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Chapter 1

Introduction

Chapter Summary
Collective intelligence refers to the capacity of communities to collaboratively ad-

dress challenges, make decisions, and generate insights that surpass individual capa-
bilities. Collective intelligence is based on two phenomena: social information and
social influence. Social information is the knowledge and cues that individuals in a
group share with each other. Social influence is the process by which individuals
adjust their attitudes, behaviors, or opinions in response to social situations.

The concept of collective intelligence finds practical application through mech-
anisms such as stigmergy which is commonly found in animal and human societies.
Stigmergy is a coordination mechanism in which traces left by individuals in a medium
guide and stimulate their subsequent actions. Examples of stigmergy include ant for-
aging behavior, wasp comb building, and desire path creation. However, the digi-
tization of human society has given rise to a new form of stigmergy that relies on
digital traces. Examples of such stigmergic processes notably include rating and rec-
ommender systems that extensively use the digital traces left by their users.

Cooperation is the process by which groups of organisms work together for com-
mon or mutual benefits. The prevalence of cooperation among social species raises
questions about its evolution in a world where natural selection can favor selfish-
ness. Several mechanisms have been proposed to explain this evolution, including
kin selection, reciprocity, network reciprocity, and group selection. Stigmergy also
provides insights into unintended cooperation through indirect interactions. Compe-
tition, which operates at various levels, is another critical factor in the development
of cooperation. The rivalry between individuals and groups can be a catalyst for
improvement, but it can also create incentives for unethical or deceptive behavior.

Numerous strategies have been proposed and tested to enhance collective intel-
ligence in human groups. One way to do this is through changes in group size and
composition, or through changes in the network structure of interactions. Another
option is to improve social information exchange by increasing control over it and
reducing noise. Social nudges and bots can also be utilized to influence behaviors.

In the digital age, social information in the form of digital traces has a significant
impact on human decision-making. It is crucial to gain a deeper comprehension
of the societal impact of these traces, especially considering their vulnerability to
manipulation. In this context, this Ph.D. thesis aims to investigate how humans use
and interact with digital traces, with a focus on the conditions for cooperation and
the influence of competition on their utilization.
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1.1 Introduction

In today’s interconnected world, human interactions create complex patterns [Helbing,
2012; Ball, 2012; Gauvin et al., 2009; Barrat et al., 2008]. Like ants navigating their nest
or birds gracefully flocking across the sky, human groups exhibit a remarkable capacity
for coordination and cooperation. These collective behaviors, often characterized by their
emergent properties, have captured the imagination of researchers and thinkers for cen-
turies [Camazine et al., 2001; Sumpter, 2010; Dugatkin, 2002]. As we move deeper into
the digital age, our capacity to observe, analyze, and influence these behaviors has reached
unprecedented levels, offering new insights into the foundations of collective intelligence
in human societies [Stonier, 1992].

At the heart of this exploration is the concept of complex systems, which is relevant
to fields as diverse as biology, sociology, physics, and economics [Ball, 2006]. Complex
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systems are systems in which a large number of individual components interact, often in
nonlinear ways, giving rise to behaviors that cannot be easily predicted from the prop-
erties of individual elements alone. The emergent properties of these systems, where the
whole is greater than the sum of its parts, provide a powerful means of understanding the
complexity of human groups.

Emergence refers to the enigmatic phenomenon by which new patterns, structures, or
behaviors emerge from the interactions of individual agents within a system [Nicolis and
Nicolis, 2012]. Consider, for example, the murmuration, in which thousands of birds dis-
play synchronized movements across the sky, seemingly orchestrated by an imperceptible
force [King and Sumpter, 2012]. Notably, no single bird possesses the knowledge or or-
chestrates this remarkable show. Yet, together, they produce a mesmerizing manifestation
of collective intelligence. This emergence is not limited to the natural world; it extends
to the domain of human societies and the behaviors that emerge from the interactions of
people within groups [Ball, 2012; Goldstone et al., 2008].

Collective behaviors are the manifestations of these emergent properties in societies.
They cover a range of activities from problem-solving and decision-making to information
aggregation, and opinion formation. I will use this framework of collective behaviors to
unravel the complexity of collective intelligence in human societies.

1.2 Collective Intelligence in Human Groups

1.2.1 Definition

Collective intelligence represents the ability of communities to collaboratively tackle chal-
lenges, reach decisions, and generate insights surpassing individual capabilities [Bonabeau,
2009; Salminen, 2012; Woolley et al., 2015; Malone and Bernstein, 2015; Gunasekaran
et al., 2016]. Collective intelligence is characterized by the collaborative efforts of individ-
uals within a group that lead to the emergence of shared knowledge, innovative solutions,
and effective decisions. It goes beyond the mere aggregation of individual knowledge and
involves a complex combination of different points of view and information processing
mechanisms in social settings.

1.2.2 Types of collective problem-solving

Collective intelligence encompasses a variety of problem-solving approaches designed to
address specific challenges. This non-exhaustive section explores several categories of
collective problem-solving.

One category is estimation tasks, where individuals provide estimates that reveal how
diverse judgments aggregate into a collective estimate [Jayles et al., 2017]. Another is
opinion and knowledge aggregation, where a group must gather, aggregate, and synthe-
size opinions or knowledge to reach a unified perspective [Kameda et al., 2022]. Idea
collection emphasizes collaborative idea generation, fostering creativity to solve problems
[Bothos et al., 2009, 2012; Goncalo and Duguid, 2012]. Forecasting benefits from collec-
tive intelligence, providing insight into forecast accuracy and reliability [Sjöberg, 2009; Ball
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and Ghysels, 2018]. Consensus decision-making is the process in which individuals work
through conflicting perspectives to reach a unanimous decision [Dyer et al., 2008; Kameda
et al., 2012; Santos et al., 2016; Bose et al., 2017; Marshall et al., 2019; Kameda et al.,
2022]. Finally, coordination optimizes productivity between tasks, whether independent
or interdependent, to increase group efficiency [Kittur et al., 2009].

This comprehensive exploration illustrates the versatility of collective intelligence in
different contexts and highlights its ability to adapt to a wide range of challenges.

1.2.3 Social information

Social information, defined as the shared knowledge and cues exchanged among individ-
uals within a group, serves as a cornerstone in the coordination of group activities and
collective problem-solving [Camazine et al., 2001; Garnier et al., 2007; Couzin, 2007; Gold-
stone and Gureckis, 2009; Moussaid et al., 2009]. It is the means by which a collective
functions cohesively and efficiently. The importance of social information lies in its ability
to accelerate adaptive responses beyond the effectiveness achievable through individual
information gathering alone [Zentall and Galef Jr., 1988; Heyes and Galef, 1996; Danchin
et al., 2004; Laland, 2004; Duboscq et al., 2016].

The evolutionary advantages conferred by the utilization of social information are
particularly pronounced in the animal kingdom, where coordinated efforts are crucial for
survival and reproduction. This extends to diverse contexts, including foraging, decision-
making, division of labor, nest building, and colony defense [Camazine et al., 2001; Garnier
et al., 2007; Sumpter, 2010; Seeley, 2010]. The exchange of social information in these
settings is a strategic adaptation that enhances the collective competence of social groups.

1.2.4 Sharing social information

The dissemination of social information within a group involves several modes, each of
which influences the dynamics of collective intelligence.

Direct information sharing occurs through explicit communication channels that allow
individuals to transparently communicate knowledge, preferences, or insights to others.
This direct exchange is characterized by the clarity and immediacy of the information
conveyed, fostering a shared understanding among group members.

In contrast, indirect sharing of social information involves subtle cues, observational
learning, or implicit signals that shape individual behavior and decision-making processes
within the group [Baltzersen, 2022]. Individuals may adjust their actions based on ob-
served behaviors or outcomes of others, resulting in a form of implicit knowledge transfer.
This indirect sharing mechanism is particularly prominent in situations where explicit
communication is limited or in contexts where nonverbal cues play a critical role.

In most situations, however, social information exchange is a mixture of direct and
indirect exchange. These hybrid modes of information transmission often involve a com-
bination of explicit communication and observational learning. They contribute to the
development of a robust information network that enhances the adaptive capabilities of
the collective.
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The use of social information varies from person to person. While some people incorpo-
rate it into their decision-making process, others may entirely ignore it and rely solely on
their private information. There are even cases where individuals intentionally resist the
message conveyed by social information [Jayles et al., 2017]. Moreover, the same person
may adapt their approach to providing and using social information based on the con-
text at hand, reflecting the dynamic nature of individual decision-making and information
processing [Steinel et al., 2010].

1.2.5 Social influence

Social influence is a fundamental aspect of group dynamics, exerting a profound impact
on individual decision-making processes and shaping the emergent properties observed at
a group level [Asch, 1955; Cialdini and Goldstein, 2004; Cialdini, 2007; Moscovici, 2014].
It encompasses the ways in which individuals adapt their attitudes, behaviors, or opinions
in a social context.

Social influence manifests itself in various ways and includes phenomena such as con-
formity, peer pressure, compliance, and persuasion. Conformity is the tendency of individ-
uals to adjust their attitudes, behaviors, or beliefs to reflect those of a majority or societal
norm, even in the absence of explicit pressure. Peer pressure is similar to conformity, but
is specifically exerted by individuals who are similar in age, gender, or shared experiences.
Compliance, on the other hand, involves individuals adjusting their behavior in response
to a direct request or command, often driven by a desire for approval or to avoid con-
frontation. Finally, persuasion involves influencing others through the use of rhetoric and
communication strategies.

Numerous factors play a role in the dynamics of social influence, including the strength
of interpersonal relationships, the credibility of information sources, and the susceptibility
of individuals to conform to or deviate from group norms. Importantly, social influence
is not inherently negative, and its effects depend on the specific context and underlying
motivations at play.

1.3 Stigmergic Problem-Solving

1.3.1 Stigmergy as a universal coordination mechanism

While studying the coordination mechanisms of termites, Pierre-Paul Grassé introduced
the concept of stigmergy in 1959 [Grassé, 1959; Baltzersen, 2022]. Stigmergy is based
on the fundamental principle that traces left by an individual in the environment serve
as informational cues that elicit responses from other individuals, whether the same or
different [Theraulaz and Bonabeau, 1999; Giuggioli et al., 2013; Heylighen, 2016a]. The
term “stigmergy” is etymologically rooted in the Greek words “stigma”, meaning “sign”,
and “ergon”, meaning “work”, and more generally, “action”, indicating the intrinsic link
between the signs left by individuals and the subsequent actions of others.

In stigmergic processes, individuals appear to be doing things on their own, almost
randomly. However, when observed as a collective, coherent and coordinated behavior
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emerges. Stigmergy is deeply rooted in the notion of indirect interactions between indi-
viduals within a group, leading to the spontaneous emergence of collective actions free from
centralized control or open communication. Within this framework, traces function as an
external memory that allows individuals to inform their decisions and actions [Theraulaz
and Bonabeau, 1995; Garnier et al., 2007; Khuong et al., 2016; Collignon and Detrain,
2021].

1.3.2 Different types of stigmergy

Stigmergy can be divided into four distinct categories based on two key distinctions: quan-
titative vs. qualitative and marker-based vs. sematectonic [Heylighen, 2016b; Baltzersen,
2022; Van Dyke Parunak, 2006].

Quantitative stigmergy involves actions whose intensity and frequency depend on the
strength of the trace left by the individual. In simple terms, a stronger trace results in more
intense actions, similar to the concept of a potential field in physics. Qualitative stigmergy
works differently. Actions are no longer determined by the intensity of the trace, but
by specific trace characteristics or environmental conditions that trigger different actions
[Theraulaz and Bonabeau, 1999].

Another important distinction lies in the nature of the trace itself. Marker-based
stigmergy occurs when individuals intentionally leave specific markers as signals for others.
Conversely, sematectonic stigmergy occurs when there are no explicit markers; instead,
the current state of the environment itself serves as a trace that influences subsequent
actions.

1.3.3 Stigmergic processes in bacterial and animal societies

Manifestations of stigmergy within animal societies are most prominent in social insects,
including ants, termites, bees, and other [Theraulaz and Bonabeau, 1999]. Among these,
the foraging behavior of ants stands out as an iconic illustration of stigmergic principles
in action (see Figure 1.1A). When ants independently discover different food sources,
stigmergic mechanisms come into play, as these insects effectively select the closest and
most accessible source to the nest [Goss et al., 1989; Deneubourg et al., 1990; Beckers
et al., 1990]. The pheromone left by the ants is more important when the food source
is closer, so more ants will go to that source, amplifying the pheromone. This complex
process ultimately selects the optimal path.

The sequential comb building of social wasps is another great example of stigmergy,
where the configuration of the comb itself provides enough information to ensure the
coordination of the wasps’ building activity (see Figure 1.1B) [Theraulaz and Bonabeau,
1995, 1999; Khuong et al., 2016]. Indeed, as the wasps add cells to the comb, the choice
of cell location is not arbitrary but is intricately linked to the current configuration of the
comb. The more walls already built, the more likely a wasp is to choose that particular
location to build a cell. This preference for sites with more walls introduces a qualitative
dimension to the process

Stigmergy is also present in solitary species, as exemplified by the nest construction
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A

C

B

Figure 1.1: Examples of stigmergy in animal societies. (A) Foraging behavior of
ants. At the beginning of the experiment (picture b), the ants explore all possible paths to
search for food. However, over time (picture c), they converge onto the shortest path. (B)
Comb building of social wasps. Each wasp accesses the current configuration of the comb
and adds a new cell to the location with the most walls already constructed. By doing so,
the wasps alter the configuration of the comb, which affects the location of the following
cells. (C) Nest construction of the solitary wasp Paralastor sp. The wasp constructs its
nest in several stages, each triggering the next one. Credits: (A) [Goss et al., 1989], (B) and
(C) [Theraulaz and Bonabeau, 1999].

of the wasp Paralastor sp (see Figure 1.1C) [Theraulaz and Bonabeau, 1999]. The nest
construction process unfolds in discrete stages, with each stage triggering a specific action
by the wasp. Remarkably, the wasp does not require a premeditated plan or memory
for this task, as it can determine its current stage by examining the work it has already
completed. This lack of memory becomes apparent when the sequence of stages is dis-
rupted. For example, if an observer makes a hole that triggers the first stage on an almost
completed nest, the wasp will not finish the nest but will reset its construction process
and start again from the beginning [Smith, 1978]. This intriguing experiment highlights
the concept of stigmergy, where the wasp’s actions are closely linked to the current state
of the environment.

While stigmergy has received attention primarily in the context of social insects, stig-
mergy is also prevalent in bacterial communities [Gloag et al., 2015]. Bacteria use chem-
ical cues (chemotaxis), such as quorum sensing molecules, to modulate their behavior in
response to collective actions [Li and Tian, 2012]. Bacteria also exhibit trail-following
behavior through the use of sematectonic and quantitative stigmergy [Gloag et al., 2013].
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A
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Figure 1.2: Examples of stigmergy in human groups. (A) Example of desire
path showcasing an alternative route where individuals naturally traverse the round-
about instead of following the designated pathway. (B) Revision history that de-
scribes the additions to and deletions from a Wikipedia article. (C) Methods used by
three websites (Amazon, TripAdvisor, and IMDb) to display user ratings. Credits: (A)
https://imgur.com/JIXACph.

1.3.4 Stigmergic processes in human groups

Stigmergy, which originated in the study of social insects, has found increasingly relevant
applications in understanding human behavior [Doyle and Marsh, 2013; Baltzersen, 2022;
Van Dyke Parunak, 2006]. While some forms of social information exchange in human
groups are direct, such as face-to-face conversations, human communication is mostly
indirect, much like the traces ants leave in their environment. Centuries of human history
attest to the profound impact of these traces on society, from handwritten notes and copied
books to the modern digital age with its disruptive technologies.

In non-digital settings, a prime example of sematectonic quantitative stigmergy is
the phenomenon of “desire paths” in urban environments, where people take shortcuts
across grassy areas instead of following designated paths (see Figure 1.2A). These desired
paths, etched by individuals seeking more efficient routes, guide the behavior of others,
gradually reinforcing and formalizing the paths as stigmergic markers [Helbing et al.,
1997]. City planners often recognize the natural development of these informal pathways
and intentionally incorporate them into formal infrastructure to align with the organic
flow of human movement (see Figure 1.3).

The proliferation of digital technologies presents new challenges and opportunities for
human adaptation [Cochoy et al., 2017; Golder and Macy, 2014]. In online environments,
human behavior has been transformed into a form of digital stigmergy [Doyle and Marsh,
2013; Baltzersen, 2022; Van Dyke Parunak, 2006]. Individuals now leave digital traces,
often referred to as data, across the vast expanse of the Internet. These traces encompass
a spectrum of activities, from passive records such as web cookies and browsing history to
active engagements such as social media posts, comments, likes, and shares. These digital
traces serve as markers that guide subsequent actions, shape user behavior, and contribute
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A B C

Figure 1.3: Dynamics of desire paths. Satellite images of the entrance area of the
Université de Toulouse III – Paul Sabatier. (A) 2006: Absence of any discernible desire
path. (B) 2013: A desire path appears after the construction of a metro and bus hub in
the upper left corner. (C) 2023: The university builds an official path following the desire
path. However, the introduction of Téléo, a cable car line in the lower left corner, leads
to the formation of new desire paths. Credits: Google Earth.

to the emergence of collective responses.

Wikipedia, the collaborative online encyclopedia, is an example of digital stigmergy in
action [Loveland and Reagle, 2013; Rezgui and Crowston, 2018]. Contributors from around
the world create and edit articles, leaving traces of their work in the form of revisions and
discussions (see Figure 1.2B). These traces guide subsequent edits and shape the evolution
of articles, illustrating how digital markers influence collective knowledge-building efforts.
This is an example of sematectonic qualitative stigmergy.

Online platforms such as TripAdvisor, eBay, Amazon, and Uber provide a rich land-
scape for exploring marker-based quantitative stigmergy. These platforms rely on rec-
ommendation and rating systems to help users make informed decisions. Users actively
participate by providing ratings, reviews, and feedback, each of which acts as a marker
(see Figure 1.2C). High ratings and positive feedback influence others to choose certain
products, services, or experiences. Understanding this aspect of digital stigmergy, and in
particular how digital markers in the form of ratings and reviews guide individual decisions
and foster a collective response that shapes the dynamics of these online ecosystems, is the
focus of this Ph.D. thesis [Lü et al., 2012; Hennig-Thurau et al., 2012; Jesse and Jannach,
2021].

However, the use of digital traces is very sensitive to noise and manipulation [Her-
locker et al., 2004; Gunes et al., 2014; Grandi and Turrini, 2016]. Indeed, in competitive
situations, malicious spammers can manipulate social information by deliberately giving
high (respectively, low) ratings to certain low (respectively, high) quality items. There-
fore, knowing the way individuals share and use digital traces in different contexts is a
crucial step to understanding how groups of individuals can cooperate through stigmergic
interactions and can exhibit collective intelligence.
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1.4 Cooperation and Competition

1.4.1 Cooperation in human groups

Cooperation is the process where groups of organisms work together for common or mutual
benefits [Axelrod, 2006; Rand and Nowak, 2013]. It is a ubiquitous phenomenon that can
be observed among individuals of the same species [Dugatkin, 1997], and even between
individuals of different species, for example, via symbiosis or mutualism [Bronstein, 2015].
However, the highest levels of cooperation are rare and are only found in social species,
such as social insects or human societies. But cooperation in human groups is even more
surprising because of its scale, both in terms of the number of individuals involved and
the degree of cooperation [Melis and Semmann, 2010]. These altruistic acts, occasionally
extending to strangers who will never see each other again, may sometimes defy intuition,
especially considering that genuine altruism often entails a personal cost to the altruistic
individual [Kitcher, 1993; Fehr and Fischbacher, 2003; Feigin et al., 2014; Wilson, 2015].

Cooperation, and more precisely its evolution, is therefore considered quite paradox-
ical. How such a phenomenon could have evolved in a world in which natural selection
introduces competition which often favors selfishness? Hence, there must be other pro-
cesses at play that favor the evolution of cooperation above the simpler selfish acts.

1.4.2 The evolution of cooperation

The question of the evolution of cooperation has long been the focus of many studies [Ax-
elrod, 2006]. In 2006, Novak summarized these mechanisms into five categories, shedding
light on the various ways in which cooperation can emerge and persist in evolutionary
contexts [Nowak, 2006].

• Kin selection is the idea that individuals may favor cooperation when it benefits
their genetically related relatives. This concept is based on the notion that genes
that promote cooperative behavior can spread indirectly through shared family ties,
ultimately leading to the evolutionary success of cooperative traits. This mechanism
is often observed in social organisms such as bees or ants, where individuals work
together to support their genetic line.

• Direct reciprocity is well summarized by the proverbial expression “You scratch my
back, and I’ll scratch yours”. In this scenario, individuals cooperate with others on
a tit-for-tat basis, providing help or resources to those who have previously helped
them. This creates an ongoing cycle of cooperation and mutual support within social
groups. Direct reciprocity is particularly prominent in species with long periods of
interaction and the ability to remember past interactions, such as certain primates
and humans.

• Indirect reciprocity introduces a more complex dimension to cooperation, often re-
ferred to as “reputation-based”. In this context, individuals cooperate not only based
on personal interactions but also consider the reputation of others. They tend to
favor cooperation with individuals who have a history of cooperative behavior, and
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this system relies on the transmission of information about the behavior of individ-
uals within a group. This mechanism is present in human societies and increasingly
recognized as crucial for shaping cooperation in large, anonymous populations [Pan-
chanathan and Boyd, 2004; Santos et al., 2021].

• Network reciprocity extends the idea of cooperation within a particular group or
network. In this framework, cooperation is more likely to be sustained when it
occurs among individuals who share common interactions and connections. Such
networks create clusters of cooperators who benefit from working together. Network
reciprocity is evident in various contexts, such as social alliances in non-human
species and cooperative behavior in online communities or social groups.

• Group selection introduces a broader perspective, emphasizing that cooperative
groups can outperform non-cooperative ones at the group level [Wilson, 2015]. In
this scenario, groups with a higher prevalence of cooperation have a better chance
of survival and reproduction, contributing to the long-term persistence of coopera-
tive traits. Although group selection has been controversial in evolutionary biology,
it remains an important mechanism for understanding how cooperation evolves in
different species and societies [Richerson et al., 2016].

These mechanisms that promote cooperation under individual-level competition inter-
act with the competition that occurs at other scales of biological organization. They can
impact both the individual advantage of defection and the collective benefit of coopera-
tion. Evolutionary game theory has been extended to describe natural selection operating
at multiple levels of organization in a group-structured population. This includes com-
petition among individuals within a group and competition among groups of individuals
[Wilson, 1975; Wilson and Dugatkin, 1997; Traulsen and Nowak, 2006; Luo, 2014; Simon
et al., 2013; Cooney, 2019]. This generalization provides a framework for exploring the
countervailing effects of the individual incentive to defect and the collective incentive to
cooperate, highlighting the evolutionary tug-of-war between levels of selection. In this
framework, altruism evolves when between-group selection prevails over within-group se-
lection [Wilson, 2015].

Over the years, stigmergy, described in the previous section, has also been proposed to
explain cooperation. In stigmergy, indirect interactions can lead to unintended cooperation
with individuals [Chiong and Kirley, 2012].

1.4.3 The dual nature of competition

As a fundamental aspect of human and animal behavior, competition plays a multifaceted
role in shaping societies, driving innovation, and influencing the dynamics of cooperation
[Society and Press, 1993; Axelrod, 1997; Beersma et al., 2003; Toma and Butera, 2015;
Wilson, 2015]. In essence, competition can be defined as rivalry among individuals or
groups for limited resources, opportunities, or advantages. It occurs when individuals
or entities strive to outperform others to secure benefits that can range from tangible
rewards to intangible recognition. A compelling example of competition in nature is
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foraging, the search for and gathering of food. These competitive interactions often occur
at multiple levels: within groups, between groups, and even between species, creating
multilevel complexity.

Competition is often a catalyst for innovation and performance improvement [Gilbert,
2006]. The pursuit of an edge over rivals forces individuals and organizations to push
their limits, explore new ideas, and adopt new strategies. This drive to outperform the
competition can lead to breakthroughs that would not have been possible in the absence
of competition. In the business sector, companies competing for market share invest in
research and development, resulting in the creation of new products and services. This
sustained cycle of innovation benefits consumers by offering them greater choices and
higher-quality products.

However, when success is measured solely in terms of outperforming others, there is less
inclination to share critical knowledge, resources, or support. Individuals may choose to
share less information or even resort to sharing misinformation [Mokkonen and Lindstedt,
2016]. In addition, the competitive environment can create incentives for unethical or
deceptive behavior [Kurvers et al., 2021]. This not only compromises the integrity of the
competition but also undermines trust among participants, threatening the structure of
the collaborative effort and lowering overall group performance and payoff [Barker et al.,
2012].

1.5 Enhancing Collective Intelligence

Many strategies for enhancing collective intelligence in human groups have been proposed
and tested. This section provides a non-exhaustive review of some of these strategies that
influence group performance and collective intelligence, based on empirical research.

1.5.1 Exchange of social information

The exchange of social information, a fundamental aspect of collective intelligence, plays a
critical role in shaping group decisions [Moussaid et al., 2009]. By fostering communication
and information flow among individuals, this process leverages the diverse knowledge and
perspectives within a group and can enhance collective intelligence and group performance.

The exchange of social information facilitates the incorporation of diverse perspectives
within the group. Studies suggest that diverse groups exhibit enhanced problem-solving
capabilities due to the variety of insights and approaches brought to the table [Hong
and Page, 2004]. Moreover, studies have shown that social information can significantly
improve estimation accuracy, highlighting its positive impact on decision-making processes
[Jayles et al., 2017].

Furthermore, the exchange of social information fosters a collaborative environment
where individuals can leverage the collective knowledge of the group. This collaborative
synergy is exemplified in domains ranging from scientific research to business innovation,
where information sharing sparks creativity and accelerates problem-solving processes
[Goncalo and Duguid, 2012]. In essence, social information sharing acts as a catalyst
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for the emergence of novel ideas and solutions that may not have been possible within the
confines of individual knowledge.

Social information can therefore enhance collective intelligence, but one should consider
the format of this information. Research suggests that presenting aggregated information
tends to be more effective than providing individual pieces [Jayles et al., 2021b; Surowiecki,
2005; Mavrodiev et al., 2013]. In addition, studies suggest that due to biases inherent to
human cognition, there are cases where presenting incorrect information as a strategic
countermeasure against the effects of these biases may be more beneficial than providing
correct information [Jayles et al., 2020b, 2021a; Kao et al., 2018].

However, social information sharing is not without its challenges. The risk of confor-
mity, as demonstrated in Asch [1955], is a notable concern. Individuals may succumb to
the opinions of the majority, potentially leading to suboptimal decisions. This conformity
risk can be exacerbated by information cascades, famously illustrated by Milgram’s exper-
iment [Milgram et al., 1969], in which individuals, influenced by others, engage in herding
behavior, potentially distorting the decision-making process [Schöbel et al., 2016].

Another critical limitation of social information sharing, particularly evident in so-
cial networks, is the phenomenon of echo chambers [Cinelli et al., 2021]. In these echo
chambers, individuals within like-minded groups limit their exposure to diverse perspec-
tives, thereby fostering information bias. The echo chamber effect poses a challenge to the
broad exploration of ideas and the inclusion of diverse viewpoints, potentially hindering
the collective intelligence of the group.

1.5.2 Size and composition of the group

The concept of wisdom of crowds suggests that aggregating the judgments of many indi-
viduals can yield more accurate results than those of individual experts [de Condorcet,
1785; Galton, 1907; Surowiecki, 2005]. This phenomenon exploits the diversity of opin-
ions and judgments within a group. Despite the possibility that individual estimates may
deviate significantly from the true value, the aggregation of these diverse errors tends to
cancel out, resulting in a more accurate collective judgment. Consequently, the larger the
crowd, the greater the potential accuracy of the estimate. Moreover, empirical research
on public goods games shows that group size can have a positive effect on cooperative
behavior [Pereda et al., 2019].

However, the effectiveness of the wisdom of crowds depends on certain conditions, es-
pecially the independence or diversity of individual judgments [Page, 2008]. Experimental
evidence supports this, highlighting that social influence can undermine the wisdom of
crowds [Lorenz et al., 2011]. In cases where individuals observe each other’s beliefs, their
estimates tend to converge, reducing diversity without a proportional increase in group
accuracy. Additionally, when individuals are reluctant to change their beliefs beyond a cer-
tain threshold, this can lead to the formation of several distinct opinion clusters [Deffuant
et al., 2000].

While the wisdom of crowds works well for simple situations, the complexity of real-
world situations introduces nuances. Studies suggest that in these more complicated
situations, smaller groups often outperform larger ones [Kao and Couzin, 2014]. This
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underscores the importance of considering the nature and complexity of the task when
determining the optimal group size for collective decision-making.

1.5.3 Network structure

The topology of social networks profoundly affects the transmission and assimilation of
information within a group [Friedkin and Johnsen, 1999; Newman, 2003; Centola, 2022].
For example, studies have shown that groups organized as small-world networks exhibit
enhanced signal-propagation speed and computational power due to a balance between
local clustering and global connectivity [Watts and Strogatz, 1998; Barrat and Weigt,
2000]. Thus, understanding and intentionally manipulating network structures can be
used to enhance collective decision-making [Horsevad et al., 2022].

In addition, Granovetter’s theory of the strength of weak ties [Granovetter, 1973] sug-
gests that individuals who act as bridges between different clusters in a network facilitate
the flow of information. These efficient networks thus facilitate information transfer and
increase the collective problem-solving capacity of the entire group. However, Centola’s
work on complex contagion [Centola, 2018] shows that counterintuitively, inefficient net-
works that facilitate knowledge transfer across groups can be more effective for complex
problem-solving tasks.

1.5.4 The role of noise in group decision-making

Noise in the context of group decision-making can be conceptualized as extraneous and
irrelevant information that introduces an element of unpredictability and randomness into
the outcome [Tversky and Kahneman, 1974]. It materializes as a deviation from the
relevant data and has a profound impact on the accuracy and coherence of group decisions.

It is important to distinguish between noise and bias. While bias involves systematic
errors that consistently bias decisions in a particular direction, noise introduces a degree of
variability and inconsistency that leads to erratic outcomes that can be difficult to predict
and control [Kahneman et al., 2021].

To effectively mitigate the disruptive effects of noise, groups can adopt structured de-
cision frameworks. For example, using redundancy in decision-making, where multiple
people contribute to the decision or the same people evaluate the decision multiple times,
can help identify and counteract the effects of noise. Another increasingly common ap-
proach is to use algorithms to facilitate decision-making. By systematically processing
information and reaching consistent decisions, algorithms have the potential to reduce
noise.

However, it is important to recognize that algorithmic noise reduction is not with-
out its challenges. While algorithms can reduce noise, they can also introduce bias and
discrimination into the decision-making process. This is particularly difficult to identify
and correct because the data used to train algorithms may have inherent biases, and
correlations within the data can perpetuate and exacerbate existing biases [O’Neil, 2017].

Achieving the optimal noise balance to maximize collective performance is a nuanced
task. While aiming for zero noise may seem practical, it may not be desirable. Indeed,
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a low level of noise can contribute to a diversity of perspectives and prevent groupthink,
fostering a more robust decision-making environment. Therefore, the focus should be
on managing and calibrating the level of noise to improve decision outcomes without
compromising the integrity of the process.

1.5.5 Social nudges and bots

Nudges, which are subtle choice designs that guide individuals toward certain choices
without prohibiting options or restricting individuals, are becoming more common in our
society [Thaler and Sunstein, 2008]. Nudging has been used as a tool with more or less
success [Kosters and Van der Heijden, 2015] by governments and companies [Moseley
and Stoker, 2013]. In addition, online recommendation systems use digital nudging to
influence user behavior through personalized suggestions, influencing choices in areas such
as e-commerce and social media [Jesse and Jannach, 2021].

Recognizing the impact of nudges on individual decision-making, there is potential to
harness these principles to enhance collective intelligence. By strategically implementing
nudging strategies in collaborative settings, one may optimize group dynamics and foster
more informed and effective collective decision-making processes [Mele et al., 2021].

One of the possible methods to nudge individuals is to use social bots, which are
automated agents on social platforms. These tools have the potential to enhance col-
lective intelligence [Jayles et al., 2020a; Ali Mehenni et al., 2021]. However, bots on
social platforms are often used maliciously to spread misinformation [Ferrara et al., 2016;
Broniatowski et al., 2018]. Therefore, ethical considerations regarding transparency and
accountability need to be carefully addressed.

1.6 Outline of the Thesis

In this context, it is clear that digital traces are playing an increasingly important role in
shaping our daily lives and influencing human decision-making [Chavalarias, 2022]. Given
their susceptibility to manipulation, it becomes imperative to gain a deeper understanding
of their societal impact. Therefore, the main objective of this Ph.D. thesis is to examine
how humans use and interact with digital traces, to improve our understanding of their
effects on human decision-making and society as a whole. The research will specifically
analyze the conditions under which cooperation can arise through the use of digital traces,
and examine how competition influences human utilization and interaction with these
traces.

To address these questions, the thesis begins with three chapters devoted to materials
and methods. In Chapter 2, I present the Stigmer game, a game developed before the
start of the thesis and refined during the thesis. This game, designed as an information
search task inspired by recommendation systems, serves as the basis for all analyses in the
thesis. In Chapter 3, I present the main observables essential to our analysis, justifying
their selection and explaining their usefulness. Chapter 4 outlines the principles of the
agent-based model used to model the behavior of a player of the Stigmer game. This
versatile model allows us not only to create agents that mimic human behavior for a
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deeper understanding of their behavior but also to identify optimal strategies in different
situations. In addition, agents following this model can play alongside humans and actively
interact with them.

The thesis then proceeds through three result-oriented chapters. Chapter 5, elucidates
the ability of humans to use stigmergic interactions to promote cooperation within a group.
It also shows the effect of competition on the behavior of participants and its impact
on cooperation and deception. Chapter 6 examines the effect of group composition on
individual and collective performance, using a setup where a human interacts with four
bots governed by the model described in Chapter 4. Chapter 7 examines the impact of
different levels and types of competition on individual and collective behavior.

Finally, Chapter 8, serves as the thesis conclusion. This is where the synthesis of the
findings takes place, with a discussion that reinforces the implications of the results in the
broader context of the research landscape.
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Chapter 2

Experimental Design

Chapter Summary
The Stigmer game is a multiplayer game in which participants engage in a col-

lective search for information in a digital environment. Originally designed by Guy
Theraulaz and Clément Sire, several extensions of the Stigmer game have been de-
veloped and studied experimentally and theoretically during my Ph.D. thesis. The
Stigmer game reproduces certain aspects of rating systems used on many platforms
on the Internet. The primary objective for the players is the identification of the best
options among available ones, with the help of only indirect interactions in the form
of collective ratings.

In the game, participants are presented with a grid of cells (the available options)
each containing a hidden value. In successive rounds, each player sequentially discov-
ers and rates Nturns different cells. After each round, the colors of the cells change
according to the ratings given by the players since the beginning of the game. The col-
ors of the cells, based on these ratings, are the only means of communication available
to the participants.

The game is packaged in a versatile web application that can be accessed from
any location and device. This online platform provides the flexibility to run multiple
game variations, each with subtle changes in the gameplay such as number of players,
round, score calculation, etc. It provides participants with a user-friendly interface
for an enjoyable gaming experience and gives us convenient access to configure and
track the progress of experiments.

During my Ph.D. studies, we conducted several series of experiments, which are
summarized at the end of the present chapter and addressed in detail in Chapters 5
to 7. Each session lasted one hour, during which the participants played a dozen
games. At the end of the session, participants received a monetary reward that could
be correlated to their performance in finding the best options in the game. Changing
this reward changes the incentives of the players and allows to tune the intragroup
and intergroup competition. Therefore, this experimental setup is an excellent tool
for studying cooperation and competition processes within and between groups.

The anonymized data collected from all of these experiments serve as the basis for
the analysis and modeling in Chapters 5 to 7.
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The research presented in this thesis originated from a collaboration between the Labo-
ratoire de Physique Théorique (LPT), the Centre de Recherches sur la Cognition Animale
(CRCA), and the Toulouse School of Economics (TSE). The main objective was to inves-
tigate stigmergic interactions within human groups. To achieve this, a novel game was
developed, inspired by the rating systems used in many online commercial websites, in
which participants engage in a collective information search task through a digital inter-
face. In this game, players must find the best available options in their environment by
solely communicating via indirect interactions taking the form of digital traces.

This chapter begins with an introduction to the theoretical basis of the game, followed
by a description of its implementation. Then, I present the experimental procedure, detail
the data collection, and briefly describe several variations of the game (and their main
motivations) used in the actual experiments, which are analyzed in Chapters 5 to 7.

2.1 The Stigmer game

The idea behind the game, which we named Stigmer, is to reproduce processes observed
in a star rating system [Lü et al., 2012]. In this game, Nplayers players are instructed to
identify the cells with high values within a grid containing hidden numbers. The only
communication form allowed among them is the ratings they assign to the cells they
explore.

This game draws parallels to popular online marketplaces and platforms like Amazon,
TripAdvisor, and eBay, where users rate products, services, or sellers, aiming at finding the
best possible choice. While we acknowledge that the game does not capture all aspects
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3 1 2 27 51 2 2 3 2 0 2 0 2 3 6
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44 99 0 28 3 0 4 2 1 9 1 0 8 11 1

Figure 2.1: Example of a grid with the corresponding cell values. Random shuffling
of the 225 values of the 15 × 15 grid used in the game.

of real-life situations, it does investigate analogous processes. These processes include:
(i) the exploration of available options (cells in our game; products in an online store),
which are strongly influenced by their current ratings, (ii) the participants’ evaluation
of these options, which is primarily influenced by the quality of the chosen option, and
(iii) the dynamical evolution of the ratings.

2.1.1 Grid and cell values

Players face a grid consisting of a total of N cells, arranged in a grid. Each cell contains a
hidden value. In our experiments, we used a 15 × 15 grid, so that N = 225. An example
of such a grid is shown in Figure 2.1.

The values within the cells are integers ranging from 0 to 99. The distribution of these
values exhibits a predominance of small values, with only a few larger ones. The mean
value across all cells is 9.7, while the median value is only 2. The exact distribution of
these values is shown in Figure 2.2. Due to the scarcity of high-value cells, this distribution
should encourage cooperation if agents want to uncover these high-value cells.

It is important to note that although the values remain the same throughout each
game, they are initially shuffled, resulting in a unique arrangement for every game played.

2.1.2 Round

A game is divided into Nrounds successive rounds. In each round, each player must visit
and rate Nturns distinct cells, independently of the others. In the actual experiments,
we use Nrounds = 20 and Nturns = 3, which offers a compromise between a large enough
number of visited cells (3 × 20 = 60 per player for a total of 300 > N = 225 cells for
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Figure 2.2: Distribution of the cell values. Distribution of the 225 cell values used in
the game. The mean is 9.7 and the median 2.

five-players games) and a short enough game duration allowing to conduct a dozen games
per one-hour session.

When a cell is visited, its hidden value is revealed to the player (see Figure 2.3). The
player is then required to rate the cell using a scale of 0 to 5 stars. After rating the cell,
the value disappears, and a cross indicates that the cell has been visited. The player can
then proceed to visit and rate another cell. If the player has already visited and rated
Nturns cells, they must wait for the other players to do so. It is important to note that
players are not permitted to revisit the same cell more than once within a single round.
However, they may revisit cells in subsequent rounds.

After each player has visited and rated their Nturns cells, the round ends. The ratings
from all players are then combined, and the colors of the cells are updated to reflect
the collective ratings. The players then proceed to the next round and repeat the same
process.

2.1.3 Colors

Players do not have direct access to each other’s ratings. Instead, they perceive the
ratings through the colors of the cells, which change over time. The colors are related to
the fraction of stars each cell has received since the start of the game, which is calculated
as the sum of all ratings for that particular cell divided by the sum of all ratings for all
cells.

The colors range from white to black through a gradient of red (see Figure 2.4). In
this gradient, white represents the absence of stars, indicating that a cell has either never
been visited or has been visited but always rated 0. Conversely, black indicates that the cell
contains all the stars. The intensity of the red hue becomes darker as the fraction of stars
within the cell increases. See Figure 2.5 for an example of a game where the evolution of
the colors of the cells can be observed during the game.

The exact RGB color value for a cell, c(P ), corresponding to the fraction of stars it
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Figure 2.3: Illustration of the cell selection and rating. The image displays the grid
of hidden values, with two black crosses indicating the cells that have already been visited
during the round. Additionally, it shows the value of the currently selected cell and the
rating selection interface.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of stars in the cell

Figure 2.4: Color scale. Color scale of the visited cells as a function of the fraction of
stars used to rate the cells since the beginning of a game.
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Figure 2.5: Evolution of the colors of the cells during the game. At the beginning
of the game (round 0), all cells are white. As the round number increases, more cells are
colored, with some cells being darker than others. All cell values are displayed in this
figure, but they were hidden from the players during the game: players could only see the
value of the cells that they were currently visiting.
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contains, P , is determined using the following formula:

c(P ) =

RGB(1, 1 − 2x(P ), 1 − 2x(P )) if 0 ≤ x(P ) ≤ 1/2
RGB(2(1 − x(P )), 0, 0) if 1/2 < x(P ) ≤ 1

(2.1)

where x(P ) =
√

P . Note that the color does not scale linearly with the fraction of stars,
but rather with the square root of the fraction. This decision was made because of the
typical small magnitude of the fractions P involved. A linear scale x(P ) = P would not
provide enough contrast, resulting in most cells appearing almost white. The square root,
on the other hand, provides better visibility, ensuring that cells are clearly distinguishable.

At the start of the game, the fraction of stars within each cell being undefined, a
convention has been adopted where every cell is white. This convention ensures that the
white color uniformly represents the absence of stars in each cell. With this convention,
the game maintains a coherent visual representation, allowing players to easily identify
and differentiate cells that have yet to receive any stars.

2.1.4 Score

The game offers the option to play with or without a scoring system. In the former
scenario, the player’s score for each round is determined by their actions during that
round. This includes the value of the cells visited by the subject and, if applicable, their
corresponding rating.

In all experiments presented in this work (see a summary in Section 2.4 of this chapter
and a more detailed description in Chapters 5 to 7) where the game included a score, the
score of a player increases by the value of each visited cell. Hence, the score is independent
of the rating given by the player to the visited cells. The final score of a player is calculated
by summing the values of the cells visited during the twenty rounds of the game. One can
then even define the score of a group of players playing on the same grid as the sum of
the final scores of the group members.

Note that other definitions of the score, not addressed in this Ph.D. thesis, can be
investigated, illustrating the richness of the Stigmer game. For instance, a player’s score
may increase by the value of the cells visited multiplied by their rating. To prevent having
only five-star ratings, there needs to be a maximum number of stars (eight, for example)
that can be used in a given round. This score definition encourages players to carefully
choose which cells to place the eight stars and allocate them to the cells with the highest
values. It is a form of nudging that encourages players to mark high-value cells, which
appear darker on the grid and disclose them to other players. The score definition fosters
collaboration implicitly.

When the game includes a scoring mechanism, participants receive real-time updates
on their cumulative scores throughout the game. This feature allows them to actively
track their progress, giving them valuable insights into their performance. Furthermore,
upon reaching the end of the game, players are presented with a comprehensive table that
displays the final scores and corresponding rankings of all players in the game. This table
serves as a comparative reference, allowing each player to evaluate their performance
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within the game relative to that of the others. By presenting both the final score and
ranking, players can gain a comprehensive understanding of their achievements and overall
standing within the game. This comes important when considering repetitions of this
game.

2.2 Implementation of the Game

2.2.1 Web application

The experiments were conducted using a web application developed specifically for the
Stigmer game.

A first version of the application was developed by the company ANDIL (https:
//www.andil.fr) for the preliminary experiments conducted in 2017. This version ran
on an admin computer, with player computers connected to the admin computer through
a Local Area Network (LAN). The first version solely included a user interface for the
players, while the admin had to manually modify the code of the application to adjust
game parameters.

During my Ph.D., a second version of the application was developed. This version
was primarily built by Maxime Delacroix, a full-stack developer intern at the Laboratoire
de Physique Théorique, with me overseeing and assisting him in the scientific aspects.
This second version introduced numerous improvements compared to the initial one. This
second version has been developed in JavaScript using Node.js and MongoDB for database
integration.

While the player user interface (see Figure 2.6) underwent only minor changes, such as
the option to switch between French and English, the notable addition was the introduction
of an admin user interface (see Figure 2.7). This new interface allowed the creation of new
games with new rules directly from the web application (see Figure 2.7A), which greatly
simplifies the game creation process. Additionally, it incorporated tools for real-time
visualization of game progress and scores (see Figure 2.7B). Another notable enhancement
of this second version of the web application was the implementation of bots, allowing
games to be played with a combination of real players and computer-controlled bots.

The updated version of the application has been deployed on the server of the Lab-
oratoire de Physique Théorique and made available online at the following URL https:
//www.lpt.ups-tlse.fr/Stigmer/local. This online availability has two advantages.
First, it greatly facilitates in-person experiments, since participants only need an Internet-
connected device to participate, eliminating the need for a local network connection. This
streamlined accessibility simplifies the logistics of conducting experiments in physical set-
tings. Second, online availability opens up the possibility of conducting experiments au-
tonomously, without the need for direct human supervision. Although our current exper-
iments are exclusively in-person, we anticipate experimenting online in the future. This
could involve sharing the game link on social networks or using crowdsourcing platforms
such as Amazon Mechanical Turk to extend our research reach and engage participants in
an online context.
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A

B

Figure 2.6: Player interface of the web application. (A) Player interface during the
game. The remaining time, the current score, and the current round are displayed at the
top. In the center of the interface is the grid with the colored cells, the black crosses
marking the cells that have already been visited during the round, and the value of the
currently selected cell along with the rating selection interface. At the bottom is a list of
all the players in the game. (B) Player interface at the end of the game, displaying the
final scores of the players in the group.
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A

B

Figure 2.7: Admin interface of the web application. (A) Admin interface to create
a new type of game. (B) Admin interface to visualize the live progression of the games.
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For a deeper understanding of the game, an online version is available at the following
URL https://www.lpt.ups-tlse.fr/Stigmer/web. This version allows anyone to test
their skills against four computer-controlled bots.

The application is open source, and the most recent version can be accessed on a
GitHub repository at the following link: https://github.com/Thomas-bssnt/Stigmer-
web-app.

2.2.2 Visualization application

I also developed another application to visualize the games. This tool allows a detailed
round-by-round visualization of the stars and visits distributions. The application was
implemented in Python, utilizing the Tkinter library for the graphical user interface. An
example of visualization is shown in Figure 2.8.

This visualization tool is open source and available in a dedicated GitHub repository at
the following URL https://github.com/Thomas-bssnt/Stigmer-visualization-app.

2.3 Experimental Setup

A first preliminary/exploratory series of experiments took place in 2017, before the start
of my Ph.D., followed by four additional series between December 2021 and January 2023,
during my Ph.D.

Each series of experiments lasted five or six days. Within each experimental series,
several sessions (five or six per day), were organized in which participants came and played
typically a dozen games for a total of one hour. Within a given experimental series, the
games played were not necessarily the same from one session to the next, and sometimes
differed in their incentives and payment structure.

The different experiments conducted during my Ph.D. thesis are summarized in Sec-
tion 2.4 of this chapter and analyzed in Chapters 5 to 7.

Three of these four series were conducted at the Toulouse School of Economics (TSE),
while the experiments with bots were conducted at the Laboratoire de Physique Théorique
(LPT). Indeed, the participants were playing against bots without their knowledge but
were informed that they were playing against each other. Deceptive experimental designs
are generally prohibited by institutions such as TSE and economics journals, but not in
social psychology. Due to this restriction, our collaboration organized these experiments
with bots at the LPT, under the supervision of the ethical committee of the Université de
Toulouse.

2.3.1 Experimental session

The participants were requested to arrive ten minutes before the beginning of the ex-
perimental session. During this period, they waited in a designated waiting room (see
Figure 2.9A), where they read the information note, and filled and signed the informed
consent form (see Appendix A.1). They also randomly selected a player ID, which deter-
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Figure 2.8: Interface of the visualization application. Example of game visualization
in the visualization application, with the game selection area at the top, the control and
information area at the bottom, and the visualization in the middle.
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A B C

D E F

Figure 2.9: Photographs of the experiments. Photographs of the experiments con-
ducted at the Behavioral Economics Laboratory of the Toulouse School of Economics.
(A) Waiting room. (B) Room in which the rules were explained to the participants.
(C) Experimental room. (D and E) Participants playing the Stigmer game. (F) Pay-
ment of a participant.

mined their location in the experimental room and their group if more than one group
was playing at the same time.

Once all participants were present, they were led into another room where the rules
of the game, payment procedures, and guarantees of anonymity were explained (see Fig-
ure 2.9B). While participants were encouraged to ask questions about the rules, questions
about strategy were not answered.

Following the briefing, participants proceeded to the experimental room, each occu-
pying a cubicle corresponding to their randomly selected player ID (see Figures 2.9C
and 2.9D). This arrangement ensured no interactions among participants. To guarantee a
comprehensive understanding of the game, a recap of the basic rules was reiterated before
starting the first game.

Then the experimental phase began (see Figures 2.9D and 2.9E). From my computer, I
assigned participants to games and started them. The duration of each game was typically
three to four minutes. As soon as one game was finished, another was started until the
desired number of games (about twelve per session) was reached. To respect the desired
number of games, a soft time limit of twenty seconds was set for each round. Beyond that,
a message was displayed at the top of the player’s screen encouraging late players to play
faster. This limit was largely sufficient for the vast majority of participants, but in each
session, a few were always slow. If no acceleration was observed after a few games, we
went to them to understand what was causing the delay and gently asked them to speed
up. On the rare occasions when the web application crashed, or when someone was slow
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and did not accelerate, participants were stopped before reaching the required number of
games to avoid delays in subsequent experimental sessions.

Notably, approximately 20 % of the registered participants either did not come or ar-
rived considerably late. Since a specific number of players was required to start an exper-
imental session, substitute participants had to be found. These substitutes were recruited
from the building, directly from the street, or occasionally from previous experimental ses-
sions. During the last experimental series, we booked one or two additional participants
for each session to ensure an adequate number of participants. If more participants than
necessary arrived on time, we provided monetary compensation to those who were present
but did not participate in the experiments.

At the end of the experimental session, participants were paid and signed a receipt
(see Figure 2.9F). For the last two experimental series, the participants also filled out a
questionnaire (see Appendix A.2) on their understanding of the game and their strategies.

2.3.2 Payment

At the end of each session, all participants were paid, with an amount that may vary for
each individual. Assuming that participants aim to maximize their rewards, modifying
the payment scheme is expected to influence participants’ behaviors.

In most cases, the payment was based on the cumulative score of the participants
throughout all the games played within the session. However, we also explored variations
in the payment scheme where participants were paid according to the score of the group,
and others where every participant was paid the same.

For instance, in Chapter 5, we will explore the consequences of two payment structures:
one in which all participants receive equal payment, regardless of their performance, and
another in which participants are rewarded based on their ranking within their group.

In the experiments conducted at the Toulouse School of Economics, participants re-
ceived cash payments (see Figure 2.10A), while in those performed at the Laboratoire de
Physique Théorique, participants were compensated with Amazon gift cards of various
amounts (see Figure 2.10B).

2.3.3 Data

For each game, the web application systematically archived a variety of data in a server-
side database. This included information such as details about the session itself, the
characteristics of the game (including the number of rounds, players, and rule parameters),
and the demographics of the participants, including age and gender. Crucially, it also
recorded the actions performed by the players during the game, including their visits and
ratings.

At the end of each session, this data could be conveniently exported into a ZIP file con-
taining two different files for each game. The first file, in JSON format (see Appendix A.3
for an example), contains information about the session, the players involved, and the
exact configuration of the game. This JSON file allowed both identification and repro-
duction of the game. In addition, a second file in CSV format (see Appendix A.4 for an
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A B

Figure 2.10: Payment given to the participants. (A) Cash. (B) Amazon gift cards.

example) was created to specifically contain detailed records of player actions during the
game.

Complementing this data was the questionnaire (see Appendix A.2). This question-
naire, which was distributed at the end of each experimental session, can be used as a
complementary tool to gain insight into the participants’ experiences and strategic choices
during the game.

2.3.4 Participants

Participants were recruited through email advertisements distributed to various research
labs and academic institutions in Toulouse, including the Toulouse School of Economics
(TSE), TBS Education, Université Toulouse Capitole, and Université Toulouse III – Paul
Sabatier. In addition, recruitment efforts were supported by leveraging the TSE partici-
pant pool, which includes both students and other individuals. As a result, the majority
of participants in our experiments were students.

A total of 1005 participants took part in the experiments. The age and gender distri-
bution is presented in Figure 2.11. The data indicates a slightly higher number of female
participants than male participants. The majority of participants were between the ages
of 18 (the minimum age) and 26, with fewer individuals older than this range.

2.3.5 Ethics statement

The aims and procedures of each experiment received ethical approval from one of two
ethics committees (see Appendix A.5). The three series of experiments conducted at the
Toulouse School of Economics were approved by the Toulouse School of Economics Re-
search Ethics Committee for Experimental Research. Similarly, the experiments involving
bots conducted at the Laboratoire de Physique Théorique were approved by the Comité
d’Éthique de la Recherche of Université de Toulouse.
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Figure 2.11: Participant demographics. Age and gender distribution of the 1005
participants in our experiments. (A) Age distribution on a logarithmic scale, where the
mean age is 22.22 and the median age is 21. (B) Gender distribution, consisting of 46 %
male participants and 54 % female participants.

2.4 Summary of the Conducted Experiments

This section provides a brief overview of the experiments and their motivations that will
be analyzed in the subsequent chapters. A more in-depth description will be presented at
the beginning of each chapter dedicated to the analysis of these experiments.

In Chapter 5, we study the impact of competition within a group on cooperation in
two series of experiments. In the first experiment there is no notion of score and the
five participants in a group are paid 10€ each. Thus, there is no competition among the
participants and their behavior does not influence their reward. In the second experiment,
the five participants in a group are ranked based on their scores and paid accordingly.
The participant ranked first is paid 20€, the second is paid 15€, and the three remaining
participants are paid 10€ each. In this experiment, the behavior of the participants in the
game directly impacts their reward, and there is a competition among the group members.
The methodology and analysis of this Chapter 5 follow the lines of Bassanetti et al. [2023].

In Chapter 6, we study the impact of the group composition on cooperation. We
performed experiments with five participants per session, but instead of playing together
in the same group, each participant actually played against four bots commanded by our
model, unbeknownst to them. At the end of the experimental session, the five human
participants are ranked together based on their score and paid accordingly. The first is
paid 20€, the second 15€, and the three remaining participants are paid 10€ each. By
controlling the behavior of the bots, the setup provided a control of the cooperation level
within the group. We performed nine different variations of this experiment in which the
bots adopted different behaviors (collaborative, deceptive, or neutral). In Chapter 6, we
also compare the results of these experiments to the competitive experiment analyzed in
Chapter 5, in which five humans played together. This work is the subject of an article
about to be submitted [Bassanetti et al., 2024a].

In Chapter 7, we study the impact of intragroup and intergroup competition on indi-
viduals’ behaviors and cooperation. This work is the subject of an article in preparation
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[Bassanetti et al., 2024b]. We compare seven experiments where the participants play in
groups of five, which can be classified into four categories depending on the type of com-
petition: no competition (2 experiments), intragroup competition only (1 experiment),
intergroup competition only (1 experiment), and a mix of intragroup and intergroup com-
petition (3 experiments):

• There are two experiments with no competition directly induced by the payment
structure. The first experiment does not have any notion of score and is analyzed
in detail in Chapter 5 and in Bassanetti et al. [2023]. In the second experiment,
participants are paid proportionally to their score, so that their final rank in their
group is irrelevant.

• The experiment with pure intragroup competition is studied in detail in Chapter 5.
The participant ranked first is paid 20€, the second is paid 15€, and the three last
participants are paid 10€ each.

• In the experiment with intergroup competition only, two groups of five participants
are directly competing. The five members of the group with the highest group score
are paid 20€ each, and the members of the other group are paid 10€ each.

• There are three experiments with both intragroup and intergroup competition in-
volving ten players divided into two groups of five. At the end of the experimental
session, the ten players are ranked together based on their score and paid accordingly.
These three experiments differ by their degree of intragroup competition compared
to the intergroup competition, which is tuned by the payment structure. In a first
experiment, the participants ranked first through fifth are paid 15€ each, and the
other ones ranked sixth through tenth received 8€ each. In a second experiment,
the participant ranked first is paid 15€, the second 14€, the third 13€, and so on,
down to the last participant, who is paid 6€. Finally, in a third experiment, the par-
ticipant ranked first is paid 20€, the second and third 15€ each, and the seven last
participants are paid 10€ each (this experiment is analyzed in detail in Bassanetti
et al. [2023].
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Chapter 3

Main Observables

Chapter Summary
This chapter serves as an essential foundation by introducing key notations and

observables that are used in the subsequent chapters.
First, it presents the observables that are used to quantify collective behavior,

including the normalized group score for group comparisons, visit, and rating perfor-
mance to assess players’ exposure to high-value cells, the inverse participation ratio,
which quantifies the number of cells visited and rated by the players during the game,
and the fidelity, which captures the correlation between grid values and players’ visits
and ratings.

The chapter then describes the observables used to measure individual visit behav-
iors, including the normalized player score for comparison between players, the best
values of cells opened by a player, the probability of revisiting these best cells, and the
probability of finding high-value cells, providing insight into cooperative tendencies.

We then describe the observables used to quantify individual rating behaviors,
primarily the mean rating given to a cell, which is the main tool used to classify
individual behaviors, and the fractions of ratings, which provide further information
about rating behaviors.

Finally, the chapter introduces the bootstrap method, which is the tool used to
calculate error bars in the following chapters.
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This section serves as an introduction to the key observables that will be used to
quantify both the collective and individual behaviors examined in each chapter of this
thesis. We provide definitions and explanations of these observables, establishing their
significance and relevance to our study.

3.1 Notations

Let us first introduce the notations that will be used throughout this article.
Vectors are finite collections of components. They are represented in this thesis by bold

letters. For example, x denotes a vector. The individual components within these vectors
are indicated by subscripts, such that xi represents the i-th component of x. The scalar
product of two vectors x and y, denoted ⟨x|y⟩, is defined as ⟨x|y⟩ = ∑

i xiyi. Similarly,
the Euclidean norm of a vector x, denoted ∥x∥2, is defined as ∥x∥2 =

√∑
i x2

i .
Continuing with some letter notations used consistently for ease of understanding:

• t represents the round of a game, it is the equivalent of time in our experiment. It
is an integer between 0 and Nrounds.

• V represents the value of a cell. It is an integer between 0 and Vmax1 = 99.

• c represents the index of a cell. The two-dimensional grid of 15×15 cells is flattened
to a one-dimensional array of 225 cells. Thus, c is an integer between 1 and N = 255.
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• s represents a rating, where “s” stands for “stars”. It is an integer between 0 and 5.

• ⟨O⟩ represents the mean of an observable O (defined in the next sections) averaged
over all games played for a given experimental condition (incentive rule, payment
structure, participants playing against bots...). Indeed, for each experimental condi-
tion considered in this thesis, we have conducted typically 100-200 games (see details
when we address a specific condition), and the mean of an observable is understood
as the mean over all such games. For individual observables, ⟨O⟩ is the average of
O over all played games, and over all players of these games.

The vector containing the hidden values of the grid will be denoted by V, where Vc

corresponds to the value of the cell with index c. The highest, second-highest, and third-
highest values within the grid will be respectively referred to as Vmax1 , Vmax2 , and Vmax3 .

Note that the letters “P” and “Q” are used for many observables, so it is important
not to mix them up. For example, pc(t), p(t), p(t), Pc(t), P(t) and P (t) are all different
quantities

3.2 Quantifying the Collective Behavior

Let us now delve into the observables used to quantify the collective behavior of a group.
These observables are defined based on the actions of all participants, without distinguish-
ing between them.

3.2.1 Normalized group score

Section 2.1.4 introduced the concept of score in a game. Note that games can be played
with or without scoring, and in cases where scoring is used, there may be different types
of scoring. To allow for cross-game comparisons, we introduce a uniform scoring metric in
our analysis, which is applied consistently to all games, regardless of their specific scoring
method.

This newly proposed final score is defined as the cumulative sum of the values discov-
ered by the players throughout the game. For a more meaningful and easier interpretation,
this score is then normalized by the maximum possible score, which depends on the grid
values and the number of game rounds.

Definition 3.1 — Normalized group score
The normalized score of a group, denoted Ŝ, is defined as the sum of the values visited
by every player of a group during the game divided by the maximum possible score of
the group. This maximum score corresponds to the score the group would achieve if
every player had selected the three best cells in each round, resulting in a total value
of (Vmax1 + Vmax2 + Vmax3) × Nrounds × Nplayers, where Vmax1 , Vmax2 , and Vmax3 are the
three highest value cells, and Nrounds and Nplayers are the number of rounds and the
number of players, respectively.

The group score is normalized to a range between 0 and 1. A score of 1 corresponds to the
best theoretical result, while a score of 0 corresponds to the worst possible result, indicating
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that players only opened cells with a value of 0. The normalized group score serves
as a metric for evaluating the collective performance of the entire group and facilitates
comparisons between different groups.

An important quantity derived from the normalized group score is the mean normalized
group score, that is, the score averaged over the games played in a given experimental
condition.

Definition 3.2 — Mean normalized group score
The mean normalized group score, denoted as ⟨Ŝ⟩, is defined as the arithmetic average
of the normalized group scores over all games for a given experimental condition.

This mean normalized score is extremely useful for comparing experiments and quickly
assessing the impact of rule changes or incentive adjustments on performance.

3.2.2 Fractions of visits and fractions of stars

In order to define the rest of the observables that describe the collective behaviors, we
introduce the following four fundamental vectors.

First, we introduce the vectors characterizing the instantaneous and cumulative frac-
tions of visits at round t.

Definition 3.3 — Fractions of visits
For each round t, we define the following vectors:

• The instantaneous fractions of visits vector, denoted as q(t), is the vector
whose component qc(t) of index c represents the fraction of visits by all players
to the cell c, at round t.

• The cumulative fractions of visits vector, denoted as Q(t), is the vector
whose component Qc(t) of index c is the fraction of cumulative visits by all players
to the cell c, from the first round up to and including round t.

Likewise, we introduce similar quantities for ratings instead of visits.

Definition 3.4 — Fractions of stars
For each round t, we define the following vectors:

• The instantaneous fractions of stars vector, denoted as p(t), is the vector
whose component pc(t) of index c is the fraction of stars deposited by all players
in the cell c, at round t.

• The cumulative fractions of stars vector, denoted as P(t), is the vector whose
component Pc(t) of index c is the fraction of stars deposited by all players in the
cell c, from the first round up to and including round t.

Note that these two vectors are undefined if no stars have been put at round t for p(t)
or up to round t for P(t).

These four quantities can be viewed as probability vectors, which means that their
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components lie in the range [0, 1] and that the sum of their components is equal to 1.
While these vectors provide valuable insights, the challenge lies in their high dimen-

sionality (N = 225 components in our case), which requires new observables that can
capture the complexity in a more comprehensive way.

3.2.3 Visit and rating performances

In the experiments, participants were explicitly asked to find cells with high values, so it
is interesting to quantify how well they achieve this goal. To this end, we introduce four
new quantities that quantify their performance in finding and rating the high-value cells.

Definition 3.5 — Visit performances
We define the instantaneous visit performance q(t) as the normalized average value
of the cells visited at round t, i.e.,

q(t) = 3
Vmax1 + Vmax2 + Vmax3

⟨q(t)|V⟩ , (3.1)

= 3
Vmax1 + Vmax2 + Vmax3

∑
c

qc(t)Vc , (3.2)

where (Vmax1 + Vmax2 + Vmax3)/3 is the normalization constant so that q(t) = 1 when
every player opens the three cells of highest values: Vmax1 , Vmax2 , Vmax3 .

In the same way, we introduce the cumulative visit performance Q(t), as the
normalized average value of the cells visited up to round t, i.e.,

Q(t) = 3
Vmax1 + Vmax2 + Vmax3

⟨Q(t)|V⟩ . (3.3)

These observables are normalized so that q(t) = 1 and Q(t) = 1 correspond to the best
theoretical performance, i.e., when every individual would visit the three best cells of the
grid at round t and up to round t. Note that the cumulative visit performance at the end
of the game, Q(t = Nrounds), is directly proportional to the normalized score of the group,
Ŝ.

Similarly, one can define the corresponding observables for the ratings instead of the
visits.

Definition 3.6 — Rating performances
We define the instantaneous rating performance p(t) as the normalized average
value of the cells visited by participants weighted by their ratings at round t, i.e.,

p(t) = 1
Vmax1

⟨p(t)|V⟩ , (3.4)

= 1
Vmax1

∑
c

pc(t)Vc , (3.5)

where Vmax1 is a normalization constant so that p(t) = 1 when every star is on the
highest value cell of value Vmax1 .
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In the same way, we define the cumulative rating performance P (t) as the
normalized average value of the cells visited weighted by their ratings up to round t,
i.e.,

P (t) = 1
Vmax1

⟨P(t)|V⟩ . (3.6)

In cases where the vectors p(t) or P(t) are undefined, we adopt the convention of
setting p(t) = 0 and P (t) = 0 to be consistent with the fact that there are no stars.

These two quantities measure whether the distribution of stars is concentrated on the
high-value cells or not. The closer p(t) and P (t) are to 1, the more stars are placed on
high-value cells, and these quantities will be equal to 1 if all the stars are on the cell having
the highest value (Vmax1 = 99, in all our experiments).

Hence, p(t) and P (t) quantify the instantaneous and cumulative distribution of stars
in relation to the value of the visited cells. In particular, a high value of P (t) (in particular
at the final round t = Nrounds) indicates that the participants concentrate the allocation
of stars on high-value cells. Conversely, a low value of P (t) indicates that participants
allocate stars to low-value cells.

It is important to note that a high value of P (t = Nrounds) does not imply a high final
individual (S) or group (Ŝ) score. For example, if all the players play randomly but put
only stars in the cell of value higher than 60, they will have a low score but P (t = Nrounds)
will be larger than 60/99 ≈ 0.6. Conversely, if the players achieved a very high group score
Ŝ (implying that they found and visited very high-value cells), but decided to only put
stars in cells of value less than 10, one would observe a final P (t = Nrounds) ≤ 10/99 ≈ 0.1

3.2.4 Inverse participation ratio

Another useful observation would be determining whether players visit and rate the same
cells or explore different ones. In other words, we want to understand if the visits and
ratings are concentrated on a few specific cells or distributed over the whole grid. To
explore this aspect, we introduce the concept of the Inverse Participation Ratio (IPR),
which is used in quantum mechanics to measure the localization of quantum states [Kramer
and MacKinnon, 1993].

Definition 3.7 — Inverse Participation Ratio (IPR)
Let x be a probability vector. Then, the inverse participation ratio IPR(x) of x is
defined as:

IPR(x) = 1∑
c x2

c

. (3.7)

The IPR serves as a measure to quantify the concentration or spread of a probability
distribution over a set of elements. It provides an idea of the effective number of elements
on which the probability distribution is concentrated. In a scenario where the distribution
is equally spread across n cells out of a total of N , with each cell having a probability
of 1/n, the IPR value becomes 1/[n × (1/n)2] = n. This indicates that the distribution
is spread across n cells. In a more general case, the IPR measures the concentration or
dispersion of a probability distribution, with lower values indicating more concentration
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on fewer elements, while higher values imply a more even spread across multiple elements.
In our case, we are interested in the IPR of the vectors q(t), Q(t), p(t) and P(t).

IPR(q(t)) and IPR(Q(t)) indicates the effective number of distinct cells that the players
have explored or visited at a specific round t and cumulatively up to round t, respectively.
Similarly, the IPR of IPR(p(t)) and IPR(P(t)) represents the effective number of cells
that contain stars at a particular round t and up to round t, respectively. In the case
where no stars have been deposited on the grid (in particular, at t = 0), p(t) or P(t) are
undefined, and we adopt the convention IPR(p(t)) = 0 and IPR(P(t)) = 0.

3.2.5 Fidelity

Another valuable information concerns the relationship between the hidden values of the
cells in the grid and the fraction of visits or ratings received by these cells up to round t.
To quantify this relationship, we introduce the fidelity, denoted F, which is a measure of
the relationship between two vectors.

Definition 3.8 — Fidelity of two vectors
Let x and y be two vectors. Then, the fidelity F(x, y) of x to y, is defined as

F(x, y) =
〈√

x
∣∣√y

〉
∥√

x∥2
∥∥√y

∥∥
2

, (3.8)

where the vector
√

x is defined as follows: For each component xc in x, the correspond-
ing component of

√
x at index c is given by √

xc.

The fidelity F lies in the range [0, 1]. A perfect fidelity of 1 is achieved when the two vectors
are strictly proportional. A fidelity of 0 is achieved when the vectors are perpendicular.
For vectors with positive entries, this corresponds to the support of their non-zero entries
being disjoint.

In our experiment, we are interested in the fidelity of the hidden values of the grid
to the ratings, F(P(t), V), and to the visits, F(Q(t), V). Since P(t) and Q(t) are prob-
ability vectors, and that for a probability vector x, we have ∑c xc = 1, hence ∥√

x∥2 =√∑
c(

√
xc)2 =

√∑
c xc = 1. Therefore, the fidelity of a probability vector x to the value

vector V is

F(x, V) =

〈√
x
∣∣∣√V

〉
∥∥∥√V

∥∥∥
2

, (3.9)

=
∑

c

√
xcVc∑

c′ Vc′
, (3.10)

where x represents either Q(t) or P(t).
The choice to use the square root of the elements rather than a simple correlation

is based on the properties of probability distributions, where using the square root is
more natural and common when dealing with their norms. This approach aligns with the
Hellinger distance, a well-known measure in probability theory that emphasizes differences
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between distributions. Fidelity measures the alignment between two vectors through their
scalar product and is closely related to the Hellinger distance H between two probability
distributions [Hellinger, 1909; Pollard, 2001]. Indeed, for two probability vectors x and y
(so that ∥√

x∥2 =
∥∥√y

∥∥
2 = 1), we have

H2(x, y) = 1
2
∥∥√x − √y

∥∥2
2 , (3.11)

= 1
2
∑

c

(√xc − √
yc)2 , (3.12)

= 1 −
∑

c

√
xcyc , (3.13)

= 1 − F(x, y) , (3.14)

showing that the fidelity is given by F = 1 − H2.
Note that if P(t) is undefined (in particular, at the very beginning of the game),

we adopt the convention F(P(t), V) = 0 so that the fidelity begins at 0 and increase
throughout the game.

In the context of real-world 5-star rating systems, a high fidelity of the cumulative
ratings P(t) would indicate that the ratings provide a fair representation of the actual value
of the different options, which is, in principle, the desired outcome for online merchants
and services. Of course, in this context, these intrinsic values of the available options
are generally unknown. But our experimental setup provides a simpler context where
this relation between the ratings (or the visits) of the different options (the cells, in our
experiment) and their intrinsic value (the cell values) can be investigated in detail.

3.3 Quantifying Individual Visit Behaviors

Let us now examine the observables used to quantify the cell-visiting behavior of individu-
als. These observables are determined at the game level by calculating averages over each
player’s behavior, focusing only on the cells they visited.

3.3.1 Normalized individual score

In the same way that the normalized group score is defined (see Definition 3.1), it is
possible to define a normalized individual score.

Definition 3.9 — Normalized individual score
The normalized individual score of a player, denoted S, is defined as the sum of the
values of the cells visited by the player during the game divided by the maximum
possible score. This maximum score corresponds to the score a player would achieve if
they selected the three best cells in each round, resulting in a total value of (Vmax1 +
Vmax2 + Vmax3) × Nrounds, where Vmax1 , Vmax2 , and Vmax3 are the three cells with the
highest value, and Nrounds is the number of rounds.

This normalized individual score serves as a valuable metric for assessing the perfor-
mance of individuals in a game. It provides a simple way of comparing individuals with
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each other, enabling a clear evaluation of their relative performance.
In the same way that the mean normalized group score is defined (see Definition 3.2),

we can define the mean normalized individual score.
Definition 3.10 — Mean normalized score
The mean normalized score, denoted as ⟨S⟩, is defined as the arithmetic average of the
normalized individual scores over all games and over all players of these games, for a
given experimental condition.

Note that the mean normalized individual score, ⟨S⟩, and the mean normalized group score,
⟨Ŝ⟩, are identical, as every group is composed of the same number of players. Therefore,
we will refer to the mean normalized score of an individual or group as simply the mean
normalized score, and use the notation ⟨S⟩.

3.3.2 Values of visited cells

Natural quantities of interest are the mean values of the three cells visited by a player,
which leads us to the following definition.

Definition 3.11 — Values of visited cells
Let V1(t), V2(t), and V3(t) denote the mean value of the highest, second-highest, and
third-highest cell opened by the players at round t, averaged over all considered games
and all players.

These observables provide insights into the dynamic evolution of cell values explored
by players throughout a game. Additionally, they highlight the disparities among the
values of the three different cells.

It is worth noting that the sum of these three values, V1(t)+V2(t)+V3(t), corresponds,
up to a scaling factor, to the normalized average value q(t) of the cells visited during round
t (see Definition 3.5).

In the same way that we have defined instantaneous and cumulative observables in the
previous section, we can define the average value of the cells visited by a player with the
highest values since the beginning of the game.

Definition 3.12 — Values of the cells visited with the highest values since the beginning
Let VB1(t), VB2(t), VB3(t) be respectively defined as the mean value of the highest,
second-highest, and third-highest distinct cell opened by a player from the beginning
up to round t, averaged over all considered games and all players.

Note that, by definition, we have for all i = 1, 2, 3, VBi(t) ≥ Vi(t). The difference in
value between these quantities and the previous ones characterizes the tendency of the
players to revisit their best cells. A significant difference suggests that players find high-
value cells but do not revisit them frequently, whereas a small difference indicates a higher
tendency to revisit these cells.
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3.3.3 Probability of revisiting cells from the previous round

To more precisely measure players’ inclination to revisit cells, we propose introducing novel
metrics or observables.

Definition 3.13 — Probability of revisiting cells visited in the previous round
For each round t > 1, let B1(t), B2(t), and B3(t) be respectively the average probability
to revisit the cell from the previous round (t − 1) with the highest, second-highest, and
third-highest value.

These probabilities provide valuable insight into the likelihood that players revisit cells
from the previous round. In particular, when a notion of score is introduced in the game,
we expect that players will revisit more often cells as they discover better and better cells,
so that B1(t), B2(t), and B3(t) are expected to growth with the round t.

3.3.4 Probability of finding cells with the highest values

Since the players were instructed to find the high-value cells, it is also important to assess
whether they managed to find these cells or not. To quantify this, let us introduce the
probability of finding a particular cell with a value V , averaged over all considered games
and all their players.

Definition 3.14 — Probability of finding cells with given values
For a given cell c (of value Vc), we define Pc(t) as the probability that a player has
visited that specific cell at least once from the start of the game until round t.

Let V̂ be a set of values. Then, for each round t, we define PV̂ (t) as the average of
the probability of finding a cell with value in V̂ :

PV̂ (t) =
∑

c | Vc∈V̂ Pc(t)∑
c | Vc∈V̂ 1 , (3.15)

where the denominator is equal to the number of cells whose value is in the set V̂ .

When analyzing our experiments, we will consider the probability PV̂ (t) for the fol-
lowing sets of values: V̂ = {99} consisting of the best cell; V̂ = {84, 85, 86} consisting
of the four next best cells (one cell with value 84 and 85; two cells with value 86); and
V̂ = {71, 72} also consisting of four cells (two cells with each value). In some cases,
we will also consider the average probability of finding these nine cells, associated to
V̂ = {99, 84, 85, 86, 71, 72}

We can compare the observed probabilities of finding particular cells with the theo-
retical probability of finding a specific cell obtained by exploiting two simple strategies.
First, consider a strategy where a player opens Nturns cells randomly at every round t,
with possible random revisits at successive rounds. With this strategy, the probability
Prandom(t) of finding a specific cell at least once from the start of the game until round t
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is given by

Prandom(t) = 1 − Pr(Not finding the cell up to round t) , (3.16)
= 1 − (Pr(Not finding the cell at round t))t , (3.17)

= 1 −
(

Nturns−1∏
i=0

N − i − 1
N − i

)t

, (3.18)

= 1 −
(

N − Nturns
N

)t

. (3.19)

Next, consider a better strategy where the player sequentially opens all the cells on the
grid, without repetition. Since the specific cell to find in the grid is unknown to the player,
the player could start by opening the cell in the upper-left corner, then the next cell on
the right, and after finishing a row, proceed to the next row. Actually, if the player were
playing the game alone, this strategy would be optimal for finding a particular cell (see
also Figure 5.3 for a nice illustration of the biased randomness in humans). In fact, in our
experiments, we have observed some real players using this strategy in the first few rounds
of a game, especially when playing alone on a grid (Nplayers = 1; instead of Nplayers = 5, as
in most of our experimental conditions). With this strategy, the probability Psequential(t)
of finding a specific cell at least once from the start of the game until round t is given by

Psequential(t) = 1 −
Nturnst−1∏

i=0

N − 1 − i

N − i
= Nturns

N
× t . (3.20)

This formula holds as long as Nturnst ≤ N , while for Nturnst > N , the player has already
visited all available cells, and Psequential(t) = 1.

When we address the different experimental conditions studied in this thesis, we will
compare the observed PV̂ (t), to the prediction Prandom(t) and Psequential(t) for theses two
simple strategies. This comparison will complete our analysis of the degree of collaboration
and deception in the game, as well as the tendency of players to replay their best cells.
Indeed, collaboration is expected to boost the probability Pc(t) of finding a given high-
value cell c, while revisiting cells limits the exploration of the grid by the players and
should lower this probability.

3.4 Quantifying Individual Rating Behaviors

Now, let us focus on the second part of the player’s turn: the rating of the cells. The
observables described here are computed using the values of the cells opened and their
ratings, i.e., the number of stars used by the player to rate cells. In this part, we are not
studying the time dependence but rather, the average behavior of the players in the game.

3.4.1 Mean rating

The simplest observable that can be used to study the rating of the cells is the mean rating
as a function of the value of the cell.
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Definition 3.15 — Mean rating
The mean rating R(V ) for a player or a group of players of a cell with a value of V , is
defined as the arithmetic average of the ratings given by that player or that group to
all cells with the value V . If there are multiple cells with the same value V in the grid,
the ratings of all such cells are included in the calculation of the average.

This is the most fundamental quantity to study the rating behavior, as it allows us to
characterize and understand the rating behavior of a player or of a (sub)group of players.

Note that in our experiments, each player is limited to visiting a maximum of Nrounds ×
Nturns = 60 different cells during a game. Consequently, players rarely encounter every
unique value during the game. To deal with this limitation, I implemented a binning
process where close values are grouped. See Table 3.1 for the specific binning values. This
approach also serves to reduce the error bars associated with the limited set of values
encountered.

0, 1, 2, 3 1.59
4, 5, 6, 7, 8, 9 5.91
11, 12, 13, 14 12.75

19, 20, 21, 22, 24 21.08
27, 28 27.25

43, 44, 45, 46 44.25
51, 53 52.50
71, 72 71.50

84, 85, 86 85.25
99 99.00

Table 3.1: Binning table. The table shows a mapping of values, where the left column
represents the grouped values and the corresponding right column represents their new
common value. The new value is determined by calculating the weighted average of all
grouped values, taking into account their respective frequencies within the grid. For
example, for the first row of the table, the game has 24 cells with a value of 0, 44 with a
value of 1, 47 with a value of 2, and 32 with a value of 3. This results in a new value of
(24 × 0 + 44 × 1 + 47 × 2 + 32 × 3)/(24 + 44 + 47 + 32) = 1.59.

3.4.2 Fitting of the mean rating

The mean rating of cells as a function of their values is a very important quantity since
it can reveal different behavioral strategies. To facilitate the analysis of these distinct
behaviors, we will examine a linear approximation of the mean rating for each player.
This simplification condenses the complexity into two numerical values.
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Definition 3.16 — Intercept and slope parameters of the mean rating
Consider the following linear approximation function:

R̂(V ) = û0 + 5 û1
V

Vmax1
, (3.21)

where V max1 represents the highest value in the grid, and û0 and û1 denote two
parameters.

Subsequently, u0 and u1 correspond to the optimized values of the parameters û0
and û1 obtained by applying the least squares method to fit the above linear function
with the mean rating. u0 is referred to as the intercept parameter, while u1 is referred
to as the slope parameter for the mean rating.

In our experiments, the typical range of u0 lies between −1 and 6, while for u1, the
range is between −2 and 2.

While these two parameters only provide a linear approximation of the mean rating,
they manage to capture a wide range of behavior. For example, an individual with u0 = 0
and u1 = 1 rates a cell of value 0 with an average of 0 star, and rates the cell with
the maximum value Vmax1 = 99 with an average of 5 stars. On the other hand, another
individual with u0 = 5 and u1 = −1 assigns 5 stars to cells with value 0 and 5 stars to the
cell with value Vmax1 . In addition, an individual with u0 = 0 and u1 = 0 simply does not
allocate any star to any cell, and in a sense, refuses to participate in the rating process.

3.4.3 Fractions of ratings

The mean rating provides the average number of stars assigned to cells with specific values.
However, it does not provide information about the distribution of each rating. To conduct
a more comprehensive analysis, we have to consider the fractions of ratings, as different
rating distributions can produce the same mean rating.

Definition 3.17 — Fractions of ratings
The fractions of ratings, denoted as Ps(V ), are defined as the proportion of instances
where cells with value V received an s-star rating, relative to all instances of cells with
value V being rated. These fractions can be interpreted as the probability for a player
to assign an s-star rating to a cell of value V .

As with the mean value, this quantity can be grouped into bins to reduce observational
errors and account for the possibility that not all values may be observed during a game.

3.5 Computation of the Error Bars: the Bootstrap Method

In the numerous graphs presented in this thesis, there are two types of data: experimental
data and simulated data obtained from various models. Each observable associated with
the experimental data will be shown with error bars corresponding to a confidence level of
68.27 %, which are evaluated using a bootstrap method (detailed below). The significance
of the 68.27 % confidence level lies in its relationship to the standard deviation of a normal

47



Chapter 3. Main Observables

distribution, where approximately 68.27 % of the data falls within one standard deviation
from the mean. On the other hand, the simulation results are presented without error
bars since they correspond to the average over 1,000,000 simulated games, resulting in a
negligible error relative to the scales of the graphs.

When it comes to estimating the statistical properties of an observable using a sample
of size N drawn from a population, several methods come into play. For instance, when
calculating the standard error of the mean for an observable, the central limit theorem
provides an exact estimate for large enough N : σ/

√
N , where σ is the sample standard

deviation, which is assumed to be finite. However, we will deal with data of moderate
size, and with several observables with skewed distributions and/or strictly constrained
to belong to a specific interval. In fact, this is the case of all observables measuring a
probability, and other observables like the fidelity, F, which is also constrained between 0
and 1. For instance, if some average probability is found to be small, it is expected that
its lower confidence interval is smaller than its upper confidence interval, due to the strict
lower bound at 0 for a probability. The bootstrap method proves to be a robust solution
for dealing with such data, alleviating the need to assume normally distributed data or
rely on the law of large numbers.

The bootstrap method, or simply “bootstrapping”, is a resampling technique designed
to evaluate some characteristics, such as confidence intervals, of statistical parameters,
such as mean or median, derived from an unknown probability distribution. The method
consists in iteratively generating new samples by drawing with replacement from an orig-
inal sample [Efron, 1979; Davison and Hinkley, 1997].

In practice, getting the confidence interval of some statistical parameter, such as the
mean or the median, of a sample of N observables using the bootstrap method consists of
the following steps, which are illustrated in Figure 3.1:

1. Start with some dataset of size N for some observed quantity.

2. Iteratively draw with replacement M new samples, also of size N , from the original
dataset. These artificial samples are called “bootstrap samples”. Note that some
elements of the original dataset may appear multiple times within a bootstrap sam-
ple, while others may not be included at all. For robust results, a sufficient number
of bootstrap samples M is required. In the context of this thesis, I used 10,000
bootstrap samples.

3. For each of these bootstrap samples, compute some statistical parameters, which are
called “bootstrap estimate”.

4. Construct the distribution of these M bootstrap estimates.

5. Use this distribution to derive the confidence intervals of the considered statistical
parameters for the observed quantity.

Therefore, this method allows the estimation of sampling distribution for various statistics,
even in scenarios involving unknown probability distributions and limited data size.

48



3.5. Computation of the Error Bars: the Bootstrap Method

E1

 

Original 
sample of 

size N

M bootstrap 
samples of 

size N

M bootstrap  

estimates

E2

EM

Figure 3.1: Illustration of the bootstrap method. From an original sample of size
N is drawn with replacement M new samples, called bootstrap samples, of size N . For
each of these bootstrap sample, some statistical parameter, called bootstrap estimate, is
computed. Then the distribution of these bootstrap estimates is used to derive estimates
for the confidence interval of the statistics.
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Chapter 4

Model

Chapter Summary
This chapter presents the stochastic agent-based model used to simulate player

behavior in the Stigmer game. The model consists of agents with different strategies
that govern their actions during the game. In particular, each agent’s strategy is
decomposed into two independent components: the visit strategy, which governs cell
selection, and the rating strategy, which governs cell rating.

During a game, players have access to both collective and private information.
The collective information is represented by the color of the cells on the grid, i.e., the
ratings, while the private information corresponds to the player’s knowledge about
their previously visited cells.

The visit strategy considers both types of information available to agents. This
allows them to either revisit cells that were already visited in the previous round,
using private information, or to visit other cells based on their color, using collective
information. When using collective information, agents can choose to focus on either
dark cells, following social information, or on white cells, for exploration of unrated
cells.

The rating strategy assigns a probability to give a certain star rating to a visited
cell, which generally depends on the value of the cell.

The model is parameterized, allowing for the generation of agents with different
behaviors, by adjusting its parameter values. These variations include agents that ex-
plore extensively, those that avoid exploration, and agents that engage in collaborative
or deceptive rating practices.

The model is then applied to create different types of agents. “Mimic agents”
that mimic human behavior, “Optimized agents” that are tailored for specific tasks
and environments, and agents with specific strategies that are used to understand the
impact of these strategies on individual and collective performance.

All parameters governing these agents are either specified manually, or determined
by fitting the characteristics of human behavior, or determined by exploiting optimiza-
tion methods (in particular, Monte Carlo).
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This chapter introduces a stochastic agent-based model of the Stigmer game that will
then be used in the following chapters. First, I present the general idea of the model, which
is divided into two parts: the visit strategy and the rating strategy. Then, I introduce the
different types of agents, and finally, I talk about the determination of the parameters of
the model.

The agents developed in this model will be used in the rest of the thesis for several
purposes. They will allow us to quantitatively identify the strategies of our human sub-
jects for visiting and rating cells, and thereby understand their distinct effects both on
individual and collective performance. The model will also allow us to find the best strate-
gies in different situations. Finally, we will address experiments where a human subject
is playing against four virtual agents (bots), allowing for full control of each participant’s
experimental environment.

4.1 General Description of the Model

To better understand the impact of different environmental situations on the way humans
exploit the traces in our experiment, we have developed a stochastic agent-based model.

The model follows the actual game rules. That is, for each simulated game, a group of
Nplayers independent agents plays the game for Nrounds rounds, in which they must visit
and evaluate Nturns cells. The agents themselves consist of two distinct and independent
parts: (i) the agents’ strategy for visiting cells, i.e., which cells an agent decides to visit
in each round; (ii) their strategy for evaluating the visited cells, i.e., how many stars an
agent should assign to a cell of a given value.
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The visit strategy and the rating strategy, which will be presented in the next sec-
tions, are designed to be simple while preserving the most important features of real
players’ strategies. These strategies will depend on several parameters and are therefore
not strategies in the sense of game theory, but rather two classes of strategies that allow
for an infinite number of strategies by tuning the value of the parameters.

4.2 Visit Strategy

When deciding which cell to visit, players have two options. They can either use their
personal information, which consists of their knowledge of previously visited and rated
cells, or they can use the collective information embedded in the grid colors, which reflect
the ratings left by all players since the beginning of a game.

The strategy used by the agents to visit cells is organized around two main options.
Firstly, agents have a probability of revisiting the cells visited during the previous round
using their private information. Secondly, if they do not revisit cells, they will explore
other cells in the grid using the collective information. Note that in the first round, as
there is no public or private information available, the cells are selected at random.

This strategy relies on the cumulative fraction of stars, represented by the colors, and
the values of the cells visited during the previous round. The equations do not explicitly
include a round-specific dependency. However, there is an implicit temporal dependency
because the cumulative fraction of stars and the values of the cells visited at the previous
round change over time.

4.2.1 Revisiting the cells visited during the previous round

Except for the first round (t > 1), agents adopt the following strategy. For each of the
three cells i = 1, 2, 3 to visit, they either visit the i-th cell with the highest value visited
in the previous round, of value Vi(t − 1), with probability P R

i (Vi(t − 1)), or explore other
cells with probability 1 − P R

i (Vi(t − 1)).
For each cell i = 1, 2, 3, this probability is given by:

P R
i (Vi(t − 1)) =


0 if Vi(t − 1) < ai

Vi(t − 1) − ai

Vmax1
bi if ai ≤ Vi(t − 1) < ai + Vmax1

bi

1 otherwise

, (4.1)

where ai and bi > 0 are parameters, and Vmax1 = 99 is the maximum cell value on
the grid. Refer to Figure 4.1 for a graphical representation of the curve. Therefore,
an agent never revisits a cell of value Vi(t − 1) < ai and always revisits a cell of value
Vi(t − 1) > ai + Vmax1/bi. Between these two thresholds, the probability of revisiting the
i-th cell with the highest value linearly interpolates between 0 and 1.

Each of these three probabilities depends on two parameters, for a total of six parame-
ters. By adjusting the values of these parameters, it is possible to reproduce a wide range
of behaviors. For example, when a = 0 and b = 1, the resulting probability is strictly
proportional to the value of the cell and saturates at 1 exactly at V = Vmax1 . Moreover,
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Figure 4.1: Probability to revisit a cell as a function of its value. The probability
P R(V ) to revisit a cell as a function of its value V , highlighting the influence of the
parameters a and b.

if a = Vmax1, a cell is never revisited. Finally, choosing a = Vmax1/2 and b ≫ 1 ensures
that revisits never occur below the value Vmax1/2, but always beyond that value.

Note that we have assumed that the agents have only a one-round memory of their
visited cells. This hypothesis is supported by the data analysis, which found that if
individuals did not choose to revisit a particular cell in one round, they had a very small
chance of revisiting it in subsequent rounds.

4.2.2 Exploration of the grid

When agents do not visit one of the cells visited in the previous round, they explore other
cells in the grid. This is done by associating to each cell c a probability P E(c, t) to be
selected at round t:

P E(c, t) = ε
1
N

+ (1 − ε) P α
c (t − 1)∑

c′ P α
c′ (t − 1) , (4.2)

where Pc(t − 1) is the cumulative fraction of stars deposited in cell c up to time t − 1 (see
Definition 3.4), and ε ∈]0, 1] and α > 0 are two parameters.

The defining equation for P E(c, t) presents two different contributions, each with a
clear interpretation. The first contribution, ε/N , translates the fact that an agent has a
probability ε of picking a cell completely at random (uniform random exploration). The
second contribution, (1 − ε)P α

c (t − 1)/∑c′ P α
c′ (t − 1), corresponds to the weight of the

social information embedded in the cell colors, which are increasing functions of Pc (see
Eq. (2.1)). This weight is determined by the fraction of stars in each cell: the higher the
fraction, the higher the weight. The exponent α controls the contrast of the selection of
a colored cell on the grid. A high value for α would correspond to a strong preferential
selection of the highly marked cells, while a small value for α would lead to a more
homogeneous selection of cells among the marked ones.

If there are no stars on the grid, the cumulative fraction of stars will be undefined. In
this case, a cell will be selected randomly. Moreover, to avoid cells being selected twice, if
the selected cell is one of the cells visited in the previous round or if the cell has already
been visited during this round, another one is randomly selected by the same procedure.
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4.3 Rating Strategy

The second step of the model addresses the rating strategy, i.e., the number of stars an
agent uses to rate a cell as a function of its value.

For simplicity, we have made two hypotheses. The first one is that the rating strategy
does not depend on the round, nor the number of cells already opened in the round. The
second one is that the rating strategy does not depend on the cumulative fraction of stars
of the cell, i.e. its color. Therefore, the rating strategy is only a function of the value of
the cell visited.

The rating strategy is inherently straightforward: ratings are established through a
random process governed by a discrete probability distribution which depends on the
value of the cell. This distribution, denoted as Ps(V ), assigns probabilities to rate a cell
of value V with s stars (s = 0, 1, ..., 5). The determination of these probabilities can be
done using the two approaches described below. Each method has some parameters that
allow for a large variety of behaviors.

4.3.1 Using the mean rating

The first approach to determining the probability distributions is to use the mean rating.
In this method, if the mean rating assigned to a value V is denoted as R(V ), then the
probability Ps(V ) to rate s stars the cell is defined by the following expression:

Ps(V ) =


1 − {R(V )} if s = ⌊R(V )⌋
{R(V )} if s = ⌊R(V )⌋ + 1
0 otherwise

, (4.3)

where ⌊·⌋ is the integer part and {·} is the fractional part.
Using this method, let us consider the following scenario where an agent has to rate a

cell of value 20 with a mean rating, R(20) = 3.4. In this case, ⌊R(V )⌋ = 3 and {R(V )} =
0.4, resulting in the following probabilities: P3(20) = 0.6, P4(20) = 0.4, and Ps(20) = 0
for s = 0, 1, 2, 5.

This approach will be particularly useful for constant or linear mean ratings. However,
one limitation of this approach is that only two ratings (or one for integer values) have
non-zero probabilities for a given mean rating. This results in a lack of diversity in ratings,
which contrasts with the diverse rating patterns observed in experiments.

4.3.2 Direct specification of the distribution functions

The alternative method, which will be the most used one, addresses the issue of rating
diversity by directly specifying the functions that govern the probability distributions
Ps(V ). These functions can be any function that takes a value between 0 and 1. In our
case, we will be using three different types of functions: sigmoid-like functions, Gaussian-
like functions, and linear functions.

The probability Ps(V ) for a cell of value V to be rated with s stars is given by the
following equations:
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Figure 4.2: Functions characterizing the rating probability distributions. Illus-
tration of the role of the parameters in the functions characterizing the probability distri-
butions of rating a cell in the case of (A) the sigmoid-like function, (B) the Gaussian-like
function, and (C ) the linear function.

• Sigmoid-like functions have the following form:

Ps(V ) = cs + ds tanh
(

v − es

Vmax1
fs

)
, (4.4)

where cs, ds > 0, es, and fs are parameters. The parameters es and cs are the x

and y coordinates of the inflection point of the sigmoid, respectively. Meanwhile, ds

is the amplitude of the sigmoid, and fs controls the steepness of the sigmoid curve
and can be either positive or negative. See Figure 4.2A.

• Gaussian-like functions are defined by the expression:

Ps(V ) = d′
s exp

(
−
(

v − e′
s

Vmax1
f ′

s

)2)
, (4.5)

where d′
s > 0, e′

s, and f ′
s > 0 are parameters. The parameter d′

s is the amplitude of
the peak, the parameter e′

s is the position of the peak, and finally the parameter f ′
s

controls its standard deviation. See Figure 4.2B.

• Finally, the linear functions have the form:

Ps(V ) = c′′
s + f ′′

s

V

Vmax1
, (4.6)

where c′′
s and f ′′

s are parameters. The parameter c′′
s is the y-intercept and the pa-

rameter f ′′
s controls the slope which can be positive or negative. See Figure 4.2C.

When using this method, it is crucial to ensure that the sum of probabilities for all
values V equals one: ∀V,

∑
s Ps(V ) = 1. As a result, some of the parameters are interde-

pendent and often require defining the probability of placing one star as the complementary
probability of the others. For example, P5(V ) = 1−P0(V )−P1(V )−P2(V )−P3(V )−P4(V ).
During this process, it is essential to check that the resulting probability, P5(V ) in the
example, remains non-negative.
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4.4 Types of Agents

In this thesis, the model will be used to create different types of agents. The first type,
called “Mimic agents”, are agents that mimic human behavior in a given situation. The
second type, called “Optimized agents”, are agents optimized for a specific task in a specific
situation. Finally, the last type of agents are not optimized but have a specific strategy

4.4.1 Mimic agents

Mimic agents are agents that mimic human behavior. By mimicking human behavior,
these agents serve two purposes. First, they demonstrate that the model introduced
above can quantitatively replicate the results observed in our experiments. Second, they
help us understand human behaviors, especially their visit and rating strategies, as well
as how humans interact with each other through the digital traces they leave on the grid.

For a given experiment, the Mimic agents can be composed of several subtypes of
agents with different rating strategies to account for the diversity of behaviors of human
individuals. In this case, when a Mimic agent is used in a simulation, one of these subtypes
is randomly selected according to some predefined proportions.

4.4.2 Optimized agents

Optimized agents are agents that are optimized for a specific task within a specific envi-
ronment. These tasks can include goals such as maximizing individual or group scores,
or maximizing fidelity. The environment in which the agents are optimized can also vary.
Occasionally, agents are optimized while playing with agents that mimic human behav-
iors. Other times, agents are part of a cohesive group of identical agents. In this case, we
optimize both the agent and the group.

While some instances of these agents are limited to theoretical scenarios that focus on
optimal strategies for various tasks, other instances are compared to that of Mimic agents.
Such comparative analyses provide insights into areas where human decision-making could
be improved.

4.4.3 Other agents

The last type of agents are agents that are not optimized but have a specific set of param-
eters that are interesting to study. For example, we can take our model with reasonable
visit strategy parameters and compare several agents with different mean rating slopes.
This would allow us to study the effect of the mean rating slope on individual and collective
performance.

4.5 Determination of Model Parameters

For the third type of agents that are not optimized, the parameters were put by hand,
however, for the Mimic agents and Optimized agents the parameters need to be deter-
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mined. To achieve that, I used two main methods: the first one is fitting and the second
is a stochastic optimization using a Monte Carlo method.

4.5.1 Fitting

The fitting was only done for the rating strategy of the Mimic. In Section 4.3.2, I in-
troduce three functions that can be directly fitted to the probability distributions of the
experimental players. That way, Mimic agents have similar rating strategies to humans.

4.5.2 Monte Carlo method

Another approach to determine the values of the parameters is to use a zero-temperature
Monte Carlo method. The Monte Carlo method, which serves as a minimization technique,
involves a sequential series of steps. In each step, a small random change is made to a
randomly selected parameter. If this change results in a reduction of the quantity to be
minimized, the adjusted parameter value is accepted. Conversely, if such a change does
not reduce the error, the previous parameter value is kept. The minimization process ends
when the error is no longer reduced. To account for the potential existence of several
local minima within the error landscape, one must start the Monte Carlo simulations from
multiple initial parameter values. The final parameters associated with the best simulation
are then retained.

For the Mimic agents, this method was used to determine the optimal parameter val-
ues for their visit strategy by minimizing an error defined as the discrepancy between a
collection of round-dependent observables, denoted O1(t), . . . , On(t), obtained using the
experimental data, and a corresponding set of observables, Ô1(t), . . . , Ôn(t), obtained
through extensive model simulations (averaging over a substantial 1,000,000 numerical
experiments). The error is defined as follows:

∆ = 1
n

n∑
i=1

Nrounds∑
t=1

(Ôi(t) − Oi(t))2

Nrounds∑
t=1

O2
i (t)

. (4.7)

Finally, the derivation of the parameters governing the visit and rating strategies for
the Optimized agents involves the application of a similar zero-temperature Monte Carlo
procedure, similar to the one described above. However, instead of minimizing an error
as previously mentioned, the goal now shifts to either minimizing or maximizing the des-
ignated task assigned to these agents. Note that maximizing a quantity can be thought
of as minimizing the opposite of that quantity, so the same Monte Carlo method can be
used.
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Chapter 5

Impact of Competitive and
Non-Competitive Conditions on

Stigmergic Cooperation

Chapter Summary
This chapter presents results exploiting the analysis of Bassanetti et al. [2023],

which demonstrate the impact of competition on cooperation and deception. Two
types of experiments exploiting the Stigmer game were compared to achieve this. In
the first experiment, players were instructed to find high-value cells without any in-
centives, allowing them to act freely. In the second experiment, a score was calculated
as the sum of the visited values. The ranking of the players within the group was
determined by their score, and compensation was provided accordingly. Therefore,
this second experiment incited players to open high-value cells to achieve a higher
score than others, creating an intragroup competition absent in the first experiment.

The analysis indicates that, in the absence of competition, participants explore
the grid and find high-value cells. However, in the competitive experiment, which
incites participants to visit high-value cells, they revisit previously found high-value
cells instead of exploring. This results in a smaller exploration of the grid, leading to
participants finding high-value cells less frequently. However, the average value of the
cells visited during the game is much higher in this competitive situation.

When examining how individuals rate cells, three categories of behavior can be
identified based on their degree of cooperation: collaborators rate proportionally to
the cell value; defectors rate inversely proportional to the values; and neutrals give on
average the same rating regardless of the value of the cell. In the absence of competi-
tion, most individuals tend to behave as collaborators, implying that humans’ default
behavior is to cooperate in this context. However, the introduction of competition
results in far fewer collaborators and in a sharp increase in the fraction of defectors
and neutrals. As a result, many individuals tend to withhold their private information
and may even spread misinformation.

The model presented in Chapter 4 was used to simulate participant behavior
in both experiments. This allowed for a quantitative understanding of human visit
and rating strategies. Furthermore, the model allowed to investigate the dynamics
of the Stigmer game under various conditions, such as the number of agents, their
behavioral strategies, grid size, and number of rounds. It also enabled the investigation
of optimal agent strategies based on specific objectives.



Chapter 5. Impact of Competitive and Non-Competitive Conditions

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Collective Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Individual Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Visiting cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2 Rating cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.3 Behavioral profiles of individuals . . . . . . . . . . . . . . . . . . . . . 71

5.5 Model Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5.1 Modeling human behavior . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5.2 Comparison between theoretical and experimental results . . . . . . . 78
5.5.3 Impact of the number of rounds and group size on individual perfor-

mance and collective dynamics . . . . . . . . . . . . . . . . . . . . . . 81
5.5.4 Impact of the rating strategy on agents’ performance and the fidelity

of ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5.5 Optimization of agents’ performance according to specific objectives . 86

5.6 Solo Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Introduction

This chapter presents results along the lines of those published in Bassanetti et al. [2023],
but for a slightly different experimental setup in its payment structure. However, most
conclusions drawn in Bassanetti et al. [2023] will still be valid here. The actual experi-
mental results of Bassanetti et al. [2023] will be considered in Chapter 7 along with several
other experimental conditions.

The present chapter first aims to present and understand how individuals use indi-
rect (stigmergic) interactions to interact in the context of our information search task
experiment described in Chapter 2. Secondly, this chapter explores how a competitive
or non-competitive context impacts cooperation and deception between individuals and
influences how they exchange and use the social information, embedded in the traces of
their past actions, to perform the information search task.

To begin this exploration, I will first provide a comprehensive overview of the two
experiments conducted. I will then delve into an in-depth analysis of both the collective
and individual behavior of the players, using the observables introduced in Chapter 3. This
analysis is an important step in understanding the behavioral and cognitive mechanisms
that drive stigmergic interactions and their impact on collective outcomes. It will also lay
the groundwork for understanding how different individuals contribute to the collective
task based on their different behavioral profiles, thus differentiating themselves in terms
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of their level of cooperation and performance. This analysis will also validate the form of
the visit and rating strategies implemented in the model introduced in Chapter 4. This
model is then exploited to investigate and better understand the mechanisms at work in
the experiments. It will allow us to simulate agents that not only mimic human behavior,
but also optimize certain quantities, providing valuable insights into the mechanisms at
play in both experiments.

5.2 Experimental Design

As stated in the introduction, this chapter presents and compares the results of two ex-
periments that use different reward schemes to explore the impact of competition on
cooperation, as well as individual visit and rating strategies.

In both experiments, the experimental sessions involved ten individuals. Each individ-
ual started by playing two games of twenty rounds alone. The main goal was to ensure
that the participants could familiarize themselves with the web interface and integrate the
rules (see below), and to measure their spontaneous behavior when the only information
available was the digital trace resulting from their own activity. Participants were then
randomly divided into two independent groups of five players and typically played ten
games of twenty rounds in the same groups of five players.

In both experiments, the goal of the games was the same: to find the cells of high
value. However, there is a difference in the scoring system and the final payout, which
leads one experiment to have competition between the participants and the other to have
no competition.

In the non-competitive experiment, the scoring system is disabled, and all participants
are paid the same amount of 10€. In this context, the actions of the participants (visits
and ratings) have no impact on their payout. Therefore, this rule ensures that there is no
competition between players.

In the competitive experiment, the score of the participants corresponds to the sum
of the values of the cells they open. At the end of an experimental session, the scores
obtained by the participant while playing alone and in groups of five were combined to
get their total score. Then, in each group, the participants were ranked based on their
respective total score, and were paid according to their rank. The first ranked player
received 20€, the second received 15€, and the three remaining players (ranked 3–5)
received 10€. Therefore, participants are incentivized to have the highest score, which
creates competition within the five members of the groups.

However, the two groups of five players are truly independent, and the payment struc-
ture does not introduce any form of competition between them. Hence, the fact that there
are two independent groups can be seen as a mere way to accumulate twice more data in
the same experimental period. This is at variance with the actual payment structure used
in Bassanetti et al. [2023] where the ten players of the two groups in the competitive rule
were ultimately ranked together and paid accordingly. The first ranked player received
20€, the second and third received 15€, and the seven other players (ranked 4–10) received
10€ each. Clearly, this payment structure introduces a mix of intragroup and intergroup
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Figure 5.1: Probability distribution functions of the normalized scores. Prob-
ability distribution functions (PDF) of (A) the normalized individual score S and (B)
the normalized group score Ŝ. The non-competitive Rule 1 is in blue and the competi-
tive Rule 2 is in orange. The dots are the experimental data, and the solid lines are the
predictions of the model. The dashed vertical lines represent the mean normalized score
⟨S⟩.

competition. This payment structure and others, including a payment structure creating
a pure competition between the two groups, will be addressed in Chapter 7. In the rest
of the present chapter, we follow the analysis of Bassanetti et al. [2023], but applied to a
payment structure where the two groups are completely independent and where there is
only intragroup competition.

In the non-competitive experiment, we ran a total of ten sessions. Since each session
consisted of two groups of five, this resulted in a total of twenty independent groups,
for a total of 200 solo games and 190 five-player games. Similarly, for the competitive
experiment, we ran seven sessions, resulting in fourteen independent groups, for a total of
140 solo games and 138 five-player games.

For the rest of this chapter, and following Bassanetti et al. [2023], the non-competitive
experiment will be referred to as “Rule 1” and its results will be shown in blue in the
figures, while the competitive experiment will be refereed to as “Rule 2” and will be
shown in orange.

5.3 Collective Behavior

In this section, I analyze the collective performance of groups of individuals using the
observable introduced in Chapter 3.

Normalized score

First, let us focus on the normalized scores (see Definitions 3.1 and 3.9). As a reminder,
in the non-competitive version of the experiment (Rule 1) there is no score. Therefore, to
compare individual and collective performance in both rules, we introduce the normalized
score, which is identical in both versions of the experiment, although our human subjects
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Figure 5.2: Visit and rating performance. Average value of the cells visited (A) at
round t q(t) and (B) up to round t Q(t). Average value of the cells visited weighted by
their ratings (C) at round t p(t) and (D) up to round t P (t). The non-competitive Rule 1
is in blue and the competitive Rule 2 is in orange. The dots are the experimental data,
and the solid lines are the predictions of the model.

were only aware of this notion of score while playing Rule 2.
Figure 5.1 shows the probability distribution function of the two normalized scores

(individual and group). One can see that the mean normalized score is higher in Rule 2:
⟨S⟩ = 0.40 vs. ⟨S⟩ = 0.24. This indicates that the competitive condition provides a
stronger incentive to visit the high-value cells.

For reference, as the average value of a cell in the grid is of 9.7, on average individuals
playing randomly would get a normalized score of 0.11. Therefore, even in the non-
competitive condition, individuals perform twice better than if they were playing randomly.

Visit and rating performance

The analysis of instantaneous and cumulative visit performance (see Definition 3.5) is
presented in Figures 5.2A and 5.2B. In both rules, the initial round shows the same average
value of the visited cell (q(0) = Q(0) = 0.10), since participants visit cells randomly,
gaining no information from the blank grid. In fact, Figure 5.3 reveals that the distribution
of the visited cells in the first round is not uniform. In subsequent rounds, the average
value of q(t) gradually increases as participants explore, visit, and rate cells with higher
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Figure 5.3: Human randomness bias. Fraction of visits of each cell in the grid during
the first round of the experiment. This heatmap combines the distribution of the three
cells visited in the first round in all experiments, even some that are not presented in this
thesis. We note that the distribution of the cells visited in the first round is not uniform,
with a higher density in the corners (especially the upper-left corner), in the center, and
along the diagonals. A similar phenomenon was observed in Fraisse [1968]. This bias does
not affect our experiment, since the value of cells are randomly distributed on the grid,
and are shuffled before every game.

values. However, this increase is not uniform in the two rules. Specifically, in Rule 2,
individuals tend to favor cells with higher values compared to Rule 1. For example,
during the final round, we observe q(20) = 0.24 for Rule 1, while Rule 2 has a higher
q(20) = 0.56. This difference in performance between the two rules is consistent with the
higher mean normalized scores in Rule 2 (see Figure 5.1).

While Rule 2 outperforms Rule 1 in terms of visit performance, an interesting contrast
emerges when examining the instantaneous and cumulative rating performance (see Defi-
nition 3.6 and Figures 5.2C and 5.2D). In fact, the average value of a visited cell weighted
by its corresponding rating is higher in Rule 1. For example, in the final round of Rule 1,
p(20) = 0.53, whereas in Rule 2, p(20) = 0.42. The difference is even more apparent in
the cumulative rating performance (see Figure 5.2D) where P (20) is almost twice larger
in Rule 1 compared to Rule 2.

This illustrates a kind of paradoxical situation in which individuals visit cells with
higher values in the competitive Rule 2, but put stars on cells of lower values than in
the non-competitive Rule 1. However, as we delve deeper into Section 5.4.2, we will see
that this apparent contradiction can be rationalized by the different rating strategies that
individuals employ. In particular, under the competitive Rule 2, some individuals give
low ratings to cells with a high value, presumably to withhold information by avoiding
reporting these cells to the other members of their group.
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Figure 5.4: Inverse participation ratio. Inverse participation ratio of (A) the instan-
taneous fraction of visits IPR(q(t)), (B) the cumulative fraction of visits IPR(Q(t)), (C)
the instantaneous fraction of stars IPR(p(t)), and (D) the cumulative fraction of stars
IPR(P(t)) as a function of the round t. The non-competitive Rule 1 is in blue and the
competitive Rule 2 is in orange. The dots are the experimental data, and the solid lines
are the predictions of the model.

Inverse participation ratio

The Inverse Participation Ratio (IPR) of a distribution is a measure of its spread (see
Definition 3.7). Therefore, the quantity IPR(q(t)) (Figure 5.4A) denotes the effective
number of cells visited by every player during round t. In the first round, both IPR values
are equal because individuals make random choices. However, as the game progresses,
individuals visit significantly more cells in each round in Rule 1 than in Rule 2. For
example, in the final round, out of a maximum of 15 different cells to explore, they visit
about 12 in Rule 1, while they visit only 8 in Rule 2.

Now, looking at IPR(Q(t)) (Figure 5.4B), we observe that the effective number of cells
visited up to round t is significantly larger in Rule 1. At the end of the experiment, this
number is even 4.5 times larger in Rule 1 with 78 compared to 17 in Rule 2. Notably, in
Rule 2, the effective number of cells visited begins to decrease after round 6. Altogether,
these results suggest that in Rule 2, participants not only explore a more limited set of
cells within the same round, but also tend to revisit the same cells over multiple rounds.

Shifting our focus to the inverse participation ratio of the fraction of ratings (Fig-
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Figure 5.5: Fidelity. Fidelity of the hidden values of the grid V to (A) the visits
F(V, Q(t)), and (B) the ratings F(V, P(t)) as a function of the round t. The non-
competitive Rule 1 is in blue and the competitive Rule 2 is in orange. The dots are
the experimental data, and the solid lines are the predictions of the model.

ures 5.4C and 5.4D), we observe that individuals allocate stars to more cells in each round
in Rule 1 compared to Rule 2. This is obviously a consequence of the fact that individuals
visit more cells in Rule 1 than in Rule 2, although we observe a smaller difference between
the two rules in Figure 5.4D (ratings) than in Figure 5.4B (visits), presumably because
some participants also give high ratings to low-value cells in Rule 2, as confirmed hereafter.

Fidelity

The fidelity (see Definition 3.8) of visits and ratings (Figure 5.5) increases with the round,
suggesting that the correlation between participants’ visits or ratings and cell values in-
creases as they explore more and more cells. We also observe that the fidelity is higher in
Rule 1, which is partly due to the fact that the participants explore and rate more cells in
this non-competitive condition, while we will see that they revisit more often high-value
cells in Rule 2. It is interesting to note that, in the non-competitive Rule 1, the fidelity
of the visits and the ratings are similar. However, in the competitive Rule 2 the visits are
much more faithful to the value than the ratings. This is due to the presence of individuals
who visit good cells but rate them poorly. Finally, since the scores are still increasing at
the end of the game, one can imagine that the longer the game, the better the correlation
(see Figure 5.18).

5.4 Individual Behavior

In this section, I will focus on the characterization of the behavior of each individual, as
the previous section already led us to anticipate different behaviors in the two rules. In
a game, each individual performs two different types of actions: visiting a cell and rating
that cell. In a first part, I will focus on how they select a cell to visit. In a second part,
I will show how they choose the rating to give to the visited cells based on their value.
Finally, in a third part, I will classify individuals into behavioral profiles based on their
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Figure 5.6: Values of visited cells. (A–C) V1(t), V2(t), V3(t) are respectively the value of
the first-best cell, second-best cell, and third-best cell visited by the participants at round
t. (D–F) VB1(t), VB2(t), VB3(t) are respectively the value of the first-best cell, second-best
cell, and third-best cell visited by the participants up to round t. The non-competitive
Rule 1 is in blue and the competitive Rule 2 is in orange. The dots are the experimental
data, and the solid lines are the predictions of the model.

rating behavior.

5.4.1 Visiting cells

Values of visited cells

Let us examine the values associated with the cells opened by the participants in each
round (see Definition 3.11 and Figures 5.6A to 5.6C). In both conditions, the average
values of the three cells increase with round t, indicating that players are increasingly
uncovering cells with higher values. Moreover, on average, individuals in Rule 2 tend to
open cells with higher values compared to those in Rule 1, which reflects the competitive
nature of Rule 2.

To further illustrate the contrast in exploration strategies between the two rules, we
can compare the mean cell values opened at each round to the best values uncovered since
the beginning of the game (see Definition 3.12 and Figures 5.6D to 5.6F). In Rule 2, we
observe that Vi(t) ≃ VBi(t) for i = 1, 2, 3, meaning that participants consistently revisit the
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Figure 5.7: Probability of finding the cells with the highest values. (A) Probability
to find the best cell, of value 99. (B) Mean probability to find one of the four cells whose
values are 86 (×2), 85, or 84. (C) Mean probability to find one of the four cells whose
values are 72 (×2) or 71 (×2). The non-competitive Rule 1 is in blue and the competitive
Rule 2 is in orange. The dots are the experimental data, and the solid lines are the
predictions of the model. The black dashed and dotted lines correspond to the expected
probabilities of two different visit strategies: cells chosen randomly (see Equation (3.19)),
and cells chosen sequentially (see Equation (3.20)), respectively.

best cells they found. In contrast, in Rule 1, we find that Vi(t) ≃ VBi(t)/2 for i = 1, 2, 3,
highlighting a distinct pattern where individuals are less inclined to revisit the high-value
cells they previously found. Figures 5.6D to 5.6F also show that, in Rule 1, individuals
found cells with significantly higher values compared to Rule 2.

These results explain the apparent paradox observed in the previous section. In the
competitive Rule 2, players tend to replay the very best cells discovered so far, resulting
in a better score than in Rule 1. However, the lesser exploration prevents them from
discovering cells as high as those in Rule 1. In Rule 1, the absence of incentives to revisit
high-value cells results in a more exploratory behavior, which is corroborated by both the
higher value of the inverse participation ratio and the higher fidelity of ratings to values.

Finding the highest-value cells

To get a clearer insight into the phenomenon described in the previous section, Figure 5.7
shows the probabilities associated with the discovery of the highest-value cells (see Defi-
nition 3.14). The probabilities increase with each successive round, with Rule 2 showing a
comparatively slower increase rate, as expected. In particular, at the end of the game, the
probability of uncovering the cell with the highest value (99) is about four times higher in
Rule 1 (≃ 0.40) than in Rule 2 (≃ 0.10).

Figure 5.7 also show the expected results of two simple visit strategies introduced in
Definition 3.14: random visits and sequential visits. The latter represents the highest
achievable probabilities in the absence of ratings. A curve above this threshold would in-
dicate information sharing among participants, where those who initially found high-value
cells share this information, and subsequently other participants visit these cells. This

68



5.4. Individual Behavior

0 5 10 15 20
t

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
A B1(t)

0 5 10 15 20
t

B B2(t)

0 5 10 15 20
t

C B3(t)
Rule 1
Rule 2

Figure 5.8: Probability of revisiting cells visited in the previous round. (A–C)
Probability B1(t), B2(t), B3(t) to revisit the first-best cell, the second-best cell, and the
third-best cell visited in the previous round as a function of the round t for t > 1. The
non-competitive Rule 1 is in blue and the competitive Rule 2 is in orange. The dots are
the experimental data, and the solid lines are the predictions of the model.

cooperative scenario is observed in Rule 1. In Rule 2, the curve falls below the probabil-
ity predicted by the two simple strategies. This could indicate a lack of communication
among participants, which will be explored in the following section. Alternatively, it could
indicate a strategy in which participants over-visit cells that are deemed sufficiently high
in value to increase their scores. This strategy may cause them to avoid exploring new
cells and consequently fail to find cells with higher values.

Revisiting the high-value cells

Our analysis so far (and in particular, Figure 5.6) suggests that, in Rule 2, individuals fre-
quently revisit their best cells. To quantify this behavior, Figure 5.8 shows the probability
of revisiting cells already visited in the previous round (see Definition 3.13). Note that the
probability values are particularly high in Rule 2. In the final round, participants revisit
their first-best, second-best, and third-best cells from the previous round with probabilities
of 0.94, 0.88, and 0.59, respectively. Conversely, in Rule 1 individuals have comparatively
lower probabilities. In the final round, individuals revisit their first-best, second-best, and
third-best cells from the previous round with probabilities of 0.32, 0.20, and 0.15, respec-
tively. This confirms the observation that in Rule 1 participants predominantly explore
new cells, whether they are white or colored. In contrast, participants in Rule 2 tend to
explore fewer cells and revisit cells they have already opened.

5.4.2 Rating cells

To better understand how the cells are rated, we have measured the mean rating R(V ) (see
Definition 3.15), which is the average number of stars used to rate a cell as a function of
its value. Figure 5.9 shows a significant contrast in the way individuals rate cells between
each condition. In Rule 1, the mean rating increases almost linearly with the value of the
cell. On average, individuals give 1 star to the cells with low values and 4.3 stars to the
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is in blue and the competitive Rule 2 is in orange. The dots are the experimental data,
and the solid lines are the predictions of the model.
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Figure 5.10: Rating probability. Probability of rating a cell as a function of its value V

with s = 0, 1, . . . , 5 stars Ps(V ) in (A) the non-competitive Rule 1 and (B) the competitive
Rule 2.

ones with very high values. In Rule 2 the situation is quite different, individuals give 2.5
stars to low-value cells, and then the mean rating decreases to reach a plateau at about
1.5 stars for values higher than V = 25. Thus, a cell with value between 35 and 99 receives
similar mean ratings regardless of its value. This phenomenon suggests that in Rule 2,
many participants adopt a non-cooperative/deceptive rating strategy, which effectively
makes the information conveyed by the digital trace less discriminating. Overall, these
results indicate that individuals give a much fairer rating to the cells they visit in Rule 1,
as the examination of the fidelity has previously revealed (see Figure 5.5B).

Let us now examine the ratings in more detail by analyzing the distribution of ratings
for each value. Figure 5.10 shows the probability of assigning s stars to a cell with value V

(see Definition 3.17). One can observe two distinct patterns. In Rule 1, individuals use the
full range of ratings, with a predominant tendency to assign a majority of 5-star ratings
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to the cells of high values. Conversely, in Rule 2 one can observe a very different trend
where all probabilities remain nearly constant for all ratings, except for the probability
of assigning 0 stars, which increases with the value of the cell. In addition, the probabil-
ities of assigning 2, 3, or 4 stars are close to zero, suggesting that in Rule 2 individuals
predominantly use the 0, 1, and 5-star ratings, while neglecting the intermediate rating
options.

5.4.3 Behavioral profiles of individuals

To gain a better understanding of individual rating behaviors, we have to study how
each individual rates cells. This can be achieved by examining the mean rating of each
individual in each game. For representation reasons, individual mean ratings for each game
will not be displayed due to the large number of games. However, Figures 5.11 and 5.12
display the mean rating of each participant over the ten games played in groups of five.
This gives less variety as individuals can change their rating strategy in each game, but it
provides a good overview of the situation. One can observe that in both rules there exists
a wide variety of behaviors. Some individuals rate cells somewhat proportionally to their
value, some rate cells almost independently of their value, and some others give ratings
somewhat oppositely proportional to the cell values.

To better quantify the behaviors of each individual, we have fitted the mean rating
R(V ) of each individual using a linear function (see Section 3.4.2 for more details)

R(V ) = u0 + 5 V

Vmax1
u1, (5.1)

where u0 is the intercept, u1 is the slope of the line, and Vmax1 = 90 is the maximum cell
value of the grid.

The combination of every pair of parameters u0 and u1 for all participants is shown in
Figure 5.13, along with the respective distributions of u0 and u1. The inspection of the
distribution of u1 suggests the existence of three classes of behavioral profiles associated
with two thresholds at udef–neu = −0.5 and uneu–col = 0.5 corresponding to the two minima
found in the distribution of u1.

This classification leads to three behavioral profiles:

• Individuals with u1 ≥ uneu–col rate cells with a rating that increases with the cell val-
ues, i.e., they rate cells whose values are the lowest (resp. whose values are the high-
est) with a small number of stars (resp. a large number of stars; see Figure 5.14A).
Hereafter, we will dub these individuals as collaborators, since their rating strategy
helps the other members of their group to identify the best cells. This altruistic be-
havior can come at a cost in Rule 2, since helping the other members of their group
may negatively impact the final ranking of collaborators, and hence their monetary
reward.

• Individuals with udef–neu ≤ u1 < uneu–col rate cells with almost the same number
of stars regardless of their values (see Figure 5.14B). Since the ratings of these
individuals do not provide any distinctive information to the other group members,
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Figure 5.11: Individual mean rating on all games for Rule 1. Average number
of stars used to rate cells by one player in every game of an experimental session as a
function of the cell’s value V . Each of the rectangles corresponds to the behavior of a
single individual aggregated on the 10 games. The x-axis is the cell’s value and goes from
0 to 100 and the y-axis is the number of stars used by the individual to rate a cell of a
given value and goes from 0 to 5. The dots are the experimental data, and the line is a
linear fit of these data with the function given by Equation (5.1). Individuals are sorted
from left to right and from top to bottom according to the value of the slope u1. The color
corresponds to the behavioral profile: green for collaborators, brown for neutrals, and red
for defectors.
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Figure 5.12: Individual mean rating on all games for Rule 2. Average number
of stars used to rate cells by one player in every game of an experimental session as a
function of the cell’s value V . Each of the rectangles corresponds to the behavior of a
single individual aggregated on the 10 games. The x-axis is the cell’s value and goes from
0 to 100 and the y-axis is the number of stars used by the individual to rate a cell of a
given value and goes from 0 to 5. The dots are the experimental data, and the line is a
linear fit of these data with the function given by Equation (5.1). Individuals are sorted
from left to right and from top to bottom according to the value of the slope u1. The color
corresponds to the behavioral profile: green for collaborators, brown for neutrals, and red
for defectors.
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Figure 5.13: Behavioral profiles of individuals. (Bottom-left) Scatter plot of the
values of the two parameters u0 and u1 of the linear function (Equation (5.1)) used to
fit each participant’s mean rating as a function of the value of the visited cells. In the
non-competitive Rule 1, individuals are represented by circles, and in the competitive
Rule 2, individuals are represented by squares. The color of the symbols corresponds
to the behavioral profile of the individuals: collaborator (green), neutral (brown), and
defector (red). The two horizontal lines at udef–neu = −0.5 and uneu–col = 0.5 are the
delimitations between the profiles. (Top-left) Distribution of the values of u0. (Bottom-
right) Distribution of the values of u1. (Top-right) The table gives the percentage of
individuals for each of the behavioral profiles.
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Figure 5.14: Mean rating of each behavioral profile. Average number of stars used
to rate cells as a function of the cell’s value V for (A) collaborators, (B) neutrals, and (C)
defectors. The non-competitive Rule 1 is in blue and the competitive Rule 2 is in orange.
The dots are the experimental data, and the solid lines are the predictions of the model.

we will dub them as neutrals. Note that these neutral individuals do not form a
homogeneous group. Indeed, some of them with u0 close to 0 always give 0 or a very
few stars whatever the cell value, hence essentially not participating in the rating
and the marking of the cells. Some other neutrals with u0 close to 5 always give
a large number of stars or even 5 stars, thus marking all the cells they visit, while
others do not have any consistent logic in the way they rate cells. This explains the
wide range of intercepts u0 ∈ [0, 5] observed for neutrals in Figure 5.13. Despite not
giving distinctive ratings, most neutrals effectively help the other members of their
group to identify the best cells, since they often revisit these cells, and hence make
them darker.

• Individuals with u1 < udef–neu rate the cells in the opposite way to collaborators,
resulting in deceptive ratings. Indeed, they attribute a small number of stars (resp.
a large number of stars) to the cells whose values are the highest (resp. whose values
are the lowest; see Figure 5.14C). We will call these individuals defectors, since we
interpret that the strong traces left on cells with very low values are meant to mislead
other group members and prevent them from finding the best cells. In addition, they
also decide not to share the position of the best cells they have found, by giving them
low ratings, and hence not marking them on the grid.

Note that the two thresholds separating these three behavioral classes are close to the
corresponding thresholds obtained using Ward’s clustering method on the slope parameter,
u1. We have also developed a machine learning approach where a network is trained with
games generated by our model, again leading to similar results. In the rest of the thesis,
we will fix these thresholds to ±0.5, which will also allow us to compare the fraction of
the three behavioral profiles in different experimental conditions (see Chapters 6 and 7).
Also note that the couple of value u0 = 0 and u1 = 1 (respectively, u0 = 5 and u1 = −1)
corresponds to an ideal collaborator (respectively, an ideal defector) rating cells strictly
proportionally (respectively, oppositely proportionally) to their value and using the full

75



Chapter 5. Impact of Competitive and Non-Competitive Conditions

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

Ru
le

1
A

Collaborator
B

Neutral
C

Defector

0 20 40 60 80 100
V

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
Ru

le
2

D

0 20 40 60 80 100
V

E

0 20 40 60 80 100
V

F

P0(V )
P1(V )
P2(V )
P3(V )
P4(V )
P5(V )

Figure 5.15: Rating probability of each behavioral profile. Probability Ps(V ) of
rating a cell of value V with s = 0, 1, . . . , 5 stars for each behavioral profile in Rule 1 (top
row) and Rule 2 (bottom row).

rating scale between 0 and 5 stars (see Section 3.4.2). Hence, it certainly makes sense
to adopt fixed thresholds for u1, equal to half of the slopes for ideal collaborators and
defectors.

Looking at the percentages of each behavioral profile in both rules (see Table 5.1), one
observes that in Rule 1, most of the individuals are collaborators (84%), with few neutrals
(13%), and almost no defectors (3%). This results in a high-quality shared information
in the game, with the presence of a high fraction of collaborators ensuring that the cell
colors on the grid accurately reflect their value (also leading to a high fidelity). However,
in Rule 2, neutrals (43%) and defectors (39%) dominate, and we only observe a small
fraction of collaborators (18%), resulting in a low-quality shared information.

Rule 1 Rule 2
Collaborator 84 ± 3 18 ± 2

Neutral 13 ± 2 43 ± 3
Defector 3 ± 2 39 ± 4

Table 5.1: Percentages of each behavioral profile. Percentages of each behavioral
profile: collaborator, neutral, and defector for both rules.

Figure 5.15 shows that collaborators mostly rate cells whose values are less than 20 with
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Figure 5.16: Distribution of behavioral profiles as a function of the rank. Fraction
of individuals with each behavioral profile (collaborator, neutral, and defector) found at
ranks r = 1, 2, . . . , 5 in Rule 2. The colored bars correspond to experimental data for each
behavioral profile: collaborator (green), neutral (brown), and defector (red) and the black
lines are the predictions of the model. The horizontal dashed lines are the proportion of
individuals of each behavioral profile in all experiments (null model).

1 star, while the cells whose values are greater than 80 are rated with 5 stars. By contrast,
for the neutral individuals, the probability of rating a cell with a given number of stars
does not depend on the cell value. Finally, the defectors’ distribution of ratings presents
an inverse pattern compared to that of the collaborators. Defectors poorly rate cells with
high values, hence hiding them from the other members of their group. Conversely, they
rate cells having low values with a high number of stars, hence misleading others.

Ultimately, defectors and neutrals have access to more information than other group
members. In fact, they benefit from collaborators who give high ratings to cells with high
values. At the same time, defectors strategically withhold their knowledge about the best
cells they have found by refraining from marking such cells, and neutrals do not provide
discriminating information to other members. Thanks to this asymmetric information
[Balakrishnan and Koza, 1993], defecting or, to a lesser extent, neutral behavior can be
advantageous in a competitive environment. Indeed, defectors and neutrals have a higher
probability of having the highest score in their group (see Figure 5.16). However, in
the absence of competition, there is no benefit to deception and one should expect fewer
defectors. This is what we observe in our experiments, where Table 5.1 shows that almost
every participant adopts cooperative behavior in Rule 1, while there is a large fraction of
defectors in Rule 2.

5.5 Model Predictions

This section applies the model introduced in Chapter 4 to the experiment in Rule 1 and
Rule 2. The model enhances our understanding of human behavior in the experiments and
enables predictions of human behavior in unstudied situations. Additionally, the model
will be used to design agents that optimize specific quantities, providing valuable insights
into the game’s underlying mechanisms. In Chapter 6, we will even use the model to
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control four bots playing against a human participant.

5.5.1 Modeling human behavior

Let us first model the participants’ behavior by introducing “Mimic agents” that reproduce
human behaviors within the game as observed in the two experimental conditions. To
create these agents, one has to define two key components: the visit strategy and the
rating strategy.

This study identified three distinct behavioral profiles (collaborator, neutral and de-
fector), each requiring a unique rating strategy. The probability distribution of ratings,
as shown in Figure 5.10, indicates that not all ratings are equally prevalent. Except for
collaborators in Rule 1, participants mainly assign ratings of either 0 or 5 stars. Ratings
of 1, 2, 3, or 4 stars are less common and have similar probabilities. To keep the model as
simple as possible in except for the collaborators in Rule 1, the probabilities of rating a
cell with 1 to 4 stars are set equal. This is achieved through a probabilistic normalization
condition, which requires that the sum of probabilities for each value of V from 0 to 5
equals 1. Specifically, for s = 1, 2, 3, 4:

Ps(V ) = P1234(V ) = 1
4(1 − P0(V ) − P5(V )). (5.2)

The probabilities of assigning ratings of 0 and 5 stars are determined by fitting experimen-
tal values using a sigmoid function (see Equation (4.4)) for collaborators and defectors, or
a linear function (see Equation (4.6)) for neutrals, while maintaining the observed mean
rating.

The P1234(V ) approximation does not apply to collaborators in Rule 1, since they use
the entire rating scale to rate cells proportionally to their values. In this case, we fitted the
experimental values using a normal function (see Equation (4.5)) for each rating, except
for the zeroth one, which we set as P0(V ) = 1 −∑5

s=1 Ps(V ).
The obtained parameter values for both rules are reported in Table 5.2, and the re-

sulting fits are presented in Figure 5.17.
After establishing a rating strategy, the next step is to determine the parameters for

the visit strategy. We conducted simulations with five identical agents, each of them using
a rating strategy randomly drawn from collaborative, neutral, and defector profiles based
on the proportions observed in the experiments (see Table 5.1). The Monte Carlo method
outlined in Chapter 4 was used to iteratively adjust the parameters and minimize the error
(see Equation (4.7)) between experimental and simulated observables.

The error metrics considered encompass a range of observables: q(t), Q(t), p(t), P (t),
IPR(q(t)), IPR(Q(t)), IPR(p(t)), IPR(P(t)), F(Q(t), V), F(P(t), V), V1(t), V2(t), V3(t),
B1(t), B2(t), and B3(t). The error is equal to ∆ = 0.014 in Rule 1 and to ∆ = 0.005 in
Rule 2. The resulting optimized parameters are detailed in Table 5.3.

5.5.2 Comparison between theoretical and experimental results

We consider groups of five Mimic agents, reproducing the behaviors of human collab-
orators, neutrals, and defectors. Their behavioral profiles are drawn according to the
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d′
s e′

s f ′
s

s = 1 0.65 6.6 5.83
s = 2 0.46 25.9 6.30
s = 3 0.36 43.8 4.79
s = 4 0.30 61.1 4.07
s = 5 0.96 102.4 2.01

(A) Collaborator (Rule 1)

cs ds es fs

s = 0 1113.4 1113.3 −84.5 −4.75
s = 5 −1051.9 1052.8 −304.5 1.24

(B) Collaborator (Rule 2)

c′′
s f ′′

s

s = 0 0.09 0.30
s = 5 0.25 0.30

(C) Neutral (Rule 1)

c′′
s f ′′

s

s = 0 0.45 0.17
s = 5 0.09 0.17

(D) Neutral (Rule 2)

cs ds es fs

s = 0 0.50 0.45 39.4 3.86
s = 5 0.46 0.52 26.9 −3.11

(E) Defector (Rule 1)

cs ds es fs

s = 0 0.45 0.46 14.8 7.34
s = 5 0.39 0.38 9.8 −18.49

(F) Defector (Rule 2)

Table 5.2: Rating strategy parameters of Mimic agents. Parameters values used
for the rating strategy (see Equations (4.4) to (4.6)) for the Mimic agents (collaborator,
neutral, and defector) in both rules.

P E(c, t) B1(t) B2(t) B3(t)
ε α a1 b1 a2 b2 a3 b3

Rule 1 0.78 0.89 57.6 2.19 25.0 2.29 1.4 2.64
Rule 2 0.69 1.32 −8.4 1.55 −4.1 2.11 −0.2 2.33

Table 5.3: Visit strategy parameters of Mimic agents. Parameters values used for
the visiting strategy (see Equations (4.1) and (4.2)) for the Mimic agents.
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Figure 5.17: Rating strategy of Mimic agents. Probability of rating a cell with s

stars (Ps(V )), for the collaborators, neutrals, and defectors, and for the two rules. Except
for collaborators in Rule 1, the probabilities of rating a cell of value V with 1 to 4 stars
have been averaged in P1234(V ). The dots are the experimental data, and the solid lines
represent the rating strategy in the model for collaborator, neutral, and defector agents.
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corresponding fraction observed in the experiment (see Table 5.1). All graphs were based
on 1,000,000 simulations, resulting in negligible error bars on the scale of the presented
graphs.

Figures 5.1, 5.2, 5.4 and 5.5 show that simulations of the model with Mimic agents
quantitatively reproduce the performance of individuals and groups and the observables
used to characterize the dynamics of collective exploration and ratings in both rules, as
measured in the experiment. The model also quantitatively reproduces the dynamics of
the average value of the first-best, second-best, and third-best cells visited by individuals
during the different rounds (Figure 5.6), along with the probability to revisit each of these
three best cells at the next turn (Figure 5.8). The model reproduces fairly the fraction of
collaborators, neutrals, or defectors according to their rank at the end of the experiment
(Figure 5.16).

These results suggest that the behavioral mechanisms implemented in the model con-
stitute an excellent representation of the processes by which individuals leave and use the
traces to guide their choice, and how these processes are modulated in the presence of
competition between individuals.

5.5.3 Impact of the number of rounds and group size on individual per-
formance and collective dynamics

Figure 5.18 shows that after 100 rounds, instead of 20 rounds, the normalized score of
individuals and groups has increased by 60% in Rule 2. Beyond round 50, the values of
the observables used to quantify the dynamics of collective exploration and ratings begin
to saturate. From one round to another, the Mimic agents revisit almost exclusively the
same cells whose values are very high. At the end of the 100 rounds, in Rule 2 the value
of their best cell is V1(100) ≃ 84, and the agents revisit their best cell with a probability
B1(100) ≃ 1.

Figure 5.19 shows the impact of group size on the scores of individuals and groups,
and the dynamics of collective exploration and ratings. We compare the simulation results
obtained with groups of 5 Mimic agents exploring a grid of 225 (15 × 15) cells and groups
of 20 Mimic agents exploring a grid four times larger, 900 cells (30 × 30). These larger
grids were obtained from the combination of four identical grids of 225 cells so that the
proportion of each cell value does not change. For instance, in a grid of 900 cells, there
are four cells with a value of 99, but their proportion (1/225) is the same as in the smaller
grids. The dynamics of the inverse participation ratio (IPR) of p(t), P(t), Q(t), and Q(t)
reveal that large groups do not visit four times more cells than small groups, but instead,
they concentrate their visits on a few cells with high values. Individuals also have a higher
probability of finding the cells with the best values. However, despite these differences,
the score remains unchanged. Finally, in Rule 1, the probability that individuals find
the best cells at the end of an experiment is much larger in groups of 20 Mimic agents.
Altogether, these results suggest that cooperation induced by stigmergic interactions and
the way individuals use the traces resulting from past actions increase with group size.
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Figure 5.18: Impact of the number of rounds on individual performance and
collective dynamics. Simulations with five Mimic agents over 100 rounds. The non-
competitive Rule 1 is in blue and the competitive Rule 2 is in orange. The vertical
dotted line at t = 20 corresponds to the final round used in the experiments with humans.
(A) Probability distribution function (PDF) of the normalized individual scores S, and (G)
normalized group scores Ŝ. The dotted vertical lines are the mean normalized scores. (B)
Average value of the cells visited at round t, q(t) and (C) up to round t, Q(t). (H) Average
value of the cells visited weighted by their ratings at round t, p(t) and (I) up to round
t, P (t). (D) and (E) Inverse participation ratio of the visits, IPR(q(t)) and IPR(Q(t)).
(J) and (K) Inverse participation ratio of the ratings, IPR(p(t)) and IPR(P(t)). (F)
Fidelity to the cell value distribution of the distribution of visits, F(Q(t), V), and, (L) of
ratings, F(P(t), V). (M–O) V1(t), V2(t), V3(t) are respectively the value of the first-best
cell, second-best cell, and third-best cell visited by the participants, as a function of the
round t. (P–R) Probability B1(t), B2(t), B3(t) to revisit the first-best cell, the second-best
cell, and the third-best cell of the previous round, as a function of the round t > 1.
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Figure 5.19: Impact of the group size on the collective performance and the dy-
namics of collective exploration and ratings. Dashed lines correspond to simulations
with five Mimic agents exploring a grid with 225 (15×15) cells, as used in the experiments
with humans. Solid lines correspond to simulations with 20 Mimic agents exploring a
grid 4 times larger, with 900 (30×30) cells. The non-competitive Rule 1 is in blue and
the competitive Rule 2 is in orange. (A) Probability distribution function (PDF) of the
normalized individual scores S, and (G) normalized group scores Ŝ. The dotted vertical
lines are the mean normalized scores. (B) Average value of the cells visited at round t,
q(t) and (C) up to round t, Q(t). (H) Average value of the cells visited weighted by their
ratings at round t, p(t) and (I) up to round t, P (t). (D) and (E) Inverse participation
ratio of the visits, IPR(q(t)) and IPR(Q(t)). (J) and (K) Inverse participation ratio of the
ratings, IPR(p(t)) and IPR(P(t)). (F) Fidelity to the cell value distribution of the dis-
tribution of visits, F(Q(t), V), and, (L) of ratings, F(P(t), V). (M–O) V1(t), V2(t), V3(t)
are respectively the value of the first-best cell, second-best cell, and third-best cell visited
by the participants, as a function of the round t. (P–R) Probability B1(t), B2(t), B3(t)
to revisit the first-best cell, the second-best cell, and the third-best cell of the previous
round, as a function of the round t > 1. (S) Probability to find the best cell, of value
99. (T) Probability to find one of the four cells whose values are 86 (× 2), 85, or 84. (U)
Probability to find one of the four cells whose values are 72 (× 2) or 71 (× 2).
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5.5.4 Impact of the rating strategy on agents’ performance and the fi-
delity of ratings

To better understand the impact of the rating strategy on individual performance, we
studied the collective behaviors of groups of five agents having a linear rating strategy
(see Section 4.3.1). These agents rate a cell proportionally to its value, V , with u0 + u1 ×
5 V/99 stars, where u0 and u1 are respectively the intercept and the slope of the line (see
Equation (5.1)). When u1 > 0, the number of stars used to rate a cell increases with its
value V (like for a cooperator), while when u1 < 0, the number of stars used to rate a
cell decreases with its value V (like for a defector). As u0 increases, agents use a larger
number of stars to rate a cell of a given value. Moreover, the combinations of parameters
u0 ≤ 0 and u1 ≤ 0 correspond to a situation in which the agents rate all cells with 0 stars,
as some actual neutrals do in the experiment. Finally, the visit strategies of these agents
are the same as those used by the Mimic agents in each of the two conditions, Rule 1 and
Rule 2.

Figure 5.20 presents the result of the respective impact of u0 and u1 on (i) the aver-
age performance of individuals, (ii) the average value of cells visited by the participants
weighted by their ratings, and (iii) the fidelity of ratings with respect to cell values, for
each condition Rule 1 and Rule 2. We first observe that when u0 = 0, as soon as the
agents start rating the cells with a non-zero number of stars, the resulting trace allows
them to cooperate and significantly increase their performance, even for very low posi-
tive values of u1. The results of the simulations also show that the agents get the best
scores for negative values of u0, which correspond to situations in which there exists a
minimum threshold in the value of a cell that triggers the agents to rate that cell (e.g.,
when u0 = −0.5 and u1 = 0.5 the threshold is at V = 20). Moreover, the higher the
value of u0, the worse the performance of the agents. This results from the fact that in
that condition, the agents use a very high number of stars with little discrimination in the
ratings for different values of V . The resulting trace left on cells then provides much less
information to the agents, leading to a lower level of cooperation and lower performance.
Note however that for high values of u0 (i.e., when u0 > 3) and for weakly negative values
of u1 (i.e., when −1 < u1 < 0), there still exists weak cooperation between the agents. At
first glance, this is rather counterintuitive, since for these parameters, agents are classified
as neutrals or mild defectors. However, this phenomenon can be explained by the fact
that, while the traces left by the agents in the initial rounds may not allow for the identifi-
cation of cells with higher values, over time, cells with higher values will be revisited more
often, resulting in a greater accumulation of marks compared to cells with lower values.
Nevertheless, for values of u1 that are even more negative, indicating strong defection,
the tendency of agents to revisit high-value cells is insufficient to counterbalance the neg-
ative impact of assigning high ratings to cells with low values, which ultimately leads to
decreased performance.
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Figure 5.20: Impact of the rating strategy on agents’ performance and the fi-
delity of rating. Heatmap for Rule 1 (left column) and Rule 2 (right column) and for
different combinations of values of intercept u0 and slope u1 of: (A) and (B) the average
value of the normalized individual score ⟨S⟩ − Sref , (B) and (C) the average value of the
cells visited weighted by their ratings at the end of the experiment P (20), and (E) and (F)
the average value of the fidelity of ratings with respect to cell values at the end of the
experiment F(P(20), V). Each data point on the heatmap corresponds to the average over
10,000 simulations with five identical agents, defined by their intercept u0 and slope u1.
In (A) and (B), Sref is the normalized score obtained with simulations done with u0 = 0
and u1 = 0. Blue (resp. red) corresponds to positive (resp. negative) values, see color
bars. The two horizontal lines at udef-neu = −0.5 and uneu-col = 0.5 are the delimitation
between the behavioral profiles, and the dotted rectangle represents the rough location of
the participants’ parameters in the experiment.
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cs ds es fs

s = 0 0.5 0.95 63.7 −5.17
s = 5 0.5 0.78 80.1 5.01

(A) Opt-1

c′
s d′

s

s = 0 1 0
s = 5 0 0

(B) Opt-2

cs ds es fs

s = 0 0.45 0.59 16.9 7.34
s = 5 0.51 0.55 9.8 −18.48

(C) Opt-3

Table 5.4: Rating strategy parameters of Optimized agents. Parameters values
used for the rating strategy (see Equations (4.4) to (4.6)) for the Optimized agents: (A)
Opt-1, (B) Opt-2, and (C) Opt-3.

P E(c, t) B1(t) B2(t) B3(t)
ε α a1 b1 a2 b2 a3 b3

Opt-1 1e-5 1.38 25.0 2.00 18.4 2.03 27.1 2.41
Opt-2 0.58 2.75 −2.4 2.15 4.0 2.54 9.1 2.90
Opt-3 0.82 4.32 22.3 4.86 13.7 3.54 8.3 3.35
Opt-4 1 0 0 0 0 0 0 0

Table 5.5: Visit strategy parameters of Optimized agents. Parameters values used
for the visit strategy (see Equations (4.1) and (4.2))

5.5.5 Optimization of agents’ performance according to specific objec-
tives

We have also exploited our model to find agents that are optimized in different situations.
To achieve this, we have used a Monte Carlo method to obtain all the parameters of the
model that characterize the corresponding visit and rating strategies.

We first consider a situation in which we wish to maximize the normalized score S of
five identical agents (Opt-1 agents) in the same group and exploiting the same strategy
(see Figures 5.21A and 5.22 and Tables 5.4A and 5.5). The inspection of the Opt-1 agents’
show that they essentially only rate cells that have very high values, which they revisit at
almost every round so that there is almost no exploration. These Opt-1 agents are strong
collaborators, and their average normalized score (S ≃ 67 %) is markedly higher than the
normalized score of the human subjects in Rule 2 (S ≃ 39 %). Note that, since the five
Opt-1 agents are identical, they also maximize the total score of the group. This suggests
that a situation where groups would compete (instead of individuals; intergroup instead of
intragroup competition) should lead to the emergence of a collaborative behavior within
the groups (see Chapter 7, where we present the results of an experiment where two groups
directly compete).

We then consider a situation in which we maximize the normalized score of one agent
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Figure 5.21: Rating probabilities of Optimized agents. Probability of rating a cell
with 0 stars (P0(V )), 1 to 4 stars (P1234(V )) and 5 stars (P5(V )) as a function of its value
V , for (A) Opt-1, (B) Opt-2, and (C) Opt-3 agents.

competing with four Mimic agents (see Figures 5.21B and 5.23 and Tables 5.4B and 5.5).
This scenario represents a more realistic situation where an individual seeks to maximize
their score while competing against four other typical individuals. In this condition, the
behavior of this Optimized agent (Opt-2) is markedly different from that of Opt-1 agents,
since the presence of Mimic agents behaving as neutrals and defectors forces the Opt-2
agent to adapt its visit and rating strategy to cope with indiscriminate or even false social
information. Interestingly, the optimization process leads to a neutral agent assigning 0
stars to every visited cell, and hence not participating at all in the rating process. Note
that, as already mentioned in the description of neutral agents (and in Section 5.5.4), a
neutral agent assigning a non-zero number of stars to visited cells would effectively help
the other members of its group to identify the best cells, since it would often revisit these
cells. The average normalized score of the Opt-2 agents is S = 43 %, which is only slightly
better than the average score of human subjects or Mimic agents.

However, in our experiment, to obtain the maximum monetary reward, individuals
were not strictly required to maximize their score but rather had to optimize their ranking
at the end of the experimental session among the five individuals of their group. In this
condition, the Optimized agent (Opt-3) competing against four Mimic agents behaves as
a defector (see Figures 5.21C and 5.24 and Tables 5.4C and 5.5). After ten games (like
for the human subjects in our experiment), the Opt-3 agent has on average a rank of 1.7
(see Figure 5.24G). It is remarkable that the model predicts that deception is an emerging
behavior in the conditions of our experiment.

Finally, it is interesting to consider the visit and rating strategies maximizing the
fidelity of the distribution of ratings to the distribution of cell values in the final round,
F(P(t = 20), V) (see Figure 5.25 and Table 5.5). If the number of rounds was infinite,
the optimal strategy for these agents (Opt-4) would be to explore the grid randomly and
to rate cells proportionally to their value on a full scale of 0 to 5 stars (corresponding to
u0 = 0 and u1 = 1 in Equation (5.1)). By using this strategy, the agents achieve a fidelity
of 0.76 at round 20 (compared to 0.4 in Figure 5.5), and the fidelity would ultimately
converge to 1 in the limit of an infinite number of rounds. Obviously, these Opt-4 agents
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Figure 5.22: Collective performance and dynamics of collective exploration and
ratings for Opt-1 agents. Simulations with five Opt-1 agents optimizing the normalized
individual score S (green) compared to simulations with five Mimic agents in Rule 2
(orange). (A) Probability distribution function (PDF) of the normalized individual scores
S, and (G) of the groups Ŝ. The dotted vertical lines are the mean normalized scores. (B)
Average value of the cells visited at round t, q(t) and (C) up to round t, Q(t). (H) Average
value of the cells visited weighted by their ratings at round t, p(t) and (I) up to round
t, P (t). (D) and (E) Inverse participation ratio of the visits, IPR(q(t)) and IPR(Q(t)).
(J) and (K) Inverse participation ratio of the ratings, IPR(p(t)) and IPR(P(t)). (F)
Fidelity to the cell value distribution of the distribution of visits, F(Q(t), V), and, (L) of
ratings, F(P(t), V). (M–O) V1(t), V2(t), V3(t) are respectively the value of the first-best
cell, second-best cell, and third-best cell visited by the participants, as a function of the
round t. (P–R) Probability B1(t), B2(t), B3(t) to revisit the first-best cell, the second-best
cell, and the third-best cell of the previous round, as a function of the round t > 1.
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Figure 5.23: Collective performance and dynamics of collective exploration and
ratings for Opt-2 agents. Simulations with one Opt-2 agent optimizing its score S

playing with four Mimic agents in Rule 2 (green) compared to simulations with five Mimic
agents in Rule 2 (orange). (A) Probability distribution function (PDF) of the normal-
ized individual scores S. The dotted vertical lines are the mean normalized scores. (G)
Probability distribution function (PDF) of the rank r of the Optimized agent after one
game. The dotted vertical lines correspond to the mean rank. (B) Average value of the
cells visited at round t, q(t) and (C) up to round t, Q(t). (H) Average value of the cells
visited weighted by their ratings at round t, p(t) and (I) up to round t, P (t). (D) and (E)
Inverse participation ratio of the visits, IPR(q(t)) and IPR(Q(t)). (J) and (K) Inverse
participation ratio of the ratings, IPR(p(t)) and IPR(P(t)). (F) Fidelity to the cell value
distribution of the distribution of visits, F(Q(t), V), and, (L) of ratings, F(P(t), V).

89



Chapter 5. Impact of Competitive and Non-Competitive Conditions

0.0 0.5 1.0
S

0

1

2

3
A PDF

0 5 10 15 20
t

0.0

0.2

0.4

0.6
B q(t)

Mimic
Opt-3

0 5 10 15 20
t

0.0

0.2

0.4

0.6
C Q(t)

0 5 10 15 20
t

0

5

10

15
D IPR(q(t))

0 5 10 15 20
t

0

10

20

30
E IPR(Q(t))

0 5 10 15 20
t

0.0

0.2

0.4

0.6
F F(Q(t),V)

1 2 3 4 5
r

0.0

0.2

0.4

0.6

G PDF

0 5 10 15 20
t

0.0

0.2

0.4

0.6
H p(t)

0 5 10 15 20
t

0.0

0.2

0.4

0.6
I P (t)

0 5 10 15 20
t

0
2
4
6
8
J IPR(p(t))

0 5 10 15 20
t

0

10

20

30
K IPR(P(t))

0 5 10 15 20
t

0.0

0.2

0.4

0.6
L F(P(t),V)

Figure 5.24: Collective performance and dynamics of collective exploration and
ratings for Opt-3 agents. Simulations with one Opt-3 agent optimizing its rank r

while playing against four Mimic agents in Rule 2 (green) compared to simulations with
five Mimic agents in Rule 2 (orange). (A) Probability distribution function (PDF) of the
normalized individual scores S. The dotted vertical lines are the mean normalized scores.
(G) Probability distribution function (PDF) of the rank r of the Optimized agent. The
dotted vertical line corresponds to the mean rank. (B) Average value of the cells visited at
round t, q(t) and (C) up to round t, Q(t). (H) Average value of the cells visited weighted by
their ratings at round t, p(t) and (I) up to round t, P (t). (D) and (E) Inverse participation
ratio of the visits, IPR(q(t)) and IPR(Q(t)). (J) and (K) Inverse participation ratio of
the ratings, IPR(p(t)) and IPR(P(t)). (F) Fidelity to the cell value distribution of the
distribution of visits, F(Q(t), V), and, (L) of ratings, F(P(t), V).
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Figure 5.25: Collective performance and dynamics of collective exploration and
ratings for Opt-4 agents. Simulations with five Opt-4 agents optimizing the fidelity of
ratings with respect to cell values at the end of the experiment F(P(t = 20), V) (green)
compared to simulations with five Mimic agents in Rule 1 (blue). (A) Probability dis-
tribution function (PDF) of the normalized individual scores S, and (G) of the groups
Ŝ. The dotted vertical lines are the mean normalized scores. (B) Average value of the
cells visited at round t, q(t) and (C) up to round t, Q(t). (H) Average value of the cells
visited weighted by their ratings at round t, p(t) and (I) up to round t, P (t). (D) and (E)
Inverse participation ratio of the visits, IPR(q(t)) and IPR(Q(t)). (J) and (K) Inverse
participation ratio of the ratings, IPR(p(t)) and IPR(P(t)). (F) Fidelity to the cell value
distribution of the distribution of visits, F(Q(t), V), and, (L) of ratings, F(P(t), V). (M–
O) V1(t), V2(t), V3(t) are respectively the value of the first-best cell, second-best cell, and
third-best cell visited by the participants, as a function of the round t. (P–R) Probability
B1(t), B2(t), B3(t) to revisit the first-best cell, the second-best cell, and the third-best
cell of the previous round, as a function of the round t > 1.
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achieve a very mediocre mean normalized score of S = 11 % compared to that of the
previous Optimized agents, and to the human participants. It is worth noting that there
could exist a better strategy to maximize the fidelity at round t = 20, specifically tailored
for the finite 20 round setting used in the actual experiment.

5.6 Solo Games

At the beginning of an experimental session, each participant would first play two games
alone, so that the color of the cells on the grid would only reflect the participant’s rat-
ings. These games had two main goals: first, to ensure that participants understood the
rules and how to use the web interface; second, to measure the spontaneous behavior of
individuals when the only information available was the digital trace resulting from their
own activity.

In solo games, players could only explore a maximum of 20×3 = 60 distinct cells among
the 250 available. With such a low exploration, there is a non-negligible probability that
players did not find any high-value cells during a game.

Upon examining the distributions of normalized scores in Rule 2 after one game (Fig-
ure 5.26A), we observe two distinct peaks. The first peak, around S = 0.1, aligns with
scores expected from random exploration (S = 0.11), while the second peak, at S = 0.38,
corresponds to typical game scores. Furthermore, Figure 5.26B, shows that the distribu-
tion of normalized scores after the two solo games, reveals a broader distribution with
three distinct peaks. The first peak represents individuals who did not discover any high-
value cells, the second peak represents those who found them once, and the third peak
represents those who found them twice. This emphasizes that two repetitions of the game
are insufficient to capture the full range of individual performance.

As expected, we find that a clear majority of participants behave as collaborators
(with themselves) in solo games: 82% for participants playing Rule 1 and 71% for those
playing Rule 2. This majority of collaborators is reflected in the mean solo rating R(V )
shown in Figure 5.27A, which consistently increases as a function of the cell value V . In
Figures 5.27B and 5.27C, we show the behavioral profile of each individual as measured in
solo games and in the ten subsequent games played in a group of five, for Rule 1 and Rule 2.
For Rule 2, we did not find any significant correlation between the solo collaborators and
their behavioral profile in a group of five. However, for both rule, we find that the neutrals
in solo games tend to remain neutral in games in group. Interestingly enough, we also
observe a few apparent solo defectors who could have been individuals adopting a different
rating norm while playing alone: in a solo game, it would make sense to give a non-zero
(say, 3) rating to very bad cells, to mark them to later avoid revisiting them in the next
rounds while exploring the grid.

5.7 Discussion

This chapter explores the effect of a competitive versus a non-competitive condition on
the way individuals use digital traces and cooperate to find the best values in a grid of
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Figure 5.26: Individual behaviors in experiments in which individuals play alone.
The non-competitive Rule 1 is in blue and the competitive Rule 2 is in orange. (A) and (B)
Probability distribution function (PDF) of the normalized individual scores S, after (A)
one game, and (B) two games. The dotted vertical lines are the mean normalized scores.
(C) Average value of the cells visited at round t, q(t) and (E) up to round t, Q(t). (D) Aver-
age value of the cells visited weighted by their ratings at round t, p(t) and (F) up to round
t, P (t). (G) and (I) Inverse participation ratio of the visits, IPR(q(t)) and IPR(Q(t)).
(H) and (J) Inverse participation ratio of the ratings, IPR(p(t)) and IPR(P(t)). (K) Fi-
delity to the cell value distribution of the distribution of visits, F(Q(t), V), and, (L) of
ratings, F(P(t), V). (M–O) V1(t), V2(t), V3(t) are respectively the value of the first-best
cell, second-best cell, and third-best cell visited by the participants, as a function of the
round t. (P–R) Probability B1(t), B2(t), B3(t) to revisit the first-best cell, the second-best
cell, and the third-best cell of the previous round, as a function of the round t > 1. (S)
Probability to find the best cell, of value 99. (T) Probability to find one of the four cells
whose values are 86 (× 2), 85, or 84. (U) Probability to find one of the four cells whose
values are 72 (× 2) or 71 (× 2).
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Figure 5.27: Mean rating and behavioral profiles in solo games. (A) Mean rating
R(V ) as a function of the cell value V for the experiments in which individuals play alone.
The non-competitive Rule 1 is in blue and the competitive Rule 2 is in orange. (B) and (C)
Change in individuals’ behaviors between the single-player and five-player experiments,
for (B) Rule 1 and (C) Rule 2. The x-axis represents the average slope u1 of individuals
over the two experiments in which they play alone, while the y-axis represents the average
slope u1 of individuals over the ten experiments in which they play in groups of five. The
two horizontal lines at udef−neu = −0.5 and uneu−col = 0.5 are the delimitations between
the profiles. The percentages indicate the fraction of each behavioral profile: collaborators
(green), neutrals (brown), and defectors (red).

hidden numbers. Two experiments with different rules were considered. Rule 2 introduces
a monetary incentive for participants to perform well, resulting in explicit competition,
which is absent in Rule 1.

Our experimental results indicate that groups of individuals can use colored traces
resulting from their ratings to coordinate their search and collectively find the cells with
the highest values in a grid of hidden numbers. These traces constitute a form of long-
term collective memory of the past actions performed by the group [Thierry et al., 1996;
Baltzersen, 2022]. Combined with the individual short-term memory of the value of the
cells already visited, these traces determine the choice of the cells ultimately visited by
the participants.

However, our results have also revealed profound disparities in the way individuals
use social information resulting from these colored traces to guide them in their tasks,
and also in the way they choose to deliver information to other group members through
their ratings. We have identified three behavioral profiles (collaborators, defectors, and
neutrals) that essentially account for the way in which individuals rate cells. Collaborators
cooperate by leaving a trace whose intensity positively correlates with the hidden value of
the cells, while the defectors adopt an opposite behavior. Neutral individuals constitute a
sizable fraction of the group members (13% in Rule 1 and 43% in Rule 2) and their ratings
are essentially uncorrelated with the actual value of the cells. Yet, the marks that they
leave, even if they do not directly inform about the value of the cells, nevertheless induce a
cooperative behavior, since neutrals often revisit the high-value cells in a way statistically
indistinguishable from the collaborators and defectors.
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5.7. Discussion

The information contained in the traces can thus be manipulated by individuals de-
pending on the context, competitive or not, in which the task is performed. Therefore,
one may expect that when a situation becomes competitive, individuals should pay less
attention to the socially generated traces since the reliability of the information contained
in the trace decreases. Previous works in social decision-making have indeed shown that
there exists a causal link between mistrust and a decrease in information sharing, and that
the fear of being exploited can be a reason for group members to withhold accurate infor-
mation [Zand, 1972; Steinel and De Dreu, 2004]. This clearly occurs in Rule 2, where 82%
of individuals provide indiscriminate (neutrals) or false (defectors) information, whereas
84% of individuals (collaborators) provide reliable information in Rule 1.

Despite participants achieving higher scores in the competitive Rule 2 than in Rule 1, by
exploring less and often revisiting their best-discovered cells, the fidelity of the cumulative
trace resulting from their ratings is more faithful to the actual distribution of cell values
in Rule 1 than in Rule 2. In other words, there is a better relation (more faithful) between
the final rating of a cell and its true value in Rule 1 than in Rule 2, although this relation
that we measured remains nonlinear.

We used these experimental observations to build and calibrate a model that quan-
titatively reproduces the dynamics of collective exploration and ratings, as well as the
individual and collective performances observed in both experimental conditions. In par-
ticular, this agreement between the model and the experiment is quantified by exploiting
a series of subtle observables (PDF of the score, fidelity, IPR, probability of revisiting cells
depending on their values. . . ). Note that an important added value of our model is to offer
(via the analysis of its parameters) a direct and quantitative interpretation of the visit and
rating strategies for the three observed behavioral profiles of human participants, and also
for different types of Optimized agents. The analysis of individual behaviors combined
with the simulations of the computational model shows that competition reinforces the
weight of private information (i.e., the individual’s memory of the cells already visited)
compared to social information (i.e., the collective memory of the group shown on the
shared colored grid) in the choice of cells that are visited.

The analysis of the model indicates that a cooperative effect induced by the trace
emerges as soon as there exists a minimal level of marking on cells and that the fidelity
of the ratings increases with cooperation. The model also shows that the trace induces
weak cooperation even in groups of defectors, provided they rate cells with a large enough
number of stars, simply because they revisit the cells whose values are the highest. In
this case, individual memory plays a major role in the collective performance of these
defectors. Furthermore, the model predicts that the cooperative effect induced by the
traces and the average performance of individuals increases with group size. This prop-
erty results from the stigmergic interactions between individuals that make it possible to
amplify at the group level the information about the location of cells whose values are
the highest. Similar properties are observed in many species of ants that use pheromone
trail laying to coordinate collective foraging activities to locate the best food sources in
their environment [Goss et al., 1989; Beckers et al., 1990]. The model also allowed us to
explore the dynamics of the system in different conditions (number of agents and their
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behavioral strategy, size of the grid, number of rounds...), and to investigate the optimal
agents’ strategy depending on diverse specified objectives. Our analysis indicates that
the maximal score is obtained for collaborative agents (Opt-1), suggesting that intragroup
collaboration should emerge from intergroup competition (see Chapter 7). Interestingly,
the model also predicts that a defector behavior emerges for an agent (Opt-3) aiming at
optimizing its rank, in the same conditions as in our experiment.

As our model was deliberately designed to prioritize relative simplicity, it consequently
presents a notable limitation by not incorporating a possible explicit time dependence in
the parameters that quantify the visit and rating strategies. Indeed, the perceived im-
portance of a cell with a given color may vary between the beginning and the end of an
experimental run. In fact, in the model, the time-dependence of a subject’s actions only
results from the obvious time-dependence of the cell colors and of their three best dis-
covered cells. Again, we did not consider, say, time-dependent visit parameters (ε and α

parameters), for the sake of simplicity of the model, but also due to the fact that identify-
ing the possible time-dependence of these parameters with reasonable statistical accuracy
would require a much larger dataset. It must be noted that despite the model’s imperfec-
tion in reproducing certain observables, even the worst agreement between experimental
and model results still remains within two experimental standard errors (for instance, see
Figure 5.4B for Rule 1). Considering the number and diversity of observables that we
have considered, this level of agreement can be regarded as very satisfactory, suggesting
that the model grasps the main ingredients of the actual visit and rating dynamics.
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Chapter 6

Impact of Group Composition on
Individual Behavior and
Stigmergic Cooperation

Chapter Summary
This chapter presents the results and the modeling of nine different experimental

conditions, in which each human participant competes with four social bots controlled
by our model. Participants were unaware of the presence of the bots, believing that
they were playing against each other in a group of five. By controlling the behavior
of the bots, the setup provides a controlled environment suitable for studying human
behavior and its adaptation to varying conditions. In particular, the use of different
fractions of collaborator and defector bots allows for precise control of the level of
cooperation within a game.

On average, the human participants can outperform the simple bots in all situa-
tions. In particular, the more collaborative the bots, the better the humans perform
compared to the bots. In addition, human participants are more likely to adopt
deceptive behavior when facing more collaborative groups.

A model is then constructed to mimic the behavior of human participants, using
a calibration following the lines of Chapters 4 and 5. This model quantitatively
reproduces the dynamics of visits and ratings, as well as the participant’s performance,
observed in the different experimental conditions involving social bots.

Our analysis suggests that human participants base their behavioral choices on
three main natural cues that are readily available during the dozen games played per
participant and that provide assessments of: (i) the cooperation within the group;
(ii) the legibility and discriminative nature of the social information; and (iii) the
efficiency of their strategy. A linear model is constructed based on these cues to
predict the proportion of each behavioral profile in each situation, understanding that
cues (i) and (ii) are found to be the most relevant, within a linear model.

The content of this chapter follows the lines of Bassanetti et al. [2024a], which will
be submitted soon.
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6.1 Introduction

In Chapter 5, we demonstrated that individuals can cooperate through indirect interac-
tions in the context of the Stigmer game. The results of our experiments also revealed
that the participants exhibited distinct behavioral profiles that could be identified by their
rating strategy. Collaborators assigned low ratings to cells with low values and high rat-
ings to cells with high values. Conversely, defectors exhibit the opposite pattern. Neutrals
consistently provided similar ratings regardless of the cell values. We developed a model
of human behavior that implements the way individuals played the game and the different
rating strategies associated with each behavioral profile.

However, the model does not explain how individuals react and adapt the way they
explore and rate cells to the behaviors of the other players in the group, depending on their
experience of the game. In other words, the model does not predict the composition of the
group in terms of collaborators, neutrals, and defectors, and is fed the respective fractions
observed experimentally. One of the main motivations of this chapter and Bassanetti et al.
[2024a] is to gain a deeper understanding of the cues that lead a human participant to
adopt a specific behavioral profile.

In the series of experiments reported in Chapter 5, there is a wide variety of behav-
ioral profiles within each group. In the absence of competition, most group members are
collaborators, whereas in the presence of competition, the groups are mainly composed
of neutrals and defectors. However, not all possible combinations of the three behavioral
profiles are observed in the experiments, and even in similar group compositions, there are
variations among individuals with the same behavioral profiles. To address these issues, it
is necessary to introduce a method for obtaining a controlled composition of the groups.
This would allow for a precise investigation of their impact on individual behavior.
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6.2. Experimental Design

This chapter presents and analyzes a series of nine experimental conditions in which a
human participant interacts with four simple model-controlled social bots. The experimen-
tal design provides precise control over a player’s environment and ensures replicability
under consistent conditions. The chapter begins with an overview of the experiments,
which includes a description of the different types of bots that are used. Then, I study the
impact of the level of cooperation of the bots that play with the human participants on
the participant’s performance. Then, I use the model introduced in Chapter 4 to model
the visit and rating strategies of human participants and better understand the mecha-
nisms at work in the experiments. Finally, I delve deeper into the understanding of the
behavioral profiles of humans. More precisely, I look at the cues available to human par-
ticipants to gauge the level of cooperation among other group members and adapt their
behavior accordingly. I then built a linear statistical model to predict the proportion of
each behavioral profile observed in the experiments.

6.2 Experimental Design

6.2.1 The experiments

This chapter presents and compares the results of nine new experimental conditions. The
experiments consist of a repetition of the Stigmer game and are played with a score
that is defined as the sum of the visited values during the game. Then, at the end of
the experimental session, the five participants are ranked based on their cumulative score
across all games and paid accordingly. The player ranked first is paid 20€, the second is
paid 15€, and the three remaining players (ranked 3–5) receive 10€ each. This incentivizes
participants to have the highest score in their group, creating competition among them.

In contrast to the experiments described in Chapter 5, where five participants play
in the same five-player groups, in the experiments presented here, each participant plays
with four model-controlled bots. This design allows us to examine how the behavior of
the bots affects the behavior of the participants in a fully controlled environment. To
prevent bias in participant behavior resulting from playing with bots instead of other
humans, participants are unaware that they are playing with bots and believe they are
playing with one another. To achieve this, participants are instructed not to communicate
with each other and are unable to view each other’s screens. Furthermore, despite the
independence of the five games, participants are required to wait for each other at the end
of each round before moving on to the next. This feature prevents desynchronization of
the games, which could cause participants to realize that others are still playing after their
game has finished. Thanks to these measures, only a very few participants suspected that
something “dodgy” was happening, and none of them expressed a belief that they were
playing with bots. To ensure fairness in participants’ payment, which are ranked together
but do not play in the same group, all participants in the same experimental session play
on the same grid, with the same shuffling of values, and against identical types of bots. As
mentioned in Section 2.3, all experiments involving bots were conducted at the LPT, since
deceptive experimental designs are prohibited by the TSE and most economics institutions
and journals (but not in social psychology or behavioral biology).
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Each of the nine experimental conditions involves a different group composition. The
first five conditions test various combinations of collaborator and defector bots, ranging
from a scenario with four collaborators and zero defectors (4 Col – 0 Def) to a scenario with
zero collaborators and four defectors (0 Col – 4 Def). The next three experimental condi-
tions involve players interacting with four bots always giving the same rating, regardless
of the cell’s value (perfect neutrals). Three different types of bots are tested: bots always
giving a rating of one star (Const-1), three stars (Const-3), and five stars (Const-5). In
the final condition, players interact with four bots (Opt) that were optimized to maximize
the group score (the Opt-1 agents designed and analyzed in Chapter 5).

Finally, the analysis of the present chapter also includes the experiment in which five
human participants play together in the same group in the presence of competition. This
experiment is the same as the “Rule 2” experiment of Chapter 5. This experiment serves
as a reference situation that will be compared to the one in which one human plays with
four bots.

Here is a summary of the ten experimental conditions considered in this chapter, and
the corresponding number of participants who each participated in approximately twelve
games:

• 1 Human vs 4 Col – 0 Def bots (10 participants)
• 1 Human vs 3 Col – 1 Def bots (15 participants)
• 1 Human vs 2 Col – 2 Def bots (15 participants)
• 1 Human vs 1 Col – 3 Def bots (15 participants)
• 1 Human vs 0 Col – 4 Def bots (10 participants)
• 1 Human vs 4 Const-1 bots (10 participants)
• 1 Human vs 4 Const-3 bots (10 participants)
• 1 Human vs 4 Const-5 bots (10 participants)
• 1 Human vs 4 Opt bots (20 participants)
• 5 Humans (14 groups of 5 participants)

6.2.2 The bots

The bots used in the experiments are controlled by the model detailed in Chapter 4. The
specific parameter values that determine their visit strategy can be found in Table 6.1,
while the parameters governing their rating strategy are provided in Table 6.2. Addition-
ally, the rating strategy of the bots is visually represented in (Figure 6.1).

The collaborator and defector bots mimic the behavior of humans with collaborative
and deceptive behavior in games that involve five human participants. These bots were
derived from the preliminary experiments conducted in 2017, resulting in slightly different
strategies compared to the Mimic agents in Rule 2 described in Chapter 5. The three
constant bots Const-1, Const-3, and Const-5, have a visit strategy that is identical to that
of collaborator and defector bots, and therefore, comparable to that of humans. Their
rating strategy offers three variations of a neutral rating, always assigning 1, 3, or 5 stars
to a visited cell. Lastly, optimized bots are designed to maximize their scores while playing
in groups of five identical agents (see Opt-1 agents in Chapter 5). They explore the grid
until they find high-value cells, then stop exploring and repeatedly revisit these identified
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6.2. Experimental Design

ε α a1 b1 a2 b2 a3 b3
Col, Def, Const 0.73 1.17 22.4 1.36 1.2 1.45 1.3 2.34

Opt 0.0012 0.75 35.9 2.86 30.8 2.49 27.3 2.92

Table 6.1: Visit strategy parameters of the bots. Values of the parameters used for
the visit strategy of the bots (see Equations (4.1) and (4.2)).

c0 d0 e0 f0 c5 d5 e5 f5
Col 0.5 0.5 7.1 −8.47 0.5 0.5 45.4 3.21
Def 0.5 0.5 30.1 1.64 0.5 0.5 3.2 −3.69
Opt 0.5 0.5 71.5 −6.17 0.5 0.5 83.6 5.29

Table 6.2: Rating strategy parameters of the bots. Values of the parameters used
for the rating strategy of the bots (see Equation (4.4)).
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Figure 6.1: Rating strategy of the bots. (A–C) Probability of rating a cell with 0
stars, P0(V ), 1 to 4 stars, P1234(V ), and 5 stars, P5(V ), as a function of its value V for
the collaborator, defector, and optimized bots. (D–F) Mean rating R(V ) given to a cell
of value V .
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high-value cells. Their rating strategy involves rating only cells with values greater than
50 (see Figures 6.1C and 6.1F), they consequently rate only a very limited number of cells
during the game.

6.3 Impact of Bots on Participant’s Performance

Let us begin by examining the mean normalized score of bots and humans in each exper-
iment (see Figure 6.2). One can observe large variability in each experiment, suggesting
that the composition of the group, and consequently the behavior of the bots, have a
significant impact on the overall performance of humans. Moreover, there is a strong cor-
relation between the scores of bots and humans, indicating that the higher the bots’ score,
the higher the participants’ score.

A closer look at the mean normalized scores for participants reveals a clear trend. The
presence of more collaborator bots in a group is associated with higher mean normalized
scores, with ⟨S⟩ = 0.31 observed in the scenario in which participants played with four
defector bots in the group and ⟨S⟩ = 0.56 in the situation with four collaborator bots. In
contrast, the three experiments with constant bots exhibit closely clustered mean normal-
ized scores, averaging around 0.43. The experiment involving optimized bots secures the
second-highest position with a mean normalized score of 0.48. For reference, the experi-
ment featuring five human participants playing in the same group has a mean normalized
score of 0.40, ranking among the lowest scores observed.

To better characterize the behavior of the participants, we present Figures 6.3 to 6.5,
which show the same main observables as in Chapter 5 (defined in Chapter 3), but focusing
on the visits and ratings of the human participant in the group. Consequently, the variables
q(t), Q(t), p(t), and P (t) now represent the instantaneous and cumulative visit and rating
performance of the human participant, V1(t), V2(t), and V3(t) denote the average value
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Figure 6.2: Mean normalized score. Mean normalized score ⟨S⟩ of (A) the human
participants and (B) the bots in every experiment. Experiments are listed in ascending
order of the mean normalized score of humans. The dots are the experimental data, and
the black lines are the predictions of the model.
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of the cells visited by the human participants, and B1(t), B2(t), and B3(t) quantify the
probability that a human participant revisits cells from the previous round. In addition,
Figure 6.6 shows the observables for the experimental condition in which five humans
played together for reference.

First, let us examine the experiments in which human participants played with col-
laborator and defector bots. Humans get higher normalized scores in experiments where
there are more collaborator bots (Figure 6.3A). Moreover, the more collaborative is the
environment, the higher the value of the cells opened (Figures 6.3B, 6.3C and 6.3F to 6.3H)
and rated (Figures 6.3D and 6.3E) by the human participants. Finally, the probability
of revisiting the cells visited in the previous rounds (Figures 6.3I to 6.3K) suggests that
humans revisit slightly more when there are more collaborator bots.

In contrast to the diversity of performances observed in experiments with collaborator
and defector bots, the three experiments involving constant bots are remarkably similar
(see Figure 6.4). Therefore, this suggests that the variations in the rating of the different
constant bots have a similar influence on human performance. Note that because constant
bots revisit and rate the cells with the best values, they have a similar effect as collab-
orators, in the long run. In fact, in these scenarios, the participants’ behavior is very
similar to that observed in configurations with two collaborator bots and two defector
bots. The values of the observables obtained in the experiment with optimized bots are
similar to those of the experiment with three collaborator bots and one defector bot (see
Figure 6.5). Finally, the values of the experiment with five humans playing together are
similar to those of the experiment with one collaborator bot and three defector bots (see
Figure 6.6), which is consistent with the analysis of Chapter 5.

Figure 6.7 shows the probability for human participants to find the highest-value cells in
experiments performed with the different kinds of bots. As for the mean normalized score,
the probability of finding the highest-value cells increases with the level of collaboration
within the group. The experiment with five humans stands out as having one of the lowest
probabilities.

The rank of the human participants (see Figure 6.8) shows a consistent pattern. On
average, humans outperform bots in all experiments. However, there is a significant dif-
ference in the mean ranks between each experiment. In situations with collaborator and
defector bots, human participants tend to achieve a better ranking when there are fewer
defector bots, which reduces the quality of the social information embedded in the trace.
Again, the results for the constant bot experiments are almost the same, with very close
rank distributions. Finally, in experiments with optimized bots, while the majority (66%)
of participants secures the first position, a significant proportion (19%) finishes last. This
implies that while the majority of the participants understand and benefit from the special
strategy of optimized bots, a significant proportion fails to understand it, resulting in a
last-place finish.

To explain the lower score of the bots compared to humans, one must note that a given
bot had no option to adapt its strategy to the behavior of the other members of its group
(3 bots and 1 human) and to the properties of the resulting colored grid. As will be clear
hereafter, the human participants can observe some natural cues to form a strategy, for
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Figure 6.3: Individual performance and behavior of human participants in ex-
periments with collaborator and defector bots. The dots are the experimental data,
and the solid lines are the predictions of the model. (A) Probability distribution functions
(PDF) of the normalized player score S of the humans (see Definition 3.9). (B) Instan-
taneous visit performance q(t), (C) cumulative visit performance Q(t), (D) instantaneous
rating performance p(t), and (E) cumulative visit performance P (t) of the humans as a
function of the round t (see Definitions 3.5 and 3.6). Value of the (F) first-best cell V1(t),
(G) second-best cell V2(t), and (H) third-best cell V3(t) visited by the humans at round
t (see Definition 3.11). Probability that humans revisit their (I) first-best cell B1(t), (J)
second-best cell B2(t), and (K) third-best cell B3(t) visited in the previous round (see
Definition 3.13).
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Figure 6.4: Individual performance and behavior of human participants in ex-
periments with constant bots. The dots are the experimental data, and the solid
lines are the predictions of the model. (A) Probability distribution functions (PDF) of
the normalized player score S of the humans (see Definition 3.9). (B) Instantaneous visit
performance q(t), (C) cumulative visit performance Q(t), (D) instantaneous rating per-
formance p(t), and (E) cumulative visit performance P (t) of the humans as a function
of the round t (see Definitions 3.5 and 3.6). Value of the (F) first-best cell V1(t), (G)
second-best cell V2(t), and (H) third-best cell V3(t) visited by the humans at round t

(see Definition 3.11). Probability that humans revisit their (I) first-best cell B1(t), (J)
second-best cell B2(t), and (K) third-best cell B3(t) visited in the previous round (see
Definition 3.13).
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Figure 6.5: Individual performance and behavior of human participants in ex-
periments with optimized bots. The dots are the experimental data, and the solid
lines are the predictions of the model. (A) Probability distribution functions (PDF) of
the normalized player score S of the humans (see Definition 3.9). (B) Instantaneous visit
performance q(t), (C) cumulative visit performance Q(t), (D) instantaneous rating per-
formance p(t), and (E) cumulative visit performance P (t) of the humans as a function
of the round t (see Definitions 3.5 and 3.6). Value of the (F) first-best cell V1(t), (G)
second-best cell V2(t), and (H) third-best cell V3(t) visited by the humans at round t

(see Definition 3.11). Probability that humans revisit their (I) first-best cell B1(t), (J)
second-best cell B2(t), and (K) third-best cell B3(t) visited in the previous round (see
Definition 3.13).
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Figure 6.6: Individual performance and behavior of human participants in ex-
periments with groups of five humans. The dots are the experimental data, and the
solid lines are the predictions of the model. (A) Probability distribution functions (PDF)
of the normalized player score S (see Definition 3.9). (B) Instantaneous visit performance
q(t), (C) cumulative visit performance Q(t), (D) instantaneous rating performance p(t),
and (E) cumulative visit performance P (t) as a function of the round t (see Definitions 3.5
and 3.6). Value of the (F) first-best cell V1(t), (G) second-best cell V2(t), and (H) third-
best cell V3(t) visited at round t (see Definition 3.11). Probability that humans revisit their
(I) first-best cell B1(t), (J) second-best cell B2(t), and (K) third-best cell B3(t) visited in
the previous round (see Definition 3.13).
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Figure 6.7: Probability of finding the cells with the highest values. Probability
for a human to find (A) the best cell of value 99, (B) one of the four cells whose values
are 86 (× 2), 85, or 84, and (C ) one of the four cells whose values are 72 (× 2) or 71 (×
2). Experiments are listed in ascending order of the mean probability for a human to find
the best cell of value 99. The dots are the experimental data, and the black lines are the
predictions of the model.

example, the observed qualitative degree of collaboration of the other members of their
groups.

Section 5.4.3 introduces and defines the three different behavioral profiles that we use to
classify the rating behavior of the participants: collaborators whose mean rating increases
with the value of the cell, defectors whose mean rating decreases with the value, and
neutral whose rating does not depend on the value of the cell. Figure 6.9 and Table 6.3
show the proportions of human participants behaving as a collaborator, neutral, and
defector, in the experiments described in this chapter. For the experiments with various
proportions of collaborator and defector bots, an increase in the number of collaborator
bots is strongly correlated with the adoption of a more deceptive behavior by humans. This
suggests that a deceptive strategy is advantageous in cooperative groups, as individuals can
exploit information left by others while misleading them. However, in less collaborative
groups, the effectiveness of the deceptive strategy decreases, and individuals are less often
behaving as defectors. This also suggests that when faced with exceptionally low-quality
information (here, due to the many defector bots), individuals turn to collaboration or a
neutral behavior to leave some high-quality information for themselves.

The experiments with the optimized bots are the ones in which the human participants
adopted the most collaborative behavior. And the experiments with five humans have
proportions very similar to those in the situations with four collaborating bots.
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Figure 6.8: Rank of the human participants. (A), (C), and (E) Distribution of the
rank of the human participants among the five players in the group at the end of each
game. (B), (D), and (F) Mean rank of the human in the entire experimental session (left
plain bar), the first five games of the session (middle hashed bar), and the last five games
of the session (right hashed bar). The black lines are the predictions of the model.
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Figure 6.9: Behavioral profile of human participants. Fraction of collaborator,
neutral, and defector for the experiments in which one human participant plays with (A)
collaborator and defector bots, (B) constant bots and (C) optimized bots, and (D) for the
experiment with five human participants. The black lines are the predictions of the PIR
model.

Col Neu Def
5 Humans 18 43 39
4 Col – 0 Def 17 40 43
3 Col – 1 Def 15 51 34
2 Col – 2 Def 19 43 38
1 Col – 3 Def 31 40 29
0 Col – 4 Def 26 59 15
4 Const-1 15 60 25
4 Const-3 43 32 25
4 Const-5 26 50 24
4 Opt 42 31 27

Table 6.3: Behavioral profile of human participants. Percentage of collaborative,
neutral, and deceptive behaviors observed among human participants in each experiment.
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6.4 Model of the Visit and Rating Strategies

Now, let us use the agent-based model described in Chapter 4 to model the behaviors of
the human in each of the nine considered experimental conditions. These agents mimicking
human behaviors (Mimic agents) have a strategy that is divided into two parts: the visit
strategy and the rating strategy.

In each experiment, every participant’s behavioral profile—whether collaborator, neu-
tral, or defector—is associated with a distinct rating strategy. However, we noticed that
these strategies are independent of the experiments (see Figure 6.10). More precisely,
a participant who adopts a deceptive strategy when playing with four collaborator bots
has, on average, almost the same rating strategy as another participant with a deceptive
strategy playing with four defector bots. This implies that only three rating strategies (for
collaborators, neutrals, and defectors) need to be defined for all nine experiments, instead
of three for each experiment.

As in Chapter 5, for simplicity, the probabilities of rating a cell with 1 to 4 stars, have
been combined. Then the probabilities to rate a cell with 0 and 5 stars have been fitted
using a sigmoid function (see Equation (4.4)) for collaborators and defectors, and using a
linear function (see Equation (4.6)) for neutrals. The probabilities to rate a cell of value V

with 1, 2, 3, or 4 stars are all equal and given by P1234(V ) = (1 − P0(V ) − P5(V ))/4. The
resulting probabilities are displayed in Figure 6.11 and the values of the parameters used
for the model are shown in Table 6.4. Overall, these probabilities are extremely similar to
those obtained using only the experiment with five humans (see Figure 5.17).

Simulations were then run with one mimic agent playing with four bots. In each

cs ds es fs

s = 0 833.7 833.6 −92.6 −4.09
s = 5 516.4 518.6 −1229.8 0.25

(A) Collaborator
c′′

s f ′′
s

s = 0 0.47 0.16
s = 5 0.01 0.16

(B) Neutral

cs ds es fs

s = 0 0.12 0.78 2.7 4.20
s = 5 0.37 0.36 9.9 −19.98

(C) Defector

Table 6.4: Rating strategy parameters of Mimic agents. Parameters values used for
the rating strategy (see Equations (4.4) to (4.6)) for Mimic agents (collaborator, neutral,
and defector) in the experiments with bots and in the experiment with five humans.
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Figure 6.10: Rating probabilities of defectors in each experimental condition.
Probability of rating a cell with 0 stars (P0(V )), 5 stars (P5(V )), and from 1 to 4 stars
(P1234(V )) for human participants with a defector behavior in each experiment (dots).
The lines correspond to the rating strategy of a Mimic bot with deceptive behavior (see
Figure 6.11C and Table 6.4C)
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Figure 6.11: Rating probabilities of Mimic agents. Probability of rating a cell with
0 stars (P0(V )), 5 stars (P5(V )), and from 1 to 4 stars (P1234(V )) for the collaborators,
neutrals, and defectors, averaged over the nine experimental conditions. The dots are the
experimental data, and the solid lines are the model.

ε α a1 b1 a2 b2 a3 b3
5 Humans 0.69 1.32 −8.4 1.55 −4.1 2.11 −0.2 2.33
4 Col – 0 Def 0.25 1.52 19.7 2.01 18.3 1.97 20.3 1.96
3 Col – 1 Def 0.17 1.42 26.1 1.90 10.2 2.04 15.7 2.22
2 Col – 2 Def 0.23 1.12 13.0 2.00 5.4 2.10 1.5 2.23
1 Col – 3 Def 0.19 1.20 14.3 2.11 −1.5 2.09 −0.5 2.25
0 Col – 4 Def 0.58 1.04 5.8 2.16 −3.2 2.29 −2.7 2.17

4 Const 0.49 1.29 13.2 2.13 11.0 2.11 1.6 1.94
4 Opt 0.46 1.24 −2.0 1.78 4.5 2.25 −1.1 2.27

Table 6.5: Visit strategy parameters of Mimic agents. Parameters values used for
the rating strategy (see Equations (4.1) and (4.2)) for Mimic agents in the experiments
with bots and in the experiment with five humans. Note that the value of the parameter
α correlates positively with the conditions leading to high-quality social information.

simulation game, the Mimic agent’s behavioral profile, or rating strategy, was randomly
determined based on the observed fractions in the experiment. The visit strategy was
then derived by minimizing the error between experimental and simulated observables (see
Equation (4.7) and Table 6.6). The parameters defining the visit strategy are presented in
Table 6.5. Note that since the observables are almost identical in the three constant bot
experiments (see Figure 6.4), the visit strategy of the Mimic agents is the same in these
three situations.

Looking at the values of the threshold parameters a1, a2, and a3 (see Section 4.2.1)
for the experiments in which humans played with collaborator and defector bots, we can
see that the threshold at which individuals start revisiting cells from the previous round
is lower when the participants are playing with many defectors. Thus, when playing with
defectors, participants settle for lower values instead of continuing to search for higher
values. In addition, in the nine experiments with bots, we find that the value of the
parameter α defined in Section 4.2.2 correlates positively with the conditions leading to
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∆
5 Humans 0.005
4 Col – 0 Def 0.007
3 Col – 1 Def 0.010
2 Col – 2 Def 0.021
1 Col – 3 Def 0.012
0 Col – 4 Def 0.024
4 Const-1 0.014
4 Const-3 0.021
4 Const-5 0.020
4 Opt 0.009

Table 6.6: Error between experimental and simulated observables. Error ∆ (see
Equation (4.7)) between experimental and simulated observables for every experimental
condition.

high-quality social information. α is maximum when the group contains four and then
two collaborator bots, and minimum when the four bots are defectors. Recall that a high
value for α would correspond to a strong preference to visit the highly marked/dark cells,
while a small value for α would lead to a more homogeneous selection of cells among the
marked ones (see Section 4.2.2, and in particular, Equation (4.2)). Hence, we find that in
the conditions where the social information is trustworthy (i.e., dark cells corresponding
to higher values than light cells), the human participants consistently tend to give a larger
credit to the cell colors on the grid. This also indicates that the human participants are
well aware of the degree of collaboration of the four other members of their group, and
can then adapt their visit and rating strategy according to this qualitative observation.
Note that this also explains the better scores achieved, on average, by the participants
compared to the bots. Indeed, a given bot had no option to adapt its strategy to the
behavior of the other members of its group (3 bots and 1 human) and to the properties of
the resulting colored grid. In fact, the present analysis (see also hereafter) paves the way
to designing bots able to adapt to their environment (see Bassanetti et al. [2024a]).

Overall, looking at Figures 6.2 to 6.8, we find that the model is in good agreement with
the experiment (see Table 6.6), showing that the model gives an accurate representation
of the participant’s behavior.

6.5 Model for predicting the Human Participants’ Behav-
ioral Profiles

6.5.1 Cues available to human participants

In the previous section, we built a model of human behavior in the nine experimental
conditions. However, this model does not predict nor explain the distribution of the
observed behavioral profiles in each condition. Therefore, it is worth investigating further
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Figure 6.12: Two cues available to human participants. (A–D) Average value of
the cells visited weighted by their ratings up to round t P (t) (see Definition 3.6). Inverse
participation ratio of the cumulative fraction of stars IPR(P(t)) (see Definition 3.7). The
dots represent the results for the experiments in which one human participant plays with
collaborator and defector bots (A and E), constant bots (B and F), optimized bots (C and
G), and for the reference experiment with five human participants (D and H). The lines
correspond to the model predictions.

the factors that influence an individual’s decision to engage in cooperative, neutral, or
deceptive behavior in response to the actions and behaviors of the other participants
resulting in a given social information (the colored grid).

Figure 6.9A shows that the more collaborator bots in the group, the more the humans
choose to adopt a defector behavior. Therefore, this suggests that the presence of a high
degree of collaboration in the game pushes the human to adopt deceptive behavior. In
fact, the measure of the parameter α discussed in the previous section strongly indicates
that the participants had a rather clear perception of the trustworthiness of the colored
grid, and hence, of the qualitative degree of collaboration of the other members of their
group. But, in practice, how do individuals perceive the level of cooperation of other
players, and is this the only factor that matters when choosing a behavior?

Let us introduce some natural qualitative cues available to a human participant in a
game to assess its environment and the properties of the social information. First, an

115



Chapter 6. Impact of Group Composition

individual can evaluate whether the highly colored cells correspond to high- or low-value
cells. This evaluation is embedded in the observable P (t), which is the average value
of the colored cells weighted by their respective ratings from the beginning of the game
(see Definition 3.6). Figures 6.12A to 6.12D show that there is a significant variation in
P (t) across the different situations. In the experiment in which participants play with
collaborator bots, the ratings correspond predominantly to high-value cells, while in the
case in which they play with defector bots, the ratings are on low-value cells. Figure 6.12C
shows in the experiment with optimized bots, the ratings are on cells with very high values.
The experiment in which humans play with constant bots (Figure 6.12B) and the one in
which five humans play together (Figure 6.12D) show ratings similar to the experiment
in which humans play with two collaborator bots and two defector bots. Therefore, P (t),
which can be qualitatively evaluated by the players (especially in the later rounds) by
visiting cells that have been visited and rated by others, provides a reliable indication of
the level of cooperation of the other group members. However, one can see that in the
experiments with optimized bots and in the one with four collaborator bots, which have
the highest values of P (t), the fraction of collaborators is very different. Thus, P (t) is
probably not the only relevant cue used by players to determine their behavior. Yet, in
the next section, we will define regression models including P (20) (at the end of a game)
as a quantifier of the collaboration present in the group.

Another cue easily available to individuals is the complexity of the grid which corre-
sponds to the apparent number of different cells that have been rated. Although a large
number of colored cells can be beneficial if their values are high, an excessive number of
colored cells muddles the social information and may also indicate that some players are
defectors. The effective number of colored cells at any time is given by the Inverse Partic-
ipation Ratio (IPR) of P(t) (see Definition 3.7). In the experiments with collaborator and
defector bots, Figure 6.12E shows that there is a wide range and variation in the values
of IPR(P(t)). In the experiments with many collaborator bots, the IPR is low, and the
more defector bots in the group, the higher the IPR. Figure 6.12G shows that the IPR is
very low in the experiments with optimized bots because, compared to the collaborator
bots, these bots only rate the cells with very high values. In the next section, we will
define regression models including IPR(P(20)) (at the end of a game) as a quantifier of
the effective number of different cells that have been rated.

Finally, another natural cue accessible to human participants is their rank among the
five players in the group at the end of each game (see Figure 6.8; remember that each
individual was playing a dozen games during a one-hour session). This rank was explicitly
displayed by the web interface at the end of each game (see Figure 2.6B). A low/good rank
indicates an effective strategy, while a high/bad rank suggests room for improvement, and
possibly, the need for a change in strategy.

6.5.2 Linear model for predicting individual behavioral profiles

In this section, we build a linear regression model to predict the behavioral profile of
each individual in the game in the different experimental conditions, exploiting P (20),
IPR(P(20)), and the rank as quantifiers of the three cues possibly driving the participants’
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behavior.
When working with a model, it is best to work with standardized data. We will write a

standardized quantity with a hat: X̂ = (X −µ)/σ is the standardized value of the quantity
X, where µ is the mean of X over the experimental data and σ is the standard deviation
of X. After this standardization, X̂ has a zero mean and a unit standard deviation.

Let Cexp, Nexp, and Dexp be respectively the fractions of humans with collaborator,
neutral, and defector behaviors observed in a given experimental condition, and let Cpred,
Npred, and Dpred be the predicted fractions. We define a feature vector of components x̂i,
i = 1, 2, ..., f , containing f standardized features or quantifiers expected to explain the
data. In our specific case, the possible features are P (20), IPR(P(20)), and the rank, and
f can go from 1 to 3.

We can now define our linear regression model,

Ĉpred =
f∑

i=1
cix̂i ,

D̂pred =
f∑

i=1
dix̂i ,

Npred = 1 − Cpred − Dpred ,

(6.1)

where for i = 1, 2, ..., f , the ci and di are regression parameters.
Then, these parameters are obtained by a fit of the model predictions to the data by

minimizing the error E defined as,

E =

√√√√√√√
∑

s

(
(Cexp − Cpred)2 + (Nexp − Npred)2 + (Dexp − Dpred)2

)
∑

s

(
C2

exp + N2
exp + D2

exp
) , (6.2)

where 

Cpred = µC + σC

f∑
i=1

cix̂i ,

Dpred = µD + σD

f∑
i=1

dix̂i ,

Npred = 1 − Cpred − Dpred .

(6.3)

Note that due to the symmetric form in C, D, N of the error, linear regressions on the
observables (C and D) or (C and N) or (N and D) would result in the same predictor.

In our context, we have ten different and independent experimental conditions, and two
independent variables (C and D, while N = 1 − C − D), representing twenty independent
measurements to be explained by the linear regression model. The number of unknown
parameters is 2 × f , where f can go from 1 to 3, depending on the number of cues used
as features, among P (20), IPR(P(20)), and the rank.

6.5.3 Application of the model

Let us now apply the regression linear model to the ten experimental conditions studied
in this chapter. Only using one feature (P (20), or IPR(P(20)), or the rank) in the linear
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Figure 6.13: Performance of the PI and PIR models. Scatter plot of the predicted
fractions of collaborator, neutral, and defectors as a function of the corresponding fractions
observed in each experiment for (A) PI model using P (20) and IPR(P(20)) as features
and (B) the PIR model using P (20), IPR(P(20)), and the rank. The dotted diagonal line
represents perfect predictions.

P (20) IPR(P(20)) Rank
E

c d c d c d

PI model 1.32 −1.09 1.31 −1.68 – – 0.204
PIR model 2.79 −2.06 2.53 −2.49 0.88 −0.59 0.159

Table 6.7: Parameters values of the model for predicting individual behavioral
profiles. Values of the parameters and error E after optimization of the PI and the PIR
models (see Equations (6.2) and (6.3)).

regression does not result in a good predictor for the fraction of the three behavioral profiles
(E = 0.239 for the model with P (20), for E = 0.232 the model with IPR(P(20)), and for
E = 0.259 the model with the rank). However, such a simple single-feature linear model
already reveals that P (20) and IPR(P(20)) exhibit the best (and similar) correlation with
the data, while the rank alone is certainly a less relevant feature.

We now direct our attention to a linear model involving the two main cues/features
P (20) and IPR(P(20)). This model will be referred to as the “PI model”. After solving the
linear regression problem to obtain the value of the four parameters, we obtain an error
of E = 0.204 (see Figure 6.13A). Table 6.7 shows that for collaborators, the parameters
for both features are almost identical and hence have the same importance. However, for
defectors, IPR(P(20)) is more correlated to the data than P (20).

We now address the linear model including the three cues/features, P (20), IPR(P(20)),
and the rank. This model will be referred to as the “PIR model”. After fitting the data,
to obtain the value of the six parameters of the model, we obtain an improved error of
E = 0.159 (see Figure 6.13B), but to the price of two additional fitting parameters for
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twenty independent data points. The inspection of the value of the six parameters (see
Table 6.7) confirms that the rank is a less important feature than P (20), IPR(P(20)), as
inferred from the single-feature regressions. Yet, the rank leads to significative regression
parameters leading to a more accurate PIR model.

Note that in the two models described above, the quantities P (t) and IPR(P(t)) are
considered at the end of the game, i.e., at the final round t = 20. However, by considering
the round in the middle of the game (t = 10), the model gives similar errors (E = 0.211
for the model with P (10) and IPR(P(10)) and E = 0.186 for the model with P (10),
IPR(P(10)) and the rank).

Furthermore, we conducted tests with alternative linear models incorporating other
cues/features (for instance, involving the fidelity F or other qualitative markers for collab-
oration). However, the three cues/features, P (20), IPR(P(20)), and the rank, emerged as
the most effective in terms of explanatory power.

6.5.4 Interpretation of the model

Let us have a closer look at the actual equations of the fractions of collaborators, neutrals,
and defectors in the two models.

For the PI model, the fractions are given by:
Cpred = µC + 0.13 P̂ + 0.13 Î ,

Npred = µN − 0.04 P̂ + 0.00 Î ,

Dpred = µD − 0.09 P̂ − 0.13 Î ,

(6.4)

where P̂ and Î are the standardized values of P (20) and IPR(P(20)), respectively, and
µC = 0.25, µN = 0.45, and µD = 0.30 are the mean fractions of humans with collaborator,
neutral, and defector behaviors observed in all experiments. Equation (6.4) and Fig-
ure 6.14 show that in the PI model, a larger P (20) results in an increase in the fraction of
collaborators and a decrease in both neutrals and defectors. The parameter IPR(P(20))
has no discernible impact on neutrals, and as its value increases, there are fewer defectors
and more collaborators.

For the PIR model, the fractions are given by:
Cpred = µC + 0.28 P̂ + 0.25 Î + 0.09 R̂ ,

Npred = µN − 0.11 P̂ − 0.05 Î − 0.04 R̂ ,

Dpred = µD − 0.17 P̂ − 0.20 Î − 0.05 R̂ ,

(6.5)

where P̂ , Î and R̂ are the standardized values of P (20), IPR(P(20)), and the rank, re-
spectively, and µC = 0.25, µN = 0.45, and µD = 0.30 are the mean fractions of humans
with collaborator, neutral, and defector behaviors observed in all experiments.

In the PIR model (see Equation (6.5)), as in the PI model, an increase in the param-
eter P (20) results in more collaborators and fewer neutrals and defectors. Additionally,
an increase in the parameter IPR(P(20)) results in an increase in the number of collab-
orators, a decrease in the number of defectors, and a slight decrease in the number of
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Figure 6.14: Behavioral profiles given by the PI model. The gradients correspond
to the fractions of (A) collaborators, (B) neutrals, and (C) defectors given by the PI model
as a function of P (20) and IPR(P(20)). The black and white regions are areas in which
the PI model is undefined because one of the fractions is negative. Symbols indicate the
position of the experimental data on the P (20) – IPR(P(20)) plane.

neutrals. Finally, as the rank decreases, indicating lower performance, the proportion of
collaborators increases, while the number of neutrals and defectors decreases.

6.6 Discussion

This chapter reports and analyzes experiments in which human participants interact with
four model-controlled social bots while remaining unaware that they were playing against
bots. This setup provides a controlled framework suitable for studying human behavior
and its adaptation under varying conditions. The use of model-controlled bots with col-
laborative and deceptive behaviors enables precise control over the level of cooperation
within a game, facilitating the study of various collaborative contexts.

Regardless of the collaboration level of the group, human participants were able to
outperform the bots. As the level of cooperation of the bots increases, the score of human
participants also increases, and they are more likely to find the highest-value cells on the
grid. These results highlight the influence of group composition on cooperative dynamics
and individual performance. The human participants achieved this better performance
by adapting their visit and rating strategy to the behavior of the four other members of
their group (bots) affecting the shared social information (the colored cells on the grid).
This option to adapt to the encountered environment was not available to the bots, with
their fixed visit and rating strategy during all games, and they were penalized by this
asymmetry.

Furthermore, we discovered a correlation between the distribution of behavioral profiles
and the level of cooperation in the game. Specifically, we observed that as the number
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of collaborator bots increased, there was a greater likelihood of human players exhibiting
defector-like behavior. It appears that some human participants exploit the collaborative
nature of the game to manipulate the trace and lower the performance of others.

The analysis revealed that participants based their behavioral choices on three main
natural cues available during the game: (i) an assessment of whether the colored cells
correspond to high- or low-value cells (group cooperation); (ii) an assessment of the number
of different cells that have been rated (legibility and discriminative nature of the social
information); and (iii) an assessment of their performance (i.e., rank) relative to other
players in the game (the efficiency of their strategy).

A typical game characterized by a high level of cooperation shows distinct features:
the cells that are rated by the players are predominantly those with high values, and the
number of colored cells remains relatively small. Conversely, in situations characterized
by a lack of cooperation, a large number of cells are rated, but these cells tend to have
low or intermediate values.

To gain a deeper insight into how individuals use these cues to make decisions, we
constructed a linear model, incorporating the three cues described above, to predict the
proportion of each behavioral profile. This simple model yielded promising results and
offered a meaningful interpretation of human behavior observed in the different controlled
conditions. In particular, we found that among the three cues, the values of the col-
ored cells and the number of colored cells are more influential than the ranking on the
participants’ behavior.

The linear model indicates that an increase in the average values of the highly colored
cells or an increase in the number of different cells rated correlates with an increase in the
number of collaborators and a decrease in the number of defectors. Furthermore, the model
shows that good (low) ranks are more favorable for neutral or deceptive behavior, whereas
bad (high) ranks are correlated with an increased likelihood of collaborative behavior.
This suggests that participants may strategically switch from collaborator to neutral or
defector to improve their ranking.

One missing element in the experiments presented so far is a notion of punishment
for a deceptive behavior. In the real world, individuals who choose to deceive often face
repercussions, either directly or indirectly. To incorporate such repercussions into the
Stigmer game, a first option is to introduce a penalty for a deceptive rating or a bonus for
a faithful and cooperative rating (the latter option was tested in preliminary experiments
mentioned in Section 2.1.4).

Another option consists of introducing intergroup competition alongside intragroup
competition. In this context, individuals who use a deceptive rating strategy would un-
dermine the overall performance of their group, resulting in negative consequences for
themselves (and the other members of the group). This could even lead to an overall
decrease in collaboration and an increase in defection in the group, in a negative feedback
loop, further undermining the performance of the group. These questions are, among
others, addressed in Chapter 7, where we present and compare nine experimental condi-
tions, including one that involves pure intergroup competition, leading to overwhelming
collaboration within the groups.
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Chapter 7

Impact of Intragroup and
Intergroup Competition on

Stigmergic Cooperation

Chapter Summary
This chapter presents the results of seven experimental conditions with different

payment schemes that introduce diverse levels of intragroup and intergroup competi-
tion between two groups of five participants. This setup allows for the analysis of the
impact of intragroup and intergroup competition on human behavior in the framework
of the Stigmer game.

Our qualitative analysis shows that in the absence of competition, individuals
tend to cooperate, especially when rewards are uniform. However, when payment
disparities based on performance are introduced, a less cooperative environment is
created, even when competition is effectively absent. Additionally, payment schemes
that involve intergroup competition tend to promote a cooperative behavior within a
group, while those with intragroup competition tend to foster a deceptive behavior.

To quantitatively characterize the seven payment schemes, three key markers or
features are introduced: (i) the standard deviation of rewards within groups, which
we relate to an assessment of the intragroup competition; (ii) the absolute difference
in mean reward between the two groups, which assesses the direct intergroup compe-
tition; and (iii) the mean difference between the five highest and five lowest rewards,
which quantifies the global competition among the ten participants. We introduce
linear regression models exploiting these three features to predict the proportion of
each behavioral profile in the seven experimental conditions. We find that (i) is the
feature with by far the best predictive power, already being able to differentiate the
seven conditions according to their intragroup and intergroup competition. Indeed,
the linear model based on the sole feature (i) already gives good results. Ultimately,
the second most relevant feature is (iii), and the model based on (i) and (iii) leads to
an excellent prediction of the fraction of the three behavior profiles. Finally, we find
that feature (ii) exhibits only a weak correlation with the data.

The content of this chapter follows the lines of Bassanetti et al. [2024b] (in prepa-
ration).
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7.1 Introduction

So far, the analysis has focused primarily on experiments either without competition
(Rule 1 in Chapter 5) or with intragroup competition (Rule 2 in Chapter 5, and all
experiments with bots in Chapter 6). However, it is important to recognize that natural
scenarios often involve multiple groups competing within the same environment, leading
to a complex hierarchy of multilevel competition.

Multiscale models of the evolution of cooperation predict that intragroup cooperation
can be favored when intergroup competition is more intense than intragroup competition
[Wilson, 2015; Cooney, 2019]. To test this hypothesis, this chapter presents a series of
experiments investigating the effects of various payment schemes on intragroup and in-
tergroup competition, as well as their impact on collective performance and individual
behavior.

The chapter begins with a detailed description of the experiments, followed by an
analysis of the groups’ collective performance and of the individual behavior of participants
in different competitive conditions. Finally, a simple linear regression model is presented
to interpret the participants’ behavior in each specific context.

The content of the present chapter follows the lines of Bassanetti et al. [2024b] (in
preparation).

7.2 Experimental Design

In this chapter, we investigate the impact of seven competition schemes that combine dif-
ferent levels of intragroup and intergroup competition. Each of these competition schemes
makes use of different payment methods to compensate the participants at the end of
an experimental session. By manipulating the payment structure, it is possible to create
different types and levels of competition, both between participants of the same group
(intragroup competition) and between different groups of participants (intergroup compe-
tition). Even within the same type of competition, the payment scheme can be fine-tuned
to provide slightly different incentives to the players.
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Each experimental session involves ten participants. First, each participant plays alone
two games of twenty rounds, to ensure their correct comprehension of the game and to
characterize their spontaneous behavior when the only information available is the digital
traces resulting solely from their own activity (see the analysis of solo games in Section 5.6).
The participants are then randomly divided into two separate groups of five players each
and play typically ten games of twenty rounds in their respective groups. At the end of each
experimental session, the players are paid according to a specific payment structure, which
depends on the experimental condition. Between seven and ten one-hour experimental
sessions were conducted for each payment structure.

The first two payment structures do not create any explicit competition among par-
ticipants, but correspond to different incentives:

• No competition + equal reward: In this condition, there is no score or ranking
between the participants. Each participant received a fixed reward of 10€. Here,
individuals are free to do what they want, as their behavior does not affect their re-
ward. This experiment is the same as the one referred to as “Rule 1” and thoroughly
analyzed in Chapter 5. We conducted 10 sessions of 2 groups of this experimental
condition.

• No competition + performance reward: In this condition, there is a score, but
participants are not ranked, and are told that they will be paid strictly proportionally
to their individual score. The participants were also told that if they exactly achieved
the average score of a game as we had measured so far in all our experiments, their
reward would be close to 11€. This payment scheme encourages individuals to
achieve the highest possible score, which is expected to lead to cooperation among
participants identifying (with their ratings) the cells with high values. In principle, in
this experiment, the participants should not resist broadcasting their best-discovered
cells to the other members of their group, also hoping to elicit the same behavior
from the other players. Yet, despite the total absence of ranking, one cannot avoid
observing (as we did) certain participants trying to beat the other members of their
group by adopting a deceptive behavior, although this could only have a negative
impact on their score. We conducted 8 sessions of 2 groups of this experimental
condition.

Note that in this experiment, unbeknownst to the participants, we normalized the
payments to ensure that the total cost of a one-hour session would remain constant
(10 × 11€ = 110€) so that we could anticipate the total cost of this experimental
condition. Hence, in the formula to compute the reward of a player as a function
of their score, reward = 11 × score/⟨score⟩, the denominator was not the average
score over all experiments so far (as told to the participants in the instructions they
received before playing), but the average score of the 10 players in the considered ses-
sion. Therefore, the reward of a player was not truly proportional to their score but
also depended on the performance of the nine other players of the session. However,
since the participants were unaware of this, there was no bias, and this experimental
condition was truly non-competitive in essence, albeit the players deciding otherwise.
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The second type of payment structure relies solely on intragroup competition. There is
competition between the members of a group, but no competition between the two groups.
In each group, the five players are ranked based on their scores and paid accordingly:

• Intragroup competition only: In each group, the participant ranked first re-
ceived 20€, the participant ranked second received 15€, and each of the three re-
maining participants (ranked third to fifth) received 10€. This experiment is the
same as the one denoted “Rule 2” in Chapter 5 and “5 Humans” in Chapter 6. We
conducted 7 sessions of 2 groups of this experimental condition.

The third type of payment structure solely involves intergroup competition. There is
no explicit or implicit competition between the five members of a group, but there is an
explicit competition between the two groups. This condition is expected to elicit a strong
intragroup cooperation that we aimed at quantifying. The two groups are ranked based
on the average score of their five members:

• Intergroup competition only: Each participant of the group with the highest
score (average score of its members) is paid 20€, while each member of the other
group is paid 10€ each. We conducted 9 sessions of 2 groups of this experimental
condition.

The fourth type of payment structure combines both intragroup and intergroup com-
petition. At the end of the experimental session, the ten players (five in each group)
are ranked together based on their individual scores and rewarded accordingly. Although
there is both intragroup and intergroup competition in the three experiments described
below, the variations in the payment schemes change the balance between intragroup and
intergroup competition in each experimental condition:

• Inter + intragroup competition (1): The participants ranked first through fifth
are paid 15€ each, while the participants ranked sixth through tenth each receives
8€. We conducted 10 sessions of 2 groups of this experimental condition.

• Inter + intragroup competition (2): The participants are paid linearly accord-
ing to their rank. The participant ranked first is paid 15€, the one ranked second
14€, the one ranked third 13€, and so on, down to the last participant, who is paid
6€. We conducted 10 sessions of 2 groups of this experimental condition.

• Inter + intragroup competition (3): The participant ranked first is paid 20€,
the ones ranked second and third are paid 15€, and the remaining seven players are
paid 10€ each. We conducted 8 sessions of 2 groups of this experimental condition.
We conducted 8 sessions of 2 groups of this experimental condition.

7.3 Performance and Behavioral Profiles of the Participants

Let us first consider the performance of the individuals in each experimental condition.
Figure 7.1 shows the mean normalized score (see Definition 3.10) and the probability of
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Figure 7.1: Performance of the participants. (A) Mean normalized score ⟨S⟩ of the
participants in the seven experimental conditions. (B) Probability to find one of the nine
cells with the highest value at round t = 20 in the seven experimental conditions. The
black dashed and dotted lines correspond to the expected probabilities of two different
visit strategies: cells chosen randomly (see Equation (3.19)), and cells chosen sequentially
(see Equation (3.20)), respectively.

finding the highest-value cells (see Definition 3.14). In the condition with no competition
+ equal rewards (see the detailed analysis of this experimental condition in Chapter 5),
participants behave in an entirely different way than in the other experiments. The mean
normalized score is much lower than that obtained in the other experiments, and the
probability of finding the highest-value cells is much higher. This is explained by the
absence of incentives to get a high score, which leads individuals to explore the grid rather
than revisiting high-value cells discovered in previous rounds. This experiment is notably
the only one in which the probability of finding the high-value cells is higher than in the
random and sequential visit strategies (see Equations (3.19) and (3.20)).

In the other six experiments, the mean normalized score and the probability of finding
the high-value cells are ranked in the same order. The next experiment with the high-
est performances is the intergroup competition experiment, followed by the No comp. +
performance reward experiment. However, even though these two experiments should
motivate participants to cooperate, this motivation appears to be more effective in the
presence of intergroup competition than for the experiment where the participants are
paid proportionally to the score. As mentioned in the previous section introducing the
seven experimental conditions, some participants in the No comp. + performance reward
experiment were motivated by the notion of a score to perform better than the other
members of their group, instead of simply focusing on the true objective, which is to max-
imize their score, irrespectively of the score of others. Actually, in informal discussions
at the end of the No comp. + performance reward sessions, several participants admitted
their personal competitive approach to this experimental condition. Moreover, in both of
these experiments, the mean normalized score is much lower than that of the Opt-1 bots
(⟨S⟩ = 0.67; see Section 5.5.5), which were optimized to maximize the mean normalized
score in a group of five identical agents. Then, in order of decreasing performance, we
find the Inter + intragroup competition (1) experiment closely followed by the three other
experimental conditions. This suggests that the presence of intragroup competition tends
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Figure 7.2: Distribution of collaborators. Distribution of the number of collaborators
in a group for (A) the two conditions without competition, (B) the condition with inter-
group competition only, (C) the condition with intragroup competition only, and (D) the
three conditions with both intragroup and intergroup competition. The dashed vertical
line corresponds to the mean number of collaborators in each experiment.

to lower the performance of the group, due to the competition between the members of
the group.

The individuals’ rating behavior can be classified into three distinct groups: collabo-
rators, neutrals, and defectors, each reflecting varying degrees of collaboration (see Sec-
tion 5.4.3). Collaborators assign low ratings to cells with low values and high ratings to
those with high values, while defectors exhibit the opposite pattern. Neutrals consistently
provide similar ratings irrespective of the cell values. To quantitatively assess the preva-
lence of these behavioral profiles in each experimental condition, we exploit the method-
ology of Section 5.4.3 to obtain the fractions of each behavioral profile (see Table 7.1) and
the distribution of the number of collaborators in the groups (see Figure 7.2). Notably,
the experiment with intergroup competition only stands out with the highest fraction of
collaborators (93%), even higher than in the absence of any competition (No comp. +
equal reward: 84% of collaborators). This significant level of collaboration between group
members is in line with the high scores shown in Figure 7.1A.

Interestingly, in the condition with no explicit competition and a reward proportional
to the score, only 48% of the participants adopted a collaborative behavior, while 41%
adopted a neutral behavior, and 11% even acted as defectors (see Table 7.1). This finding
indicates that the mere notion of a score, which allows participants to compare their
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Table 7.1: Distribution of behavioral profiles. Percentage of collaborators (green),
neutrals (brown), and defectors (red) in the seven experimental conditions, sorted by the
presence or absence of intragroup and intergroup competition.
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performance to that of others, can introduce an implicit element of competition, even
in the absence of explicit competition between participants. As already noted, several
participants confirmed this hypothesis by reporting a desire to be the top performer in
the group, even in the absence of competition, and although some of them realized that
this approach could have negatively impacted their own score.

In the four experimental conditions with intragroup competition, the fraction of col-
laborators is significantly lower than in the three conditions already addressed, and the
fraction of neutrals and defectors is higher. This seems to indicate that intragroup com-
petition favors deception (as seen in Chapter 5). However, the fraction of collaborators
and defectors is not the same in all of these conditions. In the Inter + intragroup compe-
tition (1) and (2) there are fewer defectors and more collaborators than in the two other
conditions. The next section will further develop the origin of these differences.

7.4 Model for Predicting Individual Behavioral Profiles

7.4.1 Three quantities characterizing the payment schemes

We now consider linear regression models, similar to the ones exploited in Section 6.5.2,
to predict the average fraction of collaborators, neutrals, and defectors based on the pay-
ment schemes used in an experimental condition. We introduce three natural quantities
characterizing the payment schemes and which characterize the type and level of compe-
tition among the participants. These three quantities will be used as features of the linear
regression models:

• Intra: The first feature is the standard deviation of the rewards in a group, averaged
over both groups. This feature naturally relates to an assessment of the competition
within a group (intragroup competition). We will refer to this feature as “Intra”.

• Inter: The second feature is the difference between the mean reward in the winning
group and in the losing group, where the winning group is the group with the highest
group score (average score of its members). This quantity can be interpreted as the
pressure of intergroup competition on individuals. It will be referred to as “Inter”.

• Rank: The third feature, dubbed “Rank”, is the difference between the mean reward
of the five highest-ranked players (ranked by their score) and the mean reward of
the five lowest-ranked players. Except for conditions Intergroup comp. only (see
Equation (7.1) below) and Intragroup comp. only, the Rank feature coincides with
the difference between the mean of the five highest rewards and the mean of the five
lowest rewards. This feature relates to the explicit and implicit global competition
resulting from the payment schemes and captures some elements of the intragroup
and intergroup competition.

To compare these three features for different payment schemes with different mean rewards
(ranging from 10€ to 15€ in the experiments described here), we normalize them by the
mean reward for the corresponding payment scheme.
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Although some of these features can be readily computed from the sole knowledge
of the payment structure, some others require knowing the actual ranking (according to
their score) of the players within a group. However, we aim to design features that can be
evaluated before conducting an experiment. Thus, we design a null model of a competition
where the ranked players according to their individual scores are randomly distributed in
the two groups, hence neglecting correlations between the actual scores and the rank of
the players. Within this simple model, the score of a group is simply the opposite of the
sum of the ranks of its members. For instance, if the composition of the two groups in
terms of ranked players is given by, Group 1 = {2, 3, 4, 6, 10}, and Group 2 = {1, 5, 7,
8, 9}, the two groups have respective scores, S1 = −25, and S2 = −30, and here, Group 1
will be considered the winner. For example, in the Intergroup comp. only condition, the
players of Group 1 will receive a 20€ reward, and the players of Group 2 a 10€ reward.
Then, the rewards of the players P ranked by their individual score are given by

{P1 = 10, P2 = 20, P3 = 20, P4 = 20, P5 = 10,

P6 = 20, P7 = 10, P8 = 10, P9 = 10, P10 = 20} , (7.1)

which shows that, in this condition, the player P1 with the best score/rank does not
necessarily obtain the highest reward, and the player P10 with the worst score/rank can
receive the maximum reward. In this example, one finds Rank = 16−14 = 2 (mean of the
top row of Equation (7.1) minus the mean of the bottom row), before normalization by the
mean reward in this condition, equal to 15. Then, the three features Intra, Inter, and Rank
are computed according to their definition, by averaging the results of 100,000 fictitious
games produced by our simple null model. The important point here is that we do not
need to measure these features in the actual experiments, and only use the reward scheme
to evaluate them with our model. In other words, if a new experimental condition is
designed, the features can be evaluated with the sole knowledge of the payment structure,
and the linear regression models defined below can be used to predict the fraction of the
three behavioral profiles.

However, there is one exception to this possibility to compute the features a priori: the
No comp. + performance reward condition, where the real rewards are proportional to the
participants’ scores, and are not fixed in advance like in all other experimental conditions.
In this case, we computed the three features using our simple model, where the players’
ranked rewards are the mean ranked rewards obtained by the actual participants in the
experiment. These mean values, ranked in decreasing order, are given by, {13.38€, 13.13€,
12.63€, 11.75€, 11.13€, 10.88€, 10.63€, 9.88€, 9.50€, 8.00€}.

Table 7.2 presents the values of the three normalized features for each condition. In
the No comp. + equal reward experiment, all features are zero, reflecting the absence of
competition and incentives. In the Intergroup comp. only condition, Intra is null and Inter
is maximal. Conversely, in the Intragroup comp. only condition, Inter is null and Intra
is maximal. In the No comp. + performance reward condition, where there is no explicit
competition, the three features are small but nonzero, reflecting the fact that participants
could perceive some level of competition, as observed in practice. Moreover, the three
Inter + intragroup comp. conditions have low values of Inter and high Intra and Rank
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Inter Intra Rank
No comp. + equal reward 0 0 0
No comp. + performance reward 0.08 0.14 0.24
Intergroup comp. only 0.67 0 0.16
Inter + intragroup comp. (1) 0.14 0.29 0.61
Inter + intragroup comp. (2) 0.15 0.26 0.48
Inter + intragroup comp. (3) 0.12 0.26 0.33
Intragroup comp. only 0 0.31 0.43

Table 7.2: Values of the potential features. Values of the three different normalized
features (Inter, Intra, and Rank) in all experimental conditions.

values. Finally, the Intragroup comp. only condition has a zero Inter value, as expected,
and the highest Intra value.

7.4.2 Application of the model

Let us now apply the linear regression model, detailed in Section 6.5.2, to the seven
experimental conditions studied in this chapter. We have seven different and independent
experimental conditions, and two independent variables (C and D, while N = 1−C −D),
representing fourteen independent measurements to be explained by the linear regression
model. The number of unknown parameters is 2 × f , where the number of features f can
go from 1 to 3, depending on the number of features used.
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Figure 7.3: Performance of the Intra model and the Intra + Inter model. Scatter
plot of the predicted fractions of collaborator, neutral, and defectors as a function of the
experiment fractions in each experiment for (A) the model with only Intra as feature
and (B) the model with Intra and Inter as features. The dotted line represents perfect
predictions.

Among the linear models incorporating only one feature among Inter, Intra, and Rank,
the model with Intra stands out as a good predictor for the fraction of the three behavioral
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profiles, with an error, E = 0.18. Figure 7.3A illustrates that although the model performs
well, it struggles to accurately discriminate fractions between 20% and 40%. The observed
performance can be attributed to Intra’s ability to assess both intragroup and intergroup
competition. Indeed, when only intergroup competition is present, Intra is equal to 0.
However, this feature does not distinguish the Intergroup comp. only condition from the
No comp + equal reward condition.

When adding the Inter feature in the Intra model, there is only a very slight im-
provement, with an error, E = 0.17 (compare Figure 7.3B to Figure 7.3A). In fact, the
Inter feature is dominated by its high value for the Intergroup comp. only condition (see
Table 7.2), and its inclusion only helps to improve the prediction of the Intra model for
this condition. Indeed, the model now distinguishes this condition from the No comp
+ equal reward condition (compare the position of the two triangles in the upper-right
of Figures 7.3A and 7.3B). In the Intra + Inter regression model, we also find that the
coefficients for the Inter feature are typically ten to twenty times smaller than the ones for
Intra. Moreover, in the model with all three features, the coefficients of the Inter feature
remain very small, and their sign changes compared to the regression model using Intra
and Inter. Therefore, the Inter feature does not have any significant explanatory power,
in the framework of a linear model.

Let us now address the linear model using the two features Inter and Rank. This four-
parameter model, leads to excellent predictions for the fractions of the behavioral profiles,
with a reduced error, E = 0.11 (see Figure 7.4). The resulting regression reads

Cpred = µC + σC

(
−1.52 Întra + 0.64 R̂ank

)
,

Npred = µN + σN

(
+1.26 Întra − 0.38 R̂ank

)
,

Dpred = µD + σD

(
+1.65 Întra − 0.84 R̂ank

)
,

(7.2)

where Întra and R̂ank are the standardized value of Intra and Rank, and µC = 0.47,
µN = 0.33, µD = 0.20, and σC = 0.29, σN = 0.15, σD = 0.15 are the mean fractions of
collaborators, neutrals, and defectors, and their standard deviation. Equation (7.2) shows
that the Rank feature is two to three times less important than the Intra feature, although
including it significantly reduces the error, by improving the predictions of the Intra model
for fractions between 20% and 40% (compare Figure 7.3A and Figure 7.4).

Developing Equation (7.2), we obtain
Cpred = 0.47 − 0.43 Întra + 0.18 R̂ank ,

Npred = 0.33 + 0.18 Întra − 0.05 R̂ank ,

Dpred = 0.20 + 0.25 Întra − 0.13 R̂ank .

(7.3)

In this model, and as expected, an increase in Intra results in a decrease in the fraction
of collaborators and an increase in the fractions of neutrals and defectors. Conversely, an
increase in Rank increases the fraction of collaborators, while the fractions of neutrals and
defectors decrease. In a sense, the Rank feature is better suited to assessing the effective
intergroup competition than the Inter feature solely based on the group reward. This Inter
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Figure 7.4: Performance of the Intra + Rank model. Scatter plot of the predicted
fractions of collaborator, neutral, and defectors as a function of the experiment fractions
in each experiment. The dotted line represents perfect predictions.

feature is so dominated by the condition with pure intergroup competition that it does
not efficiently distinguish the six other conditions.

7.5 Discussion

This chapter presents the results and analyses of seven experimental conditions with dif-
ferent payment schemes, each varying the nature and intensity of competition in the game.
These experiments include scenarios with no competition, only intragroup or intergroup
competition, and combinations of both.

The analysis of the competitive conditions shows that the payment scheme with in-
tergroup competition favors cooperative behavior within a group, while the one with in-
tragroup competition favors deceptive behavior. This is consistent with the findings of
Chapter 5, where I emphasized that competition within a group tends to promote de-
ception. Conditions that combine both types of competition exhibit levels of cooperation
between these two extremes. These results are in agreement with the predictions of the-
oretical multiscale models of the evolution of cooperation, which are not typically based
on experimental data. When intergroup competition dominates intragroup competition,
it favors cooperative behavior within groups. For instance, in the Inter + intragroup
competition (1) condition, while this is not explicitly stated, there is a strong incentive
for collaboration within groups since collaborative behavior could lead individuals to be
ranked within the first five. This incentive is reflected in the fact that 38% of the partici-
pants exhibit a cooperative behavior, compared to only 13% in the Inter + intragroup (3)
condition.

Furthermore, in the absence of competition and in the presence of equal rewards, coop-
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erative behavior tends to predominate within the group. Interestingly, the introduction of
a score coupled with differential rewards, even in a non-competitive environment, leads to a
decrease in cooperative behavior. This implies that the quantification of performance and
the ability to measure this performance allows for comparison and promotes competition
even in the absence of formal competitive structures.

To quantitatively characterize payment schemes, three key features are introduced:
(i) the standard deviation of rewards within groups, which we relate to an assessment of
the intragroup competition; (ii) the absolute difference in mean reward between the two
groups, which assesses the direct intergroup competition; and (iii) the difference between
mean rewards of the five highest-ranked and five lowest-ranked players, which quantifies
the global competition among the ten participants, and which capture some elements of
both intragroup and intergroup competition.

To better understand the impact of payment schemes on individual behavior, we con-
structed a linear regression model that integrated these three features to predict the pro-
portion of each behavioral profile. We find that (i) is the feature with by far the best
predictive power, already being able to differentiate the seven conditions according to
their intragroup and intergroup competition. Indeed, the linear model based on the sole
feature (i) already gives good results. Ultimately, the second most relevant feature is (iii),
and the model based on (i) and (iii) leads to an excellent prediction of the fraction of the
three behavior profiles. Finally, we find that feature (ii), which accesses the intergroup
competition, exhibits only a weak correlation with the data. This feature is dominated
by a single condition (the Intergroup comp. only condition) and is unable to distinguish
between other conditions. Ultimately, The linear model incorporating features (i) and
(iii) shows that a decrease in (i) or an increase in (iii) correlates with an increase in the
number of collaborators and a decrease in the number of defectors.

Our analysis differs from the traditional perspective of the field, which often categorizes
competition solely as a combination of intragroup and intergroup competition. Our study
suggests that this Manichean view can fail in practice to capture the subtle interplay
between intragroup, intergroup, and a more global notion of competition.

A potential bias in our experimental design lies in the fact that the participants do not
have access to the other group’s performance throughout the entire session. Consequently,
participants have no way of estimating their individual rewards before the end of the ses-
sion. This design choice may lead some participants to act as if they were competing only
against members of their own group, without considering the possibility of cooperating
to collectively outperform the other group. This limitation introduces the potential for
individual strategies to be influenced by incomplete information about overall group per-
formance, which may affect the observed behaviors and the cooperative dynamics during
the games. These results constitute a strong motivation for the LPT-CRCA-TSE collab-
oration to conduct further experiments based on the Stigmer game, but where, at the
end of each game, the players of both groups would be shown their score and rank in their
group (as in the conditions studied in this thesis) and the performance of the members of
the other group.

A missing experiment that would be interesting to do in the future is an experiment
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without competition, but where participants are paid proportionally to the group score. In
this way, the participant’s reward depends on the group’s performance. This experimental
condition would allow us to better quantify the effect of intergroup competition on both
performance and cooperative behavior. Indeed, we have seen that in the experiment
where there is no competition and participants are paid according to their individual
scores, there is some defection, even though there is no need to deceive in the absence
of competition. Thus, it is plausible that the observed cooperation in the presence of
intergroup competition is not due solely to intergroup competition, but rather to the
interdependence of individuals’ rewards on those of their group members.
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The final chapter of this Ph.D. thesis presents a comprehensive synthesis and discussion
of the research findings. Additionally, it highlights the inherent limitations of the study
and explores potential future perspectives that deserve consideration.

8.1 Summary of Main Results

The ability to exploit the traces left in the environment by the action of organisms is one of
the simplest and oldest mechanisms used to coordinate collective behaviors in biological
systems [Gloag et al., 2013, 2015; Khuong et al., 2016]. This coordination mechanism,
known as stigmergy, is widely observed in animal societies is was introduced in Chapter 1.
Stigmergy is a process where individuals leave traces in the environment that guide and
stimulate the actions of the same or different individuals. In humans, the substantial
expansion of the Internet over the past thirty years, combined with applications that
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depend on digital traces left willingly or unwillingly by users, has led to the emergence
of novel forms of stigmergic processes. An illustration of these processes can be seen in
rating-based recommender systems, which recommend content based on the ratings left
by previous users.

Although digital traces play a pivotal role in shaping decision-making processes, their
impact is not yet fully understood. Therefore, it is important to investigate the influence of
digital traces on both individual and collective behaviors [Karanasios et al., 2013; Golder
and Macy, 2014; Loh and Kanai, 2016; Firth et al., 2019].

8.1.1 A game for studying stigmergy

To gain a deeper insight into the impact of digital traces on human behavior, Chapter 2
introduces an experimental setup in the form of an online multiplayer game called Stig-
mer, for which we designed a versatile admin and player interfaces. The game has been
used as a platform for conducting experiments involving human participants throughout
my Ph.D.

In this game, groups of individuals leave and use digital traces in an information search
task, implementing a 5-star rating system. This system is similar to the ones used by many
online services such as Amazon, TripAdvisor, or eBay, where users can evaluate products,
services, or sellers.

In the Stigmer game, groups of individuals engage in an information search task using
a 5-star rating system reminiscent of popular online services such as Amazon, TripAdvisor,
or eBay. Participants rate hidden values within a grid, aiming to identify cells with the
highest values using only indirect information provided by colored traces generated by col-
lective ratings. This controlled environment facilitates quantitative analysis of individual
and collective behavior, and allows manipulation and examination of the combined effects
of intragroup and intergroup competition on cooperation.

While we acknowledge that our experimental setup may not capture all the intricacies
of real-world rating systems, it does share similarities with them. It both involves explo-
ration of available options (cells in our experiment; products for an online store), which
are significantly influenced by their current ratings, and involves participants rating the
selected options, which promotes dynamic evolution of ratings.

The flexibility of this experimental setup is remarkable, offering extensive customiza-
tion options. Parameters such as the number of players, rounds, turns, grid size, values,
and shuffling can be controlled, as well as the presence or absence of scoring and the
method of calculating scores. The Stigmer game also includes the possibility of having
an arbitrary number of preprogrammed bots to play against the human participants. This
versatility allows the game to be used in a wide variety of scenarios and to study very
different experimental conditions.

8.1.2 Cooperation through stigmergic processes

The first part of this thesis focuses on the study of cooperation and deception through
stigmergic processes. In particular, we investigate the conditions under which cooperation
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emerges through digital traces and indirect interactions.
Chapter 5 presents, analyzes, and compares two experiments, without and with com-

petition among participants. The results indicate that groups of individuals can effectively
use colored traces derived from their ratings to coordinate their search and collectively
discover cells with the highest values in a grid of hidden numbers. These traces serve
as a form of long-term collective memory, documenting past actions taken by the group
[Thierry et al., 1996; Baltzersen, 2022]. Combined with individual short-term memory of
cell values visited, these traces influence participants’ choices of cells to ultimately explore.

Furthermore, upon closer examination of individual behaviors, variations in the utiliza-
tion of digital information become apparent. Three distinct categories of behavior emerge
based on their degree of cooperation: collaborators, who rate proportionally to cell value;
defectors, who rate inversely to values; and neutrals, who provide the same average rating
regardless of cell value.

The comparison of the competitive and non-competitive experiments reveals significant
differences in the usage and reliability of the trace. In the absence of competition, indi-
viduals tend to exhibit cooperative behavior, resulting in the generation of reliable digital
traces. However, the introduction of competition drastically reduces cooperation, leading
to more neutral and defector-like behaviors. Consequently, some individuals choose to
withhold private information and may even spread misinformation, leading to a decrease
in the quality of the social information (the colors on the grid).

8.1.3 A model of human behaviors

In addition to the data analysis, our main focus was the design of a model that captures
the observed human behaviors within the experimental setup.

Chapter 4 introduces a stochastic agent-based model that simulates individual behav-
iors in the Stigmer game. The model features agents governed by strategies, each com-
prising two independent components: the visit strategy, which determines cell selection,
and the rating strategy, which dictates cell rating. The model’s flexibility is reflected in its
simple parameterization, which allows for the creation of agents with different behaviors.

The model’s strength lies in its relative simplicity, which offers a clear interpretation
and understanding of the underlying mechanisms that govern the visit and rating behaviors
in the Stigmer game. Despite its simplicity, the model is grounded in real-world obser-
vations of human behavior, making it a relevant and effective tool for studying stigmergic
processes.

The model serves multiple purposes. Firstly, it enhances our understanding and offers
a concise and precise representation of individual and collective human behaviors in the
Stigmer game. Additionally, simulations using agents with human-like behaviors serve
as predictive tools for human behavior in unexplored situations. Furthermore, the model
is exploited in controlling the behavior of social bots, facilitating experiments in a fully
controlled environment alongside human participants.

Although the model’s simplicity has advantages, it also leads to some limitations. In
particular, the model omits a possible explicit time dependence in the parameters govern-
ing visit and rating strategies. The model simplifies the time-dependence aspect by relying
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on the inherent time-dependence of cell colors and their three best-discovered cells. Al-
though the model does not consider time-dependent visit parameters for simplicity and
dataset constraints, it is noteworthy that even with its imperfections, the model’s agree-
ment with experimental results remains within acceptable limits. This level of agreement
suggests that the model captures the essential dynamics of actual visit and rating behav-
iors, despite some limitations in reproducing certain observables.

8.1.4 Impact of the cooperation level of the group

Although the earlier discussed model effectively captures human behavior within the game,
it fails to explain how individuals adapt their exploration and rating strategies based on
the behaviors of other players in the group. Specifically, the model does not predict the
composition of the group in terms of collaborators, neutrals, and defectors, depending on
the observed fractions in experiments, which are fed by hand in the model.

Chapter 6 addresses this gap by delving into the possible cues influencing a human par-
ticipant’s adoption of a specific behavioral profile. The chapter introduces experiments in
which a human interacts with four social bots controlled by the aforementioned model. By
manipulating the behavior of these bots, the setup provides a controlled environment for
studying human behavior and its adaptation under various conditions. The utilization of
collaborator and defector bots allows for a precise control of the level of cooperation within
a game, facilitating a comprehensive analysis of human behavior and social interactions
in diverse collaborative contexts.

The results indicate that human participants consistently outperform the simple bots
by adopting predominantly deceptive or neutral behaviors. This outcome was expected
due to the predefined strategies of the bots, which restrict their ability to adapt to human
behavior.

Furthermore, a correlation has been found between the distribution of behavioral pro-
files and the level of cooperation of the bots. As the fraction of collaborator bots increases,
we observe a higher probability for human players to act as defectors. Indeed, some par-
ticipants exploit the collaborative bots to manipulate traces and lower the performance of
the bots (who cannot retaliate by changing their strategy). These results indicate that, in
a competitive context, some individuals may not reciprocate reliable social information,
even when the majority of their group are cooperators.

To understand the basis for individual choices of behavioral profiles, we designed a
linear regression model that uses cues available to players during the game. These cues
include:

(i) an assessment of whether colored cells correspond to high- or low-value cells implic-
itly measuring the degree of collaboration in the group;

(ii) an assessment of the number of different significantly rated cells, which provide
information about the legibility and discriminative nature of the social information;

(iii) an assessment of a player’s performance/rank relative to other players indicating the
effectiveness of their strategy.
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According to this statistical model, an increase in the average values of highly colored
cells or an increase in the number of different rated cells is correlated with an increase in
collaborators and a decrease in defectors. Additionally, neutral or defector behaviors are
generally associated with good ranks, while bad ranks are correlated with an increased
likelihood of collaborative behavior, suggesting that some participants switch their strategy
to improve their ranking.

Chapter 6 presents a significant finding of the study, demonstrating the influence of
social bots on human behavior in scenarios involving intragroup competition. By combin-
ing the model of human behavior that controls the behavior of bots with the regression
model that predicts the behavioral profile of humans, it is possible to design social bots
that adapt to the collaborative nature of their environment. Alternatively, such bots could
promote various behaviors in humans, and in particular, the deliberate manipulation of
human behavior by social bots presents new opportunities to foster cooperative behavior
in groups.

8.1.5 Impact of the type of competition

Our analysis has primarily focused on experiments conducted without competition or
with competition within the same group. However, it is important to acknowledge that
real-world scenarios often involve multiple groups competing within the same environment,
creating a complex hierarchy of multilevel competition [Wilson, 2015; Cooney et al., 2023].
This is particularly significant as prevailing theories on the evolution of cooperation pro-
pose that the presence of multiscale competition is imperative for cooperation to evolve.
In essence, intragroup competition tends to favor deception, which theoretically should
prevent cooperation in a purely selfish world. However, in nature, various groups of in-
dividuals often compete collectively. When intergroup competition surpasses intragroup
competition, cooperation can emerge within groups.

Chapter 7 introduces seven experimental conditions with distinct payment schemes,
each varying the nature and intensity of competition among ten participants in our ex-
periments (two groups of five players). The experiments encompass scenarios with no
competition, solely intragroup or intergroup competition, and combinations of both. The
objective is to examine the impact of intragroup and intergroup competition on individ-
ual performance and behaviors. This chapter presents experimental results that provide
empirical insights into the often theoretical domain of multiscale theories of evolution.

The analysis of the competitive conditions indicates that a payment scheme with in-
tergroup competition encourages cooperative behaviors within a group, while pure intra-
group competition promotes deceptive behaviors. Conditions that combine both types
of competition exhibit levels of cooperation between these two extremes. These findings
are consistent with the predictions of theoretical multiscale models of the evolution of
cooperation.

To quantitatively characterize the competition in the payment schemes, three key
features are introduced:

(i) the standard deviation of rewards within groups, which we relate to an assessment
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of the intragroup competition;

(ii) the absolute difference in mean reward between the two groups, which assesses the
direct intergroup competition;

(iii) the difference between mean rewards of the five highest-ranked and five lowest-ranked
players, which quantifies the global competition among the ten participants, and
which captures some elements of both intragroup and intergroup competition.

To better understand the impact of payment schemes on individual behavior, we con-
structed a linear regression model that integrated these three features to predict the pro-
portion of each behavioral profile. We find that (i) which assesses the intragroup competi-
tion is the feature with by far the best predictive power, already being able to differentiate
the seven conditions according to their intragroup and intergroup competition. Indeed,
the linear model based on the sole feature (i) already gives good results. Ultimately, the
second most relevant feature is (iii), and the model based on (i) and (iii) leads to an
excellent prediction of the fraction of the three behavior profiles. Finally, we find that fea-
ture (ii), which access the pure intergroup competition, exhibits only a weak correlation
with the data. This feature is dominated by a single condition (the Intergroup comp. only
condition), and is unable to distinguish between other conditions. Ultimately, the linear
model incorporating features (i) and (iii) shows that a decrease in (i) or an increase in (iii)
correlates with an increase in the number of collaborators and a decrease in the number
of defectors.

The data analysis supports the basis of theoretical multiscale models that aim at ex-
plaining the evolution of cooperation. However, our regression model reveals a divergence
from the prevailing perspective in the field, which often only emphasizes intragroup and
intergroup competition. The current perspective is inadequate in the practical context of
our experiments, as it does not consider the complex interplay between intragroup, inter-
group, and a more global competition, beyond just the notion of groups. Additionally,
our research indicates that individual behavior is not solely impacted by the nature of the
competition. The capacity to measure and compare performance between individuals can
also affect their behavior. This performance-based comparison can induce competition
even in the absence of formal competitive structures. Hence, real-life competition scenar-
ios often involve complexities beyond the sole notions of pure intragroup and intergroup
competition.

8.2 Limitations

The experimental and theoretical methodology and tools exploited in this thesis establish
the foundations for understanding stigmergic interactions in digital environments, shed-
ding light on the relationships between competition, cooperation, deception, and decision-
making. However, the present section will also address certain limitations associated with
our study.
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8.2.1 Non independence of the games in an experimental session

In our experiments, participants played ten games in groups of five. This method allowed
us to study changes in behavior within a given environment. However, the ten games
played by a group are not independent due to significant correlations in behavior between
games performed by the same group. This limits the number of independent experiments
that we have. An alternative would be to shuffle the participants between the two groups
for each game of the experimental session. This would increase the independence of indi-
vidual games, when desired.

8.2.2 Other means to tune the competition

In Chapters 5 to 7, our analysis is based on varying type and level of competition controlled
by different payment schemes. In particular, the conditions studied in Chapter 7 exploit a
manipulation of the payment scheme to tune the intragroup and intergroup competition.
However, the participants did not have an explicit knowledge of the performance of the
members of the other group, and we clearly missed a way to better infuse the notion of
intergroup competition among the players. This limitation constitutes a strong motiva-
tion for the LPT-CRCA-TSE collaboration to conduct further experiments based on the
Stigmer game, but where, at the end of each game, the players of both groups would be
shown their score and rank in their group (as in the conditions studied in this thesis) and
the performance of the members of the other group.

8.2.3 Deception is (too) easy

In our setup, white cells indicate either unvisited cells or those that have been visited
but rated with zero stars. As a result, an individual who encounters a high-value cell can
discreetly assign it a zero-star rating, allowing the cell to go unnoticed. This principle is
often exploited by defectors. This contrasts with typical online rating systems, where the
distinction between no ratings and low ratings is clear. Criticism could be raised regarding
the excessive simplicity of this strategy, and its nonconformity with actual rating systems.

It should be emphasized that our experimental setup is not a direct representation
of a real-life rating system. Rather, it is a tool that allows for the study of cooperation
and defection in human groups, inspired in part by such systems. However, it would be
possible to address this issue and make deception more difficult while also moving closer
to real-life rating systems. One possible approach is to differentiate between never-visited
cells and those that have been visited but rated zero by using different colors. For instance,
non-visited cells could be colored in gray. Another option is to set the minimum rating to
one instead of zero, which is a common practice in online services.

8.2.4 Classification of neutrals

In our experiments, we classified individuals into three distinct behavioral profiles based
on their mean ratings: collaborators, who exhibit cooperative behavior; defectors, who
engage in deceptive strategies; and neutrals, a category that proves to be more diverse
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and challenging to characterize uniformly. It is noteworthy that the proportion of neutral
individuals remains consistently high across most experiments, typically around 40%.

Within the neutral category, subgroups with varying rating strategies were identified.
Some neutrals consistently assign the same rating, mostly zero, one or five. Others demon-
strate random rating behaviors, introducing an element of unpredictability.

Currently, our classification method groups together all of these neutral profiles, with-
out the ability to distinguish between them. Further investigation and refinement of the
classification method is necessary to uncover the subtleties within the neutral category.
Additionally, adding a time-dependent dimension to the behavioral profiles could provide
a more comprehensive understanding of how individuals’ strategies develop throughout
the game. Note that this task could benefit from a detailed analysis of the questionnaire
filled by the participants at the end of a one-hour session (see Appendix A.2). During the
thesis, we did not really exploit this survey, except to check that the participants consis-
tently declared that they understood the rules and principles of the game and enjoyed it
(except when playing against 4 defector bots!).

8.3 Perspectives

The Stigmer game introduced and analyzed in this thesis is a versatile tool for exploring
cooperation and deception through stigmergic interactions within human groups. Its high
degree of customization allows for easy implementation of new variations, each providing
unique insights. In addition, the game can be made publicly available on the Internet,
allowing for large-scale experiments to be conducted.

This section outlines various potential extensions of the work presented in this the-
sis are outlined. While some are conceptual ideas, others have already undergone some
experimentation and/or analysis.

8.3.1 Evolution of cooperation

Multilevel selection is believed to have played a crucial role in shaping cooperative behavior
within human groups [Traulsen and Nowak, 2006; Luo, 2014; Simon et al., 2013; Cooney,
2019; Wilson, 2015].

The hypothesis suggests that when intergroup competition exceeds intragroup com-
petition in intensity, intragroup cooperation becomes more likely. Chapter 7 discusses
experiments exploring different types and levels of competition to analyze their impact
on cooperation. However, it is also possible to simulate the evolution of cooperation and
deception in our experimental framework.

The agent-based model presented in Chapter 4 which is used to reproduce human-like
behavior in the Stigmer game can be used to simulate games with agents of varying
levels of cooperation. An evolutionary algorithm could be used to evolve groups of agents
within specific competitive contexts. This approach could provide valuable insights into
how cooperation evolves over time in dynamic, competitive settings.

Although I began this line of research during my third year of Ph.D. study, time
constraints led to its interruption. However, this is something I would like to investigate
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further.
Moreover, it could also be possible to perform real-life experiments with individu-

als performing repetition of the game, possibly mixing groups, like in repeated prisoner
dilemma experiments that are conducted in experimental economics.

8.3.2 Knowledge of the performance of both groups

During our competitive experiments, the participants only received information about the
performance of the members of their own group, without any information about the other
group. This incomplete information could have limited their perception of the intergroup
nature of the experiment, and would have certainly limited their ability to react to the
other group displaying a better performance, for instance, by starting to collaborate more
with the members of their group. To better understand this phenomenon, additional
experiments should be conducted where participants are shown the performance of both
groups at the end of a game. This can be achieved by displaying either the ranking of all
ten players, or both the within-group ranking and the between-group ranking.

8.3.3 Adaptation in dynamic landscapes

All experiments conducted during my Ph.D. research were performed on games with a
static grid of values. This setup, similar to the assumption of constant quality in real-
world rating systems, oversimplifies the dynamic nature of many scenarios. Indeed, the
quality of objects, products, or services can vary due to factors such as defects, varying
product quality, or changing restaurant experiences.

To address this limitation, introducing noise to the values in our experimental setup
could better emulate real-world fluctuations. Each visit to a cell would yield a different
value, requiring players to make multiple visits for an accurate estimation. This dynamic
element might encourage increased cooperation among group members to collectively refine
their estimates of cell values.

The evolution of the “quality” of the cells over time can be simulated by varying
the values of the cells over time. This approach may discourage revisits to previously
identified high-value cells and encourage continuous exploration of the grid, potentially
impacting player behavior. This setup would enable the study of how human groups
adapt to changing landscapes and their resistance to noisy information.

In these situations, it would be crucial to include a temporal aspect to the ratings.
Ratings should have a duration, causing older ratings to gradually lose influence over
time. This fading of old ratings would reduce their impact on cell color, with recent
ratings carrying more weight. Note that we have already tested rating evaporation on a
static grid but did not observe any significant performance changes.

8.3.4 No private memory

In the Stigmer game, participants have access to both private/individual and shared/col-
lective memory. Individual memory includes knowledge about the location and values of
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previously visited cells, while collective memory involves shared information represented
by the colors of the cells.

During my Ph.D., we conducted a series of experiments in which we eliminated the
private memory, forcing individuals to rely solely on shared memory. To achieve this, we
informed the participants that the grid cells and their attached color would be shuffled
between each round. As a result, participants could only rely on the ratings to identify
the localization of high-value cells. The results of these experiments have not yet been
fully analyzed, but it is already clear that collaboration is significantly fostered by the
elimination of private information (65% of collaborators, compared to only 18% in the
competitive experiment addressed in Chapter 5).

8.3.5 Varying group sizes

Chapter 7 introduces an experimental condition without competition, where participants’
rewards are based on their individual performance (score). Although these experiments
were conducted in groups of five, additional experiments were conducted in groups of two
and ten, which have not yet been analyzed. Note that in all experimental conditions, the
first two games were played alone and were analyzed in Section 5.6.

This setting was designed to promote collaboration among participants to achieve the
highest possible score. However, our findings, in groups of five, show that the presence
of the score and the ability to compare with others affect participants, resulting in less
collaborative behavior. Thus, the experimental design offers an opportunity to examine
the effect of group size on both individual and collective performance in a group.

Furthermore, this experimental design is a valuable tool for exploring how individuals
influence each other in groups of varying sizes. Indeed, in groups of two, individuals can
easily identify each other’s cooperative and defection tendencies, and we can expect to
observe tit-for-tat behaviors.

8.3.6 Analysis of the questionnaires

In several conducted experiments, participants were required to fill out a questionnaire at
the end of a one-hour session. The questionnaire (see Appendix A.2) asked participants
about their understanding of the Stigmer game, their strategies for visiting and rating,
their trust in social information, their qualitative strategy, and their overall enjoyment of
the game. Although the questionnaire contains valuable information, it has not yet been
analyzed in details, and only confirmed the good understanding of the Stigmer game
rules and principles, and the fact that the participants reported enjoying it. The analysis
of this survey could lead to a better understanding of the participants’ behavior and help
determine if their self-reported behavioral profile matches their actual actions.
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A.1 Information Note and Informed Consent Form

Notice d’information et consentement éclairé

Titre du projet
Analyse expérimentale et modélisation des choix collectifs dans les groupes humains

Chercheurs titulaires responsables scientifiques du projet
 Dr. Clément Sire, Laboratoire de Physique Théorique, Centre National de la Recherche

Scientifique,  Université  de  Toulouse  Paul  Sabatier,  Toulouse,  (clement.sire@univ-
tlse3.fr)

 Dr. Guy Theraulaz, Centre de Recherches sur la Cognition Animale, Centre de Biologie
Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse Paul
Sabatier, Toulouse (guy.theraulaz@univ-tlse3.fr)

Autres chercheurs impliqués dans ce projet
 Thomas Bassanetti, Laboratoire de Physique Théorique & Centre de Recherches sur la

Cognition  Animale,  Centre  de  Biologie  Intégrative,  Centre  National  de  la  Recherche
Scientifique, Université de Toulouse Paul Sabatier, Toulouse

 Dr. Ramón Escobedo, Centre de Recherches sur la Cognition Animale, Centre de Biologie
Intégrative, Centre National de la Recherche Scientifique, Université de Toulouse Paul
Sabatier, Toulouse

 Dr.  Adrien  Blanchet,  Toulouse  School  of  Economics,  INRA,  Université  de  Toulouse
Capitole, Toulouse

 Stéphane Cezera, Toulouse School of Economics, INRA, Université de Toulouse Capitole,
Toulouse

Lieu de recherche
Behavioral Economics Lab, Toulouse School of Economics, Université de Toulouse Capitole,
Toulouse

But du projet de recherche
Analyse des choix collectifs dans des groupes humains.

Ce que l’on attend de vous (méthodologie)
Vous allez participer à un jeu qui consiste à découvrir les valeurs maximales dans un tableau
de nombres. 
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Vos droits de vous retirer de la recherche en tout temps
1. Vous participez à cette recherche sur la base de votre volontariat.
2. Vous pouvez interrompre votre participation à tout moment.
3. Sans avoir à en justifier les raisons et sans aucun préjudice.

Vos droits à la confidentialité et au respect de la vie privée
1. Les données obtenues seront traitées de manière totalement anonyme.
2. Votre identité sera masquée par un numéro de participant aléatoire.
3. Aucun autre renseignement ne sera dévoilé qui puisse révéler votre identité.
4. Toutes les données seront gardées dans un endroit sécurisé et seuls les responsables

scientifiques y auront accès.

Risques possibles
Cette recherche n’implique aucun risque ou inconfort. 

Diffusion
Les  résultats  de  cette recherche sont  susceptibles  d’être  diffusés  dans  des  colloques et
d’être publiés dans des revues académiques sans qu’il  ne soit possible d’identifier votre
performance personnelle. 

Vos droits de poser des questions en tout temps
Vous pouvez poser des questions à propos de la recherche en tout temps en communiquant
avec  les  investigateurs  principaux  (Clément  Sire :  clement.sire@univ-tlse3.fr  ou  Guy
Theraulaz : guy.theraulaz@univ-tlse3.fr).

Consentement à la participation
En signant le formulaire de consentement, vous certifiez que vous avez lu et compris les
renseignements ci-dessus, qu’on a répondu à vos questions de façon satisfaisante et qu’on
vous a avisé que vous étiez libre d’annuler votre consentement ou de vous retirer de cette
recherche en tout temps, sans préjudice.

À remplir par le participant
J’ai lu et compris les renseignements ci-dessus et j’accepte de plein gré de participer à
cette recherche.

Nom, Prénom :

Email :

Date :

Signature :                                                              Signature de l’investigateur :
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A.2 Questionnaire

Questionnaire anonyme de fin de session

Numéro de session : Numéro de joueur : 

Pour chacune des affirmations suivantes, indiquez sur une échelle de 1 à 5 à quel point vous
êtes d’accord avec elle (1 : pas du tout d’accord ; 2 : pas d’accord ; 3 : ni d’accord ni pas
d’accord ; 4 : d’accord ; 5 : tout à fait d’accord).

1. Vous pensez avoir bien compris les règles du jeu et votre objectif en tant que joueur.
1 2 3 4 5

2. Quand vous avez dû choisir une case à ouvrir, vous avez choisi cette case : 
a. En utilisant sa couleur

1 2 3 4 5
b. Parce que vous connaissiez déjà sa valeur 

1 2 3 4 5
c. Parce que vous ne l’aviez pas encore visitée

1 2 3 4 5
3. Quand vous avez dû noter une case ouverte, vous avez utilisé :

a. Sa valeur
1 2 3 4 5

b. Sa couleur 
1 2 3 4 5

c. Si vous n’avez utilisé ni sa valeur ni sa couleur, expliquez en quelques mots ce
qui a déterminé votre notation :

4. Les notes que vous avez attribuées aux cases que vous avez visitées vous ont servi à :
a. Vous souvenir des cases de grandes valeurs

1 2 3 4 5
b. Éviter de revisiter des cases de faibles valeurs

1 2 3 4 5
c. Aider les autres joueurs

1 2 3 4 5
d. Tromper les autres joueurs

1 2 3 4 5

5. Notez votre confiance en les  marques qui  ont été laissées  collectivement  par les
autres membres de votre groupe.

1 2 3 4 5

6. Avez-vous apprécié le jeu ?
1 2 3 4 5
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A.3 JSON File

1 {
2 "id": 1674568506077,
3 " session ": {
4 " phaseId ": "2023 _01_TSE ",
5 " sessionId ": 10,
6 " groupId ": "A",
7 " session_type ": " R2_intra ",
8 "date": "2023 -1 -24"
9 },

10 " players ": [
11 {
12 "id": "P01",
13 "age": 22,
14 " gender ": "male"
15 },
16 {
17 "id": "P02",
18 "age": 21,
19 " gender ": " female "
20 },
21 {
22 "id": "P03",
23 "age": 20,
24 " gender ": " female "
25 },
26 {
27 "id": "P04",
28 "age": 19,
29 " gender ": "male"
30 },
31 {
32 "id": "P05",
33 "age": 22,
34 " gender ": " female "
35 }
36 ],
37 "game": {
38 " timeStart ": "14:55:37" ,
39 " timeEnd ": "14:58:12" ,
40 " game_type ": " R2_intra ",
41 " altGameName ": " Group_5 ",
42 " numberRounds ": 20,
43 " numberCellsOpenedPerRound ": 3,
44 " numberPlayers ": 5,
45 " botsList ": [],
46 " evaporation ": "1000" ,
47 " randomMS1 ": "on",
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48 " randomMS2 ": null ,
49 "bots": [],
50 "rule": {
51 "_id": "63 c52ecdbb7ee4436c9d938b ",
52 "rule": 2,
53 " ruleName ": " rule_2 ",
54 " maxNumberOfStarsPerRound ": 15,
55 " coefRemainingStars ": 0,
56 " coefValueTimesStars ": null ,
57 " coefValue ": "on"
58 },
59 " versus ": false ,
60 "map": {
61 "_id": "63 c52ecdbb7ee4436c9d938c ",
62 " mapName ": " random_1 ",
63 " mapType ": " random ",
64 "map": [
65 [44, 3, 4, 1, 2,20,20, 1, 2, 1, 1, 3, 2, 0, 3],
66 [ 1, 1, 2, 1, 4, 5,19, 8, 1, 2, 4,85, 1, 8,45],
67 [ 2, 2,99, 1,71, 3, 2, 1,20, 2, 1, 2, 3, 2,72],
68 [84,86, 0, 3, 6, 3, 0, 2, 7, 2, 7, 3, 2, 2, 2],
69 [ 4, 1, 2, 1, 4, 1, 2, 2,86, 3, 2,53, 8, 3, 3],
70 [ 2, 1,44, 3, 1, 1, 2, 0, 2, 6,28, 1, 1, 7, 7],
71 [27, 3,43, 0, 6, 2, 1, 2, 2,12, 0,22, 2,53, 1],
72 [ 0, 3,51, 2, 4, 2, 1, 3,11, 1, 0, 3, 0, 1, 2],
73 [ 1, 2,20, 1,13, 1,71, 3, 3, 2, 0, 1,14, 3, 1],
74 [ 3, 9, 2, 3,27, 1, 2, 8, 0, 5, 6, 2, 1, 6,20],
75 [ 2, 2, 1, 6, 3,21, 2, 0, 1, 1, 0, 3, 3, 3, 1],
76 [ 2,27, 4,43, 1,19, 0, 2, 3, 0, 0, 6, 0, 1,72],
77 [ 0, 1, 2,14, 2, 4, 3, 3,24,53, 2, 4, 2, 8, 0],
78 [ 2,45, 1, 0,13, 2, 4, 4, 6,44, 3,13, 3, 0, 0],
79 [ 1, 1, 2, 9, 3,12,24, 1, 7, 0, 0,46,24, 3, 1]
80 ]
81 }
82 }
83 }

Listing A.1: JSON file example. Example JSON file from an experiment. This file
contains detailed data about the session, the players, and the game. This file contains
all the data needed to replicate the experiment. The corresponding CSV file is shown in
Table A.1.
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A.4 CSV File

round playerId mapX mapY value numberStars score
1 P03 7 2 1 0 1
1 P04 14 0 3 0 3
1 P02 4 8 13 0 13
1 P03 13 10 3 0 3
1 P04 0 0 44 0 44
1 P01 3 11 43 1 43
1 P05 1 8 2 0 2
1 P03 2 7 51 1 51
1 P02 11 11 6 3 6
1 P04 0 14 1 0 1
1 P01 7 7 3 5 3
1 P05 12 6 2 5 2
1 P02 11 4 53 1 53
1 P01 11 12 4 5 4
1 P05 7 3 2 5 2
2 P03 2 7 51 0 51
2 P04 0 0 44 0 44
2 P02 11 4 53 1 53
2 P01 3 11 43 0 43
2 P03 3 2 1 0 1
2 P04 2 7 51 0 51
2 P05 11 11 6 5 6
2 P02 11 12 4 4 4
2 P03 13 2 2 0 2
2 P05 11 12 4 5 4
2 P04 3 11 43 0 43
2 P02 5 12 4 0 4
2 P01 4 1 4 1 4
2 P05 3 11 43 0 43
2 P01 14 0 3 1 3

Table A.1: CSV file example. Table corresponding to the first thirty lines of the CSV
file of the game corresponding to the JSON file above (Listing A.1). The CSV file contains
all of the players’ actions during the game, i.e., their visits and their ratings.
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A.5 Ethics Approvals

 

TOULOUSE SCHOOL OF ECONOMICS 
Université Toulouse 1 Capitole– 1 Esplanade de L’Université, 31080 Toulouse, Cedex 06 - France 

 

      
  
 
 
 
Toulouse, 24 September 2021 
 
 
Research ethics approval: “Experimental analysis and modeling of collective choices in human 
groups” 
 
 
 
To whom it may concern: 
 
The TSE Research Ethics Committee for Experimental Research has evaluated the request 
submitted by Clément Sire and Guy Theraulaz for ethics approval of their study “Experimental 
analysis and modeling of collective choices in human groups”, with Adrien Blanchet, Stéphane 
Cezera, Ramón Escobedo and Thomas Bassanetti.  
  
The Committee has carefully studied the documents provided in the application and approved the 
project today.  
 
Yours sincerely, 
 
 

 
 
 
 
Tiziana Assenza 
(Chair, TSE Research Ethics Committee for Experimental Research) 
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Université Fédérale Toulouse Midi-Pyrénées 

41, allées Jules Guesde – CS 61321 – 31013 Toulouse CEDEX 6 
www.univ-toulouse.fr 

 

 
 

    
A l’attention de 
THERAULAZ Guy 

 
À Toulouse, le 27 octobre 2021 

 
                    
 

Affaire suivie par : 
Christina WATKINS 
CER–DRDV 
Courriel : bureau-cer@univ-toulouse.fr 
Tél. : 05 61 10 80 30 
 
 

Objet : Avis du comité pour le projet resousmis 2021-425 

 

Titre du projet soumis : Analyse expérimentale et modélisation des choix collectifs dans les  

groupes humains  

Porteur de projet : THERAULAZ Guy, laboratoire CRCA - CBI, UT3 
 

Monsieur, 
 

Compte tenu des éléments fournis dans votre demande, le Comité d’Ethique pour les Recherches de 
l’Université de Toulouse émet l’avis suivant : Avis Favorable avec recommandations. 

Recommandations : préciser le lieu de stockage des formulaires de consentement éclairé 
(conseil du CER: placer l’enveloppe dans une armoire sécurisée). 

Nous rappelons, par ailleurs, qu’il relève de la responsabilité des chercheurs de se conformer à leurs 
obligations légales notamment en ce qui concerne les aspects d’homologation du lieu de recherche ou 
RGPD : Règlement Général sur la Protection des Données. 

Le Comité d’Ethique rappelle au porteur de projet qu’il doit tenir compte des conditions sanitaires actuelles 
et mettre en œuvre un protocole sanitaire adapté en conformité avec les recommandations des tutelles. 

Nous restons à votre disposition pour toute question.  

Les membres du bureau CER. 

 

Pr Jacques Py                                Dr Rémi Capa   Pr Maria Teresa Munoz Sastre 
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B.1 Introduction

L’intelligence collective désigne la capacité des communautés à relever ensemble des défis,
à prendre des décisions et à générer des connaissances qui dépassent les capacités indi-
viduelles [Bonabeau, 2009]. Elle repose sur deux phénomènes : l’information sociale et
l’influence sociale. L’information sociale est la connaissance et les indices que les individus
d’un groupe partagent entre eux [Camazine et al., 2001]. L’influence sociale est le proces-
sus par lequel les individus ajustent leurs attitudes, leurs comportements ou leurs opinions
en réponse à des situations sociales [Cialdini and Goldstein, 2004].
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Le concept d’intelligence collective trouve une application pratique dans des méca-
nismes tels que la stigmergie [Grassé, 1959], qui se retrouve couramment dans les sociétés
animales et humaines[Theraulaz and Bonabeau, 1999]. La stigmergie est un mécanisme de
coordination dans lequel les traces laissées par les individus dans un milieu guident et sti-
mulent leurs actions ultérieures. Parmi les différents exemples de stigmergie, on peut citer
le comportement de recherche de nourriture des fourmis [Goss et al., 1989], la construc-
tion de nid par les guêpes [Theraulaz and Bonabeau, 1995] et la création de lignes de désir
(sentier tracé graduellement par érosion à la suite du passage répété de piétons, cyclistes
ou animaux) [Helbing et al., 1997]. Cependant, la digitalisation de la société humaine a
donné naissance à une nouvelle forme de stigmergie qui s’appuie sur des traces numériques
[Van Dyke Parunak, 2006]. Parmi les exemples de ces processus stigmergiques figurent no-
tamment les systèmes de notation et de recommandation qui utilisent largement les traces
numériques laissées par leurs utilisateurs [Lü et al., 2012].

La coopération est le processus par lequel des groupes travaillent ensemble pour obte-
nir des avantages communs ou mutuels [Axelrod, 2006]. La prévalence de la coopération
parmi les espèces sociales soulève des questions sur son évolution dans un monde dans
lequel la sélection naturelle peut favoriser l’égoïsme [Wilson, 2015]. Plusieurs mécanismes
ont été proposés pour expliquer cette évolution, notamment la sélection de parentèle, la
réciprocité directe, la réciprocité indirecte et la sélection de groupe [Nowak, 2006]. Ce-
pendant, des mécanismes stigmergiques peuvent aussi permettre de mieux comprendre la
coopération par le biais d’interactions indirectes [Chiong and Kirley, 2012]. La compétition
entre individus, qui s’exerce à différents niveaux, est un autre facteur déterminant dans le
développement de la coopération [Toma and Butera, 2015]. En effet, la rivalité entre les
individus et les groupes peut être un catalyseur d’amélioration, mais elle peut aussi inciter
à des comportements contraires à l’éthique ou trompeurs [Gilbert, 2006].

De nombreuses stratégies ont été proposées et testées pour améliorer l’intelligence col-
lective dans les groupes humains. Par exemple, il est possible d’y parvenir en changeant la
taille [de Condorcet, 1785] ou la composition du groupe [Page, 2008] ou même la structure
du réseau d’interactions [Newman, 2003]. Une autre option consiste à améliorer l’échange
d’informations sociales en augmentant le contrôle sur celles-ci et en réduisant le bruit
[Kahneman et al., 2021]. Les “nudges” [Thaler and Sunstein, 2008] et les “bots” [Jayles
et al., 2020a] sociaux peuvent aussi être utilisés pour influencer les comportements.

Dans la société numérique actuelle, les informations sociales sous forme de traces nu-
mériques ont un impact significatif sur la prise de décision humaine [Chavalarias, 2022]. Il
est donc crucial de mieux comprendre l’impact sociétal de ces traces, en particulier si l’on
considère leur vulnérabilité à la manipulation. Dans ce contexte, cette thèse de doctorat
vise à étudier comment les humains utilisent et interagissent avec les traces numériques,
en mettant l’accent sur les conditions de coopération et l’influence de la compétition sur
leur utilisation.
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Figure B.1 : Example de tableau. Capture d’écran du tableau tel que le voit un joueur
au tour 8. On peut y voir le tableau avec les cellules colorées, les croix noires qui marquent
les cellules déjà visitées pendant le tour, ainsi que la valeur de la cellule actuellement
sélectionnée, accompagnée de l’interface de sélection de la notation.

B.2 Dispositif Expérimental

Le jeu Stigmer est un jeu multijoueur dans lequel les participants s’engagent dans une
recherche collective d’informations dans un environnement numérique. Conçu à l’origine
par Guy Theraulaz et Clément Sire, plusieurs extensions du jeu Stigmer ont été dévelop-
pées et étudiées expérimentalement et théoriquement au cours de ma thèse de doctorat.
Le jeu Stigmer reproduit certains aspects des systèmes de notation par étoiles utilisés
sur de nombreuses plateformes sur Internet telles qu’Amazon, TripAdvisor et eBay, où
les utilisateurs notent les produits, les services ou les vendeurs afin de trouver le meilleur
choix possible. L’objectif principal pour les joueurs est l’identification des meilleures op-
tions parmi celles disponibles, avec l’aide uniquement d’interactions indirectes sous forme
de notations collectives.

Dans ce jeu, les joueurs doivent identifier les cellules avec des valeurs élevées dans un
tableau de 225 cellules (15 lignes et 15 colonnes) chacune contenant une valeur cachée
(voir Figure B.1). Les valeurs des cellules sont des entiers compris entre 0 et 99, avec une
prédominance de petites valeurs, et sont aléatoirement distribués dans chacune des cellules
du tableau. Les cellules représentent les options disponibles, et leur valeur correspondent
à leur qualité intrinsèque.

Chaque jeu comprend vingt tours successifs. Au cours de chaque tour, chaque joueur
doit visiter et évaluer successivement trois cellules distinctes. Lorsqu’un joueur découvre
la valeur cachée d’une cellule, il doit la noter de zéro à cinq étoiles. Le tour se termine
lorsque tous les membres du groupe ont visité et évalué trois cellules différentes.

Au début du tour suivant, la couleur de chaque cellule du tableau est mise à jour en
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fonction de la fraction d’étoiles utilisées pour noter la cellule depuis le début de l’expé-
rience, c’est-à-dire le nombre d’étoiles dans la cellule divisé par le nombre total d’étoiles
dans toutes les cellules. L’échelle des couleurs varie entre le blanc (0%) et le noir (100%)
en passant par un gradient de nuances de rouge. Ainsi, les cellules qui ont reçu la plus
grande fraction d’étoiles depuis le début de l’expérience seront clairement visibles par tous
les individus appartenant au même groupe. Ces couleurs agissent comme une mémoire
collective à long terme pour le groupe, qui est mise à jour à chaque tour.

Le jeu peut être joué avec ou sans score. Lorsqu’il y a un score, celui-ci augmente
à chaque tour des valeurs des cellules visitées durant le tour, indépendamment de leur
notation. Les participants voient leur score en temps réel tout au long du jeu, ce qui leur
permet de suivre leur progression. De plus, à la fin du jeu, un tableau affiche les scores
et les classements finaux de tous les joueurs du jeu, ce qui leur permet d’évaluer leur
performance par rapport à celle des autres.

Afin de faciliter l’expérimentation, le jeu a été implémenté sous la forme d’une applica-
tion web qui est accessible depuis n’importe quel appareil et n’importe quelle localisation.
Cette application en ligne offre la flexibilité d’exécuter plusieurs variations de jeu, chacune
avec des différences de règles telles que le nombre de joueurs, le nombre de tours, le calcul
des scores, etc. Elle fournit aux participants une interface conviviale pour une expérience
de jeu agréable et nous donne un accès pratique pour configurer et suivre la progression
des expériences.

Pendant mes études doctorales, nous avons mené plusieurs séries d’expériences (voir
Figure B.2) qui étaient divisées en sessions. Chaque session durait une heure, durant la-
quelle les participants (regroupés en un ou deux groupes de cinq joueurs) jouaient à une
douzaine de répétitions du jeu Stigmer. À la fin de la session, les participants recevaient
une récompense monétaire pouvant être corrélée ou non à leur performance dans la re-
cherche des cellules de plus forte valeurs. En changeant cette récompense, nous pouvons
modifier les incitations des joueurs et créer différent niveau de compétition (intragroupe
et/ou intergroupe) entre les joueurs. Par conséquent, cette configuration expérimentale est
un excellent outil pour étudier les processus de coopération et de compétition au sein et
entre les groupes.

B.3 Impact de la Présence ou Absence de Compétition sur
la Coopération Stigmergique

Cette section à deux objectifs. Premièrement, elle vise à présenter et à comprendre com-
ment les individus utilisent les interactions indirectes (stigmergiques) pour interagir dans
le contexte de notre expérience de recherche d’informations. Deuxièmement, cette sec-
tion explore l’impact d’un contexte compétitif ou non compétitif sur la coopération et
la tromperie entre les individus et la manière dont ils échangent et utilisent les informa-
tions sociales, intégrées dans les traces de leurs actions passées, pour réaliser la tâche de
recherche d’informations.
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A B C

D E F

Figure B.2 : Photographies des expériences. Photographies des expériences menées
au Laboratoire d’économie comportementale de Toulouse School of Economics. (A) Salle
d’attente. (B) Salle dans laquelle les règles sont expliquées aux participants. (C) Salle
d’expérimentation. (D et E) Participants jouant au jeu Stigmer. (F) Paiement d’un
participant.

B.3.1 Expériences

Cette section présente et compare les résultats de deux expériences basées sur le jeu
Stigmer utilisant des schémas de récompense différents pour explorer l’impact de la
compétition sur la coopération, ainsi que les stratégies individuelles de visite et de notation.

Pour les deux expériences, chaque session expérimentale regroupe dix participants.
Chaque participant commence par jouer deux parties de vingt tours, seul, dans l’objectif
de se familiariser avec l’interface web et d’intégrer les règles. Ensuite, les participants sont
répartis de manière aléatoire en deux groupes indépendants de cinq joueurs et jouent dix
parties de vingt tours dans ces mêmes groupes.

Dans les deux expériences, le but de jeu est le même : trouver les cellules de valeur
élevée. Cependant, il y a une différence dans le score et la rémunération finale, ce qui
conduit une expérience à avoir une compétition entre les participants et l’autre à ne pas
avoir de compétition.

Dans l’expérience non-compétitive (ci-après appelée Règle 1), il n’y a pas de score et
tous les participants sont payés le même montant de 10 €. Dans ce contexte, les actions
des participants (visites et notations) n’ont aucun impact sur leur paiement, assurant ainsi
qu’il n’y a pas de compétition entre les joueurs.

Dans l’expérience compétitive (ci-après appelée Règle 2), le score des participants
correspond à la somme des valeurs des cellules qu’ils ouvrent. À la fin d’une session expé-
rimentale, les scores obtenus par un participant dans l’ensemble des jeux sont combinés
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pour obtenir son score total. Ensuite, dans chaque groupe, les participants sont classés
en fonction de leur score total respectif et sont payés selon leur classement. Le joueur
arrivé en première position reçoit 20 €, le deuxième reçoit 15 €, et les trois autres joueurs
reçoivent chacun 10 €. Par conséquent, les participants sont incités à obtenir le meilleur
score, créant ainsi une compétition au sein des groupes.

B.3.2 Comportements collectifs

Afin d’analyser les performances des individus et des groupes, ainsi que la dynamique de
l’exploration collective et des notations dans les deux règles, nous introduisons un ensemble
d’observables. Pour résumer, nous avons introduis : le score des individus (S) ; le score des
groupes (Ŝ) ; le score moyen sur un jeu (⟨S⟩) ; la valeur moyenne des cellules pondérée par
la fraction d’étoiles ou la fraction de visites au tour t (p(t) et q(t)) ou jusqu’au tour t (P (t)
et Q(t)) ; le nombre effectif de cellules (“Inverse participation ratio” ; IPR) sur lesquelles
les étoiles et les visites sont distribuées au tour t (IPRp(t) et IPRq(t)) et jusqu’au tour t

(IPRP (t) et IPRQ(t)) ; la fidélité F , qui quantifie si la distribution des étoiles ou des visites
dans chaque cellule coïncide avec la distribution réelle des valeurs des cellules (F(V, P(t))
et F(V, Q(t))).

L’analyse de ces observables montre que la compétition (Règle 2) offre une incitation
plus forte à visiter les cellules de haute valeur par rapport à la Règle 1. Cependant, les
individus visitent significativement plus de cellules différentes dans la Règle 1 que dans la
Règle 2. En effet, dans la Règle 2, les individus revisitent beaucoup plus de cellules de haute
valeur au lieu d’explorer de nouvelles cellules afin de maximiser leur score. Concernant la
notation des cellules, les étoiles sont en moyenne sur des cellules de valeurs plus élevées en
Règle 1 par rapport à la Règle 2. Cela est dû aux différences de stratégies des individus
pour noter les cellules dans les deux règles. En effet, nous verrons plus loin que dans la
règle compétitive, certains individus choisissent de donner une notation moyenne ou même
faible aux cellules de haute valeur pour éviter de les signaler aux autres membres de leur
groupe. Enfin, la fidélité des notations est significativement plus élevée dans la Règle 1,
où les participants explorent davantage le tableau et où leurs notations reflètent mieux la
valeur des cellules découvertes.

B.3.3 Comportements individuels

Cette section est dédiée à la caractérisation des comportements des individus et leurs
stratégies de visite et de notation des cellules, c’est-à-dire la manière dont ils utilisent
l’information sociale sous la forme de traces colorées résultant de leurs actions collectives
passées.

Dans la Règle 1, où il n’y a pas de compétition, les individus trouvent plus souvent
les cellules de haute valeur que ce que prévoit le hasard (voir Figure B.3). Cela montre
un effet coopératif entre les participants. En revanche, dans la Règle 2, les individus
revisitent fréquemment les cellules à haute valeur pour améliorer leur score, ce qui limite
leur capacité à découvrir de meilleures options. Ainsi, bien qu’en moyenne les participants
ouvrent des cellules de valeurs plus élevées dans la Règle 2, cela se fait au détriment
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Figure B.3 : Probabilité de trouver les cellules ayant les valeurs les plus éle-
vées. (A) Probabilité de trouver la meilleure cellule, de valeur 99. (B) Probabilité moyenne
de trouver une des quatre cellules dont les valeurs sont 86 (), 85, ou 84. (C) Probabilité
moyenne de trouver une des quatre cellules dont les valeurs sont 72 () ou 71 (). La Règle 1
non-compétitive est en bleu et la Règle 2 compétitive est en orange. Les points repré-
sentent les données expérimentales et les lignes pleines les prévisions du modèle. Les lignes
noires en pointillés et en tirets correspondent aux probabilités attendues de deux straté-
gies de visite différentes : cellules choisies au hasard, et cellules choisies séquentiellement,
respectivement.

de l’exploration de nouvelles options. C’est donc en Règle 1 que les cellules de haute
valeur sont trouvées. Globalement, ces résultats soulignent l’impact de la compétition sur
la stratégie d’exploration des individus, avec moins d’exploration et plus de revisite des
options sûres dans un environnement compétitif.

Dans les deux règles, on observe trois motifs de notation émergents parmi les partici-
pants lorsqu’ils notent des cellules en fonction de leur valeur. Certains individus notent les
cellules de manière proportionnelle à leur valeur (collaborateurs), aidant ainsi les autres
membres du groupe à identifier les meilleures cellules. D’autres notent les cellules indépen-
damment de leur valeur (neutres), ne fournissent pas d’information distinctive aux autres
membres du groupe. Finalement, d’autres attribuent des notes inversement proportion-
nelles à la valeur des cellules (défecteurs ou trompeurs), dissimulant les meilleures cellules
et induisant les autres en erreur. Voir Figure B.4 pour la notation moyenne donnée par
chaque profil.

Pour quantifier et classifier ces trois profils comportementaux, une fonction affine est
ajustée aux notes moyennes de chaque individu en fonction de la valeur de la cellule. En
absence de compétition, une large majorité de participants adoptent un profil collabora-
teur, cependant en présence de compétition le pourcentage de collaborateur est très faible
au profit des neutres et défecteurs (voir Table B.1). À l’inverse, les défecteurs ont accès
à plus d’information que les autres membres du groupe. Cette asymétrie d’information
leur permet de maximiser leurs scores dans un environnement compétitif. En revanche, en
absence de compétition, l’intérêt est moindre et on observe moins de déflecteurs.

165



Appendix B. Résumé en français

0 20 40 60 80 100
V

0

1

2

3

4

5

R
(V

)

A Collaborator

Rule 1
Rule 2

0 20 40 60 80 100
V

B Neutral

0 20 40 60 80 100
V

C Defector

Figure B.4 : Note moyenne donnée par chaque profil comportemental. Nombre
moyen d’étoiles utilisées pour noter les cellules en fonction de la valeur V de la cellule
pour (A) les collaborateurs, (B) les neutres et (C) les défecteurs. La Règle 1 est en bleu et
la Règle 2 est en orange. Les points représentent les données expérimentales et les lignes
pleines les prédictions du modèle.

Col Neu Def

Règle 1 84 13 3

Règle 2 18 43 39

Table B.1 : Profils comportementaux des participants. Pourcentage d’individus
avec des comportements collaboratifs, neutres et défecteurs dans chaque règle.
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B.3.4 Modèle de comportement des joueurs

B.3.4.1 Définition du modèle

Nous introduisons un modèle d’agent stochastique utilisé pour simuler le comportement
des joueurs dans le jeu de Stigmer. Le modèle se compose d’agents dotés de différentes
stratégies qui régissent leurs actions au cours du jeu. En particulier, la stratégie de chaque
agent est décomposée en deux composantes indépendantes : la stratégie de visite, qui régit
la sélection des cellules, et la stratégie de notation, qui régit la notation des cellules.

Au cours d’une partie, les joueurs ont accès à des informations collectives et privées.
L’information collective est représentée par la couleur des cellules du tableau, c’est-à-dire
les notes, tandis que l’information privée correspond à la connaissance que les joueurs ont
des cellules qu’ils ont visitées précédemment. La stratégie de visite prend en compte les
deux types d’informations dont disposent les agents. Cela leur permet soit de revisiter des
cellules déjà visitées lors du tour précédent, en utilisant des informations privées, soit de
visiter d’autres cellules en fonction de leur couleur, en utilisant des informations collectives.
Lorsqu’ils utilisent l’information collective, les agents peuvent choisir de se concentrer sur
les cellules sombres, en suivant l’information sociale, ou sur les cellules blanches, pour
l’exploration des cellules non évaluées. La stratégie de notation attribue une probabilité
de donner une certaine note à une cellule visitée, qui dépend généralement de la valeur de
la cellule.

Le modèle est contrôlé par des paramètres qui permettent de générer des agents aux
comportements différents en changeant la valeur de ses paramètres. Parmi ces variations,
on trouve des agents qui explorent beaucoup, d’autres qui évitent l’exploration et d’autres
encore qui s’engagent dans des pratiques de notation collaboratives ou trompeuses.

Le modèle est ensuite utilisé pour créer différents types d’agents. Des “agents Mi-
mic” qui imitent le comportement humain, des “agents optimisés” qui sont adaptés à des
tâches et à des environnements spécifiques, et des agents dotés de stratégies spécifiques
qui sont utilisés pour comprendre l’impact de différentes stratégies sur les performances
individuelles et collectives.

Tous les paramètres régissant ces agents sont soit spécifiés manuellement, soit déter-
minés en fonction des caractéristiques du comportement humain, soit déterminés à l’aide
de méthodes d’optimisation (en particulier, Monte-Carlo).

B.3.4.2 Prédiction du modèle

En calibrant le modèle, nous pouvons reproduire quantitativement la dynamique de l’ex-
ploration et des notations collectives, ainsi que les performances individuelles et collectives
observées dans les deux expériences. Nous observons alors un bon accord entre l’expérience
et le modèle qui reproduit une série d’observables subtils. L’analyse des comportements
individuels combinée aux simulations du modèle informatique montre que la compétition
renforce le poids de l’information privée (c’est-à-dire la mémoire individuelle des cellules
déjà visitées) par rapport à l’information sociale (c’est-à-dire la mémoire collective du
groupe représentée sur le tableau colorée partagée) dans le choix des cellules qui sont
visitées.

167



Appendix B. Résumé en français

Une analyse plus poussée du modèle indique qu’un effet coopératif induit par la trace
émerge dès qu’il existe un niveau minimal de marquage des cellules et que la fidélité des
notations augmente avec la coopération. Le modèle montre également que la trace induit
une faible coopération, même dans les groupes de défecteurs, à condition qu’ils notent les
cellules avec un nombre suffisant d’étoiles, simplement parce qu’ils revisitent les cellules
dont les valeurs sont les plus élevées. Dans ce cas, la mémoire individuelle joue un rôle
majeur dans la performance collective de ces défecteurs. Par ailleurs, le modèle prédit que
l’effet coopératif induit par les traces et la performance moyenne des individus augmente
avec la taille du groupe. Cette propriété résulte des interactions stigmergiques entre les
individus qui permettent d’amplifier au niveau du groupe l’information sur la localisation
des cellules dont les valeurs sont les plus élevées.

Nous avons aussi utilisé le modèle pour trouver des agents optimisés dans différentes
situations. Pour ce faire, nous avons utilisé une méthode de Monte-Carlo afin d’obtenir les
paramètres du modèle qui caractérisent les stratégies de visite et de notation correspon-
dantes. L’analyse de ces agents optimisés indique que le score maximal est obtenu pour
les agents collaboratifs, ce qui suggère que la collaboration intragroupe devrait émerger
de la compétition intergroupe. De plus, le modèle prédit également qu’un comportement
défecteur émerge lorsqu’un agent vise à optimiser son rang, dans les mêmes conditions que
celles de notre expérience.

B.4 Impact de la Composition du Groupe sur les Compor-
tements Individuels et la Coopération Stigmergique

Dans la section précédente, nous avons mis en évidence la coopération à travers des in-
teractions indirectes du jeu Stigmer, en distinguant trois profils comportementaux selon
leurs stratégies de notation : les collaborateurs, les neutres et les défecteurs. Bien qu’un
modèle ait été développé sur la base de ces profils, il ne permet pas de prédire l’adap-
tation des comportements des individus en réponse aux autres. Cette section a pour but
de comprendre les signaux qui influencent les comportements des participants grâce à des
expériences où la composition des groupes est contrôlée.

B.4.1 Expériences

Cette section présente et compare neuf nouvelles conditions expérimentales. Les expé-
riences consistent en une répétition du jeu Stigmer et sont jouées avec un score défini
comme la somme des valeurs visitées au cours du jeu. De la même manière que lors de
l’étude de la Règle 2, à la fin de la session expérimentale, les cinq participants sont classés
en fonction de leur score cumulé sur l’ensemble des jeux et payés en conséquence. Le joueur
classé premier reçoit 20 €, le deuxième 15 € et les trois joueurs restants (classés entre 3
et 5) reçoivent 10 € chacun. Les participants sont ainsi incités à obtenir le meilleur score
de leur groupe, ce qui crée une compétition entre eux.

Contrairement aux expériences décrites précédemment, où les cinq participants d’un
groupe jouent ensemble, dans les expériences présentées ici, chaque participant joue avec
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quatre bots contrôlés par le modèle (voir Section B.3.4.1). Ce dispositif expérimental nous
permet d’examiner comment le comportement des bots affecte le comportement des par-
ticipants humains dans un environnement entièrement contrôlé. Pour garantir l’équité du
paiement des participants, qui sont classés ensemble mais ne jouent pas dans le même
groupe, tous les participants d’une même session expérimentale jouent sur des tableaux
identiques, avec le même mélange de valeurs, et contre des bots aux stratégies identiques.

Chacune des neuf conditions expérimentales comporte une composition de groupe diffé-
rente. Les cinq premières conditions testent différentes combinaisons de bots collaborateurs
et défecteurs, allant d’un scénario avec quatre collaborateurs et zéro défecteur (4 Col - 0
Def) à un scénario avec zéro collaborateur et quatre défecteurs (0 Col - 4 Def). Les trois
conditions expérimentales suivantes impliquent que les joueurs interagissent avec quatre
bots neutres qui vont toujours donner la même note quelle que soit la valeur de la cel-
lule. Trois types de bots différents sont testés : des bots donnant toujours une note d’une
étoile (Const-1), de trois étoiles (Const-3) et de cinq étoiles (Const-5). Dans la dernière
condition, les joueurs interagissent avec quatre bots qui ont été optimisés pour maximiser
le score du groupe (Opt).

B.4.2 Impact des bots sur la performance des participants

Quel que soit le niveau de collaboration du groupe, les participants humains ont réussi à
surpasser les bots. Lorsque le niveau de coopération des bots augmente, le score des par-
ticipants humains augmente également, et ils sont plus susceptibles de trouver les cellules
de plus grande valeur sur le tableau. Ces résultats mettent en évidence l’influence de la
composition du groupe sur la dynamique de coopération et les performances individuelles.
Les participants humains ont obtenu cette meilleure performance en adaptant leur straté-
gie de visite et de notation au comportement des quatre autres membres de leur groupe
(bots), ce qui a une incidence sur les informations sociales partagées (les cellules colorées
du tableau). Cette possibilité de s’adapter à l’environnement rencontré n’était pas dispo-
nible pour les bots, dont la stratégie de visite et de notation était fixe pendant toutes les
parties, et ils ont été pénalisés par cette asymétrie.

De plus, nous avons découvert une corrélation entre la distribution des profils com-
portementaux et le niveau de coopération dans le jeu (voir Figure B.5). Plus précisément,
nous avons observé que plus le nombre de bots collaborateurs augmentait, plus les joueurs
humains étaient susceptibles d’adopter un comportement de type défecteur. Il semble que
certains participants humains exploitent la nature collaborative du jeu pour manipuler la
trace et diminuer les performances des autres.

B.4.3 Modèle des stratégies de visites et de notations

Nous avons ensuite utilisé le modèle décrit précédemment pour modéliser les stratégies
de visites et de notations des humains dans ces expériences. En examinant les valeurs
des paramètres, nous constatons que le seuil à partir duquel les individus commencent à
revisiter les cellules du tour précédent est plus bas lorsque les participants jouent avec
de nombreux défecteurs. Ainsi, lorsque les participants jouent avec des défecteurs, ils se

169



Appendix B. Résumé en français

Col Neu Def
0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

A

Col Neu Def

B

Col Neu Def
0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

C

Col Neu Def

D

4 Col – 0 Def
3 Col – 1 Def
2 Col – 2 Def
1 Col – 3 Def
0 Col – 4 Def
4 Const-1
4 Const-3
4 Const-5
4 Opt
5 Humans

Figure B.5 : Profil comportemental des participants humains. Fraction de colla-
borateurs, de neutres et de défecteurs pour les expériences dans lesquelles un participant
humain joue avec (A) des bots collaborateurs et défecteurs, (B) des bots constants et (C)
des bots optimisés, et (D) pour l’expérience avec cinq participants humains. Les lignes
noires correspondent aux prédictions du modèle avec (i), (ii) et (iii).
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contentent de valeurs plus basses au lieu de continuer à chercher des valeurs plus élevées.
En outre, nous constatons que dans les conditions où l’information sociale est fiable (c’est-
à-dire que les cellules foncées correspondent à des valeurs plus élevées que les cellules
claires), les participants humains ont systématiquement tendance à accorder plus de crédit
à la couleur des cellules du tableau. Cela indique que les participants humains sont bien
conscients du degré de collaboration des quatre autres membres de leur groupe et qu’ils
peuvent adapter leur stratégie de visite et de notation sur la base de cette observation
qualitative.

B.4.4 Prédiction des profils comportementaux des participants humains

L’analyse a révélé que les participants fondaient leur choix de profil comportemental sur
trois signaux principaux disponibles pendant le jeu :

(i) une évaluation de la coopération au sein du groupe (valeur moyenne d’une cellule
colorée) ;

(ii) une évaluation de la clarté de la l’information sociale (nombre de cellules différentes
qui ont été évaluées) ;

(iii) une évaluation de l’efficacité de leur stratégie (performance, i.e., rang, par rapport
aux autres joueurs du jeu).

Un jeu typique caractérisé par un haut niveau de coopération présente des caractéris-
tiques distinctes : les cellules qui sont évaluées par les joueurs sont principalement celles
qui ont des valeurs élevées, et le nombre de cellules colorées reste relativement faible.
À l’inverse, dans les situations caractérisées par un manque de coopération, un grand
nombre de cellules sont évaluées, mais ces cellules ont tendance à avoir des valeurs faibles
ou intermédiaires.

Pour mieux comprendre comment les individus utilisent ces signaux pour prendre des
décisions, nous avons construit un modèle linéaire, incorporant les trois signaux décrits
ci-dessus pour prédire la proportion de chaque profil comportemental (voir Figure B.6). Ce
modèle simple a donné des résultats prometteurs et a offert une interprétation significative
du comportement humain observé dans les différentes conditions contrôlées. En particulier,
nous avons constaté que parmi les trois signaux, les valeurs des cellules colorées et le
nombre de cellules colorées sont plus influents que le classement sur le comportement des
participants.

Le modèle linéaire indique qu’une augmentation des valeurs moyennes des cellules
très colorées ou une augmentation du nombre de cellules différentes évaluées est corrélée
à une augmentation du nombre de collaborateurs et à une diminution du nombre de
défecteurs. En outre, le modèle montre que les bons classements sont plus favorables à un
comportement neutre ou défecteur, tandis que les mauvais classements sont corrélés à une
probabilité plus élevée de comportement collaboratif. Cela suggère que les participants
peuvent stratégiquement passer d’un comportement de collaboration à un comportement
neutre ou défecteur afin d’améliorer leur classement.

171



Appendix B. Résumé en français

0.1 0.2 0.3 0.4 0.5 0.6
Experimental %

0.1

0.2

0.3

0.4

0.5

0.6
Pr

ed
ict

ed
%

A PI model

Col
Neu
Def

0.1 0.2 0.3 0.4 0.5 0.6
Experimental %

B PIR model

5 Humans
4 col 0 def
3 col 1 def
2 col 2 def
1 col 3 def
0 col 4 def
Const-1
Const-3
Const-5
Opt

Figure B.6 : Performance du modèle avec (i) et (ii) et du modèle avec (i), (ii)
et (iii). Fractions prédites de collaborateurs, de neutres et de défecteurs en fonction des
fractions expérimentales dans chaque expérience pour (A) le modèle avec (i) et (ii) et (B)
le modèle avec (i), (ii) et (iii). La ligne en pointillé représente les prédictions parfaites.

B.5 Impact de la Compétition Intragroupe et Intergroupe
sur la Coopération Stigmergique

Jusqu’à présent, notre attention s’est portée sur des expériences se déroulant soit en ab-
sence de compétition, soit en présence de compétition au sein d’un même groupe. Cepen-
dant, dans la nature, les scénarios sont souvent caractérisés par la présence de multiples
groupes en compétition dans un même environnement, générant ainsi une compétition
complexe à plusieurs niveaux.

Les modèles multi-échelles de l’évolution de la coopération prédisent que la coopéra-
tion au sein d’un groupe peut être favorisée lorsque la compétition entre les groupes est
plus intense que celle à l’intérieur du groupe [Wilson, 2015; Cooney, 2019]. Pour tester
cette hypothèse, nous présentons une série d’expériences examinant les effets de diffé-
rentes structures de récompense sur la compétition intragroupe et intergroupe, ainsi que
leur incidence sur les performances collectives et les comportements individuels.

B.5.1 Expériences

Dans cette section, nous étudions l’impact de sept structures de paiement combinant
différents niveaux de compétition intragroupe et intergroupe. Chacune de ces structures
de compétition utilise différentes méthodes de paiement pour rémunérer les participants à
la fin d’une session expérimentale. En manipulant la structure de paiement, il est possible
de créer différents types et niveaux de compétition, tant entre les participants du même
groupe (compétition intragroupe) qu’entre différents groupes de participants (compétition
intergroupe). Même dans le même type de compétition, la structure de paiement peut être
ajustée pour fournir des incitations légèrement différentes aux joueurs.
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Chaque session expérimentale implique dix participants. Tout d’abord, chaque partici-
pant joue seul deux parties de vingt tours. Les participants sont ensuite répartis au hasard
en deux groupes de cinq joueurs chacun et jouent environ dix parties de vingt tours dans
leurs groupes respectifs. À la fin de chaque session expérimentale, les joueurs sont payés
selon une structure de paiement spécifique, qui dépend de la condition expérimentale.

Les deux premières structures de paiement ne créent aucune compétition explicite entre
les participants, mais correspondent à différentes incitations :

• Pas de compétition + récompense égale : Dans cette condition, il n’y a ni score
ni classement entre les participants. Chaque participant reçoit une récompense fixe
de 10 €. Ici, les individus sont libres de faire ce qu’ils veulent, car leur comportement
n’affecte pas leur récompense.

• Pas de compétition + récompense basée sur la performance : Dans cette
condition, il y a un score, mais les participants ne sont pas classés, et sont payés
proportionnellement à leur score individuel. En moyenne la récompense est de 11 €.
Ce schéma de paiement encourage les individus à atteindre le score le plus élevé
possible, ce qui devrait conduire à de la coopération entre les participants.

Le deuxième type de structure de paiement repose uniquement sur la compétition
intragroupe. Il y a compétition entre les membres d’un groupe, mais pas de compétition
entre les deux groupes. Les cinq joueurs de chaque groupe sont classés indépendamment
en fonction de leurs scores et payés en conséquence :

• Compétition intragroupe seulement : Dans chaque groupe, le participant classé
premier reçoit 20 €, le participant classé deuxième reçoit 15 €, et chacun des trois
autres participants (classés trois à cinq) reçoit 10 €.

Le troisième type de structure de paiement implique uniquement la compétition in-
tergroupe. Il n’y a pas de compétition explicite ou implicite entre les cinq membres d’un
même groupe, mais il y a une compétition explicite entre les deux groupes. Les deux
groupes sont classés en fonction du score moyen de leurs cinq membres :

• Compétition intergroupe seulement : Chaque participant du groupe avec le
score le plus élevé (score moyen de ses membres) reçoit 20 €, tandis que chaque
membre de l’autre groupe reçoit 10 € chacun.

Le quatrième type de structure de paiement combine à la fois la compétition intra-
groupe et intergroupe. À la fin de la session expérimentale, les dix joueurs (cinq dans
chaque groupe) sont classés ensemble en fonction de leurs scores individuels et récompen-
sés en conséquence. Bien qu’il y ait à la fois une compétition intragroupe et intergroupe
dans les trois expériences décrites ci-dessous, les variations dans les schémas de paiement
modifient l’équilibre entre la compétition intragroupe et intergroupe dans chaque condition
expérimentale :

• Compétition inter + intragroupe (1) : Les participants classés de la première
à la cinquième place reçoivent chacun 15 €, tandis que les participants classés de la
sixième à la dixième place reçoivent chacun 8 €.
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• Compétition inter + intragroupe (2) : Les participants sont payés linéaire-
ment en fonction de leur classement. Le participant classé premier reçoit 15 €, celui
classé deuxième 14 €, celui classé troisième 13 €, et ainsi de suite, jusqu’au dernier
participant, qui reçoit 6 €.

• Compétition inter + intragroupe (3) : Le participant classé premier reçoit 20 €,
ceux classés deuxième et troisième reçoivent 15 €, et les sept autres joueurs reçoivent
chacun 10 €.

B.5.2 Performance et profils comportementaux des participants

L’analyse des différentes conditions expérimentales révèle des tendances claires quant aux
comportements coopératifs et défecteurs selon le type de compétition en jeu.

Dans un premier temps, lorsque la compétition est absente et que les récompenses
sont égales pour tous, les participants adoptent un comportement exploratoire, cherchant à
découvrir de nouvelles cellules de haute valeur plutôt que de revisiter celles déjà identifiées.
En revanche, dans les conditions impliquant de la compétition, des différences significatives
émergent.

Table B.2 montre que la compétition intergroupe favorise les comportements coopéra-
tifs au sein des groupes, tandis que la compétition intragroupe encourage les comporte-
ments défecteurs. Ces conclusions s’alignent avec les résultats antérieurs, soulignant que
la compétition intragroupe favorise la tromperie. Les conditions combinant les deux types
de compétition présentent des niveaux de coopération variant entre ces deux extrêmes.

Ces observations corroborent les prédictions des modèles théoriques multi-échelles de
l’évolution de la coopération, suggérant que lorsque la compétition entre groupes prévaut
sur celle à l’intérieur des groupes, cela favorise la coopération intragroupe. Par exemple,
dans une configuration où la compétition intergroupe est prédominante mais où il existe
également une compétition intragroupe, une incitation forte à la collaboration est observée,
puisque les individus peuvent être récompensés en étant classés parmi les cinq premiers.

Par ailleurs, même en l’absence de compétition formelle, l’introduction de récompenses
différenciées associées à des performances entraîne une diminution du comportement co-
opératif. Cela suggère que la possibilité de pouvoir mesurer et quantifier ses performances
par rapport à celles des autres encouragent la compétition, même sans structure compéti-
tive explicite.

B.5.3 Modèle de prédiction des profils comportementaux individuels

Pour caractériser quantitativement les systèmes de paiement, trois observables sont intro-
duits :

(i) La moyenne des écarts-types des récompenses au sein des groupes, qui quantifie la
compétition intragroupe.

(ii) La différence de la récompense moyenne entre le groupe gagnant et le groupe perdant,
qui quantifie la compétition intergroupe.
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Table B.2 : Distribution des profils comportementaux. Pourcentage de collabora-
teurs (vert), de neutres (marron) et de défecteurs (rouge) dans les sept conditions expéri-
mentales, classées en fonction de la présence ou de l’absence de compétition intragroupe
et intergroupe.
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Figure B.7 : Performance du modèle avec (i) et (ii). Fractions prédites de collabo-
rateurs, de neutres et de défecteurs en fonction des fractions expérimentales dans chaque
expérience. La ligne en pointillé représente les prédictions parfaites.

(iii) La différence entre les récompenses moyennes des cinq joueurs les mieux classés et
des cinq joueurs les moins bien classés, qui quantifie la compétition globale entre
les dix participants et qui saisit certains éléments des compétitions intragroupe et
intergroupe.

Pour mieux comprendre l’impact des structures de paiement sur les comportements
individuels, nous avons construit un modèle linéaire qui intègre ces trois observables afin
de prédire la proportion de chaque profil comportemental. Nous constatons que (i) est
l’observable qui a de loin le meilleur pouvoir prédictif, puisqu’il permet déjà de différencier
les sept conditions en fonction de la compétition intragroupe et intergroupe. Le deuxième
observable le plus pertinent est (iii). Le modèle basé sur (i) et (iii) (voir Figure B.7) conduit
alors à une excellente prédiction des fractions des trois profils de comportement dans
chaque conditions. Enfin, nous constatons que l’observable (ii), qui donne une information
sur la compétition intergroupe, ne présente qu’une faible corrélation avec les données. Cet
observable est dominée par une seule condition (compétition intergroupe seulement) et
n’est pas en mesure de faire la distinction entre les autres conditions. Finalement, le
modèle linéaire incorporant les observables (i) et (iii) montre qu’une diminution de (i) ou
une augmentation de (iii) est corrélé a une augmentation du nombre de collaborateurs et
une diminution du nombre de défecteurs.

Notre analyse diffère de la perspective traditionnelle du domaine, qui catégorise sou-
vent la compétition uniquement comme une combinaison de compétition intragroupe et
intergroupe. Notre étude suggère que cette vision manichéenne ne permet pas, dans la
pratique, de saisir l’interaction subtile entre les compétitions intragroupes et intergroupes,
ainsi qu’une notion plus globale de la compétition indépendante des groupes.
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B.6 Conclusion

Bien que les traces numériques jouent un rôle central dans les processus de prise de décision,
leur impact sur ces derniers n’est pas encore totalement compris. Il est donc important
d’étudier leur influence sur les comportements individuels et collectifs.

Pour participer à cette compréhension, nous avons développé un jeu dans lequel les
participants s’engagent dans une tâche de recherche d’informations en utilisant un système
de notation similaire à ceux que l’on trouve sur Internet. Ce jeu permet une analyse
quantitative du comportement individuel et collectif, ainsi qu’une manipulation des effets
de la compétition intragroupe et intergroupe sur la coopération. Bien qu’il ne capture
pas toutes les complexités des systèmes de notation du monde réel, le jeu présente des
similitudes et offre des options de personnalisation étendues, ce qui le rend adaptable à
diverses conditions expérimentales.

En comparant deux expériences, l’une avec compétition entre les participants et l’autre
sans, nous avons montré que des groupes peuvent utiliser efficacement des traces indi-
rectes afin de coordonner leurs recherches d’information. Cependant, tout les individus
n’adoptent pas le même comportement. Nous avons observé trois catégories distinctes : les
collaborateurs, les neutres et les défecteurs, qui varient selon leur niveau de coopération.
En absence de compétition, les individus présentent un comportement coopératif, générant
des traces numériques fiables, tandis que la présence de compétition réduit la coopération,
conduisant à des comportements plus neutres, voire trompeurs. Cette réduction de la co-
opération peut entraîner la rétention ou la diffusion d’informations erronées, diminuant
ainsi la qualité des informations sociales sur le réseau.

Nous avons construit un modèle d’agent stochastique pour simuler les comportements
humains observés dans le jeu. Ce modèle, divisé en deux parties : la stratégie de visite
et la stratégie de notation, permet de modéliser de nombreux comportements différents
grâce à sa paramétrisation. Sa simplicité permet une interprétation claire des mécanismes
sous-jacents tout en restant ancrée dans les observations du monde réel. Le modèle permet
d’améliorer la compréhension des comportements individuels et collectifs dans le jeu, de
prédire le comportement humain dans divers scénarios et de contrôler le comportement
des bots sociaux dans les expériences.

Par la suite, notre étude s’est penchée sur la manière dont les individus ajustent leurs
stratégies en réponse à la dynamique de groupe et aux comportements des autres membres
de leur groupe. Des expériences impliquant des interactions humaines avec des bots contrô-
lés par un modèle ont éclairé les comportements humains dans divers contextes de coopé-
ration. Nous avons observé une diversité de comportements chez les participants humains,
influencés par le degré de coopération au sein du groupe, mettant en lumière leur capa-
cité d’adaptation. Une analyse à l’aide d’un modèle linéaire a révélé que les participants
évaluent le niveau de coopération du groupe à l’aide de signaux simples contenus dans les
traces de couleurs et qu’ils ajustent leur comportement en conséquence. De surcroît, ces
expériences ont souligné l’impact des bots sociaux sur le comportement humain, ouvrant la
voie à la promotion de comportements coopératifs par le biais de manipulations délibérées.

Enfin, en variant les systèmes de paiement de nos expériences, nous avons étudié l’im-
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pact de la compétition intragroupe et intergroupe sur les comportements et les perfor-
mances individuels. Les résultats suggèrent que la compétition intergroupe encourage la
coopération au sein des groupes, tandis que la compétition intragroupe favorise la trom-
perie. La combinaison des deux types de compétition aboutit à des niveaux intermédiaires
de coopération, ce qui correspond aux modèles théoriques d’évolution de la coopération.
Il est intéressant de noter que l’analyse révèle que le comportement individuel n’est pas
uniquement influencé par la nature de la compétition. En effet, la capacité de mesurer et
de comparer les performances entre les individus affecte également le comportement. Cela
met en évidence la complexité des scénarios de compétition dans la vraie vie, dépassant
la simple dynamique intragroupe et intergroupe.
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Titre : Impact de différents schémas de compé��on sur les processus de coopéra�on s�gmergiques au sein de groupes humains
Mots clés : intelligence collec�ve, s�gmergie, influence sociale, traces numériques, modélisa�on et simula�on numérique
Résumé : La s�gmergie cons�tue un mécanisme de coordina�on générique largement exploité dans les sociétés animales, dans lequel les traces
laissées par un individu dans l'environnement guident et s�mulent les ac�ons ultérieures de cet individu et d'autres individus. Dans le contexte
humain, avec la numérisa�on de la société, de nouvelles formes de processus s�gmergiques ont émergé à travers le développement de services en
ligne qui exploitent largement les traces numériques laissées par leurs u�lisateurs, notamment par le biais de systèmes de recommanda�on ou
d'évalua�on. Dans ce contexte, il est essen�el de comprendre l'influence de ces traces numériques sur la prise de décision individuelle et collec�ve.
Dans un premier temps, j'analyse et modélise l'interac�on de groupes d'individus avec leurs traces numériques, et détermine comment ils peuvent
exploiter ces traces pour coopérer dans une tâche de recherche d'informa�ons. Par la suite, j'étudie l'influence de la compé��on, tant au sein du
groupe qu'entre les groupes, sur la manière dont les individus coopèrent pour mener à bien ce�e tâche. Pour répondre à ces ques�ons, nous avons
conçu le jeu mul�joueur en ligne S�gmer, que nous avons u�lisé pour mener 16 séries d'expériences. Dans ce jeu novateur, des groupes d'individus
déposent et exploitent des traces numériques dans le cadre d'une tâche de recherche d'informa�ons qui intègre un système d'évalua�on à 5~étoiles.
Ce système est similaire à ceux u�lisés par de nombreuses plateformes en ligne, où les u�lisateurs peuvent évaluer des produits, des services ou des
vendeurs. Dans le jeu, les par�cipants interagissent sur le même tableau de valeurs cachées, recherchant les cellules ayant les valeurs les plus élevées,
en exploitant uniquement les informa�ons indirectes fournies sous la forme de traces colorées résultant de leurs évalua�ons collec�ves. Ce cadre
expérimental contrôlé permet une analyse quan�ta�ve approfondie du comportement individuel et collec�f, en offrant la possibilité de manipuler et
d'étudier l'impact combiné de la compé��on intra et intergroupe sur la dynamique de coopéra�on. Les résultats expérimentaux et de la modélisa�on
montrent que le type et l'intensité de la compé��on influent sur la manière dont les individus interprètent et u�lisent les traces numériques, et sur la
fiabilité des informa�ons fournies par ces traces. Ce�e étude révèle que les individus peuvent être classés en trois profils comportementaux qui
diffèrent par leur degré de coopéra�on : les collaborateurs, les neutres et les trompeurs. En l'absence de compé��on, les traces numériques
induisent spontanément une coopéra�on entre les individus, soulignant ainsi le poten�el des processus s�gmergiques pour favoriser la collabora�on
dans les groupes humains. De même, la compé��on entre deux groupes favorise le comportement coopéra�f des membres d'un groupe qui
cherchent à surpasser la performance des membres de l'autre groupe. Cependant, la compé��on au sein d'un groupe peut engendrer des
comportements trompeurs, où les individus manipulent leurs évalua�ons pour obtenir un avantage compé��f sur les autres membres du groupe.
Ainsi, dans les processus de prise de décisions, une informa�on sociale non fiable renforce l'u�lisa�on d'informa�ons privées au détriment de ce�e
informa�on sociale. Enfin, les situa�ons qui combinent à la fois de la compé��on intragroupe et intergroupe font apparaître des niveaux variables de
coopéra�on entre les individus, expliqués par notre étude. En me�ant en lumière les liens entre compé��on, coopéra�on, tromperie, et prise de
décision, ces travaux établissent les fondements pour comprendre des interac�ons s�gmergiques dans les environnements numériques. Ces
résultats peuvent contribuer au développement d'algorithmes de prise de décision personnalisés et de systèmes d'intelligence collec�ve ar�ficielle
fondés sur la s�gmergie.

Title: Impact of different compe��on schemes on s�gmergic coopera�on processes in human groups
Key words: collec�ve intelligence, s�gmergy, social influence, digital traces, computa�onal modeling
Abstract: S�gmergy is a generic coordina�on mechanism widely used by animal socie�es, in which traces le� by individuals in the environment guide
and s�mulate the subsequent ac�ons of the same or different individuals. In the human context, with the digi�za�on of society, new forms of
s�gmergic processes have emerged through the development of online services that extensively exploit the digital traces le� by their users, in
par�cular, using ra�ng-based recommenda�on systems. Therefore, understanding the impact of these digital traces on both individual and collec�ve
decision-making is essen�al. This study pursues two main objec�ves. First, I inves�gate and modelize the interac�ons of groups of individuals with
their digital traces, and determine how they can exploit these traces to cooperate in an informa�on search task. Subsequently, the research explores
the impact of intragroup and intergroup compe��on on the dynamics of coopera�on in the framework of this informa�on search task. To answer
these ques�ons, we have developed the online mul�player S�gmer game, on which we base 16 series of experiments under varying condi�ons. In
this game, groups of individuals leave and exploit digital traces in an informa�on search task that implements a 5-star ra�ng system. This system is
similar to recommenda�on systems used by many online marketplaces and pla�orms, where users can evaluate products, services, or sellers. In the
game, all individuals interact with a grid of hidden values, searching for cells with the highest values, and using only indirect informa�on provided in
the form of colored traces resul�ng from their collec�ve ra�ngs. This controlled environment allows for a thorough and quan�ta�ve analysis of
individual and collec�ve behaviors, and offers the possibility of manipula�ng and studying the combined impact of intragroup and intergroup
compe��on on coopera�on. The experimental and modeling results indicate that the type and intensity of compe��on determine how individuals
interpret and use digital traces, and impact the reliability of the informa�on delivered via these traces. This study reveals that individuals can be
classified into three behavioral profiles that differ in their degree of coopera�on: collaborators, neutrals, and defectors. When there is no
compe��on, digital traces spontaneously induce coopera�on among individuals, highligh�ng the poten�al for s�gmergic processes to foster
collabora�on in human groups. Likewise, compe��on between two groups also promotes coopera�ve behavior among group members who aim to
outperform the members of the other group. However, intragroup compe��on can prompt decep�ve behaviors, as individuals may manipulate their
ra�ngs to gain a compe��ve advantage over the other group members. In this situa�on, the presence of misinforma�on reinforces the use of
private informa�on over social informa�on in the decision-making process. Finally, situa�ons that combine both intragroup and intergroup
compe��on display varying levels of coopera�on between individuals, that we explain. This research establishes the founda�ons for understanding
s�gmergic interac�ons in digital environments, shedding light on the rela�onships between compe��on, coopera�on, decep�on, and decision-
making. The insights gained may contribute to the development of sustainable and coopera�ve personalized decision-making algorithms and
ar�ficial collec�ve intelligence systems grounded in s�gmergy.
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