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ABSTRACTS

Abstract (Français). Les algorithmes d’apprentissage automatique, qui ont énormément contribué à l’essor de
l’intelligence artificielle (IA) moderne, ont démontré à maintes reprises leur haute performance pour la prévision de
tâches complexes. Cependant, malgré le gain manifeste évident lié à l’utilisation de ces méthodes pour l’accélération
et l’amélioration de la performance de tâches d’ingénierie variées (mise en relation d’informations collectées par des
capteurs, détection de signaux rares, etc.), incluant en particulier la modélisation de systèmes critiques industriels
(temps de calcul, valorisation de données récoltées, hybridation entre la physique et les données expérimentales), la
modélisation par apprentissage automatique n’est toujours pas largement adoptée dans les pratiques d’ingénierie
moderne. Les résultats empiriques des modèles appris sur certains jeux de données (benchmarks) ne suffisent pas
à convaincre les instances de sûreté et de contrôle en charge des activités industrielles.

Cette thèse a pour but de développer des méthodes permettant la validation de l’usage de modèles boîtes-noires
(dont les IA) par le biais de l’étude des incertitudes. Un formalisme mathématique global est proposé pour l’étude
théorique des méthodes d’interprétabilité des modèles boîtes noires. Ce travail méthodologique permet de rap-
procher deux domaines très proches : l’analyse de sensibilité (SA) des modèles numériques et l’interprétabilité
post-hoc. Deux thématiques concrètes sont au cœur des travaux de cette thèse : la quantification d’influence et
l’étude de robustesse face aux perturbations probabilistes. Une attention particulière est portée au cadre et aux
propriétés théoriques des méthodes proposées dans le but d’offrir des outils convaincants allant au-delà des con-
sidérations empiriques. Des illustrations de leur utilisation, sur des cas d’études issues de problématiques réelles,
permettent d’étayer la cohérence de leur utilisation en pratique.

La situation d’entrées dépendantes, c’est-à-dire lorsque les entrées du modèles boîte-noire ne sont pas supposées
mutuellement indépendantes, prennent une place importante dans les travaux menés. Cette considération a per-
mis la généralisation de méthodes existantes en SA et en intelligence artificielle explicable (XAI). Au-delà de leurs
propriétés théoriques pertinentes, ces nouvelles méthodes sont davantage cohérentes avec les études pratiques, où
les données récoltées sont souvent corrélées. En particulier, un stratagème de perturbation probabiliste conservant
cette dépendance fondé sur des méthodes de transport optimal est proposé. De plus, une généralisation sous des
hypothèses peu restrictives de la décomposition fonctionnelle d’Hoeffding est également démontrée. Elle permet
d’étendre à un contexte non mutuellement indépendant une multitude de méthodes déjà existantes et utilisées en
pratique. Les travaux présentés sont en lien étroit avec différents domaines mathématiques : statistiques, probabil-
ités, combinatoire algébrique, optimisation, transport optimal, analyse fonctionnelle et théorie des jeux coopératifs.
Plusieurs liens entre ces disciplines sont établis afin d’offrir une vision générale de l’étude d’interprétabilité des
modèles boîtes-noires.

Abstract (English). Machine learning algorithms, which have significantly contributed to modern artificial intel-
ligence (AI) advancement, have repeatedly demonstrated their performance in predicting complex tasks. How-
ever, despite the potential benefits of using these methods for modeling critical industrial systems (computation
time, data value, hybridization between physics and experimental data), these algorithms have not yet been widely
adopted in modern engineering practices. Empirical results on benchmark datasets do not seem sufficient to con-
vince safety and control authorities responsible for industrial activities.

This thesis aims to develop methods for validating the use of black-box models (particularly those embedded in AI
systems) through the study of uncertainties. A general and comprehensive mathematical formalism is proposed
for the theoretical study of black-box model interpretability methods. This methodological work unifies two closely
related research areas: sensitivity analysis (SA) of numerical models and post-hoc interpretability. Two central
themes to this thesis are influence quantification and robustness to probabilistic perturbations. Special attention
is paid to the framework and theoretical properties of the proposed methods to provide compelling tools that go
beyond empirical considerations. Illustrations of their use on real-world problem cases support the consistency of
their practical use.

The consideration of dependent inputs, i.e., when the inputs of the black-box models are not assumed to be mutually
independent, plays a significant role in the research conducted. This consideration has allowed the generalization
of existing methods in SA and explainable artificial intelligence (XAI). Beyond their relevant theoretical properties,
these new methods are more consistent with practical studies, where collected data is often correlated. In particular,
a probabilistic perturbation strategy that preserves this dependence based on optimal transport methods is pro-
posed. Furthermore, a generalization under non-mutually independent assumptions of the Hoeffding functional
decomposition is also demonstrated. It allows the extension of a multitude of existing methods used in practice. The
presented work is closely related to various mathematical domains: statistics, probability, algebraic combinatorics,
optimization, optimal transport, functional analysis, and cooperative game theory. Several connections between
these disciplines are established to provide a global and comprehensive view of black-box model interpretability
research.
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GENERAL INTRODUCTION

The topic of this CIFRE PhD originates from the close collaboration between EDF R&D and l’Université
Toulouse III - Paul Sabatier. More precisely, this PhD has been hosted in the PRISME (Performance,
Risque Industriel, Surveillance pour la Maintenance et l’Exploitation) department of EDF R&D, in the
GAIA (Gestion d’Actifs, Incertitudes et Apprentissage) group. More generally, it was part of the TUR-
ING project, whose primary goal is to develop, experiment, and spread the bleeding edge of AI tech-
nologies to answer EDF’s future electricity production and distribution challenges. A part of this collab-
oration involved the SINCLAIR (Saclay Industrial Collaborative Laboratory for Artificial Intelligence
Research) laboratory, founded as a collaborative effort towards AI research between significant actors
from the French industrial space. From an academic perspective, this PhD has also been hosted at the
IMT (Institut de Mathématiques de Toulouse), whose scope covers all the domains of fundamental and
applied mathematics.

This PhD aims to study the behavior of black-box models of critical systems and, more precisely, to strive
towards a theoretically-grounded methodology for their interpretation. These models can be complex
numerical simulators of physical phenomena or machine learning models with uncertain inputs. The
developments in this thesis can be understood as an exploration of the mathematical aspects surround-
ing the interpretation of black-box models. This exploration aims to contribute to the establishment
of a robust foundation for interpreting black-box models, ensuring their trustworthiness and effective-
ness within the context of critical systems. The research outcomes are anticipated to bridge the gap
between theoretical insights and practical applications, enhancing the reliability and interpretability of
these models in critical domains and, hopefully, are a step towards establishing confidence in their use.

This manuscript comprises six chapters containing and expanding on the main scientific contributions
made during this PhD.

Chapter 1 presents the overall context of this PhD and the scope of the presented contributions. It
introduces a general mathematical framework for model interpretability upon which the following de-
velopments refer. Two central interpretability questions are introduced: input influence quantification
and robustness assessment. Three main use-cases are presented and further studied in the remainder of
the manuscript.

Chapter 2 explores measuring the influence of inputs. A link is drawn with the domain of combinatorics,
leading to two approaches to building influence measures: an input-centric approach and a model-
centric approach.

In Chapter 3, the input-centric approach is described using already-established interpretability methods
relying on the framework of cooperative game theory. The use of allocations, i.e., the redistribution of
resources, for quantifying importance is presented and discussed. Some methodological drawbacks to
this approach are presented.

Chapter 4 focuses on the model-centric approach. It requires the ability to decompose black-box models
with uncertain inputs. It is shown that such decompositions can be achieved whenever the inputs are
dependent and lead to the definition of intuitive and theoretically grounded importance measures.

Chapter 5 presents the question of the robustness of black-box models and explores one of its aspects:
the behavior changes whenever the inputs of a model are perturbed. It allows defining a generic method-
ology, which can, in-fine, be used to qualitatively assess these models’ behavior under these perturba-
tions.

Chapter 6 contains final concluding remarks, discusses the challenges ahead, and exposes promising
perspectives to the presented work.

Appendices A to E contain technical preliminaries, the proofs of the results presented in each chapter,
computational details, or more in-depth methodological regarding the use-cases to make this manuscript
as self-contained as possible.

Appendix F presents three additional use-cases. A Covid-19 epidemiological model, the ultrasonic non-
destructive control of a weld, and the study of a robot arm. These use-cases showcase the methods
developped in the manuscript.

Finally, Appendix G contains an extended summary of the manuscript, written in French.

Additionally, a GitHub repository1 containing all the codes to reproduce the presented results.

1https://github.com/milidris/phdThesis
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THE NEED FOR INTERPRETABILITY
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2 CHAPTER 1. THE NEED FOR INTERPRETABILITY

1.1 Context and motivations

1.1.1 Black-box modeling of complex critical systems

Instinctively, when confronted with physical phenomena, a natural reflex would be to perform repeated
experiments. Traditionally, engineering studies would aim at extracting insights from these experiments
by testing different configurations (e.g., changing the environment or initial conditions), recording the
different results, and comparing them, treating the world as an experimental arena. This is what kick-
started the field of experimental physics. However, as innovation blossomed and industrial needs grew
larger in proportion and ambition, performing such experiments quickly became too costly, dangerous,
too complex, or simply impossible to set up. More recently, modern engineering offered a solution: replace
the experimental configurations with physical models of the phenomena, which would result in numerical
simulations of the studied phenomena.

These numerical models proved their usefulness by shaping modern industrial practices. For example,
determining the ad-hoc profitability of wind farms depending on their location, improving the design
of nuclear power plants to ensure the utmost safety and prevent accidents, or their robustness to catas-
trophic events (e.g., natural disasters, targeted attacks). Électricité de France (EDF), and in particular its
research and development branch (EDF R&D), plays an essential role in the development, certification,
and spread of these numerical models for the electricity production industry1. Since these numerical
models simulate critical systems, their reliability became paramount for the decision-making processes
in industrial practices.

However, as these tools grew in ambition along with the industrial needs, they became too complex to
study analytically, and performing simulations of the physical phenomenon, despite access to tremen-
dous computing capabilities, took increasingly longer and longer. Additionally, some physical models
encapsulate convoluted equations (e.g., Navier-Stokes equations), which can sometimes only be solved
numerically. Due to their sheer complexity, these numerical models were considered as black-boxes.

Many of these simulations conducted over the years were consolidated in databases, in addition to the
rapid improvement of sensing tools, standardizing the recording of on-site measurements. This afflu-
ence of data, coupled with the impressive performance of supervised learning methods for modeling
complex phenomena, begged the question: How can these data-driven modeling methods benefit industrial
processes?
In particular, these methods offer a solution to the ever-growing, time-consuming simulations of nu-
merical models by offering fast-to-evaluate surrogates. They also promise to leverage sensing data to
model complex phenomena that have not been modeled numerically yet or simply cannot be. However,
since reliability is a primary focus in industrial engineering, confidence in these methods must be as-
sessed for their adoption as part of critical system modeling. Recent advances in artificial intelligence
led to the resurgence of over-parameterized but very effective machine learning models, also considered
black-boxes.

The main difficulty comes from the fact that critical systems are usually subject to uncertainties. These
uncertainties can stem from various reasons (e.g., lack of knowledge, measurement errors, or intrinsic to
the studied phenomena). Understanding and controlling the effects of these uncertainties on the critical
system is paramount for industrial decision-making and remains an active area of research. Dealing
with uncertainties is a challenge in industrial engineering when dealing with black-box numerical mod-
els, but also in artificial intelligence when it comes to black-box supervised learning models.

The work presented in this thesis mainly revolves around the uncertainties surrounding black-box mod-
els (numerical or learned from data). This section offers a view on the “what, why, and how” uncertain-
ties can be managed in industrial engineering and machine learning.

1.1.2 Sensivitity analysis meets post-hoc interpretability

In the contents of this thesis, a first parallel is drawn between two fields of applied mathematics. The
first, uncertainty quantification (UQ), is deeply rooted in the study of uncertainties propagated in numer-
ical models. In contrast, the second machine learning (ML) stems from the marriage between statistical

1https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/rd-global-expertise/our-offers/our-software-and-
calculation-codes

https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/rd-global-expertise/our-offers/our-software-and-calculation-codes
https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/rd-global-expertise/our-offers/our-software-and-calculation-codes
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learning and computer sciences. However, while their goals may be fundamentally different, they share
surprising similarities when drawing insights on the (numerical or learned) model of interest. In partic-
ular, many of the goals of sensitivity analysis (SA) are shared with post-hoc interpretability, a sub-field of
explainable artificial intelligence (XAI) [182, 16], as described in the following.

Sensitivity analysis. Paraphrasing [182], in a nutshell, the field of SA can be summarized as:

“The study of how the outputs of a system are related to, and are influenced by, its inputs. ”

Historically, SA has been part of the UQ methodology [57], where the main goal is to extract insights
from “black-box” computer models. These models are often specified in order to simulate physical phe-
nomena, such as thermo-mechanical modeling for the structural analysis of manufacturing processes2,
or assessing the safety of industrial installations3. They are often comprised of a series of complex math-
ematical operations (e.g., solvers for differential equations, finite element models) designed by domain
experts (e.g., physicists) to best approximate real-world physical phenomena’ behavior. These models
are crucial in industrial studies since they offer a cheaper and safer but complementary alternative to
controlled repeated experiments.

These numerical models can be seen as “input-output” systems, where the inputs can represent ini-
tial conditions and related physical quantities (e.g., ambient temperature, pressure, humidity). In the
UQ methodology, these inputs are considered as uncertain, either due to a reducible lack of knowledge
(i.e., epistemic uncertainty) or due to controlled uncertainties (e.g., measurement errors). The uncer-
tainties of the system are identified and quantified, and the inputs are subsequently endowed with a
probabilistic structure (by domain experts’ opinion or through real-world observations). In turn, the
system’s output also becomes random, better known as the propagation of uncertainties step in the UQ
methodology. This is where SA comes into play. Given random inputs and a subsequent random model
output, sensitivity analyses aim to draw insights from the modeled phenomena. In particular, four
settings are of interest [48]:

• Model exploration: investigating the input-output relationship in the uncertain context to under-
stand the behavior of the model better;

• Factor fixing: detect the “un-important” inputs (i.e., whose uncertainties have a limited impact
on the output’s uncertainty) to exclude them from the uncertainty study (by considering them as
constants);

• Factor prioritization: identify the “most important” inputs, i.e., the ones whose uncertainty affects
the output’s (or a quantity of interest’s) uncertainty the most;

• Input distribution robustness: study the variations of the output’s distribution (or a quantity of
interest) with respect to (w.r.t.) changes in the input’s chosen probabilistic structure.

These settings can be approached either from a local (i.e., on a neighborhood around a particular input
value) or a global (i.e., on the whole domain of the inputs) standpoint [158]. Many statistical methods
have been developed in the SA literature to provide practical tools for these settings [120, 30, 48]. These
tools provide diagnostics to the practitioner. These diagnostics can be understood as estimates of the
quantities the SA method quantifies. Depending on the question at hand and the choice of the SA
method, these diagnostics are an aid for scientific discoveries (e.g., improving the understanding of
the studied phenomena) or for engineering extents (e.g., to assist decision-making processes). Figure 1.1
illustrates how and when sensitivity analyses can be performed to draw insights from numerical models.

Post-hoc interpretability. Taking inspiration from [16], in a nutshell, post-hoc interpretability can
be summarized as:

“The ability to explain and provide reasons for the behavior of a given ML model.”

ML aims to offer tools for modeling various phenomena from observed data. Given a set of observa-
tions of input variables (i.e., features) and output variables (i.e., target) forming an observed dataset, the

2e.g., the use of the code_aster computer code for wire-arc additive manufacturing [101].
3e.g., the use of CATHARE2 numerical code for loss-of-coolant incidents in nuclear power plants [3].

https://code-aster.org/V2/spip.php?rubrique1
https://www.irsn.fr/recherche/code-cathare
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Figure 1.1: Sensitivity analysis to draw insights from numerical models.

overall aim is to produce a model able to fit the output best given the input. Traditionally, in the field
of statistical learning, the input and the output variables are assumed to be random, and the dataset
is comprised of realizations of these random variables [214]. However, the probabilistic structure of
both the inputs and the outputs is often unknown and only observed. The true relation that links the
inputs to the outputs is also unknown. Designing an ML model consists of assuming that this true
relation can be approximated using a model belonging to a particular family (e.g., a linear model, an
auto-regressive process, a neural network), often from a family of models characterized by parameters
(e.g., linear coefficients, auto-regressive coefficients, weights and biases of neurons). The learning pro-
cess can be described as leveraging the data to find the “best” values for these parameters, in the sense
that they minimize an (empirical) error between the observed target values and values predicted by the
model [97].

ML can be used in two related but fundamentally different settings:

• Input-output relationship exploration: determine if there exists a significant relationship between
the input and the output and if there is, its nature (e.g., linear, nonlinear);

• Predictive performance: build the best-performing model to achieve a certain predictive task with
high accuracy.

In statistics, ML models were seen as a tool for studying multivariate links, as a step up from tradi-
tional univariate and bivariate statistics [222]. Combined with the framework of hypothesis testing,
the first setting was the main concern, which proved useful when applied to many areas of research
(e.g., economics [7], biology [153], medicine [43], industrial processes [132]). In light of the powerful
nature of such an approach, the second setting has recently seen an increasing amount of attention [124],
especially with the introduction of deep learning approaches [90], which accomplished near-perfect pre-
diction scores on highly non-trivial tasks (e.g., digit recognition [139], image classification [130]).

However, as the nature of the predictive tasks at hand became more and more challenging, the sheer
complexity of the best-performing models grew accordingly, often endowed with an enormous num-
ber of parameters. These high-performing models were thus considered as “black-boxes”. While the
theory behind the learning process is well established [97], the mathematical reason behind why such
over-parametrized models show such impressive performance is still unknown [163]: it is easy to show
that a model works, but it is way more complicated to understand why. However, with the abundance
of various data streams and the increasing efficiency of computing power, these models are attractive
for modeling critical systems. Nevertheless, for such an adoption, the first setting is crucial for many do-
mains: the decision-making process must be built upon theoretical guarantees to convince the relevant
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safety and control authorities.

The field of XAI stemmed from this need to understand these black-box algorithms better [16]. In a
nutshell, it encompasses every aspect of the “artificial intelligence explanation” process, from the devel-
opment of suitable tools to the study of the interaction between the ML modeler and domain experts.
Post-hoc interpretability is a part of the XAI field. The adjective “post-hoc” refers to the fact that the ML
model of interest is already trained: the focus is put on trying to extract insights on the behavior of a spe-
cific model (i.e., with a fixed set of parameters) rather than developing novel families of “interpretable”
models. A (non-exhaustive) list of settings that post-hoc interpretability aims at addressing is as follows
[16]:

• Trustworthiness: the confidence of whether a model will act as intended when facing a given
problem;

• Transferability: elucidation of the boundaries that might affect a model, allowing for a better
understanding and implementation of unseen data;

• Informativeness: extracting information about the inner relations of a model;

• Confidence: ensure the robustness and stability of a model in which reliability is expected;

• Fairness: assess if a model is influenced by protected inputs, which may lead to unfair or unethical
treatments.

These settings can be approached either from a local (i.e., on a particular prediction instance) or a global
(i.e., on the whole domain of the inputs) standpoint [156]. Many methods have been proposed in the
literature but are often justified empirically through popular benchmarks [16]. Figure 1.2 illustrates how
and when post-hoc interpretability can be performed to draw insights from learned ML models.

Statistical modeling

Dataset

X

ML model

G(·)

Learned output

Ĝ(X)

Post-hoc interpretability

Interpretability

(Attribution...)

Diagnostics

(SHAP...)

Estimation
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method

Figure 1.2: Post-hoc interpretability to draw insights from learned ML models.

1.1.3 Model interpretability for black-box models of critical systems

As the attentive reader may have noticed, post-hoc interpretability and SA share many aspects, and
this overlap has been highlighted in the literature [182, 29, 142]. The work presented in this thesis is
at the cornerstone between both fields in pursuing one particular goal: the development of theoretically-
grounded methods to interpret black-box models of critical systems to justify their adoption in practice. The focus
is put on model-agnostic methods, in the sense that they must not rely on a particular modeling structure
since black-boxes can come in many different shapes and forms. Furthermore, they must be theoretically-
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justified: more than empirical evidence is needed to adopt these methods for studying critical systems.
Their characterization must be theoretically grounded and understood, their properties must be studied,
their limits must be highlighted, and the meaning of the insights they bring forward must be clearly
stated.

The starting point is to leverage the theoretical framework of UQ and SA due to its historical success in
enabling the adoption of (black-box) numerical models for engineering studies. A unified mathematical
framework is proposed to bridge the gap between SA and post-hoc: model interpretability. However,
when it comes to fitting to the XAI needs, two challenges must be addressed: dependence between
the inputs and unknown probabilistic data-generating process (i.e., the practitioner only has access
to an observed dataset). These two constraints are at the heart of the developments made in this thesis.
The proposed mathematical framework of model interpretability is introduced and discussed in the
following section.

1.2 A mathematical framework for model interpretability

This section introduces the mathematical framework of model interpretability and the first set of no-
tations that will be used in the remainder of the manuscript. To accommodate both SA and post-hoc
interpretability, this probabilistic framework relies on a relatively general measure-theoretic standpoint.
The interested reader is referred to [122] for some preliminaries and Appendix A for the relevant defi-
nitions of measure theory and probability theory. The following elements are introduced, defined, and
discussed:

• Random inputs: they represent the uncertain inputs of numerical models or the relevant observed
features related to an ML model. In this framework, random inputs take the form of vectors of
random elements;

• Black-box model: they represent the black-boxes used to model (critical) systems. They can rep-
resent a numerical model of a physical phenomenon or an ML model trained from data. In this
framework, black-box models take the form of functions mapping two suitable spaces;

• Random output: reminiscent of the propagation of uncertainty paradigm of UQ, random outputs
are the evaluation of black-box models on the random inputs, thus becoming a random element
valued in the codomain of the black-box model;

• Quantity of interest: it represents a meaningful quantity related to the random output, of which
the effects of the random inputs need to be studied (e.g., a particular evaluation of a model, its
variance). Quantities of interest (QoIs) are defined as mappings between the codomain of the
black-box model to suitable types of spaces;

• Interpretability methods: they represent ways to solve a clearly stated conundrum, i.e., a key prac-
tical question one wishes to gain insight from.

In the remainder of the manuscript, the following notations are adopted. ⊂ indicates a proper (strict)
inclusion between two sets, while ⊆ indicates that equality is possible, and for any set A, the set
{B : B ⊆ A} does not contain the empty set denoted ∅.

1.2.1 Black-box modeling: Random inputs, black-box model, and random
output

This first section defines the elements that compose the first step of the proposed framework: black-box
modeling. The focus is put on what the introduced notions can be formalized as, rather than how can one
achieve black-box modeling (e.g., numerical codes, ML model).

Random inputs To accommodate both SA and XAI settings, many different “types” of inputs must
be considered, which are not necessarily R valued (e.g., , non-tabular data such as text, images, and
time-series). Hence, taking inspiration from [48], the random inputs are defined using the very general
notions of random elements and vectors of random elements (see, Appendix A), which generalize the idea
of random variables and random vectors.
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Let (Ω,F ,P) be an abstract probability space (often referred to as the sample space), let d ≥ 1 be a positive
integer, and let (E1, E1), . . . , (Ed, Ed) be a collection of standard Borel measurable spaces. For every
A ⊂ D, denote:

EA :=×
i∈A

Ei, EA :=
⊗

i∈A
Ei, and E :=×

i∈D
Ei, E :=

⊗

i∈D
Ei

where×denotes the Cartesian product between sets and
⊗

denotes the product of σ-algebras (see, [150],
Section 2.4.2). Notice additionally that, for any A ⊂ D, (EA, EA) is also a standard Borel measurable
space and (E, E) as well (see, e.g., [126], Lemma 1.2).

The random inputs are represented by an E-valued, (F)-measurable mapping X = (X1, . . . , Xd)
⊤ (i.e., a

vector of random elements). For any A ⊂ D, the EA-valued vector of random elements XA := (Xi)i∈A
defines a subset of inputs.

The σ-algebra generated by the random inputs (see, Definition A.2) is denoted σX , and for any A ⊂ D,
the σ-algebra generated by the subset of inputs XA is denoted σA. These generated σ-algebras can
be understood as the relevant theoretical notion to formally identify the sources of uncertainties and are
traditionally interpreted as the information brought forward by a random element.

The joint distribution of the random inputs is the probability measure induced by the measurable mapping
X (see, Definition A.5), denoted PX . For every A ⊂ D, the marginal distribution of the subset of inputs XA

is the probability measure induced by the measurable mapping XA, denoted PXA
.

Black-box model Again, in the spirit of generality, to accommodate both numerical and ML-based
black-box models, particularly their variety of outputs (e.g., meshes, text, regression, classification),
black-box models are defined in a rather abstract manner.

Let (Y,Y) be a standard Borel measurable space. The black-box model is represented by a measurable
mapping G : E → Y .

Random output Rather naturally, and in the spirit of the propagation of uncertainties in UQ, the random
output refers to the composition of the random inputs and the black-box model. Considering all the
uncertainties it is subject to, it can be interpreted as the representation of the system model as a whole.

The random output is denoted by the measurable function G(X) := G ◦ X : Ω → Y , i.e., a Y -valued
random element. It is important to note that random outputs are necessarily σX -measurable functions.
Additionally, denote by GX the space of random output defined as:

GX = {f : Ω→ Y : f is σX -measurable} .

Additionally, for any A ⊆ D, denote GA the subset of GX of Y -valued, σA-measurable functions (where
σD = σX ). Additionally, denote G∅ the space of functions measurable w.r.t. the P-trivial σ-algebra
(see, Definition A.6), denoted σ∅.

Figure 1.3 illustrates the relationships between the random inputs, the black-box model, and the random
output. The proposed framework highly emphasizes the functional relationships between these three no-
tions. In the context of black-box model interpretability, it is essential to note that the black-box modeling
step is considered as given. The main focus of this thesis is not on how one can model a phenomenon us-
ing black-boxes, but instead on drawing insights from the black-boxes once they have been modeled. However,
formally describing the elements that compose this first modeling step is paramount in the following
developments. This formal take on black-box modeling allows for a sufficiently general framework,
encompassing the diversity and complexity of real-world situations.

1.2.2 Quantity of interest

QoIs are paramount in the framework of model interpretability. They must be meaningful to domain
experts, by bearing key information towards the conundrum the interpretability study aims at providing
an answer to. In the spirit of generality and to accommodate the broad range of possible insights related
to black-box models, these QoIs are also considered to be random, even though, in most cases, they are
considered deterministic. The proposed definition of QoI expands the homonymous notion in SA [48]
to consider a broader range of situations.
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(Ω,F ,P) (E, E) (Y,Y)
Sample space

Input space

Output space

X G

Random inputs Black-box model

G(X)

Random output

Figure 1.3: Black-box modeling: Relationship between the sample, input, and output spaces using
mappings.

Let (Q,Q) be a measurable space, called the QoI space. Let QoI : GX → Q be an operator, and the QoI
refers to the random element result of its composition with the random output, i.e., QoI (G (X)).

Examples of QoIs can be the random output itself, an evaluation (observation) of the random output,
i.e., for an ω ∈ Ω the quantity G(X(ω)) [149], in case of R-valued outputs, its expectation, i.e., E [G(X)],
its variance, i.e., V (G(X)) [204], and in case of Rd-valued outputs, its covariance matrix [85]. In the last
two examples, the integral operator is taken w.r.t. the fixed probability measure P on Ω.

Special case (Special cases of the framework). In the remainder of this thesis, particular attention is paid
to whether the presented theoretical results or empirical studies focus on special cases of this somewhat
abstract framework. These restrictions (on the input, output, and QoI spaces) are encapsulated in these
special case blocs and displayed before stating any theoretical or empirical result.

1.2.3 Conundrums and interpretability methods

In all generality, interpretability methods can be understood as meaningful transformations of the QoI. Al-
though this definition is not very formal, it remains general enough to encompass the broad spectrum of
methods proposed in the literature (see, e.g., [16]). A transformation of the QoI can be understood as per-
forming a theoretically-grounded methodological study of the QoI. The term meaningful emphasizes the
goal of the interpretability method, which is embodied by a conundrum [9]. Once a relevant interpretabil-
ity method has been chosen to bring forward insights toward solving a conundrum, i.e., defining the
meaningful theoretical quantities candidate to answering the practical question, computing estimates of
these quantities lead to diagnostics, which can then be interpreted in order to explain studied domain-
specific problem.

Conundrums Conundrums are embodied as domain-oriented questions. In the abstract modeling of
explanations games [9], two individuals, an explainer (e.g., domain-experts, engineers) and an explainee
(e.g., decision-maker, validation authority) interact in order to solve a conundrum, i.e., a question orig-
inating from the explainee which needs to be addressed by the explainer. To solve a particular conun-
drum, the explainer must provide an explanation to the explainee, which then decides if the explanation
is sufficient. Studying the interactions between explainer and explainee is at the crossroads of many sci-
entific research areas, such as logic, non-cooperative game theory, psychology, ergonomics, and microe-
conomics. They are leveraged in XAI to study the social aspects of the acceptance of artificial intelligence
[16].

Examples of conundrums can be (but are not limited to):

• “Why does the model provide this particular prediction on a particular datapoint?”

• “Which inputs are responsible for the uncertainty of the modeled system?”

• “What is the impact of the lack-of-knowledge about the inputs on the modeled system?”

However, the work presented in this thesis focuses on one particular point of this complex interaction
process: providing tools for the explainer to build relevant explanations for specific conundrums. Hence,
these tools must provide insights whose meaning must be theoretically justified to support the subse-
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quent explanations’ relevancy. The tools are called interpretability methods in the remainder of this thesis
and are discussed below.

Interpretability methods Once a conundrum has been stipulated, the first step is identifying rele-
vant QoIs. They should be chosen as key indicators of the overall conundrum at play. Interpretability
methods entail finding a methodology to solve the conundrum by studying the chosen QoIs. For exam-
ple, if the main question revolves around the reasons behind a model prediction, a suitable QoI would
be the prediction itself, with suitable methods revolving around causality (e.g., counter-factual meth-
ods [159, 9]), or rule-extraction approaches [18]. If the conundrum deals with identifying which inputs
affect a QoI the most, one can refer to decomposition methods (e.g., coalitional decompositions [111],
attribution methods [149]). If the explainee asks about the out-of-distribution behavior of the QoI, one
can refer to input perturbation methods (e.g., probability measure projections [141, 13, 113], information-
geometric-based perturbations [86]).

Many interpretability methods have been proposed in the XAI literature, offering insights into many
different situations (see, e.g., [16, 143, 207] for an overview of the proposed methods). However, since
the main goal of this thesis revolves around the modeling of systems, three desirability criteria are
introduced:

• Relevancy: The power of an interpretability method to address a conundrum should be motivated;

• Theoretical-groundedness: An interpretability method should be built upon a strong theoretical
framework with clearly stated assumptions, its properties studied, and shortcomings highlighted;

• Practical coherence: Aside from theory, the insights brought forward by the interpretability method
must be studied empirically and validated on controlled use cases, and be in accordance with the
domain-experts’ opinions.

Producing relevant estimators of the theoretical quantities defined by interpretability methods also plays
a pivotal role in bridging the gap between theory and practice. The estimates are referred to as di-
agnostics in the proposed framework. Despite their importance, apparent logic, and sometimes their
demonstrated empirical usefulness [186], their adoption for decision-making for critical-system model-
ing remains subject to the theoretical study of the quantities they aim at approaching.

1.3 Two main interpretability methods

The work presented in this thesis introduces two main interpretability methods:

• QoI decompositions: The study of how QoIs can be decomposed w.r.t. the inputs and subsets
of inputs of a black-box model. It is particularly suitable for conundrums dealing with influence
quantification;

• Input perturbations: A methodology to perturb the distribution of the inputs in various settings.
It proposes an answer to model robustness-related conundrums.

1.3.1 QoI decomposition for influence assessment

QoI decomposition methods, as their name suggests, entail being able to write QoI (G (X)) as a sum of
elements of Q, provided it is endowed with a suitable “addition” operation (i.e., it is an Abelian group,
see Appendix B). For instance additive attributions methods [149] consider the following sum:

QoI (G (X)) = ϕ∅ +
∑

i∈D
ϕi,

where for every i ∈ D, ϕi ∈ Q, and where each ϕi correspond to an effect of the input Xi. Coalitional QoI
decompositions differ from attributions methods, in the sense that the sum is taken over the power-set of
D (i.e., the set of subsets of D, including ∅), denoted PD. A coalitional decomposition of QoI (G (X))
would entail having:

QoI (G (X)) =
∑

A∈PD

ϕA,
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where for every A ∈ PD, ϕA ∈ Q, and where each ϕA correspond to an effect of the subset of inputs XA.
The term “coalitional” comes from the fact that the effects of coalitions (i.e., subsets) of inputs are taken
into account in the decomposition, in contrast to attribution methods which only focus on individual
(i.e., univariate) effects. These two interpretability methods are intimately linked (see, Chapter 3).

The central paradigm behind QoI decompositions is that the resulting quantified effects may bear some
information on an input’s influence on the QoI. If Q is endowed with a natural total order, comparing
the magnitudes of these effects can give insight into a potential “influence ranking” over the inputs.

In the literature, many techniques relying on these methods have been proposed. Examples of attri-
butions methods proposed are, for evaluation decomposition of regression models (i.e., Y = R, and
QoI (G (X)) (G(X)) = G(X(ω)) for some ω ∈ Ω), LIME [186], or SHAP [149], and for variance decompo-
sition (i.e., Y = R and QoI (G (X)) = V (G(X))), Shapley effects [169] or proportional marginal effects
[100]. The prime example of coalitional variance decomposition would be the well-known Sobol’ indices
[204], which are at the cornerstone of the field of variance-based SA.

1.3.2 Input perturbations for the assessment of model robustness

Input perturbation methods deal with modifying the inputs’ distribution in a controlled manner. Once
the modified distribution is achieved, input perturbation methods enable the study of the QoI under the
modified distribution. In essence, for initial random inputs X and perturbed inputs X̃ , one can then study
the differences between QoI (G (X)) and QoI(G(X̃)) caused by the particular perturbation. In-fine, it
allows assessing the model’s behavior (through its QoIs) on a different input probabilistic scheme than
the initial one caused by a controlled perturbation, ultimately allowing assessing the model’s robustness
to different input distributions. This interpretability method can be used for prospective studies and ex-
ploratory analysis or to ensure the coherence of the model with domain-experts’ knowledge to prevent
domain misspecification.

Formally, let C be a perturbation class, i.e., a particular set of probability measures induced by E-valued
random inputs, and D is a discrepancy between probability measures (i.e., not necessarily a distance).
The perturbation problem can be written as the following constrained optimization problem:

PX̃ ∈ argmin
P

D (PX , P )

s.t. P ∈ C.

Several choices of discrepancies and perturbations classes have been studied in the literature. Leverag-
ing the pioneering work of [47] on entropic projections, the choice of the Kullback-Leibler (KL) diver-
gence has been investigated by [141] in SA and by [13] in XAI, where C is defined through constraints
on generalized moments. [86, 127] proposed to study parametric families of distribution, where the dis-
crepancy is chosen utilizing the Fisher metric on the parameter space, leading to natural perturbations
classes comprised of sequences of perturbed distributions along geodesics. In [113], the choice of the 2-
Wasserstein distance is motivated, coupled with copula-preserving-quantile-constrained perturbations
classes.

1.4 Illustrative use-cases

Throughout this thesis, the introduced methods and techniques are illustrated through use-cases. In this
section, three main use-cases are presented, as well as relevant conundrums the presented methods aim
to solve. Additional use-cases are presented in Appendix F, whose analyses are left as supplementary
material.

Remark 1.1 (Data availability and reproducibility statements). All the presented datasets, data-generation
processes, numerical models, model training, result computations and codes for the displayed figures
are made available in the accompanying GitHub repositorya.

ahttps://github.com/milidris/phdThesis

https://github.com/milidris/phdThesis
https://github.com/milidris/phdThesis
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1.4.1 Simplified hydrological model

Description of the use-case

This first use case is an example of a numerical model being easy to evaluate. It aims to represent a
simplified model of the water level of a river. This model has been extensively used in the safety and
reliability of industrial sites, where the occurrence of a flood can lead to dramatic human and ecological
consequences. It consists of a substantial simplification of the one-dimensional Saint-Venant equation,
with a uniform and constant flow rate, inspired from [120, 82]. The maximal annual water level from
sea level is modeled as follows:

G(X) = Zv +


 Q

BKs

√
Zm−Zv

L




3/5

, (1.1)

where input variable and their explicit marginal probabilistic structure is detailed in Table 1.1.

Input Unit Distribution Application Domain Description

Q m3/sec G(1013, 558) trunc. [500, 3000] River maximum annual water flow rate.

Ks N (30, 7) trunc. [15, 55] Strickler riverbed roughness coefficient.

Zv m T (49, 50, 51) [49, 51] Downstream river level.

Zm m T (54, 55, 56) [54, 56] Upstream river level.

L m T (4990, 5000, 5010) [4990, 5010] River length.

B m T (295, 300, 305) [295, 305] River width.

Table 1.1: Inputs of the simplified river water level model and their explicit marginal distributions. G,N , T
denote Gumbel, Normal and Triangular distributions, which may be truncated (trunc.).

For reliability studies, the modeled river can be considered to be located near an industrial site [140].
Hence, in addition to the random inputs, and as illustrated in Figure 1.4, a dyke surrounds the river,
whose height is denoted by t. Hence, a reported maximal annual water level beyond this height charac-
terizes the event of a flood of the industrial site.

Additionally, similarly to [38], a dependence structure between the inputs is modeled using a Gaussian
copula, with the following correlation matrix:

RP =




1 0.5 0 0 0 0
0.5 1 0 0 0 0
0 0 1 0.3 0 0
0 0 0.3 1 0 0
0 0 0 0 1 0.3
0 0 0 0 0.3 1



, where




Q
Ks

Zv

Zm

L
B



∼ P.

Conundrums

Concerning this use case, the following questions are answered in this thesis:

• Which inputs are the most responsible for the uncertainty surrounding the river’s maximal annual water
level, and the event of a flood happening? (see, Section 3.4.2)

• Are there any inputs that do not contribute to this uncertainty? (see, Section 3.4.2)

• What would be the impact on the maximal annual water level of the river due to epistemic uncertainty on
the Strickler riverbed roughness coefficient? (see, Section 5.5.2)
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Figure 1.4: Illustration of the simplified hydrological numerical model.

• If a surrogate replaced this model, would the meta-model capture these effects? (see, Section 5.5.2)

1.4.2 Transmittance error of an optical filter

Description of the use-case

This second use case is an example of a complex numerical model that is too costly to evaluate, for
which only a few simulations are available to the practitioner. In this use case, inspired by [217], the
transmittance of an optical filter is studied. The studied system comprises 13 layers stacked on each
other, each having the same thickness but varying refractive indices.

This filter aims at splitting a light wave into two or more parts, each taking different paths through the
system before coming together. Due to the refraction of the wave on each successive layer of the system,
the paths’ length and amplitude can vary, resulting in varying system transmittance values. The ability
to determine which layer is influential is crucial for optical filters and remains a complicated problem
due to high levels of interaction between the layers. In the literature, previous global SA studies (see,
e.g., [217, 216]) allowed providing some answers by assuming mutual independence between refractive
indices.

Each of the 13 inputs I1, . . . , I13 represents the refractive index error of a layer in the optical filter, which
is assumed to vary uniformly between [−0.05, 0.05]. These errors are correlated, representing a deviation
in the manufacturing process of the layers. The dependence structure is modeled using a Gaussian
copula, where each pair of inputs exhibits a 0.9 correlation coefficient.

As depicted in [217], several light waves of varying frequencies are passed through the filter. The trans-
mittance is then computed for each frequency, and their squared error w.r.t. the “perfect filter” (i.e., with
no error) is computed. The model’s output is the square root over the sum of these squared errors.

The practitioner only has access to a unique i.i.d. sample of size 1000 of the input-output simulations.

Conundrums

Concerning this use case, the following questions are answered in this thesis:

• Which inputs are the most responsible for the uncertainty surrounding the optical’s transmittance error?
(see, , Section 3.4.3)

• Are there any inputs that do not contribute to this uncertainty? (see, , Section 3.4.3)
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• If this model were to be replaced by a surrogate, would the importance ranking be suitable for feature selec-
tion? (see, , Section 3.4.3)

1.4.3 Acoustic fire extinguisher dataset

Description of the use-case

The last illustrative use case represents a typical ML modeling procedure where only a dataset of experi-
ments is available. The acoustic fire extinguisher dataset comprises 15390 experiments of fire extinguish-
ing tests for three different liquid fire fuels. Amplified sub-woofers are placed in a collimator with an
opening. When activated at different frequencies, the acoustic waves produce an air escape through the
opening, which is used to extinguish fires. Three features are set using a design of experiment (DoE),
and two are measured using appropriate equipment. One can refer to the in-depth descriptions in [128,
211] for more details on the experiment’s settings. Table 1.2 gives additional details on the nature of the
features.

Feature Unit Mode of measurement Description

TankSize cm DoE Discrete feature (5 levels) describing the tank size con-
taining the fuel.

Fuel DoE Fuel type used (3 levels: Gasoline, Kerosene, Thinner).

Distance cm DoE Distance of the flame to the collimator opening.

Frequency Hz DoE Sound frequency range.

Decibel dB Measured Sound pressure level.

Airflow m/s Measured Airflow created by the sound waves.

Table 1.2: Description of the features of the acoustic fire extinguisher dataset.

For each experiment, a binary output variable is measured, representing the result of the experiment,
i.e., whether the fire has been put out (1) or not (0). The two output classes are relatively balanced:
48.97% of the observations describe effectively extinguished fires. The empirical distribution, correlation
structure, and relationship between the features and the output are represented in Figure 1.5. Some
variables seem somewhat correlated in Spearman’s sense [164], i.e., the linear correlation of the rank-
transformed data. In addition, the correlation ratios [44] between the discrete inputs (TankSize and
Fuel) and the continuous inputs are negligible.

The classification black-box model is a one-layer neural network (composed of 100 neurons), trained
on 500 epochs, with a learning rate of 10−4, similar to the study conducted in [212]. 5% of the data
has been randomly selected for validation. The model resulted in a good prediction accuracy: 95.15%
of the training data and 94.26% of the validation data are correctly classified. Figure 1.6 depicts the
trained black-box model’s ROC curve and confusion matrix. The model’s predictive performance can
be validated globally with an AUC of 0.992 and less than 3% of type 1 and 2 prediction errors.

Conundrums

Concerning this use case, the following questions are answered in this thesis:

• Which inputs are the most responsible for the uncertainty surrounding the effective termination of a fire?
(see, , Section 3.4.4)

• Are there any inputs with negligible effect on the uncertainty surrounding the effective termination of a fire
(see, , Section 3.4.4)
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Figure 1.5: Histogram, cross-scatterplot, and Spearman’s correlation coefficient of the input features of
the acoustic fire extinguisher dataset. Red dots represent observations resulting in Y = 0, and blue dots
for Y = 1.
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Figure 1.6: ROC curve (left) and confusion matrix (right) of the neural network model trained on the
acoustic fire extinguisher dataset.

• Would the model’s prediction be robust to perturbations on the quantiles of the Airflow feature? (see, ,
Section 5.5.1)

• What would be the effects on the importance ranking of perturbations on the quantiles of the Airflow feature?
(see, , Section 5.5.1)

1.5 Intention and content of the manuscript

The contents of this thesis can be seen as a theoretical deep-dive into the two previously introduced
interpretability methods: QoI decompositions and input perturbations. The main concern is formalizing
these methods and going beyond empirically justified techniques to offer suitable tools for validating the
use of black-boxes to model critical systems. Producing efficient estimates and diagnostics is essential,
but it comes in second in the context of the presented work. Already established estimation schemes are
presented for a plethora of practical situations. However, no novel estimators are proposed.
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Additionally, as eluded in Section 1.2, generality is strongly emphasized. For instance, many consid-
erations are put on the case of dependent inputs i.e., the variations of the inputs of a black-box model
are influenced by each other, with mutual independence seen as a particular case. This general point of
view is taken to offer suitable mathematical foundations to unify SA and post-hoc interpretability. Many
methodological questions are addressed in the contents of this thesis, such as, for instance:

• How is it possible to generically decompose QoIs? (see, Chapter 2)

• What do existing interpretability techniques quantify? (see, Chapter 3)

• Is there a natural way to define importance when the inputs are not mutually independent?(see, Chap-
ter 4)

• How can one define pure interaction effects in contrast to effects due to stochastic dependence
between the inputs? (see, Chapter 4)

• What constitutes meaningful input perturbation, and how can the insights be interpreted? (see, Chap-
ter 5)

The contents of this manuscript stand on several fields of mathematics: probability theory, statistics,
abstract algebra, combinatorics, cooperative game theory, and functional analysis, to name a few. Some
preliminaries are proposed in relevant appendices to make this thesis as self-sufficient as possible. The-
oretical results from the literature are accompanied by references containing their proofs. The proofs of
original results developed during the Ph.D. are postponed to the appendices.

Chapter 2 introduces the QoI decomposition interpretability method. Coalitional QoI decompositions
are first introduced, and their link with the field of algebraic combinatorics through Rota’s generaliza-
tion of the Möbius inversion formula. It leads to two main ways to conceptually perform QoI decompo-
sitions: the input-centric and the model-centric approaches.

Chapter 3 introduces techniques coming from cooperative game theory. These attribution methods are
shown to be aggregations of coalitional decompositions stemming from the input-centric approach. For
the output variance decomposition task, the Shapley effects are introduced as an egalitarian redistribu-
tion of suitable dividends. Another proposed technique, called the proportional marginal effects, relies
on a proportional redistribution of dividends. Although these methods are relevant in practice, they
present methodological issues, which can be traced back to the input-centric approach.

Chapter 4 focuses on the model-centric approach. It amounts to performing functional decompositions,
reminiscent of Hoeffding’s functional analysis of variance (FANOVA). This result, which assumes mu-
tual independence of the inputs, is shown to be a particular case of a more general result, allowing the
inputs to be dependent. In particular, the variance decomposition leads to the definition of novel indices,
allowing the separation of interaction and dependence effects.

Chapter 5 is concerned with the problem of input perturbation. The general framework of this partic-
ular interpretability method is introduced and discussed. The development of a particular instance of
this general problem is then studied: the choice of the 2-Wasserstein distance as a suitable discrepancy
between probability measures, along with quantile-based interpretable perturbations.
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Abstract (English). The very concept of measuring the influence of a group of inputs on a quantity of interest in a
black-box model is based on algebraic considerations. More precisely, the search for an influence measure associating
a value (real or more abstract) with a group of inputs is justified by the mere existence of a total order that would
allow them to be ranked. Coalitional decompositions make it possible to associate with each subset of inputs a share
of the quantity of interest. These particular influence measures can be linked to the notion of generalized Möbius
inversion, a well-known result in combinatorics. This connection describes two ways to build coalitional decompo-
sitions: an approach focused on inputs and an approach based on an intrinsic decomposition of the model. These
two approaches are illustrated in the case of decomposing the variance of a black-box model, leading to the study
of Sobol’ indices. Both approaches are then illustrated through analytical results on simple toy cases.

Abstract (Français). Le concept même de mesurer l’influence d’un groupe d’entrées sur une quantité d’intérêt d’un
modèle boîte-noire repose sur des considérations algébriques. Plus précisément, la recherche de mesure d’influence
associant une valeur (réelle ou plus abstraite) à un groupe d’entrées, est justifiée par la simple existence d’un or-
dre total qui permettrait de les hiérarchiser. Les décompositions coalitionnelles permettent d’associer à chaque sous-
ensemble des entrées une part de la quantité d’intérêt. Ces mesures d’influence particulières peuvent être rap-
prochées de la notion d’inversion de Möbius généralisée, résultat phare du domaine de la combinatoire. Ce rapproche-
ment permet de décrire deux manières de construire des décompositions coalitionnelles : une approche focalisée
sur les entrées, et une approche reposant sur une décomposition intrinsèque du modèle. Ces deux approches sont
illustrées dans le cas de la décomposition de la variance d’un modèle boîte-noire, amenant à l’étude des indices de
Sobol’. Ces deux approches sont ensuite illustrées par le biais de résultats analytiques sur des cas jouets simples.

Keywords . Influence order • Influence measure • Möbius inversion formula • Coalitional decompositions • Sobol’
indices
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2.1 Input influence assessment for interpretability

A rather natural and intuitive question regarding a black-box model is whether its inputs have varying
levels of “influence” on some given QoI. Take, for instance, the variance of the random output, which is
usually interpreted as the amount of uncertainty the modeled system is subject to. Tracing these uncertainties
back to subsets of inputs would allow comparing their importance w.r.t. to the model. For instance, in
engineering studies, it could result in a preventive allocation of resources to the study of these particular
sets of important inputs or allocating fewer resources to the fine measurements of less important inputs.
Another example would be the fairness audit of black-box AI models [21]: if, for a particular evaluation
of the model, a protected (i.e., sensitive) feature is shown to bear some influence, then the decision could
not be considered as fair. Hence, the notion of influence is necessarily related to the QoI of a black-box
model: an influential set of inputs, say, for the variance of the model, may not be influential on one of its
quantiles. Measuring and assessing influence can be relevant for solving conundrums such as: “What is
the influence of subsets of inputs on the QoI?” or “Are there any inputs that do not influence the QoI?”.

The question of measuring influence is central to many fields, such as sensitivity analysis [48] in order
to interpret black-box models and to detect inputs with negligible effects on the system’s overall uncer-
tainty, but also in statistical learning [97], where importance quantification can be at the basis of feature
selection or model comprehension [70, 92, 44]. More recently, in the XAI literature, many “explanation
methods” have been proposed to measure the influence of inputs on the evaluation of learned models
(e.g., SHAP [149], LIME [186]). These influence measures are usually expected to express some “influ-
ence ranking” between sets of inputs, making them comparable for decision-making purposes. How-
ever, aside from reasonable desirability criteria or rationales justifying their conception, these methods
lack a general framework for their theoretical study.

In this chapter, the algebraic roots of this problem are highlighted. The two notions of influence order
and influence measure of subsets of inputs are disentangled and formally introduced. The definition of
the latter comes naturally as order embeddings. It motivates the definition of coalitional decompositions.
These decompositions require desirability criteria to ensure the influence measures are relevant and suit-
able and quantify understood theoretical quantities. Coalitional decompositions are intimately related
to Rota’s generalization of the Möbius inversion formula, a theoretical result from the field of combinatorics.
This result offers two approaches to define influence measures: input-centric and model-centric. These
approaches are illustrated for variance decomposition, using the well-known Sobol’ indices [204] as ex-
amples. These indices are analytically computed for two simple use cases, where mutual independence
is not necessarily assumed and then interpreted.

2.2 Coalitional decompositions and influence measures

In this section, the general framework of influence quantification is explored. The notion of influence mea-
sures, i.e., functions aiming at quantifying the influence of subsets of inputs on a QoI, comes naturally as
soon as the existence of an influence order is assumed. This abstract ranking can express that some inputs
can have varying degrees of influence on a QoI and thus be compared using a binary relation. Measur-
ing the influence on a QoI amounts to finding an order embedding onto the QoI space and can be done
through coalitional decompositions, i.e., additive decompositions of QoIs. Coalitional decompositions
are intimately linked with the notion of Möbius transforms, which leads to two different methodological
approaches to characterizing influence measures.

2.2.1 Influence order and influence measures

First, the focus is put on the rationale behind the construction of influence measures and their overall
goal. It relies heavily on notions of abstract algebra and order theory. The interested reader can find
some preliminaries in [52, 197] and in Appendix B.1.

The idea behind “influence” is deeply tied to the existence of an ordering between the coalitions of inputs.
This ordering would express a ranking w.r.t. to the influence of subsets of inputs on a particular QoI. In
other words, it assumes the existence of some abstract (and unobserved) binary relation between subsets
of inputs, forming a total order.

Formally, let ⪯QoI be a binary relation acting on PD, and suppose that (PD,⪯QoI) forms a totally ordered
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set (see, Definition B.5). For two subsets of inputs XA and XB , A,B ∈ PD, A ⪯QoI B means that “XB

has the same, or more influence on QoI (G (X)) than XA". However, the binary relation ⪯QoI can never
be observed nor inferred directly. In the following, only its existence is assumed.

Despite these drawbacks, it remains possible to gather insights on this binary relation using influence
measures, i.e., comparable elements onQ, the QoI space (assumingQ can be endowed with a total order).
The formal definition of influence measures is motivated by the following result.

Proposition 2.1. Let (T,⪯) be a finite totally ordered set, and let (M,≤) be an infinite totally ordered
set. There always exists a function ϕ : T →M , such that, ∀A,B ∈ T ,

A ⪯ B ⇐⇒ ϕ(A) ≤ ϕ(B).

Proof: Finite totally ordered sets can always be embedded in a chain [52] of an infinite totally ordered set.

Special case . From this point on, Q is assumed to be an infinite Polish space (i.e., the topological space
is not finite), and (Q,Q) is assumed to be standard Borel.

Actually, Proposition 2.1 can be understood as the fact that there will always exist an order-embedding
(see, Definition B.7) between PD and the QoI space Q, preserving the total influence order, under the
sole assumption that the inputs can be ranked w.r.t. their influence. These order-embeddings are called
influence measures. Finding relevant influence measures for subsets of inputs can be seen as searching
for suitable functions ϕ : PD → Q, hoping it expresses the influence order. Since the influence order
can neither be observed nor be inferred directly, proposed influence measures in the literature are of-
ten justified by desirability criteria, i.e., intuitive properties of the influence measure that are deemed
reasonable.

2.2.2 Coalitional decompositions

The sole assumption of the existence of an influence order over the subsets of inputs justifies the search
for suitable influence measures, i.e., a function ϕ : PD → Q. However, any arbitrary influence measure
may not be suitable to express the influence order. Without any additional assumption on ⪯QoI, the
relevancy of influence measures must be motivated.

Coalitional decompositions [111] are a particular class of influence measures ϕ that are inherently related
to a QoI. In essence, they define influence measures that are additive decomposition of the QoI over PD,
where each evaluation of influence measure related to a subset of inputs aims at quantifying its influence.
However, additively decomposing a QoI requires additional assumptions on Q (i.e., addition over the
elements of Q must be properly defined).

Special case . From this point on, Q is assumed to be an Abelian group (see, Definition B.2) with the
addition operation “+”.

Remark 2.1. The assumption thatQ forms an Abelian group when endowed with an addition operation
is not too restrictive. Since R (with the usual addition) is, in particular, an Abelian group, R-valued QoIs
remain valid. Furthermore, spaces of real or complex matrices (with the usual elementwise addition)
are also Abelian groups, along with vector spaces (with the usual vector addition). Thus, a vast range
of QoIs can be taken into account. In fact, it generalizes many of the developments from the literature
to more abstract QoIs [111].

Formally, coalitional decompositions are defined as follows.

Definition 2.1 (Coalitional decompositions). Let X be random inputs, G be a black-box model, G(X) a
random output, and QoI (G (X)) be a Q-valued QoI. Let ϕ : PD → Q be an influence measure. If the
additive decomposition

QoI (G (X)) =
∑

A∈PD

ϕ(A)

hold, then ϕ is said to be a coalitional QoI decomposition.
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While being fairly general, for an influence measure to be a coalitional decomposition, as defined in
Definition 2.1, is not enough. Take, for instance, the influence measure

ϕ(A) =

{
QoI (G (X)) if A = D;

0 otherwise.

In this case, ϕ is indeed a coalitional decomposition of QoI (G (X)), but as one can notice, its ability to
express the influence order of the subsets of inputs can be questioned. Other than its evaluation on D,
the evaluation of ϕ on another set A ⊂ D is not directly linked to the subset of inputs XA and, thus,
fails at measuring its influence. Hence, additional restrictions on the influence measure are required. A
desirability criterion called graduality is introduced to rule out trivial influence measures.

Gradual coalitional decompositions. Intuitively, one would want the evaluation ϕ(A), for A ∈ PD

of an influence measure, to be a quantity related to the subset of inputs XA. In order to formally define
graduality, the notion of representants of a subset of inputs is introduced. It is closely related to the
high-dimensional model representation of Rabitz [179].

Definition 2.2 (Representant of a subset of inputs). Let X be random inputs, G be a black-box model,
G(X) a random output. Suppose that G(X) can be written as

G(X) =
∑

A∈PD

GA(XA) a.s,

where GA(XA) ∈ GA.

In this case, GA(XA) is said to be the (G-)representant of XA. Additionally, if either

• ∀B ⊂ A, σB is strictly included in the σ-algebra generated by GA(XA);

• The σ-algebra generated by GA(XA) is included in σ∅;

then GA(XA) is said to be the proper representant of XA.

Remark 2.2. Thanks to the Doob-Dynkin lemma (see, Lemma A.2), representants are Y -valued random
elements that are functions of XA. Proper representants is the subset of GA of Y -valued functions of XA

that cannot solely be expressed as functions of the proper subsets of XA (i.e., that are in GA \
(⋃

B⊂A GB
)
).

Hence, in essence, a representant of XA can be understood as a Y -valued random element which is
either exactly a function of the inputs in XA, or constant a.s.

Influence measures that can be expressed as the QoI of representants are called gradual [111]. Hence,
defining suitable gradual influence measures entails finding suitable representants GA(XA) ∈ GA for
each subset of input XA, such that the sum of the QoIs of each of these representants is equal to
QoI (G (X)). Formally, the graduality of an influence measure is defined as follows.

Definition 2.3 (Gradual coalitional decomposition). Let X be random inputs, G be a black-box model,
G(X) a random output, and QoI (G (X)) be a Q-valued QoI, and ϕ : PD → Q be a coalitional decompo-
sition. If ϕ can be written, ∀A ∈ PD, as

ϕ(A) = QoI (GA(XA)) ,

where each GA(XA) ∈ GA is a representant of XA, then ϕ is said to be gradual. If, in addition, GA(XA) is
a proper representant of XA, then ϕ is said to be properly gradual.

Gradual influence measures are suitable candidates for expressing the influence order since, by design,
they are the inherent expression of the QoI on functions of subsets of inputs.

2.2.3 Möbius inversion on the Boolean lattice

As detailed in the previous sections, defining influence measures entails finding suitable functions
ϕ : PD → Q. To that extent, one can first note that PD admits a very particular algebraic structure.
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When endowed with the usual inclusion (i.e., ⊆) binary relation, (PD,⊆) forms a very particular par-
tially ordered set (poset). In order theory, posets of power-sets characterize Boolean lattices [52], which can
be illustrated using Hasse diagrams, as in Figure 2.1.

{∅}

{3}{1}

{12} {23}

{123}

{2}

{13}

{∅}

{1}

{12}

{2}

{∅}
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{13}

{1} {2} {3} {4}

{14}
{24} {34}

{124} {134}
{234}

{1234}

Figure 2.1: Hasse diagram of the Boolean lattice formed by the power-set of D for d being equal to 2, 3,
and 4 (from left to right). It should be read from the bottom to the top. If two vertices are linked, the
bottom element “is included” (in the sense of ⊆) in the above element.

The classical Möbius inversion formula has been first discovered in the field of number theory [155]. It
provides a particular relation between pairs of arithmetic functions (i.e., defined on the natural numbers
and valued in R) by leveraging the order structure of the natural numbers w.r.t. the binary relation
of divisibility. This result has been generalized to functions defined on (locally) finite posets by Gian-
Carlo Rota [187]. The interested reader is referred to Appendix B.1.3 for further details about Rota’s
generalization.

In particular, when dealing with functions defined on the power-set, leveraging that it forms a Boolean
lattice, Rota’s extension of the Möbius inversion formula entails the following.

Corollary 2.1 (Generalized Möbius inversion on the power-set). Let d be a finite positive integer, PD be
the power-set of D, and let A be an Abelian group. For any two set functions

v : PD → A, and ϕ : PD → A,

the two following statements are equivalent:

(i) ∀A ∈ PD, v(A) =
∑

B∈PA
ϕ(B);

(ii) ∀A ∈ PD, ϕ(A) =
∑

B∈PA
(−1)|A|−|B|v(B).

Proof: see, [133] p.108 or [136] Lemma A.2.

Particular cases of Corollary 2.1 are widely used in many fields, sometimes without acknowledging
its deep algebraic roots. For instance, the inclusion-exclusion principle for probability measures is an
expression of this result (see, [74] Proposition 2.2). In Dempster-Shaffer (evidence) theory [199], this
formula is used to link belief and mass functions, which share links with decision theory and the study
of capacities [39]. More importantly, for the developments proposed in this thesis, this result is directly
linked to the field of cooperative game theory, and in particular, to a broad set of allocations known as the
Harsanyi set [26].

Methodologically, the equivalence in Corollary 2.1 offers two ways to approach influence measures.
The first one can be understood as leveraging (ii) in order to obtain (i): this is called the input-centric
approach. It requires defining a particular influence measure v, called a value measure, and studying the
influence measure ϕ defined as its Möbius transform (see, Definition B.10). The second approach requires
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an intrinsic decomposition of G(X) in order to leverage (i) to obtain (ii) in Corollary 2.1: this is the model-
centric approach. Provided ϕ is a coalitional decomposition, one can define a value measure v and express
ϕ as its Möbius transform. Both of these approaches are further detailed in the following.

2.2.4 Two approaches to measure influence

There are two ways to define Möbius decompositions based on the equivalence relation of Corollary 2.1.

The input-centric approach Simply said, the input-centric approach focuses first on choosing an
influence measure v : PD → Q, referred to as the value measure in the following. Once a value measure
is chosen, one can define an influence measure ϕ : PD → Q as the Möbius transform of v. The value
measure must respect a straightforward condition for ϕ to be a Möbius decomposition, as the following
result highlights.

Proposition 2.2. Let v : PD → Q be an value measure, and define

∀A ∈ PD, ϕ(A) =
∑

B∈PA

(−1)|A|−|B|v(B).

ϕ is a coalitional decomposition if and only if v(D) = QoI (G (X)).

Proof of Proposition 2.2 on p.120.

The input-centric approach to defining Möbius decomposition follows the rationale:

1. Let QoI (G (X)) be any QoI defined on a Abelian group Q;

2. Chose a value measure v : PD → Q such that v(D) = QoI (G (X));

3. Define ϕ : PD → Q, such that ∀A ∈ PD, ϕ(A) =
∑

B∈PA
(−1)|A|−|B|v(B);

4. ϕ is an input-centric Möbius decomposition of QoI (G (X)).

Remark 2.3 (Input-centric mechanism). Proposition 2.2 and the construction of input-centric Möbius
decompositions rely on the particular combinatorial mechanism of Corollary 2.1. One can notice that, in
general, ∀A ∈ PD, ∑

B∈PA

∑

C∈PB

(−1)|B|−|C|v(C) = v(A).

Hence, an influence measure ϕ, defined as

ϕ(A) =
∑

C∈PB

(−1)|B|−|C|v(C),

will necessarily define a decomposition of v(A) for every A ∈ PD, and in particular of v(D).

Input-centric Möbius decompositions are at the heart of interpretability methods inspired from cooper-
ative game theory. This intrinsic link is further explained, explored, and discussed in Chapter 3. The
interested reader is referred to [111] for additional examples of input-centric decompositions for various
QoIs.

The model-centric approach The model-centric approach can be understood as an intrinsic QoI
decomposition, without a prior definition of a value measure v. It can rely, for instance, on the existence
of a coalitional decomposition of G(X). The main difference with the input-centric approach is that it
does not rely on a prior choice of value measure but instead focuses on the intrinsic properties of the
inputs X and the model G.

As its name suggests, the model-centric approach starts with a coalitional decomposition ofG(X), i.e., as-
suming that the decomposition

G(X) =
∑

A∈PD

GA(XA) a.s,
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hold, and where each GA(XA) is a representant of XA. From this model decomposition, define the
influence measure:

ϕ : PD → Q

A 7→ QoI (GA(XA)) ,

and the subsequent value measure:

v : PD → Q

A 7→
∑

B∈PA

ϕ(B).

Model-centric coalitional decompositions are intimately linked with the search for properly gradual decom-
positions. This approach is at the center of Chapter 4, where Hoeffding’s decomposition of the Lebesgue
space L2 (σX) is generalized for dependent inputs, leading to the definition of properly gradual decom-
positions of square-integrable real-valued models.

2.3 Importance quantification and the variance as a QoI

This section deals with importance quantification as a particular case of the above framework. The dis-
tinction is made between influence measures, which up until now have been broadly defined as the
decomposition of QoIs in some abstract space Q, to the notion of importance measures, which refer to the
special case of real-valued models, and their variance as a QoI. As eluded previously, in SA, the variance
of the random output, i.e., V (G(X)) can be interpreted as “the overall amount of uncertainties of the
modeled phenomenon” [57]. Hence, if a subset of inputs “is responsible” for a significant part of these
uncertainties, it is deemed important. However, this interpretation of the variance is not exclusive to UQ.
In statistics, a parallel is often made between the variance and notions such as information or dispersion,
in the sense that a random variable with zero variance becomes deterministic (i.e., constant) and hence
does not motivate probabilistic studies.

When studying the variance of a random variable, one first needs to make sure that it exists. To that
extent, Lebesgue spaces L2 are introduced.

Definition 2.4 (Lebesgue space L2). Let (Ω,F ,P) be a probability space, and let B ⊆ F be a sub-σ-
algebra. Let

L2(B) :=
{
Z : Ω→ R :

∫

Ω

Z(ω)2dP(ω) <∞ and σZ ⊆ B
}
,

be the space of square-integrable, B-measurable random variables. Define the subspace of L2(B)

N :=

{
Z ∈ L2(B) :

∫

Ω

Z(ω)2dP(ω) = 0

}

The Lebesgue space L2 (B) is defined as the canonical quotient space L2(B)/N, i.e., relations (e.g., equal-
ities, inequalities) between any two elements of L2 (B) hold (P-)almost surely (a.s.).

In addition, denote EA [G(X)] := E [G(X) | σA] the conditional expectation ofG(X) givenXA (see, e.g., [126]),
and let ED [G(X)] = E [G(X) | σX ] = G(X).

In this section, the general framework presented in Section 1.2 is restricted according to the following
assumptions.

Special case . In this section, the following is assumed:

• The output space Y = R, i.e., the model is R-valued;

• The space of random outputs GX is restricted to L2 (σX);

• The QoI is V (G(X)), and hence the QoI space Q = R;
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2.3.1 Mutually independent inputs and the model-centric approach

Random inputs X = (X1, . . . Xd)
⊤ are said to be mutually independent whenever their induced probabil-

ity measure can be written, for every B = (B1, . . . , Bd) ∈ E , as

PX(B) =

d∏

i=1

PXi
(Bi),

i.e., the product of the probability measures induced by each input. Under this assumption, a partic-
ular decomposition of a random output G(X) ∈ L2 (σX) hold, known in the literature as Hoeffding’s
decomposition [102].

Theorem 2.1 (Hoeffding’s decomposition). Let X be mutually independent random inputs and G(X) ∈
L2 (σX) be a black-box model. There exists a unique decomposition of the form

G(X) =
∑

A∈PD

GA(XA), a.s.

such that:

• G∅ is constant a.s.;

• ∀A ⊆ D, ∀i ∈ A,
∫
Ei
GA(XA\{i}, xi)dPXi

(xi) = 0 (Annihilating property).

Furthermore, one has that
∀A ∈ PD, EA [G(X)] =

∑

B∈PA

GB(XB), (2.1)

and for every A ̸= B ∈ PD, GA(XA) and GB(XB) are orthogonal, i.e.,
∫

E

GA(xA)GB(xB)dPX(x) = 0.

Proof: See [48], Theorem 3.3.

This result allows defining an importance measure through a coalitional decomposition of V (G(X)),
also known as the functional analysis of variance (FANOVA).

Corollary 2.2 (FANOVA). Let X be mutually independent random inputs and G(X) ∈ L2 (σX) be a
black-box model. Then,

V (G(X)) =
∑

A∈PD

V (GA(XA)) ,

and furthermore,
∀A ∈ PD, V (EA [G(X)]) =

∑

B∈PA

V (GB(XB)) . (2.2)

One can notice that, thanks to Eq. (2.1), Eq. (2.2) is reminiscent of Corollary 2.1 (i), which lead to the
following characterization:

∀A ∈ PD, V (GA(XA)) =
∑

B∈PA

(−1)|A|−|B|V (EB [G(X)]) .

thanks to Corollary 2.1 (ii). The importance measure is defined as

S : PD → R

A 7→ SA = V (GA(XA)) =
∑

B∈PA

(−1)|A|−|B|V (EB [G(X)]) . (2.3)

are known as the Sobol’ indices1 in the variance-based global SA literature [204]. As a by-product, the

1Sobol’ indices are usually normalized between 0 and 1, i.e., dividing the importance measure by V (G(X)). However, for
conciseness, the focus is put on their un-normalized version in this thesis.
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value measure

Sclos : PD → R
A 7→ Sclos

A = V (EA [G(X)]) .
(2.4)

can be defined thanks to Eq. (2.2). It is known as the closed Sobol’ indices in the global SA literature [146,
48]. The Sobol’ and closed Sobol’ indices are illustrated in Figure 2.2. The Venn diagram on the left
represents V (G(X)), which can be decomposed using the importance measure S. The value measure
Sclos then, as in Eq. (2.2), is the sum of the Sobol’ indices S related to each subset of inputs.

S1

S2 S3
S23

S12 S13

S123

S1

S12

Sclos12

Sclos13

Sclos23

Sclos1

Sclos2

Sclos3

Sclos123

Sobol’ indices Closed Sobol’ indices

Figure 2.2: Illustration of the Sobol’ and closed Sobol’ indices for three inputs.

In this example, one leverages a coalitional decomposition of the random output G(X), leading to Eq. (2.1),
which particularizes to Eq. (2.2) for the variance as a QoI, which, thanks to Corollary 2.1, lead to the
characterization of the importance measure in Eq. (2.3). This illustrates the model-centric approach to
defining influence measures since it originates from a decomposition of G(X).

Whenever the inputs are assumed to be mutually independent, it can be shown that the Sobol’ indices
(i.e., Eq. (2.3)) form a properly gradual influence measure, since, for every A ∈ PD, the summand GA(XA)
in Hoeffding’s decomposition is a proper representant of XA (see, Chapter 5).

2.3.2 Dependent inputs and the input-centric approach

Now, suppose that the inputs are not necessarily mutually independent. Hence, the decomposition provided
in Theorem 2.1 does not hold. However, notice that since G(X) ∈ L2 (σX), the quantities V (EA [G(X)])
exist for every A ∈ PD, since conditional expectations are contractive operators. Choose, for instance,
the closed Sobol’ indices as a value measure, i.e.,

Sclos : PD → R
A 7→ Sclos

A = V (EA [G(X)]) .

It then leads to the following input-centric importance measure:

∀A ∈ PD, SA =
∑

B∈PA

(−1)|A|−|B|V (EB [G(X)]) =
∑

B∈PA

(−1)|A|−|B|Sclos
B . (2.5)

Notice that since Sclos
D = V (G(X)), thanks to Proposition 2.2, S is a coalitional decomposition of

V (G(X)). It is interesting to note that even if the inputs are not mutually independent, the importance
measure S remains a coalitional decomposition of the variance of the random output, without the need for a
coalitional decomposition of G(X) itself.

As its name suggests, the input-centric approach begins with choosing a value measure, which can be
interpreted as an a-prior way to quantify the importance of a subset of inputs. Here, the choice of the
closed Sobol’ indices can be justified by the fact that it represents the variance of the best approximation of
G(X) by a function of L2 (σA) (the conditional expectation being an orthogonal projection) [48, 104].
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Remark 2.4 (Sobol’ indices and dependence). One can notice that Eq. (2.3) and Eq. (2.5) are similar. One
is defined in a model-centric manner, which requires mutual independence, and the other is defined
without the need for mutual independence. Hence, the input-centric variance decomposition in Eq. (2.5)
is equivalent to the one in Eq. (2.3) if and only if the inputs are mutually independent (see, Chapter 4). The
main remark is that the dependence structure between the inputs does play a role in the characterization
and the properties of influence measures.

2.3.3 Illustration on controlled examples

Gaussian inputs, linear model, and a correlated exogenous input. Consider the model:

G(X) = X1 +X2, X =



X1

X2

X3


 ∼ N





0
0
0


 ,



1 0 ρ
0 1 0
ρ 0 1




 . (2.6)

Here, G(X) is a function of X1 and X2, but the inputs include an exogenous input X3, possibly correlated
to X1. The notion of exogenous input, defined formally in Chapter 3, can be broadly understood as “an
input that is not in the model”. In this particular use-case, since the inputs are Gaussian, it is possible to
compute the analytically valued of the Sobol’ indices, and thus the importance measures defined above.
They are presented in Table 2.1.

Subset of inputs Sclos/V (G(X)) S/V (G(X))

∅ 0 0
{1} 1/2 1/2
{2} 1/2 1/2
{3} ρ2/2 ρ2/2
{1, 2} 1 0
{1, 3} 1/2 −ρ2/2
{2, 3} (1 + ρ2)/2 0
{1, 2, 3} 1 0

Table 2.1: Analytical values for normalized Sclos and S for the illustration in Eq. (2.6).

First, recall that the inputs are mutually independent, and hence, the influence measure is model-centric
whenever ρ = 0. In this case, the Sobol’ indices indicate that half of the importance is granted to X1

and the other half to X2. This interpretation is reasonable since G(X) is defined as the sum of these
two inputs having the same variance. However, one can notice that whenever ρ ̸= 0, and the influence
measure becomes input-centric, a positive share of importance is granted to X3, compensated by a
negative share granted to the coalition X13. This can be understood as being due to the correlation
between X1 and X3. However, several questions arise:

• How can a negative share of importance be interpreted?

• Why is the importance given to X3 substituted to the importance given by X13? Why is it not the other
way around?

• How would one detect that X3 is exogenous, even though it has a non-zero importance?

• Is it possible to distinguish the effects due to the dependence structure between the inputs from the effects
intrinsically due to the model?

Gaussian inputs, linear model with an interaction term. Consider the model:

G(X) = X1 +X2X3, X =



X1

X2

X3


 ∼ N





0
0
0


 ,



1 0 ρ
0 1 0
ρ 0 1




 . (2.7)

Here, G(X) is a linear function of the three inputs with an interaction term between X2 and X3, and X3

may be correlated with X1. In this case, the value measure Sclos and influence measure S can be com-
puted analytically and are listed in Table 2.2. Whenever the inputs are mutually independent (i.e., ρ = 0),
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Subset of inputs Sclos/V (G(X)) S/V (G(X))

∅ 0 0
{1} 1/2 1/2
{2} 0 0
{3} ρ2/2 ρ2/2
{1, 2} (1 + ρ2)/2 ρ2/2
{1, 3} 1/2 −ρ2/2
{2, 3} (1 + ρ2)/2 1/2
{1, 2, 3} 1 −ρ2/2

Table 2.2: Analytical values for normalized Sclos and S for the illustration in Eq. (2.7).

one can notice that half the importance is attributed to X1, and the other half to X23, which is compre-
hensible because G(X) has an interaction term between X2 and X3. However, if ρ is different from
zero, one can notice that X3 and X12 do receive a positive share of importance, which is compensated
by negative shares distributed to X13 and X123. The interpretation becomes complicated, and having
access to the influence measures (and not the model) does not draw an accurate picture of the model
G(X), e.g., one might wonder if X3 has some individual importance or if there is an interaction (i.e., not
due to the dependence) between X1 and X2.

Whenever the inputs are mutually independent, the Sobol indices, as defined in Eq. (2.3), seem to be
accurate according to the intricacies of the model. However, in correlated settings, when defined from an
input-centric scheme, as in Eq. (2.5), their interpretation is not as clear. However, input-centric influence
measures can still be helpful, especially when aggregated in a certain way, which is the topic of the
following chapter.

2.4 Partial conclusion

This chapter highlights the combinatorics and algebraic roots of the question behind influence measure-
ment. The sole assumption that subsets of inputs may have different degrees of influence on QoIs
of black-box models and thus can be ranked justifies the definition of influence measures as order-
embeddings. One particular class of influence measures, the coalitional decompositions, are particularly
interesting. As their name suggests, these influence measures can be understood as an additive de-
composition of a QoI over the power-set of D and hence be endowed with an intuitive interpretation.
However, not every coalitional decomposition can be a suitable candidate to express the total order over
the subsets of inputs. To that extent, (proper) graduality is introduced: the evaluations of the influence
measure related to a subset of inputs must be the QoI of a representant of this subset.

Rota’s generalization of the Möbius inversion formula for power-sets allows two approaches to define
such influence measure. The first, called input-centric, relies on a combinatorial mechanism and is not
dependent on the inputs’ dependence structure. The second, called model-centric, relies on the ability
to conditionally decompose G(X), seen as a random element. This connexion introduces the notion of
value measure, a set function whose Möbius transform is an influence measure.

These two approaches are illustrated for the problem of importance quantification, i.e., variance decom-
position. Regarding mutually independent inputs, the model-centric approach is similar to the well-
known definition of the Sobol’ indices. When choosing the closed Sobol’ indices as a suitable value
measure, the input-centric approach allows defining importance measures even if the inputs are not
mutually independent. However, in this case, their interpretation raises some questions, which are high-
lighted through analytical computations on some simple use cases.

In Chapter 3, the input-centric approach, using the closed Sobol’ indices, is used in order to define
attribution methods inspired from cooperative game theory, i.e., leverage a coalitional decomposition in
order to define importance measure for each input (and not the subsets of inputs). These allocations can
be interpreted as aggregations of input-centric coalitional decompositions.

In Chapter 4, the model-centric approach is further explored. Hoeffding’s decomposition, presented in
Theorem 2.1, is effectively generalized to not mutually independent inputs. It paves the way towards the
definition of properly gradual influence measures, with interesting and intuitive theoretical properties.
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Abstract (English). One way to construct coalitional decompositions of a quantity of interest through the input-
centric approach is by drawing parallels between influence measures and resource allocations provided by coop-
erative game theory. This research domain can be summarized as follows: Given a set of players and a function
measuring the value of each coalition, one seeks to redistribute the total value produced to each player. A gen-
eral way to construct efficient allocations, i.e., the ones redistributing the entire total value, relies on the concept of
Harsanyi dividends. These dividends can be interpreted as influence measures and the allocations as aggregations of
these measures. The Shapley values are an example of such allocation, as well as proportional values. For the problem
of importance quantification, i.e., the decomposition of the variance of a black-box model, Shapley values for a
specific choice of value function, known as Shapley effects, do not detect exogenous inputs (those not in the model).
To address this issue, proportional values have been adapted to importance quantification, giving rise to propor-
tional marginal effects, providing an interpretable importance quantification while detecting exogenous inputs. The
behavior of these indices is studied through analytical and real case studies. The use of the input-centric approach
is discussed.

Abstract (Français). Une manière de construire des décompositions coalitionnelles de quantité d’intérêt par
l’approche focalisée sur les entrées, est en faisant un parallèle entre les mesures d’influence et les allocations de
ressources offertes par la théorie des jeux coopératifs. Ce domaine de recherche peut être résumé ainsi : étant donné
un ensemble de joueurs et une fonction permettant de mesurer la valeur de chaque coalition, comment redistribuer
la valeur totale produite à chaque joueur. Une manière assez générale de construire des allocations efficaces, i.e., per-
mettant de redistribuer l’entièreté de la valeur totale, repose sur la notion de dividendes d’Harsanyi. Ces dividendes
peuvent être interprétés comme des mesures d’influence, et les allocations comme des agrégations de cette mesure.
Les valeurs de Shapley en sont un exemple, ainsi que les valeurs proportionnelles. Pour le problème de la quantification
d’importance, i.e., la décomposition de la variance d’un modèle boîte-noire, les valeurs de Shapley pour un choix
de fonction de valeur particulier, connues sous le nom d’effets de Shapley, ne permettent pas de détecter des en-
trées exogènes (qui ne sont pas dans le modèle). Pour remédier à ce problème, les valeurs proportionnelles ont été
adaptées à la quantification d’importance, donnant naissance aux effets proportionnels marginaux, offrant une quan-
tification d’importance interprétable tout en détectant les entrées exogènes. Le comportement de ces indices est
étudié sur des cas d’études analytiques et réels. L’utilisation de l’approche focalisée sur les entrées est finalement
discutée.

Keywords . Cooperative game theory • Sensitivity analysis • Harsanyi dividends • Shapley values • Proportional
values • Exogeneity detection • Importance quantification
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3.1 Introduction

When defining suitable influence measures, the first approach is to focus on the interdependencies of
the inputs and aim at quantifying their effects on the QoI. There may be various sources for these inter-
dependencies, e.g., functional interaction due to the model or stochastic dependence between the inputs
that can affect the output differently. Each possible subset of inputs, when considered jointly, due to such
interdependencies, can affect the propagated uncertainties of the random output, and hence, in-fine, af-
fect the QoI. Hence, the analogy between inputs affecting a model and interacting agents evolving in a
system is rather natural.

Game theory is dedicated to studying interactions between agents in a system [168]. The agents are
called players, and the system in which they interact is called a game. Game theory can be divided into
two categories: cooperative and non-cooperative. Non-cooperative games aim at modeling, in a dynamic
manner, the best available moves each player can make in the game, usually in order to maximize their
marginal utility. Cooperative game theory aims at studying the outcomes of games when the players are
arranged in different combinations, i.e., considered jointly, in every possible way.

Hence, tackling the problem of measuring the influence of subsets of inputs is inherently similar to the
framework of cooperative game theory. For instance, the Lindeman-Merenda-Gold importance indices
for linear regression models [144]: they were developed independently of cooperative game theory, but,
when studied under the paradigm of cooperative games, can be characterized as the Shapley values
[201], a particular allocation of resources [210].

More recently, in global SA, [169] proposed novel variance-attributing indices, which promise to quan-
tify the importance even if the inputs are dependent. These indices are introduced by analogy between the
inputs of a black-box model and the players of a cooperative game based on the Shapley allocation of
value. In XAI, the well-known SHAP method [149] relies on the same rationale to provide “explanations”
on black-box model evaluations, often called “local explanations” in the literature.

In this chapter, the main focus is placed on the usage of cooperative games in order to define influ-
ence indices. First, the framework of cooperative game theory is introduced, as well as two classes of
allocations: the Weber and the Harsanyi sets. The latter, which includes the former, is characterized
as an aggregation of dividends. These dividends can be seen as input-centric influence measures. Then,
two allocations are introduced: the Shapley values and the proportional values. Finally, the question
of input importance quantification (i.e., the QoI is the variance of the random output) is addressed and
illustrated analytically, as well as on three use-cases.

3.2 Cooperative games and allocations

The paradigm of cooperative game can be understood rather intuitively. The key idea behind this field
is to study and characterize how “wealth” can be redistributed among players. These players are bound
to interact with each other, producing some value (e.g., monetary). The value produced by each set
of players (coalitions) interacting is measured using a value function. Given a set of players and a value
function that associates some value to each coalition of players, the main question tackled in cooperative
games is the question of allocation: How can one redistribute the value of the grand coalition (i.e., the set
formed by every player) among each individual player?
This section formally introduces the framework of cooperative games and allocations. Two particular
sets of allocations are presented and discussed: the Weber set and the Harsanyi set. Two allocations are
studied in this manuscript: the Shapley values and the proportional values. Finally, a connection is with the
input-centric approach to defining influence measures presented in Chapter 2.

Remark 3.1. The notion of cooperation (in the usual sense) between players is not intrinsic to coopera-
tive games, nor is competition exclusive to non-cooperative games. The former focuses on a more global
view of interactions between players, focusing on the resources produced by “combining players” (i.e.,
considering coalitions of players), while the latter aims at studying these interactions in much finer
detail. Cooperative games can model competition and conflicts among players, and non-cooperative
games can describe cooperation behaviors. Alternate naming scheme, although not standard, better
translates the goals of each of these two approaches [31]: procedural game theory for non-cooperative
games, and combinatorial game theory for the study of cooperative games.
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3.2.1 Cooperative games and allocations

A (transferable-utility) cooperative game is a tuple (D, v) where D = {1, . . . , d} is a set of d players and
v : PD → R is a value function, i.e., an application that maps a real value to every possible coalition
(i.e., subset) of players, with the convention that v(∅) = 0.

Whenever v is assumed to be monotonically increasing, meaning that, for any A,B ∈ PD, B ⊆ A implies
that v(B) ≤ v(A), or said differently, a “bigger coalition” bring the same or more value than a “smaller
one”, the cooperative game is said to be monotonic. Additionally, if v is positive (resp. nonnegative), the
game is said to be positive (resp. nonnegative).

Duality: worth instead of value Cooperative games can be approached from a dual perspective.
Under the initial paradigm presented above, the value function v can be interpreted as the amount of
the value produced by a coalition of players. The dual approach focuses on the “worth” or “bargaining
power” of a coalition, i.e., the shortfall in value due to a coalition [70, 69]. Formally, the dual of a
cooperative game (D, v) is the cooperative game usually denoted by (D,w) where w is defined, for any
A ∈ PD as:

w(A) = v(D)− v(D \A). (3.1)

The quantities w(A) can be interpreted as a measure of how crucial a coalition is in producing v(D),
i.e., the value the grand coalition loses by removing the coalition. In the following, one refers to w(A)
as the marginal contribution of the coalition A. The duality between (D, v) and (D,w) can be understood
in the sense that the dual of (D,w) is the initial game (D, v). Since the dual game (D,w) is also a
cooperative game, and w(D) = v(D), it also offers a way to study how the value of the grand coalition
can be allocated among players.

Allocations One of the main goals of cooperative game theory is to build allocations (also called so-
lution concepts, or payoffs) [168]. An allocation of a cooperative game (D, v) can be understood as
defining a redistribution scheme of v(D) (i.e., the value produced by the grand coalition) amongst each
player in D. Formally, an allocation can be understood as a mapping ψ : D → R, which, to every player
i ∈ D, associates a real-value ψi.

Without additional constraints, there are infinite possible (and trivial) allocations for a particular coop-
erative game. Hence, to ensure their relevance, desirability criteria on the redistribution process are
usually sought after. In the literature, these criteria are usually called “axioms”. A large portion of
the field of cooperative game theory amounts to defining allocations uniquely characterized by a set of
suitable axioms. For the purposes of this thesis, two axioms are of interest:

• Efficiency: the allocation sums to v(D), i.e.,
∑

i∈D ψi = v(D);

• Non-negativity: the allocation must be non-negative, i.e., ∀i ∈ D, ψi ≥ 0.

There are many ways to define allocations. Different approaches lead to different sets of allocations.
In particular, two are of interest in this thesis. The first one is called the Weber set and relies on random
order schemes, i.e., considering dynamic interactions between players in every order possible. The second
one, called the Harsanyi set, defines allocations as aggregations of dividends derived from the game’s
value function.

Random orders and the Weber set The random order point of view to define allocations can
be understood under the following rationale. Suppose that players are bound to interact dynamically,
following a certain pre-defined order. For instance, for three players D = {1, 2, 3}, consider the order
(2, 3, 1). Suppose that the players interact dynamically according to this order, i.e., first {2} alone, then
{2, 3} and finally {1, 2, 3}. At each step of this dynamic, compute the marginal contribution relative to
each step, i.e.,

1. Player {2} is alone, the marginal contribution (to ∅) is v({2});

2. Now, player {3} is introduced, and its marginal contribution to {2} is then v({2, 3})− v(2);

3. Finally, player {1} is introduced, and its marginal contribution to {2, 3} is then v(D)− v({2, 3}).
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Hence, each order induces a sequence of marginal contributions relative to introducing a single player in
the dynamic governed by the order in which the players are introduced. The main idea behind random
orders is to consider that each possible order is endowed with a certain chosen probability. To define
allocations from random orders, say for a player i ∈ D, one can consider the expectation of the marginal
contribution due to the introduction of i, over every possible ordering of players (i.e., weighted by their
probability). Allocations that can be characterized in this fashion are often called probabilistic values (or
random order allocations) [69, 100]. The set of probabilistic values of a cooperative game (D, v) is called
the Weber set [223].

Formally, let SD be the symmetric group on D (the set of all permutations of elements of D). To be
consistent with the notation of [69], let π = (π1, . . . , πd) ∈ SD be a particular permutation, and for any
i ∈ D, denote π(i) := π−1i its inverse image (i.e., the position of i in π, such that ππ(i) = i). Then, one can
define the following set of players for any i ∈ {0, . . . , d}:

Ci(π) = {πj : j ≤ i}. (3.2)

where, by convention, C0(π) = ∅.

Remark 3.2. The set Ci(π) can be understood as the set containing the i-th first players in the ordering
π. As an illustration, let D = {1, 2, 3}, and let π = (2, 1, 3) ∈ SD. Then,

π(1) = 2, π(2) = 1, and π(3) = 3.

Moreover,

Cπ(1)(π) = C2(π) = {1, 2}, Cπ(2)(π) = C1(π) = {2}, Cπ(3)(π) = C3(π) = {1, 2, 3}

As their names suggest, random order models endow SD with a probabilistic structure. For a game
(D, v), its Weber set contains every probabilistic value allocation ψ that can be written, for any i ∈ D, as:

ψi =
∑

π∈SD
p(π)

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]

= Eπ∼p
[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)] (3.3)

where p is a given probability mass function over the orderings of D. For a player i, its random order
allocation can thus be interpreted as the expectation over the permutations π ofDw.r.t. p, of the marginal
contributions of i to the coalitions formed by Cπ(i)−1(π).

It is important to note that allocations in the Weber set are always efficient and, if the cooperative game
is monotonic, they are nonnegative [223]. Hence, defining a probabilistic value amounts to choosing a
probability mass function v over the orderings SD.

A parallel between the rationale behind random orders and the well-known “forward” and “backward”
variable selection procedures can be drawn. Formally, one can notice that, for a player i and any permu-
tation π ∈ SD, one has:

w
(
Cπ(i)(π)

)
− w

(
Cπ(i)−1(π)

)
= v

(
D \ Cπ(i)−1(π)

)
− v

(
D \ Cπ(i)(π)

)
. (3.4)

A random order model allocation of the dual of a cooperative game can be understood as the expected
(w.r.t. a probability mass function p over SD) marginal contribution of a player i to the players that fol-
lows in the orderings’ dynamic. In contrast, for the initial cooperative game, it is the expected marginal
contribution of i to the players that precedes in the orderings’ dynamic. As illustrated in Figure 3.1, con-
sidering the initial game (D, v) can be seen as considering a “forwards procedure” (players are added
sequentially), whereas considering the dual game (D,w) can be seen as considering a “backward proce-
dure” (players are removed from the grand coalition sequentially).

Harsanyi dividends and the Harsanyi set The overall philosophy behind the Harsanyi differs
from the Weber set. It revolves around the Harsanyi dividends of a cooperative game (D, v). Introduced
in [95], the dividend of a coalition of players A ∈ PD of a cooperative game (D, v) is defined as:

Dv(A) =
∑

B∈PA

(−1)|A|−|B|v(B).
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Figure 3.1: Analogy between random order model allocations and the forward-backward procedures for
D = {1, 2, 3}: (a.) represents the allocation of a cooperative game as a forward procedure; (b.) illustrates
the allocation of its dual as a backward procedure. The allocation of player 1 (resp. player 2 and 3) is the
expected marginal gain (for a cooperative game (D, v)) or cost (for its dual (D,w)) computed for the blue
(resp. red and green) ordering positions, weighted according to a probabilistic distribution over SD.

Coming from Chapter 2, one can notice that the Harsanyi dividends are none other than the Möbius
transform of the value function, and thus, from Corollary 2.1, notice that they sum up to v(D), i.e.,

∑

A∈PD

Dv(A) = v(D).

Hence, the Harsanyi dividends can be understood as an input-centric coalitional decomposition of v(D),
defined as the Möbius transform of some chosen value function v. These dividends are usually inter-
preted as the added value (or surplus) created by a coalition of players in the literature, which is illustrated in
Figure 3.2.

Dv(1)

Dv(2) Dv(3)Dv(23)

Dv(12) Dv(13)

Dv(123)

v(12)

v(13)

v(23)

v(1)

v(2)

v(3)
v(123)

Harsanyi DividendsValues

Dv(A) =
∑

B∈PD

(−1)|A|−|B|v(B)

Möbius transform

Figure 3.2: Illustration of the Harsanyi dividends for 3 players.

The Harsanyi set of a cooperative game (D, v), is the set of allocations that can be written as an aggregation
of the Harsanyi dividends. Formally, an allocation ψ is in the Harsanyi set if it can be written, for every
i ∈ D, as:

ψi =
∑

A∈PD : i∈A
λi(A)Dv(A), where

{
∀i ∈ D,∀A ∈ PD, λi(A) ≥ 0,

∀A ∈ PD,
∑

i∈D λi(A) = 1.
(3.5)
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As with the allocations in the Weber set, the allocations in the Harsanyi set are always efficient, and if
v is monotonic, they are also nonnegative. In fact, the Harsanyi set generalizes the Weber set, in the sense
that any allocation in the Weber set can be expressed as in Eq. (3.5), thanks to the following result.

Theorem 3.1. For any cooperative game (D, v), the Weber set of allocations on (D, v) is included in (in
the sense that they can be expressed as an allocation in) the Harsanyi set of allocations on (D, v).

Proof: [56] or [215], Theorem 4.1

3.2.2 Egalitarian allocation: the Shapley values

The Shapley values [201] of a cooperative game (D, v) are a fairly well-known allocation in the theory
of cooperative games. Its popularity extends outside the game theory realm due to its rather intuitive
formulation and the reasonable set of axioms that characterize it. The Shapley values can be interpreted
through different (but equivalent) approaches. The original formulation in [201] defines the Shapley
values as the allocation Shap : D → R of a cooperative game (D, v), for every i ∈ D, as

Shapi =
1

d

∑

A⊂PD−i

(
d− 1

|A|

)−1[
v (A ∪ {i})− v (A)

]
,

where D−i = {1, . . . , i− 1, i+ 1, . . . , d}. The interested reader is referred to [201, 156] for an interpre-
tation of this formula. In the context of this thesis, the focus is put on equivalent Shapley values char-
acterizations as a member of the Weber and Harsanyi set and their subsequent interpretation through
random orders and dividend-sharing paradigms.

Random order interpretation The Shapley values can be expressed as a random-order model al-
location [223], as in Eq. (3.3), and are characterized by the particular choice of the (discrete) uniform
probability mass function over the orderings SD:

Shapi =
1

d!

∑

π∈SD

[
v
(
Cπ(i)(π)

)
− v

(
Cπ(i)−1(π)

)]
, (3.6)

i.e., p(π) = 1/d!, for every π ∈ SD. Hence, they can be interpreted as the choice that maximizes the
entropy in the class of probability distributions supported on SD [66]. From a Bayesian standpoint, this
entails that, without any prior knowledge of the dynamic of the players, choosing the Shapley values
constitutes the “best least-informative guess”. In [200], Shapley himself qualified these values as “[...]
an a priori assessment of the situation, based on either ignorance or disregard of the social organization of the
players”.

In light of this characterization, the Shapley values can be understood as the natural allocation if no in-
formation about the interdependencies of the players can be either inferred (e.g., through v) or gathered
externally (e.g., from experts’ opinion). Additionally, since every permutation is granted the same prob-
ability, the formulation in Eq. (3.6) traduces a first glimpse at the “egalitarian treatment” of the Shapley
values: every ordering dynamic has the same weight. However, this egalitarian redistribution becomes
clearer when characterized as an element of the Harsanyi set.

Dividend sharing interpretation In [95], John C. Harsanyi showed that the Shapley values could
be written as an aggregation of dividends. It writes, for every player i ∈ D

Shapi =
∑

A∈PD : i∈A

Dv(A)

|A| . (3.7)

In other words, the dividend produced by a coalition A ∈ PD is split into |A| equal shares, which are
redistributed among the players in A, without acknowledging their individual contributions, or the
contributions due to their interdependencies. This egalitarian redistribution process is illustrated in
Figure 3.3.
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Figure 3.3: Illustration of the egalitarian redistribution of dividends of the Shapley values.

Axiomatic interpretation They values can also be characterized axiomatically (see [69]), as the only
allocation ψ respecting the following two axioms:

• Efficiency:
∑d

i=1 ψi = v(D);

• Balanced contributions: for all A ∈ P(D), and for all i, j ∈ A, i ̸= j:

ψi(A, v)− ψi(A−j , v) = ψj(A, v)− ψj(A−i, v).

The second axiom entails that for any two different players i and j, the difference in each allocation by
removing the other player to any sub-game (A, v) such that i, j ∈ A must remain equal, for any A ∈ PD.
In other words, the difference in allocation of the two players induced by the removal of the other player
must be equal, implicitly entailing a balanced redistribution process where individual and coalitional
contributions are favored equally.

More commonly, four sets of axioms are highlighted when it comes to the characterization of the Shapley
values, as the unique allocation ψ of a game (D, v) respecting:

• Efficiency:
∑d

j=1 ψj = v(D);

• Symmetry: If v(A ∪ {i}) = v(A ∪ {j}) for all A ∈ Pd, then ψi = ψj , meaning that if two players
show the same marginal contribution to every coalition, their payoff should be the same;

• Dummy: If v(A ∪ {i}) = v(A) for all A ∈ Pd, then ψi = 0, meaning that if a player has a zero
marginal contribution to every coalition, its payoff should be zero;

• Additivity: If two games (D, v) and (D, v′) have Shapley values ψ and ψ′ respectively, then the
game (D, v + v′) has Shapley values ψ + ψ′.

Remark 3.3 (Shapley values and fairness). In the recent literature, especially in applied fields, the use
of Shapley values is motivated by the notion of “fairness” [149], instead of choosing the more precise
adjective of “egalitarian”. One can think of many situations where an equal redistribution would be
unfair.

For instance, suppose that two software engineers produce lines of code. The first engineer produces
10.000 lines by itself, while the second only produces 5.000. When working together, the second engineer
decides not to work, and thus, together, they only produce 10.000 lines of code since only the first
engineer has been hard at work. Hence, the dividend of the coalition of both players is a penalization of
-5.000 lines of code, and, according to the Shapley values, both engineers should be penalized equally, even
though the first engineer has done all the work.

In this situation, the equal redistribution of the dividends is not a fair decision because the Shapley values
are blind to the interdependencies between the players. Hence, choosing the Shapley values as an allocation
does not ensure a fair redistribution process. In game theory, the notions of fair division [160] do not
necessarily imply equal treatment.
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When considering dual games, the Shapley values display a particular behavior.

Proposition 3.1. Let (D, v) be a cooperative game, and (D,w) be its dual. Then, the Shapley values of
(D, v) are equal to the Shapley values of (D,w).

Proof: See, [83] Lemma 2.7.

It is important to note that this behavior is inherent to the Shapley values and can not hold, in general,
for other allocations.

3.2.3 Proportional allocation: the proportional values

The proportional values, as their name suggests, entail a proportional redistribution of value instead of the
egalitarian redistribution offered by the Shapley values. Here, the notion of proportionality goes beyond
the proportionality w.r.t. to the value of individual players (which characterize the proportional Shapley
values, see, e.g., [17]). Here, the redistribution is to be understood as being proportional to a player’s
contribution to every coalition.

Formally, for a positive game (D, v), its proportional values refers to the allocation PV : D → R in the Weber
set, associated with the particular choice of probability mass function over SD [70],

p(π) =
L(π)∑

σ∈SD L(σ)
, where L(π) = exp


−

∑

j∈D
log (v (Cj (π)))


 . (3.8)

This choice of probability mass function is motivated by the following axioms, which uniquely charac-
terize the proportional values [69], as the unique allocation ψ such that:

• Efficiency:
∑d

i=1 ψi = v(D);

• Equal proportional gains: for all A ∈ P(D), and for all i, j ∈ A, i ̸= j:

ψi

(
(A, v)

)

ψj

(
(A, v)

) =
ψi

(
(A−j , v)

)

ψj

(
(A−i, v)

) .

The equal proportional gains axiom sheds light on the redistribution dynamic of this particular alloca-
tion scheme. For any two different players i and j, the ratio of their allocations in any subgame (A, v)
(for every A ∈ PD such that i, j ∈ A) must be invariant to removing each player’s contribution to the
other’s allocation. In other words, the magnitude of the ratios must be preserved, independently of
the possible interaction between i and j, within any coalition they can be a part of. It implies that the
allocation favors the players proportionally to their (marginal) contributions to every possible coalition
in the redistribution process.

Ratio potential and recursive formulation The proportional values can also be characterized
recursively [71, 167], for every i ∈ D, as:

PVi =
R(D, v)

R(D−i, v)
(3.9)

where, for all A ∈ P(D), R(A, v) = v(A)


∑

j∈A
R(A−j , v)

−1



−1

, with R(∅, v) = 1. The function R is

commonly known as a ratio potential (see, [71], Section 3). This equivalent formulation is important in
order to extend the proportional values to nonnegative games. Additionally, unlike the Shapley values, one
can notice, from Eq. (3.9), that in general, the proportional values of a cooperative game are different
from the ones of its dual.

3.3 Importance attribution with dependent inputs

This section focuses on variance decompositions and building importance measures. To that extent, the
framework presented in Section 1.2 is restricted according to the following assumptions.
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Special case . In this section, the following is assumed:

• The output space Y = R, i.e., the model is R-valued;

• The space of random outputs GX is restricted to L2 (σX);

• The QoI is V (G(X)), and hence the QoI space Q = R;

3.3.1 Sobol’ cooperative games and exogeneity

Sobol’ cooperative games. The analogy between the players D of a cooperative game (D, v) and
the inputs X1, . . . , Xd of a black-box model has been made in [169]. In this pioneering paper, the author
chose the closed Sobol’ indices, defined as the input-centric value measure for dependent inputs, as in
Section 2.3.2, for the value function of choice. Recall that these indices exist (i.e., are not infinite) as long
as G(X) ∈ L2 (σX). This choice of value function defines a particular cooperative game, called the Sobol’
cooperative game [100].

Definition 3.1 (Sobol’ cooperative game). Let X = (X1, . . . , Xd) be random inputs, and let G(X) ∈
L2 (σX) be an R-valued random output. Let the value measure Sclos be defined as:

Sclos : PD → [0,∞)

A 7→ V (EA [G(X)])

The Sobol’ cooperative game with inputs X and output G(X) is the cooperative game
(
D,Sclos

)
, where

Sclos are the closed Sobol’ indices.

Sobol’ cooperative games are nonnegative and monotonic. The choice of Sclos as a value function is usually
motivated as representing the variance of the best approximation of G(X) of functions in the subspaces
L2 (σA) of L2 (σX) [104, 48].

The dual of a Sobol’ cooperative game
(
D,Sclos

)
is the nonnegative, monotonic cooperative game(

D,ST
)
, where ST : PD → [0,∞) denotes the total Sobol’ indices [48], defined, for any A ∈ P(D),

as
ST
A := V (G(X))− V (E−A [G(X)]) = E−A

[
(G(X)− E−A [G(X)])

2
]

(3.10)

where −A := D \A, and the equality in Eq. (3.10) comes from the law of total variance.

From this choice of value measure, as in Eq. (2.5), define the input-centric coalitional decomposition of
the variance:

S : PD → R

A 7→
∑

B∈PA

(−1)|A|−|B|Sclos
B ,

which, under the cooperative game theory paradigm, are none other than the Harsanyi dividends of the game(
D,Sclos

)
. As highlighted in Section 2.3.2, this influence measure remains a coalitional decomposition

even if the inputs are not mutually independent due to the input-centric mechanism.

A mathematical definition of exogeneity. As introduced in Chapter 1, one of the main goals
of global SA is to be able to detect exogenous inputs. There is a difference between inputs having a
negligible effect on the model’s uncertainty and the notion of exogeneity. In Section 2.3.3, the notion of
exogeneity has been introduced as “an input or a set of inputs that are not in the model”. This intuitive
definition can be formalized as follows:

Definition 3.2 (Exogeneity). Let X = (X1, . . . , Xd) be random inputs, G(X) be a random output, and
let i ∈ D. The Xi is said to be an exogenous input if, there exists some f(X−i) ∈ L2 (σ−i) such that
G(X) = f(X−i) a.s..

Moreover for A ∈ PD, if there exists some f(X−A) ∈ L2 (σ−A) such that G(X) = f(X−A) a.s., then the
subset of inputs XA is said to be an exogenous vector.
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It is important to note that, according to the proposed definition, a set of exogenous inputs does not
necessarily form an exogenous vector. For instance, consider three inputs (X1, X2, X3) such that X1 =
X2 a.s. Then, for the model

G(X1, X2, X3) = X3 +X1 = X3 +X2,

X1 and X2 both appear to be exogenous, but the random vector (X1, X2) is not. However, these situa-
tions are often related to functional equality between the inputs, which can be easily remediated with an
appropriate assumption (see, Proposition 4.2 in Chapter 4), but require extensive developments. For the
context of this chapter, in order to remediate these situations, the following assumption is introduced:

Assumption 1. Let E ∈ P(D). If for every i ∈ E, Xi is exogenous, then XE forms an exogenous vector.

3.3.2 The Shapley effects

The Shapley effects are none other than the Shapley values of the Sobol’ cooperative game
(
D,Sclos

)
[169].

They were first introduced as an attribution method to quantify individual input importance for not
necessarily mutually independent inputs. They can be written, using its characterization as an aggregation
of the coalitional decomposition S, as the allocation Sh : D → R defined, for every i ∈ D, as:

Shi =
∑

A∈PD : i∈A

SA

|A| . (3.11)

Remark 3.4. In [169], the equality in Eq. (3.11) is shown to hold if the inputs are mutually independent.
This comes from the fact that, in this paper, the definition of the Sobol’ indices S is directly bound to
Hoeffding’s FANOVA in Corollary 2.2, which requires mutual independence. In the present case, the
definition of S is broader, as the Möbius transform of Sclos, which is well-defined even if the inputs are
not mutually independent and happens to be equivalent whenever the inputs are.

These indices have been extensively studied in the literature [170, 121, 23]. In [206], the equivalence of
the Shapley effects of the Sobol’ cooperative game

(
D,Sclos

)
and the ones of its dual

(
D,ST

)
has been

highlighted, which is none other than the expression of Proposition 3.1 on this particular game, which
enabled interesting (and more efficient) estimation schemes.

These indices are particularly interesting since Sobol’ cooperative games (and their dual) are monotonic.
Since the Shapley values are part of the Harsanyi set, it implies that they are nonnegative, meaning
that, if divided by V (G(X)), the Shapley effects can be interpreted as percentages of the output’s variance.
Effectively, it offered a solution to the lack of functional decomposition (such as in Theorem 2.1) for non-
mutually independent inputs. Their popularity is strengthened by the fact that their estimation only
requires the ability to estimate Sclos for every possible subset of inputs, which, leveraging the plethora
of methods from the SA literature (see, e.g., [206, 33, 178, 89, 19]), effectively paved the way towards
plug-in estimation schemes.

Shapley’s joke. The Shapley effects display a peculiar behavior when it comes to exogenous inputs.
When the random inputs are correlated, the Shapley effects can allocate variance shares to exogenous
inputs. This behavior has been spotted in [121] and has been informally called “Shapley’s joke” in the
SA community. One can illustrate this behavior thanks to the following model:

G(X) = X1 +X2, X =



X1

X2

X3


 ∼ N





0
0
0


 ,



1 0 ρ
0 1 0
ρ 0 1




 . (3.12)

The Shapley effects can be computed analytically, and are equal to:

Sh1

V (G(X))
= 1/2− ρ2/4, Sh2

V (G(X))
= 1/2,

Sh3

V (G(X))
= ρ2/4.

One can notice that, as soon as ρ ̸= 0, X3 receives a non-zero share of the output’s variance even though
it is exogenous. In highly correlated settings,X3 can even be interpreted as being almost as important as
X1. This interpretation can be meaningful because the correlation between X3 and X1 may be relevant
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to the underlying studied phenomenon. However, the practitioner usually cannot access the model G.
Hence, relying only on the Shapley effects, the practitioner could not determine the exogenous nature
of X3.

In order to define a suitable variance attribution that overcomes this peculiar behavior, one can refer to
different allocations of the Sobol’ cooperative game.

3.3.3 The proportional marginal effects

The proportional marginal effects (PME) are inspired by the proportional marginal variance decomposi-
tion (PMVD) indices, introduced in the context of linear regression models [70, 91]. These indices were
developed as an exogenous-detecting replacement of the Lindeman-Merenda-Gold (LMG) indices. The
LMG indices are none other than the Shapley values of a cooperative game, with the value function be-
ing equal to the determination coefficient R2 computed using the linear regression using only subsets of
inputs [92, 44]. These indices suffered from the identical drawback as the Shapley effects: they could not
detect exogenous inputs. However, [70] proposed to use the proportional values instead of the Shapley
values, leading to suitable importance indices with the added property of exogeneity detection. Hence,
studying the proportional values (as defined in Section 3.2.3) of Sobol’ cooperative games in order to
define attribution with exogeneity detection abilities is only natural.

However, since the proportional values are only well-defined for positive games, they cannot be di-
rectly employed for Sobol’ cooperative games and their dual. The first step is to extend this allocation to
nonnegative monotonic games.

Extending the proportional values for nonnegative and monotonic cooperative games. By
leveraging the method of [68], it is possible to define a continuous extension of the PVs for games with
coalitions of zero value. The following result builds upon this extension.

Theorem 3.2 (Proportional value extension [100]). Let (D, v) be a nonnegative and monotonic game with
value function v : PD → [0,∞).

Denote K the set of largest (w.r.t. their cardinality) coalitions with zero value, i.e.,

K =

{
A ∈ PD : |A| = max

B∈PD

{|B|} s.t. v(B) = 0

}
.

Additionally, for any i ∈ D, denote the sets of largest zero coalitions that do not contain i by K−i, i.e.,

K−i =
{
A ∈ K : i ̸∈ A

}
.

Define, for every A ∈ K, the (necessarily) positive value function:

vA : P (D \A)→ (0,∞)

B 7→ vA(B) := v(B ∪A).

Let PV∗ : D → R be the allocation defined as:

PV∗i =





∑
A∈K−i

R (D−i \A, vA)−1
∑

A∈KR (D \A, vA)−1
if i ̸∈ ⋂

A∈K
A

0 otherwise.

(3.13)

Then, PV∗ is a continuous extension of the proportional values to the set of nonnegative monotonic
games, i.e., for a positive monotonic game (D, v),

PV∗i = PVi, ∀i ∈ D.

Proof of Theorem 3.2 on p.123.

The function R in Eq. (3.13) refers to the ratio potential defined in Eq. (3.9). Interestingly, the definition
of this extension precisely identifies the players whose allocation is equal to zero: a player is granted a
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zero attribution if and only if it is part of every largest coalition with zero value.

This extension naturally leads to the definition of the allocation PME : D → R.

Definition 3.3 (Proportional marginal effects [100]). Let X be random inputs, and let G(X) ∈ L2 (σX)
be a random output, and let (D,Sclos) be their Sobol’ cooperative game. The allocation PME : D → R is
defined as the (extended) proportional values (i.e., Eq. (3.13)) of the dual game

(
D,ST

)
.

Choosing the dual of a Sobol’ cooperative game is especially suitable for exogenous input detection.
This fact becomes clear thanks to the following result, inspired by the work in [96].

Lemma 3.1 (Total Sobol’ indices and functional representation [100]). Let X = (X1, . . . , Xd) be random
inputs and G(X) ∈ L2 (σX) be a random output. One has, ∀A ⊆ D,

ST
A = 0 ⇐⇒ G(X) = E−A [G(X)] a.s.

Proof of Lemma 3.1 on p.125.

Naturally, as part of the Weber set (and thus the Harsanyi set), the PME are efficient, and since the dual
of Sobol’ cooperative games are monotonic, they result in a nonnegative allocation. Thus, as the Shapley
effects, they can be interpreted as percentages of the output’s variance. However, when it comes to
exogenous inputs, they behave differently than the Shapley effects.

The PMEs and exogeneity detection. The PME, in the same fashion as the PMVD and unlike the
Shapley effects, allows the detection of exogenous inputs, as shown in the following result.

Proposition 3.2 (PME exogeneity detection [100]). Let X = (X1, . . . , Xd) be random inputs and G(X) ∈
L2 (σX) be random output, and suppose that Assumption 1 holds. Then, for any input i ∈ D, the
following equivalence holds:

Xi is exogenous ⇐⇒ PMEi = 0.

Proof of Proposition 3.2 on p.125.

In conjunction with the computation of the Shapley effects, this property can offer a more complete
picture of the studied random output G(X). For instance, coming back to the model in Eq. (3.12), the
PMEs can be computed analytically and are equal to:

PME1

V (G(X))
= 1/2,

PME2

V (G(X))
= 1/2,

PME3

V (G(X))
= 0.

The PMEs do indeed detect X3 as being an exogenous input by granting it a zero allocation. Moreover,
the PMEs are not influenced by the linear correlation ρ between X1 and X3. In combination with the
Shapley effects, additional insights on G(X) can be extracted from the initial study: while X3 can affect
G(X) through its correlation with other inputs (supposedly known by the practitioner), it is exogenous
to G(X). Additionally, by allocating half the output’s variance to X1 and X2, the PMEs also indicate an
equal importance between both inputs. Hence, by combining the Shapley effects and the PME interpre-
tation, one can interpret the results as follows: X3 is an exogenous variable (PMEs). However, it affects
G(X) through its correlation with X1 (Shapley effects) and X1 and X2 seem to have an equal influence
on the output’s variance, whenever X3 is detected as exogenous (PMEs).

Hence, instead of taking the PMEs as a “better attribution method” because it does detect exogenous
inputs, both allocation-inspired attribution methods can be used in conjunction in order to draw a more
precise insight into the importance dynamics inherent to the modeled phenomena (the output G(X) but
also the probabilistic structure governing the inputs X).

Moreover, since the underlying redistribution process is proportional, unlike the egalitarian redistribution
process of the Shapley values, they can end up in a fundamentally different attribution of the output’s
variance. These differences are studied using analytical examples in the following section.
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3.3.4 Illustrative examples

Unbalanced linear model with three Gaussian inputs Beyond detecting exogenous inputs, the
Shapley effects and the PMEs fundamentally differ in their redistribution process. While the Shapley
effects allocate importance in an egalitarian fashion, the PME follows a proportional principle. This toy-
case aims to highlight this difference by introducing a coefficient in a linear model with three correlated
Gaussian inputs. This use-case is referred to as unbalanced since the three linear coefficients differ. This
toy-case writes:

G(X) = X1 + βX2 +X3, X =



X1

X2

X3


 ∼ N





0
0
0


 ,



1 0 0
0 1 ρ
0 ρ 1




 ,

and in this case, V (G(X)) = 2 + β2 + 2ρβ.

The analytical (unnormalized) shares of output variance, according to the Shapley effects and the PMEs,
are given by

Sh1 = 1, Sh2 = β2 + βρ+
1

2
ρ2(1− β2), Sh3 = 1 + βρ− 1

2
ρ2(1− β2),

and

PME1 = 1, PME2 =
β2(1 + β2 + 2ρβ)

(1 + β2)
, PME3 =

(1 + β2 + 2ρβ)

(1 + β2)
.

One can notice that, by considering the balanced case (i.e., β = 1), the Shapley effects and PMEs are equal.
However, as soon as the model is unbalanced, one can notice in Figure 3.4 that both allocations behave
in a completely different fashion when it comes to the importance attribution of X2 and X3.

Figure 3.4: Normalized Shapley effects and PMEs for the unbalanced linear model with three Gaussian
inputs.

In extreme cases of positive linear correlation between X2 and X3, the Shapley effects allocate half the
importance to each input despite a fairly high β value in favor of X2. The PMEs, on the other hand,
tend to favor X2 by granting it almost the whole output’s variance despite its high correlation with X3.
This behavior highlights the “egalitarian vs. proportional” behavior of both effects: the Shapley effects
consider X2 and X3 equally important due to their high correlation, while the PMEs highly favor X3.
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While these results inform on the asymptotic behavior of both indices, their difference can also be high-
lighted for punctual values of ρ and β. Figure 3.5 illustrates the behavior of both indices w.r.t. ρ, for two
different values of β (namely, 2 and 10). Whenever β = 2, one can notice that PME2 increases w.r.t. ρ,
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Figure 3.5: Normalized PMEs and Shapley effects w.r.t. ρ. The top row depicts the allocations for β = 2
while the bottom row is for β = 10.

while Sh2 decreases after ρ ≃ −0.24, and both indices are concave w.r.t. ρ. On the other hand, Sh3 is con-
vex w.r.t. ρ and becomes increasing at ρ ≃ −0.54, while PME3 remains concave increasing. At extreme
values of ρ (i.e., close to −1 or 1), one can notice that Sh2 and Sh3 are considered equally important. Fur-
thermore, one can notice that PME2 > PME3, whatever the magnitude of their correlation. Increasing
β to 10 exacerbates this behavior of the Shapley effects. However, the PMEs behave differently: X1 and
X3 are given a negligible part of the variance, while X2 is granted a seemingly constant share, w.r.t. ρ,
hovering around 98%.

In conclusion, in this unbalanced case, the proportional redistribution property of the PME allows for
a more apparent importance hierarchy, even in situations of extreme correlation. On the other hand,
the Shapley effect tends to even importance out between the correlated inputs, leading to a potentially
indecisive importance hierarchy.

Linear model with two Gaussian inputs and an unbalanced interaction term. This toy case
aims to study and compare the behavior in a trade-off between individual and interaction effects. This
particular unbalanced linear model is given as follows:

G(X) = X1 + (1− α)X2 + αX1X2, X =

(
X1

X2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

and in this case, V (G(X)) = 2 + (1 − α)2 + 2(1 − α)ρ + ρ2. The parameter α aims at controlling the
“trade-off” between the individual effect of X2 and its interaction term with X1. When α = 0, there is
no interaction term between X1 and X2, and when α = 1, X2 does not have any individual effect. In
addition, both inputs are linearly correlated through their covariance ρ ∈ (−1, 1).
The analytical (unnormalized) shares of output variance, according to the Shapley effects and the PMEs,
are given by

Sh1 =
3 + ρ2(1− α)2 + 2ρ(1− α)

2
, Sh2 =

1 + 2ρ2 + (2− ρ2)(1− α)2 + 2ρ(1− α)
2

,
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and

PME1 =
2

3 + (1− α)2 × V (G(X)) , PME2 =
(1− α)2 + 1

3 + (1− α)2 × V (G(X)) .

To illustrate the redistribution differences between the Shapley effects and the PMEs w.r.t. both correla-
tion and interaction, (α, ρ)-plane plots are provided in Figure 3.6. First, one can notice that when α = 0,
the Shapley effects and the PMEs are equal, granting each input half of the output’s variance. However,
when α deviates from zero, both indices display different behaviors. Secondly, and interestingly, the
analytical formulas of the PMEs do not depend on the correlation coefficient ρ.

Figure 3.6: PMEs and Shapley effects in the (α, ρ)-plane for the linear model with unbalanced interaction
term.

Focusing on the behavior of both effects w.r.t. the interaction, one can first focus on the α-axis of the plots
in Figure 3.6. Whenever α is close to 0, one can notice that both indices tend to allocate an equal share
of the output variance to both inputs. As α increases, the PME grants an increasing share of the output
variance to X1, independently of ρ. However, on the other hand, the Shapley effects display a sharing
mechanism dependent on ρ. When ρ is between −0.5 and 0.5, and α is close to 1, Sh1 increases, with
a maximum allocation of 0.75 taken at (ρ = 0, α = 1), while Sh2 decreases, with a minimum allocation
of 0.25 at the same point on the plane. Additionally, one can notice that when both inputs are highly
correlated, the Shapley effects redistribute the output’s variance equally, whatever the value of α is.

3.4 Illustration on use-cases

3.4.1 Estimation schemes

Following the two-step methodology presented in [32], the Shapley effects and the PMEs can be esti-
mated in two distinct steps:

• Step 1: Estimate the conditional elements, i.e., ST
A , ∀A ∈ PD;
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• Step 2: Perform an aggregation procedure via a direct plug-in of the estimated conditional elements.

Only the aggregation procedure differs between the estimation of the PMEs and the Shapley effects. It
entails that the estimation cost in terms of model evaluations is the same for the PMEs as for the Shapley
effects. Furthermore, both indices can be evaluated “at once” using the same conditional elements
estimates. Two situations the practitioner may encounter are taken into account.

Estimating the conditional elements. First, if the practitioner can randomly sample from (i) every
possible conditional distribution of the conditional random variables XA|XA and (ii) every marginal
distribution, i.e., to simulate i.i.d. observations ofXA, for allA ∈ P(D), then the conditional elements can
be estimated via a Monte Carlo scheme. This estimation scheme has been studied and proven to yield
consistent estimates in [206, 33, 48, 115], and is recalled in Appendix C.1.1. However, it is essential to
note that the ability (i) to sample from the conditional distributions can be difficult in practice (especially
if the inputs are dependent).

Second, if the practitioner can only access an i.i.d. input-output sample (coming from the joint distribu-
tion of the inputs), they can perform a given-data estimation scheme. Such a scheme has been proposed
in the literature and relies on approximating the conditional samples using nearest-neighbors [33]. One
can refer to [33, 48, 115] for additional theoretical and computational details on this estimation method,
which is also briefly recalled in Appendix C.1.2.

In both situations, the practitioner must estimate 2d − 1 conditional elements, which is exponential
w.r.t. the number of inputs. As stated in [206, 32, 115], some Monte Carlo-inspired methods can require
a number of evaluations proportional to d!(d−1), which may be prohibitive for costly numerical models.
The given-data procedure avoids the need to simulate and evaluate data, but the sheer number of ele-
ments to estimate can render the estimation very long. However, both indices can be estimated with the
same set of conditional elements, with the only differentiating factor being the aggregation procedures,
which are less computationally expensive in comparison.

Aggregation procedures Coming from Eq. (3.7), the aggregation procedure for the Shapley effects
is relatively straightforward (and linear). Recent developments showed that the computational cost
of the Harsanyi dividends, i.e., Möbius transforms, can be significantly reduced (regarding machine
operations, not model evaluations) [152], once the conditional elements are available.

The aggregation procedure for the PMEs can be broken down as follows. Given estimates of every
conditional element, i.e., ŜT

A for every A ⊆ D, the PME can be computed using its recursive definition
in Eq. (3.13).

Ratio potential computation First, recall that for any value function v, R (∅, v) = 1 and for any
i ∈ D, R (i, v) = v({i}). The computation of R (A, v) can be broken down as follows:

1. Let A ∈ P(D), A ̸= ∅, |A| ≥ 2.

2. Compute v(B), for every B ∈ P(A).

3. For m = 1, . . . , |A| − 1:

↪→ For B ⊆ A such that |B| = m:

↪→ Compute R (B, v) = v(B)
(∑

j∈B R(B−j , v)
−1
)−1

.

4. Compute R (A, v) = v(A)
(∑

j∈AR(A−j , v)
−1
)−1

.

Following this algorithm and given conditional element estimates, one can then compute R
(
A, ŜT

)
for

any A ∈ P(D).

Aggregation procedure for PME computation With the ability to compute the ratio potential
R(A, ŜT ) for any A ∈ P(D) and any set function v, one can proceed to compute the PME. First, define
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the function, ∀A ∈ P(D):

ζ̂A : P(D \A)→ R+

B 7→ ζ̂A(B) := ŜT
A∪B

The aggregation procedure of the PME can then be broken down as follows:

1. Compute ŜT
A , for every A ∈ P(D).

2. Compute K = argmax
A∈P(D) s.t. ŜT

A=0

|A|.

3. For every A ∈ K, compute R
(
D \A, ζ̂A

)
.

4. Let RK =
∑

A∈KR
(
D \A, ζ̂A

)−1
.

5. For i = 1, . . . , d:

(a) If i ∈ ∩A
A∈K

, set PMEi = 0.

(b) If i ̸∈ ∩A
A∈K

:

i. Compute K−i =
{
A ∈ K : i ̸∈ A

}
.

ii. For every A ∈ K−i, compute R
(
D−i \A, ζ̂A

)
.

iii. Let PMEi =
∑

A∈K−i
R
(
D−i \A, ζ̂A

)−1 /
RK.

In the following sections, particular care is put into highlighting which estimation scheme is used and
every hyper-parameter related to it. An accompanying GitHub repository1 containing all the codes used
to produce the presented figures is made available as well, for reproducibility purposes.

3.4.2 River water level

Figure 3.7 presents the Shapley effects and PMEs for the river water level model, presented in Sec-
tion 1.4.1. These allocations have been computed using a scheme (see, Appendix C.1.1), with simulation
sample sizes equal to Nv = 50.000 for estimating V (G(X)), as well as No = 2000 and Ni = 300 to esti-
mate the total Sobol’ indices for every A ∈ PD. This experience has been repeated 150 times to compute
the empirical mean and the 5% and 95% quantiles. The two allocations have been computed on the same
conditional element estimates (i.e., only the aggregation step differs).

One can notice that the importance ranking does not differ between the Shapley effects and the PMEs,
withQ and Zv being granted the majority of the output’s variance. In third place, the Strickler coefficient
Ks receives around 9.3% of the output variance according to the Shapley values and around 14% accord-
ing to the PMEs. Finally, the other three inputs, Zm, L, andB, can be considered negligible. In particular,
L receives less than 0.01% of the output’s variance according to the PME and, hence, is not considered
exogenous (since it is still greater than zero). However, its effect is still considered relatively minimal.
This importance quantification is similar to more in-depth studies of this model in the literature [141,
38].

In conclusion, the three most important factors when it comes to studying the variability of the annual
maximal water level of a river are the flow rate Q, the downstream river level (Zv), and the Strickler
riverbed roughness coefficient, totaling a combined allocation of around 99% of the output’s variance,
using either the Shapley effects and the PME. The three remaining coefficients can be considered negli-
gible.

1https://github.com/milidris/phdThesis

https://github.com/milidris/phdThesis
https://github.com/milidris/phdThesis
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Figure 3.7: Normalized Shapley effects and PMEs for the model of river water level.

Industrial site flooding Suppose that the studied river is located near an industrial site, and a dam
of height t = 54.25m has been placed to prevent floods. The occurrence of a flood can thus be modeled
as the random output:

T (X) = 1{G(X)>t}(X).

T (X) follows a Bernoulli distribution. In reliability-oriented sensitivity analysis [37, 175], and more
precisely, in target SA (see, e.g., [180, 115]), the occurrence probability of T (X) (i.e., its means) is called
the failure probability and the variance of T (X) is called the failure variance. The failure probability has
been estimated at around 1%, on 107 i.i.d. simulations. The Shapley effects and PME can be computed on
Bernoulli outputs (i.e., T (X) remains in L2 (σX) as demonstrated in [115]), providing a decomposition
of the failure variance, which can be interpreted as importance measures.
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Figure 3.8: Normalized Shapley effects and PMEs for the failure variance of the occurrence of a flood.

The most apparent difference in the importance attribution between the inputs, when compared with
Figure 3.7, concerns the Strickler coefficient KS . Its importance share, initially around 9-14%, is now
around 30%. Q and Zv have a drastically lower share of variance. Zm and B also are granted an
increased share of variance compared to the initial study. These interpretations are expected, especially
when taking a more in-depth look at the model in Eq. (1.1) since low values of KS , Zm, and B will tend
to shoot the height of the river water level up. This interpretation is also similar to the relevant studies
from the literature [115].

When studying the river water level variability, only three inputs appeared to be relevant. However,
in the case of the flooding occurrence of an industrial site, the Strickler coefficient Ks seems to account
for much more of the failure variability of this phenomenon. Additionally, the upstream river level Zm

seems to bear significant importance, 5% of the failure variance according to the Shapley effects, and
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around 11% according to the PME. Hence, studying the occurrence of a flood instead of the river water
level itself leads to a different interpretation of the model.

3.4.3 Optical filter transmittance

A unique i.i.d. sample of size 1000 of these 13 inputs has been simulated, on which the model’s output
has been computed. A given-data estimation method is used since this model is pretty expensive to
evaluate (here, using the Monte Carlo scheme is not feasible). Hence, the Shapley effects and PMEs
are computed using the nearest-neighbor procedure (see, Appendix C.1.2), with an arbitrarily chosen
number of neighbors equal to 6, using the sensitivity R package.

Figure 3.9 displays the Shapley effects and PMEs estimates. The intervals are the 5% and 95% empirical
quantiles computed on 100 estimation repetitions. For each repetition, both indices have been estimated
on a random selection of 80% of the initial dataset.
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Figure 3.9: Normalized Shapley effects and PMEs estimates using the nearest-neighbor procedure for the
interference filter model. The vertical error bars represent the 90% intervals of the estimates.

The Shapley effects of the different inputs vary between 5% and 11%, while the PMEs vary between 2%
and 24%. Even if the Shapley effects of I5 and I9 are slightly larger than the others, no particular input
emerges as predominantly influential, and none emerges as fairly non-influential. However, the PME is
more discriminant in the influence repartition. I5 and I9 stand out as very influential, I4, I6, I8 and I10
seem to bear some importance, while I1, I2, I3, I7, I11, I12 and I13 can be considered as non-influential.

This more pronounced discriminating power can be explained by the difference in the redistribution
process of the PMEs and the Shapley effects, especially in this case where the inputs are highly correlated.
It highlights the more discriminatory ability of the PMEs for influence ranking in situations of highly
correlated inputs, where the Shapley effects tend to equalize the influence between the inputs in this
situation.

Surrogate modeling and feature selection The PME values of non-influential inputs are not worth
zero but are relatively close to zero (the PMEs of I1 and I13 are smaller than 2%, and the PMEs of I2, I3,
I7, I11, and I12 are smaller than 3%). However, as the nearest-neighbor procedure used to estimate the
PME is known to have a bias, we cannot infer the non-exogeneity of these inputs. Models with subsets
of inputs have been trained to verify the presence of spurious inputs.

The predictive capabilities of three different Gaussian process (GP) surrogate models [192] are compared.
For each model, dimension reduction is performed by selecting subsets of inputs according to the previ-
ously discussed importance rankings:

• GP1 - The inputs are selected with a 5% importance threshold applied on the Shapley effects: the
13 inputs are kept in the GP. Then, this GP corresponds to the one without dimension reduction;



3.4. ILLUSTRATION ON USE-CASES 49

• GP2 - The inputs are selected with a 5%-threshold applied on the PMEs: only 6 inputs (I4, I5, I6,
I8, I9 and I10) are kept to train the GP;

• GP3 - The inputs are selected with a 2.2%-threshold applied on the PMEs: 2 inputs (I1 and I13) are
removed from the initial 11 to train the GP.

The three surrogate models are trained on the initial 1000 observations and are parameterized by a con-
stant trend and a 5/2-Matérn covariance kernel. The parameters have been estimated using a maximum
likelihood scheme utilizing the DiceKriging R package [188].

To measure the predictive power of the models, their “predictivity coefficients” (i.e., the Q2-metric, see,
e.g., [67]) are computed and displayed in Table 3.1. Removing the two inputs with the lowest PMEs has
a negligible impact on the model predictivity (shortfall in Q2 of less than 0.4%), and removing the seven
inputs with the lowest PMEs has a minor impact on the model predictivity (shortfall in Q2 of less than
1%).

Model Number of inputs Selection Threshold Q2

GP1 13 Shapley Effects - 5% 99.48%
GP2 6 PMEs - 5 % 98.79%
GP3 11 PMEs - 2.2% 99.14%

Table 3.1: Predictivity coefficient of the three GP surrogate models.

This use case illustrates the PMEs’ usefulness in variable selection with highly correlated inputs for
dimension reduction and surrogate modeling purposes. Overall, the PMEs favor the already influential
inputs at the expense of the correlated inputs, while the Shapley effects equalize importance amongst
them. Combined with the ability to detect exogenous inputs, it makes the PME particularly suitable for
screening purposes.

3.4.4 Acoustic fire extinguisher

The allocations have been computed on the predictions provided by the trained neural network (pre-
sented in Section 1.4.3) on the whole dataset. The nearest-neighbor estimation scheme is used, with an
arbitrarily chosen number of neighbors equal to 6. The results are presented in Figure 3.10, and both
allocations have been computed on the same conditional elements. One can notice that the importance
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Figure 3.10: Normalized Shapley effects and PMEs estimates using the nearest-neighbor procedure the
acoustic fire extinguisher model.

ranking provided by the two allocations is fundamentally different. The most important change is due
to the tank size and the decibel value. The former is granted more of the output’s variance due to the
proportional redistribution than the egalitarian one, while the latter sees a decrease in its allocated im-
portance. Additionally, no inputs seem to be detected as exogenous or negligible: all of them seem to
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bear some importance for the neural network’s propagated uncertainty. Finally, one can notice that in
both cases, the airflow remains the most important input.

Thus, according to this neural network classifier, the three most important parameters for predicting an
effective termination of a fire are the airflow coming out of the acoustic fire extinguisher, the distance
to the active flame, and the fuel tank size. These three inputs account for around 73% of the neural
network’s variance on the whole dataset according to the Shapley effects and 78% according to the
PME. The fuel type only accounts for around 5% according to both allocations, and thus, its effect can
be considered limited but not entirely negligible. While the frequency’s importance seems consistent
between the two allocations, a significant difference can be spotted in the decibels: the Shapley effects
grant around 12% of importance. In comparison, the PME only grants them around 8%.

3.5 The fundamental problem of the input-centric approach

In a nutshell, the analogy between players of a cooperative game and inputs of a random output is
fruitful when defining attribution methods of several QoIs using allocations from the literature. In
particular, the allocations in the Harsanyi set (which includes the Shapley values and the PMEs) can be
directly linked with the input-centric approach to defining influence measures:

1. Choose a value function v;

2. Define its dividends Dv as the Möbius transform of v. The dividends are then coalitional decom-
positions of v(D);

3. Aggregate the dividends to have an attribution of v(D).

This last step in the definition of allocations in the Harsanyi set is what is added to the rationale de-
scribed in Section 2.2.4. Hence, this last step is paramount to characterizing allocations. From this point
of view, several remarks can be brought forward.

Choice of value function As highlighted in Remark 2.3, the chosen value measure (which plays the
same role as the value function) only needs to exist to define an input-centric coalitional decomposition.
However, as brought forward in Section 2.3, in the case of variance decomposition, the final interpreta-
tion of such influence measures remains misunderstood, unless the inputs are mutually independent.
Hence, the aggregation of the Sobol’ indices S, built on the choice of Sclos as a value function/measure,
can be seen as an aggregation of (well-defined, but) poorly understood quantities. This observation affects
the ability to provide a clear interpretation of the resultant attributions whenever the inputs are not
mutually independent, which is the primary purpose of these indices. Said differently, the analogy of
importance quantification and cooperative games did not answer any of the questions brought forward in
Section 2.3.3, due to the choice of value function being ill-chosen w.r.t. the dependence structure of the
inputs.

Hence, while the analogy between players and inputs may seem like a good idea to define variance
attribution for dependent inputs, the overall question of the choice of value function remains central. In
the recent literature, many attempts have been made to study cooperative games with different value
functions (see, e.g., [198]), supposedly aimed at quantifying different aspects of the influence of the
inputs on a QoI. However, the choice of value function remains arbitrary and is subject to the same
critiques formulated above.

Furthermore, the overall philosophy behind cooperative games is to place the players in a central posi-
tion in the development. When it comes to Sobol’ cooperative games, this can be understood as follows:
the choice of the value function allows to define an input-centric decomposition of V (G(X)) indepen-
dently of whether G(X) can be decomposed. Hence, the inherent decomposition of G(X) is wholly disre-
garded and is the root of the lack of interpretation of input-centric importance measures. The main
argument brought forward in favor of the choice of Sclos is the fact that it quantifies the variance of the
best approximation of G(X) as a function of the subspaces (L2 (σA))A⊆D, which can be understood as a
value for the input, but completely disregarding the random output G(X).

Axioms The axioms are often considered “mathematical arguments to justify the theoretical nature
of the importance measure”. While their role is central to cooperative game theory to seek uniqueness,
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for defining influence measures on the Harsanyi set (including the Shapley values), these axioms can be
understood as properties on the aggregation process of dividends. However, the previous remark still holds:
if the choice of value function leads to misunderstood influence measures, then allocations uniquely
characterized through axioms can be considered as theoretically-grounded aggregations of misunderstood
quantities.

Hence, since these axioms only affect the aggregation step in the definition of allocations, their weight
in justifying the whole method remains somewhat limited. In the recent literature, many papers criti-
cize the axiomatic justification of the Shapley values by showing their limited relevance for importance
quantification (see, e.g., [218]).

Multiplicities of importance measures Since the allocations can be understood as aggregations of
dividends, many different allocations can easily be defined, by choosing an aggregation step, resulting
in different importance attributions, where each one of them can be studied in order to find interesting
behavior (e.g., the exogeneity detection of the PMEs). However, this multiplicity of allocations begs the
question: which ones are suitable for quantifying importance?
This chapter highlights that the Shapley effects and the PMEs can be widely different, even if computed
on the same data. The resulting practical interpretation can thus change drastically based on the choice
of method. But, which attribution is the “right” one? A path towards studying multiple allocations, and
for each one, considering multiple value functions seems like an arduous and infinite task.

Considering that the Shapley effects and the PME are two different methods is subject to confusion.
Allocations, as aggregations of dividends, should be treated as such: they summarize the information
(in different ways) contained in the dividends. Moreover, since, for influence quantification purposes,
the input-centric approach to defining dividends has been proven to lead to misunderstood influence
measures, the central question circles back to the choice of the value function.

Conclusion Defining a suitable value function is paramount in the in-fine interpretation of attribution
methods based on allocations. For importance quantification, as highlighted in Remark 2.4, the choice of
Sclos as a value measure does coincide with a model-centric approach to defining importance measures
whenever the inputs are mutually independent. In this particular case, the Sobol’ indices (which are the
Harsanyi dividends of the Sobol’ cooperative game) can be interpreted as shares of variances due to
functional interactions induced by the model between the inputs. The resulting allocations can be easily
understood as particular aggregations of these interaction effects. Hence, the choice of value function is
ultimately bound to the probabilistic structure of the inputs, and especially to their dependence structure.

Understanding the problem from this point of view motivates exploring the model-centric approach to
defining influence measures, which first requires decomposing G(X) itself. Thanks to Corollary 2.1, the
resulting value measures would be prime candidates as a suitable value function. The following chapter
is dedicated to this problem.



52 CHAPTER 3. INPUT-CENTRIC APPROACH AND COOPERATIVE GAMES



CHAPTER 4
MODEL-CENTRIC APPROACH AND

OUTPUT DECOMPOSITION

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 The Lebesgue space L2 (σX) and its subspaces . . . . . . . . . . . . . . . . . . 56
4.2.2 Angles between closed subspaces of a Hilbert space . . . . . . . . . . . . . . . . 57
4.2.3 Direct sums, complemented subspaces and projections . . . . . . . . . . . . . . 60

4.3 Coalitional output decomposition with dependent inputs . . . . . . . . . . 62
4.3.1 Two reasonable assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Output decomposition and geometric interpretation . . . . . . . . . . . . . . . 64
4.3.3 Mutual independence and Hoeffding’s decomposition . . . . . . . . . . . . . . . 68

4.4 Model-centric influence measures . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Orthocanonical evaluation decomposition . . . . . . . . . . . . . . . . . . . . . 70
4.4.2 Variance decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Analytical example: two Bernoulli inputs . . . . . . . . . . . . . . . . . . . . 74
4.5.1 Orthocanonical decomposition as solving equations . . . . . . . . . . . . . . . . 74
4.5.2 Angle, comonotonicity and definite positiveness of ∆ . . . . . . . . . . . . . . . 75

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

53



54 CHAPTER 4. MODEL-CENTRIC APPROACH AND OUTPUT DECOMPOSITION

Abstract (English).

The first step in defining model-centric coalitional decomposition is the ability to uniquely decompose square-
integrable functions of non-mutually independent random inputs into a sum of functions of every possible subset
of variables. The well-known Hoeffding decomposition allows achieving such a task whenever the inputs are mu-
tually independent. However, no such result has been achieved whenever the inputs are not mutually independent,
except under very restrictive assumptions. A novel view on this problem is proposed, linking three domains of
mathematics: probability theory, functional analysis, and combinatorics. The problem of random output decompo-
sition can be seen as trying to express a direct-sum decomposition of Lebesgue spaces of functions of the inputs.
Under two reasonable assumptions on the inputs (non-perfect functional dependence and non-degenerate stochas-
tic dependence), it is always possible to uniquely decompose such functions. This “orthocanonical decomposition”
is intuitive and unveils the linear nature of non-linear functions of non-linearly dependent inputs, effectively gen-
eralizing Hoeffding’s pioneering result. They can be expressed using oblique projections and enable the definition
of intuitive and interpretable model-centric coalitional decompositions of quantities of interest. This result offers a
path towards a more precise uncertainty quantification, which can benefit sensitivity analyses and interpretability
studies whenever the inputs are dependent. This decomposition is illustrated analytically, and the challenges to
adopting these results in practice are discussed.

Abstract (Français).

La première étape dans la définition de la décomposition coalitionnelle centrée sur le modèle est la capacité à décom-
poser une sortie aléatoire, dont les entrées ne sont pas forcément mutuellement indépendantes. La décomposition
bien connue d’Hoeffding permet d’accomplir cette tâche lorsque les variables d’entrée sont mutuellement indépen-
dantes. Cependant, aucun résultat de ce type n’a été obtenu lorsque les entrées dépendent les unes des autres, sauf
sous certaines hypothèses très restrictives. Une nouvelle perspective sur ce problème est présentée, établissant un
lien entre trois domaines des mathématiques : la théorie des probabilités, l’analyse fonctionnelle et la combinatoire.
La décomposition de sortie aléatoire peut être vu comme une décomposition en somme directe des espaces de
Lebesgue de fonctions des entrées. Sous deux hypothèses raisonnables sur les entrées (dépendance fonctionnelle
non parfaite et dépendance stochastique non dégénérée), il est toujours possible de décomposer de manière unique
de telles fonctions. Cette "décomposition orthocanonique" est intuitive et révèle une nature linéaire des fonctions
non linéaires, dont les entrées peuvent être non-linéairement dépendantes, généralisant ainsi de manière efficace le
résultat pionnier de Hoeffding. Elles peuvent être exprimées au moyen de projections obliques et permettent de
définir des décompositions coalitionnelles de quantités d’intérêt centrées sur le modèle intuitives et interprétables.
Ce résultat ouvre la voie à une quantification de l’incertitude plus précise, qui pourrait bénéficier aux analyses de
sensibilité et aux études d’interpretabilite avec entrées dépendantes. Cette décomposition est illustrée de manière
analytique, et les défis liés à l’adoption de ces résultats en pratique sont discutés.

Keywords . Hoeffding decomposition • Functional analysis • Angles between Hilbert spaces • Orthogonal and
oblique projection • Direct-sums
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4.1 Introduction

As shown in Chapter 2, there are two main ways to define influence measures. The input-centric ap-
proach, highlighted in Chapter 3, offers tools to define influence measures for dependent inputs me-
chanically. However, as highlighted in Section 3.5, this approach revolves around the arbitrary choice
of a value measure to quantify a subset of inputs’ value. The resulting interpretation of the influence
measure is ultimately related to the dependence structure of the inputs.

In this chapter, the focus is put on the model-centric approach. The main idea is to find a suitable coali-
tional decomposition of G(X) and then define indices based on it. In other words, one wishes to ob-
tain a so-called high-dimensional model representations (HDMR) [179]. Formally, for random inputs X =
(X1, . . . , Xd)

⊤, and a random output G(X), it amounts to finding the decomposition

G(X) =
∑

A∈PD

GA(XA), (4.1)

where each GA(XA) ∈ GA is a representant (see, Definition 2.2) of input XA = (Xi)i∈A. Whenever the
Xi are assumed to be mutually independent, such a decomposition is known as Hoeffding’s decomposition
(see, Theorem 2.1) [102]. In the literature, the proposed influence measures (or methods based on influ-
ence measures) usually assume mutual independence of the inputs [204, 149], either for the simplicity
of the resulting estimation schemes or for the lack of a proper framework. However, the inputs are often
endowed with a dependence structure intrinsic to the (observed or modeled) studied phenomena. Al-
ways assuming mutual independence can be seen as expedient and can lead to improper insights [96].
One of the main challenges to a better understanding of black-box models is to consider this depen-
dence structure [182] and, above all, to formally justify the proposed methods without heavily relying
on empirical observations or specific benchmarks.

Whenever the inputs are not assumed to be mutually independent, many approaches have been pro-
posed in the literature. Notably, [96] proposed an approximation theoretic framework to address the
problem and provide useful tools for importance quantification. However, they lack a proper and intu-
itive understanding of the estimated quantities. In [38], the authors approached the problem differently
and brought forward an intuitive view on the subject, but under somewhat restrictive assumptions
on the probabilistic structure of the inputs. In [105] and [134] proposed a projection-based approach
under constraints derived from desirability criteria. However, most of these proposals do not offer a
completely satisfactory and unequivocal answer to the interpretation of the resulting influence measure.
Other approaches rely on a transformation of the dependent inputs to achieve mutual independence
using, for instance, Nataf or Rosenblatt transforms [138, 137, 151], offering meaningful indications on
the relationship between X and G(X). While these approaches can be applied to a broad range of
probabilistic structures, they can be seen as lacking in generality (e.g., existence of probability density
functions, being in an elliptical family of distribution, restricted to Rd valued inputs).

This chapter is dedicated to exploring and studying the problem of random output decomposition
(i.e., as in Eq. (4.1)) whenever the inputs are not assumed to be mutually independent. To that extent,
a different point of view is adopted at the crossroads of probability theory, functional analysis, and ab-
stract algebra. This point of view allows seeing HDMRs as a direct-sum decomposition of the Lebesgue
space L2 (σX). It is shown that such HDMRs hold under two reasonable assumptions on the inputs:

1. Non-perfect functional dependence (i.e., the inputs cannot be functions of each other);

2. Non-degenerate stochastic dependence (i.e., there cannot be a perfect stochastic dependence be-
tween the inputs).

Under these two assumptions, the subspaces of the Lebesgue space L2 (σX) (see, Section 1.2), where σX
is the σ-algebra generated by the inputsX ,(see, Definition 2.4) involved in the direct-sum decomposition
can be characterized, and lead to a geometric understanding of importance quantification. In addition,
Hoeffding’s decomposition can be seen as a very particular case of this more general result. The defini-
tion of inherently interpretable influence measures is discussed for evaluation decomposition, as well as
importance quantification. Finally, the proposed indices are studied analytically on a particular toy-case
of a black-box model of two Bernoulli random inputs.
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4.2 Preliminaries

In this section, some preliminaries are introduced to justify that the HDMR of random outputs in L2 (σX)
can be seen as a direct-sum decomposition problem. The framework presented in Section 1.2 is restricted
according to the following assumptions.

Special case . In this chapter, the following is assumed concerning the random output:

• The output space Y = R, i.e., the model is R-valued;

• The space of random outputs GX is restricted to L2 (σX), i.e., square-integrable random variables
measurable w.r.t. the σ-algebra generated by the inputs X (see, Section 1.2).

When it comes to a vector of random elements, especially when the very particular case of mutual
independence is not assumed, one needs to restrict the inputs explicitly to avoid trivial situations (e.g., ,
constant a.s. inputs or redundancy). In the case of the framework presented in Section 1.2, two standard
assumptions are assumed to hold, and the results presented in this chapter are to be understood in this
context:

1. For every i ∈ D, σ∅ ⊂ σi, i.e., the P-trivial σ-algebra (see, Definition A.6) is strictly contained in
the σ-algebras generated by individual inputs. In other words, this entails that none of the inputs
are constant a.s.;

2. For every A,B ∈ PD such that B ⊂ A, σB ⊂ σA, i.e., the σ-algebra generated by a subset of inputs
is necessarily strictly contained in the σ-algebras generated by a bigger subset of inputs. In other
words, adding an input to a subset of inputs necessarily adds “more information”.

The first assumption is standard in many probabilistic theoretical frameworks (see, e.g., [203]). The
last assumption is, however, less standard but remains reasonable. For instance, consider an example
with three inputs. The fact that σ1 ⊆ σ12 comes naturally from the definition of generated σ-algebras.
However, if one lets σ1 = σ12, that would entail that every σ12-measurable function f(X1, X2) can in
fact be written as a function of only X1, hence making the subset (X1, X2) “redundant” w.r.t. to X1.
This assumption is automatically respected whenever the inputs are mutually independent but does
not necessarily hold in general.

4.2.1 The Lebesgue space L2 (σX) and its subspaces

The Lebesgue spaces of square-integrable random variables, as defined in Definition 2.4, show some
intrinsic properties concerning the sub-σ-algebras they are defined on. Two of these classical results,
which are of interest, are recalled.

Theorem 4.1. For two sub σ-algebras B1 and B2 of F , the following assertions hold.

1. If B1 ⊆ B2, then L2 (B1) ⊆ L2 (B2).

2. L2 (B1) ∩ L2 (B2) = L2 (B1 ∩ B2).

Proof: See, [203], Theorem 2.

When interpreting σ-algebras as “information”, this result is rather intuitive: the set of random variables
with less information is necessarily contained in the set of random variables with more information.
Additionally, Theorem 4.1 shows that random variables in the intersection of two Lebesgue spaces are
necessarily measurable w.r.t. to the two generating σ-algebras, which is also intuitive.

Hence, when it comes to L2 (σX), Theorem 4.1 implies that the set of subspaces
{
L2 (σA)

}
A∈PD

display
some ordering structure w.r.t. the inclusion binary relation.

Lemma 4.1. Let A,B ∈ PD, such that B ⊆ A. Then

L2 (σB) ⊆ L2 (σA) .
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Notice that, by definition, σA is a σ-algebra that contains ∪i∈Bσi since B ⊆ A. Since σB is the smallest
σ-algebra containing ∪i∈Bσi, then necessarily σB ⊆ σA. Applying in turn Theorem 4.1 (1.) leads to the
result.

Lemma 4.1 can be understood as the fact that the Lebesgue space of random outputs w.r.t. a subset of in-
puts XB is included in the Lebesgue space of random outputs w.r.t. a bigger subset of inputs XA (i.e., pro-
vided B ⊆ A). For instance, for two inputs X = (X1, X2), Lemma 4.1 entails that the set of random
outputs which are only functions of X1 is included in the set of random outputs which are functions of
both X1 and X2. This behavior is rather intuitive due to the intrinsic definition of measurability, i.e., a
random element measurable w.r.t. σB is necessarily measurable w.r.t. σA provided σB ⊆ σA. Addition-
ally, notice that L2 (σ∅) is necessarily comprised of constant a.s. random variables, thanks to Lemma A.1.

Remark 4.1. The space L2 (σX) thus contains each element of the set of subspaces
{
L2 (σA)

}
A∈PD

,
where, σD := σX . In addition, thanks to Lemma 4.1, one can notice that

{
L2 (σA)

}
A∈PD

is endowed
with some algebraic structure w.r.t. to the inclusion operator. In fact, the order is preserved between
(PD,⊆) and

({
L2 (σA)

}
A∈PD

,⊆
)

, algebraically speaking.

A real Banach space is a complete normed space, usually defined as a tuple (M, ∥·∥), where M is a
vector space over the reals (or more generally, over a field) and ∥·∥ :M→ R is a norm, with the added
property that the limit of every converging sequence of elements ofM (i.e., Cauchy sequences) is inM
itself. Whenever the norm ∥·∥ stems from an inner product ⟨·, ·⟩, the resulting space is called a Hilbert
space (see, e.g., [45], Definition 1.6). Hence, every Hilbert space is a Banach space [195].

Regarding Lebesgue spaces of square-integrable random variables, they are, in fact, Hilbert space.

Theorem 4.2. Let B ⊆ F be a sub-σ-algebra. The Lebesgue space L2 (B) is then a Hilbert space with
inner product defined, for any Z1, Z2 ∈ L2 (σB), as:

E [XY ] =

∫

Ω

Z1(ω)Z2(ω)dP(ω).

Proof: See, [150] Theorem 9.4.1.

Hence, the set of Lebesgue spaces
{
L2 (σA)

}
PD

is comprised of Hilbert spaces, and more notably, for any
A ⊂ D, since L2 (σA) is a Hilbert space, it can be seen as a closed subspace of L2 (σX) (since it is complete).
Additionally, each of these Hilbert spaces is infinite-dimensional since no further restriction is put on the
input space (E, E). When studying the relationships between closed subspaces of an infinite-dimensional
Hilbert space, the notions of angles between subspaces offer relevant tools. They are the main topic of the
next section.

4.2.2 Angles between closed subspaces of a Hilbert space

As highlighted in the previous section, the subspaces
{
L2 (σA)

}
A∈PD

of L2 (σX) present a particular
algebraic form, which is related to the power-set. The next step is exploring the relationships between
these subspaces. For instance, one can wonder if (or rather when) these subspaces are all orthogonal. To
that extent, the notion of angles between subspaces of Hilbert spaces has been introduced in functional analy-
sis. In particular, two angles introduced by Dixmier and Friedrichs are of interest to decompose outputs.
These angles, initially introduced for the general analysis of abstract infinite-dimensional Hilbert spaces,
have also been introduced in probability theory, as highlighted in the remainder of this section.

Dixmier’s angle Dixmier’s angle [60] can be understood as the minimal angle between two closed
subspaces of a Hilbert space. Its cosine is defined as follows.

Definition 4.1 (Dixmier’s angle). Let H and K be closed subspaces of a Hilbert space H with inner
product ⟨·, ·⟩ and norm ∥·∥. The cosine of Dixmier’s angle is defined as

c0 (H,K) := sup {|⟨x, y⟩| : x ∈ H, ∥x∥ ≤ 1, y ∈ K, ∥y∥ ≤ 1} .
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Loosely speaking, Dixmier’s angle can be understood as the smallest angle between two elements of
the two closed subspaces (or limits of converging sequences of these elements). In probability theory,
when applied to two generated Lebesgue spaces, this angle is directly linked to the notion of maximal
correlation between random elements, as a dependence measure between random elements (e.g., vectors)
[87].

Definition 4.2 (Maximal correlation). Let (Ω,F ,P) be a probability space. Let Z1 and Z2 be two random
elements, and denote σZ1 and σZ2 their generated σ-algebra. The maximal correlation between Z1 and Z2

is Dixmier’s angle between L2 (σZ1) and L2 (σZ2), i.e., c0
(
L2 (σZ1) ,L2 (σZ2)

)
.

The maximal correlation has been extensively studied as a dependence measure (see, e.g., [183, 129, 55,
50]), or as a means to quantify the dependence between generated σ-algebras for studying the mixing
properties of stochastic processes [61].

The maximal correlation is particularly suitable for studying the independence of random elements.
For instance, let Z1 and Z2 be two random elements, and let L2

0 (σZ1
) and L2

0 (σZ2
) be their respective

induced Lebesgue space of centered random variables. Then, the following equivalence holds:

c0
(
L2
0 (σZ1

) ,L2
0 (σZ2

)
)
= 0 ⇐⇒ L2

0 (σZ1
) ⊥ L2

0 (σZ2
) ⇐⇒ Z1 ⊥⊥ Z2,

where the independence is to be understood w.r.t. P. In other words, Z1 and Z2 are independent if
and only if L2 (σZ1) and L2 (σZ2) are orthogonal, which happens if and only if the maximal correlation
between Z1 and Z2 is equal to zero (see, [150], Chapter 3).

Friedrichs’ angle Friedrichs’ angle [79] differs from Dixmier’s angle in one way: the supremum is
taken outside the intersection of the two subspaces. It is defined as follows.

Definition 4.3 (Friedrichs’ angle). Let H and K be closed subspaces of a Hilbert space H with inner
product ⟨·, ·⟩ and norm ∥·∥. The cosine of Friedrichs’ angle is defined as

c (H,K) := sup

{
|⟨x, y⟩| :

{
x ∈ H ∩ (H ∩K)

⊥
, ∥x∥ ≤ 1

y ∈ K ∩ (H ∩K)
⊥
, ∥y∥ ≤ 1

}
,

where the orthogonal complement is taken w.r.t. toH.

In probability theory, this quantity is known as the maximal partial (or relative) correlation [35, 36, 51]
between two random elements.

Definition 4.4 (Maximal partial correlation). Let (Ω,F ,P) be a probability space. Let Z1 and Z2 be
two random elements, and denote σZ1

and σZ2
their generated σ-algebra. The maximal partial correlation

between Z1 and Z2 is Friedrichs’ angle between L2 (σZ1
) and L2 (σZ2

), i.e., c
(
L2 (σZ1

) ,L2 (σZ2
)
)
.

The maximal partial correlation is suitable for deciphering conditional independence between σ-algebras
generated by random elements and whether the conditional expectations w.r.t. to those σ-algebras com-
mute. For a sub-sigma algebra G ⊂ F , denote EG the conditional expectation operator w.r.t. G and ⊥⊥

G
denotes the conditional independence relation w.r.t. G (see, [126], Chapter 8). One then has the following
equivalence

c
(
L2 (σZ1

) ,L2 (σZ2
)
)
= 0 ⇐⇒ σZ1

⊥⊥
σZ1
∩σZ2

σZ2
⇐⇒ EσZ1

◦ EσZ2
= EσZ2

◦ EσZ2
= EσZ1

∩σZ2
, (4.2)

In other words, the conditional expectations w.r.t. Z1 and Z2 commute, if and only if the maximal partial
correlation between Z1 and Z2 is equal to zero (see, [126], Theorems 8.13 and 8.14).

Remark 4.2. In the remainder of this chapter, any reference to Friedrichs’ or Dixmier’s angle refers to
the cosine of the angle (in [0, 1]) instead of the angle itself (in [0, π/2]).

Properties of Friedrichs’ and Diximier’s angles Outside of their intrinsic links with the notions of
independence and conditional independence, these angles are better known in the functional analysis
literature as tools to assess if the sum of closed subspaces of Hilbert spaces is closed. Some properties
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relevant to proving our result are presented. The interested reader is referred to [59] for a more complete
overview.

Theorem 4.3 (Properties of Dixmier’s angle). Let H,K be closed subspaces of a Hilbert space H. Then,
one has that 0 ≤ c0 (H,K) = c0 (K,H) ≤ 1, and for any x ∈ H , and y ∈ K:

|⟨x, y⟩| ≤ c0 (H,K) ∥x∥ ∥y∥ , (4.3)

and for a proper closed subspace H̃ ⊂ H ,

c0

(
H̃,K

)
≤ c0 (H,K) .

Moreover, the following statements are equivalent.

1. c0 (H,K) < 1;

2. H ∩K = {0} and H +K is closed inH.

Proof: See, [59], Lemmas 2.3 and 2.10, Theorem 2.12.

The previous result can be understood as follows. First, Dixmier’s angle allows to sharpen the Cauchy-
Schwarz inequality thanks to Eq. (4.3). For probabilistic considerations, this entails that the minimal angle
between Lebesgue spaces (i.e., the maximal correlation) allows controlling the magnitude of the covari-
ances between their elements. Moreover, whenever the angle is strictly less than 1, the two subspaces of
interest are in a direct-sum, and their sum is closed, which is central to the following developments.

Theorem 4.4 (Properties of Friedrichs’ angle). Let H,K be closed subspaces of a Hilbert spaceH. Then,
one has that

0 ≤ c (H,K) = c (K,H) ≤ 1.

Notice that if H ⊆ K, then c (H,K) = 0. Moreover, the following statements are equivalent.

1. c (H,K) < 1;

2. H +K is closed inH.

Proof: See, [59], Lemmas 2.3 and 2.10, Theorem 2.13.

For the purposes of this manuscript, one property of Friedrichs’ angle is of interest: whenever its value
is strictly less than 1, the sum of the two subspaces is closed. The closure of sums of subspaces plays
a central part in the following developments. Moreover, these two angles are related, as the following
result highlights.

Lemma 4.2 (Relation between the two angles). Let H,K be closed subspaces of a Hilbert spaceH. Then,
one has that

0 ≤ c (H,K) ≤ c0 (H,K) ≤ 1.

Moreover, the following equality holds

c (H,K) = c0

(
H ∩ (H ∩K)

⊥
,K
)
= c0

(
H,K ∩ (H ∩K)

⊥
)
,

and if H ∩K = {0}, then c (H,K) = c0 (H,K).

Proof: See, [59], Lemmas 2.3 and 2.10.

Dixmier’s and Friedrichs’ angles are two tools to control the relationships between two closed subspaces
of an abstract infinite-dimensional Hilbert space. They admit probabilistic counterparts as generalized
dependence measures between random elements, with deep links with the notion of independence and
conditional independence. In the present section, the main goal is to describe the overall relationships
(i.e., through these angles) between the set of subspaces

{
L2 (σA)

}
A∈PD

of L2 (σX), but not only pairwise
but also globally. The following section introduces a particular matrix involving Friedrichs’ angle.
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Feshchenko matrix As illustrated above, the maximal and partial correlation are good candidates to
control the dependence structure of random elements. They can be understood as a generalization of
the correlation and partial correlation of random variables. Hence, they offer a natural avenue for gen-
eralizing to the notion of covariance and precision matrices. In particular, precision matrices (i.e., inverses
of covariance matrices) can be written using partial correlations (see, e.g., [136] p.129). This idea is by
no means new and has already been introduced in the study of graphical models [147], where generalized
covariance and precision matrices have been used to study particular algebraic structures of σ-algebras.
However, using Friedrichs’ angle as a generalized partial correlation in such a setting seems to have yet
to be done in the probability theory literature.

A novel generalization of precision matrices is introduced and named the maximal coalitional precision
matrix. It can be loosely understood as follows:

• Each element of this matrix allows comparing two subsets of inputs. Hence, it is of size
(
2d × 2d

)
,

and is indexed by the elements of PD;

• For each pair of subsets of inputs, the corresponding element of this matrix contains the negative
of the Friedrichs’ angle between their respective generated Lebesgue spaces. In other words, in
the standard definition of precision matrices, the partial correlation is replaced with the maximal
partial correlation.

Formally, the maximal coalitional precision matrix can be defined as follows.

Definition 4.5 (Maximal coalitional precision matrix). Let X = (X1, . . . , Xd) be random inputs (i.e., a
vector of random elements). The maximal coalitional precision matrix of X is the

(
2d × 2d

)
symmetric,

set-indexed matrix ∆, defined entry-wise, for any A,B ∈ PD, by

∆(A,B) =

{
1 if A = B;

−c
(
L2 (σA) ,L2 (σB)

)
otherwise.

Furthermore, denote ∆|A the principal
(
2|A| − 1× 2|A| − 1

)
submatrix of ∆ relative to the proper subsets

of A ∈ PD, i.e., ∀B,C ∈ PA, B ̸= A,C ̸= A

∆|A(B,C) = ∆(B,C).

In the field of functional analysis, a similar type of matrix is used to derive a sufficient condition for sums
of closed subspaces of an infinite-dimensional Hilbert space to be closed, following the pioneering work
of Ivan Feshchenko [73, 72] on this question. Since the maximal coalitional precision matrix is ultimately
used for that purpose in the following developments, and for the sake of conciseness, the matrix ∆
defined in Definition 4.5 is referred to as the Feshchenko matrix in the remainder of this manuscript.

4.2.3 Direct sums, complemented subspaces and projections

As stated in the introduction of this chapter, one can see the HDMR of G(X) with dependent inputs as
a direct-sum decomposition of the Hilbert space L2 (σX), which involves the subspaces

{
L2 (σA)

}
A∈PD

.
To that extent, the notions of internal direct-sums and direct-sum decomposition are introduced, as well
as the notion of complement when it comes to infinite-dimensional Hilbert spaces. Finally, the projection
operators of Hilbert spaces are formally introduced.

(Internal) Direct sums and direct sum decomposition An internal direct-sum decomposition of a
vector space entails expressing this vector space as a particular sum of subspaces. The adjective internal
refers to the fact that one sums subspaces of an ambient vector space and differs from external direct-
sums (see, Appendix D.1.1). However, the adjective internal is omitted in the following for conciseness,
except to avoid any confusion in the developments. Direct-sum decompositions of vector spaces can be
formally defined as follows.

Theorem 4.5 (Direct-sum decomposition). Let W be a vector space, and for a positive integer n, let
W1, . . . ,Wn be proper subspaces of W (i.e., Wi ⊂ W for every i = 1, . . . , n). Then, the following state-
ments are equivalent:
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1. Any w ∈W can be written uniquely as w =
∑n

i=1 wi where wi ∈Wi for i = 1, . . . , n;

2. For i = 1, . . . , n, one has that Wi ∩ (W1 +W2 + · · ·+Wi−1 +Wi+1 + · · ·+Wn) = {0};

3. W = +n
i=1Wi and additionally, for any w =

∑n
i=1 wi ∈W , where wi ∈Wi one has that

w = 0 =⇒ wi = 0, i = 1, . . . , n.

If any of these three conditions are met, then W is said to admit a direct sum decomposition, which is
denoted

W =

n⊕

i=1

Wi.

Proof: See, [12] Definition 1.40 and Proposition 1.44.

One can notice the resemblance between the sought-after decomposition in Eq. (4.1) and the one defined
in Theorem 4.5 (1.). Since the random output G(X) belongs to the (vector) Hilbert space L2 (σX), the
problem of HDMR of random outputs can be seen as finding suitable subspaces of L2 (σX), where each
subspace would be related to every Lebesgue space

{
L2 (σA)

}
A∈PD

, and such that they form a direct-
sum decomposition of L2 (σX). To that extent, the notion of complement of a subspace of a Hilbert space is
central.

Closure and complement of a subspace When dealing with infinite-dimensional Hilbert spaces,
particularly its subspaces, particular attention must be paid to their closure. When the ambient (i.e., ini-
tial space) Hilbert space is finite-dimensional, every (linear vector) subspace is automatically closed, but
this is not the case for infinite-dimensional ambient spaces. The notion of closedness is intrinsically sim-
ilar to the notion of completeness. Formally, let (H, ∥·∥) be an infinite-dimensional Hilbert space, and let
H ⊂ H be a proper subspace of H. H is said to be closed in H if the limit of every converging sequence
of elements of H is in H as well. Hence, if H is a closed subspace ofH, (H, ∥·∥) is itself a Hilbert space.

More importantly, a closed proper subspace H of a Hilbert space H is always complemented, i.e., there
exist some subspace K ofH such thatH admits the direct-sum decomposition:

H = H ⊕K.

For instance, as a consequence of the Hilbert projection theorem, the orthogonal complement H⊥ of H in
H, defined as

H⊥ := {x ∈ H : ∀y ∈ H, ⟨x, y⟩ = 0} ,
is an example of such complement (see, e.g., [190], Theorem 12.4), as long as H is closed. Orthogonal
complements are always closed. It is also important to note that many complements may exist for a sin-
gle closed subspace. However, the orthogonal complement is uniquely defined (i.e., other complements
are thus not orthogonal to the subspace). Hence, finding complements of subspaces is inherently linked
with direct-sum decompositions, as they can be interpreted as “the remainder of the ambient space”.

For the developments in this chapter, the orthogonal complements of subspaces of
{
L2 (σA)

}
A∈PD

are
formally introduced.

Definition 4.6. Let B ∈ PD and let H be a subspace of L2 (σB). For any A ∈ PD such that B ⊆ A,
denote

H⊥A =

{
f(XA) ∈ L2 (σA) :

∫

EA

f(xA)g(xB)dPXA
(xA) = 0, ∀g(XB) ∈ H

}
,

i.e., the orthogonal complement of H ⊆ L2 (σB) in L2 (σA), and, in particular, denote by ⊥= ⊥D the
orthogonal complement in L2 (σX).

These particular orthogonal complements have an interesting property, as described below.

Lemma 4.3. Let A,B ∈ PD, such that B ⊆ A, and let H be a subspace of L2 (σB). Then

H⊥B ⊆ H⊥A .
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Proof: From Lemma 4.1, one has that L2 (σB) ⊆ L2 (σA), and the proof is a direct consequence of the definition of
the orthogonal complements.

In other words, the orthogonal complement w.r.t. a smaller subset is included in the orthogonal comple-
ment of a bigger subspace.

Projection operators For two Banach spaces (M1, ∥·∥1) and (M2, ∥·∥2), and a linear operator T :
M1 →M2 denote the range of T as

Ran (T ) := {T (x) : x ∈M1} ⊆ M2,

and its nullspace as

Ker (T ) := {x ∈M1 : T (x) = 0} ⊆ M1.

LetH be a Hilbert space and P : H → H be a bounded linear operator. If P is idempotent and bounded
operator (i.e., P ◦P = P ), thenH admits the direct sum decompositionH = Ran (P )⊕Ker (P ) (see, [45],
Proposition 3.2). P is then called the projector on Ran (P ) parallel to Ker (P ) and is defined as

P : H = Ran (P )⊕Ker (P )→ H
x = xR + xK 7→ xR

where xR ∈ Ran (P ) and xK ∈ Ker (P ). In this case, the operator I − P is the projection on Ker (P ),
parallel to Ran (P ). On the other hand, if there are two closed subspaces M and N of a Hilbert space H
such thatH =M⊕N , then there exists a continuous idempotent operator (i.e., a projector) P with range
Ran (P ) = M and Ker (P ) = N (see, [84] Theorem 7.90). In this case, P is said to be canonical (w.r.t. to
the direct sum decompositionH =M ⊕N ).

In the case where Ker (P ) = Ran (P )
⊥, then the projection is said to be orthogonal, which is equivalent

to P being self-adjoint (see, [84] Theorem 7.71). Hence, in this framework, for every A ∈ PD, one can
see the conditional expectation operators EA [·] as the orthogonal projectors of elements of L2 (σX) onto
L2 (σA), parallel to L2 (σA)

⊥.

Hence, the projectors in Hilbert spaces are intrinsically linked to direct-sum decompositions. The oblique
projectors, built on direct-sum decompositions, are usually called “canonical projectors”. These opera-
tors and their evaluations are central in characterizing suitable model-centric influence and value mea-
sures.

4.3 Coalitional output decomposition with dependent inputs

As eluded in the previous section, being able to define an HDMR of a random output G(X) ∈ L2 (σX)
can be seen as finding some “coalitional direct-sum decomposition” of L2 (σX). In other words, it
amounts to finding, for every A ∈ PD, some subspace VA ⊆ L2 (σA), such that:

L2 (σX) =
⊕

A∈PD

VA.

Coming from Theorem 4.5, that would entail that any G(X) ∈ L2 (σX) can be uniquely written as

G(X) =
∑

A∈PD

GA(XA),

where GA(XA) ∈ VA, which is reminiscent Eq. (4.1).

This section shows that such a direct-sum decomposition is achievable under two reasonable assump-
tions. In addition to the result, its geometric interpretation is also discussed, and the particular case of
mutually independent inputs is showcased.
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4.3.1 Two reasonable assumptions

Non-perfect functional dependence The first assumption can be understood as a condition on the
σ-algebra generated by the subsets of inputs when considered as functions. More precisely, we put a
particular restriction on the intersection of their pre-images.

Assumption 2 (Non-perfect functional dependence). For any A,B ∈ PD,

σA ∩ σB = σA∩B

While mutual independence of X (see, Section 2.3.1) implies that Assumption 2 hold (see, Section 4.3.3),
it is essential to note that this assumption is less restrictive. In a nutshell, it can be understood as
the restriction that “the subsets of inputs cannot be expressed as a function of other subsets”. This
interpretation comes from the following result.

Proposition 4.1. Let X = (X1, . . . , Xd) be inputs, and suppose that Assumption 2 hold. Then, for any
A,B ∈ PD such that A ∩B ̸∈ {A,B} (i.e., the sets cannot be subsets of each other), there is no mapping
T : EA → EB such that XB = T (XA) a.s.

Proof: Suppose that there exists a mapping T : EA → EB such that XB = T (XA) a.s. Then, one has that
σB ⊆ σA, which in turn implies that σA ∩ σB = σB . Notice that necessarily A ∩ B ⊂ B and in the present
framework σA∩B ⊂ σB . Thus σA ∩ σB is necessarily different than σA∩B , and thus Assumption 2 cannot hold.
The result follows by taking the opposite implication.

Non-degenerate stochastic dependence While the first assumption considers the inputs function-
ally, the second assumption directly restricts their distribution. It can be seen as a restriction of the inner
product of the Lebesgue space L2 (σX), and more precisely, it controls the angles between the subspaces
L2 (σA), A ∈ PD through the Feshchenko matrix ∆ (see, Definition 4.5) of the inputs X . It is relatively
straightforward.

Assumption 3 (Non-degenerate stochastic dependence). The Feshchenko ∆ of X is positive definite.

Since ∆ can be seen as a generalized precision matrix, this assumption is relatively reasonable since
standard precision matrices (inverse of positive definite covariance matrices) are often assumed to be
positive definite. One can notice that under this assumption, for any A ∈ PD, the matrices ∆|A are also
positive since they are principal submatrices of ∆. This assumption entails an interesting consequence
regarding Friedrichs’ angle between generated Lebesgue spaces.

Lemma 4.4. Suppose that Assumption 3 hold. Then, for any A,B ∈ PD such that A ̸= B,

c
(
L2 (σA) ,L2 (σB)

)
< 1.

Proof: Suppose that Assumption 3 hold. Then, in particular, the principal submatrix of ∆
(

1 −c
(
L2 (σA) ,L2 (σB)

)

−c
(
L2 (σA) ,L2 (σB)

)
1

)

is positive definite as well, and thus,

2− 2c
(
L2 (σA) ,L2 (σB)

)
> 0 ⇐⇒ c

(
L2 (σA) ,L2 (σB)

)
< 1.

Thus, having a definite positive Feshchenko matrix entails that the maximal partial correlation between
XA and XB is strictly less than 1 (i.e., the angle itself must be greater than zero). Hence, it can be
interpreted by the fact that the subspaces L2 (σA) and L2 (σB) must have distinct elements.

Moreover, when it comes to input and vector exogeneity (see, Definition 3.2), assuming Assumption 2
implies that Assumption 1 from Chapter 3 hold.

Proposition 4.2. Let X be random inputs, and G(X) ∈ L2 (σX) be a random output. Let E ⊆ D, and
suppose that, for every i ∈ E, Xi is an exogenous input (see, Definition 3.2). Then, if Assumption 2 is
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supposed to hold, XE is an exogenous vector.

Proof: If for every i ∈ E, Xi is exogenous, this implies that:

G(X) ∈
⋂

i∈E
L2 (σ−i) .

However, notice that, thanks to Theorem 4.1 and under Assumption 2,

⋂

i∈E
L2 (σ−i) = L2

(⋂

i∈E
σ−i

)

= L2
(
σ⋂

i∈E −i
)
= L2 (σ−E) .

Hence G(X) ∈ L2 (σ−E) and from the Doob-Dynkin lemma (see, Lemma A.2), there exists some f(X−E) such
that G(X) = f(X−E) a.s., and thus XE is an exogenous vector.

4.3.2 Output decomposition and geometric interpretation

The main result of this chapter is stated below.

Theorem 4.6 (Direct-sum decomposition of L2 (σX)). For every A ∈ PD, let V∅ = L2 (σ∅) and for every
B ∈ PA, let

VB =


 +
C∈P−B

VC



⊥B

.

If Assumptions 2 and 3 hold, then for every A ∈ PD, one has that

L2 (σA) =
⊕

B∈PA

VB .

Proof of Theorem 4.6 on page p. 128.

The model-centric random output decomposition follows as a corollary.

Corollary 4.1 (Orthocanonical decomposition). Let X = (X1, . . . , Xd) be random inputs. Suppose that
Assumptions 2 and 3 hold. Then, for any G : E → R such that G(X) ∈ L2 (σX), G(X) can be uniquely
decomposed as

G(X) =
∑

A∈PD

GA(XA),

where each GA(XA) ∈ VA.

Proof: It is a direct consequence of Theorem 4.6 and Theorem 4.5.

In addition, this coalitional decomposition is properly gradual.

Proposition 4.3. Let X = (X1, . . . , Xd) be random inputs, G(X) ∈ L2 (σX) be a random output and
suppose that Assumptions 2 and 3 hold. Then, each summand of the orthocanonical decomposition of
G(X) is a proper representant (i.e., Definition 2.2) of XA.

Proof: Let A ∈ PD and notice that GA(XA) ∈ VA ⊂ L2 (σA), and thus the σ-algebra generated by GA(XA) is
included in σA and it is a representant of XA. Now let any B ⊂ A and suppose that the σ-algebra of GA(XA)
is included in σB . In this case, one would have that GA(XA) ∈ L2 (σB). However, by construction, one has
that VA ⊥ L2 (σB), and thus, necessarily, GA(XA) = 0. Hence, if GA(XA) is σB-measurable, it is necessarily
constant, and its generated σ-algebra is necessarily contained in σ∅. Thus, GA(XA) is a proper representant of
XA.
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Since the output coalitional decomposition is properly gradual, it entails that ∀A ⊆ D, the summands
GA(XA) ∈ VA in Corollary 4.1 are exactly functions of XA, in the sense that if they were σB-measurable
for any B ⊂ A (and hence functions of XB), they would necessarily be equal to 0.

Despite the somewhat formal nature of Theorem 4.6, its interpretation is rather intuitive. Given a uni-
variate function G1(X1) ∈ L2 (σ1), it is well known that it can always be decomposed as

G1(X1) = E [G1(X1)] + [G1(X1)− E [G1(X1)]] . (4.4)

In other words, a random variable can always be decomposed as its expectation plus its centered version.
The first step of the result formalizes this idea. V∅ = L2 (σ∅) is comprised of constant a.e. random
variables and is a closed subspace of L2 (σ1). Thus V∅ is complemented in L2 (σ1), and, in particular, it
is complemented by V1, its orthogonal complement. V1 is thus comprised of every function of L2 (σ1)
which are orthogonal to the constants (i.e., they are centered). Thus, since L2 (σ1) = V∅⊕V1, one recovers
the relation in (4.4).
For two inputs X1 and X2, Assumption 2 ensures that the subspaces L2 (σ1) and L2 (σ2) of L2 (σ12) are
not comprised of the same random variables, due to a functional relation between X1 and X2. On the other
hand, Assumption 3 ensures that these subspaces are not the same due to a degenerate stochastic relation.
Under those two assumptions, the sum L2 (σ1) +L2 (σ2) = V∅ + V1 + V2 is a closed subspace of L2 (σ12),
and thus, is complemented by V12 which is none other than its orthogonal complement. Notice that V1
and V2 are not necessarily orthogonal, but both are orthogonal to V∅ and V12.

The same reasoning can be applied with three inputs. The two assumptions ensure that L2 (σ12), L2 (σ23),
and L2 (σ13) are not pairwise equal due to either a functional or a stochastic relation. In this case, their
sum is a closed subspace in L2 (σ123), and thus, it is complemented by V123 (i.e., the orthogonal com-
plement of L2 (σ12) + L2 (σ23) + L2 (σ13)). However, notice that neither V12, V13 and V23 are pairwise
orthogonal, nor V1, V2 and V3. The same mechanism can be continued for any number of inputs.

Hence, the subspaces (VA)A∈PD
in Theorem 4.6 can be interpreted as the subspaces of functions of

X which, for any A ∈ PD, are σA-measurable (i.e., are functions of XA), but are orthogonal to the
linear combinations of functions in (VB)B∈P−A

. In other words, the elements of VA can only contain
proper representants, which can be understood as multivariate non-linear functions of exactly XA. For
instance, for two inputs X1 and X2, V12 can be seen as the space of functions of X1 and X2, that “are
not” (in the sense of being the complement of) linear combinations of functions of X1 and X2. Given
this construction, a natural interpretation of VA would be the space of “interactions” between the inputs
XA.

One can additionally notice some structure in the construction depicted above. In particular, some of
the subspaces in (VA)A∈PD

are pairwise orthogonal, while others are not necessarily. It is known as a
hierarchical orthogonality structure, which is further discussed in the following.

Hierarchical orthogonality The set of subspaces (VA)A∈PD
presents a particular orthogonality struc-

ture, namely hierarchical orthogonality, reminiscent of the one described in [38]. However, in our frame-
work, this structure arises naturally rather than by construction.

Proposition 4.4 (Hierarchical orthogonality). We place ourselves in the framework of Theorem 4.6. For
any A ∈ PD, and any B ⊂ A

VA ⊥ VB .

Proof: It is a direct consequence of the definition of VA.

This particular structure can be illustrated using the Boolean lattice described in Section 2.2.3. This
structure can be illustrated using a Hasse diagram, as in Figure 4.1 a). One can notice that (VA)A∈PD

endowed with the binary relation ⊥ (i.e., the relation “is in the orthogonal complement of”), then the
algebraic structure is preserved, as illustrated in Figure 4.1 b). In order to formally differentiate between
the structurally hierarchical subspaces and those that are not necessarily orthogonal, two different sets
related to this structure are introduced. For any A ∈ PD, the first one is the set of comparables (i.e., the
elements of PD that are subsets of A or such that A is a subset of), denoted

CA = PA ∪ {B ∈ PD : A ⊆ D} ,
and notice that, for any B ∈ CA, VB ⊥ VA. Then, we define the set of uncomparables of A as

UA = PD \ CA,
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∅

{3}{1}

{12} {23}

{123}

{2}

{13}

a) Boolean lattice

V∅

V3V1

V12 V23

V123

V2

V13

b) Hierarchical orthogonality

Figure 4.1: Illustration of the hierarchical orthogonality structure for three inputs. These Hasse diagrams
are meant to be read from the bottom to the top. If an edge joins two elements, the binary relation to the
above element links the bottom element. On a), the binary relation is ⊂, while on b) the binary relation
is ⊥.

and notice that, in general, for every B ∈ UA, VA is not necessarily orthogonal to VB . And notice
additionally that, for any A ∈ PD

PD = CA ∪ UA.

Remark 4.3. It is important to note that the hierarchical orthogonality of the subspaces (VA)A∈PD
is a

consequence of the choice of inductively choosing orthogonal complements in Theorem 4.6. Other comple-
ments, i.e., not necessarily orthogonal, could have been chosen, leading to a different structure. This is
why the output decomposition in Corollary 4.1 is called “orthocanonical”. A different choice of comple-
ments could lead to a different decomposition.

Canonical projections First, assuming that Theorem 4.6 holds, two different projectors onto the
subspaces VA, for every A ∈ PD, can be defined. Let A be any element of PD. Denote by PA the
orthogonal projector onto VA, i.e., ,

PA : L2 (σX)→ L2 (σX) , such that Ran (PA) = VA and Ker (PA) = V ⊥A .

Since VA is a closed subspace of L2 (σX), the orthogonal projector PA exists and is uniquely defined.
Additionally, for every A ∈ PD, denote the following subspaces of L2 (σX)

WA =
⊕

B∈PD:B ̸=A

VB ,

and the operators

QA : L2 (σX)→ L2 (σX)

G(X) =
∑

B∈PD

GB(XB) 7→ GA(XA)

and notice that QA is the projector onto VA parallel to WA, which is well-defined thanks to the direct-
sum decomposition of Theorem 4.6 (see, [181] Theorem 3.4). For any A ∈ PD, the operators PA(·) and
QA(·) are both projectors onto VA, but their nullspaces differ.
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The projectors onto the subspaces L2 (σA), for every A ∈ PD are now defined. First, the orthogonal
projector onto L2 (σA) is defined as

EA : L2 (σX)→ L2 (σX) , such that Ran (EA) = L2 (σA) and Ker (PA) = L2 (σA)
⊥
,

and notice that it is the conditional expectation operator of H(X) given XA (see, [126], Chapter 8). Ad-
ditionally, denote the subspace

|WA =
⊕

B∈PD,B ̸∈PA

VB

and the operator

MA : L2 (σX)→ L2 (σX)

G(X) =
∑

B∈PD

GB(XB) 7→
∑

B∈PA

GB(XB)

and, thanks to Theorem 4.6, notice that MA is the projection onto Ran (MA) = L2 (σA) parallel to
Ker (MA) = |WA. Hence, for any A ∈ PD, the operators EA [·] and MA [·] are two projections onto
L2 (σA), but with different nullspaces. While EA [·] represents the well-known conditional expectation
operator in probability theory, the operator MA [·] does not seem to have been extensively studied in this
literature.

The first result is a particular consequence of the hierarchical orthogonality structure. It is known as
the annihilating property (see, e.g., [105] Lemma 1, or [134]), which has been well-documented in the case
of mutually independent inputs. This property admits a somewhat surprising generalization in the
framework of Theorem 4.6.

Proposition 4.5 (Annihilating property). We place ourselves in the framework of Theorem 4.6 and
Corollary 4.1. For any A ∈ PD and any B ⊂ A

PB (QA (G(X))) = PB (GA(XA)) = 0.

Proof: From Proposition 4.4, for every B ⊂ A, one has that VB ⊥ VA, and thus GA(XA) ∈ VA ⊂ V ⊥B .

Another interesting result is the fact that the oblique projections (QA)A∈PD
onto the VA can be expressed

in terms of the oblique projections (MA)A∈PD
onto the generated Lebesgue spaces.

Proposition 4.6 (Formula for oblique projections). We place ourselves in the framework of Theorem 4.6
and Corollary 4.1. One has that, for any G(X) ∈ L2 (σX), and for any A ∈ PD

QA(G(X)) =
∑

B∈PA

(−1)|A|−|B|MA(G(X)),

where |.| denotes the cardinality of sets.

Proof: By definition of MA, one has that

∀A ∈ PD, MA(G(X)) =
∑

B∈PA

QA(G(X)),

which, thanks to Rota’s generalization of the Möbius inversion formula in Corollary 2.1, is equivalent to

∀A ∈ PD, QA(G(X)) =
∑

B∈PA

(−1)|A|−|B|MA(G(X)).

Proposition 4.6 highlights the fact that Theorem 4.6 is indeed a model-centric properly gradual decom-
position of the random output G(X). It is interesting to note that, in this particular case, the value
measure is defined as being the canonical oblique projection MA(G(X)), leading to the influence mea-
sure QA(G(X)) = GA(XA).

In order to better visualize how the decomposition of Theorem 4.6 can be understood in terms of
projections, one can take an example with two inputs X1 and X2, and a centered random output
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G(X1, X2) ∈ L2 (σ12). Figure 4.2 illustrates this situation. G(X1, X2) can be written as a sum of three
elements, G1(X1) ∈ V1, G2(X2) ∈ V2 and G12(X1, X2) ∈ V12. G12(X1, X2) is none other than the or-
thogonal projection of G onto V12, due to the fact that V12 is the orthogonal complement of V1 + V2 and,
naturally, G1(X1) + G2(X2) = [I − P12] (G(X)). Now, recall that since V1 and V2 are not necessarily
orthogonal (which is represented as the angle α (which is non-zero, thanks to the Assumptions 2 and 3)
in Figure 4.2), G1(X1) (resp. G2(X2)) is none other than the oblique projection of G(X) onto V1 parallel
to V2 (resp. onto V2 parallel to V1).

V2

V12

G

V1 ⊕ V2

G1 + G2

G12

α

V1

V1 ⊕ V2
V1

V2

G1 + G2

α α

α
G1

G2 P2(G)

P1(G)

Figure 4.2: Illustration of a centered function decomposition with two dependent inputs.

Remark 4.4. It is essential to note that Figure 4.2 is a mere illustration and should not be treated as a
rigorous representation. In fact, the subspaces V1, V2 and V12 are infinite-dimensional.

4.3.3 Mutual independence and Hoeffding’s decomposition

It is well-known that the independence of two random elements (w.r.t. to P) is linked to the indepen-
dence of the σ-algebras they generate, which can be characterized by the orthogonality of the cen-
tered generated Lebesgue spaces. More precisely, two sub σ-algebras A1 and A2 of a probability space
(Ω,F ,P) are said to be independent if L2 (A1) and L2 (A2) are orthogonal on the constant functions
(see, [150], Chapter IV, Definition 3.0.1). More precisely,

A1 ⊥⊥ A2 ⇐⇒ c0
(
L2
0 (A1) ,L2

0 (A2)
)
= 0,

where ⊥ is defined relative to the inner product on L2 (F). Additionally, two random elements Z1, Z2

defined on (Ω,F ,P) are considered independent if their generated σ-algebras are independent.

When dealing with a vector of random elements X = (X1, . . . , Xd), mutual independence can be de-
fined w.r.t. the independence of their generated σ-algebras. More precisely, X is said to be mutually
independent if

∀A ∈ PD, σA ⊥⊥ σD\A ⇐⇒ c0
(
L2
0 (σA) ,L2

0

(
σD\A

))
= 0.

Proposition 4.7. Let X be a vector of random elements. If X is mutually independent, then Assump-
tion 2 hold.

Proof: From [150], note that for two σ-algebras B1 and B2,

B1 ⊥⊥ B2 =⇒ B1 ∩ B2 = σ∅.

Suppose that Assumption 2 does not hold. Hence, in particular, for any A ∈ PD,

σA ∩ σD\A ̸= σ∅.

It implies that σA and σD\A cannot be independent. Hence, since this holds for any A ∈ PD, X cannot be
mutually independent. The result is proven by taking the opposite implication.
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Proposition 4.8. Let X be a vector of random elements and suppose that Assumption 2 holds. X is
mutually independent if and only if ∀A,B ∈ PD, A ̸= B,

c
(
L2 (σA) ,L2 (σB)

)
= 0.

Proof: Notice that, in the general case, if B ⊂ A, then c
(
L2 (σA) ,L2 (σB)

)
is necessarily equal to zero. Thus, we

focus on the case where A∩B = C ̸∈ {A,B}. Now, suppose that for any A,B ∈ PD, c
(
L2 (σA) ,L2 (σB)

)
= 0.

Hence, in particular, under Assumption 2, notice that for every A ∈ PD

c
(
L2 (σA) ,L2

(
σD\A

))
= c0

(
L2 (σA) ∩ L2 (σ∅)

⊥
,L2

(
σD\A

)
∩ L2 (σ∅)

⊥
)

= c0
(
L2
0 (σA) ,L2

0

(
σD\A

))
.

Thus, for every A ∈ PD,
c0
(
L2
0 (σA) ,L2

0

(
σD\A

))
= 0 ⇐⇒ σA ⊥⊥ σD\A,

which is equivalent to X being mutually independent.
Suppose that X is mutually independent, and thus, PX =×i∈D PXi , which implies that, for any A,B ∈ PD,
with A ∩B = C ̸∈ {A,B},

EA ◦ EB = EB ◦ EA = EC ,

Thus, the orthogonal projections onto L2 (σA) and L2 (σB) commute, which is equivalent to (see, (4.2))

c
(
L2 (σA) ,L2 (σB)

)
= 0.

Corollary 4.2. Let X be a vector of random elements and suppose that Assumption 2 holds. X is
mutually independent if and only if its Feshchenko matrix ∆ is the identity.

Proof: It is a direct consequence of Proposition 4.8, by definition of ∆.

Hence, if the inputs are mutually independent, both Assumption 2 and Assumption 3 hold and lead to
the very particular case of ∆ being the identity matrix. One has the following result when it comes to
the resulting decomposition of L2 (σX).

Proposition 4.9. Let X be random inputs and suppose that Assumption 2 holds. X is mutually inde-
pendent if and only if

∀A,B ∈ PD, B ̸= A VA ⊥ VB .

Proof: Notice that, in general, if Assumption 2 hold, one has that for any A,B ∈ PD, B ̸= A

c0 (VA, VB) ≤ c
(
L2 (σA) ,L2 (σB)

)
.

Note that, from Proposition 4.7, Assumption 2 holds for a mutually independent X . Moreover, notice from
Proposition 4.8 that X is mutually independent if and only if, ∀A,B ∈ PD, A ̸= B, c

(
L2 (σA) ,L2 (σB)

)
= 0,

thus necessarily c0 (VA, VB) = 0, which is equivalent to VA ⊥ VB .

Proposition 4.9 is, in fact, equivalent to the Hoeffding functional decomposition for mutually indepen-
dent inputs (see, Theorem 2.1), which can be seen as a very particular case of Theorem 4.6 where X
admits a Feshchenko matrix equal to the identity. In this very particular case, the subspaces VA are all
pairwise orthogonal, and the orthogonal and oblique projectors are equal, leading to Eq. (2.1) which can be
seen as a particular case of Proposition 4.6.

In a nutshell, Theorem 4.6 generalizes Hoeffding’s decomposition in Theorem 2.1 to Feshchenko matrix
that are different from the identity, or in other words, for not-necessarily mutually independent inputs. It
allows characterizing properly gradual output decompositions, which can be, in turn, used for defin-
ing influence measures in the same fashion as the FANOVA in Corollary 2.2. The following section is
dedicated to exploring and studying such influence measures.
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4.4 Model-centric influence measures

This section is dedicated to introducing the notion of orthocanonical decompositions of QoIs, which can be
understood as influence measures relying on the (fairly general) model-centric decomposition offered by
Theorem 4.6. In particular, two QoI decompositions are presented: the decomposition of an evaluation
of the model and the decomposition of its variance.

4.4.1 Orthocanonical evaluation decomposition

For ω ∈ Ω, denote x = X(ω) ∈ E an observation of X . Subsequently, denote G(x) ∈ R the evaluation
on x of a random output G(X) ∈ L2 (σX). In this case, the QoI is the observation G(x) itself. Thanks to
Theorem 4.6, one can define the orthocanonical decomposition of G(x).

Definition 4.7 (Orthocanonical decomposition of an evaluation). Let X = (X1, . . . , Xd) be a vector of
random elements, let G(X) ∈ L2 (σX) be a random output and assume that Assumptions 2 and 3 hold.
For any ω ∈ Ω, denote x = X(ω) and for every A ∈ PD, denote xA = XA(ω). From Theorem 4.6 notice
that:

G(x) =
∑

A∈PD

GA(xA).

where GA(XA) ∈ VA. The orthocanonical decomposition of the evaluation G(x) is the properly gradual
influence measure ϕ : PD → R defined as:

ϕ(A) = QA(G(x)) = GA(xA) =
∑

B∈PA

(−1)|A|−|B|MB (G(x))

where QA is the projection onto VA parallel to WA and MA is the projection onto L2 (σA) parallel to |WA.

From an input-centric standpoint (see, Chapter 3), where one begins with the choice of a value measure
v : PD → R in order to derive a coalitional decomposition of G(x), the only choice of value measure
leading to the orthocanonical evaluation decomposition is relatively straightforward: one must choose
the oblique projections M. Moreover, the usual choice of the conditional expectation, as done in [149], is
suitable if and only if the inputs are mutually independent, as highlighted by the following result.

Proposition 4.10. Let X = (X1, . . . , Xd) be random inputs, G(X) ∈ L2 (σX) be a random output, and
assume that Assumptions 2 and 3 hold. Then, the orthocanonical decomposition ϕ of G(x) is equal to

ϕ(A) =
∑

B∈PA

(−1)|A|−|B|EB (G(x)) , ∀A ∈ PD

if and only if X is mutually independent.

Proof: First, notice that MA = EA if and only if |WA is the orthogonal complement of L2 (σA). One can notice
that, |WA is a complement of L2 (σA) in L2 (σX), and from Proposition 4.9, one has that

L2 (σA) =
⊕

B∈PA

VB ⊥ |WA =
⊕

B∈PD,B ̸∈PA

VB ,

hold for every A ∈ PD if and only if X is mutually independent. In this case, |WA is an orthogonal complement of
L2 (σA), and by unicity, |WA = L2 (σA)

⊥, and thus MA = EA.

Hence, choosing the conditional expectations for the input-centric evaluation decomposition to be or-
thocanonical is suitable if and only if X is mutually independent. Moreover, as highlighted in Chapter 3, the
allocations in the Harsanyi set can be seen as aggregations of a coalitional decomposition. In particular,
one can define the orthocanonical Shapley attribution scheme, as an aggregation of the orthocanonical
evaluation decomposition.
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Definition 4.8 (Orthocanonical Shapley attribution for dependent inputs). Let X = (X1, . . . , Xd) be
random inputs, G(X) ∈ L2 (σX) be a random output and suppose that Assumptions 2 and 3 hold. The
canonical Shapley attribution of an evaluation G(x) is the allocation C-ShD → R given, for every i ∈ D,
by

C-Shi =
∑

A∈PD:i∈A

QA(G(x))

|A| =
∑

A∈PD:i∈A

∑
B∈PA

(−1)|A|−|B|MA [G(x)]

|A| .

Hence, the orthocanonical Shapley attribution is the Shapley values of the cooperative game (D, v)
where the value function v is given by

v(A) = MA [G(X)] =
∑

B∈PA

QA(G(X)), ∀A ∈ PD,

and the subsequent Harsanyi dividends of (D, v) are none other than the orthocanonical evaluation
decomposition of G(x), i.e.,

Dv(A) = QA(G(X)) =
∑

B∈PA

(−1)|A|−|B|MA [G(x)] , ∀A ∈ PD.

While these indices rely on the natural decomposition of L2 (σX) in the context of dependent inputs,
they remain an aggregation of the canonical decomposition of G(X). However, in this case, the choice
of value function can be justified, and the dividends can be geometrically interpreted.

4.4.2 Variance decomposition

For the case of importance quantification, the QoI is V (G(X)). Two ways to approach the problem of
decomposing V (G(X)) are proposed: The orthocanonical variance decomposition relies on the orthocanon-
ical decomposition of G(X) (see, Corollary 4.1). In contrast, the organic variance decomposition aims at
defining and disentangling pure interaction effects from dependence effects.

Canonical variance decomposition In light of Corollary 4.1, the orthocanonical variance decompo-
sition of G(X) is rather intuitive. It relies on the following rationale:

V (G(X)) = Cov (G(X), G(X))

=
∑

A∈PD

Cov (GA(XA), G(X))

=
∑

A∈PD

[
V (GA(XA)) +

∑

B∈UA
Cov (GA(XA), GB(XB))

]
.

reminiscent of the well-known “covariance decomposition” [209, 38, 96, 48]. Two indices arise from this
decomposition.

Definition 4.9 (Orthocanonical variance decomposition). We place ourselves in the framework of Theo-
rem 4.6. For any A ∈ PD, let

SU
A = V (GA(XA)) ,

defines the structural contribution of XA to G(X), while

SC
A =

∑

B∈UA
Cov (GA(XA), GB(XB)) ,

represents the correlative contribution of XA to G(X).

Remark 4.5. It is important to note that both the magnitude of SU
A and SC

A varies w.r.t. the dependence
structure of the inputs (i.e., the angles between the subspaces (VA)A∈PD

). Hence, SC
A cannot be under-

stood as a pure quantification of “dependence effects” and SU
A cannot quantify “pure interaction”.
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The canonical decomposition of V (G(X)) is suitable in practice if the dependence structure of X is
assumed to be inherent in the modeling of the studied phenomenon. In other words, if one aims to
understand the global relationship between X and G(X). Moreover, these two indices can be computed
using the oblique projections M.

Proposition 4.11. Suppose that Theorem 4.6 hold. Then, for any A ∈ PD

SC
A =

∑

B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) .

Proof of Proposition 4.11 on p.132.

Proposition 4.12. Suppose that Theorem 4.6 hold. Then, for any A ∈ PD

SU
A =

∑

B∈PA

(−1)|A|−|B| [V (MB(G(X)))− Cov (MB(G(X)), [I −MA] (G(X)))] .

Proof of Proposition 4.12 on p.133.

Organic variance decomposition The goal of the organic variance decomposition is to separate “pure
interaction effects” to “dependence effects”. Pure interaction can be seen as studying the functional rela-
tion between the inputs X and the random output G(X) without considering the dependence structure
of X . Hence, it amounts to performing a canonical variance decomposition of V (G(X)) under mutual
independence of X . Formally, let X = (X1, . . . , Xd) be a vector of random elements. The induced proba-
bility measure PX is not necessarily the product measure×i∈D PXi

. Now, denote X̃ = (X̃1, . . . , X̃d) the
vector of random elements such that

∀i ∈ D, X̃i and Xi have the same distribution. and PX̃ :=×
i∈D

PXi
.

In other words, X and X̃ have the same univariate marginals, but X̃ is the mutual independent version
of X and, for any A ∈ PD, denote X̃A its marginals. Suppose that G(X) ∈ L2 (σX) and G(X̃) ∈ L2

(
σX̃
)
,

and, for any H(X̃) denote

E⊥⊥
[
H(X̃)

]
:=

∫

E

H(x)
∏

i∈D
dPXi(xi), and V⊥⊥ (H(X)) := E⊥⊥

[(
H(X̃)− E⊥⊥

[
H(X̃)

])2]
.

Notice that, since X̃ is mutually independent, it respects both Assumptions 2 and 3, and hence, one can
perform the following canonical decomposition in L2

(
σX̃
)

G(X̃) =
∑

A∈PD

G̃A(X̃A),

where the G̃A(X̃A) are all pairwise orthogonal (see, Section 4.3.3), and hence

V⊥⊥
(
G(X̃)

)
=
∑

A∈PD

V⊥⊥
(
G̃A(X̃A)

)

The following influence measures are proposed.

Definition 4.10 (Pure interaction effect). Suppose that Theorem 4.6 hold. For any A ∈ PD, let

SA =
V⊥⊥

(
G̃A

)

V⊥⊥
(
G(X̃)

)V (G(X))

define the pure interaction indices.
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These indices are, in fact, the Sobol’ indices of G(X̃) [204], which are known in the literature as quantify-
ing pure interaction [48]. These indices can also be expressed as functions of the orthogonal projections
onto the subspaces L2

(
σX̃A

)
as follows

SA =
∑

B∈PA

(−1)|A|−|B|E⊥⊥B
(
G(X̃)

)
,

where, ∀A ∈ PD

E⊥⊥A
(
G(X̃)

)
=

∫

ED\A

G(X̃A, xD\A)
∏

i∈D\A
dPXi

(xi).

For further considerations about these indices, the interested reader is referred to [48].

Remark 4.6. In certain situations, when the measure induced by X is part of a particular family of
random vectors, it is possible to find a mapping T : E → E such that

X̃ = T (X).

For instance, if PX is in the family of elliptical distribution, it amounts to performing a Nataf transform
of the inputs [138, 137].

One desirability criterion can be brought forward when defining dependence effects: the set of indices
must all be equal to zero if and only if X is mutually independent. Formally, denote (ϕA)A∈PD

an
abstract set of dependence effects. One must have that

∀A ∈ PD, ϕA = 0, ⇐⇒ X is mutually independent.

Thanks to the geometric interpretation of the canonical decomposition of L2 (σX), many quantities that
respect this property can be defined. However, we focus on one particular quantity, which can be easily
interpreted.

Lemma 4.5. Suppose that Theorem 4.6 hold. Let G(X) ∈ L2 (σX). Then,

QA (G(X)) = PA (G(X)) a.s., ∀A ∈ PD ⇐⇒ X is mutually independent.

Proof of Lemma 4.5 on p.133.

In other words, Lemma 4.5 states that the oblique projections QA are orthogonal if and only if X is
mutually independent. Hence, a relatively intuitive index would quantify the distance between these
two projections.

Definition 4.11 (Dependence effects). Suppose that Theorem 4.6 hold. For any A ∈ PD, let

SD
A = V (QA(G(X))− PA(G(X))) = E

[
(QA(G(X))− PA(G(X)))

2
]

define the dependence effect of XA.

Furthermore, these indices are naturally all zero if and only if X is mutually independent.

Proposition 4.13.
SD
A = 0,∀A ∈ PD ⇐⇒ X is mutually independent.

Proof: This is a direct consequence of Lemma 4.5, coupled with the fact that the expected squared distance is a
distance.

Links between the canonical and organic indices The second link entails that the correlative
effects sum up to the sum of the differences between the structural and pure interaction effects.
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Proposition 4.14. Suppose that Theorem 4.6 hold. One has that
∑

A∈PD

SC
A =

∑

A∈PD

[
SA − SU

A

]
.

Proof: Notice that ∑

A∈PD

SA = V (G(X)) =
∑

A∈PD

SU
A + SC

A

and thus ∑

A∈PD

[
SA − SU

A

]
=
∑

A∈PD

SC
A .

Hence, the sum of the correlative indices can be interpreted as the difference between the sum of the
pure interaction effects and the structural effects.

4.5 Analytical example: two Bernoulli inputs

In order to illustrate Theorem 4.6, one can take an interest in the following illustration: X is defined
as two Bernoulli random variables (here, E = {0, 1}2) X1 and X2, with success probability q1 and q2
respectively. The joint law of X can be fully expressed using three parameters: q1, q2, and ρ = E [X1X2].
More precisely, one has that: 




p00 = 1− q1 − q2 + ρ

p01 = q2 − ρ
p10 = q1 − ρ
p11 = ρ

where, for i, j ∈ {0, 1}, one denotes pij = P ({X1 = i} ∩ {X2 = j}). Denote the (4 × 4) diagonal matrix
P = diag(p00, p01, p10, p11). Any function G : {0, 1}2 → R can be represented as a vector in R4, where
each element represents a value that G can take w.r.t. the values taken by X . For i, j ∈ {0, 1}, denote
Gij = G(i, j), and thus

G =




G00

G01

G10

G11


 ,

where each Gij can be observed with probability pij .

4.5.1 Orthocanonical decomposition as solving equations

In this particular case, one can analytically compute the decomposition of G related to Theorem 4.6. It
can be performed by finding suitable unit-norm vectors in R4

v∅ =




c
c
c
c


 , v1 =




g0
g0
g1
g1


 , v2 =




h0
h1
h0
h1


 , v12 =




k00
k01
k10
k11




such that 



v⊤∅ Pv1 = 0

v⊤∅ Pv2 = 0

v⊤∅ Pv12 = 0

v⊤12Pv1 = 0

v⊤12Pv2 = 0

, and ,





v⊤∅ Pv∅ = 1

v⊤1 Pv1 = 1

v⊤2 Pv2 = 1

v⊤12Pv12 = 1

(4.5)

which results in a system of nine equations with nine real unknown parameters (i.e., c for v∅, h0, h1 for
v1, g0, g1 for v2, and k00, k01, k10, k11 for v12). Given these vectors, one has that any function G can be
written as

G = ev∅ + αv1 + βv2 + δv12,



4.6. CONCLUSION 75

resulting in four additional equations with four unknown parameters. These 13 equations and 13 pa-
rameters can be computed analytically. The symbolic programming package sympy is used to perform
these calculations [154]. The interested reader is referred to the accompanying GitHub repository1, or to
Appendix D.4 for details about the computations, and the actual analytical values.

For the purposes of this manuscript, one particular observation is discussed in the following section.

4.5.2 Angle, comonotonicity and definite positiveness of ∆

Dixmier’s angle between V1 and V2 can be analytically computed regarding this illustration. It is equal
to:

c
(
L2 (σ1) ,L2 (σ2)

)
= c0 (V1, V2) =

∣∣v⊤1 Pv2
∣∣ =

∣∣∣∣
−q1q2 + ρ√

q1
√
q2
√
1− q1

√
1− q2

∣∣∣∣ .

Hence, for the Feshchenko matrix ∆ to be definite positive (and thus for Assumption 3 to hold), it entails
that ∣∣∣∣

−q1q2 + ρ√
q1
√
q2
√
1− q1

√
1− q2

∣∣∣∣ < 1

which entails that ρ must be bounded by

B0 := max

{
0, q1q2

(
1−

√
(q1 − 1) (q2 − 1)

q1q2

)}
< ρ < min

(
1, q1q2

(
1 +

√
{q1 − 1} (q2 − 1)

q1q2

))
:= B1.

However, the classical Fréchet bounds for ρ for bivariate Bernoulli random variables (see, [123], p.210)
are equal to

H0 := max (0, q1 + q2 − 1) ≤ ρ ≤ min (q1, q2) := H1,

and notice that these bounds are attained if and only ifX is counter-comonotonic or comonotonic. How-
ever, attaining these bounds violates Assumption 2 (and in particular Proposition 4.1). However, one
can notice that

B0 ≤ H0, and , H1 ≤ B1,

which entails that ifX is not either counter-comonotonic or comonotonic (and thus Assumption 2 holds),
and ρ is strictly contained in the Fréchet bounds, then ∆ is will always be definite-positive, and Assump-
tion 3 will hold. In other words, Assumptions 2 and 3 always hold for any copula between two Bernoulli
random variables, as long as they are strictly contained in the Fréchet-Hoeffding bounds. Hence, the
assumptions required for Theorem 4.6 will virtually always hold in this particular case.

4.6 Conclusion

In this chapter, a model-centric approach is presented in order to define influence measures. This ap-
proach requires the ability to decompose the random output G(X). In the literature, the Hoeffding
decomposition [102] allows such a decomposition under the assumption of mutual independence of the
inputs. A novel framework has been proposed, relying on tools from probability theory, functional anal-
ysis, and combinatorics, which ultimately allowed generalizing Hoeffding’s result under two reasonable
assumptions. This novel properly gradual decomposition can be expressed using oblique projections of
the random output on some particular subspaces, which obey some underlying structure: hierarchical
orthogonality. This orthocanonical decomposition defines model-centric influence measures for two QoIs:
an evaluation (i.e., observation) of the random output and its variance. Aside from the definition of
these interpretability tools, some of their properties are studied, and an emphasis is put on their geomet-
ric interpretation. Finally, a particular case is studied, where the inputs are composed of two Bernoulli
random variables for which the decompositions can be computed analytically.

The first main challenge towards adopting the indices is estimation. While many methods exist to es-
timate conditional expectations (i.e., the orthogonal projections onto the Lebesgue spaces generated by
subsets of inputs), the literature is rather scarce when it comes to the estimation of such oblique pro-
jections. Many of these schemes related to conditional expectation estimation rely on the variational
problem offered by Hilbert’s projection theorem (i.e., orthogonal projections as a distance-minimizing

1https://github.com/milidris/phdThesis

https://github.com/milidris/phdThesis
https://github.com/milidris/phdThesis
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problem). A first idea would be to express oblique projections as a distance-minimizing optimization
problem under constraints. A second idea would be to take advantage of the particular expression of
oblique projections (see, e.g., [2, 46]), which, in our case, would translate, in particular, for everyA ∈ PD,
to

MA = PL2(σA) ◦
(
PL2(σA) + P

|WA
− P

|WA
◦ PL2(σA)

)−1
,

where for a subspace V ⊂ L2 (σX), PV is the orthogonal projection on V . However, this approach in-
volves estimating the inverse of an operator, which is a challenging feat. A final idea is to find suitable
bases for each (VA)A∈PD

to project G(X) onto. However, it remains relatively complicated since these
subspaces are infinite-dimensional (i.e., the bases are most likely Schauder). Non-orthogonal polyno-
mial bases would be a great start to study this problem whenever X is endowed with a multivariate
Gaussian probabilistic structure. When estimating the pure interaction effects, a perspective would be
to take inspiration from importance sampling schemes, and in particular on copula densities. In the pre-
sented framework, copula densities can be used to define an isometric mapping between L2 (σX) and
L2
(
σX̃
)
, which would enable to go from the Lebesgue space of X to the Lebesgue space generated by

the mutually independent version on X .

The second main challenge is understanding the extent of such an approach. Aside from the uncertainty
quantification this framework offers, it is a step towards a more global treatment of dependencies in
(non-linear) multivariate statistics. As one can notice, this framework offers a (somewhat surprisingly)
linear approach to possibly highly non-linear problems (due to the function G and to the stochastic
dependence on X), where Assumptions 2 and 3 will play a pivotal role going forward. The question of
the closure of subspaces generated by subsets of inputs is not new (the interested reader is referred to the
work of Ivan Feshchenko, see, e.g., [73, 72]), but the approach taken in this chapter does not seem to have
been explored for multivariate statistics purposes. Aside from the presented results, the point of view
presented in this chapter uncovers an exciting path towards a more complete overview of non-linear
multivariate statistics. However, many aspects remain to be mastered, implications to be discovered,
and links with existing literature to unveil. Moreover, concerning Assumptions 2 and 3, practical tools
need to be developed to statistically assess whether they are respected.

Finally, one can note the importance of the Boolean lattice algebraic structure, which is intrinsically
part of the presented developments. Highlighting its role in the presented developments is essential
in building a path toward studying different algebraic structures for different analyses. Rota’s result is
very general (see, Theorem B.1) and does not only apply to Boolean lattices (i.e., powersets). It holds for
any (finite) partially ordered set. Studying other algebraic structures can pave the way for more complex
analysis, where the relationship between the inputs may differ (e.g., causality). For example, one can
think of hierarchical structures (e.g., to represent physical causality) or the presence of trigger variables
[174], which would result in a different algebraic structure, but still be partially ordered. More generally,
there seems to be a deep link with the statistical field of graphical models [136] that needs to be unveiled,
where Feshchenko matrices will probably play an important role.
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Abstract (English).

Robustness studies of black-box models are recognized as necessary for numerical models based on structural
equations and predictive models learned from data. These studies must assess the model’s robustness to possible
misspecification regarding its inputs (e.g., covariate shift). The study of black-box models, through the prism of
uncertainty quantification (UQ), is often based on sensitivity analysis involving a probabilistic structure imposed
on the inputs. In contrast, ML models are solely constructed from observed data. This work aims to unify the
UQ and ML interpretability approaches by providing relevant and easy-to-use tools for both paradigms. To pro-
vide a generic and understandable framework for robustness studies, perturbations of the inputs are defined by
constraining their quantiles. The Wasserstein distance between probability measures is used to solve the problem
while preserving the inputs’ dependence structure. It is demonstrated that this perturbation problem can be an-
alytically solved. Ensuring regularity constraints through isotonic polynomial approximations leads to smoother
perturbations, which can be more suitable in practice. Numerical experiments on real case studies from the UQ
and ML fields highlight the computational feasibility of such studies and provide local and global insights on the
robustness of black-box models to input perturbations.

Abstract (Français).

Les études de robustesse des modèles boîte-noire sont utiles dans la validation des modèles numériques basés sur
des équations structurelles et les modèles prédictifs appris à partir de données. Ces études doivent évaluer la ro-
bustesse du modèle face à une possible mauvaise spécification de ses entrées (par exemple, un décalage covariable).
L’analyse des modèles boîte-noire, à travers le prisme de la quantification de l’incertitude (UQ), repose souvent
sur une analyse de sensibilité impliquant une structure probabiliste imposée aux entrées, tandis que les modèles
d’apprentissage automatique sont construits uniquement à partir de données observées. Ce travail vise à unifier
les approches de la UQ et de l’interprétabilité des modèles d’apprentissage automatique en fournissant des out-
ils pertinents et faciles à utiliser pour ces deux paradigmes. Afin d’établir un cadre générique et compréhensible
pour les études de robustesse, on propose de perturber les entrées (supposées aléatoires), en s’appuyant sur des
contraintes sur leurs quantiles. La distance de Wasserstein entre les mesures de probabilité est ensuite minimisée
afin de résoudre ce problème, tout en préservant la structure de dépendance des entrées. Il est démontré que ce
problème de perturbation peut être résolu analytiquement. En assurant des contraintes de régularité par le biais
d’approximations polynomiales isotones, cela conduit à des perturbations plus lisses, qui peuvent être plus adap-
tées en pratique. Des expériences numériques sur des études de cas réelles, provenant des domaines de la UQ et de
l’apprentissage automatique, mettent en évidence la faisabilité computationnelle de telles études et fournissent des
informations locales et globales sur la robustesse des modèles boîte-noire fâce aux perturbations des leurs entrées.

Keywords .

Wasserstein distance • Optimal transport • Probability measure projection • Robustness • Epistemic Uncertainty
• Quantiles • Isotonic Polynomials.
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5.1 Assessing robustness by perturbing inputs

This chapter is dedicated to the robustness assessment of a random output through controlled input per-
turbations. As highlighted in Section 1.3.1, these interpretability methods aim at defining precise per-
turbations on the distribution of the inputs, which in-turn characterize perturbed inputs. Then, studying the
behavior of the output’s QoIs under these perturbations allows answering conundrums of the type:

What are the differences of a black-box model’s QoIs induced by a given perturbation of its inputs?

This conundrum entails uncovering a causal link (in the physical sense) between a perturbation and the
behavior of the black-box model. Thus, particular care must be put on the definition of the perturbations,
in order to ensure that the perturbation does not uncontrollably modify the initial distribution (e.g., per-
turbing the mean of an input implies changing the dependence structure between all the inputs).

The problem of input perturbations is analogous to many frameworks in both the ML field (e.g., domain
adaptation [34], covariate shift [93, 213], adversarial attacks [10]) and SA (e.g., distributional sensitivity
analysis [5, 162], distributional robustness [141, 86]) or distributional modifications to understand the
fairness of algorithms [53, 54]. In the field of financial mathematics, it can also be linked to the notion of
distortion functions, which are paramount to defining distortion risk measures [15].

In the literature, many methods have been proposed in order to define relevant perturbations (e.g., via
geodesics on Fréchet manifolds [86, 127], adversarially [157], using empirical quantiles [13]). However,
while generic and automatic, these methods often disregard the physical meaning of these perturbations.
To that extent, four desirability criteria are proposed to ensure that the perturbations are meaningful to
the eyes of domain experts and decision-makers. For instance, perturbations can be used as proxies
for epistemic uncertainty, leading to exploratory studies on the behavior of a model induced by a lack
of knowledge. Another example would be prospectively designing perturbations to anticipate future
changes in the inputs (e.g., climate change). Finally, suppose a gap between some observed data and do-
main experts’ opinions is proven. In that case, perturbations can be modeled to enforce this knowledge
while keeping some empirical information gathered on the field.

Formally, given initial inputs X with induced probability measure PX , and a black-box model G : E →
Y , the input perturbation methodology can be broken down into three steps:

1. First, define perturbations on the distribution P of the inputs X ;

2. Next, find the the perturbed distribution PX̃ that respect these perturbations, leading to perturbed
inputs X̃ ∼ PX̃ ;

3. Finally, compare QoIs of the random outputs G(X) and G(X̃).

Finding suitable perturbed distribution PX̃ can be generically modeled as the following optimization
problem:

PX̃ ∈ argmin
P

D (PX , P )

s.t. P ∈ C.
(5.1)

where D is a discrepancy between probability measures, and C is a perturbation class, i.e., a particular
subset of probability measures that respect certain constraints. The framework presented in Section 1.2 is
restricted according to the following assumptions.

Special case . In this chapter, the following is assumed concerning the inputs:

• For every i ∈ D, Ei ⊆ R and thus E ⊆ Rd, i.e., the random inputs are a random vector;

• For every i ∈ D, Xi has a finite variance, i.e.,

E
[
X2

i

]
=

∫

Ei

x2i dPXi
(xi) <∞.

In the context of this manuscript, four desirability criteria are of interest and are detailed as follows:
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Interpretability The perturbations should be meaningful to domain experts and decision-makers.
It ensures that well-understood phenomena induce the uncovered variations in the model’s behav-
ior. Hence, designing perturbations should be done with practitioners and precisely reflect a domain-
specific question. In-fine, perturbation interpretability ensures that the (physical) causal link one aims
to draw of a perturbation on the behavior of a model is insightful on the question at stake.

Genericity The perturbations should be generic because they should not depend on restrictive prop-
erties assumed to hold for G (e.g., continuity, derivability) or PX (e.g., absolute continuity). Genericity
ensures the proposed methodology is post-hoc [16]. To emphasize the duality between SA and ML in-
terpretability [182, 119], generic perturbation ensures that the proposed methodology is usable in both
settings.

Proximity The perturbed distribution should be “close” to the initial distribution PX . Proximity
ensures that the perturbed distribution remains somewhat similar to the initial, where similarity needs
to be measured through a discrepancy. For instance, closeness in the KL divergence sense entails similar
information, whereas closeness in the Wasserstein distance sense has a more geometric meaning. Either
way, the initial distribution, be it empirical or chosen, bears some information on the behavior of the
input, which needs to be partially preserved.

Exploration The perturbation scheme should allow for exploring unobserved or low probability re-
gions ofX . This criterion ensures that “out of distribution” scenarios can be reached. Hence, the model’s
behavior can be assessed on “unusual” (for PX ) evaluations, which is crucial when testing for robust-
ness.

The choices of discrepancy and the definition of perturbation classes explored in this chapter, and moti-
vated by the desirability criteria listed above, are the following:

• The 2-Wasserstein distance as a discrepancy between probability measures to ensure genericity
and exploration;

• Perturbation classes C based on three types of constraints:

– Interpolation constraints on generalized quantile functions to ensure interpretability and gener-
icity;

– Smoothness of the generalized quantile functions to ensure exploration;

– Copula-preservation to ensure interpretability.

Some preliminary notations In the following, denote by P(Rd) the set of probability measures
defined on Rd and, for a positive integer p, denote by Pp(R) the set of probability measures defined on
R with finite p-th moment. For every univariate input Xi, i ∈ D, denote by Pi its induces probability
measure, and let ΩXi ⊂ R be its application domain. It represents the range in whichXi is intended to vary
in practice [189] (see, Appendix E.1.1). Additionally, denote by FPi(t) the cumulative distribution function
(cdf) of Xi, and by F←Pi

and F→Pi
its generalized quantile function (gqf) and the right-continuous generalized

inverse of FPi
(see, Definition E.3). More generally, denote by F the space of distribution functions

(see, Definition E.2), and F→ the space of generalized quantile functions (see, Appendix E.1.2).

5.2 Perturbing quantiles

5.2.1 Quantile perturbation classes

Motivations First, for any univariate probability measure Pi ∈ P(R) induced by an input Xi, its gqf
F←Pi

always exists. Hence, perturbing marginal quantiles do not require additional assumptions on the
initial probability measure PX or the shape of the target perturbed probability measure PX̃ . It ensures
that the proposed methodology is generic, in contrast to the one proposed in [140] based on generalized
moments.
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Second, quantiles are interpretable. In many applied problems, quantile specifications are often key to
studying the influence of input variables on a decision-making output. Beyond the fact that quantiles
have a decision-theoretical sense through pinball cost functions [41], numerous applications dealing
with economic stress tests or risk mitigation against natural hazards use quantiles as influential inputs
of decision-helping models. For instance, in the drought risk studies in [65], the association between
soil wetness, climatic, seismic, and socioeconomic variables is often carried out using marginal quantiles
that are features for predictive cost models. Input variations of daily value-at-risk percentiles, computed
from legacy data, were recently required by the European Banking Authority for generating macroeco-
nomic scenarios used for EU-wide stress tests [11]. Reverse SA studies for financial risk management,
such as those conducted in [176], are primarily based on moving values-at-risk, which are quantiles.

The following examples offer additional concrete illustrations of using quantiles for influence analysis.
They highlight two quantile perturbation schemes: quantile shifting and application domain dilatation.

Example 5.1 (Economic stress test (Inspired by [27])). Assume that an economic shock happens in an
abstract country. Prospective analyses announce a $200 drop in the population median wage. Before
the shock, the population wage distribution PX is known (or observed), thanks to some annual census
data. This distribution has a median wage of $2000. The new population wage distribution is unknown
due to the lack of recent data. The economists want to know if they can be confident in their predictive
macro-economic model f w.r.t. this sudden change. A way to answer this problem would be assessing
the behavior of the model f on a distribution PX̃ , such that:

F←P
X̃
(0.5) = 1800.

Example 5.2 (River water level). This example is inspired from [120] and more deeply studied in Sec-
tion 5.5.2. The safety of an industrial site located near a river is studied through the prediction of the
water level G(X) where G is a numerical hydrodynamic model, and X gathers the physical features of
the river. A key dimension of X is the Strickler roughness coefficient Ks for the upstream water level
[82], which is modeled as a truncated Gaussian distribution on ΩX = [15, 55]. However, this applica-
tion domain is tainted with epistemic uncertainties on the actual nature of the riverbed (e.g., more or
less subject to shrubby vegetation). The practical use of G would require assessing its predictive power
under a wider interval ΩX = [5, 65]. A way to express this prospective study is to assess the model’s
behavior on a distribution PX̃ , such that:

F→Ks
(0) = 5, F←Ks

(1) = 65.

Formal Definition Since, for a fixed α ∈ [0, 1], α-quantiles are not necessarily unique, equality con-
straints on quantile functions seem somewhat arbitrary (see, Appendix E.1.2). It would amount to con-
straining the infimum of the set of α-quantiles. Arguably, given a desired α-quantile value of b ∈ R,
a more reasonable constraint would be for b to be in the set of α-quantiles of the perturbed distribution.
Formally, it amounts to for constraints of the type:

F←(α) ≥ b ≥ F←(α+) = F→(α), (5.2)

In other words, the perturbed univariate distribution should have b as one of its α-quantile values. In
the case where the perturbed cdf is invertible, it becomes a traditional equality constraint as α-quantiles
become uniquely defined (i.e., F←(α) = F→(α)). In the following, the inequality constraints defined in
Eq. (5.2) are referred to as quantile constraints.

Definition 5.1 (Quantile perturbation class). Let K be a positive integer, and let α = (α1, . . . , αK)⊤ ∈
[0, 1]K and b = (b1, . . . , bK)⊤ ∈ RK . The quantile perturbation classQ(α, b) ⊆ P(R) is the set of probability
measures defined as:

Q(α, b) =
{
Q ∈ P(R) : F←Q (αi) ≤ bi ≤ F→Q (αi), i = 1, . . . ,K

}
.

An equivalent characterization, thanks to the uniqueness of gqfs, is:

Q(α, b) =
{
Q ∈ P(R) : F←Q = L ∈ F←, L(αi) ≤ bi ≤ L(α+

i ), i = 1, . . . ,K
}
.

It is possible to derive sufficient conditions on α and b in order for Q(α, b) to be non-empty:
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Lemma 5.1. Let α ∈ [0, 1]K and b ∈ RK , which are assumed to be ordered without loss of generality. If

0 ≤ α1 < · · · < αK ≤ 1, and b1 < · · · < bK , (5.3)

then Q(α, b) is non-empty.

Proof of Lemma 5.1 on p.152.

Quantile perturbation classes can contain probability measures with discontinuous gqfs. Ensuring
smooth perturbed gqfs can be of practical interest. It entails further restricting the gqfs of the proba-
bility measures in a quantile perturbation class to respect some smoothness conditions. They can be
formally defined as follows.

Definition 5.2 (Smooth quantile perturbation class). Let K be a positive integer, α = (α1, . . . , αK)⊤ ∈
[0, 1]K , b = (b1, . . . , bK)⊤ ∈ RK and let V ⊆ F← be a given set of smooth non-decreasing functions. The
smooth quantile perturbation class QV(α, b) ⊆ P(R) is the set of probability measures defined as:

QV(α, b) =
{
Q ∈ P(R) : F←Q ∈ V, F←Q (αi) ≤ bi ≤ F→Q (αi), i = 1, . . . ,K

}
.

Note that smooth perturbation classes generalize perturbation classes since Q = QF← .

5.2.2 Two sets of interpretable quantile perturbation classes

Two sets of quantile perturbation classes are introduced: quantile shifts and application domain dilata-
tion.

Quantile shifts. Quantile shifts are defined by constraining an initial α-quantile to take values in a
pre-determined range. Formally, given a quantile level α ∈ [0, 1], and an initial α-quantile pα = F←P (α),
quantile shifts defines a set of quantile perturbations classes of probability measures having their α-
quantiles ranging over a compact interval [η0, η1] ⊆ ΩX such that η0 < pα < η1. In other words, for each
bα ∈ [η0, η1], a quantile perturbation class QV(α, bα) can be constructed. This particular type of set of
quantile perturbation classes can be described using a perturbation intensity θ ∈ [−1, 1]:

Lemma 5.2. Let Θ = [−1, 1] and denote η = (η0, η1) with η0 < pα < η1. For θ ∈ Θ, let,

bα(η, θ) =





pα(1 + θ)− θη0 if − 1 ≤ θ < 0,

pα if θ = 0,

pα(1− θ) + θη1 if 0 < θ ≤ 1.

Then, for any gqf F← ∈ F← such that

F←(α) ≥ bα(η, θ) ≥ F→(α),

one has that,

θ = −1⇔ bα(η, θ) = η0,

θ = 0⇔ bα(η, θ) = pα,

θ = 1⇔ bα(η, θ) = η1,

(5.4)

and for any −1 ≤ θ1 < θ2 ≤ 1,
bα(η, θ1) < bα(η, θ2).

Proof of Lemma 5.2 on p.152.

In other words, bα(η, θ) ∈ [η0, η1] is a strictly increasing function of θ and θ = 0 indicates that pα must
remain untouched (i.e., the quantile value is not perturbed). Figure 5.1 (a.) illustrates this perturbation
scheme. Quantile shifts are formally defined as the collection of perturbation classes {T (η, θ)}θ∈[−1,1]
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Figure 5.1: Quantile shift (a.) and application domain dilatation (b.) perturbation schemes. The initial
quantile function is displayed in green. On the left, red points indicate different quantile shifting constraints
between η0 and η1, leading to different intensity values θ. On the right, the application domain’s width
(in magenta) is up to doubled (blue points) or down to halved (red points), according to an intensity
parameter θ ∈ [−1, 1].

where,

T (η, θ) =
{
Q ∈ P(R) : F←Q (α) ≤ bα(η, θ) ≤ F→Q (α)

}

= Q (α, bα(η, θ))
(5.5)

Application domain dilatations. Application domain dilatations consists of perturbing the bounds of
the application domain of a marginal input. For a univariate X ∼ P with ΩX = [ω0, ω1], the dilatation
process amounts to widening or narrowing the width (or diameter diam(ΩX)) of ΩX . It amounts con-
straining the extreme quantiles (i.e., α ∈ {0, 1}) while preserving the midpoint of ΩX . The dilatation is
characterized by a parameter η > 1 controlling the rescaling magnitude of ΩX . In other words, one aims
at finding a perturbed distribution PX̃ with support Supp

(
PX̃

)
= [b0, b1] for b0, b1 ∈ R, b0 < b1, where

the midpoint of [b0, b1] is equal to the midpoint of ΩX , but such that diam
(
PX̃

)
:= diam

(
Supp

(
PX̃

))
is

rescaled compared to diam (ΩX). Similarly to quantile shift, the next lemma formalizes expressions for
these two bounds as a function of a perturbation intensity θ ∈ [−1, 1].

Lemma 5.3. Let η > 1. For θ ∈ [−1, 1], let:

b0(η, θ) =





1
2

(
ω0

(
2− θ(η−1 − 1)

)
+ θω1(η

−1 − 1)
)

if − 1 ≤ θ < 0,

ω0 if θ = 0,
1
2

(
ω0

(
2 + θ(η − 1)

)
− θω1(η − 1)

)
if 0 < θ ≤ 1,

b1(η, θ) =





1
2

(
ω1

(
2− θ(η−1 − 1)

)
+ θω0(η

−1 − 1)
)

if − 1 ≤ θ < 0,

ω1 if θ = 0,
1
2

(
ω1

(
2 + θ(η − 1)

)
− θω0(η − 1)

)
if 0 < θ ≤ 1.

Then, for every (θ, η) ∈ [−1, 1]× [1,∞),

b0(η, θ) + b1(η, θ) = ω0 + ω1 (midpoints equality).

Denote b(η, θ) = [b0(η, θ), b1(η, θ)], and notice that

θ = −1⇔ diam (b(η, θ)) =
diam(ΩX)

η
,

θ = 0⇔ diam (b(η, θ)) = diam(ΩX),

θ = 1⇔ diam (b(η, θ)) = ηdiam(ΩX),

(5.6)
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and for any −1 ≤ θ1 < θ2 ≤ 1,
diam (b(η, θ1)) < diam (b(η, θ2)) .

Proof of Lemma 5.3 on p.152.

In other words, diam (b(η, θ)) ∈
[
η−1diam(ΩX), ηdiam(ΩX)

]
is a strictly increasing function of θ, and

for θ = 0, one has that b(η, θ) = ΩX , i.e., the application domain is not perturbed.

Figure 5.1 (b.) illustrates this perturbation scheme. The initial application domain is displayed in ma-
genta and is subject to a dilatation of parameter η = 2. The red constraints halve its width, and the
blue constraints double it. One can additionally check that in both cases, the midpoint of the original
validity domain is preserved. Application domain dilatations are formally defined as the collection of
perturbation classes {T (η, θ)}θ∈[−1,1] where,

T (η, θ) =
{
Q ∈ P(R) : F←Q (m) ≤ bm(η, θ) ≤ F→Q (m),m ∈ {0, 1}

}

= Q
(
(0, 1)⊤, (b0(η, θ), b1(η, θ))

⊤
) (5.7)

Many perturbation settings can be defined by combining quantile shifts and domain dilatations. How-
ever, for the sake of simplicity, quantile shifts and domain dilatations are studied independently in
Section 5.5.

5.2.3 Copula preservation and marginal perturbations

Motivations Regarding multivariate perturbations in general, independence assumptions are often
required [141]. While it facilitates mathematical calculations, it is questionable in practice. One of the
main challenges in ML interpretability and SA is to account for the potential dependence structure
between the inputs (or features) [177].

Dependencies provide helpful information on the global behavior of the inputs. In SA, the dependence
structure is often chosen after extensive studies [57], and expresses the physical relationship between
the uncertainties on the inputs. In ML, it can be argued that preserving dependencies avoids creating
meaningless patterns [22] and is critical in some practical studies [145, 173]. Dependencies between
random variables are usually modeled using copula-based representations [164].

From the interpretability standpoint, in practice, the intricacies of multivariate insights due to stochastic
dependence are much more complicated to grasp. Moreover, many of the properties presented above
do not hold regarding multivariate quantile functions: The definition of multivariate quantile functions
is a highly non-trivial task. Many interesting approaches have been recently proposed [40, 94]. How-
ever, they lack the broad adoption of their univariate counterpart in practice, which makes them less
interpretable.

Thus, in order to ensure the interpretability, the proposed perturbation methodology is restricted to:

• Quantile perturbations on marginal inputs.

• Perturbed probability measures PX̃ having the same copula as the initial probability measure PX .

Marginal perturbation maps and copula preservation Let X ∼ P and for i = 1, . . . , d, let
each marginal input Xi ∼ Pi and (F←i )i=1,...,d be a collection of quantile functions in F←. A marginal
perturbation map is a mapping:

T : X → X

x1
...
xd


 7→



T1(x1)

...
Td(xd)


 (5.8)

where
Tj =

[
F←j ◦ FPj

]
, j = 1, . . . , d.

The perturbed inputs can be expressed as X̃ := T (X).
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Lemma 5.4. Suppose that each F←i , i = 1, . . . , d is strictly increasing:

(i) If P is an empirical measure then X and X̃ have the same empirical copula.

(ii) If P is atomless then X and X̃ have the same copula.

Proof of Lemma 5.4 on p.153.

Hence, perturbation maps composed of compositions of marginal cdfs and strictly increasing quantile
functions preserve the copula. For instance, if P is an empirical measure related to an observed dataset,
applying T to every observation results in a perturbed dataset with the same Spearman correlation
matrix.

Copula-preserving multivariate perturbation classes Combining quantile perturbation classes
with marginal perturbation maps allows for defining multivariate perturbation classes. Let X ∼ P , and
for i = 1, . . . , d, let θi ∈ [0, 1]K × RK and θ = (θ1, . . . , θd). Finally, let Q(i) := Q(θi) be the perturbation
class associated with the input Xi. For Q ∈ P(Rd), and denote Q1, . . . , Qd its marginal distributions.
Denote the set:

Qd(θ) =
{
Q ∈ P(Rd) : Qi ∈ Q(i)

}
,

and for any Q ∈ P(Rd), denote TQ the marginal perturbation map defined as:

TQ : X → X


x1
...
xd


 7→




[
F←Q1
◦ FP1

]
(x1)

...[
F←Qd
◦ FPd

]
(xd)


 (5.9)

Marginal quantile perturbation classes are defined as the set:

Z(P, θ) = {Q ∈ Qd(θ) : TQ(X) ∼ Q,X ∼ P} ,

and, from Lemma 5.4, copula-preserving marginal quantile perturbation classes are defined as:

Z̃(P, θ) =
{
Q ∈ Z(P, θ) : F←Qi

is strickly increasing, i = 1, . . . , d
}
.

5.3 Wasserstein projections

5.3.1 Motivations

The Wasserstein distance is deeply rooted in optimal transportation theory [219] and has been used
successfully in many ML and deep learning applications [80, 8]. It has also been extensively studied as
a tool for guaranteeing distributional robustness to adversarial attacks in ML [62]. It has been used in
SA to produce novel sensitivity indices [75, 28].

First, the 2-Wasserstein distance is interpretable. The choice of transportation cost as the squared distance
is intrinsically linked to notions of the L2 norms, which can be interpreted as lengths, analogous to the
well-known Euclidean geometry [219]. It becomes natural and intuitive to quantify transportation costs
as distances between points. It becomes even more natural in one dimension since the 2-Wasserstein
distance can be interpreted as the squared difference in areas between two quantile functions. Hence,
proximity between two univariate probability measures, in the 2-Wasserstein sense, is rather natural.

Moreover, the 2-Wasserstein distance ensures genericity. The only requirement for two probability mea-
sures to be comparable is the finiteness of the variance of the random variable they induce. This as-
sumption is classical in SA and ML interpretability. Compared to the KL divergence, which requires
the absolute continuity of one probability measure versus the other and the existence of logarithmic
moments, it appears less restrictive. In practice, it allows for more flexible perturbations: if P is an em-
pirical measure (i.e., purely atomic), thenQ is not restricted to be purely atomic; conversely, if P admits a
density, then it does not restrict Q to admit a density. These benefits are key in unifying the frameworks
of SA and ML interpretability: the flexibility of the 2-Wasserstein distance allows for greater explicit



86 CHAPTER 5. ROBUSTNESS TO INPUT PERTURBATIONS

control (e.g., through smoothing restriction) on the resulting perturbed measure Q, independently of
the properties of P .

Additionally, the 2-Wasserstein distance allows for exploration. Optimal transport maps between two
probability measures w.r.t. the 2-Wasserstein distance are (usually) not linear [194]. In other words,
perturbed solutions are not limited to the support of the initial probability measures: atoms can be
added and ranges with 0 probability can be made relevant.

5.3.2 Marginal quantile constrained Wasserstein projections

The problem of finding a probability measure Q closest to P , but Q ∈ Z̃(P, θ) can be formalized as
follows:

Q = argmin
G∈P2(Rd)

W 2
2 (P,G) s.t. G ∈ Z̃(P, θ) (5.10)

However, since the set of probability measures in Z̃(P, θ) share the same copula as P , this problem can
be simplified:

Lemma 5.5. The perturbation map T : Rd → Rd that minimizes (5.10) is defined, for any x =
(x1, . . . , xd)

⊤ ∈ Rd, as:

T (x) =




[
F←Q1
◦ FP1

]
(x1)

...[
F←Qd
◦ FPd

]
(xd)




where, for i = 1, . . . , d:

F←Qi
= argmin

L∈L2([0,1])

{∫ 1

0

(
L(x)− F→Pi

(x)
)2
dx

}

s.t. L(αj) ≤ bj ≤ L
(
α+
j

)
, i = 1, . . . ,K,

L is strictly increasing.

(5.11)

where for α = (α1, . . . , αk)
⊤, b = (b1, . . . , bk)

⊤, θi = (α, b).

Proof of Lemma 5.5 on p.153.

Hence, solving the projection problem in (5.10) is equivalent to solving the d problems of the form of
(5.11).

5.3.3 Relaxed projection problem

Imposing that the resulting optimally perturbed marginal gqf be strictly increasing guarantees preserv-
ing the initial copula of the inputs. However, such constraints can lead to the non-existence of an opti-
mum of (5.11) due to the non-closure of the set of strictly increasing functions [25]. To that extent, this
work focuses on a relaxation of the problem in (5.11) to increasing functions, namely:

F← = argmin
L∈L2([0,1])

{∫ 1

0

(
L(x)− F→Pi

(x)
)2
dx

}

s.t. L(αj) ≤ bj ≤ L
(
α+
j

)
, i = 1, . . . ,K,

L ∈ V ⊆ F←.

(5.12)

where V can be understood as a set of “smooth quantile functions” (see, Definition 5.2). Notice that
this problem is indeed a relaxation of the initial problem. Indeed, if V is chosen as the set of strictly
increasing functions, this problem becomes equivalent to Eq. (5.11).

Remark 5.1. In practice, the relaxed problem (5.12) is numerically more straightforward to solve and
can still lead to strictly increasing solutions.
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5.4 Computing the perturbed distributions

5.4.1 Analytical solution for the relaxed problem with no smoothing

The following proposition provides a convenient way to solve the perturbation problem (5.12) in the
particular case of V = F←.

Proposition 5.1. Let P be a probability measure in P2(R). Let α ∈ [0, 1]K and b ∈ Rk, such that α1 <
· · · < αK and b1 < · · · < bK , and Q(α, b) the associated quantile perturbation class. For i = 1, . . . ,K, let
βi = FP (bi). Define the intervals Ai = (ci, di] for i = 1, . . . ,K, such that:

c1 = min(β1, α1), ci = min
[
max(αi−1, βi), αi

]
, i = 2, . . . ,K,

dK = max(βK , αK), dj = max
[
min(βj , αj+1), αj

]
, j = 1, . . . ,K − 1.

Let A =
⋃K

i=1Ai and A = [0, 1]\A. Then the problem (5.12) where V = F← has a unique solution which
can be written as, for any y ∈ [0, 1]:

F←Q (y) =

{
F→P (y) if y ∈ A,
bi if y ∈ Ai, i = 1, . . . ,K.

(5.13)

Proof of Proposition 5.1 on p.153.

In order to interpret this result, illustrated in Figure 5.2, let us recall that when a quantile function is
constant on an interval, it implies that the associated probability measure admits an atom at the value
taken by the gqf on this interval. Moreover, the mass allocated to this atom is equal to the length of the
interval. Additionally, each jump of the quantile function induces an interval with no mass. The solution
displayed in (5.13) shows that both initial and perturbed quantile functions are equal on A. However,
they differ on every interval Ai in the following fashion:

• Q have atoms at each constraint point bi, i = 1, . . . ,K;

• Each of these atoms have mass Q({bi}) = di − ci, for i = 1, . . . ,K;

• Each open interval Ii ⊂ R defined as

Ii =





(
max(F←P (αi), bi−1), bi

)
, when bi > F←P (αi),(

bi,min (bi+1, F
←
P (αi))

)
, when bi < F←P (αi)

(5.14)

with, by convention, b0 = −∞ and bK+1 = ∞, has no mass. To put it briefly, Q(Ii) = 0 for every
i = 1, . . . ,K.

In other words, whenever an α-quantile pα is shifted up to a value b, the perturbation entails sending
every possible value in the range (pα, b) to b. Hence, every value in (pα, b) cannot be sampled according
to Q. Moreover, the singleton {b} now admits a probability of being observed equal to the initial proba-
bility of this interval, i.e., Q({b}) = P

(
(pα, b)

)
. When an α-quantile is shifted to b, the interval becomes

(b, pα), and the same reasoning can be done.

The analytical result of Proposition 5.1 is rather intuitive. Indeed, the Wasserstein distance quantifies
the amount of work needed to transform a probability measure into another one [194]. When using W2,
the amount of work is quantified using the Euclidean distance, i.e., transporting a point x0 to x1 requires
(x0 − x1)2 work units. This intrinsic “point-wise way of quantifying similarities” can be recovered in
Proposition 5.1: perturbing an α-quantile entails giving the initial mass of an interval adjacent to b to the
singleton {b} in order to satisfy the constraint.

5.4.2 Isotonic piece-wise interpolating polynomial smoothing

The analytical solution provided in Proposition 5.1 presents a significant drawback: part of the applica-
tion domain of the perturbed input receives no mass, which hurts the exploration criteria. This is because
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0 1
α1 α2 α3 α4 0 1

α1 α2 α3 α4

b1

b2
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b4

b1
b2
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Figure 5.2: Characterizing quantile function of the solution of the perturbation problem (dashed blue).
The initial quantile function (i.e., F←P ) is displayed in green, and dashed red lines identify the quantile
constraints. (a.) and (b.) illustrate different possible perturbation configurations, increasing or decreasing
several initial quantile values.

F← contains discontinuous functions. Ensuring continuity through a smooth perturbation class QV
where V is a set of continuous, non-decreasing functions can remove this issue.

This section studies the projection of the gqf F←P of a univariate input onto a space of piece-wise contin-
uous polynomials. It implies that the support of Q must be bounded. These bounds are made explicit
using extremal quantile constraints (i.e., F←Q (0) and F←Q (1) are constrained to take finite values). For-
mally, the goal is to find a piece-wise polynomial of the form

G(x) =





G0(x) if α0 := 0 ≤ x < α1,
...
Gi(x) if αi ≤ x < αi+1,
...
GK(x) if αK ≤ x ≤ 1 =: αK+1.

(5.15)

under the continuity constraints at each knot on the grid α1 < · · · < αK , i.e.,

Gi(αi+1) = Gi+1(αi+1), i = 0, . . . ,K − 1.

Here, each Gj ∈ R[x]≤p, for j = 0, . . . ,K, where R[x]≤p denotes the set of all real polynomials of degree
at most equal to a nonnegative integer p. Let Sp denote the space of functions defined by Eq. (5.15).
Restricting the solution of the perturbation problem in Eq. (5.12) leads to the following optimization
problem

F←Q = argmin
L∈L2([0,1])

{∫ 1

0

(L(x)− F→P (x))
2
dx

}

s.t. L(αi) = bi, i = 1, . . . ,K,

L ∈ F← ∩ Sp.

(5.16)

or, in other words, V = F← ∩ Sp in the initial relaxed problem. Due to the piece-wise nature of polyno-
mials in Sp defined on the α0 < α1 < · · · < αK < αK+1 = 1, solving the problem in Eq. (5.16) reduces
to solve sub-problems on each sub-interval [αi, αi+1], i = 0, . . . ,K of [0, 1]. Eq. (5.16) is indeed separa-
ble into K + 1 independent optimization sub-problems. Each defines an optimal component Gi of the
piece-wise polynomial G as defined in Eq. (5.15).

Any of these problems can be formulated generically as follows. Let [t0, t1] ⊂ [0, 1], and z0, z1 ∈ R
be interpolation values at t0 and t1 respectively. The goal is to find the solution to the optimization
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sub-problem

S = argmin
L∈R[x]≤p

{∫ t1

t0

(F←P (x)− L(x))2dx
}

s.t. L(t0) = z0, L(t1) = z1,

L′(x) ≥ 0, ∀x ∈ [t0, t1].

(5.17)

This optimization sub-problem is nothing more than the L2 isotonic (i.e., monotonic, in this case non-
decreasing) polynomial approximation on a compact interval [161], with interpolation constraints at the
boundaries. The interpolating polynomials have been extensively studied in the literature [77], as well
as isotonic polynomial regression and approximation [196, 221]. However, this specific optimization
problem does not seem to have been thoroughly studied.

A strategy for solving (5.17) is to use the sum-of-squares (SOS) [135] representation of nonnegative poly-
nomials. These SOS representations can then be characterized using semi-definite positive (SDP) matri-
ces [171, 172, 205]. A similar characterization of isotonic polynomials has been proposed in [205]. The
following result shows that this optimization problem fits into the category of strictly convex programs:
the solution of Eq. (5.20) is unique [25].

Theorem 5.1. Let [t0, t1] ⊂ [0, 1]. Let M be the symmetric positive definite ((d+ 1)× (d+ 1)) moment
matrix of the Lebesgue measure on [t0, t1], i.e. for i, j = 1, . . . , d+ 1,

Mij =

∫ t1

t0

xi+j−2dx =
(t1)

i+j−1 − (t0)
i+j−1

i+ j − 1
, (5.18)

and denote r ∈ Rd+1 the moment vector of F→P (x), i.e., for i = 0, . . . , d

ri =

∫ t1

t0

xiF→P (x)dx. (5.19)

Then, the vector s∗ = (s0, . . . , sd)
⊤ ∈ Rd+1 of coefficients characterizing the polynomial S in (5.17) is

the solution of the following convex constrained quadratic program

s∗ = argmin
s∈Rp+1

s⊤Ms− 2s⊤r

s.t. s ∈ K,
(5.20)

where K is an identifiable closed convex subset of Rp+1 (for the sake of conciseness, K is characterized
within the proof).

Proof: see, Section E.5 on p.154.

Remark 5.2. Constraining the polynomials in (5.17) to be strictly increasing (i.e., L′(x) > 0) would
ensure copula preservation. However, the set K in Theorem 5.1 would be open, and the existence of an
optimal solution would not be guaranteed.

As solving for s∗ in Eq. (5.20) is a convex-constrained quadratic program, it can be addressed efficiently
using devoted solvers. The problem in Eq. (5.16) amounts to solving K + 1 optimization problems
of the form Eq. (5.20). Furthermore, computations can be done in parallel. The problem in Eq. (5.20)
can be formulated and solved using CVXR, an R package for disciplined convex programming [81]. The
optimization scheme is illustrated in Algorithm 1.

While computing the Lebesgue moment matrix M on each sub-interval of [0, 1] is straightforward, com-
puting strategies for r, the moment vector of F←P , can vary depending on whether P is empirical or not.
Additional computational details are given in Appendix E.3.

To provide a frame of reference for the practical usage of this method, the empirical computational
time of solving one element of G, w.r.t. the polynomial degree is studied. Values t0, t1 ∈ [0, 1], and
z0, z1 ∈ ΩX are randomly selected, and an isotonic interpolating piece-wise continuous polynomial is
fitted (i.e., solving Eq. (5.20)). Polynomials of degrees ranging from 2 to 50 are fitted for each experiment,
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Algorithm 1 Isotonic interpolating piece-wise continuous polynomial optimization strategy
Require: α, b, F→P , p
1: for i = 0, . . . ,K do (in parallel)
2: Compute M on [αi, αi+1] (5.18).
3: Compute r on [αi, αi+1] (5.19).
4: Setup CVXR constraints.
5: s(i) ← Solve (5.20).
6: Gi(x)←

∑p
j=0 s

(i)
j xj

7: end for
8: return G(x)←∑K

i=0Gi(x)1[αi,αi+1](x)

repeated 150 times. The execution time1 has been recorded and is displayed in Figure 5.3. The mean
computational time seems to be linear w.r.t. the polynomial degree. However, the higher the degree, the
wider the 90% time coverage seems to be, which may be caused by the complexity of the underlying
optimization problem. In our limited testing, further numerical experiments showed that small polyno-
mial degrees (≤ 7) often appear sufficient to obtain good approximations. Moreover, the approximation
error tends to stabilize, w.r.t. the polynomial degree, rather rapidly.

10 20 30 40 50
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Degree of the fitted polynomial
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ec
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ds

Mean solving time
Empirical 90% coverage

Figure 5.3: Computational solving time in seconds of the optimization problem in Eq. (5.20) using CVXR,
w.r.t. the chosen degree of the polynomial. Computations have not been executed in parallel.

Remark 5.3. The numerical solver used is SCS V3.2.1 [166]. The quantile functions have been mapped
to take values between [−1, 1] to improve numerical stability. All the figures and all obtained optimal
perturbations have been computed by performing this pre-processing step first. The interested reader is
referred to the accompanying GitHub repositorya.

ahttps://github.com/milidris/phdThesis

5.5 Illustration on use-cases

The perturbation method is applied to two use cases to illustrate the robustness insights one can gather
regarding black-box models. First, the robustness to feature perturbations of a classification model (i.e., a
one-layer neural network) trained on an acoustic fire extinguisher dataset is studied. Local and global

1Using an AMD Ryzen 7 4750U 8-core processor.

https://github.com/milidris/phdThesis
https://github.com/milidris/phdThesis
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diagnostics are showcased, leading to tangible insights. The second use case deals with a numerical hy-
drological model from the UQ literature. The perturbation methodology allows going beyond classical
metrics for surrogate model validation.

Remark 5.4. The following applications apply optimal perturbations using an isotonic polynomial
smoothing with an arbitrarily high degree. The degree is chosen based on an empirical inspection of the
solutions and ensuring that the approximation error remains relatively the same w.r.t. higher degrees.

Particular attention has been put on copula preservation. Even though the relaxed problem in Eq. (5.12)
is solved in the following applications, the solutions are composed of strictly increasing marginally
perturbed quantile functions.

5.5.1 Acoustic fire extinguisher: Airflow perturbation

Perturbation strategy A straightforward perturbation strategy is proposed for the Airflow feature.
The perturbation is composed of the K = 14 constraints:

• The application domain of the feature is preserved by setting both the 0 and 1-quantiles to the
dataset’s minimum and maximum observed value.

• The left tail of the distribution is preserved by constraining every quantile of level 10% to 60% with
a step of 5% to interpolate the empirical quantile function of the feature.

• A quantile shift perturbation is put on the 80%-quantile of the feature, with an initial value of
F←P (0.8) = 12, being shifted between 9.5 (θ = −1) and 14.5 (θ = 1).

In addition to these perturbations, piece-wise continuous isotonic polynomials smoothing is enforced.
The degree of each increasing polynomial has been arbitrarily chosen to be up to 9. The constraints
and the resulting quantile-constrained Wasserstein projections are illustrated in Figure 5.4 for intensity
values −1, 0, and 1.

0.0 0.2 0.4 0.6 0.8 1.0
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Quantile level

A
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Airflow Empirical Quantile Function
θ  = −1
θ  = 1
θ  = 0

Figure 5.4: Quantile functions of the optimally perturbed Airflow feature, with a chosen polynomial
degree equal to 9. The red line represents the preserved tail; meanwhile, the green, blue, and yellow lines
represent various quantile shift intensity levels (θ = −1, θ = 0, and θ = 1, respectively).

The perturbed quantile level has been chosen with the model’s decision boundary in mind: no observa-
tion in the initial dataset with an Airflow value exceeding 12.3m/s is classified by the model as not extin-
guishing the fire, regardless of the values taken by the other features. Perturbing the 80%-quantile of the
Airflow variable allows for exploring the model’s behavior in regions close to this decision boundary.
More importantly, it allows for assessing the predictive robustness of the neural network in this region
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under perturbations of varying magnitude. Generally, this quantile shift regime can be understood as a
perturbation on the right tail of the initial distribution, i.e., on values higher than the 60%-quantile.

Model robustness assessment First, global robustness insights are highlighted. The left plot of
Figure 5.5 presents the proportion of perturbed observations with predictions of 1 w.r.t. to the intensity
of the perturbation. Notice that the proportion is increasing, along with θ. Hence, decreasing the value
of the initial 80%-quantile tends to result in a lower number of predicted put-out fires, and increasing its
value results in an increasing number of predicted put-out fires. This interpretation is relatively intuitive:
all other things being equal, a higher Airflow value entails a higher chance of predicting Y = 1. The
right plot of Figure 5.5 presents the proportion of prediction shift w.r.t. θ. Notice that the higher the
magnitude of the perturbation (positively or negatively), the more predictions tend to change, and the
closest θ is to 0, the fewer predictions shift. This observation informs on the predictive stability in the
vicinity of the decision boundary of the model: small perturbations tend to result in fewer prediction
shifts than bigger perturbations.
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Figure 5.5: Proportion of predictions Y = 1 (left) and proportion of classification prediction shift (right)
compared to the initial data, w.r.t. the perturbation intensity parameter θ.

Figure 5.6 presents the behavior of the Shapley effects (see, Chapter 3) w.r.t. the quantile shift intensity
parameter θ. These indices have been computed using the nearest-neighbor (KNN) approach proposed
in [33] (with an arbitrarily chosen number of neighbors equal to 6). Studying the behavior of importance
measures informs on the stability of this diagnostic (i.e., feature importance order) w.r.t. input pertur-
bation, i.e., if the importance hierarchy between the inputs changes due to perturbations around the
model’s decision boundary. The left barplot presents the initial target Shapley effects, computed on the
model’s prediction on the observed data, and the right plot presents their behavior under the airflow
perturbation. One can notice that the importance indices remain stable w.r.t. θ. This result indicates that
the global SA of the neural network is relatively robust to the distributional perturbations driven by
θ. Hence, one can be confident in those diagnostics under uncertainties in the region near the model’s
decision boundary.

Finally, the robustness of the neural network can also be assessed locally. Figure 5.7 allows visualizing
whether a prediction has shifted w.r.t. to the effective magnitude of the perturbation. The black line
indicates no perturbation change: the airflow value of an observation has been mapped to itself. For
a fixed initial airflow datapoint, its vertical distance to the black line indicates the (signed) magnitude
of the applied perturbation. Red points indicate that the prediction has shifted w.r.t. the initial dataset,
and blue points indicate no predictive change. One can note the presence of red dots close to the black
line around the prediction boundary of the model. Small perturbations for observations with airflow
values around 12, all other features being equal, can lead to a prediction change. Hence, the confidence
in predictions on observations in this region can be questioned. However, notice the lack of red dots
near the black line for airflow values on the interval [13, 17] and on the interval [7, 10]. Hence, one can be
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Figure 5.6: Initial (left) and perturbed (right) target Shapley effects, w.r.t. the intensity parameter θ,
using the same color panel.

confident in the model’s predictions for Airflow values on these intervals, which seem robust w.r.t. the
quantile shift.

0 5 10 15

0
5

10
15

Initial Airflow datapoints

P
er

tu
rb

ed
 A

irf
lo

w
 d

at
ap

oi
nt

s

Unchanged prediction
Changed Prediction

Figure 5.7: Perturbed datapoints w.r.t. their initial values. The black line represents no perturbation. The
red and blue dots represent either a classification shift due to the perturbation or no classification shift.

One may notice the presence of small perturbations resulting in prediction changes for Airflow values
around [0, 5]. However, since the perturbation scheme focuses on exploring the model’s behavior around
the decision boundary, their interpretation is voluntarily omitted: a different perturbation scheme in-
volving perturbing the left tail of the airflow distribution would be advised.

In summary, besides its good prediction accuracy, the model is globally robust to distributional pertur-
bation focused around the decision boundary of its Airflow feature. Moreover, one can be confident
in the feature importance indices since they remain relatively similar under perturbation. Locally, the
model prediction seems stable w.r.t. small perturbations, except on a small interval around its decision
boundary (a behavior generally expected in ML applications). In conclusion, this robust interpretability
analysis further assesses the model’s behavior beyond classical accuracy metrics and provides addi-
tional arguments for its validation.
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5.5.2 River water level: surrogate model validation

Perturbation strategy In this use case, the three following inputs are perturbed. The river’s max-
imum annual water flow rate Q, the river length L, and the upstream river level Zm are subject to the
following punctual quantile constraints:

• Quantile perturbations on Q:

– Shift of the application domain from [500, 3000] to [500, 3200];

– Preserve the median of the distribution;

– Increase the initial 15%-quantile by 75;

– Decrease the initial 75%-quantile by 125;

• Quantile perturbations on L:

– Shift the application domain from [4990, 5010] to [4988, 5012];

– Preserve the median of the distribution;

• Quantile perturbations on Zm:

– Preserve the application domain and the median of the initial distribution;

– Increase the 80% and 90%-quantiles by 0.1;

– Decrease the 25%-quantile by 0.05.

The initial input distributions, their application domain, and the optimally perturbed results are illus-
trated in Figure 5.8. These constraints are mainly enforced to illustrate that multiple inputs can be
perturbed simultaneously while preserving their dependence structure. They can be interpreted, for
instance, as domain experts’ knowledge injection into the initial probabilistic structure of the inputs
(e.g., to study a specific river arm).
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Figure 5.8: Initial quantile functions, application domains, and corresponding optimally perturbed quantile
functions of the Q, L, and Zm inputs.

In addition to these constraints, the Strickler coefficientKs is subject to an application domain dilatation
perturbation, with a scaling parameter η = 1.5. Each perturbation intensity represents a degree of
uncertainty on the type of riverbed roughness. When θ = −1, the width of the initial application domain
is reduced, i.e., from [15, 55] to [21.66, 48.33], which can be interpreted in a situation where the epistemic
uncertainty on the riverbed roughness is narrower, between a slow winding natural river, up to a plain
river without shrub vegetation. When θ = 1, the epistemic uncertainty on the riverbed is much wider.
The application domain equals [5, 65], depicting a wider range of possible riverbed roughness, from
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proliferating algae to smooth concrete. Figure 5.9 illustrates the initial Ks distribution and the optimally
perturbed quantile functions for θ equal to −1 and 1. Hence, θ can be interpreted as a proxy for the
“amount” of epistemic uncertainty on the riverbed roughness.
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Figure 5.9: Initial quantile function, application domain and corresponding optimally perturbed quantile
functions for Ks, for θ being equal to −1 (left) and 1 (right), for a scaling parameter η = 2.

Additionally, the perturbations’ smoothness is enforced using piece-wise continuous isotonic polynomi-
als of degree up to 12, chosen arbitrarily.

Robustness of the sensitivity analysis From a global standpoint, one can be interested in the
impact of the distributional perturbations on key statistics of the random output of the river water
level model. Figure 5.10 presents estimated values for the mean, standard deviation, 2.5% and 97.5%-
quantiles (shown by the 95% coverage), and minimum and maximum values of the random output,
computed on Monte Carlo samples of size 4× 105, w.r.t. the dilatation intensity θ. These values are com-
pared to the reference ones according to the initial distribution of the inputs, estimated on a simulated
sample of size 106.

Notice that the expectation, standard deviation, 95% coverage quantiles, and minimum value of the
model output remain stable under the distributional perturbations on the application domain of the
Strickler coefficient. However, the estimated upper bound of the output support increases exponentially
for positive values of θ. Widening the uncertainty on the riverbed type allows for relatively rare events of
high river water levels since the 97.5%-quantile does not seem dramatically affected by the distributional
perturbations.

Figure 5.11 presents the Shapley effects (see, Chapter 3) w.r.t. the perturbation intensity θ. These indices
have been computed using a Monte Carlo scheme as depicted in [206, 115] and recalled in Section C.1.1,
with fixed simulated sample sizes, for each perturbed distribution Q driven by a value of θ, Nv = 104

for estimating VarQ(Y ), as well as No = 103 and Ni = 100 to estimate the conditional elements for every
subset of inputs XA, A ⊆ D. Additionally, the displayed reference Shapley effects have been computed
as in Section 3.4.2.

Note that the distributional perturbations have an impact on the importance measures. More precisely,
increasing the range of the uncertainty of the riverbed roughness increases its importance for positive
values of θ. Conversely, the importance of both Q and Zv decreases accordingly. However, the variable
importance hierarchy induced by the Shapley effects seems to be generally preserved. It is also essential
to notice that the gap in importance between Q and Zv and Ks decreases as θ gets large. Hence, this SA
does not seem robust to distributional perturbations and, more precisely, to a widening of the support
of the Strickler coefficient in combination with the quantile perturbations put on Q, L, and Zm. In
other words, the distribution of Ks impacts the subsequent importance quantification, and its definition
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Figure 5.10: Expectation, standard deviation, 95% coverage, minimum and maximum estimators of the
river water level, w.r.t. the application domain dilatation intensity θ.

In
iti

al
 S

ha
pl

ey
 E

ffe
ct

s

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Q Ks Zv Zm

L B

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

θ

P
er

tu
rb

ed
 S

ha
pl

ey
 E

ffe
ct

s

Figure 5.11: Reference Shapley effects (left) and Shapley effects of the river water level model under
optimally dilated application domain w.r.t. θ (right), using the same color panel.

requires particular care.

Surrogate model validation A surrogate model is trained on a simulated input-output sample
of size 106 of the initial probabilistic structure and validated on a validation dataset of size 105. The
surrogate model is a neural network comprised of 3 hidden layers, 64 neurons each, and ReLu as an
activation function. The model’s R2 is 98.18% on both the training and validation data. Despite the
model’s good results on the validation data, it does not behave the same way as the initial model when
perturbed similarly. Echoing Figure 5.10, Figure 5.12 illustrates the model’s behavior when subject to
the previously introduced perturbations.

One can notice that the surrogate model does not display the same behavior as the numerical model
w.r.t. the epistemic uncertainty of the riverbed roughness. Even though the surrogate model generalizes
well on validation data, its behavior on the perturbed data differs from the initial numerical model.



5.6. DISCUSSION 97

−1.0 −0.5 0.0 0.5 1.0

50
52

54
56

58
60

62

θ

R
iv

er
 W

at
er

 L
ev

el
 (

su
rr

og
at

e)

Mean Value
95% Coverage

± std.
Min/Max

Initial Mean Value
± Initial std.

Initial 95% coverage
Initial Min/Max

Figure 5.12: Expectation, standard deviation, 95% coverage, minimum and maximum estimators of the
surrogate model, w.r.t. the application domain dilatation intensity θ.

More precisely, the maximal value of the river water level does not seem to be impacted by the epistemic
uncertainty of the riverbed roughness. However, the other statistics (mean, variance, and 95% coverage)
align with the numerical model. Hence, despite its good fit, using this surrogate model would not be
advised if the goal of the sensitivity analysis is to study rare events.

5.5.3 Conclusions

These two use cases illustrate the different insights the perturbation methodology can offer in UQ and
ML studies. On the ML side, for classification tasks, it allows for assessing the global behavior of black-
box models under input perturbations. This assessment is quantified either through studying the pre-
diction shifts due to the perturbation or through the behavior of feature importance metrics. Locally, it
allows the detection of low-stability regions of interest (regions where small perturbations induce a clas-
sification change). In addition to classical accuracy metrics, our method can be used to assess confidence
in a predictive model. On the UQ side, it allows for studying the impact of distributional perturbations
(whose intensity can be tuned to represent epistemic uncertainties) on the model output, even in situ-
ations where inputs are correlated. Furthermore, in an SA context, the behavior of classical sensitivity
indices under those perturbations can also be studied, and their robustness (for instance, the preserva-
tion of the input importance hierarchy) w.r.t. the probabilistic modeling of the inputs can be assessed.
In both cases, meaningful perturbations allow for a more complete picture, beyond classical validation
metrics, of a black-box model’s behavior outside of the initial distribution.

5.6 Discussion

Obtaining robustness diagnoses on the influence of input variables and the behavior of a model con-
sidered a black box is essential for its acceptance and use. This chapter provides a tool to answer this
problem by modifying the distributions of the inputs in a controlled manner. Four desirability criteria
are introduced and discussed to ensure the interpretability method’s meaningfulness. The developed
method relies on the choice of the 2-Wasserstein distance with perturbations on univariate quantiles,
which allows for preserving the input’s dependence structure (i.e., copula). Regularity conditions can
be enforced, and the case of piece-wise interpolating isotonic polynomials is studied. The robustness
analyses conducted on real case studies illustrate its potential flexibility and adequate computational
cost, which are essential for high-dimensional cases. These studies highlighted validation insights be-
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yond classical tools, allowing for a more complete understanding of the black-box model’s behavior.
However, it is essential to note that while the tool presented in this chapter allows exploring some aspects
of the robustness of black-box models, many other aspects are also worth exploring. Formally defining
the notion of robustness is a complicated task, and the presented work only tackles input perturbations.
The interested reader is referred to [78] for a more complete picture of robustness in the ML field.

Several technical avenues of improvement can be considered. First, concerning the piece-wise interpo-
lating isotonic polynomials as a smoothing vehicle. Throughout the chapter, the degrees of the polyno-
mials have been chosen arbitrarily or through obscure heuristics. To guide the choice of this degree, one
could use prior information on the order of differentiability of the sought-after perturbed gqf. In an ML
framework, nonparametric approaches to isotonic regression of the marginal gqfs can provide answers
through statistical testing [64, 49] or criteria enforcing a trade-off between approximation error and spar-
sity (e.g., inspired from AIC or BIC). Moreover, while the proposed methodology allows for continuous
results, differentiability is not guaranteed. However, the literature on isotonic splines [97, 196, 77, 221]
can be leveraged to offer a better range of smoothness constraints. Finally, other spaces of functions can
also be used for smoothing purposes. Following the work of [14], abstract reproducing kernel Hilbert
space of nonnegative functions can be reached through particular kernels. Hence, it would allow access
to different sets of nonnegative functions whose regularities can be assessed through a thorough study
of these kernels.

The proposed methodology solely focuses on marginal perturbation, preserving the dependence struc-
ture of the inputs. However, one may wish to perturb the dependence structure as well. However, it is
argued that copula perturbation should be done independently of marginal perturbations for the sake of
the final interpretation of the robustness analyses. It allows separating the effects in the marginal pertur-
bation of the effects of the stochastic dependence perturbation. Association and concordance measures
appear as the most interpretable tools for copula manipulation (and are frequently used to incorporate
expert opinion) [42, 225, 22]. An alternative approach to perturb the stochastic dependence structure
and the marginal would be to consider multivariate quantile functions. However, defining multivari-
ate quantile functions is not trivial and not as natural as in the univariate case. Among the many ap-
proaches to defining such a notion, the most theoretically accomplished today is the one resulting from
the concept of center-outward distribution function [40, 94, 24]. Perturbing these quantile contours can be
leveraged to go beyond marginal consideration.

One of the primary motivations for using the 2-Wasserstein distance as a projection metric is that it
metricizes weak convergence on a broad set of probability measures. This property allows being generic
on the initial probability measures P and does not restrict the perturbed probability measure to be in a
particular class (e.g., with a density). Other distances between probability measures are endowed with
similar properties, such as the Prokhorov-Levy distance. Leveraging the different relationships between
such distances (see [88]) could be beneficial for generalizing the proposed approach.
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6.1 Conclusion

The general purpose of this manuscript is to explore the interpretation of black-box models and propose
a first take on a suitable mathematical framework. This framework allows justifying the use and drives
the development of interpretability methods to enhance the trustworthiness of black-box models of
critical systems and strive towards their acceptance by regulatory instances.

Chapter 1 contextualizes this problem and lays down the overall direction taken in the manuscript. It
aims to propose a unified view of post-hoc interpretability and sensitivity analysis. To that extent, the
proposed framework relies on a measure-theoretic definition of the inputs and the random output, seen
as random elements. The notion of quantity of interest is introduced and illustrated. In order to answer
specific conundrums (i.e., interpretation questions), two scientific questions are explored:

i) Influence quantification: being able to quantify and rank the subsets of inputs by their influence
on a model or some QoIs ;

ii) Robustness assessment of black-box models: being able to study the behavior of a model or some
QoIs under the perturbation of its inputs.

Three use-cases are also presented, which are studied using the proposed methods throughout the
manuscript.

In Chapter 2, the algebraic roots of the fundamental question of influence measuring are highlighted,
driven by the mere assumption that subsets of inputs “can be ranked by influence”. It naturally opens
the way to coalitional decompositions of QoIs in order to produce influence measures. These measures
must express the influence order between subsets of inputs. These measures can be linked to the field of
combinatorics and, in particular, to Rota’s generalization of the Möbius inversion formula. This connex-
ion highlights two approaches to define influence measures: the input-centric approach, which requires
a value measure allowing the total influence of subsets of inputs to be quantified, and the model-centric
approach, which requires an intrinsic decomposition of the random output. These two approaches are
illustrated for the problem of importance quantification, i.e., the decomposition of the random output’s
variance.

Chapter 3 is a deep-dive into the input-centric approach. This question has been extensively studied
under the paradigm of cooperative game theory, by analogy between players and inputs of a black-
box model. It allows defining allocations built upon an input-centric influence measure known as the
Harsanyi dividends. Using this framework, importance attributions can be defined (i.e., decomposing
the variance between the inputs themselves instead of between every subset of inputs), such as the
egalitarian redistribution of dividends proposed by the Shapley effects. The latter presents a draw-
back: inputs that are not in the model but are correlated with the inputs in the model can be granted
some importance. This problem is solved with the PMEs, which rely on a proportional redistribution
of dividends. These two methods offer different ways to quantify importance, which are compared and
illustrated in use-cases. Finally, a fundamental issue with the input-centric approach is highlighted: the
choice of the value function. This problem motivates exploring the model-centric approach.

The model-centric approach is tackled in Chapter 4, starting with the random output decomposition.
This problem does have a solution for mutually independent inputs, known as Hoeffding’s decompo-
sition. However, while many developments have been proposed in the literature, a definite answer
has not yet been found concerning its potential generalization for dependent inputs under reasonable
assumptions. By approaching this generalization as a direct-sum decomposition of Lebesgue spaces
(i.e., Hilbert spaces), it has been shown that a generalization exists under two fairly reasonable assump-
tions: non-perfect functional dependence, and non-degenerate stochastic dependence. These develop-
ments stem from studying the intrinsic subspaces of Lebesgue spaces generated by multivariate random
elements and, in particular, their relationships using Dixmier’s and Friedrichs’ angles. It leads to a rather
intuitive and geometric result, relying on oblique projections. Finally, this approach enabled the defini-
tion of various influence measures, which can be easily theoretically interpreted and whose theoretical
properties are discussed. This decomposition has then been illustrated using a simple toy-case.

Finally, Chapter 5, has been dedicated to studying the problem of the assessment of the robustness of
black-box models. In particular, the study of the behavior of a model whenever the distribution of its
inputs is perturbed. A general formalized view of this problem is proposed. It relies on an optimization
problem in the space of probability measures. The definition of suitable perturbations is discussed, and
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four desirability criteria are proposed. Based on these criteria, the choice of the 2-Wasserstein distance
as a mean for comparing probability measures is motivated. Moreover, under this choice of discrepancy,
perturbations based on quantiles coupled with the preservation of the initial dependence structure are
explored. The problem can be analytically solved, but this solution is not suitable for practical studies.
Smoothness constraints are introduced to solve this issue, in addition to quantile perturbations and de-
pendence preservation. The use of isotonic interpolating polynomials is studied, leading to a well-posed
optimization problem with a unique solution. The presented method is then illustrated and discussed
on use-cases, opening the way to validation methods of ML models going beyond the classical metrics.

6.2 Perspectives

Some perspectives and areas of improvement related to the developments of this manuscript are pre-
sented in this section.

6.2.1 Allocations as attribution methods

The following perspectives are related to the developments presented in Chapter 3.

Estimation The computational burden associated with estimating any allocation of the Sobol’ cooper-
ative games remains a drawback. They require calculating an exponential number (2d− 1) of evaluation
of the value function. An avenue to alleviate some of the computations would be to use surrogate mod-
els to estimate the conditional elements. For instance, random forests [20] or Gaussian process-based
meta-models [121, 23] can be leveraged for that task, potentially reducing the need for costly numerical
model evaluations. Additionally, the bias induced by using the nearest neighbor estimation method
(which is the only one usable in costly application cases) does not guarantee the detection of exogenous
inputs by PMEs. New given-data algorithms are required.

Other allocations As seen in Chapter 3, the Shapley effects and the PMEs are designed to extract
different insights, the interest of which depends on the task at hand. While the PMEs are a reasonable
option for factor fixing and factor prioritization, the Shapley effects provide a tool for model exploration
that allows for a good overview of all the inputs that might impact the output, even though it is only
due to correlation with other inputs. Other allocations, such as weighted Shapley values [125] or pro-
portional Shapley values [17], may be defined with different specific UQ tasks in mind, allowing for
domain-specific tools for more accurate and relevant indices. In the XAI literature, recent developments,
such as [218], introduce the notion of correlation distortion due to using the Shapley values. It expresses
their inability to detect exogenous inputs in a regression modeling context and to solve this issue. The
authors proposed to focus on a different set of axioms to define better-suited allocations, with exogeneity
detection in mind.

6.2.2 Orthocanonical decompositions

The following perspectives are related to the developments presented in Chapter 4, which are high-
lighted in Section 4.6.

Oblique projection estimation The first main challenge towards adopting the measures introduced
in Chapter 4 is statistical estimation, the main bottleneck being to produce estimators of oblique projec-
tions. The literature seems relatively scarce when it comes to the estimation of these particular operators.
A first approach would be to find estimators based on a variational problem, around the same idea that
the problem stipulated the Hilbert projection theorem allows seeing orthogonal projections (and hence
conditional expectations) as a distance-minimizing problem. A second idea would be to take advantage
of the particular expression of oblique projections (see, e.g., [2, 46]). However, this approach involves
estimating inverses of operators, which is a challenging feat. A final idea would be to find suitable
bases for each (VA)A∈PD

to project G(X) onto. However, it remains relatively complicated since these
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subspaces can be infinite-dimensional (i.e., these bases are most likely Schauder). Non-orthogonal poly-
nomial bases would be a great start to study this problem whenever X is endowed with a multivariate
Gaussian probabilistic structure.

Dependence seen as angles The second main challenge is understanding the extent of such an
approach. As one can notice, the point of view taken in order to prove Theorem 4.6 leverages the (some-
what surprising) linear nature of possibly highly non-linear problems (due to the function G and/or to
the stochastic dependence on X) by decomposing the model into 2d summands. There remains some
work to do to explore the extent to which this approach can be linked to the more “traditional” proba-
bilistic treatment of uncertainties. The development in this chapter uncovers an exciting path towards
a more complete overview of non-linear multivariate statistics. However, many aspects remain to be
mastered, implications to be discovered, and links with existing literature to unveil.

Different algebraic structures Another surprising connection leveraged in this chapter is with the
field of abstract algebra, particularly with algebraic structures. The Boolean lattice naturally comes up
because the sought-after decompositions rely on a power-set. However, since Rota’s result is very gen-
eral (see, Theorem B.1) and does not only apply to Boolean lattices, studying other algebraic structures
can pave the way for more complex analysis. In particular, the study of graphical models [136], which
relies on graph structures to define dependence between random elements, seems an excellent place to
start.

6.2.3 Robustness assessment

The following perspectives are related to the developments presented in Chapter 5, which are high-
lighted in Section 5.6.

Beyond interpolating isotonic polynomials The developments presented in this chapter relied on
interpolating isotonic polynomials in order to smooth the resulting gqfs. However, the degree choice
for the fitted polynomials has yet to be studied and remains an area of improvement. Moreover, while
continuity is a first step towards smoothness, one may be inclined to explore smoother results. For
instance, guaranteeing differentiability (up to a particular order) could lead to more control over the
perturbation scheme. The literature on isotonic splines [97, 196, 77, 221] can be leveraged to improve
the proposed approach. Other spaces of functions can be worth exploring, too. For instance, the work
of [14] on abstract reproducing kernel Hilbert space of nonnegative functions can be an exciting path
towards different smooth solutions.

Dependence perturbation Preserving the dependence structure between the inputs is central to the
proposed developments. However, one may wish to perturb the dependence structure. Following the
desirability criteria, it can be argued that the dependence structure should be perturbed independently of
the marginal perturbation for the sake of the final “causal” interpretation. Association and concordance
measures are prime candidates for defining suitable copula manipulations [42, 225, 22]. The notion of
multivariate gqfs can also be worth exploring for perturbation purposes, especially with the choice of
the 2-Wasserstein distance. The concept of center-outward distribution function [40, 94, 24] seems one of
the most promising to go beyond marginal perturbations.

Other discrepancies Other discrepancies can also be considered. Many distances, dissimilarities, and
discrepancies between probability measures have been studied in the literature (see [88]). The choice of
the 2-Wasserstein distance in the presented developments is mainly motivated by the fact that it does not
restrict the initial or perturbed probability measures. The Prokhorov-Levy distance is another example
of non-restrictive distance, which can be leveraged for input perturbation purposes.
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APPENDIX A
MEASURE AND PROBABILITY THEORY

PRELIMINARIES

The interested reader is referred to, e.g., [150, 184, 74, 126] for a thorough primer on probability and
measure theory. The definitions and results introduced below have been extracted from these references
for the developments presented in the manuscript.

A few definitions

Definition A.1 (Standard Borel measurable space). A measurable space (E, E) is said to be standard
Borel if E is a Polish space (i.e., a separable, completely metrizable topological space) and E is the sub-
sequent Borel σ-algebra on E, w.r.t. to its metric.

Definition A.2 (σ-algebra generated by a mapping). Let (E1, E1) and (E2, E2) be two measurable spaces.
For a mapping T : E1 → E2, the σ-algebra generated by T is the set:

σT := {T−1(A),∀A ∈ E2},

where T−1 denotes the inverse image of T .

Definition A.3 (Measurable mapping). Let (E1, E1) and (E2, E2) be two measurable spaces. A mapping
T : E1 → E2 is said to be measurable if

σT ⊂ E1.
Additionally, for any sub-σ-algebra G ⊆ E1, T is said to be G-measurable if

σT ⊂ G.

Definition A.4 (Random element, random variable). Let (Ω,F ,P) be a probability space, (E, E) be a
measurable space. A mapping T : Ω → E is called random element if it is measurable. In particular, if
E = R, T is called random variable.

Additionally, if E is the Cartesian product of at least two Polish spaces, T is called a vector of random
elements, and in particular, if E = Rd for a positive integer d, T is called a random vector.

Definition A.5 (Induced probability measure). Let (Ω,F ,P) be a probability space, (E, E) be a measur-
able space. The probability measure induced by a measurable mapping T : Ω→ E, denoted PT : E → [0, 1] is
defined, ∀A ∈ E as:

PT (A) := P
(
T−1(A)

)
.
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Definition A.6 (P-trivial σ-algebra). Let (Ω,F ,P) be a probability space. The P-trivial σ-algebra, denoted
σ∅, is defined as the smallest (coarsest) sub-σ-algebra of F containing the null-set w.r.t. the measure P,
i.e., the set of elements of F with measure 0.

Some useful results

Lemma A.1 (σ∅-measurable implies almost-sure constance). Let X be a random variable. If X is σ∅-
measurable, then there exists a c ∈ R such that

X = c almost surely.

Proof: see, [184] Lemma 4.5.1.

Lemma A.2 (Functional representation and measurability (Doob-Dynkin)). Let Y be an A-valued ran-
dom element, and let X be an E-valued random element. If Y is σX -measurable, then there exists a
measurable function f : E → A such that:

Y = f(X) a.s.

Proof: see, [126], Lemma 1.14
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B.1 Preliminaries on sets and orders

B.1.1 Some group theory

Definition B.1 (Group). Let N be a set, and ◦ be an operation on N . (N, ◦) is said to be a group if it
satisfies the four following conditions:

• ∀a, b ∈ N , a ◦ b ∈ N (Closure);

• ∀a, b, c ∈ N , a ◦ (b ◦ c) = (a ◦ b) ◦ c (Associativity);

• ∃e ∈ N such that ∀a ∈ N , e ◦ a = a = a ◦ e (Identity);

• ∀a ∈ N , ∃b ∈ N such that a ◦ b = e = b ◦ a (Inverse).

Definition B.2 (Abelian group). Let (A,+) be a group. If, in addition, the operation + respects the
condition

• ∀a, b ∈ A, a+ b = b+ a (Commutativity);

then (A,+) is said to be an abelian group.

Definition B.3 (Commutative ring with identity). A commutative ring with identity is a triplet (A,+,×),
where + is usually called addition and×multiplication. (A,+) is an abelian group, and× respects closure,
associativity, commutativity, identity, and is distributive w.r.t. + on A. However, one does not require ×
to admit a multiplicative inverse (i.e., an inverse w.r.t. to ×).

B.1.2 Some order theory

Definition B.4 (Partially ordered set). Let N be a set, and ⪯ be a binary relation. If ⪯ is:

• Reflexive, i.e., for any a ∈ N , a ⪯ a;

• Transitive, i.e., for any a, b, c ∈ N , if a ⪯ b and b ⪯ c, then a ⪯ c;
• Antisymetric, i.e., for any a, b ∈ N , if a ⪯ b and b ⪯ a, then a = b (where “=” represent equiva-

lence).

then (N,⪯) is said to be a partially ordered set (or poset).

Definition B.5 (Totally ordered set). Let (N,⪯) be a partially ordered set. If, in addition, for any a, b ∈ N ,
either a ⪯ b or b ⪯ a (i.e., any two elements can be compared), then (N,⪯) is said to be a totally ordered
set.

Definition B.6 (Order isomorphism). Let (N,⪯) and (M,≤) be two partially ordered sets. A bijective
mapping ϕ : N →M is said to be an order isomorphism if

∀a, b ∈ N, a ⪯ b ⇐⇒ ϕ(a) ≤ ϕ(b).

If there exists an order isomorphism between two partially ordered sets, then both sets are said to be
order isomorphic (i.e., the order structures are the same).

Order isomorphisms rely on a bijection between the two sets. However, the requirement of the mapping
to be bijective can be relaxed. Essentially, order embeddings can be understood as mapping an initial
set into a subset of another set, while preserving the order. For instance, a total order on a finite set can
be embedded into a total order on an infinite set (i.e., mapped to a finite subset of the infinite set), but it
can never be isomorphic to it.
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Definition B.7 (Order embedding). Let (N,⪯) and (M,≤) be two partially ordered sets. A mapping
ϕ : N →M is said to be an order embedding if

∀a, b ∈ N, a ⪯ b ⇐⇒ ϕ(a) ≤ ϕ(b).

If there exists an order embedding between N and M , then N is said to be embedded into M (i.e., the
order structure of N is preserved on a subset of M ). In other words, N is order isomorphic to the image
of ϕ (which is not necessarily equal to M ).

Definition B.8 (Locally finite partially ordered set). Let (N,⪯) be a partially ordered set. For every
a, b ∈ N , the sets

[c ∈ N : a ⪯ c ⪯ b] ,
are cal called segments of N .

If every segment of N is finite, then N is said to be locally finite.

B.1.3 Rota’s generalization of the Möbius inversion formula

Definition B.9 (Incidence algebra). Let (N,⪯) be a locally finite partially ordered set, and let (A,+,×)
be a commutative ring with identity. Define the set of functions from the cartesian product ofN by itself,
valued :

IA(N) := {f : N ×N → A : f(a, b) = 0 if a ̸⪯ b} .

The triplet (IA(N),+I , ⋆) where, for any f, g ∈ IA a, b ∈ N and α ∈ A:

(f +I g) (a, b) = f(a, b) + g(a, b)

(f ⋆ g) (a, b) =
∑

a⪯z⪯b
f(a, z)× g(z, b)

(α ⋆ f) (x, y) = α× f(a, b)

is called the incidence algebra of (N,⪯) over (A,+,×) (in short, the incidence algebra of N over A). +I is
called the addition of IA(N), and ⋆ is called the convolution of IA(N).

Definition B.10 (Zeta and Möbius functions). Let (N,⪯) be a partially ordered set, and let (IA(N),+I , ⋆)
be the incidence algebra of N over a commutative ring with identity A. The zeta function ζ ∈ IA(N),
defined, for any a, b ∈ N as

ζ(a, b) =

{
1A if x = y,

0A otherwise.
,

where 1A is the multiplicative identity of A and 0A is its zero element. The zeta function is the convolu-
tional identity of IA(N), i.e., for any f ∈ IA(N),

f ⋆ ζ = f.

The Möbius function µ ∈ IA(N) is defined as the convolutional inverse of the zeta function on the incidence
algebra of N over A. It is defined recursively, for any a, b ∈ N with a ⪯ b as:

µ(a, b) =

{
1A if x = y

−∑a⪯z⪯b µ(a, z) otherwise.

For any f ∈ IA(N), f ⋆ µ is called the Möbius transform of f .

Theorem B.1 (Rota’s inversion formula). Let N be any non-empty set and (N,⪯) be a locally finite par-
tially ordered set, and let (IA(N),+I , ⋆) be its incidence algebra over a commutative ring with identity
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(A,+,×). Let v, ϕ ∈ IA(N). The following equivalence hold:

v(a) =
∑

z:z≤a
ϕ(z), ∀a ∈ N ⇐⇒ ϕ(a) =

∑

z:z≤a
v(z)× µ(z, a), ∀a ∈ N,

where µ is the Möbius function on IA(N).

Proof: See [133], p.108 or [208] Theorems 2.1.2 and 2.1.3.

B.2 Proofs

Proof of Proposition 2.2.
First, assume that v(D) = QoI (G (X)). By construction of ϕ, and by Corollary 2.1, one has that in
particular

QoI (G (X)) = v(D) =
∑

A∈PD

ϕ(A),

and thus ϕ is a coalitional decomposition of QoI (G (X)).

Now assume that ϕ is a coalitional decomposition. One then has that,

QoI (G (X)) =
∑

A∈PD

ϕ(A)

=
∑

A∈PD

∑

B∈PA

(−1)|A|−|B|v(B) = v(D),

using Corollary 2.1.
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C.1 Estimators for the conditional elements

C.1.1 Monte-Carlo estimator

This procedure, introduced in [206] for the estimation of Shapley effects, relies on a Monte Carlo estima-
tion of the conditional elements. It requires the ability to sample from the marginal distributions of the
inputs (i.e., PXA

for all A ⊆ {1, . . . , d} \ ∅), as well as from all the conditional distributions (i.e., PXA|XA
,

for all possible subsets of inputs A). Additionally, one also needs to be able to evaluate the model G,
which is usually the case in the context of uncertainty quantification of numerical computer models
(ignoring the potential difficulties related to the cost of a single evaluation of G(·)) [57].

In order to estimate a conditional element Sclos, one needs to randomly draw several i.i.d. samples:

• an i.i.d. sample of size N drawn from PX and denoted by (X(1), . . . , X(N));

• another i.i.d. sample of size Nv drawn from PXA
and denoted by (X

(1)
A , . . . , X

(Nv)
A );

• for each element X(i)
A , i = 1, . . . , Nv , a corresponding sample of size Np drawn from PXA|XA

given

that XA = X
(i)
A and denoted by (X̃

(1)
i , . . . , X̃

(Np)
i ).

Then, the Monte Carlo estimator of Sclos can be defined as:

Ŝclos =
1

Nv − 1

Nv∑

i=1


 1

Np

Np∑

j=1

G(X̃
(j)
i , X

(i)
A )−G(X)




2

(C.1)

where

G(X) =
1

N

N∑

i=1

G(X(i)). (C.2)

Concerning the complexity in number of model evaluations, the interested reader is referred to the
recent developments presented in [178].

C.1.2 Nearest-neighbor estimator

A given-data estimation method has been introduced by [33] to estimate the conditional elements. This
method can be seen as an extension of the Monte Carlo estimator when only a single i.i.d. input-output
sample is available. This method is appropriate when the input distributions are not known or when the
numerical model G is not available. The main idea behind this method is to replace the exact samples
from the conditional distributions PXA|XA

by approximated ones based on a non-parametric nearest-
neighbor procedure.

Let
(
X(1), . . . , X(N)

)
be an i.i.d. sample of the inputs X and A ∈ Pd \ {∅, {1 : d}}. Let kAN (l, n) be the

index such that X(kA
N (l,n))

A is the n-th closest element to X(l)
A in

(
X

(1)
A , . . . , X

(N)
A

)
. Note that, if two or

more observations are at an equal distance from X
(l)
A , then one of them is uniformly randomly selected.

Then, one can express an estimator for ST :

ŜT
A,KNN =

1

N

N∑

l=1


 1

Ns − 1

Ns∑

i=1

[
G

(
X

(
kA
N (l,i)

))
− 1

Ns

Ns∑

h=1

G

(
X

(
kA
N (l,h)

))]2
 . (C.3)

Under some mild assumptions, [33] showed that this estimator does asymptotically converge towards
ST .

This method is less computationally expensive (in terms of model evaluations) compared to the Monte
Carlo sampling-based method, since no additional model evaluation, other than the ones in the i.i.d. sam-
ple, is required in order to produce estimates of the target Shapley effects. Since the samples of the con-
ditional and marginal distributions are approximated by a non-parametric procedure, this method also
reduces the possible input modeling error (e.g., in the context of ill-defined input distributions), at the
cost of less accurate estimates. Another constraint is due to the fact that the input-output sample has to
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be i.i.d. which prevents it from being used, for instance, in advanced orthogonal designs of computer
experiments.

C.2 Proofs

Proof of Theorem 3.2.
Let (D, v) be a nonnegative, monotonic cooperative game. For any non-empty coalition A ⊆ D, and
denote |A| its cardinality.

Denote SA the set of permutations of players in A. Let π ∈ SA, and for the sake of clarity, denote
|π| = |A|, i.e., the number of elements in the permutation. Moreover, by convention, |∅| = 0 and
v (C0(π)) = v(∅) = 0 for any π ∈ SD.

By monotonicity, ∀j ∈ {0, . . . , |π| − 1}, notice that,

0 ≤ v (Cj(π)) ≤ v (Cj+1(π)) .

Moreover, for any permutation π ∈ SA, define:

kπ(v) = max {j ∈ {0, . . . , |π|} : v(Cj(π)) = 0} .

For the sake of conciseness and readability, the argument v is omitted and the notation kπ := kπ(v) is
adopted.

Now, let (ϵp)p∈N be a sequence such that:

∀p ∈ N, ϵp > 0, and lim
p→∞

ϵp = 0.

Let (vp)p∈N be a sequence of positive, monotonic value functions acting on the set of players D and
defined, for any p ∈ N and for any A ⊆ D, as:

vp(A) =

{
ϵp if v(A) = 0,

v(A) otherwise.

Alternatively, one can notice that, for any A ⊆ D, for every permutation π ∈ SA, and for every j ∈
{0, . . . , |π|}, one has that

vp
(
Cj(π)

)
=

{
ϵp if j ≤ kπ,
v(Cj(π)) otherwise.

(C.4)

Let p ∈ N, and from the recursive definition of PV (see, Eq. (3.9)), for the positive games (D, vp), one has,
for every i ∈ D:

PVi =

∑
π∈SD−i

∏d−1
m=1 vp (Cm(π))

−1

∑
σ∈SD

∏d
m=1 vp (Cm(σ))

−1 .

For the sake of conciseness and clarity, and for every permutation π ∈ SA such that A ⊆ D, and for
l, k ∈ 1, . . . , d1, denote:

Υl
k(π, v) =

{∏l
j=k v (Cj(π))

−1 if k ≤ l,
1 otherwise.

One then has that, for any i ∈ D:

PVi =

∑
π∈SD−i

Υd−1
1 (π, vp)

∑
σ∈SD Υd

1(σ, vp)
=

∑
π∈SD−i

Υkπ
1 (π, vp)Υ

d−1
kπ+1

(π, vp)
∑

σ∈SD Υkσ
1 (σ, vp)Υd

kσ+1
(σ, vp)

=

∑
π∈SD−i

ϵ−kπ
p Υd−1

kπ+1
(π, vp)

∑
σ∈SD ϵ

−kσ
p Υd

kσ+1
(σ, vp)

.
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From Eq. (C.4), for any permutation π ∈ SA such that A ⊆ D, one has that:

Υkπ
1 (π, vp) =

kπ∏

j=1

vp
(
Cj(π)

)−1
= ϵ−kπ

p ,

Denote, for any j ∈ D, k−jmax the size of the largest zero coalition in D−j , i.e.,

k−jmax = max
A∈P(D−j)

{|A| : v(A) = 0} ,

and let kmax be the size of the largest zero coalition in D, and notice that necessarily,

∀j ∈ D,∀π ∈ SD−j
, k−jmax ≤ kmax. (C.5)

Moreover, denote, for any j ∈ D ∪ {∅}, the two following sets of permutations:

R−jmax = {π ∈ SD−j : kπ = k−jmax}, and R−j = {π ∈ SD−j : kπ < k−jmax}

and notice thatR−jmax ∪R−j = SD−j
. Moreover, notice that

∀j ∈ D ∪ ∅,∀π ∈ R−j , kπ < kmax. (C.6)

Again, denoteRmax = R−∅max andR = R−∅. Hence, for any j ∈ D, one has that:
∑

π∈SD−j

ϵ−kπ
p Υd−1

kπ+1(π, v) =
∑

π∈R−j
max

ϵ−kπ
p Υd−1

kπ+1(π, v) +
∑

π∈R−j

ϵ−kπ
p Υd−1

kπ+1(π, v)

=
∑

π∈R−j
max

ϵ
−k−j

max
p Υd−1

kπ+1(π, v) +
∑

π∈R−j

ϵ−kπ
p Υd−1

kπ+1(π, v)

and in the particular case of j = ∅, one has that:
∑

π∈SD
ϵ−kπ
p Υd

kπ+1(π, v) =
∑

π∈Rmax

ϵ−kmax
p Υd

kπ+1(π, v) +
∑

π∈R
ϵ−kπ
p Υd

kπ+1(π, v)

= ϵ−kmax
p

( ∑

π∈Rmax

Υd
kπ+1(π, v) +

∑

π∈R
ϵkmax−kπ
p Υd

kπ+1(π, v)

)
.

It entails that:

PVi =

∑
π∈R−i

max
ϵ
kmax−k−i

max
p Υd−1

kπ+1(π, v) +
∑

π∈R−i ϵkmax−kπ
p Υd−1

kπ+1(π, v)∑
σ∈Rmax

Υd
kσ+1(σ, v) +

∑
σ∈R ϵ

kmax−kσ
p Υd

kσ+1(σ, v)
.

From Eq. (C.6), one can notice that, for any j ∈ D ∪ {∅}:

lim
p→∞

∑

π∈R−j

ϵkmax−kπ
p Υ

d−|j|
kπ+1(π, v) = 0

and additionally, from Eq. (C.5), notice that for any j ∈ D:

lim
p→∞

∑

π∈R−j
max

ϵ
kmax−k−j

max
p Υd−1

kπ+1(π, v) =

{∑
π∈R−j

max
Υd−1

kπ+1(π, v) if kmax = k−jmax

0 otherwise.

Denote:
PV∗

(
(D, v)

)
= lim

p→∞
PV
(
D, vp

)
,

and notice that, for any i ∈ D:

PV∗i =





∑
π∈R−i

max
Υd−1

kπ+1(π, v)∑
σ∈Rmax

Υd−1
kσ+1(σ, v)

if kmax = k−imax,

0 otherwise.
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Notice that, for any j ∈ D, the condition kmax = k−jmax is equivalent to having a coalition A ⊆ D−j such
that |A| = kmax and v(A) = 0. The complement of this condition is that j must be in every coalition
A ⊆ D such that |A| = kmax and v(A) = 0, leading to the condition for which PV∗j = 0.

For any j ∈ D ∪ {∅}, and assuming that k−jmax = kmax, one can notice that R−jmax only contains the
permutations π ∈ SD−j such that v (Ckmax(π)) = 0, and by monotonicity, this implies that for any
π ∈ R−jmax:

v (C1(π)) = v (C2(π)) = · · · = v (Ckmax−1(π)) = v (Ckmax
(π)) = 0,

and that for kmax < k ≤ |π|,
v (Ck(π)) > 0.

For any j ∈ D ∪ {∅}, denote K−j = {A ⊆ D−j : v(A) = 0 and |A| = kmax}, and notice that R−jmax is nec-
essarily composed of permutations having permutations of elements in K−j as their first kmax elements.
In other words, for every π ∈ R−jmax,

Ckmax
(π) ∈ K−j .

Thus, for any j ∈ D ∪ ∅, one has that:
∑

π∈R−j
max

Υd−1
kπ+1(π, v) =

∑

A∈K−j

kmax!
∑

π∈SD−j\A

Υ
|π|
1 (π, vA)

= kmax!
∑

A∈K−j

∑

π∈SD−j\A

|π|∏

k=1

v(A ∪ Ck(π))
−1

= kmax!
∑

A∈K−j

R(D−j \A, vA)−1

where for any B ⊆ D \ A, vA(B) = v(A ∪ B), and using results from [69] on the ratio potential. This
leads to the following rewriting of PV∗, for any i ∈ D:

PV∗i =





0 if ∀A ∈ K, i ∈ A,∑
A∈K−i

R(D−i \A, vA)−1∑
A∈KR(D \A, vA)−1

otherwise.

Finally, notice that for any positive game (D, v), i.e., , where v is positively valued, then necessarily, for
any permutation and sub-permutations π of players kπ = kmax = 0. Moreover, for any j ∈ D ∪ {∅},
K−j = ∅, and for any i ∈ D,

PV∗i =
R(D, v)

R(D−i, v)
= PVi,

and hence the allocation PV∗ is a continuous extension of PV to cooperative games with nonnegative
value function.

Proof of Lemma 3.1.
Let A ⊆ D. First, assume that ST

A = 0, then necessarily,

E−A
[
(G(X)− E−A [G(X)])

2
]
= 0 a.s.

which can only be attained, by non-negativity of the squared distance, if

G(X) = E [G(X) | XA] a.s.

Now assume that G(X) = E−A [G(X)] a.s.. Then necessarily,

ST
A = E−A

[
(G(X)− E−A [G(X)])

2
]
= 0 a.s..

Proof of Proposition 3.2.
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First, the equivalence
ST
E = 0 ⇐⇒ XE is an exogenous,

is proven.

Let E ⊆ D and suppose that XE is an exogenous vector. Then it entails that there exists some f(X−E) ∈
L2 (σ−E) such that:

G(X) = f(X−E) a.s.

and hence,G(X) ∈ L2 (σ−E). Thus, since the conditional expectation E−E [·] is the orthogonal projection
onto L2 (σ−E), one has that:

G(X) = E−E [G(X)] ,

and by Lemma 3.1, it is equivalent to
ST
E = 0.

Now, suppose that ST
E = 0, and thus, by Lemma 3.1, G(X) = E−E [G(X)] a.s. and since E−E [G(X)] ∈

L2 (σ−E) then XE is necessarily an exogenous vector. Thus, the between XE being an exogenous vector
and ST

E = 0 is proved.

Suppose that for every i ∈ E, Xi is an exogenous input, and for every j ∈ −E, Xj is not exogenous.
Suppose that Assumption 1 hold. Then XE is an exogenous vector containing every exogenous input,
and then, from the previous equivalence, ST

E = 0.

Now, suppose that there exists another subset A ⊆ D, such that E ⊂ A and ST
A = 0. Necessarily one has

that A \ E ̸= ∅. Moreover, for any i ∈ A \ E, one has 0 ≤ ST
i ≤ ST

A = 0 since ST is monotonic w.r.t. set
inclusion. Then ST

i = 0, which from the previous equivalence, entails that Xj is exogenous. However,
since j ̸∈ E, this is impossible since XE contains every exogenous input. Hence, there is no coalition A,
bigger than E such that ST

A = 0.

Now, from the value function ST , this entails that

K =

{
A ∈ PD : |A| = max

B∈PD

{|B|} s.t. ST
B = 0

}
= {E},

and thus, coming from Theorem 3.2,

PMEi = 0 ⇐⇒ i ∈
⋂

A∈K
A = E,

and thus, an input is granted a PME equal to zero if and only if it is exogenous.
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D.1 Some technical preliminaries

D.1.1 Hilbert space external direct sums

Let H1, . . . ,Hn be a collection of Hilbert spaces with respective inner products ⟨., .⟩1 , . . . , ⟨., .⟩n and
induced norms ∥.∥1 , . . . , ∥.∥n. The Hilbert space (external) direct-sum is the space denoted and defined
as (see, [45], Definition 6.4)

n⊕

i=1

Hi =

{
x = (x1, . . . , xn) ∈

n×
i=1

Hi :

n∑

i=1

∥xi∥2i <∞
}
.

A Hilbert space direct-sum is itself a Hilbert space w.r.t. the inner product ⟨., .⟩ (see, [45], Proposition
6.2)

∀x, y ∈
n⊕

i=1

Hi, ⟨x, y⟩ =
n∑

i=1

⟨xi, yi⟩i .

D.1.2 Closed range operator

Theorem D.1 (Closed range operator). Let (M1, ∥.∥1) and (M2, ∥.∥2) be two Banach spaces, and let
T :M1 → M2 be a continuous operator between the two spaces. T is bounded from below, i.e., there
exists some γ > 0 such that, ∀x ∈M1

∥T (x)∥2 ≥ γ ∥x∥1 ,
if and only if T is one-to-one and Ran (T ) is closed inM2.

Proof: See, [1], Theorem 2.5.

D.2 Proof of Theorem 4.6

D.2.1 Intermediary results

In order to prove Theorem 4.6, two preliminary results are required.

Proposition D.1. Let A ∈ PD, and let B,C ∈ P−A be non-empty proper subsets of A such that B ̸= C.
Let VB , VC be a closed subspace of L2 (σB) and L2 (σC) respectively. If one has that

VB ⊆
[
L2 (σB∩C)

]⊥
, and VC ⊆

[
L2 (σB∩C)

]⊥
,

then, assuming that Assumption 2 hold, then

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
.

Proof of Proposition D.1.
First, recall that, if Assumption 2 holds and thanks to Theorem 4.1

L2 (σB) ∩ L2 (σC) = L2 (σB ∩ σC) = L2 (σB∩C) .

Then, notice that since

VB ⊆ L2 (σB) ∩
[
L2 (σB∩C)

]⊥
, and VC ⊆ L2 (σC) ∩

[
L2 (σB∩C)

]⊥
,

one has that

c0 (VB , VC) = c0
(
L2 (σB) ∩ VB ,L2 (σC) ∩ VC

)

≤ c0
(
L2 (σB) ∩

[
L2 (σB∩C)

]⊥
,L2 (σC) ∩

[
L2 (σB∩C)

]⊥)
.
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Hence, if Assumption 2 is assumed

c0 (VB , VC) ≤ c0
(
L2 (σB) ∩

[
L2 (σB) ∩ L2 (σC)

]⊥
,L2 (σC) ∩

[
L2 (σB) ∩ L2 (σC)

]⊥)

= c
(
L2 (σB) ,L2 (σC)

)

where the last equality is achieved using Lemma 4.2.

Proposition D.2. Let A ∈ PD, and let (VB)B∈PA,B ̸=A be a collection of closed subspaces of L2 (σA) such
that, ∀B,C ∈ P−A, B ̸= C,

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)

then, under Assumption 3, there exist a ρ > 0 such that, for any
∑

A∈P−A
YA ∈+B∈P−A

VB

√√√√√√E





 ∑

B∈P−A

YA




2

 ≥ ρ

∑

B∈P−A

√
E [Y 2

A],

and additionally,

+
B∈P−A

VB

is closed in L2 (σA).

Proof of Proposition D.2.
Let HA =

⊕n
B∈PA:B ̸=A VA be the Hilbert space external direct-sum of the collection of closed (and thus

Hilbert) subspaces (VB)B∈PA,B ̸=A. Let TA be the operator defined as

TA : HA → L2 (σA)

Y = (YB)B∈P−A
7→

∑

B∈P−A

YB

and notice that
Ran (TA) = +

B∈P−A

VB ⊆ L2 (σA) .

One then has that

E





 ∑

B∈P−A

YB




2

 =

∑

B∈P−A

E
[
Y 2
B

]
+

∑

B,C∈P−A:B ̸=C

E [YAYB ]

≥
∑

B∈P−A

E
[
Y 2
B

]
−

∑

B,C∈P−A:B ̸=C

c0 (VA, VB)
√

E [Y 2
A]
√
E [Y 2

B ]

≥
∑

B∈P−A

E
[
Y 2
B

]
−

∑

B,C∈P−A:B ̸=C

c
(
L2 (σA) ,L2 (σB)

)√
E [Y 2

A]
√
E [Y 2

B ]

where the first inequality is achieved thanks to Theorem 4.3. Denote EA =
(√

E [Y 2
B ]
)
B∈P−A

and notice

that
∑

B∈P−A

E
[
Y 2
B

]
−

∑

B,C∈P−A:B ̸=C

c
(
L2 (σA) ,L2 (σB)

)√
E [Y 2

A]
√

E [Y 2
B ] = E⊤A∆|AEA

Denote λA the smallest eigenvalue of ∆|A, and notice that if Assumption 3 holds, ∆|A is definite positive
and λA > 0. Thus, one has that

E⊤A∆|AEA ≥ λAE⊤AEA

= λA
∑

B∈P−A

E
[
Y 2
A

]
.
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Hence, one has that
√√√√√√E





 ∑

B∈P−A

YB




2

 ≥

√
λA

∑

B∈P−A

E [Y 2
A]

≥
√

λA
2d − 1

∑

B∈P−A

√
E [Y 2

A]

where the last inequality is achieved using Jensen’s inequality. Hence, one has that, for any Y ∈ HA

√
E [TA(Y )2] ≥

√
λA

2d − 1

∑

B∈P−A

√
E [Y 2

A]

where
√

λA

2d−1 > 0, and
∑

B∈PA

√
E [Y 2

A] is the norm of Y product on HA. Hence, by Theorem D.1,

Ran (TA) = +
B∈P−A

VB is closed in L2 (σA) .

D.2.2 Proof of the main result

Proof of Theorem 4.6.
The proof is done in two steps. First, we prove by induction that, ∀A ∈ PD

L2 (σA) = +
C∈PA

VC ,

and then we show that the sum is indeed direct.

Statement Let n = 1, . . . , d−1. We will show that if for every non-emptyB ∈ PD,B such that |B| = n,
one has that

• L2 (σC) = +Z∈PC
VZ where VC =

[
+Z∈P−C

VZ

]⊥C

;

Then, for every A ∈ PD such that |A| = n+ 1, it holds that

L2 (σA) = +
C∈PA

VC where VA =


 +
Z∈P−A

VZ



⊥A

Base case We start for n = 1. For any i ∈ D, denote Vi = [V∅]
⊥i , and notice that since V∅ is closed in

L2 (σi)
L2 (σi) = V∅ ⊕ Vi.

and notice that ∀i ∈ D,
Vi =

[
L2 (σ∅)

]⊥i ⊆
[
L2 (σ∅)

]⊥
,

by Lemma 4.3.

Next, consider the case where n = 2. Notice from the previous step that for any i, j ∈ D such that i ≠ j,
notice that L2 (σi∩j) = L2 (σ∅), and thus one has that

Vi ⊂
[
L2 (σ∅)

]⊥
and Vj ⊂

[
L2 (σ∅)

]⊥
.

Hence, assuming that Assumption 2 hold, from Proposition D.1, one can conclude that, for any i, j ∈ D
such that i ̸= j,

c0 (Vi, Vj) ≤ c
(
L2 (σi) ,L2 (σj)

)
.
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Now, let A ∈ PD such that |A| = 2, and denote A = {i, j}, and notice that, assuming that Assumption 3
hold, by Proposition D.2, one has that

V∅ + Vi + Vj is closed in L2 (σA) .

Hence, let
VA = [V∅ + Vi + Vj ]

⊥A ,

and notice that
L2 (σA) = [V∅ + Vi + Vj ]⊕ VA.

Since A has been chosen arbitrarily, this holds for any A ∈ PD such that |A| = 2.

Induction Suppose that, for every B ∈ PD such that |B| = n, one has that

L2 (σB) = +
Z∈PB

VZ , where VB =


 +
Z∈P−B

VZ



⊥B

.

Let A ∈ PD such that |A| = n + 1. Notice then that, for any non-empty B,C ∈ P−A, since B ∩ C ∈
P−B ∩ P−C , that

L2 (σB∩C) = +
Z∈PB∩C

VZ ,

is necessarily contained of +Z∈P−B
VZ and of +Z∈P−C

VZ . Thus, one has that

VB =


 +
Z∈P−B

VZ



⊥B

⊂


 +
Z∈P−B

VZ



⊥

⊂
[
L2 (σB∩C)

]⊥
.

and analogously
VC ⊂

[
L2 (σB∩C)

]⊥
.

Hence, assuming that Assumption 2 hold, from Proposition D.1, one can conclude that, for every non-
empty B,C ∈ P−A such that B ̸= C,

c0 (VB , VC) ≤ c
(
L2 (σB) ,L2 (σC)

)
,

which, under Assumption 3 and thanks to Proposition D.2, in turn implies that

+
Z∈P−A

VZ is closed in L2 (σA) .

Denote VA =
[
+Z∈P−A

VZ

]⊥A

, and notice that

L2 (σA) =


 +
Z∈P−A

VZ


⊕ VA = +

Z∈PA

VZ .

Since A has been taken arbitrarily, this holds for any A ∈ PD such that |A| = n.

Now, we show that these additive decompositions are direct. Let A ∈ PD, and notice that for any non-
empty ∀B ∈ PA, VB ⊥ L2 (σ∅), meaning that any f(XB) ∈ VB is centered. Next, notice that the principal(
2|A| × 2|A|

)
submatrix of ∆, indexed by the elements of PA and denoted ∆A, is also definite-positive,

and hence its smallest eigenvalue λA is positive. Next, notice that for any Y ∈ L2 (σA), by definition,
one has that:

Y =
∑

B∈PA

YB , where YB ∈ VB .
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Now, suppose that Y = 0 a.s., which is equivalent to E [Y ] = 0 and E
[
Y 2
]
= 0. However, under

Assumptions 2 and 3, notice that

E
[
Y 2
]
= E



( ∑

B∈PA

YB

)2



=
∑

B∈PA

E
[
Y 2
B

]
+

∑

B,C∈PA:B ̸=C

E [YBYC ]

≥
∑

B∈PA

E
[
Y 2
B

]
−

∑

B,C∈PA:B ̸=C

c0 (VB , VC)
√
E [Y 2

B ]
√
E [Y 2

C ]

≥
∑

B∈PA

E
[
Y 2
B

]
−

∑

B,C∈PA:B ̸=C

c
(
L2 (σB) ,L2 (σC)

)√
E [Y 2

B ]
√
E [Y 2

C ]

Let EA =
(√

E [Y 2
B ]
)⊤
B∈PA

and notice that

E
[
Y 2
]
≥ E⊤A∆AEA

≥ λAE⊤AEA

= λA
∑

B∈PA

E
[
Y 2
B

]

since ∆A is definite positive, and λA > 0 is its smallest eigenvalue. Thus, one has that if E
[
Y 2
]
= 0, then

necessarily ∑

B∈PA

E
[
Y 2
B

]
= 0,

and since this is a sum of positive elements, ∀B ∈ PA, E
[
Y 2
B

]
= 0, which, in addition to the fact that

each YB is centered, is equivalent to YB = 0 a.s. Hence,

Y = 0 a.s. =⇒ ∀B ∈ PD, YB = 0 a.s.

which ultimately proves that
L2 (σA) =

⊕

B∈PA

VB .

D.3 Proofs

Proof of Proposition 4.11.
First, recall that, for any A ∈ PD,

GA(XA) =
∑

B∈PA

(−1)|A|−|B|MB(G(X)),

and hence,
∑

B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) = Cov (GA(XA), [I −MA] (G(X)))

=
∑

B∈PD:B ̸∈PA

Cov (GA(XA), GB(XB)) .

However, notice that UA ⊂ PD \ PA, and that, for any B ∈ PD \ PA with B ̸∈ UA,

Cov (GA(XA), GB(XB)) = 0,
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and hence,
∑

B∈PA

(−1)|A|−|B|Cov (MB(G(X)), [I −MA] (G(X))) =
∑

B∈PD:B ̸∈PA

Cov (GA(XA), GB(XB))

=
∑

B∈UA
Cov (GA(XA), GB(XB))

= SC
A .

Proof of Proposition 4.12.
First, recall that

MA(G(X)) =
∑

B∈PA

GB(XB).

Thus,

V (MA(G(X))) = V

( ∑

B∈PA

GB(XB)

)

=
∑

B∈PA

V (GB(XB)) +
∑

C∈UA
Cov (GB(XB), GC(XC))

=
∑

B∈PA

SU
B + SC

B

which is equivalent to
V (MA(G(X)))−

∑

B∈PA

SC
B =

∑

B∈PA

SU
B .

However, notice that, ∀A ∈ PD

∑

B∈PA

SC
B = Cov (MA(G(X)), [I −MA] (G(X))) ,

and thus, ∀A ∈ PD

V (MA(G(X)))− Cov (MA(G(X)), [I −MA] (G(X))) =
∑

B∈PD

SU
B .

Using Rota’s generalization of the Möbius inversion formula applied to the power-set, it yields that
∀A ∈ PD

SU
A =

∑

B∈PA

(−1)|A|−|B| [V (MB(G(X)))− Cov (MB(G(X)), [I −MA] (G(X)))] .

Proof of Lemma 4.5.
First, suppose that X is mutually independent. By Proposition 4.9, one has that

∀A,B ∈ PD, B ̸= A VA ⊥ VB ,

which entails that
VA ⊥WA = +

B∈PD:B ̸=A

VB .

However, notice that WA still complements VA in L2 (σX). Furthermore, by unicity of the orthogonal
complement, one has that WA = V ⊥A . Thus,

Ran (QA) = VA, Ker (QA) = V ⊥A ,

and thus QA = PA, leading to
QA (G(X)) = PA (G(X)) a.s.
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Now, suppose that for any A ∈ PD, QA (G(X)) = PA (G(X)) a.s. Hence, it implies that

∀A ∈ PD, GA(XA) = PA (G(X)) .

which implies that PA = QA, since the above equation defines the operator QA. Thus, PA and QA must
share the same ranges and nullspaces. In particular,

Ker (QA) = Ker (PA) = V ⊥A ,

implying that WA = V ⊥A , which leads to

VA ⊥WA,∀A ∈ PD ⇐⇒ VA ⊥ VB ,∀A,B ∈ PD, B ̸= A.

Finally, thanks to Proposition 4.9, notice that this is equivalent to X being mutually independent.



[1]: import sympy as sym
import numpy as np
sym.init_printing()

1 Framework

We have that X = (X1, X2) with
X1 ∼ B(q1), X2 ∼ B(q2).

Additionnally, let
ρ = P({X1 = 1} ∩ {X2 = 1}).

[2]: ## Variables
q1, q2= sym.symbols('q1,q2', positive=True)
rho=sym.Symbol("rho")

The joint law of X is given by

p00 = P({X1 = 0} ∩ {X2 = 0}) = 1− q1 − q2 + ρ

p01 = P({X1 = 0} ∩ {X2 = 1}) = q2 − ρ

p10 = P({X1 = 1} ∩ {X2 = 0}) = q1 − ρ

p11 = P({X1 = 1} ∩ {X2 = 1}) = ρ

[3]: p00=1-q1-q2+rho
p01=q2-rho
p10=q1-rho
p11=rho

probs=[p00, p01, p10, p11]

[4]: ## Functions
def prosca(pr,a,b): #E[ab] = a^T P b

tmp=[x*y*z for x,y,z in zip(pr, a, b)]
return(sum(tmp))

def norm_sq(pr, x): #E[x^2] = x^T P x
return(prosca(pr, x,x))

def orthProj(probs, vec, subspace):
weight=prosca(probs, vec, subspace)/norm_sq(probs, subspace)
return([x*weight for x in subspace])

2 Defining the subspaces and the canonical decomposition

First, notice that the functions of X can only take four different values. Hence, any G : {0, 1}2 → R can be
represented as a vector in R4.
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D.4 Analytical results

This section is dedicated to presenting the analytical results for the toy-case in Section 4.5.



2.1 V∅

Notice that V∅ is comprised of constant functions of X. In other words, for every v∅ ∈ V∅, it can be represented
as

v∅ =




c
c
c
c


 ,

where c ∈ R.

[5]: c=sym.Symbol("c")
ve=[c,c,c,c]
param_ve=[c]

We want to find a vector v∅ ∈ V∅ such that its norm (w.r.t. the joint law of X) is equal to 1.

[6]: eq_ve=[norm_sq(probs, ve)-1] #Norm(ve) = 1
eq_ve

[6]: [c2ρ + c2 (q1 − ρ) + c2 (q2 − ρ) + c2 (−q1 − q2 + ρ + 1)− 1
]

2.2 V1 and V2

By definition, V1 ⊂ L2(σ1), and thus, elements of V1 are functions of X1. It implies that the values they take does
not change w.r.t. the values taken by X2. Hence, a function of X in V1 can be represented as

v1 =




g0
g0
g1
g1


 ,

where g0, g1 ∈ R.

[7]: g0,g1 = sym.symbols('g0,g1')
v1=[g0,g0,g1,g1]
param_v1=[g0,g1]

For G1 to be in V1, it must be orthogonal (w.r.t. the joint law to X) to the functions in V∅. Additionnally, we want
to find a vector v1 ∈ V1 with unit norm.

[8]: eq1_v1=prosca(probs, v1, ve) #v1 \perp ve
eq2_v1=norm_sq(probs, v1)-1 #Norm(v1)= 1
eqs_v1= [eq1_v1, eq2_v1]

Analogously, since V2 ⊂ L2(σ2), any element of v2 ∈ V2 admits the form:

v2 =




h0
h1
h0
h1


 ,

where h0, h1 ∈ R.

[9]: h0,h1 = sym.symbols('h0,h1')
v2=[h0,h1,h0,h1]
param_v2=[h0,h1]

eq1_v2=prosca(probs, v2, ve) #v2 \perp ve
eq2_v2=norm_sq(probs, v2)-1 #Norm(v2)= 1
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eqs_v2= [eq1_v2, eq2_v2]

2.3 V12

Since V12 ⊂ L2(σ12), any element of v12 ∈ V12 admits the form:

v12 =




k00
k01
k10
k11


 ,

where k00, k01, k10, k11 ∈ R.

[10]: k00, k01, k10, k11 = sym.symbols('k00, k01, k10, k11')
v12=[k00, k01, k10, k11]
param_v12=[k00, k01, k10, k11]

By definition of V12 it is the orthogonal complement in L2(σ12 of

V∅ + V1 + V2,

which is equivalent to V12 to be orthogonal to each of the summands.

[11]: eq1_v12=prosca(probs, v12, ve) ## v12 \perp ve
eq2_v12=prosca(probs, v12, v1) ## v12 \perp v1
eq3_v12=prosca(probs, v12, v2) ## v12 \perp v2
eq4_v12=norm_sq(probs, v12)-1 ## Norm(v12)=1

eqs_v12=[eq1_v12, eq2_v12, eq3_v12, eq4_v12]

2.4 Canonical decomposition

Any function G(X) in L2(σ12) can be represented as

G =




G00
G01
G10
G11




[12]: G00,G01,G10,G11 = sym.symbols('G00,G01,G10,G11')
G=[G00,G01,G10,G11]

And the canonical decomposition entails that

G = e× v∅ + α× v1 + β× v2 + δ× v12

= G∅ + G1 + G2 + G12.

[13]: alpha,beta,delta,e = sym.symbols('alpha, beta, delta, e')
decomp_params = [alpha,beta,delta,e]

eqs_params=[e*x + alpha*y + beta*z + delta*t - g for x,y,z,t, g in zip(ve, v1, v2, v12, G)]

2.5 Solution to the problem

We have 13 parameters related to 13 different equations, which can be solved.
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[14]: parameters= decomp_params + param_v12 + param_v2 + param_v1 + param_ve
equations=eq_ve + eqs_v1 + eqs_v2 + eqs_v12 + eqs_params

print("Number of parameters:")
print(len(parameters))

print("Number of equations:")
print(len(equations))

Number of parameters:
13
Number of equations:
13

[15]: %%time
res_params=sym.solve(equations,

parameters,
dict=True,

check=False)

Wall time: 44.9 s

[16]: e_=res_params[2][e]
ve=[res_params[2][c], res_params[2][c], res_params[2][c], res_params[2][c]]

alpha_=res_params[2][alpha]
v1 = [res_params[2][g0], res_params[2][g0], res_params[2][g1], res_params[2][g1]]

beta_=res_params[2][beta]
v2 = [res_params[2][h0], res_params[2][h1], res_params[2][h0], res_params[2][h1]]

delta_=res_params[2][delta]
v12 = [res_params[2][k00], res_params[2][k01], res_params[2][k10], res_params[2][k11]]

[17]: Ge=[sym.simplify(e_*x).factor(G00,G01,G10,G11) for x in ve]
G1=[sym.simplify(alpha_*x).factor(G00,G01,G10,G11) for x in v1]
G2=[sym.simplify(beta_*x).factor(G00,G01,G10,G11) for x in v2]
G12=[sym.simplify(delta_*x).factor(G00,G01,G10,G11) for x in v12]

2.6 Observations and verification

2.6.1 Evaluation decomposition

G(X) = eV∅ + αV1 + βV2 + δV12

[18]: [sym.simplify(x + y + z + t) for x,y,z,t in zip(Ge, G1, G2, G12)]

[18]:
[G00, G01, G10, G11]

2.6.2 e is equal to the expectation of G(X):

e = E[G(X)]

[19]: sym.simplify(prosca(probs, G, [1,1,1,1]) - e_)==0

[19]: True
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2.6.3 Variance decomposition

E[G2(X)] = e2 + α2 + β2 + δ2 + 2αβE[V1(X1), V2(X2)]

[20]: normG= e_**2 + alpha_**2 + beta_**2 + delta_**2 + 2*alpha_*beta_*prosca(probs, v1,v2)
sym.simplify(norm_sq(probs, G) - normG) == 0

[20]: True

2.6.4 Annihilating property

V12
P1(Q12(G(X))) = 0

[21]: [sym.simplify(x) for x in orthProj(probs, G12, v1)]

[21]:
[0, 0, 0, 0]

P2(Q12(G(X))) = 0

[22]: [sym.simplify(x) for x in orthProj(probs, G12, v2)]

[22]:
[0, 0, 0, 0]

P∅(Q12(G(X))) = 0

[23]: [sym.simplify(x) for x in orthProj(probs, G12, ve)]

[23]:
[0, 0, 0, 0]

V1
P∅(Q1(G(X))) = 0

[24]: [sym.simplify(x) for x in orthProj(probs, G1, ve)]

[24]:
[0, 0, 0, 0]

V2
P∅(Q2(G(X))) = 0

[25]: [sym.simplify(x) for x in orthProj(probs, G2, ve)]

[25]:
[0, 0, 0, 0]

2.6.5 Correlation of X and c0(V1, V2)

c0(V1, V2) = E[v1(X1)v2(X2)] = Corr(X1, X2)

[26]: corrX=(rho-q1*q2)/(sym.sqrt(q1*(1-q1))*sym.sqrt(q2*(1-q2)))
sym.simplify(prosca(probs, v1,v2) - corrX)

[26]:
0
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2.6.6 Bounds for definite-positiveness of ∆

∆ is definite-positive if
|E[v1(X1)v2(X2)]| < 1

which restricts rho to takes the values:

[27]: bd_rho=sym.solve(sym.sqrt(prosca(probs, v1,v2)**2)-1, rho)
bd_rho

[27]: [
−√q1

√
q2

√
(q1 − 1) (q2 − 1) + q1q2,

√
q1
√

q2

√
(q1 − 1) (q2 − 1) + q1q2

]

3 Evaluation Decomposition

3.1 Canonical Evaluation Decomposition

G(X) = eV∅ + αV1 + βV2 + δV12

[28]: [sym.simplify(x + y + z + t) for x,y,z,t in zip(Ge, G1, G2, G12)]

[28]:
[G00, G01, G10, G11]

3.2 Canonical Shapley

[29]: CSh1 = [sym.simplify(x+sym.Rational("1/2")*y) for x,y in zip(G1, G12)]
CSh2 = [sym.simplify(x+sym.Rational("1/2")*y) for x,y in zip(G2, G12)]

[30]: [sym.simplify(x+y+z) for x,y,z in zip(Ge, CSh1, CSh2)]

[30]:
[G00, G01, G10, G11]

4 Variance Decomposition

4.1 Organic indices

4.1.1 Pure interaction

[31]: %%time
Se=sym.simplify(norm_sq(probs,Ge).subs(rho, q1*q2))
S1=sym.simplify(norm_sq(probs,G1).subs(rho, q1*q2))
S2=sym.simplify(norm_sq(probs,G2).subs(rho, q1*q2))
S12=sym.simplify(norm_sq(probs,G12).subs(rho, q1*q2))
S=[Se, S1, S2, S12]

Wall time: 2.37 s

4.1.2 Dependence indices

[32]: %%time
Pe=orthProj(probs, G, ve)
P1=orthProj(probs, G, v1)
P2= orthProj(probs, G, v2)
P12= orthProj(probs, G, v12)

De=sym.simplify(norm_sq(probs, [sym.simplify(x-y) for x,y in zip(Ge, Pe)]))
D1=sym.simplify(norm_sq(probs, [sym.simplify(x-y) for x,y in zip(G1, P1)]))
D2=sym.simplify(norm_sq(probs, [sym.simplify(x-y) for x,y in zip(G2, P2)]))
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D12=sym.simplify(norm_sq(probs, [sym.simplify(x-y) for x,y in zip(G12, P12)]))
D=[De, D1, D2, D12]

Wall time: 49.6 s

4.2 Canonical indices

4.2.1 Structural indices

[33]: %%time
Sue=sym.simplify(norm_sq(probs, Ge))
Su1=sym.simplify(norm_sq(probs, G1))
Su2=sym.simplify(norm_sq(probs, G2))
Su12=sym.simplify(norm_sq(probs, G12))
Su=[Sue, Su1, Su2, Su12]

Wall time: 11 s

4.2.2 Correlative indices

[34]: %%time
Sce=sym.zeros(1)[0]
Sc1=sym.simplify(prosca(probs, G1,G2))
Sc2=sym.simplify(prosca(probs, G2,G1))
Sc12=sym.zeros(1)[0]
Sc=[Sce, Sc1, Sc2, Sc12]

Wall time: 11.5 s

5 Case of q1 = q2 = 0.5

[35]: rplc=[(q1, sym.Rational("1/2")), (q2,sym.Rational("1/2"))]

5.1 Evaluation decomposition

e× v∅

[36]: [sym.simplify((e_*x).subs(rplc)).factor(rho) for x in ve]

[36]:

[
G01 + G10 + ρ (2G00 − 2G01 − 2G10 + 2G11)

2
,

G01 + G10 + ρ (2G00 − 2G01 − 2G10 + 2G11)

2
,

G01 + G10 + ρ (2G00 − 2G01 − 2G10 + 2G11)

2
,

G01 + G10 + ρ (2G00 − 2G01 − 2G10 + 2G11)

2

]

α× v1

[37]: [sym.simplify((alpha_*x).subs(rplc)).factor() for x in v1]

[37]: [G00 + G01 − G10 − G11

4
,

G00 + G01 − G10 − G11

4
, −G00 + G01 − G10 − G11

4
, −G00 + G01 − G10 − G11

4

]
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β× v2

[38]: [sym.simplify((beta_*x).subs(rplc)) for x in v2]

[38]: [G00

4
− G01

4
+

G10

4
− G11

4
, −G00

4
+

G01

4
− G10

4
+

G11

4
,

G00

4
− G01

4
+

G10

4
− G11

4
, −G00

4
+

G01

4
− G10

4
+

G11

4

]

δ× v2

[39]: [sym.simplify((delta_*x).subs(rplc)) for x in v12]

[39]:

[(−4ρ2 + 4ρ− 1
)
(G00 − G01 − G10 + G11)

2 · (2ρ− 1)
,

ρ (−G00 + G01 + G10 − G11) ,
ρ (−G00 + G01 + G10 − G11) ,

ρ
√

1−2ρ
ρ

√
−4ρ2+4ρ−1

ρ(2ρ−1) (G00 − G01 − G10 + G11)

2

]

5.2 Variance Decomposition

5.2.1 Organic indices

Pure interaction
[40]: [sym.simplify(x.subs(rplc)) for x in S]

[40]:

[
(G00 + G01 + G10 + G11)

2

16
,

(G00 + G01 − G10 − G11)
2

16
,

(G00 − G01 + G10 − G11)
2

16
,

(G00 − G01 − G10 + G11)
2

16

]

Dependence indices
[41]: [sym.simplify(x.subs(rplc)).factor(rho) for x in D]

[41]: [
0,

(4ρ− 1)2 (−G00 + G01 − G10 + G11)
2

16
,
(4ρ− 1)2 (−G00 − G01 + G10 + G11)

2

16
, 0

]

5.2.2 Canonical indices

Structural indices
[42]: [sym.simplify(x.subs(rplc)).factor(rho) for x in Su]

[42]:
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[
(G01 + G10 + ρ (2G00 − 2G01 − 2G10 + 2G11))

2

4
,

(G00 + G01 − G10 − G11)
2

16
,

(G00 − G01 + G10 − G11)
2

16
,

− ρ (2ρ− 1) (G00 − G01 − G10 + G11)
2

2

]

Correlative indices
[43]: [sym.simplify(x.subs(rplc)).factor(rho) for x in Sc]

[43]:

[
0,

(4ρ− 1)
(

G00

16
+

G01

16
− G10

16
− G11

16

)
(G00 − G01 + G10 − G11) ,

(4ρ− 1)
(

G00

16
+

G01

16
− G10

16
− G11

16

)
(G00 − G01 + G10 − G11) ,

0
]

6 Further numerical testing

[44]: # Some Boolean function valued in R
def model(x1,x2):

return(x1+x2-2*np.exp(x1*x2) + 5*np.log(np.pi)**(x1*x2))

#Marginal probabilities
p1,p2=np.random.random_sample(size=2)

# Lower and upper bounds on the correlation between X1 and X2
L = max(0, p1+p2-1)
U = min(p1,p2)

#Random sample of the correlation
p12=(L-U)*np.random.random_sample(1)[0] + U

#Sample the values of G
g00 = model(0,0)
g01 = model(0,1)
g10 = model(1,0)
g11 = model(1,1)

Gb = [g00, g01, g10, g11]

#Vector of replacements for the sympy formulas
rplc=[(q1, p1), (q2, p2), (rho, p12), (G00, g00), (G01, g01), (G10, g10), (G11, g11)]
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#Variance of G under dependence
VG=(norm_sq(probs, Gb)).subs(rplc)

#Variance of G under mutual independence
VG_=(norm_sq(probs, Gb)).subs(rho, q1*q2).subs(rplc)

print('Var G')
print(VG)
print("\n")

print('Var G indep')
print(VG_)
print("\n")

print('Probas : q1, q2, rho')
print([p1, p2, p12])
print("\n")

print('Correlation X1 and X2')
print((p12-p1*p2)/(np.sqrt(p1*(1-p1))*np.sqrt(p2*(1-p2))))
print("\n")

print('c(L²(1),L²(2))')
print(prosca(probs, v1,v2).subs(rplc))
print("\n")

print('rho LU bounds')
print([L,U])
print("\n")

print("rho DP bounds")
dpb=[max(0,bd_rho[0].subs([(q1,p1),(q2,p2)])), min(1, bd_rho[1].subs([(q1,p1),(q2,p2)]))]
print(dpb)
print("\n")

print('Values : G00, G01, G10, G11')
print([g00, g01, g10, g11])
print("\n")

print('#######################################################################')
print('Evaluation decomposition')
print('#######################################################################')
print("Ge")
print([sym.simplify(x.subs(rplc)) for x in Ge])
print("G1")
print([sym.simplify(x.subs(rplc)) for x in G1])
print("G2")
print([sym.simplify(x.subs(rplc)) for x in G2])
print("G12")
print([sym.simplify(x.subs(rplc)) for x in G12])
print("Ge + G1 + G2 + G12")
print([sym.simplify((x+y+z+t).subs(rplc)) for x,y,z,t in zip(Ge, G1, G2, G12)])
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print("\n")

print('#######################################################################')
print('Organic decomposition')
print('#######################################################################')

print('Pure interaction')
print([sym.simplify(x.subs(rplc)/VG_) for x in S])
print(sum([sym.simplify(x.subs(rplc)/VG_) for x in S]))
print("\n")

print('Dependence indices')
print([sym.simplify(x.subs(rplc)/VG) for x in D])
print(sum([sym.simplify(x.subs(rplc)/VG) for x in D]))
print("\n")

print('#######################################################################')
print('Canonical Decomposition')
print('#######################################################################')
print('Structural indices')
print([sym.simplify(x.subs(rplc)/VG) for x in Su])
print(sum([sym.simplify(x.subs(rplc)/VG) for x in Su]))
print("\n")

print('Correlative indices')
print([sym.simplify(x.subs(rplc)/VG) for x in Sc])
print(sum([sym.simplify(x.subs(rplc)/VG) for x in Sc]))
print("\n")

Var G
13.6806203605639

Var G indep
13.4088889317681

Probas : q1, q2, rho
[0.028850246229265686, 0.6484828481519346, 0.003416651733481213]

Correlation X1 and X2
-0.19135097530836204

c(L²(1),L²(2))
-0.191350975308362

rho LU bounds
[0, 0.028850246229265686]
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rho DP bounds
[0, 0.0986261104729329]

Values : G00, G01, G10, G11
[3.0, 4.0, 4.0, 2.2870857723289104]

##########################################################################
Evaluation decomposition
##########################################################################

Ge
[3.66806401128244, 3.66806401128244, 3.66806401128244, 3.66806401128244]
G1
[-0.0189952475655124, -0.0189952475655124, 0.639413260097192, 0.639413260097192]
G2
[-0.624353328200793, 0.338437484200944, -0.624353328200793, 0.338437484200944]
G12
[-0.0247154355161360, 0.0124937520821266, 0.316876056821160, -2.35882898325167]
Ge + G1 + G2 + G12
[3.00000000000000, 4.00000000000000, 4.00000000000000, 2.28708577232891]

##########################################################################
Organic decomposition
##########################################################################

Pure interaction
[0.980846682537967, 0.00120460583555726, 0.0144431300645849,
0.00350558156189049]
1.00000000000000

Dependence indices
[0, 0.000565541472312945, 3.25073947774616e-5, 0]
0.000598048867090407

##########################################################################
Canonical Decomposition
##########################################################################

Structural indices
[0.983485634149333, 0.000887811579599808, 0.0154455400471367,
0.00159818643345630]
1.00141717220953

Correlative indices
[0, -0.000708586104763110, -0.000708586104763110, 0]
-0.00141717220952622
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E.1 Some preliminaries

E.1.1 Application domain

The application domain of inputs X is a subset of ΩX ⊆ Rd, representing the region of the inputs where
the black-box model is intended to be used [189]. Figure E.1 illustrates a typical situation for a univariate
marginal of X .

(a.)

ω0

XΩX

ω1

0

L
ik
el
ih
o
o
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(b.)

ω0

XΩX

ω1

0

P
ro
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X(0) X(n)

Figure E.1: Application domain ΩX of P when P admits a density (a.) and when it is empirical (b.). In
(a.), X is the support of the density (in grey), and the application domain ΩX (in purple) is contained
in X . In (b.), X is the interval between the minimum and maximum observed values (in grey), and the
application domain ΩX (in purple) is also contained in X . In both cases, ΩX is chosen to be strictly
included in X , although it can be larger.

Remark E.1. In practice, the application domains of marginal distribution can be defined in many ways.
For instance, if P is empirical, it can represent the range between the smallest and largest observed value
of Xi in a specific dataset. If P is part of a parametric family, it can be defined using experts’ opinions,
usually enforced using truncation. These domains are usually subject to uncertainties in their bounds.

For instance, given a set x1, . . . , xn of training, validating or testing examples, its convex hull, or a
broader span, are common choices of application domains ΩX [224]. In other instances, ΩX can be seen
as the extrapolation domain where G is assumed to generalize well (e.g., paving of a compact subspace
of Rd selected by tree-based classification [103], confidence measures or cross-validation schemes [106,
165, 220, 131]). In ML specifically, including out-of-distribution data in ΩX remains an open problem
[98, 220, 202].

E.1.2 Cumulative distribution functions and quantile functions

Recall the following classical definitions.

Definition E.1 (Cumulative distribution function). Let X be a random variable with induced probability
measure P . The cdf of P is denoted and defined as

FP (t) =

∫

(−∞,t]

dP = P
(
(−∞, t]

)
.
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Definition E.2 (Space of cumulative distribution functions). The space of cdfs is the space denoted and
defined as:

F =
{
F : R→ [0, 1] | F is right-continuous, non-decreasing

such that lim
x→∞

F (x) = 1 and lim
x→−∞

F (x) = 0
}
.

(E.1)

The use of generalized quantile functions (gqf) is motivated by the fact that the marginal distributions
Pi can be atomic. They are defined as one of the two generalized inverses of cdfs in F . For a univariate
probability measure P , one can define a left and right continuous generalized inverse, the former being
usually called its gqf. They can be formally defined as follows [185, 63, 126].

Definition E.3 (Generalized quantile function). Let P ∈ P(R) with cdf FP .

(i) The gqf of P is the unique left-continuous, non-decreasing generalized inverse of FP , defined, for
every a ∈ (0, 1), as:

F←P (a) = sup {t ∈ R | FP (t) < a},
= inf {t ∈ R | FP (t) ≥ a}.

(E.2)

(ii) The unique right-continuous non-decreasing generalized inverse F→P of FP , almost-everywhere
equal to F←P , is defined, for every a ∈ (0, 1), as:

F→P (a) = sup {t ∈ R | FP (t) ≤ a},
= inf {t ∈ R | FP (t) > a},
= F←P

(
a+
) (E.3)

where F←P (a+) = lim
x→a+

F←P (x).

If the cdf FP of a random variableX admits an inverse F−1P in the traditional sense (e.g., it is continuous,
strictly increasing), then the following equality holds:

F−1P = F←P = F→P .

Furthermore, univariate probability measures are intrinsically linked to their gqf. Denote:

F← =
{
F← : (0, 1)→ R | F← is left-continuous and non-decreasing

}
. (E.4)

the space of gqfs. Recall that each probability measure in P(R) has a unique gqf in F← [185].

For a fixed α ∈ [0, 1], an α-quantile of P is a number pα ∈ R such that, for X ∼ P :

P ({X < pα}) ≤ α and P ({X ≤ pα}) ≥ α.

In certain cases, α-quantiles are not unique. For instance, if P is purely atomic (e.g., an empirical mea-
sure), and its cdf FP takes the constant value α on an open interval (t0, t1) (i.e., it is the case if t0 and
t1 are both atoms of an empirical probability measure), then any t ∈ (t0, t1) is an α-quantile. One can
notice that F←(α) is the infimum of the α-quantiles of P , (i.e., F←P (α) = t0), and F→(α) is the supremum
of the α-quantiles of P (i.e., F→P (α) = t1).

E.1.3 Wasserstein distance

Let p be a positive integer. The p-Wasserstein distance between two univariate marginals can be defined
as follows [219]:

Definition E.4 (Wasserstein distance on the real line). Let p ∈ N∗ and P,Q ∈ Pp(R) be two probability
measures on R admitting FP and FQ as probability distribution functions, respectively. Then, the p-
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Wasserstein distance between P and Q is:

Wp(P,Q) =

(∫ 1

0

∣∣F→P (x)− F→Q (x)
∣∣p dx

)1/p

In particular, for p = 2,

W2(P,Q) =

√∫ 1

0

(
F→P (x)− F→Q (x)

)2
dx.

E.2 Dependence modelling and copulas

E.2.1 Copulas

Dependencies between random variables can be modeled using copula-based representations [164]. Let
X = (X1, . . . , Xd) ∼ P be a d-dimensional Rd-valued random vector with marginal cdfs FPi

, i = 1, . . . , d,
assumed to be continuous. Let U1, . . . , Ud the random variables defined as:

Ui = FPi
(Xi)

and denote U = (U1, . . . , Ud)
⊤ ∼ UP . For any u = (u1, . . . , ud) ∈ [0, 1]d, denote Hu = "d

i=1[0, ui]. The
copula of X is the mapping from [0, 1]d to [0, 1], denoted Cp defined as:

CP (u) = P (U1 ≤ u1, . . . , Ud ≤ ud)

=

∫

Hu

dUP

If P is observed (and hence each FPi
can jump), the notion of empirical copula characterizes the depen-

dence structure between the inputs [164]. For j ∈ {1, . . . , d}, denote {xj,i}1≤i≤n the jth marginal sample
of observations. The empirical copula of X is defined as:

ĈP (u1, . . . , ud) =
1

n

n∑

i=1

d∏

j=1

1{
Rj,i
n ≤uj

}(uj), (E.5)

where Rj,k denotes the rank of xj,k in {xj,i}1≤i≤n.

E.3 Computational details and code snippets

E.3.1 Moment matrix of the Lebesgue measure

The following R code snippet defines a function for computing the moment matrix of the Lebesgue
measure on any interval [a, b].

###############################################
# Lebesgue Moment Matrix on an interval [a,b]
mom_mat <-function(a,b,d){
# a,b : Upper and lower bound of the interval
# d : Degree up to which the moment matrix is computed

M<-matrix(NA, nrow=d+1, ncol=d+1)
for(i in 1:(d+1)){

for(j in 1:(d+1)){
M[i,j] = (b^{i+j-1} - a^{i+j-1})/(i+j-1)

}
}
return(M)

}

Listing E.1: Moment matrix of the Lebesgue measure on an interval.
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E.3.2 Computing moment vector of arbitrary quantile functions

One wishes here at computing the vector described in Eq. (5.19). In the case where P is an empirical
measure built on a n-sample, one has that for [t0, t1] ∈ [0, 1], i = 0, . . . , p:

ri =
1

i+ 1

[∑

j∈J

X(j)

ni+1

(
(j + 1)

i+1 − ji+1
)

+X(j)

(
ti+1
1 −

(
j

n

)i+1
)

+X(j−1)

((
j

n

)i+1

− ti+1
0

)]

where J = {i ∈ N | ⌊nt0⌋ < i < ⌊nt1⌋}, j = ⌊t1n⌋, j = ⌊t0n⌋ + 1, and where X(j) denotes the j-th
order statistic of the observe sample. In cases where F←P is continuous, it is possible to use numerical
quadrature methods in order to evaluate each integral composing the elements ri of r.

##################################################
# Moment vector of an empirical quantile function
mom_vec <-function(a,b,d){
# a,b : Upper and lower bound of the interval
# d : Degree up to which the moment vector is computed
# X : Dataset.

# Setting -up the resulting vector
r=rep(0, d+1)

# Compute the weights
weights_r<-function(j_down , J, j_up , i, n, a,b){

w_J=sapply(J, function(x) (x+1)**(i) - x**i )
w_J = w_J/(n**(i))
w_jup <-(b**i - (j_up/n)**(i))
w_jdown <-((j_down/n)**i - a**i)
res=c(w_jdown , w_J, w_jup)/i
return(res)

}

# Setting -up parameters
n=length(X)
X=sort(X)
J=seq(floor(n*a)+1, floor(n*b)-1, 1)
if(a==0){

j_up=floor(b*n)
j_down=1

}else if (b==1){
j_down=floor(a*n)+1
j_up=n

}else{
j_up=floor(b*n)
j_down=floor(a*n)+1

}

# Vector of relevant order statistics
X_=X[c(j_down , J, j_up)]

# Computing each element of r
for(i in 1:(d+1)){

wght_vec <-weights_r(j_down , J, j_up , i, n, a, b)
r[i]=sum(X*wght_vec)

}
return(r)
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}

Listing E.2: Moment vector of a empirical quantile function.

###############################################
# Moment vector approximation of any function
mom_vec <-function(a,b,d,P){
# a,b : Upper and lower bound of the interval
# d : Degree up to which the moment vector is computed
# P : Function.

# Setting -up the resulting vector
r=rep(0, d+1)

# Approximate using quadrature
for(i in 1:(d+1)){

f<-function(x,j){
return ((x^(j-1))*as.numeric(P(x)))

}
res <-integrate(f,

j=i,
lower=a,
upper=b)

r[i]=res$value
}
return(r)

}

Listing E.3: Moment vector approximation of a function.

E.4 Proofs

Proof of Lemma 5.1.
Notice that if Eq. (5.3) is respected, then the constraints are non-decreasing. Then, there exists at least a
function F← in F← such that the constraints are respected (e.g., the linear interpolant of the constraints).
So, there exists a probability measure with F← as a generalized quantile function.

Proof of Lemma 5.2.
Since [η0, η1] is bounded, one can define a standardized intensity parameter θ ∈ Θ = [−1, 1] as:

θ(b) =
pα − b
pα − η1

1{b>pα}(b) +
b− pα
pα − η0

1{b<pα}(b).

Equivalently, one can express b in terms of θ, which directly provides the expression of bα(η, θ).

Proof of Lemma 5.3.
Preserving the midpoint of ΩX while perturbing its width requires that, for any pair (b0, b1) ∈ R2, that





b0 + b1
2

=
ω0 + ω1

2
b1 − b0 = κ(ω1 − ω0)

⇐⇒




b1 =

ω1(κ+ 1)− ω0(κ− 1)

2

b0 =
ω0(κ+ 1)− ω1(κ− 1)

2

where κ ∈ [ 1η , η]. Using the transformation

θ(κ) =





−κ− 1
1
η − 1

if
1

η
≤ κ < 1

0 if κ = 1
κ− 1

η − 1
if 1 < κ < η

allows defining the formulas for b0 and b1 provided in the result’s statement.
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Proof of Lemma 5.4.
(i) Suppose that P is empirical. Notice that the empirical copula (see, Section E.2.1) only depends on the
ranks of the observed data points. Since each F←i is strictly monotone increasing, the ranks between the
initial and perturbed data points are preserved. Hence, the empirical copula between X and X̃ is the
same.

(ii) Let F ∈ F , and recall that if F← is strictly increasing then from [63], for all u ∈ [0, 1]

(F ◦ F←)(u) = u

Now let F1, . . . , Fd ∈ F , such that F←i is strictly increasing, and denote:

F : R → [0, 1]d

(u1, . . . , ud)
⊤ 7→ (F1(u1), . . . , Fd(ud))

⊤

One then has that:
F (T (X)) = FP (X) a.s.

and hence, X and T (X) have the same copula.

Proof of Lemma 5.5.
Notice that, from Lemma 5.4, every probability measure in Z̃(P, θ) has the same copula as P . Leveraging
the work in [4] (Proposition 1.1), if P and Q share the same copula, one can rewrite their 2-Wasserstein
distance as:

W 2
2 (P,Q) =

d∑

i=1

W 2
2 (Pi, Qi) =

d∑

i=1

∫ 1

0

(
F→Pi

(x)− F→Qi
(x)
)2
dx (E.6)

Moreover, noticing that each marginal perturbation class Qi(θ) can be written as constraints on the
generalized inverses of the cdf of Qi. Hence, minimizing (E.6) entails minimizing each univariate trans-
portation problem under marginal constraints. Finally, the perturbation map T is thus optimal between
P and Q.

Proof of Proposition 5.1.
First, note that the intervals Ai, i = 1, . . . ,K are disjoint. Moreover for any i = 1, . . . ,K− 1, consider the
four cases:

1. If αi < βi < αi+1 and, then Ai = (αi, βi];

2. If βi < αi < βi+1 and, then Ai = (βi, αi];

3. If αi < βi and assume that αi+j < βi+j−1 for j = 1, . . . ,m where m ≤ K − i is some non-negative
integer, then Ai = (αi, αi+1], additionally for j = i+ 1, . . . , i+m − 1, Aj = (αj , αj+1] and finally
Ai+m = (αi+m, βi+m];

4. If βi < αi and assume that αi+j < βi+j+1 for j = 1, . . . ,mwherem ≤ K−i−1 is some non-negative
integer, then Ai = (βi, αi] and for j = i+ 1, . . . , i+m, Aj = (αj−1, αj ].

The integral can be decomposed as follows:

∫ 1

0

(L(x)− F→P (x))
2
dx =

∫

A

(L(x)− F→P (x))
2
dx+

K∑

i=1

∫

Ai

(L(x)− F→P (x))
2
dx

where ∫

A

(L(x)− F→P (x))
2
dx ≥ 0.

Since the quantile constraints are of the form:

L(αi) ≤ bi ≤ L
(
α+
i

)
.

one can always write L(y) = bi + h(y) for y ∈ Ai, and where h is an non-decreasing, left-continuous
function. Moreover, note that:
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• h(y) is non-negative, and F→P (y)− bi ≤ 0 if Ai falls in cases 2. and 4.

• h(y) is non-positive, and F→P (y)− bi ≥ 0 if Ai falls in cases 1. and 3.

Then one has:
∫

Ai

(L(x)− F→P (x))
2
dx =

∫

Ai

(L(x)− bi − h(y))2 dx

=

∫

Ai

(F→P (x)− bi)2 dx+

∫

Ai

h(x)2dx

− 2

∫

Ai

h(x) (F→P (x)− bi) dx

≥
∫

Ai

(F→P (x)− bi)2 dx

since h(x) and F→P (x) − bi have different sign. Due to the constraint and the left-continuous non-
decreasing nature of L, this bound is tight and is attained if and only if h(y) = 0 for all y ∈ Ai. Globally,
this entails that ∫ 1

0

(L(x)− F→P (x))
2
dx ≥

K∑

i=1

∫

Ai

(F→P (x)− bi)2 dx

and this tight bound is uniquely attained by the left-continuous non-decreasing function defined as

F←Q (y) =

{
F→P (y) if y ∈ A
bi if y ∈ Ai, i = 1, . . . ,K.

E.5 Proof of Theorem 5.1

E.5.1 Ingredients

The proof of this theorem relies on the following results from [171, 172, 135], and further recalled in [205].
They involve sum-of-squares (SOS) polynomials, which can be defined as follows.

Definition E.5 (SOS polynomials). A polynomial S of even degree p is said to be a SOS polynomial if,
for m ∈ N∗, there exists s1, . . . , sm polynomials of degree at most equal to d

2 , and such that, ∀x ∈ R:

S(x) =

m∑

i=1

(
si(x)

)2
.

Theorem E.1. Let t0, t1 ∈ R such that t0 < t1, and let p ∈ N∗.

(i) A univariate polynomial S of even degree d = 2p is non-negative on [t0, t1] if and only if it can be
written as, ∀x ∈ [t0, t1]

S(x) = Z(x) + (x− t0)(t1 − x)W (x)

where Z is a SOS polynomial of degree at most equal to d, and W is an SOS polynomial of degree
at most equal to d− 2.

(ii) An univariate polynomial S of odd degree d = 2p+1 is non-negative on [t0, t1] if and only if it can
be written as, ∀x ∈ [t0, t1]

S(x) = (x− t0)Z(x) + (t1 − x)W (x)

where Z,W are SOS polynomials of degree at most equal to d.

It is important to note that Theorem E.1 is quite general in the sense that it allows for extensions to
multivariate polynomials (i.e., polynomials taking values from Rd). As pointed out in [58] (Thm. 1.4.2),
nonnegative polynomials on compact intervals can also be defined as a linear combination of squared
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polynomials. It may facilitate the identification of the nonnegative polynomials’ coefficients, as done in
[161] in the context of statistical learning. However, for the sake of potential future genericity, the direct
powerful link between SOS polynomials and semi-definite positive matrices is leveraged, as expressed
in the following theorem.

Theorem E.2. Let S be a univariate polynomial of even degree d = 2p, with coefficients s = (s0, . . . , sd),
and denote xp the usual monomial basis of polynomials of degree at most equal to p, i.e.,

xp = (1, x, x2, . . . , xp−1, xp)⊤.

S is an SOS polynomial if and only if there exists a (p×p) symmetric semi-definite positive (SDP) matrix

Γ =
[
Γij

]
i,j=1,...,p

that satisfies, ∀x ∈ R,
S(x) = x⊤p Γxp.

Moreover, for k = 0, . . . , d, let Ipk be the (p× p) matrix defined by, for i, j = 1, . . . , p:
[
Ipk
]
i,j

= 1{i+j=k+2}(i, j).

Then one additionally has that, for i = 0, . . . , d

si = ⟨Ipi ,Γ⟩F =
∑

j+k=i+2

Γj,k (E.7)

where, ⟨., .⟩F denotes the Frobenius norm on matrices.

Theorem E.3. Let Sn the subspace of real-valued symmetric matrices, in the vector space of square
matrices. The set of symmetric SDP matrices ΣN is a proper cone in Sn, and thus is a closed convex set.

A few results on the preservation of convexity of sets under transformations are also required. These
lemmas can be found in [25].

Lemma E.1 (Linear maps preserve convexity). Let V,W be two vector spaces over the same field F . Let
T : V →W be a linear map, and let C ⊂ V be a convex set. Then the image of C under T , i.e., :

T (C) = {T (x) ∈W | x ∈ C ⊂ V }

is also a convex set.

Lemma E.2 (Cartesian product of convex sets is a convex set). Let C1 be a subset of Rm and C2 be a
convex subset of Rn. Then, the Cartesian product C1 × C2 is a convex subset of Rm × Rn.

Two additional results, proven beneath, are required before proceeding to the proof of Theorem 5.1.

Lemma E.3. The mapping in (E.7), V : Sp → R2p, defined, for any Γ ∈ Sp, as:

V (Γ) =


 ∑

j+k=i+2

Γj,k




i=0,...,2p

is linear.

Proof of Lemma E.3.
We need to show that:

• For A,B ∈ Sp, T (A+B) = T (A) + T (B);

• For α ∈ R, Γ ∈ Sp, T (αΓ) = αT (Γ).
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First, one has, for i = 0, . . . , 2p:
[
T (A+B)

]
i
=

∑

j+k=2p−i

[
A+B

]
jk

=
∑

j+k=i+2

Ajk +Bjk

=
∑

j+k=i+2

Ajk +
∑

j+k=i+2

Bjk

=
[
T (A)

]
i
+
[
T (B)

]
i

since it holds for i = 0, . . . , 2p, it entails:

T (A+B) = T (A) + T (B).

Moreover, one has, for i = 0, . . . , 2p:
[
T (αΓ)

]
i
=

∑

j+k=i+2

αΓjk

= α
[
T (Γ)

]
i

and since it holds for i = 0, . . . , 2p, it entails:

T (αΓ) = αT (Γ).

Hence T is a linear map between Sp and R2p.

Lemma E.4. Let S be a univariate polynomial of degree d and s = (s0, . . . , sd)
⊤ ∈ Rd+1 its coefficients.

Let S′ be its derivative, i.e., a polynomial of degree d− 1, with coefficients s̆ = (s1, . . . , sd)
⊤ ∈ Rd. Let Z

and W be SOS polynomials, with coefficients z and w, and assume that S′ is non-negative on [t0, t1] as a
combination of Z and W as in Theorem E.1. Moreover, let

D = diag(1, 2, . . . , d)

be the (d× d) diagonal matrix with (1, . . . , d) as a diagonal elements and denote the block-matrices

Ii,d =

(
Id
0i,d

)
, Ii,d =

(
0i,d

Id

)
, Ii,d =



0i,d

Id
0i,d




where 0i,d denotes the (i×d) matrix of zeros, and Id is the (d×d) identity matrix. If d is odd, then z ∈ Rd

and w ∈ Rd−2 and furthermore
s̆ = Az +Bw

where A and B are (d × d) and (d × d − 2) matrices, respectively. If the degree d of S is even, one has
that z, w ∈ Rd−1 and furthermore:

s̆ = Cz +Dw.

where C and D are (d× d− 1) matrices. More specifically,

A = D−1d , B = D−1d

(
(t0 + t1)I1,d−2 − I2,d−2 − t0t1I2,d−2

)
,

C = D−1d

(
I1,d−1 − t0I1,d−1

)
, D = D−1d

(
t1I1,d−1 − I1,d−1

)
.

Proof of Lemma E.4.
First, assume that S is a polynomial of odd degree d = 2p + 1, meaning that its derivative, S′, is a
polynomial of even degree 2p. From Theorem E.1, one has that S′(x) is positive on an interval [t0, t1] if
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and only if it can be expressed as :

S′(x) = Z(x) + (x− t0)(t1 − x)W (x)

where Z is an SOS polynomial of degree at most equal to d − 1 and W is an SOS polynomial of degree
at most equal to d− 3. Denote s̆ = (s1, . . . , sd) ∈ Rd the coefficients of S′ and z = (z1, . . . , zd) ∈ Rd and
w = (w1, . . . , wd−2) ∈ Rd−2 the coefficients of Z and W respectively. One has that :

S′(x) =
d∑

i=1

isix
i−1

=

d−1∑

j=0

(j + 1)si+1x
i

and if S′ is assumed to be non-negative on [t0, t1]

S′(x) = Z(x) + (x− t0)(t1 − x)W (x)

=

d−1∑

j=0

zj+1x
j + (−x2 + (t0 + t1)x− t0t1)

d−3∑

j=0

wj+1x
j

leading to the following identification :




s1 = z1 − t0t1w1

s2 = 1
2 (z2 − t0t1w2 + (t0 + t1)w1)

si =
1
i (zi − t0t1wi + (t0 + t1)wi−1 − wi−2) , for i = 3, . . . , d− 2

sd−1 = 1
d−1 (zd−1 + (t0 + t1)wd−2 − wd−3)

sd = 1
d (zd−1 − wd−2) ,

or, written in a matrix form:

s̆ = D−1d

(
z +

(
(t0 + t1)I1,d−2 − I2,d−2 − t0t1I2,d−2

)
w
)
.

If S is assumed to be a polynomial of even degree d = 2p, S′ is necessarily odd degree. From Theo-
rem E.1, one has that S′(x) is positive on an interval [t0, t1] if and only if it can be expressed as :

S′(x) = (x− t0)Z(x) + (t1 − x)W (x)

where Z and W are SOS polynomials of degree at most equal to d − 2 with z = (z1, . . . , zd−1) ∈ Rd−1

and w = (w1, . . . , wd−1) ∈ Rd−1 as coefficients, respectively. It leads to the following identification:




s1 = −t0z1 + t1w1

si =
1
i (zi−1 − t0zi + t1wi − wi−1) for i = 2, . . . , d− 1

sd = 1
d (zd−1 − wd−1) ,

which can be written in matrix form as

s̆ = D−1d

((
I1,d−1 − t0I1,d−1

)
z +

(
t1I1,d−1 − I1,d−1

)
w
)
.

E.5.2 Proof of the theorem

One can now proceed to prove Theorem 5.1.

Proof of Theorem 5.1.
This rationale can be broken down into two steps: (a) proving that the objective function in Eq. (5.17)
can indeed be written in a quadratic form, and:(b) proving that the problem constraints form a feasible
set in Rd+1 which is closed and convex.
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(a) Notice first that the initial objective function

∫ t1

t0

(L(x)− F→P (x))2dx

where L ∈ R[x]≤d with coefficients s ∈ Rd+1, can be rewritten as:

∫ t1

t0

(F→P (x)− L(x))2dx =

∫ t1

t0

(

d∑

i=0

six
i − F→P (x))2dx

=

∫ t1

t0



(

d∑

i=0

six
i

)2

+ (F→P (x))
2 − 2

d∑

i=0

six
iF→P (x)


 dx

=

∫ t1

t0

(
d∑

i=0

six
i

)2

dx− 2

d∑

i=0

si

∫ t1

t0

xiF→P (x)dx

+

∫ t1

t0

(F→P (x))
2
dx.

Note that

∫ t1

t0

(
d∑

i=0

six
i

)2

dx =

d∑

i=0

d∑

j=0

sisj

∫ t1

t0

xi+jdx

= s⊤Ms

where M is the moment matrix of the Lebesgue measure on [t0, t1], i.e., defined entry-wise, for i, j =
1, . . . , d+ 1 as

Mij =

∫ t1

t0

xi+j−2dx =
(t1)

i+j−1 − (t0)
i+j−1

i+ j − 1
.

and further notice that M is thus positive definite since, for any u ∈ Rd+1,

u⊤Mu =

∫ t1

t0

(
d∑

i=0

ui+1x
i

)2

dx ≥ 0

is always non-negative, and equal to 0 if and only if ui = 0, i = 1, . . . , d+ 1. Moreover, note that:

d∑

i=0

si

∫ t1

t0

xiF→P (x)dx = s⊤r

where r ∈ Rd+1 is the moment vector of G with respect to the Lebesgue measure on [t0, t1], defined for
i = 0, . . . , d as:

ri =

∫ t1

t0

xiF→P (x)dx

Since a polynomial is completely characterized by its coefficients, searching for:

S∗ = argmin
L∈R[x]≤d

∫ t1

t0

(L(x)− F→P (x))2dx

is equivalent to finding the coefficients s∗ of S∗, i.e.,

s∗ = argmin
s∈Rp+1

s⊤Ms− 2s⊤r

and thus proving the first part of the proposition.
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(b) Notice that the interpolation constraints
{
S(t0) = b0

S(t1) = b1

can be written as {
s⊤t0d = b0

s⊤t1d = b1

where, for a ∈ R, one denote ad the vector of powers of a up to d, i.e., ad = (1, a, . . . , ad−1, ad) ∈ Rd+1.
Moreover, by letting:

T =

(
t0

d

t1
d

)
, b =

(
b0
b1

)
,

where T is a (2× d+ 1) block-matrix, the constraint can be written as:

Ts = b.

Furthermore, notice that
C0 = {s ∈ Rd+1 | Ts = b}

is a convex subset of Rd+1, since the equality constraints are linear. Concerning the monotonicity con-
straint

S′(x) ≥ 0, ∀x ∈ [t0, t1],

from Lemma E.4 one can quite generically write


sd
...
s1


 = T0(z, w) := Az +Bw

where z and w are the coefficients of SOS polynomials of degrees depending on d. Additionally, notice
that the mapping T0 : Rd×Rd−2 → Rd is linear. Next, let V1 : Sp → R2p, and V2 : Sq → R2q be defined as
in (E.7), where p = d− 1/2 and q = d− 3/2 if d is odd, or p = d− 2/2 and q = d− 2/2 if d is even, and
note that both mappings are linear thanks to Lemma E.3.

Moreover, denote the following sets:

Z = {V1(E) | E ∈ Σp}, W = {V2(E) | E ∈ Σp−1}

and notice the polynomial Z (resp. W ) is SOS if and only its coefficients z (resp. w) are in Z (resp.
W) thanks to Theorem E.3. In addition again, notice that, thanks to Lemma E.1, and due to the fact
that Σp is a closed convex set in Sp as per Theorem E.3, both Z and W are convex subsets of R2p and
R2q respectively. Besides, thanks to Lemma E.2, the set Z ×W is a convex subset of R2p × R2q as well.
Moreover, let

C1 =

{(
T0(w, z)

x

)
∈ Rd+1 | x ∈ R, (z, w) ∈ Z ×W

}

and note that it is a convex subset of Rd+1 due to the fact that T0 is a linear map.

Finally, since both C0 and C1 are convex sets, their intersection:

K = C0 ∩ C1

is as well, and note that any element s ∈ K are the coefficients of a polynomial respecting both equality
and monotonicity constraints. In other words, K is the feasible set of coefficients of the initial optimiza-
tion problem.
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F.1 A COVID-19 epidemiological model

Remark. This use-case has been initially studied in:

M. Il Idrissi, V. Chabridon, and B. Iooss. Developments and applications of Shapley effects to reliability-
oriented sensitivity analysis with correlated inputs. Environmental Modelling and Software, 143:105115,
2021. ISSN: 1364-8152. DOI: 10.1016/j.envsoft.2021.105115

In 2020, the COVID-19 crisis has raised major issues in the usefulness of epidemic modeling in order
to give useful insights to public policy decision-makers. [193] have taken this example to insist on the
essential use of GSA on such models, which claim to predict the potential consequences of intervention
policies. A first study has been proposed by [148], in the context of COVID-19 in Italy, to assess the sen-
sitivity of model outputs such as quarantined, recovered or dead people to inputs driving intervention
policies. Another GSA has been performed in [48] in the French context of the first COVID-19 wave. By
using data coming from this last analysis (thanks to the author’s agreement), the goal of this section is
to demonstrate how TSA can help to characterize the influence of various uncertain parameters on a
real-scale model.

F.1.1 Model description

The deterministic compartmental model developed in [48] is representative of the COVID-19 French epi-
demic (from March to May) by taking into account the asymptomatic individuals, the testing strategies,
the hospitalized individuals, and people going to Intensive Care Unit (ICU). Using several assumptions,
it is based on a system of 10 ordinary differential equations, which are not developed here for the sake
of conciseness (see [48] for more information).

Table F.1 presents the 20 input parameters with their prior distribution (chosen from literature studies),
which form the inputs X , assumed to be mutually independent. For the present study, our variable of
interest, which is a particular model output, then writes

Up
max = max

v∈time range

{
Uv(X)

}
(F.1)

where Uv is the number of hospitalized patients in ICU at time v. Note that the “p” in Up
max stands for

“prior” as this quantity corresponds to the variable of interest before any calibration w.r.t. the available
data.

In [48], after a first screening step allowing the removal of non-influential inputs, the model is calibrated
on real data by using a Bayesian calibration technique. After the analysis of this step, the selected
remaining inputs are

Xsel = (pa, Na, Ns, R0, t0, µ,N, I
−
0 )⊤ (F.2)

and their distributions are obtained from a sample given by the calibration process. The non-influential
inputs are fixed to their nominal values, and the posterior variable of interest becomes

Umax = max
v∈time range

{
Uv(Xsel)

}
(F.3)

with Umax being the maximum number of hospitalized people in ICU who need special medical care on
the studied temporal range, and Uv is the number of hospitalized patients in ICU at time v.

Note that the “p” inUp
max stands for “prior” as this quantity corresponds to the variable of interest before

any calibration w.r.t. the available data.

In [48], after a first screening step that allows for suppressing non-influential inputs, the model is cali-
brated on real data by using a Bayesian calibration technique. After the analysis of this step, the selected
remaining inputs are

Xsel = (pa, Na, Ns, R0, t0, µ,N, I
−
0 )⊤ (F.4)

and their distributions are obtained from a sample given by the calibration process. The non-influential
inputs are fixed to their nominal values and the posterior variable of interest becomes

Umax = max
v∈time range

{
Uv(Xsel)

}
(F.5)

https://doi.org/10.1016/j.envsoft.2021.105115
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Input Description Prior distribution
pa Conditioned on being infected, the probability of having light symptoms

or no symptoms
U(0.5, 0.9)

pH Conditioned on being mild/severely ill, the probability of needing hospi-
talization (H or U)

U(0.15, 0.2)

pU Conditioned on going to hospital, the probability of needing ICU U(0.15, 0.2)

pHD Conditioned on being hospitalized but not in ICU, the probability of dying U(0.15, 0.25)

pUD Conditioned on being admitted to ICU, the probability of dying U(0.2, 0.3)

Na If asymptomatic, number of days until recovery U(8, 12)

Ns If symptomatic, number of days until recovery without hospital U(8, 12)

NIH If severe symptomatic, number of days until hospitalization U(8, 12)

NHD If in H, number of days until death U(15, 20)

NUD If in ICU, number of days until death U(8, 12)

NHR If hospitalized but not in ICU, the number of days until recovery U(15, 25)

NUR If in ICU, number of days until recovery U(15, 25)

R0 Basic reproducing number U(3, 3.5)

t0 Starting date of epidemics (in 2020) U(01/25, 02/24)

µ Decaying rate for transmission (after social distanciation and lockdown) U(0.03, 0.08)

N Date of effect of social distanciation and lockdown U(20, 50)

λ1 Type-1 testing rate U(1e− 4, 1e− 3)

pHU Conditioned on being hospitalized in H, the probability of needing ICU U(0.15, 0.2)

NHU If in H, number of days until ICU U(1, 10)

I−0 Number of infected undetected at the start of epidemics U(1, 100)

Table F.1: Model inputs and their prior distribution. H is the number of hospitalized individuals with
severe symptoms. U is the number of hospitalized individuals in ICU.

with Umax being the maximum number of hospitalized people in ICU who need special medical care on
the studied temporal range, and Uv is the number of hospitalized patients in ICU at time v.

F.1.2 Importance quantification for ICU bed shortage

The central question of this study would be to determine which inputs influence the event of a country
experiencing a shortage of ICU bed capacity during the time period. For that purpose, one can introduce
a threshold k, which represents the total number of ICU beds in the country, which is assumed to be
constant during the studied time period. The new variable of interest would then be 1{UP

max>k}(X)
for the full compartmental model (preliminary study) and 1{Umax>k}(Xsel) for the model with selected
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inputs (post-calibration study). Two input-output samples of size n = 5000 are available. The first
one (preliminary study) includes all the inputs following their prior distribution (see Table F.1) and the
corresponding output UP

max of the compartmental model. The second one (post-calibration study) is
composed of a sample of Xsel after the Bayesian calibration, and the corresponding output Umax of the
compartmental model with the non-selected inputs fixed to their nominal values.

Five different thresholds are studied on UP
max: 5 · 103, 104, 5 · 104, 105 and 2 · 105, with respectively

58.1%, 47.7%, 22%, 10.1% and 2.2% of the total output samples being in a failure state. This illustrates
the behavior of the target Shapley effects when the failure probability decreases. The threshold of 6300
has been chosen for Umax, with 10.9% of the total output samples being above this threshold. Figure F.1
illustrates two different thresholds and the corresponding estimated failure probability on the histogram
of both outputs.
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Figure F.1: Illustration of thresholds on the histograms of UP
max (left) and Umax (right).

The target Shapley effects have been estimated using a variant of the nearest-neighbor estimation scheme,
with a fixed number of random permutations of 103, and with a number of neighbors set to 3, following
the rule of thumb guideline of [33], due to the sheer complexity of this estimation algorithm. Since the
compartmental model is deterministic, the target Shapley effects have been forced to sum up to one.
Figure F.2 presents the main results for UP

max, with the red dotted line being the average influence of
an input, in the case of similar importance (i.e., 1

20 ). One can notice that for less restrictive thresholds
(i.e., threshold for which the failure probability is high), the input N , the effective date of lockdown/so-
cial distanciation measures, seem to be the most influential, reaching more than 50% of the TSA variable
of interest’s variance. However, as soon as the threshold becomes more and more restrictive (i.e., the
failure probability becomes lower and lower), the effect ofN decreases and the effects of the other inputs
increase accordingly, in order to reach what seems to be an equilibrium at the value 1

20 . This behavior
can be explained by two main reasons:

• The nature of a restrictive TSA variable of interest induces high interaction between the inputs;

• The Shapley allocation system, when applied to variance as a production value, redistributes the
interaction effects equally between all inputs (there is no correlation between inputs in this prior
study).

One can argue that, as soon as k becomes very restrictive, the combined interaction effects outweigh the
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effect of N itself, and since these effects are equally distributed among all the inputs, their share will
tend to go towards 1

20 .
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Figure F.2: Shapley effects (top) and target Shapley effects for different thresholds (bottom) for UP
max.

For the post-calibration study, some selected inputsXsel are linearly correlated (see Figure F.3 - top. This
is typically the case for N and µ, with an estimated correlation coefficient ρ̂(N,µ) = 0.69, and for R0

and N with an estimated correlation coefficient of ρ̂(N,R0) = −0.66. This correlation structure does
not allow for interpretable Sobol’ indices, which encourages the use of Shapley-inspired indices. The
Shapley effects and the target Shapley effects of Xsel for Umax have been computed using the nearest-
neighbor procedure, with a fixed number of neighbors of 3, and forced to sum to one because of the
deterministic nature of the model.

In Figure F.3 (bottom), one can notice that Na, the number of days until recovery, seem to be the most
important input in explaining the number maximum number of ICU patients on the studied time range,
with a Shapley effect of around 35% of the output variance. The inputs pa, Ns, R0 andN seem to present
average effects, that is around 1

8 , while t0, µ and I−0 seem to be less influential, with around 5% of
explained variance each.

However, focusing on the occurrence of an ICU bed shortage, one can notice that the target Shapley
effect ofNa is lower (around 22%), with the influence ofN being higher (around 15%) than their Shapley
effects. Moreover, t0, µ and I−0 present higher TSA effects, i.e., slightly under 10%, due to the interaction
induced by the indicator function. One can also remark that the influence of Ns is higher than that of
R0 in the TSA setting, which was the inverse for the Shapley effects. This would indicate that Ns, the
number of days until recovery for a symptomatic patient without hospitalization, has more influence on
the event of a bed shortage than the basic reproducing number of the virus, R0.
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Figure F.3: Input correlation matrix (top), Shapley effects for Umax and target Shapley effects (bottom)
for 1{Umax>t}(Xsel). The 95% confidence intervals have been computed by uniformly selecting 80% of the
observations, for 100 repetitions, without replacement.

F.2 Ultrasonic non-destructive control of a weld

Remark. This use-case has been initially studied and presented in

M. Herin. Proportional values: an alternative to Shapley values in sensitivity analysis. Msc Internship
Dissertation, EDF R&D, EDF Lab Chatou, 2021

M. Il Idrissi, M. Hérin, and V. Chabridon. Cooperative game theory and global sensitivity analysis. École
Thématique sur les Incertitudes en Calcul Scientifique (ETICS), Erdeven, France, 2021. URL: https:
//www.gdr-mascotnum.fr/etics.html

This industrial application considers the ultrasonic non-destructive control of a weld containing manu-
facturing defects. This use-case is presented in-depth in [191] and has been used as a means for illustra-
tion of the Shapley Effects in [121].

F.2.1 Model description

Ultrasonic non-destructive control allows for detecting defects in certain industrial installations. For
example, the ability to reliably detect defects in welds is a crucial problem for power plant operators.

https://www.gdr-mascotnum.fr/etics.html
https://www.gdr-mascotnum.fr/etics.html
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However, certain types of welds allow for complex materials, which can result in disturbances in the
wave propagation during the ultrasonic control (e.g., deviation/division of the beam, attenuation of the
wave amplitude...). As a consequence, the interpretation of such analysis can be challenging, due to
those complex phenomena.

In order to solve this problem, EDF has developed a simulation tool called ATHENA2D, which is dedicated
to simulating elastic wave propagation in heterogeneous and anisotropic materials, which is the case
of defective welds. As depicted in Figure F.4, in this use-case, a weld is decomposed in 7 different
regions (hence the heterogeneity), each of which has a different columnar grain orientation (hence the
anisotropy). The seven domains are assumed to be homogenous (i.e., the grain orientation is the same
throughout the domain). The ATHENA2D tool relies on finite-element code, and, in this case, takes in
eleven inputs: four of which are elastic coefficients relative to the welding material, and the remaining
seven serve for describing the orientation of the grain in each region of the defective weld. The output
of this numerical model is the amplitude of the defect echoes resulting from an ultrasonic inspection.

Figure F.4: Metallographic picture of a defective weld (left), description of the weld in seven homogeneous
domains (middle), inspection configuration [121].

In [191], a probabilistic modeling of the inputs, with an independence assumption between the grain
orientations, has been made in order to perform a sensitivity analysis. In [121], this assumption has been
questioned, and another probabilistic model has been proposed, allowing for dependency between the
inputs. Following this paper, it has been estimated using physical models that the correlation matrix
between the 7 different grain orientations (Or1, . . . , Or7) is:

Σ =




1 0.8 0.74 0.69 0.31 0.23 0.20
0.8 1 0.64 0.53 0.59 0.51 0.46
0.74 0.64 1 0.25 0.60 0.57 0.54
0.69 0.53 0.25 1 −0.25 −0.35 −0.33
0.31 0.59 0.60 −0.25 1 0.96 0.84
0.23 0.51 0.57 −0.35 0.96 1 0.95
0.20 0.46 0.54 −0.33 0.84 0.95 1




(F.6)

Traditional GSA (mainly, the Sobol’ indices) fail to give meaningful insights due to the absence of in-
dependence. This linear dependency between the inputs motivates the use of the cooperative games’
framework, in order to produce interpretable indices in such a complex setting. The following results
aim at leveraging the power of the given-data estimation procedures. No definitive probabilistic model
is used, but the different samples are approximated using the KNN method.

The inputs are defined asX = (C11, C13, C33, C55, Or1, . . . Or7) ∈ R11. The first four inputs correspond to
the elastic coefficients (GPa) of a 316L Stainless Steel weld1, and the remaining seven inputs correspond
to the orientation of the grain (degrees) of each of the seven homogenous domains. Let G(X) be the
output of the ATHENA2D model.

Remark F.1. Due to the time-consuming nature of the ATHENA2D code, and to the restrictions relative to
the timing of this study, an accurate approximation through the use of a meta-model is going to be used
as a placeholder of the original numerical model.

A Gaussian process has been fitted using a sample of input-outputs from the ATHENA2D model, following
the methodology presented in [121]. An i.i.d. sample of inputs of size m = 10000 has been simulated

1Expressed using Voigt notation.
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with respect to the joint law of the inputs, which are assumed to be Gaussian, with the correlation
matrix depicted in Equation F.6. The elastic coefficients of the 316L stainless steel are assumed to be
independent of each other and of the rest of the inputs.

In the following, the predictions made by the meta-model are assumed to be sufficiently close to the real
values that the ATHENA2D would provide to interpret the results as if they were produced directly from
the numerical model.

F.2.2 Importance quantification

[121] estimated the Shapley effects of the input variables to measure the influence of the inputs on the
output’s variance and ranked them into three groups:

• Or1 and Or3 with a share of more than 20% of the output’s variance;

• Or2 with 11%;

• C11 and Or4 to Or7, with effects ranging between 6 and 8%;

• C33, C55 and C13 with effects lower than 3%.

In order to compare this classification with the one provided by the PMEs, both have been computed
on 5 simulated datasets of size m = 10000 composed with i.i.d observations. Then, the means and
standard errors of the effects have been computed. The estimated importance attributions are displayed
in Figure F.5.
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Figure F.5: Proportional marginal and Shapley effects.

One can notice the difference between the Shapley effects importance ranking and the one based on the
proportional marginal effects:

• Or3 with a share of more than 45 %;

• Or1 with a share of more than 20 %;

• C11, Or2 with a share around 5 %;

• C13, C33, C55, Or4, Or5, Or6, Or7 with a share of less than 5 %.

The main difference between both rankings is that the PM ranking is more discriminative. On the other
side, the Shapley ranking is more uniform, i.e., the variance is distributed more equitably between all
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inputs. More precisely, one can see that Or1 is granted almost half of the variance for the PM effects
against only 20% for the Shapley effects. However, the two most important variables remain unchanged
(Or1 and Or3). The difference between both effects is mainly visible for the inputs Or2,Or3,Or4,Or5,
Or6 and Or7. One can notice that this group of inputs, with Or1, is the correlated group of inputs.
More precisely, in comparison to Shapley effects, the PME increases largely the importance of Or2 at the
expense of Or3,Or4,Or5, Or6 and Or7. Again, in the correlated case, the PME allows highlighting some
inputs, where the Shapley values tend to standardize the importance throughout correlated inputs.

F.3 Robot arm model

Remark. This use-case has been initially studied in the supplementary material of:

M. Herin, M. Il Idrissi, V. Chabridon, and B. Iooss. Proportional marginal effects for global sensitivity
analysis. SIAM/ASA Journal on Uncertainty Quantification, 2024. URL: https://hal.science/hal-
03825935. In press

In this use-case, a model of the position (on the two-dimensional plane) of a robot arm with four seg-
ments is studied [6].

F.3.1 Model description

The arm shoulder is fixed at the origin, and the robot’s segments have lengths Li (i = 1, . . . , 4). Each
segment is positioned at an angle Ai (i = 1, . . . , 4) with respect to the horizontal axis. While, in the
original model, the inputs are assumed to be independent, statistical dependence is introduced here
between the angles and between the segment lengths. The probabilistic structure of the inputs can be
described as follows:

• The angles Ai (i = 1, . . . , 4) follow a uniform distribution over [0, 2π]. They are pairwise correlated
by the way of a Gaussian copula with a correlation parameter equal to 0.95;

• The lengths are sequentially built: L1 follows a uniform distribution over [0, 1], while Li (i =
2, . . . , 4) follows a uniform distribution over [0, Li−1]. These inequality constraints create strong
correlation between the lengths.

The model’s output is the distance from the end of the robot arm to the origin, and writes:

Y =








4∑

i=1

Li cos




i∑

j=1

Aj





2

+




4∑

i=1

Li sin




i∑

j=1

Aj





2




1/2

. (F.7)

In this model, A1 is an exogenous variable: it is intuitive if we think about the mechanism of the robot
arm because the angle between the origin and the first arm cannot have any effect on the distance output.
Moreover, if Eq. (F.7) is developed using elementary trigonometric formulas, A1 does no longer appear
in the formula.

A unique i.i.d. sample of size 2000 of these 8 inputs has been simulated, on which the output of the
model has been computed. Figure F.6 illustrates this data sample by the way of the pairwise scatter-
plots, the marginal distributions of each input by means of histograms, and the dependence structure
with estimated correlation coefficients. One can also notice first-order tendencies of the different inputs
on the output Y (last row).

F.3.2 Importance quantification

Since, in this scenario, only an i.i.d. sample is available, the Shapley effects and PMEs have been com-
puted using the nearest-neighbor procedure (with an arbitrarily chosen number of nearest neighbors
equal to 6). Figure F.7 presents the Shapley effects and PMEs estimates with a 90%-confidence intervals
computed on 100 replications of estimated effects by random selection of 80% of the dataset’s obser-
vations. According to both effects, the most influential input is L1, with a Shapley effect around 35%

https://hal.science/hal-03825935
https://hal.science/hal-03825935
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Figure F.7: Shapley effects and PMEs estimators by nearest-neighbor procedure for the robot arm model.
The vertical error bars represent the 5% and 95% quantiles of the estimates computed on 100 repetitions
where 80% of the initial data is randomly selected (without replacement). The horizontal grey dashed bar
represents the average importance of 1/8.

and PME around 48% of the output’s variance. While both effects seem to agree on the most influential
input, they offer a fairly different influence hierarchy, as depicted in Table F.2. This different influence
hierarchy can be explained by the fairly high correlation between the inputs. For instance, L2 has Shap-
ley effects around 18% while having a linear correlation coefficient with L1 equal to 0.67, whereas it has
a PME of around 12.1%. Additionally, focusing on the angle inputs, which are very linearly correlated,
one can notice that their Shapley effects are relatively equal, varying between 6% and 10%. On the other
hand, their PME grants A2 nearly 15%, with reduced influence of the other angles. Only using the Shap-
ley effects did not consider A2 as an above-average influential variable, while the PMEs consider it as
important. This highlights the more discriminating power of the PME for influence ranking in situations
of highly correlated inputs, where the Shapley effects typically grant a similar output variance share to
each correlated input.

Moreover, one can notice that the exogenous input A1 has a low but non-zero PME. This illustrates the
bias induced by the nearest-neighbor procedure used to perform estimations [33] and thus, the detection
of exogenous inputs is not guaranteed if this estimation method is used. However, in this case, the
Monte Carlo estimation method cannot be used.

This use-case illustrates the more discriminating power of the PMEs compared to the Shapley effects,
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Shapley effects PMEs
Influence Rank Input Value Input Value

1 L1 35.4% L1 48%
2 L2 18.2% A2 14.9%
3 A2 10.2% L2 12.1%
4 L3 9% A3 8%
5 A3 8.4% A4 5.5%
6 A4 7.2% A1 4.9%
7 A1 6.4% L3 4.2%
8 L4 5.1% L4 2.4%

Table F.2: Influence hierarchy between the inputs w.r.t. the Shapley effects and the PMEs, on the robot
arm use-case.

in cases of highly correlated inputs. Overall, the PMEs favor the already most influential inputs at the
expense of the inputs they are correlated with. This behavior is particularly interesting in a screening
setting, along with the ability of the PMEs to detect exogenous inputs, while maintaining a meaningful
interpretation as shares of variance.
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G.1 Contexte et motivation

Il apparaît comme naturel, lorsqu’on se confronte à l’étude de phénomènes physiques, d’initier des
expériences répétées. Traditionnellement, les investigations en ingénierie se fondent sur ces expéri-
ences afin d’extraire des connaissances en testant différentes configurations, telles que la modification
de l’environnement ou des conditions initiales. Les résultats sont ensuite soumis à une analyse com-
parative. Cette approche constitue l’essence même du domaine de la physique expérimentale. Cepen-
dant, à mesure que l’innovation s’est développée et que l’ambition industrielle a pris de l’ampleur, la
réalisation de telles expériences s’est rapidement révélée trop coûteuse, dangereuse, complexe, voire
impossible. Plus récemment, l’ingénierie moderne a adopté une approche novatrice en remplaçant les
configurations expérimentales par des modèles physiques, conduisant à des simulations numériques des
phénomènes étudiés.

Ces modèles numériques ont démontré leur utilité en transformant les pratiques industrielles contem-
poraines. Ces avancées en modélisation permettent, par exemple, d’anticiper la rentabilité des parcs
éoliens en fonction de leur emplacement ou d’améliorer la conception des centrales nucléaires pour
assurer leur sûreté et leur résilience face à des événements rares tels que des catastrophes naturelles.
Électricité de France (EDF), et plus spécifiquement sa branche de recherche et développement (EDF
R&D), joue un rôle essentiel dans le développement, la certification et la diffusion de ces simulateurs
pour la production et la distribution d’électricité1. L’objectif de ces modèles numériques est de simuler
des systèmes pouvant être considérés comme critiques, leur fiabilité étant d’autant plus cruciale dans un
contexte industriel pour la prise de décisions.

A mesure que ces outils ont gagné en popularité, proportionnellement à l’ampleur des besoins indus-
triels, certaines simulations sont devenues trop complexes pour être étudiées analytiquement. La réalisation
de simulations des phénomènes physiques étudiés, malgré l’accès à d’importantes capacités de calcul,
se révèle particulièrement chronophage. De plus, certains modèles physiques englobent des équations com-
plexes (par exemple, les équations de Navier-Stokes) qui sont souvent résolues numériquement. En
raison de leur complexité intrinsèque, ces modèles numériques peuvent être considérés comme des
boîtes noires.

Les simulations réalisées au fil du temps ont été consignées dans des bases de données, tout comme
les mesures terrain effectuées sur les sites industriels. Cette abondance de données, combinée à la dé-
monstration de l’efficacité des méthodes d’apprentissage supervisé pour modéliser des phénomènes
complexes, a naturellement suscité la question suivante : Comment ces méthodes de modélisation basées sur
les données peuvent-elles améliorer les processus industriels ?
En particulier, ces méthodes promettent de fournir une solution aux simulations chronophages des mod-
èles numériques en offrant des substituts rapides à évaluer. Elles permettent également d’exploiter les
données issues de capteurs pour modéliser des phénomènes complexes qui ne peuvent pas encore être
simulés numériquement, voire qui ne peuvent pas l’être. La fiabilité de ces méthodes doit être éval-
uée pour favoriser leur adoption en tant que composante intrinsèque de la modélisation des systèmes
critiques.

Cependant, les progrès récents en intelligence artificielle ont conduit à la résurgence de modélisations
surparamétrées. Ces dernier sont très efficaces, mais sont également considérés comme des boîtes noires
dû à leur complexité. Leur fiabilité est donc difficile à attester de manière analytique.

La principale difficulté réside dans le fait que les systèmes critiques sont généralement soumis à des
incertitudes. Ces incertitudes peuvent provenir de diverses causes (par exemple, manque de connais-
sance, erreurs de mesure, ou aléas intrinsèques aux phénomènes étudiés). Comprendre et contrôler les
effets de ces incertitudes sur les systèmes critiques est crucial pour la prise de décision industrielle. Con-
trôler ces incertitudes est un défi en ingénierie industrielle ayant à faire aux modèles numériques boîtes
noires, mais aussi en intelligence artificielle.

Le travail présenté dans cette thèse s’intéresse principalement aux incertitudes entourant les modèles
boîtes noires (numériques ou appris à partir de données). La section suivante vise à offrir une perspec-
tive sur le "quoi, pourquoi et comment" les incertitudes peuvent être prises en compte en ingénierie
industrielle ainsi que dans le domaine de l’apprentissage automatique.

1https://www.edf.fr/groupe-edf/inventer-lavenir-de-lenergie/rd-un-savoir-faire-mondial/nos-offres/nos-logiciels-et-codes-
de-calcul

https://www.edf.fr/groupe-edf/inventer-lavenir-de-lenergie/rd-un-savoir-faire-mondial/nos-offres/nos-logiciels-et-codes-de-calcul
https://www.edf.fr/groupe-edf/inventer-lavenir-de-lenergie/rd-un-savoir-faire-mondial/nos-offres/nos-logiciels-et-codes-de-calcul
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G.2 Analyse de sensibilité et interprétabilité post-hoc

Un parallèle est établi entre deux domaines des mathématiques appliquées : la quantification des incer-
titudes (UQ) et l’apprentissage automatique (machine learning). Tandis que le premier est lié à l’étude
des incertitudes propagées dans les modèles numériques, le second peut être vu comme une hybrida-
tion entre l’apprentissage statistique et les sciences informatiques. Bien que leurs objectifs peuvent être
fondamentalement différents, ils partagent nombre de similitudes lorsqu’il s’agit de d’interpréter une
modélisation (numérique ou apprise). En particulier, de nombreux objectifs de l’analyse de sensibilité
(SA) et de l’interprétabilité post-hoc, un sous-domaine de l’intelligence artificielle explicable (XAI) [182,
16], sont partagés, comme décrit ci-dessous.

G.2.1 Analyse de sensibilité

En s’inspirant de [182], l’analyse de sensibilité peut être résumé ainsi :

«L’étude de la manière dont les sorties d’un système sont liées et influencées par ses entrées.»

Historiquement, l’analyse de sensibilité fait partie de la méthodologie UQ [57], dont l’objectif princi-
pal est d’extraire des enseignements à partir de modèles informatiques boîte noire. Ces modèles sont
souvent spécifiés pour simuler des phénomènes physiques, tels que la modélisation thermo-mécanique
pour l’analyse structurelle des processus de fabrication2, ou l’évaluation de la sécurité des installations
industrielles3. Ils sont souvent composés d’une série d’opérations mathématiques complexes (par ex-
emple, les solveurs d’équations différentielles, les modèles à éléments finis) conçues par des experts
du domaine pour approcher au mieux le comportement des phénomènes physiques. Ces modèles sont
cruciaux dans les études industrielles car ils offrent une alternative moins coûteuse, plus sûre et complé-
mentaire aux expériences répétées.

Ces modèles numériques peuvent être considérés comme des systèmes entrée-sortie, où les entrées
représentent des conditions initiales, ou des quantités physiques associées (par exemple, la tempéra-
ture ambiante, la pression, l’humidité). Dans la méthodologie UQ, ces entrées sont considérées comme
incertaines, soit en raison d’un manque de connaissance réductible (i.e., incertitude épistémique) soit en
raison d’incertitudes contrôlées (par exemple, les erreurs de mesure).

Les incertitudes sont identifiées et quantifiées, et les entrées sont ensuite dotées d’une structure prob-
abiliste (par dires d’experts du domaine ou par observation du phénomène). Les sorties du système
deviennent alors également aléatoires : c’est ce que l’on appelle communément l’étape de propagation
des incertitudes dans la méthodologie UQ.

C’est là que l’analyse de sensibilité entre en jeu. L’analyse de sensibilité cherche à mettre en lien des
entrées aléatoires avec une sortie aléatoire d’un modèle. En particulier, quatre enjeux sont d’intérêt [48]
:

• Exploration du modèle : exploration de la relation entrée-sortie dans le contexte incertain pour
mieux comprendre le comportement du modèle ;

• Détection d’entrée à effets négligeables : détection des entrées non importantes (i.e., dont les in-
certitudes ont un impact limité sur l’incertitude de la sortie) pour les exclure de l’étude d’incertitude
(en les considérant comme constantes) ;

• Priorisation : identification des entrées les plus importantes, i.e., celles dont l’incertitude affecte le
plus l’incertitude de la sortie (ou d’une quantité d’intérêt) ;

• Robustesse à la distribution des entrées : étude des variations de la distribution de la sortie sortie
(ou d’une quantité d’intérêt) par rapport aux changements dans la structure probabiliste choisie
pour les entrées.

Ces enjeux peuvent être abordés soit d’un point de vue local (i.e., au voisinage d’une valeur d’entrée
particulière), soit d’un point de vue global (i.e., sur l’ensemble du domaine des entrées) [158]. L’analyse

2par exemple, l’utilisation du code informatique code_aster pour la fabrication additive [101].
3par exemple, l’utilisation du code numérique CATHARE2 pour les incidents de perte de réfrigérant dans les centrales

nucléaires [3].

https://code-aster.org/V2/spip.php?rubrique1
https://www.irsn.fr/recherche/code-cathare
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de sensibilité fournit de nombreuses méthodes statistiques pour proposer des outils pratiques permet-
tant de répondre à ces quatres grandes questions [120, 30, 48]. Ces outils fournissent des diagnostics au
praticien. Ces diagnostics peuvent être compris comme des estimations des quantités que la méthode
d’analyse de sensibilité vise à quantifier. Ils sont une aide à la découverte scientifique (par exemple,
l’amélioration de la compréhension des phénomènes étudiés) ou aux applications industrielles (par ex-
emple, le soutien aux processus décisionnels). La Figure G.1 illustre la manière et la place des analyses
de sensibilité pour tirer des enseignements des modèles numériques.
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Figure G.1: Analyse de sensibilité pour mieux comprendre les modèles numériques.

G.2.2 Interprétabilité post-hoc

Selon [16], l’interprétabilité post-hoc peut être résumée comme suit :

«La capacité à expliquer et à fournir des raisons pour le comportement d’un modèle d’apprentissage
automatique donné.»

L’objectif de l’apprentissage automatique est de proposer des outils pour modéliser divers phénomènes
à partir de données observées. L’objectif est de produire un modèle capable d’ajuster au mieux la sortie
en fonction des entrées, permettant d’approcher le phénomène observé en se basant sur un ensemble
d’observations de variables d’entrée (i.e., caractéristiques) et de variables de sortie (i.e., cibles) formant
un jeu de données observé. D’un point de vue statistique, les variables d’entrée et de sortie sont sup-
posées être aléatoires, et le jeu de données est composé de réalisations de ces variables aléatoires [214].
Cependant, la structure probabiliste génératrice des entrées et des sorties est souvent inconnue et seule-
ment observée. La véritable relation liant les entrées aux sorties est également inconnue. La conception
d’un modèle d’apprentissage suppose que cette relation peut être approchée à l’aide d’un modèle appar-
tenant à une certaine famille (par exemple, un modèle linéaire, un processus auto-régressif, un réseau de
neurones). Cette famille est souvent caractérisée par des paramètres (par exemple, coefficients linéaires,
coefficients auto-régressifs, poids et biais des neurones). Le processus d’apprentissage peut être décrit
comme l’exploitation de données pour trouver les meilleures valeurs pour ces paramètres, dans le sens
où elles minimisent une erreur (empirique) entre les valeurs cibles observées et les valeurs prévues par
le modèle [97].

L’apprentissage automatique peut être utilisé pour deux objectifs connexes, mais fondamentalement
différents :

• Exploration de la relation entrée-sortie : déterminer s’il existe une relation significative entre
l’entrée et la sortie et, le cas échéant, sa nature (par exemple, linéaire, non linéaire) ;
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• Performance prévisionnelle : construire le modèle le plus performant permettant d’accomplir une
tâche de prévision spécifique avec une grande précision.

Dans le domaine de la statistique, les modèles supervisés ont longtemps été considérés comme un
outil pour étudier des liens multivariés, constituant une avancée par rapport aux études statistiques
univariées et bivariées traditionnelles [222]. La modélisation supervisée a, en particulier, permis de
nombreuses avancées dans plusieurs domaines de recherche appliqués (par exemple, l’économie [7],
la biologie [153], la médecine [43], les processus industriels [132]). L’objectif principal de ces études
statistiques était alors l’exploration. Cependant, ces méthodes permettent également, par processus
d’approximation, de répondre à des problématiques de prévision. La recherche de performance prédic-
tive connaît un essor [124], notamment avec l’introduction d’approches d’apprentissage profond [90],
qui obtiennent des scores de prévision presque parfaits sur des tâches très complexes (par exemple, la
reconnaissance de chiffres [139], la classification d’images [130]).

A mesure que la nature des tâches de prévision devient de plus en plus diversifiée, la complexité intrin-
sèque des modèles les plus performants augmente, notamment car ils sont dotés d’un nombre important
de paramètres. Ces modèles à haute performance sont considérés comme des boîtes noires. Bien que
les aspects théoriques du processus d’apprentissage sont bien établis [97], la raison mathématique pour
laquelle ces modèles surparamétrés montrent une performance aussi impressionnante est encore peu
maîtrisée [163]. Il est facile de montrer qu’un modèle fonctionne, mais beaucoup plus difficile de com-
prendre pourquoi.

Malgré cette maîtrise théorique limitée, ces modèles restent attractifs pour la modélisation de systèmes
critiques grâce à l’abondance de données récoltées ainsi qu’à l’efficacité croissante de la puissance de
calcul disponible. Leur compréhension est cruciale pour leur adoption : le processus décisionnel doit
reposer sur un raisonnement scientifique, dont la garantie est assurée par des études théoriques.

Le domaine de l’intelligence artificielle explicable (XAI) émane de ce besoin de mieux comprendre ces
algorithmes boîte noire [16]. Ce nouveau champs d’étude englobe l’entièreté des aspects du processus
d’explication de l’intelligence artificielle, du développement d’outils adaptés, à l’étude de l’interaction
entre l’architecte de modèles et les experts du domaine. L’interprétabilité post-hoc fait partie du domaine
de l’XAI. L’adjectif post-hoc fait référence au fait que le modèle d’apprentissage étudié est déjà entraîné
: l’accent est mis sur la tentative d’extraire des enseignements sur le comportement d’un modèle spéci-
fique (i.e., avec un ensemble fixe de paramètres) plutôt que de développer de nouvelles familles de mod-
èles interprétables. Parmi les aspects auxquels l’interprétabilité post-hoc vise à répondre, on compte [16]
:

• La fiabilité : la confiance quant à la manière dont un modèle agit face à un problème donné ;

• La transférabilité : élucidation des limites qui pourraient affecter un modèle, permettant une
meilleure compréhension et mise en œuvre sur des données non observées ;

• L’informativité : extraction d’informations sur les relations internes d’un modèle ;

• La confiance : garantir la robustesse et la stabilité d’un modèle qui doit être fiable ;

• L’équité : évaluer si un modèle est influencé par des entrées protégées, qui pourraient entraîner à
des traitements injustes ou discriminants.

Ces aspects peuvent être abordés soit d’un point de vue local (i.e., sur une instance de prévision par-
ticulière) soit d’un point de vue global (i.e., sur l’ensemble du domaine des entrées) [156]. De nom-
breuses méthodes ont été proposées dans la littérature [16]. Elles sont souvent justifiées de manière
empirique, par le biais de benchmarks. La Figure G.2 présente une schématisation de la manière dont
l’interprétabilité post-hoc peut être réalisée dans un processus de prise de décision.

L’interprétabilité post-hoc et l’analyse de sensibilité partagent de nombreux aspects. Leurs similitudes
ont déjà été soulignées dans la littérature [182, 29, 142]. Le travail présenté dans cette thèse se situe à
la croisée de ces deux domaines. Il poursuit l’objectif suivant : développer des méthodes fondées sur des
bases théoriques pour interpréter la modélisation par le biais de boîtes noires de systèmes critiques afin de justifier
leur adoption dans la pratique. Les méthodes proposées dans ces travaux sont model-agnostic (i.e., elles
ne dépendent pas du type de modèle étudié). En effet, les boîtes noires rencontrées en ingénierie mod-
erne peuvent prendre des formes différentes. Les méthodes proposées s’inscrivent dans une démarche
théoriquement fondée, les preuves empiriques n’étant pas suffisantes pour garantir l’adoption des modèles
boîtes noires pour la modélisation de systèmes critiques. Leur caractérisation repose sur des fondements
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Figure G.2: Interprétabilité post-hoc pour mieux comprendre les modèles de machine learning.

théoriques solides, leurs propriétés sont étudiées, leurs limites sont mises en évidence, et la signification
des connaissances qu’elles apportent est clairement énoncée et maîtrisée.

On adopte le cadre théorique de l’analyse de sensibilité comme point de départ, en raison de son suc-
cès historique dans la promotion de l’adoption de modèles numériques (boîtes noires) pour les études
d’ingénierie. On propose un cadre mathématique permettant d’unifier entre l’analyse de sensibilité et
l’interprétabilité post-hoc : l’interprétabilité des modèles. Pour répondre au mieux aux besoins pratiques
en XAI, deux verrous doivent être levés : la prise en compte de la dépendance entre les entrées et le
processus de génération de données inconnu (i.e., le praticien n’ayant généralement accès qu’à un en-
semble de données observées). Ces deux contraintes sont au cœur des développements réalisés dans
cette thèse.

G.3 Un cadre mathématique pour l’interprétabilité des modèles

Cette section présente le cadre mathématique de l’interprétabilité des modèles, ainsi que le premier
ensemble de notations qui sont utilisées dans le manuscrit. Cette méthodologie probabiliste repose sur
des notions de théorie de la mesure assez générales. On peut se référer à [122] et à l’appendice A pour
quelques définitions préliminaires et résultats pertinents. Les éléments suivants sont introduits, définis
et discutés :

• Entrées aléatoires : elles représentent les entrées incertaines des modèles numériques, ou les car-
actéristiques observées liées à un modèle d’apprentissage automatique. Dans ce cadre, les entrées
aléatoires prennent la forme de vecteurs d’éléments aléatoires ;

• Modèles boîtes noires : ils représentent les boîtes noires utilisées pour modéliser des systèmes (po-
tentiellement critiques). Ils peuvent représenter un modèle numérique d’un phénomène physique
ou un modèle d’apprentissage automatique entraîné à partir de données. Dans ce cadre, les mod-
èles boîtes noires prennent la forme de fonctions faisant correspondre deux espaces ;

• Sortie aléatoire : une sortie aléatoire est la composition d’un modèle boîte noire avec ses entrées
aléatoires, devenant ainsi un élément aléatoire à valeur dans l’image (co-domaine) du modèle boîte
noire (c.f., propagation des incertitudes en UQ) ;

• Quantité d’intérêt : elle représente une quantité significative liée à la sortie aléatoire (par exem-
ple, une prévision d’un modèle, sa variance). Les quantités d’intérêt sont définies comme des
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opérations entre le co-domaine du modèle boîte noire et un certain espace ;

• Méthodes d’interprétabilité : elles représentent des moyens de résoudre un conundrum clairement
énoncé, i.e., une question pratique clé pour laquelle une réponse est attendue, afin de prendre une
décision.

Dans le reste du manuscrit, les notations suivantes sont adoptées : ⊂ indique une inclusion propre
(stricte) entre deux ensembles, tandis que ⊆ indique que l’égalité entre les deux ensemble est possible.
De plus, pour un ensemble non-vide A, l’ensemble {B : B ⊆ A} des sous-ensembles de A ne contient
pas l’ensemble vide ∅.

G.3.1 Entrées aléatoires

Pour permettre le lien entre l’XAI et l’analyse de sensibilité, de nombreux types d’entrées doivent être
considérés. Ces dernières ne sont pas nécessairement à valeur réelle (e.g., des données non tabulaires
telles que le texte, les images et les séries temporelles). En s’inspirant de [48], les entrées aléatoires
sont définies en utilisant la notion très générale d’élément aléatoire et de vecteurs d’éléments aléatoires (Ap-
pendix A), qui généralisent les variables aléatoires et de vecteurs aléatoires (qui sont intrinsèquement à
valeur dans R ou Rd).

Soit (Ω,F ,P) un espace probabilisé abstrait, soit d un entier positif, et soit (E1, E1), . . . , (Ed, Ed) une
collection d’espaces mesurables Boréliens. Pour tout A ⊂ D := {1, . . . , d}, on note :

EA :=×
i∈A

Ei, EA :=
⊗

i∈A
Ei, and E :=×

i∈D
Ei, E :=

⊗

i∈D
Ei

où×désigne le produit cartésien entre ensembles et
⊗

désigne le produit de tribus ([150], Section
2.4.2). Il est intéressant de remarquer que pour tout A ⊂ D, (EA, EA) est également un espace mesurable
Borélien standard et (E, E) aussi ([126], Lemme 1.2).

Les entrées aléatoires sont représentées par une application a valeur dans E, et mesurable par rapport à
F , notée X = (X1, . . . , Xd)

⊤ (i.e., un vecteur d’éléments aléatoires). Pour tout A ⊂ D, le sous-ensemble
d’entrées relatif à A, i.e., le vecteur d’éléments aléatoires à valeur dans EA, est défini par XA := (Xi)i∈A.

La tribu engendrée par les entrées aléatoires (Definition A.2) est notée σX , et pour tout A ⊂ D, la tribu en-
gendrée par le sous-ensemble d’entrées XA est notée σA. Ces tribus engendrées sont traditionnellement
interprétées comme l’information apportée par un élément aléatoire.

La distribution jointe des entrées est la mesure de probabilité induite par l’application mesurable X (Defi-
nition A.5), notée PX . Pour tout A ⊂ D, la distribution marginale de l’ensemble d’entrées XA est la mesure
de probabilité induite par l’application mesurable XA, notée PXA

.

G.3.2 Modèle boîte noire

Les modèles boîtes noires sont définis de manière abstraites, pour accommoder à la fois les modèles
numériques et les modèles d’apprentissage automatique, et en particulier, la variété de sorties possibles
(par exemple, les maillages, le texte, les sorties réelles ou binaires).

Soit (Y,Y) un espace mesurable Borélien standard. Un modèle boîte noire est représenté par une applica-
tion mesurable notée G : E → Y .

G.3.3 Sortie aléatoire

De manière assez naturelle, et conformément à la propagation des incertitudes, la sortie aléatoire fait
référence à la composition des entrées aléatoires et du modèle boîte noire. Elle peut être interprétée
comme la représentation du modèle du système dans son ensemble, en prenant en compte toutes les
incertitudes auxquelles il est soumis.

La sortie aléatoire est notée par la fonction mesurable G(X) := G ◦X : Ω→ Y , i.e., un élément aléatoire
à valeur dans Y . Il est important de noter que les sorties aléatoires sont nécessairement des fonctions
mesurables par rapport à σX . On note GX l’espace des sorties aléatoires défini comme :

GX = {f : Ω→ Y : f est σX -mesurable} .
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De plus, pour tout A ⊆ D, on note GA le sous-ensemble de GX de fonctions à valeur dans Y , mesurables
par rapport à σA (ici, σD = σX ). On note également G∅ l’espace des fonctions mesurables par rapport à
la la tribu P-triviale (Definition A.6), notée σ∅.

Figure G.3 illustre les relations entre les entrées aléatoires, le modèle boîte noire et la sortie aléatoire.
Le cadre proposé s’appuie sur les relations fonctionnelles entre ces trois notions. Dans le contexte de
l’interprétabilité des modèles boîtes noires, il est important de noter que le modèle est considérée comme
étant fixe. L’objectif principal ne porte pas sur la modélisation de phénomènes en utilisant des boîtes noires,
mais plutôt sur l’extraction d’informations issues de ces boîtes noires après qu’elles aient été modélisées.

(Ω,F ,P) (E, E) (Y,Y)
Sample space

Input space

Output space

X G

Random inputs Black-box model

G(X)

Random output

Figure G.3: Modélisation boîte noire : Relation entre les entrées et les sorties.

G.3.4 Quantité d’intérêt

Les QoIs sont primordiales dans le cadre de l’interprétabilité des modèles. Elles doivent avoir un sens
pratique pour les experts du domaine : elles sont vectrices d’informations clés sur le conundrum (voir la
section suivante) que l’étude d’interprétabilité cherche à traiter. Ces QoIs sont également considérées
comme aléatoires, bien que dans la plupart des cas pratiques, elles sont déterministes. En résumé, cette
définition des QoIs élargit la notion homonyme en analyse de sensibilité [48] pour prendre en compte
différents types de situations.

Soit (Q,Q) un espace mesurable, appelé l’espace des QoIs. Soit QoI : GX → Q un opérateur. La QoI réfère
à l’élément aléatoire résultant de sa composition avec la sortie aléatoire, i.e., QoI (G (X)).

Par exemple, une QoI peut être la sortie aléatoire elle-même, une évaluation (observation) de la sortie
aléatoire, i.e., , pour un ω ∈ Ω, la quantité G(X(ω)) [149], dans le cas des sorties à valeur dans R, son
espérance, i.e., E [G(X)], sa variance, i.e., V (G(X)) [204], et dans le cas des sorties à valeur dans Rd, sa
matrice de covariance [85]. Il est important de noter que dans les deux derniers exemples, l’opérateur
intégral est pris par rapport à la mesure de probabilité fixe P sur Ω.

G.4 Conundrums et méthodes d’interprétabilité

En général, les méthodes d’interprétabilité peuvent être comprises comme des transformations significa-
tives de la QoI. Bien que cette définition ne soit pas très formelle, elle reste suffisamment générale pour
englober le large éventail de méthodes proposées dans la littérature (par exemple, [16]). Une transfor-
mation de la QoI peut être comprise comme la réalisation d’une étude méthodologique de la QoI. Le
terme significatif met l’accent sur l’objectif de la méthode d’interprétabilité, qui est incarné par un conun-
drum [9], i.e., une question précise de compréhension reliée à un modèle boîte noire. Une (ou plusieurs)
méthode d’interprétabilité est choisie pour résoudre un conundrum, i.e., définir les quantités théoriques
pertinentes pour répondre à la question. L’estimation de ces quantités conduit à des diagnostics, qui
peuvent ensuite être interprétés.

G.4.1 Conundrums

Les conundrums se matérialisent sous forme de questions pratiques. Dans la modélisation abstraite des
jeux d’explication [9], deux joueurs, un explicant (par exemple, un expert du domaine, un ingénieur) et un
expliqué (par exemple, un décideur, une autorité de régulation), interagissent afin de résoudre un conun-
drum, i.e., une question émanant de l’expliqué, dont la réponse est donnée par l’explicant. Pour résoudre
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un conundrum, l’explicant doit fournir une explication à l’expliqué, qui décide alors si l’explication est
suffisante. L’étude des interactions entre l’explicant et l’expliqué se situe à la croisée de nombreuses disci-
plines scientifiques telles que la logique, la théorie des jeux non coopératifs, la psychologie, l’ergonomie
et la microéconomie. Ces domaines font partie intégrante de l’XAI pour étudier les aspects sociaux de
l’acceptation de l’intelligence artificielle [16].

Par exemple, les conundrums peuvent prendre la forme de ces questions:

• Pourquoi le modèle fournit-il cette prévision précise pour ce point de données d’entrée précis ?

• Quelles entrées sont responsables de l’incertitude du système modélisé ?

• Quel est l’impact du manque de connaissance des entrées sur le système modélisé ?

Le travail présenté dans cette thèse se concentre sur un aspect de ce processus d’interaction complexe
: fournir des outils à l’explicant pour construire des explications pertinentes pour certains conundrums
spécifiques. Afin d’assurer la pertinence des informations fournies par ces outils, ils doivent être maîtrisés
théoriquement. Ces outils sont appelés méthodes d’interprétabilité, et sont introduits ci-dessous.

G.4.2 Méthodes d’interprétabilité

Dès lors qu’un conundrum est établi, la première étape consiste à identifier des QoIs pertinentes. Ce
sont des indicateurs clés, relatifs au conundrum en jeu. Les méthodes d’interprétabilité consistent à
trouver une méthodologie pour résoudre le conundrum en étudiant les QoIs choisies. Par exemple, si la
question principale porte sur les raisons derrière une prévision du modèle, une QoI appropriée peut être
la prévision elle-même, en utilisant des méthodes adaptées axées sur la causalité (par exemple, les méth-
odes contrefactuelles [159, 9]) ou des approches d’extraction de règles [18]. Si le conundrum concerne
l’identification des entrées qui affectent le plus une QoI, les méthodes de décomposition peuvent être
considérées (par exemple, les décompositions coalitionnelles [111], les méthodes d’attribution [149]). Si
l’expliqué s’interroge sur le comportement du modèle pour des données en dehors de la distribution
initiale des entrées, les méthodes de perturbation d’entrées peuvent être pertinentes (par exemple, pro-
jections de mesure de probabilité [141, 13, 113], perturbations basées sur la géométrie de l’information
[86, 127]).

De nombreuses méthodes d’interprétabilité ont été proposées dans la littérature de l’XAI, par exemple,
se référer à [16, 143, 207] pour un aperçu et une taxonomie de ces méthodes. Trois contraintes sont
introduites dans les développements présentés dans cette thèse pour répondre à l’objectif principal de
l’étude des modélisations de systèmes critiques :

• Pertinence : La capacité des méthode d’interprétabilité choisies à répondre à un conundrum doit
être justifiée ;

• Fondement théorique : Les méthodes d’interprétabilité choisies doivent être basée sur un cadre
théorique solide, avec des hypothèses clairement énoncées, leurs propriétés étudiées et leurs lim-
ites mises en évidence ;

• Cohérence pratique : Outre la théorie, les méthode d’interprétabilité choisies doivent être étudiées
empiriquement et validées sur des cas d’études.

G.5 Deux méthodes d’interprétabilité

Deux méthodes d’interprétabilité sont présentées dans cette thèse :

• Les décompositions de QoI : L’étude de la manière dont les QoIs peuvent être décomposées. Cette
méthode est particulièrement adaptée pour les conundrums liés à la quantification de l’influence ;

• Les perturbations des entrées : L’étude de la manière dont la distribution des entrées peut être
perturbée, ainsi que la propagation de ces perturbations sur le modèle étudié. Cette méthode
propose de répondre à certains conundrums relatifs à la robustesse des modèles boîtes noires.
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G.5.1 Décomposition de QoI pour évaluer l’influence

Les méthodes de décomposition de QoI, impliquent de pouvoir écrire QoI (G (X)) comme une somme
d’éléments de l’espace Q, à condition que la QoI soit dotée d’une opération d’addition appropriée
(i.e., (Q,+) forme groupe abélien, voir Appendix B). Par exemple, les méthodes d’attribution additives
[149] étudient les décompositions suivantes :

QoI (G (X)) = ϕ∅ +
∑

i∈D
ϕi,

où pour chaque i ∈ D, ϕi ∈ Q, et où chaque ϕi correspond à un effet de l’entrée Xi. Les décompositions
coalitionnelles de QoI diffèrent des méthodes d’attribution car la somme est prise sur l’ensemble des parties
deD (i.e., l’ensemble des sous-ensembles deD, y compris ∅), noté PD. Une décomposition coalitionnelle
de QoI (G (X)) consiste en la somme :

QoI (G (X)) =
∑

A∈PD

ϕA,

où pour chaque A ∈ PD, ϕA ∈ Q, et où chaque ϕA correspond à un effet du sous-ensemble d’entrées
XA. Le terme coalition vient du fait que les effets des coalitions (i.e., des sous-ensembles) d’entrées sont
pris en compte dans la décomposition, contrairement aux méthodes d’attribution qui se concentrent
uniquement sur les effets individuels (i.e., univariés).

Le paradigme principal derrière l’idée de la décomposition de QoI repose sur le fait que les éléments qui
forment les décompositions doivent contenir une certaine information sur l’influence qu’une entrée (ou un
sous-ensemble des entrées) peut avoir sur la QoI. Si Q est doté d’un ordre total naturel, la comparaison des
magnitudes de ces effets peut exprimer un éventuel classement d’influence sur les entrées.

Dans la littérature, de nombreuses techniques reposant sur ces méthodes ont été proposées. Des exem-
ples de méthodes d’attribution pour la décomposition d’évaluation des modèles de régression (i.e., Y =
R, et QoI (G (X)) (G(X)) = G(X(ω)) pour certains ω ∈ Ω) sont LIME [186] ou SHAP [149]. Les effets
Shapley [169] ou les effets marginaux proportionnels [100] peuvent être utilisés pour la décomposition
de la variance de la sortie (dans ce cas, Y = R et QoI (G (X)) = V (G(X))). Les indices de Sobol’ peuvent
être vus comme une décomposition coalitionnelle de la variance [204], qui sont au coeur du domaine de
l’analyse de sensibilité.

G.5.2 Perturbations des entrées pour l’évaluation de la robustesse des modèles

Les méthodes de perturbation des entrées consistent à modifier, de manière contrôlée, la distribution
des entrées. Une fois que la distribution modifiée est obtenue, ces méthodes permettent d’étudier le
comportement de QoIs sous la distribution perturbée. Formellement, pour des entrées aléatoires initiales
X et des entrées perturbées X̃ , cela revient à comparer QoI (G (X)) et QoI(G(X̃)), et mettre en évi-
dence leurs différences en fonction de la nature de la perturbation. Étudier ces différences permet ainsi
d’évaluer le comportement d’un modèle (à travers ses QoIs) via une structure probabiliste de ses entrées
différente de celle initialement prévue. L’étude de la différence de comportement du modèle permet en-
suite d’évaluer sa robustesse une fois soumis à ces perturbations. Cette méthode d’interprétabilité peut être
utilisée pour des études prospectives, des analyses exploratoires, ou pour garantir la cohérence du mod-
èle avec les connaissances des experts du domaine.

Formellement, soit C une classe de perturbation, i.e., un ensemble particulier de mesures de probabilité
induites par des entrées aléatoires à valeur dans E, et D est une mesure de discrépance entre mesures de
probabilité (i.e., ce ne doit pas nécessairement être une distance). Le problème de perturbation peut être
formulé comme le problème d’optimisation sous contrainte suivant :

PX̃ ∈ argmin
P

D (PX , P )

s.t. P ∈ C.

Dans la littérature, plusieurs choix de discrépances et de classes de perturbations ont été étudiés. En
s’appuyant sur le travail pionnier de [47] sur les projections entropiques, le choix de la divergence de
Kullback-Leibler (KL) a été étudié par [141] en analyse de sensibilité et par [13] en XAI, où C est défini
via des contraintes sur les moments généralisés de la distribution des entrées. Dans [86, 127], les auteurs
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proposent d’étudier des familles paramétriques de distributions, où la disparité est choisie par le biais
de la métrique de Fisher sur l’espace des paramètres de familles de densités de probabilité paramétrées,
conduisant à des classes de perturbations naturelles composées de séquences de distributions pertur-
bées le long de géodésiques. Dans [113], le choix de la distance de Wasserstein est motivé conjointement
avec des classes de perturbations préservant les copules dont les contraintes sont formulées sur les
quantiles des entrées.

G.6 Articulation du manuscrit

L’objectif général de ce manuscrit est d’explorer le concept de l’interprétabilité des modèles boîtes
noires et de proposer une première approche d’un cadre mathématique. Ce cadre permet de justifier
l’utilisation et de guider le développement des méthodes d’interprétabilité afin d’améliorer la fiabilité
des modèles boîtes noires des systèmes critiques et de tendre vers leur acceptation par les instances
réglementaires.

Dans le Chapitre 2, les origines algébriques de la question fondamentale de la mesure de l’influence
sont mises en évidence. Ce lien découle de l’hypothèse que les sous-ensembles d’entrées peuvent être
classés par rapport à leur influence. Cela ouvre naturellement la voie à l’étude des décompositions
coalitionnelles de QoIs, afin de produire des mesures d’influence dont l’objectif principal est d’exprimer
cet ordre qui supposé exister. Ces mesures d’influences sont définies, de manière intrinsèque, comme
étant des fonctions ensemblistes, dont le domaine est un ensemble puissance (power-set). De fait, le lien
avec le domaine de la combinatoire est plutôt direct. En particulier, la généralisation par Rota de la for-
mule d’inversion de Möbius, lorsqu’elle est appliquée aux power-set, permet de définir deux approches
pour définir des mesures d’influence : l’approche input-centric (centrée sur les entrées), qui nécessite la
définition d’une mesure de valeur qui quantifie l’influence totale de chaque sous-ensembles d’entrées,
et l’approche model-centric (centrée sur le modèle), qui nécessite une décomposition intrinsèque de la
sortie aléatoire. Ces deux approches sont illustrées par le problème de quantification de l’importance,
i.e., la décomposition de la variance de la sortie aléatoire.

Le Chapitre 3 plonge plus profondément dans l’approche input-centric. Cette question a été étudiée
sous le paradigme de la théorie des jeux coopératifs, par analogie entre les joueurs et les entrées d’un
modèle boîte noire. Cette analogie permet de produire des allocations, qui sont généralement construites
sur une mesure d’influence input-centric, connue sous le nom de dividendes de Harsanyi. Dans ce cadre,
des attributions d’importance peuvent être définies (i.e., qui décomposent la variance entre les entrées
elles-mêmes, plutôt qu’entre chaque sous-ensemble d’entrées), telles que la redistribution égalitaire des
dividendes proposée par les effets de Shapley. Ces derniers présentent un inconvénient : les entrées qui
ne sont pas dans le modèle, mais corrélées avec des entrées dans le modèle, peuvent se voir accorder une
certaine importance. Ce problème est résolu avec les effets proportionnels marginaux, qui reposent sur
une redistribution proportionnelle des dividendes. Ces deux méthodes offrent deux façons différentes
de quantifier l’importance. Elles sont comparées et illustrées sur des cas d’études. Enfin, le choix de la
fonction de valeur est discuté, car celui-ci reste arbitraire.

Dans le Chapitre 4, l’approche model-centric est abordée, en étudiant le problème de la décomposition
de la sortie aléatoire. Ce problème possède déjà une solution lorsque les entrées sont mutuellement
indépendantes, connue sous le nom de décomposition de Hoeffding. Bien que de nombreux développe-
ments aient été proposés dans la littérature, aucune réponse définitive n’a été proposée concernant sa
généralisation potentielle pour des entrées dépendantes sous des hypothèses peu restrictives. Aborder
cette généralisation comme un problème de décomposition en somme directe d’espaces de Lebesgue
(i.e., espaces de Hilbert), permet de montrer que cette décomposition reste vraie pour des entrées dépen-
dantes, sous deux hypothèses raisonnables : l’absence de dépendance fonctionnelle parfaite et la non
dégénérescence de la dépendance stochastique. Ces développements découlent de l’étude des sous-
espaces intrinsèques des espaces de Lebesgue générés par chaque sous-ensemble des entrées. En par-
ticulier, l’étude des relations entre ces espaces se fait par le biais des angles de Dixmier et Friedrichs.
Le résultat obtenu est intuitif et repose sur des considérations géométriques, et en particulier sur la no-
tion de projection oblique. Enfin, cette approche permet de définir plusieurs mesures d’influence, qui
peuvent être justifiées théoriquement, et dont les propriétés sont présentées. Cette décomposition est
illustrée au moyen d’un cas d’étude analytique.

Enfin, le Chapitre 5 est consacré à l’étude du problème de l’évaluation de la robustesse des modèles
boîtes noires. En particulier, l’étude du comportement d’un modèle lorsque la distribution de ses en-



trées est perturbée. Une vision formalisée et générale de ce problème est proposée, en le modélisant
comme un problème d’optimisation sur des espaces de mesures de probabilité. Le processus de défi-
nition des perturbations est discuté, et quatre critères de sont proposés. Sur la base de ces critères, on
explore le choix de la distance de Wasserstein comme moyen de comparer les mesures de probabilité,
et les perturbations basées sur les quantiles, tout en préservant la structure de dépendance initiale. Le
problème peut être résolu analytiquement, mais cette solution n’est pas adaptée aux études pratiques.
Des contraintes de régularité sont introduites, en plus des perturbations des quantiles et de la préserva-
tion de la dépendance. L’utilisation de polynômes interpolants isotoniques est étudiée, ce qui conduit à
un problème d’optimisation avec une solution unique. La méthode présentée est illustrée et discutée sur
des cas d’études. Elle ouvre la voie à de nouvelles méthodes de validation des modèles d’apprentissage,
allant au-delà des métriques classiques.
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