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Nada MATTA Université de technologie de Troyes Rapporteur
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Djamal BENSLIMANE Université Claude Bernard Lyon 1 Examinateur
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Resource recommendation in e-learning platforms based on knowledge graph

by Qing TANG

As an integral part of education, e-learning provides users with massive resources
and allows them learn independently without the constraints of time and space. How-
ever, flooded with such a huge number of resources offered by different individuals
and institutions, personalized learning is required to help users choose resources pre-
cisely. Recommender systems are widely used in e-learning platforms to reduce the
information burden and achieve personalized learning. Generally speaking, the more
information a recommender system knows, the more accurate the recommendations
will be. But conventional recommendation approaches usually ignore a pivotal piece
of information, the latent connections between entities in the e-learning platform.
Collaborative filtering approaches make recommendations by learning user-resource
historical interactions (e.g., user ratings and browsing history), content-based ap-
proaches mainly consider the relevant information of users and resources (e.g., user
profile and resource content). In addition to user and resource, there are numerous
entities lurking in e-learning platform, and the latent connections between these enti-
ties can provide crucial information support to the function of recommender system.
For example, users may choose resources created by authors with whom they are
familiar, i.e., there are latent connections between users and authors, and the connec-
tions affect users’ choices.

Graph based technologies (e.g., knowledge graph) have the capacity to extract,
represent, manipulate, and model information (including latent connections) in dif-
ferent domains. In this context, we propose a recommendation approach incorpo-
rating knowledge graph to recommend pedagogical resources to e-learning platform
users. We integrate knowledge graph, feature extraction and neural network into a
recommendation framework. It contains three modules: i) modeling the information
of e-learning platform via knowledge graph; ii) acquiring features of users and re-
sources from the formed knowledge graph; iii) learning the acquired features with
neural network for resource recommendation.

To evaluate the performance of the recommendation framework, we conduct a
series of experiments based on two datasets from real-world e-learning platforms,
and the results confirm that the proposed recommendation framework outperforms
the methods from the literature.

HTTP://WWW.UTC.FR
https://www.hds.utc.fr/recherche/equipes-de-recherche/cid-connaissances-incertitudes-donnees.html
https://www.hds.utc.fr/recherche/equipes-de-recherche/cid-connaissances-incertitudes-donnees.html


iv

Résumé
En tant que partie intégrante de l’éducation, l’e-learning fournit aux utilisateurs des
ressources considérables et leur permet d’apprendre de manière autonome sans les
contraintes de temps et d’espace. Cependant, face au grand nombre de ressources
proposées par différents individus et institutions, une aide personnalisée au choix
de ces dernières semble nécessaire pour faciliter l’apprentissage. Les systèmes de
recommandation sont largement utilisés dans les plateformes e-learning pour réduire
la surcharge d’information et parvenir à apprentissage personnalisé. En général,
plus un système d’information connait d’informations plus les recommandations
seront pertinentes. Mais les approches de recommandation conventionnelles ignorent
généralement les informations issues des relations que peuvent entretenir les entités
utilisées par les plateformes e-learning. Les approches de filtrage collaboratif font
des recommandations en apprenant les interactions historiques utilisateur-ressource
(par exemple, les évaluations des utilisateurs et l’historique de navigation), les ap-
proches basées sur le contenu prennent principalement en compte les informations
pertinentes sur les utilisateurs et les ressources (par exemple, le profil utilisateur et le
contenu des ressources). En plus de l’utilisateur et de la ressource, de nombreuses en-
tités se cachent dans la plateforme e-learning, et les relations que peuvent entretenir
ces entités et le support informationnel qu’elles peuvent offrir à un système de recom-
mandation. Par exemple, un utilisateur peut préférer choisir des ressources créées par
un auteur spécifique, c’est-à-dire qu’il existe une connexion latente entre l’utilisateur
et l’auteur, et cette connexion affecte les choix de l’utilisateur.

Les technologies basées sur les graphes (par exemple, le graphe de connais-
sance) ont la capacité d’extraire, de représenter, de manipuler et de modéliser des
informations dans différents domaines. Dans ce contexte, nous proposons une
approche de recommandation intégrant graphe de connaissance pour recommander
des ressources pédagogiques aux utilisateurs de plateformes e-learning. Nous
intégrons le graphe de connaissance, l’extraction de fonctionnalités et le réseau
de neurones dans un cadre de recommandation. Un tel graphe comporte trois
modules: i) modélisation des informations de la plateforme e-learning via graphe de
connaissances; ii) acquérir des fonctionnalités d’utilisateurs et de ressources à partir
du graphe de connaissances formé; iii) apprendre les fonctionnalités acquises avec
réseau de neurones pour la recommandation de ressources.

Pour évaluer les performances du cadre de recommandation, nous conduisons
une série d’expériences basées sur deux ensembles de données provenant de plate-
formes e-learning du monde réel, et les résultats confirment que le cadre de recom-
mandation proposé surpasse les méthodes de la littérature.
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Chapter 1

Introduction

1.1 research context

With the rapid development of computer science, the application of
advanced technologies (e.g., machine learning and deep learning) have
brought a considerable impact on our daily lives. Rapidly advancing
computer technologies have made remote tools increasingly popular,
which is also the case in education. We have witnessed the development
and transformation of learning in the past decades, including the changes
of channels for knowledge transmission and environments for teaching
and learning [Li et al., 2022].

E-learning is defined as the learning supported by digital tools and in-
formation media, emerging based on the integration of information and
communication technologies in education field [Tayebinik et al., 2013]. E-
learning has been using and developing for many years [Downes, 2005]
[Horton, 2011] [Martin et al., 2020] due to the significant advantages such
as easy access to massive resources [Aczel et al., 2008], flexibility in time
and space [Behera, 2013], cost-effective strategy [Frehywot et al., 2013]. In
the past few years, Covid-19 has greatly promoted the development of
e-leaning, and even during the military war in Ukraine, its importance
has been demonstrated [Matviichuk et al., 2022]. The war destroyed ed-
ucational facilities and deprived the opportunities of traditional learning,
resulting in the massive requirements for e-learning.

E-learning platform is an important application of e-learning in edu-
cation industry. A variety of e-learning platforms have been designed
over the past period, with typical commercial e-learning platforms such
as Blackboard and Desire2Learn, and open-source e-learning platforms
such as ILIAS, Moodle, and Sakai [Piotrowski, 2010]. Another representa-
tive group of e-learning platforms is the products of Massive Open Online
Courses (MOOCs), such as Coursera, edX, and Udacity, offering thousands
of users accesses to countless courses from institutions around the world
[Gong et al., 2020]. However, e-learning platforms usually suffer from
information overload and users often struggle in determining the qual-
ity and suitability of resources, especially when they do not have enough
knowledge to critically review them.



4 1.1 research context

Recommender system (RS) is one of the most prominent technologies
for accelerating the pace of e-learning [Ezaldeen et al., 2022], it helps users
select appropriate resources to reduce the information burden caused
by massive resources of e-learning platforms and thereby improves their
learning efficiency. RSs are generally categorized into three groups:
Collaborative Filtering (CF) RS, Content Based (CB) RS, and hybrid RS
[Zhang et al., 2019b]. Pure CF RS ignores the content information about
users and items, and focuses only on the feedback from users (mainly
provided in the form of ratings assigned to items). It may suffer from
data sparsity (rating matrix contains a large number of null values) and
cold start problem (ratings are not enough to make reliable predictions).
CB RS makes recommendations by comparing the representations of
item contents with the representations of user interests, and focuses on
modeling users and items (mainly through building models for them). It
may suffer from over specialization (suggesting items directly related to
the user profiles rather than new items). Hybrid RS combines two or more
recommendation techniques and uses different types of data (e.g., ratings,
item content, and user profile) with the aim of improving the performance
of CF RS or CB RS and mitigating their flaws.

However, in e-learning platforms, conventional recommendation ap-
proaches usually ignore a piece of crucial information, the latent connec-
tions. In addition to user and resource, there are numerous entities lurking
in e-learning platform, and the latent connections between these entities
can provide crucial information support to the function of RS. For example,
in an e-learning platform, a user enrolls a course not because the content
of the course is more appropriate for the user, but because the user prefers
the teaching style of the teacher who teaches the course. It means that, the
latent connections between user, course and teacher influence the user’s
choice. Figure 1.1 gives an example to illustrate the limitation of conven-
tional CF recommendation approach.

𝑢1

𝑢2

𝑢3

𝑐2

𝑐1

𝑐3

𝑐4

𝑐5

𝑡1

𝑡2

(a) Information of dataset

User Course

𝑢1 𝑐1, 𝑐2, 𝑐3
𝑢2 𝑐2, 𝑐3, 𝑐4
𝑢3 𝑐4, 𝑐5

Teacher Course

𝑡1 𝑐1
𝑡2 𝑐2, 𝑐3, 𝑐4, 𝑐5

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5
𝑢1 1 1 1

𝑢2 1 1 1

𝑢3 1 1

(b) Rating matrix (c) Knowledge graph

Figure 1.1: Limitation of conventional CF recommendation approach.
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Figure 1.1(a) shows the interactions between users (u), courses (c), and
teachers (t) in an e-learning platform. With the conventional CF RS, the
rating matrix can be built, as shown in Figure 1.1(b), thereby user u1 and
user u2 will be deemed more similar. So course c1 that enrolled by u1 but
not by u2 will be recommended to u2. But what if u2 prefers the courses
taught by teacher t2? If we characterize the data in terms of KG, as shown
in Figure 1.1(c), there is a possibility that both u2 and u3 prefer the courses
taught by t2. If so, c5 should be recommended to u2, not c1.

Knowledge representation is an important branch of artificial intelli-
gence, it has the capacity to extract, represent, manipulate, and model in-
formation in different application domains [Ji et al., 2021]. It provides stan-
dardized tools, such as Knowledge Graph (KG), that allowing machines to
efficiently manage information and capture latent information. As a rep-
resentative tool of knowledge representation, KG has powerful ability of
characterization, it can be built to model facts in the form of Resource De-
scription Framework (RDF) triplets by connecting the entities (i.e., nodes)
through relations (i.e., edges).

1.2 challenges and research questions

Building RS for e-learning platform is a very complex process that involves
many procedures such as data collection, data preprocessing, feature ex-
traction, and model fitting. The general recommendation framework is
shown as Figure 1.2.

Data collection (e.g., user profile, item synopsis, 

activity, interaction, and latent connection)

Feature collection (user feature and item feature)

Recommender system

RecommendationCandidate items

Input

Recall layer Sort layer Reorder layer

Feature extraction

Figure 1.2: General recommendation framework.

As the input to RS, the quality of feature collection is closely related
to the performance of RS. In the process of feature extraction, features can
be extracted from ordinary data, such as user profiles, item contents, and
user-item interactions (i.e., ratings); at the same time, latent features may
be extracted from the latent connections between the entities of e-leaning
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platform. How to capture these latent connections and make it machine
readable? Our interest centers on the choice of using KG to characterize the
content of e-learning platform in order to capture the latent connections
and extract the latent features.

In simple terms, we propose to use KG to obtain more valuable infor-
mation that cannot be obtained by conventional approaches, enhancing the
feature extraction of recommendation framework (see Figure 1.2), thereby
improving the performance of downstream RS. So, the first research ques-
tion of this thesis is:

Research Question 1. How to characterize the content of e-learning
platform by the means of KG? Can the KG be generic?

Generally, RS makes recommendations by learning the features of users
and items (e.g., similarity and model-based analysis). In our case, after
characterizing the e-learning platform by the means of KG, the next step
is to obtain features of users and resources (item is called resource in e-
learning platforms) from the result (i.e., formed KG). However, a formed
KG not only contains the semantic descriptions and values of the resources
and users (i.e., ordinary data), but also the latent connections as Figure 1.1
illustrated. So, the second research question of this thesis is:

Research Question 2. How to obtain features of users and resources
from the constructed KG? How to learn these features with algorithm for
recommendation?

1.3 main contribution

To answer the Research Question 1. We follow the 4 core steps to construct
a lightweight ontology represented as a KG to characterize the content of
an e-learning platform [Noy et al., 2001]. step 1. Determine the domain and
scope of the ontology; step 2. Define the entity classes and their relation
classes; step 3. Define the classes of attributes associated with entity classes;
step 4. Extract the instances of the defined classes and compress them into
a knowledge base represented as a KG. Particularly, the classes can be
adjusted according to different e-learning platforms, thereby making it
generic.

To answer the Research Question 2. The formed KG of an e-learning
platform contains the semantic descriptions and values of the resources
and users, as well as the latent connections between multiple entities. First,
we use Natural Language Processing (NLP) to process the semantic de-
scriptions and values of the resources and users to get text feature vec-
tors of users and resources. Then, we use Knowledge Graph Embedding
(KGE) to learn the latent connections of the formed KG to get structure
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feature vectors of users and resources. Finally, the obtained text and struc-
ture feature vectors are concatenated to form the overall feature vectors of
users and resources, respectively, and input into a Multilayer Perceptron
(MLP) network for model fitting. The trained MLP model has capability
to predict the relevance between different users and resources and make
resource recommendations to target users.

In summary, we propose a recommendation framework based on KG
to recommend pedagogical resources to e-learning platform users. The
framework consists of three modules: graph construction characterizes the
content of e-learning platform via KG; feature extraction acquires features
of users and resources from the formed KG; recommendation learns the
acquired features with MLP for resource recommendation.

To evaluate the performance of the recommendation framework, we
conducted a series of experiments by using datasets form real-world e-
learning platforms. The results demonstrate that our recommendation
framework outperforms methods from the state of the art on the datasets.

The python code using open-source software library PyTorch is avail-
able at https://github.com/qingtang3009/MOOC-Recommendation.

1.4 dissertation organization

The rest of this thesis is organized as follows:
Part II State of the art introduces the related technologies and previous

studies regarding our research questions. It consists of three chapters:

Chapter 2 E-learning. This chapter introduces e-learning, e-learning
platforms, and user models in e-learning platforms.

Chapter 3 Knowledge graph. This chapter introduces KG, most
representative KG models, and KGE algorithms.

Chapter 4 Recommender system. This chapter first introduces the
context of RS. Then, it presents the classification of RSs, CF RS, CB
RS, and hybrid RS. Next, it presents the applications of KG in RS.
Finally, it presents the applications of RS in e-learning.

Part III Contributions elaborate the proposed recommendation frame-
work, and show the procedures and results of the experiments conducted
using the real-world datasets. It consists of two chapters:

Chapter 5 Recommendation framework based on knowledge graph.
This chapter elaborates the details of the proposed recommendation
framework, including graph construction, feature extraction (text em-
bedding and structure embedding), and recommendation.

Chapter 6 Experiments. This chapter conducts a series of experi-
ments to evaluate the performance of our proposed recommendation
framework and compares it with the state-of-the-art methodologies.

https://github.com/qingtang3009/MOOC-Recommendation
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Part IV Conclusions and perspectives conclude this thesis and make
perspectives for the future work. It contains one chapter:

Chapter 7 Conclusions and perspectives. This chapter summarizes
the proposed framework, points out where improvements can be
made as well as the possible approaches, and looks ahead to the
future work.



Part II

S TAT E O F T H E A RT





Chapter 2

E-learning

2.1 introduction

E-learning is a branch of education and has been developing for many
years [Downes, 2005] [Horton, 2011] [Tayebinik et al., 2013] [Martin et al.,
2020]. The advancement of computer technologies has made remote tools
more and more popular, which is also the case in education field. The
term e-learning has emerged under the combination of information and
communication technologies [Tayebinik et al., 2013].

Some of the definitions of e-learning are given below:

• E-learning covers a wide set of processes and applications that users
can perform online activities to teach themselves with the help of
multimedia materials, such as Web, radio, video, and TV [Hassen-
burg, 2009].

• E-learning refers to the usage of computer based technologies,
mainly through the Internet, to deliver knowledge and instructions
to individuals [Wang et al., 2010].

• E-learning can be viewed as computer assisted pedagogy for user-
centered and collaborative learning, it comprises all forms of elec-
tronically supported learning and teaching [Jethro et al., 2012].

• E-learning is a general term for different ways of transmitting knowl-
edge, such as Web based learning, virtual classroom, and digital
collaboration. It includes the delivery of information via Internet,
intranet, satellite broadcast, interactive TV, and CD-ROM [Norén
Creutz et al., 2014].

Based on the above definitions, we can summarily define e-learning as:

Definition 1 E-learning represents a class of learning methods that utilize a
wide range of tools based on information and communication technologies for
supporting the transfer of knowledge.

Under the influence of external factors, e-learning shows adaptive de-
velopment trend, especially during the Covid-19 pandemic in the past few
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years. According to the research, Covid-19 has a positive impact on the
popularization of e-learning and the innovation of e-learning tools in the
college education [Stecuła et al., 2022b], the percentage of users who are
familiar with the e-learning tools has significantly increased during the
pandemic. There has been a visible rise for users to study through e-
learning platforms, especially the following platforms: MS Teams, Zoom,
and Google classroom [Stecuła et al., 2022a].

On the other hand, the telecommunications and the broadband sec-
tors have increased accessibility to economical Internet connectivity plans,
which also provides the possibility for more and more people to enjoy the
convenience brought by Internet technologies. According to the survey
of Global Market Insight1, nearly 4.9 billion individuals use the Internet,
while it was 4.1 billion in 2019. As the number of Internet users increases,
more and more people will be able to access e-learning platforms to take
courses or complete degrees. It is worth mentioning that the younger gen-
erations have been raised with the usage of mobile technologies and the
Internet, they follow Web channels, play computer games, record and post
videos which makes them more receptive to emerging Web technologies.
Thus, e-learning is a great opportunity to better adapt to the expectations
of younger generations [Rajeh et al., 2021]. To put it simply, technologies
bring the chances of using e-learning, remote education meets the needs
of young generations, and educators should strive to apply the emerging
technologies to teaching purposes, thereby promoting the development of
education.

E-learning can be divided into synchronous learning and asynchronous
learning. In synchronous learning, teachers and users join together and
learn in a real-time situation, the learning process is collaborative and
facilitated on the virtual platform, such as live streaming, video conference,
and live chatting [Fernandez et al., 2022]. The benefit of synchronous
learning is that users can get immediate feedback and question-answer
can be conducted effectively in real-time as the sessions proceeding. In
asynchronous learning, there is a time gap between teachers and users,
and many representative methods are used in asynchronous learning, such
as prerecorded session, virtual library, social media platform, and online
forum [Lin et al., 2012]. The benefit of asynchronous learning is that it
offers a lot of flexibility for users to progress in their own learning rhythms
without limitation of schedule from teachers.

In summary, e-learning plays a significant role in the filed of education
for any country, it offers great opportunities to enhance their development
of education which could benefit all mankind. As the main approach to
realize e-learning, e-learning platform has attracted more and more atten-
tion. A variety of standardized and user-oriented e-learning platforms
have been lunched, and we will introduce typical ones in the next section.

1 https://www.gminsights.com/
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2.2 e-learning platforms

E-learning relies on technologies, i.e., the realization of e-learning requires
hardware, software, and network infrastructure. Theoretically, any soft-
ware or service that provides a learning environment for its users can be
called e-learning platform, such as e-mail, chatting software, forum, blog,
and collaboration tool. These different kinds of support can be used indi-
vidually or in various combinations as e-learning platform. But this kind
of setup has obvious drawbacks, such as the lack of common user manage-
ment, the limited interoperability between the tools, and the difficulty for
resource authentication [Piotrowski, 2010]. Thus, the development trend
of e-learning platform has been moving towards to more equitable, stan-
dardized, and universal.

Nowadays, numerous standardized e-learning platforms have been cre-
ated and they are available for general users with equitable opportunities.
Typical examples such as Moodle and MOOCs, which have existed for
many years before the Covid-19 pandemic. Their usage has been enforced
by the influence of pandemic as institutions try to overcome barriers to
maintaining regular educational efforts. And there are many alternative
names for e-learning platforms, such as Learning Management System
(LMS), Course Management System (CMS), Virtual Learning Environment
(VLE), Managed Learning Environment (MLE), and Learning Support Sys-
tem (LSS) [Piotrowski, 2010]. These platforms may differ in many ways
but they share one characteristic: supporting and realizing the e-learning
[Bichsel, 2013]. They allow institutions to deliver learning materials to
their users with 24/7 access and free location.

Information storage is an essential technology in e-learning platforms,
usually realized by a standard relational database management system
[Piotrowski, 2010]. Some typical examples are MySQL or PostgreSQL for
open-source systems and Oracle or Microsoft SQL Server for commercial
systems. As for the underlying logic, e-learning platforms are based on a
variety of programming languages and system architectures. Some plat-
forms are written in PHP (e.g., ILIAS and Moodle), some platforms are
written in Java (e.g., OLAT and Sakai), and some others are based on two
languages (e.g., Blackboard is written in a mix of Perl and Java). Many
platforms are open-source, they are usually developed by communities
and free to register (but may charge in site).

We present two typical examples, Moodle and MOOCs.

Moodle

Moodle is the abbreviation of modular object-oriented dynamic learn-
ing environment, which is a free and open-source LMS, written in PHP
and distributed under the GNU General Public License2. The Moodle 1.0

2 https://www.gnu.org/



14 2.2 e-learning platforms

was released in 2002 with the combination of PHP, Apache Web server,
and MySQL. Nowadays, Moodle is actually an e-learning platform that
serves as an important tool to achieve blended learning [Horvat et al.,
2015]. It allows the information exchange among users geographically dis-
persed, through synchronous (e.g., chatting) or asynchronous (e.g., forum)
channels. Users can create custom websites with online courses and join
community-sourced plugins on Moodle [Porter, 2013]. From a functional
perspective, Moodle has easily configurable features, allowing users to cre-
ate assessment processes (e.g., quiz, test, and survey) and manage tasks
with their timetable, as well as offering a wide variety of complementary
tools to support the teaching or learning process.

The functionalities of Moodle can be grouped into two classes: re-
sources and modules [Blin et al., 2008]. Resources represent instructional
materials that are usually created in digital formats and then uploaded to
the platform, such as Web pages, slideshows, word documents, flash ani-
mations, video and audio files. Modules are components created via Moo-
dle in order to achieve interactions among students and teachers towards
manipulation and content transformation, such as databases, lessons, as-
signments, workshops, chats, forums, news, quizzes, surveys, feedback,
shareable contents and some external tools [Costa et al., 2012]. Most of
the activities on Moodle take place inside courses (i.e., few functions can
be used outside the context of a specific course) and the activities can be
classified into 6 classes: creation, organization, delivery, communication,
collaboration, and assessment [Piotrowski, 2010].

MOOCs

MOOCs is the abbreviation of massive open online courses, to be more
precise, it represents a series of open online learning platforms. The appli-
cation of MOOCs is one of the most prominent trends in higher education
in recent years. The term ‘MOOCs’ represents open access, video-based on-
line courses, and massive resources released through online platforms for
supporting the learning of users [Baturay, 2015]. It first appeared in 2008

based on connective-distributed peer learning model. After that, a few
educational videos were created by the professors from Stanford Univer-
sity and released through open online platforms supported with free web
resources in 2011, and this was the year that MOOCs exploded around
the world. In the past few years, the number of users and courses in the
platforms of MOOCs has been continue growing, it holds millions of reg-
istered users and thousands of lunched courses around the world. Most
of the MOOCs users enroll courses on the basis of professional objectives,
and interest users also account for a certain proportion.

Nowadays, the number and diversity of MOOCs continue to grow and
gain an increased popularity among both students and educators in higher
education [Aldowah et al., 2020]. MOOCs are often released by third
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party online platforms and developed independently by academics [Bat-
uray, 2015]. Over 900 universities around the world had launched 11,400

MOOCs until 2018 [Aldowah et al., 2020]. Many scholars and practitioners
consider MOOCs as a way to enhance equity in higher education because
of their potential to reach a wider audience and to remove barriers to high-
quality education offered by elite institutions [Deng et al., 2019].

Basically, the course in MOOCs has multiple elements that need to
function properly. Table 2.1 presents the main elements and corresponding
descriptions [Grainger, 2013].

Table 2.1: Main elements of the course in MOOCs.

Element Description

Video lecture video lectures are the main products of MOOCs, they
are usually prerecorded and can be reused in certain
scenarios;

Assessment assessments are used to measure users’ knowledge
levels, mainly through the auto-graded quizzes;

Forum forums are places where users post questions and
other users or teachers reply;

Reading readings are the electronic versions of books in tra-
ditional classrooms and most of them are available
online or provided by teachers;

Live session live sessions exist as a supplement to weekly video
lectures;

Activity instructional activities are offered with the aim of al-
lowing users to further test their understanding of the
knowledge concepts;

Scripted video scripted videos are used to enhance users’ compre-
hension of scenes;

Social media users are encouraged to continue their learning-
related discussions on other social media platforms.

There are three main reasons why people choose MOOCs: 1) users
want gain more knowledge in the fields or topics they are interested in; 2)
users want to get certificates or degrees while applying for jobs; 3) some
teachers guide their students to MOOCs to reinforce, support or prepare
them for their in-class learning [Baturay, 2015].

Despite the obvious advantages of MOOCs over the traditional educa-
tion, many different challenges are still found, and one of the most notable
challenge is the dropout [Kim et al., 2017]. Several reports show that the
completion rate in the platforms of MOOCs is very low compared to the
number of users enrolled in these courses and therefore a high dropout
rate exists [Feng et al., 2019]. Some researchers state that most dropouts
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occur in the early stages of learning, which needs further exploration [Bres-
low et al., 2013] [Said, 2017] [Chen et al., 2019]. Similarly, Coursera’s Social
Network Analysis reported that only 2% of participants have completed
the courses [Aldowah et al., 2020]. Since MOOCs are becoming more and
more popular all over the world, researchers and educational developers
are starting to explore innovative ways to help users participating in these
courses to persist longer and learn more [Barak et al., 2016] [Hadi et al.,
2016] [Chen et al., 2019]. In summary, more and more researchers have
devoted themselves to the study of MOOCs and its platforms, with the
aim of improving the learning efficiency and learning experience of users.

2.3 user model in e-learning platform

The information about users is essential for any kind of e-learning plat-
form. Without user information, platforms are not able to adapt them-
selves to users’ characteristics and preferences. The required information
can be preserved and managed in the form of user model.

Before introducing user model for information preserving in e-learning
platforms, it is necessary to clearly distinguish data, information, and
knowledge, because they are easily confused.

Data is ‘raw’ recorded symbols; information is data processed or trans-
formed into a form or structure suitable for being used by human (i.e.,
information is the refinement of data for the purposes of human usage);
knowledge is what someone has after understanding information [Kendal
et al., 2007]. Note that, data, information, and knowledge are not static
things, but stages in the process of using data and transforming it into
knowledge. The stages from data to knowledge implies a shift from facts
to more abstract concepts, as shown in Figure 2.1.

Concept

Fact

Knowledge

Information

Data

Example

The temperature
outside is 5 °C.

It is cold outside.

You need to wear 
coat when going 
outside.

Figure 2.1: Data, information and knowledge [Kendal et al., 2007].

User model mainly contains processed data about the user, i.e., user
model contains information or knowledge about the user, which is mainly
obtained by analyzing the data of the user.
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The terms user profile and user model are often used as synonyms or
only one term is used by meaning of both. Here, we first clearly distin-
guish them.

User profile is a collection of raw user data, which is preserved with-
out adding further description, interpretation, or inference; user model
is a specific representation of the user, which should contain the needed
characteristics of the user regarding the context of application [Froschl,
2005]. Depending on the content and the amount of data, user profile can
be modeled. In other words, user model can be derived by refining user
profile.

The importance of user model is reflected in the fact that it should be
constructed whenever a personalized request is expected and many appli-
cations can benefit from it, such as information support, search assistant,
and recommendation. Furthermore, not only the positive or neutral in-
formation of a user needs to be extracted and preserved to construct a
user model, but also the limitations of the user (e.g., color blindness and
disability) [Froschl, 2005].

The information of user model can be divided into two major groups:
domain-independent information and domain-specific information.

Domain-independent information

The domain-independent information mainly refers to the user infor-
mation without any direction or domain. Having this information avail-
able, either directly or indirectly, may help e-learning platform to get a
sufficient information support to enhance the user’s learning experience.
It usually includes background, preference, motivation, and basic skill.

• Background. Background information is created when user registers
on e-learning platform, including name, age, gender, e-mail, highest
education, profession, etc.

• Preference. Users have inherent preferences related to some aspects
when choose resources, such as language preference and format pref-
erence. These preferences are considered to be separated from the
learning process.

• Motivation. The motivations answer the questions why users utilize
e-learning platforms and what learning goals they want to achieve.

• Basic skill. Users have generic skills that are not limited to any specific
domain, such as English reading level, comprehension ability, and
reasoning ability.
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Domain-specific information

The domain-specific information represents a reflection of the user’s
knowledge level or competency in a particular domain, such as JAVA soft-
ware development capability and autopilot algorithm knowledge level. Ac-
curately grasping the domain-specific information of users is a key factor
to provide personalized services to users.

There are three common channels for obtaining a user’s domain-
specific information: 1) prior tests can be used to determine the prior
knowledge level of users before they start learning in specific domains; 2)
users’ activity records can be used to analyze their knowledge levels; 3)
the results of assessments and evaluations generated by users during the
learning processes are direct reflections of their current knowledge levels
in the specific domains [Tang et al., 2022].

2.4 chapter summary

In this chapter, we began with a detailed introduction of e-learning, in-
cluding its definitions, development, strengths, and weaknesses. Then, we
introduced e-learning platforms and presented two representative exam-
ples, Moodle and MOOCs. Finally, we introduced user model, which can
provide information support about user for downstream tasks (e.g., recom-
mendation) in e-learning platforms.

To conclude, the popularization and development of e-learning can not
be separated from the assistance of e-learning platform, more and more
resources have been placing in varies e-learning platforms, which brings
great convenience to users’ learning. But on the other hand, the excessive
amount of resources also creates an information burden for users. They
often struggle in determining the suitability of resources, especially when
they do not have enough knowledge to critically review the resources. We
focus on helping users filter appropriate learning resources to alleviate
the information burden and improve their learning efficiency in e-learning
platforms.
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Knowledge graph

3.1 introduction

As a representative technology of knowledge representation, Knowledge
Graph (KG) has continued receiving attention from both industry and
academia since its inception. KG can effectively organize and represent
knowledge so that it can be utilized in advanced applications, such as Web
searching and knowledge reasoning [Chen et al., 2020]. Due to the increas-
ing amount of Web resources and release of linked open data projects,
many KGs have been constructed [Chen et al., 2020], and they are also
needed in e-learning platforms [Ilkou, 2022].

Before detailing the related technologies of KG, we clarify its definition.
Some of the definitions are given below:

• KG uses graph-based model to capture knowledge in application sce-
narios that involve integrating, managing and extracting data from
diverse sources at large-scale [Hogan et al., 2021].

• KG defines possible classes of entities and relations, organizes real
world data in a graph, allowing arbitrary entities to be potentially
interconnected and cover a variety of subject areas [Cimiano et al.,
2017].

• KG is a graph consists of a set of RDF triplets, where each triplet
⟨h, r, t⟩ is an ordered set of the following RDF terms: a subject h, a
predicate r, and an object t [Färber et al., 2018].

Based on the above definitions, we can summarily define KG as:

Definition 2 KG is a data structure for representing facts related to a specific
domain, whose nodes represent entities of the domain and edges represent relations
between them.

The vigorous development of KG began after the announcement of
Google in 2012, followed by further usage of KG by enterprises such as
Facebook, IBM, LinkedIn, Microsoft, and Uber [Noy et al., 2019] [Hogan
et al., 2021]. The growing industrial usage of KG has provoked consid-
erable influence in academia, more and more scientific researches on KG
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have been published in recent years [Pujara et al., 2013] [Wang et al., 2014]
[Wang et al., 2014] [Ehrlinger et al., 2016] [Wang et al., 2017] [Paulheim,
2017]. KGs can be categorized into open KG or enterprise KG. Open KGs
are published online, making their content accessible for the public, such
as BabelNet [Navigli et al., 2012], DBpedia [Lehmann et al., 2015], Freebase
[Bollacker et al., 2007], Wikidata [Vrandečić et al., 2014], and YAGO [Hof-
fart et al., 2011], covering many domains and either extracted from sources
such as Wikipedia [Hoffart et al., 2011] [Navigli et al., 2012] [Lehmann et
al., 2015] or built by volunteers of communities [Bollacker et al., 2007]
[Vrandečić et al., 2014]. Enterprise KGs are typically internal to companies
and applied for commercial usage. The major industry applications that
use enterprise KGs include Web search, information extraction, personal
agency, business analysis, risk assessment, automation, advertising, and
recommendation [Hogan et al., 2021].

KG construction is a prerequisite for using KG in advanced applica-
tions. There are several approaches to construct KGs, one typical approach
is to pre-define a conceptual graph model (similar to T-box of ontology)
and import instances into a graph based on the model [Zhou et al., 2022].
Yahoo states that they construct their KG by aligning new entities, rela-
tions and information with their common ontology [Blanco et al., 2013].
[Ehrlinger et al., 2016] express that KG is somehow superior to ontology
with larger scale (e.g., KG is a large ontology) and additional functions
(e.g., a built-in reasoner that allows new knowledge to be derived).

3.2 knowledge graph models

We introduce three KG models most commonly used in practice.

Multi-relational graph

A multi-relational graph is defined as a set of nodes, such as Paris,
Montmartre, Sacré-Cœur, and a set of directed labeled edges between

those nodes, such as Sacré-Cœur in−→Montmartre and Montmartre in−→Paris.
In multi-relational KG, nodes represent entities (e.g., the city Paris, the
location Montmartre, and the building Sacré-Cœur) and edges represent
binary relations between those entities (e.g., the building Sacré-Cœur is
located at Montmartre and the location Montmartre is in the city Paris).

Heterogeneous graph

A heterogeneous graph [Hussein et al., 2018] [Wang et al., 2019b] [Yang
et al., 2020] is a graph where each node or edge is assigned one type.
Heterogeneous graph is similar to multi-relational graph, with edge labels
corresponding to edge types, but where the type of node forms part of
the graph model itself, rather than being expressed as a special relation
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[Hogan et al., 2021]. The difference between multi-relational graph and
heterogeneous graph is shown in Figure 3.1. An edge is homogeneous if
it is between two nodes with the same type, such as the borders in Figure
3.1(b); otherwise, it is heterogeneous, such as the capital in Figure 3.1(b).
However, unlike multi-relational graph, it typically assumes one-to-one
relations between nodes and types [Hogan et al., 2021].

Paris France Belgium

City Country

capital

type

borders

type type

Paris: City France: Country Belgium: Countrycapital borders

(a) Multi-relational graph  (b) Heterogeneous graph 

Figure 3.1: Illustrations of (a) multi-relational graph and (b) heterogeneous
graph.

Property graph

Property graph allows a set of property–value pairs and labels to
be associated with nodes and edges [Miller, 2013] [Angles et al., 2017].
In a multi-relational graph, we cannot directly annotate an edge like

Paristrain−→Lyon with the company, but we can add a new node denoting a
train and connect it with the source, destination, companies, and type, as
shown in Figure 3.2(a).

Paris Lyon

48.87 TGV6601

latitude

Paris: Capital city

TGV6601: Train

Lyon: City

(a) Multi-relational graph  (b) Property graph 

Capital city

type

02.23

longtitude

City

Train SNCF

TGV6644

type

type company

companyfrom

to

to

from

45.75

latitude

04.85

longtitude

type TGV6601: Train
Latitude:48.87

Longtitude: 02.23 

Company: SNCF

Company: SNCF

Latitude:45.75
Longtitude: 04.85 

Figure 3.2: Illustrations of (a) multi-relational graph and (b) property
graph.

Applying this pattern to a large graph may require significant
efforts. Differently, Figure 3.2(b) exemplifies a property graph with
analogous data, where property–value pairs on edges model companies,
property–value pairs on nodes indicate latitudes and longitudes, and
node/edge labels indicate the type of node/edge. Though not yet stan-
dardized, property graph is used in many popular graph databases, such
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as Neo4j [Angles et al., 2017] [Miller, 2013]. Although property graph has
more flexibility in terms of how to model data compare to multi-relational
graph and heterogeneous graph, it requires more complex intricate query
languages, formal semantics, and inductive techniques [Hogan et al.,
2021].

3.3 knowledge graph embedding

Machine learning can be directly used for refining a KG [Paulheim, 2017],
or downstream tasks with a given KG, such as recommendation [Zhang
et al., 2016], information extraction [Vashishth et al., 2018], question an-
swering [Huang et al., 2019], and logical query [Hamilton et al., 2018].
However, machine learning techniques typically assume numeric repre-
sentations (i.e., vectors), distinguishing it from how graphs are usually
expressed. So, how can KG be encoded numerically for machine learning?

Knowledge Graph Embedding (KGE) is a dominating approach for that
numerical encode procedure, due to its ability of creating dense vector
representations of KG. Before detailing KGE, we clarify its definition:

Definition 3 Given a KG composed of a collection of triplets G = {⟨h, r, t⟩}, KGE
aims to represent each entity h, t ∈ E and relation r ∈ R into continuous vector
spaces (can be an uniform space or different spaces depending on the algorithms),
where E and R indicate the sets of entities and relations, respectively.

Typically, KGE is composed of an entity embedding for each node (rep-
resents entity as vector with d dimensions) and a relation embedding for
each edge (represents relation as vector with d dimensions). The dimen-
sion d of the embedding is fixed and usually low (e.g., 50 ⩽ d ⩽ 1000).
The meaning of these vectors is to abstract and preserve the information
of KG. For example, given a triplet ⟨h, r, t⟩, the embedding approach de-
fines a score function that accepts eh (the entity embedding of head node
h), er (the relation embedding of edge r), et (the entity embedding of tail
node t), and computes the plausibility (i.e., how likely h

r−→ t to be true).
Usually, negative sampling (creates negative triplets by randomly replac-
ing the head node or tail node with other entities that do not belong to
the entity set of the KG) is employed in KGE. The goal is to maximize the
plausibility of positive triplets and minimize the plausibility of negative
triplets according to the given score function.

A wide range of KGE algorithms have been proposed [Wang et al.,
2017], and they can be summarized into three groups: translation model,
tensor factorization model, and neural model.

Translation model

Translation model interprets relation as transformation from head
node to tail node [Hogan et al., 2021]. For example, given a triplet
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⟨Marseille, train,Nice⟩, translation model sees train as a transformation
from Marseille to Nice, i.e., Marseille

train−→ Nice. A seminal translation
model is TransE [Bordes et al., 2013]. For a positive triplet, TransE learns
the vectors eh, er, et, and makes eh + er as close as possible to et; on the
contrary, it keeps them as far as possible for a negative triplet. Figure 3.3
provides an example of two-dimensional (d = 2) TransE. In Figure 3.3(a),

(a) Original graph 

ewo.

eno.

(b) Relation embedding  (c) Entity embedding 

rwo.

eP.

eN.

eS.

eT.

Toulouse Nice

Paris Strasbourg

north of north of

west of

Figure 3.3: Example of two-dimensional TransE.

we keep the orientation of vectors similar to the original KG for clarity. In
this example, eP. represents the embedding of entity Paris, eT . represents
the embedding of entity Toulouse, ewo. represents the embedding of
relation west of, and eN. represents the embedding of entity Nice. TransE
updates the embeddings while learning from these experiences (e.g.,
eT . + ewo. ≈ eN. and eT . + ewo. ̸= eP.). These trained embeddings can be
used to predict undefined nodes or edges in the KG. For example, they
can predict which node in the KG is most likely to be west of Strasbourg
by computing eS. + ewo., where eS. represents the embedding of entity
Strasbourg. The result embedding is closest to eP. (dotted arrow in Figure
3.3(c)), thereby Paris is the most plausible node for this case.

However, TransE is not capable enough in the one-to-many or many-
to-many scenarios [Hogan et al., 2021]. For example, taking the train from
Paris can not only go to Lyon, but also can go to Marseille, where TransE
tries to give similar embeddings to all target locations. To resolve this
problem, many variants of TransE have been investigated, typically using
a distinct hyperplane (e.g., TransH [Wang et al., 2014]) or vector space (e.g.,
TransR [Lin et al., 2015], TransD [Ji et al., 2015]) for each type of relation.
Besides, [Sun et al., 2019] propose a translation model, named RotatE, it
embeds entities and relations in complex spaces, allowing to capture more
characteristics of relations, such as direction, symmetry, inversion, asym-
metry, and composition. Other non-Euclidean space embedding methods,
such as MuRP [Balazevic et al., 2019] embeds multi-relational graph data
in the Poincaré ball model of hyperbolic space, whose curvature provides
more space to separate entities with defined dimension.
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Tensor factorization model

Tensor factorization decomposes a tensor into lower-order tensors, and
these tensors can be seen as capturing latent factors in the original tensor
[Hogan et al., 2021]. In such case, a KG can be encoded as a one-hot 3-order
tensor, i.e., G = |X|× |Y|× |Z|, where the position Gxyz = 1 if the x-th node
links to the y-th node with the z-th edge, otherwise Gxyz = 0. There are
many tensor factorization models, and a basic approach computes a KG
such that x1⊗y1⊗ z1+ · · ·+xd⊗yd⊗ zd ≈ G, as illustrated in Figure 3.4. X,
Y, and Z denote the matrices formed by vectors [x1 · · · xd], [y1 · · ·yd], and
[z1 · · · zd], respectively. Each vector forming a matrix column, one column
of Y can be extracted as one relation embedding and the columns of X

and Z at the same position can be extracted as embeddings for one entity.
However, KGE typically aims to assign one vector to each entity.

0 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0
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Figure 3.4: Illustration of basic tensor factorization model.

DistMult [Yang et al., 2014] is a seminal method for KGE based on
rank factorization, where each entity or relation is associated with a vec-
tor of dimension d. For a relation h

r−→ t, a plausibility score function∑d
i=1(eh)i(er)i(et)i is defined, where (eh)i, (er)i, (et)i denote the i-th ele-

ments of vectors eh, er, et, respectively. Then, the goal is to learn embed-
dings for each node and edge that maximize the plausibility of positive
triplets and minimize the plausibility of negative triplets. This approach
equates to the basic model, but the entities have one vector is used twice.
A weakness of this approach is that per the score function, the plausibility
of h r−→ t will always be equal to t

r−→ h, i.e., DistMult does not capture
edge direction.

Rather than use a vector as a relation embedding, RESCAL [Nickel et
al., 2013] uses a matrix, which allows for combining values from eh and
et across all dimensions and thus can capture edge direction. However,
RESCAL incurs a higher cost in terms of space and time than DistMult.
Recently, ComplEx [Trouillon et al., 2016] and HolE [Nickel et al., 2016]
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both use vectors for relation and entity embeddings, but ComplEx uses
complex vectors, while HolE uses a circular correlation operator [Hogan
et al., 2021] to capture edge direction. Other tensor factorization models
such as SimplE [Kazemi et al., 2018] and TuckER [Balažević et al., 2019b].
SimplE computes a basic factorization by averaging terms across X, Y, Z
to get the final plausibility score. TuckER decomposition outputs a tensor
Z and three three matrices A, B, C, such that G = Z ×A× B×C, where
entity embeddings are extracted from A and C, and relation embeddings
are extracted from B. Among these approaches, TuckER currently provides
state-of-the-art results on standard benchmarks.

Neural model

Neural model uses neural networks to obtain graph embeddings with
non-linear score function [Hogan et al., 2021]. An early neural model
for KGE is Semantic Matching Energy (SME). It learns parameters (i.e.,
weights: w and w′) for two functions fw(eh, er) and gw′(et, er), and the
dot product of the results from both functions gives the plausibility score.
Later, many variants of fw and gw′ are proposed [Bordes et al., 2014].
Another neural model is Neural Tensor Networks (NTN). It maintains a
tensor W of weights and computes plausibility scores by combining the
outer product eh ⊗W⊗ et with er and a standard neural layer over eh and
et [Socher et al., 2013]. The tensor W yields a high number of parameters,
limiting scalability [Wang et al., 2017]. Multilayer Perceptron (MLP) is a
simpler model, where eh, er, and et are concatenated and fed into a hidden
layer to compute the plausibility score [Dong et al., 2014].

More recent neural models use convolutional kernels. ConvE mod-
els the interactions between input entities and relations by convolutional
and fully-connected layers [Dettmers et al., 2018]. The main characteris-
tic of ConvE model is that the score is defined by a convolution over 2D
shaped embeddings. HypER uses a hypernetwork architecture that gen-
erates simplified relation-specific convolutional filters to make the model
more intuitive [Balažević et al., 2019a].

3.4 chapter summary

In this chapter, we introduced KG related technologies, including KG,
graph models for KG construction, and KGE for obtaining the feature vec-
tors of KG.

To conclude, the rapid growth of e-learning has led to more and more
universities and commercial institutions joining e-learning platforms, var-
ious resources are flooding the platforms, and improving user experience
has become a top priority for many platforms, such as personalized ser-
vices. However, an important basis for improving user experience is to ob-
tain enough valuable information from platforms. In e-learning platforms,
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in addition to some regular visible data, there is also a lot of invisible in-
formation that plays an important role in improving the user experience.
KG can effectively organize and represent information, whether visible or
invisible, so that it can be utilized in advanced applications. Thus, we
propose to use KG to characterize the content of e-learning platform and
extract necessary information, KGE is used to obtain the information (fea-
tures of users and resources) from KG in that process.



Chapter 4

Recommender system

4.1 introduction

The constantly growing amount of resources in e-learning platforms en-
courage more and more researchers focus on helping users filter appro-
priate learning resources to alleviate the information burden and improve
their learning efficiency. Recommender System (RS) has been an effective
strategy for such a context.

RS is information filtering system designed and applied to find the
information most relevant to users’ needs and transfer it to users [Negre,
2015]. The utility of RS cannot be underestimated, given it widespread
adoptions in many Web applications, along with its effective impact to
ameliorate problems related to information overload [Zhang et al., 2019b].

Generally, information from two sources is usually considered in the
process of building RSs, user-related information and item-related infor-
mation. The user-related information mainly refers to user profile and
user feedback. The item-related information mainly refers to item content,
which can be described by different types of data such as unstructured
data (e.g., text, image, and video), semi-structured data (e.g., table with
characteristics), or even a mixture of the two. The user profile has been
presented in section 2.3, so we focus on user feedback in the following
part of this section. User feedback can be divided into two types, explicit
feedback and implicit feedback.

• Explicit feedback appears as the form of ratings that users assign to
items. Ratings are often entered on a defined scale which indicate
users’ levels of appreciation to items. Typically, ratings are interval-
based, where a discrete set of ordered numbers is used to quantify
one’s likes and dislikes. Many Web applications (e.g., Coursera, Ama-
zon, and Netflix) use a range of values from 1 to 5 as ratings (see Fig-
ure 4.1). In this context, a rating of 1 indicates extreme disgust while
5 indicates maximum liking. Formally, in scientific community, the
term ru,i is used to represent the rating that user u assigns to item
i, the prediction of the rating that user u would assign to item i is
denoted as r̂u,i.
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Figure 4.1: Example of explicit feedback on the scale of 1 to 5 on Coursera.

• Implicit feedback appears as the form of user-item interactions, allow-
ing them to implicitly show their interests in the items with which
they interacted. For example, if a user frequently listens to the music
of an artist, it is reasonable to assume that the user likes this artist.
Likewise, if a user buys a dress and does not return it, we can assume
that the user likes it. Unlike explicit ratings which use ordinal num-
bers to express user interests, implicit tastes are often represented by
interactions.

In a RS, user feedback, whether explicit or implicit, can be represented
by a matrix whose rows represent users and columns represent items.
Figure 4.2 illustrates an example of two rating matrices, where the rating
value assigned by user u for item i is stored in the box located in the u-th
row and the i-th column of the matrix.
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Figure 4.2: Illustrations of (a) explicit feedback and (b) implicit feedback
rating matrices. The scale of explicit ratings is 1 to 5 and the value of
implicit rating is 0 or 1 (ru,i is 1 if there is an interaction between user u

and item i, 0 otherwise).
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4.2 classification of recommender systems

RSs are usually classified into three categories: CF RS, CB RS, and hybrid
RS [Zhang et al., 2019b].

4.2.1 Collaborative filtering recommender systems

CF is widely used in the RSs of both scientific and industrial fields with
the objective of predicting the missing rating values. CF RSs make rec-
ommendations by learning user-item interactions, either through explicit
(e.g., user ratings) or implicit feedback (e.g., browsing history) [Zhang et
al., 2019b]. The CF algorithms can be divided into two subcategories that
depend on the prediction method: the memory-based CF approach and
the model-based CF approach [Breese et al., 2013].

4.2.1.1 Memory-based collaborative filtering

The main strategy of memory-based CF approach is based on two assump-
tions: 1) similar users rate items in an similar way; 2) similar items receive
similar ratings. It has two types: user-based type and item-based type.

• User-based type. Ratings created by users similar to user u are used to
make recommendations for u. The rating prediction between user u

and item i, r̂u,i, is calculated as the weighted average of the ratings
for i created by the similar neighbors of u.

• Item-based type. Ratings created by u for items similar to item i are
used to make recommendations for u. The r̂u,i is predicted based on
the specific ratings created by u for these similar neighbors of i.

Whether user-based type or item-based type, memory-based CF con-
sists of two consecutive steps: i) identification of the similar neighbors
(users or items); ii) prediction of ratings based on the identified neigh-
bors. Generally, users (u ∈ U) and items (i ∈ I) are represented by
rating vectors in the rating matrix. The vector representations of users
vu = (ru,i, i = 1, 2, · · · , |I|) and items vi = (ru,i,u = 1, 2, · · · , |U|) can be
obtained from the matrix.

To identify the similar neighbors, there are some common metrics for
calculating similarity between vectors in this context.

Cosine similarity is a metric widely used in the field of information
retrieval and text mining to calculate the similarity between two vector
representations [Breese et al., 2013]. It calculates the cosine angle between
two vectors in d-dimensional space, with d being the length of the vectors.
Formally, the cosine similarity between two users (u and u′) is defined by
the equation 4.1.
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simcos(u,u′) = cos(u⃗, u⃗′) = u⃗ · u⃗′
∥u⃗∥2 × ∥u⃗′∥2

=

∑
i∈Iu,u′

ru,iru′,i√ ∑
i∈Iu,u′

r2u,i

√ ∑
i∈Iu,u′

r2u′,i

(4.1)

where Iu,u′ represents the set of items rated both by u and u′. Similarly,
the similarity between two items (i and i′) is defined by the equation 4.2.

simcos(i, i′) = cos(⃗i, i⃗′) = i⃗ · i⃗′
∥⃗i∥2 × ∥i⃗′∥2

=

∑
i∈Ui,i′

ru,iru′,i√ ∑
u∈Ui,i′

r2u,i

√ ∑
u∈Ui,i′

r2u′,i

(4.2)

where Ui,i′ represents the set of users who have rated both item i and item
i′.

Another widely used similarity metric in this context is the Pearson
Correlation Coefficient (PCC) [Resnick et al., 1994]. PCC measures a corre-
lation between two variables, its value varies between -1 and 1. The value
of 1 reflects a perfect and positive correlation while the value of -1 means
that the two variables are negatively correlated or anti-correlated. The
value of 0 means that there is no linear correlation between the two vari-
ables. Formally, the PCC similarity between two users u and u′ is defined
by equation 4.3.

simPCC(u,u′) =

∑
i∈Iu,u′

(ru,i − ru)(ru′,i − ru′)√ ∑
i∈Iu,u′

(ru,i − ru)2
∑

i∈Iu,u′

(ru′,i − ru′)2
(4.3)

where ru and ru′ represent the average value of the ratings of user u and
user u′, respectively. The PCC similarity between two items i and i′ is
defined by equation 4.4.

simPCC(i, i′) =

∑
u∈Ui,i′

(ru,i − ri)(ru′,i − ri′)√ ∑
i∈Ui,i′

(ru,i − ri)2
∑

i∈Ui,i′

(ru′,i − ri′)2
(4.4)

where ri and ri′ represent the average value of the ratings provided by all
users for item i and item i′, respectively.

To predict the ratings based on the identified similar neighbors, the
weighted average of the ratings created by the individuals in the neigh-
bors of a user need to be calculated in the case of user-based type, or the
weighted average of the ratings associated with the elements in the neigh-
bors of an item need to be calculated in the case of item-based type.

Formally, the prediction of r̂u,i is obtained by equation 4.5 for the user-
based type.
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r̂u,i =

∑
u′∈U′u,i

ru′,isim(u,u′)∑
u′∈U′u,i

sim(u,u′)
(4.5)

where the term U′u,i represents the set of nearest neighbors of the user u

who rated the item i. Similarly, in the case where the prediction is based
on the items, r̂u,i is obtained by equation 4.6.

r̂u,i =

∑
i′∈I′u,i

ru,i′sim(i, i′)∑
i′∈I′u,i

sim(i, i′)
(4.6)

where the term I′u,i represents the set of nearest neighbors of the item i

having been rated by u.

However, different rating systems have different standards for rating.
In order to better predict, normalization is adopted as an important solu-
tion [Herlocker et al., 2002]. A distribution of ru ratings can be normalized
through the mean (average value) ru and its variance σu. Two normal-
ization methods are usually considered: mean normalization and z-score
normalization (standardization).

The mean normalization for the above two types are shown as equation
4.7 and equation 4.8.

r̂u,i = ru +

∑
u′∈U′u,i

[(ru′,i − ru′)sim(u,u′)]∑
u′∈U′u,i

sim(u,u′)
(4.7)

r̂u,i = ri +

∑
i′∈I′u,i

[(ru,i′ − ri′)sim(i, i′)]∑
i′∈I′u,i

sim(i, i′)
(4.8)

The z-score normalization for the above two types are shown as equa-
tion 4.9 and equation 4.10.

r̂u,i = ru + σu

∑
u′∈U′u,i

[
(ru′,i−ru′)

σu′ sim(u,u′)
]

∑
u′∈U′u,i

sim(u,u′)
(4.9)

r̂u,i = ri + σi

∑
i′∈I′u,i

[
(ru,i′−ri′)

σi′ sim(i, i′)
]

∑
i′∈I′u,i

sim(i, i′)
(4.10)
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4.2.1.2 Model-based collaborative filtering

In contrast to memory-based CF, model-based CF uses the collection of
ratings to learn a model (usually a supervised machine learning model),
which is then used to make rating predictions [Breese et al., 2013]. Popular
models such as Singular Value Decomposition (SVD) and neural network
[Aggarwal et al., 2016c].

SVD

The core idea of SVD is to identify latent semantic factors. In the
context of CF, SVD is usually used to make the rating matrix dense [Sarwar
et al., 2000], and it is one of the most popular matrix factorization models
where the rating matrix is considered as a multiplication of two matrices,
as shown in equation 4.11.

R ≈ PQT (4.11)

where R is the rating matrix with size |U|× |I|, P is a matrix with size |U|× d

and Q is a matrix with size |I|× d. d can be seen as the number of latent
factors (i.e., latent dimension). The columns of P are the latent vectors cor-
responding to latent factors in the rows of P. Matrix factorization allows
users and items to be described in a same latent space of dimension d, so
that the interactions between users and items can be modeled as scalar
products in the same space.

Formally, in SVD, each user is represented as vector pu ∈ Rd and each
item is represented as vector qi ∈ Rd. The dot product of the vectors
(each user vector and item vector pair) indicates the correlation between
user and item. To predict the r̂u,i, the result is the dot product of pu and qi.
SVD consider both the user-item interactions and the personalized features
(bias) of users and items, thus, the r̂u,i can be calculated as equation 4.12.

r̂u,i = pu · qT
i + bu + bi (4.12)

where bu and bi can be interpreted as the biases associated with the user
u and item i.

To learn model parameters, the objective function is performed as equa-
tion 4.13.

L = arg min
pu,qi,bu,bi

∑
ru,i∈R

(ru,i − pu · qT
i − bu − bi) (4.13)

Neural collaborative filtering

In recent years, deep learning has been widely used in the field of
CF RS [Zhang et al., 2019b]. Because deep learning makes it possible to
effectively capture non-linear and non-trivial relations between users and
items, allowing RS to handle more complex data. Neural Collaborative
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Filtering (NCF) is a CF model based on deep neural networks [He et al.,
2017]. This approach combines the matrix factorization technique with
neural networks in order to strengthen the performance of models based
on latent factors. The architecture of NCF is shown in Figure 4.3.

 

            

                

               

                    

                                    

              

                    

       

       

       

 

        
        

      

                

Figure 4.3: Framework of neural collaborative filtering [He et al., 2017].

The input layer consists of two sparse vectors vu (u ∈ U) and vi (i ∈ I)
that describe user u and item i, respectively. The embedding layer is a fully
connected layer that projects the sparse vectors into dense vectors (latent
vectors in the context of latent factor model). The dense latent vectors are
fed into a multi-layer neural network and the final output layer predicts
the score r̂u,i for target ground truth (true label). The NCF model can be
formulated as equation 4.14.

r̂u,i = f (PTvu,QTvi|P,Q,Θf ) (4.14)

where P ∈ R|U|×d and Q ∈ R|I|×d, denoting the latent factor matrix for
users and items, respectively; and Θf denotes the model parameters of the
interaction function f .

When handling scenarios with implicit feedback, the value of label ru,i
is binary, 1 means item i is relevant to u, and 0 otherwise. The prediction
score r̂u,i represents how likely i is relevant to u. To endue NCF with such
a probabilistic explanation, the output r̂u,i need to be constrained in the
range of [0, 1], which can be achieved by using activation function for the
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output layer. [He et al., 2017] define the likelihood function as equation
4.15.

p(R, R−|P,Q,Θf ) =
∏

(u,i)∈R
r̂u,i

∏
(u,i)∈R−

(1− r̂u,i) (4.15)

where R denotes the set of observed interactions, and R− denotes the
set of negative instances, which can be all (or sampled from) unobserved
interactions. Taking the negative logarithm of the likelihood, the objective
function can be expressed as equation 4.16.

L = −
∑

(u,i)∈R

log r̂u,i −
∑

(u,i)∈R−

log(1− r̂u,i)

= −
∑

(u,i)∈R∪R−

ru,i log r̂u,i + (1− ru,i) log(1− r̂u,i)
(4.16)

The optimization can be done by performing Stochastic Gradient De-
scent (SGD) and the recommendation with implicit feedback can be ad-
dressed as a binary classification problem by employing this probabilistic
treatment.

4.2.2 Content based recommender systems

Unlike pure CF RS only utilizes user rating matrix (either directly or via
model), CB RS recommends items to a user by considering the content
of the items that the user interested in the past. Various candidate items
are compared with items previously rated (or used) by the user, the best-
matching item(s) will be recommended [Adomavicius et al., 2005], and the
content mainly provides information support in this process. The content
can be different types, unstructured (e.g., textual synopsis of item) or semi-
structured (a set of keywords or features of item), depending on the source
of the data. To put it simply, CB RS makes recommendations by comparing
the representations of item content to the representations of user interests
[Melville et al., 2010].

Generally speaking, a fully functional CB RS usually contains three
important phases: i) pre-processing; ii) construction of user model; iii)
recommendation. First, having a set of data related to items, regardless
of the type (structured or unstructured), CB RS analyzes the data and
constructs a feature representation (generally in the form of feature vector)
for each item. This phase is often called pre-processing which aims to
extract relevant information to describe items. Then, the second phase
builds model for the target user, which reveals user’s relative interests to
each of the features of the items. Finally, the third phase compares the user
model with the features corresponding to the items in order to identify the
items that are most relevant to the user. This phase filters items to exclude
those whose features (contents) do not match to the user model.
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4.2.2.1 Pre-processing

Pre-processing is a necessary process to extract relevant information when
the input data of CB RS is raw (mainly unprocessed text). It represents
the contents of items (e.g., document, Web page, and product description)
in an appropriate form for the subsequent processing. The contents of
items are analyzed using feature extraction techniques and preserved in a
space which makes them possible to construct models. In other words, an
item can be represented by a vector whose each dimension corresponds to
an attribute or feature and whose each value reflects the importance (i.e.,
weight) of this attribute or feature for this item.

For example, in the field of document recommendation, each document
is represented by a vector in a d-dimensional space, and the d is the size
of a vocabulary which is made up of the most distinguishable terms in
the field and extracted from the complete collection of documents. These
terms can be extracted using classic Natural Language Processing (NLP)
technique, Bag-of-Words (BoW). Each dimension of the vector associated
with a document represents a term from this vocabulary and the value of a
dimension represents the degree of importance of the corresponding term
in the description of the document content based on the usage statistics of
the term in the collection.

Formally, D = {d1,d2, · · · ,d|D|} denotes a set of documents and O =

{o1,o2, · · · ,o|O|} denotes a set of extracted terms. Each document di ∈ D is
represented by a vector with dimension |O|, i.e., di = wi,1,wi,2, · · · ,wi,|O|,
where wi,j(i ∈ {1, 2, · · · |D|}, j ∈ {1, 2, · · · |O|}) is the weight of the term oj in
the document di.

The most widely used method for measuring the term weights of a doc-
ument is Term Frequency-Inverse Document Frequency (TF-IDF) [Salton,
1989]. The hypothesis of TF-IDF is that the terms appeared frequently in a
document (high TF) and did not appear too many times in the entire cor-
pus are probably more relevant than others to characterize this document.
The weight of a term oj for the document di can be calculated by equation
4.17.

(a)woj,di = TFoj,di × IDFoj,di

(b)TFoj,di =
foj(di)

fmax(di)

(c)IDFoj = log
|D|

noj

(4.17)

where foj(di) denotes the number of times the term oj appears in docu-
ment di, fmax(di) represents the frequency of the most frequent term in di,
and noj denotes the number of documents in which the term oj appears.
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4.2.2.2 Construction of user model

After obtaining the feature vectors for each item via the first pre-processing
phase, the user model can be constructed based on the given rating matrix
(user ratings) and the feature vectors of the items. The construction of
user model is closely related to a classification or regression in the field
of machine learning. Indeed, when we treat the ratings as discrete values
(like or dislike), the objective corresponds to a classification, whereas if
we consider the ratings as continuous values, the objective resembles a
regression.

In all cases, the set of items which the user has interacted constitutes a
training process, whose ratings are the labels of the instances provided by
the target user. Unlike CF, the labels of items provided by other users are
excluded because each user is considered independently. In addition, we
also have a set of unrated items whose labels are unknown. The training
process is to construct a model for each user, and for each unrated item,
the model predicts the user’s interests to this item. The result presents as
a score in the case of regression or the class in the case of classification.

Many classification and regression models can be used to build user
model, such as K-Nearest Neighbors (KNN), decision tree, Support Vector
Machine (SVM), Bayesian, and linear regression. The training process
is to determine the parameters of the user model before prediction, and
after that, recommendations can be made. We introduce two widely used
models, KNN and linear regression.

K-nearest neighbor

KNN is an intuitive classification model. First, it defines neighbors
by using a function that measures the similarity between two items. As
items are represented by feature vectors, classical similarity metrics that
measure the distance between two vectors are generally used, such as
cosine similarity and Euclidean distance.

This similarity function is used to make predictions about items for
which the active user’s tastes are unknown. Formally, Iu denotes the set
of items rated by the target user u and I′u denotes the set of items not
rated by u. For each item i ∈ I′u, the set of K items (from Iu) closest to
item i can be identified using the chosen similarity function. The average
value of the ratings of the neighbors of i given by u is used in the KNN
approach, as a prediction of ru,i. Subsequently, the items from I′u with the
best (predicted) scores are those recommended to user u. In the case where
we seek to classify item i, i.e., the ratings are discretized (ratings are not
very relevant, relevant, or very relevant), we can calculate the frequency
of each class among the neighbors of i and the most frequent class will
correspond to the predicted label.
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Linear regression

The main idea of linear regression is based on the hypothesis that there
are linear relations between the ratings and the features of the items, and
the ratings are considered as linear combinations of these features. In
this context, the objective is to identify the weight of each feature, and
use them to predict the unknown ratings by linear combinations. The
training process narrows the gap between the values predicted by linear
combinations and the observed rating values.

In linear regression model, the set of items rated by user u, Iu, are
described as a matrix Mz, where Mz ∈ |Iu|× z, and z denotes the number of
item features. Let r⃗ denotes the column vector of dimension |Iu| containing
the ratings of the rated items by u. Let w⃗ be a row vector of dimension
z, representing the coefficients of the features related to the rating values.
Linear regression can be calculated as equation 4.18.

r⃗ ≈Mzw⃗
T (4.18)

To learn the parameters, the loss function is shown as equation 4.19.

L = arg min
w⃗
∥Mzw⃗

T − r⃗∥2 + λ∥w⃗∥2 (4.19)

where ∥ · ∥2 represents the L2 normalization of a vector and the regulariza-
tion term λ is added to the parameter vector ∥w⃗∥2 to avoid overfitting.

4.2.2.3 Recommendation

The recommendation phase follows the user model construction phase
and strongly depends on the trained user models. Given a new item
representation, the recommendation phase predicts whether it is likely to
be one of the interest for the target user, by comparing features in the item
representation to those in the representation of user interests (stored in
the user model) [Lops et al., 2011]. Usually, the recommendation phase
implements some strategies to rank potentially interesting items based on
the relevance to the user model, i.e., top-K recommendation.

Besides, user interests usually change in time, therefore, new informa-
tion should be maintained and provided to the user model construction
phase, in order to automatically update the user models. Further feedback
is gathered on generated recommendations by letting users state their sat-
isfaction or dissatisfaction with recommended items. After gathering that
feedback, the model construction process is performed again on the new
training data, and the results about interests are adapted to the user mod-
els. The iteration of the feedback-updating cycle over time allows the sys-
tem to take into account the dynamic information of user interests [Tang
et al., 2021].
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4.2.3 Hybrid recommender systems

Hybrid RS emerged to compensate for the flaws of CF RS or CB RS. Before
presenting the hybrid RS, we highlight the flaws of CF RS and CB RS.

CF RS has two main flaws: data sparsity and cold start problem [Bala-
banović et al., 1997].

Data sparsity. Reliable recommendations usually require a huge amount
of ratings for CF RS, but scenarios with small data are also very common.
In such scenarios, the size of samples (users and items) is large, but there
are a lot of null values in the rating matrix that are either missing or never
appear. In fact, sparse data does not mean that the data is useless, just
that the information is incomplete and a lot of useful information can be
mined through appropriate means.

Cold start problem. The problem related to new user or new item is
called cold start. The RS may have difficulty recommending new items to
users or generating recommendations for new users. CF RSs particularly
suffer from this problem. When a new user or new item present in the
domain, the RS does not have any information (previous ratings) about
the new ones, thus, CF can not be performed in such context.

CB RS also has cold start problem as well as two other main flaws:
content analysis limitation and overspecialization [Balabanović et al., 1997].
The CB RS can not precisely capture the interests of a user in relation to
the features of items and cannot build reliable model if the user rated very
few items, because insufficient data makes the process of building user
model unreliable.

Content analysis limitation. CB RS requires the features associated with
items. Therefore, in order to obtain sufficient features, the item content
should be in the form that can be parsed automatically by computer or
the features can be assigned to items manually [Adomavicius et al., 2005].
Although some information retrieval techniques work well in extracting
features from text documents, some other domains have feature extraction
problem [Adomavicius et al., 2005], such as multimedia with image, audio,
and video. Moreover, it is not practical to assign attributes by hand due to
amount of resources [Shardanand et al., 1995]. Another problem of content
analysis limitation is that if two different items are represented by the same
set of features, they are indistinguishable. For example, texts are usually
represented by their most important keywords, CB RS cannot distinguish
the quality of two papers shared the same keywords.

Overspecialization. CB RS may fall into a situation where it only recom-
mends items that are highly relevant to the user’s profile, and the user only
receives the similar items in limited range. For example, a person with no
feature about computer science would never receive a recommendation for
even the booming ChatGPT. This problem, which has also been studied in
other domains, is often addressed by introducing some randomness (e.g.,
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genetic algorithms) [Sheth et al., 1993]. And in some certain cases, items
should not be recommended if they are too similar to something the user
has already used (e.g., a different news describing the same event). In sum-
mary, the diversity should be considered, user should be presented with a
range of alternatives, instead of a set of homogeneous items.

To overcome the main flaws of the above two approaches and take ad-
vantage of their strengths, hybrid RS has emerged in the literature. Differ-
ent hybrid RSs have been proposed with the objective of combining mul-
tiple recommendation approaches [Aggarwal et al., 2016a]. Some widely
used hybrid approaches can be classified into four types: separate recom-
menders, adding content features to CF, adding collaborative features to
CB, and unified recommendation model.

Separate recommenders. This approach implements CB RS and CF RS
separately, then combines their predictions. In such context, we can com-
bine the predictions obtained from two RSs (CF and CB) into one final
recommendation using linear combination or voting.

Adding content features to CF. This approach adds some content features
in CF RS. It builds hybrid RS based on conventional CF algorithm but also
maintains the user profile for each user, the profiles are usually used to
calculate the similarities between users. This approach can overcome the
data sparsity problem of conventional CF RS.

Adding collaborative features to CB. This approach adds some collabo-
rative features in CB RS. It builds hybrid RS based on conventional CB
algorithm but also uses some dimension reduction techniques on the set
of user feature matrix obtained from user profiles.

Unified recommendation model. This approach constructs unified model
that incorporates both content and collaborative features. [Popescul et al.,
2013] propose an unified probabilistic method for combining CB and CF
approaches, which is based on latent semantic analysis [Hofmann, 1999].
Representatively, [Ansari et al., 2000] compress user profile and item con-
tent in a single statistical model that estimates unknown ratings ru,i be-
tween them.

Hybrid RS can also be augmented by knowledge-based techniques in
order to improve recommendation accuracy and to address some of the
limitations (e.g., cold start problem) of traditional RSs [Burke, 2000]. In
summary, a hybrid RS theoretically performs better than a single RS, since
it considers more information, combines the advantages of the individuals,
and overcomes their flaws. Moreover, several papers compare the perfor-
mance of the hybrid RSs with pure CF or CB RSs, and demonstrate that
hybrid approaches can provide more accurate recommendations than sin-
gle approaches [Balabanović et al., 1997] [Pazzani, 1999] [Melville et al.,
2002].
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4.3 evaluation of recommender systems

The application scenarios of RSs can be mainly categorized into two
groups: rating prediction and top-K recommendation [Herlocker et al.,
2004] [Cremonesi et al., 2010] [Steck, 2013] [Gunawardana et al., 2012]. In
this section, we present evaluation metrics used in the above two groups
of application scenarios.

In the context of evaluation based on rating prediction, it considers that
the accuracy of RSs is compared based on their ability to correctly predict
users’ rating values. As ratings are generally represented by numerical
values, regression models are usually considered. ru,i is a real rating of
user u for item i; r̂u,i is a predicted rating of user u for item i; Stest is
subset of the ratings used to evaluate the RS.

Root Mean Squared Error (RMSE) (equation 4.20) is frequently used
to evaluate the overall prediction error, small RMSE values indicate better
prediction performance, and it is defined as follows:

RMSE =

√√√√ ∑
(u,i)∈Stest

(ru,i − r̂u,i)2

|Stest|
(4.20)

RMSE tends to disproportionately penalize large errors due to the
squared term in the sum [Aggarwal et al., 2016b]. Another metric Mean
Absolute Error (MAE) (equation 4.21) does not suffer from this defect, it
measures the average magnitude of differences between prediction and
real ratings [Willmott et al., 2005], and it is defined as follows:

MAE =

∑
(u,i)∈Stest

|ru,i − r̂u,i|

|Stest|
(4.21)

Generally, RMSE is more sensitive with errors in predictions compare
to MAE and therefore the RS will be considerably penalized by a few
poorly predicted ratings, but it does not accurately reflect the average error
that may lead to confusing results [Willmott et al., 2005].

In the context of evaluation based on top-K recommendation, it consid-
ers the items presented in lists and usually return a recommendation list
with a K length. Stest(u) denotes the set of ground truth items with u in the
test subset, where the relevant items for a user can be the items used (or
rated) by the user (implicit feedback) or items whose rating values exceed
a threshold (explicit feedback). Lrec(u) denotes the item list recommended
to u, and |Lrec(u)| = K.

Precision (equation 4.22) and Recall (equation 4.23) are widely used
in top-K recommendation scenarios for performance evaluation [Liu et
al., 2016] [Zhou et al., 2018] [Bobadilla et al., 2020]. Precision counts the
proportion of items relevant to user u among the recommendation list and
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Recall focuses on the percentage of relevant items among the ground truth
items.

Precision =
|Stest(u)∩ Lrec(u)|

K
(4.22)

Recall =
|Stest(u)∩ Lrec(u)|

|Stest(u)|
(4.23)

F1 (equation 4.24) takes the harmonic mean of Precision and Recall, it
is defined as follows:

F1 =
2

Precision−1 + Recall−1
(4.24)

The above three evaluation metrics do not take into account the order
of the items in the list. But RS should put the relevant items in the head
of the recommendation list. Thus, the order of the list should be con-
sidered. Mean Average Precision (MAP) (equation 4.25) and Normalized
Discounted Cumulative Gain (NDCG) (equation 4.26) give recommenda-
tion lists in which the most relevant items are presented at the top of the
list. MAP represents the average value of all Average Precision (AP) values
over all users.

MAP =
1

|Stest|

|Stest|∑
u=1

1

|Stest(u)|

K∑
k=1

Precision (4.25)

NDCG counts the distance between the top-K recommendation list and
ground truth list. relu,i denotes the relevance of item i for user u; relu,i
equals to the rating value ru,i in the context of explicit feedback and
relu,i = 0 (there is intersection between u and i) or relu,i (there is not
intersection between u and i) in the context of implicit feedback; indexi
denotes the position of item i in the recommendation list; IDCG denotes
the ideal recommendation list, i.e., all the items are ordered in the list
according to the ground truth list.

NDCG(Lrec(u)) =
1

IDCG(Lrec(u))

K∑
i=1

2relu,i − 1

log2(indexi + 1)
(4.26)

Hit Rate (HR) (equation 4.27) is also widely used in top-K recommen-
dation scenarios, but K = 1, i.e., it considers a single target item for the
user u. The hit will be confirmed only if the target item is present in the
recommendation list. The value of I (·) is 1 when · ⩾ 0, and 0 otherwise.

HR =

∑
u∈Stest

I (|Stest(u)∩ Lrec(u)|)

|Stest|
(4.27)
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4.4 knowledge graph in recommender system

Although numerous efforts have been made toward more personalized
recommendations, RSs still suffer from several challenges, such as data
sparsity and cold-start problem [Guo et al., 2020]. In recent years, building
RSs with KG as side information has garnered enough attention. With
the help of KG, the latent connections between users and items can be
obtained [Wang et al., 2018a], such an approach can not only alleviate the
above mentioned challenges to get more accurate recommendations, but
also provide explanations for the recommended items [Guo et al., 2020].

Embedding based method is the representative direction of the usage
of KG in RSs, which leverages facts of KG to enrich the representations
of users and items. It contains two modules: i) graph embedding module
learns the representations of entities and relations in the KG; ii) recommen-
dation module estimates users’ preferences for items with learned features.
The challenges of this method are how to obtain the entity embedding with
proper KGE algorithm and how to integrate the learned entity embedding
in the recommendation module.

Based on the structure of the combination of these two modules, em-
bedding based method can be subdivided into three categories: two-stage
learning, joint learning, and multi-task learning [Guo et al., 2020].

Two-stage learning

Two-stage learning trains graph embedding module and recommen-
dation module respectively. First, embeddings of entities and relations
are learned with KGE algorithms. Then, the related embeddings are fed
into the recommendation module along with other user features and item
features to make predictions. For example, [Wang et al., 2018b] propose
Deep Knowledge-aware Network (DKN) for news recommendation. DKN
extracts entities from news titles and maps them into KG to mine the
knowledge-level relations between news. It models the news pj by combin-
ing the textual embedding of sentences learned with Convolutional Neural
Network (CNN) [Kim, 2014] and the knowledge-level embedding of enti-
ties in news content via TransD [Ji et al., 2015] to get the final news repre-
sentation vpj . In order to capture user’s dynamic interests in news, the rep-
resentation vui

of user ui is learned by aggregating the embedding of his-
torical clicked news {p1,p2, · · · ,pn} with an attention mechanism, shown
as equation 4.28.

vui
=

n∑
k=1

spk,pjvpk (4.28)

where spk,pj measures the similarity between the candidate news pj and
the clicked news pk. Then, user’s preference for candidate news pj can be
calculated via r̂(ui,pj) = MLP(vui

, vpj).
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Two-stage learning is easy to implement because the structure embed-
dings of KG are joined as extra features in the subsequent recommendation
module. Moreover, there is no need to update the embeddings frequently
once they are learned since the KG is usually stable. However, the struc-
ture embeddings of KG learned by KGE algorithms are more apposite
for internal graph applications (e.g., KG completion) because embedding
module and recommendation module are relatively independent [Guo et
al., 2020].

Joint learning

Joint learning jointly learns the graph embedding module and the rec-
ommendation module in an end-to-end way. In this way, the recommen-
dation module can guide the feature learning process in the graph em-
bedding module. For example, [Zhang et al., 2016] propose Collaborative
Knowledge base Embedding (CKE). It unifies various types of side infor-
mation in a CF based framework, including attribute feature, textual fea-
ture, and visual feature of items. The attribute feature is encoded with by
TransR [Lin et al., 2015] to learn structure embedding of KG; the textual
feature and the visual feature are extracted with autoencoder. The objec-
tive function of these three feature learning modules are added with the
recommendation module to learn parameters jointly, shown as equation
4.29.

L = LRec + λ1Lattribute + λ2Ltext + λ3Lvisual + λ4Lregu (4.29)

where LRec, Lattribute, Ltext, Lvisual, and Lregu are the objective function
of the recommendation module, the attribute feature learning module,
textual feature learning module, visual feature learning module, and the
regularization term, respectively. The final representation of item vpj is
obtained by aggregating the item feature from each part. After obtaining
the latent vector vui

of the user ui, the preference score between user ui

and item pj is estimated via the inner product r̂ui,pj = vTui
vpj .

The joint learning can be trained end-to-end, and it uses KG structure
to regularize the RS, the experiments show that incorporating structural
knowledge can improve the performance of recommendation [Guo et al.,
2020]. However, the combination of different objective functions needs to
be fine-tuned, which increases the computational complexity.

Multi-task learning

Multi-task learning trains the RS with the guidance of the KG-related
task. The motivation is that the structure of the items in the user-item inter-
actions is similar to the structure of users and items in the KG. Therefore,
the transferring of features of items and users from two sources (inter-
actions and KG) can help improve the performance of RS. [Wang et al.,
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2019a] propose multi-task feature learning for knowledge graph enhanced
recommendation, which consists of a recommendation module and a KGE
module. Instead of feeding graph structure embeddings into the recom-
mendation module, the two modules are independent and connected with
a cross&compress component to share knowledge with each other. The
KGE module is trained to estimate feature representation of the tail given
the head entity and the relation in a triplet ⟨h, r, t⟩, and the recommen-
dation module is trained to make predictions by integrating prominent
features. [Cao et al., 2019] propose to learn the tasks of both recommen-
dation and KG completion at the same time. Since user preferences can
be reflected by relations among items and some facts are missing in the
KG, the feature representations learned from recommendation task can be
transferred to the KG completion task to improve the KG; on the other
hand, better feature representations of users and items can be obtained
form the improved KG and used in the recommendation task.

Multi-task learning can prevent RS from overfitting and improve the
generalization ability of the model. However, similar to the joint learning
method, it requires efforts to integrate different tasks under one recom-
mendation framework [Guo et al., 2020].

4.5 recommender system in e-learning

E-learning offers spatially independent education platforms with a large
number of high-quality and convenient online resources that have the po-
tential to improve educational outcomes for users around the world. How-
ever, the explosive growth of Web information makes it difficult for users
to make efficient choices. RS has become an effective solution to extract
and organize the learning content to achieve the established learning ob-
jectives of users, especially for non-experts [Shi et al., 2020].

The applications of RS in e-learning are extensive, the recommended
content is not just limited to learning material, it also includes the recom-
mendations regarding learning path [Shi et al., 2020], course [Zhang et al.,
2023], collaborator [Liu et al., 2018], etc. Many techniques are found in the
literature of this domain, in addition to the three (CF, CB, and hybrid) we
have presented above, others such as knowledge based RS [Burke, 2000],
context based RS [Adomavicius et al., 2010], and KG based RS [Guo et al.,
2020]. Different techniques may construct different architectures of RSs,
but like the standard version, a qualified e-learning RS contains three com-
ponents: user interface, database server,and recommendation engine. User
interface is responsible for generating requests and handling logic events;
database server stores all the data of RS, including user profiles, resource
contents, and activity records; recommendation engine implements the al-
gorithm and generates recommendations for users.
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[Shu et al., 2018] proposed a content-based recommendation algorithm
for learning resources. This algorithm can be summed up as two processes,
training process and recommendation process. In the training process, a
convolutional neural network is constructed and used to obtain features
from text information. In the recommendation process, user preferences
combined with the obtain features are used to predict ratings.

As MOOCs occupy an increasingly important proportion in e-learning,
the course recommendation of MOOCs has received considerable atten-
tion, and many scholars have contributed to this domain [Jing et al., 2017]
[Zhang et al., 2019a] [Lin et al., 2021] [Hao et al., 2023]. Course recommen-
dation has its own characteristics. First, the knowledge concepts between
courses are closely related, displaying complex semantic collections, such
as the prerequisites of courses. Second, users have particular learning
objectives and activities performed according to these objectives, so it is
necessary to take the learning objectives and future plans into considera-
tion.

[Chen et al., 2021] proposed a learning path recommendation frame-
work for MOOC platforms based on KG. Based on the current course situ-
ation of MOOC platforms, the authors propose a new automated construc-
tion method for course KGs. A course KG is constructed by annotating
the pre-knowledge of each course and calculating the similarity between
courses, and it is displayed using the Neo4j graph database platform. After
completion of the course KG, it is used to study learning path recommen-
dation algorithms, including rule-based and machine learning based algo-
rithms, and to perform a comparative analysis using the higher education
formation program of a university.

There are three main steps for a course RS function appropriately: data
collection, feature extraction, and recommendation [Liu et al., 2022]. The
data collection acquires as much information as possible that the RS needs,
including user related information and course related information. The
feature extraction obtains user features (explicit features form user pro-
file and implicit features from user activity) and course features (explicit
features form course content) from the data. In this step, data mining
technology and embedding technology is mainly used, may accompanied
by machine learning or deep learning. The third step is recommendation,
which mainly consists of two stages: the recall stage and the ranking stage.
The recall stage uses several algorithms and models to recall courses that
may be interested to users from a large amount of alternatives. The rank-
ing stage estimates user preferences from the set of items of the recall layer
and make recommendations. The overall framework of course recommen-
dation is shown in Figure 4.4.

In addition, some strategies and algorithms (complementary strategy)
can be added to update the recommendation list before returning it to the
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Figure 4.4: Overall framework of course recommendation [Liu et al., 2022].

user, such as context-aware and knowledge based supports, taking into
account other conditions [Liu et al., 2022].

4.6 chapter summary

In this chapter, we presented the technologies related to RS. We first intro-
duced the information used in RSs. Then, we presented three categories
of RSs and highlighted their corresponding flaws. Next, we listed several
evaluation metrics used for measuring the effectiveness of RSs and differ-
ent recommendation scenarios may require different metrics. Later, we in-
troduced the applications of KG in RSs. Finally, we briefly introduced the
applications of RS in e-learning, the course recommendation of MOOCs
platforms was illustrated as a representative case.

As an important tool to help users filter information, RS has been ap-
plied to many fields, and the e-learning field is no exception. However,
most of the conventional RSs ignore a piece of crucial information, the la-
tent connections between the entities in the specific domain, which can be
a part of the basis for the RSs to make judgments. To capture the latent con-
nections, we plan to integrate the technologies introduced above to form a
recommendation framework. The framework uses KG to characterize the
content of e-learning platform and model the information to obtain more
valuable features to improve the performance of the downstream RS. The
specific details of the framework will be introduced in the next chapter.
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Chapter 5

Recommendation framework

based on knowledge graph

In this chapter, we introduce our contribution related to the design of
a Recommendation Framework based on Knowledge Graph (RFKG) in
e-learning platforms. Before we detail the methodology of RFKG, we
highlight the research context and questions.

Context. RSs are applied in e-learning platforms to recommend ped-
agogical resources to users. But conventional recommendation ap-
proaches cannot fully extract information from platforms, where the
missing information can provide crucial support to RSs. KG can char-
acterize the content of e-learning platform in the form of machine
readable graph and comprehensively capture valuable information,
both explicit and implicit, to support the downstream RS.

Questions. How to characterize the content of e-learning platform
by the means of KG? Can the KG be generic? How to obtain features
of users and resources from the constructed KG? How to learn these
features with algorithm for recommendation?

The organization of this chapter is as follows. Section 5.1 presents
the framework overview, including its architecture and brief introduction.
Section 5.2, section 5.3, and section 5.4 detail the three main modules of
the framework. Section 5.5 is a summary of this chapter.

5.1 overview

A recommendation framework is a set of layered functions that are avail-
able to software developers to be used as tools for the development of RS
[Sielis et al., 2015], and we call these layered functions modules. To con-
struct a recommendation framework for e-learning platforms, the basic
components and the challenges we need to address are shown in Figure
5.1.

First, in e-learning platforms, the data that can be collected and used is
usually categorized into explicit data and implicit data. Among them, the



50 5.1 overview

Data Features Algorithm Output

What data? What features? Which algorithm? Rating prediction 

or top-K?

Figure 5.1: Basic components and challenges of recommendation frame-
work.

explicit data includes user ratings, user profile, resource content, etc. Most
of the explicit data are text-based. While the implicit data includes user
browsing records, user interaction records with resources (completed or
dropout), semantic information, etc. Second, in any recommendation sce-
nario, the entity classes primarily considered by RS are user and resource.
Obtaining features of these two classes of entities from their instances is
a prerequisite for the RS to function properly and these features should
be able to capture the commonalities and differences between users and
resources. Third, the core engine of a RS necessarily contains one or more
algorithms, the algorithms make up the brain of RS, which learns the fea-
tures of users and resources and makes assertions about unknown users
and resources based on the learned experience. Finally, in the e-learning
recommendation scenario, the RS usually does not predict the user rat-
ings of resources (as Netflix does), but selects the resources that are most
likely to be of interest to the user from a pool of alternatives, i.e., top-K
recommendations.

Based on the analysis above, we propose RFKG, a recommenda-
tion framework that assists users in selecting appropriate pedagogical
resources in e-learning platforms. It contains three modules:

i) Graph construction characterizes the content of e-learning platform
via KG;

ii) Feature extraction acquires the features of users and resources from
the constructed KG;

iii) Recommendation learns the acquired features with MLP for
resource recommendation.

The architecture of RFKG is shown in Figure 5.2. In the graph construc-
tion module, we define entity classes and their relation classes based on
the characteristics of e-learning platform, extract instances of these entity
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Figure 5.2: Architecture of RFKG.

classes along with their attributes from the raw platform data, and com-
pressed them into a KG in accordance with the defined relation classes. In
the feature extraction module, we choose two embedding methods to learn
the two types of information (textual attributes and graphic structure) con-
tained in the constructed KG to obtain textual and structural features of
users and resources. In the recommendation module, we concatenate the
user and resource feature vectors learned through feature extraction to
form the final user and resource feature vectors, respectively. These fea-
ture vectors and user-resource interaction records are then fed into the
MLP network for model fitting, score prediction, and resource recommen-
dation.

5.2 graph construction

In this section, we construct a lightweight ontology represented as a KG
following 4 core steps [Noy et al., 2001]: step 1. Determine the domain
and scope of ontology; step 2. Define the entity classes and their relation
classes; step 3. Define the classes of attribute associated with entity classes;
step 4. Extract the instances of the defined classes and compressed them
into a knowledge base represented as a KG.

The domain of KG is e-learning platform and the scope is resource
recommendations to users. To simplify the construction process, we merge
step 2. and step 3. into one step, terminology, which defines a conceptual
graph model made of multiple classes of entity, relation, and attribute.
The conceptual graph model is a theoretical mold used as the rules of
importing the instances of these classes into KG. Then, we name the step
4. assertion, which extracts and compresses the instances of the defined
classes into KG. Thus, the process of the first module (graph construction)
can be summarized into the following two components:
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1) Terminology defines a conceptual graph model, involving the classes
of entity, relation, and attribute, as a domain vocabulary;

2) Assertion extracts the instances of the defined classes and imports
these facts into KG according to the domain vocabulary.

5.2.1 Terminology

The input to the terminology component is raw data from the application
domain (e-learning platform) and the output is a conceptual graph model.
A graph model can be described as: M = {E, R, A}, where E, R, and A
are sets of entity classes, relation classes, and attribute classes, respectively,
and they are defined according to the characteristics of e-learning platform.
To achieve that, we need to analyze the mechanisms of typical e-learning
platforms and figure out what kind of raw data we can obtain from the
platforms as input to this component.

As we presented in chapter 2, most of the e-learning platforms are Web-
based and user-oriented, such as Blackboard, Desire2Learn, ILIAS, Moo-
dle, Sakai, and the platforms of MOOCs. In these application scenarios,
platforms are service providers and users are service consumers. We can
identify that there are two different sources of data in a typical Web-based
and user-oriented e-learning platform, the data not related to any user and
the data generated by users. We name the two sources of data knowledge
base and user-related data, respectively.

• Knowledge base. The knowledge base of e-learning platform is
not related to any user, it refers to any kind of information sup-
port and its participants. For example, in Coursera, the knowledge
base includes courses, course synopses, teachers, teacher profiles and
avatars, institutions, institution synopses and icons, and some other
supplementary information. In other words, knowledge base refers
to the data that exists before any user registers the platform;

• User-related data. User-related data is generated by users them-
selves, and it mainly contains two types of data: user profile and
user activity. As presented in section 2.3, user profile is a collec-
tion of personal information, which is stored without adding further
description or interpretation, such as background (e.g., name, gen-
der, degree, profession, age, and spoken language), preference (e.g.,
language preference and resource provider preference), and compe-
tency (e.g., level of English speaking and proficiency of python). On
the other hand, users perform various user-centered learning activi-
ties with specific learning purposes in the e-learning platforms, the
records of these activities can be stored in the form of Web logs and
these logs can be collected by service providers (i.e., platforms) to
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improve the experience of service consumers (i.e., users) by incorpo-
rating RSs.

After clarifying the two sources of data, we need to extract the termi-
nologies from them, that is, the elements (classes of entity, relation, and
attribute) of the conceptual graph model.

5.2.1.1 Entity classes and attribute classes

An e-learning platform contains numerous entities, intricate relations be-
tween them, and massive amounts of additional information. But no mat-
ter what platform, user and resource are two essential entity classes. We
select the entity classes directly related to them from other possible entity
classes. Then, among the attribute classes that these selected entity classes
may contain, we select only the relevant ones that may affect the user’s
choice as attribute classes in the conceptual graph model.

User

Users refer to millions of people around the world who use e-learning
platforms to learn for a variety of reasons, including career development,
changing careers, college preparations, supplemental learning, lifelong
learning, corporate e-learning & training, etc. Users have to register in
order to get access to e-learning platforms. During registration, users will
have to fill in some of the necessary information, which will be saved in
the user profiles. Figure 5.3 is an example of user profile in edX. The in-
formation may include username, e-mail address, degree, gender, major,
spoken language, preference, experience, skill, location, etc.

Figure 5.3: Example of user profile in edX.

We create a user model to store the information of user profile [Tang
et al., 2022]. The information composition of the created user model is
shown in Table 5.1. Note that users may have more information than what
is shown in the table, and the model allows to add or delete elements
according to specific platforms. The information of user model contains
a large number of valuable features, which is exactly what the RS needs.
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Table 5.1: User model [Tang et al., 2022].

Information Component Value

Identity Username #string
Age N+

Gender male, female
Degree engineer, master, doctor, etc.
Major mechanics, biology, chemistry, etc.
· · · · · ·

Preference Format document, audio, video, etc.
Language English, French, Spanish, etc.
· · · · · ·

Competency English A1, A2, B1, B2, C1, etc.
Programming beginner, advanced, expert
Machine learning beginner, advanced, expert
· · · · · ·

So, the user model can be attached as an attribute class to user in the
conceptual graph model.

Resource

Similar to online shopping, resources are products to e-learning plat-
forms. Generally, in a user-oriented learning platform, there are a large
number of resources, organized by subject or field, and users can navi-
gate or search for resources, select resources to learn according to their
needs. Resource is usually provided with a brief synopsis or description
in the platform to give users a general understanding of the resource be-
fore they select it. For example, in MOOCs, courses serve as resources,
and the course sponsor usually attaches a short introductory paragraph to
the course, in the form of a synopsis. Figure 5.4 is an example of course
synopsis in edX.

The textual synopsis contains a large amount of information about the
resource, and features about the resource can be extracted from this infor-
mation which can be used in recommendation tasks. Thus, the synopsis
can be defined as an attribute class of resource in the conceptual graph
model.

School

As mentioned in section 2.3, the development of e-learning has been
heading forward to the direction of standardization. In user-oriented e-
learning platforms, resources are usually provided by institutions, such
as universities, companies, and specialized training institutions. These
institutions function similarly to schools, and usually partner with the
platforms. Generally speaking, the better the reputation of a school, the
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Figure 5.4: Example of course synopsis in edX.

more credible the resources launched by that school will be. Similarly,
school is usually accompanied by a short synopsis, as shown in Figure 5.5.�������������	���
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Figure 5.5: Example of school synopsis in edX.

Teacher

Teacher refers to the instructor of resource. Teachers usually have part-
nerships with platforms or schools, and they teach their resources through
the platforms. Over time, different users may have their own preferred
teachers, and the resources directed by these teachers may become their
priorities. Similarly, for teachers who are not well known, attractive synop-
sis is an effective channel for users to get to know them. Thus, teacher also
has a synopsis as attribute, which mainly includes work unit, education
background, subject, and teaching experience.

Learning material

Learning material refers to all learning-related content contained in
resource, such as video, practice exercises, reading, quiz, exam, etc. In
user-oriented e-learning platforms, resource sometimes is not just single
individual. For example, in Coursera, the resource is course, which often
contains many sub-contents, such as video lectures, readings, and quizzes.
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Formally, learning material is the smallest individual of the sub-content in
resource.

Knowledge concept

Knowledge concept refers to the basic unit that conveys pedagogical
information in the process of learning activities, including theory, princi-
ple, definition, algorithm, example, conclusion, etc. User usually aims to
acquire or improve the ability of certain knowledge concepts. In other
words, knowledge concept is the skills or competencies related to certain
knowledge domains. An example of knowledge concepts is shown in Fig-
ure 5.6.
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Figure 5.6: Example of knowledge concept in edX.

5.2.1.2 Relation classes

After the entity classes and attribute classes are extracted, the relation
classes between these entity classes can be defined. They are summarized
as:

Userselect−→ Resource: Users select resources according to their learning
objectives;

Resourcecontain−→ Learning material: Generally, a resource is a collection
of learning materials, such as video lectures and documents;

User use−→Learning material: User will be granted access to use the learn-
ing materials included in the resource after selecting a resource;

Teacherteach−→Resource: Resource is taught by one or more teachers;

Schooloffer−→Resource: In commercial e-learning platforms, resources are
usually provided by schools that partner with the platforms to ensure
the reliability. Of course, in community-like e-learning platforms,
resources can also be provided by individuals;
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Teacher in−→School: Generally, teacher is affiliated with school;

Resourcerefer to−→ Knowledge concept: Resource refers to (i.e., involves)
one or more knowledge concepts, and they are important consid-
erations for users when selecting resources;

Learning materialrefer to−→ Knowledge concept: Learning material refers to
(i.e., involves) one or more knowledge concepts.

5.2.1.3 Graph model

Based on the defined classes of entity, relation, and attribute, we can de-
sign the conceptual graph model, shown in the Figure 5.7. The model is
adaptive, i.e., the defined classes can be adjusted according to the specific
e-learning platform.

User

Teacher

Resource

School

Knowledge

concept

Synopsis

Learning
material

refer to

use

select

teach

in

offer

contain

refer to

Model

Figure 5.7: Designed conceptual graph model.

5.2.2 Assertion

The process from terminology component to assertion component is from
conceptual graph model to formed KG. After the graph model is designed,
the instances of classes (entity, relation, and attribute) can be extracted
from the data of e-learning platform and imported into a KG according to
the graph model. For example, we populate a course of Coursera, named
Unsupervised Learning, Recommenders, Reinforcement Learning, into KG. The
part of the formed KG is shown in Figure 5.8.

The assertion component is a batch import process, from data to graph
database. To do that, manual import can be used when the amount of data



58 5.2.2 assertion

C
ou

rs
e:

 U
ns

up
er

vi
se

d 
Le

ar
ni

ng
, R

ec
om

m
en

de
rs

,
R

ei
nf

or
ce

m
en

t L
ea

rn
in

g

Te
ac

he
r:

 A
nd

re
w

 N
g

Sy
no

ps
is



A

nd
re

w
 N

g 
is

 F
ou

nd
er

 o
f D

ee
pL

ea
rn

in
g.

A
I, 

C
ha

irm
an

an
d 

C
o-

Fo
un

de
r o

f C
ou

rs
er

a,
 a

nd
 a

n 
A

dj
un

ct
 P

ro
fe

ss
or

 a
t

St
an

fo
rd

 U
ni

ve
rs

ity
. A

s a
 p

io
ne

er
 b

ot
h 

in
 m

ac
hi

ne
 le

ar
ni

ng
an

d 
on

lin
e 

ed
uc

at
io

n,
 D

r. 
N

g 
ha

s o
ve

r 1
00

 re
se

ar
ch

 p
ap

er
s

in
 m

ac
hi

ne
 le

ar
ni

ng
, r

ob
ot

ic
s, 

an
d 

re
la

te
d 

fie
ld

s.

Sc
ho

ol
: S

ta
nf

or
d 

U
ni

ve
rs

ity

Sy
no

ps
is



Th

e 
Le

la
nd

 S
ta

nf
or

d 
Ju

ni
or

 U
ni

ve
rs

ity
, c

om
m

on
ly

 

re

fe
rr

ed
 to

 a
s S

ta
nf

or
d 

U
ni

ve
rs

ity
 o

r S
ta

nf
or

d,
 is

 a
n

A
m

er
ic

an
 p

riv
at

e 
re

se
ar

ch
 u

ni
ve

rs
ity

 lo
ca

te
d 

in
 S

ta
nf

or
d,

 

C

al
ifo

rn
ia

. 

Te
ac

he
r:

 E
dd

y 
Sh

yu

Sy
no

ps
is



Ed

dy
 S

hy
u 

is
 p

ro
du

ct
 m

an
ag

er
 a

t D
ee

pL
ea

rn
in

g.
A

I, 
an

d 
ha

s
le

d 
th

e 
te

am
s t

ha
t b

ui
lt 

th
e 

M
ac

hi
ne

 L
ea

rn
in

g 
Sp

ec
ia

liz
at

io
n,

Te
ns

or
Fl

ow
 A

dv
an

ce
d 

Te
ch

ni
qu

es
, a

s w
el

l a
s t

he
 N

at
ur

al
La

ng
ua

ge
 P

ro
ce

ss
in

g 
Sp

ec
ia

liz
at

io
n,

 a
nd

 A
I f

or
 M

ed
ic

in
e

Sp
ec

ia
liz

at
io

n.

Sc
ho

ol
: D

ee
pL

ea
rn

in
g.

A
I

Sy
no

ps
is



D

ee
pL

ea
rn

in
g.

A
I i

s a
n 

ed
uc

at
io

n 
co

m
pa

ny
 th

at
 d

ev
el

op
s a

gl
ob

al
 c

om
m

un
ity

 o
f A

I t
al

en
t. 

Its
 e

xp
er

t-l
ed

 e
du

ca
tio

na
l

ex
pe

rie
nc

es
 p

ro
vi

de
 A

I p
ra

ct
iti

on
er

s a
nd

 n
on

-te
ch

ni
ca

l
pr

of
es

si
on

al
s w

ith
 th

e 
ne

ce
ss

ar
y 

to
ol

s t
o 

go
 a

ll 
th

e 
w

ay
fr

om
 fo

un
da

tio
na

l b
as

ic
s t

o 
ad

va
nc

ed
 a

pp
lic

at
io

n.
 

U
se

r:
 Q

in
g 

Ta
ng

M
od

el



N
am

e:
 Q

in
g 

Ta
ng

 G
en

de
r: 

m
al

e 
A

ge
: 2

9

 H

ig
he

st
 e

du
ca

tio
n:

 M
as

te
r 


D
ep

ar
tm

en
t: 

H
eu

di
as

yc

L
ea

rn
in

g 
m

at
er

ia
l: 

W
ee

k 
1 

U
ns

up
er

vi
se

d 
le

ar
ni

ng



13
 v

id
eo

s (
To

ta
l 1

20
 m

in
)

L
ea

rn
in

g 
m

at
er

ia
l: 

W
ee

k 
2 

R
ec

om
m

en
de

r s
ys

te
m

s

15

 v
id

eo
s (

To
ta

l 1
50

 m
in

)

L
ea

rn
in

g 
m

at
er

ia
l: 

W
ee

k 
3 

R
ei

nf
or

ce
m

en
nt

 le
ar

ni
ng




18
 v

id
eo

s (
To

ta
l 1

63
 m

in
), 

2 
re

ad
in

gs
, 4

 q
ui

zz
es

K
no

w
le

dg
e 

co
nc

ep
t: 

C
ol

la
bo

ra
tiv

e 
Fi

lte
rin

g

K
no

w
le

dg
e 

co
nc

ep
t: 

U
ns

up
er

vi
se

d 
Le

ar
ni

ng

K
no

w
le

dg
e 

co
nc

ep
t: 

R
ec

om
m

en
de

r S
ys

te
m

s

K
no

w
le

dg
e 

co
nc

ep
t: 

R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

K
no

w
le

dg
e 

co
nc

ep
t: 

A
no

m
al

y 
D

et
ec

tio
n

of
fe

r

us
e

us
e

us
e

en
ro

ll

re
fe

r
re

fe
r

re
fe

r
re

fe
r

re
fe

r

re
fe

r
re

fe
rre
fe

r
re

fe
rre
fe

r

te
ac

h
te

ac
h

in

in

of
fe

r

co
nt

ai
n

co
nt

ai
n

co
nt

ai
n

Sy
no

ps
is



In

 th
is

 c
ou

rs
e,

 y
ou

 w
ill

 u
se

 u
ns

up
er

vi
se

d 
le

ar
ni

ng
 te

ch
ni

qu
es

 to
bu

ild
 re

co
m

m
en

de
r s

ys
te

m
s w

ith
 a

 c
ol

la
bo

ra
tiv

e 
fil

te
rin

g
ap

pr
oa

ch
, a

 c
on

te
nt

-b
as

ed
 d

ee
p 

le
ar

ni
ng

 m
et

ho
d 

an
d 

a 
de

ep
re

in
fo

rc
em

en
t l

ea
rn

in
g 

m
od

el
. 

Figure 5.8: Illustration of the part of constructed KG.
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is small, but bulk import with the API provided by the graph database
(e.g., Neo4j) is usually the first choice when the amount of data is large.

Formally, a formed KG can be described as G = {(eu, er, et, es, el, ek),
(ruse, rselect, rrefer to, rcontain, rin, rteach, roffer), (au, ar, at, as)}, where bold
letters represent sets.

5.3 feature extraction

This section presents the second module of the RFKG, how to use feature
extraction methods to learn different types of information in the formed
KG to get features (usually in the form of feature vectors) of users and
resources?

The input to this module is a formed KG from the previous module
and the output is the final feature vectors of users and resources. Then,
the output of this module will be used as the input of the next module
(recommendation module), so the quality of the obtained features closely
related to the performance of RS.

A formed KG of an e-learning platform mainly contains the semantic
descriptions and values of the resources and users as well as the latent
connections between multiple entities. We categorize the data contained
in the formed KG into two types: i) the descriptions and values of resource
and user are texts; ii) the connections between entities are represented as
the graph structure. We apply two different feature extraction methods to
extract the features of user and resource from the two types of information
mentioned above, and then concatenate them together to form the final
user and resource feature vectors, respectively.

5.3.1 Textual attribute embedding

The function of textual attribute embedding is to transfer textual attributes
of formed KG into low-dimensional feature vectors.

The challenge is to determine the embedding algorithm. Comparing to
traditional Nature Language Processing (NLP) methods, methods based
on deep learning are able to obtain information more comprehensively,
learn feature representations from nearly unprocessed original data and
untapped data [Liang et al., 2017], such as ELMo and BERT, move beyond
global word representations like Word2Vec and achieve groundbreaking
performance on a wide range of natural language processing tasks [Liu
et al., 2020]. However, the most advanced algorithms are not necessarily
the most practical. First of all, if there are pre-trained large-scale language
models, such as GPT and BERT, they can be used in recommendation of
e-learning platforms with certain limitations (e.g., usage right and privacy
issue). Otherwise, if these models are to be trained, a large amount of
data is required. In formal e-learning platforms, such as the platforms
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of MOOCs, it is not possible to train large-scale language model perfectly
for textual attribute embedding when faced with data like course introduc-
tions (a platform typically contains between a few hundred and a few thou-
sand courses). According to statistics collected from their websites, Cours-
era has around 7,000 courses and edX has around 3,000 courses. These
amounts of data are far from sufficient for training large-scale language
models to learn the features from course synopses (resource attributes).

In our formed KG, the textual attributes that need to be processed is
mainly user models and resource synopses. These textual attributes con-
tain a large number of words (e.g., age, gender, degree, format preference,
and programming competency) from user models and some sentences or
paragraphs from resource synopses. Classical NLP algorithms, such as
Word2Vec (skip-grams and CBoW) belongs to contextual embedding meth-
ods, they need to use contextual information to learn the latent informa-
tion, which do not perform well when facing with single word from user
models.

To cope with these textual attributes of varying length, we propose
to use Bag-of-Words (BoW) [Zhang et al., 2010] combined with autoen-
coder [Makhzani et al., 2015]. The BoW model a popular method for pre-
processing, it pre-processes well both for single words and long texts, and
auto-encoder is responsible for compressing the pre-processed features to
a specific length. The architecture of textual attribute embedding is shown
in Figure 5.9.

 

       

          

   

              

              

    

       

           

               

   

   

   

   

   

   

      

   

   

   

   

Figure 5.9: Architecture of textual attribute embedding.

5.3.1.1 Pre-processing

Pre-processing essentially uses BoW model to transform user models and
resource synopses into pre-embeddings, which will be used as the input
of autoencoder.
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Using BoW model for text consists of three main steps: segmentation
cuts the text into sequences of words; dictionary building counts the non-
repeated words occurring in all documents and form a dictionary; vector-
ization represents each document as a word frequency vector, each element
of the vector corresponds to a word in the dictionary, and its value is the
number of occurrences of the word in the document. In addition to the
above three steps, we can also eliminate meaningless symbols and stop
words, and customize the length of the dictionary by cutting off part of
the first words.

Note that, user models contain discrete text. If a user model is saved as
text, it can be represented as: {U 7001215,26,male,engineer,student,mechanics,
video,French,advanced,begineert,begineer}, corresponding to Table 5.1. Thus,
compared to resource synopsis, it does not require the segmentation, but
rather directly performs the dictionary building and vectorization. In
addition, two BoW models are established for dealing user models and
resource synopses, respectively.

5.3.1.2 Autoencoder

Autoencoder is an unsupervised algorithm based on low-level fully con-
nected neural network. An autoencoder has two main parts, an encoder
that maps the input into the code, a decoder that maps the code to a re-
construction of the input, and the training objective is to minimize the
difference between the input and the output. The trained autoencoder
model compress the input into low-dimensional vector. Encoder encodes
the input x to obtain new feature x′, the encoder can be expressed as:
x′ = f(Wx+ b); decoder uses the feature x′ to reconstruct x̂ that is clos-
est to the original input x; the reconstruction error is formed between the
original input x and the reconstructed x̂, and the autoencoder learns to
minimize the reconstruction error.

Let us take the process of resource attributes (synopses) as an example,
the overall algorithm of textual attribute embedding is defined as:

After textual attribute embedding, the attribute feature vectors of users
and resources can be obtained, denote as

{
vau = vau1

, vau2
, · · · , vau|au|

}
and

{
var = var1 , var2 , · · · , var|ar|

}
, respectively.

5.3.2 Graphic structure embedding

The function of graphic structure embedding is to learn the structure in-
formation of formed KG, capture features of entities and relations, and
preserve them as low-dimensional feature vectors.

In a formed KG, a direct link between two entities indicates that there
is some kind of interactive information between them. For example, in the
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Algorithm 1 Textual attribute embedding

Input: All resource synopses {ar = ar1 ,ar2 , · · · ,ar|ar|}

Pre-processing via BoW
1: Wd ← Segmentation and dictionary building
2: v̂r ← Vectorization

Autoencoder
3: (θ,ϕ)← Initialize parameter
4: repeat
5: M← Mini batch size

6: L =
|ar|/M∑
i=1

∥∥v̂ri − gθ(fϕ(v̂ri))
∥∥

7: (θ,ϕ)← Update parameters (e.g., SGD or Adagrad)
8: until Convergence of (θ,ϕ)
9: Input v̂r into convergent model to get middle code vr

Output: Vectors of resource attributes vr

domain of MOOCs, teacher t teaches a course c, which is offered by uni-
versity s. The explicit interactive information can be represented as: teacher
tteach−→ course c, university soffer−→course c, and teacher t in−→university s. In addi-
tion to these visible connections, there are also a large number of invisible
(i.e., latent) connections between entities in the KG. These latent connec-
tions cannot be described visually, but they can be inferred from explicit
relations, and they usually contain valuable information. For example, if a
user (entity) has enrolled several courses instructed by (relation) the same
teacher (entity), we can infer that there is latent connection between the
user and the teacher, and it provides a critical influence when the user
makes decisions even though there is no direct link between them.

In order to extract the latent connections and infer valuable information
from them, KGE is used to transform this information into a format usable
by RSs. As mentioned in Section 3.3, KGE learns the KG and represent all
the entities and relations into continuous vector spaces (can be uniform
space or different spaces depending on the algorithms). Many KGE al-
gorithms have been proposed, and thanks to the contribution of [Wang
et al., 2017], we gain a comprehensive understanding of the performance
between different algorithms. We summarize the conclusions:

• Models that represent entities and relations as vectors are more effi-
cient;

• Models that represent relations as matrices or tensors usually have
higher complexity in both space and time;

• Models based on neural network generally have higher complexity
in time, if not in space, since matrix or even tensor computations are
often required in these models;
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• Expressive models do not necessarily have better performance, the
reason could be that they often require a large number of parameters
and tend to overfit on small-sized and medium-sized datasets.

After analyzing the conclusions of [Wang et al., 2017], TransD [Ji et al.,
2015] seems to be a good choice, which is an improved translational dis-
tance model, representing entities and relations as vectors, has relatively
fewer parameters, lower complexity and also the ability to cope with one-
to-many and many-to-many cases. In TransD, the relations between enti-
ties are described as triplets, each entity or relation has two vectors, one
represents its meaning, another is used to construct mapping matrices that
project entities from entity space to relation space. The function of TransD
is shown in Figure 5.10.

 

  

  
  

  

  

  

   
   

   

   
   

   

                          

 

 

 
       

    
      

      

    
      

      

Figure 5.10: Illustration of TransD [Ji et al., 2015].

Each shape represents an entity pair appearing in a triplet of relation
r. Mrh and Mrt are mapping matrices of h and t, respectively. hip, tip(i =
1, 2, 3), and rp are projection vectors. hi⊥ and ti⊥(i = 1, 2, 3) are projected
vectors of entities, and they conform to hi⊥ + r ≈ ti⊥(i = 1, 2, 3). For a
triplet ⟨h, r, t⟩, randomly replace the head or tail entities with other entities
to form negative triple, (h′, r, t) ∈ △′ or (h, r, t′) ∈ △′, and the projected
triplet is (h⊥, r, t⊥). The score function is:

s = − ∥ h⊥ + r− t⊥ ∥22 (5.1)

And the loss function is:

L =
∑
ξ∈△

∑
ξ′∈△′

[γ+ s (ξ) − s
(
ξ′
)
]+ (5.2)

where △ and △′ are the sets of positive and negative triples, ξ and ξ′

are golden and negative triples, [x]+ ≜ max(0, x), and γ is the margin
separating positive triplets and negative triplets.
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The graphic structure embedding algorithm for our case can be de-
scribed as:

Algorithm 2 Graphic structure embedding

Input: A formed KG G
1: ⟨h, r, t⟩ ← Export triplets from G
2: v′h, v′r, v′t ← Embedding initialization
3: repeat
4: repeat
5: Each triplet ξ = ⟨h, r, t⟩, randomly replace its h or t, repeat n times

to form negative triplets ξ′

6: until Get positive triplet set △ and negative triplet set △′
7: ξM ← Mini batch
8: L =

∑
ξM∈△

∑
ξ′

M∈△′[γ+ s
(
ξM

)
− s

(
ξ′

M
)
]+ (equation 5.1 and 5.2)

9: v′h, v′r, v′t ← Update embeddings
10: until Convergence of vh, vr, vt

11: Extract user and resource entity vectors from vh, vr, vt

Output: User entity vectors vu and resource entity vectors vr

After graphic structure embedding, the graph feature vectors of user
and resource can be obtained, denote as

{
vgu = vgu1

, vgu2
, · · · , vgu|gu|

}
and{

vgr = vgr1 , vgr2 , · · · , vgr|gr|

}
, respectively.

5.4 recommendation

In this section, we design recommendation module. The two sources
of feature vectors of users and resources obtained from the previous
feature extraction module are concatenated respectively. The concate-
nated final user feature vectors and resource vectors are denoted as
vu =

{
vu1

, vu2
, · · · , vu|vu|

}
and vr =

{
vr1 , vr2 , · · · , vr|vr|

}
.

This concatenation design has been widely adopted in multimodal
deep learning work [Srivastava et al., 2012] [Zhang et al., 2014] [He et al.,
2017]. However, a simple vector concatenation does not account for any
interactions between user and item latent features, which is insufficient
for modeling the intricate effect. To address this issue, we propose to add
hidden layers on the concatenated vector, using a standard MLP to learn
the interaction between user and item latent features. In this case, we can
endow the model a large level of flexibility and non-linearity to learn the
interactions between users and resources, rather than the way that uses
only a fixed element-wise product on them, such as GMF [He et al., 2017].
The MLP model is defined as:
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z1 =ϕ1(vui
, vr) =

[
vui

vr

]
,

ϕ2(z1) =a2(WT
2z1 + b2),

· · ·
ϕ2(zL−1) =aL(WT

LzL−1 + bL),

ŷui
=σ(hTϕL(zL−1))

(5.3)

where vui
, vr, Wi, bi, and ai denote the i-th user, integral resource feature

vector (i.e., concatenate all the resource feature vectors in a fixed order),
weight matrix, bias vector, and activation function for the i-th layer’s per-
ceptron, respectively.

The architecture of the recommendation module is shown in Figure
5.11.

 

      

      

   

   

   

    

   

   
         

             

           

            
     

  
  

   

       

            

  
  

   

   

       

           

Figure 5.11: Architecture of recommendation module.

We first concatenate all the resource feature vectors in a fixed order
to form the integral resource feature vector, vr. The single input of the
MLP is the concatenation of single user feature vector vui

and the integral
resource feature vector vr. We assign label (i.e., ground truth) to each input,
all the resources are sorted in fixed order and the length of single label (the
single label is a list) is equal to the number of the sorted resource (|vr|); if
the user selected the resource, the value of this position in the label is set
to 1, otherwise the value is set to 0. Through hidden layers, the output
layer gives a probability distribution (i.e., score list), each value is between
0 and 1, represents the probability that user will select the resource in the
sorted resource list.

When we perform top-K recommendation, the resources corresponding
to the positions with top-K values of the probability distribution will be
presented to the input user as a recommended list. During model training,
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the MLP model parameters are updated by reducing the gap between the
real label and predicted label. The comparation between ground truth and
top-K recomandation is shown in Figure 5.12.

1 1 0 1 0 1

0.876 0.236 0.185 0.787 0.453 0.893⋯

⋯ Ground truth 

(True labels)

Predicted 

probabilities

𝑟1 𝑟2 𝑟3 𝑟4 𝑟𝑛−1 𝑟𝑛⋯ All resources 

in fixed order 

1 0 0 1 0 1⋯
Top-K 

recommendation 

(Predicted labels)

Criteria

Figure 5.12: Comparation between ground truth and top-K recomanda-
tion.

5.5 chapter summary

In this chapter, we addressed the research context and answered the re-
search questions.

We want to build a RS in the e-learning platform that can make up
for the flaw of conventional approaches due to most of them cannot cap-
ture the latent connections between entities in the platforms. We hope to
use the powerful information representation and reasoning capabilities of
KG to obtain this information that is missed by conventional approaches
and use it in our RS. Therefore, we propose a recommendation framework
for recommending pedagogical resources to e-learning platform users. It
consists of three modules: graph construction, feature extraction, and recom-
mendation. Each module is responsible for its own function and the output
of the previous module is used as the input of the subsequent module to
finally complete the recommendation task.

To conclude, in order to fully capture the information of e-learning
platform to build RS that can assist users to select appropriate pedagog-
ical resources, we build a lightweight KG to characterize the content of
the platform. The KG contains representative entities along with their at-
tributes, and the relations between them. In addition to the explicit infor-
mation (e.g., user profile, resource synopsis, and user-resource interaction),
it captures the latent connections between entities, which can provide cru-
cial information support to the RS. At the same time, we use two feature
extraction methods to obtain the features of users and resources from the
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formed KG, and input them into the neural network together with the in-
formation related to user-resource interaction. The trained neural network
has the ability to predict the relevance scores between unknown users and
items.
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Chapter 6

Experiments

In this chapter, we experimentally evaluate the performance of the pro-
posed RFKG, and we plan to compare it with a series of baseline methods.

6.1 datasets

To evaluate the performance of the proposed RFKG, we conduct experi-
ments on two collected datasets, MOOCCube [Yu et al., 2020] and Open
University Learning Analytics Dataset (OULAD) [Kuzilek et al., 2017]. The
first dataset comes from the real-world MOOC platform XuetangX1 and the
second dataset comes from the distance learning platform Open University
(OU2).

XuetangX is one of the largest MOOC platforms in China, it offers on-
line courses in multiple disciplines, as well as certificate and degree pro-
grams. By the end of 2022, XuetangX has offered nearly 6,000 high-quality
courses from top universities, covering 13 disciplines. Users in XuetangX
can choose the learning mode: Instructor-paced Mode (IPM) and Self-
paced Mode (SPM). IPM follows the same course schedule as conventional
classrooms, while in SPM, users could have more flexible schedule to study
online by themselves. Usually an IPM course spans over 16 weeks in Xue-
tangX, while a SPM course spans a longer period. Each user can enroll one
or more courses. When one is studying a course, the system records mul-
tiple types of activities: video watching (watch, stop, and jump), forum
discussion (ask and reply questions), assignment completion (with correc-
t/incorrect answers and reset), and Web page clicking (click and close a
Web page) [Feng et al., 2019].

OU is one of the largest distance learning universities worldwide. At
present, around 170,000 students are registered in different programs on
OU. Teaching materials and other contents are delivered to students via the
Virtual Learning Environment (VLE). Students’ interactions with the edu-
cational materials are recorded and stored in university data warehouse.
At OU, courses are called modules. Modules can be presented multiple
times during the year. To distinguish between different presentations of a

1 https://www.xuetangx.com/
2 https://www.open.ac.uk/
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module, each presentation is named by the year and month it starts. For
example, presentations starting in January ends with A, in February with
B and so on; so that ‘2013J’ means that the presentation started in October
2013. OU offers several hundred modules. Each of them can be studied
as a stand-alone course or as part of a university program. No previous
qualifications are required. Students in a module-presentation are orga-
nized into study groups of approximately 20 people. Each group has an
assigned tutor, who guides and supports students throughout the module
presentation [Kuzilek et al., 2017].

6.1.1 MOOCCube

MOOCCube is an open data repository for natural language processing,
knowledge graphs, data mining and other researchers who are interested
in MOOCs. Table 6.1 lists the statistics of MOOCCube dataset [Yu et al.,
2020].

Table 6.1: Statistics of MOOCCube.

Course Video Concept Prerequisite Taxonomy User Enrollment Video watching

706 38,181 106,056 17,686 3,152 199,199 682,753 4,874,298

It contains over 700 MOOC courses, 100,000 knowledge concepts,
1,99,000 users, and 8 million user behaviors with resources. Courses are
the foundation of MOOCs and mainly consist of pre-recorded videos.
Specifically, a course contains such as video list, course synopsis, pre-
requisite, and taxonomy, attached as attributes. Concepts refer to the
knowledge concepts taught in the courses. The enrollment records and
video watching logs are collected from 2017 to 2019, as shown in Figure
6.1.

(a) Distribution of course enrollment with users (b) Distribution of users with video watching

Figure 6.1: Distributions of (a) course enrollment with users and (b) users
with video watching records of MOOCCube [Yu et al., 2020].
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Figure 6.1(a) shows the course distribution of enrolled users, which
substantially fits a normal distribution. Despite a few courses with rare
users, 451 courses are enrolled by over 100 users. Figure 6.1(b) presents a
user view of the data, indicating more than 70% of users possess over ten
videos watching records. Such a wealth of data enables MOOCCube to
support multiple tasks such as video navigation [Liang et al., 2015], course
recommendation [Zhang et al., 2019a], concept mining [Yu et al., 2019],
and dropout prediction [Feng et al., 2019].

6.1.2 OULAD

OULAD is a subset of the OU student data from 2013 and 2014. It contains
the information about 7 modules (the course of OU is called module),
32,593 students, their assessment results, and logs of their interactions
with the VLE represented by daily summaries of student clicks (10,655,280

entries) [Kuzilek et al., 2017]. Figure 6.2 is the overall structure of OULAD.

 

       

                                              

Figure 6.2: Overall structure of OULAD.

Students are linked with the information about their demographics,
enrollments, assessments, and interactions for modules. For each student-
module-presentation triplet, OULAD contains the results of students’ as-
sessments and the logs of interactions between students and VLE. In gen-
eral, it distinguish three different data types:

• Basic information (demographic) represents the domain independent
information about students;

• Activity (enrollment and interaction) is the log of student activities
in the VLE;

• Performance (assessment) reflects results and achievements of stu-
dents during their studies at OU.
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Table 6.2: Main elements of the student demographic of OULAD.

Element Description

Student id unique student identification number;
Gender student gender;
Region geographic region, where the student lived while tak-

ing the module-presentation;
Highest education highest student education level on entry to the

module-presentation;
IMD band IMD band of the place where the student lived during

the module-presentation;
Age band band of student age;
Studied credits the total number of credits for the modules that the

student is currently studying;
Disability indicator of whether the student has declared disabil-

ities;
Code module module identification code which the student is regis-

tered;
Code presentation presentation identification code which the student is

registered on the module;
Final result student final result in the module-presentation.

The dataset may be used in various scenarios, it enables evaluation
of predictive models for predicting student assessment results and final
module results, and recommending modules to students. It also enables
researchers to study the structure of module design from the learning per-
spective that can be used to measure the influence of VLE on the learning
outcomes and adjust the module structure to provide better VLE [Kuzilek
et al., 2017].

6.2 graph construction

In this section, we build KGs for the above two datasets respectively. As
we presented in the section 5.2, the graph construction consists of two pro-
cedures: terminology defines a conceptual graph model involving classes
as a domain vocabulary; assertion imports facts (i.e., instances) into KG
according to the conceptual graph model.

Note that the RFKG handles different e-learning platforms by adjusting
the conceptual graph model (adjusting the classes of entities, relations, and
attributes). It means that the RFKG can be applied to different e-learning
platforms. Through this, we first define two conceptual graph models for
MOOCCube and OULAD, then construct two KGs for them respectively.
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6.2.1 Graph construction for MOOCCube

We extract necessary entity classes, relation classes, and attribute classes
from the MOOCCube, and adjust the predefined conceptual graph model
of section 5.2.1.3.

In XuetangX, resources are courses and learning materials mainly
refer to videos. We replace the entity class learning material with video
and replace the entity class resource with course. Thus, the relation class

user use−→learning material is replaced with userwatch−→ video, the relation class

userselect−→ resource is replaced with userenroll−→ course. The modified concep-
tual graph model (compare to the defined model of section 5.2.1.3) for
MOOCCube is shown in Figure 6.3.
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Figure 6.3: Conceptual graph model of MOOCCube.

After settling the conceptual graph model, we acquire the instances
from MOOCCube for each entity class. The statistics (i.e., number of
instances) for the entity classes are shown in Table 6.3.

Table 6.3: Extracted entities from MOOCCube.

User Course Teacher School Video Knowledge concept

199,199 706 1,812 208 38,181 114,563

Before constructing KG, we optimize the extracted entities. There are a
large number of users with a small number of activities, we selected the top
2,000 users in terms of the number of courses enrolled by the user, along
with the 5,000 most watched videos and the 5,000 most frequently used
knowledge concepts. The number of courses, teachers, and schools remain
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the same. After optimization, the total number of interactions (i.e., triplets)
between the remained entities is 578,751. The distribution of the number of
courses enrolled by users is shown in Figure 6.4, with the average number
of courses enrolled by an individual user being about 23.
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Figure 6.4: Distribution of the number of courses enrolled by users in
MOOCCube.

We populate the instances into a KG database, preserve all the infor-
mation in a form of KG. In this experiment, the graph database is Neo4j.
Neo4j is a graph database management system, the data elements Neo4j
stores are nodes, edges connecting them, and attributes of nodes and
edges. We use python and the API provided by Neo4j for bulk import.
The following Figure 6.5 is an illustration of the Neo4j for MOOCCube.

Figure 6.5: Screenshot from Neo4j running for MOOCCube. Circles of
different colors represent different instances of the 6 entity classes, which
are linked by 7 specific relations.
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6.2.2 Graph construction for OULAD

Similar to section 6.2.1, we extract necessary classes and adjust the prede-
fined conceptual graph model.

Since the the resources are called modules on OU, instead of courses,
and modules can be presented multiple times in different semesters. To
put it simply, a resource on OU is a combination of a module and its
presentation, i.e., module-presentation. Learning materials are included
in the module-presentations. In addition, OULAD does not contain in-
formation about teacher and school, but has more information about as-
sessment. We replace the entity class user with student, replace the en-
tity class resource with module, remove the entity class teacher and school,
and add entity class assessment and module-presentation. Based on the en-
tity classes, the relation classes can be determined: student use−→learning ma-
terial, studentenroll−→ module-presentation, student has−→assessment, learning mate-
rial in−→module-presentation, and module-presentation has−→assessment. The mod-
ified conceptual graph model (compare to the defined model of section
5.2.1.3) for OULAD is shown in Figure 6.6.
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ModuleModule-presentationLearning
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AssessmentModel
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in

enroll has
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Synopsis

Figure 6.6: Conceptual graph model of OULAD.

After settling the conceptual graph model, we acquire the instances
from OULAD for each entity class. The statistics (i.e., number of instances)
for the entity classes are shown in Table 6.4.

Table 6.4: Extracted entities form OULAD.

Student Module Learning material Module-presentation Assessment

28,785 7 6,364 22 206
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We also optimize the extracted entities before constructing KG. We se-
lected the top 25,000 users in terms of the number of module-presentations
enrolled by the user, along with the 6,000 most used learning materials.
The number of modules, module-presentations, and assessments remain
the same. After optimization, the total number of interactions (i.e., triplets)
between the remained entities is 185,595. The distribution of the number
of modules enrolled by students is shown in Figure 6.7, with the average
number of courses enrolled by an individual student being about 1.
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Figure 6.7: Distribution of the number of modules enrolled by students in
OULAD.

We populate the instances into a KG database (also Neo4j), preserve all
the information in a form of KG. The following Figure 6.8 is an illustration
of the Neo4j for OULAD. Three parameters for display remain the same
as section 6.2.1. Note that, after finishing the graph construction module,

Figure 6.8: Screenshot from Neo4j running for OULAD. Circles of different
colors represent different instances of the 5 entity classes, which are linked
by 4 specific relations.
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two formed KGs (MOOCCube KG and OULAD KG) are constructed. In
the next sections, we perform the feature extraction module and recom-
mendation module.

6.3 feature extraction

The process of experiments after getting constructed KGs contains three
parts: 1) BoW&autoencoder for textual attribute embedding; 2) TransD
for graphic structure embedding, and 3) MLP for course recommendation.
The inputs of the part 1) and part 2) are textual attributes and interaction
triplets, which are derived from the constructed KGs in conformity with
requirements. The input to the 3) part is the concatenation of the outputs
from the previous two parts. The process is shown in Figure 6.9.

 

   

        

   

      

           

     

        

       

           

   

           

   

   

               

   

   

   

Figure 6.9: Process of the experiments after constructing KGs.

6.3.1 Attribute embedding

The input to attribute embedding (BoW & autoencoder) is the textual at-
tributes of users and resources, and the output is dimension-specific fea-
ture vectors of them.

For the MOOCCube, the user model contains only student id, student
name, course order selected by the student, and enroll time for these courses.
There is no useful textual information that can characterize the student
(because the information of course order and enroll time belong to parts
of graphic structure). Instead, the course contains a synopsis paragraph
which contains valuable information about the course, and there are 706

synopses (in Chinese). We perform BoW & autoencoder for the course
synopses. BoW has steps including word segmentation, removal of the
stop words, and construction of the word bag (the length of the bag is set to
10,000). It converts all the synopses into sparse feature vectors, and these
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vectors are fed into an autoencoder network. The autoencoder network
consists of an input layer, 7 hidden layers, and an output layer. All the
layers are fully connected and the number of neurons in the middle layer
is 8. The autoencoder outputs 706 attribute feature vectors of the courses,
denote as

{
vac = vac1 , vac2 , · · · , vac706

}
.

For the OULAD, the student model contains a lot of textual elements,
and there are 25,000 entries (in English) in total. On the contrary, the
module contains only module code, presentation code, and presentation length,
which does not contain useful textual information that can characterize
the module. We perform BoW & autoencoder for all student models. Al-
though the elements in the student models are discrete, a single element
may contain text with more than one word, so the process of BoW remains
the same as above (in MOOCCube). It converts all the student models into
sparse feature vectors, and transfers to autoencoder network. The autoen-
coder network consists of an input layer, 5 hidden layers, and an output
layer. All the layers are fully connected and the number of neurons in the
middle layer is 8. The autoencoder outputs 25,000 attribute feature vectors
of the students, denote as

{
vas = vas1 , vas2 , · · · , vas25000

}
.

6.3.2 Structure embedding

The input to structure embedding (TransD) consists of multiple triplets
{⟨h, r, t⟩} (extracted from the formed KGs), and the output is dimension-
specific feature vectors of all entities and relation. We then extract feature
vectors of users and resources from the output. Note that, for distinction,
we use vgui

and vgci
to represent user and course structure feature vector

sets from MOOCCube; vgsi
and vgmi

are used to represent student and
module structure feature vector sets from OULAD.

In the process of TransD, we first create negative pool with negative
sampling (random replacement of head and tail in for a triplet). Then,
we build TransD model with the help of Pytorch, which initializes all
embeddings of entities and relations. Finally, under the constraint of the
loss function (see equation 5.2), the model learns the difference between
positive and negative samples and updates the embeddings. Note that
some parameters of the model are: the optimizer is Adam; the learning
rate is 1e-3; the batch size is 128; the epoch is 100; and the embedding
dimension is set to 128.

In the actual operation of training process, we built two TransD models
for the two datasets respectively, where the parameters remain the same as
described above. The average epoch loss of the two TransD models during
the training process is shown in Figure 6.10.
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Figure 6.10: Training loss of TransD models for MOOCCube and OULAD.

After finishing the training, we extract structure feature vectors
of user, courses, students, and modules from the two outputs, de-
note as

{
vgu = vgu1

, vgu2
, · · · , vgu2000

}
,

{
vgc = vgc1 , vgc2 , · · · , vgc706

}
,{

vgs = vgs1 , vgs2 , · · · , vgs25000

}
, and

{
vgm = vgm1

, vgm2
, · · · , vgm7

}
, respec-

tively.

6.4 recommendation

The main component of recommendation module is a MLP model. Dif-
ferent datasets make it different structures (e.g., number of hidden layer,
input/output size, activation function, and loss function). The single input
of MLP is a combination of single user feature vector and overall resource
feature vector (concatenate all resource feature vectors in a fixed order).
The output is a probability distribution (in a fixed order) over all resources.

In the process of recommendation, we first concatenate the user feature
vectors with the overall resource feature vector one by one and, at the same
time, create labels for each user based on the resource selected by the user.
Then, we cut the concatenated vectors and labels to compose the training
data and testing data. Next, we build the MLP model with Pytorch and
train the model with training data (the goal of training is to minimize the
gap between the model outputs and the actual labels). Note that some
parameters of the model are: the model has 7 fully connected feedforward
layers; the optimizer is Adam; the learning rate is 1e-3; the batch size is
128; and the epoch is 100.



80 6.4 recommendation

In the actual operation of training process, we built two MLP models
for the two datasets respectively. Among them, except for the different
number of neurons in each layer of the MLP models, other parameters
remain the same as stated above. The training loss of MLP models for the
two datasets is shown in Figure 6.11.
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Figure 6.11: Training loss of MLP models for MOOCCube and OULAD.

In such recommendation scenario, the user feedback refers to the inter-
actions between users and resources (i.e., whether there is an interaction
between user and resource, the relevance score is 1 if there is an interac-
tion, otherwise the relevance score is 0), which belongs to implicit feedback.
Accuracy is not a suitable performance measurement for implicit feedback
recommendation. For the determination of evaluation matrices, we choose
two most wildly used metrics, HR (equation 4.27) and NDCG (equation
4.26), for such an implicit feedback recommendation scenario.

When evaluating the top-K RSs, we need to set the corresponding K
values. In our case, we set the K to 1, 5, 10, and 15 for MOOCCube; differ-
ently, we set the K to 1 and 3 for the OULAD. The reason for such settings
is that the resources of MOOCCube are 706 courses, and the number of
course enrollments per user after optimization is 23; while the resources
of OULAD are only 7 modules, and the number of module enrollments
per student after optimization is 1. Compared with MOOCCube, the item
pool is very small, only 7 items in the poll. Therefore, an excessively high
K value is inappropriate for OULAD.
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The performance of the proposed framework measured by HR and
NDCG with different K values on the two datasets is shown in Figure 6.12.
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Figure 6.12: Performance of the proposed framework measured by HR and
NDCG with different K values on the two datasets.

We can see from the trend of the results in the figure that our frame-
work performs well on both datasets, but the performance on OULAD is
much better (‘too good’) than the performance on MOOCCube. As for the
reason of the overly excellent results on OULAD, we analyze that there
are two possible causes: 1) the item pool (resource pool) of OULAD is too
small (only 7 modules), MLP can effectively distinguish them; 2) 91.2%
of students chose only one module (resource), the relevance between stu-
dents and courses is very single, which is easy for the MLP to capture. In
fact, we deem that the experiments on MOOCCube is more informative
because the distribution of the number of course enrollment with users is
more rational and the item pool is sufficient.

6.5 baseline methods

To compare the performance of the proposed framework with state of
the art, we adopt the following baseline methods from numerous top-K
recommendation approaches.

BPR [Rendle et al., 2014]: Bayesian Personalized Ranking (BPR) is a
commonly used recommendation algorithm in current RSs. Different from
other methods based on user rating matrices, BPR mainly uses users’ im-
plicit feedback (such as clicks, favorites, etc.) to rank items with the max-
imum posterior probability obtained by performing Bayesian analysis of
the problem, and then generate recommendations.

MLP [He et al., 2017]: Multi-Layer Perceptron (MLP) is a kind of feed-
forward neural network, consisting of fully connected neurons with a non-
linear activation function, organized in at least three layers. In RSs, MLP
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receives vector representations of users and items and learns the corre-
lation between them, then recommends potentially relevant items to the
target user.

FISM [Kabbur et al., 2013]: FISM a factored item similarity based
method for the top-K recommendation problem. It learns the item
similarity matrix as the product of two low dimensional latent factor
matrices, where these matrices are learned using a structural equation
modeling approach.

NAIS [He et al., 2018]: Neural Attentive Item Similarity (NAIS) is a neu-
ral network for item-based collaborative filtering recommendation. The
key argument is that the historical items of a user profile do not contribute
equally to predict the user’s preference on an item. NAIS first revisited the
FISM method from the perspective of representation learning, and then
devised several attention mechanisms step by step to enhance its represen-
tation ability. At the same time, it proposed a effective variant of softmax
to address the large variance issue on user behaviors.

GMF [He et al., 2017]: General Matrix Factorization (GMF) is the most
popular model for recommendation and has been investigated extensively
in literature, it associates each user and item with a real-valued vector of
latent features, models the two-way interaction of user and item latent
factors, assuming each dimension of the latent space is independent of
each other and linearly combining them with the same weight, which can
be deemed as a linear model of latent factors.

NeuMF [He et al., 2017]: NeuMF fuses MF and MLP under a neural
collaborative filtering framework, MF that applies a linear kernel to model
the latent feature interactions, and MLP that uses a non-linear kernel to
learn the interaction function from data.

6.6 results and discussion

The next comparative experiments we conducted include two aspects:

• The performance between RFKG and other baseline methods under
default embedding sizes (attribute embedding size is 8 and structure
embedding size is 128);

• The impact of different embedding sizes on the recommendation
performance of RFKG.

First, we perform BoW & autoencoder and TransD for the two datasets
with the default embedding sizes (attribute embedding size is 8 and struc-
ture embedding size is 128), and train the MLP model with their output.
As concluded in section 6.4, MOOCCube is deemed to be more informa-
tive compare with OULAD. So, after completing the training process, we
use MOOCCube to compare the performance of our framework and base-
line methods by HR and NDCG with different K values. The results are
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shown in Table 6.5, the best performance and the second best performance
methods are denoted in bold and underlined fonts respectively.

Table 6.5: Performance evaluations measured by HR and NDCG with
different K values for the proposed framework and baseline methods on
MOOCCube.

Dataset Metric BPR FISM NAIS MLP NeuMF GMF RFKG

MOOCCube

HR@1 0.2151 0.1447 0.1514 0.2125 0.2300 0.2335 0.4550
HR@5 0.4172 0.4014 0.4051 0.5200 0.5380 0.5545 0.8750
NDCG@5 0.2752 0.2765 0.2786 0.3665 0.3870 0.3923 0.6441
HR@10 0.5070 0.5884 0.5829 0.7200 0.7160 0.7340 0.9250
NDCG@10 0.2646 0.3339 0.3352 0.4404 0.4427 0.4545 0.6314
HR@15 0.5623 0.7032 0.7046 0.8050 0.8070 0.8370 0.9800
NDCG@15 0.2963 0.3662 0.3683 0.4550 0.4603 0.4823 0.6567

Based on the results, we can draw the following conclusion: RFKG
outperforms other baseline methods. We visualize the experimental results
on MOOCCube, as shown in Figure 6.13.
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Figure 6.13: Visualization of the experimental results on MOOCCube.

We analyze the mechanism of RFKG to investigate why it performs
better than the baseline methods. Among the three modules of the frame-
work (graph construction, feature extraction, and recommendation), the first
two modules can be regarded as a pre-training process, which obtains
some of the features of the users and resources from the text (e.g., user
profile and resource synopsis) and graph structure in advance (compared
with the use of one hot encoding in some methods, this process can obtain
the features in a more reasonable way); these obtained features, together
with the user-resource interactions, are inputted into the third module (a
neural network), which learns the intrinsic relevance between users and
resources, and these pre-features provide a priori knowledge to the neural
network, thereby optimizing the training process.
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The embedding size is a factor that affect the recommendation perfor-
mance. In our framework, there are two embedding methods, textual at-
tribute embedding and graphic structure embedding, we separately study
the impact of their different settings of embedding size on the final rec-
ommendation performance. When studying one embedding method, the
embedding size of another one should be the default (the default sizes of
attribute embedding and structure embedding are 8 and 128). We perform
BoW&autoencoder and TransD for the MOOCCube with different embed-
ding sizes (8, 16, 32, 64, and 128), and train the MLP model with their
output respectively. After completing the training process, we evaluate
the performance of our framework on NDCG@10. The results are shown
in Figure 6.14.
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Figure 6.14: Performance (NDCG@10) comparison of different embedding
(attribute embedding and structure embedding) sizes on MOOCCube.

In the above figure, for the investigation of structure embedding size,
the settings (attribute embedding size, structure embedding size) of the
blue line from left to right are (8, 8), (8, 16), (8, 32), (8, 64) and (8, 128), and
the recommendation performance is getting better as the structure embed-
ding size increases; for the investigation of attribute embedding size, the
settings (attribute embedding size, structure embedding size) of the orange
line from left to right are (8, 128), (16, 128), (32, 128), (64, 128) and (128,
128), the recommendation performance first increases and then decreases.
Because the graphic structure is complex and contains more features than
textual attribute, a larger capacity feature vector is required to store these
features. The length of textual attributes is not too long and the conser-
vation of features only require 32-dimensional feature vector (NDCG@10



6.7 chapter summary 85

starts to decline when attribute embedding size greater than 32). The fea-
ture vector that is too long will make the MLP network more complex and
will have a negative impact on recommendation performance.

Thus, we can draw a conclusion that the recommendation performance
is getting better as the embedding size increases within a certain range.

6.7 chapter summary

In this chapter, our work is mainly related to the evaluation of the pro-
posed recommendation framework. Firstly, we choose two datasets col-
lected from real-world e-learning platforms. Secondly, in addition to con-
ducting experiments on the framework, we also select a series of base meth-
ods for performance comparison, and the results show that our recommen-
dation framework outperforms the other base methods on the two datasets.
Finally, we also conduct a series of experiments for the embedding size of
the two embedding methods (attribute embedding and structure embed-
ding) in the framework, and we conclude that the final recommendation
performance is directly proportional to the embedding size, regardless of
whether it is attribute embedding or structure embedding.
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C O N C L U S I O N S A N D P E R S P E C T I V E S





Chapter 7

Conclusions and perspectives

7.1 conclusions

As an important branch of education, e-learning is in a phase of rapid
development, more and more resources are being placed in a variety of e-
learning platforms, which brings convenience to users and also generates
a heavy information burden to them. RSs are applied in these platforms
to cope with this problem. A good RS should consider as much informa-
tion as possible that can influence the user’s choice, so as to accurately
predict the user’s next choice. However, conventional RSs mainly focus
on information directly relevant to users or resources. CF RSs make rec-
ommendations by learning user-item interactions, either through explicit
(e.g., user ratings) or implicit feedback (e.g., browsing history) [Zhang et
al., 2019b]. CB RSs make recommendations by comparing the representa-
tions of item content to the representations of user interests [Melville et
al., 2010]. Hybrid RSs combine two or more recommendation strategies
in different ways to benefit from their complementary advantages [Çano
et al., 2017]. Most of the conventional RSs ignore a piece of crucial infor-
mation, the latent connections between the entities in the specific domain.
For example, Qing tries to find a course related to machine learning on
Coursera; he chose the course Machine learning launched by Stanford Uni-
versity, instead of Machine learning launched by University of Washington;
the choice is independent of the content of the two courses, only his sub-
jective feelings (i.e., he prefers Stanford University); so, we can assert that
there is a latent connection between him and the school, and that connec-
tion influences his selection. Therefore, research focuses on how to obtain
these mentioned latent connections and transform them into information
usable by RSs.

We notice that KG has strong capabilities in information representation
and information reasoning [Chen et al., 2020]. Perhaps KG can help us
obtain these latent connections. After our investigation, we believe that
KG can not only store regular data that can be obtained by traditional
approaches, but also capture the latent connections between the lurking
entities of e-learning platform and make them machine-readable, which
will make it possible to turn them into information usable by RSs.
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Thus, this thesis address two main research questions:

1. How to characterize the content of e-learning platform by the means
of KG? Can the KG be generic?

2. How to obtain features of users and resources from the constructed
KG? How to learn these features with algorithm for recommenda-
tion?

In order to answer the first question, we build a lightweight KG that
captures as much information (both ordinary data and latent connections)
as possible that affects the user’s choice and turns it into machine readable.
Specifically, we follow the core steps to create a lightweight ontology repre-
sented as a KG for e-learning platform [Noy et al., 2001]. step 1. Determine
the domain and scope of the ontology; step 2. Define the entity classes and
their relation classes; step 3. Define the properties (i.e., attributes) of classes;
step 4. Extract the instances of the defined classes and compress them into
a knowledge base represented as a KG. Note that, the defined classes can
be adjusted according to different e-learning platforms, which makes the
KG generic.

In order to answer the second question, we first use NLP technologies
to process the descriptions and values of the resources and users to get
text feature vectors of users and resources. Then, we use KGE algorithm
to learn the latent information from the graph structure to get structure
feature vectors of users and resources. The obtained text and structure
feature vectors are concatenated to form the final feature vectors of users
and resources respectively, and input into a MLP network for model fitting.
The trained MLP network has capability to predict the relevance between
different users and resources and make resource recommendations to tar-
get users.

For evaluating the performance of the recommendation framework,
we conduct a series of experiments by using datasets form real-world
e-learning platforms (XuetangX and Open University), the results demon-
strate that our recommendation framework outperforms methods from the
state-of-the-art on the chosen datasets.

7.2 perspectives

The perspectives can be described in two aspects: short-term work and
long-term future work.

Short-term work

The short-term work is mainly about optimizing the established rec-
ommendation framework. The recommendation accuracy of downstream
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RS is closely related to the obtained features from upstream feature ex-
traction. In our framework, we introduce KG to characterize the content
of e-learning platform so as to capture more sources of information that
capture user and resource features. But for the KGE algorithm to learn
the formed KG to obtain the feature vectors, we just chose TransD based
on the results from the stat of the art [Wang et al., 2017]. We have not
attempted to use other KGE algorithms to learn the formed KG, especially
since more and more Graph Neural Networks (GNNs) algorithms have
been proposed in the last few years. GNN is a class of artificial neural net-
works for processing data that can be represented as graphs [Scarselli et
al., 2008] [Sanchez-Lengeling et al., 2021] [Wu et al., 2022]. The key design
element of GNNs is the use of pairwise message passing, such that graph
nodes iteratively update their representations by exchanging information
with their neighbors. Several different GNN architectures have been pro-
posed, which implement different mechanisms of message passing [Kipf
et al., 2016] [Hamilton et al., 2017] [Veličković et al., 2017] [Bronstein et al.,
2021].

Can GNN obtains higher quality features from the KG than the
traditional KGE algorithm TransD? On the basis of the currently used
dataset, we will conduct experiments using other latest conventional KGE
algorithms besides TransD, and also GNNs (e.g., Graph Convolutional
Network (GCN) [Kipf et al., 2016] and Graph Attention Network (GAN)
[Veličković et al., 2017]) for the performance comparison.

Long-term future work

The long-term future work is mainly about investigating the scalability
and robustness of the established recommendation framework. For the
scalability, there are only 6 core entity classes defined in the KG, but in fact,
other entity classes may exist in the e-learning platform, such as subject
and prerequisite.

Can the addition of these entity classes effectively enhance the ability
of KG to characterize the e-learning platform? We will try to add more
potentially relevant entity classes to the designed conceptual graph model
and rebuild the KG. Then, both feature extraction and recommendation
will be performed as designed before. Finally, the performance based on
the new KG will be compared with the old results.

Furthermore, although we validated the effectiveness of our recommen-
dation framework on two datasets collected from e-learning platform Xue-
tangX and Open university. But these two platforms are essentially both
MOOC platforms, and we still need to test our framework on datasets
from other non-MOOC platforms to verify its robustness.

Does our recommendation framework perform as expected on other
non-MOOC platforms? We will continue to follow up the experiments,
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and look forward to obtaining other datasets to verify the feasibility of our
recommendation framework on other non-MOOC platforms.
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(2021). “Geometric deep learning: Grids, groups, graphs, geodesics,
and gauges”. In: arXiv preprint arXiv:2104.13478 (cited on p. 91).

Burke, Robin (2000). “Knowledge-based recommender systems”. In: Ency-
clopedia of library and information systems 69.Supplement 32, pp. 175–186

(cited on pp. 39, 44).
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