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ABSTRACT
In the context of climate change, ecosystem monitoring is a crucial task. It allows to better
understand the changes that affect them and also enables decision-making to preserve them
for current and future generations. Land Use and Land Cover (LULC) maps are an essential
tool in ecosystem monitoring providing information on different types of physical cover of
the Earth’s surface (e.g. forests, grasslands, croplands). Nowadays, an increasing number of
satellite missions generate huge amounts of free and open data. In particular, Satellite Image
Time Series (SITS), such as the ones produced by Sentinel-2, offer high temporal, spectral and
spatial resolutions and provide relevant information about vegetation dynamics. Combined
with machine learning algorithms, they allow the production of frequent and accurate LULC
maps. This thesis is focused on the development of pixel-based supervised classification al-
gorithms for the production of LULC maps at large scale. Four main challenges arise in an
operational context. Firstly, unprecedented amounts of data are available and the algorithms
need to be adapted accordingly. Secondly, with the improvement in spatial, spectral and tem-
poral resolutions, the algorithms should be able to take into account correlations between the
spectro-temporal features to extract meaningful representations for the purpose of classifi-
cation. Thirdly, in wide geographical coverage, the problem of non-stationarity of the data
arises, therefore the algorithms should be able to take into account this spatial variability.
Fourthly, because of the different satellite orbits or meteorological conditions, the acquisi-
tion times are irregular and unaligned between pixels, thus, the algorithms should be able
to work with irregular and unaligned SITS. This work has been divided into two main parts.
The first PhD contribution is the development of Stochastic Variational Gaussian Processes
(SVGP) on massive data sets. The proposed Gaussian Processes (GP) model can be trained
with millions of samples, compared to few thousands for traditional GP methods. The spatial
and spectro-temporal structure of the data is taken into account thanks to the inclusion of the
spatial information in bespoke composite covariance functions. Besides, this development
enables to take into account the spatial information and thus to be robust to the spatial vari-
ability of the data. However, the time series are linearly resampled independently from the
classification. Therefore, the second PhD contribution is the development of an end-to-end
learning by combining a time and space informed kernel interpolator with the previous SVGP
classifier. The interpolator embeds irregular and unaligned SITS onto a fixed and reduced size
latent representation. The obtained latent representation is given to the SVGP classifier and
all the parameters are jointly optimized w.r.t. the classification task. Experiments were run
with Sentinel-2 SITS of the full year 2018 over an area of 200 000 km2 (about 2 billion pixels)
in the south of France (27 MGRS tiles), which is representative of an operational setting. Re-
sults show that both methods (i.e. SVGP classifier with linearly interpolated time series and
the spatially informed kernel interpolator combined with the SVGP classifier) outperform the
method used for current operational systems (i.e. Random Forest with linearly interpolated
time series using spatial stratification).
Index terms: Earth Observation, Artificial Intelligence, Ecosystems, Large Scale Classifi-
cation, Land Use and Land Cover maps, Satellite Image Time Series, Stochastic Variational
Gaussian Processes, Sentinel-2, Irregular and Unaligned time series, Representation Learning
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RÉSUMÉ
Dans un contexte de changement climatique, la surveillance des écosystèmes est une mission
essentielle. En effet, cela permet de mieux comprendre les changements qui peuvent affecter
les écosystèmes et ainsi prendre des décisions en conséquence afin de préserver les généra-
tions actuelles et futures. Les cartes d’occupation du sol sont un outil indispensable four-
nissant des informations sur les différents types de couverture physique de la surface de la
Terre (e.g. forêts, prairies, terres agricoles). Actuellement, un nombre accru de missions satel-
lites fournissent un volume important de données gratuites et librement accessibles. Les séries
temporelles d’images satellites (SITS), dont celles issues de Sentinel-2, grâce à leurs très hautes
résolutions, informent sur la dynamique de la végétation. Des algorithmes d’apprentissage au-
tomatique permettent de produire de manière fréquente et régulière des cartes d’occupation
du sol à partir de SITS. L’objectif de cette thèse est le développement d’algorithmes de classi-
fication supervisée pour la production de cartes d’occupations du sol à grande échelle. Dans
un contexte opérationnel, quatre principaux défis se dégagent. Le premier concerne le volume
important de données que les algorithmes doivent être capables de gérer. Le second est lié à
la prise en compte des corrélations entre les variables spectro-temporelles et leur extraction
pour la classification. Le troisième, quant à lui, correspond à la prise en compte de la vari-
abilité spatiale : pour des zones géographiques étendues, la statistique de la donnée n’est pas
stationnaire. Enfin, le quatrième défi concerne l’utilisation de SITS irrégulièrement échan-
tillonnées et non alignées, principalement dû aux conditions météorologiques (e.g. nuages)
ou à des dates d’acquisitions différentes entre deux orbites. Cette thèse est divisée en deux
contributions principales. La première contribution concerne la mise en place de processus
gaussiens variationnels stochastiques (SVGP) pour des SITS à grande échelle. Des millions
d’échantillons peuvent être utilisés pour l’apprentissage, au lieu de quelques milliers pour les
processus gaussiens (GP) traditionnels. Des combinaisons de fonctions de covariance ont été
mises en place permettant notamment de prendre en compte l’information spatiale et d’être
plus robuste vis à vis de la variabilité spatiale. Cependant, les SITS sont ré-échantillonnées
linéairement indépendamment de la tâche de classification. La deuxième contribution con-
cerne donc la mise en place d’un ré-échantillonnage optimisé pour la tâche de classification.
Un interpolateur à noyau prenant en compte l’information spatiale permet de produire une
représentation latente qui est donnée à notre SVGP. Les expérimentations ont été menées avec
les SITS de Sentinel-2 pour l’ensemble de l’année 2018 sur une zone d’environ 200 000 km2

(environ 2 milliards de pixels) dans le sud de la France (27 tuiles MGRS). Ce dispositif ex-
périmental est représentatif d’un cadre opérationnel. Les résultats obtenus montrent que les
modèles issus des deux contributions sont plus performants que la méthode utilisée pour les
systèmes opérationnels actuels (i.e. forêts d’arbres aléatoires avec des SITS linéairement ré-
échantillonnées utilisant la stratification spatiale).
Mots clés : Télédétection, Intelligence artificielle, Écosystèmes, Classification à grande échelle,
Carte d’occupation du sol, Séries temporelles d’images satellites, Processus gaussiens varia-
tionnels stochastiques, Sentinel-2, Séries temporelles irrégulières et non alignées, Apprentis-
sage de représentations
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GENERAL INTRODUCTION

Context
Over the last decade, the emergence of Earth Observation (EO) satellite missions with high
revisit frequency and high spatial resolution has led to the availability of an unprecedented
amount of data with heterogeneous modalities (e.g. optical and radar) at various resolutions
(e.g. sub-metric and deca-metric). This massive amount of data provides relevant information
about vegetation dynamics at large-scale. To fully benefit from this information, automatic
methods are used to produce Land Use and Land Cover (LULC) maps. Conventionally, in
machine learning, automatic methods require two steps: preprocessing and classification.

The preprocessing step is commonly used to improve the quality of the data for the classifi-
cation process. Two main challenges occur in large scale: irregular and unaligned time series,
and spatial variability. Regarding the first challenge, the Satellite Image Time-Series (SITS)
contain clouds or cloud shadows which can interfere with the ground information. Therefore,
preprocessing techniques are used to remove the unwanted elements and to realign the data.
Concerning the second challenge, depending on climatic or topographic conditions, the same
vegetation cover can have different spectro-temporal responses in different locations. Hence,
preprocessing techniques, such as spatial stratification, are applied in order to be more robust
to the spatial variability.

The classification step, independent from preprocessing, is used to assign a label to each
pixel. One of the main current challenges of the classification algorithms is to extract relevant
information from these massive amounts of data. Recently, with the emergence of deep learn-
ing, such frameworks with two steps that are optimized independently of each other, may be
questionable. Indeed, major improvements have been observed using end-to-end learning, i.e.,
when the preprocessing step is learned jointly with the classifier. In this context of noisy data,
Bayesian methods enable the combination of both steps without any preprocessing, while be-
ing robust and interpretable.

Contributions
In this PhD thesis work, I provide two main contributions

• The first contribution is the investigation of Stochastic Variational Gaussian Processes
(SVGP) for large-scale LULC pixel-based classification with Sentinel-2 SITS. This de-
velopment enables the training with millions of pixels, compared to few thousands for
conventional Gaussian Processes (GP)methods. The spatial and spectro-temporal struc-
ture of the data is taken into account thanks to the inclusion of the spatial information
in bespoke composite covariance functions provided by the SVGP. Besides, this devel-
opment enables to reduce the spatial variability of the data. The SITS are temporally
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re-sampled in a separate pre-processing step.

• The second contribution is the development of end-to-end learning by combining a
time and space informed kernel interpolator with the previous SVGP classifier. The
interpolator embeds irregular and unaligned SITS onto a fixed and reduced size latent
representation. The obtained latent representation is given to the SVGP classifier and
all the parameters are jointly optimized w.r.t. the classification task.

Outline of the thesis
The outline of this dissertation is organized as follow:

• Part I: This part introduces the different notions and challenges related to land cover
classification at large scale. Chapter 1 describes how remote sensing data can be used
for ecosystem monitoring. Chapter 2 proposes a review of the state-of-the-art classi-
fiers used for pixel-based supervised land cover classification with SITS at large scale.
Furthermore, the associated challenges are also introduced. Chapter 3 presents the data
used (i.e. study area, Sentinel-2 SITS, reference data, etc.) in Parts II and III.

• Part II: This part corresponds to the first contribution. A review of Gaussian Processes
(GP) is proposed in Chapter 4. Chapter 5 presents the method based on Stochastic Vari-
ational Gaussian Processes (SVGP) as well as the experimental set-up. The associated
results are analyzed in Chapter 6.

• Part III: This part corresponds to the second contribution. A review of temporal re-
sampling is proposed in Chapter 7. Chapter 8 presents the end-to-end learning method
which combines a spatially informed kernel interpolator with the SVGP classifier in-
troduced in Part II. This chapter also defines the experimental set-up. The associated
results are presented in Chapter 9.

• Part IV: This part concludes the manuscript. A general conclusion and the perspectives
are provided in Chapter 10.

• Part V: This part provides the appendices. The classification metrics used to assess the
quality of the estimation are presented in Appendix A. Appendices B and C report addi-
tional results for Chapters 6 and 9, respectively. To ensure reproducibility, the data sets,
the implementation of the models and also the produced land cover maps are provided
in Appendix D.

Support
This PhD, supervised by Mathieu Fauvel and Jordi Inglada, has been done in the CESBIO
laboratory in Toulouse. CESBIO is a joint unit with the CNES, the CNRS, the IRD, the UT3
and the INRAe. This PhD was co-founded by CS-Group and by CNES. This PhD is supported
by ANITI from Université Fédérale Toulouse Midi-Pyrénées under grant agreement (ANITI
ANR-19-PI3A-0004). This PhD is part of the ANITI Chair ”Fusion-based inference from het-
erogeneous data” held by Nicolas Dobigeon.
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Benjamin Tardy, engineer at CS-Group provided support and help with the iota2 software.
Data and computational resources such as the High-Performance Computing (HPC) infras-
tructure were provided by CNES.
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INTRODUCTION EN FRANÇAIS

Contexte
Au cours de la dernière décennie, l’émergence de missions satellitaires à haute fréquence de
revisite et à haute résolution spatiale a conduit à la disponibilité d’une quantité sans précé-
dent de données avec des modalités hétérogènes (e.g. optiques et radar) à diverses résolutions
(e.g. sub-métrique et déca-métrique). Ces données massives fournissent des informations sur
la dynamique de la végétation à grande échelle. Pour exploiter pleinement ces informations,
des méthodes automatiques sont utilisées pour produire des cartes d’occupation du sol. Tra-
ditionnellement, dans l’apprentissage automatique, ces méthodes nécessitent deux étapes : le
prétraitement et la classification.

L’étape de prétraitement est généralement utilisée pour améliorer la qualité des données
en vue de la classification. Deux principaux défis se posent à grande échelle : les séries tem-
porelles irrégulières et non alignées, et la variabilité spatiale. Concernant le premier problème,
les séries temporelles d’images satellites contiennent des nuages ou des ombres de nuages
qui peuvent interférer avec les informations au sol. Par conséquent, des techniques de pré-
traitement sont utilisées pour supprimer ces éléments indésirables et réaligner les données. A
propos du deuxième défi, en fonction des conditions climatiques ou topographiques, la même
couverture végétale peut avoir des réponses spectro-temporelles différentes dans des lieux dis-
tincts. Ainsi, des techniques de prétraitement, telles que la stratification spatiale, sont mises
en place afin d’être plus robuste face la variabilité spatiale.

L’étape de classification, indépendante du prétraitement, est utilisée pour attribuer une
catégorie à chaque pixel. L’un des principaux défis des algorithmes de classification est de
traiter avec précision ces quantités massives de données. Récemment, avec l’émergence de
l’apprentissage profond, un tel cadre avec deux étapes qui sont optimisées de manière in-
dépendante, peut être remis en question. En effet, des améliorations majeures ont été ob-
servées en utilisant une méthode d’apprentissage de bout en bout, c’est-à-dire lorsque l’étape
de prétraitement est apprise conjointement avec le classifieur. Dans ce contexte de données
bruitées, les méthodes bayésiennes permettent de combiner les deux étapes sans aucun pré-
traitement, tout en étant robustes et interprétables.

Contributions
Dans cette thèse, mes deux principales contributions sont les suivantes :

• La première contribution concerne la mise en place de processus gaussiens variation-
nels stochastiques (SVGP) pour la classification supervisée de cartes d’occupation du sol
à partir de séries temporelles d’images satellite (SITS) Sentinel-2 à grande échelle. Des
millions d’échantillons peuvent être utilisés pour l’apprentissage, au lieu de quelques
milliers pour les processus gaussiens (GP) traditionnels. Des combinaisons de fonc-
tions de covariance ont été mises en place permettant notamment de prendre en compte
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l’information spatiale et d’être plus robuste vis à vis de la variabilité spatiale. Les SITS
utilisées sont ré-échantillonnées temporellement dans une étape de prétraitement dis-
tincte de la classification.

• La seconde contribution concerne le développement d’une méthode d’apprentissage
de bout en bout : un interpolateur à noyau prenant en compte l’information spatiale
est combiné avec le SVGP défini précédemment. L’interpolateur intègre les SITS ir-
régulières et non alignées dans une représentation latente fixe et de taille réduite. La
représentation latente obtenue est donnée au SVGP et tous les paramètres sont opti-
misés conjointement par rapport à la tâche de classification.

Plan de la thèse
Cette thèse est structurée de la manière suivante :

• Partie I : Cette partie présente les différentes notions et les différents défis liés au
développement de cartes d’occupation du sol à grande échelle. Plus précisément, le
Chapitre 1 décrit comment les données de télédétection peuvent être utilisées pour
la surveillance des écosystèmes. Le Chapitre 2 propose un panorama des méthodes
de classification supervisée issues de la littérature utilisés pour la production de carte
d’occupation du sol avec des séries temporelles d’images satellites (SITS) à grande échelle.
Par ailleurs, les défis associés sont également présentés. Le Chapitre 3 présente les don-
nées utilisées (i.e. zone d’étude, données satellitaires Sentinel-2, données de référence,
etc.) dans les Parties II et III.

• Partie II : Cette partie correspond à la première contribution. Un résumé sur les pro-
cessus gaussiens (GP) est proposé dans le Chapitre 4. Le Chapitre 5 présente la méthode
basée sur les processus gaussiens variationnels stochastiques (SVGP) ainsi que les ex-
périmentations mises en place. Les résultats associés sont développés au Chapitre 6.

• Partie III : Cette partie correspond à la deuxième contribution. Une étude sur le ré-
échantillonnage temporel est proposée dans le Chapitre 7. Le Chapitre 8 présente la
méthode d’apprentissage de bout en bout qui combine un interpolateur à noyau prenant
en compte l’information spatiale avec le SVGP présenté dans la partie II. Ce chapitre
présente également les expérimentations. Les résultats associés sont présentés dans le
Chapitre 9.

• Partie IV : Cette partie conclut le manuscrit. Une conclusion générale et des perspec-
tives sont fournies dans le Chapitre 10.

• Partie V : Cette partie contient les différentes annexes. Les métriques de classification
utilisées pour évaluer la qualité de l’estimation sont présentées dans l’Annexe A. Les
Annexes B et C présentent les résultats supplémentaires pour les Chapitres 6 et 9, re-
spectivement. Pour garantir la reproductibilité, les données, les modèles et les cartes
d’occupation des sols produites sont fournis en Annexe D.

Et puis si vous n’avez pas le courage de lire cette thèse en entier, vous pouvez vous référer à
la Figure 1 pour avoir un bref résumé.
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191918 LES ABEILLES SAUVAGES SOUS HAUtE SURVEILLANCE

POUR ALLER PLUS LOIN

3

Dans mon laboratoire, des algorithmes d’IA ont déjà été mis  en place pour 
cartographier l’occupation des sols à partir des  images capturées chaque année 
par les satellites. Mais des améliorations sont toujours possibles… et c’est 
l’objectif de mon travail.  à la clef : une précision accrue de la carte.
Avec le changement climatique, il est en effet fondamental d’observer  
nos écosystèmes avec attention pour mieux les comprendre et les préserver !

Au-dessus de nos têtes, des satellites 
 observent en permanence notre planète.  
Les données qu’ils récoltent sont de plus  
 en plus nombreuses, et donc de plus en plus   
complexes à exploiter par des méthodes 
 statistiques traditionnelles. C’est là 
qu’intervient désormais l’intelligence 
artificielle (IA) !

SURVEILLER NOTRE PLANÈTE 
GRÂCE À L’INTELLIGENCE 
ARTIFICIELLE
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Chaque année, mon laboratoire produit 
une carte d’occupation du sol à l’échelle 
de la France métropolitaine sur laquelle 

on identifie différents milieux : 

zones artificialisées 
 (bâtiments et routes)

zones  
agricoles

(blé, 
 maïs, 
 colza,
etc.)

 zones 
 naturelles 
 (forêts, 
 landes, 
 etc.)

Ces informations sont cruciales pour de  
nombreux travaux de recherche et applications. 
Elles servent par exemple à surveiller l’étalement 
urbain, à suivre l’évolution des terres agricoles…

Ou encore à l’analyse des effets du  
changement climatique sur les écosystèmes.

Ces cartes sont issues des données fournies  
par les satellites Sentinel-2, lancés par l’ESA*  
en 2015 et 2017, qui se relaient pour balayer  

une même zone du territoire tous les cinq jours.  
Ils y recueillent des informations sur plusieurs 

bandes spectrales allant du visible à l’infrarouge.

* Agence spatiale européenne

 À l’échelle de la France, les images produites 
sur une année entière constituent une  

base de données très volumineuse : environ 
 20 téraoctets de données, soit l’équivalent 

de  4 millions de photos de vacances !
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2120 SURVEILLER NOtRE PLANètE GRâCE à L’INtELLIGENCE ARtIFICIELLE

Afin de traiter cette grande 
quantité de données  dans 

un délai raisonnable,
  des méthodes automatiques 

 sont mises en place.

C’est là que l’intelligence 
 artificielle entre en jeu !

Vous avez dû entendre parler 
d’intelligence artificielle dans 
des films de science-fiction,

mais celle-ci se niche déjà 
partout dans votre quotidien.

 Le concept date des années 1950, 
et  les technologies ont décollé au milieu  
des années 2010, grâce à l’augmentation 

de la puissance de calcul des ordinateurs
 et à la possibilité de stocker
massivement des données.

 Avec l’apprentissage automatique ou machine learning,  
par exemple, des ordinateurs « apprennent » à résoudre 

un problème sans que la solution ne leur soit explicitement 
fournie.

Dans le cas des données fournies par les 
 satellites, on fait appel à des algorithmes 

de « classification supervisée ». Leur 
principe : on rassemble tout d’abord des 

données de référence que l’on « étiquette ».

Puis l’algorithme 
apprend à classer  

les données en évaluant 
sa performance sur  

ce jeu étiqueté.

Une fois cette étape 
 terminée, l’algorithme 
 est prêt à classer seul 
de nouvelles données, 

non étiquetées.
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Cette classification est complexe, car on ne traite pas de simples photos du sol,  mais 
un « cube » de données avec trois composantes : spectrale, spatiale et temporelle.

L’objectif de ma thèse est de traiter cette énorme 
masse de données tout en essayant de mieux prendre 
en compte la structure de leurs trois composantes.

   Pour cela, j’ai mis en place  
un nouveau type d’algorithme.

Il est fondé sur une méthode qui 
s’appelle « processus gaussiens ».

Entre autres, l’algorithme recherche les pixels 
qui sont « proches » (temporellement ou   

spatialement) et fait ressortir ces similarités.

Grâce à cet 
algorithme, j’ai  

obtenu des résultats 
 équivalents à ceux  

déjà existants,  
ce qui valide  
la méthode.

À présent, je travaille 
à l’améliorer pour mieux 

tirer parti des informations 
 fournies par les satellites, 
et ainsi affiner l’analyse  
des paysages de notre 

 territoire.

À suivre…

Eureka - Storyboard_22.indd   22Eureka - Storyboard_22.indd   22 23/06/2022   17:1923/06/2022   17:19Figure 1: Planches issues de la bande dessinée Sciences en Bulles édition 2022 "réveil climatique".
Elles proposent une vulgarisation scientifique de mon sujet de thèse. L’intégralité de la BD se
trouve ici : https: // www. fetedelascience. fr/ sciences-en-bulles-reveil-climatique

https://www.fetedelascience.fr/sciences-en-bulles-reveil-climatique


33

Figure 2: Inauguration de la BD Sciences en Bulles en octobre 2022 lors de la fête de la Science au
Muséum national d’histoire naturelle avec les autres doctorants de la BD, Fred et Jamy ainsi que
Sylvie Retailleau, la ministre de l’enseignement supérieur de la recherche.
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• Rencontre avec un public non initié dans le cadre des "Rencontres Exploreurs" dans la
bibliothèque de Gourdon (46), (une heure) février 2021.

Scolaire
• Accompagnement de trois étudiantes en master pendant une année scolaire dans le
cadre du programme "Mentor’IA" organisé la Commission Mixité d’ANITI, années sco-
laires 2021-2022, 2022-2023 et 2023-2024.

• Intervention avec des collégiennes lors de la journée des femmes des sciences organisée
par le CESBIO, (une demi journée) février 2023.

• Intervention avec une classe de 5ème à Toulouse dans le cadre d’un projet nommé "la
science des super-héros" animé par Instant Science, (une demi journée) janvier 2023.

• Intervention avec des terminales dans deux lycées : Cahors (46), mai 2021 et Blagnac
(31), (une heure) juin 2021.
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1.1. Ecosystem importance

1.1.1. What is an ecosystem?
An ecosystem can be defined as the interaction between biotic components (i.e. living organ-
isms such as plants, animals, bacteria) and abiotic components (i.e. non-living environments
such aswater, soil, atmosphere) [Chapin et al., 2011]. Biotic and abiotic components are highly
interconnected. For example, without the abiotic component of soil, plants would not be able
to survive and grow. Any disruption to one component can have cascading effects on the
entire ecosystem.

Earth is composed of aquatic and terrestrial ecosystems. The terrestrial ecosystem to which
humanity belongs to, covers only 30% of the Earth’s surface, whereas the aquatic ecosys-
tem covers more than 70%. Grasslands, forests or deserts are examples of terrestrial ecosys-
tems [Knapp, 2020]. The aquatic ecosystem is composed of marine ecosystem (e.g. oceans
and seas) and freshwater ecosystem (e.g. ponds, lakes, rivers, and streams) [Alexander and
Fairbridge, 1999].

The term ecosystem services was defined by the Millennium Ecosystem Assessment (MEA),
a study carried out from 2001 to 2005 which helped to evaluate the impact of anthropogenic
activity on ecosystems [Millennium ecosystem assessment, 2005]. Ecosystem services are the
direct and indirect contributions that ecosystems provide for human wellbeing and quality
of life [Kremen and Ostfeld, 2005]. Ecosystem services are divided in four different cate-
gories [Millennium ecosystem assessment, 2005]:

• provisioning (e.g. water, food, wood, fuel),

• regulating (e.g. climate regulation, flood management),

• supporting (e.g. nutrient cycle, soil formation), and

• cultural (e.g. recreation, aesthetic).

Taking the example of the Pyrenees, the nearest mountains from Toulouse, various ecosystem
services are provided. First, the stored water supplies drinkingwater, generates electricity and
supports agriculture. Forests play an important role in climate regulation with the absorption
of the carbon dioxide from the atmosphere. Forests also prevent soil erosion by stabilizing the
soil with their roots. Finally, the Pyrenees are a popular destination for tourists: they have
high recreational (e.g. hiking, skiing, etc.) and cultural (transhumance, Bethmale cheese, etc.)
services.

Ecosystems provide services that depend on their function. Indeed, ecosystem services are
only a sub-set of ecosystem functions for human needs [de Groot et al., 2010]: they are the ben-
efits that humans obtain from ecosystem functions. For example, pollination corresponds to
an ecosystem functionwhere pollinators, such as bees, butterflies, birds, and bats, facilitate the
transfer of pollen between flowers. It enables plant reproduction and fruit production, which
results into crop production [Klein et al., 2007], [Vanbergen, 2013]. In this specific case, polli-
nation, an ecosystem function, can also be considerate as a valuable ecosystem service which
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contributes to domestic (meadows, entomophilous crops) and wild plant production [Eardley
et al., 2016].

1.1.2. Monitoring ecosystem functions
Ecosystems are continuously evolving. A driver can, directly or indirectly, cause a change in
an ecosystem [Nelson, 2005]. A direct driver influences directly the ecosystem (e.g. invasive
species), whereas, an indirect driver behaves diffusely by altering direct drivers and as well as
other indirect drivers (e.g. socio-economic and demographic trends). Currently, changes due
to anthropic actions are becoming more frequent in terrestrial and aquatic ecosystems [Rata-
jczak et al., 2018].

In 2005, the MEA revealed that since 1950, more than 60% of ecosystems had been de-
graded. The changes have occurred more rapidly since the second half of the XXth cen-
tury than in any time in recorded human history [Millennium ecosystem assessment, 2005].
Around one quarter (24%) of the terrestrial ecosystems have been converted in cultivated sys-
tems. Moreover, around 35% of mangroves were lost, as well as 20% of coral reefs. More
recently, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Ser-
vices (IPBES) reported that around 75% of the land use environment had been changed by
human actions [Opgenoorth and Faith, 2013]. In March 2023, the final synthesis report of the
Sixth Assessment Report (AR6) released by the Intergovernmental Panel on Climate Change
(IPCC), shows that climate impacts on ecosystems are more intense and widespread than ex-
pected [IPCC, 2023].

It is not only abrupt changes, such as land use and land cover changes, that affect ecosystem
functions. Some practices, such as intensive agriculture [Tsiafouli et al., 2015], can have long-
term effects on the ecosystem functions. Moreover, the neighborhood of an ecosystem can
also have an influence on it. For example, a crop field that cuts a forest in two, will drastically
reduce mobility of animals in the forest and also the ecosystem functions in the forest. Thus,
the landscape structure can be used to study the impacts on ecosystem functions. Landscape
structure corresponds to the arrangement of different land covers and uses across a land-
scape [Fahrig et al., 2011]. It is divided in two components: composition and configuration.
Composition corresponds to the number of different land covers or land uses. Configuration
corresponds to the spatial pattern of these land cover or land use types. Figure 1.1 repre-
sents landscapes with different compositions and configurations. The more different land
cover types there are, the more complex is the composition. The more different spatial pat-
terns there are, the more complex is the configuration. In general, more biodiversity is found
in agricultural landscapes with complex configuration and complex composition [Estrada-
Carmona et al., 2022]. Figure 1.2 represents two different agricultural landscape structures: a
complex one (Figure 1.2a) and a simple one (Figure 1.2b). It is essential to study the landscape
structure in order to understand and predict the evolution of ecosystem functions. Spatial
information is essential, as aggregated data does not provide all the information about the
structure. Thus, one possible technique is to produce land use and land cover maps.
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(a) Complex composition /
Simple configuration

(b) Complex composition /
Complex configuration

(c) Simple composition /
Simple configuration

(d) Simple composition /
Complex configuration

Figure 1.1: Representation of different landscape structures. Below left (c): structure with simple
composition and simple configuration. Above right (b): structure with complex composition and
complex configuration. Each color represents a different type of land cover.

(a) Complex configuration and complex compo-
sition (Salagou lake, France)

(b) Simple configuration and simple composi-
tion (Oregon, USA)

Figure 1.2: Representation of two different agricultural landscape structures. (Source for (a):
https: // unsplash. com/ photos/ WPapb9IqRKw and for (b): https: // fr. wikipedia. org/ wiki/
Fichier: Crop_ circles_ north_ of_ Umatilla,_Oregon,_USA. jpg )

https://unsplash.com/photos/WPapb9IqRKw
https://fr.wikipedia.org/wiki/Fichier:Crop_circles_north_of_Umatilla,_Oregon,_USA.jpg
https://fr.wikipedia.org/wiki/Fichier:Crop_circles_north_of_Umatilla,_Oregon,_USA.jpg
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Table 1.1.: ECV product’s requirements for LULC maps: goal and minimum requirements.
Level Goal Minimum

requirement

Scale Global Regional
Spatial resolution (meter) 100-300 1000
Temporal resolution (month) 1 60
Production time (month) 3 60
Time span (year) > 50 0
Measurement uncertainty (2σ% (including 95% confidence intervals) ) 5 35
Stability (% (including 95% confidence intervals) ) 5 25

1.1.3. Land Use and Land Cover (LULC) maps
A Land Use and Land Cover (LULC) map is a representation of the different types of land
use and land cover in a given area over a given period of time. More precisely, land cover
usually refers to the physical type (i.e. corn field or grassland) whereas land use indicates
how people are using it (i.e. agriculture). Several components describe LULCmaps properties:
scale, spatial resolution, nomenclature, temporal coverage, temporal resolution, production
time and time span. The scale1 corresponds to the total area, it can be global, supranational,
national, regional and local. The spatial resolution, for raster data, or MinimumMapping Unit
(MMU), for vector image, is defined as "the smallest size areal entity to be mapped as a discrete
entity" [Lillesand et al., 2015]. The nomenclature corresponds to the different land cover or
land use types. The temporal coverage corresponds to the time period during which data were
collected or observations were made. Usually the temporal coverage corresponds to one year
and it is called "the reference year". The temporal resolution is defined as the time between
each update. The production time or timeliness corresponds to the time between the last data
and the map released. Finally, the time span is defined as the time period between the first
and the last map.

The Global Climate Observing System (GCOS) identified land cover as one of the main
important Essential Climate Variables (ECV) [Zemp et al., 2022]. They proposed different
requirements for land cover maps [World Meteorological Organization (WMO); United Na-
tions Educational and (ISC), 2022]. As stated in Table 1.1, the minimum suggested scale is
regional and the minimum temporal resolution is five years. The goal is to produce LULC
maps every month at global scale. They also suggested to use the Land Cover Classification
System (LCCS) defined by the Food and Agriculture Organization (FAO) [Di Gregorio and
Jansen, 1998]. The level 3 is composed of nine classes and its nomenclature is presented in
Table 1.2. Other nomenclatures, proposed in the literature, are also presented in Table 1.2. A
diversified nomenclature is needed to study complex landscape structures. The production of
several LULC maps is described in Section 1.3. In order to meet these requirements, regular
data on a global scale are needed. Thus, data collection and survey techniques, such as, Earth
Observation (EO) are essential.

1In this case, the scale does not correspond to the cartographic scale which denotes the size representation
on the map compared to the object’s size on the ground.
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1.2. Earth Observation
EO corresponds to the acquisition of information about the Earth including remote sensing
systems or in-situ data. Remote sensing systems, such as sensors on board of satellites or
aircrafts, acquire information without direct contact with the object or the medium in con-
trast to in situ observations. Remote sensing systems allow to cover larger zones and give
information more frequently than field surveys.

1.2.1. Elements of remote sensing

In order to better understand how remote sensing can be useful for monitoring ecosystems,
few concepts are reviewed in the following.

Sensors that capture images in the remote sensing systems are mainly divided in two cat-
egories: active and passive, as shown in Figure 1.3. Active sensors provide their own illumi-
nation source and measure the energy that bounces back off objects on the Earth’s surface.
Passive sensors measure natural energy, usually sunlight, reflected off the Earth’s surface or
emitted by the Earth itself. Some examples of active and passive sensors are provided in Ta-
ble 1.3. Optical images are produced by passive sensors, such as visible and near-infrared
radiometers.

Optical images are a sampling of a spatial, spectral and temporal process, as shown in
Figure 1.4. The spatial information is represented by the black squares, i.e. the pixels. The
spectral information of one pixel is represented by a spectral profile. It is the reflectance across
different wavelengths for a specific object. Reflectance corresponds to the ratio of the amount
of light leaving a target with respect to the amount of light striking the target. The spectral
information correspond to a specific date: the image was captured in August. In the following,
spectral, spatial and temporal resolutions are defined more precisely.

Spatial resolution: Spatial resolution is defined as a measure of the smallest object that
can be discriminated by the sensor. It is the ability to distinguish two closed objects.

Spectral resolution: Spectral resolution generally refers to the number of spectral bands
and their width. Multi-spectral refers to the acquisition of around 5-10 bands whereas hyper-
spectral refers to hundreds or thousands of narrower bands. Spatial and spectral resolutions
are linked. It is difficult to have high spatial and spectral resolution at the same time. In addi-
tion to the number of bands, radiometric resolution is also important. Radiometric resolution
defines the ability of a satellite to distinguish between different shades of color or gray in an
image. With n bits, we have 2n potential digital numbers between 0 to 2n−1 to record the
information. Current sensors have made it possible to increase the number of bands and the
radiometric resolution.

To illustrate the importance of the spectral information, Figure 1.5 represents the spectral
signature of different land covers. The spectral profiles were extracted from the ECOSTRESS
spectral library [Baldridge et al., 2009], [Meerdink et al., 2019]. As shown in Figure 1.5, it is
quite easy to differentiate the spectral signatures of the snow, the talc, the water or one of
the vegetation samples in the visible spectrum. The spectral signature of grass and dry-grass
are quite different. However, among vegetations, pine and oak have very similar spectral
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Table 1.3.: Examples of active and passive sensors and their uses.
Sensor Name Use

Active Synthetic Aperture Radar (SAR) high-resolution imaging
Active Laser Imaging, Detection, And Ranging (LIDAR) 3D imaging
Active Radar Altimeter measure the ocean topography
Active Scatterometer measure wind speed and direction
Passive Visible and Near-Infrared Radiometer optical imaging
Passive Infrared Radiometer optical imaging
Passive Passive Microwave Radiometer thermal imaging

signature in the visible bands. However, their spectral signatures are quite different in the
infrared spectrum and it is easier to differentiate them.

In addition to the reflectance of the different bands, different vegetation indices can be
defined [Xue et al., 2017]. One of the most used index is the Normalized Difference Vegetation
Index (NDVI) which is used to distinguish the different vegetation covers. NDVI is calculated
as a combination of the red (R) and near infrared (NIR) reflectance values [Rouse Jr et al.,
1974]:

NIR − R
NIR + R (1.1)

NDVI values range from −1 to 1. Clouds and water are generally defined by negative values.
Positive values near zero indicate absence of photosynthetic vegetation. Higher positive val-
ues of NDVI ranges from sparse (0.1 - 0.5) to dense (0.6 and above) photosynthetic vegetation.

Temporal resolution: Temporal resolution corresponds to the interval of time before a
satellite revisits a particular point on the Earth’s surface. Temporal resolution is also called
time revisit.

The spectral signature is not enough to distinguish different land cover types and the tem-
poral information is needed. Figure 1.6 represents three different vegetation land covers (corn,
rapeseed and sunflower) at two different times of the year (inMay and September). Depending
on the time, different vegetation covers can have similar spectral signature. Indeed, rapeseed
and sunflower have similar spectral signature in May, but different ones in September. More-
over, the same vegetation cover can have different spectral signature at different time of the
year. Indeed, corn and rapeseed have completely different spectral signatures in May and in
September. Depending on the period of the year, the plant has different stages of develop-
ment. This cycle is called phenology. This can include flowering, leaf unfolding (or budburst),
seed set and dispersal, and leaf fall in relation to climatic conditions [Davi et al., 2011]. In
order to correctly identify a vegetation cover, it is important to take into account the tem-
poral aspect. Generally, two different vegetation covers have different phenology cycles. In
addition to the spectral signature, the representation of the NDVI as a function of the time is
a major source of information. Figure 1.7 represents the NDVI for three different vegetation
land covers (corn, rapeseed and sunflower) over the full year 2018. By plotting the NDVI ver-
sus the day of the year, corn, rapeseed and sunflower can be easily differentiated. Thus, the
temporal information is very important and can help to differentiate two different land cover
types. Having frequent dates makes it easier to monitor vegetation.
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Figure 1.3: Active and passive sensors.
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Figure 1.4: Optical image is a sampling of a spatial, spectral and temporal process. Black squares,
in the optical image, correspond to pixels. For one pixel, the spectral signature is represented. This
image was acquired in August.
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Figure 1.5: Spectral signatures of different land covers: snow, water, oak, pine, grass, dry-grass
and talc. The vertical dashed line represents the limit between visible spectrum and infrared
spectrum. (Source: ECOSTRESS spectral library version 1.0 https: // speclib. jpl. nasa. gov/ )
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Figure 1.6: Spectral signatures of three different agricultural land covers: corn, sunflower and
rapeseed at two different dates: 01/05/2018 and 28/09/2018. The spectral values correspond to the
Sentinel-2’s bands. (Source: https: // apps. sentinel-hub. com/ sentinel-playground/ )

https://speclib.jpl.nasa.gov/
https://apps.sentinel-hub.com/sentinel-playground/
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Figure 1.7:NDVI for three different agricultural land covers: corn, sunflower and rapeseed over the
full year 2018. The NDVI was calculated from the Sentinel-2’s bands with a linear interpolation
of 10 days. (Source: https: // apps. sentinel-hub. com/ sentinel-playground/ )

https://apps.sentinel-hub.com/sentinel-playground/
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1.2.2. Short history of remote sensing

Remote sensing first appeared at the beginning of the 20th century with the development
of aerial photography where cameras were mounted on aircrafts. After World Wars I and
II, aerial photography began to be used for mapping and surveying purposes. Later, as sen-
sor technologies improved, aircraft were equipped with other sensors, as for example multi-
spectral sensors.

In the 1960s and 1970s, remote sensing technology took a big step forward with the launch
of satellites that could take pictures of the Earth from space. The first satellite that was specif-
ically designed for remote sensing was the Landsat-1 satellite2, launched by National Aero-
nautics and Space Administration (NASA) in 1972. It carried a multi-spectral scanner and the
study of the vegetation with NDVI was first introduced [Rouse et al., 1974].

The 1980s were characterized by the development of a large number of EO satellites by
various countries: Bhaskara-I by India in 1979, SPOT-1 by France in 19863, MOS-1 by Japan
in 1987, etc. These satellites were equipped by several active and passive sensors, such as mi-
crowave radiometer, thermal radiometer, visible and infrared radiometer, synthetic aperture
radar, etc. Most satellites were developed by space agencies (NASA, CNES, etc.) or by large
aeronautic industry groups (Boeing, Airbus, etc.).

The 1990s and 2000s were marked by an explosion in the number of satellites, as technology
improved. In 1999, Landsat-7 was launched andwas able to provide images every 16 days with
30 m resolution on eight spectral bands. This satellite is part of the Landsat programmanaged
by NASA and United States Geological Survey (USGS) which starts with the satellite Landsat-
1. As a comparison, Landsat-1 provided images every 18 days with 80 m resolution on four
spectral bands. Moderate Resolution Imaging Spectroradiometer (MODIS) is a passive sensor
which has also made a significant contribution to remote sensing. It was launched aboard two
NASA satellites, Terra, in 1999, and Aqua, in 2002. With these two satellites, images can be
acquired every 1 or 2 days in 36 spectral bands at three spatial resolutions: 250 m, 500 m, and
1000 m. These decades have been also characterized by the emergence of private companies in
the development and deployment of EO satellites. Indeed, in 1999, the first commercial remote
sensing satellite Ikonos 1 was launched in the US. At the end of the 2000s, more than 150 EO
satellites were in orbit [Tatem et al., 2008]. The 2000s were also marked by the development
of Unmanned Aerial Vehicles (UAV), also called drones [Everaerts et al., 2008]. They are small
aircrafts that can fly without a pilot on board. These little platforms can be equipped by
different sensors as Laser Imaging, Detection, And Ranging (LIDAR), for example.
The 2010s were characterized by the launch of SPOT-6 and SPOT-7 satellites, respectively

in 2012 and in 2014. These satellites are part of the SPOT program managed by the CNES
and Airbus Defense and Space which started with SPOT-1. SPOT-6 and SPOT-7 provide satel-
lite images on demand with high spatial resolution (i.e. four spectral bands at 6m and one
panchromatic band at 1.5m). This decade was also characterized by the launch of the Sentinel-
1 and Sentinel-2 satellites part of the Copernicus programme. The two satellites Sentinel-
1, launched in 2014 and 2016, provide radar images whereas the two satellites Sentinel-2,

2Formerly named ERTS-A and then ERTS-1.
3Formerly named "Système Probatoire d’Observation de la Terre" and later "Satellite Pour

l’Observation de la Terre". After a strike, this satellite was also called by Centre National d’Études
Spatiales (CNES) agents: "Satellite Pour Occuper Toulouse" (https://spacegate.cnes.fr/fr/
spot-un-satellite-pour-occuper-toulouse).

https://spacegate.cnes.fr/fr/spot-un-satellite-pour-occuper-toulouse
https://spacegate.cnes.fr/fr/spot-un-satellite-pour-occuper-toulouse
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launched in 2015 and 2017, provide optical images. These satellites have revolutionized re-
mote sensing by their resolution and also because the Copernicus Open Access Hub provides
free and open access to Sentinel-1 and Sentinel-2 data.

More recently, due to the miniaturization of electronic components or the development of
new materials, satellites could be much smaller and cheaper than their predecessors, which
led to easier access to space. This period is called the "New Space" and different companies
are involved, such as Planet Labs, Maxar Technologies, Capella Space, GIGSat, Satellogic,
Umbra Lab, etc. For example, the company Planet Labs is characterized by the development
of very small satellites called nanosatellites (about 10 kg) with different constellations. In
January 2023, more than 1100 EO satellites were in orbit, with the largest number of satellites
launched by the company Planet Labs, as illustrated in Figure 1.8. Aerial platforms are still
used in remote sensing and huge archives of aerial photographies are available [Rapinel et al.,
2018]. An example of aerial photographies of the Centre d’Études Spatiales de la Biosphère
(CESBIO) laboratory from 1950 to today is represented in Figure 1.9.

Monitoring landscape structures involves long-term and large-scale projects. Satellites are
the only tools that can systematically monitor large areas. Indeed, satellites follow predefined
orbits, enabling them to capture data consistently over large areas, at regular intervals. More-
over, once launched, satellites can operate for several years, continuously collecting data at a
fraction of the cost. In the following, we will focus on satellite images.

Figure 1.8: Number of satellites in orbit at the start of 2023. (Source: https:
// www. arcep. fr/ la-regulation/ grands-dossiers-thematiques-transverses/
lempreinte-environnementale-du-numerique/ evenement-satellites-et-environnement. html )

https://www.arcep.fr/la-regulation/grands-dossiers-thematiques-transverses/lempreinte-environnementale-du-numerique/evenement-satellites-et-environnement.html
https://www.arcep.fr/la-regulation/grands-dossiers-thematiques-transverses/lempreinte-environnementale-du-numerique/evenement-satellites-et-environnement.html
https://www.arcep.fr/la-regulation/grands-dossiers-thematiques-transverses/lempreinte-environnementale-du-numerique/evenement-satellites-et-environnement.html
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(a) 1950-1965 (b) 2000-2005

(c) 2006-2010 (d) 2022

Figure 1.9: Aerial photographies of the CESBIO area from 1950 to today. Now, all the available
aerial photography of France since 1919 from the Institut Géographique National (IGN) can be
downloaded in the Geoportail website: http: // www. geoportail. gouv. fr/ . Between 1950 and
2000, there was a significant transformation of crops into buildings, which corresponds to the
construction of the university and the laboratories. More recently, transformations have been
more moderate, with some fields being converted into car parking lots.

http://www.geoportail.gouv.fr/
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1.2.3. Satellite Image Time Series (SITS)
Earth observation satellites are designed for different missions:

• trackingwater resources, such as water management and irrigation [Deines et al., 2017],
[Foster et al., 2020], estimation of evapotranspiration [Zhang et al., 2010], [Gallego-
Elvira et al., 2013], water quality monitoring [Brando and Dekker, 2003], [Xu et al.,
2019], [Lomelí-Huerta et al., 2021], [Niroumand-Jadidi and Bovolo, 2023] or snow cover
monitoring [Romanov et al., 2000], [Gascoin et al., 2019];

• providing disaster response management, such as flood monitoring [Guo et al., 2021] or
forest fire monitoring [Dell’Aglio et al., 2020];

• monitoring ecosystems, such as biodiversity monitoring [Tarantino et al., 2018], [Fauvel
et al., 2020], agricultural monitoring [Feng et al., 2019], [Moeini Rad et al., 2019] or forest
mapping [Karasiak et al., 2017], [Dalimier et al., 2021].

Depending on the application, different choices are made for the characteristics of the sensors.
Considering ecosystemmonitoring andmore precisely LULCmaps, the latter can be produced
using either optical or radar satellite images. However, the majority of works are based on
optical data [Congalton et al., 2014] and only very few studies use radar data [Longépé et al.,
2011], [Abdikan et al., 2016]. The main reasons are that it is difficult to differentiate land
covers with radar data. Spectral information in optical data allows for more precise discrim-
ination between different land cover types especially for vegetation, whereas, some classes
have similar radar backscatter responses. For these reasons, we will focus on optical satellite
images.

Different compromises have to be made when designing Earth observation satellite mis-
sions. Technological constraints are limiting factors in achieving high spatial, spectral and
temporal resolutions for optical images. These technological constraints include telescope
size, signal-to-noise ratio, fields of view, orbits, revisits, on-board storage capacity, data trans-
fer rate to the ground, etc. Thus, EO satellite missions are optimized for a specific type of
application. Focusing on ecosystem monitoring and LULC maps, land covers such as crops
are rapidly changing, in few days, and thus the temporal aspect is essential. Missions with
a sufficient revisit time are required. In this work, we propose to work with Satellite Image
Time-Series (SITS) which is defined as a sequence of images of the same location recorded at
regular intervals throughout a given period of study. Table 1.4 represents SITS characteristics
from three well-known EO missions used to produce LULC maps: Landsat 8-9, MODIS and
Sentinel-2. By combining its two satellites, Landsat 8 and Landsat 9, images from Landsat
are acquired every eight days. Sentinel-2, also a combination of two satellites (2A and 2B),
provides images every five days. Finally, MODIS can provide images every one or two days.
In addition to the temporal aspect, the spatial aspect is also essential. Indeed, high spatial

resolution is required to identify complex landscape structures. Figure 1.10 illustrates the
capability of identifying structures in the image at different resolutions for MODIS, Landsat
8-9 and Sentinel-2 satellites. The area corresponds to the surroundings of the city Toulouse
in May 2023 with true colors. With a spatial resolution of 500m, MODIS is well adapted for
simple landscape structure such as the huge crop parcels in the USA (c.f. Figure 1.2b) and not
to fragmented landscape structures such as in France (c.f. Figure 1.2a). With MODIS images,
it is not possible to retrieve the landscape configuration for this area. However, with Landsat
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Table 1.4.: SITS characteristics for different satellites: Landsat 8-9, MODIS, Sentinel-2, SPOT 6-7.
Satellite name Spatial

resolution (m)
Bands (#) Temporal res-

olution (days)
Swath width
(km)

Radiometric
resolution
(bits)

Landsat 8-9 30-15-100 9 8 185 12
MODIS 250-500-1000 36 1-2 2330 12
Sentinel-2 10-20-60 13 5 290 12

8-9 or Sentinel-2 images, the spatial patterns such as the river can be captured. Indeed, these
two satellites have a finner spatial resolution, 30m and 10m, respectively. Moreover, Sentinel-
2 image with its higher spatial resolution, provides more details about landscape objects than
Landsat 8-9.

Figures 1.11a and 1.11b represent the different satellite images during one month for a field
of rapeseed near to Toulouse for respectively, Sentinel-2 and Landsat 8-9. In this example, a
rapid change in the land cover can be seen. Indeed, the flowers did not bloom at the beginning
of the month and they stopped blooming at the end. As explained previously, the temporal
information is really important to detect the modification on the phenology. However, even
if Sentinel-2 and Landsat 8-9 provide data with a short revisit cycle, a large number of images
can not be used due to the presence of clouds. In this example, for Sentinel-2, only 4 of the 7
images (05-04-2023, 10-04-2023, 20-04-2023, 05-05-2023) are usable. For Landsat 8-9, only 4 of
the 10 images (10-04-2023, 18-04-2023, 19-04-2023, 04-05-2023) are valid. If clouds are present
at a key moment in the phenological stage, this information is lost. Unlike optical data, radar
sensors are not sensitive to clouds or to illumination conditions and can be jointly use with
optical data. Recently, fusion between radar and optical data in areas with persistent cloud
cover were proposed to improve the accuracy of land cover maps [Hill et al., 2020].

All these satellite data represent an unprecedented amount of data. Figure 1.12 shows that,
in 2019, Sentinel-1 and Sentinel-2 represented around 3.5 petabytes of data, Landsat 7-8 around
0.25 petabytes andMODIS less than 0.25 petabytes. This difference in data volume is explained
by the frequent temporal revisit and the high spatial resolution for Sentinel-2 compared to
MODIS. In this work, we have decided to work with Sentinel-2 data in particular because of
its frequent temporal revisit and its high spatial resolution. A complete description of the data
used is provided in Chapter 3. In the following, several methods for the production of LULC
maps are presented in order to deal with this huge amount of data.
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(a) MODIS (500m)

(b) Landsat 8-9 (30m)

(c) Sentinel-2 (10m)

Figure 1.10: Image of Toulouse taken from different satellites with different spatial resolutions in
May 2023 (in true colors).
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(1) 05-04-2023 (2) 10-04-2023

(3) 15-04-2023 (4) 20-04-2023

(5) 25-04-2023 (6) 30-04-2023

(7) 05-05-2023

(a) Sentinel-2
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(1) 02-04-2023 (2) 03-04-2023

(3) 10-04-2023 (4) 11-04-2023

(5) 18-04-2023 (6) 19-04-2023

(7) 26-04-2023 (8) 27-04-2023

(9) 04-05-2023 (10) 05-05-2023

(b) Landsat 8-9

Figure 1.11: Different satellite images in the agricultural area of Toulouse during around one
month (from 02 April 2023 to 05 May 2023). The orange rectangle corresponds to a rapeseed field.
White shapes correspond to clouds.
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Figure 1.12: Data volume in petabytes (PB) from 2016 to 2019 for MODIS, Landsat 7-8, Sentinel-1
and Sentinel-2. (Source: [Soille et al., 2018]).



Chapter 1. Ecosystem monitoring using remote sensing data 57

1.3. Production methods for LULC Maps
LULC maps are mainly produced from remote sensing images [Saah et al., 2020], and more
precisely, from satellite image time series. In the beginning of remote sensing, images were
analyzed by human operators. In recent years, mainly due to techniques able to easily process
the huge amount of free and open access satellite data as well as better storage and compu-
tational power, an increasing number of LULC are produced with automatic methods [Her-
mosilla et al., 2022].

1.3.1. Manual methods

Different manual methods can be used to produce land cover and land use maps from satellite
images. In general, these methods are combined with each other.

Photo interpretation

Photo interpretation or image interpretation corresponds to human experts that identify the
different cover types with satellite images [Miller and Colwell, 1961]. Information is not only
present in the pixels themselves, the geographical area or the climate needs to be taken into
account. Several dates throughout the year are needed to correctly identify land covers and
more precisely the different crops. Indeed, rapeseed is easy to identify in April on condition
that there’s at least one cloud-free image in this period, as shown in Figure 1.11. Each pixel
needs to be assigned to a unique class label. Thus, photo-interpretation on a large area can be
time consuming and costly. Another drawback of photo interpretation is the lack of consis-
tence across areas and periods due to intra-operator variability (fatigue, inattention) as well
as inter-operator variability (experience, knowledge of the area).

Field surveys

Photo-interpretation is usually combined with methods such as field surveys where human
experts go on site and record the different cover types. To produce a land cover map at large
scale, the results on the set of representative points are usually extrapolated. In order to
distinguish between crops, field surveys often require several visits during the year. One
of the major disadvantages of field surveys is that the schedule is very tight. Indeed, the
surveyors are constrained by the weather, by the phenology or by the farmers. For example, a
field survey needs to be done before the crop is harvested or before the flowers have finished
blooming. Moreover, they require a huge number of experts and also plenty of time to cover
large areas.

Crowd sourcing

Photo-interpretation and field surveys require a large number of experts. In crowd sourcing,
non experts contribute to obtain information for experts with different collaborative tools
such as web or mobile applications, social media, etc. This term can be applied to different
projects, but when applied to geographic content it is called Volunteered Geographic Infor-
mation (VGI). Unlike field surveys, if a mistake is made, users can identify and correct it. The
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first well-known map obtained with VGI is OpenStreetMap (OSM)4. Since 2004, it is updated
and maintained by a large number of volunteers. Different data are used such as field surveys,
aerial images or other freely licensed geodata sources. Another example of map produced by
crowd sourcing is WikiMapia5. The web users can map the different land covers using Google
Maps. However, even if the production time and cost are lower than with experts, this map
is not accurate everywhere and systematically. Indeed, in some regions, where there are few
data, the accuracy can be low: 65.8% in Luxembourg or 60.2% in Lebanon [Zhou et al., 2022].

All these manual methods require either huge number of experts, huge production time, or
significant cost and sometimes their accuracies can be limited.

1.3.2. Automatic methods
Automatic methods were developed in order to process satellite image time series with mini-
mal human intervention. Automatic methods are mainly divided into expert-based and data-
driven methods. Expert-based methods rely on incorporating the knowledge and the exper-
tise of human analysts into automatic methods. Data-driven methods, also known as machine
learning methods, rely on algorithms and statistical techniques to classify land covers.

Expert-based methods

Rule-based classification systems incorporate expert knowledge in the form of if-then rules
[Comber et al., 2005]. These rules are derived from the expertise of human analysts and are
used to automatically classify land cover based on specific criteria. For example, a decision
tree is a set of decision rules which convert the spectral reflectance from each pixel of satellite
images into land cover classes [Friedl and Brodley, 1997], [Pal and Mather, 2003]. It is a very
simple automatic method which does not make any statistical assumptions of the data distri-
bution [Otukei and Blaschke, 2010]. Instead of rules only based on the spectral reflectance,
vegetation indices can be also used, such as the NDVI [Lu et al., 2014], [Song, 2019], [Samrat
et al., 2022]. An example of decision tree with 6 different land cover classes is represented
in Figure 1.13. As shown in the figure, decision trees are interpretable. Indeed, it is easy to
see why a pixel has been classified in this specific way. Results from decision trees can be
produced quickly. However, it is not always easy for experts to find the decision rules as the
number of variables increases. Data-driven methods enable to learn the rules from the data
set itself by using for example some optimization algorithms [Hastie et al., 2001].

Data-driven methods

In data-driven methods, a model learns from the input data and then provides predictions
on new observations. In classification, the model predicts discrete class labels whereas in
regression, the model predicts a continuous quantity. Land cover maps are produced using
classification methods. Classification methods are mainly divided in supervised and unsuper-
vised techniques [Halder et al., 2011]. In supervised classification, a set of labeled pixels is
used to train the model. Once the model is trained, it is able to classify new pixels not seen

4https://www.openstreetmap.org
5https://www.wikimapia.org

https://www.openstreetmap.org
https://www.wikimapia.org
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Figure 1.13: Example of decision tree for 6 different land cover classes (bare land, built-up, crop-
land, forestry, grassland, water). B1 to B4 correspond to spectral bands 1 to 4 of the Chinese EO
satellite HJ-1B, B5 corresponds to the NDVI and B6 corresponds to the result of ISODATA classi-
fication. (Source: [Song, 2019])

during training, as shown in Figure 1.14a. This is currently the most widespread method for
land cover classification [Ma et al., 2017]. It can be sometimes difficult to have correctly la-
beled pixels, and using incorrectly labeled pixels can be a source of error [Gupta and Gupta,
2019], [Pelletier et al., 2017]. Unsupervised classification does not require labeled pixels un-
like supervised classification, as shown in Figure 1.14b. Some unsupervised methods were
used for land cover classifications, such as clustering methods [Cihlar, 2000], [Franklin and
Wulder, 2002], [Grekousis et al., 2015]. However, these methods require human intervention
for the specification of the number of classes and also for the assignment of the class labels
to the clusters found by the algorithm. Currently, few unsupervised methods have shown
satisfactory results and supervised methods are preferred.

Parametric methods, such as Maximum Likelihood Classification (MLC) and Gaussian Mix-
ture Models (GMM), were the first supervised classification methods used showing satisfac-
tory results. Indeed, they have shown great potential for various thematic applications [Land-
grebe, 2005]. These methods are limited by the shape of the parametric distribution. At the
same time, the first neural networks were applied to very small data sets [Benediktsson et al.,
1990]. However, due to limited computational resources and the lack of large datasets, these
methods could not be developed for several years. In the beginning of 2000, non parametric
approaches based on kernel methods, such as Support Vector Machine (SVM) were used for
land cover [Melgani and Bruzzone, 2004], [Pal, 2009]. Non-parametric methods are gener-
ally more robust to outliers in the data compared to parametric methods. Moreover, they do
not require assumptions about the distribution of the class-conditional Probability Density
Function (PDF). However, SVM are computationally expensive and are not adapted to large
scale. Simultaneously, Random Forests (RF), another non parametric method was investigated
showing very good results [Gislason et al., 2006], [Rodriguez-Galiano et al., 2012b]. Unlike
SVM, RF can handle large amount of data. Moreover, RF are very easy to use because of the
low sensibility to the parameters that need to be selected by the user. Therefore, RF were



60 Chapter 1. Ecosystem monitoring using remote sensing data

largely developed for land cover classification [Shih et al., 2019].
Since 2015, with the increasing number of free and open access data and the increasing

storage and computational power, deep neural networks have been largely developed [Ma
et al., 2019]. Since then, the number of publications has almost doubled every year [Vali et al.,
2020].

Independently of these methods, two main approaches are found: Pixel-Based (PB) and
Object-Based (OB). Both approaches are represented in Figure 1.15. In the PB approach, one
land cover class is assigned per pixel. In the OB approach, the satellite image is first divided
in objects and then these objects are classified [Whiteside et al., 2011]. In the first step of OB
(i.e. the segmentation step), pixels are aggregated into objects based on homogeneity criteria,
either spectral or spatial. In general, this step eliminates the salt and pepper effect associ-
ated to PB approaches [Blaschke et al., 2000]. Indeed, OB approaches are more adapted to
higher resolution satellite images than PB approaches [Willhauck et al., 2000], [Mansor et al.,
2002], [Oruc et al., 2004]. Besides, OB approaches have shown equivalent performance re-
sults to PB approaches for land cover classification with Sentinel-2 time series [Derksen et al.,
2020]. However, OB approaches requiremassive computational and storage resources [White-
side et al., 2011]. The advantages of OB approaches are not sufficient in comparison with the
computational cost that is added. Thus, PB approaches are preferred for large-scale applica-
tions. A more complete description of pixel-based supervised methods is provided in the next
chapter.

More recently, hybrid methods combining both supervised and unsupervised classification
were introduced: semi-supervised and self-supervised classification. In semi-supervised clas-
sification, a large part of the training data is not labeled whereas a small part of the training
data is labeled. Both data sets are used to train the model, as shown in Figure 1.14c. The un-
labeled data is used to improve the performance of the model [Van Engelen and Hoos, 2020].
Very recently, some works were produced in land cover classification for SITS [Zhang and
Yang, 2020], [Jing and Chao, 2020], [Lucas et al., 2021]. In self-supervised classification, the
most common approach is to pre-train a model with the unlabeled data using a pretext task,
as shown in Figure 1.14d. Then, this model is fine-tuned with the labeled data for the target
task [Jing and Tian, 2020]. This method was introduced very recently and is currently enjoy-
ing great popularity in the remote sensing community [Wang et al., 2022]. Some works using
self-supervised methods were produced for land cover classification, very recently [Ren et al.,
2021], [Montanaro et al., 2022], [Scheibenreif et al., 2022], [Yuan et al., 2022], [Dumeur et al.,
2024]. Yet, neither of these twomethods is used for operational production of land cover maps
in large scale, as shown in the following section.
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(a) Supervised (b) Unsupervised

(c) Semi-supervised (d) Self-supervised

Figure 1.14: Comparison classification methods for land cover classification: supervised, unsu-
pervised, semi-supervised and self-supervised.
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(a) Pixel-based (b) Object-based

Figure 1.15: Comparison between pixel-based and object-based approaches. Each color represents
a different type of land cover. In pixel-based approach, each black square corresponding to a
pixel is assigned to a specific class. In object-based approach, the image is first split into several
patterns and then each pattern is assigned to a specific class.

1.3.3. Main operational LULC maps
The main maps currently produced operationally are summarized in Table 1.5. They differ
by their production method, their scale, the number of classes, the spatial resolution or even
by the satellite data used. This table is not exhaustive and we mainly focus on Europe and
France.

A large number of LULC maps are still produced with manual methods. At a global scale,
there is no LULC map produced with manual methods. At European level, the CORINE Land
Cover (CLC) is a land cover map coordinated by the European Environment Agency (EEA).
It covers 39 countries over Europe, and for the majority of countries it is produced by photo
interpretation [Büttner, 2014]. In some countries, semi-automatic solutions are applied. As
shown in Table 1.5, themap is composed of 44 classes which is quite important for a land cover
map compared to the others. There are five different versions of the CLC respectively in 1990,
2000, 2006, 2012 and 2018. The different versions do not use the same satellite data, i.e. the
first version used Landsat-5 mono date, while the latest version (in 2018) used Sentinel-2 and
Landsat-8 time series. This map requires huge production time and is only produced every
six years. Also produced with photo interpretation and coordinated by the EEA, the Urban
Atlas (UA) corresponds to LULC maps in 800 cities with more than 50 000 inhabitants across
Europe. As shown in Table 1.5, it mainly uses high resolution satellite images such as SPOT,
Pléiades, SuperView, etc. Its spatial resolution is better than the CLC providing additional in-
formation on cities. This map is only produced every six years, at the same time than the CLC.
The Land Use/Cover Area frame statistical Survey (LUCAS) is a point field survey at European
scale funded by Eurostat6, produced every three years since 2006 [d’Andrimont et al., 2020].
As shown in Table 1.5, 8 classes are used for the land covers and 14 classes described the land
uses. As shown in Figure 1.16, this digital map is not spatially complete: it is made with ref-
erence points [Büttner and Maucha, 2006]. "Crowdsourcing LUCAS" is a survey produced by
crowd sourcing as an extension of LUCAS each year when LUCAS is not planned [Laso Bayas
et al., 2020]. At national scale, in France, the OCcupation des Sols Grande Échelle (OCS GE)

6Statistical office of the European Union.
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Figure 1.16: Example of one labeled sample (wheat) from the LUCAS survey. (Source: https:
// land. copernicus. eu/ imagery-in-situ/ lucas/ lucas-2018 )

is produced with data from different field surveys. The missing informations and also the
validation of the field surveys is based on photo-interpretation on orthophoto [IGN, 2022]. As
shown in Table 1.5, 14 classes are used for the land covers and 17 classes described the land
uses. This map is updated frequently. Also in France, the TERUTI study, created in 1982, is
based on field surveys but also on photo-interpretation. In 2006, at the creation of the LUCAS
survey, the TERUTI study was fused with the European one given the TERUTI-LUCAS study.
Recently, all the data collected since 2006, from five LUCAS surveys, were harmonized into
one database for a total of more than one million of observations [d’Andrimont et al., 2020].

In recent years, there has been an increase in the number of LULC maps produced with
automatic methods, as shown in Table 1.5. At global scale, there are four main LULC maps:
CGLS-LC100 [Buchhorn et al., 2020], Esri [Karra et al., 2021], Worldcover [Zanaga et al., 2022]
and Dynamic world [Brown et al., 2022] with around a dozen land cover classes. There is cur-
rently only one production available for these products. CGLS-LC100 map is produced using
RF. More recently, the WorldCover map was released, produced using Gradient Boosted De-
cision Tree (GBDT) [Dorogush et al., 2017]. In 2021 and 2022, respectively, Esri and Dynamic
world were produced using neural networks [ESRI, 2021]. At European scale, in 2021, CLC+
Backbone product was released. It provides a detailed European land cover map and is pro-
duced using a combination of image segmentation and neural networks [Probeck et al., 2021].
At national scale, in France, the Occupation des SOls (OSO) land cover map is produced every
year since 2016 [Inglada et al., 2017] and provides 23 land cover classes at 10m. The OSO map
is the oldest map produced operationally with automatic methods and more precisely with
RF. It is also the only map produced every year.

Several methods for producing LULC maps with remote sensing were presented. As shown
previously, at the beginning of my thesis, pixel-based supervised methods was the state-of-
the-art for land cover classification with SITS in large scale. Indeed, the OSO land cover map
was the only operational map produced every year with pixel-based supervised methods.The
next chapter will present the different challenges associated to these methods and will detail
more precisely the different pixel-based supervised methods used in the literature.

https://land.copernicus.eu/imagery-in-situ/lucas/lucas-2018
https://land.copernicus.eu/imagery-in-situ/lucas/lucas-2018
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In this chapter, the challenges associated to large scale pixel based supervised algorithms
are firstly presented. Rather than focusing on improving the quality of the data by using pre-
processing techniques, we will focus on developing supervised classification algorithms able
to work with raw data. Indeed, noise is present in the SITS (i.e. feature noise) and in the
reference data (i.e. label noise) [Pelletier et al., 2017]. The aim is to develop algorithms that
are robust to noise present in the features and in particular to missing data due to acquisi-
tion conditions. A review of the current algorithms proposed in the literature is presented.
Remaining challenges and contributions of this work conclude this section.

2.1. Challenges

2.1.1. Large amounts of data
As mentioned in the previous chapter, there is an ever-increasing amount of available data at
global scale. Indeed, for a given year, the volume of data for one satellite can reach several
petabytes, as illustrated in Figure 1.12. The volume is defined as the number of pixels times
the number of dates times the number of spectral features. By using data from several sensors
and satellites (i.e. multi-modality), this volume grows even further and algorithms need to be
adapted accordingly.

Wang et al. [Wang et al., 2020] identified three different computational issues for large scale
Machine Learning (ML) algorithms:

1. computational complexity, which is related to the number of operations (time) and the
memory footprint (space). In their paper, the authors refer to the model complexity. For
example, some models, such as SVM, defined later, in Section 2.2.1, scale cubically w.r.t.
the number of training pixels, making impossible to train with a data set larger than
105 pixels.

2. computational efficiency, which can be seen as a balance between what you achieve in
terms of the objective of the calculation (accuracy) and the cost of the calculation (com-
plexity). For this computational issue, the authors focus on optimization algorithms.
Indeed, some recent algorithms allow the use of stochastic methods (e.g. batch gradient
descent), which are more suitable than full-search methods.

3. computational capabilities, which can refer to the algorithm characteristics that make
more efficient use of computing resources. In this paper, the authors take computational
parallelism as an example. Indeed, some models are able to perform a large number of
computationally intensive operations in parallel.

Even if the algorithm is able to deal with these computational issues, the training and the
inference times need to be reasonably fast. For example, the OSO land cover map, described
in Section 1.3.3, is produced every year. Taking a large amount of time, e.g. six months,
to produce it is not acceptable. Nowadays, the production process requires just a few days.
However, this is not the case for most algorithms. Indeed, the majority of algorithms require
large learning times for large data sets [Parker, 2012], [L’Heureux et al., 2017]. Besides, even
if the algorithm can be parallelized and therefore, can be accelerated, this does not reduce its
energy consumption. Rather than being fast, algorithms should be as frugal as possible.
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Figure 2.1: Representation of the spatial, spectral and temporal dimensions for one pixel. Each
cube represents one pixel at different acquisition times ({t1, ..., tT }). D represents the number of
spectral bands and {ψ1, ψ2} corresponds to the geographic coordinates of this pixel.

2.1.2. Spatio-spectro-temporal structure

Improved spatial resolution can allow to detect more objects, improved temporal resolution
can enable to observe more landscape evolution and finally improved spectral resolution can
help to discriminate more materials in the same image. Thus, improved resolutions allow to
defined LULC maps with more classes [Mallet and Le Bris, 2020]. One example is the OSO
land cover map, which has gone from 17 classes to 231: the "winter crop" class was split in
three more detailed classes (straw cereals, rapeseed and protein crops). This improvement
was made possible because the Landsat-8 data with a spatial resolution of 30m every 16 days
was replaced by Sentinel-2 data with a spatial resolution of 10m every 5 days.

However, this increased number of features can also lead to the curse of dimensional-
ity [Russell, 2010]. With an increased number of features, the complexity of our data is also
increased. The main problem is that the amount of data required to correctly fit models in-
creases exponentially with the number of features. For the same amount of training data,
Hughes showed that above a certain number of features, the performances of the classifier
stop growing and start to decline [Hughes, 1968]. It is quite paradoxical, as a higher reso-
lution can help to discriminate more classes, but the complexity of the data can also lead to
decrease the accuracy performances.

By using only the spectro-temporal information, it can sometimes be hard to identify some
classes which differ only in the spatial pattern. For example, the neighborhood pixels can be
used to help identifying a class. Indeed, adjacent pixels are more likely to have similar values
than distant pixels [Woodcock et al., 1988].

Besides, the spatial information can be added as an additional dimension. For example,
the geographic coordinates can be used as new features [Rußwurm et al., 2023b]. The three
dimensions (spatial, spectral and temporal) can be represented separately, as illustrated in
Figure 2.1. By giving to the data a structure, we can introduce some prior knowledge. The
correlations which depend on different dimensions can be taken into account and can help
to reduce the complexity. Indeed, each pixel has a local spatial correlation, as well as a class-
dependent spectral and temporal correlation structure that needs to be considered for an ac-
curate classification [Curran and Atkinson, 1998]. The classification algorithm should be able
to take into account these correlations and to extract meaningful features that are useful for
the classification.

1https://www.theia-land.fr/en/product/land-cover-map/

https://www.theia-land.fr/en/product/land-cover-map/
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Figure 2.2: Mean spectral profiles of winter crops in three different locations.

2.1.3. Spatial variability
The spectro-temporal signature can be variable over the spatial domain. For example, Fig-
ure 2.2 represents the mean spectral profiles of winter crops in three different locations in
France. The sites studied are not adjacent and have different meteorological and topographi-
cal conditions (plain versus mountain, different longitude and latitude, etc.). Spectral profiles
have similar shape but they are not aligned with each other. Therefore, the class conditional
probability distribution function is not stationary w.r.t. the spatial covariate.

This non-stationarity problem is not linked to the volume of data but to the wide geograph-
ical coverage. On small geographical areas with a large amount of data, this problem does not
arise whereas on large area, such as at national scale, non-stationarity is emphasized. The
classification algorithm has to be able to model spatially varying class-conditional probability
distributions [Higdon et al., 1998], [Paciorek and Schervish, 2006].

2.1.4. Irregular and unaligned SITS
Currently, most conventional classifiers work with a representation of the data as a vector of
fixed length. Each pixel is described by a vector where components represent the same type
of information, i.e. the value of a given band on a given date, in the same order and in equal
quantity. However, in general, SITS are not defined as regular time series of fixed size:

• Firstly, not all pixels are acquired on the same dates. Indeed, working with different
sensors, induces different temporal acquisitions. Besides, even if there is only one sensor
with a regular revisit cycle, acquisitions dates could be different. Indeed, in large areas,
there are different revisit cycles because of satellite orbits (2 or 3 days difference between
2 adjacent swaths).

• Secondly, not all the swaths in an orbit have all the dates. Indeed, if clouds are present
in an image, the reflectance corresponds to the one of the clouds and not to the one of
the land covers. Therefore, dates for which the image consists essentially of clouds (i.e.
above a certain threshold) are removed.

• Finally, locally, different meteorological conditions, such as haze, mist or cloud shadow
can cause technical artifacts for one pixel at a given date. This information is considered
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Figure 2.3: Two irregular and unaligned pixel time series acquired by Sentinel-2. Pixels 1 and
2 are respectively from the site T31TDN and T31TGK described in Figure 2.2b. They have
different orbits and thus different temporal sampling. Only valid dates have been represented,
cloudy dates have been removed. Pixel 1 time series is sized 19 and Pixel 2 time series is sized 46.

as corrupted and the pixel is declared as invalid. Therefore, the information at this date
can be removed for this pixel leading to irregular temporal sampling. Therefore, the
sampling of very close pixels may also be different.

To sum up, SITS can be irregularly sampled in the temporal domain: observations are not
equally spaced in time. Moreover, sequences obtained can have different lengths. In addition,
SITS can be unaligned in the temporal domain: observations are acquired on different dates.
As an illustration, Figure 2.3 represents two real irregular and unaligned pixel time series
acquired by Sentinel-2 from two different orbits. The classification algorithm should be able
to work with unaligned and irregular SITS.
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Figure 2.4: Prediction of one pixel x∗ for a model trained with the set of labeled pixels S . ỹ∗
corresponds to the predicted label class.

2.2. State of the art

In the following, we define the ith pixel time series xi(tk) at time tk by its spectral mea-
surements [x1

i (tk), . . . , xj
i (tk), . . . , xD

i (tk)] with i ∈ {1, . . . , N}, N the number of pixels and
D the number of spectral features. We suppose a set of T temporal observations such as
tk ∈ {t1, . . . , tT }. Moreover, yi ∈ {1, . . . , C} is the target value (i.e. the class label) associated
to the pixel xi, with C the number of classes. xi = [xi(t1), . . . ,xi(tT )] ∈ Rd corresponds to
the raw feature vector which is the concatenation of the spectral measurements for all ob-
servations with d = D × T . Finally, the set of labeled pixels is denoted S = {xi, yi}N

i=1.
In Chapter 5, the spatial information, represented as two spatial coordinates, {ψ1i, ψ2i}, is
associated to the pixel xi. Thus, we have: xi = [xi(t1), . . . ,xi(tT ), ψ1i, ψ2i] ∈ Rd+d′ with
d′ = 2.

For each new input x∗, the model predicts a label class ỹ∗. y∗ corresponds to the true label
if available. Figure 2.4 represents the prediction of one pixel x∗ for a model trained with the
set of labeled pixels S .

In the following sections, different approaches proposed in the literature for pixel-based
supervised methods with satellite image time series in large scale are described. The most
widely used classification methods over the last ten years are described.

2.2.1. Machine learning methods

Over the last two decades, ML methods have shown successful results in land cover classifica-
tion. The literature focuses on non-parametric methods, since they are generally more robust
to outliers in the data compared to parametric methods. Moreover, they do not require as-
sumptions about the distribution of data within each class [Mountrakis et al., 2011]. MLmeth-
ods have very good performance results and are very versatile [Chang and Bai, 2018, Borra
et al., 2019].
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Support Vector Machines (SVM)

Support Vector Machine (SVM) [Cristianini and Shawe-Taylor, 2000] is a binary classifier that
finds an optimal separating hyperplane between two classes with the maximum possible mar-
gin, as represented in Figure 2.5. The margin corresponds to the smallest distance between
this hyperplane and the data points (support vectors) from both classes. To improve learning
capability, the data points can be mapped in a higher-dimensional space where they become
more easily linearly separable, as illustrated in Figure 2.6. This is done implicitly with the ker-
nel function. In remote sensing, the most commonly used kernels are the polynomial kernel
and the Radial Basis Function (RBF) kernel [Maxwell et al., 2018]. The RBF kernel can handle
nonlinear relationships between the d features and the C classes. More details about kernel
functions are given in Chapter 4. This binary classifier is extended to the multi-class case with
techniques such as "one against all" (one SVM per class) or "one against one" (one SVM for
each pair of classes) [Hsu and Lin, 2002].

SVMwerewidely applied in land cover classificationwithmulti-spectral and hyper-spectral
images [Camps-Valls et al., 2004], [Melgani and Bruzzone, 2004], [Bazi andMelgani, 2006], [Camps-
Valls et al., 2014]. The joint use of spatial and spectral information can improve classification
results. A typical example is the use of composite kernels made of disjoint spatial and spectral
features for SVM hyper-spectral image classification [Fauvel et al., 2012]. Composite spatial
and spectral kernels can help to take into account the spatio-spectral structure of the data
and, therefore, reduce the spatial variability [Camps-Valls et al., 2006].

In land cover classification, very fewworks dealwith temporal data. Muñoz-Marí et al. [Munoz-
Marı et al., 2009] proposed a SVM with composite kernels showing good performances be-
cause the spectro-temporal structure was taken into account. Indeed, the use of composite
kernels has increased the performance compared to classical kernels. Other works with also
limited number of dates in the year were proposed and with vegetation indices [Devadas et al.,
2012], [Kumar et al., 2015], [Zheng et al., 2015]. All these works were implemented with small
data sets (i.e. around 500 pixels) as the computational complexity of training process for non
linear SVM is between O(N2) and O(N3) [Bottou et al., 2007]. Thus, it becomes quickly in-
tractable as the number of samples N increases. Therefore, SVM have rarely been used for
large-scale mapping despite their learning capacity. Moreover, SVM are not able to deal with
sequences with different lengths. Preprocessing techniques are needed to transform these ir-
regular and unaligned time series into regular time series. These techniques are described in
Section 2.2.3.

Gaussian Processes (GP)

Gaussian Processes (GP) combine both Bayesian and kernelmethods [Rasmussen andWilliams,
2005]. Indeed, as a Bayesian method, the prediction is probabilistic, it is thus possible to as-
sess prediction uncertainties. Moreover, kernel functions can be used, such as in SVM. Thus,
the structure of the data can be taken into account thanks to composite kernels. Their main
advantages compared to SVM is that their parameters can be learned through gradient de-
scent [Rasmussen andWilliams, 2005, Chapter 5]. Moreover, such as SVM, Gaussian Processes
(GP) can be interpretable through their parameters (e.g. temporal correlation for the length-
scale parameter in a RBF covariance function [Rasmussen and Williams, 2005], [Constantin
et al., 2021]). A detailed description of GP is provided in Chapter 4, as it is the basis of this
PhD work.
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Figure 2.5: Support Vector Machines for two different classes: red and blue points. The classes
are linearly separable in 2D with two spectral features x1 and x2. The distance between the two
dotted lines corresponds to the maximum margin. The solid line corresponds to the hyperplane.
The circled points correspond to the support vectors.
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Figure 2.6: In 2D space with two spectral features x1 and x2, the two classes, red and blue points,
are not linearly separable. These data points are mapped in a higher-dimensional space by using
a polynomial kernel. In higher dimension space, the classes are now linearly separable.
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In remote sensing, they have been successfully applied for biophysical parameter estimation
(e.g. chlorophyll, Leaf area index (LAI), etc.) [Camps-Valls et al., 2016]. They have also been
flourishingly applied for atmospheric parameter retrieval [Camps-Valls et al., 2012], for the
surface temperature and moisture or ocean color parameters retrieval [Svendsen et al., 2020]
or for the reconstruction of cloud-free time series [Caballero et al., 2023].

Fewer works are found in classification. Indeed, Gaussian processes are more difficult to
use in classification than in regression. Classification involves discrete class labels, making the
probabilistic nature of Gaussian processes less straightforward to apply. Some approximation
approaches can be used to overcome this problem and are detailed in Chapter 4. Moreover,
conventional GP are limited to few thousands of training inputs since the complexity of their
training process is O(N3) for regression and O(CN3) for classification. For these reasons,
classification was mainly applied on small data sets, such as hyper-spectral data sets [Fauvel
et al., 2015], [Yang et al., 2015b], [Sun et al., 2015] ormulti-spectral data sets [Bazi andMelgani,
2010] with one date.

In recent years, several solutions have been proposed to deal with large amounts of data [Liu
et al., 2020]. These methods allow to drastically reduce the computing complexity. Some
works dealing with SITS, in large scale, for cloud detection [Morales-Alvarez et al., 2018] or
land cover classification [Constantin et al., 2021], [Constantin et al., 2022] were proposed.
However, these methods are limited either in terms of scale or learning capacity. Very few
methods that perform well in computer vision have been developed for remote sensing.

Random Forest (RF)

Another ML algorithm widely investigated in the remote sensing literature is Random Forests
(RF) [Breiman, 2001]. RF are composed of multiple decision trees which are learned indepen-
dently on a bootstrap sample of the training data. Given a new input, the prediction cor-
responds to the majority vote (classification) or the average of predictions (regression) from
these multiple decision trees. RF have only few parameters [Biau and Scornet, 2016]: the num-
ber of trees, the number of features in each split and the splitting rule [Probst et al., 2019].
Furthermore, unlike SVM, they are little sensitive to the parameter values and, therefore, there
is no need for cross-validation. Unlike SVM and GP, RF have expanded rapidly because they
can handle large amounts of data.

A lot of studies have shown good performances by using RF for land cover classification
with SITS [Adam et al., 2014], [Belgiu and Drăguţ, 2016], [Ma et al., 2017], [Camargo et al.,
2019]. Moreover, RF have been favorably applied to large scale problems [Pelletier et al.,
2016], [Inglada et al., 2017], [Leinenkugel et al., 2019]. As shown in the previous chapter, it is
the most widely used method for producing operational LULC maps.

However, even if RF have proved their effectiveness in large-scale land cover classification
with SITS, they are not capable of identifying new features. For complex problems, users usu-
ally need to add handcrafted features in addition to the existing ones in order to emphasize
relevant spectral or temporal information. Section 2.2.3 presents the different spectral and
temporal handcrafted features used in the literature. RF are also not able to take into account
the spatial variability of the SITS unless specific features or other strategies are used. Pre-
processing techniques are used to reduce this variability, they are described in Section 2.2.3.
Such as SVM, RF are not able to deal with sequences with different lengths. They require
preprocessing techniques in order to deal with irregular and unaligned SITS. Conventional
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preprocessing techniques are described in Section 2.2.3.

2.2.2. Deep learning methods

The first LULC map produced with neural networks appeared in the 90s on a very small
data set [Benediktsson et al., 1990]. The main advantage of Deep Learning (DL) methods is
their ability to extract features (i.e. spatial, spectral and temporal patterns) instead of hand-
crafting with preprocessing techniques. Recently, they have experienced a renaissance, due
to the increased free distribution of Big Earth Observation Data, the development of com-
puting resources (e.g. GPU, HPC, etc.) and the availability of open source deep learning
frameworks (e.g. Tensorflow [Abadi et al., 2015] or Pytorch [Paszke et al., 2019]). Since then,
there has been a resurgence of existing or newly developed DL methods: Multi-layer Percep-
tron (MLP) [Rumelhart et al., 1986], Convolutional Neural Networks (CNN) [LeCun et al.,
1989], Recurrent Neural Networks (RNN) [Hochreiter and Schmidhuber, 1997] and trans-
former [Vaswani et al., 2017]. Their use for LULC with SITS is reviewed in the following.

Multilayer Perceptron (MLP)

In the early 2000s, Artificial Neural Networks (ANN) showed satisfactory results in the remote
sensing community [Hilbert and Ostendorf, 2001], [Kavzoglu, 2009]. The Multi-layer Percep-
tron (MLP) is a specific ANN composed of one input layer, at least one hidden layer and one
output layer with different number of neurons in each layer. Each feature xj(tk) corresponds
to one neuron in the input layer. The input features are combined with adjustable weights in
the hidden layers, producing a feature space. This feature space can capture the spectral and
temporal relationships between pixels. The final output layer produces class probabilities in
order to assign each pixel to a land cover class. Thus, the number of neurons in the output
layer corresponds to the number of classes (C). An example of a MLP with one hidden layer
is represented in Figure 2.7.

A loss function is used to measure the error between the predicted and the actual values.
The loss minimization is performed using the backpropagation algorithm: first the gradients
of the loss function are calculated, then the parameters are updated. This process is repeated
until the minimum of the loss function is reached. The model parameters which are initialized
randomly are updated during the training to minimize the loss. Backpropagation corresponds
to the implementation of gradient descent in MLP. Three different types of gradient descent
can be found. Gradient descent (GD) was the earliest method. It is also called batch gradient
descent as for each iteration, all the training data are used. Thus, for large-scale data it can be
computationally expensive and require largememory. The Stochastic Gradient Descent (SGD)
method was developed in order to deal with larger data sets [Robbins and Monro, 1951]. For
each iteration, one sample is selected to calculate the gradient which in general leads to noisy
results. A compromise between the two methods was proposed called mini-batch stochastic
gradient descent. For each iteration, the gradient is calculated with subsets of all observations,
and the optimization of MLP can be performed efficiently for large data sets.

In land cover classification, MLP has produced some good results in terms of accuracy [Yuan
et al., 2009], [Lavreniuk et al., 2015]. Indeed, MLP is able to extract features that are useful for
the classification. In addition, the development of computational resources and deep learning
frameworks has helped to cope with huge volumes of data. Like SVM and RF, MLP cannot
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Figure 2.7: Multilayer Perceptron (MLP) with one hidden layer. The input layer is composed of d
neurons for one pixel xi. The output layer is represented by C neurons. Each value of the output
layer is processed through a softmax function. The label class yi for the pixel xi correspond to
argmax(softmax(ỹ)) with ỹ = {ỹ1, ..., ỹC}.

deal with sequence with different lengths as MLP concatenates pixels into a vector of fixed
size. Irregular and unaligned time series cannot be processed by MLP. Moreover, the spatial
arrangement of pixels as well as the spatial variability are not taken into account.

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) were developed in order to take into account the
spatial structure of the image. They were firstly developed for image classification. The
earliest CNN architecture was LeNet [Lecun et al., 1998] developed in 1998, followed by
AlexNet [Krizhevsky et al., 2012] in 2012. A pixel is processed by considering the pixels around
it in a window. These pixels constitute a patch corresponding to the input. The hidden layers
include one or more convolution and pooling layers. Convolution layers are used to learn
local patterns and features from the image. Pooling layers reduce the size of the image while
retaining the most important information. By combining a large number of layers, more ab-
stract and higher-level features are extracted. After the hidden layers, fully connected layers
are used to perform the classification [Li et al., 2022]. Later, Fully Convolutional Network
(FCN) [Long et al., 2015] were developed for semantic segmentation. Instead of classifying



76 Chapter 2. Pixel-based supervised land cover classification using SITS at large scale

(a) Satellite image (b) Ground truth (c) CNN-based model

Figure 2.8: Comparison between satellite image from Beijing-2, ground truth and land cover maps
obtained with a CNN-based model. There is a lack in the geometry, predictions are too smooth in
the straight borders. (Source: [Zhang et al., 2019])

the whole image, each pixel in an image is assigned to a specific class i.e. pixel-based classi-
fication. Therefore, there is no fully connected layers. Since then, other CNN architectures
were developed in computer vision such as: U-Net [Ronneberger et al., 2015], ResNet [He
et al., 2016], SegNet [Badrinarayanan et al., 2017], etc.

In land cover classification, CNN models, with different architectures, have shown very
good results in terms of accuracy [Kussul et al., 2017], [Stoian et al., 2019a]. They outperform
widely used ML methods, such as RF and SVM [Carranza-García et al., 2019]. Thanks to their
convolutional layers, the spatial structure of the SITS is taken into account. However, themain
structures, such as crop field borders, roads or buildings, can be not clearly represented and
be too smooth (i.e. rounded), as illustrated in Figure 2.8. Indeed, they rely heavily on texture
to extract spatial feature [Geirhos et al., 2019]. An adaption of the U-Net was proposed to
overcome this problem however it was computationally expensive [Stoian et al., 2019b]. The
authors of [Yao et al., 2019] proposed to add a coordinate convolution module [Liu et al.,
2018c] into a DenseNet in order to strengthen object boundaries. Spatial information was
added by putting coordinate information into feature maps. This network outperformed CNN
architectures such as U-Net. By adding coordinate information, performance results with
CNN have been improved [Yao et al., 2019]. The computational cost was rather high.

However, a large proportion of CNN works are applied on single dates. Moreover, none
of these techniques takes account of the temporal aspect of SITS. To deal with the temporal
aspect, Temporal CNN or 1D-CNN was proposed [Pelletier et al., 2019]: convolutions are
applied along the temporal dimension. This method shows good performances in terms of
accuracy but they need regular aligned SITS.

Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) were defined for sequential data [Medsker and Jain, 2001].
RNN can capture the dynamics of sequential data thanks to recurrent connections. For each
new input, RNN uses the previous inputs to predict the output. Unlike all the methods de-
scribed above (SVM, RF, MLP, CNN), RNN are able to deal with inputs of variable length
sequences. Thus, RNN can take into account irregular time series. However, RNN assume
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the same acquisition times. Thus, they do not support unaligned time series. Moreover, as
RNN process the data sequentially, they are slow to train because of the lack of parallelization
abilities. Instead of using the backpropagation algorithm to optimize the parameters such
as MLP or CNN, RNN use Backpropagation through time (BPTT) algorithm. Like other tech-
niques based on backpropagation, it leads to gradient problems (i.e. vanishing and exploding),
but they are exacerbated. For vanishing gradient, the gradient becomes too small, thus the
parameters are not updated and the algorithm generally stops learning. For exploding gra-
dient, the gradient becomes too large, thus the model has numerical issues and it is difficult
to have good performances. By using different RNN architectures, such as Gated Recurrent
Unit (GRU) [Chung et al., 2014] or Long Short Term Memory (LSTM) [Neil et al., 2016], the
vanishing gradient problem has been limited.

These architectures were successfully applied in land cover classification [Rußwurm and
Körner, 2017], [Ienco et al., 2017], [Sharma et al., 2018], [Rußwurm and Körner, 2018b]. How-
ever, RNN do not take into account the spatial information. To include spatial informa-
tion, different methods were proposed for hyper-spectral images. In the spatial-sequential
RNN [Zhang et al., 2018], handcrafted features based on texture and differential morphologi-
cal profiles are used in addition to the features. In the spectral-spatial RNN [Liu et al., 2018a],
neighborhood pixels are used. By combining RNN and CNN, spatial and temporal features can
be taken into account together. Conv-LSTM [Rußwurm and Körner, 2018a] which combines
convolutional operations with LSTM has shown good results for cloud segmentation. In land
cover classification with SITS, DupLO [Interdonato et al., 2019] also combines convolutional
and recurrent neural networks and has shown good accuracy results. Rustowicz et al. [M Rus-
towicz et al., 2019] proposed a model called U-Net + ConvLSTM: a U-Net [Ronneberger et al.,
2015], used as a spatial encoder, is followed by a temporal encoder, ConvLSTM. In land cover
classification with SITS, Chamorro Martinez et al. [Chamorro-Martinez et al., 2021] proposed
to use a FCN as a spatial encoder, followed by a temporal encoder, ConvLSTM.

The transformer architecture

CNN require a large number of layers (i.e. very deep network) in order to capture dependen-
cies globally. RNNmainly capture dependencies locally, between close elements of a sequence.
The transformer architecture [Vaswani et al., 2017], initially used for sequential data in Nat-
ural Language Processing (NLP), can catch long range dependencies, more globally, thanks
to its attention mechanism [Wen et al., 2023]. Transformers are able to process sequences in
parallel which was not the case for RNN. Attention mechanisms are permutation invariant,
i.e. the model remains the same even if the order of its inputs is altered [Cai et al., 2023].
Therefore, positional encoding is used in transformers in order to take into account the or-
der [Vaswani et al., 2017]. Besides, transformers are able to deal with irregular time series
thanks to the temporal positional encoding and padding, as explained in Chapter 7.

In 2020, Rußwurm and Körner [Rußwurm and Körner, 2020] pioneered the use of self-
attention for land cover mapping using irregular Sentinel-2 SITS. They obtained the best re-
sults compared with RNN and CNN. It was rapidly followed by a modified version of the
transformer [Garnot et al., 2020], also outperforming CNN and RNN networks. A Temporal
Attention Encoder (TAE) is used to encode each pixel time series into a single embedding, by
using attention mechanism. In order to avoid unnecessary computations and parameters, a
lighter version of this network, called Lightweight Temporal Attention Encoder (LTAE), was
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developed [Garnot and Landrieu, 2020]. The method outperforms most of state-of-the-art
time series classification algorithms. However, the LTAE was only applied to irregular time
series in large scale classification and not to unaligned time series (the data set used in [Gar-
not et al., 2020] was produced on only one tile). Recently, the authors proposed a version
combining a U-Net [Ronneberger et al., 2015] with the LTAE called U-TAE [Garnot and Lan-
drieu, 2021]. Other ways of using attention mechanisms were proposed, with for example an
attention-basedmodel using Thermal Positional Encoding (TPE) instead of classical positional
encoding [Nyborg et al., 2022]. This TPE uses the accumulated degree days instead of the day
of the year. More recently, a model called TSViT based on the vision transformer, ViT [Doso-
vitskiy et al., 2021], was proposed for SITS classification. ViT works with patches, such as
CNN, whereas Transformer architecture works with sequences of pixels. Compare to CNN,
ViT offer advantages in scenarios where there are global dependencies. However, it requires
much more large data sets than CNN. TSViT outperforms the U-TAE on three different data
sets [Tarasiou et al., 2023].

However, Kondmann et al. [Kondmann et al., 2021] points out that extracting represen-
tative features from SITS is not a trivial task. Indeed, despite the complexity of the LTAE,
it only slightly exceeds the performance of a Random Forest with handcrafted spectral fea-
tures [Kondmann et al., 2021]. Moreover, models based on the attention mechanism have a
quadratic complexity with respect to the input size.

2.2.3. Preprocessing techniques
In the following, preprocessing techniques (temporal re-sampling, handcrafted features and
spatial stratification) used by some classifiers in order to improve the classification perfor-
mances are presented. Some classifiers require temporal resampling as they are not able to
deal with irregular and unaligned time series. Moreover, some of them use handcrafted fea-
tures in order to extract meaningful information. Finally, spatial stratification can be per-
formed for some classifiers in order to reduce the spatial variability.

Temporal re-sampling

Some classifiers are not able to deal with input sequences with different lengths, such as SVM,
RF,MLP or CNN. Preprocessing techniques are used to transform irregular and unaligned time
series into regular time series.

Selecting multiple dates based on different criteria is one of the techniques. A variety of cri-
teria can be defined: selecting dates on two different seasons [Rodriguez-Galiano et al., 2012b],
selecting optimal dates based on feature importance [Nitze et al., 2015], selecting dates with
the fewer clouds [Jin et al., 2018], [Solano-Correa et al., 2022], selecting dates corresponding
to growth cycle [Nguyen et al., 2020], etc. However, the number of dates is often limited and
small. Thus, some information may be lost. Moreover, it can not be generalized on a large
scale. Indeed, it does not work with time series from two different orbits.

Temporal aggregation is another preprocessing technique used to deal with irregular and
unaligned time series. Temporal aggregation transforms a time series with high frequency
(every few days) to low frequency (every month, every quarter). Statistics from the aggre-
gated data (i.e mean, median, min, max, etc.) are used as inputs for the classifier [Xie et al.,
2019], [Phan et al., 2020]. However, Carrasco et al. [Carrasco et al., 2019] showed that temporal
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aggregation does not lead to better classification accuracies than two dates well chosen. Be-
sides, some methods produce composition of time series data from all the cloud free available
images [Griffiths et al., 2013], [Zhu and Woodcock, 2014], [Hermosilla et al., 2018]. How-
ever, if some areas are very cloudy, they may have very little or even no date leading to poor
classification.

Interpolation is another method used to transform irregular and unaligned time series into
regular time series. It is widely used in many works [Inglada et al., 2017], [Kondmann et al.,
2021] and has shown good performances in terms of accuracy.

Instead of using preprocessing techniques and conventional classifiers, some works pro-
posed to use the Dynamic TimeWarping (DTW). It was first introduced in speech recognition
in 1968 [Vintsyuk, 1968] to measure the similarity between two temporally shifted time series
with different lengths. It identifies the best alignment between them by allowing a non-linear
mapping of one time series to another, and minimizing the distance between these two time
series. Petitjean et al. [Petitjean et al., 2012] proposed to use DTW for land cover classifica-
tion with Formosat-2 image time series. Dusseux et al. [Dusseux et al., 2013] also used DTW
for grassland classification using biophysical variable temporal profiles derived from Landsat
and SPOT image time series. DTW allows to find the best alignment between two time series,
however it does not include information on inter and intra-annual phenological cycles [Maus
et al., 2019]. Thus, the Time-Weighted Dynamic Time Warping (TWDTW) was proposed by
introducing time weight factor, as an extension of the DTW [Maus et al., 2016]. Later, the
Spatial Parallel TWDTW allowed to parallelize the TWDTW algorithm and to take into ac-
count the spatial dimension [de Oliveira et al., 2019]. Even if it achieved almost linear speed
up, it was not able to deal with very large data-sets. Thus, there is no work applied to large
scale land cover classification using TWDTW.

Handcrafted features

Some ML classifiers, such as the RF, are not able extract features in contrast to deep learning
methods.

In order to take into account the spectral structure of the data, it is common to add additional
spectral features. Indeed, handcrafted features can help the classifier to learn the decision rule.
Different spectral features can be defined, such as vegetation indices, i.e. NDVI, Enhanced
Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), brightness, greenness, wetness,
etc. [Nitze et al., 2015], [Valero et al., 2016], [Inglada et al., 2017], [Thonfeld et al., 2020]. Other
spectral features can also be defined such as the color, water index (i.e. Normalized Difference
Water Index (NDWI)), built-up index (i.e. Normalized Difference Built-up Index (NDBI)), etc.

Spatial handcrafted features can also be added in order to take into account the spatial
structure of the data and thus reduce the spatial variability. Morphological features such as
the texture [Haralick, 1979] provide some information about the visual characteristics of the
image: roughness, smoothness, regularity, symmetry, etc. In land cover classification, some
works were proposed [Ghimire et al., 2010], [Rodriguez-Galiano et al., 2012a], [Jin et al., 2018].
Topography informations such as the elevation, the slope or the aspect can also be added
to the features [Le et al., 2022]. Finally, geographic coordinates, such as the longitude and
latitude, can also be an additional source of information [Yang and Huang, 2021]. However,
all these spatial features may become lost amongst the large amount of information available.
Indeed, adding the spatial features among all the handcrafted and spectral features may have
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a negligible impact.
Finally, temporal information can help to improve the performances of classifiers, especially

in order to discriminate the different crops [Vuolo et al., 2018]. However, several classifiers,
such as RF or MLP, are not able to take into account the temporal order of the SITS. For ex-
ample, we train two RF models: one with a time series and another one with the same time
series but with the features in a different order. It leads to two different models i.e. the weights
are different because the features are not in the same place. However, their performances are
very similar. Therefore, switching the temporal order of the time series leads to the same
results. In order to take into account the temporal structure of the data, temporal features can
be added. They can correspond to the statistical values (i.e. mean, median, min, max, etc.)
extracted from the spectral values, the handcrafted spectral features or even the spatial hand-
crafted features. They can also be the key dates of the phenological cycle for some vegetation
classes (i.e. sowing, threshing, cropping). However, Pelletier et al. showed that the addition of
temporal features has little effect on classification performance with RF [Pelletier et al., 2016].

Spatial stratification

Spatial stratification corresponds to divisions in spatial domain. The area is divided into strata.
In each stratum, a classification model is learned. Inglada et al. [Inglada et al., 2017] proposed
to stratify France into eco-climatic regions, as defined in [Joly et al., 2010]. For each stra-
tum, an independent RF model was trained. The non-stationarity of the data was handled
by this spatial stratification. Indeed, each pixel inside the eco-climatic region has the same
topographic and meteorological requirements. Several works using spatial stratification have
also been shown to improve the classification accuracy [Cano et al., 2017], [Moraes et al.,
2021], [Costa et al., 2022]. Costa et al. [Costa et al., 2022] produce a land cover map of Portu-
gal with Sentinel-2 time series based on RF classifier and spatial stratification.

2.3. Remaining challenges and contributions of this
thesis

Section 2.1 introduces the challenges associated with large-scale land cover classification and
Section 2.2 presents the state-of-the-art. However, there are still challenges ahead, and in this
thesis we propose to help address them.

Firstly, in large scale land cover classification, we need to use a model able to deal with
large volumes of data. Methods are highly dependent on the number of training inputs N
and the number of features d. At the beginning of the thesis, RF was the only method used
operationally for land cover classification in large scale. Since then, neural networks have
been the focus of much development, and GP have been on the sidelines, as illustrated in
Figure 2.9. However, GP are a very promising tool thanks to the Bayesian framework. For
example, they can provide the full posterior distribution. Moreover, uncertainty is not only
incorporated in the inference stage but also in the training stage. Indeed, uncertainties are
considered for the model parameters. This probabilistic aspect helps to reduce over-fitting.
Recently, Bayesian neural networks (BNN) [Jospin et al., 2022] were developed in order to add
this Bayesian framework to neural networks. However, like classical (non Bayesian) neural
networks, they lack interpretability due to the large number of layers and parameters. The
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Figure 2.9: Even if Gaussian Processes are not fashionable, they have many interesting properties.
In this thesis, we decided to explore this possibility for land cover classification in large scale.
(Image credit: Kai Arulkumaran)

main bottleneck of conventional GP is their complexity. However, recently, approximation
methods were proposed in computer vision to deal with the large amounts of data. In this
work, we propose to use approximate GP in order to perform land cover classification in large
scale. This contribution is developed in Part II.
Secondly, the spatio-spectro-temporal structure of the data should be taken into account

as well as the correlations between features. Some deep learning methods are specialized for
modeling the temporal structure of the data, such as RNN or the spatial structure, such as
CNN. Nowadays, hybrid methods are able to extract the spatio-temporal structure. However,
as described previously, deep learning methods are hardly interpretable. On the other hand,
GP are able to take into account the spatio-spectro-temporal structure of the data thanks to
composite kernels. In this work, we propose to use composite kernels with the GP defined in
large scale. This contribution is developed in Part II. Moreover, a structured spectro-temporal
reduction is proposed in Part III in order to better take into account the structure of the SITS
and to reduce the complexity of the GP model.
Thirdly, we need methods able to deal with the non-stationarity of the data. Spatial strati-

fication is currently one of the methods most widely used operationally. However, no spatial
constraints are imposed during the learning or the prediction steps and the models can be-
have differently at the boundaries between strata. Thus, the transition between two spatial
strata can show artifacts due to the discontinuity in the predictions by models of adjacent
strata. Discontinuities in prediction for RF models (OSO approach) between two eco-climatic
regions are illustrated in Figure 2.10. We propose to study the impact of the spatial stratifica-
tion and use composite kernels in order to reduce the spatial variability. This contribution is
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(a) Google earth image (b) Land cover map computed with RF models

Figure 2.10: Spatial discontinuity in land cover classification computed with RF models between
two eco-climatic regions. The black line is the separation between regions. The color nomenclature
is described in Table 3.3.

developed in Part II. In Part III, another approach is proposed to add the spatial information
based on a spatial informed kernel.

Finally, most of the algorithms used operationally work with regular time series of the
same length. Preprocessing techniques were developed in order to transform irregular and
unaligned time series into regular time series that can be used by the classifier. However, most
of the techniques developed, such as linear interpolation, are performed independently w.r.t.
the classification task. Therefore, relevant information for the classification task can be lost
when producing these re-sampled observations. Indeed, Li et al. [Li and Marlin, 2016] showed
that an independent interpolation method directly followed by a classification method per-
formed worse than methods trained end-to-end. Finally, by performing end-to-end learning
by combining a time and spatial informed kernel interpolator with the GP classifier defined
in Part II, irregular and unaligned data can be processed. This contribution is proposed in
Part III.
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Before describing the differentmethods used and the associated results, this section presents
the data used in Part II and Part III.

3.1. Sentinel-2 image time series

3.1.1. Description

Sentinel-2 is a program from the Copernicus Programme operated by European Space Agency
(ESA) [Bertini et al., 2012]. The first satellite, Sentinel-2A, was launched in June 2015 followed
by the second one, Sentinel-2B, in March 2017. Sentinel-2A was planned to run until 2022 but
it is still working. A third satellite, Sentinel-2C, is planned for 2024, followed by a fourth one
Sentinel-2D, in 2025.

With an orbit at around 785 km, the two satellites provide free and open data every 5 days
at the equator and every 2-3 days at high latitudes. Each of them is composed of a Multi-
Spectral Instrument (MSI) with a 290 km-wide coverage. Table 3.1 represents the description
of the 13 bands with their respective wavelengths and spatial resolutions. The data has high
spectral and spatial resolutions (four spectral bands at 10 m, six spectral bands at 20 m, and
three spectral bands at 60 m per pixel). B1 is used to measure the optical thickness of the
atmosphere. B2, B3 and B4 are respectively, blue, green and red bands in the visible spectrum.
They are useful for characterizing vegetation, urban areas and also water. B5, B6, B7, B8 and
B8A are mainly used to identify vegetation. B9 allows the detection of the water vapour and
B10, the cirrus clouds (wispy clouds). Finally, B11 and B12 enable the measure of soil moisture
and vegetation characteristics and is also useful for the differentiation between snow and
clouds.

Its low cost and its beneficial characteristics (frequent revisit, high spatial and spectral res-
olutions) make Sentinel-2 data widely used in remote sensing applications. Figure 3.1 rep-
resents the number of articles mentioning "Sentinel-2" in the main remote sensing journals:
TGRS (Transactions on Geoscience and Remote Sensing), JSTARS (Journal of Selected Top-
ics in Applied Earth Observations), RSE (Remote Sensing of Environment) and International
Society for Photogrammetry and Remote Sensing (ISPRS) Journal of Photogrammetry and Re-
mote Sensing from 2013 to today. Since 2018, one year after the launch of the second satellite,
Sentinel-2B, this number has risen sharply. Moreover, Sentinel-2 image time series are par-
ticularly well adapted for LULC classification. As shown in Figure 3.1, the number of articles
mentioning both "Sentinel-2" and "land cover" has also increased over the years.

3.1.2. Products

The mission generates products with different levels (0, 1A, 1B, 1C, 2A, 3A), as described in
Table 3.2. Some levels (0, 1A, 1B) are not released to users or only to expert users. They
correspond to sub-images of a detector. From level 1C, images are released to users. They are
reprojected in a cartographic reference frame. Indeed, these levels (1C, 2A, 3A), represented
in Figure 3.2, provide images in an area of size 110 km by 110 km, called a tile.
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Table 3.1.: Description of the Sentinel-2 bands.
Band Wavelengths (nm) Spatial resolution (m)

B1 – Coastal aerosol 421-463 60
B2 – Blue 426-558 10
B3 – Green 523-595 10
B4 – Red 633-695 10
B5 – Vegetation red edge 689-719 20
B6 – Vegetation red edge 725-755 20
B7 – Vegetation red edge 762-802 20
B8 – NIR 726-938 10
B8A – Narrow NIR 843-885 20
B9 – Water vapour 925-965 60
B10 – SWIR – Cirrus 1342-1404 60
B11 – SWIR 1522-1704 20
B12 – SWIR 2027-2377 20
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Figure 3.1: Transparent and filled bars correspond to the number of articles, respectively, men-
tioning "Sentinel-2", or "Sentinel-2" AND "land cover", in the abstract or title in several journals.
TGRS (Transactions on Geoscience and Remote Sensing) and JSTARS (Journal of Selected Topics
in Applied Earth Observations) are journals published by Institute of Electrical and Electronics
Engineers (IEEE). RSE (Remote Sensing of Environment) and ISPRS Journal of Photogrammetry
and Remote Sensing are published by Elsevier. The year 2023 is not complete and correspond to ar-
ticles from January to the end of August 2023. (Source: https: // app. dimensions. ai/ discover/
publication ).

https://app.dimensions.ai/discover/publication
https://app.dimensions.ai/discover/publication
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Table 3.2.: Description of the Sentinel-2 products.

Level Description User’s type Scale (km2)

0 Compressed raw image data Not release to users 23x25
1A Decompressed raw image data of level 0 Not release to users 23x25
1B Top-of-atmosphere radiances Expert users 23x25
1C Top-of-atmosphere reflectances All users 110x110
2A Atmospherically corrected surface reflectances with

cloud/shadow mask
All users 110x110

3A Monthly synthesis from images of level 2A All users 110x110

(a) Level 1C (b) Level 2A (c) Level 3A

Figure 3.2: Products of level 1C, 2A and 3A. The image corresponds to a Formosat-2 image
of about 24 km by 24 km (16 March 2006). (Source: https: // labo. obs-mip. fr/ multitemp/
theias-l3a-product-format/ )

https://labo.obs-mip.fr/multitemp/theias-l3a-product-format/
https://labo.obs-mip.fr/multitemp/theias-l3a-product-format/
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Figure 3.3: Location of the 27 studied tiles where a blue square corresponds to one tile as provided
by the Theia Data Center. Each tile is displayed with its name in the Military Grid Reference
System (MGRS) nomenclature used for Sentinel-2 products (background map © OpenStreetMap
contributors).

3.1.3. Study area
The study area is located in the south of metropolitan France and it covers an area of approxi-
mately 200 000 km2 corresponding to around two billion pixels. It is composed of 27 Sentinel-2
tiles as illustrated in Figure 3.3. This area provides a wide variety of landscapes. Coastal areas
are found on the shores of the Atlantic Ocean and the Mediterranean Sea. The Pyrenees, the
Massif Central and the Alps form a vast range of mountainous areas. Many cities, including
some of the most densely populated in France, are part of this zone: Marseille, Lyon, Toulouse,
Nice, Montpellier, Bordeaux, Toulon, Saint-Etienne, Grenoble, etc. (order according to num-
ber of inhabitants). Finally, a large diversity of rural areas ranging from intensive agricultural
areas to forests can also be found. All Sentinel-2 tiles were downloaded from the Theia Data
Center1. Different corrections were applied, as described in the following sections.

1https://www.theia-land.fr/en/products/

https://www.theia-land.fr/en/products/


88 Chapter 3. Description of the data used

(a) Original - 20m (b) Resampled - 10m

Figure 3.4: Example of an image from the band B5 spatially resampled from 20m to 10m with
bicubic interpolation. (Source: https: // ecampus. paris-saclay. fr/ pluginfile. php/ 1011133/
mod_ resource/ content/ 0/ Copernicus_ Agri_ Ocsol_ TP. pdf )

3.2. Data preparation for Sentinel-2 SITS

3.2.1. Radiometric and geometric corrections
In this work, the Sentinel-2 products of level 2A are provided by the MACCS-ATCOR Joint
Algorithm (MAJA) processing chain [Baetens et al., 2019]. MAJA is able to detect clouds and
their shadows, to estimate the atmospheric content in aerosols and water vapor and to correct
the atmospheric, adjacency and slope effects. It provides the surface reflectance time-series
as well as the cloud and shadow masks.

3.2.2. Spatial resampling
In this work, a total of 10 bands is used: B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12. The
nomenclature of these bands and their characteristics are presented in Table 3.1. Among these
bands, four of them (B2, B3, B4, B8) have a spatial resolution of 10m whereas six of them (B5,
B6, B7, B8A, B11, B12) have a spatial resolution of 20m. Bands at 20 m/pixel are spatially
upsampled to 10 m/pixel using bicubic interpolation, as implemented in the Orfeo ToolBox
and its SuperImpose application [Grizonnet et al., 2017]. An example of an image from the
band B5 spatially resampled from 20m to 10m is provided in Figure 3.4. Having data cubes of
the same size for all bands facilitates processing.

3.2.3. Feature extraction
In addition to the spectral channels, three spectral indices are also calculated: NDVI, NDWI,
and Brightness. These indiceswere selected by the Centre d’Expertise ScientifiqueOccupation
des SOls (CES OSO) to produce the OSO land cover map. CES OSO of Theia2 is a group made

2https://www.theia-land.fr/

https://ecampus.paris-saclay.fr/pluginfile.php/1011133/mod_resource/content/0/Copernicus_Agri_Ocsol_TP.pdf
https://ecampus.paris-saclay.fr/pluginfile.php/1011133/mod_resource/content/0/Copernicus_Agri_Ocsol_TP.pdf
https://www.theia-land.fr/
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up of researchers and scientists from different national laboratory teams working on the OSO
land cover map. Figure 3.5 represents a Sentinel-2 image as a true color RGB composition
and this same image for these three spectral indices: NDVI, NDWI, and Brightness. The blue,
green, orange and red polygons represent a water source, a forest, a cultivated field and a bare
soil, respectively.

As described in Chapter I, the NDVI is used to measure photosynthetic vegetation activity.
It corresponds to the combination of the Sentinel-2 spectral bands B4 and B8 and can be
written such as:

B8 − B4
B8 + B4 (3.1)

In Figure 3.5, both forest and cultivated field polygons correspond to NDVI values close to
1 (white values). The bare soil polygon corresponds to NDVI close to 0 (gray values) and the
water polygon corresponds to NDVI values close to -1 (black values).

The NDWI is used to monitor content changes in surface water [McFEETERS, 1996]. It is
the combination of the Sentinel-2 spectral bands B3 and B8 and can be written as:

B3 − B8
B3 + B8 (3.2)

In general, such as for NDVI, NDWI values range from−1 to 1. HighNDWI values correspond
to water bodies whereas low NDWI values correspond to drought, non-aqueous surfaces. As
shown in Figure 3.5, the water polygon stands out to other polygons. Indeed, the forest,
cultivated field or bare soil polygons are not identifiable and cannot be distinguished from
one another.

The Brightness Index is used in order to measure the brightness of soil [Khan et al., 2005].
As shown in Figure 3.5, the Brightness, such as the NDVI, is useful to differentiate cultivated
field and bare soil. In this work, it is defined as the Euclidean norm of all the bands [Inglada
et al., 2017].

The 10 resampled bands and these three spectral indices are used as features to produce the
land cover maps in Part II and Part III. Finally, a total of D = 10 + 3 = 13 spectral features
are defined for each pixel xi at each time tk.

3.2.4. Spatial information extraction
In addition to spectral information, two geographic coordinates, ψ1i and ψ2i, can also be ex-
tracted for each pixel xi. These spatial features are in meters in the Lambert 93 projection.
The coordinates are centered on the point: (X0, Y 0) = (700000, 6600000)3 (in meters), as
illustrated in Figure 3.6. The corresponding EPSG code is 2154. These geographic coordinates
are used in two different ways in Part II and Part III.

3.2.5. Temporal resampling
All available acquisitions between January 2018 and December 2018 for the 27 Sentinel-2
tiles are used in this work. Five orbits are covering the study area, as shown in Figure 3.7.
Combining the 5 orbits, T = 303 unique acquisition dates are available.

3This point corresponds roughly to the middle of France (including Corsica). Centering in longitude is not
very important. However, centering in latitude is very important: it corresponds to the median latitude between
the two latitudes where the projection cone intersects the Earth.
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Figure 3.6: Representation of the point (X0, Y 0) in Lambert 93 projection (background map ©
OpenStreetMap contributors).

Figure 3.7: Sentinel-2 orbits used for the study area (background map © OpenStreetMap contrib-
utors).
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Figure 3.8: Temporal grids for three different tiles: T30TXQ, T31TCH , T31TFL.

As described in Chapter 1, Sentinel-2 pixel time series are unaligned in the temporal do-
main: observations from two different satellite swaths have different temporal sampling grids.
Figure 3.8 represents the temporal grids for three tiles: T30TXQ, T31TCH , T31TFL. More-
over, the time series are irregularly sampled in the temporal domain: observations are not
equally spaced in time due to the presence of clouds or cloud shadows. Some gaps are found
in the figure because images containing more than 90% of clouds are not processed to the
level 2A.

Figure 3.9 represents the NDVI profile for three pixels from these same tiles. Both valid
dates and cloudy / shadow dates are represented in this figure. Valid date corresponds to an
acquired observation where no cloud or cloud shadow is detected by the level 2A processor.
The pixel from the tile T31TFL has long periods without valid dates. The pixel from the tile
T31TCH is the least impacted by the cloudy / shadow dates.
The number of valid dates from 230 000 pixels randomly selected in the study area was

computed. Figure 3.10 represents the histogram of these valid dates. Valid dates range from 8
to 79 with a mean value around 37. Moreover, three modes are found, they can be explained
by the overlap of the orbits. Figure 3.11 represents the averaged number of valid dates for
each pixel per month. July, August and September are the months with the largest number
of valid dates, with more than 5 dates for each pixel. In contrast, February, November and
December are the months with the smallest number of valid acquisitions, with less than 2
dates per pixel.

To cope with the clouds and cloud shadows and different temporal sampling among the
tiles, the data can be linearly resampled onto a common set of virtual dates with an interval
of ten days, for a total of T = 37 dates, as described in [Inglada et al., 2017]. The first date
corresponds to the day 1 of the year and the last day corresponds to the day 361 of the year.
Figure 3.12 represents the linear interpolation for the three pixels described previously. This
processing is optional and is only used in Part II. In Part III, we propose to directly deal with
the raw time series.
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Figure 3.9:NDVI time series for three pixels from different tiles: T30TXQ, T31TCH , T31TFL.
Filled dots correspond to valid observations, transparent dots correspond to observations flagged
as clouds or cloud shadows in the level 2A masks.
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Figure 3.10: Histogram of the number of valid dates for 230 000 pixels in the study area.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0

1

2

3

4

5

Month

Av
er
ag
ed

nu
m
be
ro

fv
al
id

da
te
s

Figure 3.11: Averaged number of valid dates per pixel for each month. The mean was calculated
from 230 000 pixels in the study area.
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Figure 3.12: NDVI time series for three pixels from different tiles: T30TXQ, T31TCH ,
T31TFL. The black circled markers correspond to the linear interpolation of the valid dates
with an interval of ten days, for a total of 37 dates dots. First interpolated date: day 1 of the year.
Last interpolated date: day 361 of the year.
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3.3. Reference data
The reference data used in this work is composed of C = 23 land cover classes ranging from
artificial areas to vegetation and water bodies as described in Table 3.3. It corresponds to
the OSO Theia Land Cover nomenclature. For the production of the 2016 and 2017 national
maps, the OSO nomenclature was composed of 17 classes. Since 2018, the nomenclature has
been updated to 23 classes. The "summer crop" class was split in five classes: soy, sunflower,
corn, rice and tubers/roots. The "winter crop" class was split in three classes: straw cereals,
rapeseed and protein crops.

3.3.1. Sources
The OSO nomenclature is the result of the fusion of different data sources:

1. CORINE Land Cover (CLC 2012). This data source was described in Chapter I. As a
reminder, it as an inventory of land cover in 44 classes with a MMU of 25ha [Bossard
et al., 2000], [Feranec et al., 2016]. It is coordinated by the EEA The different classes are
described in Table 3.4. The corresponding classes used to construct the OSO nomencla-
ture are shown in bold in this table. CLC from 2012 was used to construct the reference
data set of 2018. Artificial surfaces are considered to be permanent classes that change
only slightly.

2. UA (2012). It is a geometrically accurate description of the various artificial cover types
with a MMU of 25ha [Montero et al., 2014]. This data source was also described in
Chapter I. Such as CLC, it is coordinated by the EEA and produced the same year than
CLC. UA was used to construct the OSO class: road surfaces. UA from 2012 was used to
construct the reference data set of 2018. Road surfaces are considered to be permanent
classes that change only slightly.

3. French National Geographic Institute (BD-Topo). It is the national topographical map
produced by Institut Géographique National (IGN) [Maugeais et al., 2011]. The spatial
resolution is in the meter range. Since 2019, it is updated every three years. It was used
to construct five different OSO classes: road surface, broad-leaved forest, coniferous
forest, woody moorlands and water bodies.

4. Agricultural Land Parcel Information System, Registre Parcellaire Graphique (RPG) (2018).
It is a spatial register of agricultural parcels coordinated by Agence de Services et de
Paiement (ASP) and IGN. The crop type is provided by farmer declarations [Cantelaube
and Carles, 2014]. Only the crop fields that obtain subsidies form the European Common
Agricultural Policy are present in the database. RPG is composed of 24 crop groups as
described in Table 3.5, at field level. This table also provides the corresponding classes
of the OSO nomenclature. All the OSO crop classes are based on the RPG as shown in
Table 3.3.

5. Randolph Glacier Inventory (RGI). It is a global inventory of glacier outlines [Pfeffer
et al., 2014]. It is part of the Global Land Ice Measurements from Space (GLIMS) initia-
tive. Only the OSO class "glaciers and perpetual snows" class uses the RGI (version 6
released in 2017).
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Table 3.4.: CORINE (CLC 2012) nomenclature [Bossard et al., 2000] [Feranec et al., 2016]. Bold
classes correspond to the ones used in the OSO nomenclature.

Code Description

111 Continuous urban fabric
112 Discontinuous urban fabric
121 Industrial or commercial units
122 Road and rail networks and associated land
123 Port areas
124 Airports
131 Mineral extraction sites
132 Dump sites
133 Construction sites
141 Green urban areas
142 Sport and leisure facilities
211 Non-irrigated arable land
212 Permanently irrigated land
213 Rice fields
221 Vineyards
222 Fruit trees and berry plantations
223 Olive groves
231 Pastures
241 Annual crops associated with permanent

crops
242 Complex cultivation patterns
243 Land principally occupied by agriculture,

with significant areas of natural vegetation
244 Agro-forestry areas

Code Description

311 Broad-leaved forest
312 Coniferous forest
313 Mixed forest
321 Natural grassland
322 Moors and heathland
323 Sclerophyllous vegetation
324 Transitional woodland/shrub
331 Beaches, dunes, sands
332 Bare rock
333 Sparsely vegetated areas
334 Burnt areas
335 Glaciers and perpetual snow
411 Inland marshes
412 Peatbogs
421 Salt marshes
422 Salines
423 Intertidal flats
511 Water courses
512 Water bodies
521 Coastal lagoons
522 Estuaries
523 Sea and ocean
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Table 3.5.: RPG nomenclature and the correspondence with the OSO nomenclature [ASP, 2018].
RPG OSO

Soft wheat Straw cereals
Corn Corn
Barley Straw cereals
Other cereals Straw cereals
Rapeseed Rapeseed
Sunflower Sunflower
Other oilseeds Soy
Protein crops Protein crops
Fiber plants -
Set-aside areas without production -
Rice Rice
Legume Protein crops (lentils, chickpeas)
Fodder -
Meadows - moors -
Permanent pasture Grasslands
Temporary pastures Grasslands
Orchards Orchards and fruit growing
Vineyards Vineyards
Nut Orchards and fruit growing
Olive tree Orchards and fruit growing
Other industrial crops Tubers/Roots (beet)
Vegetables - flowers Tubers/Roots (potatoe)
Sugarcane -
Miscellaneous -
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Figure 3.13: Example of polygons of different shapes and sizes. The colors correspond to the
nomenclature defined in Table 3.3 (Background: Sentinel-2 level 2A 20/06/2018 T31TDJ tile).

Figure 3.14: Repartition of the polygons in the study area.

3.3.2. Polygons
Following the methodology described in [Inglada et al., 2017], all the information from these
different sources has been aggregated, both spatially and semantically, to create the reference
data set. It is provided as a set of non-overlapping spatial polygons of different shapes and
sizes, as represented in Figure 3.13. The approximately 600 000 polygons are relatively well
distributed over the study area, as shown in Figure 3.14. Although there are some areas where
there are fewer polygons. For example, the T31TFL tile consists of around 50 000 polygons
whereas the T31TEK is composed of around 20 000 polygons.
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Table 3.6.: Eco-climatic regions nomenclature.
Color Code Name

■ 1 Mountainous
■ 2 Semi-continental and mountain margins
■ 3 Degraded oceanic from central and northern plains
■ 4 Altered oceanic
■ 5 Straightforward oceanic
■ 6 Altered Mediterranean
■ 7 South-west basin
■ 8 Straightforward Mediterranean

Figure 3.15: Eco-climatic regions (regions 1-8) for the study area (background map © Open-
StreetMap contributors).

3.3.3. Eco-climatic regions
Eco-climatic regions can be used to stratify the studied area into sub-regions, as proposed
in [Joly et al., 2010]. Eight different regionswere proposed and their nomenclature is described
in Table 3.6. In each eco-climatic region, meteorological and topographical conditions are
similar. Inglada et al. [Inglada et al., 2017] proposed to divide the training data set and train
a model for each eco-climatic region. This allows to reduce the spectro-temporal variability
of pixel reflectances. It also enables to reduce the massive training data set which is needed
by some machine learning algorithms which do not scale well. In Part II, eco-climatic regions
are used to train the different models.

Figure 3.15 presents the eco-climatic regions over our study area. All the eco-climatic re-
gions are represented in the study area, but with varying proportions as shown in Figure 3.16.
Region 4, corresponding to "altered oceanic", is the most represented region. Region 3, cor-
responding to "degraded oceanic from central and northern plains", is the least represented,
as our study area covers the south of France. Regions 2, 6 and 7 are roughly equivalent, each
covering around 10% of the study area.
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Figure 3.16: Surface (in km2) of each eco-climatic region in the study area.
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3.4. Data set selection
The different data sets were produced using the iota2 software [Inglada et al., 2016]. Fig-
ure 3.17 represents the different steps for producing three different datasets (train, validation,
test).

3.4.1. Polygon selection
From the approximately 600 000 polygons, one third were randomly selected in order to
create our data set used in the following chapters. 80 000, 20 000 and 100 000 polygons
were extracted separately and randomly to build the training, validation and test polygons,
respectively. Figure 3.17b represents some polygons selected from the initial polygons in Fig-
ure 3.17a.

3.4.2. Pixel selection
From the polygons described previously, different pixels are randomly extracted in order to
form three spatially disjoint data subsets: training, validation and test. Indeed, pixels from
one polygon fully belong to an unique data subset (either training, validation and test). Fig-
ure 3.17c represents the pixels extracted from the polygons. Depending on the polygon, more
or fewer pixels are extracted. The number of pixels selected for each experiment is described
in chapters 5 and 8.
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(a) Initial polygons

(b) Polygon selection

(c) Pixel selection

Figure 3.17: Data set selection. In Figure 3.17a colors correspond to the nomenclature defined in
Table 3.3. Red, green and blue colors in Figures 3.17b and 3.17c respectively represent the training,
validation and test data sets.
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This chapter presents how Gaussian Processes (GP) work, their advantages and limitations
and the solutions that allow to overcome the latter.

4.1. Gaussian Distribution
In order to easily introduce GP, a reminder on the Gaussian distribution is proposed.

4.1.1. Univariate Gaussian Distribution
A random variable X follows a Gaussian distribution denoted as:

X ∼ N1(µ, σ2)

with µ its mean and σ2 its variance if its Probability Density Function (PDF) is given by the
following equation [Bishop, 2006, Chapter 2.3]:

fX(x) = 1
σ

√
2π

exp
(

−1
2

(
x− µ

σ

)2
)
.

Figure 4.1 represents the PDF of the standard normal random variable X1 ∼ N1(0, 1) and
two other random variables X2 ∼ N1(2, 3) and X3 ∼ N1(0, 0.2).
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Figure 4.1: Probability density functions ofX1 ∼ N1(0, 1),X2 ∼ N1(2, 3) andX3 ∼ N1(0, 0.2).
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4.1.2. Multivariate Gaussian Distribution
A d-dimensional randomvectorX = (X1, ..., Xd), withX1 ∼ N1(µ1, σ

2
1), ..., Xd ∼ N1(µd, σ

2
d)

follows a d dimension Gaussian distribution denoted as:
X ∼ Nd(µ, Σ)

with µ = (µ1, ..., µd) its mean vector and Σ =

σ
2
1 ... σ2

1d

... ... ...
σ2

1d ... σ2
d

 its covariance matrix. The

joint PDF is defined as:

fX(x1, . . . , xd) = 1√
(2π)d|Σ|

exp
(

−1
2
(
(X − µ)⊤Σ−1(X − µ)

))
,

with | · | which denotes the determinant, if its covariance matrix is symmetric positive semi
definite (i.e. Σ is symmetric and XT ΣX ≥ 0, ∀X ∈ Rd).

If we assume that X is split into two parts, such as X = (X1,X2) where X1 is of size c and

X2 is of size (d − c) with µ = (µ1,µ2) and Σ =
(

Σ11 Σ12
Σ12 Σ22

)
, then we have the following

results.

Marginalization: Everymarginal distribution of a Gaussian distribution is itself a Gaussian
distribution. Thus, the c-dimensional marginal distribution of X1 is Nc(µ1,Σ11). In the case
of a bivariate Gaussian distribution (i.e. X = (X1, X2)), fX1(x1) and fX2(x2) corresponding
to the marginal PDF of X1 and X2, respectively, are defined such as:

fX1(x1) = 1
σ1

√
2π

exp
(

−1
2

(
x1 − µ1

σ1

)2
)
and fX2(x2) = 1

σ2
√

2π
exp

(
−1

2

(
x2 − µ2

σ2

)2
)
.

If X1 and X2 are independent (Σ12 = 0), the joint PDF is equal to the product of the
marginal PDF such as fX1,X2(x1, . . . , xd) = fX1(x1, . . . , xc)fX2(xc, . . . , xd−c).

Conditional distribution: The c-dimensional distribution of X1 conditional on X2 also
follow a Gaussian distribution such as:

X1|X2 ∼ Nc(µ1 + Σ12Σ−1
22 (X2 − µ2),Σ11 − Σ12Σ−1

22 Σ⊤
12). (4.1)

In the case of a bivariate Gaussian distribution, we have:
X1|X2 = x2 ∼ N1(µ1|2, σ

2
1|2) and X2|X1 = x1 ∼ N1(µ2|1, σ

2
2|1)

with µ1|2 = µ1 + σ2
12σ

−2
2 (x2 − µ2), σ2

1|2 = σ2
1 − σ2

12σ
−2
2 σ2

12, µ2|1 = µ2 + σ2
12σ

−2
1 (x1 − µ1) and

σ2
2|1 = σ2

2 − σ2
12σ

−2
1 σ2

12.
If X1 and X2 are independent (Σ12 = 0), the conditional distribution is equal to the

marginal such as fX1|X2 = fX1 . Indeed, knowing the value of X2 should not change the
distribution of X1 and respectively.

In the case of a bivariate Gaussian distribution, Figures 4.2a and 4.2b represent themarginal,
conditional and joint PDF of two variables X1 and X2, correlated and independent, respec-
tively. It clearly illustrates the fact that for independent variables the conditional PDF is equal
to the marginal PDF.
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Figure 4.2: Representation of marginal, conditional and joint PDFs of two variables X1 and X2.
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Kullback-Leibler divergence: The Kullback–Leibler (KL) divergence between two prob-
ability distributions p and q is defined as:

KL[p||q] =
∫

x
p(x) log p(x)

q(x) .

If p and q are two multivariate Gaussian distributions, such as p ∼ Nd(µp, Σp) and q ∼
Nd(µq, Σq), KL divergence can be rewritten as:

KL[p||q] = 1
2

[
log |Σq|

|Σp|
− d+ (µp − µq)T Σ−1

q (µp − µq) + tr
{
Σ−1

q Σp

}]
.

Concept of Gaussian Processes: Figure 4.3 represents 4 different realizations of a bivari-
ate Gaussian distribution. Two representations are used to plot these realizations. The first
one, in Figure 4.3a, is the most widely used representation, where each variable corresponds
to one axis. In second one, in Figure 4.3b, the two variables are represented in the same axis.
The latter representation is used to make the concept of Gaussian Processes easier to under-
stand. Indeed, Figure 4.4 represents 4 different realizations selected from several d dimensional
Gaussian distribution with the same representation. When the dimension d goes to infinite,
it is not anymore a random variable but a random process or a random function. Therefore,
a Gaussian Process is defined as an extension of the multivariate Gaussian distribution to
infinite dimension.
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Figure 4.3: Two representations of 4 different realizations of a bivariate Gaussian distribution. In
the left figure, each variable corresponds to one axis. In the right figure, the two variables are
represented in the same axis (x-axis). In the following, the representation 2 will be used.
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Figure 4.4: Representation of 4 different realizations of a d dimensional Gaussian distribution of
increasing size (d ∈ {5, 20, 50, 200}).
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4.2. Univariate Gaussian Processes

4.2.1. Definition
An univariate GP f is specified by its real-valued mean function m and its covariance func-
tion k: f ∼ GP(m, k) [Rasmussen and Williams, 2005]. f is defined as a (potentially infinite)
collection of random variables, any finite number of which have joint Gaussian distribution.
Noting f(X) the random vector defined as f(X) =

[
f(x1), . . . , f(xN)

]⊤
with N the num-

ber of observations, f(X) follows a multivariate Gaussian distribution: f(X) ∼ NN(µ,K)
with µ =

[
m(x1), . . . ,m(xN)

]⊤
and K such as Kij = k(xi,xj), ∀i, j ∈ {1, . . . , N}2. The

parametersm and k, functions of xi, are usually modeled by parametric functions with hyper-
parameters θm and θk, respectively. The choice of the parametric functions can be made by
the user and depend on the application. The hyper-parameters θm and θk can be optimized
by gradient descent, as explained in Section 4.2.2. Figure 4.5 represents four realizations of
two different GP. The mean of the GP is also represented. Different parametric functions
were selected for these two GP leading to different representations. In the following, the most
common mean and covariance functions are described.

X

2

1

0

1

2

(a) GP 1
X

2

1

0

1

2

(b) GP 2

Figure 4.5: Representation of two different Gaussian Processes: GP 1 and GP 2. The colored curves
correspond to 4 different realizations of the GP. The black curve corresponds to the mean of the
GP here µ = 0. The GP 1 is composed of a mean function equal to zero and a covariance function
corresponding to a RBF function defined in Table 4.2 with σ = 1 and ℓ = 1. The GP 2 is composed
of a mean function equal to zero and a covariance function corresponding to a periodic function
defined in Table 4.2 with σ = 1 and ℓ = 2.

Mean function

In statistics, the mean function is typically referred as the "prior mean" and is able to incorpo-
rate all the prior information. In contrast, in machine learning, the mean function is seldom
used and it is the covariance function which incorporates most of the prior information. The
most common mean functions m used in ML are represented in Table 4.1. Typically, for ma-
chine learning, the constant mean is usually used. It simplifies the GP model compared to the
linear mean function or to more complex ones.
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Table 4.1.: Description of the most common mean functionsm.
Name Formulam(x) Hyperparameters θm

Zero 0 None
Constant b {b}
Linear ax + b {a, b}

Covariance function

k(x,x′) indicates the correlation between x and x′, e.g. how they are close. k is constrained
to be a symmetric positive semi-definite function [Rasmussen and Williams, 2005, Chapter 4]
such as:

N∑
i,j

k(xi,xj)xixj =
N∑
i,j

Kijxixj = xT Kx ≥ 0, ∀x ∈ RN .

The most common covariance functions are detailed in Table 4.2 and their illustrations
are provided in Figure 4.6. The choice of the covariance function allows to introduce prior
knowledge and to infer properties of GP posteriors [Scholkopf and Smola, 2001], [Rasmussen
and Williams, 2005].

The most popular function used for GP is the Squared Exponential, also called Radial Basis
Function (RBF) or Exponential Quadratic. This covariance function is isotropic (invariant
under rotation) and stationary (invariant under translations). This operator canmodel smooth
transitions for two "close" pixels, as represented in Figure 4.6c. Rational Quadratic (RQ) and
Matérn 5/2 kernels are generalizations of the Radial Basis Function (RBF) kernel, as illustrated
in Figures 4.6d and 4.6e. The RQ kernel can be considered as an infinite sum of RBF kernels
with different length-scales ℓ [Duvenaud, 2014]. Finally, by using the Periodic kernel, the
periodicity of the data can be taken into account, as illustrated in Figure 4.6f.
Sometimes, a covariance function alone does not meet all the requirements. One solution is

to combine the covariance functions together. The covariance functions can either be added
or multiplied together [Duvenaud, 2014]. Figures 4.6g, 4.6h, 4.6i and 4.6j illustrate different
combinations of covariance functions. A periodic covariance function added to a linear co-
variance function corresponds to a periodic function with an increasing mean, as represented
in Figure 4.6g. A periodic covariance function times a linear covariance function corresponds
to a periodic function with an increasing amplitude, as represented in Figure 4.6h. A linear
times a linear covariance function results in a quadratic function, as represented in Figure 4.6j.



Chapter 4. Review on Gaussian Processes 115

Table 4.2.: Description of the most common covariance functions k.
Name Formula k(x,x′) Hyperparameters θk

Constant b {b}
Linear σ2x⊤x′ {σ}

Squared Exponential (RBF) σ2 exp
(

− ∥x−x′∥2

2ℓ2

)
{σ, ℓ}

Rational Quadratic (RQ) σ2 exp
(

1 + ∥x−x′∥2

2αℓ2

)−α

{σ, ℓ, α}

Matérn 5/2 σ2
(

1 +
√

5∥x−x′∥2

ℓ + 5∥x−x′∥2

3ℓ2

)
exp

(
−

√
5∥x−x′∥2

ℓ

)
{σ, ℓ}

Periodic σ2 exp
(

−
2 sin2

(
x−x′

2

)
ℓ2

)
{σ, ℓ}



116 Chapter 4. Review on Gaussian Processes

4 2 0 2 4
x x′

0.0

0.2

0.4

0.6

0.8

1.0

k(
x,

x′
)

b = 0.5

(a) Constant with b = 0.5.
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(b) Linear with σ2 = 0.1.
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(c) RBF with σ = 1 and ℓ ∈ {0.5, 1, 1.5}.
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(d) RQ with σ = 1 and α, ℓ ∈
{{1, 0.5}, {1, 1}, {1, 1.5}, {2, 0.5},
{2, 1}, {2, 1.5}}.
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(e) Matérn 5/2 with σ = 1 and ℓ ∈
{0.5, 1, 1.5}.
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(f) Periodic with σ = 1 and ℓ ∈
{0.5, 1, 1.5}.
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Figure 4.6: Illustration of different covariance functions k.
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4.2.2. Gaussian Process Regression
Univariate GP are commonly used to regress a scalar target value (yi ∈ R) through a link
function ψ that relates the univariate latent variable f(xi) to the observed yi. We denote
X =

[
x1, . . . ,xN

]⊤
and y =

[
y1, . . . , yN

]⊤
.

To model realistic situations, an usual approach is to consider a noisy version of the function
value such as

yi = ψ
(
f(xi)

)
= f(xi) + ϵi (4.2)

with ϵi ∼ N1(0, σ2) and σ the noise level. By definition of a Gaussian Process, we have:

f(X) ∼ NN(µ,K).

Assuming additive independent identically distributed Gaussian noise, y is a sum of two in-
dependent multivariate Gaussian variables, thus we have:

y ∼ NN(µ,K + σ2IN).

Inference

The joint distribution of the observed values y and the function values for a new input x∗ is
expressed as: (

y
f(x∗)

)
∼ N

([
µ

m(x∗)

]
,

[
K + σ2IN k∗

k⊤
∗ k(x∗,x∗)

])
(4.3)

with k∗ = [k(x1,x∗), . . . , k(xN ,x∗)]⊤. Using Equation (4.1), the conditional posterior predic-
tion is given by [Bishop, 2006, Chapter 2.3.2 and 2.3.3]:

p(f(x∗)|y,X,x∗) = NN(f(x∗)|µ∗, σ
2
∗), (4.4)

with

µ∗ = m(x∗) + k⊤
∗ (K + σ2IN)−1(y − µ), (4.5)

σ2
∗ = k(x∗,x∗) − k⊤

∗ (K + σ2IN)−1k∗, (4.6)

We can also write:

p(y∗|y,X,x∗) = NN(y∗|µ∗, σ
2
∗),

with

µ∗ = m(x∗) + k⊤
∗ (K + σ2IN)−1(y − µ),

σ2
∗ = k(x∗,x∗) + σ2 − k⊤

∗ (K + σ2IN)−1k∗,

Given a new inputx∗ the prediction is done by taking themaximuma posteriori (MAP) [MacKay,
1996] of this predictive distribution. For a Gaussian distribution, theMAP is given by themean
of the distribution, i.e., ŷ∗ = µ∗. Furthermore, the GP framework allows to estimate the un-
certainty of the prediction through the variance of the posterior distribution σ2

∗ . This variance
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does not depend on the output y but only on the inputs X and x∗. The 95% confidence inter-
val is calculated by taking µ∗ ± 2σ2

∗ .

To illustrate this section, we define the following example of univariate regression:

y = sin(2πx) + 10 + x

2 + ϵ (4.7)

with ϵ ∼ N1(0, 0.2). The noise-free function we would like to find is defined as: h(x) =
sin(2πx) + 10 + x

2 . Figure 4.7 represents the noisy observations and the noise-free function
h(x). The observations are defined on the interval [0, 4]. We will try to fit these data with a
Gaussian Process.

We define f ∼ GP(m, k), a GP over the latent noise-free functions h(x). From the Equa-
tion (4.7), we definem(x) = 10 and k a periodic covariance function added to a linear function,
as illustrated in Figure 4.6g.
Predictions were computed inside and outside the definition interval using Equations (4.5)

and (4.6). In addition to the prediction value (µ∗), the 95% confidence interval is provided (µ∗±
2σ2

∗). For both predictions inside or outside the definition interval, the confidence interval is
similar. Indeed, GP seems to be quite good to extrapolate values. Predictions comparison
with several regression models are provided in Figure 4.8. Gaussian Process gives a better
prediction outside the definition interval than RF with 200 trees or a MLP.

In this example, the mean function and the covariance function were selected with values
fitting correctly our model. The choice of a correct covariance function has a huge influence
on the prediction. Figure 4.9 represents GP predictions on the interval [0, 8] with different
covariance functions: linear, periodic, RBF and periodic added with a linear. It is clear that the
periodic covariance function addedwith a linear covariance function gives the best prediction.
It is interesting to note that the confidence interval is very large when the prediction is very
far from the true function and narrow when the prediction is near to the true function.

The values of parameters of the mean function and the covariance function were also se-
lected in order to fit correctly the model. Unsuitable values can lead to under fitting or over
fitting. Under fitting is when a model did not learn correctly the patterns in the training data.
In contrast, a model is over fitted if it performs very well with the training data but is not able
to generalize with the test data. Figure 4.10 represents the prediction with different values of
the length-scale ℓ from the periodic covariance function. In this example, a too small value for
ℓ leads to over fitting and a too big value leads to under fitting. It is quite easy to choose the
form of the covariance function because we have a priori knowledge of our data. Otherwise,
it is almost impossible to choose correctly the values of the covariance function parameters.
It is necessary to learn them, as explained in the following section.
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Figure 4.7: Representation of data used for the univariate regression example defined in Equa-
tion (4.7). The noisy observations are represented by black circles and the noise-free function
h(x) is represented by a blue curve. The observations are defined on the interval [0, 4]. The GP is
defined with a mean function equal to ten and a covariance function corresponding to a periodic
covariance function added to a linear function. The mean prediction of the GP for the input inside
the definition interval: x∗1 ∈ [0, 4] is represented by a red dot. The mean prediction of the GP for
the input outside the definition interval: x∗2 ∈ [4, 8] is represented in an orange dot. The error
bar corresponds to the 95% confidence interval (µ∗ ± 2σ2

∗).
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Figure 4.8: Comparison of predictions on the interval [0, 8] with different regressors: Gaussian
Process (GP), Random Forest (RF) and Multilayer Perceptron (MLP). The noisy observations are
represented by black circles and the noise-free function g(x) is represented by a blue curve. The
GP is defined with a mean function equal to ten and a covariance function corresponding to a
periodic covariance function added to a linear function. The prediction of the GP is represented by
a red curve. A Random Forest with 300 trees and a Multilayer Perceptron with two hidden layers
are considered. Their prediction are represented by a green and a yellow curves, respectively.
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(d) Periodic added with a Linear

Figure 4.9: Comparison of predictions with different covariance functions: linear, periodic, RBF
and periodic added to linear. The noisy observations are represented by black circles and the
noise-free function h(x) is represented by a blue curve. The GP is defined with a mean function
equal to ten and different covariance functions. The prediction of the GP is represented by a red
curve. The red area corresponds to the 95% confidence interval.
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(a) Good fitting (ℓ = 5)
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(b) Underfitting (ℓ = 10)
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(c) Overfitting (ℓ = 2)

Figure 4.10: Comparison of predictions with different length-scale values: ℓ = {2, 5, 10}. The
noisy observations are represented by black circles and the noise-free function h(x) is represented
by a blue curve. The GP is defined with a mean function equal to ten and a covariance function
corresponding to a periodic covariance function added to a linear function. The prediction of the
GP is represented by a red curve. The red area corresponds to the 95% confidence interval. A too
small value for ℓ leads to over fitting: the mean prediction is too close to the noisy observations. A
too big value for ℓ leads to under fitting: the mean prediction is far from the noisy observations.
By taking the right value for ℓ, the mean prediction is very close to the noise-free function.
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Training

The hyper-parameters θ = {θm,θk, σ
2} strongly influence the prediction since they appear in

Equations (4.5) and (4.6). Compared with other techniques, such as SVMs, hyper-parameters
can be optimized. They are not fixed based on expert knowledge or found by cross-validation,
but are learned. Therefore, they can be called parameters. They are usually optimized by
maximizing the log-marginal likelihood of the model on the training set S [Rasmussen and
Williams, 2005, Chapter 2]:

argmax
θ

log p(y|X,θ). (4.8)

The marginal likelihood corresponds to the integral of the likelihood times the prior, defined
as:

p(y|X,θ) =
∫
p(y|f(X),θ)p(f |X,θ)df. (4.9)

The likelihood can be written as

p
(
yi|f(xi)

)
= N1

(
yi|f(xi), σ2

)
. (4.10)

Assuming i.i.d. samples, the full likelihood can be factorized and is given by

p
(
y|f(X)

)
=

N∏
i=1

p
(
yi|f(xi)

)
= NN(y|f(X), σ2IN) (4.11)

and the prior is written as p(f |X,θ) = NN(µ,K). Thus, the log marginal likelihood is
defined as:

log p(y|X,θ) = log
(∫

NN(y|f(X), σ2IN)NN(µ,K)
)

= − 1
2(y − µ)T(K + σ2IN)−1(y − µ)

− 1
2 log

(
|K + σ2IN |

)
− N

2 log(2π).

(4.12)

The derivatives of Equation (4.12) are analytically tractable and the optimization of θ can
be done using constrained gradient descent [Rasmussen and Williams, 2005, Chapter 5 and
Appendix A.3]. In comparison to other non-linear prediction algorithms, such as SVM or
kernel ridge regression, GP offer the possibility to automatically tune their hyper-parameters
θ.

Complexity

GP scale poorly w.r.t. the number of training samples N . The main bottleneck comes from
the computational cost of the matrix inversion (K + σ2IN)−1 and the computation of the de-
terminant

(
|K +σ2IN |

)
in Equation (4.12). These operations scale cubically with the number

of training pixels, O(N3). Moreover, the storage complexity is O(N2). That is why GP are
limited to around 10 000 points. Approximation methods will be discussed in Section 4.4.
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To conclude, GP have very interesting properties. Such as SVM, by using a proper kernel
function, they can take into account prior information of the data. Besides, they have advan-
tages over SVM as they provide probabilistic outputs. Moreover, the hyper-parameters can be
tuned by gradient descent. For all these reasons, univariate GP regression was widely used
in the remote sensing community. They were successfully applied for biophysical parameter
estimation (e.g. chlorophyll, LAI, etc.) [Furfaro et al., 2006], [Pasolli et al., 2010], [Verrelst
et al., 2011], [Bazi et al., 2012], [Verrelst et al., 2012b], [Verrelst et al., 2012a], [Verrelst et al.,
2013]. However, due to complexity issues, all these works were applied to small data sets, a
few thousand pixels [Camps-Valls et al., 2016]. In the following, we will focus on the binary
classification case.

4.2.3. Binary Classification

In the case of binary classification, univariate GP are used to predict a discrete target value
(yi ∈ {0, 1}) from an input value xi. The target yi follows a Bernouilli distribution: it takes
the value 1 with probability p and the value 0 with probability 1 − p. A logistic function σ is
used as link function to relate the univariate GP and the probability p:

p = p(yi = 1|f(xi)) = σ(f(xi)). (4.13)

Different logistic functions can be used such as the sigmoid function:

σ(f(xi)) = 1
1 + exp (−f(xi))

. (4.14)

The targets are Bernouilli distributed and independent random variables, thus the full likeli-
hood can be written as [Nickisch and Rasmussen, 2008]:

p(y|f(X)) =
N∏

i=1
p(yi|f(xi)) =

N∏
i=1

σ(f(xi)). (4.15)

Contrary to the univariate regression case, the posterior is non Gaussian due to the non
Gaussian likelihood in Equation (4.15). Therefore, analytic expressions of the marginal and
predictive distributions are not available explicitly. Different solutions are proposed either
based on sampling algorithms or based on Gaussian approximations of the posterior [Nickisch
and Rasmussen, 2008]. Samplingmethods, such asMarkov ChainMonte Carlo (MCMC) [Neal,
1997], provide exact computation but at prohibitive computational costs. Concerning Gaus-
sian approximations, two different approximation methods are usually used: Expectation
Propagation (EP) [Minka, 2001] and LaplaceApproximation (LA) [Williams and Barber, 1998], [Ras-
mussen and Williams, 2005].

In remote sensing, Bazi et al. [Bazi and Melgani, 2008], [Bazi and Melgani, 2010] studied
both approximation methods, EP and LA, with mono date hyper-spectral and multi-spectral
data sets. Bothmethods show comparable classification accuracies. However, LA required less
computational time than EP. For these reasons, LA was applied for hyper-spectral datasets
in [Yang et al., 2015b]. Like conventional GP, approximated GP are still limited to a few
thousand of training inputs.
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4.3. Multivariate Gaussian Processes
Section 4.2 described univariate GP that are used for univariate univariable regression (i.e.
x ∈ R and y ∈ R), univariate multivariable regression (i.e. x ∈ RD and y ∈ R) or binary
classification (i.e. x ∈ R or x ∈ RD and y ∈ {0, 1}). In this section, we will present multi-
variate GP are also known as multi-output or multi-task GP [Bonilla et al., 2007]. They are
used to regress multivariate variables, such as multi-output regression (x ∈ R or x ∈ RD and
y ∈ RP ) (c.f. Section 4.3.2) or multi-class classification (x ∈ R or x ∈ RD and y ∈ {0, 1}C)
(c.f. Section 4.3.3).

4.3.1. Definition
Like univariate GP, a P -variate GP f , with f(x) = [f1(x), . . . , fp(x), . . . , fP (x)]⊤, is specified
by its vector-valued mean functionm ∈ RP and its positive definite matrix-valued covariance
function K ∈ RP ×P . We have f ∼ GP(m,K) with:

m(x) =
[
m1(x) . . . mP (x)

]⊤
,

K(x,x) =

k11(x,x) . . . k1P (x,x)
. . . kpp′(x,x) . . .

kP 1(x,x) . . . kP P (x,x)

 ,
where kpp′(x,x) is the covariance between two univariate GP: fp(x) and fp′(x) with p, p′ ∈
{1, . . . , P} and K of size P × P . Similarly to univariate GP, all marginals follow a Gaussian
distribution, noting

f(X) = [f1(x1), . . . , fP (x1), . . . , f1(xN), . . . , fP (xN)]⊤

the random vector of size NP , then f(X) ∼ NNP (µo,Ko) with µo = [m(x1), . . . ,m(xN)]⊤
and

Ko =


K(x1,x1) · · · K(x1,xN)

... . . . ...
K(xN ,x1) · · · K(xN ,xN)

 .
In the following, the construction of the mean and covariance functions is described.

Mean function

As the univariate GP, in ML, the mean function has little influence and all the prior infor-
mation is given by the covariance function. Different vector-valued mean functions m can
be used. Usually, a vector of constant values is used such as: m =

[
b1 . . . bP

]⊤
with bp

different constant values and m ∈ RP .

Covariance function

In the matrix-valued covariance function K, the term kpp′ corresponds to the cross covariance
function between two univariate GP fp and f ′

p. The main challenge is to build and optimize
this cross-covariance function kpp′ that:
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• leads to a valid covariance function K (positive semi-definite),

• exploits the multivariate structure of the problem (e.g. exploits the correlation between
variables) ,

• can lead to efficient computation because Ko is of size NP ×NP .

Independent Gaussian Processes: A simple approach is to use independent GP. All the
diagonal terms of K are equal to the covariance function of the univariate GP (kpp = kp with
fp ∼ GP(mp, kp)) and all the off-diagonal terms of K are set to zero such as:

K(x,x) =

k1(x,x) . . . 0
. . . kp(x,x) . . .
0 . . . kP (x,x)

 (4.16)

This corresponds to a diagonal matrix which is definite semi-positive and thus a valid co-
variance function. However, with independent GP, it is not possible to capture any cross-
correlation between the outputs.

Separable kernels: A common approach is to consider separable kernels where one ker-
nel, k(x,x′), acts on the input sample and another kernel, kT (p, p′), models the interaction
between the outputs, as defined in the following equation [Álvarez et al., 2012]:

kpp′(x,x′) = k(x,x′)kT (p, p′). (4.17)

The Linear Model of Co-regionalization (LMC) exploits the formulation defined in Equa-
tion (4.17) [Journel and Huijbregts, 1976], [Goovaerts and Goovaerts, 1997]. In LMC, Alvarez
et al. [Álvarez et al., 2012] defined each marginal fp as

fp(x) =
L∑

l=1

R∑
r=1

ar
p,lg

r
l (x), (4.18)

with L groups of R latent functions gr
l where gr

l is an univariate GP such as gr
l ∼ GP(ml, kl)

and ar
p,l is a scalar coefficient. Figure 4.11 represents the LMC configuration for P marginal

GP, fp, combined linearly with L × R latent univariate GP, gr
l , as defined in Equation (4.18).

From Equation (4.17), the kernel can be rewritten as

kpp′(x,x′) =
L∑

l=1
bl

p,p′kl(x,x′) (4.19)

with bl
p,p′ = ∑R

r=1 a
r
p,la

r
p′,l.
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The Intrinsic Co-regionalization Model (ICM) is a simplified version of LMC [Goovaerts,
1997] where L = 1 and R ̸= 1. In this case, the R latent functions share the same covariance
function k1 but they are independent from each other for r ̸= r′. The Semiparametric Latent
Factor Model (SLFM) is also a simplified version of LMC [Teh et al., 2005] where R = 1 and
L ̸= 1. In this case, the L latent functions have different covariance functions kl and are
independent from each other for l ̸= l′. We can write:

fp(x) =
L∑

l=1
ap,lgl(x) (4.20)

or in matrix form, with f = [f1(X), . . . , fP (X)]⊤:

f = Ag (4.21)

with A ∈ RP ×L.

Many multivariate GP models from the literature are particular cases of the LMC, see for
instance [Durrande et al., 2010], [Álvarez et al., 2012]. Unlike with independent GP, with
LMC, the cross-correlation between the outputs are taken into account.

f1 ... fP

g1
1

...
gR

1
... gR

Lg1
L

...

k1 ... kL

a1
1,1 aR

1,1 aR
1,La1

1,L a1
P,1 aR

P,1 aR
P,La1

P,L

Figure 4.11: LMC configuration for P marginal GP, fp, combined with L groups of R latent
functions gr

l . Inside each l group, all the latent functions {gr
l }R

r=1 share the same covariance
function kl but are independent from other latent functions for r ̸= r′. Each latent function gl

has different covariance function for l ̸= l′. All the gr
l latent univariate GP are combined linearly

to form the fp marginal GP as described in Equation (4.18).

Non-separable kernels: Another common approach is to remove the separable assump-
tion, with non separable-kernels, by using convolution processes [Higdon, 2002], [Boyle and
Frean, 2004], [van der Wilk et al., 2017]. Convolution processes can capture more dependence
between outputs than LMC (e.g. translation between outputs), but they lack a formulation
that scales well with the number of training samples N [van der Wilk et al., 2020].
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4.3.2. Multi-output regression
In the case of multi-output regression, P scalar target values (yi ∈ RP ,yi = [yi

1, . . . , y
i
P ]) are

regressed from the input xi. We denote Y =
[
y1, . . . ,yN

]⊤
. We observed a noisy version of

each function such as
yi

p = ψ
(
fp(xi)

)
= fp(xi) + ϵp (4.22)

with {ϵp}P
p=1 independent white noises with variance σ2

p . We have:

yi = ψ
(
f(xi)

)
= f(xi) + ϵ (4.23)

with ϵ ∼ N (0,Σ) with Σ ∈ RP ×P a diagonal matrix with element {σ2
p}P

p=1. In the case of
independent latent GP, we have:

yi = Ipg(xi) + ϵ.

In the case of the SLFM (i.e. the simplified version of LMC), we have:

yi = Ag(xi) + ϵ.

For one pixel xi, the likelihood is given by

p
(
yi|f(xi)

)
= NP (yi|m(xi),K(xi,xi) + Σ). (4.24)

with f(xi) = Ag(xi) or f(xi) = Ipg(xi).
Assuming i.i.d. samples, the full likelihood is given by

p
(
Y|f(X)

)
=

N∏
i=1

p
(
yi|f(xi)

)
= NNP (Y|µo,Ko + Σ ⊗ IN). (4.25)

with ⊗ the Kronecker product.

Inference

As for the univariate case, in the multivariate regression, the predictive distribution and the
marginal likelihood can be derived analytically. The predictive distribution for a new input
x∗ is

p(f(x∗)|Y,X,x∗) = NNP (f(x∗)|µ∗,K∗), (4.26)

with

µ∗ = m(x∗) + K⊤
∗ (Ko + Σ ⊗ IN)−1(Y − µo), (4.27)

K∗ = K(x∗,x∗) − K⊤
∗ (Ko + Σ ⊗ IN)−1K∗, (4.28)

and with K∗ ∈ RP ×NP , K∗ = [K(x∗,x1), . . . ,K(x∗,xN)]⊤. We can also write:

p(y∗|Y,X,x∗) = NNP (y∗|µ∗,K∗),
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with

µ∗ = m(x∗) + K⊤
∗ (Ko + Σ ⊗ IN)−1(Y − µo),

K∗ = K(x∗,x∗) + Σ − K⊤
∗ (Ko + Σ ⊗ IN)−1K∗,

To illustrate this section, we define an example of multi-output regression. The multi-
output regression is described as the regression of two scalar values y1 and y2 from an input
in one dimension (x = x ∈ R). The outputs are defined by the following function

y1 = h1(x) + ϵ1, y2 = h2(x) + ϵ2 (4.29)

with the following noise-free functions:

h1(x) = 1.5(x+ 2.5) ×
√

((6x− 2)2 × sin(12x− 4) + 10)
h2(x) = (6x− 2)2 × sin(12x− 4) + 10.

They are defined for x ∈ [0, 1] and with ϵ1, ϵ2 ∼ N1(0, 0.2). Figure 4.12 represents the noisy
observations y1 and y2 and the noise-free function h1(x) and h2(x). h1 is a nonlinear transfor-
mation of h2, they are highly correlated, the Pearson correlation coefficient is r = 0.95 [Liu
et al., 2018b].

We define f ∼ GP(m,K), a GP over the latent noise-free functions h1(x) and h2(x). In
this example, two different methods were used to build the cross-covariance function kpp′ :
independent GP and simplified version of LMC. Figure 4.13 represents the comparisons of
predictions with these two methods. With the independent GP configuration, the Root Mean
Squared Error (RMSE) is equal to 1.47 for the first output y1 and is equal to 1.90 for the second
output y2. With the simplified LMC configuration, the performances are increased: RMSE is
equal to 0.49 for y1 and is equal to 0.72 for y2. By taking into account the correlation between
the outputs y1 and y2 with the simplified version of LMC, the performances are increased for
the predictions on both outputs.
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Figure 4.12: Representation of data used for the multi-output regression example defined in Equa-
tion (4.29). The noisy observations are represented by circles, blue circles for y1 and red circles for
y2. The noise-free functions are represented by curves, blue curve for h1 and red curve for h2.
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(a) Independent GP
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(b) LMC

Figure 4.13: Comparison of predictions with two configurations of covariance functions: covari-
ance function computed with independent GP and covariance function computed with simplified
version of LMC. The noise-free functions are represented by curves, blue curve for h1 and red
curve for h2. The latent GP are defined with a constant mean function and with a RBF covariance
function. The mean prediction of the GP for respectively, the output y1 and y2 are represented by
blue and red dashed lines, respectively.
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Training

In the multivariate case, the log marginal likelihood is very similar to the univariate case and
is defined as:

log p(Y|X,θ) = − 1
2(Y − µo)T(Ko + Σ ⊗ IN)−1(Y − µo)

− 1
2 log

(
|Ko + Σ ⊗ IN |

)
− N

2 log(2π).
(4.30)

As defined in Section 4.2.2, the hyper-parameters θ are usually optimized by maximizing the
log-marginal likelihood of the model on the training set S .

Complexity

Ko is of size NP ×NP , thus, in the worst case, the complexity is O((PN)3) and the associ-
ated storage complexity is O((PN)2). For independent GP, if we simplify by taking the same
covariance function, we have: K(x,x) = k(x,x)Ip, thus Ko is defined as a block diagonal. In
particular if the input points are the same, all the blocks are equal and the problem reduces to
invert a matrix of size N × N . Moreover, the use of separable kernels reduces the computa-
tional complexity [Baldassarre et al., 2012]. Indeed, the LMC configuration permits to reduce
the complexity from O((NP )3) to O(P 3) + O(N3) [Álvarez et al., 2012]. More recently, effi-
cient optimization procedures were proposed in the literature [Wilson et al., 2016], [Moreno-
Muñoz et al., 2018], [van der Wilk et al., 2020]. However, ifN is huge, the complexity remains
high and approximation methods are needed, as described in Section 4.4.

In remote sensing, LMC was used to regress biophysical variables in [Mateo-Sanchis et al.,
2018] using MODIS time-series. SLFM, a simplified version of LMC, was used to produce
cloud-free LAI and Radar Vegetation Index (RVI) from optical and radar time series [Pipia
et al., 2019]. Convolution processes were used to produce cloud-free fusion of Sentinel-1 and
Sentinel-2 time series [Caballero et al., 2023]. Independent GP were used for interpolated
multiple time series from the CubeSats [Ruan et al., 2017]. All these works were applied to
small data sets or to small study areas. We want to use these methods for large datasets,
approximation methods are required as described in Section 4.4.

4.3.3. Multi-class classification
In the case of classification withC classes, the target is such as yi ∈ {0, 1}C with all its values
set to zero except for the element yic = 1 for xi of class c. In the classification case, we denote
X =

[
x1, . . . ,xN

]⊤
and Y =

[
y1, . . . ,yN

]⊤
. A softmax function σ is used as link function to

relate the multivariate latent variable f(xi) = [f1(xi), . . . , fC(xi)]⊤ and the observation yi:

yi =σ(f(xi))

= 1∑C
c′=1 exp(fc′(xi))

×


exp(f1(xi))

...
exp(fC(xi))

 . (4.31)
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The associated likelihood for the sample i is written:

p(yi|f(xi)) =
C∏

c=1

[
exp(fc(xi))∑C

c′=1 exp(fc′(xi))

]yic

= exp(y⊤
i f(xi))∑C

c′=1 exp(fc′(xi))
,

(4.32)

Such as in binary classification defined in Section 4.2.3, the likelihood in Equation (4.32) is
not conjugate to the Gaussian distribution and thus analytic expressions of the marginal and
predictive distributions are not available. As defined in Section 4.2.3, sampling methods (i.e.
MCMC) or approximations methods (i.e. EP or LA) can be used to deal with this non Gaussian
likelihood [Villacampa-Calvo et al., 2021].

In remote sensing, Constantin et al. [Constantin et al., 2021], [Constantin et al., 2022] pro-
posed to used a mixture of independent multivariate Gaussian Processes for land cover clas-
sification from Sentinel-2 time-series. The authors proposed a particular LMC configuration
in order to separately model the temporal and spectral correlation. This constrained spectro-
temporal structure permits to reduce the complexity of the model and to apply the model for
large scale applications.

Like in multi-output regression, the LMC configuration in multi-class permits to reduce
the complexity from O((NC)3) to O(C3) + O(N3) [Álvarez et al., 2012]. However, if N is
huge, the complexity remains high and approximation methods are needed. In the following
section, advances that alleviate the computational cost of GP are presented.

4.4. Large scale Gaussian Processes
For simplification, in the following, we will focus on univariate GP regression defined in Sec-
tion 4.2.2. In training, as defined in Equation (4.12), we need to calculate the inverse and the
determinant of the kernel matrix of sizeN ×N . It leads to a huge computational complexity:
O(N3) and also to an important storage complexity: O(N2). In prediction, as defined in Equa-
tions (4.5) and (4.6), only the inverse of the kernel matrix needs to be calculated. Figure 4.14
represents the computation time of the log-marginal likelihood from the example defined in
Equation (4.7) for several amounts of training samples. After a certain number of samples,
the calculation is no longer possible. It is clear that this time is increasing significantly. Two
different approaches are usually used to reduce the computational cost of GP: model approx-
imation and posterior approximation [van der Wilk et al., 2020]. These two approaches are
presented in the following.
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Figure 4.14: The blue curve correspond to the computation times of the log-
marginal likelihood (Equation (4.12)) for several number of training samples: N ∈
{10, 100, 200, 500, 1000, 1500, 2000, 3000, 5000, 10000, 12000, 14000} from the univari-
ate regression example defined in Equation (4.7). For more than 15 000 samples, it is no
longer possible to calculate the log-marginal likelihood, i.e. memory problem. The function
gpytorch.mlls.ExactMarginalLogLikelihood from the library Gpytorch was used to compute
the log-marginal likelihood with a laptop (8 CPU cores with 15GB of RAM). The orange curve
was computed using the function polyfit from Scipy. It corresponds to a polynomial function
of degree 3 such as: 1.6 × 10−13N3 + 1.03 × 10−8N2 + 2.7 × 10−5N − 3.2 × 10−3. The
computational time is exponential with the number of training samples.

4.4.1. Model Approximation
Approximation of a Gaussian process model consists in reducing the computational complex-
ity when computing the prior p

(
f(X)

)
or the joint prior p

(
f(x∗)|f(X)

)
[Quiñonero-Candela

and Rasmussen, 2005]. The main idea is to reduce the complexity of the calculation of the in-
verse and the determinant of the kernel matrix of size N ×N .

Kronecker methods

The data structure can be taken into account to speed-up the inversion ofK, such as in [Saatci,
2011, Chapter 5] and [Wilson et al., 2014] where K is decomposed into a Kronecker product
of smaller matrices such as

K = K1 ⊗ . . .⊗ KD (4.33)

with D the number of matrices.
Noting K1 a square matrix of size n × n and K2 a square matrix of size m × m. The

Kronecker product of these two matrices K1 ⊗ K2 is of size mn × mn. The computation of
the inverse of a matrix of sizemn×mn becomes impossible to do efficiently even ifm and n
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are not too big. One interesting property is that the inverse of the Kronecker product of two
matrices is the Kronecker product of the inverse of the matrices:

(K1 ⊗ K2)−1 = K−1
1 ⊗ K−1

2 .

Taking the inverse of twomatrices: one n×n and anotherm×m is much easier than inverting
a big matrix of size mn × mn. Moreover, noting K1 a square matrix of size n × n and K2 a
square matrix of sizem×m, we have:

det(K1 ⊗ K2) = det(K1)m × det(K2)n.

This property simplifies the calculation of the determinant.
Decomposing the matrix K of size N × N with the properties of the Kronecker product

still involves operations in O(N). Using a large number of training inputs N still involves
high computation complexity. By using the Kronecker product, the correlation between fea-
tures can be lost, as they are treated independently. Indeed, by using a Kronecker product,
Constantin et al. [Constantin et al., 2021] lost the correlation between spectral and temporal
features.

Random projection

Randomprojection involvesmapping the high-dimensional input space onto a lower-dimensional
subspace using a random matrix B [Pérez-Suay et al., 2017], such as

K × B = K′ (4.34)

with K of size N ×N , B of size N ×M and K′ of size N ×M withM ≪ N . The values for
the random projection matrix B are drawn i.i.d. from a Gaussian distribution.

In remote sensing, random projections were mainly used with SVM on hyperspectral im-
ages [Li et al., 2013], [Menon et al., 2016]. We did not find works with Gaussian Processes.

Nyström approximation

The main idea is to approximate the covariance matrix K of size N ×N by K̃NN also of size
N ×N but defined as

K̃NN = KNMK−1
MMK⊤

NM (4.35)
withM ≪ N [Williams and Seeger, 2000]. By using the approximated matrix K̃NN , we can
approximate the log-marginal likelihood such as

log p(y|X,θ) = log NN(y|µ,K + σ2IN) ≈ log NN(y|µ, K̃NN + σ2IN). (4.36)

Using the Woodbury formula1 [Max, 1950] in Equation (4.12), we have:

(K̃NN + σ2IN)−1 = (KNMK−1
MMK⊤

NM + σ2IN)−1 (4.37)
= (σ2IN)−1 − (σ2IN)−1KNM(KMM + K⊤

NM(σ2IN)−1KNM)−1K⊤
NM(σ2IN)−1

(4.38)
= σ−2IN − σ−4KNM(KMM + σ−2K⊤

NMKNM)−1K⊤
NM . (4.39)

1(A + UCV
)−1 = A−1 − A−1U

(
C−1 + VA−1U

)−1VA−1
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Thus, instead of calculating the inverse of a matrix N × N , only the inverse of a matrix
M × M is calculated. The computation complexity is reduced from O(N3) to O(NM2).
However, the storage complexity is still O(N2), as we still need to store the matrix KNN .
In remote sensing, the Nyström approximation was used for crop yield estimation with

GP [Martínez-Ferrer et al., 2021]. However, we are still limited by the number of samples N .

Sparse methods

Sparse methods are methods based on Inducing Points (IP). IP, also called "suppport points",
"active set" or "pseudo inputs", correspond to a set of M latent variables f(Z) with Z =
{zi}M

i=1. Depending on the algorithm used, different methods can be used to select these
inducing points (e.g. subset of the training data set). Taking this set of inducing points Z, the
same GP prior is assumed: f(Z) ∼ NM(0,KMM) and for simplicity, we note u = f(Z). As a
reminder, we have y = f(X) + ϵ. By using the marginalization property, we have

p(y|X,θ) =
∫

u
p(y,u|X,θ,Z) du (4.40)

=
∫

u
p(y|u,X,θ,Z)p(u|Z) du (joint property) (4.41)

where

p(y|u,X,θ,Z) = NN(y|KNMK−1
MMu,KNN − KNMK−1

MMK⊤
NM + σ2IN)

provided by Equation (4.1) and where

p(u|Z) = NM(u|0,KMM).

Computing log p(y|X,θ) still involves computing KNN of sizeN ×N . Different approxima-
tions are made for p(y|u,X,θ,Z) in order to reduce the complexity. For example, Determin-
istic Training Conditional (DTC) approximation [Seeger, 2003], assumes that p(y|u,X,θ,Z)
can be approximated by:

p(y|u,X,θ,Z) ≈ NN(y|KNMK−1
MMu, σ2IN), (4.42)

Fully Independent Training Conditional (FITC) approximation [Snelson and Ghahramani,
2005] assumes that KNN − KNMK−1

MMK⊤
NM is diagonal, such as:

p(y|u,X,θ,Z) ≈ NN(y|KNMK−1
MMu, diag(KNN − KNMK−1

MMK⊤
NM) + σ2IN), (4.43)

Partially Independent Training Conditional (PITC) approximation [Snelson and Ghahramani,
2007] assumes that KNN − KNMK−1

MMK⊤
NM is block diagonal, such as:

p(y|u,X,θ,Z) ≈ NN(y|KNMK−1
MMu, blockdiag(KNN −KNMK−1

MMK⊤
NM)+σ2IN). (4.44)

Focusing on FITC, by marginalizing u, the log marginal likelihood can be approximated by

log p(y|X,θ,Z) ≈ log NN(y|0,KNMK−1
MMK⊤

NM + diag(KNN − KNMK−1
MMK⊤

NM) +σ2IN).
(4.45)
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Using the Woodbury formula, we have

(KNMK−1
MMK⊤

NM + C)−1 = C−1 − C−1KNM(KMM + K⊤
NMC−1KNM)−1K⊤

NMC−1 (4.46)

with C = diag(KNN − KNMK−1
MMK⊤

NM) + σ2IN .

Such as in Nyström approximation, the computation complexity is reduced from O(N3) to
O(NM2). However, the storage complexity is still O(N2), as we still need to store the matrix
KNN .

In remote sensing, model approximation was widely used for large data sets. In most works,
IP are used to reduce the complexity [Martínez-Ferrer et al., 2021], [Camps-Valls et al., 2016].
Usually, the inducing points Z are a subset of the training inputs. The choice of subset is very
important for the quality of the estimate. The literature has shown that using only subsets did
not work well because they might not represent the data correctly [Quiñonero-Candela and
Rasmussen, 2005]. An effective approach is to consider the optimization of the IP during the
learning step, in complement to the mean and covariance function parameters, as proposed
in [Snelson and Ghahramani, 2005], [Hensman et al., 2015]. This approach considers a varia-
tional approximation of the posterior (instead of model approximation) which gives superior
results in large scale scenarios. This aspect is discussed in the following part.

4.4.2. Posterior Approximation by Variational Inference

In model approximation, the main idea was to approximate the model with a simpler one in
order to have a tractable inference. In approximate inference, the original model is kept (i.e.
no modification of the prior) but instead the posterior is approximated. In the following, we
will focus on the posterior approximation with Variational Inference (VI).

Sparse Variational Gaussian Processes

By using the marginalization property, the marginal likelihood can be written as

p(y|X) =
∫

f ,u
p(y|u, f)p(f |u,X,Z)p(u|Z) df du (4.47)

=
∫

f ,u
p(y|f)p(f |u,X,Z)p(u|Z) df du (4.48)

with p(y|f) = NN(y|f , σ2IN), p(f |u,X,Z) = NN(f |K⊤
MNK−1

MMu,KNN −K⊤
MNK−1

MMKMN)
and p(u|Z) = NM(u|0,KMM). As a reminder, we note u = f(Z) and f = f(X).

Instead of using approximated p(f |u,X,Z), we will use Sparse Variational GP introduced
by Titsias [Titsias, 2009]. A variational lower bound of the log marginal likelihood is defined
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as:

log p(y|X) = log
∫

f ,u
p(y|f)p(f |u,X,Z)p(u|Z) df du

= log
∫

f ,u

q(f ,u)
q(f ,u)p(y|f)p(f |u,X,Z)p(u|Z) df du

= logEq(f ,u)

[
p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u)

]

≥ Eq(f ,u)

[
log p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u)

]
(Jensen’s inequality [Jensen, 1906])

=
∫

f ,u
q(f ,u) log p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u) df du.

Titsias proposed to define q(f ,u) = p(f |u,X,Z)q(u) where q(u) ∼ NM(m,S) is the vari-
ational distribution with m ∈ RM and S ∈ RM×M . We denote θv = {m,S} the parameters
of the variational distribution. The log marginal likelihood can be maximized by:

log p(y|X,θ) ≥
∫

f ,u
p(f |u,X,Z)q(u) log p(y|f)p(f |u,X,Z)p(u|Z)

p(f |u,X,Z)q(u) df du

=
∫

f ,u
p(f |u,X,Z)q(u) log p(y|f)p(u|Z)

q(u) df du

=
∫

f ,u
p(f |u,X,Z)q(u)

(
log p(y|f) − log p(u|Z)

q(u)

)
df du

=
∫

f ,u
p(f |u,X,Z)q(u) log p(y|f) df du −

∫
u
q(u) log p(u|Z)

q(u) du

= Ep(f |u,X,Z)q(u)

[
log p(y|f)

]
− KL

[
q(u)∥ p(u|Z)

]
= E(q)

with E(q) the Evidence Lower Bound (ELBO). θv and θ are optimized by maximizing the
ELBO:

E(q) = Ep(f |u,X,Z)q(u)

[
log p(y|f)

]
− KL

[
q(u|θv,θ)∥ p(u|Z,θ)

]
.

Having

q(f |X,Z) =
∫

u
p(f |u,X,Z)q(u) du

with p(f |u,X,Z) = NN(f |K⊤
MNK−1

MMu,KNN − K⊤
MNK−1

MMKMN) and q(u) ∼ NM(m,S).
We can rewrite it, using [Bishop, 2006, Chapter 2.3.3], as:

q
(
f |X,Z

)
∼ NN

(
f | K⊤

MNK−1
MMm,KNN − K⊤

MNK−1
MM

(
KMM − S

)
K−1

MMKMN

)
.
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The ELBO can be rewritten as:

E(q) =
∫

f ,u
p(f |u,X,Z)q(u) log p(y|f) df du − KL

[
q(u|θv,θ)∥ p(u|Z,θ)

]
=
∫

f
q(f |X,Z) log p(y|f) df − KL

[
q(u|θv,θ)∥ p(u|Z,θ)

]
= Eq(f |X,Z)

[
log p(y|f)

]
− KL

[
q(u|θv,θ)∥ p(u|Z,θ)

]
.

Stochastic Variational Gaussian Processes (SVGP)

Hensman et al. [Hensman et al., 2013] proposed to factor the expectation term over data points.
By noting:

log p(y|f) =
N∑

i=1
log p(yi|f(xi)), (4.49)

the expectation term can be rewritten as:

Eq(f |X,Z)

[
log p(y|f)

]
= Eq(f |X,Z)

[ N∑
i=1

log p(yi|f(xi))
]

(4.50)

=
N∑

i=1
Eq(f(xi)|xi,Z)

[
log p(yi|f(xi))

]
(4.51)

Finally, the ELBO is equal to:

E(q) =
N∑

i=1
Eq(f(xi)|θv,θ)

[
log p

(
yi|f(xi)

)]
− KL

[
q
(
f(Z)|θv,θ

)
∥ p
(
f(Z)|θ

)]
,

(4.52)

with

q
(
f(xi)|θv,θ

)
∼ N1

(
f(xi)| k⊤

MiK−1
MMm,

k(xi,xi) − k⊤
MiK−1

MM

(
KMM − S

)
K−1

MMkMi

)
. (4.53)

The first term, the expectation term, can be computed analytically as p(y|f) is Gaussian,
as we are working with univariate GP regression. It is not the case for the classification.
Indeed, the first can not be calculated analytically as the likelihood is not Gaussian (c.f. Equa-
tion (4.32)). However, it can be estimated using Gauss-Hermite quadrature (for binary prob-
lems) or by Monte Carlo (MC) sampling (for multi-class problems) [Hensman et al., 2015].
The latter is discussed in Chapter 5.

The second term, the KL term, is the Kullback-Leibler divergence between two Gaussian
distributions. It can be computed and derived analytically, as described in Section 4.1.2 [Ras-
mussen and Williams, 2005, Chapter A.3.1].

From the ELBO defined in the previous section, only the expectation term is rewritten, as
the second term is not modified as it does not depend on the data. The ELBO can be optimized
using stochastic optimization [Bottou et al., 2018] andmore precisely mini batch learningwith
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stochastic gradient descent. This method is called Stochastic Variational Gaussian Processes
(SVGP). Finally, it leads to a computational complexity of O(M3) instead ofO(NM2)without
mini-batch. Using such strategy, Hensman et al. [Hensman et al., 2015] optimized the whole
model, i.e. {θ,θv,Z}, on 700 000 points for a regression problem on a mono-CPU computer.
Table 4.3 summarizes the time and storage complexities for the main approximation methods
previously defined: Sparse GP described in Section 4.4.1, Sparse Variational GP described in
Section 4.4.2 and finally the Stochastic Variational GP described in Section 4.4.2.

In remote sensing, VI was used to model heteroscedastic noise in GP regression [Moreno-
Muñoz et al., 2018] and for binary classification with model approximation [Morales-Alvarez
et al., 2018]. Moreover, Svendsen et al. [Svendsen et al., 2020] used Variational GP with in-
ducing points for the estimation of surface temperature from infrared sounding data, and for
biophysical parameter estimation from Sentinel-3 time series. Thanks to the approximation,
huge training and testing data sets were used: 250 000 and ∼ 106 points, respectively.

Table 4.3.: Time and storage complexities for the main GP approximation methods described in
this chapter.
Method Approximation Time complexity Storage complexity Optimization

Full GP No approximation O(N3) O(N2) Full Gradient Descent (GD)
Sparse GP Handcrafted IP O(NM2) O(N2) Full GD
Sparse Variational GP Optimized IP O(NM2) O(NM) Full GD
Stochastic Variational GP Optimized IP O(M3) O(BM) Mini-batch stochastic GD
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5.1. Large scale multi-class GP land cover classification
For a C-classes classification problem, we define as xi = [xi(t1), . . . ,xi(tT )] ∈ Rd, the raw
feature vector made of the concatenation of all spectral measurements for every observation.
We assume that a class membership one-hot vector yi ∈ {0, 1}C is associated to each xi. Thus,
the training set is denoted S = {xi,yi}N

i=1. In the following, we define a multi-class GP from
Stochastic Variational Gaussian Processes (SVGP), defined in Section 4.4.2. The nomenclature
used in this chapter and the following is defined in Table 5.1.

5.1.1. Training
The simplified version of LMC (see Equation (4.21)) is used in order to extend the univariate
case of SVGP, defined in Section 4.4.2, to the multivariate case [Hensman et al., 2015].

During the training, the parameters are learned by optimizing the posterior using varia-
tional inference, which corresponds to maximizing the ELBO, as described in the previous
chapter. In the case of multi-class classification, the variational distribution is defined in-
dependently for each latent GP gl such as q(gl(Zl)) ∼ NM(ml,Sl) with l ∈ {1, ..., L}, L
corresponding to the number of latent GP and with Zl theM inducing points for each latent
GP gl. Therefore, the trainable parameters correspond to:

• the parameters of the mean function ml, the parameters of the covariance function kl

and theM values of the inducing points Zl for each latent GP gl, denoted as θl,

• the values of the mixing matrix A defined in Equation (4.21) and

• the parameters of the mean function ml and of the covariance function Sl for each
variational distribution q(gl(Zl)), denoted as θv

l .

We denote g = [g1, ..., gl, ..., gL]⊤, the L-dimensional vector corresponding to all the latent
functions. Therefore, we denote g(Z) the ML-dimensional random vector such as g(Z) =[
g1(Z1), . . . , gL(ZL)

]⊤
. From the LMC definition in Section 4.3.1, it follows that

p
(
g(Z)|Θ

)
=

L∏
l=1

p
(
gl(Zl)|θl

)
with Θ = {θ1, . . . ,θL} and p

(
gl(Zl)|θl

)
Gaussian. Similarly, the same independence as-

sumption is assumed for q
(
g(Z)

)
and we have:

q
(
g(Z)

)
=

L∏
l=1

q
(
gl(Zl)

)
.

With these assumptions, the ELBO, from Equation (4.52), can be rewritten as

E(q) =
N∑

i=1
Eq(g(xi)|Θv,Θ)

[
log p

(
yi|g(xi),A

)]
− KL

[
q
(
g(Z)|Θv,Θ

)
∥ p
(
g(Z)|Θ

)]
(5.1)

=
N∑

i=1
Eq(g(xi)|Θv,Θ)

[
log p

(
yi|g(xi),A

)]
−

L∑
l=1

KL
[
q
(
gl(Zl)|θv

l ,θl

)
∥ p
(
gl(Zl)|θl

)]
(5.2)
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Table 5.1.: Nomenclature used in Chapters 5 and 6
Symbol Meaning

A Mixing matrix, A ∈ RC×L

ĉ Class predicted
C Number of classes, c ∈ {1, ..., C}
d, d′ Number of spectro-temporal, spatial features
D Number of spectral measurements
E ELBO
f ∼ GP(m,K) C-multivariate GP such as f = Ag with mean function m and covariance function K
gl ∼ GP(ml, kl) Univariate GP, the lth latent GP with mean functionml and covariance function kl

g Vector of L independent univariate GP, g = [g1, ..., gL]
klϕ Spatial covariance function
klλt Spectro-temporal covariance function
kP

l Covariance function of the model ϕλt-GPPC
kS

l Covariance function of the model ϕλt-GPSC
Kl

MM Covariance matrix of the distribution p(gl(Zl)|Zl) = NM (0,Kl
MM ).

Kv Covariance matrix of the L-dimensional distribution q (g(xi)|θv,θ) ∼
NL

(
g(xi)|mv,Kv)

Kv
ll The diagonal lth element of diagonal covariance matrix Kv

L Number of latent processes, l ∈ {1, ..., L}
ℓlλt, ℓlϕλt Length-scales of the covariance functions klϕ and klλt, respectively.
ml Mean vector of the distribution q

(
gl(Zl)

)
∼ NM (ml,Sl)

mv Mean matrix of the L-dimensional distribution q (g(xi)|θv,θ) ∼ NL

(
g(xi)|mv,Kv)

M Number of inducing points
N Number of training inputs
S Number of realizations for the MC sampling
Sl Covariance matrix of the distribution q

(
gl(Zl)

)
∼ NM (ml,Sl)

σlλt, σlϕλt Spectro-temporal, spatial output-scales from the covariance function kS
l

T Number of observations
θl Hyper-parameters of the latent process gl

Θ Hyper-parameters of g, Θ = {θ1, ...,θL}
θV

l Parameters of the variational distribution q, θV
l = {ml,Sl}

ΘV Parameters of all the variational distributions ΘV = {θV
l , ...,θ

V
L }

xi,yi The ith training input, target
xiϕ, xiλt Spatial, spectro-temporal features of the ith pixel
x∗,y∗ New input, target
Zl Set of inducing points for the latent process gl
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with Θv = {θv
1, . . . ,θ

v
L}. From Equation (4.52), f(xi) is replaced by g(xi) as we have a

multivariate GP instead of an univariate GP. A simplified version of LMC is used to extend
the univariate to the multivariate, therefore, the matrix A is optimized during the training
process. q (g(xi)|Θv,Θ) is a L-dimensional Gaussian distribution with diagonal covariance
matrix

q (g(xi)|Θv,Θ) ∼ NL

(
g(xi)|mv,Kv

)
. (5.3)

Each marginal is given by Equation (4.53), a consequence of the LMC: the latent processes
become dependent on one another only during the computation of the likelihood. Specifically,
the lth element of the mean vector and of the diagonal of the covariance matrix are totally
specified by the lth latent process:

mv
l = kl⊤

MiKl−1

MMml, (5.4)
Kv

ll = kl(xi,xi) − kl⊤

MiKl−1

MM

(
Kl

MM − Sl

)
Kl−1

MMkl
Mi. (5.5)

As for the regression case, the KL terms can be computed and derived in closed-form. The
expectation term needs to be approximated. Indeed, the likelihood defined in Equation (5.2) is
not Gaussian. MC sampling is used, similar to [Hensman et al., 2015], [Wilson et al., 2016]. It
is combined with the so-called reparametrization trick from Variational Auto-encoder (VAE)
to compute the derivative of the expectation during the stochastic gradient descent [Kingma
and Welling, 2019, section 2.4]. With the reparametrisation trick, the ELBO can be rewritten
as

E(q) =
N∑

i=1
Ep(ϵ)

[
log p

(
yi|g(xi),A

)]

−
L∑

l=1
KL
[
q
(
gl(Zl)|θv

l ,θl

)
∥ p
(
gl(Zl)|θl

)] (5.6)

with p(ϵ) = NL(0, IL) and g(xi) = mv + Kvϵ with ϵ ∼ p(ϵ). Thus, using MC sampling, we
have:

N∑
i=1

Ep(ϵ)

[
log p

(
yi|g(xi),A

)]
≈

N∑
i=1

(
1
S

S∑
s=1

[
log p

(
yi|g(xi)(s),A

)])

with g(xi)(s) the sth sample of MC sampling. In practice, one realization (S = 1) is enough for
the MC sampler during the training, as found in VAE [Kingma and Welling, 2014], [Hensman
et al., 2015].

5.1.2. Inference
The prediction for a new input x∗ uses the same variational approximation for the joint prior
than in the marginal likelihood, and reduces to:

p(y∗|Y,X,x∗) = Eq(g(x∗)|Θv,Θ)

[
p
(
y∗|g(x∗),A

)]
(5.7)
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x∗

gLgl ...g1 ...

linear layer A∈ RC×L

m K ϵ p(ϵ) = NL(0, IL)

f

softmax

y∗1 y∗C
...

: deterministic node

: random node

ĉ = argmaxcy∗

gl ∼ GP(ml,kl)
q(gl(Zl)) ∼ NM(ml,Sl)

Figure 5.1: Model for the prediction on one new input x∗. The predicted class corresponds to ĉ.
The trainable parameters are written in blue.

with q (g(x∗)|Θv,Θ) given by Equation (5.3). Again, the expectation is not analytically tractable:
the approximation is obtained with MC sampling. In this work, 10 realizations were used for
the inference. The influence on the number of draws for the inference is studied in Sec-
tion 6.3.1. Figure 5.1 represents this model for the prediction on one new input x∗. The class
is estimated by taking ĉ = arg maxc y∗.

5.1.3. Hyper-parameters

Different choices were made for the model in order to implement multi-class GP for land cover
classification in large scale. The definition of the main hyper-parameters (mean function,
covariance function and number of inducing points) is presented in the following. Influence
of their parametrization as well as their initialization is discussed in Section 6.3.
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Mean function

For each latent function gl, we proposed to define the mean functionml as a constant:

ml(xi) = µl. (5.8)

The trainable parameter for each univariate GP is µl.

Covariance function

We proposed to use composite covariance functions in order to exploit the spatio-spectro-
temporal structure of the data through the covariance function. Thus, for each latent function
gl, we proposed to define the covariance function kl(xi,xi′) as a composition of a spatial co-
variance function klϕ(xi,ϕ,xi′,ϕ) and a spectro-temporal covariance function klλt(xi,λt,xi′,λt).
Where xi,ϕ and xi,λt are composed of d′ spatial features and d spectro-temporal features, re-
spectively. Indeed, distant pixels from different classes can have a similar vegetation phe-
nology because of latitudinal and topographical effects on the biological cycle and cannot be
discriminated with the spectro-temporal information only. Such modeling takes into account
both the phenology and the spatial location in the studied area. Thus, this configuration pre-
vents two spatially distant pixels to be correlated even if they share a similar spectro-temporal
profile.

The RBF kernel, defined in Table 4.2, is used for both kϕ and kλt. It is composed of two
parameters: the output-scale σ > 0 and the length-scale ℓ > 0. This kernel uses isotropic dis-
tance between pixels in the spatial and spectro-temporal domain and the proximity between
two pixels is controlled by the length-scale parameter ℓ: a small value tends to make all pixels
uncorrelated (k(xi,xi′) ≈ 0) and a high value tends to increase the correlation between pixels
(k(xi,xi′) ≈ 1).

In this work, we propose to study two different combinations of kernels. The first combi-
nation is the sum of kernels:

kS
l (xi,xi′) = σ2

lϕ × klϕ(xi,ϕ,xi′,ϕ) + σ2
lλt × klλt(xi,λt,xi′,λt)

= σ2
lϕ exp

(
−∥xi,ϕ − xi′,ϕ∥2

2
2ℓ2

lϕ

)
+ σ2

lλt exp
(

−∥xi,λt − xi′,λt∥2
2

2ℓ2
lλt

)
.

(5.9)

For each covariance function kS
l , the trainable parameters are: {σlϕ, σlλt, ℓlϕ, ℓlλt}. The scaling

parameters σlϕ and σlλt allow to give different weights to either spatial or spectro-temporal
features. The second combination is the product of kernels:

kP
l (xi,xi′) = klϕ(xi,ϕ,xi′,ϕ) × klλt(xi,λt,xi′,λt)

= exp
(

−∥xi,ϕ − xi′,ϕ∥2
2

2ℓ2
lϕ

)
× exp

(
−∥xi,λt − xi′,λt∥2

2
2ℓ2

lλt

)
.

(5.10)

For each covariance function kP
l , the trainable parameters are: {ℓlϕ, ℓlλt}. In this covariance

function, the output-scale is not used as the scale of the kernel function is handled by the
mixing matrix A.
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Inducing points (IP)

A set of IP Zl of size M is associated to each latent process gl. The number M of IP is the
same for each latent GP gl. During the optimization, these IP are independently learned for
each latent GP gl.

5.1.4. Model complexity
Themodel has a computational complexity ofO((CM)3) and its storage complexity isO((CN)2).
Three different GP models are defined:

1. λt-GP: GP model trained using only spectro-temporal features xλt. For each gl, its co-
variance function is: klλt(xi,λt,xi′,λt).

2. ϕλt-GPSC (GP Sum Covariance): GP model trained using spectro-temporal features xλt

and spatial features xϕ. Its covariance function, kS
l (x,x′), is defined in Equation (5.9).

3. ϕλt-GPPC (GP Product Covariance): GP model trained using spectro-temporal fea-
tures xλt and spatial features xϕ. Its covariance function, kP

l (x,x′), is defined in Equa-
tion (5.10).

Different parameters need to be optimized during the training. Focusing on the λt-GP model,
one parameter (length-scale) needs to be learned for each covariance function kl and also one
parameter (mean constant) for each mean function ml. Concerning the inducing points Zl,
M ×d values need to be learn for each latent GP gl.M constant values need to be learned for
each ml and

(
M(M+1)

)
/2 for each Sl (i.e. symmetric matrix). The values of the mixing ma-

trix A of size L×C need also to be learned. Finally, the total number of trainable parameters
for λt-GP is

L

(
1 + 1 +Md+M + M(M + 1)

2

)
+ LC.

Three additional parameters for each kl are learned for ϕλt-GPSC. Only one additional
parameter for each kl is learned for ϕλt-GPPC. Moreover, M(d + d′) values are computed,
instead of Md for each Zl. These are the only trainable parameters that differ between GP
models. Table 5.2 summarizes the different trainable parameters and their respective sizes for
each model: λt-GP, ϕλt-GPSC and ϕλt-GPPC.

Focusing on the λt-GP model, LdM correspond to the number of parameters to learn for
the IP andL

(
2 +M + M(M+1)

2

)
+LC correspond to all the other trainable parameters except

the IP. In our experimental setting, L = C = 23 andM = 50, the inducing points represent a
large proportion of the trainable parameters. Therefore, the number of trainable parameters
is mostly controlled by the number of inducing points M , as illustrated in Figure 5.2. For
d = 481, the inducing points represent 95% of trainable parameters.

A reduction of the number of spectro-temporal features will decrease drastically the model
parameters number. In Section 5.2.5, an experimental set-up is proposed in order to study the
influence on the reduction of the number of spectro-temporal features.
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Table 5.2.: Description of the trainable parameters and their corresponding sizes. The last line
corresponds to the total number of trainable parameters for each model. For each latent function
gl, the same form of the mean and kernel functions were chosen as well as the same numberM
of inducing points.

λt-GP ϕλt-GPSC ϕλt-GPPC

kl 1 4 2
ml 1 1 1
Zl Md M(d+ d′) M(d+ d′)
ml M M M
Sl

(
M(M + 1)

)
/2

(
M(M + 1)

)
/2

(
M(M + 1)

)
/2

A LC LC LC

Total L
(
1 + 1 +Md+M L

(
4 + 1 +M(d+ d′) L

(
2 + 1 +M(d+ d′)

+ M(M+1)
2

)
+ LC +M + M(M+1)

2
)

+ LC +M + M(M+1)
2

)
+ LC

0 50 100 150 200 250 300 350 400 450 500 550 600103

104

105

106

Number of features d

N
um

be
ro

ft
ra
in
ab
le
pa
ra
m
et
er
s

Inducing points
All trainable parameters

Figure 5.2: Number of trainable parameters for the λt-GP model as a function of the number
of spectro-temporal features. The blue curve represents only the inducing points. The red curve
represents all the trainable parameters (including the inducing points). In this case, we defined
L = C = 23 andM = 50. The vertical dotted line corresponds to d = 481.
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5.2. Experimental set-up
This section describes the experimental set-up implemented, the results associated are pre-
sented in the next chapter, Chapter 6. Themethods used to prepare the training/validation/test
sets and to measure the classification accuracy are presented in Appendix A.

5.2.1. Configuration
Two learning scenarios were considered: with and without spatial stratification. As defined
in Section 3.3.3, spatial stratification with eco-climatic regions allows to reduce the spectro-
temporal variability of pixel reflectances. It also enables to reduce the massive training data
set. For the first scenario, with spatial stratification, stratification configuration, a dedicated
learning model was fit on each eco-climatic region, and global predictions were obtained by
joining per-region model predictions over the full area. For the second scenario, global con-
figuration, only one model was learned using pixels over the full area. Figure 5.3 represents
pixels used for the training in stratification and global configurations.

(a) Stratification configuration (b) Global configuration

Figure 5.3: Pixels used for the training in stratification and global configurations (background
map © OpenStreetMap contributors).

5.2.2. Data set generation
The data used is described in Chapter 3. In the following, only specific pre-processing for
Chapters 5 and 6 is described. A total of D = 13 spectral features were extracted for each
pixel xi at time tk. Moreover, two spatial features describe each pixel. Temporal resampling
is applied and interpolated time series are used. A set of 483 features describes each pixel xi

as d+ d′ with:
• d = 481 which corresponds to 37 interpolated dates × 13 spectral features,

• d′ = 2 spatial features.
Two different data sets are generated: a classification data set and a boundary data set. The

classification data set is used to train and evaluate the model in large scale setting. Con-
cerning RF models, the stratification configuration has shown an improvement in perfor-
mances [Inglada et al., 2017]. However, some discontinuities in prediction for RF models can
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be found at the boundaries between eco-climatic regions, as illustrated in Figure 2.10. Thus,
the boundary data set is used to evaluate the spatial continuity or discontinuity of the class
membership prediction between two eco-climatic regions.

Classification data set

The classification data set is used to train and validate the model. Different pixels were ex-
tracted randomly from the ground truth polygons in order to form three spatially disjoint
data subsets: training, validation and test for each eco-climatic region. The global data set is
composed of sets from all eco-climatic regions.

Two sizes for the training-validation subsets have been investigated for the learning step:
(4 000, 1 000) and (16 000, 4 000) pixels per class, respectively called data set DS-A and data set
DS-B. 10 000 pixels per class were extracted for the test set (except for the classes with fewer
pixels, for which all were selected). Two data sets DS-A and DS-B were generated in order to
evaluate the learning capabilities and performance in two different large scale configurations.

To estimate the classification metrics, 11 runs with different random pixel samplings were
done. Table 5.3 provides the average number of pixels for each class and each eco-climatic
region for the 11 training-validation-test pixels subsets. In global configuration, with the data
set DS-A, the training data set contains around 646 000 pixels, and around 2 348 000 pixels,
for DS-B. Moreover, in average, the test data set has 1 551 904 pixels.
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Table 5.3.: Average number of pixels per class and regions for the classification data set. For a
given class, the two first rows (data set DS-A and B) indicate the number of training-validation
pixels per region and the third rows indicates the number of test pixels per region. The nomen-
clature of the 23 land cover classes can be found in Table 3.3.

Regions Global
Class 1 2 3 4 5 6 7 8

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
6 569 - 1 727 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 12 011 - 2 676 10 802 - 2 657 16 000 - 4 000 16 000 - 4 000 109 382 - 27 061CUF

7 286 10 000 10 000 10 000 10 000 10 000 10 000 10 000 77 286

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000DUF

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000ICU

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

3 939 - 966 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 2 562 - 658 4 000 - 1 000 4 000 - 1 000 30 501 - 7 624
5 191 - 2 104 16 000 - 4 000 7 642 - 4 000 16 000 - 4 000 9 148 - 2 769 2 562 - 658 16 000 - 4 000 16 000 - 4 000 88 543 - 23 457RSF

6 622 10 000 10 000 10 000 10 000 5 360 10 000 10 000 71 982

4 000 - 987 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 941 32 000 - 7 928
5 942 - 1 424 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 7 261 - 2 125 109 204 - 27 549RAP

4551 10 000 10 000 10 000 10 000 10 000 10 000 10 000 74 551

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000STC

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

1 073 - 340 4 000 - 1 000 1 188 - 363 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 26 261 - 6 704
1 073 - 340 9 748 - 2 596 1 188 - 363 16 000 - 4 000 16 000 - 4 000 11 945 - 2 709 16 000 - 4 000 13 154 - 3 243 85 110 - 21 253PRO

1 222 10 000 3 120 10 000 10 000 10 000 10 000 10 000 64 342

3 998 - 902 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 31 998 - 7 902
4 362 - 1 122 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 3 959 16 000 - 4 000 16 000 - 4 000 16 000 - 344 116 362 - 28 525SOY

7 098 10 000 10 000 10 000 10 000 10 000 10 000 10 000 77 098

1 316 - 437 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 29 316 - 7 437
1 437 - 1 122 16 000 - 4 000 16 000 - 3 757 16 000 - 4 000 16 000 - 3 959 16 000 - 4 000 16 000 - 4 000 16 000 - 344 113 316 - 28 194SUN

3 492 10 000 10 000 10 000 10 000 10 000 10 000 10 000 73 492

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000COR

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 4 000 - 1 000 0 - 0 4 000 - 1 000 8 000 - 2 000
0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 16 000 - 4 000 0 - 0 16 000 - 4 000 32 000 - 8 000RIC

0 0 0 0 0 10 000 0 10 000 20 000

1 604 - 411 3 836 - 912 2 757 - 676 4 000 - 1 000 4 000 - 988 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 199 - 6 988
1 604 - 411 3 928 - 1 078 2 757 - 676 16 000 - 4 000 8 688 - 2 563 11 518 - 3 296 16 000 - 4 000 16 000 - 3 985 76 497 - 20 011TUB

1 816 5 185 5 864 10 000 10 000 10 000 10 000 10 000 62 865

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000GRA

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

844 - 173 4 000 - 1 000 1 175 - 343 4 000 - 1 000 3 236 - 800 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 25 256 - 6 317
844 - 173 15 967 - 3 930 1 175 - 343 16 000 - 4 000 3 236 - 965 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 85 223 - 21 412ORC

657 10 000 3 026 10 000 3 590 10 000 10 000 10 000 57 273

672 - 207 4 000 - 987 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 672 - 7 194
672 - 207 5 399 - 1 545 6 255 - 1 649 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 92 327 - 23 402VIN

574 5 115 9 200 10 000 10 000 10 000 10 000 10 000 64 889

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 32 000BLF

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

4 000 - 1 000 4 000 - 1 000 2 598 - 648 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 30 598 - 7 648
16 000 - 4 000 16 000 - 4 000 2 598 - 717 16 000 - 4 000 16 000 - 3 896 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 114 598 - 28 614COF

10 000 10 000 5 317 10 000 10 000 10 000 10 000 10 000 75 317

4 000 - 1 000 4 000 - 1 000 0 - 0 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 28 000 - 7 000
16 000 - 4 000 16 000 - 4 000 0 - 0 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 112 000 - 28 000NGL

10 000 10 000 0 10 000 10 000 10 000 10 000 10 000 70 000

4 000 - 1 000 4 000 - 1 000 3 983 - 925 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 31 983 - 7 925
16 000 - 4 000 16 000 - 4 000 4 920 - 1 401 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 116 920 - 29 401WOM

10 000 10 000 6 189 10 000 10 000 10 000 10 000 10 000 76 189

4 000 - 1 000 4 000 - 1 000 0 - 0 4 000 - 1 000 3 437 - 768 4 000 - 1 000 0 - 0 4 000 - 1 000 23 437 - 5 768
16 000 - 4 000 16 000 - 4 000 0 - 0 16 000 - 3 773 7 654 - 1 795 16 000 - 4 000 0 - 0 16 000 - 3 932 87 654 - 21 500NMS

10 000 10 000 0 10 000 3 140 10 000 0 10 000 53 140

4 000 - 1 000 3 990 - 748 0 - 0 4 000 - 931 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 27 990 - 6 679
15 713 - 3 853 5 274 - 1 194 0 - 0 16 000 - 2 137 16 000 - 3 972 16 000 - 4 000 6 817 - 4 000 16 000 - 4 000 91 805 - 23 157BDS

10 000 9 097 0 10 000 10 000 10 000 0 10 000 59 097

4 000 - 1 000 0 - 0 0 - 0 0 - 0 3 715 - 818 0 - 0 0 - 0 0 - 0 7 715 - 1 818
16 000 - 4 000 0 - 0 0 - 0 0 - 0 4 773 - 2 114 0 - 0 0 - 0 0 - 0 20 773 - 6 114GPS

10 000 0 0 0 4 383 0 0 0 14 383

4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 4 000 - 1 000 32 000 - 8 000
16 000 - 4 000 16 000 - 3 915 16 000 - 4 000 16 000 - 3 957 16 000 - 3 586 16 000 - 4 000 16 000 - 4 000 16 000 - 4 000 128 000 - 31 459WAT

10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 80 000

73 450 - 18 427 83 828 - 20 649 63 703 - 15 957 84 000 - 20 931 86 390 - 21 376 86 563 - 21 658 80 000 - 20 000 88 000 - 21 941 645 934 - 160 939
235 292 - 59 801 296 318 - 74 180 202 537 - 50 854 336 000 - 81 868 301 513 - 76 300 324 829 - 81 382 310 817 - 80 000 340 416 - 84 730 2 347 722 - 589 115Total

163 318 199 397 152 716 210 000 201 113 215 360 190 000 220 000 1 551 904
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Boundary data set

The boundary data set is used to evaluate the spatial continuity of the model predictions at
the border between two eco-climatic regions. A synthetic example of a boundary data set is
represented in Figure 5.4. The boundary data set is composed of labeled and unlabeled pixels
in a buffered zone around the boundary between two regions. Unlabeled pixels are used in
order to increased the number of pixels and because the study of continuity (i.e. computation
of agreement) does not require labeled pixels.

Several buffer sizes B have been investigated: B ∈ {100, 200, 500, 1000, 1500, 2000} me-
ters, the total width of the buffer being equal to 2×B. A buffered zone with real data between
two eco-climatic regions is given in Figure 5.5. All available labeled pixels were selected except
those included in the training and validation data sets. From the available unlabeled pixels,
approximately 1% were selected. Table 5.4 summarizes the number of labeled and unlabeled
pixels for each buffer size.

2 ×
B

Region 1

Region 2

Figure 5.4: Synthetic representation of a buffered zone: the solid line represents the boundary
between two eco-climatic regions and the area inside the dotted lines corresponds to the buffered
zone of size 2 ×B. Gray pixels are selected to compose the boundary data set.

Figure 5.5: Example with real data: pixels are extracted from the 2 ×B = 2000m buffered zone
between regions 4 and 7 in the T31TCJ tile. Labeled pixels are represented with • and unlabeled
pixels are represented with •.
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Table 5.4.: Number of extracted pixels in the boundary data set for each buffer size. Labeled
pixels for each class and also unlabeled pixels are represented.

Class
Buffer size 2 × B (in meters)

200 400 1 000 2 000 3 000 4 000

CUF 13 210 24 795 54 063 89 637 120 212 145 055
DUF 69 801 129 865 290 381 551 337 793 284 985 294
ICU 37 873 76 091 175 984 345 776 499 108 632 258
RSF 4 413 8 319 20 344 42 039 63 063 77 133
RAP 39 251 73 323 149 778 250 106 329 672 408 112
STC 62 048 119 209 250 463 440 889 583 845 710 629
PRO 13 729 27 975 68 267 124 310 158 918 196 369
SOY 54 631 107 367 243 272 404 260 536 731 667 757
SUN 140 271 262 218 574 634 987 998 1 315 013 1 597 642
COR 139 962 261 293 583 261 1 019 811 1 360 352 1 651 259
RIC 7 952 14 465 32 304 63 066 82 738 95 780
TUB 4 479 10 608 21 697 41 108 57 657 74 043
GRA 151 587 289 454 636 485 1 141 138 1 551 963 1 892 411
ORC 10 512 20 144 46 956 81 462 109 277 133 584
VIN 29 979 56 131 129 244 239 707 323 826 403 441
BLF 334 754 634 454 1 430 734 2 480 683 3 323 765 3 974 349
COF 623 400 1 175 363 2 615 784 4 755 157 6 669 116 8 524 143
NGL 458 962 881 752 1 977 349 3 410 308 4 606 858 5 621 974
WOM 236 179 443 113 944 710 1 542 605 2 040 969 2 511 469
NMS 81 900 155 856 324 391 483 110 618 084 785 524
BDS 8 480 16 246 47 651 69 107 91 400 112 524
GPS 7 7 608 2 887 5 311 5 390
WAT 262 745 507 158 1 170 362 2 177 128 3 098 221 3 910 482
Total 2 786 125 5 295 206 11 788 722 20 743 629 28 339 383 35 116 622

Unlabeled 466 238 887 200 1 966 564 3 427 563 4 639 251 5 710 571

Labeled + Unlabeled 3 252 363 6 182 406 13 755 286 24 171 192 32 978 634 40 827 193

Finally, feature scaling was performed for each data set. Mean and standard deviation were
estimated for each feature on the training data set from the classification data set and then
used to standardize the data on the different data sets (training, validation, test and bound-
ary) [Kuhn and Johnson, 2019]. The standardization was performed with the Scikit-Learn
function StandardScaler [Pedregosa et al., 2011].

5.2.3. Method set-up

Model implementation

The GP model was implemented using the GPyTorch library [Gardner et al., 2018]. We chose
GPyTorch because it has several key advantages. First, Gpytorch is based on PyTorch [Paszke
et al., 2019], a very popular deep learning framework, and inherits of the advantages of Py-
Torch. More precisely, it provides easy access to GPU acceleration. Second, it implements
several approximation algorithms, such as the variational strategy defined by [Hensman et al.,
2015] and presented in Chapter 4. It is also possible to use LMC proposed in Chapter 4 and
fast kernel methods such as Toeplitz and Kronecker structure within the covariance matrix.
Finally, GPytorch is quite easy to install and use. Other libraries such as GPy [The-GPyOpt-
authors, 2016] or GPFlow [Matthews et al., 2017] can be used for large scale GP. However, they
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do not have the same advantages as GpyTorch. Indeed, GPy uses Python and Numpy for all
computations, thus there is no GPU acceleration. Besides, variational inference requires gra-
dient propagation (autograd) which is not implemented in Numpy. GPflow, on the other hand,
can perform GPU acceleration. However, it relies on TensorFlow which offers less flexibility
than Pytorch.

Hyper-parameters are selected at the initialization of the GP model. Moreover, an appro-
priate initialization of the parameters can facilitate the optimization and help the model to
converge faster. The influence of hyper-parameters selection and of parameters initialization
on model performance is provided in Section 6.3. A summary of the selected values is given
(as a reminder we have d = 481 and d′ = 2):

• The number of gl latent functions was selected with L = C = 23.

• The mean function was selected as a constant. For each latent GP gl, the mean function
was initialized with µl = 0.

• Covariance function:

– for λt-GP, one RBF function for each latent GP gl with the following initialization
for the length-scale: ℓlλt =

√
d.

– for ϕλt-GPSC, kS
l (x,x′) each latent GP gl with the following initialization for the

lengths-scales: ℓlλt =
√
d, ℓlϕ =

√
d′. Concerning the output-scale, we have:

σlλt = ln (1 + exp (σ̃lλt)) and σlϕλt = ln (1 + exp (σ̃lϕλt)) with σ̃lλt = σ̃lϕλt = 0.
σ̃lλt and σ̃lϕλt are optimized instead of σlλt and σlϕλt, respectively (i.e. parameteri-
zation in log-scale to enforce positivity constraints during the learning step).

– for ϕλt-GPPC, kP
l (x,x′) each latent GP gl with the following initialization: ℓlλt =√

d and ℓlϕ =
√
d′.

• The same number of inducing points M = 50 was selected for each gl. They were
initialized with a random selection with the same set of inducing points.

• For each latent GP gl, the variational distributionwas defined as q(gl(Zl)) ∼ NM(ml,Sl)
with the following initialization: ml = 0 and Sl = IM .

• The mixing matrix A of size C × C was initialized with random values drawn from a
standard Gaussian distribution, A ∼ N (0, 1).

Competitive methods

Three different classification methods were defined as competitive methods:

1. Random Forest (RF): The RF Classifier from the Scikit-Learn library [Pedregosa et al.,
2011] was used to train the RF model. Standard parameter settings were used: 100 trees
with no maximum depth and the number of features considered for splitting at each leaf
node was equal to the square root of the total number of features, as defined in [Inglada
et al., 2017] and [Inglada et al., 2018].
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Table 5.5.: Number of trainable parameters for each model in the global configuration classifica-
tion.

Model # of parameters

λt-GP 584 200
ϕλt-GPSC 586 569
ϕλt-GPPC 586 523
λt-MLP 143 579
ϕλt-MLP 144 612
λt-LTAE 239 521
ϕλt-LTAE 240 005

2. Multi-layer Perceptron (MLP): The MLP model was built with four hidden layers.
The number of neurons in the first layer was the number of features divided by two
(d/2 or (d + d′)/2 i.e. 240 or 241) and in the last three layers: the number of classes
multiplied by three (C×3 i.e. 69). The activation function used was the Rectified Linear
Unit (ReLU).

3. Lightweight Temporal Self-Attention (LTAE): In LTAE, temporal inputs were di-
vided in channels distributed among several compact attention heads. Each head op-
erated in parallel and extracted highly-specialized temporal features. These features
were concatenated to create a single representation. A more detailed description and
the parameters used from the LTAE model are given in [Garnot and Landrieu, 2020].
The implementation was based on the Pytorch library andwas extracted from the iota2

repository1.

The first two methods do not take into account the spectro-temporal structure of the data,
e.g., modifying the order of the temporal acquisitions would not change the behavior of the
algorithm. The last one takes the temporal structure into account to process the SITS by using
temporal positional encoding and attention mechanisms.

For each classification method previously defined, two different versions of each model
were trained: λt-model and ϕλt-model. A λt-version was trained using only spectro-temporal
features xλt. A ϕλt-version was trained using spectro-temporal features xλt and spatial fea-
tures xϕ. The number of trainable parameters for each method in the global configuration
classification is summarized in Table 5.5.

For GP and neural networks, the Adam optimizer was used. Optimizer parameters are given
in Table 5.6. They were found by trial and error. The performance of each model in terms of
classification accuracy for the two scenarios was computed using the Overall Accuracy (OA)
and F-score, described in Appendix A.2.2. The results are provided in Chapter 6.

1https://framagit.org/iota2-project/iota2/-/tree/develop
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Table 5.6.: Parameter values for the Adam optimizer for GP, MLP and LTAE.

GP MLP LTAE

Number of epochs E 100 300 100
Batch size β 1024 1000 1000
Learning rate η 1 × 10−3 1 × 10−5 1 × 10−5

5.2.4. Map production
Land cover maps were produced using the iota2 processing chain [Inglada et al., 2016] for
both stratification and global configurations for all the studied models (λt-GP, ϕλt-GPSC, ϕλt-
GPPC, λt-MLP, ϕλt-MLP, λt-LTAE and ϕλt-LTAE).

Themap productionwas performed on two adjacent tiles: T31TCJ and T31TDJ . In global
configuration, predictions for the map production were done using the model trained with the
data set DS-A on the 27 tiles with the best OA computed over the 11 runs. In stratification
configuration, predictions were done for each region with the best corresponding model. The
results are provided in Chapter 6.

5.2.5. Feature reduction
The estimation of the IP involves a high number of parameters and is time-consuming: reduc-
ing the number of features could be beneficial for the convergence of the algorithm. Focusing
on the λt-GP model, 584 200 trainable parameters are defined for this model, with 553 150
corresponding to the optimization of the IP, as defined in Table 5.5. In the following, we pro-
pose to study to the influence on reducing the number of spectro-temporal features for the
λt-GP model.

Standalone feature extractor

In standalone feature extraction, the pixel xi of size d = TD, with T the number of observa-
tions andD the number of spectral bands, is transformed into x̂i of reduced size thanks to an
extractor module h. This reduced pixel x̂i is then given to the classifier f , as represented in
Figure 5.6. The feature extraction is performed as a pre-processing step independent of the
downstream classification task (thus the standalone adjective). Three different extractors are
studied:

1. Spectral reduction: the reduction is performed in the spectral dimension indepen-
dently from the temporal dimension. Instead of using D bands, we used D′ bands. We
propose to keep only the three spectral indices (i.e. NDVI, NDWI, Brightness), as they
are already a combination of spectral bands. The hypothesis is that this can reduce the
redundancy in the spectral bands. Thus, it permits to reduce to 3 × 37 = 111 spectro-
temporal features.

2. Temporal reduction: the reduction is performed in the temporal dimension indepen-
dently from the spectral dimension. Instead of using T temporal acquisitions, we used
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T ′ temporal acquisitions. Different statistical indicators (e.g. mean per month) can be
chosen instead of the whole set of interpolated dates, as described in Table 5.7. Some
combinations permit to reduce the number of spectro-temporal features but some of
them do not reduce this number (e.g. 624 > 481). In the following, results for only one
configuration (i.e. mean value for each month) are presented.

3. Linear Discriminant Analysis (LDA): it is a conventional method used for dimen-
sionality reduction in machine learning. It projects the TD dimensional feature space
into a C − 1 dimension space that best separates the classes. Indeed, it maximizes the
ratio of the between-classes variances and the within-classes variances [Rao, 1948]. By
using LDA as extractor, the number of spectro-temporal features is reduced at most to
C − 1 = 22. Even if the class labels are used, the LDA is a pre-processing step totally
independent of the downstream classification task.

xi h x̂i fθ

∇θL

ŷi

L(ŷi,yi)

Figure 5.6: Feature extraction as a pre-processing. xi and x̂i are respectively the input pixel
and the reduced pixel. h corresponds to the standalone feature extractor. f corresponds to the
classifier (λt-GP model) and θ corresponds to its parameters. The loss L is used to optimize θ
and to minimize the error between the predicted class ŷi and the true class yi.

Table 5.7.: Different combinations for the temporal reduction.
Frequency Statistical indicators Number of spectro-temporal features

Monthly Mean 13 × 12 = 156
Monthly Mean, variance, min, max 13 × 12 × 4 = 624
Quarterly Mean 13 × 4 = 52
Quarterly Mean, variance, min, max 13 × 4 × 4 = 208

End-to-end feature extractor

Like in standalone feature extraction, in end-to-end feature extraction, the pixel xi of size
d = TD is transformed into a pixel x̂i of reduced size. However, this reduction is learned for
the classification task, as illustrated in Figure 5.7. Indeed, the parameters β of the extractor
h are learned in order to minimize the classification loss. Two different end-to-end extractors
are studied:

1. Multilayer Perceptron (MLP): with two hidden layers. The first layer is composed
of 300 neurons, the second of 200 neurons and the output layer is composed of 100
neurons. It can be written as:

h : RT D → R100.
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Different values were tested for the number of neurons in the hidden layers and in the
output layer. This configuration was selected as it gave good performance results. The
weights of the MLP corresponding to β are jointly optimized with the SVGP.

2. Linear Projection: as defined in [Constantin et al., 2021], we propose to represent the
vector xi defined as

xi = [xi(t1), . . . ,xi(tT )]
= [x1

i (t1), . . . , xD
i (t1), . . . , x1

i (tT ), . . . , xD
i (tT )]⊤

of size d by the matrix Xi of size D × T , such as:

Xi =

 x1
i (t1) ... x1

i (tT )
... ... ...

xD
i (t1) ... xD

i (tT )

 .
It allows us to take into account the spectro-temporal structure of the data. Two separate
matrices are used for the linear projection. A first matrix U ∈ RD×D′ is used to reduce
the spectral dimension and a second matrix V ∈ RT ×T ′ is used to reduce the temporal
dimension:

X̂i = U⊤XiV.

The extractor h can be written as:

h : RD×T → RD′×T ′

withD′ ≪ D and T ′ ≪ T and with T ′ = 10 andD′ = 10. Different values were tested
for T ′ and D′ and this configuration was chosen. Such as for the MLP, the number of
spectro-temporal features is reduced to 100. The weights of the matrices corresponding
to β are jointly optimized with the SVGP.

All the studied methods are summarized in Table 5.8. For all feature extractionmethods, the
number of trainable parameters used to optimize the IP is reduced compared to the baseline.
For LDA, the reduction factor is around 15, whereas for MLP, it is close to 1.7. The number
of features for LDA is significantly smaller than the other methods. Tests were carried out
using a number of features similar to LDA but without good performances. The performance
of each method in terms of classification accuracy is provided in Chapter 6.

xi hβ

∇βL

x̂i fθ

∇θL

ŷi

L(ŷi,yi)

Figure 5.7: End-to-end feature extraction. In this case, β corresponds to the parameters of the
end-to-end feature extractor. Moreover, the loss L is used to optimize β and θ and to minimize
the error between the predicted class ŷi and the true class yi.
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Table 5.8.: Comparison of the different methods used for the feature extraction. The baseline
corresponds to the classifier (λt-GP model) without extractor. Spectral, Temporal and LDA corre-
spond to the classifier (λt-GP model) combined with a feature extractor as a pre-processing. MLP
and Linear Pro corresponds to the classifier (λt-GP model) combined with an end-to-end feature
extractor. # of features corresponds to the number of features that are used by the classifier. #
of parameters corresponds to the number of trainable parameters used to optimize the inducing
points.

Name Extractor # of features # of parameters

Baseline None 481 553 150
Spectral Spectral reduction 111 127 650
Temporal Temporal reduction 156 179 400
LDA LDA 22 35 904
MLP MLP 100 339 300
Linear Pro Linear projection 100 115 500
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In the previous chapter, Chapter 5, the method based on GP as well as the experimental set-
up were presented. In this chapter, the results associated are described. Firstly, the GP model
is compared with competitive methods, both quantitative and qualitative results are provided.
Then, a study of performance in areas between two eco-climatic regions is presented. Finally,
the GP model is examined from several aspects.

6.1. Comparison with competitive methods
In this section, the GP model is compared to competitive methods both quantitatively and
qualitatively in terms of classification accuracy and complexity. The studied models are: λt-
GP, ϕλt-GPSC, ϕλt-GPPC, λt-RF, ϕλt-RF, λt-MLP, ϕλt-MLP, λt-LTAE and ϕλt-LTAE. As a
reminder, λt-model refers to a classification model using only the spectro-temporal features,
whereas, ϕλt-model refers to a classification model using the spatial and the spectro-temporal
features. The GP models are described in Section 5.2.3 and the competitive models (RF, MLP
and LTAE) are described in Section 5.2.3.

6.1.1. Quantitative results
Classificationmetrics were computed using the test data set from the classification data set (c.f.
Section 5.2.2) in both configurations: stratification and global (c.f. Section 5.2.1). A compre-
hensive description of the classification metrics is provided in Section A.2.2 in Appendix A.
Classification metrics were averaged over the 11 runs of each model trained either with the
DS-A or the DS-B training data set. Firstly, the global metrics are studied followed by the
metrics per class. Then, confusion matrices are provided and finally, training and prediction
times are considered.

Overall accuracy (OA)

The OA for each model trained with training data sets DS-A and DS-B is given in Figure 6.1.
For all results, OA andmean F-score are very similar as all classes are well represented. There-
fore, the mean F-score is presented in Figure B.1 in Appendix B.
With the data set DS-A, the LTAE achieves better performance, followed by GP, MLP and

finally RF. The results are similar for the DS-B dataset, with a slight increase for each model.
This result can be explained by the fact that more pixels are seen during training. By con-
sidering the global configuration with spatial information, in terms of OA, GP models are in
average three points above RF models, one point above MLP models and one point below
LTAE models.

For both data sets, all models benefit from the spatial information. Indeed, the OA is in-
creased by less than one point for RF and MLP models and between one and three points for
GP and LTAE models. GP models have the highest improvement, specifically in the global
configuration.

For both data sets, only λt-GP and RF models have better results with the stratification
configuration compared to the global one, as illustrated in Figure 6.1. For all the other models,
better performances are achieved with the global configuration.
TheWilcoxon rank-sum test [Wilcoxon, 1945] was used to assess the statistical significance

of the observed differences in terms of OA over the MC runs, for each pair of classification
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Figure 6.1: Boxplots of the OA for each studied model. Both data sets DS-A and DS-B are consid-
ered for each configuration: global and stratification.
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Figure 6.2: Wilcoxon rank-sum tests results for each competitive method. Both data sets DS-A
and DS-B are considered for each configuration: global and stratification. Red cells indicate that
the observed differences in terms of OA over the MC runs between the two classification methods
are not significantly different. The null hypothesis was rejected at a significance level of alpha
= 0.01. Green cells correspond to significant observed differences. The cells above the diagonal of
the table contain Wilcoxon test results for the stratification configuration, while cells below the
diagonal contain the results for the global configuration.

methods. The null hypothesis was rejected at a significance level of alpha = 0.01. Figures 6.2a
and 6.2b show results obtained for the data set DS-A and DS-B, respectively.
With the data set DS-A, for the stratification configuration, all the results are significantly

different, except between ϕλt-RF and λt-LTAE. Similar results are found for the global con-
figuration, except between λt-GP and ϕλt-RF and between λt-LTAE and ϕλt-MLP.

For the larger training data set DS-B, for the stratification configuration, some results are not
significantly different, such as λt-GPwith ϕλt-GPSC. Moreover, ϕλt-GPSC is not significantly
different from ϕλt-MLP and finally, ϕλt-RF with λt-MLP. In global configuration, more results
are not significantly different in terms of classification accuracy.

The Wilcoxon tests confirm all the previous observations, particularly regarding the influ-
ence of spatial information and configurations.

F-score, precision and recall per class

The F-score by class for each model trained with training data sets DS-A and DS-B on global
and stratification configurations are presented in Figure 6.3. The precision and recall per class
are presented in Figures B.2 and B.3 and in Tables B.1 and B.2 inAppendix B. The nomenclature
of the classes is presented in Table 3.3.

With the data set DS-A, in global configuration, for each class the LTAE model is above
all models except for the GPS class. Indeed, for the GPS class, both LTAE accuracies (spatial
and non spatial) are below all models (GP, RF, MLP). This result can be explained by the fact
that the class GPS has a very low number of pixels (less than 8 000 pixels for DS-A in global).
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Moreover, for each class, the MLP model is above the RF, except for the classes RIC, WOM,
GPS and WAT. Finally, for each class, the GP model is well above the RF, except for the RIC
class for which the models have very similar values. Such as the GPS class, the RIC class has
a very low number of pixels (8 000 pixels for DS-A in global).

For all classes, in both configurations, the spatial information allows for all methods to
improve the F-score, there is no reduction in performance (except for the WAT class in strati-
fication configuration with DS-A with GP models). Adding the spatial information enables to
improve the results. This confirms the results found in the previous section with the OA or
the mean F-score.

Considering all methods except RF models, the majority of classes perform better in global
configuration than in stratification configuration. Indeed, for both ϕλt-GPSC and ϕλt-GPPC
models, all the classes perform better in global configuration than in stratification configura-
tion, except the following classes: CUF, ICU, RSF, WOM, NMS and GPS. For the ϕλt-LTAE
model, only the GPS class performs better in stratification configuration than in global con-
figuration. In contrast, for RF models, the majority of the classes has a better F-score in strat-
ification configuration than in global configuration, except the following classes: STC, PRO,
SOY, SUN, COR, RIC and TUB. Therefore, such as with the OA or the mean F-score, for the
majority of the models, the global configuration enables better classification accuracy than
the stratification configuration. In the following, we will focus on the confusions between
classes.
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Figure 6.3: Barplots of the F-score per class for each studied model. Both data sets DS-A and DS-B
are considered for each configuration: global and stratification.

Confusion matrices

For both configurations, stratification and global, normalized confusion matrices are produced
for each model with the data set DS-A. The normalization is applied over the true labels i.e.
the sum of each row is equal to one. Figures 6.4a and 6.4b represent the confusion matrices
for ϕλt-GPPC and ϕλt-LTAE, respectively. We have chosen to present only these two models,
as they correspond to the models with the best performance. The confusion matrices for all
models are presented in Figure B.4 in Appendix B.
For all models, there are confusions between CUF, DUF and ICU classes. These classes cor-

respond to urban classes and are difficult to discriminate at Sentinel-2 pixel size units using
only pixel-wise information. Moreover, for all models, some confusions are also found be-
tween the two classes: NGL and WOM. They are also very similar classes with a continuous
gradient between woody and non-woody vegetation, difficult to discriminate.

As illustrated in Figure 6.4a, for ϕλt-GPPC, the confusion between the PRO and STC classes
(PRO predicted as STC) is reduced from 0.15 in the stratification configuration to 0.1 in the
global configuration. Same results are found for the ϕλt-LTAE, as illustrated in Figure 6.4b.
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Figure 6.4: Normalized confusion matrices for ϕλt-GPPC and ϕλt-LTAE. Only the data set DS-A
is considered for each configuration: global and stratification. The confusion matrices for the
other models are presented in Figure B.4 in Appendix B.
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Training and prediction times

The averaged training and prediction times computed for each region and each model over
the 11 runs are presented in Table 6.1. To process the RF models, 20 CPU (100 GB of RAM)
were available. For GP and DL models, 1 NVIDIA Tesla V100 GPU was used. In the global
configuration, the MLP models have the shortest training time per epoch followed by LTAE
and finally GP. Concerning prediction times, they all have the same order of duration except
the GP models that are 10 times higher. GP are more demanding, because of the MC sampling
for the variational posterior. Increasing the data set size, from DS-A to DS-B, leads to an
increase of the training times per epoch of around 3.5 times for theMLP, LTAE and GPmodels.
However, for RFmodels, it is increased by almost 5 times. For all models except the GPmodels,
the spatial information has no effect on training or prediction times. The spatial GP models
have higher training times than the non spatial GP model. Indeed, in global configuration,
the training time of ϕλt-GPSC is 1.5 times higher than λt-GP. Parameters for the additional
covariance function (i.e. spatial one) need to be computed. Moreover, ϕλt-GPSC have longer
training times compared to ϕλt-GPPC, as it involves more computations. The sum of training
times for all regions (row "1 + ... + 8" in Table 6.1) is lower than the training time in global
configuration. Moreover, the advantage of stratification configuration is that the learning for
each region can be performed in parallel but with a loss in terms of accuracy.

Table 6.1.: Averaged training (T) and prediction (P) times for each model and each region (mean
in seconds averaged over 11 runs). The averaged training time is for one epoch except for the RF
models for which it is the full time. The white line corresponds to the data set DS-A and the gray
line corresponds to the data set DS-B.

Region Time Model
λt-GP ϕλt-GPSC ϕλt-GPPC λt-RF ϕλt-RF λt-MLP ϕλt-MLP λt-LTAE ϕλt-LTAE

1
T 2.8 4.5 3.1 15.4 14.9 0.6 0.6 1.4 1.4

8.6 14.3 9.8 58.3 56.9 1.9 1.9 4.4 4.4

P 22.1 25.1 22.4 1.3 1.2 0.8 0.9 1.2 1.2
35.2 37.2 29.1 2.4 2.2 1.5 1.5 2.1 2.2

2
T 3.0 5.0 3.4 16.5 16.5 0.7 0.7 1.6 1.6

10.5 17.4 12.0 72.3 71.1 2.4 2.4 5.5 5.5

P 25.4 30.7 25.2 1.4 1.4 1.0 1.0 1.5 1.5
42.9 40.7 47.7 3.2 2.7 1.9 1.9 2.7 2.7

3
T 2.2 3.3 2.4 11.2 11.1 0.5 0.5 1.2 1.2

6.6 10.5 7.5 43.0 42.8 1.6 1.6 3.8 3.7

P 19.5 23.8 19.8 1.0 1.0 0.8 0.8 1.1 1.1
31.2 31.2 32.4 2.0 1.6 1.3 1.3 1.9 1.9

4
T 3.1 5.0 3.4 17.3 16.8 0.7 0.7 1.6 1.6

12.0 19.9 13.7 84.4 82.8 2.7 2.7 6.3 6.3

P 27.0 32.7 27.3 1.6 1.5 1.1 1.1 1.6 1.6
50.3 54.4 50.3 3.5 3.4 2.2 2.2 3.1 3.1

5
T 3.2 5.3 3.6 17.6 17.1 0.7 0.7 1.6 1.6

11.0 18.3 12.8 74.3 72.1 2.4 2.4 5.6 5.6

P 26.5 32.1 25.9 1.6 1.5 1.0 1.0 1.5 1.5
46.3 49.5 49.6 3.0 2.7 1.9 1.9 2.8 2.8

6
T 3.2 5.3 3.6 16.8 16.6 0.7 0.7 1.6 1.6

12.0 19.7 13.6 75.4 74.8 2.6 2.6 6.1 6.0

P 27.7 33.5 27.5 1.7 1.6 1.1 1.1 1.6 1.6
52.0 57.5 49.6 3.3 3.0 2.1 2.1 3.0 3.0
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Region Time Model
λt-GP ϕλt-GPSC ϕλt-GPPC λt-RF ϕλt-RF λt-MLP ϕλt-MLP λt-LTAE ϕλt-LTAE

7
T 2.9 4.0 3.2 15.0 14.9 0.6 0.6 1.5 1.5

10.9 15.4 12.3 70.2 69.2 2.5 2.5 5.8 5.8

P 24.4 27.9 23.9 1.3 1.2 1.0 1.0 1.4 1.4
47.7 49.0 47.1 2.7 2.7 1.9 1.9 2.8 2.8

8
T 3.2 5.4 3.7 17.7 17.8 0.7 0.7 1.6 1.6

12.5 20.7 14.2 85.2 83.1 2.7 2.7 6.4 6.3

P 28.9 33.9 28.3 1.7 1.6 1.1 1.1 1.6 1.6
56.4 57.9 55.0 3.6 3.6 2.2 2.2 3.1 3.1

1 + ... + 8
T 23.5 37.6 26.4 127.5 125.6 5.2 5.2 12.1 12.1

84.2 136.1 95.9 563.0 552.7 18.7 18.8 43.8 43.7

P 201.5 239.8 200.3 11.6 10.9 8.0 8.0 11.5 11.5
362.1 377.4 360.7 23.7 22.1 15.1 15.1 21.7 21.6

Global
T 25.0 41.2 28.7 189.4 184.2 6.6 6.6 13.5 13.5

87.1 154.1 105.7 894.6 888.1 25.1 25.3 50.1 50.2

P 170.2 232.6 215.9 18.2 17.5 10.8 10.9 14.2 14.2
276.4 336.5 314.0 47.1 43.7 21.1 21.1 27.4 27.2

To conclude, for all models, the spatial information improves the classification perfor-
mances. The stratification configuration is only beneficial for the RF models. For all other
models, the global configuration performs better. GP models have very good performances,
above RF andMLPmodels, and just below LTAEmodels. In GPmodels, the spatio and spectro-
temporal structure is taken into account. Moreover, massive training data sets are handled
without any problem, in particular thanks to the approximations used for the GP models.

6.1.2. Qualitative results
In the previous section, the quantitative assessment has been conducted, the qualitative study
will now follow. For this purpose, land cover maps were produced using the iota2 processing
chain (a custom code has been developed for my PhD). Land cover maps were generated for
all studied models on two different tiles: T31TCJ and T31TDJ in both configurations. The
land cover maps are available for download: 10.5281/zenodo.7077887 .

Figure 6.5 represents a land cover map obtained on an agricultural area around Toulouse
with all the studied models in both configurations (stratification and global). The study area
is relatively flat (between 180 and 260 meters).

In global configuration, with GPmodels, land cover maps are more homogeneous (with less
salt and pepper classification noise [Hirayama et al., 2019]) when the spatial information is
added, as illustrated in Figures 6.5a and 6.5c. In contrast, forMLP and LTAEmodels, the spatial
information does not reduce the salt and pepper classification noise. In GP models, with the
addition of the spatial information, the main structures of the map are clearly represented
(i.e. crop field border). Indeed, the classification map does not exhibit rounded borders as it is
often the case with CNN models [Stoian et al., 2019b].

https://doi.org/10.5281/zenodo.7077887
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Figure 6.5: Comparison of the land cover maps obtained with each model in both configurations
(stratification and global) on an agricultural area around Toulouse (tile T31TCJ). Topography
information (30-meter STRM, contours are in meters) and Sentinel-2 image (RGB) (acquisition
date: 15/05/18) of the specific zone are provided. Some clouds are visible in the Sentinel-2 image.
The studied area is relatively flat (min: 180m, max: 260m). There are different types of landscape:
towns, crop fields, a lake, forests, etc.
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6.2. Boundary study
In the stratification configuration, models were trained independently: no constraints were
imposed between model behavior for adjacent regions during processing. The goal of this
section is to evaluate the continuity of the predictions inside the boundary zone. Like the
previous section, the studied models are: λt-GP, ϕλt-GPSC, ϕλt-GPPC, λt-RF, ϕλt-RF, λt-
MLP, ϕλt-MLP, λt-LTAE and ϕλt-LTAE.

6.2.1. Quantitative results
In this section, we propose to study the continuity of the predictions inside the boundary
zone thanks to the number of agreements i.e. the number of pixels assigned to the same
class by both models in the boundary zone. Thus, in each boundary zone, all the pixels (i.e.
boundary data set) were predicted by the two models surrounding this zone. The percentage
of agreement corresponds to the number of agreements divided by the total number of pixels.

Table 6.2 represents the percentage of agreements for different boundary sizes: B ∈
{100, 200, 500, 1000}. The size of the boundary has no influence, results are similar. Be-
sides, this percentage was calculated for unlabeled pixels and also for labeled pixels which are
correctly predicted. RF models have higher agreement than other models for both unlabeled
pixels and labeled pixels correctly predicted. For unlabeled pixels, RF models are followed
by λt-LTAE with a difference of around four points. For labeled pixels correctly predicted,
RF models have similar values with ϕλt-GPPC. For RF models, the two models tend to agree
with each other i.e. there is a some continuity in the predictions. However, the continuity in
predictions does not mean that the predictions are correct.

To evaluate the agreement between regions w.r.t. correctly classified pixels, we computed
the OA on labeled pixels for different boundary sizes. Table 6.3 represents the OA for both
global and stratification configurations. For all methods, the OA in the global configuration
is above the stratification one. The difference between both configurations is only two points
for RF models and more than four points for DL methods. In Section 6.1, we found that
the stratification configuration performed better than the global configuration for RF models.
In boundary zone, it is no longer the case. One hypothesis that could explain this result is
that in each eco-climatic region, the model will tend to specialize. Therefore, between eco-
climatic regions, models are quite different. Moreover, the pixels in the boundary zone are
the furthest from the centroid of the region: they correspond less to the region and they may
consequently be less accurately classified. For all models, the performances increase when the
spatial information is added. For all models, better performance results are found in global
configuration. Same results were found in the previous section for GP, MLP and LTAEmodels
in a more general context (i.e. not in boundary areas). In the following, a visual assessment
will be conducted.
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Table 6.2.: Averaged percentage of agreement (between two adjacent models) for different sizes of
boundary zones (B ∈ {100, 200, 500, 1000}) (mean % ± standard deviation computed with 11
runs). Comparison between unlabeled pixels and labeled pixels correctly predicted. Models were
trained in stratification configuration.

B Pixels λt-GP ϕλt-GPSC ϕλt-GPPC λt-RF ϕλt-RF λt-MLP ϕλt-MLP λt-LTAE ϕλt-LTAE

100 unlabeled 66.3 ± 0.7 64.6 ± 1.0 66.2 ± 0.8 72.6 ± 0.5 72.1 ± 0.4 65.2 ± 0.6 64.4 ± 0.6 68.4 ± 0.6 66.0 ± 0.8
labeled correctly predicted 66.6 ± 0.6 68.5 ± 0.6 69.8 ± 0.6 69.2 ± 0.4 70.5 ± 0.8 64.9 ± 0.4 65.6 ± 0.4 66.4 ± 0.4 68.2 ± 0.5

200 unlabeled 66.2 ± 0.7 64.7 ± 0.9 66.2 ± 0.8 72.6 ± 0.5 72.1 ± 0.3 65.1 ± 0.6 64.4 ± 0.6 68.3 ± 0.6 66.0 ± 0.9
labeled correctly predicted 66.5 ± 0.6 68.3 ± 0.6 69.5 ± 0.6 69.2 ± 0.4 70.5 ± 0.4 64.9 ± 0.4 65.6 ± 0.4 66.3 ± 0.4 68.1 ± 0.5

500 unlabeled 66.0 ± 0.7 64.5 ± 0.9 66.1 ± 0.8 72.5 ± 0.5 71.8 ± 0.3 65.0 ± 0.5 64.2 ± 0.6 68.2 ± 0.6 65.9 ± 0.8
labeled correctly predicted 66.6 ± 0.5 68.2 ± 0.5 69.4 ± 0.5 69.3 ± 0.4 70.5 ± 0.3 65.1 ± 0.4 65.8 ± 0.4 66.4 ± 0.4 68.2 ± 0.5

1000 unlabeled 65.8 ± 0.7 64.3 ± 0.9 65.8 ± 0.8 72.3 ± 0.5 71.8 ± 0.3 64.8 ± 0.6 64.0 ± 0.6 68.0 ± 0.6 65.7 ± 0.8
labeled correctly predicted 66.9 ± 0.5 68.5 ± 0.5 69.7 ± 0.5 69.4 ± 0.4 70.8 ± 0.4 65.4 ± 0.3 66.2 ± 0.3 66.8 ± 0.4 68.6 ± 0.5

Table 6.3.: Averaged OA computed on labeled pixels for different sizes of boundary zones (B ∈
{100, 200, 500, 1000}) (mean % ± standard deviation computed with 11 runs). Comparison
between global configuration and stratification configuration.

B Pixels λt-GP ϕλt-GPSC ϕλt-GPPC λt-RF ϕλt-RF λt-MLP ϕλt-MLP λt-LTAE ϕλt-LTAE

100 global 77.1 ± 0.6 79.3 ± 0.7 79.9 ± 0.6 77.7 ± 0.1 78.7 ± 0.4 77.8 ± 0.2 78.8 ± 0.1 78.0 ± 0.4 80.6 ± 0.2
stratification 74.6 ± 0.4 76.5 ± 0.4 77.3 ± 0.4 75.6 ± 0.2 76.8 ± 0.7 73.1 ± 0.3 74.0 ± 0.2 74.2 ± 0.3 76.2 ± 0.3

200 global 77.0 ± 0.6 79.2 ± 0.6 79.8 ± 0.6 77.6 ± 0.1 78.7 ± 0.1 77.8 ± 0.3 78.7 ± 0.1 78.0 ± 0.4 80.6 ± 0.2
stratification 74.6 ± 0.4 76.5 ± 0.3 77.2 ± 0.3 75.6 ± 0.2 76.9 ± 0.2 73.2 ± 0.3 74.0 ± 0.2 74.1 ± 0.3 76.2 ± 0.3

500 global 77.3 ± 0.6 79.3 ± 0.7 79.9 ± 0.6 77.7 ± 0.1 78.7 ± 0.1 77.9 ± 0.2 78.9 ± 0.1 78.1 ± 0.3 80.6 ± 0.2
stratification 74.8 ± 0.3 76.4 ± 0.4 77.2 ± 0.3 75.9 ± 0.2 77.0 ± 0.2 73.6 ± 0.2 74.4 ± 0.2 74.4 ± 0.3 76.4 ± 0.3

1000 global 77.5 ± 0.6 79.6 ± 0.7 80.1 ± 0.6 77.8 ± 0.1 79.0 ± 0.1 78.1 ± 0.2 79.1 ± 0.1 78.3 ± 0.3 80.9 ± 0.2
stratification 75.4 ± 0.3 77.0 ± 0.4 77.7 ± 0.2 76.2 ± 0.3 77.5 ± 0.2 74.1 ± 0.3 75.0 ± 0.2 74.8 ± 0.3 76.8 ± 0.3

6.2.2. Qualitative results
In the following, we are going to study land cover maps produced with the iota2 processing
chain and more precisely in areas between two eco-climatic regions. As a reminder, all the
land cover maps produced on both tiles are available here: 10.5281/zenodo.7077887.

Figure 6.5 represents a land cover map between two eco-climatic regions computed with
each studied model. For all models, in stratification configuration, some discontinuities in
predictions between two eco-climatic regions are found, even for RF models as illustrated in
Figures 6.6d and 6.6e. In contrast, in global configuration, there is no discontinuity for all
methods. This confirms the quantitative results found previously.

In stratification configuration, adding the spatial information appears to improve the con-
tinuity of prediction for ϕλt-GPSC, as illustrated in Figure 6.6c. In this example, adding the
spatial information does not improve the continuity of prediction for ϕλt-GPPC, as illustrated
in Figure 6.6b. Note that this is a special case, since Table 6.3 states the opposite. In stratifica-
tion configuration, for MLP and LTAE models, adding the spatial information did not improve
the prediction continuity. In global configuration, for RF models, adding the spatial infor-
mation did not change the land cover map, as illustrated in Figures 6.6d and 6.6e. In global
configuration, for other models, adding the spatial information has an impact on land cover
maps.

https://doi.org/10.5281/zenodo.7077887
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Figure 6.6: Comparison of the land cover maps obtained with each model in both configurations
(stratification and global) on an boundary zone between two eco-climatic regions (tile T31TDJ).
Topography information (30-meter STRM, contours are in meters) and Sentinel-2 image (RGB)
(acquisition date: 15/06/18) of the specific zone are provided.
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6.3. Model evaluation

6.3.1. Hyper-parameters selection
In the following, we study the influence of hyper-parameters selection onmodel performance.
Results were obtained with the λt-GP model trained on global configuration with a smaller
data set. Indeed, to simplify the computations, the training and test data sets are composed of
92 000 and 230 000 pixels, respectively. The data sets are balanced: 4 000 pixels per class for
the training data set and 10 000 pixels per class for the test data set.

Number of inducing points (IP)

The number M of IP is selected at the initialization of the model. If the number M of IP is
large and close to the size of the training set N , fewer approximations are made. Thus, a
more accurate approximate representation of the posterior is provided [Leibfried et al., 2020].
However, the larger the number, the higher are the computational complexity and thememory
requirements. Indeed,M has a significant impact on the total number of trainable parameters,
as described in Table 5.2. Hence, a compromise between complexity and accuracy needs to be
made.

In the literature, few studies have been conducted on the choice of the number of points
relative to the number of training inputsN and the number of features d [Seeger et al., 2003],
[Titsias, 2009], [Azzimonti et al., 2016]. In general, the choice is purely made to reduce
computational complexity, and a small number of inducing points are taken. However, the
optimal number of IP depends on many factors: the form of the covariance function, the
size of the training inputs, the number of features, the structure of the data, etc. Galy-Fajou
and Opper [Galy-Fajou and Opper, 2021] proposed a bound on the expected number of IP by
making some assumptions about the data (i.e. distribution). This bound is computed for a
regression case with a RBF kernel. We did not apply this method because our data did not
verify those assumptions.

Different values were tested:M ∈ {30, 50, 100, 250}, as illustrated in Figure 6.7. Increasing
the number of inducing points slightly increases performance, but more importantly, signifi-
cantly increases learning time. A compromise has been made between accuracy and training
times. Finally, the value selected was M = 50. This number was used for each region but
also in the global configuration. A major advantage is that our approach gives better results
in global configuration and does not require more points than in stratification configuration.

Number of latent processes

The number of gl latent functions L is also selected a priori. As stated in [Liu et al., 2022],
taking L > C , increases significantly the model complexity and the number of trainable
parameters (c.f. Table 5.5) and can lead to over-fitting. In contrast, taking L < C , leads to a
very little flexibility and can lead to under-fitting.

In this work, different values were tested: L ≈ C/2 = 11, L = C = 23 and L = 2 ×
C = 46, as illustrated in Figure 6.8. With L = 11, the performances are severely degraded.
Nevertheless, between L = 23 and L = 46, the OA is very similar. However, the training
times is almost 1.5 times greater for L = 46 than for L = 23. Therefore, we decided to select
the number of gl latent functions with L = C = 23.
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Figure 6.7: Comparison between OA and training times in seconds for different number of in-
ducing points: M ∈ {30, 50, 100, 250}. The averaged values and the standard deviations are
computed over 9 runs. The OA is computed over 230 000 pixels on the 27 tiles with the λt-GP
model. The training time corresponds to the training of the λt-GP model over 92 000 pixels on
the 27 tiles.
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Figure 6.8: Comparison between OA and training times in seconds for different number of latent
process: L ∈ {11, 23, 46}. The averaged values and the standard deviations are computed over 9
runs. The OA is computed over 230 000 pixels on the 27 tiles with the λt-GP model. The training
time corresponds to the training of the λt-GP model over 92 000 pixels on the 27 tiles.
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Number of MC samples for the prediction

The number of draws for the MC sampler is usually different between the training step and
the prediction step. As explained in the previous chapter, one draw was selected for the train-
ing step. For the prediction step, ten draws were selected. These are the default values in
Gpytorch.

We studied the influence of the number of draws for the MC sampler for the prediction
step. In this work, different values were tested: {10, 50, 100}. In addition to the averaged OA
and the averaged prediction time, the averaged percentage of agreement was computed. The
percentage of agreement corresponds to the number of pixels with the same class membership
over two different runs divided by the total number of pixels. The averaged percentage of
agreement was computed for all the various combinations of runs.

The OA does not change significantly as a function of the number of draws, while the
prediction time is slightly increased, as illustrated in Figure 6.9. For 10 draws, the averaged
percentage of agreement is equal to 96.46%, for 50 draws it is equal to 98.38% and for 100
draws it is equal to 98.84%. Basically, it means that with more draws, the different runs agree
more with each other. However, it does not indicate that they correctly predicted the class
membership. Indeed, we just showed that a larger number of draws does not significantly
improve the OA.
Figure 6.10 represents a land cover map with different number of draws ({10, 50, 100})

for three different runs. As the averaged percentage agreement showed previously, a larger
number of draws allows to have more similar predictions. Indeed, as illustrated in Fig-
ures 6.10g, 6.10h and 6.10i, with 100 draws, the predictions of the land cover maps are very
similar. However, with 10 draws, there are more differences in predictions across runs, as
illustrated in Figures 6.10a, 6.10b and 6.10c. The agreement between runs increases with the
number of draws, which is very important for the reproducibility of the results and more pre-
cisely in an operational context. However, in our case, we are focusing on quality metrics and
more precisely on accuracy. Therefore, in the following, we decided to keep the value 10, as
there is almost no impact on the OA.
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Figure 6.9: Comparison between OA and prediction times in seconds for different number of
draws: {10, 50, 100}. The averaged values and the standard deviations are computed over 9
runs. The OA and prediction time are computed over 230 000 pixels on the 27 tiles with the λt-
GP model.

(a) 10 draws (run 1) (b) 10 draws (run 2) (c) 10 draws (run 3)

(d) 50 draws (run 1) (e) 50 draws (run 2) (f) 50 draws (run 3)

(g) 100 draws (run 1) (h) 100 draws (run 2) (i) 100 draws (run 3)

Figure 6.10: Land cover map with different number of draws ({10, 50, 100}) for three different
runs.
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6.3.2. Trainable parameters initialization
An appropriate initialization of the parameters can facilitate the optimization and help the
model to converge faster. In this section, we investigate different initializations for the train-
able parameters: the values of the inducing points Zl, the parameters of the covariance func-
tion and the values of the mixing matrix A.

Inducing points (IP) values

In the literature, IP are usually initialized from a subset of the training data set or using k-
means clustering [Hensman et al., 2015]. I have co-supervised a Master’s internship where
the objective was to asses the effect of different initializations for the IP. Several methods for
the initialization of IP from the training set were investigated:

• Random selection without constraint;

• Random selection with the same number of pixels for each class;

• K-means clustering with no constraint;

• K-means clustering with the same number of pixels for each class.

For each method, two cases were considered: same initialization for each gl latent process or
different initialization for each gl latent process.
Results from this study are provided in Figure 6.11. They were produced using the λt-GP

model on the data set DS-A on global configuration. The results are only provided for the
global configuration as it performs better for GP model than the stratification configuration
(c.f. Section 6.1). The OA is very similar between all methods. The configuration "random
by class" with different initialization appears to have the best results: good OA with small
dispersion and with outliers relatively close. However, this result does not particularly stand
out and the results between the methods remain relatively similar. Therefore, we decided to
keep the simplest initialization to implement: random selection without constraint and same
set of inducing points for each gl.
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Figure 6.11: Boxplot of the OA (computed over 11 runs) for different methods of the selection
of inducing points. random: random selection with no constraint ; random_by_class: random
selection with the same number of pixels for each class ; kmeans: k-means clustering with no
constraint and kmeans_by_class: k-means clustering with the same number of pixels for each
class. For each method, two cases are considered: same initialization for each latent process or
different initialization for each latent process. Results were produced with the data set DS-A in
global configuration.
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Covariance function parameters

The covariance function for each latent GP gl is based on the RBF covariance function, defined
by the following equation:

σ2 exp
(

− ∥x − x′∥2

2ℓ2

)
. (6.1)

Two parameters can be initialized for this RBF covariance function: ℓ, the length-scale and σ,
the output-scale. By default, Gpytorch initializes this covariance function with the following
values:

• ℓ = ln (1 + exp (ℓ̃)) with ℓ̃ = 0 and

• σ = ln (1 + exp (σ̃)) with σ̃ = 0.

ℓ̃ and σ̃ are optimized instead of directly ℓ and σ, respectively. With this formula, ℓ and σ
are always positive and it is easier to optimize ℓ̃ and σ̃ that are centered around zero. In
our case, we study different combinations of kernels (see Equations (5.9) and (5.10)). Values
for the initialization of the length-scale ℓ were studied. The length-scale was initialized with
either the mean value of the Euclidean distance between IP or the square root of the features
dimension [Fauvel, 2007, Chapter 1]. Several initialization combinations between the spatial
and the spectro-temporal covariance functions were studied. Results showed that the best
combination is the length-scale initialized with the square root of its dimensions for both
covariance functions, such as:

• ℓlλt =
√
d for the spectro-temporal covariance function with d = 481, and

• ℓlϕ =
√
d′ for the spatio covariance function with d′ = 2.

The initialization of the output-scale was not modified from the default value.

Mixing matrix values

By default, Gpytorch initializes the mixing matrix A with random values drawn from a stan-
dard Gaussian distribution, A ∼ N (0, 1). Some tests were made by initializing the mixing
matrix with an identity matrix. With this initialization, each output fc only depends on one
latent GP function gl. However, there was no improvement in the performances with this
initialization. Thus, the random initialization was kept.

To conclude, with all the selected values for the initialization, we did not have any conver-
gence problems. Around selected values, the optimization always converged.
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6.4. Analysis of the characteristics of the GP model
In the following, the posterior predictive distribution of the GP model is studied as well as
the spatial location of the inducing point values and the values of the mixing matrix. Results
were obtained with ϕλt-GPPC model trained on global configuration.

6.4.1. Posterior predictive distribution
The posterior predictive distribution is not Gaussian and has to be estimated with MC sam-
pling. For each sample, the class membership probabilities are computed by averaging the
random draws. The class with the highest average value is selected as the predicted class.

Figures 6.12a and 6.12b represent the approximate posterior predictive distributions ob-
tained with 100 draws. The two largest class membership probabilities are represented for
respectively a correct predicted class membership and an incorrect predicted class member-
ship. In the case of a correct predicted class membership (Figure 6.12a), regardless of the
draw, the model is very confident: the marginal distributions are tight, thus the variance is
low. However, in the case of an incorrect predicted class membership (Figure 6.12b), we ob-
serve wide marginal distributions with higher variance. Thus, standard deviation can also be
used as a metric in order to compute the classifier uncertainty.

It is also possible to observe this trend by looking at the marginal distributions of the se-
lected class membership for correctly or incorrectly predicted pixels. Figure 6.13 shows that,
on average, the posterior predictive distribution of the chosen class membership of correctly
predicted pixels has a higher mean but also a lower standard deviation than the posterior
predictive distribution of incorrectly predicted pixels.

To conclude, GP model allows to obtain the posterior predictive distribution. However, in
practice, in large scale, this information represents a large amount of data. Moreover, produc-
ing this information requires more time. Therefore, in the following, only the classification
prediction is considered.
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Figure 6.12: Posterior predictive distributions, estimated with 100 draws, for the two largest class
membership probabilities for a correct (a) and incorrect (b) predicted class membership. For (a),
the first class membership is SOY followed by COR. For (b), the first class membership is COR fol-
lowed by SUN. Marginal distribution of each class is shown on the diagonal and joint distribution
between two classes is shown on the off-diagonal.
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Figure 6.13: Joint density of the standard deviation and the mean of the posterior predictive distri-
bution for the selected class membership (obtained with 10 draws) and their respective marginal
densities. − corresponds to 1000 correctly predicted pixels and − corresponds to 1000 incorrectly
predicted pixels.
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6.4.2. Learned model parameters
Spatial location of inducing points (IP)

IP are used to approximate the posterior and their values are optimized to find a posterior as
similar as possible to the true posterior on the training samples [van der Wilk et al., 2020].
Therefore, relevant information can be obtained by looking at the IP after optimization.
Visualizing the 481 spectro-temporal features is not possible and we restrict here to the two

spatial features only, as illustrated in Figure 6.14. The plotted ellipses represent the spatial
area inside which the spatial correlation is greater than 0.9. The spatial distribution of the
optimized IP can be qualified as regular: the points are more regularly spaced than in the
initial random distribution. Also, the obtained spatio-length-scale ℓϕ varies w.r.t. the latent
GP, Figure 6.15 represents their distribution.
One possible interpretation is that the model achieves a multi-scale analysis in the spatial

domain. Indeed, a latent GP with small spatial length-scale perform a local analysis i.e. its
spatial kernel rapidly tends to zero even for spatially close pixels and thus limits its influence
locally in the spatial domain. Thus, the correlation is strongly influenced by the spatial dis-
tance between two pixels, whatever the spectro-temporal profile (latent GP number 15). The
latent GP with large spatial length-scale performs a spatially wider analysis: the spatial kernel
is always close to one, even for spatially faraway pixels. In this case, the correlation is very
weakly affected by the spatial distance, only the spectro-temporal information is taken into
account (latent GP number 12).
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(a) latent GP number 12

(b) latent GP number 15

Figure 6.14: Spatial location of inducing points (IP) for 2 different latent GP: • and • represent
spatio IP respectively before and after optimization. Orange and green ellipses correspond to the
spatial area inside which the spatial correlation is greater than 0.9 respectively for the latent GP
number 12 and 15.
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Figure 6.15: Boxplot of the distribution of the length-scale values for each latent GP. The • and •
represent the length-scale values respectively for the latent GP number 12 and 15 of Figures 6.14a
and 6.14b.

Mixing matrix

The coefficients acl of the mixing matrix A are used to combine the L independent univariate
latent GP gl to estimate a final GP fc such as fc = ∑L

l=1 aclgl. The acl can be interpreted as
the contribution of a latent GP to the class-conditional posterior predictive distribution. Yet,
we have found no specific pattern in A among the different results and we were not able to
derive any specific interpretations: all GP contribute significantly.
By accepting an increase in the number of the trainable procedure, some constraints, such

as orthogonality (A⊤A = IC ), were applied on A in order to improve the interpretability.
However, no improvement in performance was found.

6.5. Feature reduction
This section constitutes the second part of the Master’s internship that I co-supervised. The
objective was to study the influence of feature reduction on model performance, as defined
in Section 5.2.5. The λt-GP model is compared to five different methods: Spectral, Temporal,
LDA, MLP and Linear Pro. The first three correspond to feature extraction as pre-process.
The last two correspond to end-to-end feature extraction.

Figure 6.16 represents the OA computed for the different methods with the data set DS-A in
both configurations (global and stratification). The nomenclature of themethods are presented
in Table 5.8. The F-score is presented in Figure B.5 in Appendix B. The OA and the F-score
provide similar results.

In Chapter 5, we discussed several approaches for temporal reduction. All the temporal
reduction approaches showed results inferior to the baseline method, i.e. without feature
extractor. The method with the closest results was with monthly statistics (mean, variance,
min, max). However, a total of 624 features were extracted, which does not correspond to a
feature reduction. Thus, we choose to show the results for the second method with the closest
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results: monthly frequency with only the mean, for a total of 156 features.
In global configuration, all the standalone feature extraction methods (i.e. spectral reduc-

tion, temporal reduction and LDA) have lower performance results than the baseline method.
The temporal reduction is followed by the LDA which is followed by the spectral reduction.
In stratification configuration, the LDA outperformed temporal and spectral reductions and
have similar results to the baseline method. In both configurations, both end-to-end feature
extraction methods outperformed the baseline method. Moreover, in both configurations, the
Linear Pro end-to-end feature extraction method outperformed the MLP one. Linear Pro is
a particular case of the MLP. Thanks to its two distinct linear layers, the spectro-temporal
structure of the data can be taken into account. Moreover, Linear Pro has fewer parameters
than MLP: almost three times less.

Baseline Spectral Temporal LDA MLP Linear Pro
0.72

0.74

0.76

0.78

0.80

0.82

(a) Global configuration
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(b) Stratification configuration

Figure 6.16: Comparison of the OA for the different feature extraction methods computed with the
data set DS-A in both configurations: global and stratification. The nomenclature of the methods
is described in Table 5.8.





PERSPECTIVES

The SVGP model presented in the previous part has interesting properties. It was able to
handle massive data sets and it outperformed the current CES OSO based approach (i.e. RF
with spatial stratification). Moreover, thanks to a spatial covariance function combined with
a spectro-temporal covariance function, the spatial variability was taken into account. There-
fore, with the SVGP model, the spatial stratification was not needed anymore. Furthermore,
by using an end-to-end spectro-temporal feature reduction, the classification performance
was improved, as described in Section 6.5. However, it might be suboptimal to perform tem-
poral reduction on linearly interpolated time series. Indeed, it might be more interesting to
make the reduction during interpolation. Therefore, in the following part, we propose to use
directly the irregular and unaligned time series by using a time and space informed kernel in-
terpolator. The spectro-temporal reduced latent representation produced by the interpolator
will be optimized for the classification task during the training process.
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In the following, the main idea is to take into account the missing values from irregular
and unaligned time series. In Chapter 2, notations were introduced in the case of regular time
series of fixed size (i.e. all the pixels are acquired on the same dates). In this chapter and the
following chapters (Chapters 8 and 9), we propose to introduce the notations for irregular and
unaligned time series (i.e. pixels are acquired on different dates).

The ith pixel time series at time tk is still defined as: xi(tk) with i ∈ {1, . . . , N} and N the
number of pixels and its spectralmeasurements still correspond to: {xi

1(tk), . . . , xi
j(tk), . . . , xi

D(tk)}
with D the number of spectral features. However, not all spectral measurements may be ob-
served i.e. a spectral feature j is observed at T i

j timestamps: Ti
j = {tij1, . . . , t

i
jk, . . . , t

i
jT i

j
},

where T i
j is the number of valid observations (e.g., no clouds or no cloud shadows). Be-

cause of satellite swaths and weather, time series are unaligned, i.e., Ti
j ̸= Ti′

j . For simplic-
ity, in this work, we assume that all spectral features are available for each timestamp, i.e.,
Ti

j = Ti
j′ = Ti. This is commonly the case when working with only one sensor, but the

proposed method can be extended to multi-source data straightforwardly. We define the set
of all timestamps T such as:

T =
N⋃

i=1
Ti

= {t1, . . . , tk, . . . , tT }

with T the total number of observations. For each pixel, we define a mask time series mi ∈
{0, 1}T such as

mi(tk) =
{

1 if tk ∈ Ti

0 otherwise ∀tk ∈ T, (7.1)

which indicates whether the pixel i at time tk is observed or not. We further define an aug-
mented pixel time series xi∗

j as the pixel

xi∗
j (tk) =

{
xi

j(tk) ifmi(tk) = 1
0 otherwise ∀tk ∈ T, (7.2)

For clarity, in the following, we consider only one pixel time series and we drop the index i
in the remaining of the chapter.

As discussed in Chapter 2, most conventional classifiers work only with regular time series.
As a consequence, a required preprocessing step is to resample irregular and unaligned time
series onto a regular temporal grid of R dates: R = {r1, . . . , rl, . . . , rR}. In the following, a
review on the main techniques used for temporal resampling is proposed.
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7.1. Standard temporal resampling methods
Resampling methods can be sorted in three different categories [Poggio et al., 2012]:

1. fusion methods: informations from different sensors are used,

2. spatial methods: informations from neighboring pixels in a spatial window are used,

3. temporal methods: informations from the same pixel in a temporal window are used.

In the following, we will focus only on the last technique corresponding to temporal resam-
pling methods and we will present a very brief review. Shen et al. [Shen et al., 2015] provided
a more extended review on these temporal approaches including temporal replacement meth-
ods, temporal filter methods and temporal learning model methods.

Figure 7.1 illustrates an irregularly sampled NDVI time series of a pixel labeled as COR (see
Table 3.3 for the description of this class). Some observations are identified as valid obser-
vations and some of them correspond to observations flagged as clouds or cloud shadows in
the level 2A (L2A) masks. In the following, we will show the results of different temporal
resampling methods applied to map this irregular time series onto a regular temporal grid of
R = 365 dates with an interval of one day.
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Figure 7.1: NDVI time series for a pixel labeled as COR. Filled red dots correspond to valid ob-
servations, transparent red dots correspond to observations flagged as clouds or cloud shadows in
the level 2A masks.

7.1.1. Imputation methods
In imputation techniques, the missing value can be estimated, for instance, by:

• a value from another date (direct replacement) or

• the mean value of the time series (mean imputation).

In direct replacement, themissing value can replaced by the previous, the next or the nearest
cloud-free value. Figures 7.2a, 7.2b and 7.2c represent the direct replacement with the previ-
ous, the next and the nearest cloud-free value, respectively. With previous direct replacement
or next direct replacement, we suppose that no changes can occur over the temporal period
considered [Rulloni et al., 2012]. However, even if the time interval between two dates is very



202 Chapter 7. Review on temporal resampling

short, there is still temporal difference and bias can be introduced. Therefore, it is not correct
to ignore the temporal difference between two dates, in particular with Sentinel-2 time series.
However, with the nearest direct replacement, this temporal difference is taken into account.

In mean imputation, the missing value can be replaced by the mean value of all the cloud-
free values. In the case of the NDVI time series of the COR class, the reconstructed profile has
no physical meaning, as illustrated in Figure 7.2d. Another strategy is to replace the missing
value of a specific date by the mean value of some selected pixels for this date. It implies that
the selected pixels should all have the same class. Mouret et al. [Mouret et al., 2022] computed
the mean imputation with the latter strategy on Sentinel-2 time series for rapeseed parcels.
They showed that if the values to be imputed are very unusual, the mean imputation gives
very poor results. In general, mean imputation leads to an underestimation of the variance.

Both techniques presented, direct replacement and mean imputation, are quite easy to im-
plement at large scale. However, they introduce huge bias. In practice, these techniques are
not suitable for temporal time series such as Sentinel-2.
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(a) Direct replacement: previous value
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(b) Direct replacement: next value
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(c) Direct replacement: nearest value
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(d) Mean imputation

Figure 7.2: Imputation methods for the COR NDVI time series represented in Figure 7.1. Four
different methods are studied: previous direct replacement, next direct replacement, nearest direct
replacement, mean imputation. The blue curve corresponds to the imputed values every one day.
The red dots represent the valid observations.

7.1.2. Filtering methods

Filtering methods were originally used to reduce the noise in time series but they can also be
used to interpolate missing values. They are mainly divided into global and local methods.
In global methods, the characteristics of the full time series are considered. Whereas, in local
methods, the characteristics of only a portion of the time series, through a local temporal
window, are considered.

Global methods

In global methods, a polynomial function can be used to parametrize the time series. No prior
knowledge of the temporal behavior is required. Depending on the number of valid dates, a
polynomial with more or less degrees is chosen. If the degree is too high, the interpolation
between two distant dates can lead to extreme fluctuations. Furthermore, if the degree is too
low, the interpolation is too smooth and does not intersect the valid observations. Therefore,
a compromise should be made between the degree of the polynomial function and the number
of valid dates.

If there is an a priori on the data and more precisely if the time series considered are
NDVI time series of vegetation classes, different techniques can be used such as asymmet-
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ric Gaussian function [Jonsson and Eklundh, 2002] or double logistic functions [Beck et al.,
2006]. These methods work quite well but they can show some difficulties to detect short-term
changes in vegetation classes [Zhu et al., 2012]. Besides, these two methods require knowing
the class, which you do not know before ... doing the classification!

Besides, signal processingmethods can also be used as temporal interpolationmethods such
as the Harmonic ANalysis of Time Series (HANTS) method [Yang et al., 2015a], [Zhou et al.,
2015], the Fourier analysis [G. J. Roerink and Verhoef, 2000] or wavelet methods [Lu et al.,
2007]. Fourier analysis and wavelet methods require regular time series. They are usually
used to filter multi-annual regular time series [Scharlemann et al., 2008], [De Oliveira et al.,
2009].

Local methods

Instead of applying methods on the complete time series, local methods work on small parts
of the time series corresponding to local temporal windows. In local basis function expansion
methods, a different function is assigned to eachwindow. In slidingwindow filteringmethods,
the time series are processed with a local moving window.

Concerning local basis function expansion methods, spline interpolation allows to fit low-
degree polynomial functions in multiple parts instead of a high degree polynomial function in
the complete time series (i.e. global method). Figure 7.3 represents the spline interpolation of
zeroth, first (i.e. linear), second (i.e. quadratic) and third (i.e. cubic) degree for the COR NDVI
time series of Figure 7.1. The smoother results are obtained with the linear spline interpola-
tion, as illustrated in Figure 7.3b. With the zeroth degree spline interpolation, Figure 7.3a, the
results obtained are very similar to the ones obtained with the direct replacement. Besides,
with higher degrees, i.e. quadratic and cubic, the interpolation is continuous everywhere but
less smooth for temporal domain with no seen samples, as illustrated in Figures 7.3c and 7.3d.
Hence, the interpolation between two distant dates is very unstable.

For sliding window filter methods, different techniques are defined in the literature for
NDVI time series such as the Savitzky-Golay filter [Chen et al., 2004], the Best Index Slope
Extraction (BISE) [Viovy et al., 1992], the Iterative interpolation for Data Reconstruction
(IDR) [Julien and Sobrino, 2010] or the adapted local regression filter [Moreno et al., 2014].
Focusing on the Savitzky-Golay filter, two parameters need to be defined: the order of the
polynomial function and the size of the window. Figure 7.4 represents the Savitzky-Golay
filter method applied to the COR NDVI time series of Figure 7.1 for different sizes of window
(3, 7 and 13 days). The function used scipy.signal.savgol_filter is implemented for filtering,
not for interpolation. Therefore, with this function, an interpolation with one day interval
can not be performed. The wider the window, the smoother the curve. More generally, the
performance of the sliding window filter methods is highly affected by the selection of the
filtering parameters.
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(a) Zeroth degree
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(b) First degree / Linear
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(c) Second degree / Quadratic
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(d) Third degree / Cubic

Figure 7.3: Spline interpolation methods for the COR NDVI time series represented in Figure 7.1.
The blue curve corresponds to the interpolated values every one day. The red dots represent the
valid observations. The Python function used is: scipy.interpolate.splrep.
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(a)Window size: 3, polynomial degree: 2
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(b)Window size: 7, polynomial degree: 2
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(c) Window size: 13, polynomial degree: 2

Figure 7.4: Savitzky-Golay filter methods for the COR NDVI time series represented in Fig-
ure 7.1. The blue crosses correspond to the filtered values by using only the cloud and cloud-
free observations. The red dots represent the valid observations. The Python function used is:
scipy.signal.savgol_filter.
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7.1.3. Kernel-based methods
Kernel-based methods are non parametric local filtering methods. They compute a weighted
sum of neighboring points based on a kernel function in order to estimate missing values.

In this work, we focus on the well-established Nadaraya-Watson kernel smoother [Hastie
et al., 2001, Chapter 6]. In the case where all the observations tk are available, the interpolated
x̂j at latent timestamp1 rl, for a given pixel time series xj (with j ∈ {1, ..., D}), using the
Nadaraya-Watson kernel smoother, is given by:

x̂j(rl) =
∑tT

tk=t1 Kλ(rl, tk)xj(tk)∑tT

t′
k

=t1
Kλ(rl, t′k)

(7.3)

withKλ some similarity kernel [Hastie et al., 2001, Chapter 6]. For the situation where not all
observations tk are available, Equation (7.3) can be rewritten using the augmented pixel time
series x∗

j defined in Equation (7.2):

x̂j(rl) =
∑tT

tk=t1 Kλ(rl, tk)m(tk)x∗
j(tk)∑tT

t′
k

=t1
Kλ(rl, t′k)m(t′k)

(7.4)

withm(tk) the masked value at time tk. The isotropic kernel can be written as:

Kλ(rl, tk) = D

(
|tk − rl|

λ

)
= D(∆t) (7.5)

with D(∆t) a positive real valued function. The value of D(∆t) is decreasing for increasing
distance between rl and tk. From Equation (7.3), x̂j(rl) is a convex combination of origi-
nal pixel values, whose weights are computed using the kernel applied on the temporal do-
main: a weight is assigned to x∗

j(tk) based on its distance from rl, scaled by the bandwidth
λ. This parameter needs to be determined from the training data set and can be found by
cross-validation [Li and Racine, 2023].
Different functions are commonly found in literature for D(∆t):

• Uniform (or rectangular):

D(∆t) =


1
2 , if |∆t| ≤ 1
0, otherwise

(7.6)

• Triangular:

D(∆t) =

(1 − |∆t|), if |∆t| ≤ 1
0, otherwise

(7.7)

• Epanechnikov (or parabolic):

D(∆t) =


3
4(1 − ∆t2), if |∆t| ≤ 1
0, otherwise

(7.8)

1Unobserved date on which the value is estimated.
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• Tricube:

D(∆t) =


70
81(1 − |∆t|3)3, if |∆t| ≤ 1
0, otherwise

(7.9)

• Gaussian (or RBF):
D(∆t) = exp

(
−∆t2

)
. (7.10)

Figure 7.5 illustrates the previous standard functionsD(∆t) defined in Equations (7.6), (7.7),
(7.8), (7.9) and (7.10). In Equations (7.8) and (7.9), the factor 3

4 and 70
81 , respectively, is a nor-

malization constant ensuring that the total area under the Epanechnikov and tricube kernel
curve is equal to 1 between [−1, 1], as illustrated in Figure 7.5.
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Figure 7.5: Representation of the previous standard functions D(∆t) defined in Equations (7.6),
(7.7), (7.8), (7.9) and (7.10). For all functions, we have rl = 0, tk ∈ [−2, 2] and λ = 1.

Figure 7.6 represents the kernel-based interpolation of the COR NDVI time series obtained
with three different functions: uniform, triangular and Gaussian. The uniform kernel-based
interpolation gives results very similar to the zeroth degree spline interpolation, as illustrated
in Figure 7.6a. All points in the neighborhood have equal weight. In triangular kernel-based
interpolation, the weights linearly die off with the distance. This kernel-based interpolation
is very similar to the linear interpolation (with by extension was also called temporal gap-
filling [Inglada et al., 2015, Inglada et al., 2017]), as illustrated in Figure 7.6b. Figure 7.6c
represent the Gaussian kernel-based interpolation with different values for the bandwith λ ∈
{5, 7.38, 10}. λ = 7.38 correspond to the averaged distance between valid dates in the COR
NDVI time series. With a small λ, the interpolation between two distant observations are
very smooth. Indeed, the interpolation is smoother with λ = 5 between the day 140 and the
day 170 than with λ = 10. Moreover, with a large λ, the interpolation between two close
observations are very smooth. Indeed, the interpolation is smoother with λ = 10 between
the day 80 to the day 100 than with λ = 5. Therefore, a compromise for λ needs to be made
in order to minimize the reconstruction error.

With the kernel-based methods, the bandwidth λ is constant over the temporal domain.
It corresponds to an homoscedastic noise assumption: the noise level does not change over
time. However, in SITS the noise may vary along the seasons or because of cloud cover.
Therefore, the noise can be characterized as heteroscedastic. By proposing an heteroscedastic
modeling instead of an homoscedastic one, results can be improved [Ferraty et al., 2019]. In
the following, we propose a strategy which can take into account this heteroscedastic noise
through the use of the attention mechanism.
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(a) Uniform
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λ = 7.38

(b) Triangular
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(c) Gaussian

Figure 7.6: Kernel-based interpolation methods for the COR NDVI time series represented in Fig-
ure 7.1. The curves correspond to the interpolated values every one day. The red dots represent the
valid observations. λ = 7.38 correspond to the averaged distance between dates in the COR NDVI
time series. Different bandwidth values λ ∈ {5, 7.38, 10} were used for the Gaussian kernel. The
Python function used for (a) is: scipy.interpolate.interp1d with kind=’nearest’. The Python func-
tion used for (b) and (c) is: scipy.interpolate.Rbf with function=’linear’ and function=’gaussian’,
respectively.
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7.2. Transformer methods for temporal resampling
The transformer architecture is widely used inmachine learning. As described in Section 2.2.2,
transformers can handle irregular time series. The transformer architecture generalized the
use of the attention mechanism. In the following, the main concepts of the attention mech-
anisms are introduced. Then, a link between the attention mechanism and the kernel-based
methods is proposed.

7.2.1. Main concepts of the attention mechanisms
In this section, we start by introducing the attention mechanisms in a standard machine trans-
lation framework. We defined the following components:

• a key ki of size dk which represents a word or a sequence of words in a specific language
(e.g. "Envie d’aller courir ?"),

• a value vi of size dv which corresponds to the translation of ki in another language (e.g.
"Fancy a run ?"),

• D = {(k1,v1), ..., (kN ,vN)} which represents the collection of the N keys and values,
and,

• a query q of size dq which represents a new word or a new sequence of words to trans-
late.

The attention mechanism firstly introduced by Bahdanau et al. [Bahdanau et al., 2014] can be
written such as:

Attention(q,D) =
N∑

i=1
α(q,ki)vi, (7.11)

with α(q,ki) the scalar attention weights. The attention mechanism can be considered as a
mapping between the query q and the collection of N keys and values to an output.
A common strategy used in attentionmechanisms to ensure that the scalar attentionweights

sum up to 1 and are also nonnegative is to use the softmax function such as:

α(q,ki) = softmax(a(q,ki)) = exp (a(q,ki))∑N
j=1 exp (a(q,kj))

, (7.12)

with a(q,ki) an attention function.
An attention function that is often used in Transformers [Vaswani et al., 2017] is the scaled-

dot product attention scoring function:

a(q,ki) = q⊤ki√
dk

(7.13)

with dk = dq. If ki and q have different sizes (i.e. dk ̸= dq), a matrix M can be used to project
the spaces: q⊤Mki. The weights of this matrix can be learned during the training. In general,
the attention function a can take any form and can be learn from the data. For example, this
function can be parametrized by a neural network.
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7.2.2. Attention-based interpolation
In the previous section, the attention mechanism was introduced for machine translation.
However, in our case, we are interested in temporal interpolation. In the case where all the
observations tk are available, the interpolated x̂j at latent timestamp rl, for a given pixel time
series xj (with j ∈ {1, ..., D}), by using the attention mechanism, defined in Equation (7.11),
can be written as:

x̂j(rl) = Attention(rl,D′) (7.14)

=
tT∑

tk=t1

α(rl, tk)xj(tk) (7.15)

=
tT∑

tk=t1

softmax(a(rl, tk))xj(tk) (7.16)

=
∑tT

tk=t1 exp (a(rl, tk))xj(tk)∑tT

t′
k

=t1
exp (a(rl, t′k))

(7.17)

with D′ = {(t1, xj(t1)), ..., (tT , xj(tT ))}.
By taking exp (a(rl, tk)) = Kλ(rl, tk) = exp

(
− |tk−rl|2

λ2

)
in Equation (7.17), we recover the

Gaussian kernel smoother defined in Equations (7.3) and (7.10). Therefore, with the attention-
based interpolator, the distance and the bandwith are now trained by attention mechanisms.
The bandwidth λ is not fixed and can now take into account the heteroscedastic noise. Indeed,
the bandwidth can adapt itself to distances in dates.

Equation (7.17) can be rewritten in the case where all the observations tk are not available
using the augmented pixel time series x∗

j :

x̂j(rl) =
tT∑

tk=t1

α(rl, tk)x∗
j(tk) (7.18)

=
∑tT

tk=t1 exp (a(rl, tk))m(tk)x∗
j(tk)∑tT

t′
k

=t1
exp (a(rl, t′k))m(t′k)

(7.19)

=
tT∑

tk=t1

mSoftmax (a(rl, tk),m(tk))x∗
j(tk) (7.20)

with

mSoftmax (a(rl, tk),m(tk)) = exp (a(rl, tk))m(tk)∑tT

t′
k

=t1
exp (a(rl, t′k))m(t′k)

(mSoftmax for masked softmax).

(7.21)

In the following, the implementation of an attention-based interpolator, with a specific choice
for a(rl, tk), called multi Time Attention Networks (mTAN), is presented.
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7.3. Multi Time Attention Networks (mTAN)
Shukla et al. [Shukla and Marlin, 2021] proposed to extend the attention-based interpolator
in an end-to-end framework: the multi Time Attention Networks (mTAN). Instead of using
directly rl and tk in the scaled-dot product attention (c.f. Equation (7.13)), the main idea is to
used a representation of them. Therefore, they proposed to use a learnable time embedding
function ϕ (named temporal positional encoding). It maps a given timestamp t onto a higher
dimensional space of size E such as:

ϕ : R →RE

t 7→ϕ(t) =


ω1t+ α1

sin(ω2t+ α2)
...

sin(ωEt+ αE)


(7.22)

with ωp and αp (with p ∈ {1, . . . , E}), the learnable parameters. From the attention point of
view, a(rl, tk) can be written as:

a(rl, tk) =
ϕ(rl)⊤W⊤

q Wkϕ(tk)
√
E

with Wq and Wk two learnable matrices of sizeE×E. The indices q and k refer to query and
key terms in the attention mechanism framework defined in Section 7.2.1. From the kernel
point of view, the similarity kernel is written as:

Kλ(rl, tk) = exp
(
ϕ(rl)⊤W⊤

q Wkϕ(tk)
√
E

)
.

The attention-based kernel smoother can be written as:

x̂j(rl) =
tT∑

tk=t1

mSoftmax

(
ϕ(tk)⊤W⊤

k Wqϕ(rl)
)

√
E

,m(tk)
x∗

j(tk)

= mSoftmax

(
Φ(T)⊤W⊤

k Wqϕ(rl)
)

√
E

,m

⊤

x∗
j

= γ⊤
rl

x∗
j .

(7.23)

with Φ(T) =
[
ϕ(t1), . . . , ϕ(tT )

]
, the matrix of embeddings of T of size E × T and m =[

m(t1), . . . ,m(tT )
]⊤
, the vector of the mask values of size T .

The authors of [Shukla and Marlin, 2021] further propose to use multi-head attention, i.e.,
H matrices of embeddings withΦH(T) = {Φh(T)}H

h=1, and alsoH time embedding functions
with ϕH(rl) = [ϕ1(rl), . . . , ϕH(rl)]. A learnable linear layer βH of size H is used to produce
the interpolated value

x̂j(rl) = β⊤
HΓH⊤

rl
x∗

j . (7.24)

with ΓH
rl

= [γ1
rl
, . . . ,γH

rl
] of size T × H . This equation can be computed for every spectral

feature j and every latent date rl.
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The mTAN, as defined in Equation (7.24), has extended interpolation flexibility w.r.t. the
conventional kernel smoother. The mTAN is a kernel-based interpolator, whose kernels are
adaptive and can be optimized from the data with a loss function for a specific task. Also, it
is worth noting that Equation (7.24) benefits from the computational efficiency of attention
mechanism (parallel computation) and all parameters are learnable during the training step.

In [Shukla and Marlin, 2021], the mTAN was used as input and output layers in a encoder-
decoder architecture and a classifier was jointly learned using features from the latent-space.
In the next chapter, we propose an extension of the mTAN (called EmTAN) in order to use the
spatial information and to reduce the spectral dimension of the SITS.
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In this chapter, we propose to combine a temporal interpolator with the SVGP classifier
described in Chapter 5. The interpolation method is adapted from the mTAN, described in
the previous chapter, in order to take into account the structure of the SITS and to reduce
their dimension. Firstly, a description of the method is proposed. Then, the experimental
set-up is described.

8.1. Spatially informed interpolator for GP classification
We propose to use end-to-end learning by combining a spatially informed interpolator, de-
noted as hθ1 with a SVGP classifier, denoted as fθ2 . Figure 8.1 represents the workflow for
the classification of one irregular and unaligned pixel time series X∗ = [x∗

1, ...,x∗
j , ...,x∗

D]⊤ ∈
RD×T through its learned latent representation Z ∈ RD′×R, with D the number of spectral
features, T the total number of observations, D′ the number of latent spectral1 features and
R the number of latent dates. The loss L is defined in Equation (5.2) in Chapter 5 for the
classification with GP. Hence, the temporal interpolator is optimized by maximizing the clas-
sification accuracy, not the reconstruction error as it is conventionally done with standard
interpolation methods. The parameters of hθ1 and fθ2 : θ1 and θ2, respectively, are optimized
using this loss.

X∗ hθ1

∇θ1L

Z fθ2

∇θ2L

ŷ

L(ŷ, y; θ1,θ2)

Figure 8.1: End-to-end learning for the classification of one irregular and unaligned pixel time
series X∗ and its associated representation Z.

In the following, a description of the spatially informed interpolator hθ1 is proposed. The
description of the SVGP classifier was presented in Chapter 5. For clarity, in the following,
only the interpolation of one pixel X∗ is considered. Indeed, a matrix or tensorial notation
applied to all the pixels (e.g. a batch) would be too cumbersome. The nomenclature used in
this chapter and the next chapter is defined in Table 8.1.

1We take the liberty of using the term "spectral" as a misnomer, as it does not concern the temporal dimen-
sion.
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Table 8.1.: Nomenclature used in Chapters 8 and 9
Symbol Meaning

B Spectral reduction matrix of size D′ ×D
βH Weight vector of size H
D Number of spectral features
D′ Number of latent spectral features
E Output dimension of the temporal positional encoding function ϕ, i.e. temporal embedding

dimension
fθ2 SVGP classifier
F Output dimension of the spatial positional encoding function φ
γrl

Attention weights vector of size T
Γ Attention weights matrix of size T ×R, Γ = [γr1

, . . . ,γrR
]

hθ1 Spatially informed interpolator
H Number of heads in hθ1

L1, L2 Number of the neurons for the two layers in the MLP which is used to produce the matrix P
m Vector of masked values of size T , m = [m(t1), . . . ,m(tk), . . . ,m(tT )]⊤
P Spatial positional encoding matrix of size D × T
ϕ Temporal positional encoding function
ϕ(tk) Embedding vector for the timestamp tk of size E
Φ(T) Matrix of embeddings of one head of size E × T , Φ(T) = [ϕ(t1), . . . , ϕ(tT )]
ΦH(T) Matrix of embeddings of all heads of sizeH × E × T , ΦH(T) = {Φh(T)}H

h=1
φ Spatial positional encoding function
(ψ1, ψ2) Spatial coordinates
R Number of latent dates
R Vector of latent dates of size R, R = [r1, . . . , rl, . . . , rR]⊤
T Total number of observations
T Vector of observations of size T , T = [t1, . . . , tk, . . . , tT ]⊤
{ωp, αp}E

p=1 Trainable parameters used in the temporal positional encoding function ϕ
Wk,Wq Trainable embedding matrices of size E × E
x∗

j (tk) Pixel value for the spectral feature j at timestamp tk
X∗ Augmented** matrix of one pixel of size D × T , X∗ = [x∗

1, . . . ,x∗
j , . . . ,x∗

D]⊤ =
[x∗(t1), . . . ,x∗(tk), . . . ,x∗(tT )]

x̂j(rl) Interpolated value for the spectral feature j at timestamp rl

x̂(rl) Vector of all interpolated spectral features at timestamp rl

y, ŷ True and predicted class
z(rl) Vector of the reduced latent representation of size D′ at timestamp rl

Z Matrix of the reduced latent representation of sizeD′ ×R, Z = [z(r1), . . . , z(rl), . . . , z(rR)]
** An augmented pixel is defined in Equation (7.2).
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8.1.1. Spectro-temporal feature reduction

As a reminder, from Equation (7.24), the mTAN described in the previous chapter produces
the following interpolated value from the pixel time series X∗ for the latent date rl:

x̂(rl) = X∗ΓH
rl

βH (8.1)

with ΓH
rl

= [γ1
rl
, . . . ,γH

rl
] of size T × H and βH the weight vector of size H . Therefore,

x̂(rl) ∈ RD corresponds to the vector of all interpolated spectral features at timestamp rl. In
the following, for simplicity, we will consider only one head i.e. H = 1 and we can simplify
the Equation (8.1) as:

x̂(rl) = X∗γrl
. (8.2)

By taking R < T , the mTAN interpolation allows to perform feature reduction in the tem-
poral domain. From the results in Section 6.5, feature reduction in the temporal and spectral
domains is beneficial for the classification task. In the following, we propose to also perform
feature reduction in the spectral domain. Therefore, we propose to add a linear layer after
the interpolation. Noting B, the spectral reduction matrix of size D′ × D with D′ ≤ D, the
reduced interpolated pixel z(rl) can be written as

z(rl) = Bx̂(rl).

Therefore, the overall spectro-temporal feature reduction can be written as:

Z = BX∗Γ (8.3)

with Z = [z(r1), . . . , z(rR)] ∈ RD′×R and Γ = [γr1 , . . . ,γrR
] ∈ RT ×R. As defined in Equa-

tion (8.3), the matrix Γ does not depend on the spectral features and the matrix B does not
depend on time. Thus, as in Constantin et al. [Constantin et al., 2021], the temporal recon-
struction does not depend on the spectral features and the spectral feature reduction does not
depend on the time. This constrained spectro-temporal structure reduces the complexity of
the model: (DD′) + (RT ) parameters are learned instead of DTD′R.

Yet, the spatial information is not taken into account. In the following section, we discuss
how the spatial coordinates are integrated in the processing by means of spatial positional
encoding.

8.1.2. Spatial positional encoding

We propose to add the spatial information in the estimation of Z by using a spatial positional
encoding. As in [Baudoux et al., 2021], the spatial coordinates (ψ1, ψ2) are embedded onto a
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higher dimensional space of dimension F using φ:

φ : R2 →RF

(ψ1, ψ2) 7→φ(ψ1, ψ2)

=



sin(ψ1ν1)
cos(ψ1ν1)

. . .
sin(ψ1νq)
cos(ψ1νq)

. . .
sin(ψ2νq)
cos(ψ2νq)

. . .
sin(ψ2νF/4)
cos(ψ2νF/4)


with νq = 10000−(2q)/F and q ∈ {1, . . . , F/4}. φ(ψ1, ψ2) is then given to a two-layer per-
ceptron (first layer with L1 neurons and second layer with L2 neurons) with ReLU activation
functions to obtain a vector of size D which is repeated for each timestamp to get a spatial
positional encoding matrix P of the same shape as X∗ (i.e. D × T ). This matrix is added to
the augmented matrix for one pixel X∗ before the spectro-temporal interpolation:

X̃∗ = X∗ + P. (8.4)

The parameters of the MLP (weights of the layers) are jointly optimized with the time and
space informed kernel interpolator and the SVGP classifier during the learning step.
Finally, using Equation (8.4) in Equation (8.3), the latent representation Z is:

Z = BX̃∗Γ

The RBF is used as covariance function for the SVGP classifier. Therefore, this covariance
function over the latent spectro-temporal representations of two pixels respectively noted Zi

and Zi′ can be defined as:

k(Zi,Zi′) = exp
(

−∥Zi − Zi′∥2
F

2ℓ2

)
, (8.5)

with ∥ · ∥F and ⟨·, ·⟩F the Frobenius norm and inner product over matrices and ℓ the length-
scale parameter of the kernel. The square Frobenius norm can be written as

∥Zi − Zi′∥2
F = ∥BXi∗Γi − BXi′∗Γi′∥2

F︸ ︷︷ ︸
A

+ ∥BPiΓi − BPi′Γi′∥2
F︸ ︷︷ ︸

B

+ 2 ⟨B(Xi∗Γi − Xi′∗Γi′),B(PiΓi − Pi′Γi′)⟩F︸ ︷︷ ︸
C

.
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Terms A and B correspond to the distance between two pixels for spectro-temporal latent
variables and for spatial latent variables, respectively. Term C corresponds to an interaction
term between spectro-temporal and spatial latent variables. Therefore, we can rewrite Equa-
tion (8.5) as:

k(Zi,Zi′) = exp
(

− A

2ℓ2

)
× exp

(
− B

2ℓ2

)
× exp

(
−C

ℓ2

)
, (8.6)

Equation (8.6) is very similar to Equation (5.10) i.e. product of covariance functions. However,
three differences arise. Firstly, in addition to the spatial covariance function and the spectro-
temporal covariance function, there is an additional element: a spatio-spectro-temporal co-
variance function. We have a supplementary source of information that links spectro-temporal
and spatial terms. Secondly, the length-scale ℓ is the same for the three terms in Equation (8.6),
whereas in Equation (5.10), a different length-scale was specified for each covariance function.
Thirdly, the spatial distance is learned in the term B. Indeed, the spatial positional encoding
matrix P found in the term B is produced using a MLP with two layers. To conclude, as
the spatial information is already included, combinations of covariance functions will not be
retested, as described in Section 5.1.3. Therefore, a simple RBF covariance function is used for
the SVGP classifier.

8.1.3. Trainable parameters
Different parameters, denoted θ1, need to be optimized during the training for the time and
space informed kernel interpolator hθ1 described in the previous sections. Firstly, regarding
the interpolation, we have the parameters of the temporal positional encoding function ϕ,
denoted as {ωp, αp}E

p=1, representing 2E parameters. Therefore, for the H heads, they corre-
spond to H2E parameters. Moreover, for each head, the embeddings matrices Wq and Wk

represent 2E2 parameters. Finally, we have H parameters for the linear layer βH of size H .
Then, for the spectral reduction, the weights of the matrix B need to be optimized, represent-
ingD′D parameters. Finally, for the spatial positional encoding, the weights L1L2 +L2D and
also the biases L2 + D of the two-layer perceptron (i.e. MLP), used to obtain a vector of size
D, need to be learned. These parameters θ1 and their corresponding sizes are summarized in
Table 8.2. The total number of trainable parameters is given by the following equation:

Card(θ1) = 2HE(1 +HE) +DD′ +H + L2(L1 +D) +D + L2.

In the following, the experimental set-up for the implementation of the spatially informed
interpolator for GP classification is described.

Table 8.2.: Description of the trainable parameters θ1 and their corresponding sizes.
Parameters Size

{ωp, αp}E
p=1 2(HE)

Wq,Wk 2(HE)2

βH H
B D′D
MLP L2(L1 +D) +D + L2
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8.2. Experimental set-up
This section describes the experimental set-up implemented, the results associated are pre-
sented in the next chapter. As a reminder, themethods used to prepare the training/validation/test
sets and tomeasure the classification accuracy are presented inAppendix A. Chapter 6 showed
that the results were better without the stratification configuration. Therefore, in the follow-
ing, the model is learned using pixels over the full area, illustrated in Figure 3.3.

8.2.1. Data set generation
The data is described in Chapter 3. In the following, only specific pre-processing for Chap-
ters 8 and 9 is described. A total of D = 13 spectral features were extracted for each pixel
xi at time tk. Moreover, two spatial features describe each pixel. However, in contrast with
Part II, no temporal resampling is used. The irregular and unaligned augmented time series
x∗

i are directly used with their associated masks mi. The union of the acquisition dates of the
27 tiles results in T = 303 dates.
Different pixels were extracted randomly from the polygons described in Chapter 3 in order

to form three spatially disjoint data subsets: training, validation and test. However, unlike
Part II, the three data sets are produced over the full study area (i.e. 27 tiles) and not for
each eco-climatic region. These three data sets are class-balanced: 4 000 pixels per class in
the training data set, 1 000 pixels per class in the validation data set and 10 000 pixels per
class in the test data set. The total number of pixels for each data set is provided in Table 8.3.
To correctly estimate the classification metrics, 9 runs with different random pixel samplings
were done.

Standardization was performed only for the valid acquisition dates and not on raw data.
Mean and standard deviation were estimated for each spectral band and for each spectral
index on the training data set and then used to standardize the other data sets (validation,
test).

Table 8.3.: Number of pixels for each of the three spatially disjoint data subsets: training, vali-
dation and test.

Training Validation Test

# of pixels 92 000 23 000 230 000

8.2.2. Methods set-up
Model implementation

The spatially informed interpolator hθ1 described in Section 8.1 is called Extended multi Time
Attention Networks (EmTAN). Our model made of the EmTAN combined with the SVGP
classifier is called EmTAN-SVGP.

As described in Section 8.1.2, with the use of the spatial positional encoding matrix P, we
decided to use a simple RBF as covariance function for the SVGP classifier. Therefore, the
implementation of the SVGP classifier corresponds to the model called λt-GP in Chapters 5
and 6. Same initializations than described in Section 5.2.3 are used.
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Besides, the EmTAN was implemented using the Pytorch library by Julien Michel2.

Competitive methods

Four different classification methods were defined as competitive methods:

1. Gapfilled-SVGP : the λt-GP model described in Section 5.2.3 feed with linearly inter-
polated data. The irregular and unaligned time series from the data sets described in
Section 8.2.1 are linearly interpolated every 10 days. The SVGP classifier has the same
configurations than in Section 5.2.3.

2. EmTAN-MLP : a MLP classifier combined with EmTAN. The MLP classifier has the same
configurations than in Section 5.2.3. TheMLPwas used as a competitivemethod because
it is a standard approach enabling a similar end-to-end learning.

3. EmTAN-LTAE: a LTAE classifier combined with EmTAN. The LTAE classifier has the
same configurations than Section 5.2.3. The LTAE is used as a competitive method
because the best performance results were obtained with this model in Chapter 6.

4. raw-LTAE: a LTAE classifier without EmTAN. Unlike SVGP orMLP classifiers, the LTAE
classifier uses attention mechanisms. It may be redundant to use attention mechanisms
both in the EmTAN and in the LTAE classifier. However, the LTAE classifier was not
defined to deal with the irregular and unaligned time series pixels. Thus, we choose
to use the augmented pixel formulation and to provide the mask m as an additional
feature.

For all the competitive methods using the EmTAN, the same values were selected for the
hyper-parameters at the initialization of the model. Section 9.2 provides a study on the influ-
ence of these values onmodel performance. From this study, a compromise wasmade between
the number of parameters and the performance. Thus, a summary of the selected values is
given:

• The number of latent dates is selected as R = 13.

• The number of latent spectral features is selected as D′ = 9.

• The number of heads is selected as H = 1.

• The temporal embedding dimension is selected as E = 64.

• Finally, the spatial positional encoding matrix P is used. The spatial coordinates (nor-
thing ψ1 and easting ψ2) are in meters in the Lambert 93 projection. The dimension F
of the spatial positional encoding function φ is selected as F = 16. Moreover, the size
of the layers in the MLP are L1 = 16 and L2 = 14. As a reminder, the MLP is used to
project the positional encoding vector of size F into a vector of size D. This vector is
then repeated in order to obtain a matrix of size D × T which corresponds to the size
of the input X∗.

2https://src.koda.cnrs.fr/mmdc/torchmuntan

https://src.koda.cnrs.fr/mmdc/torchmuntan
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As described in Section 5.1.4, the number of IP M in the SVGP classifier has a significant
influence on the number of parameters θ2. In Chapters 5 and 6, the number of IP was selected
as M = 50. Therefore, the Gapfilled-SVGP model is implemented with M = 50. In this
chapter and in the next chapter, we propose to increase the number of IP for the EmTAN-
SVGP model as the number of spectro-temporal features is reduced to D′ × R. Figure 8.2
represents the number of trainable parameters θ2 based on the number of latent spectro-
temporal featuresR×D′ and the number of inducing pointsM . The reduction of the number
of latent spectro-temporal from 481 (R = 37, D′ = 13) to 117 (R = 13, D′ = 9) results in a
significant reduction of the number of trainable parameters θ2 as shown in Figure 8.2. From
this figure, we can see that it is possible to double the number of inducing points from 50
to 100, while keeping the number of parameters θ2 with R = 13, D′ = 9 lower than with
50 inducing points and R = 37, D′ = 13. In the following, we propose to use M = 200
for the SVGP classifier in the EmTAN-SVGP model. The influence of the number of IP on the
performance of the model is studied in Section 9.2.3.

50 100 150 200
0

1 · 106

2 · 106

# of inducing pointsM

#
of
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m
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er
sθ

2 R = 13,
D′ = 9
R = 37,
D′ = 13

Figure 8.2: Number of trainable parameters θ2 based on the number of inducing pointsM and
the number of spectro-temporal features R × D′. R = 37 and D′ = 13 corresponds to the
configuration of the linear interpolation proposed in Chapters 5 and 6.

The number of trainable parameters for eachmethod is summarized in Table 8.4. Themodel
with the smallest number of trainable parameters is EmTAN-MLP. In contrast, the model with
the largest number of trainable parameters is EmTAN-SVGP with approximately 30 timesmore
parameters than EmTAN-MLP. Besides, the EmTAN-LTAE model has 4 times fewer trainable
parameters than the raw-LTAE model. In the EmTAN-LTAE model, the classifier has a much
smaller number of features than in the raw-LTAE model.

For all the models, the Adam optimizer was used. The optimizer parameters (i.e. number
of epochs, learning rate and batch size) are given in Table 8.5. They were found by trial and
error. The performance of each model in terms of classification accuracy was computed using
the OA and F-score, described in Appendix A.2.2. The results are provided in Chapter 9.
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Table 8.4.: Number of trainable parameters for each model.

Model Total # of parameters

Gapfilled-SVGP (M = 50) 584 200
EmTAN-SVGP (M = 200) 1 014 546

EmTAN-MLP 33 113
EmTAN-LTAE 184 376
raw-LTAE 761 380

Table 8.5.: Parameter values for the Adam optimizer for the models: Gapfilled-SVGP, EmTAN-
SVGP, EmTAN-MLP, EmTAN-LTAE and raw-LTAE.

Gapfilled-SVGP EmTAN-SVGP EmTAN-MLP EmTAN-LTAE raw-LTAE

Number of epochs 100 100 300 100 100
Batch size 1024 1024 1000 1000 1000
Learning rate 1 × 10−3 1 × 10−3 1 × 10−4 5 × 10−5 1 × 10−4

8.2.3. Map production
Land cover maps were produced using the iota2 processing chain [Inglada et al., 2016] for
all the following models: EmTAN-SVGP, EmTAN-MLP, EmTAN-LTAE and raw-LTAE.

Even if the quantitative evaluation was carried out on the 27 tiles, the production of land
cover maps for the qualitative evaluation was performed on two adjacent tiles: T31TCJ and
T31TDJ . Inference was performed using the model trained on the 27 tiles with the best
overall accuracy over the nine runs. The results are provided in Chapter 9.



CHAPTER 9

EmTAN-SVGP CLASSIFICATION: RESULTS

9.1. Comparison with competitive methods . . . . . . . . . . . . . . . . . . . . . . 226
9.1.1. Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.1.2. Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.1.3. Robustness to the temporal sampling . . . . . . . . . . . . . . . . . . . 234

9.2. Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
9.2.1. Spectral and temporal feature reduction . . . . . . . . . . . . . . . . . 237
9.2.2. Spatial positional encoding . . . . . . . . . . . . . . . . . . . . . . . . 240
9.2.3. Influence of the number of inducing points . . . . . . . . . . . . . . . 242

9.3. Analysis of the spatially informed interpolator . . . . . . . . . . . . . . . . . . 243
9.3.1. Latent representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
9.3.2. Versatility of the similarity kernel . . . . . . . . . . . . . . . . . . . . . 244

225



226 Chapter 9. EmTAN-SVGP classification: Results

In this chapter, the EmTAN-GP model is first compared with competitive methods, both
quantitatively and qualitatively. Then, an evaluation of the EmTAN-GP model is provided.
Finally, an analysis of the spatially informed interpolator (i.e. EmTAN) is proposed.

9.1. Comparison with competitive methods
Quantitative and qualitative evaluations are proposed, in this section, for the EmTAN-SVGP
model and its competitive methods in terms of classification accuracy and processing times.
The studied models are: Gapfilled-SVGP, EmTAN-SVGP, EmTAN-MLP, EmTAN-LTAE and raw-
LTAE. The EmTAN-SVGP model and its competitive models are described in Section 8.2.2. In
the last part of this section, an additional comparative study is made between the EmTAN-
SVGP and the raw-LTAE to evaluate the robustness to temporal sampling.

9.1.1. Quantitative results
Classification metrics were computed using the test data set composed of 230 000 pixels over
the 27 tiles (c.f. Section 8.2.1). Classification metrics were averaged over the nine runs of each
model trained with the training data set. The global metrics are first studied followed by the
metrics per class. Then, confusion matrices are provided and finally, training and prediction
times are considered.

Overall accuracy (OA)

The OA for each model is given in Figure 9.1. The EmTAN-SVGP model is more than 12 points
above the Gapfilled-SVGP model. Note that results for the Gapfilled-SVGP model differ from
Section 6.1.1 because the data sets (training, validation and test) are different. From these re-
sults, we can state that the learned latent representation Z obtained by the EmTAN contains
more meaningful information for the classification task for the SVGP classifier compared to
the linearly interpolated data. Besides, from the results, the SVGP model took greater advan-
tage of the interpolator than the MLP or the LTAE models. Indeed, the OA of the EmTAN-
SVGP model is seven points above the EmTAN-MLP model and around four points above the
EmTAN-LTAE model. On the other hand, the EmTAN-SVGP model is in average two points
below the raw-LTAE model. Furthermore, the EmTAN-SVGP model is the model with the
smallest dispersion.
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Figure 9.1: Boxplots of the OA for each studied model computed over nine runs. The full config-
uration of the hyper-parameters is given in Section 8.2.2.

F-score, precision and recall per class

The F-score, recall and precision per class are represented in Figure 9.2. As a reminder, the
nomenclature of the classes is presented in Table 3.3.

For all classes, the F-score per class of the EmTAN-SVGP model is above the one of the
Gapfilled-SVGP model, as illustrated in Figure 9.2a. The class with the largest difference is the
RAP class and there is very few difference for the RIC andWAT classes. For all classes, EmTAN-
MLP and EmTAN-LTAE have lower F-score than the EmTAN-SVGP model. For the classes CUF,
DUF, ICU, RSF, BLF, COF, ORC, WOM and NMS, the raw-LTAE has a higher F-score than the
other methods. CUF, DUF, ICU and RSF are urban classes, difficult to discriminate at Sentinel-
2 pixel size units using only pixel-wise information. BLF and COF are very similar classes
(i.e. forest classes) as well as WOM and NMS, therefore, they are difficult to discriminate.
Regarding agricultural classes, the raw-LTAE has similar F-score values or even lower than
the EmTAN-SVGP.

For all classes, the recall per class of the Gapfilled-SVGP model is below all models except
for agricultural classes such as STC, SOY, SUN, COR or TUB, as illustrated in Figure 9.2b.
Same results are found with the precision per class. In conclusion, the results by class are
similar to the global results.
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(a) Averaged F-score per class.
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(b) Averaged recall per class.
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(c) Averaged precision per class.

Figure 9.2: Barplots of the averaged metrics per class for each studied model computed over nine
runs.
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Confusion matrices

Figures 9.3a and 9.3b represent the normalized confusion matrices for the EmTAN-SVGP and
the raw-LTAE, respectively. The normalization is applied over the true labels i.e. the sum of
each row is equal to one. We have chosen to present only these twomodels, as they correspond
to the models with the highest overall accuracy. The confusion matrices for Gapfilled-SVGP,
EmTAN-MLP and EmTAN-LTAE models are presented in Figure C.1 in Appendix C.
The same confusions that in Section 6.1.1 are found i.e. between CUF, DUF and ICU classes

and between NGL andWOM classes. Regarding urban classes (i.e. CUF, DUF and ICU classes),
confusions arise only between the urban classes themselves. For the NGL and WOM classes,
the confusions are with the other vegetation classes for instance COF classe. The EmTAN-
SVGP model has more confusions for these two groups of classes than the raw-LTAE model.
For all the other classes, the confusion values are very similar between EmTAN-SVGP and
raw-LTAE. Concerning the other models (Gapfilled-SVGP, EmTAN-MLP and EmTAN-LTAE),
the urban classes have more confusion. Besides, the confusions are more important for the
vegetation classes for instance between RAP and NMS for the Gapfilled-SVGP model.
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Figure 9.3: Normalized confusion matrices for the EmTAN-SVGP and raw-LTAE models. The
confusion matrices for the other models are presented in Figure C.1 in Appendix C.

Training and prediction times

The averaged training and prediction times for each studied model are summarized in Ta-
ble 9.1. To process the models, one NVIDIA Tesla V100 GPU was used.
The Gapfilled-SVGP model has the shortest training time per epoch followed by EmTAN-

MLP, EmTAN-LTAE, EmTAN-SVGP and finally raw-LTAE. Indeed, the Gapfilled-SVGP model is
using directly the interpolated time series and not the complete irregular and unaligned time
series which has a much larger size. The training time of the EmTAN-SVGP model is almost
3 times larger than the Gapfilled-SVGP model. The training time of the EmTAN-SVGP model
is about 1.3 times shorter than the raw-LTAE model.

Regarding prediction times, the EmTAN-SVGP and Gapfilled-SVGP models have the higher
values. Indeed, they are more demanding, because of the MC sampling for the variational
posterior. The EmTAN-MLP and EmTAN-LTAE have similar values which are the lowest of
the group. Indeed, the prediction time of the raw-LTAEmodel is almost 2 times larger than the
one of the EmTAN-SVGP model, as the number of spectro-temporal features is much larger.
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Table 9.1.: Averaged (mean ± standard deviation) training and prediction times (in sec) for each
studied model computed over nine runs. The averaged training time is for one epoch.

Gapfilled-SVGP EmTAN-SVGP EmTAN-MLP EmTAN-LTAE raw-LTAE

Training times 3.37 ± 0.20 9.67 ± 0.22 4.02 ± 0.19 8.40 ± 0.79 12.79 ± 0.19
Prediction times 28.17 ± 1.28 35.66 ± 0.94 5.59 ± 0.46 6.16 ± 0.27 12.03 ± 0.47

9.1.2. Qualitative results
In the previous section, the quantitative assessment has been conducted, the qualitative study
will now follow. Land covermapswere generated on two different tiles (T31TCJ andT31TDJ )
for the followingmodels: EmTAN-SVGP, EmTAN-MLP, EmTAN-LTAE and raw-LTAE. The land
cover map of the Gapfilled-SVGP model was not generated as its performance results in terms
of classification accuracy are not good enough. Besides, this model was already studied in
Chapters 5 and 6. All the land covermaps are available for download: 10.5281/zenodo.8033902.

Figures 9.4 and 9.5 represent land cover maps obtained with the studied models on two
different agricultural areas around Toulouse. In Figure 9.4, and more precisely in the forest
areas, it appears that the raw-LTAEmodel does not correctly predict the BLF class. In contrast,
the predictions are homogeneous for the models using the EmTAN : EmTAN-SVGP, EmTAN-
MLP and EmTAN-LTAE. For the mTANe-MLP and mTANe-LTAE models, in both areas from
Figures 9.4 and 9.5, the majority of the crops are surrounded by the class VIN whereas it
would appear to be hedges instead. Finally, for both areas, the results obtained for the EmTAN-
SVGP, EmTAN-MLP and EmTAN-LTAEmodels showed that the main structures of the map are
clearly represented (i.e. crop field border). As with the sum or product of covariance functions
discussed in Chapitre 5, the classification maps obtained with EmTAN do not exhibit rounded
borders. Therefore, thesemodels provide the spatial information in the temporal interpolation
method without spatial over-smoothing.

https://doi.org/10.5281/zenodo.8033902
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Figure 9.4: Comparison of the land cover maps obtained with each model on an agricultural
area around Toulouse (tile T31TCJ). Topography information (30-meter STRM, contours are in
meters) and Sentinel-2 image (RGB) (acquisition date: 15/05/18) of the specific zone are provided.
Some clouds are visible in the Sentinel-2 image. The studied area is relatively flat (min: 180m,
max:260m). There are different types of landscape: towns, crop fields, a lake, forests, etc.
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Figure 9.5: Comparison of the land cover maps obtained with each model on an other agricultural
area around Toulouse (tile T31TCJ). Topography information (30-meter STRM, contours are in
meters) and Sentinel-2 image (RGB) (acquisition date: 15/05/18) of the specific zone are provided.
Some clouds are visible in the Sentinel-2 image. The studied area is relatively flat (min: 140m,
max:210m). There are different types of landscape: towns, crop fields, a lake, forests, etc.
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9.1.3. Robustness to the temporal sampling
As shown in the previous sections, the raw-LTAE model has the best classification perfor-
mances in terms of classification accuracy. However, to compute the inference on a specific
area (e.g. on a specific Sentinel-2 tile), the raw-LTAE required having seen the whole set of
observed dates during the training step. This is not the case for our proposed model which
is able to process pixels with any set of observed dates. This can make the time encoding of
raw-LTAE not robust to variations of the temporal sampling between the train and test sets,
with a possible overfit on the training dates. To investigate this possible issue, dates not seen
during the training step and used only for the inference were artificially created. They cor-
respond to the original acquisition dates T from the training data set that have been slightly
shifted for the test data set. Different values for the shift were studied: δ = {0, 1, 2, 3, 5}
days. Five days correspond to the maximum number of days between acquisition dates for
pixels on two adjacent orbits. In order to have a lighter experiment, the classification metrics
were computed on test samples limited to the T31TCJ tile for two models EmTAN-SVGP and
raw-LTAE both trained on the 27 tiles.

Figure 9.6 represents the OA for the EmTAN-SVGP and raw-LTAE models computed with
artificially shifted acquisition dates. The OA of the EmTAN-SVGP model is not affected by
this temporal shift δ. However, the OA of the raw-LTAE model is drastically impacted by the
temporal shift δ. For a shift of one day, the OA is reduced by almost 3 points and it is almost
divided by 1.5 with δ = 5 days.

Figure 9.7 represents the F-score per class for the two models EmTAN-SVGP and raw-LTAE.
As found with the OA, the EmTAN-SVGP model is not affected by this temporal shift. For
the raw-LTAE model, the most impacted class by the shift is CUF: the F-score is divided by
approximately 3.6 from 0 to 5 days. In contrast, the classes SUN and RAP are the least influ-
enced by the shift: the F-score is divided by around 1.2 from 0 to 5 days. The precision and
recall per class are presented in Figures C.2 and C.3 in Appendix C.
The use of a time and space informed kernel interpolator makes the EmTAN-SVGP model

more robust to this shift than the raw-LTAE model which uses spectro-temporal attention
mechanisms but no interpolation. We conclude that the raw-LTAE is more sensitive to dates
seen during the training step and may therefore be likely to over-fit.
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Figure 9.6: Boxplots of the OA for the EmTAN-SVGP and raw-LTAE models computed with the
test data set limited to the T31TCJ tile over nine runs. The models were trained and validated on
the all 27 tiles. The acquisition dates T for the test data set were artificially shifted with different
values: δ = {0, 1, 2, 3, 5} days.
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Figure 9.7: Barplots of the F-score per class for the EmTAN-SVGP and raw-LTAEmodels computed
with the test data set limited to the T31TCJ tile over nine runs.
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9.2. Model evaluation
This section investigates the influence of latent representation sizes on the classification accu-
racy and processing times as well as the use of the spatial positional encoding matrix. Then,
the latent representation and the similarity kernel learned by the interpolator are discussed.

9.2.1. Spectral and temporal feature reduction
As described in Section 8.1.3, the cost of the estimation of parameters θ2 of the SVGP is highly
dependent on the number of spectro-temporal features d = R ×D′ with the following term:
M ×d. A high number of parameters is time-consuming and reducing the number of features
d could be beneficial for the convergence of the algorithm (both in terms of time and quality
of the optimum).

Figures 9.8 and 9.9 represent respectively the averaged OA and the averaged training times
computed with different number of latent dates R = {5, 7, 13, 15, 19, 25, 37}, different num-
ber of latent spectral1 features D′ = {4, 6, 9, 10, 11, 12, 13} and different number of heads
H = {1, 2, 3} over nine runs.

The number of heads H has a little impact on the classification performances. Indeed, for
D′ = 13 and R = 37, the OA goes from 77.44 for H = 1 (Figure 9.8a) to 77.79 for H = 3
(Figure 9.8c). Similar results are found, for D′ = 4 and R = 5, the OA goes from 73.45 to
73.66. Besides, from H = 1 to H = 3, the training time can be increased by a factor of two:
1317 seconds to 2644 seconds, for D′ = 13 and R = 37, as shown in Figures 9.9a and 9.9c,
respectively.

Hence, we set H = 1 for all the remaining experiments. The number of latent dates and
latent spectral features has a greater influence on the OA. Indeed, from D′ = 13 and R = 37
to D′ = 4 and R = 5, the OA is reduced by almost four points, as illustrated in Figure 9.8a.
However, they correspond to extreme values. It is possible to reduce the number of latent
dates and latent spectral features with a negligible effect on the OA. Indeed, reducing R from
37 to 13 andD′ from 13 to 9 result to an OA from 77.44 to 77.23. WithR = 13 andD′ = 9, the
number of parameters θ2 is divided by a factor four, i.e. from 584 200 to 165 600 parameters.
Moreover, the training times is divided by a factor two.

From Figures 9.8 and 9.9, we notice that R has a huge influence on the training times but a
slight one on the OA. It is the opposite for D′: its value has a significant influence on the OA
and not so much on the training times.

In the next section, using these results, we will focus on the mTAN-SVGP model with R =
13 latent dates, D′ = 9 latent spectral features and H = 1 head.

1As in Chapter 8, we take the liberty of using the term "spectral" as a misnomer, as it does not concern the
temporal dimension.
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Figure 9.8: Averaged OA (mean in % computed over nine different runs) with R the number of
latent dates, D′ the number of latent spectral features and H the number of heads.
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Figure 9.9: Averaged training times in seconds (mean computed over nine different runs) with R
the number of latent dates,D′ the number of latent spectral features andH the number of heads.
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9.2.2. Spatial positional encoding
Table 9.2 represents the averaged OA and the averaged training times with and without the
spatial positional encoded matrix P, defined in Section 8.1.2. The use of the spatial positional
encoding increased by nearly 1.5 points the OA. In Part II, for the SVGP classifier with linearly
interpolated data, we have shown that the OA was increased by nearly two points by using
the spatial information through a spatial covariance function. It is quite comparable to the
results obtained with the spatial positional encoding, as we have shown that Equation (8.6)
is very similar to Equation (5.10). Regarding the training times, the differences are negligible
and are probably due to the HPC (e.g. waiting time, availability of resources, task priority).
Figure 9.10 represents the value of P for the features number 4 and number 12. This value

was computed using spatial coordinates on a regularly spaced grid over the 27 tiles. Fig-
ures 9.10a and 9.10b exhibit smooth spatial transitions and anisotropric spatial similarity.
However, we did not observe any explainable spatial pattern on the different runs: no lati-
tude effect, for instance. Besides, between different runs, we do not specifically find the same
spatial patterns.

Table 9.2.: Averaged OA and averaged training times (in sec) (mean %± standard deviation
computed over nine runs) with and without the spatial positional encoded matrix P.

Without P With P

Averaged OA 77.23 ± 0.17 78.63 ± 0.16
Training times 870 ± 57 834 ± 45
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(a) feature 4

(b) feature 12

Figure 9.10: Spatial positional encoding P computed over a regular grid of spatial coordinates.
Two different features and studied: feature 4 and feature 12 (background map © OpenStreetMap
contributors).
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9.2.3. Influence of the number of inducing points
It is known that the learning capacity of the SVGP classifier is strongly influenced by the
number of IPM , and a trade-off should be found between the computational complexity and
the learning capacity [Hensman et al., 2015]. From the results found in Section 9.2.1, the num-
ber of spectro-temporal features is drastically reduced with no loss in terms of classification
accuracy. Therefore, the number of inducing points can be increased without increasing the
number of trainable parameters too much, as illustrated in Figure 8.2.
By benefiting of a reduced computational load thanks to the dimension reduction, we per-

form several experiments with increasing number of inducing points M = {100, 150, 200}.
Table 9.3 represents averaged OA and training times computed with different number of in-
ducing points. WithM = 200, the OA is increased by almost one point compared toM = 50.
Training time is only slightly affected by this increase of the number of inducing points, i.e.
834s to 967s. Hence, spectro-temporal reduction made possible to use higher number of
inducing points and thus to increase the performances, while maintaining a reduced compu-
tational load.

Table 9.3.: Averaged OA and averaged training times (in sec) (mean %± standard deviation
computed over nine runs) for different number of inducing pointsM .

Number of inducing points M
50 100 150 200

Averaged OA 78.63 ± 0.16 79.20 ± 0.21 79.43 ± 0.29 79.48 ± 0.17
Training time 834 ± 45 910 ± 78 921 ± 29 967 ± 22



Chapter 9. EmTAN-SVGP classification: Results 243

9.3. Analysis of the spatially informed interpolator
This section analyzes the extended mTAN. The results were computed with the EmTAN-SVGP
model. Firstly, the latent representation obtained by the interpolator is discussed. Then, a
detailed study of the attention weights learned by the interpolator is proposed.

9.3.1. Latent representation
It is possible to visualize the learned latent representation x̂j . Figure 9.11 represents the com-
parison of three NDVI time series profiles from one pixel labeled as COR: the raw data, the
gapfilled data (i.e. linearly interpolated) and the learned latent representation obtained by our
time and space informed kernel interpolator.

The latent representation obtained in Figure 9.11 clearly does not minimize the reconstruc-
tion error of the original time series. For instance, the second minimum of the NDVI observed
around the day of the year 280 is not reconstructed. Yet, this is the representation that con-
ducts to minimize the classification loss function of the SVGP. Besides, latent dates do not
necessarily correspond to real dates, so time distortion can occur. The aim is to align the data
in order to maximize classification performance.
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Figure 9.11: NDVI time series profiles for a pixel labeled COR. Blue points • correspond to the raw
data, the observations flagged as clouds or cloud shadows have been removed in order to have a
comprehensive plot. Red points • correspond to the value obtained with a linear interpolation with
an interval of 10 days for a total of 37 dates. Green points • correspond to the latent representation
x̂j with j = NDVI obtained before the spectral reduction (D′ = 9).
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9.3.2. Versatility of the similarity kernel
By using attention and embedding mechanisms, the similarity kernel is able to adapt to the
pixel temporal sampling. The versatility of the similarity kernel can be shown by computing
the attention value γrl

defined in Equation (7.23) for different latent dates rl and for differ-
ent sets of observed dates T. In Figure 9.12, three different latent dates are studied rl = 1,
rl = 181 and rl = 361. For each latent date rl, two different sets of observed dates T are
considered. Firstly, the attention value was computed with a regular set of observed dates:
T = {1, . . . , 365} with an interval of τ = 1 day (in red in Figure 9.12). Then, the attention
value was computed with the set of observed dates from the ith pixel with T = Ti (in blue in
Figure 9.12).

From Figure 9.12, we can see that contrary to conventional RBF kernel, the learned kernel
is not centered on the latent date rl. For instance, with rl = 1, the learned kernel is centered
at around day 75. It thus adapts itself according to the latent date rl and the available obser-
vations. Moreover, for the set of observed dates T = {1, . . . , 365} (i.e. continuous red line),
the bandwidth is larger for the latent date rl = 361 than for the latent date rl = 181. Such
property is referred to as a variable-bandwidth kernel in the statistical literature [Terrell and
Scott, 1992]. While it has shown to perform well on several cases, such kernel was difficult to
optimize with standard statistical models. Using the proposed framework, the optimization is
efficient, scales well and can handle any timestamp.
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Figure 9.12: Normalized attention values γn
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) computed on three different latent dates
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CHAPTER 10

CONCLUSION AND PERSPECTIVES

10.1. Summary

The context of this thesis was to monitor ecosystems using artificial intelligence algorithms
applied to remote sensing data. Specifically, this thesis was focused on the development of
algorithms for Land Use and Land Cover (LULC) pixel-based classification at a large scale. We
decided to adopt the same configurations than the Centre d’Expertise Scientifique Occupa-
tion des SOls (CES OSO) framework i.e. the use of the Sentinel-2 Satellite Image Time-Series
(SITS) and the use of the same reference data (i.e. 23 classes). The current learning work-
flow consisted of Random Forests (RF) classification with a spatial stratification using linearly
interpolated Sentinel-2 SITS [Inglada et al., 2017].

The contributions of the thesis are developed in Parts II and III. In Part II, I first investi-
gated the spatial variability issue, and in particular the spatial discontinuities that occur at
the boundary of two spatial strata for the CES OSO approach. Then, in Part III, I proposed
to deal with irregular and unaligned time series during the learning step. Experiments were
conducted with large scale Sentinel-2 SITS of one full year.

In Part II, I proposed an approach based on Stochastic Variational Gaussian Processes (SVGP).
By combining sparse methods with Variational Inference (VI), this model is able to scale to
massive data sets. This is the first time that a model with Gaussian Processes (GP) has been
implemented under operational LULC classification conditions. Better results than the cur-
rent CES OSO based approach have been achieved. Indeed, in terms of accuracy, GP models
outperformed RF and Multi-layer Perceptron (MLP) methods. However, they were slightly
worse than structured Deep Learning (DL) models i.e. the Lightweight Temporal Attention
Encoder (LTAE) model. Besides, thanks to a spatial covariance function combined with a
spectro-temporal covariance function, the spatial variability was taken into account. There-
fore, with GP models, the spatial stratification was not needed anymore. Moreover, spatial
discontinuities between adjacent regions were more severe for RF models. Additionally, un-
like DL methods, it was possible to interpret the parameters of this model (e.g. the spatial
values of the Inducing Points (IP) or the values of the mixing matrix). Finally, the Bayesian
nature of the GP has enabled the estimation of the posterior predictive distributions which
can be used to assess prediction uncertainties.

In Part III, I have developed an end-to-end model that combines a time and space informed
kernel interpolator with the SVGP classifier. The fixed and reduced size latent representa-
tion obtained with the interpolator is given to the SVGP classifier and all the parameters
are jointly optimized during the training of the classifier. We were able to process irregular
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and unaligned SITS without any re-sampling preprocessing. This method outperformed the
simple SVGP classifier with linearly preprocessed interpolated data. In comparison to the pre-
vious method, temporal and spectral reductions were performed jointly but independently in
each dimension, for the classification task. This constrained spectro-temporal structure has
enabled to reduce the number of parameters and therefore has allowed to use more IP, result-
ing in improved classification performance. Furthermore, the spatial information was taken
into account but in a different way from the previous method. Indeed, the spatial information
was introduced directly in the SVGP classifier but with the learned representation through a
spatial positional encoding matrix. Finally, for the inference, the end-to-end learning model
did not require the common temporal grid used during the training step and was not sensitive
to the set of available dates during inference.

In this thesis, I focused on the analysis of classification metrics for the study area, which
consists of 27 tiles in the south of France. I also produced LULC maps for two tiles. However,
I did not apply the model over the entire metropolitan France as it is done for the CES OSO.
Based on what I have studied, I can conclude that this model provides better performance than
the current framework. Firstly, we no longer need to use spatial stratification. Then, irregular
and unaligned time series can be directly used without a preprocessing step. Moreover, we are
no longer limited by the number of training samples, as it can be the casewith RF. However, on
the other hand, this model is computationally intensive and requires the use of GPU. Besides,
this model does not require a lot of hyper-parameters tuning as it is the case with DLmethods,
but it does require a bit more than RF. Therefore, it might be interesting to know whether the
conclusions we have reached are the same as those we might find for the entire area of France.
Finally, different aspects such as label noise, pluriannual classification or the estimation of
continuous variables, were not treated in this thesis, but they are discussed in Section 10.2.

10.2. Perspectives
The perspectives of this work are multiple and concern both methodological and thematic
aspects. Short-term perspectives are presented first, they correspond to developments that I
could have done if I hadmore time duringmy thesis. They are followed bymid- and long-term
ones, which correspond to outlooks requiring more time (another thesis or a postdoc).

10.2.1. Short-term
Methodological

• The simplified version of Linear Model of Co-regionalization (LMC) defined in Equa-
tion (4.21) was used for the SVGP classifier. A perspective could be to modify its def-
inition. For instance, Liu et al. [Liu et al., 2022] proposed to add an additional layer
in Equation (4.21) which depends on the inputs. The L latent GP are mapped into a
higher dimension latent space. For several data sets, this method gives better results
than the traditional LMC. In our case, this additional layer could depend on the spatial
information. Therefore, the latent processes could be specialized over a part of the area.

• Regarding the Extended multi Time Attention Networks (EmTAN), the potential of the
multi-head attention has not been fully exploited. Indeed, only one head was used and
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as shown in Section 9.2.1 the performance with an increasing number of heads was
not satisfying. A perspective could be to inform the different heads with the spatial
information: the linear layer βH in Equation (8.1) could be replaced by the output of
a perceptron using the spatial positional encoding. A softmax function could be used
after the MLP to produce βH in order to weight each head. This could help the heads
to specialize spatially and differentiate themselves.

• The latent dates R used in the EmTAN were selected with a regular interval starting
with the first day of the year (i.e. r1 = 1). Experiments were also made with ran-
dom irregular sampling and with selected dates from the histogram of available dates.
With these experiments, we did not observe any influence on the model performance.
However, a perspective could be to let the EmTAN learn the position of the latent dates
which are useful for the classification task. Besides, it could be very interesting to use
pluriannual time series instead of a one-year time series (i.e. multitemporal data fu-
sion [Ghamisi et al., 2019]). The EmTAN could learn periodic patterns over the years.

Thematic

• The EmTAN-SVGP was applied on 27 tiles in the south of metropolitan France. A per-
spective could be to apply the model over all metropolitan France, as it is done for
OSO. Comparisons with the CES OSO based approach (i.e. RF with spatial stratifica-
tion) would be interesting.

• The classification in areas with high relief have shown poorer results. Therefore, a
perspective could be to extend the spatial information by using the altitude in addition
to the longitude and the latitude. Moreover, in addition to spatial data (i.e. altitude,
longitude and latitude), a perspective could be to use the other topographic data to
construct the spatial positional encoding in order to take better account of climatic,
geographical and other differences.

• To improve the classification in areas with high cloud cover, one perspective could be
to add radar data, such as Sentinel-1, in addition to the Sentinel-2. Indeed, the main
advantage of radar sensors is that they are not limited by the weather conditions such
as clouds. The ability of the interpolator to process unaligned time series would make
the fusion of radar data and optical data straightforward.
Besides, to improve the classification of certain classes, other types of optical sensors can
be used, for instance Landsat 8 with its thermal bands. Results showed that LULC maps
can be improved by the use of thermal bands [Sun and Schulz, 2015]. The THRISNA
satellite is scheduled to launch in 2025 and will provide thermal data with a finer spatial
resolution (i.e. 60m) and with a more frequent revisit cycle (i.e. every 3 days) [Roujean
et al., 2021]. Thanks to the interpolator, the fusion can also be straightforward.
Finally, informations from non satellite sources can be added to the time series. For ex-
ample, the World Clim 2 data set provides averaged monthly climate data from weather
stations at a spatial resolution of 1km for the period 1970–2000 [Fick andHijmans, 2017].
This climate data set corresponds to: temperature (minimum, maximum and average),
precipitation, solar radiation, vapour pressure and wind speed. The EmTAN can also be
used to merge all the time series.
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All this additional information could improve the representation for the classification
task.

• In the manuscript, we focused only on the classification task. However, our method
can also be applied for a regression task. In this case, the model is considerably sim-
plified: the Evidence Lower Bound (ELBO) from Equation (5.2) is used and no Monte
Carlo (MC) sampling is required, as the likelihood is Gaussian. The estimation of grass-
land mowing dates is a regression problem of high interest at my current laboratory.
Indeed, grassland late mowing helps to maintain biodiversity, as it allows plant and
animal species (particularly birds) to complete their reproductive cycles [Smith et al.,
2000], [Brown and Nocera, 2017]. Recently, a large number of publications propose to
use machine learning algorithms for the estimation of grassland mowing events with
Sentinel-2 time series [Garioud et al., 2019], [Holtgrave et al., 2023]. A perspective could
be to apply our EmTAN-SVGP model for the mapping of grassland mowing events. It
could be beneficial for this task as uncertainties are provided with our model. Indeed,
the SVGP classifier allows to obtain the posterior predictive distribution which we did
not use for the classification task as it represents a large amount of data. However, for
a regression task, this amount is largely reduced and can be very useful. Uncertainties
in this regression problem are a valuable complementary information.

10.2.2. Mid- and long-term
Methodological

• The performance of the SVGP is highly limited by the number of IP but also by their
dimension. Some works have shown that the prediction can be inaccurate for large-
scale data that are not inherently low-rank structured, since we assumeM ≪ N [Wu
et al., 2021], [Tran et al., 2021]. Therefore, Wu et al. [Wu et al., 2022] proposed a new
model: the Variational Nearest Neighbor Gaussian Processes (VNNGP). It performs a
mean-field variational approximation instead of full-rank variational approximation.
This sparse approximation allows VNNGP to use more IP than other variational meth-
ods. It employs a K nearest-neighbor approximation. A perspective could be to use
VNNGP instead of SVGP. Due to their variational inference nature, VNNGP can be ap-
plied to classification tasks.

• In this manuscript, a large number of reference data were available. However, some
zones contain fewer reference data than others, as illustrated in Figure 3.14. These
zones correspond to mountainous areas that are generally more difficult to access but
also can be less urbanized or less exploited agriculturally. A perspective could be to use
unlabeled data from these limited reference data zones in addition to the labeled data.
One possible implementation would be to constrain a similar latent representation with
the unlabeled data. Therefore, a loss composed of a reconstruction term and a prediction
term could be used.

Thematic

• Currently, the OSO map gives the dominant class over a full year. If two different agri-
cultural classes are successively present on a crop during the year, only the main one
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will be identified. A perspective could be to have a classification with a label that varies
over time. For instance, information on the label could be provided on a quarterly basis.
This might allow to study double cropping (i.e. two different crops cultivated on the
same field in the same year: the second crop is seeded after the first has been harvested)
or to identify catch crops (i.e. quick-growing crop that grows between two regular
crops [Lockhart and Wiseman, 2014]). Therefore, it can provide information about the
agricultural practices used.

• The OSO map is currently produced using data from January to December. A perspec-
tive could be to produce the map before the end of the year, for example in June. Getting
a LULC map in June could make it possible to estimate and/or anticipate crop irrigation
in summer, for instance. By producing an early classification, not all the reference data
are available and therefore the method must be adapted accordingly. Some works are
currently being carried out in this direction [Lin et al., 2022], [Rußwurm et al., 2023a].

• The current trend is to produce LULCmaps using newly available satellite images. How-
ever, a large number of archives are available (e.g. satellite images archives such as SPOT
World heritage1, but also aerial images archives such as "Remonter le temps"2). In order
to better monitor climate change, it is also interesting to monitor large-scale changes
over long term periods. A perspective could be to produce LULC using these archives.
In general, images from archives have lower resolutions (spatial, temporal and spectral)
and can be of very poor quality. Therefore, they are more difficult to analyze and pro-
cess compared to newly available satellite images. A possible solution is to use recent
satellite images in order to process more easily older images i.e. temporal domain adap-
tion [Chen et al., 2020], [Capliez et al., 2023]. Since it is possible to perform prediction
with recent satellite images, the same latent representation for both older and recent
time series could be produce (transfer learning [Demir et al., 2013]). For instance, the
EmTAN could be used to produce these representations and place them on the same
regular grid. My future research will be in this direction, as in January 2024, I am start-
ing a post-doc with the objective of classifying trees in the Pyrenees since the 1960s
using aerial images with artificial intelligence algorithms.

1https://regards.cnes.fr/user/swh/modules/60
2https://remonterletemps.ign.fr/

https://regards.cnes.fr/user/swh/modules/60
https://remonterletemps.ign.fr/




CONCLUSION EN FRANÇAIS

L’objectif général de cette thèse a concerné la surveillance des écosystèmes à l’aide d’algo-
rithmes d’intelligence artificielle appliqués aux données de télédétection. Plus précisément,
cette thèse s’est concentrée sur le développement d’algorithmes pour la classification super-
visée de cartes d’occupation du sol à grande échelle. Les mêmes configurations que celles pro-
posées par Centre d’Expertise Scientifique Occupation des SOls (CES OSO) du pôle Theia3 ont
été utilisées, c’est-à-dire l’utilisation de séries temporelles d’images satellites (SITS) Sentinel-
2 et l’utilisation des mêmes données de référence (i.e. 23 classes). Le processus opérationnel
d’apprentissage actuel consiste en une classification supervisée à l’aide de forêts aléatoires
(RF). Une stratification spatiale est appliquée et les SITS Sentinel-2 sont ré-échantillonnées
linéairement [Inglada et al., 2017].

Les contributions de la thèse ont été développées dans les Parties II and III. Dans la Partie II,
nous avons d’abord étudié la question de la variabilité spatiale, et en particulier les discontinu-
ités spatiales qui se produisent à la limite de deux strates spatiales pour l’approche CES OSO.
Ensuite, dans la Partie III, nous avons proposé de traiter directement les séries temporelles
irrégulières et non alignées pendant l’étape d’apprentissage. Les expérimentations ont été
menées avec des SITS Sentinel-2 d’une année entière dans une zone comprenant tout le sud
de la France.

Dans la Partie II, nous avons proposé une approche basée sur les processus gaussiens vari-
ationnels stochastiques (SVGP). En combinant des méthodes parcimonieuses avec l’inférence
variationnelle, notre modèle a été capable de traiter des gros volumes de données. C’est la
première fois qu’un modèle avec des processus gaussiens (GP) a été mis en œuvre dans des
conditions opérationnelles de classification de cartes d’occupation du sol. De meilleurs résul-
tats que ceux obtenus avec l’approche actuelle CESOSO (RF avec stratification spatiale) ont été
obtenus. En effet, en termes de précision, les modèles basés sur les GP ont surpassé les mod-
èles basés sur des RF et les perceptrons multicouche (MLP). Cependant, ils ont été légèrement
moins performants que les modèles structurés d’apprentissage profond, c’est-à-dire le modèle
basé sur un encodeur temporel utilisant la auto-attention (LTAE). Grâce à une fonction de
covariance spatiale combinée à une fonction de covariance spectro-temporelle, la variabilité
spatiale a été prise en compte. Par conséquent, avec les SVGP, la stratification spatiale n’était
plus nécessaire. De plus, les discontinuités spatiales entre régions adjacentes étaient plus
marquées pour les modèles RF. Contrairement aux méthodes d’apprentissage profond, il a été
possible d’interpréter les paramètres de notre modèle (par exemple, les coordonnées spatiales
des points induisants ou les valeurs de la matrice de mélange). Enfin, la nature bayésienne
des GP a permis d’estimer les distributions prédictives a posteriori utilisées pour évaluer les
incertitudes de prédiction.

Dans la Partie III, nous avons développé une méthode d’apprentissage de bout en bout: un
interpolateur à noyau prenant en compte l’information spatiale combiné avec les SVGP définis

3https://www.theia-land.fr/
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précédemment. La représentation latente de taille fixe et réduite obtenue avec l’interpolateur
a été donnée aux SVGP et tous les paramètres ont été optimisés conjointement par rapport
à la tâche de classification. Les SITS irrégulières et non alignées ont été utilisées sans au-
cun prétraitement. Cette méthode s’est avérée plus performante que les SVGP avec des don-
nées ré-échantillonnées par interpolation linéaire dans une étape de prétraitement distincte
de la classification. Par rapport à la méthode précédente, les réductions temporelles et spec-
trales ont été effectuées conjointement, mais indépendamment, pour la tâche de classification.
La mise en place d’une structure spectro-temporelle contrainte a permis de réduire le nom-
bre de paramètres et donc d’utiliser plus de points induisants, ce qui a permis d’améliorer
les performances de la classification. De plus, l’information spatiale a été prise en compte,
mais d’une manière différente de la méthode précédente. En effet, l’information spatiale a
été introduite directement dans les SVGP à l’aide de la représentation qui a été apprise par
le biais d’une matrice d’encodage positionnel spatial. Nous avons montré que notre modèle
d’apprentissage ne nécessite pas pour l’inférence la grille temporelle commune utilisée pen-
dant l’étape d’apprentissage.

Dans cette thèse, nous nous sommes concentrés sur l’analyse desmétriques de classification
pour notre zone d’étude, qui se compose de 27 tuiles dans le sud de la France. Nous avons
également produit des cartes d’occupation du sol pour deux tuiles. Cependant, nous n’avons
pas appliqué notre modèle à l’ensemble de la France métropolitaine comme c’est le cas pour
le CES OSO. Néanmoins, sur la base de ce que nous avons étudié, nous pouvons conclure que
notre modèle offre demeilleures performances que le cadre actuel. Tout d’abord, nous n’avons
plus besoin d’utiliser la stratification spatiale. Ensuite, les séries temporelles irrégulières et
non alignées peuvent être directement utilisées sans étape de prétraitement. Nous ne sommes
plus limités par le nombre d’échantillons d’apprentissage, comme cela peut être le cas avec
les RF. En revanche, notre modèle est très gourmand en ressources informatiques et nécessite
l’utilisation de GPU. Peu de réglages sont à faire au niveau des hyper-paramètres pour notre
modèle, contrairement auxméthodes d’apprentissage profond, mais tout demême un peu plus
qu’avec les RF. Il pourrait donc être intéressant de savoir si les conclusions auxquelles nous
sommes parvenus sont les mêmes que celles que nous pourrions trouver pour l’ensemble de
la France. Enfin, différents aspects tels que le bruit des classes, la classification pluriannuelle
ou l’estimation de variables continues, n’ont pas été traités dans cette thèse.
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APPENDIXA

SUPERVISED CLASSIFICATION TOOLS

This appendix describes several tools used in supervised classification.

A.1. Data set selection
Working with supervised methods induces the use of different labeled data sets. A first data
set, called training data set, is used to train the model. After completing the training, a sepa-
rate set of data, called test data set, is used to estimate the performance of the model in terms
of classification accuracy [Bishop, 1995]. Section A.2 details the different methods used to es-
timate this performance. Algorithms which minimize a loss function need the use of another
data set called validation data set. Such as for the previous data sets, this data set contains
different samples. It helps to validate our model performance during training. Indeed, as de-
scribed in Section A.2, it is possible to monitor the validation loss and detect over-fitting [Bot-
tou et al., 2018].

Each data set contains separate samples from the other data sets. Differentmethods are used
to select the samples from reference data. The simplest one is called simple random sampling,
as shown in Figure A.1a. Every sample has the same chance of being selected. However, if the
reference data set is imbalanced, which is often the case in land cover, it can create data sets
without samples from minority classes and with samples only from majority classes. Thus,
two techniques can be used to resample this data set in order to have a better distribution.
The first one is called random oversampling. It duplicates samples in the minority classes.
The second one is called random undersampling. It deletes samples in the majority classes.
However, this can be tedious. Therefore, with imbalanced data sets, using stratified sampling
is more appropriate. Stratified sampling divides the population into strata based on relevant
characteristics (for example the class label), as illustrated in Figure A.1b. While maintaining
the proportions, random sampling can be used to select the samples in each strata. Thus,
the distribution of classes in each of the train, validation, and test data sets is preserved.
The sampling methods have a great impact on the performances [Li et al., 2021]. Moreover,
the size of the different data sets (number of samples) has an influence on the classification
performances. Indeed, large training data sets provide better classification performances than
smaller ones [Foody et al., 2006].
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(a) Random sampling (b) Stratified sampling

Figure A.1: Examples of sampling methods for two different data sets.

A.2. Validation and accuracy assessment

A.2.1. Training and validation losses

In order to have good performances, it is important to monitor the model during training
thanks to training and validation losses. Methods which minimize a loss function, such as DL
models, allow the study of performances during the training step. Indeed, training and vali-
dation losses are good tools that can indicate if the training goes well. Figure A.2 represents
training and validation losses in the case of over-fitting, under-fitting or good-fitting.

In over-fitting, the model works very well with the training data set but poorly with valida-
tion and test data sets. It leads to poor generalization. The model learns too much the training
data. In this case, the validation loss will diverge from the training loss after being close to it.

In under-fitting, the model performs poorly not only on the training set data but also with
the validation and test data sets. The model is too simple. In this case, the training loss does
not stabilize.

When the model is well trained (optimum or good-fitting), the training and validations
losses are close to each other and the training loss is stable. Thus, the model performs well
with the training, validation and test data sets.

Loss

Epochs

Training loss

Validation loss

OptimumUnderfitting Overfitting

Figure A.2: Training and validation losses in over-fitting, under-fitting and good-fitting (opti-
mum).
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A.2.2. Confusion matrices and metrics
After the training step, confusionmatrices andmetrics are used in order to evaluate the perfor-
mances of the model. They are computed with the test data set. It is also possible to compute
them during the training step with the validation data set. The confusion matrix, also called
error matrix, is a technique for summarizing the performance of a supervised classification
algorithm. It is a a square matrix with the number of rows and columns equal to the number of
classes. In classification, different metrics are widely used such as: overall accuracy, F-score,
recall, precision, kappa. The confusion matrix and the metrics are first defined in the case of
binary classification and then in the case of multi-class classification.

Binary classification

In binary classification, the classes are labeled either positive (1) or negative (0). The confusion
matrix is defined such as:

Predicted Class
Positive Negative

True Class Positive TP FN
Negative FP TN

with True Positive (TP ): number of predictions where the classifier correctly classifies the
positive class as positive; False Negative (FN ): number of predictions where the classifier in-
correctly classifies the positive class as negative; False Positive (FP ): number of predictions
where the classifier incorrectly classifies the negative class as positive; True Negative (TN ):
number of predictions where the classifier correctly classifies the negative class as negative.

From this confusion matrix, it is possible to compute different metrics used to assess the
classification accuracies [Congalton, 1991]:

• Overall accuracy (OA). It represents the ratio of correct predictions and can be com-
puted as

OA = (TP + TN)
(TP + TN + FP + FN) (A.1)

If the OA reaches 1, it means that all the predictions are correct.

• Precision. It is defined as the proportion of the positive class predictions that were
actually correct. The precision can be computed as:

P = TP

(TP + FP ) (A.2)

It corresponds to the first row of the confusion matrix. If there are no false positives,
the precision is equal to 1.

• Recall/Sensitivity. It is defined as the proportion of actual positive class samples that
were identified by the model. The recall can be computed as:

R = TP

(TP + FN) (A.3)
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It corresponds to the first column of the confusionmatrix. If there are no false negatives,
the recall is equal to 1.

• Specificity. It is the ability of a classification model to measure the rate of actual neg-
atives identified correctly. The specificity can be computed as:

Sp = TN

(TN + FP ) (A.4)

• F-score. It is the harmonic mean of the model’s precision and recall. The F-score can
be computed as:

F-score = 2TP
(2TP + FP + FN) = 2P × R

P + R (A.5)

It is useful to find the best trade-off between these twometrics [Sasaki et al., 2007]. Such
as the previous metrics, it ranges from 0 to 1, with 1 the best value.

• Kappa. It is a metric that takes into account correct classifications due to random
chance. Kappa can be written such as:

Kappa = 2 × (TP × TN − FN × FP )
(TP + FP ) × (FP + TN) + (TP + FN) × (FN + TN) (A.6)

Kappa values range from −1 to 1. Different interpretations of the Kappa values can
be found. [Landis and Koch, 1977] suggests that if Kappa is equal to zero the agree-
ment is no better than what would be obtained by chance. Negative values imply that
the agreement is worse than what would be expected by chance. From 0 to 0.2, it is a
slight agreement, from 0.21 to 0.4 it is a fair agreement, from 0.41 to 0.6 it is a moderate
agreement, from 0.61 to 0.8 it is a substantial agreement and finally from 0.81 to 1 it is a
perfect agreement. [Ranganathan et al., 2017] proposed an other interpretation suggest-
ing that Kappa values below 0.6 indicate a significant level of disagreement. These two
interpretations are among a large number of other possible interpretations [Monserud
and Leemans, 1992, Fleiss et al., 2013].

Multi-class classification

In multi-class classification with C classes, the confusion matrix is defined as:

Predicted Class
1 ... C

True Class
1 n11 ... n1C

... ... nij ...
C nC1 ... nCC

where nij is the number of predictions where the classifier classify the true class i as j. A
normalized confusion matrix is defined as:
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Predicted Class
1 ... C

True Class
1 n11∑C

j=1 n1j
... n1C∑C

j=1 n1j

... ... nij∑C

j=1 nij
...

C nC1∑C

j=1 nCj

... nCC∑C

j=1 nCj

Indeed, the total of each row i is equal to 1 such as∑C
j=1

(
nij∑C

j=1 nij

)
= 1.

The different metrics defined in the case of binary classification can also be calculated in
the multi-class classification:

• Overall accuracy (OA). It can be computed as:

OA = 1
N

C∑
i=1

nii (A.7)

with N = ∑C
i,j=1 nij the total number of predictions. If a class is under-represented

(very few samples), all the predictions can be attributed to the most abundant class.
This would produce a very good overall accuracy but the under-represented class would
have a very low accuracy. Thus, it is also important to calculate metrics for each class
such as precision, recall or F-score.

• Precision for the class i, also called user’s accuracy, can be computed as

UAi = nii∑C
j=1 nji

(A.8)

It corresponds to the ith column of the confusion matrix.

• Recall for the class i, also called producer’s accuracy, can be computed as

PAi = nii∑C
j=1 nij

(A.9)

It corresponds to the ith row of the confusion matrix.

• F-score for the class i can be calculated from the precision and recall as

F-scorei = 2 × UAi × PAi

UAi + PAi

(A.10)

• Kappa. In multi class classification, the computation of this metric is very different
from the binary case. Indeed, it can be computed as:

Kappa =
N
∑C

i=1 nii −∑C
i=1

(∑C
j=1 nij ×∑C

j=1 nji

)
N2 −∑C

i=1

(∑C
j=1 nij ×∑C

j=1 nji

) (A.11)

= OA − ph

1 − ph

(A.12)
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with ph = 1
N2
∑C

i=1

(∑C
j=1 nij ×∑C

j=1 nji

)
the measure of agreement. Whereas it is

widely used in multi class classification, [Foody, 2020] suggests to remove the Kappa
metric from the analysis in land cover classification. The main reasons are that ph does
not represent correctly the rate of correct classification due to chance [Foody, 1992].
Moreover, [Pontius Jr and Millones, 2011] showed that it can be difficult to compare
Kappa values between different classification systems. For these reasons, in this thesis,
Kappa will not be used.

Metrics are quantitative measurements used to assess the performances of one model. The
previous list is not exhaustive, other metrics can be defined [Grandini et al., 2020]. However,
these previous metrics are the most used in land cover classification. In the following, these
metrics are used to evaluate the performances of the classification models.

Computing the mean and the variance of these metrics over multiple data sets, provides a
more accurate and robust estimate of the model’s performance. Different re-sampling meth-
ods are used to compute these multiple data sets. If the reference data is limited, k-fold cross
validation is used. It consists in splitting the reference data set into k equal parts called folds.
The model is trained k times with k − 1 folds used for the training data set and 1 fold used
for the test data set. Each time, the test data set has a different fold, as represented in Fig-
ure A.3a. If enough reference data are available, k training and k test data sets are selected
with different random seeds, as illustrated in Figure A.3b.

(a) Limited reference data set : k fold cross-validation

(b) Large reference data set : k random seeds

Figure A.3: Comparison between two selection methods for multiple data sets.
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A.2.3. Statistical tests
Statistical tests are used to compare different models and assess the significance of observed
differences [Foody, 2004]. They allow to answer to the following question: "Are the ob-
served differences statistically significant or could they be due to random chance?". In this
manuscript, we decided to use the Wilcoxon test [Conover, 1999] because it allows to know
if the mean values of the metrics (i.e. F-score or OA) of two different classifiers differ signifi-
cantly from each other.





APPENDIXB

SVGP CLASSIFICATION: ADDITIONAL RESULTS

These are additional results for Chapter 6.

B.1. Additional results: Comparison with competitive
methods

In the following, we present additional results for the Section 6.1.

B.1.1. F-score
The F-score for each model (λt-GP, ϕλt-GPSC, ϕλt-GPPC, λt-RF, ϕλt-RF, λt-MLP, ϕλt-MLP,
λt-LTAE and ϕλt-LTAE) is presented in the following. Both data sets DS-A and DS-B are
considered for each configuration: global and stratification.
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t-GP t-GPSC t-GPPC t-RF t-RF t-MLP t-MLP t-LTAE t-LTAE
model

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84
fs

co
re

Global
Stratification

Boxplot fscore Dataset A

(a) data set DS-A
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(b) data set DS-B

Figure B.1: Boxplots of the F-score for each model: λt-GP, ϕλt-GPSC, ϕλt-GPPC, λt-RF, ϕλt-RF,
λt-MLP, ϕλt-MLP, λt-LTAE and ϕλt-LTAE. Both data sets DS-A and DS-B are considered for
each configuration: global and stratification.
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B.1.2. F-score per class
Two tables are provided in the following. They correspond to the global averaged OA, global
averaged F-score and averaged F-score per class (mean % ± standard deviation) computed
over the 11 runs of each model trained with the classification data set. The first line corre-
sponds to models trained with the training data set DS-A and the second line corresponds to
models trained with the training data set DS-B. The studied models are: λt-GP, ϕλt-GPSC,
ϕλt-GPPC, λt-RF, ϕλt-RF, λt-MLP, ϕλt-MLP, λt-LTAE and ϕλt-LTAE. Table B.1 corresponds
to the global configuration and Table B.2 corresponds to the stratification configuration. The
nomenclature of the classes is presented in Table 3.3. The darkest grey corresponds to the
best F-score per class and the lightest grey corresponds to the third best one.
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Table B.1.: Global configuration
λt-GP ϕλt-GPSC ϕλt-GPPC λt-RF ϕλt-RF λt-MLP ϕλt-MLP λt-LTAE ϕλt-LTAE

62.4 ± 3.4 69.1 ± 0.8 69.0 ± 0.9 60.8 ± 0.2 62.5 ± 0.2 65.4 ± 0.2 66.6 ± 0.3 64.7 ± 0.4 67.9 ± 0.3CUF 62.2 ± 1.7 68.1 ± 0.9 67.9 ± 1.1 60.1 ± 0.2 62.3 ± 0.2 65.4 ± 0.3 66.8 ± 0.2 64.0 ± 0.3 68.4 ± 0.3

61.3 ± 1.1 69.1 ± 0.8 68.8 ± 1.0 57.3 ± 0.2 58.6 ± 0.2 63.7 ± 0.4 65.0 ± 0.3 62.7 ± 0.5 66.7 ± 0.6DUF 63.9 ± 0.8 70.3 ± 0.8 70.1 ± 0.6 60.5 ± 0.1 62.2 ± 0.2 67.3 ± 0.2 68.8 ± 0.3 66.3 ± 0.3 71.8 ± 0.4

50.8 ± 1.5 58.3 ± 1.5 59.1 ± 1.2 49.8 ± 0.2 51.7 ± 0.3 54.1 ± 0.5 55.7 ± 0.3 53.4 ± 0.7 58.7 ± 0.4ICU 55.0 ± 0.9 62.0 ± 1.6 62.7 ± 1.1 53.8 ± 0.1 56.0 ± 0.1 60.5 ± 0.4 62.2 ± 0.3 59.6 ± 0.3 65.4 ± 0.3

77.5 ± 0.6 81.2 ± 0.9 81.6 ± 0.8 76.2 ± 0.3 77.1 ± 0.3 80.3 ± 0.4 81.2 ± 0.3 80.3 ± 0.5 83.4 ± 0.4RSF 78.4 ± 1.1 81.8 ± 0.7 82.3 ± 0.5 77.2 ± 0.2 78.4 ± 0.2 82.1 ± 0.3 83.4 ± 0.3 82.3 ± 0.2 85.5 ± 0.2

94.7 ± 0.7 94.6 ± 0.5 94.5 ± 0.7 94.5 ± 0.3 94.5 ± 0.3 94.5 ± 0.6 94.5 ± 0.6 94.9 ± 0.5 94.8 ± 0.3RAP 95.2 ± 0.5 95.3 ± 0.5 95.4 ± 0.3 95.2 ± 0.2 95.3 ± 0.2 95.3 ± 0.4 95.4 ± 0.4 95.8 ± 0.3 96.0 ± 0.4

87.5 ± 0.5 87.7 ± 0.3 87.9 ± 0.3 85.6 ± 0.1 85.7 ± 0.1 87.5 ± 0.5 87.8 ± 0.2 89.2 ± 0.3 89.6 ± 0.2STC 89.4 ± 0.4 89.7 ± 0.4 89.7 ± 0.6 87.7 ± 0.1 87.9 ± 0.1 89.7 ± 0.3 89.9 ± 0.2 91.2 ± 0.2 91.5 ± 0.2

74.3 ± 1.3 76.2 ± 1.1 76.2 ± 1.0 70.3 ± 0.3 71.0 ± 0.2 75.1 ± 1.0 75.8 ± 0.8 76.8 ± 1.0 78.9 ± 0.8PRO 77.0 ± 0.9 78.5 ± 1.2 78.3 ± 1.2 73.7 ± 0.2 74.6 ± 0.2 77.8 ± 0.6 78.9 ± 0.5 80.2 ± 0.5 81.9 ± 0.8

89.3 ± 0.5 89.6 ± 0.4 89.5 ± 0.4 87.3 ± 0.2 87.5 ± 0.3 89.5 ± 0.4 89.6 ± 0.6 91.2 ± 0.6 91.9 ± 0.4SOY 90.3 ± 0.4 90.6 ± 0.6 90.2 ± 0.5 88.6 ± 0.1 88.8 ± 0.1 90.9 ± 0.4 91.1 ± 0.5 92.5 ± 0.4 92.9 ± 0.4

88.2 ± 0.7 88.2 ± 0.8 88.6 ± 0.8 84.4 ± 0.2 84.6 ± 0.2 88.3 ± 0.4 88.3 ± 0.4 89.7 ± 0.6 90.5 ± 0.4SUN 89.6 ± 1.1 90.0 ± 0.8 89.9 ± 0.9 86.4 ± 0.1 86.5 ± 0.2 90.5 ± 0.2 90.5 ± 0.3 91.5 ± 0.3 91.9 ± 0.3

91.4 ± 0.5 91.5 ± 0.5 91.3 ± 0.5 89.5 ± 0.2 89.5 ± 0.2 91.3 ± 0.3 91.3 ± 0.2 93.3 ± 0.1 93.3 ± 0.3COR 92.0 ± 0.6 92.3 ± 0.5 92.0 ± 0.5 90.6 ± 0.1 90.7 ± 0.1 92.5 ± 0.2 92.4 ± 0.3 94.1 ± 0.2 94.0 ± 0.2

98.2 ± 0.1 98.2 ± 0.4 98.3 ± 0.2 98.4 ± 0.1 98.5 ± 0.1 97.9 ± 0.1 97.9 ± 0.2 98.2 ± 0.1 98.4 ± 0.1RIC 98.3 ± 0.2 98.5 ± 0.2 98.3 ± 0.7 98.6 ± 0.0 98.7 ± 0.0 98.3 ± 0.1 98.2 ± 0.3 98.5 ± 0.2 98.7 ± 0.1

83.0 ± 0.8 83.1 ± 0.9 83.8 ± 0.8 79.0 ± 0.3 79.5 ± 0.6 83.4 ± 0.6 83.5 ± 0.7 86.8 ± 0.8 87.9 ± 0.5TUB 85.0 ± 1.0 85.0 ± 0.8 84.6 ± 1.2 80.6 ± 0.4 81.0 ± 0.4 85.5 ± 0.8 86.0 ± 0.6 89.0 ± 0.4 89.7 ± 0.4

71.7 ± 0.8 73.7 ± 0.8 73.7 ± 0.5 70.2 ± 0.2 70.6 ± 0.2 72.3 ± 0.3 73.0 ± 0.5 73.5 ± 0.2 75.2 ± 0.2GRA 73.0 ± 0.5 74.8 ± 0.4 75.0 ± 0.5 71.7 ± 0.2 72.2 ± 0.2 73.6 ± 0.3 74.6 ± 0.4 75.1 ± 0.2 76.7 ± 0.2

74.0 ± 0.6 78.3 ± 0.7 78.4 ± 1.1 72.8 ± 0.2 74.1 ± 0.3 75.0 ± 0.6 76.2 ± 0.3 78.1 ± 0.5 80.2 ± 0.5ORC 75.6 ± 0.7 79.5 ± 0.5 79.6 ± 0.7 74.6 ± 0.2 76.0 ± 0.1 79.1 ± 0.5 80.3 ± 0.3 81.4 ± 0.4 83.6 ± 0.3

86.6 ± 0.8 88.5 ± 0.6 88.6 ± 0.5 81.7 ± 0.1 82.8 ± 0.2 87.9 ± 0.3 88.1 ± 0.3 87.7 ± 0.3 88.6 ± 0.5VIN 88.1 ± 0.6 89.6 ± 0.6 89.6 ± 0.6 83.7 ± 0.1 84.8 ± 0.1 89.7 ± 0.2 90.1 ± 0.3 89.7 ± 0.4 90.9 ± 0.2

81.7 ± 0.8 83.0 ± 0.8 83.5 ± 0.9 81.0 ± 0.2 81.5 ± 0.2 83.4 ± 0.3 84.0 ± 0.3 83.4 ± 0.2 84.5 ± 0.3BLF 83.3 ± 0.6 85.0 ± 0.4 85.1 ± 0.4 82.4 ± 0.1 83.0 ± 0.1 85.3 ± 0.2 85.7 ± 0.1 85.4 ± 0.3 87.1 ± 0.1

81.2 ± 0.7 82.0 ± 0.8 82.5 ± 0.6 81.4 ± 0.2 82.4 ± 0.2 82.0 ± 0.3 82.8 ± 0.2 83.1 ± 0.3 84.6 ± 0.3COF 82.3 ± 0.5 83.0 ± 0.6 83.5 ± 0.7 82.6 ± 0.2 83.6 ± 0.2 83.8 ± 0.2 84.4 ± 0.2 84.9 ± 0.2 86.3 ± 0.1

46.5 ± 1.4 57.5 ± 2.2 58.0 ± 1.3 47.8 ± 1.4 51.3 ± 1.2 48.0 ± 1.6 52.5 ± 1.2 46.4 ± 1.8 56.6 ± 0.9NGL 48.7 ± 1.5 58.7 ± 1.5 59.1 ± 1.2 50.2 ± 1.2 54.2 ± 1.0 52.8 ± 1.5 55.7 ± 1.3 51.8 ± 1.9 60.3 ± 0.9

48.4 ± 3.0 55.8 ± 1.1 56.5 ± 2.4 52.9 ± 0.4 55.1 ± 0.5 51.6 ± 0.7 53.4 ± 0.9 53.0 ± 1.1 59.5 ± 0.5WOM 50.0 ± 1.9 56.9 ± 1.6 57.1 ± 1.5 54.4 ± 0.5 56.8 ± 0.5 55.3 ± 0.7 57.6 ± 0.7 56.8 ± 1.0 62.1 ± 0.4

72.8 ± 0.9 78.9 ± 2.1 78.3 ± 1.7 73.5 ± 0.6 75.1 ± 0.9 73.7 ± 0.8 75.0 ± 1.3 74.5 ± 0.9 79.7 ± 0.7NMS 73.7 ± 0.8 79.1 ± 1.7 78.7 ± 1.9 74.2 ± 0.7 76.2 ± 0.8 75.8 ± 0.7 77.8 ± 0.5 77.1 ± 0.7 81.4 ± 0.6

77.0 ± 0.7 78.0 ± 4.5 81.4 ± 3.4 77.0 ± 0.5 80.0 ± 0.7 79.9 ± 0.7 81.9 ± 0.6 79.8 ± 1.2 85.1 ± 0.7BDS 78.8 ± 0.9 78.4 ± 5.3 81.8 ± 2.5 77.9 ± 0.5 80.7 ± 0.6 81.3 ± 0.5 82.8 ± 0.4 83.2 ± 0.7 86.8 ± 0.7

88.6 ± 1.0 90.4 ± 1.5 91.9 ± 0.8 89.9 ± 1.5 90.4 ± 1.5 88.2 ± 1.2 87.7 ± 1.7 82.3 ± 2.2 83.6 ± 2.8GPS 89.1 ± 0.9 90.8 ± 1.4 92.1 ± 1.3 91.1 ± 0.9 91.8 ± 0.9 89.1 ± 0.7 89.2 ± 0.9 87.5 ± 1.2 89.3 ± 0.9

95.1 ± 0.2 95.5 ± 0.5 95.9 ± 0.6 95.2 ± 0.1 95.4 ± 0.1 94.7 ± 0.2 95.3 ± 0.2 95.2 ± 0.3 96.4 ± 0.2WAT 95.5 ± 0.2 95.8 ± 0.5 95.8 ± 0.5 95.3 ± 0.1 95.5 ± 0.1 95.0 ± 0.2 95.3 ± 0.3 95.8 ± 0.1 96.8 ± 0.3

76.6 ± 0.5 79.4 ± 0.3 79.8 ± 0.4 75.3 ± 0.1 76.3 ± 0.1 77.7 ± 0.1 78.6 ± 0.2 78.5 ± 0.2 81.0 ± 0.1oa 77.8 ± 0.2 80.5 ± 0.4 80.7 ± 0.3 76.7 ± 0.1 77.8 ± 0.1 79.8 ± 0.2 80.7 ± 0.1 80.6 ± 0.2 83.1 ± 0.1

77.5 ± 0.4 80.4 ± 0.4 80.8 ± 0.4 76.4 ± 0.1 77.4 ± 0.2 78.6 ± 0.2 79.4 ± 0.2 79.0 ± 0.2 81.6 ± 0.2F-score 78.9 ± 0.2 81.5 ± 0.5 81.7 ± 0.3 77.9 ± 0.1 79.0 ± 0.1 80.7 ± 0.2 81.6 ± 0.1 81.5 ± 0.2 83.9 ± 0.1
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Table B.2.: Stratification configuration
λt-GP ϕλt-GPSC ϕλt-GPPC λt-RF ϕλt-RF λt-MLP ϕλt-MLP λt-LTAE ϕλt-LTAE

66.8 ± 0.5 71.2 ± 0.3 71.3 ± 0.4 63.6 ± 0.2 66.7 ± 0.2 65.1 ± 0.4 66.2 ± 0.3 64.6 ± 0.3 68.1 ± 0.2CUF 66.3 ± 0.4 70.5 ± 0.7 70.4 ± 0.5 63.4 ± 0.2 66.6 ± 0.2 67.2 ± 0.1 68.2 ± 0.2 65.4 ± 0.3 69.4 ± 0.3

63.6 ± 0.9 66.4 ± 0.8 67.0 ± 1.1 58.8 ± 0.4 61.1 ± 0.4 61.1 ± 0.5 61.4 ± 0.8 61.8 ± 0.4 65.6 ± 0.4DUF 66.7 ± 0.6 66.6 ± 0.8 67.4 ± 0.8 62.0 ± 0.2 64.4 ± 0.2 67.9 ± 0.4 68.8 ± 0.5 66.8 ± 0.4 70.9 ± 0.4
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B.1.3. Precision and recall per class
Two figures are provided in the following. They correspond to the barplots of the precision
and recall per class, respectively, for each model:λt-GP, ϕλt-GPSC, ϕλt-GPPC, λt-RF, ϕλt-RF,
λt-MLP, ϕλt-MLP, λt-LTAE and ϕλt-LTAE. Both data sets DS-A and DS-B are considered for
each configuration: global and stratification.
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(a) global configuration (data set DS-A)
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(b) global configuration (data set DS-B)
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(c) stratification configuration (data set DS-A)
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Figure B.2: Precision
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(a) global configuration (data set DS-A)
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(b) global configuration (data set DS-B)
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Figure B.3: Recall
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B.1.4. Confusion matrices
Normalized confusion matrices for λt-GP, ϕλt-GPSC, λt-RF, ϕλt-RF, λt-MLP, ϕλt-MLP and
λt-LTAE are represented in the following. Regarding the models ϕλt-GPSC and ϕλt-LTAE,
they are represented in Figure 6.4. Only the data set DS-A is considered for each configuration:
global and stratification
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(2) global configuration

(a) λt-GP model
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(2) global configuration

(b) ϕλt-GPSC model
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(2) global configuration

(c) λt-RF model



Appendix B. SVGP classification: Additional results 279

CU
F

DU
F

IC
U

RS
F

RA
P

ST
C

PR
O

SO
Y

SU
N

CO
R

RI
C

TU
B

GR
A

OR
C

VI
N

BL
F

CO
F

NG
L

W
OM NM

S

BD
S

GP
S

W
AT

Predicted

CUF

DUF

ICU

RSF

RAP

STC

PRO

SOY

SUN

COR

RIC

TUB

GRA

ORC

VIN

BLF

COF

NGL

WOM

NMS

BDS

GPS

WAT

Tr
ue

0.68

0.67

0.55

0.77

0.93

0.91

0.57

0.82

0.89

0.92

0.98

0.66

0.74

0.69

0.90

0.89

0.84

0.52

0.59

0.78

0.69

0.89

0.95

0.18 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.16 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

0.13 0.15 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00

0.01 0.03 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.01 0.00 0.02 0.20 0.01 0.01 0.03 0.00 0.04 0.06 0.01 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.05 0.09 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.01 0.01 0.00 0.01 0.01 0.02 0.03 0.15 0.04 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.03 0.02 0.06 0.07 0.00 0.00 0.00 0.00

0.00 0.02 0.01 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.08 0.07 0.04 0.01 0.02 0.02 0.00 0.00 0.00 0.00

0.01 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.03 0.02 0.03 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.01 0.05 0.01 0.00 0.00 0.00

0.00 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.01 0.01 0.06 0.04 0.19 0.03 0.00 0.00 0.00

0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.01 0.05 0.05 0.14 0.03 0.01 0.00 0.00

0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.07 0.01 0.00 0.00

0.01 0.06 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.01 0.02 0.03 0.03 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.07 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00
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(2) global configuration

(d) ϕλt-RF model
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(1) stratification configuration
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(2) global configuration

(e) λt-MLP model
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(2) global configuration

(f) ϕλt-MLP model
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(1) stratification configuration
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(2) global configuration

(g) λt-LTAE model

Figure B.4: Normalized confusion matrices for each model.
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B.2. Additional results: Feature extraction
In the following, we present additional results for the Section 6.5.

B.2.1. F-score
Comparison of the Fscore for the different feature extraction methods in both configurations:
global and stratification. The nomenclature of the methods is described in Table 5.8.
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(a) Global configuration
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(b) Stratification configuration

Figure B.5: Comparison of the Fscore for the different feature extraction methods.



APPENDIXC

EmTAN-SVGP CLASSIFICATION: ADDITIONAL RESULTS

These are additional results for Chapter 9.

C.1. Additional results: Comparison with competitive
methods

In the following, we present additional results for the Section 9.1.

C.1.1. Confusion matrices
Normalized confusion matrices for the Gapfilled-SVGP, EmTAN-MLP and EmTAN-LTAE mod-
els are represented in the following. Concerning the EmTAN-SVGP and raw-LTAE models,
they are represented in Figure 9.3.

285



286 Appendix C. EmTAN-SVGP classification: Additional results

CU
F

DU
F

IC
U

RS
F

RA
P

ST
C

PR
O

SO
Y

SU
N

CO
R

RI
C

TU
B

GR
A

OR
C

VI
N

BL
F

CO
F

NG
L

W
OM NM

S

BD
S

GP
S

W
AT

Predicted

CUF

DUF

ICU

RSF

RAP

STC

PRO

SOY

SUN

COR

RIC

TUB

GRA

ORC

VIN

BLF

COF

NGL

WOM

NMS

BDS

GPS

WAT

Tr
ue

0.67

0.45

0.34

0.66

0.79

0.85

0.59

0.83

0.86

0.85

0.98

0.73

0.58

0.72

0.85

0.73

0.66

0.32

0.37

0.28

0.60

0.68

0.89

0.15 0.10 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00

0.29 0.07 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.00 0.00 0.03 0.01 0.02 0.02 0.00 0.00

0.25 0.10 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.02 0.00 0.00 0.04 0.02 0.03 0.06 0.00 0.00

0.03 0.02 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.01 0.01 0.00 0.02 0.02 0.02 0.04 0.00 0.00

0.00 0.00 0.00 0.00 0.09 0.08 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.02 0.13 0.02 0.02 0.01 0.00 0.03 0.06 0.01 0.02 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.04 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.03 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.00 0.00 0.01 0.01 0.03 0.03 0.09 0.01 0.00 0.00 0.02 0.02 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00

0.00 0.00 0.00 0.01 0.02 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.01 0.03 0.02 0.15 0.06 0.00 0.01 0.00 0.01

0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.07 0.02 0.01 0.05 0.02 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.00 0.04 0.04 0.06 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.07 0.02 0.15 0.01 0.02 0.00 0.00

0.00 0.02 0.01 0.01 0.13 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.06 0.06 0.03 0.05 0.04 0.18 0.03 0.01 0.00 0.00

0.00 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.04 0.05 0.03 0.04 0.04 0.23 0.06 0.02 0.00 0.00

0.02 0.03 0.05 0.03 0.35 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.06 0.05 0.03 0.00

0.04 0.01 0.07 0.04 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01 0.00 0.04 0.04 0.01 0.01 0.01 0.03 0.03 0.00 0.01

0.00 0.00 0.00 0.01 0.19 0.00 0.00 0.00 0.04 0.00 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00

(a) Gapfilled-SVGP



Appendix C. EmTAN-SVGP classification: Additional results 287

CU
F

DU
F

IC
U

RS
F

RA
P

ST
C

PR
O

SO
Y

SU
N

CO
R

RI
C

TU
B

GR
A

OR
C

VI
N

BL
F

CO
F

NG
L

W
OM NM

S

BD
S

GP
S

W
AT

Predicted

CUF

DUF

ICU

RSF

RAP

STC

PRO

SOY

SUN

COR

RIC

TUB

GRA

ORC

VIN

BLF

COF

NGL

WOM

NMS

BDS

GPS

WAT

Tr
ue

0.59

0.55

0.37

0.77

0.88

0.82

0.63

0.79

0.80

0.84

0.97

0.71

0.64

0.64

0.79

0.81

0.80

0.41

0.32

0.73

0.72

0.92

0.93

0.21 0.12 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.20 0.08 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00

0.15 0.17 0.11 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.03 0.00 0.01 0.01 0.01 0.02 0.04 0.00 0.00

0.02 0.04 0.06 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01 0.02 0.09 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.01 0.01 0.05 0.12 0.02 0.01 0.02 0.00 0.04 0.03 0.01 0.04 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.08 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.02 0.00 0.07 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.02 0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.01 0.01 0.00 0.01 0.01 0.04 0.04 0.09 0.01 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.04 0.02 0.10 0.06 0.01 0.01 0.00 0.01

0.00 0.02 0.01 0.02 0.00 0.02 0.02 0.00 0.00 0.01 0.00 0.01 0.05 0.10 0.03 0.01 0.03 0.02 0.00 0.01 0.00 0.00

0.00 0.03 0.01 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.00 0.02 0.01 0.03 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.03 0.05 0.00 0.01 0.00 0.00

0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.01 0.06 0.02 0.01 0.00 0.00

0.00 0.01 0.01 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.08 0.03 0.02 0.07 0.05 0.20 0.06 0.02 0.02 0.00

0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.03 0.02 0.06 0.09 0.26 0.08 0.03 0.00 0.00

0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.04 0.06 0.03 0.00

0.01 0.03 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.01 0.02 0.02 0.05 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.00

(b) EmTAN-MLP

CU
F

DU
F

IC
U

RS
F

RA
P

ST
C

PR
O

SO
Y

SU
N

CO
R

RI
C

TU
B

GR
A

OR
C

VI
N

BL
F

CO
F

NG
L

W
OM NM

S

BD
S

GP
S

W
AT

Predicted

CUF

DUF

ICU

RSF

RAP

STC

PRO

SOY

SUN

COR

RIC

TUB

GRA

ORC

VIN

BLF

COF

NGL

WOM

NMS

BDS

GPS

WAT

Tr
ue

0.64

0.58

0.42

0.79

0.91

0.85

0.64

0.83

0.83

0.89

0.98

0.74

0.67

0.67

0.84

0.83

0.83

0.43

0.43

0.74

0.77

0.92

0.93

0.18 0.10 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

0.22 0.07 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00

0.15 0.15 0.11 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.00 0.01 0.01 0.01 0.02 0.04 0.00 0.00

0.02 0.03 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.00 0.01 0.00 0.00 0.05 0.10 0.02 0.01 0.02 0.00 0.05 0.03 0.01 0.04 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.05 0.00 0.03 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.00 0.06 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.02 0.01 0.00 0.01 0.01 0.03 0.03 0.09 0.01 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.04 0.02 0.09 0.07 0.01 0.00 0.00 0.01

0.00 0.02 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.05 0.09 0.04 0.01 0.02 0.02 0.00 0.01 0.00 0.00

0.01 0.02 0.01 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.00 0.01 0.01 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.05 0.03 0.03 0.00 0.00 0.00 0.00

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.01 0.04 0.01 0.01 0.00 0.00

0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.07 0.02 0.02 0.07 0.05 0.20 0.05 0.01 0.02 0.00

0.00 0.01 0.02 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.01 0.06 0.08 0.20 0.06 0.02 0.00 0.00

0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.06 0.05 0.03 0.01

0.01 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.00 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00

(c) EmTAN-LTAE

Figure C.1: Normalized confusion matrices for the Gapfilled-SVGP, EmTAN-MLP and EmTAN-
LTAE models.
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C.2. Additional results: Robustness to the temporal
sampling

In the following, we present additional results for the Section 9.1.3.

C.2.1. Precision and recall per class
Two figures are provided in the following. They correspond to the barplots of the precision
and recall per class, respectively, computed with artificially shifted acquisition dates from the
test data for the two models mTANe-SVGP and raw-LTAE. The nomenclature of the classes is
presented in Table 3.3.
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Figure C.2: Barplots of the precision per class for the EmTAN-SVGP and raw-LTAE models com-
puted with the test data set only on the T31TCJ tile over nine runs.
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Figure C.3: Barplots of the recall per class for the EmTAN-SVGP and raw-LTAE models computed
with the test data set only on the T31TCJ tile over nine runs.





APPENDIXD

REPRODUCIBLE RESEARCH

In the interest of reproducible research, the data sets, the trained models and the land cover
maps are made available. Moreover, the implementation of all the models is provided. They
are given for each part: Part II and III.

D.1. Part II

D.1.1. Data sets
The classification data set preprocessed for each region can be downloaded at the follow-
ing link: 10.5281/zenodo.7099785. The boundary data set preprocessed for different sizes of
boundary can be downloaded at the following link: 10.5281/zenodo.7099783.

D.1.2. Best trained models
Best trainedmodels for each region and in global configuration are available here: 10.5281/zen-
odo.7104552. These models were used to produce the land cover maps of the next section.

D.1.3. Land cover maps
The land cover maps for all studied models on two different tiles (T31TCJ and T31TDJ ) in
both configurations are available for download: 10.5281/zenodo.7077887.

D.1.4. Code
The implementation of the models is made available in the following repository: https:
//gitlab.com/Valentine-Bellet/land_cover_southfrance_gp.

D.2. Part III

D.2.1. Data sets
The classification data set preprocessed can be downloaded at the following link: 10.5281/zen-
odo.8033058.
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D.2.2. Best trained models
Best trainedmodels (mTAN-GP,mTAN-MLP,mTAN-LTAE, and raw-LTAE) are available here:
10.5281/zenodo.8033364. These models were used to produce the land cover maps of the next
section.

D.2.3. Land cover maps
The land cover maps for all studied models on two different tiles (T31TCJ and T31TDJ ) are
available for download: 10.5281/zenodo.8033902.

D.2.4. Code
The implementation of the models is made available in the following repository: https://
gitlab.com/Valentine-Bellet/land_cover_southfrance_mtan_gp_irregular_sits.
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LAI Leaf area index. 71, 130

LCCS Land Cover Classification System. 39, 40

LDA Linear Discriminant Analysis. 155, 156, 189, 190

LIDAR Laser Imaging, Detection, And Ranging. 42, 46
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LSTM Long Short Term Memory. 75
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MCMC Markov Chain Monte Carlo. 122, 131
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ML Machine Learning. 64, 68, 71, 74, 77, 111, 123
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RSE Remote Sensing of Environment. 82

RVI Radar Vegetation Index. 130
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Titre : Intelligence ar�ficielle appliquée aux séries temporelles d'images satellites pour la surveillance des écosystèmes
Mots clés : télédétec�on, intelligence ar�ficielle, ecosystèmes, classifica�on grande échelle, processus Gaussiens, series temporelles d'images
satellites
Résumé : Dans un contexte de changement clima�que, la surveillance des écosystèmes est une mission essen�elle. En effet, cela permet de mieux
comprendre les changements qui peuvent affecter les écosystèmes mais aussi de prendre des décisions en conséquence afin de préserver les
généra�ons actuelles et futures. Les cartes d'occupa�ons du sol sont un ou�l indispensable en fournissant des informa�ons sur les différents types
de couverture physique de la surface de la Terre (e.g. forêts, prairies, terres agricoles). Actuellement, un nombre accru de missions satellites
fournissent un volume important de données gratuites et librement accessibles. Les séries temporelles d'images satellites (SITS), dont celles de
Sen�nel-2, notamment grâce à leurs très hautes résolu�ons, informent sur la dynamique de la végéta�on. Des algorithmes d'appren�ssage
automa�que perme�ent de produire de manière fréquente et régulière des cartes d'occupa�ons du sol à par�r de SITS. L'objec�f de ce�e thèse est
le développement d'algorithmes de classifica�on supervisée pour la produc�on de cartes d'occupa�ons du sol à grande échelle. Dans un contexte
opéra�onnel, quatre principaux défis se dégagent. Le premier concerne le volume important de données que les algorithmes doivent être capables
de gérer. Le second est lié à la prise en compte des corréla�ons entre les variables spectro-temporelles et leur extrac�on pour la classifica�on. Le
troisième, quant à lui, correspond à la prise en compte de la variabilité spa�ale: dans des zones géographiques étendues, la donnée n'est pas
sta�onnaire. Enfin, le quatrième défi concerne l'u�lisa�on de SITS irrégulièrement échan�llonnées et non alignées, principalement du aux condi�ons
météorologiques (e.g. nuages) ou à des dates d'acquisi�ons différentes entre deux orbites. Ce�e thèse est divisée en deux contribu�ons principales.
La première contribu�on concerne la mise en place de processus gaussiens stochas�ques varia�onnels (SVGP) pour des SITS à grande échelle. Des
millions d'échan�llons peuvent être u�lisés pour l'appren�ssage, au lieu de quelques milliers pour les processus gaussiens (GP) tradi�onnels. Des
combinaisons de fonc�ons de covariances ont été mis en place perme�ant notamment de prendre en compte l'informa�on spa�ale et d'être plus
robuste vis à vis de la variabilité spa�ale. Cependant, les SITS sont ré-échan�llonnés linéairement indépendamment de la tâche de classifica�on. La
deuxième contribu�on concerne donc la mise en place d'un ré-échan�llonnage op�misé pour la tâche de classifica�on. Un interpolateur à noyau
prenant en compte l'informa�on spa�ale permet de produire une représenta�on latente qui est donnée à notre SVGP. Les expérimenta�ons ont été
menées avec les SITS de Sen�nel-2 pour l'ensemble de l'année 2018 sur une zone d'environ 200 000 km^2(environ 2 milliards de pixels) dans le sud
de la France (27 tuiles MGRS). Ce disposi�f expérimental est représenta�f d'un cadre opéra�onnel. Les résultats obtenus montrent que les modèles
issus des deux contribu�ons sont plus performants que la méthode u�lisée pour les systèmes opéra�onnels actuels (i.e. forêts d'arbres aléatoires
avec des SITS linéairement ré-échan�llonnées u�lisant la stra�fica�on spa�ale).

Title: Ar�ficial Intelligence for Ecosystem Monitoring using Remote Sensing and Digital Agriculture Data
Key words: remote sensing, ar�ficial intelligence, ecosystem, large-scale classifica�on, Gaussian Processes, satellite image �me series
Abstract: In the context of climate change, ecosystem monitoring is a crucial task. It allows to be�er understand the changes that affect them and
also enables decision-making to preserve them for current and future genera�ons. Land use and land cover (LULC) maps are an essen�al tool in
ecosystem monitoring providing informa�on on different types of physical cover of the Earth’s surface (e.g. forests, grasslands, croplands).
Nowadays, an increasing number of satellite missions generate huge amounts of free and open data. In par�cular, satellite image �me series (SITS),
such as the ones produced by Sen�nel-2, offer high temporal, spectral and spa�al resolu�ons and provide relevant informa�on about vegeta�on
dynamics. Combined with machine learning algorithms, they allow the produc�on of frequent and accurate LULC maps. This thesis is focused on the
development of pixel-based supervised classifica�on algorithms for the produc�on of LULC maps at large scale. Four main challenges arise in an
opera�onal context. Firstly, unprecedented amounts of data are available and the algorithms need to be adapted accordingly. Secondly, with the
improvement in spa�al, spectral and temporal resolu�ons, the algorithms should be able to take into account correla�ons between the spectro-
temporal features to extract meaningful representa�ons for the purpose of classifica�on. Thirdly, in wide geographical coverage, the problem of
non-sta�onarity of the data arises, therefore the algorithms should be able to take into account this spa�al variability. Fourthly, because of the
different satellite orbits or meteorological condi�ons, the acquisi�on �mes are irregular and unaligned between pixels, thus, the algorithms should
be able to work with irregular and unaligned SITS. This work has been divided into two main parts. The first PhD contribu�on is the development of
stochas�c varia�onal Gaussian Processes (SVGP) on massive data sets. The proposed Gaussian Processes (GP) model can be trained with millions of
samples, compared to few thousands for tradi�onal GP methods. The spa�al and spectro-temporal structure of the data is taken into account
thanks to the inclusion of the spa�al informa�on in bespoke composite covariance func�ons. Besides, this development enables to take into account
the spa�al informa�on and thus to be robust to the spa�al variability of the data. However, the �me series are linearly resampled independently
from the classifica�on. Therefore, the second PhD contribu�on is the development of an end-to-end learning by combining a �me and space
informed kernel interpolator with the previous SVGP classifier. The interpolator embeds irregular and unaligned SITS onto a fixed and reduced size
latent representa�on. The obtained latent representa�on is given to the SVGP classifier and all the parameters are jointly op�mized w.r.t. the
classifica�on task. Experiments were run with Sen�nel-2 SITS of the full year 2018 over an area of 200 000 km^2 (about 2 billion pixels) in the south
of France (27 MGRS �les), which is representa�ve of an opera�onal se�ng. Results show that both methods (i.e. SVGP classifier with linearly
interpolated �me series and the spa�ally kernel interpolator combined with the SVGP classifier) outperform the method used for current opera�onal
systems (i.e. Random Forest with linearly interpolated �me series using spa�al stra�fica�on).
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