy) absolute
measurements of the unknown values can be available to the nodes. The objective of this
problem is reconstructing the full vector of the agent values (each agent estimates her
own value); see [22] for an introduction to this problem. Similar problems are studied
in machine learning, where they are referred to as statistical ranking problems [160, 10,
212, 252, 148], and in mobile robotics, where they appear as cooperative localization
problems in autonomous navigation [154, 42, 83]. These problems in machine learning
and robotics are in general multidimensional and nonlinear, whereas the problem I
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worked on with my students Wilbert Samuel Rossi and Nelson Chan is linear.

The linear nature of the problem allowed me and my students to provide explicit results
that very clearly highlight the role of the network topology. Indeed, the network that
describes the measurements determines the fundamental limitations of the achievable
performance [245, 246, 248]. Using an intuitive interpretation of the problem that em-
ploys an electrical network of resistors, we have shown that the error of the least squares
optimal estimator depends on the topology of the graph that encodes the measurements.
The topology determines whether the error decreases to zero as the number of unknown
variables grows to infinity: for instance, this happens on fully connected networks, but
not on cycle networks.

Besides these fundamental limitations, I also worked on distributed algorithms for its
solution2. The simplest approach is a synchronous gradient algorithm [248], which bears
a lot of similarities with a consensus algorithm, albeit for the presence of constant input
term. Our study of this gradient descent algorithm has revealed that the number of
steps required to achieve a certain accuracy (relative to the optimal estimator) does
not depend on the measurement graph’s topology or even on the number of nodes.
Running the algorithm for k steps means that the estimate of each node is based on
information from nodes at distance at most k on the graph. Therefore, the above
finding indicates that only a limited portion of the graph, independent of its total
size, needs to be explored by each node through the algorithm. In other words, some
cooperation among the nodes is is necessary for this distributed estimation problem, but
too much cooperation is superfluous and even counter-productive. In contrast, other
networked estimation problems, such as estimating a common parameter through an
average consensus algorithm, always benefit from more cooperation (that is, a longer
running time). Indeed, when all nodes measure the same quantity and use consensus to
estimate it, the time to achieve a given accuracy can grow proportionally to the square
of the number of nodes, necessitating full cooperation across the network. In this sense,
the advantages of cooperation are limited in this problem, because its objective is the
estimation of a “diffused” parameter. This property is not shared by other estimation
problems where a common parameter is to be estimated and additional cooperation is
always beneficial to improve the estimate.

4.3 Ergodic randomized network dynamics

Several passages of this document have already elaborated that randomization is spe-
cially natural in network dynamics, either by the uncertain nature of the network at
hand, or by a design aimed at improving performance and robustness.

Despite the variety of relevant cases, there used to be no general tools for the design or
the analysis of randomized algorithms over networks. In the paper [237], which is joint
work with Chiara Ravazzi, Roberto Tempo and Hideaki Ishii, I challenged this gap in the
literature. Our work focuses on a large class of randomized linear dynamics that do not
have deterministic equilibria but are stable on average. This stability property ensures
that the dynamics, although featuring persistent random oscillations, has an ergodic
behavior. Our main contribution is precisely to prove an ergodicity result that can

2Besides the synchronous gradient algorithm, I also developed randomized algorithms with gossiping
communication [237], which leverage the mathematical machinery presented in the Section 4.3, and
algorithms that are able to automatically distinguish whether the measurements have small or large
noise and adapt their estimator accordingly [234].
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be readily applied to several network-based dynamics, where randomization apparently
prevents convergence. As a consequence, the desired convergence property–holding
in expectation–can be recovered by each node through a process of time-averaging.
Remarkably, time-averages can be computed locally by each node and even without
access to a common clock.

Consider the affine dynamics representing a time-invariant discrete-time dynamical sys-
tem over a network, described by a directed graph G = (V,E) with N nodes, with state
x(t) ∈ RV , t ∈ Z≥0

x(t+ 1) = Px(t) + u, (4.1)

where the matrix P ∈ RV×V is adapted to the graph G and u ∈ RV is a constant input.
We have the following simple fact.

Proposition 4.1. If P is Schur stable, then the dynamics in (4.1) converges to

x⋆ = (I − P )−1u

for any initial conditions x(0) = x0.

We are interested in randomized versions of the dynamics in (4.1). More precisely,
let {θ(t)}t∈Z≥0

be a sequence of independent identically distributed (i.i.d.) random
variables taking values in a finite set Θ. Given a realization θ(t), k ∈ Z≥0, we associate
to it a matrix P (t) = P (θ(t)) ∈ RV×V and an input vector u(t) = u(θ(t)) ∈ RV ,
obtaining a time-varying discrete-time dynamical system of the form

x(t+ 1) = P (t)x(t) + u(t), (4.2)

with initial condition x(0) ∈ RV . We observe that the state {x(t)}t∈Z≥0
is a Markov

process because, given the current position of the chain, the conditional distribution of
the future values does not depend on the past values.

It may happen that the dynamics (4.2) oscillates persistently and fails to converge
in a deterministic sense: this behavior is apparent in the example of Figure 4.2. In
view of this fact, we aimed to provide simple conditions which guarantee probabilistic
convergence to the vector x⋆. We say that the process {x(t)}t∈Z≥0

is ergodic if there
exists a random variable x∞ ∈ RV such that almost surely

lim
t→∞

1

t

t−1∑
ℓ=0

x(ℓ) = E[x∞]. (4.3)

We now establish our main result for randomized dynamics over networks. Its proof
can be found in [237].

Theorem 4.1 (Ergodicity of affine dynamics). Consider the random process {x(t)}t∈Z≥0

defined in (4.2), where {P (t)}t∈Z≥0
and {u(t)}t∈Z≥0

are i.i.d. and have finite first mo-
ments. If there exist α ∈ (0, 1], P and u such that

E[P (t)] = (1− α)I + αP, E[u(t)] = αu, (4.4)

with P and u satisfying Proposition 4.1, then

1. x(t) converges in distribution to a random variable x∞, and the distribution of
x∞ is the unique invariant distribution for (4.2);

2. the process is ergodic;
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Figure 4.2: The randomized dynamics (left panel) fails to converge: however, its ergod-
icity can be highlighted by plotting its temporal averages (right panel).

3. the limit random variable satisfies E[x∞] = x⋆.

An example of the relation between randomized dynamics and time average is illustrated
in Figure 4.2: this relation hinges on the underlying deterministic dynamics (4.1). In-
deed, under the assumptions of the theorem, P is Schur stable in Proposition 4.1 and
so is E[P (t)]. Consequently,

E[x(t+ 1)] = E[P (t)]E[x(t)] + E[u(t)]
= ((1− α)I + αP )E[x(t)] + αu,

and limt→∞ E[x(t)] = x⋆. The expected dynamics of the process (4.2) can thus be inter-
preted as a “lazy” (slowed down) version of the synchronous dynamics (4.1) associated
to the matrix P .

This theoretical contribution can be applied to a wide set of linear dynamics, ranging
from distributed PageRank computation to estimation in power systems, as we illus-
trated [123]. I am particularly proud of two applications: one about opinion dynamics
in social networks (also discussed in Section 6.3) and one about estimation from relative
measurements (defined in Section 4.2).

Regarding opinion dynamics in social networks, in [124] we addressed an open
problem about opinion dynamics in presence of prejudices, emerging from the semi-
nal work of Noah Friedkin [131] in mathematical sociology. Friedkin’s work on social
influence exhibited a mismatch between the experimental setup, in which individuals
communicated by phone (thus, in pairs), and the mathematical model, which featured
synchronous linear iterations akin to (4.1). Theorem 4.1 offered a way to justify the
equivalence between the dynamics postulated by Friedkin’s model and a dynamics based
on pairwise interactions.

Regarding the problem of distributed estimation from relative measurements, we
proposed in [235] an original ergodic algorithm to solve it. The classical algorithm can
be interpreted as a gradient descent with a constant input: since we wanted to propose a
randomized, asynchronous, algorithm, our approach was to replace the gradient descent
with a random coordinate descent algorithm. Unfortunately, the presence of an input
term representing the measurement was creating oscillations and preventing convergence
of the algorithm. Theorem 4.1 has allowed us to characterize and understand these
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oscillations: we were thus able to overcome the lack of convergence and propose an
effective algorithm, by combining randomization and time-averaging.

In a broader perspective of algorithm design, the interest of this work of mine is that
time-averaging can be a tool for smoothing stochastic oscillations that may appear in
other randomized network systems3. Another example are randomized algorithm for
PageRank computation. Indeed, oscillations are commonplace in randomized network
systems: other authors have proposed different solutions, which essentially damp the
system inputs in the long run: this goal is achieved through “under-relaxations”, that
is, by using gains that decrease along time. The analysis of the resulting dynamics is
often based on tools from stochastic approximation [33] or semi-martingale theory [226,
Ch. 2].

3As introduced in Section 1.1, much research of mine has dealt with randomized asynchronous
algorithms and with mitigating their potential drawbacks: another type of issue, that is, the failure to
preserve the average in distributed averaging algorithms, was addressed in Section 2.1.
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Chapter 5

Approximate methods for
large-scale networks

The task of controlling large-scale networks is very difficult in the first place because
of their large dimensionality, making the computation of traditional control algorithms
too expensive. In systems of large dimensions, the number of sensors is often much
lower than the number of states, which makes hard to identify the mathematical model
of the system and to estimate its state. Similar issues arise regarding the number of
actuators, which limits the control capabilities. Another difficulty is that the energy
needed to control all nodes of the network can grow exponentially with the number of
nodes, at least for some network structures [218, 169].

Therefore, in some cases, it can be preferable to define control or estimation problems
for some output of the network rather than all individual states. These questions can
in principle be addressed by leveraging classical control tools, such as the notion of
structural controllability, which determines whether control objectives are achievable
by conditions that only depend on the network structure [168, 96]. This approach has
actually been quite popular around a decade ago [173, 102, 210, 222, 141]. In this
context of structural linear systems theory, I have first explored quantitative notions of
controllability/observability radii for networks in [25] and later the notion of functional
controllability [68]: conditions for functional controllability of networks have intuitive
interpretation in terms of paths on the network graph and allow to design effective
algorithms with good complexity.

However, the very large size of many networks that are encountered in complex socio-
technical systems1, such as social networks, is bound to make classical control ap-
proaches not viable and demands radically different approaches. In the last decade,
I have thus devoted much of my work to address this need and I have obtained en-
couraging results. The rest of this chapter is indeed devoted to present general control
methods for large-scale linear and nonlinear dynamical systems, which I have developed
with my doctoral students Nicolas Martin, Denis Nikitin, and Renato Vizuete. All of
these methods, beyond their differences, originate from the recognition that a full de-
scription of the network system dynamics, down to each individuals agents, is impossible

1I will give in Chapter 7 a broad presentation of the complex socio-technical systems that I am
interested in, together with their challenges, including the challenge of size.
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Figure 5.1: Scale-Free network with four identified regions, which we call “hubs” (shaded
in yellow), which only interact with the rest of the network through a smaller number
of boundary nodes (double circles). Hub regions can thus be controlled (or observed)
by acting on (or measuring) only the boundary nodes.

to achieve and unnecessary for meaningful control objectives. Instead, one should focus
on aggregate quantities that describe the system at large, such as the distribution of
the agent states, or the average state of the whole network, its variance, or the average
values in different regions of the network.

5.1 Node aggregation methods

A general approach to scalable control methods, which is referred to as “scale-free”,
is based on the aggregation of the variables that belong to neighboring nodes. The
aggregation is done in such a way to construct a scale-free reduced network, where the
goal is to control the averaged state and the variance of the hubs, corresponding to
regions or groups of nodes, and the control is applied to the boundaries of the hubs.
A graphical illustration of the approach is provided in Figure 5.1. The same approach,
mutatis mutandis, can be applied to estimation problems [204]. I contributed to this
multifold approach by participating in the ERC Advanced Scale-freeBack project, which
was lead by Carlos Canudas de Wit in Grenoble from 2016 to 2022. My contributions
span several aspects of this scale-free approach in collaboration with our students Nicolas
Martin and Denis Nikitin.

In the scale-free modelling and analysis of dynamic networks, the purpose is to reduce
the network complexity by finding the appropriate level of scale aggregation, while im-
posing the control and observation model properties that are desired and at same time
preserving the natural properties of the original, large, network system (such as, preser-
vation of mass). My papers [183, 185] focus on a prototypical problem: reducing the
network size while induce a power-law distribution in the aggregated network and at
the same time preserving the invariant measure of its associated random walk. Addi-
tional properties of the partition of the nodes into hub regions can be imposed in this
framework: for instance, in our paper [186] (in collaboration with Tokyo Institute of
Technology) we focus on the constraint of the regions being connected.

This understanding of the scale-free network reduction, which was achieved by the thesis
of N. Martin, has allowed us to move to a next phase of work in which we developed
control design methods. In the thesis of D. Nikitin, we were able to develop a rather
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Figure 5.2: Control design can be performed on the PDE level and then discretized back
to be implemented on each node.

general control framework [207] in which the objective of controlling the network state
is spelled out into a twofold objective: (i) control the average value within each hub
area; (ii) reduce the dispersion around that average by leveraging extremum-seeking
techniques.

This scale-free approach has been successfully applied to monitoring and controlling
traffic networks [238]. Other applications are possible, however, such as thermal moni-
toring of buildings [203] and epidemics control. For instance, in [184], we have presented
an application to the design of optimal vaccination schemes that target the hubs of the
reduced network.

5.2 The continuation method

When considering approximate models for large networks, we naturally fall into continu-
ous models. These limit models can take different forms. One way to define continuous
limits is to regard, instead of the agent states, their distribution. The evolution of
the distribution would then be naturally described by a partial differential (PDE) or
integro-differential equation. A good approximation implies that control actions can be
designed on the continuous system and have guaranteed performance on the original
(graph-based) one; see illustration in Figure 5.2.

By the thesis work of D. Nikitin (also funded by the Scale-freeBack project) and a series
of papers, we have approached this problem for sparse spatially-distributed systems by a
very original approach that we have referred to as continuation. This work has reached
a twofold research objective:

1. We have developed a rigorous and complete theoretical framework for the PDE
approximation of high-dimensional systems of coupled ODEs [208]. This frame-
work draws on a varied mix of mathematical tools including control and numerical
methods and Kolmogorov–Arnold representation theorem. For linear systems, our
results ensure that the PDE approximation can be arbitrarily accurate if the or-
der of the PDE is sufficiently high, independently of the number of coupled ODEs
(that is, of nodes in the network).

2. We have applied this framework to multiple applications in linear and nonlinear
control, including swarms of autonomous robots [208], laser arrays [206], and spin-
torque oscillators [209]. The latter application has been an absolute novelty for
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the Automatic Control community.

Nikitin’s continuation method has also been applied to traffic networks [270] and, despite
being quite recent, has already aroused interest from the control community [180, 181,
101]. Instead of reporting here the general theory, for which I refer to [208], I prefer to
illustrate its main ideas and features by a concrete example, the SIS dynamics. This
will be done in Section 5.4, which will also illustrate the approach described in the next
section and compare them.

5.3 Graphons

Another effective way to define continuous limits is by the concept of graph function,
or graphon. A visual intuition of what a graphon is can be gained with the help of a
pixel picture. Starting from the adjacency matrix of a graph, if we visualize a 0 as a
small white square and a 1 as a small black square, we can construct a pixel diagram,
as we can appreciate in Figure 5.3. Letting the number of nodes go to infinity (and
under technical conditions), we obtain a continuous object, a “heat map” of connectivity
that characterizes the whole sequence: a pictorial representation of this convergence is
given in Figure 5.4. Conversely, finite graphs can be generated by sampling from the
continuous graphon: in this case, the properties of the finite networks can be inferred
from the properties of the graphon.

The theoretical foundations of graphon theory were developed two decades ago [176,
31, 32] and are presented in Lovasz’ book [175]. Their usage is supported by a grow-
ing body of literature and specifically by a well-developed approximation theory that
dictates how large the number of nodes N must be for the approximation to be ac-
curate [12]. Graphons have thus become a popular tool to describe large networks in
machine learning, and recent applications include centrality measures [12], link predic-
tion [296], and large population games [215, 40]. Dynamics over large networks have also
been approached by using graphons at least since the work of Medvedev [190, 191] and
recent developments and applications include [166, 30, 7, 15, 201]. However, graphons
have not been so much used in control theory, despite the ground-breaking work by
Gao and Caines [136, 135]. The latter has laid down a theory of the approximate con-
trol of linear network systems by combining the theories of graphons and of infinite
dimensional systems. By this theory, graphon dynamical systems are formulated in an
appropriate infinite dimensional space, in order to represent arbitrary-size networks of
linear dynamical systems. Consistency between the models is defined as the convergence
of sequences of network systems to the graphon system.

Inspired by previous results on centrality measures [12], with my student Renato Vizuete,
we have been able to use graphons to define performance metrics that quantify system-
theoretic properties like stability, controllability, or sensitivity to noise. So long as a
graphon approximation of the network is available, these metrics can be computed from
the graphon at low computational cost and approximate well the system-theoretic prop-
erties of the corresponding dynamics on graphs of large-but-finite size [280, 285]. An
intuitive example are the stability properties of the SIS dynamics, which I will discuss in
Section 5.4. Other examples are given by the spectral properties of the graph Laplacian:
indeed graphons approximate well the spectral gap of the Laplacian and the Kirchoff
index (or average effective resistance of the graph). I have presented these results about
the Laplacian spectrum in [285].
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Figure 5.3: Pixel diagram for a simple graph.

Figure 5.4: A sequence of graphs (and their pixel diagrams) that converge to a graphon.

Another way to use graphons is to define dynamics that are associated to a graphon,
just like the usual network dynamics are associated to a graph. The idea behind such
definitions is that the dynamics on the graph should be, under suitable but hopefully
mild conditions, a good approximation of the original dynamics on a (large) graph.
Later in this manuscript I will give two concrete examples of this endeavor. First, in
the next section I will introduce the graphon SIS (5.3) as an approximation of the SIS
dynamics on networks that I have recently studied with my postdoc Aurélien Velleret.
Second, in Section 8.1 I will describe some ongoing work on the graphon Laplacian
dynamics. Other examples can be found in the literature of the last decade, including
random walks [224], consensus dynamics [30], and Kuramoto models [191, 190].

5.4 Illustrative example: Epidemics on networks

For the illustration and concrete comparison of the two methods, continuation and
graphons, that I introduced in the last two sections, let us take the example of a simple
epidemic model on a network.

Let us consider the susceptible-infectious-susceptible (SIS) epidemic model, which de-
scribes the propagation of a single communicable disease in a susceptible population.
The transmission of the pathogen occurs when infectious hosts transmit the disease
pathogen to healthy susceptible individuals. The infectious period extends throughout
the whole course of the disease until the recovery of the patient, warranting a two-stage
model: either infected or susceptible. In its classical version, the model is governed by
the following equation

dI

dt
= −δI + β(1− I)I, (5.1)

where I is the fraction of infected individuals in a homogeneous population and δ, β
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positive parameters. This model is of mean-field type, that is, it assumes that the whole
population can be described by a scalar variable. For such a description to be sound,
the population has to be homogeneous and well-mixed.

However, we very well know that populations may happen not to be homogeneous and
their interactions not fully mixing. In an inhomogeneous population (where individuals
are clustered in communities such as cities or other social groups), a better model would
be a networked SIS

dIi
dt

= −δIi + β

N∑
j=1

aij(1− Ii)Ij , (5.2)

where the index i ∈ {1, . . . , N} corresponds to a given community and the nonnega-
tive coupling coefficients aijs are the entries of the adjacency matrix that encodes the
network of inter-community interactions. In such as model, each of the populations is
assumed to be well-mixed and the inter-community network takes care of the hetero-
geneity.

The graphon SIS [92] extends on this idea of interaction network and assumes the
infected fraction to be I(t, x), where t is time and the continuous variable x ∈ [0, 1]
generalizes the index i. The resulting model is

∂I
∂t

= −δI + β(1− I)
∫ 1

0

W (x, y)I(t, y) dy, (5.3)

where W : [0, 1]2 → [0, 1] is the graphon that replaces the graph and the sum that
was present in (5.2) has been duly replaced by an integral. The continuous graphon is
suitable to replace the graph so long as the graph is large, because the graphon is the
limit, in a suitable sense, of a sequence of graphs with increasing size, as was informally
discussed earlier. A rigorous justification of Equation (5.3) can be obtained as the limit
of an agent-based model and is presented in the forthcoming publication [93] with my
postdoc Aurélien Velleret.

The properties of (5.3) are indeed consistent with those of (5.2). Let us consider the
question of the stability of the origin (that is, the disease-free equilibrium). The stability
condition for the finite-dimensional model for a given network reads

λ1(A)
β

δ
< 1,

where λ1(A) is the largest eigenvalue of the interaction matrix A. In the continuous SIS
model, the stability condition [92] is |||TW |||βδ < 1, where |||TW ||| is the largest eigen-
value of the integral operator TW associated to W . Besides the analogy, the graphon
condition is insightful for large networks sampled from the graphon. It has been shown
in [280] that the disease-free state is stable with high probability for networks of large
dimension N if

βN

δN
N(|||TW |||+ ϕ(N)) < 1, (5.4)

where |||TW ||| is the spectral norm of the graphon and ϕ(N) = O
(
(logN/N)1/2

)
. Note

that the scaling factor N originates from the definition of graphon.

A continued SIS can be derived by applying the general method from [208]. For the sake
of this discussion, we assume for simplicity that the network is space-invariant and one
dimensional, so that agent i (located at position xi) interacts with agents i−1 and i+1
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Figure 5.5: Space-invariant system of nodes aligned in 1D line with dynamics determined
by couplings aij that are nonzero for j = i+ 1 and j = i− 1.

(located at distance ∆x), as illustrated in Figure 5.5. We then perform second-order
Taylor expansions of function I(t, x), centered in xi−1 and xi+1, to obtain

I(t, xi±1) = I(t, xi)±
∂I
∂x

(t, xi)∆x+
∂2I
∂x2

(t, xi)
∆x2

2

and we substitute these into the networked SIS equation (5.2). This calculation leads
to obtain the partial differential equation

∂I
∂t

= −δI + 2βI(1− I) + βϵ(1− I)∂
2I

∂x2
, (5.5)

where ϵ = ∆x2 is a positive weight that depends on the spatial distribution of the
population. For simplicity we wrote the continued SIS in a one-dimensional space and
using derivatives up to the second order: approximations in higher dimensions (featuring
a Laplace operator) and with higher-order derivatives can be easily derived. In fact, our
results in [208] ensure that the higher the order of the derivatives, the more accurate
the approximation of the equation.

We can see from this example that approximations by graphon and continuation give
rise to infinite-dimensional systems that are rather different from each other: the former
produces an integral equation that is a direct counterpart of the graph-based equations,
whereas the latter produces a PDE that is visually more distant from the networked
dynamics but lends itself to an intuitive physical interpretation as a diffusion process.

Joint application of both graphons and continuation can be envisaged for systems that
feature both short-range, spatially localised, interactions and long-range interactions.
For instance, a joint SIS approximation

∂I
∂t

= −δI + 2βI(1− I) + βϵ(1− I)∂
2I

∂x2
+ β′(1− I)

∫ 1

0

W (x, y)I(t, y) dy (5.6)

could be appropriate for an epidemic model on a large geographical scale, featuring
both short-range contacts within families or neighbourhoods (the diffusion term) and
long-range contacts by air travel (the integral term).
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Chapter 6

Applications in engineering,
biology, social sciences

As I briefly explained in the Introduction, Section 1.1, my research has been directly
inspired by challenging problems from various application fields, ranging from engineer-
ing to biology and social sciences. In this chapter, I am going to provide an account of
some of these interests and their relations with my theoretical results.

6.1 Optimal deployment of sensor and robotic net-
works

Distributed algorithms for information fusion in sensor networks have been a moti-
vating application for much of my work around the consensus algorithm, including the
gossiping and asynchronous versions that I reported about in Section 2.1. The need for
control algorithms in sensor networks, however, is not limited to sensor fusion and co-
operative estimation. Instead, other kinds of (distributed) algorithms are also necessary
in order to ensure the proper functioning of sensor networks. For instance, the sensors
may need to be suitably deployed in a target environment in order to provide good
coverage of it. This kind of problems has lead me to consider distributed algorithms
for the optimal deployment of robotic teams, where the robot is a self-propelled unit
that moves in the environment in such a way to optimize its ability to sense the envi-
ronment or to service possible events that happen therein [37]. Deployment algorithms
for optimal coverage that require minimal, gossiping or asynchronous communication
have been described in Section 4.1. Besides the design of distributed algorithms, my
interests have also included the robustness of the optimal deployment to sensor failures:
this concern has lead to an elegant analysis of optimal 1-dimensional coverage under
random failures [118].

My algorithms have also been tested in simulations and hardware experiments, show-
cased in Figure 6.1 and where the contribution of students J. Durham and M. De Roo
has been fundamental. In [100] we tested our algorithm for partitioning non-convex
environments with complex geometry on a small group of physical rovers, augmented
by a larger set of simulated rovers. In [88], we used small drones to test a coverage algo-
rithm with overlapping regions, which allows multiple robots to be tasked with jointly
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Figure 6.1: Robotic platforms in my coverage control experiments. Left: a group of
rovers (some real, some simulated) [100]. Right: gazebo simulation prior to deployment
of a small drone fleet [88].

servicing an event.

6.2 Animal groups: global shape from local interac-
tions

The collective motion of animal groups has been a fascination of mine for many years,
which was fostered by the inspiring readings of [164, 81, 18, 19]. Unlike consensus
or synchronization problems, where individuals typically experience attraction forces
alone, the behavior of animal groups arises from a delicate interplay of attraction and
repulsion forces.

αr

αaRsr

Figure 6.2: The shape of the sen-
sitivity zones around each animal
(moving from left to right). Solid
red lines delimit the repulsion zone;
dashed blue lines delimit the attrac-
tion zone.

My approach to studying these phenomena hinges
on the premise that the shape and movement of
animal groups emerge directly from the interac-
tions among individuals. These interactions are
shaped by cognitive limitations and sensing con-
straints. Cognitive limitations dictate that indi-
viduals can only monitor a small number1 of clos-
est neighbors [18], while sensing constraints, often
visual in moving vertebrate groups, restrict the
field of view to the front or sides (see Figure 6.2).

Combining these few elements (attraction, re-
pulsion, limited neighborhood awareness, and
anisotropic sensing) has proved to be be ex-
tremely fruitful. In fact, I have shown in [82] that
these ingredients can replicate2 a diverse array of
group shapes and patterns, from rounded swarms
common among insects and certain fish schools to
linear formations seen in elephant or wolf packs,
and even V-shapes and echelons observed in fly-
ing birds like geese (see Figure 6.3). I have also
proposed to apply these ideas to explain the pat-

1Section 3.4 delves into the consequences of limiting the size of neighborhoods in opinion dynamics.
2Similar connections between collective motion patterns and visual capabilities have recently been

highligted, independently of our work, by [55].
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Figure 6.3: V-like formations obtained with αr = 60◦, N = 30. The group is moving
horizontally from left to right. The plot on the right is a close-up on one of the Vees.

terns of birds roosting on wires: the resulting model has received empirical confirmation
in a joint work with a team of biologists from Rutgers University [14].

6.3 The origins of disagreement in opinion dynamics

In the last twenty years the control community has developed a strong interest in study-
ing differential models that describe, or are at least inspired by, the evolution of opinions
and beliefs in human groups and social networks [29]. These models have been proposed
by social scientists since the fifties [128] and more recently pushed forward by applied
mathematicians and control theorists: most of these models are variations of consensus-
seeking systems, akin to those studied in Chapter 3.

In this context, the nodes of the graph are individuals, an edge between two nodes
means that they socially interact and the i-th component of the state represents the
value of the i-th individual’s opinion. This graph-based modeling approach follows a
solid tradition in mathematical sociology [129, 229, 230] as well as in economics [158]
and in the physics of complex systems [54, 134, 13]. A broad variety of models have been
studied, as illustrated by several surveys [229, 230, 264, 24] and multiple results have
been obtained, which connect the topology of the social network with the asymptotic
behavior of the dynamics. Problems of identification, estimation, optimization and
control have also been considered by myself and by others [94, 294, 27].

The fundamental assumption in these models of opinion dynamics is that when an
individual communicates with another, their opinion is influenced or attracted by the
other’s. If one translates this assumption into a set of differential equations, then
one gets a dynamics similar to (3.1): the latter was already proposed as an opinion
dynamics model more than 50 years ago by [1]. This dynamics asymptotically leads
to consensus, i.e. agreement of the individuals on the same opinion, except when there
are different groups of individuals that do not communicate with each other, i.e. when
the communication graph has separated connected components. However, it has been
noted that agreement is rare in societies [130], even if individuals do communicate: for
this reason, more complex models have been elaborated with the aim of explaining both
agreement and disagreement.

In my reflection and research, I have identified and studied three key mechanisms that
prevent consensus, which I am going to rapidly survey with an emphasis on my contri-
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butions and on their sociological interpretations.

Limited confidence. A first explanation postulates that individuals, despite inter-
action with others, may disregard their opinion if the latter is too different from
their own. Depending on the precise definition of “too different”, we end up with
dynamical models like those in Chapter 3 (confidence radius, k neighbors), where
different kinds of threshold phenomena reduce connectivity and prevent consen-
sus. In Chapter 3 we focused on hard thresholds that lead to discontinuities, but
smooth dynamics with similar interpretations can be envisaged: in my paper [60]
I have shown that the qualitative behavior of their solutions is similar to those
with hard thresholds.

Obstinacy and predjudices. In the seminal work [131], disagreement is explained
as the effect of obstinacy, that is translated into the dependence of any individ-
ual’s opinion on its initial value. Stubborness as the source of disagreement is also
considered in other models, such as [194, 217], also in presence of randomized asyn-
chronous interactions [6]. A contribution of mine in this context, which leverages
the mathematical results of Section 4.3, has been to show that a mathematical
model with synchronized interactions can be justified as the average dynamics of
a randomized, asynchronous, model [124].

Discrete actions. Another possible source of disagreement is the phenomenon of
“quantization” or the coexistence of discrete and continuous variables in the opin-
ion dynamics. Dynamical models with continuous opinions and discrete actions
have attracted significant attention in the last decade. These models are often re-
ferred to as CODA models (Continuous Opinions Discrete Actions) and have been
proposed by [187] and later studied by several authors [188, 67, 272, 62]. The
simplest model of this kind has been presented in Chapter 3 as equation (3.6).
This way of including quantization in opinion dynamics can represent situations
in which social influence is mediated through binary (or, more generally, discrete)
choices by the individuals. In that continuous-time opinion evolution the indi-
viduals hold scalar opinions and take discrete actions. The aim of model (3.6)
is not to have a realistic description of social interactions, but to emphasize the
effect of quantization on the asymptotic behaviour, which can actually be quite
disrupting. Whereas the consensus dynamics asymptotically reaches consensus as
long as the nodes are connected, the dynamics with discrete actions yields con-
vergence to non-consensus equilibria, and can even exhibit limit cycles and Zeno
trajectories for specific graph topologies3. Owing to this complexity, obtaining
a complete picture of its convergence properties has proved elusive, as we have
described in Chapter 3. The sociological interpretation of these non-consensus
solutions is a strong warning to mind the difference between inner opinions and
displayed actions in social dynamics.

These three explanations above are my favourite: I find them compelling and sound
representations of real-life phenomena, even though the specific mathematical models
that I have contributed to elucidate should be seen as conceptual models rather than
detailed descriptions of reality that fit experimental data.

However, I should point out that the literature also includes other explanations. Pop-
ular ones are the presence of contrarians [133] or of negative interactions, i.e. negative

3The discovery of these special solutions was made possible by the work of my students L. Cataldo
and R. Prisant.
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Figure 6.4: Representation of an heterogeneous line of vehicles.

weights in the adjacency matrix. An example of the latter is the celebrated Altafini
model [8] that has been later extended in multiple directions including time-varying
networks [228]. I have recently studied its generalization to graphons in [119]. Similar
dynamics on “signed graphs” may also feature randomized interactions [254] or bounded
confidence [9]: a comprehensive survey is provided in [253].

6.4 Vehicle groups: communication and heterogeneity

The management of vehicular traffic is a major issue in modern society as it has an
impact on air and noise pollution, carbon gas emissions, travel time, and their social and
economic consequences. As connected and automated vehicles (CAVs) are introduced
in the traffic stream, there is need for control technologies to manage their coordinate
behavior and their interaction with traditional ones. The engineering community is
hoping to use CAVs both as sensors to detect congestion and as actuators to fluidify the
traffic flow. Until recently, CAV research has focused on methods to reach and maintain
the desired behavior of a group of CAVs. More recently, instead, researchers have
collectively realized the importance of understanding the interaction between traditional
and connected autonomous vehicles, their system-theoretical properties, and the need
to design novel control laws to steer them according to performance measures such as
string stability [260] and coherence [20]. The purpose is not only to ensure good behavior
of “mixed” groups (comprising both CA and traditional vehicles) in realistic situations,
but also to assess the potential of CAVs to complement existing approaches to traffic
control such as variable speed limits and intelligent traffic lights.

My approach to these questions has been to focus on models of lines of vehicles4. Vehicle
lines are useful models that serve to define analysis, estimation, and control design
problems, relevant to both engineering autonomous vehicles and studying traffic in
urban and highway roads. In studying a line of vehicles, we focus on longitudinal
motion and neglect lateral motion, although we sometimes account for lane changes. A
line of vehicles model is thus determined by three ingredients:

• The vehicle model, with a more or less detailed internal dynamics;

• The interaction topology that describes which vehicles interact with each other;

• the interaction model that specifies which information is shared between vehicles,
via sensing or via communication.

These line of vehicle models are suitable to formulate and study several control problems:

4My work on vehicle string started thanks to the PhD thesis of Francesco Acciani [2] and later
continued through several master students including V. Giammarino [139] and C. Magnetti Gisolo [140].
On this research I was also much influenced by my collaborations with Maria Laura Delle Monache and
Simone Baldi.
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Figure 6.5: Representation of a string-stable system through its relevant variables.
These plots are based on simulations for a line of 14 vehicles with a 0.3s headway
from my work [4].

• Platooning, by which I mean the stability of steady, equi-spaced and equal-velocity
uniform motion of the vehicles.

• String stability, which is an enhanced form of stability that accounts for transient
behaviors. String stability requires a uniform bound on the relevant variables
(inter-vehicle distances, speeds, accelerations, control inputs): see Figure 6.5. Cru-
cially, a string stable interconnected system dampens disturbances as they travel
downstream along the platoon. Disturbance amplification is not only a risk for
a safe operation of the platoon, but it also compromises traffic flow stability and
road throughput.

• Maneuvering, which I intend broadly to include several complex tasks that are
needed to operate an automated platoon: performing lane changes, reconfiguring
the platoons by merging or splitting them, and allowing vehicles to join and to
leave the platoon.

My research in the broad field of multi-vehicle coordination has dealt with all three
problems above and has focused on two key issues, which are actually general to all multi-
agent and network problems (see Section 1.1), but which are well exemplified by vehicles
groups: the role of communication constraints and the presence of heterogeneities.

Communication constraints are an essential component of all coordination problem.
In vehicle groups, sensing is possible only between immediate neighbors and is limited to
position and velocity. Any information about further away vehicles, as well as internal
variables to the vehicle and its engine, must be communicated through a radio channel.
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Such information is crucial to the performance of coordination algorithms. However,
the radio channel may have limited communication radius and can be prone to issues
like delays and packet losses. Contrarily to much research that emphasizes the effects of
delays [298, 211], I have focused my attention on message losses, which I have described
through a random loss model. in collaboration with my PhD student Francesco Acciani,
I have designed cooperative adaptive cruise control algorithms that ensure a graceful
degradation of string-stability performance in presence of stochastic losses [4]. Crucially,
this contribution has required to adapt the deterministic notion of string stability to a
stochastic setting5.

Heterogeneities are a thorny issue for multi-agent systems. Since homogeneous models
are easier to study, most research assumes homogeneity. However, it is pretty clear that
only in very specific situations one can assume all vehicles to obey the same dynamics
and behavioral roles: think of a platoon that comprises lorries with different loads, or
otherwise vehicles with different drivelines (Figure 6.4). In collaboration with experts
in adaptive control, I have developed adaptive strategies for the coordination of systems
with heterogenous and uncertain (that is, unknown) dynamics. My results, published
in a series of paper, span from abstract synchronization problems [17] to applications
to merging of platoons [170, 171].

Anther important issue, though more commonplace in control science, is the presence
of non-neglibible nonlinearities. The latter can appear in the vehicle dynamics or in the
interactions. Most of the multi-vehicle control literature concentrates in linear models,
on which the analysis can go very far but which can fail to represent real systems.
Even if I have mainly used linear models, I do have included two important sorts of
nonlinearities in my studies.

• In [171] I have included engine and braking constraints, which are modeled as
saturations.

• In [140] I have considered nonlinear inter-vehicle interactions according to the
well-known Optimal Velocity Model of vehicle dynamics.

In presenting my working tools, I have been referring to lines of vehicles. In fact, an
important tool for me has been studying rings of vehicles. Studying rings of vehicles,
instead of straight lines, brings several advantages for the analysis. First of all, it
removes border effects and renders the system space-invariant6. The space-invariance
of rings allows to focus on the crucial point of the interaction between vehicles. Indeed,
arranging wehicles on a ring is not only convenient for the analysis, but also for the
empirical experiments: a good example are the experiments that reproduce stop-and-go
waves in [258, 257].

For these reasons, I have made rings of vehicles prominent in my recent research [139,
140]. Indeed, rings can be seen as a proxy model for infinite lines, but with the cru-
cial advantage of a finite-dimensional state space that is both more treatable from the

5An independent analysis of stochastic losses has been provided by [231], where losses are seen as
the cause of stochastic delays in the communication.

6Elsewhere in my research I have taken advantage of on space-invariance properties. example is
the continuation methods in [208], which is more intuitively developed for space-invariant systems,
even though it is not restricted to them. Moreover, since my PhD thesis I have extensively worked
on Abelian Cayley graphs [105, Section 1.5], a family of graphs that well represents networks that
have a space-invariant interconnections in a d-dimensional space [178]. For instance, I have used them
as case studies in my analysis of the Kirchoff index of graphs [247] and in the study of randomized
consensus [104].
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mathematical point of view and more intuitive for the transition to practice. Indeed,
infinite strings of vehicles have been occasionally considered in the literature [109, 113],
but caution is advised in extrapolating conclusions from the infinite to the finite case
or vice-versa [84].
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Chapter 7

Dynamics of large-scale
socio-technical networks

My research objective for the near future is contributing to the theoretical foundations
of analysis and control tools for large-scale socio-technical networks. I will devote this
chapter to describe what are such networks, their features and the challenges that they
bring, together with the tools that I envision to develop.

Socio-technical systems are dynamical systems that describe large and evolving popu-
lations of heterogeneous agents, whose physical or social interactions can be mediated
by digital and algorithmic systems. I refer to this mediation as the “cyber” component,
which complements the “natural” dynamics at the social or physical level.

This broad definition can cover multiple examples of complex systems, including social
media, the global markets of commodities and goods, the electric power grid, and mo-
bility and transportation systems. Personally, I identify mobility systems and social
media as the application domains that I want to focus on.

• In mobility systems, individuals make choices (for instance, regarding their mode
of transportation and their route) that lead to physical flows of vehicles and trav-
ellers on the transportation networks. At the same time, individuals elaborate
their choices depending on their needs and perceived utility, but also due to im-
itation, peer-pressure, and other social interactions. Nowadays, the individuals’
choices can be based on real-time information about the state of the network,
which is provided by navigation apps.

• In social media, individuals interact, consume contents, and eventually form their
opinions within digital platforms that act as algorithmic gate-keepers of the flow of
information. Information is generated and transmitted by the individuals them-
selves as users or by content creators. The platforms adapt to their users by
learning the preferences of the latter and thus personalizing their offer of content,
via their recommendation systems.

Similar definitions of socio-technical (or techno-social) networks, with a similar scope
of application domains, have been around for some time: early examples can be found
in the physicists’ science of complex systems, for instance [277]. This early perspective
on complex techno-social networks already emphasizes the interplay between the social
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and technological components and identifies the opportunity brought by the explosion
of sensing and computing power. However, it fails to describe the role of digital systems
in mediating and enhancing the interaction: simply, such role was not prominent yet1.

In what follows, I will first concentrate on the key features of large-scale networks,
which make them challenging for control, and next focus on the importance of the cyber
component. Section 7.1 is concerned with the size of the networks, its consequences,
and its challenges for control. Section 7.2 is concerned with dealing with populations of
agents whose composition can evolve with time, i.e. Open Multi-Agent Systems. Then,
Section 7.3 is concerned with understanding and describing the cyber loops and contains
a case study of modeling a recommendation system.

7.1 The challenges of large uncertain networks

The systems I am interested in are first and foremost networks, and networks with
specific features that make their study challenging. This first section is devoted to
describe these features with respect to their network structure and their size.

I believe that networks constitute an essential paradigm to describe a huge variety
of large complex systems, including social networks, transportation networks, supply
chains, power networks, and multi-agent systems. These networks are the environment
of complex dynamics that (depending on each case) may take the form of dynamics
of opinions, epidemics, traffic flows, or collective motion and navigation of individuals.
The theory of Automatic Control needs substantial advancements to manage such com-
plex network dynamics, not only because of the need for accommodating the network
structure, but also because achieving control and estimation objectives using standard
methods is made computationally and practically intractable by the ever-growing net-
work size. Instead, these large networks and the dynamics therein require adapted tools
for modeling, learning, monitoring, and control: these tools must be scalable to networks
of large size.

Compelled by the need for scalability, which has already been the topic of Chapter 5,
I have become convinced of the interest of continuous network models. Traditionally,
networks are described by graphs, that is by discrete mathematical objects composed of
a set of nodes and a set of edges (that is, pairs of nodes) that encode their relations. This
classical approach is inherently prone to scalability issues and should be transcended
to deliver truly scalable mathematical methods. Instead, being continuous models in-
dependent of the network size, they will lead to methods that are inherently scalable.
However, it is clear that graphs cannot be forgotten altogether, since real networks are
in practice observed as nodes and edges. Hence, the crucial part of my research will be
on the interface between continuous and discrete domains, where we aim to take advan-
tage of continuous tools to understand and manage real discrete networks. Figure 7.1
illustrates this general idea of going back and forth between discrete and continuous
domains.

1In order to emphasize the importance of this “cyber” component, I have often referred to the
complex socio-technical networks that I am interested in as cyber-social networks, or sometimes cyber-
physical-social networks when the physical nature of the dynamics cannot be neglected. Nevertheless, I
prefer to put aside this language here, mainly because of its similarity with the keyword “cyber-physical
systems” that was popular in automatic control some years ago. The latter connection might convey
the idea that the cyber component is open to be designed. In fact, in the modern socio-technical
networks, the cyber component is already in place and any design idea should contend with its current
technological and economical structures.



7.2. OPEN NETWORKS 57

graph

continuum

Figure 7.1: Common framework of
reducing (discrete) networks to con-
tinua, via graphons or continuation
techniques.

Continuous methods bring two different types of
challenges with their specific mathematical dif-
ficulties. Firstly, it is clear that we need to
deal with continuous systems, which have infinite-
dimensional state spaces and may be delicate to
treat, especially in presence of nonlinear dynam-
ics, thus requiring advanced mathematical meth-
ods. Most importantly, however, we need to care-
fully deal with the relationship between the con-
tinuous and discrete models. This observation im-
plies the need to derive conditions for consistency
between the continuous and discrete models and
to derive quantitative approximation theorems, in
order to ensure that results about the former bear
significance for the latter. Relevant descriptions
of models and methods can be found in Chap-
ter 5: some ongoing work in this direction will be
presented in Section 8.1.

Large size, moreover, is not only a difficulty in
itself, due to the need for scalable methods. Large
size, instead, naturally brings additional challenges. One such challenge is uncertainty.
The larger the network, the less likely it is that any external manager can know it
accurately. Instead, knowledge about the network is bound to be imprecise, especially
if the network structure evolves with time2. In such a case one may have to manage
the network based on outdated information. Uncertainty asks for methods that are
robust, in the sense that they do not require precise information about the structure of
the network. Continuous methods are again promising in this perspective, because they
abstract from the detailed discrete structure of the network.

7.2 Open networks

In many applications, including online social networks, teams of autonomous vehicles,
smart power grids and the Internet of Things, the structure of the network is subject to
change. First of all, the network nodes can drop some of their connections or can create
new ones, for instance because they are moving in some environment and are bound
to interact with their physical neighbors. Furthermore, also the set of the interacting
node can change with time, as new nodes can join the network and others can leave it.
Despite this empirical evidence, control-theoretic methods for networks often assume
the network structure to be static. While on a short time scale this assumption can
be justified, on a longer time scale the network is bound to change due to the addition
or removal of both nodes and arcs. Actually, the larger the network, the more likely
it is that it changes during the dynamics. Therefore, the open character of large-scale
networks cannot be ignored in their study. I will refer to networks whose set of nodes
evolves with time as to Open Networks or as to Open Multi-Agent Systems.

Despite their ubiquity, open multi-agent systems have received surprisingly little atten-
tion in control or contiguous fields. Instead, definitions of open multi-agent systems can

2The fact that network structures, and specifically their set of nodes, can evolve with time will be
the topic of Section 7.2.
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be found in the computer science literature, for instance in [156, 225], where they refer
to software agents and to the problem of evaluating reputation in open environments:
however, these are not dynamical systems. Dynamically evolving populations of agents
have also be considered in other streams of literature. For instance, game theorists have
looked at dynamic sets of players in population games [251, 179], while researchers in
complex systems have explored the role of evolving populations in opinion dynamics
models [43, 142, 265].

Returning to the control systems literature, it is apparent that despite the abundance
of works in multi-agent systems from the systems and control community, openness
is rarely explicitly included in a rigorous analysis, but rather just presented as a pos-
sibility to be left to the practitioner or to be explored through simulations: see for
instance [297]. In multi-robot systems, where adaptivity to addition/removal of robots
is crucial, some architectures accommodate for dynamic teams but the analysis is not
developed enough to derive rigorous performance guarantees: an example can be found
in my own work [220]. I blame the relative scarcity of results on the fact that open-
ness implies some conceptual difficulties in adapting control-theoretic notions such as
state or stability. In fact, the key intrinsic difficulty of open multi-agent systems is that
persistent arrivals and departures of agents keep the system away from equilibrium.

Against the literature background that I was sketching in the previous paragraph, in
the last few years there has been a growing awareness and interest in OMAS in control.
Since the pioneering work [149] in 2016, a fair number of papers has appeared and some
PhD theses have been devoted to the issue, including those of Zohreh Sanai, Charles
Monnoyer de Galland, and Renato Vizuete (the latter under my supervision). Some of
these progresses are described in a review paper that we have recently produced in [286].
Nevertheless, a comprehensive theory remains elusive.

In the rest of this section, I want to survey several possible approaches to OMAS in order
present a critical summary of the literature, including my own work, and to identify
some remaining open problems. I will thus describe three scenarios, which correspond
to open multi-agent systems of increasing generality: OMAS with constant number of
agents, OMAS with bounded number of agents, and OMAS with unbounded number
of agents. All three scenarios have seen contributions of mine and my students, but
remain active and promising areas of research.

Systems with constant number of agents (replacements only). The simplest
scenario is when the number of nodes is constant, but the nodes themselves can be
replaced by new ones. One then analyzes such dynamic networks by modeling the
replacement of a node as a jump in the state of the overall system and a change in the
connectivity matrix of the network. This scenario clearly avoids some of the features
of more general OMAS, but does incorporate the persistent disturbance due to the
new agents. This disturbance requires to look for suitable notions akin to practical
stability or input-to-state stability. More generally, this scenario allows to formulate
questions related to the information that is available in the system. Indeed, in some
engineering applications one would like the system to forget the information that is
no longer relevant because it originated from units that have left the system [195].
Multiple types of dynamics have been studied in this context. For instance, through
a series of papers [197, 198, 282, 279] with my student Renato Vizuete, I have studied
the performance of coordinate descent algorithms for optimal resource allocation when
nodes can be replaced. More generally, distributed optimization methods are being
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extended to open networks by several researchers [151, 155, 145].

Finally, this scenario can be seen as an approximation of more general cases in which
the number of nodes varies, subject to independent arrivals and departures that take
place with similar rates. I have taken this perspective in studying the SIS dynamics in
OMAS [284]. At the level of large populations of individuals (e.g., countries, cities), it is
common to have similar rates of arrivals and departures such that variations of the size
of the populations are negligible. However, even if the total number of individuals in a
specific place can remain approximately constant, it is unrealistic to assume that exactly
the same individuals stay in a fixed location during all the evolution of the epidemic.
If we consider the same rate of departures and arrivals, which preserves the number
of individuals, epidemics under these conditions can be approximated as a dynamical
system subject to replacements of individuals: a similar approach has been taken for
opinion dynamics by [43, 265].

Systems with bounded number of agents. The second scenario is when one can
define a uniform upper bound on the number of nodes or one can assume that, at all
times, the nodes in the network belong to a finite (though possibly large) set. In such
a case, one can perform the analysis by taking this large set to be the set of nodes and
distinguishing between active nodes, which interact and participate to the collective
dynamics, and inactive nodes that wait idle. This approach allows to leverage the
substantial body of methods that have been developed for (stochastically) time-varying
networks. This type of approach has been taken by [273] for consensus and later by
several others [261, 145], including myself in [285]. In that paper, we consider nodes
that are randomly activated at each time step and run a consensus algorithm, which is
disturbed by additive noise.

Systems with unbounded number of agents. The third, and more challenging,
scenario is when the dimension of the system is not known in advance or limited [114,
115]. This generality entails some mathematical difficulty in defining an appropriate
state space. In order to overcome these issues, two approaches have been proposed in
the literature.

The first approach is to define more general notions of trajectories that can take place
across different spaces. Such switching between spaces can in principle be achieved
by the formalism of multi-mode multi-dimensional (M3D) systems introduced in [276],
where the switching is allowed between a fixed number of spaces of possibly different
dimensions. Despite some recent interest [292], the M3D approach to OMAS remains
unsatisfactory because it requires to know all the possible vector spaces to define the
discrete vector bundle over which the system evolves. A more interesting development
in this spirit is the framework of live systems that has been very recently proposed
in [192]: this modeling framework seems quite flexible and allows to define and study
Input-to-State Stability notions.

The second approach involves taking a mean-field perspective3 and give up a precise
description of all agents in the system. Instead, one would use some low-dimensional
(or even scalar) descriptor, that is, scale-independent quantities. The problem then be-
comes how to measure the changes on the descriptors that are produced by the arrivals
and departures. For relatively simple systems, the choice of this descriptor is evident, as

3Being an application of the mean-field perspective, it is clear that this approach can benefit from
the continuum methods for networks that are described in Sections 5.2 and 5.3.
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in the case of gossiping consensus where the variance is a good measure of disagreement
[150, 196]. Nevertheless, the choice is not straightforward for more complex dynamics,
for two reasons. Not only one has to select a descriptor that’s is actually informative
about the system, but the descriptor should ideally have a proper, closed, dynam-
ics. This cannot be expected on systems that are not homogeneous and “well-mixed”
in their interactions. Even though one can make do with some approximations, this
“closure” issue, which is in essence another instance of the ubiquitous moment-closure
problem [165], strongly constraints the potential reach of of this approach. In [283], I
provide some details on this issue, and a partial discussion, through the interesting case
of Open Hegselmann Krause dynamics.

These two main approaches do not fully cover the literature. For instance, in [115] I
have studied a problem of dynamic consensus (that is, consensus with inputs [162]) in
OMAS and I proposed an intermediate approach in which asymptotic stability is studied
in normalized norms, given by the usual norms of finite-dimensional vectors divided by
the square root of the dimension of the vector. This approach turned out to be effective,
at least for contractive systems, but is currently lacking a generalization to a broader
scope of systems.

7.3 The “cyber” loop

The systems I am interested in are networks of social or physical interactions. Besides
the network aspects, the systems I am interested in share a prominent role of digital
elements that mediate the interactions. I generically refer to these components, which
feature artificial intelligence or algorithmic decisions, as to the “cyber” component. This
cyber component typically produces some sort of feedback loop into the physical or social
dynamics: these feedback may be unintended and always deserve close scrutiny.

Indeed, more and more complex algorithms are nowadays deployed in complex socio-
technical systems with a variety of objectives: assisting or even replacing human decision
making, searching for relevant information, and personalising content and advertising.
Examples of application domains include: recommendation systems for e-commerce
and social media; micro-targeted and personalized advertising; navigation systems and
route recommendations for drivers and pedestrians; AI-assisted decision making in the
judiciary and credit system.

In online services, loop closures through recommendations are ubiquitous. The funda-
mental role of recommendations is apparent in e-commerce, where customers are happy
to receive suggestions based on their previous actions, such as viewing or purchasing
some other product. Recommendations are perhaps less apparent in social media [103]:
nevertheless, everything that is shown in a user’s Facebook NewsFeed (or a similar home
page on other platforms) is the output of a recommendation algorithm that selects the
most relevant content [143]. Relevance depends on popularity, immediacy, and the
user’s previously displayed interests. In all of these cases, the loop closure is apparent,
its effects on the engagement are actively sought, but its long-term effects on the users
are only partially understood [159, 138]. Even though recommendation systems have
been recognized as feedback loops since [21], this intuition has not been fully exploited to
date, possibly because the details of the algorithms are shrouded by industrial secrecy
or because control theorists have not perceived and taken up this challenge.

In these domains, the analysis cannot be limited to the properties of the algorithms



7.3. THE “CYBER” LOOP 61

in isolation but should embrace the complexity of the interaction between the algo-
rithmic component and the collective social/human component, with its dynamics and
its inherent biases. The economics literature, indeed, has long realised that human
behaviours are influenced by multiple forms of cognitive biases, including confirmation
bias, conformity bias, and authority bias. How do AI algorithms react to human biases?
Unfortunately, it appears that their relationship is potentially problematic, for multiple
reasons. First, algorithms that are trained on biased data may incorporate and even
amplify such biases. Second, algorithms may potentially exploit biases to deploy unfair
“persuasion techniques” against the humans, in order to improve engagement or sale
metrics. To solve this problem, a substantial research effort in algorithmic fairness has
developed solutions that can mitigate these biases at different stages of the AI pipeline
by enforcing some metrics of individual or group fairness [56]. Although these attempts
can be successful in the short term, they often do not perform equally well in the long
term, i.e., after multiple rounds of the decision-making process [259, 172].

I am convinced that the underlying reason for the persistence and emergence of biases
lies in the fact that the methods to mitigate them are designed for stationary systems,
while the system itself dynamically evolves over time. Indeed, the system changes over
time because its output (the decision) feeds back as input to the system itself. The
result is that biases are perpetuated (or even reinforced) due to the existence of the
feedback loop, despite enforcing static mitigation techniques.

Therefore, I deem crucial to understand the role of the feedback loops, and how they
relate to the amplification of different types of bias that may be present at the human and
at the algorithmic level. The understanding of the user-algorithm feedback loops will
lay the necessary foundation for analyzing the dynamics of automated decision-making
systems and pave the way for the design of long-term bias mitigation techniques in the
future.

Inputs from multiple disciplines, including behavioral economics, computer science, ma-
chine learning and optimisation are needed to deliver an integrated approach to under-
standing the interplay of human biases and AI algorithms. Studying the interconnec-
tions, and specifically the feedback interconnections, of different systems is a central
theme in the theory of Automatic Control, which therefore will be a crucial instrument.
Within this integrated approach, I can define a few objectives:

• The definition of a mathematical framework, inspired by systems & control the-
ory, for a rigorous analysis of the human/algorithm interaction. This framework
shall be geared towards qualitatively identifying and quantitatively assessing how
human biases, algorithmic biases, and feedback loops interplay.

• The development of detailed feedback loop models for concrete case studies in rec-
ommendation systems, their rigorous analysis and their application to algorithm
design.

• The collection and analysis of data, both from online platforms “in the wild"
and from controlled laboratory experiments, to measure user bias and how AI
algorithms react to them.

The ultimate goal of this research will be the design of algorithms that are fair, in
the sense that they avoid incorporating biases or amplifying biases and refrain from
exploiting users’ weaknesses.

Central to my efforts to achieve this goal is defining and studying tractable models in
which a user is affected by cognitive bias and interacts with an online recommendation
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Figure 7.2: The closed loop between the user and the news aggregator. The diagram
includes the variables exchanged by the two interacting dynamical systems, as well as
their internal state variables.

system that provides her with personalized content recommendations. The models that
we will define shall make explicit the dynamical feedback loop between the evolution of
the user’s internal state (representing for instance her preferences) and the personalized
recommendation of items. The purpose of these models is twofold:

1. Rigorously studying properties of the interconnection in the long run and in the
transient: in control theoretic terms, these may include boundedness and stability
of trajectories or controllability, to complement performance measures written in
terms of loss or regret.

2. Design recommendation systems that keep users’ states stationary in a suitable
sense [89]: in practice, designing recommendation systems which do not influence
the preferences of individuals too much.

I will now present a relevant case study in this perspective.

7.3.1 A toy model of news recommendations

In online platforms, recommender systems are responsible for directing users to relevant
content. In order to enhance the users’ engagement, recommender systems adapt their
output to the reactions of the users, who are in turn affected by the recommended
content. I have identified the case of a user that interacts with an online news aggregator
as a prototypical example of unintended feedback, as it exemplifies all aspects that were
discussed above.

In joint work with my postdoc W.S. Rossi, we have studied the empirical and domain
literature to reach a good understanding of the phenomenon and to distil its key ele-
ments. Based on this analysis, we have defined a tractable analytical model of a user
that interacts with an online news aggregator, with the purpose of making explicit the
feedback loop between the evolution of the user’s opinion and the personalised recom-
mendation of content. The model is summarized in Figure 7.2. More specifically, we
assume that the user is endowed with a scalar opinion about a certain issue and receives
news about it from a news aggregator: her opinion is influenced by all received pieces
of news, which are characterized by a binary position on the issue at hand. The user is
affected by a confirmation bias, that is, a preference for news that confirm her current
opinion. The news aggregator recommends news items with the goal of maximizing the
number of user’s clicks (as a measure of her engagement): in order to fulfil its goal, the
recommender has to compromise between exploring the user’s preferences and exploiting
what it has learned so far.
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After defining suitable metrics for the effectiveness of the recommender systems (in our
case, the click-through rate) and for its impact on the opinion, we perform in [249]
both extensive numerical simulations and a mathematical analysis of the model. Our
findings indicate that personalised recommendations markedly affect the evolution of
opinions and favor the emergence of more extreme ones: the intensity of these effects is
inherently related to the effectiveness of the recommender. We also show that by tuning
the amount of randomness in the recommendation algorithm, one can seek a balance
between the effectiveness of the recommendation system and its impact on the opinions.

Our work is starting to attract attention from different communities (control, complex
systems, computer science) and its ideas are influencing opinion dynamics models [223,
167] and design strategies for recommendation systems [213, 90, 256].
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Chapter 8

Ongoing work: theory and
applications

I devote this final chapter to the description of research lines that are currently active
and that implement the perspective from the previous chapter.

The first research line is a theoretical line of work that, along the lines of Sections 5.3
and Section 7.1, aims to develop methods for the analysis and control of dynamical
systems on large graphs by using graph limits (essentially graphons, even though I am
also interested in other graph limits).

The second research line is a more empirical one that aims at studying dynamics in
social media through an interdisciplinary approach that combines modeling, control-
theoretic analysis, and the analysis of data from social media platforms (with a focus
on YouTube).

The third research line regards the effects of the widespread usage of navigation apps
in mobility. In my broad perspective, I see it as another key instance of the “cyber
loop” that I have emphasized in Section 7.3, in which information flows between digital
systems (and ultimately, between people) have significant consequences for physical
flows in traffic networks.

8.1 Graph limits: dynamics on graphs and on graphons

As I already explained in Sections 5.3 and 7.1, I believe that graph limits are very promis-
ing tools to address the challenges of large size and uncertainty that socio-technical
networks present. I am thus actively working on them, with two main research direc-
tions. This work is ongoing through the PhD thesis of Raoul Prisant, co-advised with
my long-time collaborator Federica Garin.

The first research direction deals with the properties of network Laplacians and consensus-
seeking dynamics associated to the Laplacian (see Chapter 3). The study of graphon
Laplacians is quite delicate because the associated operator is not, in general, compact.
Building upon earlier work in [287, 12], I have provided with my student Renato Vizuete
a detailed study of its spectrum in [285]. I currently intend to apply this knowledge to
study dynamics of consensus, synchronization, and opinion dynamics. For concreteness,
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I will provide an example drawn from ongoing work on the Laplacian dynamics (3.1).
Let us remind the associated initial value problem with a slightly different notation, in
which n is the number of nodes, gi the initial opinion of node i, and u

(n)
i the opinion of

each node i that satisfiesu̇
(n)
i (t) =

1

n

n∑
i=1

A
(n)
ij (u

(n)
j (t)− u

(n)
i (t)),

u
(n)
i (0) = gi.

(8.1)

This should be compared with the dynamics on the graphon
∂u

∂t
(x, t) =

∫
I

W (x, y)(u(y, t)− u(x, t))dy

u(x, 0) = g(x),
(8.2)

where u : [0, 1]× R+ → R and g : [0, 1] → R is the initial opinion distribution.

In order to appropriately compare solutions, define intervals Ii = ( i−1
n , i

n ] for i = 1, . . . , n
and the piece-wise constant functions

Wn(x, y) =
∑
i,j

A
(n)
ij 1Ii(x)1Ij (y), gn(x) =

n∑
i=1

gi1Ii(x),

and un(x, t) =

n∑
i=1

u
(n)
i (t)1Ii(x),

where 1Ii(x) = 1 if x ∈ Ii and 0 otherwise. Notice that Wn is the piece-wise constant
graphon that represents the original finite graph. We thus have the following result1.

Theorem 8.1 (Bound on approximation error). Consider W : [0, 1] → [0, 1] measurable
and g ∈ L∞(I). If u(n)(t) and u(x, t) are solutions of (8.1) and (8.2), then for all
t ∈ [0, T ]

∥(u− un)(·, t)∥22 ≤ (∥g − gn∥2 + Cu∥W −Wn∥2) exp(2T ),

where Cu = sup
t∈[0,T ],x∈I

|u(x, t)|.

The bound shows that the solutions of the two dynamics are close and converge to each
other when the number of nodes grows to infinity.

The second research direction regards the relationship between the steady-state behav-
iors of dynamics on the graphons and those of dynamics on large graphs (as those in
the previous paragraph and those I presented in Section 5.4 for the SIS). As a mat-
ter of fact, a closer look at the bound in Theorem 8.1 shows that although the result
guarantees that solutions converge to each other as n diverges on any bounded interval,
the presence of the exponential-in-time factor prevents drawing immediate conclusions
about the steady-state. Instead, in control systems we are deeply interested in steady
states, such as equilibria or limit cycles, and in their stability properties.

1This statement is based on [190]: a variation that applies to signed graphon, that is, graphons that
take values in [−1, 1], is presented in my preprint [119]. I have preferred to include the statement from
[190] because it has the same spirit and requires to define some less notation.
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8.2 Online social media and their disorders

Online social networks, such as online blogging platforms and social media, are chief
examples of complex systems where social and technological components interact. I
refer to these systems as cyber-social networks: social components are human individu-
als, whereas technological (or cyber) components are devices or platforms endowed with
sensing, computation, and communication capabilities. In these systems, the interac-
tions between the individuals are mediated and determined by the ubiquitous presence
of digital technology and artificial intelligence algorithms. Furthermore, artificial en-
tities like social bots interact with humans [110] and are becoming more and more
sophisticated and effective with the recent advances of generative artificial intelligence.

On online networking platforms such as Twitter, Facebook and the like, it is plain that
users do not interact in person, but via the platform: interactions are mediated by the
technological interface. The platform enables interactions, but also limits and orients
them, in at least three fundamental ways. Firstly, many interactions are stereotyped
because users are allowed a limited set of possible reactions to express their thoughts
and emotions (e.g. re-tweeting or not, liking or not). These limitations naturally re-
quire dynamical models where continuous variables (defining the individual states) and
discrete variables (defining the communication) interplay [271, 62]. Secondly, the plat-
form provides the user with live updates about her/his impact on her/his friends and
followers: feeding back this information alters the user’s behavior. Thirdly, platforms
use recommendation systems to filter and select which contents should be brought to
the users’ attention, although users themselves are often unaware of this filtering [103].
These live updates and recommendations introduce nonlinearities and feedback loops in
the dynamics, such as I studied in [249] and Section 7.3.

Online social services easily record behaviors and interactions, producing large data
streams that enhance our understanding of social dynamics [221]. Beyond the analysis
power, these tools also offer new opportunities to influence (sometimes inadvertently) the
behaviors of the individuals. This influence can be obtained in various ways, including
advertising, diffusing sensitive information, or altering the way individuals interact. A
remarkable example of this potential was the controversial Facebook experiment [163],
which induced an emotional contagion in thousands of unaware users by tweaking their
News Feeds so to emphasize displays of sadness.

Understanding these dynamics and how to manage them is thus not only a scientific
challenge, but also an urgent need for the society. Exemplary and well-known issues
in this context are the formation of filter bubbles [216] that hinder the transmission of
relevant information and create self-confirmatory echo-chambers; the viral diffusion of
fake news [153] and junk news [275] that distort and clutter public discourse; and the
ever-accelerating pace of collective attention [174], which jeopardizes a meaningful public
debate. These interrelated phenomena, which I sometimes refer to as the disorders of
online media, are a byproduct of the very nature of social media, which make interactions
highly dynamical and introduce unprecedented effects of feedback and scale [255].

In the last few years I have set up a research effort to contribute to understanding and
mitigating these phenomena. This research builds upon my interest in opinion dynamics
(which I discussed in Section 6.3) but has broader scope that includes the dynamics of
content production, collective attention and popularity in social media. While I was
elaborating my model of recommendation system [249], I established interdisciplinary
collaborations with social and computer scientists, whose expertise includes computa-
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Figure 8.1: Scatterplot of the average Gini index of popularity and average life cycle of
the videos of 60 YouTube channels highly active in the French political news debate.
The size of the dots corresponds to the total number of views collected by the channel
and the color corresponds to the number of published videos (going from dark red for
fewer videos, to orange, yellow, green and violet for more videos).

tional social sciences and sociology of new media.

In this context, the PhD thesis of Maria Castaldo, which also included a substantial
empirical work of data collection and analysis, has been for me an invaluable opportunity
to get a hands-on expertise about social media and, in particular, YouTube. YouTube is
indeed a prominent, and still raising, platform in the social media landscape, all the while
having been relatively neglected in past research. The analysis of YouTube data has
allowed us to uncover fascinating insights into the circadian rhythms of online content
consumption, as well as their alterations during the recent COVID-19 pandemics [53].
We have also shed light on a lesser known phenomenon on YouTube, the frequent
corrections that the platform performs to view counters in order to combat fake views
that are due to bots or click farms [51].

From the modelling point of view, during her thesis we have developed a model that
describes the competition for the attention of users that takes place on social media [52].
This mathematical model, which is a direct translation in mathematical terms of the
sociological model of [152], is able to qualitatively reproduce phenomena of popularity
that we observe among YouTube channels. For instance, Figure 8.1 shows that faster
dynamics of attention correlate with more unequal popularity of videos.

8.3 Information loops in mobility: the case of naviga-
tion apps

In the past decade, there has been a significant increase in the use of navigation apps.
This is mainly due to two factors. First, the increase in traffic demand, to which
transportation networks are subjected as a result of increasing human socio-economic
activities, causes congestion on major roads, leading users of transportation networks to
consider using alternative routes to reduce travel time and avoid traffic jams. Second,
the increasing number of vehicles equipped with navigation systems and the growing
usage of dedicated smartphone applications, such as Waze, Google Maps, and the likes.
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Traffic dynamics Navigation system

traffic information

route recommendations

Figure 8.2: Control systems perspective: Using real-time information implies that nav-
igation apps are introducing a feedback loop on the traffic system.

Navigation apps provide directions for shortest travel time routes based on real-time
data. This fact makes apparent their potential to dynamically influence the route de-
cisions made by users of the transportation network. In turn, this observation yields
questions on the impact exerted by the use of such applications on road traffic and
makes clear the need to understand the underlying feedback mechanisms (Figure 8.2).
The relevance of such questions is strengthened by strong empirical evidence showing,
over the years, significant changes in traffic patterns and network inefficiencies, which
are explained by the new routing habits of app-informed users [39].

The recent scientific literature has already tried to study the effects of navigation apps.
The relevant body of research comprises empirical work [39], large-scale simulations
[39, 38], and mathematical models [23, 26]. In general, these works focus their attention
on two main aspects. First, they highlight how navigation apps can in some cases be
responsible for the degradation of the efficiency of the transportation network [39]. This
comes from the fact that providing users with shortest route recommendations leads to
traffic patterns where no user has an incentive to change route, known as Wardrop
equilibria or user equilibria, which are typically suboptimal with respect to total travel
time [289]. Second, they show that the presence of app-informed users tends to spread
traffic over the network. Unfortunately, this can induce just a slight alleviation of the
pressure on main routes of the network, at the price of a disproportionate increase
of congestion on secondary ones, not designed to support the demand they are now
subject to [39]. These drawbacks are exacerbated when the fraction of app-informed
users increases.

All the mentioned works propose traffic assignment models, where the transportation
network is represented by means of a network equipped with origin-destination pairs
[23, 161]: users flow through network links from an origin to a destination, choosing
one of the possible routes, according to suitable criteria, e.g., travel time. The authors
of [39, 263] propose a static model, i.e., in which traffic flows are statically allocated.
Static traffic assignment assumes the system to be at equilibrium and is not able to
describe the evolution of traffic over time. On the contrary, [111] provides a dynamic
model describing the evolution through time of the state of traffic over the network by
means of a system of ordinary differential equations (ODEs). However, the complexity
of the model prevents the rigorous analysis of its properties. In this work, we aim to
go beyond this state of the art and develop a traffic assignment model that is both
dynamical in nature and amenable to a full rigorous analysis, so that its equilibria are
studied in detail after their stability is established.

The main contribution of the work of my student Tommaso Toso is to provide analytical
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Figure 8.3: Illustration of the Grenoble case study. Left: Google Maps caption show-
ing two alternative routes in the Greater Grenoble urban area. Right: Corresponding
geometry of roads in the Aimsun simulation environment.

proof that navigation apps can have detrimental effects on traffic. This is done by
analysing a novel dynamic traffic assignment model in which a system of ODEs, one
for each route of the network, is defined. The considered network geometry consists
in an origin-destination pair with two alternative routes: a fraction of the drivers can
resort to a navigation system to choose which route to pick. The traffic dynamics on
network routes is described by means of a supply and demand mechanism, inspired by
[85, 199]: supply and demand functions are very effective to realistically describe the
traffic dynamics, also in presence of congestion [76, 177].

In the proposed model, the influence of route recommendations on the demand splitting
is captured by state-dependent routing ratios, which define how the traffic demand
splits on the two routes. Routing ratios are functions of the route densities that satisfy
a natural monotonicity property, i.e., the demand directed towards a route decreases if
its travel time increases. This property enables a thorough stability analysis, showing
that the model admits a globally asymptotically stable equilibrium point. The impact of
navigation apps on traffic can thus be studied by studying the properties of the steady-
state equilibrium. Our results shown that, at equilibrium, routing recommendations can
have negative effects: the network efficiency, measured as a total travel time, can worsen
and unsatisfied demand can emerge. Consistently with the literature, we find that the
drawbacks of navigation apps become more likely for high penetration rates [39].

The dynamic model we propose is the first featuring state-dependent monotone routing
ratios, otherwise studied in [23, 73, 74, 75], together with a supply and demand mech-
anism [76, 177]. This work-in-progress is presented in a series of papers and preprints
[268, 269, 266]. We are currently working towards an extensive analysis of the Grenoble
case study shown in Figure 8.3. The analysis is based on a detailed simulation performed
on the Aimsun commercial micro-simulator.
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Joint publications: [C26]
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W.S. Rossi went to Politecnico di Torino as a Ph.D. student. He then joined me
as a Postdoc in Twente and later became Assistant Professor at the University
College, University of Groningen, NL

A.6 Editorial and referee activities

Since 2008, I have regularly acted as referee for journal and conference papers. I have
received the 2015 Outstanding Reviewer Award from the IEEE Transactions on
Automatic Control.
Since 2013, I have been Associate Editor in the editorial boards of several conferences
and journals of the control system community.
Below, I list my main responsibilities in editorial boards, award committees and review-
ing funding proposals.

Journals

• Automatica, Associate Editor (2021–today)

• IEEE Control Systems Letters, Associate Editor (2017–2021)

• Asian Journal of Control (Wiley), Associate Editor (2017–2022)

• International Journal of Robust and Nonlinear Control (Wiley), Subject Editor
(2014–2018)

Conferences (International Program Committees)

• IFAC World Congress: 2020, 2023
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• 2021 IFAC Symposium on Robust Control Design (ROCOND 2021)

• 55th IEEE Conference on Decision and Control, Associate Editor at Large, 2016

• IFAC Workshop on Distributed Estimation and Control in Networked Systems
(NecSys): 2016, 2018, 2020

• International Symposium on Mathematical Theory of Networks and Systems (MTNS):
2014, 2016, 2018

• IEEE Robotics and Automation Society, CASE Conference Editorial Board, As-
sociate Editor (2016–2017)

IEEE Intl. Conference on Automation Science and Engineering (CASE), 2017

• European Control Association (EUCA), Conference Editorial Board, Associate
Editor (2013–2016)

2014, 2015, 2016 European Control Conference

• IEEE Control System Society, Conference Editorial Board, Associate Editor (2013–
2016)

2014, 2015, 2016, 2017 American Control Conference
2013, 2014, 2015, 2016 IEEE Conference on Decision and Control

Award Committees:

• National French Best PhD Thesis “GdR MACS” (2017, 2018, 2024)

• Outstanding Student Paper Prize, IEEE CSS TC on Neworks and Communica-
tions (2023)

Referee of funding proposals:
French National Research Agency ANR (2014, 2015, 2016), European Research Coun-
cil (2017, 2018, 2022, 2024), ETHZ Research Commission (2018), Italian Ministry of
University and Scientific Research–MIUR (2018, 2021), Dutch Research Council NWO
(2019), Israel Science Foundation (2020)

A.7 Leadership roles, service to the community and
organization activities

Local service

2020–: Team leader of “Dynamics and Control of Networks (DANCE)”, joint research
team between GIPSA-Lab and Inria Centre at the University Grenoble Alpes.

The DANCE team, for which I coordinate the research activities, currently
includes five tenured members (including myself) and about ten non-tenured
members (PhD students, post-docs, research scientists, and engineers). The
tenured members are independent PIs who are Associate Professors at the
University of Grenoble or Researchers at CNRS or INRIA. The research of
the DANCE team focuses on control methods for large-scale socio-technical
systems, with a particular emphasis on mobility applications.
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Service to national community

Member of the steering committee of the GdR MACS (body coordinating national
activities in Automatic Control in France), 2019–today

Participation to hiring committees

Concours CR2 (Tenured Researcher), INRIA Saclay, Paris, Spring 2017

Participation to PhD committees and PhD theses reviews

16. Vera Sosnovik. Detection and analysis of issue and political ads. Université Greno-
ble Alpes, PhD advisor: Oana Goga. September 4, 2023

15. Olivier Lindamoulage de Silva. On the efficiency of decentralized epidemic man-
agement and competitive viral marketing. PhD Advisors: Irinel-Constantin Morarescu,
Samson Lasaulce. Université de Lorraine, September 28, 2023

14. Jonathan Adams. Mathematical modelling of person-to-person opinion exchange:
understanding and quantifying polarisation. Queensland University of Technology,
Brisbane, Australia. PhD advisor: Gentry White. Referee, 2023

13. Carmela Bernardo. Convergence analysis of heterogeneous opinion dynamics with
bounded confidence and stubbornness. University of Sannio, Benevento, Italy.
Ph.D. advisor: Francesco Vasca, Referee, 2022

12. Zohreh Sanai. Coordination of Open Multi-Agent Systems. University of Cagliari,
Italy. PhD advisors: Carla Seatzu and Mauro Franceschelli. January 2022

11. Diego Deplano. Coordination of multi-agent systems: stability via nonlinear Perron-
Frobenius theory and consensus for desynchronization and dynamic estimation.
University of Cagliari, Italy. PhD advisors: Alessandro Giua and Mauro Franceschelli.
Referee, March 2021

10. Francesco Sasso. Distributed Bayesian methods for estimation and learning over
networks. University of Salento, Lecce, Italy. Ph.D. advisors: Giuseppe Notarste-
fano and Angelo Coluccia, Referee, 2020

9. Wenjing Yang. Influence Maximization in Social Networks. Université Aix-Marseille,
France. PhD advisors: Alessandro Giua and Leonardo Brenner. November 2019

8. Zhiyang Ju. Persistent Communication Connectivity of Multi-agent Systems. Uni-
versity of Melbourne, Australia. PhD advisors: Dragan Nesic and Iman Shames.
Referee, February 2019

7. Pierre-Yves Chevalier. Inhomogeneous Products of Stochastic Matrices with Appli-
cation to Consensus Systems. Université catholique de Louvain, Louvain-la-Neuve,
Belgium. Ph.D. advisors: Julien Hendrickx and Raphael Jungers, June 2018

6. Domenico Tangredi. Consensus in Heterogeneous Opinion Dynamics Networks.
University of Sannio, Benevento, Italy. Ph.D. advisor: Francesco Vasca, Referee,
2018

5. Florian Dietrich. Analyse et contrôle de systèmes de dynamiques d’opinions.
CRAN, Université de Lorraine, Nancy, France. Ph.D. advisors: Marc Jungers
and Samuel Martin, Examinateur, November 22, 2017
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4. Laura Dal Col, On distributed control analysis and design for multi-agent sys-
tems subject to limited information. Institut National des Sciences Appliquées,
Toulouse, France. Ph.D. advisors: Luca Zaccarian and Sophie Tarbouriech, Ex-
aminateur, October 25, 2016

3. Georg S. Seyboth, On distributed and cooperative control design for networks of
dynamical systems. University of Stuttgart, Germany. Ph.D. advisor: Frank
Allgöwer, January 15, 2016

2. Francesco Ferrante, On quantization and sporadic measurements in control sys-
tems: Stability, stabilization, and observer design. Université Paul Sabatier,
Toulouse, France. Ph.D. advisors: Frédéric Gouaisbaut and Sophie Tarbouriech,
Examinateur, October 21, 2015

1. Matin Jafarian, Coordination with binary controllers: Formation control and dis-
turbance rejection. University of Groningen, the Netherlands. Ph.D. advisor:
Claudio De Persis, June 25, 2015

Participation to Licentiate and Master committees (abroad)

2. Gustav Lindmark. Methods and algorithms for control input placement in complex
networks. Linköping University, Sweden. Advisor: Claudio Altafini. August 2018

1. Charles Monnoyer. Efficiency bounds in computations in open multi-agent sys-
tems. Université catholique de Louvain, Louvain-la-Neuve, Belgium. Advisor:
Julien Hendrickx. June 2018

Organization of scientific events

• Open Invited Track on “Control for Socio-Technical Network Systems”, IFAC
World Congress, Yokohama, Japan, July 2023 (with G. Como, K. Savla, F. Parise)

• Co-organizer of ANR HANDY workshop on “Hybrid and Networked Dynamical
Systems”, Toulouse, France, June 2022

• Co-organizer (with M. Fiacchini) of the 42-nd Grenoble Summer School of Au-
tomatic Control on the topic “Data and Learning for Control”, September 6-10,
2021

• Organizer of the Automatic Control Seminar Series, GIPSA-lab, 2017–2021.

• Open Invited Track on “Social Systems: Dynamics, Games and Control on Net-
works”, IFAC World Congress, Berlin, Germany, July 2020 (with G. Como)

• GdR MACS Workshop “CRISE-MACS: Pendant et au-delà de la crise sanitaire
COVID-19”, July 7, 2020 (Online).

• International workshop on “Disorders of Online Media” (with T. Venturini as PI
of the DOOM project), Paris, November 16-17, 2019

• Co-organizer of the international ERC Scale-free Back workshop on “Analysis and
Control of Large-Scale Complex Networks”, Grenoble, September 2018

• Invited session on “Model reduction and control in large-scale networks”. 2018
European Control Conference. Cyprus, June 2018 (with C. Canudas)
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• Co-organizer of the international ERC Scale-free Back workshop on “Modelling
reduction tools for large-scale complex networks”, Grenoble, September 2017

• Open Invited session on “Dynamics and control in social networks”, IFAC World
Congress, July 2017 (with G. Como)

• Workshop on “Dynamics and Control in Social Networks”, IEEE CDC, Las Vegas,
Nevada, December 11, 2016

• Invited session on “Dynamics in social networks: Opinions, games and optimiza-
tion”, IEEE Conference on Decision and Control, December 2014 (with C. Ravazzi,
H. Ishii, R. Tempo)

• Local organizer and co-chair (with F. Dabbene), 2014 Workshop on Uncertain
Dynamical Systems (WUDS 2014), Amsterdam, Netherlands, August 2014

• Member of the National Organizing Committee, 21st International Symposium
on Mathematical Theory of Networks and Systems (MTNS 2014), Groningen,
Netherlands, July 2014

• International workshop on “Algorithms and dynamics over networks”, Diparti-
mento di Scienze Matematiche, Politecnico di Torino, February 8–9, 2012 (with
G. Calafiore, F. Fagnani, and S. Zampieri)

• International workshop on “Algorithms and dynamics over networks”, Diparti-
mento di Matematica, Politecnico di Torino, July 14–15, 2010 (with G. Calafiore,
F. Ceragioli, and F. Fagnani)

• Invited session on “Crowd and swarm dynamics: interactions, self-organization,
mathematics, applications”, 10th biannual meeting of SIMAI (Società Italiana di
Matematica Applicata ed Industriale), Cagliari, Italy, June 21–25, 2010 (with
A. Tosin)

Membership of professional societies

IEEE, Member, 2013–2018. Senior Member, 2018–today
Control Systems Society, 2013–today

SIAM, Member, 2023–today

SIMAI (Italian Society for Industrial and Applied Mathematics), 2010–2020

Membership of activity groups

CSS Technical Committee “Networks and Communications Systems”, 2013–today
Working Group on Control of Network Systems, chair, 2015–today

CSS Technical Committee “Smart Cities”, 2024–today
IFAC Technical Committee 1.5 on Networked Systems, 2013–today
IFAC Technical Committee 2.5 on Robust Control, 2014–today
IFAC Technical Committee 9.2 on Social Impact of Automation, 2018–today
Dutch 4TU Federation, ICT Next Generation (ICTng), Core team member, 2015–2016



A.8. FUNDING AND RESEARCH GRANTS 97

A.8 Funding and research grants

Responsibility of externally funded research activities

COCOON (Continuous Methods for the Control of Large Networks).
ANR PRME (2022–2027) PI: P. Frasca. Amount: 408k e
Abstract: COCOON is a 4-year research project funded by ANR (the French national
science foundation). The COCOON project advocates a scalable approach to large
networks that is based on continuous network models instead of the usual (discrete)
graphs. Towards this broad objective, this proposal aims at concurrently developing and
cross-fertilising two promising methods to define continuous dynamics that approximate
large-network dynamics: (1) Using graph limit objects such as graphons; (2) Defining
analog approximations through a continuation process that replaces a large systems of
ordinary differential equations with a single partial differential equation. These methods
can be beneficial in a multitude of potential applications: the project will address three
distinct applications with potentially high societal impact: epidemic models, electro-
mobility networks and, with a bigger thrust, multimodal mobility networks.

HANDY (Hybrid and Networked Dynamical Systems).
ANR PRC (2019–2023). PI: Luca Zaccarian. Co-PI, local leader: P. Frasca. Amount:
105ke for the Grenoble unit
Abstract: Networked dynamical systems are ubiquitous in current and emerging tech-
nologies. From energy grids, fleets of connected autonomous vehicles to online social
networks, the same scenario arises in each case: dynamical units interact locally to
achieve a global behavior. When considering a networked system as a whole, very often
continuous-time dynamics are affected by instantaneous changes, called jumps, leading
to so-called hybrid dynamical systems. Hybrid phenomena thus play an essential role in
these control applications, and call upon the development of novel adapted tools for sta-
bility and performance analysis and control design. In this context, the aim of HANDY
project is to provide methodological control-oriented tools for realistic networked mod-
els, which account for hybrid phenomena. The project brings together researchers from
LAAS in Toulouse, CRAN in Nancy, GIPSA in Grenoble and LSS in Gif-sur-Yvette, with
expertise in various domains of automatic control, ranging from geometric control and
optimization, switched systems, hybrid dynamics, nonlinear control, and multi-agent
systems. See also: http://projects.laas.fr/handy

DOOM (Systems-theory for the Disorders Of Online Media).
80 PRIME grant from CNRS MITI (2019–2022). PI: P. Frasca. Amount: 20k e+ 1
PhD salary
Abstract: Online social media have a key role in contemporary society and the debates
that take place on them are known to shape political and societal trends. For this reason,
pathological phenomena like the formation of “filter bubbles” and the viral propagation
of “fake news” are observed with concern. The scientific assumption of this proposal is
that these information disorders are direct consequences of the inherent nature of these
communication media, and more specifically of the collective dynamics of attention
thereby. In order to capture these dynamics, this proposal advocates the mathematical
modelling of the interplay between the medium (algorithmic component) and the users
(human component). The resulting dynamics shall be explored by a system-theoretic
approach, using notions such as feedback and stability. This quantitative and rigorous
approach will not only unlock fundamental insights but also deliver suggestions on

http://projects.laas.fr/handy
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suitable policies to manage the media. See also: https://cis.cnrs.fr/doom. The
follow-up project ADOBE (Attention Dynamics in Online Media and Beyond),
in collaboration with F. Gargiulo and T. Venturini, has also been funded by the MITI
(18 ke , 2022–2023).

ON-ROUTE (Online Routing Recommendations in Multimodal Transporta-
tion: Impact, Potential Shortcomings, and their Mitigation).
IRGA grant from Grenoble IDEX (2021–2024). PI: A. Kibangou, co-PI: P. Frasca.
Amount: 5 ke+ 1 PhD salary
Abstract: Millions of users rely on Online Routing Applications (ORAs) like Waze,
Google Maps, and TomTom for navigation guidance, impacting traffic congestion and
transportation modes. ORAs function as social feedback systems, gathering and influ-
encing user choices in dynamic traffic networks. Our project shifts focus from service
providers to transportation managers. Online routing is in general formulated as a
multicriteria optimization problem, which is solved by the ORA to satisfy user needs:
instead, the transportation network manager aims at optimizing some overall measure
of the efficiency of the network. This project therefore aims at analyzing the effect
of ORAs on transportation networks and at finding mitigation strategies against their
adverse effects, thanks to their regulation or to suitable traffic control actions, such as
variable speed limits or intelligent traffic lights.

C2S2 (Control of Cyber-Social Systems)
IRS grant from Grenoble IDEX (2017–2018). PI: P. Frasca. Amount: 8 ke
Abstract: The project concentrates on cyber-social systems, that is, complex systems
with interacting social and technological components. A strong motivation for this
novel research direction comes from the need for innovative tools for the management
of vehicular traffic. In this application, state-of-the-art approaches concentrate on hard
control actions, like traffic lights: instead, future management methods should exploit
soft control actions aimed at controlling the traffic demand, that is, the aggregated
behaviors of the drivers. Within this perspective, this project explores a selection of
original scientific challenges related to controlling the distribution of the system’s state.

MOB (Models of Bubbles in Online Social Networks
CNRS PEPS S2IH 2018. Amount: 10 ke
Abstract: This exploratory project focuses on the effects of online recommendation
systems on social dynamics, which may entail the formation of “filter bubbles” that
distort the experience of the users. The project will develop a mathematical model to
demonstrate these effects and propose designs for their mitigation. The research will
be conducted by a blend of tools from dynamical systems, network theory, complex
systems, and control systems.

Participation to externally funded research activities

• FeedingBias ANR PRC project. PI: Gilles Bastin (2023–2026)

• “Algorithms & Society” MIAI Chair (AI and Sociology). Core faculty member.
PI: Gilles Bastin (2019–2023)

• “AI and dynamical systems: new paradigms for control and robots” MIAI Chair
(AI and Robotics). Core faculty member. PI: Christophe Prieur (2019–2023)

https://cis.cnrs.fr/doom
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• “Contextual Recommendations in Action - Bridging AI and Real-Life Economics”
MIAI Chair. Associated faculty member. PI: Sihem Amer-Yahia (2019–2023)

• Scale-FreeBack ERC Advanced Grant. PI: Carlos Canudas de Wit. (October
2016–2021)

• COOPS Joint International Lab, between CNR–IEIIT and Osaka University/Tokyo
Institute of Technology/Mitsubishi Electric Corporation. Topic: Cooperative
Control of Energy Management Systems. Project leader: R. Tempo. (Dec. 2014
– December 2017)

• Institute for Collaborative Biotechnologies (ICB), Santa Barbara, USA. “Opinion
Dynamics in Social Networks: Peer-to-Peer Interactions, Information Assimila-
tion, and Strategic Manipulation”. (External collaborator) Project leader: F.
Bullo. (Nov. 2011 – Dec. 2012)

A.9 Outreach and non-academic collaborations

Industrial collaborations

• CDiscount, Bordeaux, France. Topic: Ethics & algorithms (2019–2020).

• SELEX Sistemi Integrati (Finmeccanica group), Rome, Italy. Topic: simulation
and radar detection of stochastic signals (2009–2010)

Press coverage

• Interview by Marie Lyan, La Tribune – Auvergne-Rhône-Alpes, about our Covid-
19 research published in PLOS Computational Biology (30/08/2021).

• Stress, travail, médias... Comment avons-nous vécu le confinement ?. Arti-
cle on “Le Journal du CNRS” on online behaviors during COVID-19 lock-down
(09/06/2020)

• Press release by INS2I institute about project DOOM, 2019

• Online technology magazine Tech Xplore article about recommender systems,
September 2018

A.10 Teaching

These are graduate and undergraduate courses that I have designed and thought. My
book with Fabio Fagnani originated from the lecture notes of our courses at Politecnico
di Torino. Notice that since I became a CNRS researcher, I have had no teaching duties,
but I have been teaching one graduate course since 2021 and I intend to expand my
teaching activities in the future.

• Topics in Smart Transportation. Master Autonomous Robotic Systems (MARS),
Institut National Polytechnique de Grenoble. 8 h in fall 2021, 2022, 2023

• Introduction to network coordination, MiSCIT: Master in Systems, Control
& IT, Grenoble, France. 15 h, winter 2015.

https://lejournal.cnrs.fr/articles/stress-travail-medias-comment-avons-nous-vecu-le-confinement
https://ins2i.cnrs.fr/fr/cnrsinfo/projets-80prime-six-projets-coordonnes-par-des-chercheurs-de-lins2i
https://techxplore.com/news/2018-09-loop-opinion-formation-personalized.html
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• Network dynamics (with G. Como and M. Cao), DISC graduate school, Utrecht.
8 h, fall 2014.

• Signals and systems. Undergraduate course, Creative Technology program–
Smart Technology, University of Twente. 3 ECTS in fall 2014, 2015

• Signals and systems. Undergraduate course, Creative Technology program–
New Media, University of Twente. 3 ECTS in fall 2014, 2015

• Hybrid dynamical systems. Master in Applied Mathematics, University of
Twente. 5 ECTS in spring 2014, 2015, 2016

• Dynamics over networks (with F. Fagnani). Master in Mathematical Engi-
neering, Politecnico di Torino. 20 h, April–June 2012 and 2013

• Control of/over networks (with F. Fagnani). Master in Automatica and Con-
trol Technologies, Politecnico di Torino. 20 h, January–March 2011 and 2012

A.11 Invited presentations

54. “Graphons and dynamics on large graphs, from a control systems perspective”,
Symposium on Collective Models for Networked Particle Systems, University of
Pavia, April 16, 2024

53. “Navigation systems in traffic networks: Route recommendations and perfor-
mance degradation”, Focus Period Symposium on Network Dynamics and Control,
Linköping, September 20–22, 2023

52. “Distributed algorithms over graphs: Consensus, gossiping, relative estimation,
distributed optimization”, Peyresq Summer School, Peyresq, France, June 25–
July 1, 2023

51. “Potential deterioration in transportation network efficiency due to route recom-
mendations”, Games, Learning, and Networks. Workshop on Games on networks,
Singapore, 3–6 April 2023

50. “The closed loop between opinion formation and personalised recommendations”,
Laboratoire Jacques-Louis Lions, Paris Sorbonne, November 25, 2022

49. “The closed loop between opinion formation and personalised recommendations”,
Workshop on “Stochastic modeling and complex networks: application to the dy-
namics of opinions in social networks”, Avignon, October 2022

48. “Graphons: A tool for the analysis of dynamical systems on large networks”, Scuola
Superiore Meridionale, Naples, Italy, November 25, 2021

47. “The closed loop between opinion formation and personalised recommendations”,
Technion, Haifa, Israel, January 4, 2021

46. “Traffic flow on a ring with a single autonomous vehicle: An interconnected sta-
bility perspective”, Southeast University, Nanjing, China, September 4, 2020

45. “The closed loop between opinion formation and personalised recommendations”,
Peking University, Beijing, China, July 21, 2020

https://lia.univ-avignon.fr/journee-gdr-cosmos-anr-nicetweet/
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44. “The closed loop between opinion formation and personalised recommendations”,
Workshop “Network Dynamics in the Social, Economic, and Financial Sciences”,
Turin, Italy, November 5-8, 2019

43. “Non-smooth opinion dynamics”, Workshop of the European Network for Nons-
mooth Dynamical Systems, Grenoble, September 18, 2019

42. “The closed loop between opinion formation and personalised recommendations”,
Workshop “Reti sociali e comportamenti emergenti”, Napoli, February 4, 2019

41. “The harmonic influence in social networks and its distributed computation by
message passing”, IXXI, ENS Lyon, July 3, 2018

40. “Randomization and quantization in opinion dynamics”, IRSTEA, Clermont-Ferrand,
March 14, 2018

39. “Message-passing computation of the harmonic influence in social networks”, L2S,
Paris-Saclay, November 21, 2017

38. “Harmonic influence in social networks and identification of influencers by message
passing”, WUDS’17 workshop, Banyuls-sur-mer, July 6, 2017

37. “Non-smooth dynamical systems in opinion dynamics”, University of Twente, En-
schede, NL, June 15, 2017

36. “The observability radius of network systems”, University of Cagliari, Cagliari,
Italy, May 4, 2017

35. “Non-smooth and hybrid systems in opinion dynamics”, IEEE CDC satellite work-
shop on Dynamics and Control in Social Networks, Las Vegas, Nevada, December
11, 2016

34. “Non-smooth and hybrid systems in opinion dynamics”, ANR Workshop "Con-
trol subject to computational and communication constraints” (CO4), Toulouse,
France, October 26-28, 2016

33. “The observability radius of network systems”, LAAS-CNRS, Toulouse, France,
September 29, 2016

32. “Non-smooth systems in opinion dynamics”, LAAS MAC workshop, Banyuls-sur-
Mer, France, June 23, 2016

31. “The harmonic influence in social networks and its distributed computation”,
LAAS-CNRS, Toulouse, France, June 17, 2016

30. “The local influence in social networks and its distributed estimation”, Université
catholique de Louvain, Louvain-la-neuve, Belgium, June 7, 2016

29. “The observability radius of network systems”, COOPS workshop, Osaka, Japan,
December 12, 2015

28. “Distributed estimation from relative and absolute measurements”, Kyoto Univer-
sity, Japan, December 11, 2015

27. “Distributed estimation from relative and absolute measurements”, Osaka Univer-
sity, Japan, December 9, 2015
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26. “Ergodic opinion dynamics from prejudices and gossiping”. Workshop on Mathe-
matical Models in Social Dynamics, Politecnico di Torino, Torino, Italy, October
1-2, 2015

25. “Distributed estimation from relative and absolute measurements”, LAAS Toulouse,
France, June 23, 2015

24. “Distributed estimation from relative measurements: Fundamental limitations,
algorithms, and application to power systems” (keynote), SICE International
Symposium on Control Systems (ISCS), Tokyo, Japan, March 4–7, 2015

23. “Distributed estimation from relative measurements”, TU Delft, the Netherlands,
February 18, 2015

22. “Message passing optimization of harmonic influence centrality”, SCONES work-
shop, Boston University, Boston, USA, October 27–28, 2014

21. “Ergodic dynamics in social networks”, WUDS’14 workshop, Amsterdam, August
22, 2014

20. “On the most influential node in a social network: competing leaders in opinion
dynamics”, CWTS-UT mini-workshop on Network Analysis, University of Twente,
June 18, 2014

19. “Opinion dynamics in social networks: modelling, analysis, and control”, TU Eind-
hoven, May 28, 2014 and Zilverling colloquium, University of Twente, June 10,
2014

18. “Estimation from relative measurements: fundamental limitations and distributed
algorithms in sensor networks”, TU Delft, The Netherlands, Novembre 15, 2013

17. “Topics in social networks: opinion dynamics and control”, IEIIT-CNR, Torino,
Italy, May 23, 2013

16. “Robust self-triggered coordination by ternary controllers”, Gipsa-Lab, Grenoble,
France, November 15, 2012

15. “The wisdom of randomly interacting crowds”, University of California at Santa
Barbara, September 26 and University of California at San Diego, September 28,
2012

14. “Robust self-triggered coordination by ternary controllers”, University of California
at Los Angeles, September 25, 2012

13. “On the mean square error of randomized averaging algorithms”, Universität Stuttgart,
Germany, May 15, 2012

12. “Coordination with little communication: Averaging, animal groups, automated
deployment”, Rijksuniversiteit Groningen, The Netherlands, February 21, 2012

11. “Coverage control via gossip communication”, Rijksuniversiteit Groningen, The
Netherlands, August 24, 2011

10. “Discontinuous feedback in consensus-seeking systems: Bounded confidence, quan-
tization, hysteresis”, University of California, Santa Barbara, USA, June 17, 2011

9. “Estimation of Gaussian signals via hexagonal sensor networks: Wildfire and pol-
lutant detection”. CASHMA FIRB review meeting, Università di Salerno, Salerno,
Italy, March 1, 2011
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8. “Gossip coverage control on graphs”, Université catholique de Louvain, Louvain-
la-Neuve, Belgium, April 5, 2011

7. “Broadcast gossip averaging algorithms: interference and asymptotical error”,
Kungliga Tekniska Högskola, Stockholm, Sweden, April 16, 2010

6. “Distributed averaging on digital noisy networks”, Lunds Tekniska Högskola, Lund,
Sweden, April 9, 2010

5. “Broadcast gossip averaging algorithms: interference and asymptotical error”,
Lunds Tekniska Högskola, Lund, Sweden, March 2, 2010

4. “Average consensus with communication constraints”. Meeting on mathemati-
cal control theory: controllability, optimization, stability (organized with PRIN
2006 funding). Dipartimento di Matematica, Politecnico di Torino, Torino, Italy,
April 20–21, 2009

3. “The role of communication constraints in optimization problems over networks”.
IAC-CNR, Roma, Italy, March 2009

2. “Gossip coverage control”. Dipartimento di Ingegneria dell’Informazione, Univer-
sità di Padova, Padova, Italy, Sep. 2008

1. “Quantized gossip consensus”, Arizona State University, Tempe (AZ), USA, April 15,
2008

Conference presentations (contributed)

20. “Attention dynamics and disorders on YouTube”. CCS/Italy 2023, Naples, Italy.
October 9–11, 2023

19. “SIS models on (not so) dense large random networks”, SIAM Conference on Ap-
plications of Dynamical Systems (DS23), May 14–18, Portland, Oregon, 2023

18. “Modeling limited attention in opinion dynamics by topological interactions”. NET-
GCOOP 2020, September 23, 2021

17. “A network reduction method inducing scale-free degree distributions”. European
Control Conference, Limassol, Cyprus, June 15, 2018

16. “Achieving robust average consensus dynamics over wireless networks”. European
Control Conference, Aalborg, Denmark, June 29, 2016

15. “An index for the local influence in social networks”. European Control Conference,
Aalborg, Denmark, June 29, 2016

14. “Harmonic influence in large-scale networks: Analysis, optimization, and applica-
tions to opinion dynamics and distributed control”, Mini-course at the Interna-
tional Symposium on Mathematical Theory of Networks and Systems, Groningen,
Netherlands, July 2014 (with Giacomo Como and Fabio Fagnani)

13. “A message passing algorithm for the evaluation of social influence”. European
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Publications

This appendix is devoted to presenting the publications that I have authored based on
my research. I will commence by offering an overview of my publication practices and
output in Section B.1, inclusive of references to collaborations and activity as advisor.
Following this, in Section B.2, I will present a selection of papers organized by topic.
Finally, Section B.3 contains the full list of my publications, categorized by type (books,
book chapters, journal papers, conference papers).

B.1 Overview

Summary of figures: Since 2007, I have (co)authored 1 book, 1 edited book, 6 book
chapters, 60 articles in international journals, and 51 full-length articles in the pro-
ceedings of international conferences. My publications span over 25 journals and the
proceedings of numerous conferences. Among the journals, the IEEE Transactions on
Automatic Control (10 articles) and the IEEE Transactions on Control of Network
Systems (7 articles) stand out as my most frequent venues. Among the conferences,
most are conferences in control systems that are organized by IEEE or IFAC: the most
frequent is the IEEE Conference on Decision and Control with 14 articles.

With over 120 co-authors, all but one of my publications are collaborations with col-
leagues or students. The vast majority of my journal publications (all but 7) have
not involved my Ph.D. advisors. Over time, joint publications with my students have
increasingly constituted a substantial portion of my work, with their contributions be-
coming the predominant majority since 2021.

Main academic collaborations (after my PhD):
Simone Baldi, Delft Technical University and Southeast University: coordination of
heterogeneous multi-vehicle systems, 2014–2024
Francesco Bullo, University of California, Santa Barbara: robotic networks, 2008–2016
Carlos Canudas-de-Wit, CNRS, Grenoble: large-scale systems, 2016–2023
Francesca Ceragioli, Politecnico di Torino: non-smooth systems, 2009–ongoing
Claudio De Persis, University of Groningen: quantized and hybrid systems, 2010–2013
Federica Garin, INRIA, GIPSA-Lab, Grenoble: network systems, 2009–ongoing
Julien Hendrickx, Université catholique de Louvain: multi-agent systems, 2011–2024
Roberto Tempo, IEIIT-CNR, Torino: randomized dynamics, 2012–2015.
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B.2 Selected papers on key topics

Theory of Control, Multi-agent and Network Systems:

• D. Nikitin, C. Canudas de Wit, and P. Frasca. A continuation method for large-
scale modeling and control: from ODEs to PDE, a round trip. IEEE Transactions
on Automatic Control, 67 (10): 5118–5133, 2022

• M. Franceschelli and P. Frasca. Stability of Open Multi-Agent Systems and appli-
cations to dynamic consensus. IEEE Transactions on Automatic Control, 66 (5):
2326–2331, 2021

• R. Vizuete, F. Garin, and P. Frasca. The Laplacian spectrum of large graphs
sampled from graphons. IEEE Transactions on Network Science and Engineering,
8 (2): 1711–1721, 2021

• S. Baldi and P. Frasca. Leaderless synchronization of heterogeneous oscillators by
adaptively learning the group model. IEEE Transactions on Automatic Control,
65 (1): 412–418, 2020

• Chiara Ravazzi, Paolo Frasca, Roberto Tempo, and Hideaki Ishii. Ergodic ran-
domized algorithms and dynamics over networks. IEEE Transactions on Control
of Network Systems, 2 (1): 78–87, 2015

• Paolo Frasca and Julien M. Hendrickx. On the mean square error of randomized
averaging algorithms. Automatica, 49 (8): 2496–2501, 2013

• Francesco Bullo, Ruggero Carli, and Paolo Frasca. Gossip coverage control for
robotic networks: dynamical systems on the space of partitions. SIAM Journal
on Control and Optimization, 50 (1): 419–447, 2012

• Francesca Ceragioli, Claudio De Persis, and Paolo Frasca. Discontinuities and
hysteresis in quantized average consensus. Automatica, 47(9): 1916–1928, 2011

Opinion Dynamics and Computational Social Sciences:

• W.S. Rossi, J.W. Polderman, and P. Frasca. The closed loop between opinion
formation and personalised recommendations, IEEE Transactions on Control of
Network Systems, 9 (3): 1092–1103, 2022

• M. Castaldo, T. Venturini, P. Frasca, and F. Gargiulo. Junk News Bubbles:
Modelling the rise and fall of attention in online arenas. New Media & Society,
February 2021

• M. Castaldo, F. Gargiulo, T. Venturini, and P. Frasca. The Rhythms of the
Night: increase in online night activity and emotional resilience during the Covid-
19 lockdown. EPJ Data Science, 10:7, 2021

• W.S. Rossi and P. Frasca. Opinion dynamics with topological gossiping: asyn-
chronous updates under limited attention. IEEE Control Systems Letters, 4 (3),
566–571, 2020

• Francesca Ceragioli and Paolo Frasca. Consensus and disagreement: the role
of quantized behaviours in opinion dynamics. SIAM Journal on Control and
Optimization, 56(2): 1058–1080, 2018
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• Paolo Frasca, Chiara Ravazzi, Roberto Tempo, and Hideaki Ishii. Gossips and
prejudices: ergodic randomized dynamics in social networks. IFAC Workshop on
Distributed Estimation and Control in Networked Systems, Koblenz, Germany,
Sep. 2013, pp. 212–219

Intelligent Transportation Systems:

• Francesco Acciani, Paolo Frasca, Geert Heijenk, and Anton A. Stoorvogel. Stochas-
tic string stability of vehicle platoons via cooperative adaptive cruise control with
lossy communication. IEEE Transactions on Intelligent Transportation Systems,
23 (8): 10912–10922, 2022

• D. Liu, S. Baldi, V. Jain, W. Yu, and P. Frasca. Cyclic communication in adaptive
strategies to platooning: the case of synchronized merging. IEEE Transactions
on Intelligent Vehicles, 6 (3): 490–500, 2021

• V. Giammarino, S. Baldi, P. Frasca and M.L. Delle Monache. Traffic flow on a ring
with a single autonomous vehicle: an interconnected stability perspective, IEEE
Transactions on Intelligent Transportation Systems, 22 (8): 4998–5008, 2021

Cooperative Robotics

• M. de Roo, P. Frasca, and R. Carloni. Optimal event handling by multiple
Unmanned Aerial Vehicles. IEEE Int. Conference on Robotics and Automation
(ICRA), May 2016, pp. 1230–1236

• J.W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-
age control for gossiping robots. IEEE Transactions on Robotics, 28 (2): 364–378,
2012

Biology (Epidemics and Animal Groups):

• S. Mauras, V. Cohen-Addad, G. Duboc, M. Dupré la Tour, P. Frasca, C. Mathieu,
L. Opatowski, L. Viennot. Mitigating COVID-19 outbreaks in workplaces and
schools by hybrid telecommuting. PLOS Computational Biology, 17 (8): e1009264,
August 2021

• A. Aydogdu, P. Frasca, et al.. Modeling birds on wires. Journal of Theoretical
Biology, 415:102–112, 2017

• E. Cristiani, P. Frasca, and B. Piccoli. Effects of anisotropic interactions on the
structure of animal groups. Journal of Mathematical Biology, 62 (4): 569–588,
2011

B.3 Full list of publications, per type

B.3.1 Books

[B1] Fabio Fagnani and Paolo Frasca. Introduction to Averaging Dynamics over Net-
works. Vol. 472 in Lecture Notes in Control and Information Sciences (LNCIS)
Series, Springer, 2017. ISBN: 978-3-319-68021-7.

This self-contained textbook provides a concise introduction to the theory of averaging
dynamics and consensus. With approximately one hundred exercises, it thoroughly
covers the fundamental concepts while exploring the main applications of averaging in
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modeling, estimation, and control challenges across diverse domains, including robotic,
sensor, and social networks.

B.3.2 Edited books
[E1] Romain Postoyan, Paolo Frasca, Elena Panteley, Luca Zaccarian. Hybrid and

Networked Dynamical Systems. Lecture Notes in Control and Information Sciences
(LNCIS) Series, volume 493, Springer, 2024. ISBN: 978-3-031-49554-0.

B.3.3 Chapters in books
[BC6] Renato Vizuete, Charles Monnoyer de Galland, Paolo Frasca, Elena Panteley,

Julien Hendrickx. Trends and Questions in Open Multi-agent Systems. In: R.
Postoyan, P. Frasca, E. Panteley, L. Zaccarian (eds) Hybrid and Networked Dy-
namical Systems. Lecture Notes in Control and Information Sciences, vol 493.
Springer, Cham, 2024

[BC5] Maria Castaldo, Paolo Frasca, and Tommaso Venturini. Online Attention Dy-
namics in Social Media. A. M. Annaswamy, P. P. Khargonekar, F. Lamnabhi-
Lagarrigue, S. K. Spurgeon (eds.), Cyber-Physical-Human Systems: Fundamentals
and Applications, Wiley, 2023, pp. 491-510

[BC4] Francesca Ceragioli, Paolo Frasca, Benedetto Piccoli, Francesco Rossi. General-
ized solutions to opinion dynamics models with discontinuities. N. Bellomo, L.
Gibelli (eds.), Crowd Dynamics, Volume 3: Modeling and Social Applications in
the Time of COVID-19, Modeling and Simulation in Science, Engineering and
Technology, Springer, 2021

[BC3] Francesca Ceragioli, Paolo Frasca and Wilbert Samuel Rossi. Modeling limited
attention in opinion dynamics by topological interactions. In Network Games,
Control and Optimization. NETGCOOP 2021, Lasaulce S., Mertikopoulos P.,
Orda A. (eds). Communications in Computer and Information Science, vol 1354.
Springer, Cham, 2021, pp. 272–281

[BC2] Francesca Ceragioli and Paolo Frasca. Discontinuities, generalized solutions,
and (dis)agreement in opinion dynamics. In Control Subject to Computational
and Communications Constraints, S. Tarbouriech, A. Girard and L. Hetel, Eds.,
Springer, LNCIS Series, 2018, pp. 287-309.

[BC1] Claudio De Persis and Paolo Frasca. Hybrid coordination of flow networks. In
Hybrid Systems with Constraints, J. Daafouz and S. Tarbouriech and M. Sigalotti,
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B.3.4 Journal papers
[J60] Charles Monnoyer de Galland de Carnières, Renato Vizuete, Julien M. Hendrickx,

Elena Panteley, and Paolo Frasca. Random Coordinate Descent for Resource Allo-
cation in Open Multi-Agent Systems. IEEE Transactions on Automatic Control,
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[J59] Di Liu, Sebastian Mair, Kang Yang, Simone Baldi, Paolo Frasca, and Matthias Al-
thoff. Resilience in platoons of cooperative heterogeneous vehicles: self-organization
strategies and provably-correct design. IEEE Transactions on Intelligent Vehicles,
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Traffic flow on a ring with a single autonomous vehicle: an interconnected stabil-
ity perspective, IEEE Transactions on Intelligent Transportation Systems, 22 (8):
4998–5008, 2021
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