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Abstract

The Information Technologies (IT) industry has an increasing carbon footprint (2.1�3.9%
of global greenhouse gas emissions in 2020), incompatible with the rapid decarbonization
needed to mitigate climate change. Data centers hold a signi�cant share due to their
electricity consumption amounting to 1% of the global electricity consumption in 2018. To
reduce this footprint, research has mainly focused on energy e�ciency measures and use
of renewable energy. While these works are needed, they also convey the risk of rebound
e�ects, i.e., a growth in demand as a result of the e�ciency gains. For this reason, it
appears essential to accompany them with su�ciency measures, i.e., a conscious use of
digital technologies with the aim to decrease the total energy and resource consumption.

In this thesis, we introduce a model for data centers and their users. In the �rst
part, we focus on direct users, interacting with the infrastructure by submitting jobs. We
de�ne �ve su�ciency behaviors they can adopt to reduce their stress on the infrastructure,
namely Delay, Recon�g, Space Degrad, Time Degrad and Renounce. We characterize these
behaviors through simulation on real-world inputs. The results allow us to classify them
according to their energy saving potential, impact on scheduling metrics and e�ort required
from users. One drawback of su�ciency behaviors is their inertia, that we explain with
appropriate metrics. We investigate thereafter the behaviors' usefulness in the context of
renewable energy management. A three-state energy feedback mechanism informs the users
on the status of electricity production. We show that adopting the su�ciency behaviors
when renewable energy is scarce leads to brown energy savings. Savings are proportional
to the e�orts made by users.

In the second part, we build upon our user model and implementation to tackle an
open issue in distributed system simulation. Most works use recorded traces to simulate
workloads, by replaying jobs of the same characteristics and same submission time. How-
ever, this model is problematic when the performance of the simulated infrastructure di�ers
from that of the original infrastructure. We model and implement �replay with feedback�,
a way of using recorded traces, preserving the think time between jobs rather than the
original dates of submission. We provide an in-depth analysis of our method's impact with
the help of novel metrics.

In the last part, we shift our focus to indirect users of data centers by studying pro-
fessional cloud users. We design and conduct a qualitative study to investigate what a
su�cient use of the cloud would mean, in practice. The study involves three focus groups
analyzed through thematic analysis. The results provide a preliminary picture of the na-
ture of our digital professional needs, along with a list of �tactics towards su�ciency�,
concrete actions to focus on the essential while limiting environmental footprint.

This manuscript o�ers an insight into digital su�ciency in data centers, involving
both simulation and social sciences. We hope that our open-source code and reproducible
simulation campaigns will be useful for future works in that direction.
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Résumé en français

L'industrie des technologies de l'information a une empreinte carbone croissante (2,1
à 3,9 % des émissions mondiales de gaz à e�et de serre en 2020), incompatible avec la
décarbonation rapide nécessaire pour atténuer le changement climatique. Les centres de
calculs y contribuent signi�cativement en raison de leur consommation d'électricité : 1 % de
la consommation mondiale en 2018. Pour réduire cette empreinte, les travaux de recherche
se sont principalement concentrés sur des mesures d'e�cacité énergétique et l'utilisation
d'énergies renouvelables. Si ces travaux sont nécessaires, ils entraînent également des e�ets
rebond, à savoir une augmentation de la demande en réponse aux gains d'e�cacité. Pour
cette raison, il apparaît essentiel de les accompagner de mesures de sobriété, c'est-à-dire
d'une utilisation raisonnée des technologies du numérique, a�n de diminuer la quantité
globale d'énergie et de ressources consommée.

Dans cette thèse, nous présentons un modèle de centre de calculs et de ses utilisateu-
rices. Dans la première partie, nous nous concentrons sur les utilisateurices directes, qui
interagissent avec l'infrastructure en soumettant des tâches. Nous dé�nissons cinq leviers de
sobriété qu'iels peuvent adopter pour réduire leur impact sur l'infrastructure, à savoir Dé-
lai, Recon�guration, Dégradation Spatiale, Dégradation Temporelle et Renoncement. Nous
caractérisons ces leviers à l'aide de simulations sur des données réelles. Les résultats nous
permettent de les classer en fonction de leur potentiel d'économie d'énergie, de leur impact
sur les métriques d'ordonnancement et de l'e�ort requis de la part des utilisateurices. L'un
des inconvénients des leviers de sobriété est leur inertie, que nous expliquons à l'aide de
métriques ad hoc. Nous étudions ensuite le potentiel des leviers dans un contexte de gestion
des énergies renouvelables. Nous montrons que l'adoption des leviers de sobriété en période
de faible production renouvelable conduit à des économies d'énergie non renouvelable. Les
économies sont proportionnelles aux e�orts fournis par les utilisateurices.

Dans la deuxième partie, nous nous appuyons sur notre modèle d'utilisateurices et
son implémentation pour aborder un problème ouvert dans la simulation de systèmes dis-
tribués. La plupart des travaux utilisent des traces réelles pour simuler les soumissions
dans l'infrastructure, en rejouant des tâches ayant les mêmes caractéristiques et les mêmes
temps de soumission. Toutefois, ce modèle pose problème lorsque les performances simulées
di�èrent de celles de l'infrastructure d'origine. Nous modélisons et mettons en ÷uvre le
� rejeu avec feedback �, une façon d'utiliser les traces réelles, en préservant le temps de
ré�exion entre les tâches plutôt que les temps de soumission originaux. Nous fournissons
une analyse approfondie de l'impact de notre méthode à l'aide de nouvelles métriques.

Dans la dernière partie, nous nous concentrons sur l'utilisation indirecte des centres
de calculs, en étudiant des utilisateurices de cloud professionnel. Nous menons une étude
qualitative a�n d'examiner ce que signi�erait, en pratique, un usage sobre du cloud. L'étude
comprend trois focus groups analysés par le biais d'une analyse thématique. Les résultats
dressent une image préliminaire de la nature de nos besoins professionnels numériques,
ainsi qu'une liste de � tactiques vers la sobriété �, c'est-à-dire d'actions concrètes pour se
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concentrer sur l'essentiel tout en limitant son empreinte environnementale.
Ce manuscrit o�re un aperçu de la sobriété numérique dans les centres de calculs,

impliquant à la fois simulation et sciences sociales. Nous espérons que nos codes libres et
nos campagnes de simulation reproductibles seront utiles pour de futurs travaux dans cette
direction.
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1 Context

As of 2023, six of the nine �planetary boundaries� have been overshot because of human
activities [1]. It is urgent to reduce quickly and signi�cantly our environmental impacts.
Unfortunately, this does not seem to be the path that the industry of Information Tech-
nologies (IT) is following. Estimations of its carbon footprint range from 1.8% to 3.9% of
global greenhouse gas emissions in 2020, and this share is likely in augmentation [2]. About
a third of this footprint is attributable to data centers, the server farms that constitute
the backbone of the Internet infrastructure. Their environmental footprint arises mainly
from their electricity consumption, estimated to 2.4% of the total electricity consumption
in France [3] and 1% globally [4].

To reduce this impact, researchers and companies have proposed many solutions: im-
proving the cooling through better server layout, reducing the operating frequencies of
servers, migrating the workload to follow renewable electricity production, to name only a
few. Most of the time, these techniques allow for gains in e�ciency, i.e., they optimize sys-
tems to consume fewer resources for the same service provided to the user. They have the
potential to decrease the direct environmental impact of data centers, but typically fail to
address the indirect e�ects arising from their use [5]. In particular, e�ciency leads to more
performant and more a�ordable services, which in turn stimulate consumption and tend to
counter-act the energy saving potentials. This e�ect is known in economics as the rebound
e�ect and apply particularly to digital goods and services, which are immaterial with low
barriers to adoption [6]. For this reason, an increasing number of international bodies (like
the Intergovernmental Panel on Climate Change (IPCC) in their 2022 report [7]) have
started to acknowledge that e�ciency measures must also be accompanied by su�ciency
measures, i.e., strategies aiming at decreasing the absolute level of resource and energy
demand.

The term �digital su�ciency� is relatively new and was theorized by Santarius et al. [8].
One of its main dimensions is �user su�ciency� which involves voluntarily decreasing the
demand for digital services. We argue that environmentally-aware people are ready to
make e�orts, like for instance the users of French telecom operator Telecoop restricting
their use of mobile data [9].

5
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In this PhD thesis, we propose to study �su�ciency behaviors� for data center users,
and their potential to reduce the environmental footprint of these infrastructures. We use
mainly simulations, but also social science methods to try to reach an understanding of
the problem in its entirety.

2 Problem statement and research challenges

Given the context explained in the previous section, one main question is guiding our work:

Overarching question: Which are the levers of user su�ciency in data cen-
ters, and how e�ective are they to reduce the environmental impact of these
infrastructures?

We make the distinction between �direct� and �indirect� users of data centers. Direct
users are in close interaction with the infrastructure, mostly by submitting jobs or reserving
virtual machines. Indirect users use services hosted on data centers, but have no precise
vision of the underlying infrastructure. We �rstly focus on the formers, for which we need
a model. Hence our �rst question:

Question 1: How to accurately model the interaction between direct users
and the data center?

Once we have a suitable model, we can come back to the main question and decline it
to these users:

Question 2: Which �su�ciency behaviors� can be adopted by direct data
center users, and how does user e�ort translate into footprint reduction?

Secondly, we move on to the second category of users. They perform a great variety of
digital activities, indirectly using data centers through di�erent types of software stack.
Consequently, their su�ciency levers are di�erent and more varied than for direct users.
We focus on the case of cloud usage for �exible work, and investigate the following question:

Question 3: What are the opportunities for digital su�ciency in cloud usage?

3 Main contributions

The main contributions of this PhD are listed below along with the research question(s)
to which they are related. The two �rst contributions are transversal and developed in
several chapters, whereas the last three correspond directly to speci�c chapters.

A model for direct data center users and su�ciency behaviors (Q1�2 ) Data
center simulations require a model of their IT platform, workload and resource manager.
We extend existing models with a mathematical representation of direct data center users.
They interact with the data center by submitting jobs. They can react to internal events
such as the termination of previous jobs or external events such as availability of renewable
energy. We introduce a novel model of eco-responsible user behaviors called �su�ciency
behaviors�. They are voluntary modi�cations of the characteristics of submitted jobs in
order to decrease the demand in the data center. We de�ne �ve such behaviors, namely
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− postponing the job submission (Delay),

− reducing the number of requested parallel resources (Recon�g),

− degrading the job to request less resources (Space Degrad),

− degrading the job to lower its execution time (Time Degrad), and

− renouncing the job submission (Renounce).

Batmen: an open-source software to simulate users of large-scale distributed
systems (Q1-2 ) The software developed in this thesis constitutes an important contri-
bution. First and foremost is Batmen, a plugin enabling the simulation of users inside the
scienti�c resource management simulator Batsim. The simulated users can submit tasks
dynamically and react to events. Batmen is open source and available in a GitLab reposi-
tory where it is automatically built and tested by a continuous integration pipeline.
Additionally, we endeavored to ensure the reproducibility of all experiments presented in
this manuscript. Therefore, all software used are open source and their versions are care-
fully reported. We always provide the scripts needed to reproduce the experiments and
perform the subsequent data analysis.

In-depth analysis of the su�ciency behaviors (Q2, Chap III�IV) The �ve su�-
ciency behaviors are characterized through simulation on real-world inputs. The results
allow us to classify them according to their energy saving potential, impact on scheduling
metrics and e�ort required from users. Results reveal the inertia of su�ciency behaviors,
that we explain with appropriate metrics.
We investigate thereafter the behaviors' usefulness in the context of renewable energy man-
agement. A three-state energy feedback mechanism is introduced to inform the users on
the status of electricity production. We show that adopting the su�ciency behaviors when
renewable energy is scarce helps save non-locally produced electricity. Savings are propor-
tional to the e�orts made by users. The results allow us to discuss the relevance of our
feedback mechanism and potential user incentives.

A model of workload replay accounting for user feedback (Q1, Chap V) Thanks
to our user model and implementation we make a contribution to tackle an open issue
in distributed system simulation. Most works use recorded traces to simulate workloads,
by replaying jobs of the same characteristics and same submission time. However, this
model is problematic when the performance of the simulated infrastructure di�ers from
that of the original infrastructure. We provide a de�nition of �replay with feedback�, a
way of accounting for the impact of system performances on user submission behavior in
simulations. We model and implement a novel model of replay with feedback and provide
an in-depth analysis of its impact compared to the traditional replay model. For this
analysis, we de�ne three original metrics: mean lateness, relative lateness and additional
lateness.

A qualitative study of digital su�ciency in cloud usage (Q3, Chap VI) In a last
contribution, we shift our focus to indirect users of data centers by studying professional
cloud users. We design and conduct a qualitative social science study to investigate what a
su�cient use of the cloud would mean, in practice. The study involves three focus groups
analyzed through thematic analysis. The results include (i) a list of main digital work
activities and di�erences according to work settings, (ii) the perceptions of what makes
certain digital activities or their cloud feature necessary, and (iii) a list of �tactics towards



8 CONTENTS

su�ciency� i.e., concrete actions to focus on the essential while limiting environmental
footprint.

4 Dissertation outline

The manuscript is organized as follows.
Chapter I presents the background of the thesis: environmental situation and share of

the IT industry, classical footprint reduction techniques in data centers and the notion of
�digital su�ciency�. We continue with related works on user involvement for sustainability
in data centers.

Chapter II introduces the model of a data center and its users. We also detail the
simulation environment that we use and our software contribution Batmen.

Chapter III moves on to the de�nition of the su�ciency behaviors, and characterizes
them individually with regard to energy consumption and scheduling metrics through a
simulation campaign.

Chapter IV studies the su�ciency behaviors in the context of a data center powered
by renewable energies. Another simulation campaign is presented and the resulting energy
savings are compared to the e�ort required from users.

Chapter V presents our model of replay with feedback accounting for user reaction to
system performance inside simulations based on real workload traces. We compare our
method with the traditional replay model thanks to another set of experiments analyzed
with three novel metrics.

Chapter VI looks at digital su�ciency in practice. We give the results of a qualitative
study carried in the Netherlands among �exible workers using cloud solutions for their
work. We investigate the opportunities for a more conscious use of these technologies.

The last chapter concludes our work and suggests short-term and long-term perspectives
for future works on the topic.

The work presented in this manuscript has led to peer-reviewed publications [C1, C2,
C3, J1, C4, C5], a detailed list of which is given at the end of the document.



Chapter I

Background and related works

Contents

1 Environmental situation and IT industry . . . . . . . . . . . . . . . . . 9

2 Sustainability levers in data centers . . . . . . . . . . . . . . . . . . . . 13

3 Digital Su�ciency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Su�ciency in data centers . . . . . . . . . . . . . . . . . . . . . . . . . 19

This chapter gives perspectives on the topic of this thesis and discusses related litera-
ture. We start by providing context on the current environmental crisis, and the speci�c
contribution of the IT industry, in Section 1. Section 2 reviews classical techniques for
footprint reduction in data centers, and highlights their limitations. In Section 3, we intro-
duce the concept of digital su�ciency that this PhD suggests applying to data centers. A
necessary step towards su�ciency is to involve the users in reducing the footprint of data
centers. We end the chapter with a review of literature on previous attempts to do so.

1 Environmental situation and IT industry

1.1 Planetary boundaries

In 2023 the �Earth Overshoot Day�1 fell on August 2. It means that on that day, the
ecological footprint of humanity was already equal to the amount of natural resources our
planet is able to renew in one year. In other words, our way of life is unsustainable [11].

Overexploitation of land and agricultural activity has led to a decline of 60% of animal
population between 1970 and 2014 [12]. It is the �rst time in history that a single species
(humans) had such a dramatic impact on the other species.

In parallel, we are facing an unprecedented climate crisis due to the emission of more
Greenhouse Gases (GHG) than natural sinks can absorb. For example, the concentration
of carbon dioxide in the atmosphere has increased from its pre-industrial levels of around
278 parts per million (ppm) to 410 ppm on average today [13]. Carbon dioxide is the
best-known of all GHG, which is why we commonly measure their emissions in tons of
carbon dioxide equivalent, denoted tCO2e. The GHG amplify the natural greenhouse e�ect,
inducing an extra energy in�ux on the Earth's surface, a phenomenon called �radiative
forcing�. The extra energy is absorbed by oceans, lands and the atmosphere, in the form
of heat. This in turn, has a number of ecological consequences: melting of glaciers and

1reported in https://overshoot.footprintnetwork.org/ based on data from the Footprint Data
Foundation [10]

9
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ice caps, sea level rising, biodiversity loss, extreme climate events etc. It is estimated that
human activities are responsible for a global surface temperature increase of 1.07 °C in
2019 compared to pre-industrial levels [13].

Figure I.1: The nine planetary boundaries in 2023.
Credit: Azote for Stockholm Resilience Centre, based on [1]. ©CC BY-NC-ND 3.0

Unfortunately, the list of environmental damage caused by human activity does not stop
there. The issues previously mentioned (loss of biodiversity and climate change) constitute
two of the nine �planetary boundaries� [14] illustrated in Figure I.1. With this framework,
Rockström et al. intend to represent the geophysical limits of our planet. Under the green
threshold, human activities remain within a �safe operating space�, where the Earth system
is able to safe-regulate. But beyond the thresholds, the system is not stable anymore and
risks triggering non-linear environmental changes. Six of the nine boundaries are overshot
according to the 2023 update [1]. All the challenge lies in bringing human activities back
into the safe operating space while still guaranteeing social minimum and well-being for all
in this planet. Or, to use the words of Kate Raworth, to �live within the donut� between
social foundations and planetary boundaries2 [15].

1.2 Direct environmental impacts of IT

For the IT industry, the environmental impacts come from the production, use and disposal
of digital equipment. They can be estimated with Life Cycle Assessment (LCA) [16], a
common impact assessment method. For example, Figure I.2 displays the results of the

2Kate Raworth is a British economist, known for her theory of �donut economics�. The outer edge of
the donut are the planetary boundaries, like in Figure I.1, while the inner edge represents the essential
human needs.
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LCA of a data center. We note �rst that environmental impacts cannot be summarized
with only one value, but have to be expressed with several �impact indicators�. This re�ects
the diversity of planetary boundaries introduced above. Also, we can see in this case that
the use phase is dominating for all impact factors. In other words, most environmental
impacts occur during use, through the electricity consumption of the infrastructure. The
impacts related to the production and end-of-life are relatively small.

Figure I.2: Environmental impact analysis of a large-scale data center in Ankara, Turkey,
based on data from 2020, split by life cycle phase [17].
Results of a Life Cycle Assessment (LCA) on 6 impact indicators performed with CCaLC2 LCA software
and Ecoinvent 2 database. ©Reprinted from [17], with permission from Elsevier

Beware that these results are speci�c to data centers, which are large and intensively
used infrastructures, and to the geographical location in Turkey, a country with a relatively
high carbon intensity of electricity production. In France, the GHG emissions from data
centers are rather divided into 25% for the use phase and 75% for the production phase on
average [3, p.12]. The distribution of impacts per life cycle phase look also very di�erent for
small IT devices like smartphones or computers, where the manufacturing phase dominates.

A last takeaway from this example is that conducting a LCA is a long and compli-
cated process, especially for objects as complex as IT devices. Performing such a precise
environmental assessment for each and every data center or device released to the market
appears out of reach.

Carbon footprint of the IT industry All the same, experts have tried to estimate the
impacts of the industry as a whole. Full and detailed assessments on the topic are quite
rare, and only focus on electricity consumption or GHG emissions. There are three main
peer-reviewed sources: Andrea and Edler (2015) [18], Malmodin and Lundén (2023) [19]
and Belkhir and Elmeligi (2018) [20]. All three studies are based on LCA of IT equipment,
sorted in three tiers: data centers, networks and end-user devices. They use secondary
data to estimate the quantities of each. Their results are given in Figure I.3.

According to the estimates, the IT industry is responsible for around 0.6 to 1.3 GtCO2e
globally. However, these �gures have been criticized as they are probably missing parts
of the supply chain due to truncation errors. A recent estimate based on Input-Output
analysis �nds 1.8�2.1 Gt [21], while a meta-analysis gives 1.2�2.2 Gt for the carbon footprint
of IT [2], including TVs and other consumer electronics. With the last range, the IT
industry would represent 2.1�3.9% of global GHG emissions [2]. Moreover, the
authors of all studies previously cited agree that these emissions will at best stabilize, but
likely increase in the coming decade, due to growth in usage, emergence of new technologies
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Figure I.3: Worldwide GHG emission estimates for IT industry in 2020, in MtCO2e.
Figures from Malmodin et al. original paper [19], and Freitag et al. supplementary material [2] for Andrae
and Edler [18] and Belkhir and Elmeligi [20].

and slowdown in e�ciency gains, unless strong political actions are taken [2]. This trend
seems incompatible with the necessity to drastically reduce global GHG emissions. A
reduction of 44% by 2030 and 84% by 2050 would be needed to limit global warming to
1.5 °C (pathway C1 IPCC 2022 [7, p. 22]).

What we also learn from Figure I.3 is the share of emissions attributable to each tier.
This distribution vary between sources, but we can remember that they are of the same
order of magnitude. The emissions from devices are evenly shared between the production
phase and the use phase, whereas emissions from networks and data centers are
dominated by the use phase, i.e., their energy consumption [19], as we saw with the
example of the Turkish data center (Figure I.2). In fact, global data center electricity
consumption is estimated to 205 TWh in 2018 [4], or 1% of global electricity consumption.

1.3 Indirect environmental impacts of IT

In the previous part, we drew a picture of IT direct negative impacts on the environment.
Yet, the application of digital technologies also have indirect implications, that can be both
positive or negative. We refer to Hilty and Aebischer for a classi�cation of all e�ects by
three levels [5], illustrated in Figure I.4.

Indirect e�ects On the one hand, the use of digital technologies has the potential to
optimize processes, thus lowering their footprint, substitute polluting technologies (the
so-called �dematerialization�), or enable sustainable practices. They are the second- and
third-order positive environmental e�ects in Figure I.4. For example, optimization algo-
rithms have many applications to real-world problems, where they may allow for better
resource management and lower environmental footprint, from smart grids [22] to vehicle
routing [23]. As an example of positive systemic e�ect, digital technologies have helped to
develop soft mobility solutions, such as public transports or car sharing [24].

Applying IT might also on the other hand induce the consumption of other items that
were not in use before (�induction e�ects�). Additionally, they could render previous and
functioning technologies prematurely obsolete (�obsolescence e�ects�).

Rebound e�ects A particularly preoccupying issue is the rebound e�ect, that tends to
counteract all positive consequences of the application of IT. The rebound e�ect � also
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Figure I.4: Three-level model of environmental e�ects of IT.
©Reprinted from [5], with permission from Springer

known as Jevons' paradox after its discoverer [25] � is when energy e�ciency measures do
not reach their full energy saving potential [26]. For example, an analysis of Chinese city-
level macroeconomic data reveals that the actual carbon reduction in these cities under
the digital economy was only 40% of that expected, due to rebound [27]. IT are very
prone to rebound e�ects because their immateriality, potential for virtualization and low
entry barriers for adoption tend to transform e�ciency into growth in usage [6]. The
diversity and multifactorial nature of rebound mechanisms make them di�cult to predict
precisely. Fortunately, we are witnessing increasing e�orts in the community to take them
into account [28, 29], in order to assess the real enabling potential of IT for energy savings.

2 Sustainability levers in data centers

As we saw in Part 1.2, data centers have a considerable impact on the environment, mainly
arising from their use phase. Malmodin et al. estimate the GHG emissions due to the
production of data centers at 30 MtCO2e in 2020, and 95 Mt to their use phase, or 24%
and 76%, respectively [19, Table 8]. Additionally, these infrastructures require a large
amount of water for their cooling systems [30]. Consequently, data center sustainability
occupies an increasing importance in the public discourse. For instance in Ireland, tensions
are rising since they are projected to consume 25% of the country's energy by 2030 [31].
The same goes for the Netherlands, a relatively small country where many of them are
hosted [32]. This increasing attention is also re�ected in the academic literature, where
we �nd a large body of works on strategies to reduce the environmental footprint of data
centers.

In this section, we do not intend to give an exhaustive review of these works, but
rather an overview of common techniques for footprint reduction. We rely on recent and
comprehensive literature surveys on the topic in both cloud [33, 34] and High Performance
Computing (HPC) [35] worlds, and only cite one or two articles per technique as examples.
We divide the techniques in three main categories: energy e�ciency (2.1), thermal and
cooling management (2.2), and use of renewable energies (2.3).
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2.1 Energy e�ciency

Data centers, as large and complex distributed infrastructures, o�er countless avenues for
energy e�ciency optimizations, at all levels. Below, we provide a short description of
classical levers.

DVFS A commonly used technique for energy reduction is Dynamic Voltage and Fre-
quency Scaling (DVFS). It entails lowering the voltage and frequency of computing systems
in order to save energy or avoid overheating. Indeed, parts of the power consumption of
the Central Processing Unit (CPU) is proportional to V 2f where V is the voltage and
f the frequency. Lowering the frequency enables to lower the voltage needed for stable
operation. The use of DVFS is frequently studied in data centers, either alone or in combi-
nation with other techniques. For example Kim et al. use it when scheduling applications
with deadlines, and reach up to 45% energy gains in case of low utilization [36]. Guerout
et al. study the e�ciency of the DVFS governor OnDemand available in the Linux kernel
and �nd 15% energy savings compared to running at maximum frequency [37].

Server shutdown When a server is idle, i.e., not used to compute any user task, it still
consumes a non-negligible amount of power. To save this power, the server can be switched
o�. Since on/o� cycles also takes time and energy, research is required to develop good
heuristics. Orgerie et al. studied these cycles in detail and proposed shutdown strategies
in periods of low utilization [38].

Virtualization and consolidation In cloud data centers, the computing resources
available to users are virtual machines or containers, which are seemingly self-standing
machines whose operating system and software are fully controlled by the user. Virtualiza-
tion provides an abstraction layer on top of physical machines, allowing for optimizations
like packing two or more underutilized virtual machines on the same physical server, to
share computing resources [39], or shut down unused servers [40, 41].

Heterogeneous platform Sometimes, servers inside the data center do not have the
same hardware characteristics and power consumption. Energy optimizations can be
reached by leveraging this heterogeneity, whether it comes from CPUs [42], memory [43]
or storage [44]. For example, the scheduler can prioritize energy-e�cient servers, or use
the best performing servers to �nish the computation as fast as possible and be able to
switch them o�.

Note that the levers listed above are in no particular order and can reach comparable
energy savings depending on the type of workload and infrastructure studied.

2.2 Thermal and cooling management

Given the high density of computing nodes in server rooms, a large amount of energy is
needed to cool down the infrastructure. According to the Uptime Institute, the average
Power Usage E�ectiveness (PUE) of data centers in 2022 was 1.55 [45]. The PUE is a
standard proxy for energy e�ciency measuring the ratio between the amount of energy
consumed by the whole infrastructure (including cooling, power distribution and ancillary
facility functions), and the energy used by IT. A PUE of 1.55 indicates then that 65%
electricity powers the IT equipment, the remaining 35% being lost in cooling etc. As a
result, another part of the literature looks at improving thermal management.
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Cooling management In this domain, the largest potential for e�ciency gains probably
come from outside the Computer Science �eld. Excess heat from the servers is typically
removed with a closed-loop air �ow going through an air conditioner. We see works in
improving the rack layout for optimized air �ow, reusing waste hot air to heat up other
buildings, using outside air instead of air conditioning (free cooling) or directly cooling
down the chips with liquid cooling [46].

Thermal-aware scheduling A complementary approach is to develop thermal-aware
scheduling algorithms. For example Sun et al. describe and test an online scheduling
heuristic that assigns jobs with respect to spatio-temporal temperature constraints [47].
The data center layout and cooling system are taken into account for the decision. In a
previous work, we also studied the opportunity to pre-cool the data center in anticipation
of periods of low renewable production [48].

2.3 Use of renewable energies

Finally, the last category of techniques for footprint reduction presented here concerns the
use of decarbonized sources of electricity. Ensuring 100% renewable energy supply in data
centers has become more and more common to ful�ll the increasing number of commit-
ments for net-zero emissions by the big tech companies [49]. Whether these commitments
are achieved through power-purchase agreements or on-site renewables, they open many
research challenges.

Workload adaptation to power envelope The main challenge of renewable energies
is their intermittency. The power they produce varies during the day and between seasons.
For example Pierson et al. study a data center self-supplied in renewable energies (solar
and wind) in the project DataZero [50]. For its functioning, the power module has to
negotiate with the IT module that adapts the computing load to the available power,
using levers such as workload temporal shifting or DVFS [51]. The elasticity o�ered by
virtual machines can also be used for such problems [52].

Geographic load shifting Another approach to tackle variability of production is to
�follow the sun�: migrating the workload to parts of the world where production is abun-
dant. We �nd many such proposals in the literature, leveraging various techniques such as
virtual machines migrations [53] or scheduling with deadlines [54] to solve the problem.

Use of electricity storage To enable better integration of renewable energies, some
works study the use of electricity storage systems. We refer to a survey of solutions from
Rostirolla et al. [55]. These systems can be short-term, e.g., batteries storing the excess
photovoltaic production during the day to use it at night, or long-term, e.g., hydrogen
storage systems able to store the energy for months to face the seasonal variability of
production. From there, challenges include sizing the power infrastructure and IT platform
according to the workload [56], or minimizing battery aging [57], to only name a few.

2.4 Limitations of these techniques

As we have seen in this section, research is abundant on techniques for footprint reduction
in data centers. The picture we painted is incomplete, and we refer the reader to the
surveys cited for a more comprehensive overview.



16 CHAPTER I. BACKGROUND AND RELATED WORKS

All the same, the techniques mentioned have one thing in common: their objective.
They seek to either maximize performance under energy or CO2 constraints, or minimize
energy/CO2 under performance constraints3. Therefore, these techniques aim to address
direct environmental e�ects from the use of data centers, according to Hilty's taxonomy in
Figure I.4. Doing so, we argue that they fail to acknowledge higher-order e�ects, and in
particular rebound e�ects arising from e�ciency.

In fact, e�ciency indicators have improved in the last two decades: the average PUE
decreased from 2.50 in 2007 to 1.55 in 2022 [45], server utilization is assumed to have
risen (meaning that the infrastructures are better utilized) [58], and big companies are
increasingly claiming net-zero emissions [49]. But in parallel, the number of Internet users
rose from 3 billion in 2015 to 5.3 billion worldwide in 2022, and data center energy use
from 200 to 240�340 TWh in the same period [59], despite the energy savings.

In other words, e�ciency improvements were successful to decrease the relative envi-
ronmental footprint, but did not succeed in reducing its absolute level. That is why we
decide to rather focus on su�ciency, that we introduce in the next section.

3 Digital Su�ciency

Su�ciency is a relatively new concept. We dedicate this section to de�ning and explaining
it, �rst in the general context (3.1), then zooming in the IT industry (3.2). We also review
related research on digital su�ciency (3.3).

3.1 On the concept of su�ciency

De�nition For the �rst time in 2022, the IPCC (working group III) includes �su�ciency
policies� as an approach to mitigate climate change. They provide a de�nition:

�Su�ciency policies are a set of measures and daily practices that avoid demand
for energy, materials, land and water while delivering human well-being for all
within planetary boundaries.� [7, p. 35].

Compared to e�ciency, the goal shifts from reducing the amount of resources needed
per unit of good or service to reducing the absolute amount of these resources. While
e�ciency measures may lead to rebound e�ects by making the good or service more acces-
sible, su�ciency measures tackle them, in principle, by setting limits to �nal consumption.
The �rst part of the de�nition highlights the nature of su�ciency policies. They are not
technical, like e�ciency, but rather societal, cultural or political. They put the humans at
the center of the equation, and invite re�ecting on their needs for goods and services. The
last part of the de�nition echoes Rockström's planetary bounderies and Raworth's �social
foundations�, introduced in Part 1.1. We note, however, that this approach involves asking
complex ethical questions that need to be approached and answered with care to reduce
the risk for social, �nancial or geographic inequality.

In the scienti�c literature Su�ciency has been attracting increasing attention in the
last decade, both in the scienti�c literature and the public discourse. Jungell-Michelsson
and Heikkurinen report a growing number of academic publications on the topic since the
year 2000, and across a wide range of academic �elds [60]. Among the earliest mentions

3The term �performance� is to be understood in the general sense, e.g., throughput, response time and
quality of service, depending on the use case.
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of the term is the work of Princen, advocating for a long-term consideration of sustain-
ability and addressing over-consumption [61]. What seems to be the common point in
the su�ciency literature is the idea to focus on what is enough, either through individual
responsibility, political decisions or paradigm shift in business logic [60].

In the public discourse Su�ciency has also become very present in the public dis-
course. In the case of France, we �nd an early mention to it in 2012, under the term
�sobriété� [sobriety], by the association Negawatt [62]. They make it one of three pillars
of their scenario for energy transition intended to the general public. More recently, the
French Agency for Ecological Transition made su�ciency the corner stone of their �rst
scenario to carbon neutrality �Génération Frugale� [Frugal Generation] [63]. The French
government also issued calls for energy su�ciency, at the end of 2022, although in this case
the main trigger was the gas crisis caused by the war in Ukraine [64].

Related concepts Su�ciency overlaps with other concepts, such as post-growth or de-
growth [65, 66], conviviality [67], frugality, voluntary simplicity or low-tech [68].

3.2 De�nition of Digital Su�ciency

Coming back to the IT sector, the new technologies appear to have played a central role
in speeding up our consumption of natural resources. All sectors of the economy are
undergoing their �digitalization�, from entertainment, education, research to transport and
agriculture. The use of digital content, by being seemingly immaterial, tends to appear
as environmentally harmless. However, as we previously saw, digital technologies do have
a signi�cant direct and indirect footprint. It is therefore not surprising that people have
started to raise the question of su�ciency in IT.

The French community has been very active on the topic, again, under the term �so-
briété numérique�. The �rst mention is attributed to Frederic Bordage from the GreenIT
association4, in 2008. He developed it since then in many books and articles, as a re�ec-
tion on the role of IT in our lives and a set of concrete practices [69]. Philosopher Fabrice
Flipo gave it a more historical, social and political meaning [70]. According to him, public
and private authorities have pushed for the digitization of our lifestyles in order to pur-
sue economic growth. He warns of the limited impact of �su�ciency of small gestures�
(e.g., turning o� the light) in the current system. The think tank The Shift Project made
�sobriété numérique� [digital sobriety] the title of their 2018 report, giving it big media
coverage [71]. Since 2020, we witness many mentions to this expression in the French
academic literature [72, 73], or reports from public institutions [74, 75].

In the international community, Hilty mentioned already in 2008 the need for su�ciency
in IT, at the same time that he lays the foundation of his three-level model (Figure I.4) [76].
He explains it by making the distinction with e�ciency. We have to wait until 2018, with
the original (German) version of the book �Smart Green World?� [77], that Lange and
Santarius coin and develop the term �digital su�ciency�. They introduce it as one of three
guiding principles for a sustainable digitalization, and refer to it as �as much digitalization
as necessary, and as little as possible�. They expand on it later in an article dedicated to
theorizing the concept [8] which we explain below.

4GreenIT is a collective of experts on digital su�ciency, responsible IT, web eco-design and low-techs
https://www.greenit.fr/

https://www.greenit.fr/
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De�nition by Santarius et al. Digital su�ciency is, according to them,

�any strategy aimed at directly or indirectly decreasing the absolute level of
resource and energy demand from the production or application of IT� [8].

They do not claim to provide a de�nition of our �basic digital needs�, but rather conceive
a conceptual framework consisting of four dimensions:

� User su�ciency: users apply digital devices frugally and make use of IT in a way
that fosters su�ciency-oriented lifestyles.

� Hardware su�ciency: producing and designing hardware for longevity, repairabil-
ity, and with the least possible resource and energy demand.

� Software su�ciency: software development and implementation that ensures long-
term functionality and the lowest possible data tra�c and hardware utilization for
task performance.

� Economic su�ciency: IT-borne improvements are used to nurture public and
common good instead of economic growth.

These dimensions are intertwined and allow tackling both direct and indirect e�ects.
They help to identify challenges that prevent resource or energy saving, for which the au-
thors suggest counter-measures and policies. Digital su�ciency measures are broken down
by stakeholder and su�ciency dimension. A few examples are: blocking advertisement by
default (service provider), producing long-lasting and reparable hardware (manufacturer),
developing open-source software (software developer), returning the device to collection
points (private user) or regulating data collection (policy-maker) [8, Table 1].

3.3 Digital Su�ciency research

The two previous parts gave some background on su�ciency and digital su�ciency. The
works cited are theoretical, laying the foundations of the concepts. In this part, we review
studies adopting a more applied angle, investigating su�ciency in practice.

Su�ciency is linked with identifying basic human needs, or �human well-being for all
within planetary boundaries� according to the IPCC de�nition. For a review of previous
propositions and methods to de�ne basic needs, we refer to review by Millward-Hopkins
et al. [78]. They base their own work on the Decent Living Standards (DLS) [79], which are
an inventory of universal material requirements to ful�ll basic human needs. They derive
quantitative thresholds for each of them, in terms of square meters of �oor space per
person, kilometers of mobility, etc. Then, they convert these values into primary energy
requirements (Joules), which allow them to make comparisons with the world's energy
production, current distribution of resources, and discuss scenarios for the future. Gorge
et al. investigate our interpretation of needs in society, through a series of interviews of
people with diverse background engaged in su�ciency [80].

Directly related to digital su�ciency is the work of Widdicks et al. They explore which
Internet use is deemed as necessary and unnecessary in their own personal daily lives, and
discuss the adaptations they developed to disconnect or reduce their use [81]. In a more
recent work, they investigate how to design for �more meaningful and moderate online
experiences� [82], by organizing design workshops with external participants and carefully
analyzing the output material (transcripts, prototypes, post-its) through thematic coding.
They ultimately develop concrete design recommendations, like �Internet speed bumps� to
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set limits to digital consumption or �stripping back layers of service� to only retain the
most meaningful content.

Elgaaied-Gambier et al. study the willingness of Internet users to adopt proenviron-
mental behaviors [83]. They start by collecting a list of eco-friendly online behaviors from
diverse sources, and carry out a �rst qualitative study to collect general perceptions on IT
footprint. Thereafter, they conduct two quantitative studies to understand the consumers'
self-attribution of responsibility in the reduction of their digital footprint.

Finally, we �nd a large body of work on �eco-feedback� or interventions for behavior
change, especially from within the �eld of Human-Computer Interaction [84, 85, 86]. For
example, Noureddine et al. study the impact of displaying the energy consumption of
software to users [87]. They �nd that eco-feedback helps to raise awareness and willingness
to react with eco-responsible behaviors. However, users lack knowledge on the most e�cient
behavior to adopt. We found no similar study on HPC users or indirect data center users.

4 Su�ciency in data centers

So far, we have shown that IT has a negative environmental footprint (Section 1), that
many levers exist to reduce it at the scale of data centers (Section 2) but that they are
levers of e�ciency rather than su�ciency (Section 3). What would su�ciency levers be,
in data centers?

Apart from this thesis, we are not aware of any work studying this question in these
terms. However, su�ciency is, as we saw, about rightsizing our consumption to what is
deemed enough. It requires taking into account the users of data centers, and involving
them in the quest for sustainability. We found some works on this topic, that we summarize
below.

4.1 Involving the users

Green contracts Garg et al. study a green cloud architecture, including several cloud
providers periodically publishing �green o�ers� with price, time, CO2 rating etc., and users
issuing cloud requests specifying a desired Quality of Service (QoS) [88]. A middleware
matches the requests and o�ers, aiming to minimize CO2 footprint without impacting QoS.
Some authors suggest the use of �green Service Level Agreement (SLA)� [89, 90, 91, 92,
93, 94] to formalize the guarantees requested by users, and the QoS degradation they are
willing to accept. For example, Amokrane et al. leverage spatial and temporal variability of
renewables and electricity prices to maximize pro�t of cloud providers with users specifying
a carbon emission limit [92]. They make a linear formalization of the problem and test
heuristics with thorough simulations. Haque et al. use similar methods to study a data
center with local renewable production and whose users can specify a minimum percentage
of green energy to run their jobs [91]. The provider earns a premium for meeting green
SLA or is penalized if violating.

Rewarding users Instead or in addition to green SLA, we �nd propositions of incen-
tives for users to accept QoS degradation. Many works look at monetary incentives through
energy-aware pricing schemes. Users are charged based on past energy consumption [95],
price of electricity [96] or a mix between local PUE, electricity price and renewable pro-
duction [97]. The di�erent approaches are validated through simulations or experiments
on testbeds. Borghesi et al. exploit the energy savings obtained with DVFS to propose
four dynamic pricing schemes [98]. They show that it is possible to save operational costs
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that way, without penalizing users.
Other authors propose non-monetary rewards, such as certi�ed �greenness� [99]. More
interestingly, Georgiou et al. reward the users by giving priority to jobs based on their
owners' past energy usage [100]. Their scheduling policy is implemented in the popular
HPC resource manager SLURM. Experiments show that more energy-e�cient jobs yield
better scheduling metrics.
Unfortunately, in all the studies, the actual e�ectiveness of the reward mechanism to change
the users' behavior is never studied. They would require implementation in production sys-
tems or rolling out quantitative studies.

In all the works cited above, users are seen either as requesting a certain level of environ-
mental performance, or being rewarded for accepting QoS degradation. The environmental
performances are achieved through the common techniques presented in Section 2: DVFS,
geo-distributed data centers, etc. In the following, we focus on works considering the users
as an active lever to lower the infrastructure's footprint.

4.2 Users as �exibility

Orgerie et al. look at energy savings achievable through accepting temporal delay in the
start times of jobs [101]. They carry a simulation campaign with real-world traces, varying
the proportion of users accepting the degradation. Their results show that 3% energy can
be saved if all users accept delay, and that this delay averages to 15 hours. Cappiello et
al. combines delay acceptation with variable carbon intensity of electricity [102]. Users
submit job requests, specifying their availability to postpone deployment with acceptable
delay. The cloud provider sorts possible cloud sites per carbon intensity and answers with
several choices (immediate or delayed).

Guyon et al. look at the impact of spatial recon�guration of jobs on energy consump-
tion [103]. They simulate a scienti�c cloud with a bin-packing scheduler. Users can decide
to submit their jobs on a smaller number of computing nodes (`big', `medium' or `little'
version). Having all users submitting their jobs in `medium' allow for 20% energy savings
compared to `big', thanks to better bin-packing and server switch o�.

In another article, they combine the two levers previously mentioned by proposing their
users to accept both delay and spatial recon�guration in their jobs [104]. Experimental
validation is performed with an ah'hoc simulator and a relatively small workload. They
reach improvements in energy consumption of 2% if all users accept delay, and 5% if they
also accept recon�guration.

Basmadjian et al. make a comprehensive proposal in the All4Green project [105]. This
project studies a collaboration between the energy supplier, the data center and customers,
with the objective to better match the supply and demand of electricity. Several mech-
anisms are leveraged: �internal �exibilities�, namely task migration, use of batteries, and
adjustment in the cooling temperature, and �external �exibilities�, namely delay and per-
formance degradation for users. Their approach allows for 38% energy savings with internal
�exibilities only, and a further 5.5% with external �exibilities.

In this thesis, we de�ne and study such user �exibilites, that we call �su�ciency behav-
iors�. Three of them encompass the levers mentioned above: Delay (temporal shifting),
Recon�g (downsizing of requested resources) and Degrad (performance degradation). We
introduce an additional user �exibility, absent from the literature: renouncing the job sub-
mission. This behavior is included in a deliberate approach of digital su�ciency [8]. We
give an overview of the comparison between our work and the related works in Table I.1.



4. SUFFICIENCY IN DATA CENTERS 21

RE?∗ Delay Recon�g Degrad Renounce

Orgerie 2008 [101] ✓
Cappiello 2014 [102] ✓ ✓
Guyon 2019 [103] ✓
Guyon 2018 [104] ✓ ✓

All4Green 2018 [105] ✓ ✓ ✓
This thesis ✓ ✓ ✓ ✓ ✓

∗is the work in the context of Renewable Energy integration?

Table I.1: Summary of related works and their links to the su�ciency behaviors de�ned in
this thesis (Chapter III)

To the best of our knowledge, our work is the �rst to combine all four user levers
together. These levers are the center of the study, compared to some others where they
play only a secondary role. We provide a clear de�nition and characterization of them,
and study their potential in the context of renewable energy integration. Finally, unlike
most studies, we use a state-of-the-art simulator and provide all the software and material
to reproduce the experiments as open-source repositories.
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Chapter II

Model and simulation environment
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In this chapter, we describe our model for a data center and its environment. We
also present the simulation tools used to implement this model and run the experiments
presented in Chapters III, IV and V.

1 Data center model

Our data center model is illustrated in Figure II.1. It includes:

� the users: people using the data center, by submitting jobs to it;

� the jobs: computational tasks to be carried out;

� the IT platform: group of servers using electricity to execute the jobs;

� the scheduler: program receiving the job requests from the users and assigning
them to speci�c servers in the IT platform to execute them.

In the following sections, we give a detailed description of each component.

1.1 Users

1.1.1 De�nition

Direct and indirect users Data center users, in the most general sense of the term,
include all Internet users, since the data centers are the backbone of the Internet. In fact,
people make use of data centers at very di�erent levels, from using a mail client to launching
HPC simulations. In this thesis, we make the distinction between direct and indirect users,
which has some similarities with the distinction between Infrastructure-, Platform and
Software-as-a-Serice provisioning models commonly made in the cloud paradigm. Here,
the di�erence is made on the level of closeness � and therefore, of control � that users
have with the computing platform.

We assume that everything running on a data center is ultimately submitted by a direct
user, and serves the indirect users through a more or less long chain of intermediaries.
For example, an employee using a cloud-supported text editor must have a subscription

23
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Scheduler
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IT platform
(n servers, mono/multicore, ...)

Users
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consumes
electricity

Figure II.1: Overview of the data center model

provided by her company (Software-as-a-Service). This company has a contract with a
cloud provider, who allocated a certain number of servers to meet the company's demand.
In this case, the direct user is the cloud provider, closely interacting with the hardware
infrastructure.

In this thesis, we mainly focus on direct users (Chapters III, IV and V). We provide
a model for them, and include them in simulations. The indirect users are not taken into
account in the model, but rather addressed in Chapter VI through qualitative research.

Model Giving a model of direct users means modelling the way they submit jobs to the
platform. Hence the generic de�nition:

De�nition 1. A (direct) user is de�ned by a unique identi�er and a submission behavior.
A submission behavior is an algorithm that decides which job is submitted and when,
depending on the context.

It is inside the submission behavior that lies all the model's intelligence. There are two
main types (1.1.2), generative or replay, mirroring the two most common ways of modelling
the workload in data center simulations. Submission behaviors are further characterized
by the type of events they react to (1.1.3).

1.1.2 Types of submission behavior

Generative submission behavior The algorithm of a generative submission behavior
creates the jobs to submit by following a mathematical model. Example: user Anna submits
one job every hour. In order to re�ect observations, the submission pattern follows most of
the time a probability law. Example: user Patrick submits a job of size s every t seconds.
s follows an exponential law and t follows a Poisson distribution.

Replay submission behavior In a replay submission behavior, the algorithm uses a
historical record of user submission from a real infrastructure to reproduce the patterns of
submission. We give an example of such a historical record in the next section. In this
thesis, all the users are modelled with this type of submission behavior.

In both cases, algorithms de�ning the submission behavior can react to context.

1.1.3 Reaction to context

In real infrastructures, users adapt their behavior to their environment. Similarly, the
submission algorithm can also react to context or events such as:

� the date (time of the day, day of the week, . . . );
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� external events, e.g., price or carbon intensity of electricity, peek use (release of a
new product for a company, conference deadline for a researcher. . . );

� internal events, e.g., server utilization or termination of a previous job.

The aim of this PhD is to study how e�ective users can be to react to external events
linked to electricity production.

1.2 Jobs and workload

1.2.1 Jobs

What we call job is a self-standing computing task submitted by a user. In theory, it
represents any type of computation that someone can be interested to run in a data center,
e.g., a script generating pay stubs, the training of a machine learning model or a virtual
machine hosting a web server. In general, a job needs to perform computations on the CPU,
memory read/write, I/O with disks and network etc. However, the speci�c representation
we chose for a job is very simple and accounts only for the CPU. This is closer to the model
of a batch task that behaves independently of the context, as we could encounter in HPC.

De�nition 2. A job is represented by a computing load, without communication. It is
characterized by

− a quantity of �oating-point operations to execute, and

− a number r ∈ N+∗ of requested parallel resources.

It is assumed that the r computing resources share the computing load evenly.

Remark In case of a homogeneous IT platform, where all servers have the same per-
formance (which is the assumption we make in the following), it is equivalent to de�ne a
job with an execution time instead of a quantity of operations. The execution time is
denoted d (for `duration').

In addition to the above characteristics, a number of dates are associated to a job along
its lifecycle:

� a submission time a (for `arrival'): time at which the user submits the job to the
scheduler;

� a start time s ≥ a: time at which the job starts its execution in the IT platform (if
applicable);

� a �nish time f = s+ d: time at which the job �nishes its execution.

For some scheduler, other information provided by the user can be needed for a job,
like the walltime w (upper bound on execution time given by the user) or the due date
(deadline on the date of termination).
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1.2.2 Workload

A data center has to manage hundreds of jobs that are submitted every hour by users.
They constitute what is called the workload :

De�nition 3. A workload is a list (j1, ..., jn) of jobs, each with an associated submission
time.

Workloads vary greatly with the type and size of data center and their speci�c users.
To make reliable simulations, it is important to model them accurately. As we said before,
they can be generated from a mathematical model or taken from a historical record from a
real infrastructure. In the latter case, we talk about recorded jobs and recorded (workload)
traces:

De�nition 4. A recorded job ji is a set of information collected on a real job, that
characterizes its execution in the original infrastructure. This set of information contains
at least di, ri, ai and fi, but also the walltime wi if applicable, the job ID, user ID etc.

De�nition 5. A recorded trace is a list (j1, ..., jn) of recorded jobs, ordered by submission
time.

Recorded traces are precious sources of information for the replay submission behavior.
For example, the Parallel Workloads Archive1 gathers to date a collection of 40 workload
logs from production systems around the world. These workload logs are given in the
Standard Workload Format (SWF)2, which is a space-separated data format, with one
recorded job per line, including all the job information described above, and more. A �eld
`user ID' is also included, allowing to split the workload by user of the data center.

For the simulations presented in this thesis, we used exclusively the workload logs from
the Parallel Workloads Archive as inputs.

1.3 IT platform

The IT platform represents the actual computing hardware infrastructure. In reality, a data
center contains hundreds of servers, located inside racks and interconnected with network
cables. Each server is a self-standing computer, containing one or several CPU, its own
memory and network card, and possibly other peripherals (e.g., disk, Graphics Processing
Unit (GPU)) depending on the use case. All the racks are arranged in a room, with extra
facilities like cooling system, power distribution units, emergency power generators etc.

In our model, we take a simple de�nition for a server:

De�nition 6. A server is a CPU that can run the jobs. It is de�ned by a name, a number
of cores and a performance (in Floating-Point Operations Per Second (FLOPS)).

A server can be in two main states: switched on or switched o�, and two interme-

diary states: switching on or switching o�. It can only compute a job if it is in the state
�switched on�. Transitioning from state �switched on� to �switched o�� takes a constant
amount of time Tsoff and passes through the state �switching o��. The opposite transition
takes a time Tson and passes through the state �switching on�.

Note that, according to the de�nition above, servers can be monocore or multicore.
This will have implications for the scheduler. Our model for IT platform follows:

De�nition 7. The IT platform is a set of servers.
1https://www.cs.huji.ac.il/labs/parallel/workload/
2https://www.cs.huji.ac.il/labs/parallel/workload/swf.html

https://www.cs.huji.ac.il/labs/parallel/workload/
https://www.cs.huji.ac.il/labs/parallel/workload/swf.html
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Model assumptions Additionally, our model makes a series of simplifying assumptions:

� homogeneous platform: all servers are identical (same performance, same number of
core, same power consumption);

� perfect communication: communications are instantaneous, without latency;

� no failure: the servers never break down and always behave as expected;

� extra facilities are not modelled and their power consumption is not taken into ac-
count (this is equivalent to consider a PUE3 = 1).

1.4 Energy model

Let PDC(t) be the power consumption of the data center at time t. In our model, the
only components that consume energy are the servers. As a result, with P (i) the power
consumption of server i and N the number of servers in the platform, we have:

PDC(t) =
N∑
i=1

P (i)(t) (II.1)

The power consumption of server i is de�ned per state. In the state �switched on�,
this power consumption depends on the server utilization u(i)(t), i.e., the percentage of
maximum CPU cycles used, following an a�ne relationship commonly used in the litera-
ture [106]: P (i)(t) = Pidle + u(i)(t) ∗ Pdyn, with Pidle and Pdyn two constants. In any other
state, the power consumption is considered constant.

Since the jobs in our model are compute-only jobs, with exclusive access to the cores
(see Section 1.2), they use 100% of their allocated cores. The server utilization is then pro-
portional to the number k(i)(t) of cores used. The power drawn by each core is considered
constant and denoted Pcore. In the end, we have:

P (i)(t) =


Poff if the server is switched o�
Pson if the server is switching on
Psoff if the server is switching o�

Pidle + k(i)(t) ∗ Pcore otherwise

(II.2)

1.5 Scheduler

The scheduler makes the link between the users and the IT platform. It receives job
submissions from users and decides on when to execute them and which servers to allocate
to them.

De�nition 8. A scheduler is an algorithm. It maintains a queue of submitted jobs and
knows at any time the state of the IT platform (i.e., which servers are used, idle, switched
o� etc.). It is in charge of deciding which job will be executed when, and by which server(s).
It has the possibility to switch servers on or o�.

Scheduling decisions must follow a set of rules, that constitute what we call the �schedul-
ing hypotheses�. Our model follows these scheduling hypotheses:

3The Power Usage E�ectiveness (PUE) is a common metric for data centers operators. It corresponds
to the ratio of the total energy used by the facility to the energy delivered to the computing equipment.
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1.5.1 Scheduling hypotheses

1. requested cores: a job with r requested parallel resources must be executed on
exactly r cores in the IT platform;

2. server state: only the cores of �switched on� servers can execute jobs;

3. exclusive access: a core executes maximum one job at a time;

4. no preemption: once started, a job cannot be interrupted or reallocated to other
servers;

5. job kill: a job can be killed, for example because it reached its walltime or due date.
In this case, the cores it occupies are immediately released, and the job is considered
as failed.

As a result, the lifecycle of a job in our model is �rst to be submitted, then executing,
and �nally either terminated or killed. A job can only be executed on idle cores, i.e., cores
that are switched on but not executing any job.

In the remaining of this section we present the extra scheduling hypotheses correspond-
ing to a monocore and multicore context. We also give examples of common scheduling
algorithms for both contexts.

1.5.2 Monocore schedulers

In a monocore context, all the servers in the IT platform have only one core. In addition
to the 5 scheduling hypotheses described above, we add the hypothesis below:

6. cross-server execution: a job can be executed on multiple servers

Consequently, testing if a job can be executed now is equivalent to compare its requested
resources with the number of idle servers. If jobs in the queue are requesting more resources
than those available, the scheduler uses some job property (submission time, due date,
slowdown...) to decide on which job will be given priority.

We give as an example the pseudocode of two monocore scheduling algorithms used
in this thesis. First Come First Served (FCFS) (Algorithm 1) schedules the jobs in strict
submission time order. EASY-back�lling (Algorithm 2) uses the execution time estimates
(�walltimes�) given by users to �ll idle servers with small jobs.

1.5.3 Multicore schedulers

In a multicore context, the servers have several cores. Since we assume the IT platform to
be homogeneous (see Section 1.3), they all have the same number of cores K. In contrast
to monocore context, we make the following scheduling hypothesis:

6. single-server execution: jobs must be executed on a single server

Consequently, schedulers do not accept jobs with a number of requested resources r
greater than K. Testing if a job can be executed is equivalent to check if there is a server
in the platform with at least r idle cores.

In this thesis, when we are in a multicore context, we use a bin-packing algorithm.
The pseudocode of this algorithm is given in Algorithm 3. This algorithm has been made
energy-aware by greedily switching o� servers when they are idle, and switching them on
again when needed.
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Algorithm 1 FCFS (First Come First Served ) scheduling algorithm

▷ called every time an event happens (job submitted/terminated/killed) ◁
function FCFS()

N ← number of idle servers
jobQ← queue of waiting jobs, in submission time order
repeat

j ← jobQ.�rst()
r ← number of requested resources of j
if r ≤ N then

execute j on r idle servers
N ← N − r
jobQ.pop(j)

until (jobQ is empty) or (r > N)

Algorithm 2 EASY-back�lling scheduling algorithm

▷ called every time an event happens (job submitted/terminated/killed) ◁
function EASY()

FCFS() ▷ execute jobs in FCFS order
N ← number of idle servers
jobQ← queue of waiting jobs, in submission time order
if jobQ is not empty then ▷ try to back�ll small jobs

T ← expected start time of jobQ.�rst()
for all job j in the rest of jobQ do

r ← requested number of resources of j
w ← walltime of j
if (r ≤ N) and (now + w ≤ T ) then ▷ j won't disturb the �rst job

execute j on r idle servers
N ← N − r
jobQ.pop(j)
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Algorithm 3 Bin-packing scheduling algorithm, with server switch o�

▷ called every time an event happens (job submitted/terminated/killed) ◁
▷ notation: "job size" = number of requested resources

"server size" = number of idle cores ◁
function BinPacking()

jobQ← queue of waiting jobs, in decreasing size order
for all job j in jobQ do

r ← number of requested resources of j
serverQ← queue of switched-on servers, in increasing size order
for all server s in serverQ do

k ← number of idle cores of s
if r ≤ k then

k ← k − r
execute j on s
break for

if no switched-on server found for j then
serverQ← queue of switching-on servers, in increasing number of unreserved
cores
for all server s in serverQ do

k ← number of unreserved cores of s
if r ≤ k then

k ← k − r
execute j on s as soon as s is switched on
break for

if no switching-on server found for j then
if the list of switched-o� server is not empty then

take a switched-o� server s and ask it to switch on (taking Tson seconds)
reserve r resources on s
execute j on s as soon as it is on

if a server was found for j then
jobQ.pop(j)

for all server s idle do ▷ switch o� all servers left idle
ask s to switch o� (taking Tsoff seconds)
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2 Simulation tools

In this section, we give an overview of the software used in this thesis to implement the
model described in the previous section and run the experiments. The speci�c experimental
details will be given for each experimental campaign in the corresponding chapters.

2.1 Data center simulator: Batsim and SimGrid

SimGrid The core of the simulation is managed by SimGrid4 [107], a distributed system
simulator widely used and trusted in the community. SimGrid includes a �ne-grain simu-
lation of the IT platform, whose elements (servers with their computing speed, number of
core, interconnection etc.) are described in a XML �le. SimGrid enables the simulation of
the platform's power consumption through its energy plugin5, following the energy model
described in Section 1.4.

We chose this simulator because it is state-of-the-art, scienti�cally validated and ben-
e�ts from more than 20 years of development. The software is open-source and well-
maintained, using modern methods of software development and automatic testing. Fi-
nally, the community is active and easily reachable.

Batsim SimGrid simulates the IT platform: the bare-metal computations and interac-
tions between machines. It does not include a simulation of the Resource and Job Manage-
ment System (RJMS). For this, we use Batsim6 [108], a software layer on top of SimGrid.
Batsim simulates the RJMS including the job manager (job arrivals, queue of waiting jobs,
...) and resource manager (list of available servers, possibility to switch on/o�, ...), using
discrete event simulation.

The scheduler has to be written in a separate program, the �batsched� (�Batsim sched-
uler�). It interacts with Batsim through a set of events de�ned by the Batsim Protocol7

and exchanged via a ZeroMQ socket.

A Batsim simulation takes as input a workload (in JSON) and a platform (in XML),
and is launched in parallel with the scheduler. It reads the workload to reproduce the
job arrivals, simulates the IT platform thanks to SimGrid, sends events to the scheduler
(e.g., job arrival, job termination) and receives orders from the scheduler (e.g., execute job,
reject job, switch o� server).

Among the few other available simulators using SimGrid, Batsim was chosen because it
corresponds the most to our needs. Like SimGrid, it is robust, open-source, tested and still
maintained. Moreover, Batsim is built to make reproducible experiments, and eases the
interactions with the declarative package manager Nix, described after (see Section 2.3).

2.2 Batmen: our Batsim plugin to simulate users

Batsim and SimGrid allow us to simulate three of the four components of our data center
model (Section 1): the jobs, the IT platform and the scheduler. However, when this thesis
started, there were no tool available in the SimGrid ecosystem to simulate the fourth
component: users of the data center. During this PhD, I developed Batmen, a plugin for
Batsim enabling the simulation of users.

4https://simgrid.org/, v3.31 to 3.34
5https://simgrid.org/doc/latest/Plugins.html?highlight=energy#host-energy
6https://batsim.org/, v4.1 and 4.2
7https://batsim.readthedocs.io/en/latest/protocol.html

https://simgrid.org/
https://simgrid.org/doc/latest/Plugins.html?highlight=energy#host-energy
https://batsim.org/
https://batsim.readthedocs.io/en/latest/protocol.html
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Figure II.2: Batmen diagram

2.2.1 General description

Batmen is a software written in C++, whose development started in July 2021. It is
originally a fork of batsched8. Batmen is open source under license LGPLv3 and available
in our GitLab repository: https://gitlab.irit.fr/sepia-pub/mael/batmen. It
contains more than 10k lines of source code and 668 commits (in v3.1). The code is
automatically built and tested by a CI (Continuous Integration) pipeline. All the source
code is located in the folder src/, and compiled with Meson/Ninja. The folder test/

contains a set of integration tests managed with Pytest.

In terms of global organization, Batmen takes the role of this second program which
dialogues with Batsim. It therefore includes the scheduler, as well as the users who submit
jobs dynamically during the simulation. The program architecture follows this organiza-
tion, and is divided in three main parts:

� the core �les de�ning the overall structure and interaction with Batsim, located
directly under the src/ folder. These �les are mostly kept from the original project
batsched.

� src/scheds: the implementation of di�erent schedulers for Batsim. This is where
the schedulers FCFS, EASY-back�lling and bin-packing previously described (Sec-
tion 1.5) are located. Schedulers and their parameters can be selected from Batmen
Command Line Interface (CLI).

� src/users: the utility �les enabling the interaction with users, and the implemen-
tation of speci�c user submission behaviors (see Section 1.1). We describe it in more
details in the next section. The set of users to be used in a simulation can be described
in a JSON �le and passed to Batmen CLI.

The architecture of Batmen is illustrated in Figure II.2.

8set of C++ schedulers for Batsim: https://framagit.org/batsim/batsched

https://gitlab.irit.fr/sepia-pub/mael/batmen
https://framagit.org/batsim/batsched
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2.2.2 Interaction with users

The interaction with users happens through what we call the �broker�. In Batsim, jobs
are commonly read from a prede�ned input workload9 in JSON. In contrast, the broker
manages a pool of simulated users and dynamically submits their new jobs during the
course of the simulation. Technically, these jobs come on top of the input workload read
by Batsim, although we leave this static workload empty most of the time.

Implementation, in the folder src/users:

� class DynScheduler: superclass managing the interaction with the broker from the
scheduler. A scheduler inheriting from this class will handle dynamic jobs submitted
by the broker, if any. To do so, it asks the broker for the next submission date and
uses Batsim REQUESTED_CALL to call it back when it has something to submit. Then,
it uses Batsim �dynamic job registration� feature to inject the new submissions inside
the simulation. A DynScheduler also forwards to the broker feedback on job status.

� class Broker: implements the broker, submitting the jobs on behalf of the users.
Maintains a user_queue: a list of users ordered by next submission time. The
broker is regularly called by the scheduler through three public methods:

� jobs_to_submit: returns the list all jobs to submit right now (submitted by
any of the users),

� next_submission: returns the date of the next submission by any of the users,

� feedback_job_status: acknowledges the latest execution-related activity and
forward the information to the relevant users

� class User: an individual user, de�ned by her submission behavior. It contains
methods corresponding to those of the broker (jobs_to_submit, next_submission
and wake_on_feedback), but on an individual level.

2.2.3 Types of user

So far, 11 categories of users are available for use in Batmen. The list of available cate-
gories and their input parameters is in the �le src/users/user_description_file_tem-
plate.json. Their implementations are in the �les user_*.cpp.

The currently available categories can be grouped into three types (see Figure II.2):

� modeled users (superclass User): using a mathematical model to generate the jobs
to submit (corresponds to a generative submission behavior).

� replay users (superclass ReplayUser): replaying a workload trace given as input
(corresponds to a replay submission behavior). Alterations from the original trace
are allowed, like the �su�ciency behaviors� in Chapters III and IV.

� feedback users (superclass FeedbackUser): taking feedback on the status of pre-
vious jobs into account when submitting the next one. Used in combination with
ReplayUser in Chapter V.

Implementing your own user type inside one of these categories should be relatively
low-e�ort (around 100 lines of code).

9input workload in Batsim documentation: https://batsim.readthedocs.io/en/latest/input-wor
kload.html

https://batsim.readthedocs.io/en/latest/input-workload.html
https://batsim.readthedocs.io/en/latest/input-workload.html
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2.3 Reproducible experimental environment

Along this thesis, we endeavored to make our experiments reproducible, as recommended
by many in the community [109]. We understand the term �reproducibility� in the sense
of the ACM terminology [110]:

The measurement can be obtained with stated precision by a di�erent team
using the same measurement procedure, the same measuring system, under
the same operating conditions, in the same or a di�erent location on multiple
trials. For computational experiments, this means that an independent group
can obtain the same result using the author's own artifacts.

This means that our data, software and methods are precisely documented and open
source. In this section we give an overview of our experimental environment and what
helped us to achieve reproducibility.

2.3.1 Input data

As stated before, all the experiments are realized with input data from the Parallel Work-
loads Archive, which is a collection of workload traces from di�erent parallel infrastructure
around the world. The data is publically accessible and widely used in the community for
more than 20 years. The workload traces are available in the Standard Workload Format
(SWF), making it easy to use and compare di�erent traces between them. Information are
also provided on the architecture of the infrastructure in which the workload was recorded.

2.3.2 Tools for parsing

I created tools for parsing, �ltering and transforming the SWF into a format matching our
needs. Both of them are open source under license GNU GPLv3:

� batmen-tools10 is a Python script allowing to parse the SWF, apply �lters, split
by user and transform into a JSON format readable by Batmen.

� swf2userSession11 is a Python script to read a workload trace in the SWF, de-
compose it into user sessions, analyze the dependencies between sessions and store
the results in the Session Annotated Batsim JSON format (SABjson). Is is used to
perform �replay with feedback� in Chapter V.

2.3.3 Software version management

Software are constantly evolving with the new features, bug �xes and code refactoring. In
order to make sure that an external person would obtain the same results when performing
the same experimental campaign as ours, the exact version of the software used should be
speci�ed.

This is made possible with the package manager Nix12. Nix ensures reproducibility
through o�ering declarative experimental environments, i.e., shell sessions in which ev-
ery software dependency is declared with its speci�c version (release tag or Git commit
number). These versions are speci�ed with a Nix-speci�c syntax in a text �le.

10source code and documentation available at https://gitlab.irit.fr/sepia-pub/mael/batmen-too
ls

11source code and documentation available at https://gitlab.irit.fr/sepia-pub/mael/swf2userSe
ssions

12https://nixos.org/

https://gitlab.irit.fr/sepia-pub/mael/batmen-tools
https://gitlab.irit.fr/sepia-pub/mael/batmen-tools
https://gitlab.irit.fr/sepia-pub/mael/swf2userSessions
https://gitlab.irit.fr/sepia-pub/mael/swf2userSessions
https://nixos.org/
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We used Nix to manage the dependencies of our software and pin their speci�c versions
in our experiments.

2.3.4 Notebooks

Finally, to ease understanding and reproduction of our experimental campaigns, we detail
their steps inside notebooks, which are �les that include both text and code. A notebook
is organized in �cells� that can be run independently. In our case, we use Jupyter Note-
books13, with a mix of Markdown for the textual parts and bash/Python for the code.
It provides a way for the readers to both see the experimental details, and re-run the
simulations on their own machine.

We use Python and the library pandas14 for data analysis, which we also record in
notebooks. As a result, each �gure and table presented in the result and discussion sections
of this manuscript correspond to one cell in a notebook. Note that we also used notebooks
during the research phase and tracked their versions with Git. It is therefore possible to
retrace our scienti�c research approach by looking at the commit histories.

The notebooks and associated Nix �le constitute a self-contained artifact to
reproduce our experiments and data analysis. We include a reproducibility para-
graph in each chapter, with a link the repository containing the artifact, when applicable.

13https://jupyter.org/
14https://pandas.pydata.org/

https://jupyter.org/
https://pandas.pydata.org/
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Digital technologies are increasingly contributing to global warming, among other en-
vironmental impacts. As we already explained, there is a fundamental problem with e�-
ciency measures: they are likely to be outbalanced by a rebound e�ect in demand. Indeed,
emphasis is often put to make energy optimization as e�ortless as possible to end-users.
On the contrary, we argue that users of digital technologies must be brought back into the
loop, made aware of their impact and empowered to mitigate it.

In this chapter, we consider direct users of a data center as they are de�ned in the previ-
ous chapter (i.e., submitting jobs to the infrastructure). We de�ne �ve so-called �su�ciency
behaviors� for them. Users could choose to lower their demand by delaying, recon�gur-
ing, temporally degrading, spatially degrading or even renouncing their job submissions.
These behaviors have the potential to reduce the load in the data center, hence its energy
consumption. We provide an experimental characterization of each of these levers through
simulation, trying to answer the following question:

What is the e�ect of each su�ciency behavior to reduce energy consumption,
and how do they compare?

The chapter is organized as follows: Section 1 describes our approach by de�ning
the su�ciency behaviors and complementing the model presented in Chapter II. Section 2
presents the experimental setup for characterizing these behaviors. The results are provided
in Section 3 and discussed in Section 4. We present in Section 5 the limitations of the
study. The last section concludes the chapter. This work has been published in 2022 at
the conference Euro-Par [C1].
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1 Description of the approach

1.1 Context: demand response

For the sake of characterizing the behaviors, we place ourselves in a context of demand
response. Demand response entails reducing the electricity consumption in response to
low availability of electricity production. For example, some electricity markets have Co-
incident Peak Pricing programs, in which industrial consumers are charged a high price
when electricity demand in the grid is the highest. These peak pricing events last typically
15 minutes [111] or one hour [112] but are only known afterwards, e.g., at the end of the
month. The electricity supplier may send warnings to the consumer that a peak load event
will happen in the next few hours.

Data centers are good candidates to participate in demand response programs, since
they are large consumers of electricity and have a more �exible load than other industrial
facilities [113].

In our model, a demand response event will be represented by a time window of few
hours (called �demand response window� or �DR window� in short) during which the ob-
jective is to reduce electricity consumption as much as possible. This event is supposed
unknown in advance. We want to investigate how the su�ciency behaviors can help us
achieve this objective.

1.2 Su�ciency behaviors

1.2.1 De�nitions

As an echo to the digital su�ciency dimension �user su�ciency� de�ned by Santarius et
al. [8] (see I.3.2), we propose a de�nition of �su�ciency behavior� in our context:

De�nition 9. We say that a user submitting jobs to a data center adopts a su�ciency

behavior if she changes the characteristics of the job she planned to submit with the ob-
jective to decrease the demand in the data center.

Naturally, this de�nition is quite abstract as it requires knowing the original job the user
�planned to submit� before determining weather the submission behavior was �su�cient�
or not. Luckily, this is easy in our model: the nominal submission behavior is determined
by the submission behavior algorithm (see De�nition 1). Anytime but in the DR window,
the users follow their algorithm. During the DR window, we make the assumption that
they will modify their jobs according to �ve types of behaviors illustrated in Figure III.1
and described below. The decision is independent for each job.

We give in the following a short de�nition of each su�ciency behavior, along with one
example and the way they are modelled.

Delay The user decides not to submit the job now, but later.
For example, a user could adopt this behavior if the job has a low priority: it needs to be
completed at some point but not as soon as possible.
➢ the submission time of the job is postponed to the end of the DR window.

Recon�g The user recon�gures the job to request less resources in exchange for a longer
execution time.
For example, a user launching an image processing job in parallel on 16 cores could launch
it on 8 cores instead.
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Figure III.1: The �ve su�ciency behaviors and the baseline

➢ the number of requested cores of the job is divided by two, rounded up, and the execution
time is increased accordingly.
We make the hypothesis of perfect speedup, i.e., if the job takes 10 s to execute on three
cores, it will take (10 ∗ 3)/2 = 15 s on two cores.

Space Degrad The user degrades the job to request less resources.
For example, if the job was a video recommendation algorithm, it could recommend �ve
videos instead of ten.
➢ the number of requested cores of the job is divided by two, rounded up. The execution
time remains the same.

Time Degrad The user degrades the job to lower its execution time.
For example, if the job was a linear solver, we can lower its execution time by sacri�cing
on the accuracy of the approximate solution.
➢ the execution time of the job is divided by two. The number of requested resources
remains the same.

Renounce The user decides not to submit the job, and never submit it in the future.
For example, the job could be an optional test that is judged not relevant enough with regard
to the energy consumption required to run it.
➢ the job is not submitted and deleted from the workload.

We use one more type of behavior, which is the control behavior, or baseline:

Rigid The user submits the job normally, without adapting her submission behavior.
It could be because the job is critical, or simply because the user does not wish to make an
e�ort.
➢ the job is submitted with all its original characteristics.

1.2.2 Important remarks

From the previous de�nitions, it is worth noting two things:

1. Behaviors Space Degrad and Recon�g are only available for multicore jobs. If the
original job requests only one resource, the two behaviors have no e�ect.
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2. Among the �ve behaviors presented above, only Recon�g and Delay preserve the
mass of the jobs, i.e., their initial quantity of foating-point operations to execute.
Time Degrad divides this quantity by two. Space Degrad divides this quantity by up
to two (depending on the rounding). Renounce reduces this quantity to zero.

1.3 Data center model

We use the data center model described in Chapter II. The users are �replay users�, who
adapt their submissions from the input workload during the demand response window
according to the chosen behavior. The platform is multicore, so the scheduling hypotheses
of a multicore context are followed. The scheduler is a bin-packing scheduler with server
shutdown, as in similar works [104, 103]. The pseudocode for this scheduler is given in
Algorithm 3 (Chapter II, Section 1.5).

2 Experimental setup

This section describes the software, workload, platform and experimental choices used for
the experiments (see Figure III.2).

submit
jobs

Users

Scheduler
(bin-packing)

IT platform
(16-core servers)

read

Original workload
(Metacentrum)

Behavior:
- rigid
- renounce
- delay
- space degrad
- time degrad
- reconfig

Figure III.2: The simulated system

2.1 Software used for simulation

To simulate our system, we use the simulation environment described in Chapter II (Sec-
tion 2): Batsim v4.2 and SimGrid v3.34 for the data center simulation and Batmen v3.1
for the scheduler and user simulation.

We developed six user categories for Batmen, corresponding to the six behaviors of
Figure III.1. They take the form of six classes inheriting from the class ReplayUser:
ReplayUserRigid, DMUserReconfig, DMUserDegradSpace, DMUserDegradTemp, DMUserRe-
nounce and DMUserDelay. These user categories take two inputs:

� their workload in Batsim JSON format

� the DR window, represented by a pair of dates (begin, end)

The users will replay their input workload except in the DR window, where they act
according to their behavior.
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2.2 Workload

We chose a recent workload trace from the Parallel Workload Archive: the 2-year trace from
MetaCentrum (national grid of the Czech Republic)1. The platform is very heterogeneous
and underwent majors changes during the logging period [114]. For the purpose of our
study, we perform the following �ltering:

1. The workload is truncated to keep only 6 months (June 1 to November 30, 2014).
We chose this period as there was no major change in the infrastructure.

2. All the clusters whose nodes have more than 16 cores are removed.
We target a homogeneous simulated platform with 16-core servers.

3. All jobs with a number of requested resources greater than 16 are removed.
Our multicore scheduler forbids cross-server execution.

4. All jobs with an execution time greater than one day are removed.
We want to avoid having too much inertia in our system.

Steps 1 and 2 keep a number of servers from the original platform totaling 6304 cores.
From the truncated workload, steps 3 and 4 exclude 2.7% of jobs, making up 73.7% of the
mass (in core-hour).

The distribution of requested cores in the �ltered workload is represented in Figure III.3.
The median job duration is 136 seconds and 3213 seconds on average.
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Figure III.3: Distribution of requested resources in the �ltered workload

2.3 Platform

We create a simulated platform adapted to the �ltered workload, with 6304∗(1−0.737)/16 =
104 homogeneous 16-core servers.

The power constants for the energy model (see Chapter II, Section 1.4) are given in
Table III.1.

1�le METACENTRUM-2013-3.swf available at https://www.cs.huji.ac.il/labs/parallel/workload/l
_metacentrum2/index.html

https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
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Table III.1: Power constants for the servers and time to switch on (Tson) and switch
o� (Tson). Measurements in Taurus Grid'5000 cluster made by Guyon et al. [103].

Pidle Pcore Poff Pson Psoff Tson Tsoff

100 W 7.3125 W 9.75 W 100 W 125 W 150 s 6 s

2.4 Experimental campaign

Let's recall the research question raised in the introduction of this chapter: What is the
e�ect of each su�ciency behavior to reduce energy consumption, and how do they compare?
To investigate it, we adopt the following scenario:

Working scenario We imagine a data center functioning at nominal load. Some jobs are
currently running, and the users have the possibility to submit their jobs to the scheduler.
Suddenly, the data center operator receives a warning that a peak electricity consumption
is detected. He forwards this alert to the users of the platform. They decide to adapt their
submissions by adopting a su�ciency behavior. At the end of the alert, the users return
to their normal behavior.

Experimental campaign We simulate the aforementioned scenario on every weekday
(Monday to Friday) of our input workload between June 1 and October 23, 2014. This
makes a total of 105 di�erent experiments. For each day, we start the simulation 24 hours
before and �nish it 24 hours after, so that the total simulation duration is three full days
of data center operation. This way, and since the selected jobs in the workload have an
execution time lower than one day, we make sure that the infrastructure runs at nominal
load on day 2 and has absorbed the event by the end of day 3. The demand response event
arises at 16:00 on day 22. We study two lengths for the DR window: one and four hours3.
For the purpose of characterization, we try the su�ciency behaviors one by one, i.e, we
assume that all users adopt the same behavior during the DR window.

Total number of simulations Eleven simulations are launched for each experiment:
the baseline simulation with all users keeping a Rigid behavior, and the �ve other be-
haviors, on the two window lengths. In the end, 105 days ∗ (1 baseline + 5 behaviors ∗
2 window lenghts) = 1155 3-day simulations are launched.

Time and carbon footprint of the campaign The campaign launched in parallel on
a 2 x 8-core Intel Xeon E5-2630 v3 machine completed in less than two hours. Launched
in France and considering only the electricity consumption to run the campaign, this has a
carbon footprint of around 25 g CO2e (calculated using https://green-algorithms.org

v2.1 [115]).

2The choice of taking a weekday and this speci�c time of day is justi�ed by a characterization of 26
years' coincident peak pricing data [112], given that the MetaCentrum trace also displays diurnal and
weekday/weekend patterns.

3We also tried other starting times (drawn at random) and other window lengths (0.5 and 2 hours) but
decided not to report their results here as they are not leading to di�erent conclusions.

https://green-algorithms.org
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Reproducibility All the material to reproduce our experimental campaign and its anal-
ysis are available in a GitLab repository4. It contains the Nix �les de�ning the software
dependencies, the scripts to launch the experiments and the Notebooks to analyze the
output data and produce the graphs included in this chapter.

3 Results: energy and scheduling metrics

The experimental campaign produces around 10 gigabytes of output data, including schedul-
ing and energy consumption logs. In this section, we start by explaining the results on
a single experiment. Then, we look at the distribution of the 105 inputs. Finally, we
analyze the outputs by presenting the e�ect of each behavior on energy consumption and
scheduling metrics.

3.1 Results on one experiment

The results of one experiment consist of a set of outputs produced by Batsim. We use two
of them:

� The job trace: a CSV �le with one line per job, containing all the information about
the jobs (id, timestamps of submission, start and �nish, �nal status, etc.). Thanks
to the job traces we calculate the scheduling metrics presented in 3.3.

� The energy consumption trace: a time series of energy consumption in the simulated
platform. From it, we caclulate the energy metrics presented in 3.4.

The job trace gives us an exhaustive source of information on what happened in the
platform. Thanks to the visualization tool Evalys5, we provide a graphical representation
of it on an example in Figure III.4.

Comments on Figure III.4 In this example, by looking at the bottom graph for be-
havior Rigid (Figure III.4a), we see that few jobs are submitted during the night (between
2:00 and 8:00). The burst of activity is between 10:00 and 18:00, which corresponds to
usual working hours. Most of the time, the submitted jobs are started immediately by the
scheduler: the line between the blue dot and green triangle is vertical. The only periods
when the job executions are delayed with regard to their submission times are between
13:00 and 14:00, around 16:00, and around 18:00. These periods correspond to periods of
saturation in the infrastructure, as we see in the top graph: almost all the cores are in use,
the new jobs have to wait in the queue.

The e�ect of adopting the behavior Delay during the DR window is clearly visible in
Figure III.4b. The left part of the �gure, before 16:00, is identical to Rigid. But during
the DR window, no jobs are submitted by the users. They submit them all at once at
the end of the window instead, i.e., at 20:00. This translates into a decreasing number of
computing cores during the DR window, as we see on the top graph. The load peeks to
the maximum at the end of the window.

Same representations for the four other behaviors on the another day can be found at
the end of the notebook of experiments (no need to download the repository, the notebooks
are browsable on the GitLab platform).

4experiment repository available at https://gitlab.irit.fr/sepia-pub/open-science/demand-res
ponse-user (use the tag maelPhD)

5data analysis library developed in Python: https://evalys.readthedocs.io/

https://batsim.readthedocs.io/en/latest/output-jobs.html
https://batsim.readthedocs.io/en/latest/output-energy.html#energy-consumption-trace
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user/-/blob/maelPhD/analyse_campaign.ipynb?ref_type=tags
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user
https://gitlab.irit.fr/sepia-pub/open-science/demand-response-user/-/tags/maelPhD
https://evalys.readthedocs.io/
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(a) Rigid behavior

(b) Delay behavior, DR window between 16:00 and 20:00

Figure III.4: Example of output from one simulation: Tuesday June 5 2014, with
two behaviors. Visualization using Python library Evalys.
How to read these graphs? X-axis: time in hour. Bottom graphs: a blue dot represents a job arrival, a
green triangle the beginning of its execution and a red line its end. Top graphs: the number of computing
cores in the infrastructure. The maximum number of cores is 1664, represented by the orange horizontal
line.
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3.2 Statistics on the input data

From the previous example, we understand that the potential of each behavior to reduce
the load during the DR window greatly depend on the shape of the input. In particular,
the number of jobs submitted during the window might in�uence the results. Same goes
with the baseline server utilization during that window (computing load with behavior
Rigid). Figure III.5 provides information on the distribution of our input data.

4-hour 4-hour

1-hour1-hour

(a) (b)

(c)
(d)

Figure III.5: Descriptive statistics for the 105 experiments.
(a) number of jobs submitted in window;
(b) computing load (in core-hour) in window in Rigid experiment;
(c) computing load in window by number of submitted jobs (1-hour window);
(d) computing load in window by weekday (1-hour window).
The red lines correspond to the maximum load reachable in our 1664-core infrastructure.

How to read the boxplots?

In this manuscript, we often present data with box-and-whisker plots. When we do so, we
follow the conventions taken by pandas, the Python visualization library that we use. From
pandas.DataFrame.boxplot documentation:

The box extends from the Q1 to Q3 quartile values of the data, with a line at
the median (Q2). The whiskers extend from the edges of box to show the range
of the data. By default, they extend no more than 1.5 * IQR (IQR = Q3 - Q1)
from the edges of the box, ending at the farthest data point within that interval.
Outliers are plotted as separate dots.

When displayed, the mean of the data is represented by a triangle.

Comments on Figure III.5 First, we observe in (a) a great variability in the number
of jobs submitted by the users during the DR windows. For example, for the 4-hour
windows, these numbers range from min = 110 to max = 10713, with 50% of the points
being between Q1= 722 and Q3 = 2749. We remind that these jobs are the only jobs on
which the su�ciency behaviors can have an impact.

From (b), we note that more than half of the inputs produces a saturation of the
infrastructure during the DR window, with Rigid behavior. In fact, the median load
during the DR window is 1570 (resp. 6169) core-hours, for a maximum reachable load of
1664 (resp. 6656). In other words: the DR windows coincide with periods of high activity

https://pandas.pydata.org
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in the platform. This activity is highest on Thursdays, followed by Tuesdays and Fridays
(looking and the median in Figure (d)).

It is important to note, however, that the baseline load in the DR window and the
number of jobs submitted during it are not correlated (Figure (c)). This is due to the
fact that (i) jobs can have very di�erent sizes (number of resources and execution time)
i.e., contribute very di�erently to the load, and (ii) the load during the DR window also
depends on jobs previously submitted to the platform.

3.3 Impact of su�ciency behaviors on energy

In this section, we present and compare the impact of each behavior on energy consumption
during the DR window, then overall.
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Figure III.6: Energy consumed in each simulation.
Y-axis: energy consumed (in kWh) during the demand response window. X-axis: computing load (in
core-hour) in window for the baseline behavior.

3.3.1 Energy in window

Figure III.6 displays the energy consumed during the DR window for every experiment
and every behavior. Values are scattered by the total load in the infrastructure during the
window for the baseline (i.e., Rigid) behavior. For that behavior, we observe an almost
linear relationship between load and energy consumed. This is due to our energy model
described in Section 1.4 being almost linear with the number of cores used (see more ex-
planation in Appendix 6). Deviations from the linear line are due to situations favoring a
more or less optimal packing from the scheduler inside the 16-core servers.
For the �ve other behaviors, the data points for Rigid are left as a comparison. Overall,
we observe a vertical shift of the data points corresponding to su�ciency behaviors. This
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(a) 1-hour demand response window
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Figure III.7: Energy metrics per behavior relatively to the baseline behavior.
space_d and time_d stand for Space Degrad and Time Degrad, respectively.

means that they consumed less energy globally, compared to the baseline.
Behaviors Renounce and Delay perform identically for this metric. Indeed, inside the DR
window, their e�ect is the same: users stop submitting. The result is a lower energy con-
sumption compared to the baseline. This gain is the best we can expect.
Behaviors Space Degrad and Recon�g display results that are similar to one another. In
fact, only during the DR window, these two behaviors have the similar e�ect of reducing
the number of resources required. The di�erence comes in the longer term, because recon-
�gured jobs execute for longer than degraded ones.
Finally, Time Degrad seems the less impactful of all on this metric. The reason is that
temporal degradation has no immediate e�ect, but rather leads to a load reduction in the
middle term, since the jobs have shorter execution times.

In addition, one would expect a positive correlation between the baseline load of the
platform and the relative energy gains of the �ve behaviors compared to Rigid. It would
translate into an increasing distance between the colored dots and the blue dots in the
graphs, as the load increases. Counter-intuitively, this does not seem to happen. This
phenomenon will be explained below.

Since the experimental campaign shows very scattered results, we chose to represent the
energy gains as box plots, relatively to the energy consumed in the baseline (Figure III.7).
We can read for example on the leftmost graphs that Renounce, the most radical behavior,
allows energy savings of up to 33% in the window for a 1-hour window, and 53% for a
4-hour window (6.1% resp. 15.5% on average). The savings do not go up to 100% because
jobs that were submitted before the window are still running in the infrastructure.
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3.3.2 Energy after the window, and overall

In addition to the energy consumed in the window, Figure III.7 shows the impact of the
di�erent behaviors on the energy consumed after the demand response event, i.e., from
17:00 or 20:00 on day2 (depending on the window length) to 24:00 on day3. For this sec-
ond metric, Delay performs very di�erently compared to Renounce. All the jobs originally
submitted within the window get postponed, resulting in an extra power consumption af-
ter the window: +0.4% (resp. +3.3%) on average for a 1-hour (resp. 4-hour) window.
This behavior remains neutral with respect to overall energy consumption (in + after the
window).
Interestingly, Recon�g, which is the other behavior to preserve the mass of the jobs, yields
better results in some cases. Up to -8.6% overall energy consumption could be reached
because the recon�gured jobs ��t better in the holes� with the bin-packing algorithm. This
phenomenon was already observed by Guyon et al. [103]. It remains marginal in our case,
with 0.3% and 0.9% average reductions in overall energy for 1-hour and 4-hour DR window,
respectively.
Space Degrad yields better results than Recon�g after the window and overall. We recall
that they were similar during the window. As stated before, the di�erence is that Space
Degrad truely cancels some load, while Recon�g increase the duration of the jobs, post-
poning the load to later.
Finally, if Time Degrad is the worse behavior in terms of energy gains in the window,
it proves signi�cantly better than Space Degrad after, and overall. The reason is to be
found in the distribution of our inputs. In fact, we recall that Time Degrad a�ects all the
jobs, and divide their execution time by two (see �Important remarks� in Section 1.2.2).
In contrast, Space Degrad makes a rounding when diving the number of resources. This
e�ectively leads to a halving of the mass only when the number of resources is even. In
particular, this behavior has no e�ect on jobs requiring only one core, accounting for 85%
of jobs in the �ltered workload and 21% of the mass (see Figure III.3).

From the comparison of Figure III.7a with III.7b, we can say that the larger the
window, the better the energy gains. This is due to inertia of the system: with
a longer window, a behavior on the submitted jobs has more time to make a di�erence
compared to the residual jobs that are still running in the infrastructure. This e�ect will
be analyzed further in the Discussion.

All the energy results are summarized in a ranking of behavior in Table III.2.

3.4 Impact of su�ciency behaviors on scheduling metrics

In this section, we present and compare the impact that each behavior has on the schedul-
ing. For this, we start by de�ning our scheduling metrics, display them on the baseline
experiment, and �nally on each behavior.

3.4.1 De�nitions: waiting time and slowdown

We use two usual scheduling metrics from the literature: mean waiting time and mean
slowdown.

De�nition 10. The waiting time of a job is the time that elapsed between the submission
of the job and the beginning of its execution in the infrastructure. With the formalism from
Section 1.2:

waiting time = start time− submission time = s− a (III.1)
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Mean waiting time is the average waiting time over all the jobs in the simulation. A
common reproach made to this metric is that it gives as much weight to waiting times
measured on short jobs than on long jobs. Arguably, a delay of one hour on a 30-second
job is less acceptable for a user than the same delay on a three-day job. A solution is to
use slowdown, that gives an expression of the waiting time relatively to the length of the
job:

De�nition 11. The slowdown of a job is the total time spent by the job in the system
divided by its execution time.

slowdown =
�nish time− submission time

execution time
=

f − a

d
= 1 +

waiting time

d
(III.2)

For each experiment, the mean waiting time and mean slowdown are calculated on all
jobs submitted in the same period as the metric energy_in + energy_after : between 16:00
on day2 (beginning of the DR window) and 24:00 on day3 (end of the experiment).

3.4.2 Scheduling metrics on the baseline

Figure III.8 shows the scheduling metrics for the Rigid behavior. We observe that for more
than half of the experiments the mean waiting time is below one hour (median = 2614 s)
and the mean slowdown below 19 (we remind that the median duration in our input
workload is 136 s). These are cases where the infrastructure is not saturated during the
studied period, and the queue of waiting job is often empty. On the other hand, there
are also cases of high congestion, for example the six outliers at more than 30000s = 8.3h
mean waiting time.

0 10000 20000 30000 40000 50000 60000

(a) Mean waiting time (in seconds)

0 100 200 300 400 500 600

(b) Mean slowdown (dimensionless)

Figure III.8: Scheduling metric distribution for the 105 experiments, baseline
behavior (calculated between 16:00 on day2 and 24:00 on day3).

3.4.3 Scheduling metrics on su�ciency behaviors

The results for the other behaviors are plotted in Figure III.9. The values are displayed
relatively to the baseline. Interpretation: if the mean for behavior X is at −25% on the
metric mean slowdown, it means that behavior X is has a mean slowdown 25% lower than
the baseline, on average, over the 105 experiments.

Adapting the scheduling metrics One problem is that the behaviors modify basic
characteristics of the jobs, some of which � namely submission time and execution time
� are used to de�ne the scheduling metrics. Consequently, we have to make adaptations.



50 CHAPTER III. CHARACTERIZATION OF SUFFICIENCY BEHAVIORS

-100% -75% -50% -25% 0% 25% 50% 75% 100%

reconf

time_d

space_d

delay
(corr)

delay

renounce

Mean slowdown

-100% -75% -50% -25% 0% 25% 50% 75% 100%

Mean waiting time

(a) 1-hour demand response window

-100% -50% 0% 50% 100%

reconf

time_d

space_d

delay
(corr)

delay

renounce

Mean slowdown

-100% -50% 0% 50% 100%

Mean waiting time

(b) 4-hour demand response window

Figure III.9: Scheduling metrics per behavior relatively to the baseline behavior.
The metrics are calculated between 16:00, day2 and 24:00, day3. For behavior Delay, �(corr)� indicates
the use of corrected metrics, where we use the original submission time to calculate the metrics (and not
the submission time after delay).

� For behavior Renounce, some jobs are canceled. Their start and �nish times are
therefore not de�ned. In this case, the mean waiting time and slowdown are calcu-
lated only on the subset of non-renounced jobs, which is a di�erent subset than the
baseline or the other behaviors.

� Behaviors Space Degrad, Time Degrad and Recon�g may change the execution time,
used in the de�nition of slowdown. In this case, the slowdowns are calculated with
the new execution times.

� For the behavior Delay, we provide both corrected and uncorrected metrics. The un-
corrected slowdown and waiting time are calculated in relation to the new (delayed)
submission times, while the corrected ones use the original submission times (from
the baseline).

Comments on Figure III.9 Looking at the distribution of mean waiting times, it can
be observed that the four behaviors Renounce, Space Degrad, Time Degrad and Recon�g
(in this order) shorten the waiting time on average. This is not surprising, as the �rst three
behaviors decrease the total mass of jobs to compute, and the fourth allows for a better
packing. Yet, this metric get worsened in a signi�cant number of cases (around 50% of
the cases for Recon�g and 25% for the two Degrad and Renounce), probably due to bad
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choices of the non-clairvoyant scheduler.
The behavior Delay stands out from the others as it a�ects the scheduling negatively in
most cases, even for the uncorrected metrics. It gets even worse when including the extra
waiting time from the delayed job in the calculation of the corrected metrics. In fact, Delay
leads to a burst of submissions at the end of the DR window, leading to congestions in the
queues, hence higher waiting time and slowdown.
Note that the distributions of mean waiting time and mean slowdown look very similar.
Only for behavior Time Degrad do we observe a di�erence: it ranks third in mean waiting
time, but fourth in mean slowdown (ranking made by considering the means in the distri-
butions). The distribution of mean slowdown for this behavior is actually centered around
zero, which means that Time Degrad yields results similar to the baseline for this metric.
The explanation is that Time Degrad has two e�ects that counter-balance each other for
the metric mean slowdown. On the one hand, this behavior reduces the submitted load,
which in turn reduces the waiting time of most jobs. The waiting time is in the numerator
in the de�nition of slowdown (last formula of Equation III.2). But on the other hand, Time
Degrad also reduces the execution time of jobs submitted in the window, appearing in the
denominator of the same formula. If we had used the original execution times rather than
the new (degraded) ones, results would have been probably similar to waiting time results.

Same as the energy results, scheduling results are summarized in Table III.2 in form of
a ranking.

4 Discussion

In this section, we provide an explanation of the energy results thanks to two quantities
that we introduce: the �uid and residual mass. Then, we synthesize the results of each
behavior and provide a comparison of them.

4.1 The �uid-residual ratio: an explanation of the results

We saw previously when analyzing the achievable energy savings in the DR window on
Figure III.6 that the gains cannot be explained by the infrastructure load in the window.
In fact, it is possible that the load is very high because of a large mass of job submitted
before the window, although the load on which the users have an in�uence is the mass
submitted during the window. We call these two quantities the residual mass, submitted
outside the window, and the �uid mass, submitted inside the window. Fluid and residual
mass are represented in an example in Figure III.10.

Since our approach does not impact the residual mass, we understand from Figure III.10
that the maximum gains that can be achieved with the su�ciency behaviors is to remove
all the �uid mass (which is done by Renounce). In other words, the relative energy
gains during the window are at most equal to the proportion of �uid mass in
the window.

To verify this claim, we plotted in Figure III.11 the energy gains as a function of the
�uid-residual ratio. We added a dashed and dotted line of equation y = −x, indicating
the best possible gains. For example, a dot on this line means that 30% energy reduction
is reached when the ratio �uid-residual in the window was 30%-70%. We see that no
dot is under this line. The best possible gains are almost achieved by Renounce and
Delay, though they hardly ever reach the line. The reason is the non-linearity of the
energy model, as explained in Appendix 6. In fact, even if a user renounces a 6-core
job, the server it was supposed to run onto might either remain powered on because it
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Figure III.10: Example of �uid and residual mass (Thursday Jun 26 2014)
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Figure III.11: Energy gains in function of the �uid-residual ratio. Only one plot for
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has something else to compute, or be switched o�. In the �rst case, the server saves the
dynamic power consumption, but still consumes the �xed Pidle part. In the second case,
the server continues to consume some energy during the switching o� period.

In some cases, however, Renounce and Delay dots are far away from the line. These
are cases of saturation, when many jobs are waiting in the queue. The removal of the
�uid mass is fully or partly compensated by the execution of the awaiting residual mass.

For Space Degrad and Time Degrad, gains are expected to be of half the �uid mass
at most, since users divide their submitted mass by two. Recon�g is expected to have the
same maximum, with even less gains in practice, since it preserves the mass. This second
optimal is represented by the dotted line, of equation y = x/2. In practice, the results are
even more scattered and further away from their optimal than Renounce/Delay. This is
due to several factors: (i) the energy/load non-linearity and saturation e�ects mentioned
above, (ii) the rounding up when dividing by two the resources for Space Degrad, and
(iii) the temporality of the gains for Time Degrad: the load diminution is not achieved
straight away but after half of the original execution time elapsed.

Note that we still observe a few experiments (with Space Degrad and Recon�g) that
do even better than the second optimal. These are probably cases where the baseline had
a very bad con�guration (many idle cores inside switched on servers), and freeing some
resources allowed the scheduler to achieve a better packing, leading to even more energy
gains than half of the �uid mass saved that way. On the other end of the spectrum, some
experiments make negative gains. These are saturation cases where the baseline also had
a bad con�guration i.e., many idle cores. Applying the behavior led to smaller jobs that
could better �t in the holes, but no energy gains because of numerous waiting jobs in the
queue.

4.2 Pros and cons of each behavior

Table III.2: Summary ranking of the �ve su�ciency behaviors according to their
impact on energy consumption and scheduling metrics.

behavior energy in energy overall sched. met. "acceptability"

Renounce 1st 1st 1st 5th
Delay 1st 5th 5th 2nd

Space Degrad 3rd 3rd 2nd 3rd
Recon�g 3rd 4th 4th 1st

Time Degrad 5th 2nd 2nd 3rd

energy in: from Figure III.7. The boxplot largely overlap, but Renounce and Delay are the same, best
on average, median and max achievable reduction. Space Degrad and Recon�g are very similar, so we
placed them ex aequo. Time Degrad has the distribution most clustered around zero.
energy overall: from Figure III.7, ranking clear from the boxplots.
scheduling metrics: means for metric mean waiting time in Figure III.9.
acceptability is opinion-based, it re�ects the size of the e�ort asked from the user. Justi�cations are
given in the text below.

Based on the results of our experimental campaign presented in the previous section, we
provide in Table III.2 a ranking of the �ve su�ciency behaviors according to the di�erent
metrics. This ranking constitutes the characterization of these behaviors. In the following,
we discuss this ranking for each behavior.
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Renounce First of all, the behavior Renounce performs the best for all the metrics
studied. By deleting all the �uid mass, it reaches the maximum energy gains possible with
our approach. It also lightens the scheduling signi�cantly. The problem with this behavior
is that the sacri�ce required from the user is huge, and often unthinkable. For this reason,
we ranked this behavior last in �acceptability�. Renouncing is radical, but we argue that it
is appropriate to consider it among other levers in view of the scale of the e�orts required to
achieve environmental agreements. We think that such a behavior is too often overlooked
in similar studies.

Recon�g On the other end of the spectrum, the behavior Recon�g seems to be the most
acceptable to the users, as it does not degrade the initial job and provides better waiting
time and slowdown than Delay for both the jobs within and after the window. Recon�g is
a good trade-o� to achieve some optimizations with a low e�ort from the user, especially
in combination with bin-packing schedulers and on/o� policies (see [103]).

Delay Delay also preserves the mass of the jobs, which is why we ranked it second behind
Recon�g in terms of acceptability. Same as Renounce, it reaches the optimal energy gains
during the window. However, it introduces an overhead in overall energy consumption
and slowdown compared to the baseline behavior. Note that this overhead would probably
be less important in real life, because (i) all users would not resubmit exactly at the
end of the window and (ii) they would probably adapt their submission behavior if they
experience congestion. We introduce later in Chapter V a model that takes feedback from
the infrastructure into account when replaying workload traces in simulation.

Space degrad The two Degrad behaviors consist in degrading the quality of service.
For a job with an even number of required resources, spacial degradation is equivalent to
temporal degradation, as it divides by two the quantity of operations performed by the
job. In practice, it is not always possible to apply one or the other behavior due to the
characteristics of the job. They are therefore ranked ex aequo in �acceptability�, second to
last behind Renounce. As a result, Space Degrad ranks second or third in all four columns
of Table III.2. It is a good trade-o� between the radical Renounce and low-e�ort Recon�g.

Time degrad Compared to Space Degrad, Time Degrad does not provide short-term
energy gains. Consequently, it is not adapted in a context of demand response. All the
same, it brings interesting results in energy overall and scheduling metrics, especially since
it consistently halves the mass of jobs compared to the Space Degrad, as explained before.
It is therefore a suitable behavior if short-term gains are not the priority, or if a spacial
degradation / recon�guration is not possible on the job.

5 Limitations

The work presented in this chapter contains a number of limitations that we enumerate
below, going from simpli�cations in the model to more general limits of the approach.

5.1 Model simpli�cations

In the data center model, latency and bottleneck e�ects in the communications are not
taken into account. Also, we suppose perfect speedup, i.e., a job executed on two cores will
take exactly twice longer than the same job executed on four cores. Finally, the energy
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consumption accounted for is only the one from the CPUs, neglecting other sources of
electricity consumption like memory, network or cooling.

All the same, we do not think that removing these simpli�cations would fundamentally
change our results, i.e., the comparison between behaviors. Moreover, our experiments
are reproducible and use powerful simulation tools (Batsim and SimGrid). This allows to
overcome these simpli�cations quite easily if needed.

5.2 Methodological limitations

We identi�ed threats to the validity of our method to answer the research question. The
major ones are listed below.

� In the experiments, only one behavior was applied at once, and to all the jobs sub-
mitted in the DR window. However, in reality, some behaviors cannot apply to some
jobs (e.g., �black-box� jobs that are not recon�gurable). On the contrary, a user
could apply a combination of behaviors. We designed the experiments this way in
order to exhibit the particularity of each behavior, and not to re�ect the reality.

� The experiments were run with only one type of scheduler (bin-packing). There is
a risk that it favors Recon�g and Space Degrad more than what another common
scheduler (FCFS or easy-back�lling) would have.

� Only one input trace was used: MetaCentrum, which is a research and not an in-
dustrial infrastructure. We performed some �ltering from it (see 2.2) to �t our
experimental constraints. In particular, long jobs were removed from the trace, yet
they contribute a lot to the residual mass. As a result, gains from the su�ciency
behaviors might be smaller in practice, if the size of the window is not comparable
with the duration of the jobs.

� With simulation, we miss more complex human behaviors that might have occurred
in a real platform.

� We do not provide a metric to quantify the �acceptability� of behaviors to users.
This acceptability depends on the users and the characteristics of the jobs, e.g., their
priority.

5.3 On the su�ciency behaviors

The �ve su�ciency behaviors de�ned and characterized in this chapter suppose a certain
level of knowledge and capacity of action from the users. Firstly, they are limited to
�direct data center users� (see model in Chapter II Part 1.1.1), such as HPC users. It is
unclear how a su�ciency behavior from an indirect user (like the focus group participants
in Chapter VI) would translate in the infrastructure. Secondly, our approach assumes that
users have information on when to act and how to act. In practice, a user might not have
access to the status of the infrastructure she is using. She might also not have the training
or possibility to modify the application she is launching. In fact, the recon�gurations
required on the job for Degrad and Recon�g are most of the time non-trivial. Lastly, users
do not always have the choice to act. Sometimes, they are employed by a company or need
to deliver results that require them to submit jobs. In this case, the incentive has to come
from the top.

Our approach is limited to su�ciency behaviors on new job submissions. We did not
study user actions on jobs previously submitted, such as killing a running job, putting it
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on hold or freezing it in the queue if it has not started yet. These behaviors require another
level of user knowledge and involvement, but constitute a powerful lever to go beyond the
�uid/residual limit. For that sake, we could also have studied behaviors with anticipation,
in which users start acting on their submissions before the demand response event.

Finally, we decided to characterize the e�ect of the di�erent su�ciency behaviors by
looking at electricity consumption and choosing the context of demand response. This is
quite restrictive as the concept of su�ciency is much broader than that (see Introduction),
including, for example, reducing the demand for computation by rethinking our digital
needs. Accounting for electricity consumption only focuses on the use phase, and neglects
the other phases of the life cycle (production, distribution, end of life). It also does not
take into account the other environmental impacts. Nevertheless, since the literature on
digital su�ciency is very young, we remind that this study is certainly perfectible, but also
one of the �rst proposition to study su�ciency levers with simulation.

6 Conclusion

In this chapter, we de�ned �ve types of �su�ciency behaviors�, i.e., actions that a user
can take when submitting jobs to a data center in order to decrease the environmental
footprint. These behaviors are delaying, recon�guring, spatially degrading, temporally
degrading and renouncing the job submission. Thanks to an extensive and reproducible
simulation campaign on 105 days of a real workload, we were able to characterize the
impact of these behaviors on energy consumption and scheduling metrics.

Renounce is unsurprisingly the most e�cient behavior, with 16% energy savings on
average on a 4-hour time window, if applied by all users during this time window. However,
it is also the behavior that asks the biggest sacri�ce to the users. Delay and Recon�g require
the least e�ort to users, as they preserve the integrity of the job. Delay is very adapted for
short-term gains: it postpones the ��uid mass� in the window, i.e., the computing load due
to the jobs submitted during the window. It leads however to a peak of submission in the
future which signi�cantly a�ects the energy and scheduling metrics then. Recon�g allows
for some energy savings during the window (-3% on average compared to the baseline if
applied for four hours), comparable to Space Degrad. But on the long term, Recon�g
is almost a zero-sum game. Finally, the two Degrad behaviors yield interesting results,
as they cut o� computing load. Time Degrad is not adapted in the short term, but it
consistently lightens the load in the future.

Now that we have a better understanding of the characteristics of these behaviors, we
are inclined to wonder how they could help a data center functioning more sustainably in
a more realistic scenario, where users would adopt a mix of behaviors. This is what we
investigate in the next chapter, in the context of intermittent energy production.

Appendix

Energy model quasi-linear with number of cores

Let ncores the number of non-idle cores, and non, noff , nson, nsoff the number of servers
switched on, switched o�, switching on and switching o� at time t (non + noff + nson +
nsoff = N). Since the power constants are the same for all servers in the platform, we
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have from Equations II.1 and II.2:

PDC(t) =
N∑
i=1

P (i)(t)

=
∑

servers o�

Poff +
∑

servers son

Pson +
∑

servers so�

Psoff +
∑

servers on

(Pidle + k(i)(t)Pcore)

= noffPoff + nsonPson + nsoffPsoff + nonPidle + Pcore

∑
servers on

k(i)(t)

Replacing with numerical values from Table III.1:

PDC(t) = 9.75noff + 100nson + 125nsoff + 100non + 7.31ncores

≈ 10(noff + nson + nsoff + non) + 90(nson + nsoff + non) + 15nsoff + 7ncores

≈ 10N + 90(N − noff ) + 15nsoff + 7ncores

From the last equation, we see that PDC depends on the number of serversN (constant),
the number of servers o� and switching o�, and the number of non-idle cores. In our case,
and with the bin-packing scheduler with greedy shutdown, it is reasonable to make two
additional assumptions to simplify the equation:

� we neglect the time to switch on and switch o�, so nsoff = nson = 0 and N =
noff + non

� we suppose perfect packing, i.e., non ≈ ncore/16

This way, we obtain:

PDC(t) ≈ 10N + 90non + 7ncores = 10N +
90 ∗ ncore

16
+ 7ncores = 10N + 12ncores (III.3)

Which explains why we observe an almost linear relationship between energy consumed
and number of non-idle cores in Figure III.6.
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The previous chapter introduces �ve �su�ciency behaviors�, that direct users of a data
center can adopt to reduce the environmental footprint of their job submissions. The
associated experimental campaign tests the behaviors one by one, as if all the users would
choose the same behavior. This is useful for characterizing precisely the e�ect of each
behavior, but remains quite theoretical. In reality, we can expect that users would adapt
their submission behavior di�erently depending on their own context, incentives and the
nature of their jobs.

As electricity is coming more and more from renewable sources, we see a potential
for su�ciency behaviors in the management of intermittency of electricity production.
Similarly to the Low-tech Magazine1 [116], a solar-powered website that goes o�ine when
battery is low, we propose to study a �su�cient data center�: a renewable-energy-powered
IT infrastructure in which the users contribute the environmental e�ort by adapting their
submission behavior when energy is scarce.

We adopt the same outline as in the previous chapter: problem statement in Section 1,
description of the experimental campaign in Section 2, followed by the results (Section 3)
and a discussion in which we answer the research questions (Section 4). Finally, the limits
of the approach are exposed in Section 5 before closing the chapter on concluding thoughts.

The work presented in this chapter was made in collaboration with Jolyne Gatt, an
intern at our team in the period from February to July 2023. Jolyne was supervised by
Georges Da Costa and myself. She suggested the approach, implemented it in Batmen and
run the experiments. The data analysis as well as the writing was done jointly. This work
was accepted for publication at the conference ICT4S 2024 [C4].

1https://solar.lowtechmagazine.com
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1 Description of the approach

This section provides some context on renewable-energy-powered data centers, before stat-
ing our research questions. Then, we explain our approach by introducing the three-state
energy feedback model, and the way it is combined with the su�ciency behaviors.

1.1 Context

Data centers and renewable energies To reduce the environmental impact associated
with electricity supply to their data centers, large IT companies have been taking 100%
renewable energy commitments in the last decade [49]. Most of the time, these commit-
ments are achieved through green tari�s or power purchase agreements [49]. A problem
with these contracts is that they do not directly create the new renewable capacity nec-
essary to cover the electricity demand. For this reason, companies have started going one
step further, and installing on-site renewable sources on their data centers (e.g., Google in
Belgium [117]). Often, the renewable electricity produced is actually sold to the market,
leaving the burden of balancing demand with intermittent supply to grid operators. The
last step for a truly sustainable data center would be to self-consume this electricity to
become fully autonomous in energy supply. This is the aim of ANR project DataZero2, in
which I have been involved during my PhD.

DataZero project DataZero2 is a consortium of academics and industrials investigating
since 2015 new ways to power and manage a data center operated only by renewable
energies [50]. The architecture includes photovoltaic panels, wind turbines, fuel cells and
batteries to produce and store electricity. These di�erent units are managed by the Power
Decision Module, in charge of arbitrating the source involvement decisions with regard to
weather forecast and internal objectives. In mirror, the IT Decision Module delivers a plan
for server state (switched on/o�, computing frequency) based on IT demand forecast and
power envelope. The two modules interact with each other to �nd an agreement via a
Negotiation Module.

1.2 Research questions

The approach presented in this chapter is part of this context. We consider an o�-grid
data center and investigate the digital su�ciency behaviors' potential to reduce the load in
periods of low electricity production. We suppose that the users are informed of the status
of renewable production at the moment of submission through a three-state energy feedback
mechanism: green state when production is abundant, red state when production is low,
and yellow in-between. We aim to provide answers to the following research questions:

(1) How much does user e�ort impact energy consumption in critical periods? Is there
a threshold where more e�ort does not result in more energy savings?

(2) Does action in the intermediate �yellow� energy state have an e�ect on energy con-
sumption, or is it su�cient to only consider nominal and low-renewable states?

1.3 Energy state model

The users adapt their job submissions to the current state of renewable energy production.
When production is low, they are invited to submit fewer and smaller jobs. To simplify the

2https://www.irit.fr/datazero/datazero2/

https://www.irit.fr/datazero/datazero2/
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information that is given to them, we de�ne three �energy states�, named like the colors of
a tra�c light:

� Green state: The system is alright: there is enough energy to power the whole
platform.
We are in this state when the energy production is greater than the max energy con-
sumption of the platform Efull.

� Yellow state: The system is disturbed: the production is not enough to power the
whole platform, but it can power a big part of it.
We are in this state when the energy production is below Efull, but above a certain
threshold τ , that we �xed arbitrarily to 0.5Efull.

� Red state: The system is critical: the production is low, we must reduce the energy
consumption of the platform.
We are in this state when the energy production is below the threshold τ .

This three-state model can be seen as an eco-feedback design [85], providing simple
yet actionable information to the users. Compared to a two-state model, it allows for
more expressiveness. In our case, the yellow state indicates that a user e�ort would be
appreciated, but the situation is not critical. It can also be seen as a transition state
between green and red, giving the information that the system will soon become critical or
is not critical anymore but not yet calm. Finally, this model provides a useful abstraction
layer. It is easy to change the way the energy states are de�ned, by selecting di�erent
thresholds or changing the metrics on which they are based. For example, one could de�ne
the energy states based on level of battery or instantaneous data center power consumption
instead of renewable production like here.

Note that our energy state model is entirely de�ned, for a given renewable energy
production data, by the thresholds on max energy consumption (50% and 100%, in our
case). Time is discretized into units of time during which the system is considered to
be stable. The time intervals during which one energy state occurred are called �state
windows� or simply �windows�. They can last one or several units of time. For example,
if energy production is under the red threshold from 6:00 to 8:00, we say that a �red state
window� of 2 hours occurred.

1.4 Behaviors for each energy states

The goal of the �tra�c light� approach previously described is to inform the users e�ciently
on the phases where renewable energy is scarce. In response, we suppose that the users
will adopt the su�ciency behaviors de�ned in Chapter III (Section 1.2 and Figure III.1):
Renounce, Delay, Space Degrad, Time Degrad or Recon�g. Among them, only the model
for behavior Delay is adjusted to our speci�c context. In fact, Delay was modelled by
postponing the job submission to the end of the demand response window, which implies
two assumptions. First, it assumes that the user knows when the window will �nish, or is
at least noti�ed. Second, it supposes that she connects to the system exactly at this time to
resubmit the job. With the energy-state approach, the end of a state window is not known
in advance, since it depends on real-time information on power production. Moreover, the
feedback mechanism is supposed to be passive: the information is only given to the users
when they are connected to the platform, and not through noti�cations. Consequently, we
will consider a di�erent version of behavior Delay, named See You Later:
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Rigid

See You Later

Space Degrad

Time Degrad

Reconfig

Renounce

no effort, p=1-α

effort, p=α

job to 
submit

which energy 
state?

green

yellow

red

how many cores
requested?

how many cores
requested?

1 core

>1 core

1 core

>1 core

user choice

Figure IV.1: Decision chart when a user submits a job. The e�ort probability α represents
the probability for users to consider adopting a su�ciency behavior. For a �xed energy state and number of
cores, the available behaviors are equiprobable. For example, multicore job in red state: the four available
behaviors have a probability 1/4.

See You Later The user decides to postpone the job submission by one hour. After
that delay, she will take a new decision on that job.
For example, a user seeing that the current energy state is red could decide to come back
and check the situation later. If the state is still critical when she comes back, she might
want to postpone again, to submit anyway or apply any of the other behaviors.
➢ model: the submission time is postponed by one hour, and the job will be considered
like a new submission.

It gives us a set of six available behavior: B = { Rigid, Time Degrad, Space Degrad,
Recon�g, See You Later, Renounce }. For each energy state, we suppose that users will
only consider a subset of B:

� green state: there is enough energy, users submit normally.
subset: { Rigid }

� red state: we assume that users will make an e�ort by choosing any of the other
behaviors, depending on their context. Some will accept to recon�gure or degrade
the job, if they can. Some will choose to come back later, when the energy state
is hopefully better. And some will simply renounce the job, which was maybe not
important enough.
subset: { Time Degrad, Space Degrad, Recon�g, See You Later, Renounce }

� yellow state: we exclude the Renounce behavior, as we consider it too radical
in regard to the criticality of the state. See You Later is also excluded because a
yellow state is an intermediate state, so delaying jobs might push them to red states.
However, we added Rigid behavior, as some users might choose to ignore the warning
and submit normally.
subset: { Rigid, Time Degrad, Space Degrad, Recon�g }

The modi�cations applied to the job submissions depending on the energy state are
illustrated in Figure IV.1. Distinction had to be made between monocore and multicore
jobs, as space degradations and recon�gurations are not possible on monocore jobs.

Finally, since we have no data on the popularity of each behavior, we will suppose that
each time users take a decision, they use a uniform randomized choice. The algorithm used
for each user each time they submit a job is presented in Algorithm 4.
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Algorithm 4 Algorithm for user submission behavior.

// state ∈ [Red, Yellow, Green]
// α is the user e�ort probability
// cores is the number of cores for the job
function get_behavior(state, α, cores)

With probability (1− α) : return Rigid
if state == Red & cores == 1 then

return uniform(Time Degrad, Renounce, See You Later)
else if state == Red & cores > 1 then

return uniform(Space Degrad, Recon�g, Renounce, See You Later)
else if state == Yellow & cores == 1 then

return uniform(Rigid, Time Degrad)
else if state == Yellow & cores > 1 then

return uniform(Rigid, Space Degrad, Recon�g)
else if state == Green then

Return Rigid

2 Experimental setup

In this section, we describe our method by explaining our experimental campaign, its inputs
and outputs.

2.1 Description of the experimental campaign

To answer research question (1), we use the data center model from Chapter II, that we
extend with the energy state model from Section 1.3. Only one extra information needs
to be available to users during the simulation: the energy state (red, yellow or green) at
time of submission. This information can be retrieved from any energy production input,
using the thresholds de�ning the states.

In order to vary user involvement, we introduce an additional parameter α, which
represents the probability for a user to adopt a su�ciency behavior when in red or yellow
state. This parameter is represented at the root of the decision chart in Figure IV.1.
We will try four values, from low e�ort (α = 0.25), medium e�ort (α = 0.5), big e�ort
(α = 0.75), up to max e�ort (α = 1).

We therefore propose the following experimental campaign. On a given workload and
energy production input, we simulate the operation of the data center and its users. For
each value of α, we launch 30 replicates, to minimize the e�ect of randomness. As weather
and tasks input are always identical, the only di�erence between each of the replicates
is the random choice of e�ort and then of the exact behavior, following Figure IV.1 and
Algorithm 4. We also add four experiments, for comparison purposes:

� full rigid, where the jobs are submitted Rigid all the time (equivalent to α = 0). This
corresponds to the baseline.

� full renounce red, assuming that users would renounce all their submissions during
red states. This provides us with an upper bound on achievable energy savings.

� full degrad red and full recon�g red, same as above with behaviors Degrad (Space by
default, or Time if not possible) and Recon�g (when possible).
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To answer research question (2), the whole experimental campaign is repeated, without
taking into account the yellow state. They are instead treated by users as green states.

In the end, our experimental campaign consists of (4 values for alpha) × (30 repetitions)
× (2 treatments) + (4 exp. for comparison) = 244 simulation runs.

2.2 Experimental inputs

Like in the previous chapter, the experiments were launched with the simulation envi-
ronment described in Chapter II, Section 2: Batsim (v4.1) and SimGrid (v3.31) for the
infrastructure simulation and Batmen for the scheduler and user simulation. The scheduler
is the same as in the previous chapter: bin-packing with server shutdown (see Chapter II,
Section 1.5, Algorithm 3).

Our software Batmen was extended to support multibehavior feature (release 2.0).
A new user class DMUserMultiBehavior was created to represent the energy-state-aware
users, taking as input:

− a workload in Batsim JSON format,

− two lists of time intervals representing the red and yellow windows,

− the probabilities of choosing each behavior, for each situation (red multicore, red
monocore, yellow multicore and yellow monocore),

− a seed for deterministic random number generation.

The IT workload and energy production traces are taken from ANR Datazero project,
as well as the corresponding sizing for IT and power infrastructures. We describe them
below.

IT workload. Like in the previous chapter, the workload is also adapted from the Meta-
Centrum trace3. The following �ltering is performed:

1. Step 1: (excludes 87% jobs representing 86% core-hours)

− Using only the period from June 1, 2014, to November 30, 2014. This part was
taken because it is the longest period in the trace where no cluster was removed
or added.

− Removing clusters with GPU, because our simulation only simulate jobs running
on CPU.

− Removing clusters with more than 18 cores, because our simulated data center
is composed of 18-core servers.

2. Step 2: (from the remaining jobs, excludes a further 5% jobs representing, since they
are very large, 86% core-hours)

− Removing jobs running on more than 18 cores, because our scheduler do not
authorize multiserver execution.

− Removing jobs running for more than 15 hours, to mitigate inertia in the system.

After the above �lters, our workload is six-month long and contains 693066 jobs and
474 users.

3�le METACENTRUM-2013-3.swf available at https://www.cs.huji.ac.il/labs/parallel/workload/l
_metacentrum2/index.html

https://gitlab.irit.fr/sepia-pub/mael/batmen/-/tags/v2.0
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
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Energy Production Data. We consider electricity production from photovoltaic panels.
The energy input data is generated from weather data (solar irradiation) provided by the
website renewables ninja4. The reference point for the weather is 2019, in the city of
Toulouse, France. Data is provided with one-hour time steps. Note that the weather and
workload traces are not from the same year. However, we took care to align the days in the
IT workload with the days in the weather, i.e., the workload of June 24, 2014 is replayed
with the energy production of June 24, 2019.

For the experiments, we do not take into account energy storage systems. We simply
consider that, in periods of low energy production, electricity has to come from other
sources, be it batteries, power generator or the electricity grid. However, batteries and
fuel cells are considered in the Datazero project, and were taken into account to produce
a suitable sizing for both IT and energy platforms (see below).

IT and power platform. Both platforms were created by colleagues, ensuring that the
volume of renewable production is su�cient to cover the energy needs from IT, taking
into account the e�ciency of batteries. The sizing technique used is similar to the one
described in this article [56]. The simulated renewable sources consist of a = 145m2 of
solar panels with e�ciency η = 0.206. The power produced at time t is obtained by the
formula η × a × irr(t), with irr(t) the solar irradiation. The simulated IT platform is
composed of 42 18-core servers, whose power constants are given in Table IV.1.

Table IV.1: Power constants for the servers and time to switch on (Tson) and switch
o� (Tson). Measurements in Gros Grid'5000 cluster

Pidle Pcore Poff Pson Psoff Tson Tsoff

62 W 4.52 W 20 W 110.5 W 76.5 W 164 s 6 s

Time and carbon footprint of the campaign. The experimental campaign was
launched in one node (2 × 16-core Intel Xeon Gold 6130) of the scienti�c Grid'5000 plat-
form5, located in Grenoble, France. It took 7 hours to complete and 55 GB of storage
space for the output �les, drawing 2 kWh of electricity according to the machine's watt
meter. Assuming a carbon intensity of electricity of 38 gCO2eq/kWh6, this represents a
carbon footprint of 76 gCO2eq.

Reproducibility. All the material to reproduce our experimental campaign and its anal-
ysis are available in a GitLab repository7. It contains the Nix �le de�ning the software
dependencies, the scripts to launch the experiments and the Notebooks to analyze the
output data and produce the graphs included in this chapter.

2.3 Metrics

From the simulation outputs, we compute both energy- and e�ort-related metrics. They
are de�ned below and reported later in the Results (Section 3).

4open-source weather data repository available at https://www.renewables.ninja/ [118, 119]
5https://www.grid5000.fr/w/Grid5000
6data from the French distribution operator RTE: https://www.rte-france.com/eco2mix
7experiment repository available at https://gitlab.irit.fr/sepia-pub/open-science/sufficien

t-behaviors-with-renewables (use the tag maelPhD)

https://www.renewables.ninja/
https://www.grid5000.fr/w/Grid5000
https://www.rte-france.com/eco2mix
https://gitlab.irit.fr/sepia-pub/open-science/sufficient-behaviors-with-renewables
https://gitlab.irit.fr/sepia-pub/open-science/sufficient-behaviors-with-renewables
https://gitlab.irit.fr/sepia-pub/open-science/sufficient-behaviors-with-renewables/-/tags/maelPhD
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2.3.1 Energy-related metrics

Batsim provides us with power consumption logs, thanks to the underlying SimGrid energy
model. These logs are compared with the power production data, identical for all simu-
lations. In case the renewable production is in excess compared to the power consumed,
we say that we are in a phase of overproduction. On the contrary, when the production is
insu�cient to cover the power consumption, we talk about underproduction. These phases
are illustrated in Figure IV.2.
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Figure IV.2: Underproduction and overproduction. Underproduction occurs when
renewable power does not meet IT demand. Overproduction is when IT demand is lower
than the renewable power.

We compute on each experiment the following metrics:

� energy total: the energy consumed by the data center overall;

� energy red / yellow: the energy consumed during red / yellow state windows;

� overproduction: the excess renewable energy produced in phases of overproduction,
that was not consumed by the data center (orange in Figure IV.2). It is typically
sold to the grid or stored in batteries.

� underproduction (a.k.a �brown energy�): the excess of energy consumed in phase
of underproduction, that could not be produced by the renewable sources (blue in
Figure IV.2). It has to be bought from the grid or drawn from batteries.

2.3.2 E�ort-related metrics

In addition to energy, we want to report the e�ort made by the users when they adopt
the various behaviors. The e�ort is a subjective quantity, that will not be experienced the
same way by di�erent users. All the same, we will report for each experiment:

� the number of jobs submitted without modi�cation (�#unmodi�ed�);
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� the number of jobs that were recon�gured, degraded, renounced and delayed by a
See You Later (�#renounced�, �#degraded�, etc.).

Additionally, we aggregate all the above in a metric of weighted e�ort, where we as-
sociate to each behavior a weight, supposed to represent the inconvenience for the user.
To do so, we follow the ranking of behaviors according to their �acceptability�, that we
proposed and justi�ed in the previous chapter (Table III.2). We choose for the weights
arbitrary values, reported in Table IV.2.

Table IV.2: Weights for metric weighted e�ort (without unit).

Recon�g See You Later Degrad Renounce

weight 25 50 75 100

The metric weighted e�ort is calculated as follows: with N the total number of job,
nb the number of jobs a�ected by behavior b and wb the weight associated to behavior b
(Table IV.2):

weighted e�ort =
∑

b∈{Rigid,Recon�g,
See You,Degrad,Renounce}

nb × wb

N
(IV.1)

For example: if a job is delayed one time by a See You Later and then degraded, the
e�ort for this job will be counted as 125/N . Note that this is more than a single Renounce,
which would be counted as 100/N . In fact, we assume that it is less cumbersome for a
user to simply renounce a job than to connect to the platform a �rst time, realize that the
state is red, decide to come back later, realize that the state is still red and then decide to
degrad.

To give an idea, summed over all jobs of a simulation, a weighted e�ort of 0 corresponds
to submitting all the jobs without modi�cation (100% Rigid) and a weighted e�ort of 100
corresponds to renouncing all jobs (100% renounce).

3 Results

The data presented in this section are obtained following the experimental campaign. They
are based on Batsim scheduling and energy outputs in addition to custom user behavior
logs, on which we computed the metrics described before.

3.1 State Window distribution

First, to get an understanding of the distribution of green, yellow and red state windows in
the experiments, Figure IV.3 shows a typical week (top graph). The window distribution
follows a day-night cycle with green state during the day, red state during the night and
yellow state in-between. This re�ects a common pattern for photovoltaic production. The
sixth day is yellow due to the lack of sun. It is also possible to have one or more days that
are completely red (no renewable production). We can see that the length of the yellow
windows is small compared to green and red.

On the full experiment of nearly 6 months duration, the distribution of state window is
given, aggregated by hour of the day, in the bottom graph of Figure IV.3. The day/night
pattern is con�rmed as green states are always starting after 6:00 and stopping before
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Figure IV.3: Window state distribution in the inputs.
Top graph: on a typical week. Bottom graph: over the 162 days of the input trace, in
function of the time of the day. Top graph: data from 5 days of solar irradiation in Toulouse, August
26-30, 2019, one-hour time step. The two thresholds de�ning the windows are displayed as horizontal lines.

18:00, whereas red state are rare between 7:00 and 15:00. The exact distribution would
vary depending on the season and geographic location of solar panels, but the overall shape
should be similar.

Red state is the most common state, accounting for 56% of the experiment duration.
Green state comes in second (36% of experiment duration). Yellow is the rarest state,
appearing less than 8% of the time. Also, yellow states typically last at most one hour
(85%), and a yellow state last 6 consecutive hours at maximum. Concerning red states,
they typically last between 11 and 16 hours (80%). 10% of red state lasts less than 11
hours. Only once did a red state last up to 23 hours.

3.2 Energy consumption

The results concerning energy and user behavior are presented in Tables IV.3 and IV.4. For
each metrics, the mean and standard deviation σ are computed on the n = 30 replicates of
each experiment. The accuracy displayed in the tables corresponds to 3 σ√

n
, or a con�dence

interval of 99.7%, assuming that the outputs are normally distributed.

Table IV.3 focuses on the energy-related metrics.
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Table IV.3: Mean energy metrics in kWh, con�dence interval 99.7%

user e�ort y?∗ energy red energy yellow energy total overproduction underproduction

full rigid (α = 0) 8458 1145 15143 16532 8098
low (α = 0.25) no 8194 ± 4 1124 ± 1 14816 ± 5 16609 ± 3 7843 ± 4
low (α = 0.25) yes 8165 ± 6 1120 ± 2 14779 ± 8 16616 ± 4 7813 ± 6

medium (α = 0.5) no 7882 ± 7 1099 ± 2 14429 ± 9 16695 ± 4 7539 ± 7
medium (α = 0.5) yes 7827 ± 7 1089 ± 2 14361 ± 8 16705 ± 4 7480 ± 6
big (α = 0.75) no 7503 ± 7 1073 ± 2 13969 ± 10 16794 ± 4 7174 ± 7
big (α = 0.75) yes 7422 ± 8 1053 ± 2 13862 ± 11 16815 ± 6 7087 ± 8
max (α = 1) no 7019 ± 8 1047 ± 2 13400 ± 11 16910 ± 5 6717 ± 7
max (α = 1) yes 6915 ± 8 1020 ± 2 13253 ± 11 16943 ± 5 6602 ± 7

full renounce red 5620 944 11683 17308 5481
∗: with yellow windows enabled?

Energy savings We see that by adopting su�ciency behaviors, users were successful
to cut the energy consumption during critical periods: the energy consumed during red
and yellow windows decreases with the e�ort α. The relationship is linear: a Pearson
correlation analysis between α and energy red / yellow gives coe�cients of -0.992 and
-0.965, respectively.

This is also the case with the underproduction, which is the quantity that we seek to
minimize. Here again, the relationship is linear (Pearson coe�cient -0.991).

We see that the variability of our results is very small: the con�dence intervals are
close to the mean. This is due to the size of our workload (almost 700000 jobs) and the 30
replicates for each experiment, which greatly limit the e�ect of randomness.

In�uence of yellow states Concerning the yellow states, their presence improves the
energy-related metrics. In every behavior scenario, the version with yellow state yields
better results for every energy-related metrics than the version without yellow states.

Remarks Firstly, it is important to note that even if full renounce red is the best scenario
in terms of energy, it does not lead to zero energy consumption in red windows. This is
due to the inertia in the system, well-discussed in the previous chapter (see Section III.4).
Full renounce red removes all the �uid mass, but the residual mass due to jobs submitted
before remains.

Secondly, we note that overproduction of energy is more than twice as big as un-
derproduction. We have more excess than shortfall in production. More interestingly,
overproduction is bigger than the total energy consumed. This re�ects the fact that the
electrical infrastructure was sized for the whole year, taking into account the e�ciency
of batteries and fuel cells. The overproduction in summer is meant to compensate the
shortfalls in winter. Here, the experiments only cover summer and fall.

Lastly, we see that overproduction increases with α. This is an unwanted e�ect, since
excess renewable power production will then have to be stored or sold to the electricity
grid. It may also appear counter-intuitive because periods of overproduction are also
green states. But it is in fact again a consequence of the inertia in the system. Degrad
and Renounce tend to decrease the �uid mass, which, as we saw before, partly continues
after the window (see illustration in Figure III.10). As a result, energy consumption
after red windows, which is most of the time overproduction, is decreased by Degrad
and Renounce. See You Later and Recon�g counter-balance this e�ect by moving load
from underproduction to overproduction periods. Overall, we note that overproduction
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Table IV.4: Mean user e�ort metrics in percentage of the total number of jobs in the
workload (except the last column, without unit), con�dence interval 99.7%.
Note that the sum of columns 3 to 7 is not equal to 100%, because a job that was delayed by a See You
Later will be counted both as a delayed job and as its �nal behavior, which can be Rigid, Degrad, Recon�g
or Renounce.

user e�ort y?∗ #unmodi�ed #renounced #degraded #reconf. #delayed weighted e�ort

full rigid (α = 0) 100 0 0 0 0 0
low (α = 0.25) no 90.2 ±.02 3.4 ±.02 3.4 ±.02 0.4 ±.01 3.4 ±.02 7.8 ±.02
low (α = 0.25) yes 89.1 ±.02 3.4 ±.01 4.3 ±.02 0.6 ±.01 3.4 ±.02 8.5 ±.02

medium (α = 0.5) no 80.3 ±.03 7.4 ±.02 7.4 ±.02 0.9 ±.01 7.4 ±.02 17.0 ±.03
medium (α = 0.5) yes 78.2 ±.02 7.5 ±.02 9.3 ±.02 1.2 ±.01 7.5 ±.02 18.5 ±.02
big (α = 0.75) no 70.5 ±.03 12.3 ±.02 12.3 ±.02 1.4 ±.01 12.3 ±.03 28.0 ±.03
big (α = 0.75) yes 67.3 ±.03 12.3 ±.02 15.3 ±.03 2.0 ±.01 12.3 ±.04 30.3 ±.03
max (α = 1) no 60.7 ±.00 18.2 ±.03 18.2 ±.03 2.1 ±.01 18.2 ±.05 41.5 ±.03
max (α = 1) yes 56.4 ±.01 18.2 ±.03 22.2 ±.03 2.7 ±.01 18.2 ±.04 44.6 ±.02

full renounce red 60.7 39.3 0 0 0 39.3
∗: with yellow windows enabled?

increases less than underproduction decreases, which is a reassuring result.

3.3 User e�ort

Table IV.4 focuses on user-e�ort-related metrics.

Increasing e�ort Similarly to energy-related metrics, we observe a strong correlation
between the e�ort probability α and the user e�ort metrics. This is directly due to the
de�nition of α in our model, which corresponds to the proportion of jobs that will be
modi�ed in red and yellow states. The metric weighted e�ort, as a linear combination of
the others, is no exception. The Pearson correlation coe�cient between α and weighted
e�ort is 0.993.

Once again, the results feature a very small variability thanks to the size of our data.

We notice that Recon�g is the least used behavior, with only 2.7% recon�gured jobs
at most. This is due to the large proportion (77%) of one-core jobs in our log, for which
the recon�guration is not available (see decision chart in Figure IV.1).

Among all the user e�ort scenarios, full renounce red is the one that requires the most
e�ort, if we look at the number of renounced jobs. However, the scenario max e�ort with
yellow states has a higher number of modi�ed jobs, because it leads to the modi�cation of
all jobs in the red and yellow phases. With the weights of Table IV.2, max e�ort scenarios
with and without yellow states result in a bigger weighted e�ort than full renounce red.

In�uence of yellow states Overall, taking into account yellow states increases user
e�ort. This follows directly from their de�nition: for the same e�ort scenario α, yellow
states come in addition to the existing red states. As a result, the presence of yellow
states increases the number of degraded and recon�gured jobs, and decreases the number
of unmodi�ed jobs. As behaviors Renounce and See You Later are not available in yellow
states, the number of renounced jobs and delayed jobs is not modi�ed.
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4 Discussion

In this section, we make further analyses on the results, allowing us to answer the research
questions. Then, we discuss the relevance of the weighted e�ort metric.

4.1 Trade-o� between energy and e�ort

We plot in Figure IV.4 the energy gains in function of user e�ort. Both graphs use the
energy metric underproduction, but Figure IV.4a expresses e�ort as the number of modi�ed
jobs, whereas Figure IV.4b uses the weighted e�ort metric. In both cases, we can see that
user e�ort and gains in underproduction counter-balance each other, and the relationships
between these two quantities are linear.

In the previous section, we observed that energy consumption in red and yellow phases
was linearly correlated to the e�ort parameter α. This followed almost directly from the
parameter's de�nition. In the present case, linearity between underproduction gains and
user e�ort do not directly derive from the de�nition of α, but demonstrate that our 3-state
energy approach was conclusive to transform e�orts in red/yellow phases to brown energy
savings.

As a result, we can answer our �rst research question:

(1) The su�ciency behaviors adopted by the users allow to reduce the underproduction,
i.e., the energy consumption that could not be matched by renewable production.
The energy savings are linear with the size of the e�ort, with a maximum e�ort giving
an energy saving of −18.4% compared to no e�ort.
There is no threshold after which the e�ort provided does not result in a fair amount
of energy savings. To obtain a balanced level between user e�ort and energy savings,
one has to set either a maximum e�ort acceptable or a minimum energy saving
wanted.

4.2 Relevance of yellow states

From Figure IV.4, we observe that adding yellow windows helps further reducing the
underproduction, while also increasing the e�ort. It is not surprising, since scenarios with
yellow windows are scenarios with red windows to which extra phases of user e�ort are
added. A higher number of jobs gets modi�ed, lowering their energy consumption (Recon�g
and Degrad), hopefully anticipating for red phases to come. The relevant question to ask
is: have the yellow states made it possible to reduce underproduction at a lower marginal
cost in e�ort?

To answer this question, we plotted the gains in underproduction per unit of e�ort in
Figure IV.5. What we see then, is that experiments with yellow windows yield lower gains
per modi�ed job (IV.5a) than their red-only counterparts. In other words: contrary to
our expectations, yellow windows do not succeed to bring extra gains at a lower cost in
e�ort, for this e�ort metric. However, if we take the weighted e�ort metric (IV.5b), we
see no more di�erence between scenarios with and without yellow windows. The reason
is probably that the behaviors adopted during yellow windows have a lower weight in the
weighted e�ort metric.

We can now answer our second research question:

(2) On average, adding yellow states helps further reducing energy consumption in all
the metrics considered. But yellow states can be considered as an additional e�ort,
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Figure IV.4: Underproduction (Table IV.3, last column) in function of user e�ort.
Each point represents an experiment. Scenarios full degrad red, full recon�g red and full renounce red are
given for comparison, and are not included in the linear regressions. Full renounce red gives a higher
bound on energy saving achievable through user e�orts (-32.3% compared to �full rigid�).
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Figure IV.5: Ratio between gains in underproduction (compared to �full rigid�) and
user e�ort. A high ratio indicates good gains compared to the e�ort made by the users. �Full rigid� is
not displayed as its ratio is unde�ned (0 modi�ed jobs, 0 weighted e�ort). The other �full� scenarios are
given for comparison.

and they result in additional savings of the same scale, if not slightly smaller, as
other e�orts made in red states.

4.3 User incentives and weighted e�ort metric

Interestingly, we note in Figure IV.5a that the marginal gains increase with α (low to max
e�ort). This is an indication that �the more people who make an e�ort, the greater the
impact of a user's additional e�ort�. We will have to see if this observation is con�rmed
by other data (workload, scheduler) of if it is speci�c to our inputs.

In any case, since brown energy savings and e�ort are correlated, it is important to
motivate users to adopt the su�ciency behaviors during the critical periods, for example
through a �nancial compensation for the e�ort made. To this end, the weighted e�ort
metric can prove very useful. In fact, we observe in Figure IV.5b that this metric is
almost perfectly proportional to the gains. The coe�cient of proportionality is γ = 33.9
kWh/unit of e�ort (slope of the line in Figure IV.4b). Renouncing to a job corresponds
to a weighted e�ort of wrenounce/N (Equation IV.1). By multiplying by the coe�cient of
proportionality, it derives that renouncing to a job allows reducing the underproduction
by γ ∗wrenounce/N = 33.9 ∗ 100/69306 = 0.00489 kWh on average. This is consistent with
the average length and size of jobs in the workload, and the power consumption of servers.
We could imagine giving to the user a reward equivalent to the cost of the electricity saved
that way.
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5 Limitations

Our study has a number of limitations that are discussed in this section.

5.1 Limits of the model

First of all, the data center model being the same as in the previous chapter, it su�ers
from the same limitations (see III.5). Same goes with the user model:

User hypothesis for the modeling We assumed that users have some technical knowl-
edge and control on the jobs they send. Otherwise, they could not apply the su�ciency
behaviors. Depending on the type of data center, this hypothesis might not hold. For
example, if a data center runs mainly automated jobs (e.g., automatic testing, critical
services), there is no room for users to decide on the way to run the jobs.

Behaviors Degrad and Recon�g We also assumed that the jobs can always be de-
graded. However, this is only true for some jobs, e.g., convergence-based algorithms where
the convergence criterion can be tuned or video transcoding where the quality can be low-
ered. Moreover, users might have to make timely changes in the application to modify
the number of cores required (e.g., changing some parts of the code or con�guration �les),
which makes Degrad and Recon�g not realistic for real-time response. Improvement of the
model is needed to take this into account.

Behavior See You Later More speci�c to this study, the behavior See You Later can
create some abnormalities in the submission behavior. First, job submission order is not
preserved by this behavior. For example, if a user submits job1 at 13:30 and job2 at 14:00
in the original workload, a See You Later on job1 and a Rigid on job2 will lead to a change
in the order of the two jobs. Moreover, it could lead to shifting submission time to a time
of the day when the user is usually not connected to the platform. For example, we observe
users submitting late at midnight when they typically stop submitting after 18:00 in the
original workload.

5.2 Limits of the experiments

We see a number of shortcomings in our approach to answer the research questions:

Three-state energy model If the proposed feedback mechanism was conclusive to
reduce energy consumption in underproduction periods, we see a limitation in the fact
that it was based only on level of renewable production. Indeed, if production is low but
IT demand is similarly low, there is no point in making an e�ort. It would be interesting to
see if the results are better if the thresholds for energy states are de�ned on the real-time
di�erence between production and consumption, rather than on production only.
Alternatively, we could have tried other thresholds to de�ne the states, instead of the �xed
50%-100% proposed here, to see if the conclusions remain the same.
This leaves room for improvement for future works on the topic.

Equiprobability of every non-rigid behavior In the experimental campaign, the
behaviors are drawn at random, assuming that each non-rigid behavior has the same prob-
ability (for a �xed window state and number of cores, see Figure IV.1). This has a number
of drawbacks:
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� it might not re�ect the real popularity of each behavior,

� di�erent users might have di�erent preferences, and

� the choice of behavior is likely in�uenced by the nature of the job (criticality, size,
di�culty to recon�gure, etc.).

However, there is no data available on the popularity of each behavior, and we have no
information on the nature of the jobs in the input workload (i.e., which ones are critical
or di�cult to recon�gure). Consequently, doing a randomized campaign with equiproba-
ble behaviors seemed the most reasonable method to test the potential of our approach
experimentally. New studies are needed to explore how the mix of probabilities impacts
both the results and the link between e�ort and gains.

Limited experimental conditions The experimental campaign presented in this paper
explores a rather limited set of parameters. First, current input data only include one IT
workload (MetaCentrum 2) which is characteristic of a HPC infrastructure. It would be
interesting to see how the approach can be adapted to other types of data centers, like
cloud infrastructures. Similarly, we used only one renewable energy trace (Toulouse), in
the period from June 1, 2019, to November 30, which means that two seasons (winter and
spring) are not included. Besides, we only looked at solar energy as a renewable source, and
one sizing for the IT and electrical infrastructure. Finally, we tested the approach with
only one scheduling policy: bin-packing with greedy server shut-down, which is rather
naive and not state-of-the-art.

However, the focus of this contribution is to estimate the potential of user behaviors,
and does not aim at evaluating the exact gains in all possible con�gurations. We argue
that the results would be similar with other sets of workload/platform/scheduler. Since
our code is open-source and our experiments reproducible, it would be easy to verify it in
the future.

6 Conclusion

In this chapter, we build upon the �ve su�ciency behaviors introduced and characterized
in Chapter III. We investigate the usefulness of these behaviors in the context of renewable
energy management. A three-state energy feedback mechanism is introduced, to inform
users on the status of electricity production: green when production is abundant, red when
production is low, and yellow in-between. When submitting to the platform, users can see
the energy state and decide to take action by adopting a su�ciency behavior. Our user
simulation software Batmen is extended with a new user class implementing this approach.

Thanks to a reproducible experimental campaign with real-world inputs, we show that
the approach is conclusive and allows reducing brown energy consumption. Energy gains
are proportional to the e�orts made by users. Yellow states allow to further increase the
gains in exchange for a cost in e�ort similar to the one in red states. They can be useful
at times when more e�ort is not possible.

With this, we conclude our contributions related to the analysis of su�ciency behaviors in
data centers with simulation. Through the making, they made us realize two fundamental
problems.

https://www.cs.huji.ac.il/labs/parallel/workload/l_metacentrum2/index.html
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On the one hand, we cruelly lack knowledge on the type of e�orts that data center
users would be willing to make. Therefore, our simulations can only be based on assump-
tions. Collecting such data would involve social science methods such as interviews or
questionnaire surveys. We lay a stone in this direction with Chapter VI.

On the other hand, analyzing the results of our experiments has shown to us the limits
of the workload replay model in simulations, although widely used in the community. This
model consists of replaying a historical workload by following the original timestamps of
submission. However, nothing ensures that users would still have submitted at these dates
if the system was behaving di�erently. This is particularly problematic in our case, where
we simulate modi�cations of job characteristics at time of submission. It led for example
to the burst of submission at the end of the window with behavior Delay in Chapter III,
and to the non-preservation of the order of submission with behavior See You Later in this
chapter. With the next chapter, we tackle this issue and provide both methodology and
open-source code to achieve more realistic simulation.
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Since the beginning of this manuscript, we have been using data center simulations to
test our approaches. Simulations have the great advantage of being relatively simple to
carry compared to experiments on real infrastructures. They also allow the researcher to
try a large number of parameters and inputs at low cost. However, their drawback is that
they rely on a set of models and assumptions. The assumptions might not always apply,
and some models have not been carefully validated.

At the center of any simulation is the workload model. Sometimes, simulation works
use synthetic workloads, generated from a mathematical model adapted to their use case.
As explained in Chapter II, we chose in this thesis to use records from real infrastructures
and replay the jobs submissions (see Chapters III and IV, with inputs from the Parallel
Workload Archive). The method is simple: we simulate jobs of the same characteristics as
in the recorded workload, and reproduce their arrivals at the same timestamps.

Whether the workload is replayed or generated, it is generally fully determined before
the simulation, i.e., jobs submissions are known in advance. This is the case in recent
works like Vasconcelos et al. using a synthetic workload to study distributed cloud federa-
tion [54], Wiesner et al. using a recorded workload from a production system to evaluate
their renewable-aware scheduler [120] or de Nardin et al. using logs from an academic data
center [121]. More generally, the vast majority of articles using simulation for performance
evaluation of HPC-like systems uses a �xed-timestamp model.

While this makes the workload model simple and the results easy to compare, we ar-
gue that this is too strong a hypothesis leading to unreliable results. In fact, in reality,
users adapt their submission behavior to the feedback they get from the infrastructure. For
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example, imagine a real infrastructure that suddenly becomes twice slower due to a break-
down. The jobs will start accumulating in the queues and the users, seeing that their
previous submissions are still pending, will slow down their rate of submission. On the
contrary, if the infrastructure gets faster due to a more e�cient scheduling or the addition
of new servers, the users will tend to submit more and bigger jobs, a phenomenon known
as �rebound e�ect�.

The pattern of job arrival is in fact tightly linked to the speci�c infrastructure in which
it is observed, and is the fruit of interaction between the users, the scheduling algorithm
and the underlying hardware. Regrettably, this interaction is rarely accounted for in the
literature.

In this chapter, we tackle this problem, making the best of our software suite to model
user reaction to system performance, thanks to a method called �replay with feedback�.
We start by giving some background on the topic and explain the general idea in Section 1.
The method is composed of two steps that are detailed in Section 2 and 3. After this, we
design an experimental campaign comparing traditional replay and replay with feedback,
that we describe in Section 4 and whose results are given in Section 5. To explain the
results, we introduce three new metrics adapted to the dynamic adaptation of workload.
In Section 6, we discuss several aspects of the results and our model. We close the chapter
on the limitations of our approach (Section 7) and a conclusion section. These contributions
have been published in the journal FGCS [J1].

1 Background and general idea

The problem described in introduction of this chapter is not new. It was in fact identi�ed
by Dror Feitelson and his PhD students in the years 2010 [122, 123]. Instead of replaying
jobs with �xed submission times, they recommend doing closed-loop simulations [124],
where the submitted workload adapts to the simulated performance of the system.

In particular, Feitelson introduced with Netanel Zakay the concept of �replay with
feedback�, which is the focus of this chapter. The main idea is to wait for the previous
jobs to �nish before submitting the new ones, instead of blindly following the submission
times from the recorded trace. We will give a more formal de�nition in Section 3.

According to Zakay and Feitelson, �replay with feedback� follows a two-step approach:

(i) extracting the relevant patterns of user submission behavior from the recorded work-
load [125], and

(ii) using this information during the simulation, to replay users reaction to feedback [122].

Step (i) is explained in Section 2, and step (ii) in Section 3. Regrettably, we could �nd
no code available to reproduce their results, nor detail on the simulation software used.
This is why we chose to reimplement them with Batmen. At the end of this chapter, in
Section 6.4, we come back to Zakay and Feitelson's method, and point out the di�erence
with ours.

To the best of our knowledge, replay with feedback is only used once more in the
literature, by Klusá£ek et al. They implemented Zakay and Feitelson's model inside the
open source simulator Alea [126]. The feature is called �dynamic workload adaptation�
and was notably used to test di�erent schedulers before their deployment in a production
system [114]. However, the model in their work is only used as a tool, and they provide
no evaluation nor in-depth discussion on its e�ect on the simulation outcome.
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2 Retrieving information from recorded workloads

The �rst step of �replay with feedback� is to process the recorded workload trace to extract
the relevant patterns of user submission behavior that will be useful during the simulation.
This is done through partitioning the trace into sessions (2.1), and infer their dependence
relationship (2.2).

2.1 Session partitioning

We remind the notations from Chapter II (De�nitions 4 and 5): a recorded trace is a
list of recorded jobs, each containing at least the information (di, ri, ai, fi) (duration,
number of resources, arrival date, �nish date). We suppose that for each recorded job we
know the ID of the user that submitted it. Each ji also has a walltime wi, i.e., an upper
bound on execution time given by the user after which the job gets killed. Walltimes can
be used by the scheduler to take its decisions. To simplify the notations in the following,
we split the recorded trace and renumber it per user:

De�nition 12. The user trace Tu is the list (j1, ..., jN ) of recorded jobs submitted by user
u, ordered by submission time.

In their work, Zakay and Feitelson argue that meaningful components of a recorded
trace are user sessions, which they de�ne conceptually as �periods of continuous work by
a user� [125]. In other words, users have sessions of work in which they interact with the
infrastructure � mainly by submitting new jobs � and periods of absence. With our
notation:

De�nition 13. A user session in the user trace Tu is a list (jn, jn+1, ..., jm) ⊂ Tu of
consecutive recorded jobs, with (n,m) ∈ N2 and n ≤ m.

Unfortunately, we rarely have metadata on user activity associated to the recorded
trace to help us detecting the session boundaries. Therefore, we will infer them from the
information contained in the recorded trace. We call this operation session partitioning :

De�nition 14. A session partition of the user trace Tu is a set {s1, ..., sM} of user
sessions (with M > 0 the number of sessions), such that

s1 ∪ ... ∪ sM = Tu and ∀1 ≤ i < k ≤M, si ∩ sk = ∅

There are many possible ways to do this partitioning based on the information at hand
in the recorded trace. The simplest is to consider that each job constitutes its own session.
Another way is to consider that several jobs are in the same session if they arrive close
together, which means de�ning the sessions with thresholds on inter-arrival time between
jobs. One could also use thresholds on think time between jobs (time that elapses between
the termination of one job and the submission of another).

We refer to the original paper of Zakay and Feitelson [125] for the proposition and
comparison of three such methods. I also developed the open-source Python script swf-
2userSessions1 performing the session partitioning of a recorded trace in the Standard
Workload Format, in which the three methods are implemented. This script is in O(n) on
the number of lines in the input �le, and has execution times in the order of the minute
on a laptop computer with classical inputs (< 10 million lines).

1available at gitlab.irit.fr/sepia-pub/mael/swf2userSessions. The speci�c version tagged
replay_feedback2023 is used in this chapter.

gitlab.irit.fr/sepia-pub/mael/swf2userSessions
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2.2 Session graph

Relation depends on Once we have partitioned a user trace Tu into sessions, we are
interested, for the replay, in the relationship between them. We de�ne between sessions
the partial order depends on:

De�nition 15. For two sessions s = (jn, ..., jm) ⊂ Tu and s′ = (jn′ , ..., jm′) ⊂ Tu, we say
that s′ depends on s if all the recorded jobs of s �nished their execution before the �rst
job of s′ was submitted, i.e., if maxn≤i≤m(fi) ≤ an′

Think time between sessions From this de�nition follows our de�nition of think time
between sessions. Conceptually, it corresponds to the time that a user had to think between
the termination of all the jobs in a session and the submission of the �rst job of another:

De�nition 16. For two sessions s = (jn, ..., jm) ⊂ Tu and s′ = (jn′ , ..., jm′) ⊂ Tu, we call
think time the quantity an′ −maxn≤i≤m(fi).

Note that, by de�nition of the relation depends on, the think time between two de-
pending sessions is always ≥ 0.

Session graph As a result, the set of sessions for a user forms a weighted directed acyclic
graph, where the nodes are the sessions and the edges represent the relation depends on,
weighted by the corresponding think time. See Figure V.1 for illustration.
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Figure V.1: Illustration of a session graph with six jobs and four sessions.
Here, an inter-arrival time greater than 60 minutes between two jobs delimits a new session: j1 and j2 are
in the same session since a2 − a1 < 60 mn, while j3 is in a di�erent session since a3 − a2 ≥ 60 mn.

In this representation, some sessions have no predecessor: sometimes only the �rst
session and sometimes more (like session1 and session2 in the illustration). We complete
the graph by adding a �ctive session at the root of the graph and making all the sessions
that do not have a predecessor dependent on it. For each edge added that way, we choose
the recorded starting time of the session as think time, i.e., the submission time of the
�rst recorded job of this session. The resulting session graph contains all the information
needed for the replay.



3. REPLAY WITH FEEDBACK 81

3 Replay with feedback

In this section, we provide a de�nition of replay with feedback, then describe our method
of replay using the session graphs previously described.

3.1 Feedback and rigid: two paradigms of replay

Replay with feedback is a new paradigm of using recorded workload data in simulations:

De�nition 17. Replay with feedback is a way of using a recorded workload in simula-
tions to mimic the platform activity while accounting for user reactions to simulated system
performance.

In practice, users adapt to feedback in many ways. They change their dates of submis-
sion, submit bigger or smaller jobs, modify their software to �t the infrastructure or even
leave the infrastructure to submit somewhere else. Taking into account all these behaviors
in the replay is a very challenging task, and can potentially modify the workload signi�-
cantly. For this reason, we consider in this work only one type of user response, namely
changes in submission times.

To make a distinction between the recorded jobs and their simulated copy, we call the
latter replay jobs and denote them ȷ̂i = (d̂i, r̂i, âi, f̂i, ŵi). The type of replay with feedback
performed here preserves the jobs characteristics: computing load, number of resources
and walltime. With the notation:

∀1 ≤ i ≤ n,

 d̂i ∗ r̂i ∗ P̂ = di ∗ ri ∗ P
r̂i = ri
ŵi = wi

where P (resp. P̂ ) is the performance of the server in the original (resp. simulated) infras-
tructure, in �oating-point operations per second.

The traditional way of replaying jobs in simulations would also preserve the submission
times, i.e., âi = ai. We will denote it �rigid replay�:

De�nition 18. Rigid replay simulates the arrival of jobs with the same characteristics
and same submission time as in the recorded workload.

3.2 Replay based on think times

The main idea behind our replay method is that it preserves the think time between sessions
rather than the exact submission times of the jobs, thus reacting to the feedback provided
by the (simulated) infrastructure. For example, if a job inside a session takes longer to
�nish in the simulation compared to the recorded trace, the following sessions in the session
graph will be delayed accordingly. However, jobs within a session are neither delayed
nor brought forward in reaction to feedback with our algorithm2. Consequently, all the
information needed for the replay with feedback are embedded in the session graph of each
user.

We say that a session starts when its �rst (replay) job is submitted. A session �nishes
when the last of its jobs �nishes its execution. Without loss of information, we represent
the submission times âi of the replay jobs relatively to the start time of their session, i.e.,

∀s = (jn, ..., jm) ⊂ Tu,∀i ∈ {n, n+ 1, ...,m}, âi = ai − an
2this is di�erent from Zakay and Feitelson, who introduce the notion of `batches' within a session, which

are groups of overlapping jobs. The relation depends on and the shifts during replay are de�ned for the
batches. See Section 6.4.
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Before going on with the description of the replay method, we need to introduce two
additional de�nitions:

De�nition 19. A session ŝ = (ȷ̂n, ..., ȷ̂m) is active, at time t, if ŝ has started and tŝ ≤
t < tŝ + âm, with tŝ the starting time of ŝ.

Conceptually, ŝ is active when the user is currently submitting from it.

De�nition 20. A session ŝ is free, at time t, if it has not started and all the sessions it
depends on have �nished, i.e.,{

t < tŝ

∀ŝ′ = (ȷ̂n, ..., ȷ̂m), ŝ depends on ŝ′ =⇒ maxn≤i≤m(f̂i) ≤ t

If ŝ has not started but at least one session it depends on has not �nished, we say that ŝ is
dependent.

Consequently, the usual lifecycle for a session is: dependent → free → started (active)
→ started (all jobs submitted) → �nished.

3.3 Replay method

We can now proceed to the explanation of the replay method. The method is combined
with a discrete event simulation, in charge of simulating the Resource and Job Management
System (RJMS). During the simulation, the RJMS simulator reproduces the behavior of the
servers in the platform and sends events when something happens (e.g., a job terminates,
a server �nishes switching on) or when it is time to submit a job (callback). For its part,
the replay method traverses the session graph for each user, by keeping track of

1. the list A of active sessions, and

2. the list F of free sessions.

At the beginning of the simulation (t = 0), A is empty and F contains the successors
of the �ctive root session. The replay method listens to the events sent by the RJMS
simulator, and comprises mainly two functions: wake_on_feedback, called when a job
terminates, and job_to_submit, called when it is time to submit a job. These functions
are given as pseudocode in Algorithm 5.

Note that:

1. Our replay method does not necessarily preserve the original submission order of
jobs. For example in Figure V.1, if j2 �nishes earlier in the replay, j4 might be
submitted before j3.

2. If the scheduler rejects a job during the replay, for instance because it requests more
resources than the total number of cores in the platform, a job termination event is
immediately sent. The �nished time of this job is considered equal to its submission
time, i.e., f̂i = âi.

4 Experimental comparison of feedback and rigid replay

In this section, we present an experimental campaign designed to compare replay with
feedback (De�nition 17) and rigid replay (De�nition 18).
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Algorithm 5 Replay method

function wake_on_feedback ▷ in reaction to the termination of a job
for all j ∈ {jobs �nished recently} do

s← session(j)
if j was the last job of s to �nish then

for all s′ ∈ {successors of s} do
dependencies(s′).pop(s)
if dependencies(s′) is empty then
F .add(s′) ▷ de�nition of free session

update next callback time
function jobs_to_submit ▷ when it is time to submit one job (or more)

for all s ∈ F do
if s starts now then
A.add(s) ▷ de�nition of active session
F .pop(s)

for all s ∈ A do
submit all the jobs in job_list(s) with submission_time = now
if job_list(s) is empty then
A.pop(s) ▷ de�nition of active session

update next callback time

4.1 Experimental setup

Software environment Like before, the simulations are run with the software envi-
ronment described in Chapter II, Section 2: Batsim (v4.2), SimGrid (v3.32) and Batmen
(v3.0).

The replay with feedback model described in Section 3 is implemented in Batmen.
The superclass FeedbackUser implements the functions wake_on_feedback and jobs_-

to_submit described in Algorithm 5, along with the function update_date_next_sub in
charge of calculating the next timestamp at which the user might have a job to submit. It
is needed to inform Batsim on when to call Batmen to check if a job submission arrives.
The child class FBUserThinkTimeOnly implements the function close_session, which is
called every time a session �nishes. It updates its following sessions in the session graph
and the list of free sessions, according to the replay model.

Workload As inputs for the simulations, we use two recorded traces retrieved from the
Parallel Workload Archive:

� KTH-SP23: 11-month log from a 100-node IBM SP2, and

� SDSC SP24: 24-month log from a 128-node IBM SP2.

KTH and SDSC logs contain respectively 28475 and 67667 jobs, for 214 (resp. 428)
users. The submission log for each user was converted to session graphs, as explained in
Section 2. We made the session partitioning based on a threshold on inter-arrival time.
We tried two values for this threshold: 0 minutes (`arrival 0', in short `a0') and 60 minutes

3�le KTH-SP2-1996-2.1-cln.swf, available at https://www.cs.huji.ac.il/labs/parallel/workload
/l_kth_sp2/index.html

4�le SDSC-SP2-1998-4.swf, available at https://www.cs.huji.ac.il/labs/parallel/workload/l_s
dsc_sp2/index.html

https://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_kth_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
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(`a60'). a0 gives sessions of only one job. Doing a replay with this delimitation is equivalent
to preserve the think time between jobs only. We chose the other threshold of 60 minutes
because it is the value used in the original paper [125]. The in�uence of this parameter
will be discussed in Section 6.2.

IT platform We created two platform �les adapted to the traces, with 100 (resp. 128)
monocore homogeneous servers.

Scheduler From the information we could �nd online [127], IBM SP2 systems seem
to be using some version of EASY-back�lling algorithm for scheduling (see Chapter II,
Algorithm 2). For this reason and unless speci�ed otherwise, we use such a scheduler in
our experiments, called �EASY� in the remaining of this chapter. We will also try with a
FCFS scheduler (Algorithm 1).

4.2 Experimental campaign

We design an experimental campaign to compare rigid and feedback replay methods. We
are interested to see the e�ect of feedback when the system performances change, therefore
investigating this question:

Is replay with feedback satisfying to simulate a change in the infrastructure or
scheduler?

A change in the infrastructure can be a change in the number of servers, server per-
formance, interconnection, bandwidth etc. Whichever the change, the outcome will be
that jobs execute faster or slower. Since the only feedback that matters to users in our
replay method is the �nish time of their jobs, we consider su�cient in this study to focus
on two types of infrastructure change: number of servers and server performance. Conse-
quently, jobs in the simulation are represented as compute-only (parallel_homogeneous
in Batsim), without communication.

We run the workload several times, varying the scheduler and hardware infrastructure
(6 di�erent cases):

� easy: the baseline experiment, with EASY scheduler and a simulated platform rep-
resenting the original infrastructure;

� perf*2, perf/2: multiplying or dividing by two the performance of the servers, in
terms of �oating-point operations per second, i.e., the jobs are executed twice (resp.
half) as fast;

� infra*2, infra/2: multiplying or dividing by two the number of servers, e.g., for
KTH log we tried with 200 (resp. 50) servers;

� FCFS: changing the scheduling algorithm to First Come First Served (Algorithm 1).

Each instance is run with the feedback model (delimitations methods a0 and a60), and
without (rigid). In total, 6 ∗ 3 = 18 simulations are run for each log.

https://batsim.readthedocs.io/en/latest/input-workload.html#homogeneous-parallel-task
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Reproducibility All the experimental details and material to reproduce the graphs pre-
sented in this chapter are provided in forms of two notebooks5. Running the two notebooks
on a recent laptop (Intel i5 11th gen) takes less than one hour, including downloading and
processing the inputs, running the simulations and plotting the graphs.

5 Results

The results of the experimental campaign consist in complete records (âi, f̂i − di, f̂i) of
the timestamps of submission, start and �nish time for each replay job ȷ̂i. From these
records, we compute several metrics. First, we give the makespan and waiting times (5.1),
two common scheduling metrics. Then, we plot the distribution of submission times (5.2).
Finally, we de�ne and provide the results on three new metrics, better suited for feedback
replay: mean lateness (5.3), relative lateness (5.4) and additional lateness (5.5).

5.1 Common scheduling metrics

In Table V.1, we provide the results of the experimental campaign on three common
scheduling metrics: makespan, mean waiting time and max waiting time. We also calculate
these metrics on the original recorded trace. The de�nitions of makespan and waiting time
are reminded below, with our notations. Other usual scheduling metrics like turnaround
time or slowdown can be found in the notebooks.

De�nition 21. The makespan is the time that elapses between the submission of the �rst
job and the completion of the last:

makespan = max(fi)−min(ai) (V.1)

De�nition 22. The waiting time of a job is the time that elapsed between the submission
of the job and the beginning of its execution in the infrastructure.

waiting time(ji) = fi − di − ai (V.2)

Impact of feedback replay The results con�rm what was said in introduction: the
traditional replay model is not satisfactory to simulate a change in the infrastructure or
in the scheduler. In the recorded log, the waiting times were of 0.18 days on average, and
11.34 days maximum for KTH (resp. 0.26 and 62.48 for SDSC). With the feedback model
and whichever the change we make in the infrastructure, the mean waiting times are under
0.62 day for KTH (perf/2 a60) and 1.61 for SDSC (perf/2 a60). All the max waiting
times remain lower than the original max waiting times.

In the case of rigid replay however, the picture looks di�erent. We get waiting times
of up to 141 days (perf/2 rigid KTH), resp. 508 days (perf/2 rigid SDSC). The
mean waiting times are also signi�cantly higher than the original in infra/2 and perf/2
experiments (up to two months for perf/2 rigid SDSC). It is unrealistic to think that
the users would have waited on average all this time if the change actually occurred in the
real infrastructure. Instead, they would have slowed down their pace of submission, which
our model successfully accounts for.

5Experiment repository: gitlab.irit.fr/sepia-pub/open-science/expe-replay-feedback (use the tag
maelPhD). The outputs are directly visible in the GitLab interface.

https://gitlab.irit.fr/sepia-pub/open-science/expe-replay-feedback
https://gitlab.irit.fr/sepia-pub/open-science/expe-replay-feedback/-/tags/maelPhD


86 CHAPTER V. REPLAY WITH FEEDBACK

Table V.1: Scheduling metrics calculated on the recorded log and for all the experiments.
Makespan and waiting times are expressed in days, with 2 decimal places.
For KTH infra*2, we read mean waiting times of 0.00 day. This is because of rounding, and these values
are actually between 162 and 229 seconds.

KTH SDSC
makespan waiting time makespan waiting time

exp. name replay mean max mean max

recorded trace / 332.93 0.18 11.34 736.12 0.26 62.48

EASY rigid 332.91 0.07 4.07 731.36 0.19 5.73
a0 366.14 0.06 5.06 808.88 0.14 5.90
a60 366.67 0.07 6.11 789.77 0.18 5.16

FCFS rigid 333.10 4.51 11.79 794.26 14.82 63.96
a0 457.89 0.29 4.95 1200.10 0.58 6.26
a60 454.41 0.47 4.47 1065.66 0.88 5.51

perf*2 rigid 332.91 0.01 1.34 731.32 0.01 1.84
a0 332.57 0.01 1.82 730.31 0.01 1.58
a60 332.61 0.01 1.44 729.82 0.02 1.13

perf/2 rigid 471.85 31.84 141.34 1239.37 64.62 508.38
a0 635.97 0.46 10.70 1506.26 0.92 15.54
a60 630.28 0.62 10.26 1492.67 1.61 14.17

infra*2 rigid 332.91 0.00 0.54 731.36 0.01 1.28
a0 332.63 0.00 0.81 729.81 0.01 1.04
a60 332.65 0.00 0.56 730.02 0.01 1.35

infra/2 rigid 386.70 4.15 58.87 1167.94 37.43 437.28
a0 472.93 0.27 7.43 1452.31 0.80 14.82
a60 472.45 0.35 7.31 1446.13 1.20 15.93

Impact of infrastructure change Since the pace of submission slows down in reac-
tion to a slower infrastructure (FCFS, perf/2 and infra/2) with the feedback model, it
should take more time for the same workload to be fully executed. This e�ect is clearly
visible in the results: the makespan in experiments FCFS, perf/2 and infra/2 increases
signi�cantly more with feedback replay than with rigid replay, compared to the original
makespan. However, we would also expect to see the opposite e�ect when the infrastruc-
ture is faster (perf*2 and infra*2), which is not the case here. The makespans in these
experiments with rigid, a0 and a60 replay models are very similar, close to the original
makespan. This is due to the presence of large think times in the session graphs, for ex-
ample because of new users arriving a few days before the end of the original record. We
discuss these remaining sources of rigidity in the feedback model in Section 7.4 to give
hints for improvement.

Impact of scheduler Note that the results also show that the scheduler in the real
infrastructure and our implementation of EASY back�lling are not exactly the same. For
example, the mean and max waiting times are signi�cantly lower with our implementation
(experiment EASY rigid). All the same, EASY seems closer to the original scheduler
than FCFS, with which the mean waiting time explode (FCFS rigid). Interestingly,
FCFS produces a max waiting time close to the original in both logs, suggesting that
some jobs are probably submitted in pure FCFS order in the original scheduler. A detailed
description of the scheduler originally used would be necessary to understand better, which
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we could not �nd for these logs.

In the end, the usual scheduling metrics discussed here give us useful insights, but they
show their limits to fully explain the e�ect of changing the replay model. For example, they
don't capture to what extent the submission times are shifted compared to rigid replay. To
that end, we introduce in the remaining of this section a new way of making the analysis,
including new metrics.

5.2 Submission time distribution

The replay with feedback model primarily impacts the submission times of jobs. Its e�ect
is thus visible on the temporal distribution of job arrivals, plotted in Figure V.2 and
in cumulative values in Figure V.3. The blue curve, corresponding to the rigid replay
model, remains identical for all experiments: it corresponds to the original timestamps of
submission in the recorded logs. With the feedback model, however, we observe that the
submission distribution spreads with the speci�c infrastructure or scheduler used.

In experiments perf/2, infra/2 and FCFS, we get con�rmation that the simulated
users submitted fewer jobs per day on average (orange curve under the blue curve in
cumulated values in Figure V.3). In return, the length of the submission period has
increased (horizontal span of the orange curve longer than the blue). On Figure V.2
we observe that, passed the original length of submission, the rate of submission decreases
in trend. This is also visible in the cumulative graphs: the orange curve starts to slowly
plateau where the blue graph ends. These are in fact end-of-simulation side e�ects: users
�nish submitting their backlog of jobs, without new jobs and users arriving. These e�ects
are not relevant, and the analysis should instead focus on what happens in the simulations
within the length of the original workload.

Experiments perf*2 and infra*2 need a closer look, as the e�ect of the infrastructure
change is less visible in these cases. We can observe that the orange curve is slightly above
the blue in the cumulative graphs, meaning that the rate of submission increased slightly.
In return, the length of submission is not shorter, but we can notice that users submit
fewer jobs per day at the very end, for example in the last month of KTH log. They are
reaching the end of their pool of jobs to submit.

Regarding the schedulers, the graphs con�rm that our implementation of EASY is
closer to the scheduler used in the real infrastructures than FCFS is. Indeed, the rate
of submission with rigid and feedback looks fairly similar in experiment EASY. This is
an indication that the jobs get executed and �nished around the same time (we remind
that rigid replay preserves the original timestamps while feedback replay preserves the
think times). With the scheduler FCFS, the patterns of submission in Figure V.2 look
more disrupted. This is due to the absence of back�lling: big jobs are blocking the queue,
delaying the execution of small jobs, and the users have to wait for their termination before
submitting the next jobs that depend on them.

Finally, Figure V.3 also displays in its bottom graphs information about rate of job
terminations. This time, the distributions with rigid replay (in brown) vary between the
experiments, because contrary to the submission times, the �nish times of jobs do get
a�ected by the infrastructure or scheduler used. The makespans given in Table V.1 are
re�ected in the horizontal spans of these plots. We get to see that if the makespans in
experiment EASY were larger with feedback compared to rigid, it is only due to a few
jobs that got delayed. Indeed, the right part of the pink curve after the brown curve
ends is essentially �at. Also, we note that the cumulative distributions of job terminations
look fairly similar for all experiments, if we disregard the side e�ects in the end. This
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is an indication that throughput (de�ned as average number of jobs �nished per week)
is relatively independent of the replay model. We come back to that in the Discussion
(Section 7.4)

If we were able to better characterize the e�ect of the replay model thanks to the dis-
tributions of submission times, we lack reliable metrics to measure it quantitatively. We
attempt to �ll this gap in the following, by de�ning three new metrics: mean lateness,
relative lateness and additional lateness.

5.3 New metric 1: mean lateness

First, we de�ne the lateness of a job, a fundamental quantity that will allow us to de�ne
the three metrics:

De�nition 23. The lateness ℓ(i) of job ji is the di�erence between its submission time
in the replay and in the original record: ℓ(i) = âi − ai.

Consequently, for a set of jobs (j0, ..., jn−1), we can compute our �rst metric, themean
lateness, denoted ℓ̄:

ℓ̄ =
1

n

n−1∑
i=0

ℓ(i) =
1

n

n−1∑
i=0

(âi − ai) (V.3)

Mean lateness can be calculated per user or on the whole simulation. It measures how
many days di�erence there are on average between the original submission times and those
in the simulation.

Mean lateness on all jobs Calculated on all the jobs in the simulation, mean lateness
characterizes �the extent to which the orange curve is shifted to the right� in Figure V.2.
Values of mean lateness for each experiment are given in Table V.2. We can read for
example that jobs in experiment perf/2 a60 are submitted 44 days later on average with
KTH log, and 13 days earlier in experiment perf*2 a60.

We also notice that values are positive for experiments FCFS, perf/2 and infra/2,
indicating that jobs are submitted later on average, and negative for experiments perf*2
and infra*2, a sign that jobs are submitted earlier. Mean lateness for experiment EASY
are close to zero. This con�rms our previous observations.

Mean lateness per user Mean lateness per user is plotted in Figure V.4. First, we
see that values are very scattered. Depending on the user, mean lateness can be several
orders of magnitude di�erent. We can nevertheless make the same distinction between the
experiments that have a positive lateness (FCFS, perf/2 and infra/2), and experiments
with a negative lateness (perf*2 and infra*2).

More interestingly, we observe a drift to high values as the number of jobs submitted
by the user gets higher. In other words, users that submit more jobs tend to have a greater
(positive or negative) mean lateness. This makes sense, as the more the users submit jobs,
the more they get to experience the feedback given by the infrastructure, hence the more
they accumulate lateness. An implication of this drift, which is unfortunate, is that mean
lateness does not scale with the size of the workload.

This makes the metric mean lateness unpractical to compare di�erent workloads. That
is why we introduce the two next metrics built to be independent on the number of jobs:
relative lateness and additional lateness.
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Figure V.4: Mean lateness per user, for all experiments, with replay a60 (logarithmic
scale). Each dot corresponds to one simulated user. A positive (resp. negative) value indicates that the
user submitted later (resp. earlier) on average in the replay with feedback compared to the recorded log.
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Table V.2: New metrics calculated for all the experiments. Units: mean lateness
in days, additional lateness in seconds and relative lateness without unit.
Please note that lateness in a quantity that tends to accumulate for long chain of jobs. Taking the mean
hides this distribution.

KTH SDSC
mean relative additional mean relative additional

expe replay lateness lateness lateness lateness lateness lateness

EASY a0 -3.36 0.99 -20.39 2.35 1.00 6.00
a60 -4.47 0.99 -27.12 1.04 1.00 2.65

FCFS a0 32.66 1.10 198.18 76.90 1.11 196.38
a60 26.31 1.08 159.64 36.00 1.05 91.92

perf*2 a0 -12.40 0.96 -75.27 -11.04 0.98 -28.18
a60 -13.31 0.96 -80.79 -11.55 0.98 -29.49

perf/2 a0 46.10 1.14 279.75 106.58 1.15 272.17
a60 43.54 1.13 264.24 95.34 1.13 243.47

infra*2 a0 -8.65 0.97 -52.48 -8.58 0.99 -21.92
a60 -9.32 0.97 -56.57 -9.23 0.99 -23.56

infra/2 a0 16.48 1.05 99.99 89.82 1.12 229.37
a60 14.91 1.04 90.48 81.50 1.11 208.12

5.4 New metric 2: relative lateness

The metric relative lateness is the expression of mean lateness relatively to the length
of the original workload. We want to see how signi�cant the shifts in submission times in
the replay are. Consequently, we de�ne the length of the workload as the inter-arrival time
between the �rst and the last job. It gives for relative lateness a dimensionless quantity:

relative lateness = 1 +
ℓ̄

an−1 − a0
(V.4)

Values for this metric are given in Table V.2. A relative lateness > 1 corresponds to
a mean lateness > 0, so a simulation where the submission times spread out over time.
The maximum relative lateness in our experiments is reached by perf/2 a0 SDSC, with
a value of 1.15. A way to interpret it is: �dividing the performances of the servers by two
lead the users to accumulate a delay in their submissions, corresponding to 15% of the
length of the workload�.

5.5 New metric 3: additional lateness

Another way to make the metric independent on the number of jobs is to look at the
�additional lateness� δi that accumulates with each new replay job ȷ̂i:

ℓ(i) = ℓ(i− 1) + δi (V.5)

Once again, the δi can be de�ned per user (the successive ji would be the successive
jobs submitted by one user) or on the whole simulation (the ji would be all the jobs of the
simulation, ordered by original submission time).

δi is a duration, that can take positive or negative values. Similarly to common schedul-
ing metrics such as the waiting times, they �uctuate a lot with i. To understand the overall
trend, one should look at their distribution.
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However, taking the mean is not meaningful as the ℓ(i) would cancel out when we take
the sum in Equation V.5:

∑
δi = ℓ(n−1)− ℓ(0). Instead, to build a simple yet aggregated

metric, we suppose that δi is constant equal to δ. Since ℓ(0) = 0 with our replay model,
we have by recurrence on i: ℓ(i) = iδ.

Injecting this in the de�nition of mean lateness gives:

ℓ̄ =
1

n

n−1∑
i=0

ℓ(i) =
δ

n

n−1∑
i=0

i =
δ

n

(n− 1)n

2
=

δ(n− 1)

2

Thus, we propose the metric additional lateness, denoted δ, de�ned through the
formula below:

δ =
2ℓ̄

n− 1
=

2

n(n− 1)

n−1∑
i=0

(âi − ai) (V.6)

We interpret this metric as the additional delay that the users accumulate at each sub-
mission, in response to the feedback provided by the infrastructure. Values of additional
lateness on our simulations are given in Table V.2. For example, halving the server perfor-
mances makes the users accumulate 280s of extra delay at each job submitted with KTH
log, and 272s with SDSC (replay a0). On the contrary, doubling the performances makes
the users submit an extra 75s earlier on average at each job for KTH, and 28s for SDSC.

5.6 Analysis of relative lateness and additional lateness results

Preliminary remark Looking at the de�nitions of the two metrics in Equations V.4
and V.6, we note that (relative lateness−1) and δ are roughly proportional to ℓ̄/n, assuming
that there is an a�ne relationship between the length of the simulation and the number
of jobs. This implies that relative lateness and additional lateness are linearly correlated.
We were able to con�rm it experimentally with our data: additional lateness and relative
lateness feature a Pearson correlation coe�cient of 0.997 with KTH log and 0.976 with
SDSC, on the 80 data points of Figure V.8. Consequently, the analyses that can be made
for one metric also apply to the other, and we will only present in the following the analyses
for the metric additional lateness.

Which parameter in�uences the additional lateness? In our results (Table V.2),
the parameter in�uencing the most the additional lateness is the infrastructure / scheduler.
For a �xed log and replay method, we get very di�erent values of additional lateness
depending on the performances or number of servers or the type of scheduler. For instance
in log KTH and replay method a60, additional lateness ranges from -80.79 to 264.24 days.

In second comes the speci�c log used for the replay. In our case, except for experiments
perf/2 a0, perf/2 a60 and FCFS a0 where they are relatively similar, we observe a
signi�cant variability in additional lateness between the logs. The overall trends remain
the same in both logs.

Finally, the change of replay method (a0 or a60) has the lowest in�uence on additional
lateness in our results. A notable exception is experiment SDSC FCFS, where using a60
instead of a0 makes the additional lateness decrease signi�cantly. A possible explanation is
the presence of several �urries of very high activity by individual users in this log6. These
�urries get grouped in a few sessions with a60, because they have close submission times.
In the replay, they will therefore be submitted concomitantly. With a0, every job is in

6up to 11740 jobs submitted by the same user in less than 25 days, see �Usage Notes� in the page
describing the log: https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html

https://www.cs.huji.ac.il/labs/parallel/workload/l_sdsc_sp2/index.html
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a separate session that waits for its dependencies to �nish before being submitted, which
might lead to the increased delay with a rigid scheduler like FCFS.

Additional lateness per user Additional lateness per user are plotted in Figure V.5.
Unlike for mean lateness, the values are independent on the number of jobs submitted by
the user: there is no drift compared to Figure V.4. However, they still depend on the
speci�c user, with great variability. In fact, there are di�erences in additional lateness of
more than 10'000 seconds between the 10th and 90th percentiles in all the experiments
(Table V.5c). We also note that the median additional lateness per user are in the order
of hours while they are in the order of minutes when aggregated at the level of the whole
simulation (Table V.2). This means that despite the overall additional lateness being
relatively low, the additional lateness experienced by most users is much more signi�cant.

6 Discussion

In this section, we see how replay with feedback accounts for a change in infrastructure
(6.1). Then, we study how the session delimitation method impacts the results (6.2). After
that, we focus on the generalization of the new metrics by studying their scalability with
regard to workload size (6.3). Finally, we point out the di�erences between our model and
the original model from Zakay and Feitelson (6.4).

6.1 In�uence of the change in infrastructure

Thanks to the replay model and new metrics, we are able to characterize the e�ect that
a change in the infrastructure might have on user submission behavior. It will impact the
submission times, shifting them forward or backward. Below is a ranking of the impact
of the studied infrastructure change, from the earliest to the latest submission times in
relation to the original times, based on Table V.2:

1. perf*2 (earlier than original)

2. infra*2 (earlier)

3. no change (EASY)

4. infra/2 (later)

5. perf/2 (later)

This ranking is veri�ed by both logs, no matter the replay method (a0 or a60). For KTH
log, the change to scheduler FCFS would rank between items 4 and 5 while for SDSC it
would come between 3 and 4.

Importantly, we see that doubling/halving the server performance has a more signi�cant
e�ect in shifting the submission times than doubling/halving the number of servers (in
absolute value). This e�ect is particularly visible with KTH log. In fact, changing the
performance directly a�ects the execution time of every job. Changing the number
of servers, however, has no e�ect on the execution times, but only impacts the waiting
times indirectly. If the original infrastructure was already oversized, this change will
have little e�ect. Note also that decreasing the number of servers below the maximum
number of requested resources will cause some jobs to be rejected � hence considered
immediately �nished, for the replay method.
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KTH SDSC

10th 50th 90th 10th 50th 90th

FCFS -5 8775 44525 0 12141 67078
EASY -17980 -699 918 -8898 0 4180
perf*2 -26247 -2186 -49 -26170 -1803 0
infra*2 -25321 -1553 -18 -21738 -1288 0
perf/2 0 10485 47168 0 15190 153976
infra/2 -8695 2586 19434 0 13424 119480

(c) Percentiles on the distributions of additional lateness plotted above (in seconds)

Figure V.5: Additional lateness per user, for all experiments, with replay a60.
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Figure V.6: Longest path and arity distribution of user session graphs.

6.2 In�uence of the delimitation method

At the root of the feedback model is the partitioning of jobs into sessions (see De�nition 14).
We remind the reader that we use two methods in the experiments: a delimitation on inter-
arrival of 0 minutes, corresponding to single-job sessions, and 60 minutes, which was an
optimal parameter found by Zakay and Feitelson [125]. Inter-arrival times of more than
60 minutes led to sessions of unrealistic length in their study. The characteristics of our
resulting session graphs are shown in Figure V.6.

Session graph structure We observe a large diversity in the size of the session graphs
for the di�erent users: some contain only one session, while others have thousands of
sessions with the longest path inside the graph of several hundred sessions. These re�ect
the intrinsic di�erences between HPC users that use the platform for various motives and
with di�erent levels of activity.

Unsurprisingly, the use of delimitation a60 reduces signi�cantly the number of sessions
in the graphs, hence the longest paths. More notably, we observe that a60 reduces greatly
the arity of the graphs: there is no graph with an arity greater than 11 with this delimitation
method. In other words, there are less �sessions in parallel� for given user with a60.

Also, an analysis on the think times reveals that 75% of edges have a think time <10h
and 35% are <1h for delimitation a0, while 50% of think times are <10h and around 13%
are <1h with a60.

In short, the session graphs produced by the two delimitations methods have
very di�erent structure.
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Figure V.7: Distribution of the di�erence in submission timestamps between rigid
and a60 replay methods (top) and a60 and a0 (bottom), KTH log. Note: the top graph
corresponds to the de�nition of lateness, and it con�rms the ranking made in 6.1.

In the experiments All the same, and as we already mentioned in the previous sections,
the two delimitations studied have little in�uence on the results. Scheduling metrics and
our new metrics are roughly the same (Tables V.1 and V.2) and submission time distri-
butions look very similar. However, if we look more carefully, we note that mean lateness
(and hence relative lateness and additional lateness) are always lower with a60. To see that
more in detail, we plotted the distribution of the di�erence in submission times between
the di�erent methods in Figure V.7.

As we can see, the di�erence between the submission time in a0 and a60 is positive
for almost all jobs. Delimitation a0 lead to slightly (a few days) later submission
times than a60. This e�ect is explained by the greater complexity of session graphs
obtained with a0 that we explained above. Having more sessions and more dependencies
results in less �exibility during the replay. If one job gets delayed in its execution, it will
have more impact because it has more successors.

6.3 Scalability of relative lateness and additional lateness

The metrics relative lateness and additional lateness, that we introduce in Section 5, are
in�uenced by several factors, including the simulated platform, scheduling algorithm, work-
load and delimitation method used to de�ne the user sessions. Ideally, we would like them
to be the signature of a particular infrastructure, with its speci�cities in terms of users,
platform, scheduler, and to stay the same no matter what time window we are looking
at. In other words, we would like these metrics to be independent on the length of the
workload.

We already saw that the metric mean lateness depends on the length of the workload,
since we observed a drift to high values as the number of jobs submitted by the users
increased in Figure V.4. Figure V.5 was quite convincing in that regard, as it does not
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Figure V.8: Scalability of the additional lateness metric.
For each point, a new simulation has been run with a subset of the workload as input: the subset contains
only the n �rst jobs (ordered by submission time) of the original workload. Then, additional lateness is
calculated on the output using Equation V.6.

show such a drift. To check the scalability of these metrics, we rerun the simulations on
subsets of the original trace, containing the 10, 20, ..., 90% �rst jobs. The truncated traces
undergo session partitioning and the corresponding session graphs are used as input for
new simulations. The metrics obtained for each truncated trace are shown in Figure V.8.

The results are mixed. When only the infrastructure is modi�ed, additional lateness
seems to stabilize with the number of jobs as input. For experiments easy (no change
in infrastructure) and perf*2 for example, additional lateness increases at �rst with the
number of jobs, but seems to plateau after 20000 jobs with both logs. The case of exper-
iment perf/2 is more problematic as additional lateness starts by decreasing until 20000
jobs but increases again thereafter, especially with SDSC log. This means that the delay
caused by halving the performances does not only add up with time (ℓ(i) increases), but
the additional delay for each new submission also increases (δi = ℓ(i)− ℓ(i− 1) increases).

However, additional lateness is not scalable when the scheduler is modi�ed (experiment
fcfs). In this case, the metric does not seem to stabilize and behaves in the opposite way in
both logs (decreasing for KTH and increasing for SDSC). It is hard to say what is intrinsic
to the metric and what is due to heterogeneity in the input workloads.

To conclude, in our experiments, additional lateness scales rather well with the size of
the workload for a change in infrastructure, but not for a change in scheduler. We therefore
recommend anyone using this metric to do the same scalability checks.
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6.4 Comparison with related works

In this part, we come back to the di�erences between our model and Zakay and Feitel-
son's [122]. Like them, we do a replay with feedback on submission times only. The method
is based on think times, and on a session partitioning of the original workload. Compared
to them, we only preserve the think times between sessions. Zakay and Feitelson introduce
an additional notion of �batch�, which are groups of overlapping jobs within a session.
From there, they propose three methods:

1. `adjusted': preserve the think time between batches. This is the method that is the
closest to ours.

2. `distribution-based': when a batch becomes free, submit it if the current time is in a
�period of activity� of the user (working day, working hours). Otherwise, shift it to
the next period of activity. This method requires assumptions on periods of activity,
that they manage through a probabilistic model.

3. `�uid': do the session partitioning, and preserve the session start and end times for
users in the replay. The sessions will be the �periods of activity�. The batches are
submitted only during these periods, if they are free.

In this chapter, we did not reproduce their methods to compare our results to theirs.
The reasons are twofold:

Firstly, in absence of a validation method, such a comparison would be inconclusive.
For example, we expect their `adjusted' method to show similar results than ours, but we
would have no way to conclude which one is the most realistic. Similarly, `distribution-
based' arti�cially restores the seasonality (see 7.3) to the cost of an additional set of
assumptions on periods of activity for users, making it di�cult to know if it kept the
fundamental features of the original workload trace.

Secondly, we disagree with the assumptions behind the `�uid' model. We think that
the sessions that are deducted from the recorded trace and the periods of activity are two
separate notions. If a user does not submit any job one day, it does not necessarily mean
that she was not working that day, but rather that she did not have anything to submit.
If the performances of the platform were di�erent, she might have had something ready to
submit that day.

Instead of proposing a comparison based on hypotheses and beliefs, we preferred to
implement the simplest model of replay with feedback, and provide a solid theoretical and
software base for future contributions in the domain.

7 Limitations

The model of replay with feedback presented here allows accounting for e�ects that are
invisible in traditional simulations. However, our work has some limitations, in both the
experiments and the model, that we point out in this section.

7.1 Limits of the experimental campaign

The experimental campaign proposed in this chapter only includes two workloads, which
are both quite old (recorded before the year 2000). They were carefully selected because
they disclosed information on their scheduling policy and featured simple platforms (ho-
mogeneous with monocore servers). Similarly, we studied only two monocore schedulers
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(EASY and FCFS). These were chosen as they are the most commonly used in the literature
and correspond to the workloads.

Nevertheless, since our work focuses on the model of replay and not speci�c scheduling
results, we argue that our campaign is su�cient to reach our conclusions, which would
extend to other workloads and other schedulers. Furthermore, we remind that we took
particular attention to make the experiments reproducible. Hence, it should be easy to
re-run the campaign with any workload available in the Parallel Workload Archive.

The remaining of this section will focus on the model limitations.

7.2 Only one type of user response

First, let us recall that our method of replay with feedback focuses only on submission
times. In reality, the response of users to system performances goes well beyond: they
can react by submitting more or less jobs, modifying their applications, leaving the infras-
tructure etc. However, we chose to stick to feedback on submission times for three main
reasons:

1. Even for feedback on submission time, we cruelly lack related literature and methods
of validation (see 7.5). We found no literature on the other types of user response.

2. Multiplying the parameters that we change compared to rigid replay makes it harder
to deeply analyze the e�ect of the proposed feature. We preferred to proceed by
incremental steps.

3. Allowing for more types of user response might alter the input workload even further,
to the point where it is not easy to know if it kept its fundamental structure.

7.3 Day/night variability

In real infrastructures, we observe a day/night and weekday/weekend variability in the
user submissions. This variability is also present in our input data, as we can see in the
top graph of Figure V.9, displaying the number of submissions per hour of the week in the
recorded trace KTH.

Unfortunately, with our method of replay with feedback, the submission times get
shifted around, and this variability is lost (graphs a0 and a60 in Figure V.9). This leads
to both a loss of realism (e.g., users submitting at 3:00 in the night) and distorted results,
since the workload becomes evenly spread out in time.

Such a variability could be �xed for example by adding assumptions on activity times
for users (like in the `distribution-based' user model [122], see 6.4).

7.4 Remaining rigidity in the feedback model

Our method, although better than rigid replay in this regard, is unsatisfying to fully capture
user response to feedback from the infrastructure. In fact, as already mentioned, doubling
the performances of servers only stretches the length of the submission period by 0.99 or
0.98 (see relative lateness in Table V.2). A more signi�cant rebound e�ect would have
been expected as a consequence of such a performance gain. An analysis of throughput
and utilization in the di�erent experiments, plotted below in Figure V.10, enlightens us on
the reasons behind this limited rebound.
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Figure V.9: Number of submissions per hour, aggregated by week, KTH log
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Figure V.10: Throughput (average number of job terminations per day) and mean
utilization (average number of computing servers), KTH log. The metrics are calculated on a
time window starting two weeks after the beginning of the simulation and with length 4, 6 and 8 months,
to leave away beginning- and end-of-simulation edge e�ects.
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Limited rebound in throughput and utilization As we notice, doubling the per-
formances or number of servers has no e�ect on throughput with the rigid replay model
(rigid perf*2 and infra*2): it remains at around 80 jobs/day (left graph in Figure V.10).
In fact, because the job arrivals are �xed, increasing the performance of the infrastructure
only leads to lowering the mean utilization (right graph).

We would expect the feedback model to correct this e�ect. Unfortunately, this is only
partly the case: the change in infrastructure leads to a higher throughput, but only 5 to
11% greater compared to rigid (feedback infra*2 and perf*2). In parallel, the mean
utilization drops from around 70% to 40-47%, only slightly above the level with rigid
infra*2 and perf*2 (36-37%)

Similar e�ects can be observed with the experiments perf/2 and infra/2, with, this
time, a saturation of the platform (utilization >90%).

Explanations Our model does not allow us to achieve the level of realism needed to
handle the case above. It still contains two sources of rigidity.

1. Think times are constant in the model. Even if the infrastructure yields the
best performances, they will never be reduced. To understand, let us come back to
the simple session graph drawn in Figure V.1. Better performance can reduce the
length of the session boxes, i.e., the turnaround time of jobs. But the brown arrows
representing the think times will always keep the same length. As a result, if a user
stops submitting for one month and comes back afterwards, the �rst new job she
submits will have a think time of one month, whether she actually needed all this
time to �think� or she was absent for other reasons.

2. The �rst job submitted by a user is always replayed at its original (recorded)
timestamp. In both KTH and SDSC logs, new users arrive in the platform up to
a few days before the end of the record. We plotted their dates of arrival in Fig-
ure V.11. This explains why the length of the submission period is never signi�cantly
reduced when the performances are better.

1996-11 1997-01 1997-03 1997-05 1997-07 1997-09

(a) KTH

1998-07 1999-01 1999-07 2000-01

(b) SDSC

Figure V.11: User arrivals in the platform. Each vertical blue line represents the �rst time
one user submits in the platform. The red vertical lines are the start and end time of the original log.

The two factors of rigidity above are the expected behavior of our model. To overcome
these limits, the model would have to be extended with new assumptions. For example,
Feitelson proposes to introduce a model of arrival/departure of users in later work [128].
Additionally, we could consider a user as a new user after a long think time.
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7.5 On the validation of the model

As we saw, the current version of our replay with feedback model is perfectible. Despite
some good properties compared to rigid replay, we cannot claim that it is more scienti�cally
valid. In fact, verifying the validity of such a model is a challenging task, and we are not
aware of any work attempting to do so. Instead, we can only provide ideas on the ways
such a validation could be carried out:

� making a survey with users of grid/HPC infrastructures to understand what their
behavior is in reaction to feedback (see Wolter et al. for an example of HPC user
survey [129]),

� collecting data on a real infrastructure that underwent a major change and check if
the model is able to predict the way the users adapted to this change (see Klusá£ek et
al. for the analysis of Metacentrum log that underwent a major recon�guration [114]).

We leave these avenues of research for future work.

8 Conclusion

In this chapter, we challenge the traditional way to simulate distributed systems by in-
troducing a feedback loop in the workload model. Compared to using a pre-determined
workload (historical record or generated) in the simulation, we let the workload adapt to
the simulated performance of the system, in the same way that real users would adapt
their pace of submission to the response they get from the infrastructure. This novel way
of doing simulation, that we call �replay with feedback�, was �rst proposed by Zakay and
Feitelson [122]. It consists in using a historical workload as input and partitioning it into
�sessions of work� for each user. During the simulation, we no longer preserve the original
timestamps of submission, but rather the think time between sessions, i.e., the time that
elapsed between the termination of all jobs in a session and the submission of the next
one. Zakay and Feitelson introduce a notion of batch within session that are the sets of
jobs whose execution overlap.

We complement their approach by providing a slightly di�erent replay model, leaving
aside the notion of batch to keep the model as simple as possible. Our model is imple-
mented in our open-source software Batmen, making it easily reusable for implementing
and studying other replay models. We apply our model and implementation by running a
reproducible experimental campaign with two historical logs, with which we obtain similar
results. The experiments show how replay with feedback can be used to predict the impact
of a change in the infrastructure (computing performances, number of servers, scheduling
algorithm) on user submission behavior and scheduling performance. In our case, decreas-
ing the performances or number of servers make the users accumulate a delay at each
submission compared to the baseline. On the other hand, increasing them instead made
the users submit earlier on average. A change in performances has a more signi�cant e�ect
than a change in number of servers. Lastly, we introduce three novel metrics, independent
of the speci�c replay model, to describe the e�ect of feedback on user submission. Mean
lateness measures the average time di�erence between the original submission times and
those in the simulation. Relative lateness gives an expression of this time di�erence, rel-
ative to the length of the simulation. Finally, additional lateness expresses the additional
delay that the users accumulate at each submission, in response to the feedback provided
by the infrastructure.
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This work contributes to what is in our opinion a fundamental yet much under-
researched topic within the �eld of distributed system simulation. It requires to rethink the
way we do simulation and interpret the results. Performance of computer systems are not
only about bandwidth or number of operations per second, but rather the utility that they
bring to the humans using them. Not taking the human factor into account leads to large
overestimates of potential gains, as it neglects the rebound e�ect inherent to e�ciency.
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In the previous chapters, we focused on data center users who were directly interacting
with the IT platform, i.e., the �direct users� in the de�nition of Chapter II (see II.1.1.1).
We modelled di�erent types of su�ciency behaviors and simulated their impact on the
data center energy consumption.

However, most data center users are in fact not direct users. They are rather �indirect
users�, i.e., everyday Internet users, browsing websites and using cloud solutions, often
without knowing where the servers are located or how much environmental footprint they
represent. For cloud data centers, the indirect users represent the vast majority of end-
users. It is therefore essential to re�ect about what �digital su�ciency� means, in their
case.

The positioning is twofold. On the one hand, it allows us to widen our scope by taking
into account a larger share of end-users, and bring out new types of su�ciency behaviors.
On the other hand, direct and indirect users are not completely uncorrelated. We can
assume that for every service used by an indirect user there is one (or several) direct
user, at the other end of the chain of intermediaries, taking care of provisioning enough
resources to meet the service demand. Identifying the su�ciency levers for indirect users
allows understanding what su�ciency behaviors direct users can (or cannot) adopt.

To investigate digital su�ciency for indirect data center users, we have to step out of
our scienti�c discipline, Computer Science, and take a social science perspective. Under-
standing what is su�cient for users requires to meet them, collect their personal experience
and question their needs for digital technologies.

In this chapter, we present such a study, that I made in collaboration with Prof. Pa-
tricia Lago from the Vrije Universiteit Amsterdam, and that we published in 2023 at the

105
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conference ICT4S [C3]. We start by presenting the background and the three research
questions of the study in Section 1. The details of our qualitative method and its execu-
tion are given in Section 2. Section 3, 4 and 5 provide the study �ndings, following the
research questions. Our �ndings are discussed in Section 6, and the study limitations in
Section 7. Finally, we conclude the chapter in Section 8, linking back the results to the
rest of the PhD manuscript.

1 Description of the approach

I started to collaborate with Patricia Lago at the International Summer School on ICT for
Sustainability 20211. During this week and with other researchers, we started to look at
the cloud computing model2 and identify its shortcomings with regard to sustainability.
In fact, the cloud allows access to everything, always and everywhere. It is often marketed
as immaterial or even sustainable by tech companies, but may lead to �unsustainable
patterns� like overconsumption or super�uous usages. We identi�ed ten such patterns that
we published in a paper at the workshop LIMITS [C2].

For the study described in this chapter, we decide to focus on cloud usage in profes-
sional life, speci�cally in the context of �exible work (see text box page 107). The aim
is to build initial knowledge in the opportunities for digital su�ciency at work, by using
qualitative research methods. We conduct three focus groups with a total of 11 partici-
pants working in two di�erent companies and analyze the collected data with a thematic
analysis. We look into the participants' daily work activities performed on a computer or
phone (simply called �tasks�) and investigate the following research questions:

(RQ1) Which tasks are cloud-based? Are there di�erences in di�erent working settings?

(RQ2) What types of cloud-based tasks are perceived as necessary, and under which cir-
cumstances?

(RQ3) What is the perception of the bene�ts and challenges when super�uous activities are
provided on demand?

2 Study design and execution

To address our research questions, we apply a mixed-method empirical research design
that is intended to be conducted inside companies. For each participating company, it
combines a preliminary interview with a knowledgeable person, with one or several focus
groups with employees.

2.1 Preliminary interview

The �rst study step is a one-hour interview consisting of 11 questions with a top manager
or IT responsible having a good overview of the company. The intention is to (i) identify
the working culture and the company's vision for �exible work, and (ii) gather data on the
IT infrastructure and solutions used to support work. The interviewee also helps identify

1Summer School organized remotely, program available at https://www.lorentzcenter.nl/interna
tional-summer-school-on-ict-for-sustainability-2021.html

2The term cloud in this chapter is to be understood in its broad sense i.e., �a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of con�gurable computing resources� [130],
and for end-users (SaaS model).

https://www.lorentzcenter.nl/international-summer-school-on-ict-for-sustainability-2021.html
https://www.lorentzcenter.nl/international-summer-school-on-ict-for-sustainability-2021.html
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Flexible work, cloud usage and environmental impact

Flexible work is, in a de�nition by the UK government, �a way of working that suits an em-
ployee's needs, for example having �exible start and �nish times, or working from home� [131].
For some categories of jobs like research or consulting, new technologies, and especially main-
stream cloud solutions (Google suite, Zoom, Microsoft Teams, etc.), have enabled people to
work more �exibly by doing remote work. In his thesis, J. Stiles investigates the impact
of cloud computing on work location decision-making with qualitative and quantitative re-
search methods [132]. He identi�es �ve categories of cloud usage for �exible work, namely
(i) using messaging platforms across multiple devices, (ii) accessing shared company databases,
(iii) video/audio conferencing, (iv) document-sharing and collaboration, and (v) online project
management.
The COVID-19 pandemic accelerated even more the adoption of remote working. During the
�rst global lockdown in 2020, many people were forced to work from their home, resulting in a
growth of 15-20% of Internet tra�c within a week (and 200% for remote working applications
like VPN and video conferencing) [133].
In terms of environmental footprint, remote working is commonly admitted having a rather
positive impact, by reducing physical commuting. Nevertheless, we see at least two reasons to
be vigilant. First, the true environmental consequences of remote work become more complex
when energy use at home, induced Internet tra�c and other rebound e�ects are taken into
account [134]. Second, digitalization in this area continues to develop at a fast pace. The
calculation should be revised when innovations such as spacial video, digital smell or digital
touch [135] come into being, with all their induced e�ects.

the types of roles and the speci�c people covering such roles within the company, and hence
that are relevant to include in the focus groups. Finally, he or she acts as a champion to
recruit such people.

2.2 Focus groups

The second and main step of the study consists in a series of focus groups organized as
follows. The participants gather around a table and are given a sheet to �ll out that they
can use for individual note-taking. The facilitator has slides with the prompts to guide
the discussion and a white board for collective note-taking. Each session lasts about two
hours and follows an identical structure:

1. Introduction and context. The context of global greenhouse gas emissions and the
increasing projected contribution of the ICT industry is presented by the facilitator.
The concepts of �digital su�ciency� and ��exible working� are de�ned and the goal
of the study is explained.

2. Warm-up: smartphone usage. The participants are asked to choose from a list
the three most frequent uses of their smartphone. Then, they choose the three uses
that they �nd the most necessary for them. Going around the table, the facilitator
asks: �is there one task that you do frequently but is not on your necessary list?�
This warming up exercise is used as an ice-breaker and an invitation to radical
thinking. The discussion allows the facilitator to highlight the addictive nature of
new technologies and the di�erences between needs and actual usages.

From here, the data collection begins:
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3. Working week organization. Going around the table, the participants describe
the organization of their working week with regard to �exible working (work location,
working hours, work-life balance).

4. Cloud-based usages for �exible work (RQ1). In the di�erent working settings
previously identi�ed, the participants list the daily tasks they do for work on their
computer or phone and identify the ones that are cloud-based. The discussion takes
the form of a brainstorming, with the facilitator leaving them time to think and take
individual notes before sharing to the group. During the discussion, the facilitator
notes the tasks on the white board and links them to speci�c working settings.

5. Tactics towards su�ciency (RQ2). For each cloud-based daily task, the partici-
pants are invited to re�ect: �could you do without? If yes, how? If no, why?�. The
discussion is left open and interactive, with the participants using their notes and
the white board to recall the previously collected tasks and the facilitator making
sure to cover most of them.

6. On-demand activation (RQ3). Finally, the participants are asked to focus on
possible ways to embed su�ciency in their own work practice. They discuss the
potential bene�ts and challenges for di�erent cloud-based tasks.

7. Wrap-up. The facilitator closes the session and thanks the participants, after mak-
ing sure that nothing was forgotten and answering potential questions.

The slide-deck for the focus groups contains 14 slides that were made visual by the
use of colors, icons and minimal text. They are available in our replication package (see
Section 2.5)

2.3 Study execution

We carried out a dry-run of the focus group session with �ve colleagues to collect feedback
and check for potential problems. After this session, we made minor changes on the slide-
deck and decided to help the participants keeping track of the conversation by distributing
a pre-�lled sheet for individual note-taking and taking collective notes on a white board.

Then, we rolled out the study between November and December 2022 in two companies:
Company A (a small IT services and consulting company) and Company B (a large business
services and consulting company), in the Netherlands. The participating companies were
found within our network of industrial relations, and we had previous collaborations with
them in sustainability-related projects.

We conducted a preliminary interview by videoconference with our contact in each
company. Afterwards, these people kindly took charge of the recruitment of participants
for the focus groups, by reaching out internally and making sure to get a representative
panel of roles and responsibilities. They both participated themselves. The focus groups
took place in-person on company premises. We carried one focus group at Company A with
four participants and two focus groups at Company B with three and four participants,
respectively. Table VI.1 provides the anonymized demographic information about the
participants. Note the over-representation of home workers in our sample, speci�c to the
Netherlands and the participating companies' culture.
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Table VI.1: The focus group participants.

P# Age Gender Occupation FG# work locations*

1 36-45 M Consultant A H, O, C
2 26-35 M IT developer A H, O
3 36-45 M IT developer A H, O
4 56-65 M Consultant A H, O, C

5 36-45 F HR manager B1 H, O
6 18-25 M HR recruiter B1 H, O
7 36-45 M IT support B1 H, O

8 26-35 M Sustainability Procurement B2 H, O
9 18-25 F Sustainability Operations B2 O, H
10 46-55 F HR manager B2 H, O, CW
11 46-55 F Sustainability Procurement B2 H, O

*we reported the work locations from which the participants declared to work more than one day a week
(bold: more than two days a week), for a typical 5-day working week.
Abbreviations: H: Home, O: O�ce, C: Customer site, CW: Co-Working space.

2.4 Data analysis

The interview and focus group sessions were video-recorded. The focus groups were tran-
scribed, producing 67 pages of text from 5 hours of discussions, constituting the primary
data for analysis.

We performed a thematic analysis [136] on the data, with the help of the qualitative
analysis software Saturate3. This tool allows to import the transcripts and associate codes
to sentences or paragraphs. The codes can be sorted in categories and subcategories.
We progressed by open coding, de�ning and modifying the codes through the analysis.
I generated the initial codes from the transcripts and Patricia Lago reviewed them crit-
ically, indicating where she would have coded di�erently. Progressing by iterative steps,
we produced a Codebook consisting of 248 codes sorted by three levels and by research
question.

2.5 Replication package

For the sake of transparency, we provide a replication package in Zenodo [137] containing
the material used in the study. The package includes:

− the interview guide for the preliminary interview,

− the focus group slides and note-taking template, and

− the Codebook containing all the extracted codes along with their de�nition, number
of occurrence in the transcript and description on when the code is applicable.

For privacy reasons, and upon agreement with the participants, the video recording
and transcripts are not included, and the data is anonymized.

3free browser-based qualitative data analysis software available at www.saturateapp.com

www.saturateapp.com
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3 Findings 1: cloud-based usages for �exible work

In this and the next two sections, we expose the outcome of the focus groups, following the
outline that has arisen from the thematic analysis. Along the way, we highlight a number
of �suggestions towards su�ciency� that emerged from the analysis of the results.

To start, our participants' cloud experiences in relation to �exible work are presented
here in three parts: the list of their digital activities (3.1), the di�erences observed between
di�erent work settings (3.2), and the impact that the cloud and COVID-19 have had on
the way we work (3.3).

3.1 List of tasks

The daily work activities performed by our participants on a computer or phone (sim-
ply called �tasks�) are summarized in Table VI.2. We report only general-purpose tasks,
cross-cutting di�erent functions inside the company, and exclude function-speci�c tasks,
e.g., coding, CV-screening, employee advising. Please refer to the Codebook [137] for the
complete list. Such a list, emerging from the �eld, is an important basis to re�ect upon
su�ciency in everyone's context of �exible work.

When asked �which of the tasks are cloud-based?� (RQ1), our participants actually
struggled to �nd some that did not rely on the cloud. As P10 expressed it: �everything is
cloud-based in the work that we do�. For this reason, the answer to RQ1 is nuanced. All
the same, we could identify three categories:

1. tasks that require constant access to the cloud, e.g., meeting online (P4) or
processing internal requests on an internal tool (P6, P7);

2. tasks that only need access to the cloud from time to time to synchronize,
e.g., coding using GitHub (P2) or collaborative editing on a shared �le (P7); and

3. tasks that do not use the cloud at all, e.g., modifying a local �le (P1) or having
physical meetings (P5).

Some tasks fall either in the �rst or the second category, depending on the technical
solution used. For example, P1 explained that for some email accounts he uses a web
version, and for some others, a desktop version.

➢ Suggestion towards su�ciency

Strategies to reduce cloud usage could be adopted, where possible, to move from the �rst to
the second category, or from the second to the third one.

3.2 Work settings

Are the work activities di�erent depending on the work setting? The �rst observation is
that all the participants are mobile workers: all of them work from home and from the
o�ce at least one day a week each (see Table VI.1). They are also mainly remote workers:
10 out of 11 have home as their main location (in fact, for Company A, working from home
except on Fridays is the common practice).

During the focus groups, the participants were asked to describe their work settings and
potential di�erences between work settings in the tasks they perform. Five work locations
emerged: home, the company o�ce, a customer site, the car and the train. Besides, some
participants (P8, P9, P10) are mobile between di�erent locations where their company has
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Table VI.2: List of general-purpose digital usages for �exible work identi�ed by
the focus group participants.

Task* # Description

email 9 Reading and sending emails
messaging 6 Communicating through instant messaging
planning 5 Making appointment, organizing one's week
online meeting 5 Participating in a meeting through a videoconference tool
phone 4 Communicating through a phone call
reviewing 4 Carefully examining data or documents to �nd out whether changes or

improvements need to be made
project
management

4 Organizing a (personal or collective) project with an online tool

data analysis 4 Examining and making sense of data, most of the time with a spreadsheet
preparing
presentation

3 Structuring a presentation, creating support material

giving
presentation

3 Presenting, remotely or physically, with or without the help of support
material

gathering info
(internal)

3 Searching and browsing for information on an intranet

gathering info
(external)

3 Searching and browsing for information on the Internet

writing time 2 Declaring one's time spent on each project or department, using internal
tools

writing
documents

2 Producing virtual documents

watching video 1 Watching a video, streamed or not
taking notes 1 Writing down information about something happening, for future notice
online training 1 Learning new skills for a particular job through online resources
online presence 1 Providing a substitute to being in the same room, e.g., with video on and

mike only when needed
creating visuals 1 Producing graphs, schemes, �owchart etc. for strategy planning
brainstorming 1 Interacting with other people to suggest many ideas on a topic
attending digital
event

1 Participating in an online event, through a videoconference, video-
streaming or dedicated tool

*function-speci�c tasks (e.g., coding, CV-screening, employee advising) are excluded
column #: number of occurrence of the task in the focus groups discussions (decreasing order)
last column: description of the task based on the transcripts and online dictionaries
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an o�ce. The overall impression is that their work locations are completely interchangeable
(P1, P2, P4, P9, P10): �I do exactly the same here than at home� (P2). Small di�erences
remain however, for example the case of transports, as P4 pointed out: �only the case of
transport, that's a di�erent situation�.

We enumerate the reasons driving the choice of a work location, divided in three themes
(3.2.1). And, once at a speci�c location, speci�cities of the location in terms of tasks
performed (3.2.2).

3.2.1 Reasons to choose a location

The choice of work location can be guided by the task nature, by personal preference or
by absence of alternative.

Task driven The most important driver seems to be the task locality: �there are ap-
pointments where I just need to be on a certain location� (P1). It can as well be the
access to speci�c gear: �at home o�ce I have a huge screen that's really helpful if you're
coding� (P1). P5 also mentioned con�dentiality reasons to work from home when she has
to deal with employee matters.

Opportunistic driven The reason to go to the o�ce that came back often is the op-
portunity to see colleagues. For example, some teams in Company B have introduced the
�team day�: �our team tries to come together and actually see each other once in a while, so
we decided that Tuesday was the best day for that� (P5). Otherwise, in this highly remote
environment, home is the default (P1, P4, P6). Other reasons are personal attraction to
certain locations (P8, P10, P11), or appeal for change of scenery (P9). P5 also mentioned
the problem of availability of o�ce space as a reason to stay at home. The opportunistic
nature of the choice of location was well summarized by P1:

�for me �exible work means [...]: being there where you need to be, followed
by being there where it is most e�cient or most suitable, the easiest place of
working� (P1)

No choice Finally, in some cases, there is no choice because there is only one alternative,
e.g., for the colleagues of P10 which are on a fully-remote contract.

➢ Suggestion towards su�ciency

Awareness of the reasons to choose a location allows planning ahead for quality work in an
appropriate environment, thus focusing on the essential, e.g., by grouping together tasks that
require the same location.

3.2.2 Choice of tasks driven by location

The participants also revealed di�erences between work locations, in terms of the tasks
they choose to perform there. The most discussed example is the train (di�erences for
other locations can be found in the Codebook). Similarly to the car, the train as a work
location stands out because the worker only stays for a limited time and does not have all
the usual comfort (space, good Internet connection). On top of that, in a train, one does
not want to disturb the other passengers.

These have various implications depending on the participants. Some said they never
work from the train (P8). Some reported using the travel time to focus on individual
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tasks: answering emails (P1, P5, P10, P11), preparing a presentation (P11), doing data
analysis (P10), reading up (P11) or chatting (P11). Finally, some tasks were identi�ed as
never done in a train, namely having a meeting (P1, P4, P11), giving a presentation (P1),
for obvious reasons of discretion, or screening CVs (P6), for con�dentiality reasons.

If the train as a place to work has many disadvantages, one participant reported en-
joying working there a lot, being focused and e�cient:

�I take the train at 6:30 and I have those two hours. I'm so productive between
6:30 and 8:30! I do so much! That's why I love it, actually. Because I have no
other emails. I just focus on what I have to do. I'm not disturbed.� (P11)

➢ Suggestion towards su�ciency

Working from constrained environments allows progressing on individual tasks while reducing
one's digital usage to the essential.

3.3 Impact of cloudi�cation

New technologies have profoundly modi�ed the way we work and the pace of work. Along
the study, we collected evidence that more recently, the over-availability of work tools
brought by the cloud has further reshaped the organization of work. This phenomenon
has been ampli�ed by the lockdowns and social distancing measures imposed during the
COVID-19 pandemic. Even if we did not speci�cally ask the participants, this topic often
came in the discussions. The participants reported that work has accelerated (3.3.1), has
become fragmented (3.3.2) and involves less human contact (3.3.3). They also felt the
impact of this new work paradigm on wellbeing (3.3.4).

3.3.1 Acceleration of work

P4 perceived an increase in productivity: �that's a revolutionary time now, how you work.
[...] for us it changed a lot the last few years. I think the productivity is higher�. Since
the pandemic, people started working from home more (P4, P5): �I remember we would
come to the o�ce be default at least 4 times a week and now it's more the other way
around� (P5). There are more online meetings (P5, P7) and more digital events (P8, P11).
P11 mentioned the new common practice of having `back-to-back meetings' i.e., series of
online meetings straight after one another, symptomatic of contemporary way of working.

3.3.2 Fragmentation

The 24/7 availability model results in the workers multitasking a lot:

�Cloud de�nitely help in the availability... whether it's people's availability,
whether it's availability of data, whether it's the availability of systems that
you use. I mean, it's all there all the time, which is kind of also... brings to
risk that you are doing everything at the same time all the time, right?� (P7)

As P1 put it, �there is a lot of fragmentation� (P1): the di�erent projects and tasks of
the participant are broken in small parts and spread out over the working week, as opposed
to having them contained in dedicated days.
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3.3.3 Less relationship

Unsurprisingly, a by-product of working more often remotely is to lose human contact. We
remind that �seeing colleagues� was an important reason to work from the o�ce for the
participants (see 3.2.1). P5 declared trying to do more physical meetings now, to build a
relationship with the people she works for. In focus group B2, the second facilitator and
P11 pointed out that the informal circuit, where one could quickly ask a question to a
colleague, has been lost and needs to be replaced by booked meetings.

3.3.4 Impacts on wellbeing

The perception of the impacts of contemporary way of work on well-being was mixed. On
the one hand, participants appreciated the �exibility of work location and work hours,
the time saved in transports or the hierarchical di�erences that became less visible with
online interactions (P10). On the other hand, many participants underlined that working
remotely is tiring (P4, P6, P8, P11): �it's mentally draining to keep meeting online� (P6).
In P4's opinion, it can be stressful, unhealthy or even lead to burn-out. Remote work-
ing tends to blurry the personal/professional boundary, as P10 explained: �when you're
preparing for dinner or so you're still going on about that last call and think `oh I need
to write this' �. In the end, the post-COVID-19 hybrid system leads to situations where a
participant shared having the impression of accumulating the disadvantages of both on-site
and remote working:

�What I �nd the worst is this mix that I now encounter. There is a lot of
things happening on site, in my case. I do have half a day of online meeting
followed by half a day of onsite meetings. That's... You have the disadvantages
of traveling onsite, and the disadvantages of being in online calls for the other
half of the day... So you lose all the advantages.� (P1)

4 Findings 2: distinguishing the necessary from the super-

�uous

In this section, we tackle RQ2. The participants were invited to re�ect on their tasks:
�Could you do without? If yes, how? If no, why?� Same as for RQ1, the answer to RQ2 is
not black or white. Through the focus groups we intended to get an understanding of the
reasons why some tasks are perceived as necessary (52 excerpts collected) or super�uous
(26 excerpts).

We will only present here the results for the task �online meeting�, symptomatic of
contemporary work style. Our motivations for this choice are the amount of data collected
for this task and the number of hours the participants spend in online meetings (more than
50% of their working time for most of them, sometimes as high as 80%). Besides, online
meeting is probably among the most data-intensive of the identi�ed tasks (Table VI.2). As
usual, interested readers are invited to look at the online Codebook [137].

4.1 Why do we meet online?

The reasons why online meetings or one of its features are deemed necessary by our par-
ticipants were clustered in four themes, presented below.
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➢ Suggestion towards su�ciency

Through the four themes, we give an understanding of the nature of the services rendered by
this task, in other words, what to focus on for a su�cient use.

4.1.1 Substitute a physical meeting

The participants have online meetings for the same reasons they would have had an in-
person meeting. P6 noted that meetings are an essential part of team-work: �[Company
B] is a team-based organization, there is no other way to collaborate than through meet-
ings� (P6). P5 strives to have calls with the people she advises, �to give some personal
attention� (P5). Finally, P10 simply wants to keep human contact: �I really need the time
to talk to people. So can I do it more e�ciently? Probably yes, but then I would lose the
click with . . . � (P10).

4.1.2 External constraints

Some participants (P5, P8, P11) work with collaborators spread out in the country, some-
times abroad. When they need to meet, they do it by videoconference. Besides that, doing
the meeting online can be imposed by the schedule. P1 described a day in which he had
three meetings in three di�erent cities and explains that he could not physically have done
them without joining some of them online. Finally, a topic that came back several times
in the three focus groups is the weight of expectations on availability: it is assumed that
everyone can drop in an online meeting at any time, so people feel compelled to follow that
norm. Overall, the three reasons above result to be experienced as external constraints,
on which the participants have no in�uence.

4.1.3 Convenience

Remote participation in meetings can also be a deliberate choice. It allows saving travel
time (P1, P4), making it easier to arrange (P6), or not excluding someone that cannot
attend in-person (P6).

4.1.4 Camera- and screen-sharing

During the online meeting itself, some features can be enabled or disabled, e.g., the camera.
Two participants (P10, P11) expressed a strong feeling: they want to see their interlocu-
tors, all the more since online meetings are becoming a common practice. Camera helps
understand nonverbal communication, like facial expressions (P10). Moreover, it was per-
ceived as necessary for important meetings: �If the setting is bigger, with a more formal
session, with an agenda and multiple people involved also from other teams, it has to be
always with the camera on� (P7). At the same time, P5 admitted that having always the
video on is culture-dependent, and noticed a di�erence in other countries.

4.2 An excess of meetings

Having online meetings is essential in the eyes of the participants, but not all of them
are perceived as necessary. In fact, some seem rather useless, as P6 pointed out ironically:
�There's a bunch of meetings about meetings and pre calls for the meeting and then di�erent
meetings to evaluate the meetings. It's a lot of... yeah... meetings� (P6). Too many
meetings, but also meetings that last longer than what they need to: �sometimes I actually
need the full half-hour, and sometimes it's done in 15 minutes. So it's surprising how long



116 CHAPTER VI. DIGITAL SUFFICIENCY IN FLEXIBLE WORK

the meetings do take in the end� (P5). Several participants (P1, P4, P7) shared having
recurring online meetings on their agenda as a replacement of dropping by a colleague
when needed. Everyone in the focus groups seemed to relate. This phenomenon of blocking
recurring online meetings is also a side e�ect of the di�culty to �nd a slot. These meetings
are �not driven by any content or agenda� (P7), and end up sometimes being ine�cient:

�In the early days we had corridor meetings. I see someone by the co�ee machine
and we have a talk. We miss that. So what we do to replace that: we organize
meetings to have that kind of conversations. But it's not really e�cient because
you do it with too many people, and it takes too long� (P5).

Even when a meeting happens physically, an online broadcast may be set up for the people
that could not join in person (P5). The norm has become `online by default', to the point
that �you really have to explicitly mention `this is an in-person meeting' because otherwise
people would expect that there is a virtual option� (P7). On top of that, some participants
noticed having many di�erent clients for the same purpose: �Teams, Skype, Google Meet,
Zoom, I forgot the name of the 3 or 4 that I sometimes have to use� (P1). All these
applications require an account, to be downloaded, installed, updated.

➢ Suggestion towards su�ciency

While online meetings are essential to the work of the participants, there seems to be sub-
stantial room for improvement in �nding the su�cient quality and amount.

4.3 Addressing the super�uous: tactics towards su�ciency

From the transcripts of the focus groups, we extracted 48 distinguished tactics that emerged
from the conversations (some mentioned by the participants as being already applied in
their everyday practice of working �exibly, some others as suggestions of future strate-
gies). The tactics were organized into themes. The result is shown in Table VI.3, ordered
according to the goal of the tactic itself (written in column `GOAL').

As illustrated in the table, we identi�ed three ways to classify each tactic:

� Who should apply it? Tactics are meant for either humans (Human Oriented
- `HO'), a computing system itself (System Oriented - `SO'), or for the context
where systems and humans operate, e.g., the organization, the environment (Context
Oriented - `CO'). For example, tactic offline_with_regular_sync should be applied
by humans, while raise_awareness aiming to create a su�ciency mindset in the
whole organization, must be adopted by the context.

� Where should it be applied to? The identi�ed tactics can be applied to either
human behavior (see column `NON TECH'), or technical artifacts (column `TECH').
For example, tactic set_mailbox_quota is clearly a technical feature, while tactic
disable_camera requires a change in human behavior, hence is non-technical.

� What types of e�ects does it have? The e�ects of the identi�ed tactics have been
found as either visible to humans and addressing the super�uous (hence implementing
su�ciency - column `SUFF'), or transparent to humans and addressing e�ciency
(column `EFF'). For example, tactic self_regulation removes distractions, hence
promotes su�ciency, while tactic app_aggregator supports a more e�cient work
experience.
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Table VI.3: Extracted tactics towards su�ciency

TACTIC DEFINITION GOAL H
O

S
O

C
O

N
O
N

T
E
C
H

T
E
C
H

S
U
F
F
.

E
F
F
.

raise_awareness Inform, sensibilize, share tips&trick on the issue adopting su�ciency ✓ ✓ ✓
su�ciency_in_company_culture Integrating digital su�ciency principles in the company culture adopting su�ciency ✓ ✓ ✓
train_for_su�ciency Explaining su�ciency and how to implement it adopting su�ciency ✓ ✓ ✓
local_if_not_shared Use local, o�-cloud solutions if the work doesn't need to be shared avoiding overconsumption ✓ ✓ ✓

use_local_resources
Using resources (manuals, documents, ..) that are locally available rather than
the Internet

avoiding overconsumption ✓ ✓ ✓ ✓

use_messenging_instead_of_email Using an instant messaging app instead of sending an email avoiding overconsumption ✓ ✓ ✓
avoid_device_and_data_duplica-
tion

Preventing oneself from having several devices with the same purpose or several
copies of similar data

avoiding overconsumption ✓ ✓ ✓

give_more_freedom_to_employ-
ees_to_use_their_devices

Not restricting employees too much in the usage of their professional devices
so that they do not need to have separate ones for private use

avoiding overconsumption ✓ ✓ ✓

separate_pro_and_perso_environ-
ments

Having a way to separate business from private matters on the same device
can help use the same device for both

avoiding overconsumption ✓ ✓ ✓

respect_do_not_disturb_status
If someone has the status 'do not disturb', not sending messages or calling that
person

avoiding social pressure ✓ ✓ ✓

respect_blocked_time_in_agenda
If someone has blocked focus time in his/her agenda, not insisting on scheduling
a meeting on that slot

avoiding social pressure ✓ ✓ ✓

set_mailbox_quotas Having a (low) quota on the mailbox size countering data accumulation ✓ ✓ ✓
auto-disappearing_messages Deleting messages automatically after a certain time in messaging apps countering data accumulation ✓ ✓ ✓
data_lifecycle_management Archiving or deleting old or useless data countering data accumulation ✓ ✓ ✓

shared_agenda
Having a single and shared agenda could avoid a lot of back and forth com-
munication

decreasing useless comm. ✓ ✓ ✓

don't_send_unnecessary_email Preventing oneself from sending an email that is not necessary decreasing useless comm. ✓ ✓ ✓
use_reaction_functionnality_in-
stead_of_a_message

Using the reaction functionality in instant messaging instead of sending a tex-
tual answer

decreasing useless comm. ✓ ✓ ✓

geographical_separation Having separate locations for work / non-work improving quality of life ✓ ✓ ✓

integrated_environment
Having all features in a same solution to avoid moving data between the solu-
tions

improving user experience ✓ ✓ ✓

app_aggregator
Receiving messages coming from di�erent sources in a single app allows every-
one to use the solution they prefer

improving user experience ✓ ✓ ✓

self_regulation Preventing oneself from being disturbed increasing focus ✓ ✓ ✓

block_focus_time_in_agenda
Planning ahead for periods of uninterrupted work on a speci�c topic, hence
making oneself unavailable to others

increasing focus ✓ ✓ ✓

de�ne_channel_for_urgent_mat-
ters

Informing collaborators of an way to be reached for urgent matters in order to
disconnect from other channels

increasing focus ✓ ✓ ✓

disable_noti�cations Turning the noti�cations o� increasing focus ✓ ✓ ✓
in_person_meetings Doing a meeting in person rather than online increasing focus ✓ ✓ ✓
prioritize_noti�cations Tuning the noti�cations to give more priority to urgent matters increasing focus ✓ ✓ ✓
set_do_not_disturb_status Using the status functionality of messaging app to signal one's availability increasing focus ✓ ✓ ✓
stacking_noti�cations Being noti�ed at regular intervals instead of in real time increasing focus ✓ ✓ ✓
use_a_focus_app Making use of an application helping to organize and keep focus increasing focus ✓ ✓ ✓
use_noise_cancelling_headphones Using noise-cancelling headphones to help focus increasing focus ✓ ✓ ✓
work_in_early_morning Working at times where one gets less disturbed increasing focus ✓ ✓ ✓
switch_o�_client Closing an application, window or tab increasing focus ✓ ✓ ✓
disable_camera Turning the video o� in an online meeting lowering tech ✓ ✓ ✓
accept_low_tech Working on oneself to accept tools that are good enough lowering tech ✓ ✓ ✓
low_video_quality_by_default_-
in_meeting

Lowering the video quality in meetings by default lowering tech ✓ ✓ ✓

lower_video_quality_in_meetings Lowering the video quality in meetings lowering tech ✓ ✓ ✓
replace_cloud_with_phone Replacing the use of the cloud by phone calls or SMS lowering tech ✓ ✓ ✓
use_pen_and_paper Using pen and paper instead of a digital tool lowering tech ✓ ✓ ✓
cancel_recurring_meeting_if_-
no_update

Cancelling the next session of a recurring meeting when it has no purpose rationalizing meetings ✓ ✓ ✓

prepare_before_meeting Getting ready before a meeting can reduce meeting duration and increase focus rationalizing meetings ✓ ✓ ✓
replace_meeting_by_an_email Sending an email instead of having a meeting rationalizing meetings ✓ ✓ ✓
shorten_default_meeting_dura-
tion

Setting a lower value for the default meeting duration rationalizing meetings ✓ ✓ ✓

space_out_recurring_meeting
Deciding to meet less often with a person or a group one has a recurring
meeting with

rationalizing meetings ✓ ✓ ✓

online_meeting_saves_travel Having a meeting online rather than making people travel saving emissions ✓ ✓ ✓
email_attachment_as_link Enclosing big �les as links rather than attachments saving resources ✓ ✓ ✓
auto-scaling Resource management technique to automatically adapt server capacity saving resources ✓ ✓ ✓
automatically_killing_unused_ap-
plications

Having a smart feature detecting and killing unused applications on one's com-
puter

saving resources ✓ ✓ ✓

o�ine_with_regular_sync
Performing the task o�ine and only synchronizing occasionally with the online
version

saving resources ✓ ✓ ✓

Abbrv.: HO: Human-Oriented, SO: Software-Oriented, CO: Context-Oriented, SUFF.: su�ciency, EFF.: e�ciency
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Note that this classi�cation was proposed following discussions between us co-authors,
but certain categories could certainly be further debated.

Finally, we observe that the goals of the identi�ed tactics are of two kinds, pursuing
a positive outcome (e.g. su�ciency, focus, quality of life) or counteracting a negative one
(e.g. overconsumption, social pressure, useless communication).

5 Findings 3: bene�ts and challenges of going o�ine

5.1 Services on-demand rather than always on

Towards the end of the focus group sessions, the participants were asked to re�ect on their
perception of challenges and bene�ts associated with having cloud services provided on-
demand, as opposed to being always on (RQ3). This would be achieved for example by
applying the tactics offline_with_regular_sync, switch_off_notifications or use_-
pen_and_paper, to only name a few.

On the bene�ts, three participants (P6, P7, P10) stressed the opportunity to have
�more space to focus on a certain task� (P7). Others liked to simply stop being distracted
by noti�cations (P4, P7). Shutting down pieces of software running in the background
would also bene�t energy consumption (P4).

On the other hand, being partially o�ine comes with the risk of missing critical
emails (P7, P10), not keeping collaborators updated with the latest version (P9, P10),
not being reachable (P3, P11) and not bene�ting from automatic backup (P9). The di�-
culty is also that most things in the participants' jobs happen online (P1) and disconnecting
momentarily would require to catch up afterward (P11). Finally, P10 admitted not seeing
any challenge as long as the on/o� feature is controlled by the user, to which P11 added
that the feature should also not have impacts on other people.

In the focus group sessions, we only skimmed over the bene�ts and challenges encoun-
tered by the participants, as we wanted them to re�ect primarily on their experiences and
think about how su�ciency would in�uence their work habits. In addition to the re�ec-
tions above, we notice that main bene�ts and challenges are already expressed in the goal
of the identi�ed tactics, for example �improving quality of life�. Of course, the tactics bring
co-bene�ts that require further work.

5.2 Barriers to the adoption of digital su�ciency

The biggest challenge of su�ciency is not technical, but rather societal. This study revealed
a number of barriers to adopting a more su�cient digital behavior during �exible work.
First, reducing user experience to the minimum goes against the most common practice in
companies today. P7 pointed out that the use of the cloud has been pushed by his company
for years, and that there are discussions about upgrading the laptop cameras for improving
the online meeting experience. Moreover, several participants commented on the weight of
expectations from the peers. The socio-professional context pushes the workers to always
be available and use the latest technologies. We also noticed a low level of awareness on the
environmental impacts of digital technologies, both from the participants themselves, but
also from the companies that do not show any concern at this point. Finally, while striving
to �nd opportunities for su�ciency, the participants sometimes felt powerless (P1, P5, P9-
P11): �I think we're sort of... condemned� (P1). They then tend to turn to e�ciency
measures, as those seem more attractive:

�If we see that this is necessary to have the cloud, shouldn't we try to address
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how e�cient it is in terms of sustainability? [...] So maybe the source of elec-
tricity for instance for the data center, to ensure that they are 100% renewable
or decarbonized.� (P8).

The three tactics with the goal �adopting su�ciency� are a good way to counteract
these barriers. They aim to shift the culture towards promoting quality of work rather
than quantity. Doing so, they target the �goals of the system� which is, according to
Donella Meadows, among the most powerful leverage points to intervene in a system [138].

6 Discussion

The inputs from the participants of the focus groups allowed us to draw a very rich picture
of the interactions between the cloud, �exible work and su�ciency, and the resonance this
has in their practice. In this section, we will summarize the main takeaways of the study,
then provide additional comments on the tactics towards su�ciency, before discussing the
limitations of this work.

6.1 Main takeaways

Compared to our expectations when designing the study, we were surprised by three results:

(i) almost all the tasks performed by the participants are cloud-based,

(ii) their tasks are mostly independent of their work location, and

(iii) workers identi�ed fewer tasks than expected as super�uous.

Results (i) and (ii) showcase an almost total cloud adoption and �exibility inside the
two participating companies. We can say that the cloud met its promises of ubiquitous and
convenient access to computing resources in these two very digitalized companies. Results
(ii) and (iii) challenged our initial idea of looking at tasks one by one, in di�erent work
settings, to �nd ways to address the unnecessary. We also noticed that despite our e�orts,
it was di�cult for the participants to adopt critical thinking. This might be explained by
the novelty of the concept of su�ciency, but also the complexity of questioning one's own
practices and the system in which they are embedded.

Yet, the study was still successful to uncover a broad list of strategies towards digital
su�ciency, that we consider as the main outcome of this study. These are

� the 48 �tactics towards su�ciency� collected through the focus group discussions and
reported in Table VI.3, and

� the 5 �suggestions towards su�ciency� (text boxes in this chapter) that we, authors,
propose in light of the results.

6.2 On the tactics towards su�ciency

First, we want to remind that the list in Table VI.3 is an initial list, emerging from the
three focus groups and our analysis. More work would be required to consolidate that list,
and the proposed categories. Nevertheless, we make the following observations:
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Category �who should apply it?� Most tactics (38 out of 48) are human-oriented,
and only 5 are software-oriented. This is not surprising, as participants were invited to
think in terms of their individual habits. Still, 6 tactics are context-oriented. It could
indicate that practitioners are adopting a more systemic mindset by thinking in terms of
the needed shift in the organizational culture and the global ecologic implications, which
is a promising result.

Category �where should it be applied to?� 14 tactics are technical, which means
that they modify the operation of systems (software, hardware), and the 34 others apply
to humans, by requiring a change in behavior. This shows that digital su�ciency is mainly
non-technical (all the more if we notice that 4 of the technical tactics are actually e�ciency,
and not su�ciency tactics, see paragraph below). But again, the results can be biased since
we asked the participants to reason mainly on their personal experience (�could YOU do
without?�).

Category �what types of e�ects does it have?� Most of the identi�ed tactics im-
plement su�ciency, which was the goal of the study. All the same, 6 of them are e�ciency
measures, which are relatively irrelevant to our study, and which could have been removed
from the list. We still decided to keep them, because they show that there is a confusion
between e�ciency and su�ciency among the participants, but also because it is sometimes
di�cult to clearly decide between the two. For example, �automatically killing unused
applications� is without hesitation an e�ciency measure, since it optimizes the systems
while being transparent to users. But �enclosing big �les as links rather than attachments�
can be a su�ciency measure if the users have to create the link themselves, or an e�ciency
measure if this is done automatically (which was the case in the context of the focus group,
hence the classi�cation). Since the concept of su�ciency is quite new in the literature, we
would be interested in other opinions on this classi�cation, i.e., if all the tactics classi�ed
as such are truly su�ciency tactics.

6.3 Comparison with digital su�ciency de�nition

Coming back to the original de�nition of digital su�ciency by Santarius et al. [8] (see
Chapter I, Part 3.2), we note that our tactics mostly concern one stakeholder: the pri-
vate user. It is far from the many other actors they take into consideration, namely
producer/developer, seller/provider, organizational user, policy regulator and civil society.
Nonetheless, we believe that the identi�cation of the tasks and the questioning of the es-
sential needs of end-users is the starting point for the consideration of su�ciency by the
rest of the system. Besides, the identi�ed tactics successfully encompass three of the four
dimensions of digital su�ciency (see Table VI.4).

6.4 Quantifying the impact of tactics

So far, one important information is missing from our collection of tactics: there is no
indication of their actual potential to decrease environmental damage or their impact on
the people applying them. This prevents the list from being actionable, since we would
not know which tactics to prioritize. This problem arises from the fact that our study is
only qualitative, and not quantitative.

In order to bridge this gap, Patricia Lago and I supervised Maliha Nawshin Rahman,
a student doing her master's thesis on the topic. We provide below a few results issued
from her work [139], that was accepted for publication at the conference ICT4S 2024 [C5].
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Table VI.4: Comparison of our tactic classi�cation (Table VI.3, column TC) with
the digital su�ciency dimensions [8]

Digital su�ciency dimension: de�nition [8] TC

User su�ciency: users apply digital devices frugally and make use of ICT
in a way that fosters su�ciency oriented lifestyles

Human
Oriented

Hardware su�ciency: producing and designing hardware for longevity,
repairability, and with the least possible resource and energy demand NA

Software su�ciency: software development and implementation that en-
sures long-term functionality and the lowest possible data tra�c and hard-
ware utilization for task performance

System
Oriented

Economic su�ciency: ICT-borne improvements are used to nurture pub-
lic and common good instead of economic growth

Context
Oriented

(a) �I would consider applying each of these tac-
tics in my daily work life�

−20 0 20 40 60

Tactic 5

Tactic 4

Tactic 3

Tactic 2

Tactic 1 Negatively
Neutrally
Positively

(b) �How would each of these tactics a�ect your
daily work productivity?�

Figure VI.1: Preference on applying tactics, and e�ect on work productivity
(questionnaire survey with 61 responses) [139]
Tactic 1: using o�-cloud version of an application if the work doesn't need to be shared,
Tactic 2: performing a task locally with regular cloud synchronization,
Tactic 3: turning o� camera or lowering video quality in meetings,
Tactic 4: enclosing email attachment as link,
Tactic 5: closing an application, window or tab when it is not needed anymore.

Impact on users First, we surveyed practitioners on their perception of tactics, through
a questionnaire survey. We collected answers from 61 participants, coming from di�erent
professional sectors including IT, Consultancy, Marketing, Academia and Finance. A ma-
jority of them (42 out of 61) declare following a �hybrid� work practice, working both
remotely and on site.

The questionnaire results on a subset of �ve tactics are reported in Figure VI.1. It
is interesting to note that theirs answers to the �rst (Figure VI.1a) and the second (Fig-
ure VI.1b) questions are very similar. They follow the same pattern of `strongly disagree'
/ `disagree' versus `agree' / `strongly agree' (respectively `negatively' versus `neutrally' /
`positively'). This suggests that willingness to adopt the tactics and perception of how they
will a�ect work productivity are correlated. In other words, practitioners would consider
applying tactics when they do not a�ect their work productivity. For this subset of tactics,
the most popular is Tactic 4, followed by Tactics 1, 5, 2 and 3.
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Table VI.5: Impacts of applying the tactics. Preliminary attempt to quantify, with the help
of the literature.

Energy saved Saved Ref.
Client-side Server-side data tra�c

Tactic 1 0.3-1W∗ 0.25W∗∗ all [140]
Tactic 2 0.3-1W∗ ∅ 2-3 orders of

magnitude∗∗∗
[140]

Tactic 3 4W† ∅ ∅ [141]
Tactic 4 ∼0 ? ∼0 rough estimate
Tactic 5 no statistical ev-

idence
∅ 1 order of magni-

tude
our measur-
ments [139]

∅ indicates �out of scope�
∗word processing in google drive, di�erence between power consumption of netbook in o�ine and online
edition (Table VI [140])
∗∗assumption used in the article (Section IV.D.6 [140])
∗∗∗slopes in Figure 4 [140]
† mean values in Table 7 [141], converted to Watts

Impact on energy consumption In parallel, we tried to quantify the impact of ap-
plying the tactics on energy consumption. For this, we used data from the literature and
performed direct measurements. The results are reported in Table VI.5. We found that
the literature was very scarce on the topic, and that it is very di�cult to �nd comparable
�gures, since energy consumption vary greatly with the type of hardware used. Tactics may
allow energy savings on three tiers: (i) the device (e.g., laptop, tablet), (ii) the network
(e.g., router, core network) and (iii) the servers on which the cloud services are located.
Data on client-side are the easiest to obtain, through direct measurements (watt-meter or
software tools like Intel RAPL). Network energy consumption can not be directly mea-
sured in most cases. However, it is possible to measure data tra�c as a proxy. Finally,
server-side information is extremely hard to obtain, as most cloud services are proprietary
and function as a black box. We have to rely on rough estimates. All these reasons explain
the many missing data in Table VI.5, which should therefore be handled with precaution.

From the data we have, it looks like Tactic 3 (switching o� the camera) has the most
impact, followed by Tactics 1 and 2 (local VS cloud-interactive). Tactics 4 (email attach-
ment) and 5 (closing tabs) come last. Interestingly, this order is almost opposite to the
impact on users as reported in Figure VI.1: they ranked Tactic 4 highest, followed by Tac-
tics 1 and 5. This is an indication that, on this subset of tactics, there is no �free lunch�:
the bigger the energy savings, the more e�orts it requires from the practitioners. We also
noticed that practitioners have a wrong intuition on the energy saving potential of each
tactic, which was a question included in the survey, but not reported here. They ranked
Tactics 4, followed by 3 and 5 as �most bene�cial to reduce energy or resource consump-
tion�, which is quite di�erent from the results above. This misconception was observed in a
similar study [83], and is probably due to a mix of factor: intangibility of digital footprint,
constantly evolving industry making it di�cult to be up-to-date, perceived sacri�ce of each
tactic, skepticism toward change, etc.
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7 Limitations

In this section, we come back to the main study presented in this chapter, and point out
its threats to validity.

We ensure the anonymity of our participants, their companies, and their collaborators.
Hence, we keep their identifying details con�dential, under the human ethics guidelines
governing this study. Accordingly, the veri�ability of our results should derive from the
soundness of the research method. We therefore describe in Section 2 the study design
we followed throughout our investigation, and transparently provided all the material we
could disclose in a replication package (see Section 2.5). In addition, we reference in our
�ndings direct quotes from our participants as much as possible. Despite our best e�orts,
we are aware of potential limitations to the validity of our results, that we discuss below.

Misinterpretations As this is a qualitative study involving humans, there is a risk
of misunderstanding from the participants, and misinterpretations from the researchers.
To mitigate this threat, we designed the study upfront, and run a dry-run session with
colleagues to uncover possible issues. We provided introductory material in the focus
groups to explain motivation and context, and to align the participants to a common
understanding and terminology. We also embedded a small exercise for the participants to
get acquainted with the concept of su�ciency in their own everyday lives.

Moderator bias During the focus group sessions, the moderator is in charge of pre-
senting the study and asking the questions, which comes with a risk of introducing bias.
To mitigate this threat, special care was taken upfront to design questions as open and
neutral as possible. During the sessions, we involved a third researcher who would support
the moderator in overcoming the subjectivity. They adopted a neutral stance, avoiding to
use targeted questions or to introduce bias by giving examples. In addition, to ensure that
no important information went unaccounted for, we ended each focus group session with
an open-ended question. There, participants could add anything they forgot, and address
open remarks.

Data analysis To ensure the quality and reliability of data analysis, the focus group
transcripts were analyzed and coded �rst by a researcher, then critically reviewed by the
second. Any inconsistencies were discussed to check data interpretation, reduce biases in
analyzing the data, and formulate the results.

Generalizability This is an exploratory study and, as such, we do not claim general-
izability. Rather, we intend to build initial knowledge on how digital su�ciency can be
pursued. However, we recognize three possible validity threats, here, namely (i) the rela-
tively small quantity of data collected (3 focus groups, 11 participants), making it possible
to miss a major trend; (ii) the fact that the study was carried out in the Netherlands, a
country that is very advanced in both digitalization and �exible work; and (iii) the type
of work performed by our participants, mostly work on computers, potentially overrepre-
senting their �exibility and dependence on the cloud. For these reasons, our results cannot
be considered generalizable to all types of work and contexts. However, it could serve as a
starting point for further works to build upon.
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8 Conclusion

In this chapter, we expose a qualitative study exploring the question �how much and which
cloud usage is su�cient?� in the context of �exible work. We present data collected
by running three focus groups in two companies in the Netherlands (11 participants),
following a thematic analysis. The results provide a preliminary picture of the nature of
our digital professional needs, perceived bene�ts and challenges if we choose to go o�ine
sometimes, along with a �rst list of concrete actions to focus on the essential while limiting
environmental footprint (the �tactics towards su�ciency�). Overall, the study shows that
our participants are �always on�: the cloud dominates their professional activities. The
notion of digital su�ciency resonates a lot with them, even though they need concrete
suggestions.

Link with the su�ciency behaviors As mentioned in the chapter introduction, the
context of this study di�ers from the rest of the contributions of this PhD. The �rst
di�erence is the scope: here, we focus on indirect users of data centers (in the sense
of the de�nition in II.1.1.1) rather than direct users in the other chapters. The second
di�erence is the trigger for su�ciency behavior. In the previous chapters, we always studied
external events as a trigger for user action: a peek electricity consumption or a phase of low
renewable production. Here, we study su�ciency in the absolute and not in response to
any particular event. We believe that this vision it more faithful to the original concept of
su�ciency and digital su�ciency (see I.3), i.e., a voluntary reduction of one's consumption
of IT with the goal to reduce its adverse environmental e�ects.

Ideally, we would like to link the su�ciency tactics of indirect users to the corresponding
su�ciency behaviors of direct users, following the chain of intermediaries between end-users
and the actual hardware. This would enable to test their potential on real-life scenarios
thanks to data center simulations. However, given the challenges of quantifying the impact
of user actions, due the lack of scienti�c literature and the complexity of software stacks
(see out attempt in 6.4), it would be di�cult, at this stage, to achieve such a mapping.

All the same, here is preliminary attempt. We can say that all the tactics from Ta-
ble VI.3 with goal �avoiding overconsumption�, �countering data accumulation�, �decreasing
useless communication�, �lowering tech�, �rationalizing meetings� and �saving resources� are
suitable to be linked with the su�ciency behaviors. A few examples:

� �Turning the video o� in an online meeting� is a lever of degradation, probably Space
Degrad since the meeting duration remains the same.

� �Setting a lower value for the default meeting duration� would then be a lever of
Time Degrad.

� �Cancelling the next session of a recurring meeting when it has no purpose� is a
Renounce behavior.

� Finally, �deciding to meet less often with a person or a group one has a recurring
meeting with� can be considered as Delay.

We wish for more e�orts in quanti�cation of online behaviors, through more academic
studies, data transparency and automatic reporting, for our decisions and recommendations
to be guided by accurate data.



Conclusion and perspectives

Agriculture feeds, and without food, we die � even with virtual reality goggles.

Fabrice Flipo [70]

This chapter concludes the work performed during this PhD thesis and attempts to
provide an answer to the questions raised in Introduction. We suggest thereafter perspec-
tives for future works on the topic, trying to order them roughly in order of di�culty. We
start with short-term perspectives, that could be done with relatively low e�ort thanks
to the methods and implementations developed in this thesis, and �nish with longer-term
perspectives that would require more signi�cant e�orts in modelling and implementation.

9 Conclusion

The use of data centers is increasing globally, and so is their environmental impact, de-
spite continuous hardware and software improvements. This is due to the rebound e�ect,
which tends to transform e�ciency gains into increased demand. To counteract this e�ect,
scientists and international bodies are starting to consider measures of su�ciency, aiming
at decreasing the total environmental impacts rather than the relative impacts per unit
of good or service. Su�ciency can be applied to all sectors of the industry, and has been
declined to IT under the term �digital su�ciency�. It invites us to rethink our use of tech-
nologies to what is deemed enough in regard to the planetary boundaries, and involves all
stakeholders along the supply chain. In this thesis, we focused on the �user su�ciency�
dimension of digital su�ciency, applied to data centers.

Q1: How to accurately model the interaction between direct users and the
data center? Most works in the research �eld of Distributed Systems do not model the
users directly. Users are rather taken into account through various performance metrics.
In contrast, we propose a model for data center users submitting jobs to the infrastructure.
Their jobs can be replayed from real-world traces or generated from a mathematical model.
The originality of our model is that it allows accounting for user reaction in response to
internal or external events. In the works presented, we focus on external events linked to
the availability of electricity and internal events linked to the performance of previously
submitted jobs, but more types of events could be envisioned.

Our model is implemented in Batmen, an open-source plugin for the scienti�c simulator
Batsim that I developed during this thesis. Batmen use workload inputs which are standard
in the community, splitting them per user and submitting the jobs dynamically under the
course of the simulation. This way, it enables a more �ne-grain representation of user
behaviors.

125
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In particular, we propose, implement and study a method of replay with feedback.
Compared to traditional replay, simulated users wait for the termination of their previous
jobs before submitting the new ones, just as real users would. Our method still comprises
some limitations and would need to be scienti�cally validated, which proved to be out of
scope for this thesis. Nevertheless, we discuss the methods that could be used for such
a validation and argue that this contribution remains an important step towards more
accurate simulations of distributed systems.

Q2: Which �su�ciency behaviors� can be adopted by direct data center users,
and how does user e�ort translate into footprint reduction? We de�ne �su�-
ciency behaviors� for direct data center users as voluntary modi�cations of the character-
istics of their job submissions in order to decrease the demand in the data center. We
propose �ve such behaviors, namely delaying (Delay) or renouncing (Renounce) the job
submission, recon�guring its resource request (Recon�g), degrading it spatially (Space De-
grad) or temporally (Time Degrad). A mathematical representation of these behaviors is
provided according to our data center model.

The su�ciency behaviors are then characterized individually through simulation on
real-world inputs. The results allow us to classify them according to their energy saving
potential, impact on scheduling metrics and e�ort required from users (see Table III.2).
Renounce is unsurprisingly the most e�cient behavior, with 16% energy savings on average
on a 4-hour time window, if applied by all users during this time window. However, it is
also the behavior that asks the biggest sacri�ce to users. At the other end of the spectrum,
Delay and Recon�g require the least e�ort from users. Delay is very adapted for short-term
gains, but leads to a peak of submission in the future which signi�cantly a�ects the energy
and scheduling metrics then. On the long term, Recon�g is almost a zero-sum game.
Finally, the two Degrad behaviors yield interesting results, as they cut o� computing load.
Time Degrad is not adapted in the short term, but it consistently lightens the load in the
future. This characterization also reveals the inertia of su�ciency behaviors, that do not
act on the jobs already running in the infrastructure.

We investigate thereafter the behaviors' usefulness in the context of renewable energy
management. A three-state energy feedback mechanism is introduced to inform the users
on the status of electricity production: green when production is abundant, red when
production is low, and yellow in-between. Thanks to a reproducible experimental campaign
with real-world inputs, we show that the approach is conclusive and allows reducing brown
energy consumption. For example, if users accept to apply the su�ciency behaviors on
50% of their job submissions at periods of low production, brown energy can be reduced
by 8% overall. The energy savings are linear with the e�ort.

Q3: What are the opportunities for digital su�ciency in cloud usage? Since
su�ciency entails rethinking our basic human needs, we believe it is essential to involve
the social sciences in any work on this subject. That is why we decided to carry out
a qualitative study, and interview practitioners about their digital needs. Overall, our
study reveals that our participants are �always on�: the cloud dominates their professional
activities. All the same, we extracted from the discussions a list of 48 so-called �tactics
towards su�ciency� in cloud usage for work, which can be seen as the counterparts of the
su�ciency behaviors for indirect data center users. The tactics are concrete actions to limit
one's consumption of IT, and bring co-bene�ts such as improved focus or work-life balance.
The notion of digital su�ciency resonates a lot with our participants, even though they
need concrete suggestions.
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10 Short-term perspectives

Evaluation of the su�ciency behaviors with replay with feedback In Chapter V,
we introduce the method of replay with feedback. I argue that this method leads to more
realistic results than rigid replay and should therefore be used generally for all simulation
work in HPC. Using this method is even more important in studies focusing on user
behaviors, like ours. Consequently, the experimental campaigns presented in Chapters III
and IV would gain from being rerun in combination with the feedback model. This would
allow getting rid of some unrealistic behaviors observed in the results, like the burst of
submission at the end of the demand response window with behavior Delay. To understand,
we illustrate the e�ect of Delay behavior with and without the feedback replay model in
Figure A.1. Without feedback model, a simulated user would submit all her jobs at the
end of the window, even if the jobs had dependencies between them. With the feedback
model, this user would better follow the original submission pattern.
➢ implementation: the su�ciency behaviors from Chapter III with the feedback replay
model are already implemented and tested in the latest version of Batmen4. One would
only have to adapt and relaunch the reproducible experimental campaign.

Unfortunately, since our replay with feedback model still contains some limitations
and did not undergo rigorous scienti�c validation (see corresponding long-term perspective
further down), it would be di�cult to justify why we use it instead of the widespread rigid
replay method, and which particular parameters we should choose.

j1 j2 j3

demand response window

Rigid behavior 
+ rigid replay:

j1 j2

j3

Delay behavior 
+ rigid replay:

j1 j2 j3Delay behavior 
+ replay with feedback:

time

j4

j4

j4

Figure A.1: Illustration of the e�ect of the replay method on su�ciency behavior
Delay.

Studying other behaviors To the best of our knowledge, our contribution is, to date,
the one studying the most user levers together. However, there are still other behaviors
that could be included. First of all, the su�ciency behaviors presented in this thesis could
be made parametric. In their current form:

� Delay and See You Later postpone the submission to the end of the demand response
window, or by ∆t = 1 hour, respectively;

� Time Degrad multiplies the job execution time by a scaling factor xT = 0.5;

� Space Degrad and Recon�g apply a scaling factor xS = xR = 0.5 to the number of
resources required, and do not take speedup into account.

4see Batmen commit ea7fd480

https://gitlab.irit.fr/sepia-pub/mael/batmen/-/commit/ea7fd480ea0933ff3f4b8b637f4767f331cb5b5d
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The values of these parameters ∆t, xT , xS and xR have been chosen to be as simple as
possible for this initial exploration of su�ciency behaviors. Future works could consider a
distribution of them and/or make them user-dependent.
➢ implementation: everything is ready to allow the modi�cation of these parameters, in-
cluding the speedup model.

Another behavior of interest, not studied in this thesis, is to allow users to checkpoint
their running jobs. We could imagine that sustainability-concerned users would accept to
stop some of their jobs, for example when renewable energy is scarce, and resume them
later. This would allow the potential energy savings to go beyond the ��uid mass� intro-
duced in Chapter III.
➢ implementation: it would require to create a new user behavior, and implement preemp-
tion in Batsim, for example by killing the current job and dynamically resubmitting another
one with the remaining computing load.

Information provided to users In our model, data center users take action in response
to speci�c feedback. In Chapter III, the trigger for su�ciency behavior is being in a de-
mand response window. In Chapter IV, we use the three-state energy feedback mechanism,
de�ned on energy production. While these models have the advantage of being simple and
actionable, they might not be the best suited depending on the objective. For example, if
the objective is to minimize brown energy consumption, i.e., the energy that does not come
from renewable sources, energy states could rather be de�ned on instantaneous power con-
sumption compared to production, with red states when consumption is above production,
green state when production is in excess and yellow states in-between.
➢ implementation: the energy state cannot be computed before the simulation as it is done
currently. We would need to have access to the platform's instantaneous power consump-
tion5 and calculate the energy state each time a user wants to submit a job.

Additionally, the model could include forecasts to anticipate demand response windows
or energy shortages. For example, yellow states could be used to that end, as a pre-warning
before a red state. Users would be encouraged to submit jobs that would �nish before the
red state, in order to limit energy consumption in that period.
➢ implementation: we would need a model for production forecasting, such as the API
https://solcast.com/

Leveraging user behaviors inside the scheduler Throughout this thesis, we focused
on user behaviors alone as a lever for energy saving. I believe that there is potential in tak-
ing these e�orts into account also inside the scheduler. For example, allowing the scheduler
to kill jobs, checkpoint them, or suspend the waiting queue would make it possible to go
beyond the �uid-residual limit, as discussed before. Other user-scheduler collaborations
can include malleable applications [142], predictive server shutdown, DVFS etc. In this
case, decisions could be taken on behalf of the users, with a mechanism of contract with
the data center operator specifying the degradation they are willing to accept (see related
work on green SLA in Chapter I Part 4.1). Nevertheless, we argue that the users should be
informed of these decisions and that they should be involved as much as possible, otherwise
the techniques become once again e�ciency (and not su�ciency) measures.

Quantifying the impact of tactics and linking with su�ciency behaviors In
Chapter VI, we collect many �tactics towards su�ciency� in the context of cloud usage for

5see QUERY event in Batsim protocol https://batsim.readthedocs.io/en/latest/protocol.html#
query

https://solcast.com/
https://batsim.readthedocs.io/en/latest/protocol.html#query
https://batsim.readthedocs.io/en/latest/protocol.html#query
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�exible work. It is a qualitative study, intended to create knowledge on the topic. We brie�y
introduced the work of Maliha Nawshin Rahman who started to quantify some of them.
Future work could create evidence of the actual bene�ts for digital su�ciency of applying
the tactics, i.e., apply them and measure their impact on resource e�ciency, productivity
and �exibility. In addition, the link between them and the su�ciency behaviors could be
made explicit, in order to also test their potential with data center simulations.

11 Long-term perspectives

Validating the model of replay with feedback In my opinion, one of the most
useful and promising research direction would be to carry out a scienti�c validation of the
model of replay with feedback, and answer the question �are simulations with replay with
feedback more realistic than simulations with rigid replay?� We already provided hints on
how such a validation could be done in Part V.7.5. For now, only some isolated works have
used a feedback model in performance evaluation, for example Klusá£ek et al. with the
simulator Alea 4 based on GridSim [126] or Schlagkamp in generative simulations [123].
Would the method be successfully validated, it would allow it to be used more widely in
the community, or even become standard for performance evaluation, hopefully helping to
reach more realistic conclusions.

Note that the best version of the replay with feedback method is probably not the one
presented here, and future work is needed to study other replay models that would:

− account for day/night and weekday/weekend variability of submission,

− consider a user as a new user after a long think time,

− include a model of arrival/departure of users,

− account for other user response to feedback, like change in requested resources.

The work of Feitelson et al. is once again essential in that endeavor [143], as well as,
we hope, the open-source tools and metrics that we developed in this thesis.

Going beyond energy In this thesis, the experiments studying the su�ciency behaviors
look in �ne almost only at energy metrics, despite our endeavors at the beginning of the
manuscript to explain higher-order e�ects and other impacts indicators. This is due to the
low maturity of the community on the topic leading to the absence of methods and metrics
to expand the scope. All the same, we tried to include a discussion on �acceptability�
in Chapter III, user e�ort metrics in Chapter IV and willingness to adopt / impact on
productivity in Chapter VI. Future research is needed to include a LCA dimension on the
data center as a whole, in order to investigate whether su�ciency behaviors are indeed
e�ective to slow down the growth of demand and the building of new infrastructures
associated to it.

We would also like to see studies looking at the actual e�ect of eco-feedback (like the
three-state energy model) on data center users to trigger action. This would allow to
empirically de�ne the proportion of them who are ready to renounce, degrade, etc. This
requires to conduct quantitative surveys among users and has been done for example in
the software engineering �eld [87].

Collective dimension of su�ciency In this thesis, we study human behaviors in rela-
tion to data centers and their environmental impact. We would like to point out that our
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intention is not to demonize all data center or cloud usage. These paradigms o�er power-
ful opportunities for a low-carbon transition as long as their use is controlled, and maybe
limited to certain sectors. We are not arguing either that all the burden for a sustainable
transition lies with the individual, which would be reductive [144]. On the contrary, as
noted before, digital su�ciency involves many more stakeholders, and we consider our work
as a �rst step in that direction. Besides, we faced during the focus groups in Chapter VI
the question of the agency of IT users, i.e., their capacity to deliberately initiate actions
to in�uence the course of events [145]. We could see that their agency is constrained for
many reasons (personal, professional, cultural, societal, etc.).

As a result, su�ciency must be thought as a collective e�ort. Future works on suf-
�ciency in data centers should consider more stakeholders than the mere end-users. We
want to understand how companies, cooperatives, associations, local governments etc. can
foster the adoption of su�cient lifestyles. This can only be achieved by involving scientists
from other disciplines such as Sociology, Economy or Political Sciences.

Reorienting research in Computer Science I will conclude with a last and more
personal perspective. As I already had the occasion to recall, the state of the environ-
mental crisis is alarming. Yet, public and private research in Computer Science continue
to accelerate, bringing new gadgets over and over to the market. Digital technologies are
great tools for optimization, but they do not choose their use cases. They can optimize
indi�erently public transportation schemes than oil and gas extraction [146]. As researcher
Vlad Coroama puts it:

Digitalization is a lubricant of societies and economies. But friction is good
from an environmental perspective.6

I think it is important to take a step back and ask ourselves what kind of world
current research is leading us into. Luckily, these re�ections are starting to take place, for
example within the research communities ICT4S7 or EcoInfo8, but also at a bigger scale,
as demonstrated by the organization of the �eco-responsible computer sciences� conference
at the headquarters of the French research organization CNRS9. In France, the group
�re�ection� of the Labo1point5 initiative10 tackles this issue head-on by proposing that, in
addition to measuring the direct footprint of our research laboratories, we re�ect on the
very subjects of our research and their relevance to current crises. I am involved in the think
tank related to Computer Science, and we are currently rolling out a campaign of semi-
structured interview of computer science academics to collect their ideas and perceptions
about what should (and should not) research focus on.

Countries have been racing to build the �rst exaFLOPS supercomputer, companies are
rushing into arti�cial intelligence, the Internet of Things, the metaverse... Are these the
top priorities in a world with limited resources and ever-increasing inequalities? I don't
think so. On the contrary, I believe that the solutions to the environmental crisis are
already there, and they are not high-tech. They are simple and local, maybe not optimal,
but made in a way that creates human links. The only thing missing is the real political
will to use them.

6in a talk about his paper [6] at ICT4S 2021 summer school
7https://conf.researchr.org/home/ict4s-2023
8https://ecoinfo.cnrs.fr/
9program (in French): https://www.ins2i.cnrs.fr/fr/cnrsinfo/conference-les-sciences-infor

matiques-ecoresponsables
10https://labos1point5.org/
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Peer-reviewed journals

[J1] Maël Madon, Georges Da Costa, and Jean-Marc Pierson. �Replay with Feedback:
How Does the Performance of HPC System Impact User Submission Behavior?� In:
Future Generation Computer Systems 155 (Jan. 2024), pp. 66�79. issn: 0167-739X.
doi: 10.1016/j.future.2024.01.024.

Peer-reviewed conferences and workshops

[C1] Maël Madon, Georges Da Costa, and Jean-Marc Pierson. �Characterization of Dif-
ferent User Behaviors for Demand Response in Data Centers�. In: Euro-Par 2022:
Parallel Processing. Ed. by José Cano and Phil Trinder. Lecture Notes in Computer
Science. Cham: Springer International Publishing, Aug. 2022, pp. 53�68. isbn: 978-
3-031-12597-3. doi: 10.1007/978-3-031-12597-3_4.

[C2] Klervie Toczé, Maël Madon, Muriel Garcia, and Patricia Lago. �The Dark Side of
Cloud and Edge Computing: An Exploratory Study�. In: Computing within Limits.
LIMITS, June 2022. doi: 10.21428/bf6fb269.9422c084.

[C3] Maël Madon and Patricia Lago. �"We Are Always on, Is That Really Necessary?"
Exploring the Path to Digital Su�ciency in Flexible Work�. In: ICT4S 2023: Inter-
national Conference on ICT for Sustainability. Rennes, France: IEEE, June 2023,
p. 11. doi: 10.1109/ICT4S58814.2023.00012.

[C4] Jolyne Gatt, Maël Madon, and Georges Da Costa. �Digital Su�ciency Behaviors to
Deal with Intermittent Energy Sources in a Data Center�. In: ICT4S 2024: Inter-
national Conference on ICT for Sustainability. Stockholm, Sweden, June 2024.

[C5] Maliha Nawshin Rahman, Maël Madon, and Patricia Lago. �Su�cient Use of the
Cloud for Work: Practitioners' Perception and Potential for Energy Saving�. In:
ICT4S 2024: International Conference on ICT for Sustainability. Stockholm, Swe-
den, June 2024.

Communications

− 27 March 24: Comportements de sobriété pour des utilisateurices d'un data center ali-
menté aux énergies renouvelables. Presentation at GreenDays2024, Toulouse, France.
http://perso.ens-lyon.fr/laurent.lefevre/greendaystoulouse2024

− 7 March 24: Sobriété numérique dans les data centers. Presentation at ROADEF'2024,
Amiens, France. https://roadef2024.sciencesconf.org/
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− 8 Dec 23: Numérique Eco-Responsable. Seminar at Histoire Humanités Numériques
Informatique, Toulouse, France. https://hhn.hypotheses.org/programme-202

3-2024

− 27 Nov 23: J'ai orienté ma recherche vers les sciences informatiques écoresponsables.
Panel discussion at the conference �les sciences informatiques écoresponsables� orga-
nized by CNRS Sciences Informatiques, Paris, France. https://www.ins2i.cnrs.f
r/fr/cnrsinfo/conference-les-sciences-informatiques-ecoresponsables

− 4 Jul 23: Involving the users to mitigate the environmental impact of data centers.
Remote guest speaker at EIT Summer School, Rennes, France (online). https:

//numerinnov-hub.eu/universite-de-rennes-summer-schools-2023/

− 28 Mar 23: Vers une utilisation sobre des centres de données : les sciences sociales
à la rescousse de l'informatique. Presentation at GreenDays'2023, Lyon, France.
http://perso.ens-lyon.fr/laurent.lefevre/greendayslyon2023/programme_g

reendays2023.html

− 16 Feb 23: Towards su�cient use of data centers: simulation work and qualitative
research. Seminar at Low carbon and sustainable computing seminar series, Glasgow,
UK (online). https://www.gla.ac.uk/schools/computing/research/researcht

hemes/lowcarbon/

− 27 Jan 23: Vers des simulations HPC plus réalistes : rejouer le comportement de
soumission utilisateur. Presentation at Journées non thématiques du GDR RSD,
Lyon, France. https://gdr-rsd.fr/journees2023/

− 23 Nov 22: Involving the users to mitigate the environmental impact of data centers.
Guest presentation at Research Cocktail series at VU Amsterdam, Amsterdam, The
Netherlands.

− 8 Apr 22: Characterization of user behaviors for demand response in data centers.
Seminar at DataMove INRIA research team, Grenoble, France (online). https:

//team.inria.fr/datamove/talks/

− 17 Jun 21: From the embodied emissions of radio base stations to involving the user in
environmental-aware clouds. PhD seminar at Société Informatique de France, online.
https://sifdoctorants21.sciencesconf.org/
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Postface

Statistics on writing this manuscript

Writing a PhD manuscript is a long journey. For me, it was undoubtedly the stage of my
thesis that I was the most apprehensive about. The document being written in LATEX,
I used my usual programming environment: VSCodium and useful extensions as IDE
(Integrated Development Environment) and Git for versioning and organizing my writing.

The git repository maelPhD was created on October 9, 2023. As I write these lines, it
counts 154 commits (average 2.4 commits per active day, 0.9 per all days) by one author,
19 tags and 9872 lines of code11. Figure A.2 plots the evolution of the number of added
lines of code in the repository. It can be taken as proxy of the writing activity. We notice
several peaks: October 13, December 15 and January 29. They correspond to commits
where I copied the sources from the corresponding article onto the manuscript repository.
We can also see three periods of no activity: Nov 1�Nov 16, Dec 25�Jan 11 (Christmas
break) and Mar 12�Apr 2 (after the manuscript submission). Overall, we notice a relatively
slow start, with 6500 lines of code added in the �rst four months, followed by a steady
writing period in late January and February.
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Figure A.2: Cumulated added lines of code in maelPhD git repository

The distribution of commits per day of the week and hour of day is plotted in Figure A.3.
Apart from a few exceptions, I am happy to realize that I managed to stick to common
working hours during this period � at least as far as commit times are concerned ;-).

11the statistics and graphs shown here are generated with GitStats https://gitstats.sourceforge.n
et/
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Figure A.3: Number of commits per day of the week (top) and hour of day
(bottom)

Carbon footprint of this thesis

Like any human activity, performing the work presented in this thesis involves the con-
sumption of natural resources and the emission of greenhouse gases. During my PhD, I was
involved in the �ecological transition group� of my laboratory12 in which we endeavored to
estimate the carbon footprint of our research activities and build actionable scenarios to
reduce it. Our approach is part of the wider Labo1point5 initiative13, which has supported
us in this process.

For the sake of transparency, I try to estimate below all the carbon emissions at-
tributable to this PhD:

� O�ce work: For three years, I used an o�ce in Toulouse, a laptop, a screen etc.
To estimate the associated impacts, I use my laboratory's reference carbon footprint:
2.1 tCO2e per person per year14.
30% of my lab's footprint are due to commuting and 32% to business trips. Since
I make speci�c calculations for these two items in the following, I will retain only
the 38% remaining, which include electricity, heating, digital equipment and current
expenses. This results in 2.1 * 0.38 = 0.795 tCO2e per person per year.

Over the three-year period of my PhD: 2394 kgCO2e.

� Commuting to work: I came to work everyday by bike, 8 km back and forth, for
three years → 24 ± 18 kgCO2e

15.

� Business trips: My PhD gave me the chance to travel for conferences, summer
schools, national congresses or project meetings. Since the destinations were always

12https://www.irit.fr/missions/transition-ecologique/
13https://labos1point5.org/
14reference carbon footprint calculated for the year 2019, with the tool GES 1point5 from by Labo1point5,

available at https://www.irit.fr/missions/transition-ecologique/nos-actions/le-bilan-carbone
-de-lirit/

15using the �commutes simulator� from Labo1point5 https://apps.labos1point5.org/commutes-sim

ulator

https://www.irit.fr/missions/transition-ecologique/
https://labos1point5.org/
https://apps.labos1point5.org/ges-1point5
https://www.irit.fr/missions/transition-ecologique/nos-actions/le-bilan-carbone-de-lirit/
https://www.irit.fr/missions/transition-ecologique/nos-actions/le-bilan-carbone-de-lirit/
https://apps.labos1point5.org/commutes-simulator
https://apps.labos1point5.org/commutes-simulator
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in Europe, I only took the train. Below is the list of trips with their associated carbon
footprint in kgCO2e, considering back and forth train travel from Toulouse16:

� SICT'21 summer school (Louvain-la-Neuve, Belgium): 32 ± 19;

� Europar'22 (Glasgow, Scotland): 55 ± 33;

� Research stay in Amsterdam, The Netherlands: 39 ± 23;

� ICT4S'23 (Rennes, France): 4 ± 1;

� ICT4S'24 (Stockholm, Sweden): 80 ± 48;

� around 10 missions in France, for project meetings and national congresses:
50 ± 10 (we consider Toulouse-Paris as an average trip).

Total: 260 ± 134 kgCO2e.

� Experiments: The experimental results presented in this thesis arise only from
simulation work. The simulations use e�cient and community-proven tools, and we
endeavored not to make our campaigns unnecessarily large. As such, the experimental
part of this thesis has a low electricity footprint.
Apart from my laptop whose production and usage impacts are already included in
the �o�ce work� item, I used the French research computing infrastructure Grid5000
for simulation campaigns (mainly 18-core machines from cluster �Gros� in Nancy,
whose power constants are given in Table IV.1). According to Grid5000 logs, I
used 1125 core-hours over the period of my PhD, i.e. 62.5 hours on machine Gros.
Assuming a generous 150 W power consumption for the CPU and another 150 W for
the rest (memory, network, disk, cooling), the electricity footprint of my Grid5000
usage totals 18.750 kWh. With the low French carbon electricity mix (32 gCO2e/kWh
in 202317), this results in only 0.6 kgCO2e.

� PhD defense: For the PhD defense, three members of the jury came physically to
Toulouse and two attended remotely. This represented three train travels in France.

Total: 8 ± 3 kgCO2e.

In the end, the carbon footprint of this thesis can be estimated to 2.7 tCO2e. A
representation of its distribution on the aforementioned items is shown in Figure A.4.
Note that these �gures should be taken with great precaution as they encompass large
uncertainties. All the same, we can note that the carbon footprint per year (0.9 tCO2e),
is lower than my lab's average (2.1 tCO2e). This is due to the choice of the bike as a
commuting mode and the train as a business trip mode.
Still, this �gure remains large. For comparison, it is estimated that each person should
reduce its greenhouse gas emissions down to 2 tonnes per year by 2050, in order to limit
global warming below 2°C18. My professional activities would already take almost half of
this budget, leaving the small remaining part to all the rest (housing, eat and drink, leisure
activities etc.). To be fair, professional activities are technically not taken into account in
this budget, as they would be endorsed by the employer (in my case, the university) and
redistributed to the consumers as part of their consumption (public services).

16using the �travels simulator� from Labo1point5 https://apps.labos1point5.org/travels-simulator
17https://www.rte-france.com
18https://en.2tonnes.org/
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Figure A.4: Estimated carbon footprint of this PhD thesis, in kgCO2e
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Titre : Étude de comportements de sobriété dans les centres de calculs
Mots clés : Centres de calcul, Ges�on de l'énergie, Responsabilisa�on u�lisateur, Green IT, Informa�que soutenable, Sobriété
Résumé : L'industrie des technologies de l'informa�on a une empreinte carbone croissante (2,1 à 3,9 % des émissions mondiales de gaz à effet de
serre en 2020), incompa�ble avec la décarbona�on rapide nécessaire pour a�énuer le changement clima�que. Les centres de données y contribuent
significa�vement en raison de leur consomma�on d'électricité : 205 TWh, soit 1 % de la consomma�on mondiale d'électricité en 2018. Pour réduire
ce�e empreinte, les travaux de recherche se sont principalement concentrés sur les mesures d'efficacité énergé�que et l'u�lisa�on des énergies
renouvelables. Si ces travaux sont nécessaires, ils entraînent également des effets rebond, à savoir une augmenta�on de la demande en réponse aux
gains d'efficacité. Pour ce�e raison, il apparaît essen�el de les accompagner de mesures de sobriété, c'est-à-dire d'une u�lisa�on raisonnée de ces
technologies, afin de diminuer la consomma�on d'énergie et de ressources en valeur absolue. Dans ce�e thèse, nous présentons un modèle de
centre de données et de ses u�lisateurs. Dans une première par�e, nous nous concentrons sur les u�lisateurs directs, qui interagissent avec
l'infrastructure en soume�ant des tâches. Nous définissons cinq leviers de sobriété qu'ils peuvent adopter pour réduire leur impact sur
l'infrastructure, à savoir Délai, Reconfigura�on, Dégrada�on Spa�ale, Dégrada�on Temporelle et Renoncement. Nous caractérisons ces leviers à l'aide
de simula�ons sur des données réelles. Les résultats nous perme�ent de les classer en fonc�on de leur poten�el d'économie d'énergie, de leur
impact sur les métriques d'ordonnancement et de l'effort requis de la part des u�lisateurs. L'un des inconvénients des leviers de sobriété est leur
iner�e, que nous expliquons à l'aide de métriques ad hoc. Nous étudions ensuite le poten�el des leviers dans un contexte de ges�on des énergies
renouvelables. Nous montrons que l'adop�on des leviers de sobriété en période de faible produc�on renouvelable conduit à des économies
d'énergie non renouvelable. Les économies sont propor�onnelles aux efforts fournis par les u�lisateurs. Dans une deuxième par�e, nous nous
appuyons sur notre modèle d'u�lisateur et son implémenta�on pour aborder un problème ouvert dans la simula�on de systèmes distribués. La
plupart des travaux u�lisent des traces réelles pour simuler les soumissions dans l'infrastructure, en rejouant des tâches ayant les mêmes
caractéris�ques et les mêmes temps de soumission. Toutefois, ce modèle pose problème lorsque les performances simulées diffèrent de celles de
l'infrastructure d'origine. Nous modélisons et me�ons en œuvre le "rejeu avec feedback", une façon d'u�liser les traces réelles, en préservant le
temps de réflexion entre les tâches plutôt que les temps de soumission originaux. Nous fournissons une analyse approfondie de l'impact de notre
méthode à l'aide de nouvelles métriques. Dans une dernière par�e, nous nous concentrons sur les u�lisateurs indirects des centres de données, en
étudiant des u�lisateurs de cloud professionnel. Nous menons une étude qualita�ve afin d'examiner ce que signifierait, en pra�que, une u�lisa�on
sobre du cloud. L'étude comprend trois focus groups analysés par le biais d'une analyse théma�que. Les résultats dressent une image préliminaire de
la nature de nos besoins professionnels numériques, ainsi qu'une liste de "tac�ques vers la sobriété", c'est-à-dire d'ac�ons concrètes pour se
concentrer sur l'essen�el tout en limitant son empreinte environnementale. Ce manuscrit offre un aperçu de la sobriété numérique dans les centres
de données, impliquant à la fois la simula�on et les sciences sociales. Nous espérons que nos codes libres et nos campagnes de simula�on
reproduc�bles seront u�les pour de futurs travaux dans ce�e direc�on.

Title: Digital Sufficiency in Data Centers: Studying the Impact of User Behaviors
Key words: Data centers, Energy aware, User empowerment, Green IT, Sustainable Compu�ng, Sufficiency
Abstract: The Informa�on Technologies (IT) industry has an increasing carbon footprint (2.1-3.9% of global greenhouse gas emissions in 2020),
incompa�ble with the rapid decarboniza�on needed to mi�gate climate change. Data centers hold a significant share due to their electricity
consump�on amoun�ng to 1% of the global electricity consump�on in 2018. To reduce this footprint, research has mainly focused on energy
efficiency measures, and use of renewable energy. While these works are needed, they also convey the risk of rebound effects, i.e., a growth in
demand as a result of the efficiency gains. For this reason, it appears essen�al to accompany them with sufficiency measures, i.e., a conscious use of
these technologies, in order to decrease the total energy and resource consump�on. In this thesis, we introduce a model for data centers and their
users. In the first part, we focus on direct users, interac�ng with the infrastructure by submi�ng jobs. We define five sufficiency behaviors they can
adopt to reduce their stress on the infrastructure, namely Delay, Reconfig, Space Degrad, Time Degrad and Renounce. We characterize these
behaviors through simula�on on real-world inputs. The results allow us to classify them according to their energy saving poten�al, impact on
scheduling metrics and effort required from users. One drawback of sufficiency behaviors is their iner�a, that we explain with appropriate metrics.
We inves�gate therea�er the behaviors' usefulness in the context of renewable energy management. A three-state energy feedback mechanism
informs the users on the status of electricity produc�on. We show that adop�ng the sufficiency behaviors when renewable energy is scarce leads to
brown energy savings. Savings are propor�onal to the efforts made by users. In a second part, we build upon our user model and implementa�on to
tackle an open issue in distributed system simula�on. Most works use recorded traces to simulate workloads, by replaying jobs of the same
characteris�cs and same submission �me. However, this model is problema�c when the simulated performances differ from the original
infrastructure. We model and implement "replay with feedback", a way of using recorded traces, preserving the think �me between jobs rather than
the original dates of submission. We provide an in-depth analysis of our method's impact with the help of novel metrics. In a last part, we shi� our
focus to indirect users of data centers by studying professional cloud users. We design and conduct a qualita�ve study to inves�gate what a
sufficient use of the cloud would mean, in prac�ce. The study involves three focus groups analyzed through thema�c analysis. The results provide a
preliminary picture of the nature of our digital professional needs, along with a list of "tac�cs towards sufficiency", concrete ac�ons to focus on the
essen�al while limi�ng environmental footprint. This manuscript offers an insight into digital sufficiency in data centers, involving both simula�on
and social sciences. We hope that our open-source code and reproducible simula�on campaigns will be useful for future works in that direc�on.
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