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R É S U M É

Le domaine de la représentation des connaissances est en constante
évolution. Grâce aux récents progrès dans les réseaux neuronaux pro-
fonds, en particulier l’architecture transformer, le domaine du traite-
ment automatique du langage naturel (TALN) a été doté d’outils révo-
lutionnaires conduisant à des performances améliorées sur de multi-
ples tâches de TALN. Les modèles de langue pré-entraînés (PLM),
tels que BERT et GPT, qui sont des modèles basés sur des transform-
ers entraînés sur d’importantes quantités de données textuelles, ont
joué un rôle significatif dans ces avancées.

Les PLMs peuvent produire des représentations contextualisées
intégrant des motifs syntaxiques et sémantiques riches du langage.
Cependant, ils ne fournissent pas de représentations structurées
et factuelles des connaissances, essentielles pour une meilleure
compréhension du langage. Pour remédier à ces problèmes, les
chercheurs ont exploré la combinaison de PLMs classiques avec
des ressources de connaissances externes, telles que les bases de
connaissances (KB). Cette approche vise à compléter les PLMs
en fournissant les composants structurels et factuels manquants
inhérents aux KBs. En résulte l’émergence d’une nouvelle famille de
PLM renforcés par la connaissance (KEPLM).

Dans cette thèse, nous nous concentrons sur l’intégration des KBs
dans les PLMs, avec un intérêt particulier pour leur structure ou
hiérarchie. Nous explorons différentes orientations de recherche
visant à améliorer ces PLMs, notamment (i) l’exploration des limi-
tations et des méthodes pour intégrer implicitement les KBs et leur
impact sur les tâches basées sur le raisonnement et (ii) la définition de
méthodologies d’évaluation pour les signaux hiérarchiques explicites
des PLMs et leur transférabilité à d’autres tâches de TALN.

Dans une première contribution, nous proposons de revisiter les
méthodes d’entraînement des PLMs pour les tâches basées sur le
raisonnement. Les méthodes actuelles se limitent à généraliser cette
tâche à différents niveaux de difficulté, traitant chaque niveau comme
une tâche différente. Au lieu de cela, nous suggérons une approche
incrémentielle d’apprentissage du raisonnement, où le raisonnement
est appris progressivement, passant des niveaux de difficulté sim-
ples aux niveaux complexes. Cette approche tire parti de composants
précédemment négligés qui ne participent pas à la chaîne de raison-
nement principale, et nous évaluons si cela améliore la généralisation

vii



de cette tâche. Nous utilisons une méthodologie implicite qui trans-
forme l’information structurée en texte non structuré avec un contenu
taxonomique riche. Nous avons également mené des expériences sur
des tâches liées au raisonnement, telles que la compréhension de lec-
ture et la réponse aux questions, pour évaluer la pertinence de notre
proposition.

Pour notre deuxième contribution, nous visons à améliorer les
performances des PLMs en incorporant des signaux hiérarchiques
explicites en eux. Alors que diverses approches d’évaluation et
d’intégration ont été développées pour les plongements lexicaux
statiques, il y a une exploration limitée de ces méthodes pour les
plongements lexicaux contextualisés. Les méthodes d’évaluation
actuelles pour les PLMs héritent des limitations des évaluations des
plongements statiques, telles que les biais des ensembles de données
et les signaux hiérarchiques superficiels. Par conséquent, nous
proposons une nouvelle méthodologie d’évaluation pour les PLMs
qui prend en compte de multiples signaux hiérarchiques. Notre
travail caractérise la représentation hiérarchique en la décomposant
en distributions hiérarchiques de base que nous appelons propriétés
hiérarchiques. Nous évaluons les connaissances hiérarchiques
présentes dans les PLMs de pointe en utilisant ces propriétés et
analysons si leur apprentissage vise à améliorer les représentations
hiérarchiques internes des modèles et leur applicabilité aux tâches
de TALN connexes.
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A B S T R A C T

The field of knowledge representation is a constantly evolving do-
main. Thanks to recent advancements in deep neural networks, par-
ticularly the Transformer architecture, the natural language process-
ing (NLP) field has been provided with groundbreaking tools leading
to improved performance across multiple NLP tasks. Pre-trained lan-
guage models (PLMs), such as BERT and GPT, which are Transformer-
based models trained on extensive amounts of textual data, have
played a significant role in this progress.

PLMs can produce contextualized representations embedding rich
syntactic and semantic patterns of language. However, they do not
provide structured and factual knowledge representations, essential
for a better understanding of language. To alleviate these issues, re-
searchers explored combining classical PLMs with external knowl-
edge resources, such as knowledge bases (KBs). This approach aims
to complement PLMs by providing the missing structural and factual
components inherently present in KBs. As a result, this approach has
given rise to a new family of knowledge-enhanced PLMs (KEPLMs).

In this thesis, we focus on integrating KBs into PLMs, with a par-
ticular interest in their structure or hierarchy. We explore different
research directions towards enhancing these PLMs, which include
(i) exploring the limitations and methods to implicitly integrate KBs
and their impact on reasoning-based tasks and (ii) defining evalu-
ation methodologies for explicit hierarchical signals for PLMs and
their transferability to other NLP tasks.

In a first contribution, we propose to revisit the training methods
of PLMs for reasoning-based tasks. Current methods are limited to
generalizing this task to different difficulty levels, treating each level
as a separate task. Instead, we suggest an incremental learning rea-
soning approach, where reasoning is learned gradually from simple
to complex difficulty levels. This approach takes advantage of pre-
viously overlooked components that do not participate in the main
reasoning chain, and we evaluate whether it improves the general-
ization of this task. We use an implicit methodology that transforms
structured information into unstructured text with rich hierarchical
content. We further conduct experiments on reasoning-related tasks
such as reading comprehension and question answering to assess the
pertinence of our proposal.
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For our second contribution, we aim to improve the performance
of PLMs by incorporating explicit hierarchical signals into them.
While various evaluation and integration approaches have been
developed for static word embeddings, there is limited exploration
of these methods for contextualized word embeddings. The current
evaluation methods for PLMs inherit limitations from static embed-
ding evaluations, such as dataset biases and superficial hierarchical
signals. Therefore, we propose a new evaluation methodology for
PLMs that considers multiple hierarchy signals. Our work char-
acterizes the hierarchical representation by decomposing it into
basic hierarchical distributions that we call hierarchy properties.
We evaluate the hierarchical knowledge present in state-of-the-art
PLMs using these properties and analyze if learning them aims to
improve inner hierarchical representations of the models and their
applicability to related NLP tasks.
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I N T R O D U C T I O N

1.1 context

Grouping things into categories is a fundamental aspect of human
thinking that helps us understand the world around us (Plebe, 2011).
The idea of classifying things into groups, known as a taxonomy, has
been around for a long time. It can be traced back to Aristotle, who
wrote about how living beings can be classified based on shared char-
acteristics in his works “History of Animals” and “Parts of Animals”.

Taxonomies have been useful resources in various fields, includ-
ing computer science. With the rapid advancements in artificial in-
telligence and information systems, computational taxonomies have
become essential tools for organizing and managing knowledge. Ex-
amples of early computational taxonomies include bibliographic re-
trieval systems like Medline, Mesh (Medical Subject Heading), and Ro-
get’s Thesaurus (Mawson, 1911). Later, using taxonomies to structure
information retrieval systems, search engines, and knowledge repre-
sentation models became crucial in improving the efficiency of differ-
ent applications.

In the field of Natural Language Processing (NLP), structured
knowledge sources play a significant role in determining the re-
lationship between different concepts. These sources rely on the
notions of semantic relatedness or its inverse semantic distance, which
are crucial for various NLP applications such as text structure deter-
mination, word sense disambiguation, summarization, annotation,
and information extraction and retrieval (Budanitsky, 1999).

The definition of semantic relatedness is often compared with seman-
tic similarity. It is important to understand that semantic relatedness
is a broader concept than semantic similarity. It includes not just en-
tities that have similar meanings but also dissimilar entities that can
have semantic relatednesses, such as through lexical relationships like
meronymy (e.g., car - wheel) and antonymy (e.g., hot - cold) or func-
tional relationships and frequent associations (e.g., pencil - paper, rain
- flood). In computational applications, the use of semantic related-
ness is more relevant than similarity1.

There are various ways to measure the level of relatedness between
two concepts in NLP. One of the earliest methods was the Bag of

1 Examples are taken from Budanitsky and Hirst (2006)
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Words (BoW) approach, which uses dictionary-based resources to de-
termine the level of similarity. Another method is based on edges,
particularly based on the number of edges as a distance that sepa-
rates the concepts when working with taxonomical resources. The
Mesh hierarchy introduced an initial edge-based approach by Rada
et al. (1989). Later, a different definition of this edge-based distance
was proposed, considering factors such as depth (Wu, 1995; Sussna,
1993), and path (Leacock, 1998). In addition to edge-based distances,
Resnik (1995) introduced the concept of information-based similarity
measures that evaluate the extent to which two concepts share com-
mon information (Jiang and Conrath, 1997; Dekang, 1998).

With the rise of the internet and the abundance of information avail-
able, taxonomies have become more integrated into computer science.
However, creating taxonomies requires expert knowledge and agree-
ment, making it a resource-intensive task. To address this, researchers
have developed methods to derive taxonomies directly from textual
sources (Wang, He, and Zhou, 2017).

The work from Hearst (1992) observed that organized information,
including relationships like hypernymy, can be extracted from recur-
ring patterns in text. This led to the creation of several taxonomies
from large datasets of web pages, such as the Probase dataset (Wu
et al., 2012).

The advent of machine learning has brought a significant change
in the taxonomy reconstruction from text, moving from pattern-based
approaches to distributional-based methodologies. These new methods
determine semantic relatedness by analyzing information extracted
from large corpora based on the “distributional hypothesis” (DIH)
(Harris, 1954). The DIH assumes that words that are similar in mean-
ing tend to occur together. However, one limitation of the initial ap-
proaches is that they consider isolated word representations, ignoring
the actual meaning of the words.

The emergence of deep neural networks proposed tools to develop
enriched word representation (Chandrasekaran and Mago, 2021).
Word embeddings are at the heart of this evolution. They convert
words into vector representations that encapsulate the inherent
linguistic relationships between them.

Various architectural propositions have been developed based on
the representations of linguistic relationships. These include Convo-
lutional Neural Networks (CNN) (Khan et al., 2020), Long Short-
Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-
LSTM) (Yu et al., 2019), and, most recently, Transformers (Vaswani
et al., 2017), which include Pre-trained Language Models (PLMs).
These models have proven highly effective in deciphering complex
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linguistic relationships and can extract knowledge from diverse and
extensive plain-data sources. Transformers, in particular, have demon-
strated remarkable capabilities in this regard.

Embedding representations are utilized by most hybrid semantic
relatedness and deep learning approaches to convert text into
high-dimensional vectors. Hence, the efficacy of these embeddings
is crucial for the performance of semantic similarity methods
(Chandrasekaran and Mago, 2021).

1.2 motivation

In recent years, Transformer-based models have contributed signifi-
cantly to the improvement of NLP tasks, especially in natural lan-
guage understanding tasks such as reading comprehension, question-
answering, and semantic similarity tasks. Models like BERT (Devlin
et al., 2019) and GPT (Radford et al., 2018), among others, leverage the
Transformer architecture and pre-trained language models to encode
contextualized vector representations of vast amounts of data. This
makes them the basis for developing many current state-of-the-art
(SOTA) models in NLP and knowledge representation.

According to current research, it has been found that PLMs
encode knowledge in the form of a knowledge base (KB) (Petroni
et al., 2019). This allows us to retrieve factual information under
certain restrictions, similar to a knowledge base retriever. Partic-
ularly, creating input queries using text patterns as an extraction
mechanism has proven to be a promising approach toward this goal
(Bouraoui, Camacho-Collados, and Schockaert, 2020). This approach
is commonly called “prompt engineering” and has been proven
helpful in extracting specific information and behaviors from PLMs.

Most research on PLMs has focused on their factual component, as-
suming they behave as knowledge bases. Therefore, injecting knowl-
edge into PLMs is widely explored to target different applications,
such as correcting inaccurate factual information (also known as “hal-
lucinations”). However, the structural component is often overlooked.
In this dissertation, we explore different approaches to extracting and
improving structural information by injecting it into PLMs using KB
information. We analyze different methodologies, explicitly and im-
plicitly injecting structure.
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1.3 research objectives and contribu-
tions

This dissertation delves into the emerging topic of knowledge integra-
tion for PLMs and its applications in related NLP tasks. As previously
mentioned, PLMs are the leading resource for SOTA NLP models.
However, they have limitations, as they are not capable of capturing
factual and structured knowledge. On the other hand, knowledge re-
sources like KBs explicitly store factual knowledge in a structured
form (Pan et al., 2023). Therefore, using KBs to provide this missing
information is a promising approach to improving PLM representa-
tions.

The literature has widely explored different knowledge integration
methods. In our work, we mainly focus on the hierarchical structural
characteristics of KBs, the different methods to evaluate them, and
their integration in the context of PLMs. Furthermore, we investigate
the transferability of the hierarchy knowledge into related NLP tasks,
such as multi-hop reasoning, question answering, and taxonomy re-
construction.

Throughout this dissertation, we will address the following ques-
tions:

1. Do PLMs naturally encode hierarchical knowledge from pre-
training?

2. Can learning hierarchical-based signals help PLMs enhance
their representations?

3. Is improving hierarchical representation beneficial for perform-
ing better in NLP downstream tasks?

For this dissertation, we have chosen to distinguish between two
injection techniques: implicit and explicit integration methodologies.
We aim to address the previous questions by independently applying
both techniques, taking into account the benefits and limitations of
each.

implicit integration of knowledge .

Implicit integration methodologies typically use templates to trans-
form structural information into text, such as triplets (two entities
linked by one relationship). This approach considers transforming a
KB into a specialized corpus of taxonomic knowledge that reinforces
the structural relations between entities, such as hypernyms or sib-
lings. The textual taxonomic corpus strengthens the co-occurrence
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of taxonomic relations of terms found less frequently in typical text
resources. Incorporating this taxonomic knowledge into PLMs has
been effective in improving the performance in reasoning-based tasks
(Richardson et al., 2020), leveraging the default emergent capabilities
of PLMs for reasoning (Kassner, Krojer, and Schütze, 2020).

One of the key features of reasoning tasks is the varying difficulty
levels of inference, which can be identified by the depth of the reason-
ing chain. Common approaches conceive different depth reasoning
tasks as separated tasks, and models are developed using a multi-
task training approach to generalize reasoning. Results using this
approach showed that PLMs can handle multiple-depth reasoning
simultaneously. However, their ability to generalize on this task is
still questionable (Richardson and Sabharwal, 2020). Therefore, better
training strategies are required for a better understanding of reason-
ing.

To handle reasoning generalization, we envision an incremental
reasoning framework that is inspired by how humans learn. More
specifically, we propose that a model should first abstract more su-
perficial reasoning levels and then gradually learn complex tasks to
comprehend deeper reasoning levels.

Our work proposes an incremental reasoning approach that implic-
itly encodes the reasoning chain from a KB adapted to PLMs. First,
we examine the capabilities of PLMs to generalize reasoning tasks
using SOTA methods. Then, we explore different training strategies
and data generation algorithms to simulate incremental learning. Our
approach relies on the contextual information given to PLMs, which
is divided into relevant phrases and irrelevant phrases (known as dis-
tractors). Opposite to other methods that neglect the impact of distrac-
tors in learning, we propose to use them to improve reasoning skills.
Finally, we evaluate whether endowing PLMs with incremental rea-
soning skills contributes to better performance in related NLP tasks,
namely reading comprehension and question answering.

Overall, our results confirm that the context information, particu-
larly the distractors, plays an essential role in the learning process
of reasoning in PLMs. In addition, in terms of computing resources,
our incremental reasoning strategy proved to require fewer learning
steps compared to SOTA models relying on fine-tuning. Also, the ex-
periments demonstrated that our improved models perform better
in related NLP tasks, such as reading comprehension and question
answering, compared to default PLMs.
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explicit integration of knowledge .

Explicit integration methods typically include hierarchical features
that implicit integration methods often miss when transformed into
text, such as the notion of hierarchy in terms of granularity or direc-
tionality .

The explicit integration of hierarchical structure into language mod-
els is an active area of research, with most SOTA methods developed
in the context of static word embeddings (Chandrasekaran and Mago,
2021). Examples of these approaches involve developing vector spaces
similar to a hierarchy or learning taxonomical embedding representa-
tions to capture the hierarchical distribution of these representations.

Classical evaluations to assess the effectiveness of these integration
methods rely on the performance of tasks such as taxonomy recon-
struction and hypernym discovery. These tasks are chosen based on
the expected output, which obeys a taxonomic structure representa-
tion. However, using these tasks as proxy evaluators does not con-
tribute to elucidating the model understanding of hierarchical knowl-
edge. This is due to the limited superficial features of hierarchy that
these tasks require and potential biases hidden in the evaluation pro-
cess.

For instance, the approach to solving the previously mentioned
tasks relies mainly on identifying only one type of taxonomical rela-
tionship: hypernymy (Camacho-Collados, 2017). Moreover, by the au-
tomatic generation nature of dataset evaluators, some biases analysis
showed that models learn to memorize recurrent hypernym classes
instead of learning the relationship itself (Levy et al., 2015).

Therefore, there is a latent need for more comprehensive evaluation
datasets and methods for hierarchical representations, particularly for
language models. We focus on PLMs as they are an important SOTA
tool for different NLP applications. Therefore, it is crucial to under-
stand in a comprehensive way insights into their strengths and limi-
tations. Our proposal is to diagnose the hierarchical representations
of concepts by characterizing the hierarchy distribution. We do this
by decomposing its structure into relevant elements, which we refer
to as hierarchy properties. These properties are used to assess the hier-
archical distribution of models, providing a deeper insight into dif-
ferent taxonomic relationships beyond the hypernymy. Particularly,
the properties we suggest extend the explored relationships to hyper-
nymy (parent), ancestor, sibling, and far relationships.

Our evaluation methodology includes a setup proposition for
PLMs to perform this evaluation and analyze their representations.
Additionally, we investigate whether learning these properties can



1.4 thesis outline 7

enhance the PLM’s hierarchical representation. We also examine the
impact of these properties not only in the distribution of the model
representations but also on NLP classical evaluations tasks such as
taxonomy reconstruction and hypernymy discovery.

Our experiments show that PLMs possess some hierarchical knowl-
edge representation, which is particularly useful in distinguishing
different granularities of hypernymy-like relationships. However, dif-
ferentiating between taxonomical relations, such as hypernyms and
sibling relationships, suggests a more challenging evaluation. Our re-
sults also indicate that it is possible to learn PLM hierarchy properties,
which promotes hierarchical representations. Finally, our evaluations
on the impact of these representations are beneficial for hierarchy-
related tasks but not as helpful for other tasks less related to hierar-
chy.

1.4 thesis outline

This dissertation is structured into four parts, comprising two
main parts, a conclusion and an appendix. The first part, titled
“Background and State of the Art”, introduces fundamental concepts,
notions, and important scientific contributions related to different
knowledge injection strategies used to enhance language models. The
second part, titled “Contributions”, provides a detailed explanation
of the contributions made by this thesis.

• Part I: Background and State of the Art

This part provides an overview of the current methods used to
incorporate external knowledge sources into language models.
To achieve this, we have divided these methods into two chap-
ters.

Chapter 2 reviews the techniques for integrating knowledge
into PLMs, including evaluation approaches. This chapter be-
gins by introducing various knowledge sources and their clas-
sification. Similarly, we introduce some basic concepts regard-
ing PLMs and the pre-training tasks. Then, it surveys different
methodologies for integrating these knowledge sources. This
survey is mainly categorized into implicit and explicit methods.
Finally, we review some of the primary evaluation approaches
employed by the community and introduce some of the recent
work in the realm of Large Language Models.

Chapter 3, on the other hand, focuses on methods oriented to in-
tegrating the hierarchical structure of knowledge into language
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models. In this chapter, we review some of the leading works
that concentrate on taxonomic knowledge and other hierarchi-
cal features from knowledge bases. We start by reviewing some
of the primary works that use static word embeddings, and then
we move on to current approaches that use PLMs.

• Part II: Contributions

This part presents our contributions. We present this part di-
vided into two chapters, each corresponding to a specific contri-
bution that emerged in the context of this dissertation (Lovón-
Melgarejo et al., 2022; Lovón-Melgarejo et al., 2024). Each of the
following chapters is an extended version of our original publi-
cations.

Chapter 4 presents our first contribution exploring the implicit
integration methodologies in the context of reasoning tasks.
This chapter first introduces the context of our proposition
and its contributions. Then, we present our methodology,
including a formal representation of multi-hop reasoning and
the algorithms used for our approach. Next, we introduce the
experimental setup to present our results and discussions.

Chapter 5 introduces our second contribution in the context of
explicit integration methodologies. The chapter starts by intro-
ducing the motivation and contributions of our study. We then
describe the methodology used to evaluate and integrate our
approach. This is followed by a detailed explanation of the ex-
perimental setup, the results obtained, and the ensuing discus-
sions.

• Conclusion

As a conclusion to our dissertation, we summarize our findings,
revisit our contributions, and propose future directions for fur-
ther exploration of this work.

• Appendix

We have included three appendices in our work. Appendix A
presents technical details about the Bi-encoders model that we
used in our work. Appendix B details the computing infrastruc-
ture and budget from our first contribution. Appendix C shows
complementary results from our second contribution.
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2
K N O W L E D G E I N T E G R AT I O N I N L A N G U A G E
M O D E L S

2.1 introduction

Over the years, language model development has been primarily fo-
cused on enhancing semantic embeddings. Initially, models like Skip-
Gram (Mikolov et al., 2013) and GloVe (Pennington, Socher, and Man-
ning, 2014) were used, but their performance was limited by the
shallow networks they employed. With the advent of deep learning
models like BERT (Devlin et al., 2019), a significant shift arrived in
the domain due to the impressive performance of these approaches
on different Natural Language Processing (NLP) tasks. These mod-
els rely on the Transformer architecture (Vaswani et al., 2017) using
an attention mechanism, removing the recurrence and convolutions
that previous architectures, such as Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN) used. BERT leveraged
the power of self-supervised learning to move beyond traditional su-
pervised learning methods and towards Pre-trained Language Mod-
els (PLMs).

PLMs stack multiple Transformers layers and are pre-trained on
large textual datasets to learn contextualized word representations.
This setup helps capture rich semantic relationships and linguistic
nuances. The pre-training process involves exposing the model to var-
ious language tasks, enabling it to develop a deep understanding of
language structures and patterns. For example, in the case of BERT,
these tasks consist of Masked Language Modeling (MLM) and Next
Sentence Prediction (NSP).

Despite their success in various NLP tasks, PLM’s learning ap-
proach relies explicitly on encoding language-level features and over-
looks knowledge-level features (Zhang et al., 2019). At a language
level, PLMs encode word representations based on token representa-
tions and positional encodings. However, at a knowledge level, PLMs
are not explicitly aware of different levels of language expressions.
For example, they do not consider different token representations for
entities (such as referring to the city of Paris as “Paris” or “the capi-
tal of France”) and the underlying entities’ interactions. This missing
feature may generate factual errors during inference over this infor-
mation, reflecting their inability to recall and reason accurately.

11
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To address these limitations, the research community has intro-
duced the notion of Knowledge-Enhanced Pre-trained Language
Models (KEPLMs). These models incorporate external knowledge,
such as that derived from Knowledge Bases (KBs), to enhance their
interpretability, robustness, and reasoning capabilities. Section 2.2
introduces the most common external knowledge resources in this
domain and its components.

The realm of KEPLMs is constantly evolving, with new methods
emerging to leverage different features and applications of knowl-
edge. In Section 2.3, we first introduce PLMs, the base of KEPLMs.
Then in Section 2.4, we survey some of the primary methodologies
employed in injecting knowledge into PLMs. This survey considers
two main injection approaches based on how the KB resources are
used: implicit and explicit knowledge incorporation. Implicit method-
ologies leverage the factual information provided by KB, whereas ex-
plicit methodologies leverage the structural relationships between en-
tities.

Although these methods have shown state-of-the-art (SOTA) per-
formance on different applications, it is still important to assess the
effectiveness of the knowledge injection methodology. Evaluations for
KEPLMs mainly aim to answer the following questions: “What infor-
mation did my model learn?” and “How is this information helpful
in NLP applications?”. Section 2.5 introduces two main categories of
evaluation approaches: knowledge capacity and task diagnostic. To
answer the first question, knowledge capacity methods aim to verify
and measure the amount of knowledge injected into the model. Task
diagnostics evaluation decomposes a target task into measurable ele-
ments to answer the second question.

Finally, with the current trend of developing larger models by in-
creasing the number of layers and parameters, Section 2.6 briefly
presents some of the latest works leveraging external knowledge in
Large Language Models (LLMs) to enhance their performance.

2.2 knowledge as resource for language

models

2.2.1 Knowledge

The definition of “knowledge” refers to familiarity, awareness, or un-
derstanding of a person or thing, such as facts, skills, or objects (Yang
et al., 2021). According to Krathwohl (2002), there are four types of
knowledge: factual, conceptual, procedural, and metacognitive. More-
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over, knowledge is often represented using various methods, such
as first-order predicate logic, frame representation (Minsky, 1974),
script representation (Tomkins, 1978), semantic network representa-
tion (Quillian, 1966), and ontology representation (Elkan and Greiner,
1993). In this dissertation, we will mainly focus on ontology knowl-
edge representation; more specifically, we will use a knowledge graph
as an adaptable resource of this representation for different NLP ap-
plications.

knowledge graph (kg). We consider a KG as a formal and
structured representation of knowledge containing information about
entities, their attributes, and their relationships. In a KG, entities are
nodes, attributes or properties are associated with nodes, and rela-
tionships are edges that connect two nodes. A triplet represents three
elements of the KG consisting of two nodes and one relationship,
commonly represented as (head, relationship, tail), where head and
tail are nodes, and the relationship is an edge. The set of triplets
forms the KG that captures the semantic relationships and attributes
between entities in a structured manner. It is worth emphasizing that
most of the existing KGs only contain conceptual and factual knowl-
edge, as procedural and metacognitive knowledge is more complex
to represent adequately1.

2.2.2 Knowledge Sources

According to previous research (Pan et al., 2023; Yang et al., 2021),
knowledge resources used to improve PLMs are classified based on
their content and integration mechanisms. Based on the format of
their content, we can identify two different types: multi-modal knowl-
edge sources and only text-based, which is our primary exploited re-
source type in this dissertation.

Multi-modal knowledge graphs are a powerful tool for represent-
ing facts across various modalities, including images, sounds, and
videos. Due to the integration of textual information with other forms
of data, it enables a more comprehensive understanding of complex
phenomena (Pan et al., 2023). Some examples of multi-modal knowl-
edge graphs are Richpedia (Wang et al., 2020), WebQA (Chang et al.,
2022), and ViQuAE (Lerner et al., 2022), which integrate both text and
image information.

Only text-based resources can further be classified into three main
categories based on the stored information: encyclopedic, commonsense,

1 The literature used the terms KBs and KGs interchangeably. In this dissertation, we
adopt the same use to refer to this definition of knowledge graph.
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and domain-specific. In the following, we outline the principal knowl-
edge resources used in the literature to enhance language models
according to their information.

Encyclopedic Knowledge

Encyclopedic knowledge is a shared resource representing general
knowledge about the world. It is created by integrating data from
different sources, including human experts, encyclopedias, and
databases. Typically, encyclopedic knowledge is stored in textual for-
mats or using triplets. One of the most notable text-based resources is
Wikipedia2, a multilingual encyclopedia featuring millions of pages
in over 330 languages. Wikipedia pages are dedicated to different
concepts and include textual details, tables, and infoboxes related to
an unambiguous concept.

A widely used example of the KG resources is Wikidata (Vran-
dečić and Krötzsch, 2014), which is a project operated directly by
the Wikimedia Foundation, aiming to fully structure the information
on Wikipedia. Wikidata is a document-oriented semantic database
based on items representing a topic with a unique identifier. Similarly,
the Wikidata5M dataset (Wang et al., 2021b), which is a variant of
Wikidata, includes triplets and high-quality entity and relation descrip-
tors commonly used to enhance their representations. Another KG is
SHINRA (Sekine, Kobayashi, and Nakayama, 2018), which proposes
to create a structured knowledge base of Wikipedia, including the
items and the attributes, aligning both elements on the ENE ontology
(Sekine, 2008). Figure 2.1 shows examples of SHINRA. There are also
other KGs such as Freebase (Bollacker et al., 2008), Dbpedia (Bizer et
al., 2009), CN-DBpedia (Xu et al., 2017), and YAGO (Suchanek, Kas-
neci, and Weikum, 2007) that rely on Wikipedia. From these options,
CN-DBpedia is available in English and Chinese.

Commmosense Knowledge

Commonsense knowledge relates to people’s everyday understand-
ing of the world and their surroundings, including the objects, events,
and relationships between them. This knowledge has been helpful in
training models for commonsense question-answering tasks, among
others (Hu et al., 2023). Unlike encyclopedic knowledge, common-
sense knowledge comprises tacit knowledge extracted from text. For
instance, a triplet from a commonsense KB might be <having no food,
CauseDesire, go to a store>, while an example of encyclopedic knowl-
edge might be <Emmanuel Macron, president-of, France>.

2 https://www.wikipedia.org/

https://www.wikipedia.org/
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Person Location Product

Aristotle

Geological
Region

Aristotle
(crater)

Astronomical
Object

Doctrine
Method

Aristotelian
-ism

Encyclopedic Knowledge - SHINRA 

CommonSense Knowledge - ConceptNet

knowledge

information
type-of

encyclopedia

book
location

location

learning
ccause-of

Domain Specific Knowledge - WordNet

structure

N. "A thing constructed; a complex entity
constructed of many parts"

social
organization

N. "The people in a society
considered as a system organized

...."

Figure 2.1: Examples of Encyclopedic Knowledge, Commonsense Knowl-
edge, and Domain specific knowledge from the KB SHINRA,
ConceptNet, and WordNet, respectively.
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Two commonsense KGs that are frequently referenced in the litera-
ture are ConceptNet (Speer, Chin, and Havasi, 2017) and the ATOMIC
KG (Sap et al., 2019). ConceptNet is an open-domain commonsense
KG that includes 34 relations, including but not limited to RelatedTo,
IsA, and Causes. Figure 2.1 shows a sample of ConceptNet. In con-
trast, ATOMIC diverges from ConceptNet by emphasizing inferential
knowledge structured in an “if-then” structure, such as “If X pays Y
a compliment, then Y will likely return the compliment”.

There exist other KGs, such as ATOMIC20
20 (Hwang et al., 2021)

and ASER (Zhang et al., 2020), which cover more accurate and di-
verse commonsense knowledge, capturing more complex common-
sense knowledge relations. Additionally, there are knowledge graphs
like TransOMCS (Zhang et al., 2021) and CausalBank (Li et al., 2021)
that are automatically constructed.

Domain specific Knowledge

In contrast to the non-specificity of encyclopedic knowledge, domain-
specific knowledge refers to specialized knowledge in a particular
field, such as sentiment analysis, semantics, biomedical, e-commerce,
and finance. Although domain-specific knowledge graphs are typi-
cally smaller in scale, they are more precise and dependable.

For instance, WordNet (Miller, 1995), a domain-specific knowledge
graph, is utilized for semantics, more precisely for word sense dis-
ambiguation. The synset, which is the core component of WordNet,
represents a unique concept that can be expressed through nouns,
verbs, adjectives, or adverbs and is composed of one or more lexical-
izations, i.e., synonyms used to express the concept. Consequently,
a word can belong to multiple synsets, denoting its different mean-
ings. A sample in Figure 2.1. Similarly, UMLS (Bodenreider, 2004) is
a domain-specific knowledge graph in the medical field, which con-
tains biomedical concepts and their relationships.

2.2.3 Structural Knowledge Components

In addition to the information type, the element component used to
work with knowledge sources is another crucial dimension. A knowl-
edge graph is a big data structure that can be decomposed in different
ways. From prior work, three formats for encoding emerge: entity, re-
lation, and subgraph.



2.2 knowledge as resource for language models 17

Entity Knowledge

Entities are crucial in KG resources as they are directly connected to
other entities through relationships and indirectly through informa-
tion gathered from their neighbors. There are two possible methods
to encode an entity: entity embeddings and entity descriptors.

Entity embeddings are obtained by KG embedding methods such as
TransE (Bordes et al., 2013), TransH (Wang et al., 2014), or RoTate (Sun
et al., 2018). These embeddings are suitable for encoding the neigh-
boring nodes of entities in the KG but are typically incompatible with
text. Additionally, a significant challenge of this method is updating
the vector spaces each time the KG is updated.

On the other hand, entity descriptors represent an entity by a textual
definition. Then, a language model can provide a vector representa-
tion of this entity through this definition. However, given that we pick
and convert into text isolated elements from the KG, we risk to lose
critical structural information about entities in their original format.

Relation Knowledge

In a KG, the relation knowledge is represented by the link between
two nodes. As previously stated, the interaction between the relation
and the two nodes is represented as a triplet. Similar to entity embed-
dings, we find embedding and textual encodings for this element.

Different KG embedding methods have expanded the representa-
tion space by defining dedicated spaces for relations and entities to
model their interactions better, like TransR (Lin et al., 2015).

In language models, triplets are commonly transformed into co-
herent sentences using text templates. These templates integrate KG
sources with an underlying structure in the form of text. The tem-
plates can be manually (Petroni et al., 2019; Talmor et al., 2020a)
or semi-automatically generated (Bouraoui, Camacho-Collados, and
Schockaert, 2020) and are discussed in Section 2.5.1.1.

Subgraph Knowledge

Knowledge graphs consist of subgraphs that are integral components
of the graphs. Subgraphs are formed by selecting a group of entities
as nodes and using relations as edges. The subgraphs help to prevent
the loss of structured information that can occur when dealing with
isolated triplets. The subgraph includes immediate relations between
nodes (1-hop) and extends beyond to cover more distant connections
(k-hop).
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Subgraphs are typically encoded using Graph Neural Networks
(GNNs) (Hamilton, Ying, and Leskovec, 2017; Battaglia et al., 2018)
that naturally captures the inner graph structure of these represen-
tation. On the contrary, textual-based approaches typically encode
subgraphs relying on the triplet representation, concatenating them
or using random-walk through the subgraph to partially capture the
structure.

2.3 pre-trained language models

In this section, we briefly recall some basic definitions of PLMs that
will be used later in this work.

A Pre-trained Language Model (PLM) is a deep learning model
for natural language processing tasks. Its main characteristic is that
it undergoes a pre-training phase on a large corpus of diverse textual
data before being fine-tuned for specific language-related applications.
PLMs are often built using transformer architectures and can learn
contextualized word representations that capture complex linguistic
patterns, semantic relationships, and syntactic structures.

In the following, we will provide a brief overview of the MLM and
NSP pre-training tasks and some of the most common adaptation
setups for NLP tasks.

2.3.1 Pre-training tasks

Pre-training tasks for PLMs involve training them on diverse textual
data before fine-tuning them for specific tasks. The main objective of
these pre-training tasks is to equip the model with a deep understand-
ing of language structures, context, and relationships. This provides
the model with versatile representations that can be used for various
downstream natural language processing (NLP) applications.

In the following, we introduce two widely used pre-training tasks:
MLM and NSP.

Masked Language Modeling (MLM)

During the pre-training phase, many traditional PLMs incorporate
the MLM task (Devlin et al., 2019; Liu et al., 2019; Yang et al., 2019),
which uses unannotated text from large corpora. In this task, the PLM
is exposed to multiple sentences, and a randomly chosen subset of
tokens is masked in each sentence.

The MLM training task is similar to denoising auto-encoders (Vin-
cent et al., 2008), and its objective is to predict the original input by
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focusing on the masked tokens, leveraging the PLM token represen-
tations. The learning process is guided by a cross-entropy loss, which
influences all parameters within the model. It is important to note
that although all input tokens contribute to the process, the learning
process only utilizes the masked tokens.

More specifically, given a sequence of tokens X = (x1, x2, ..., xn),
a PLM prepares first an input sequence. This input sequence is typi-
cally the aggregation of token embedding, positional embedding, and
segment embedding (in the case of BERT (Devlin et al., 2019)). The
model then computes L layers of d-dimensional contextual represen-
tations by successively applying non-linear functions, such as multi-
headed self-attention layers. Finally, the last layer outputs contextual-
ized representations of the tokens denoted as Y = {y1,y2, ...,yn} with
Y ∈ Rn×d.

For illustration purposes, we define the step-by-step process of the
MLM task:

1. The token xi is projected from the one-hot representation into
the PLM representation space using an external mapping ma-
trix, W ∈ Rd×Dw , where d is the dimension of the PLM repre-
sentation space, and Dw the vocabulary size.

2. An inverted mapping matrix is obtained to transform the con-
textualized represention into a word score vector for a masked
word: wi = WT × yi.

3. The model learns the task comparing “wi” with the one-hot
vector of “xi”. The training objective of the MLM task is to have
“wi” representations as close as possible to the one-hot vector
corresponding to the original input. We achieve this by using
the cross-entropy loss between the softmax of the word score
and the one-hot vector.

Finally, the MLM loss function is formally expressed as:

P(yt|Y) =
exp(yt)

Σn
i=1 exp(yi)

(softmax function) (2.1)

LMLM = −
∑

yt∈M

logP(yt|Y) (2.2)

where M is a subset of randomly selected tokens from the input to
be masked out.
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Next Sentence Prediction (NSP)

Next Sentence Prediction (NSP) is a binary classification task em-
ployed to predict whether a given pair of sentences in a document
are contiguous or not. This task helps the model capture relationships
between sentences and understand document-level context.

Formally, we represent two token sequences as X1 = (x11, x12, ..., x1n),
and X2 = (x21, x22, ..., x2n). Then, the model PLM with a classification
layer NSP on top represented as NSP((PLM(X1,X2)) will determine
whether or not X1 and X2 are contiguous.

The model uses cross-entropy loss to calculate the NSP loss for each
sentence pair:

LNSP =− (y× logP(Next|X1,X2)

+ (1− y)× log(1− P(Next|X1,X2)))
(2.3)

where Next is a binary indicator variable obtained from the classi-
fication layer, and y is the binary label indicating whether X1 and X2

are consecutive.

2.3.2 Adaptation to specific NLP tasks

We present four different ways to adapt PLMs for specific NLP tasks
according to the literature.

fine-tuning . Fine-tuning further trains a PLM on a specific task
or domain to enhance its performance on that particular objective.

few-shot. Few-shot relies on training models on only a few ex-
amples and with limited training steps to test the adaptability of the
general representations of a model to a specific new task.

inoculation. “Model inoculation” refers to the process of
training models on new challenging tasks with only a few examples.
The aim is not to completely repurpose the model, as it is in ordinary
fine-tuning, but to enhance specific phenomena that may deviate
from the model’s original training distribution (Liu, Schwartz, and
Smith, 2019). The primary distinction between Inoculation and
few-shot learning approaches is the subset samples’ difficulty level.
Few-shot learning has no specific guidelines to filter the subset of the
training set. At the same time, Inoculation focuses on searching for
challenging samples to rapidly adjust the model to these challenges
and the standard task.
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zero-shot. Zero-shot refers to the scenario where a PLM per-
forms tasks that it has not been specifically trained on. In other words,
the model is expected to use its learned knowledge to generalize to
new classes or tasks not part of the pre-training phase.

The main difference between these approaches lies in the amount
of data the model uses for specialization. For instance, in a dataset
consisting of 1000 training samples, a fine-tuning approach would
use the complete dataset. On the other hand, the inoculation and few-
shot techniques would only utilize a certain percentage, such as 10%.
Inoculation will prioritize the “challenging” samples. The zero-shot
method, however, would not use any of the training samples.

2.4 knowledge enhanced pre-trained lan-
guage models

In the previous section, we introduced PLMs mainly trained on large
amounts of unstructured text data such as Wikipedia and BookCor-
pus (Zhu et al., 2015). These models commonly use the pre-training
MLM task to refine their token representations by capturing the con-
textual and semantic information embedded within these corpora.
The MLM task uses the token information extracted from the input
as a basis. This approach considers all tokens of the same type with-
out explicitly distinguishing the language features, overlooking the
valuable information in entities and phrases within the source text.

To overcome this limitation, researchers have started integrating
complementary knowledge sources, such as knowledge bases, lead-
ing to the development of enhanced PLMs, referred to as KEPLMs.

A common feature among KEPLMs is the use of injection methodol-
ogy to incorporate KBs into PLMs. This injection methodology seeks
to integrate the explicit and structured knowledge from a KB into
a PLM to enhance the knowledge representations. The realm of KE-
PLMs has quickly expanded with multiple works proposing different
approaches to inject knowledge sources information into PLMs (Wei
et al., 2021; Pan et al., 2023; Yang et al., 2021; Hu et al., 2023). This
section will survey some of the most relevant works in this domain.

We review these works, classifying the methods into two
approaches: implicit and explicit knowledge incorporation. Implicit
knowledge incorporation leverages contextual information by exploit-
ing text-based details within KBs, explicitly focusing on entities
and relations as factual elements, essentially treating the KB as
an extension of the training corpus. While these implicit methods
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effectively capitalize on contextual signals, they risk overlooking the
structural nuances within the KB.

On the other hand, explicit knowledge incorporation takes a more di-
rect and structured approach by injecting information directly from
KBs. These methods establish explicit associations between entities,
fostering a more informed and contextually relevant understanding.
Moreover, the explicit approach helps to avoid any potential issues
that may arise from ignoring important structures in implicit meth-
ods.

2.4.1 Implicit KEPLMs

In the following, we present the relevant works mainly categorized
on the integration level used: at a token level, span level, triplets in a
text format, and mixing embeddings.

2.4.1.1 Token-level Integration

The literature has explored integrating different language features us-
ing the token representation to enhance the knowledge present in
PLMs. Some of these language features are part-of-speech (POS), sen-
timent labels at sentence and word levels, word sense, entity mentions
and spans, and relations.

The early work from Ke et al. (2020) introduces the SentiLare
model, which integrates the POS elements into PLMs for sentiment
classification. The integration uses a Label-Aware Masked Language
Model (LA-MLM) task, a variation of the original MLM. The LA-
MLM task predicts the sentiment polarity for each token from the
input and the sentiment label from the global input sentence at
the same time. This approach leverages the implicit relationships
between the sentence label and the input.

Formally, SentiLare is trained using a combined loss L =

LLA-MLM + LMLM, where LLA-MLM is defined as the sum of the
loss predicting token-level sentiment polarity, Ltoken, and the loss
predicting the sentence sentiment, Lsent.
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LLA-MLM =Ltoken +Lsent

Ltoken =−

n∑
t=1

mt · [logP(yt|X̂, l) + logP(post|X̂, l)+

logP(polart|X̂, l)]

Lsent =− logP(l|X̂) −

n∑
t=1

mt · [logP(yt|X̂) + logP(post|X̂)+

logP(polart|X̂)]

(2.4)

where mt is an indicator function and equals to 1 iff the input to-
ken xt is masked, and X̂ is the extended input X with the POS and
word-polarity for the SentiLARE model. At the token-level P(yt|X̂, l),
P(post|X̂, l), and P(polart|X̂, l) use the last hidden state, and condi-
tioned to the sentiment label l. At the sentence-level, the probability
P(l|X̂) is based on the last output of the [CLS] token.

Similarly, the SenseBERT model (Levine et al., 2020) proposes incor-
porating word-sense information as knowledge into PLMs. The use
of word-sense information is particularly useful to leverage the rep-
resentation of low-frequency words, otherwise known as rare words
(Schick and Schütze, 2020).

SenseBERT utilizes the ability of a PLM to predict the meanings of
missing words, along with a sense-aware mechanism to extract more
information from rare words. Sense-BERT captures sense embedding
using a semantic-level training loss called LSLM which is added to
the regular training of BERT as L = LMLM + LNSP + LSLM. We
formally define LSLM as:

LSLM = − log
∑

s∈A(w)

P(s|X) +Lreg (2.5)

This loss corresponds to predict the correct meaning from a given
word, where A(w) denotes the possible meaning (supersenses) of a
given word w, X the input context, LNSP the next sentence prediction
loss, , and Lreg is a regularization term to reduce noise for the high
frequented supersenses labels.

Entities are another widely explored feature in the language. A lim-
itation of the MLM task’s default word-collocation prediction is that
this task does not consider the relationships between entities. This
results in PLMs struggling to extract entity and phrase knowledge
solely from the context.

To illustrate, let us consider the sentence: “Harry Potter is a series of
fantasy novels written by J.K. Rowling”. A PLM typically represents
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this sentence as “Harry UNK is a series of fantasy novels written by
UNK UNK.”. A PLM could easily predict the token “Potter” given
“Harry” without using context. However, this approach fails to cap-
ture the high-level relationship between entities “Harry Potter” and
“J.K. Rowling”.

ERNIE-Baidu3 (Sun et al., 2019), referred to as ERNIE 1.0 from
now on, proposes a modified masking process. The training data for
ERNIE 1.0 is prepared by first identifying the entity mentions in the
input sentence and then masking the consecutive tokens of these men-
tions. Later models, namely ERNIE 2.0 (Sun et al., 2020b) and ERNIE
3.0 (Sun et al., 2021), were subsequently introduced to explore differ-
ent training techniques to improve performance.

In the same context, ERNIE-Tingshua (Zhang et al., 2019) (referred
to as ERNIE) introduces a novel approach to combine contextual and
entity embeddings representation into BERT. The authors propose
an MLM-based task-oriented to entities, called denoising entity auto-
encoder (dEA). ERNIE first aligns and fuses entity embeddings and
contextual embeddings based on the entity mentioned in the text.
Then, based on these fusion representations, the dEA task will ran-
domly mask some entity tokens to predict the corresponding entities
later.

Similar to previous models, ERNIE incorporates the dEA task
alongside the existing pre-training tasks, MLM, and NSP. For more
details on the ERNIE architecture, please refer to Section 2.4.2.2.

2.4.1.2 Span-representation Integration

Representing an element in a KB through text can be challenging
due to the need to find the correct textual representation. An entity
element in a KB can be expressed in different ways, which can be
encoded on single or multiple tokens. For example, the entity “Harry
Potter” could be represented in the text as “Harry Potter”, ‘Harry
James Potter” or “The Boy Who Lived”. Despite the improved per-
formance of previous injection methods on different NLP tasks, they
still risk producing poor representations for entity span representations
and relation span representations.

Recent work suggests integrating knowledge at a higher level to
improve the representations obtained by these models. Several state-
of-the-art (SOTA) models incorporate explicit span representations to
capture different knowledge elements in PLMs. Generating informa-
tive span representations of entities and relations can benefit multi-

3 In the literature, there exist two homologous PLMs named ERNIE. To differentiate
between them, the community refers to them by adding the research groups to which
they belong: ERNIE-Baidu and ERNIE-Tinghua.
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ple downstream tasks (Li et al., 2022). These span representations can
take the form of aggregation methods for multi-token mentions or in-
volve modeling the interaction between conceptual representations.

entity span representation.

We begin by considering the case where no entity representation
is available. This case occurs when dealing with unseen entities from
training which lack meaningful representations. To tackle this prob-
lem, the KEPLER model (Wang et al., 2021b) proposes a solution by
encoding textual mentions of entities in a KB embedding space rep-
resentation. KEPLER uses entity descriptors to obtain textual descrip-
tions of entities, such as their definitions. The PLM encodes this con-
ceptual representation of the entities and then adapts them to a KB
embedding representation space.

Specifically, KEPLER obtains embeddings from a triplet in a KB,
(h, r, t) ∈ G, where h and t are entities, and r is the relation be-
tween them. The input is prepared as (h, r, t), where each element
is replaced by its corresponding textual descriptor. These embeddings
are calculated as the [CLS] projection of the output layer of a PLM.
Then, the loss function is formulated as: L = LKE+LMLM, where LKE

denotes a knowledge embedding loss, inspired in the RotatE model
(Sun et al., 2018).

Another limitation in entity representation concerns the need for
multiple tokens to represent a single concept. The LUKE model
(Yamada et al., 2020b) proposes a solution considering both words
and entities are treated as independent types of tokens. The model’s
strength lies in its input representation, which includes an entity
type embedding denoting a token, in addition to the traditional token
and position embeddings, and an entity-aware self-attention mechanism
managing both word and entity tokens. This enables the computation
of intermediate and output representations for all tokens and entities.

To pre-train LUKE, the model uses an extension of MLM, where
entities are randomly masked, and the model is trained to predict the
originals of these masked entities.

relation span representation.

KEPLER and LUKE introduced additional factual knowledge into
PLMs and improved entity representations. However, the complex
and explicit relationships between entities remain challenging to en-
code due to their different mention possibilities (Yang et al., 2021).
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Sinaloa. Culiacán is also the seat of Culiacán Municipality. …
Culiacán is in the center of Sinaloa, at about the same distance to
the two other urban centers of Sinaloa: Los Mochis to the north
andMazatlán to the south. [SEP]
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Figure 2.2: Input examples for the pre-training tasks for ERICA. (a) Entity
Discrimination. It represents the tail entity (Mexico) closer than
other entities. (b) Relation Discrimination. Example for the relation
“founded by” at sentence and paragraph (cross sentence) levels.
Source (Qin et al., 2021)

Recent works aim to address this challenge by extending the encod-
ing of information beyond the entity level in KBs to capture relations
between entities and text at the sentence and paragraph levels. One
of the earliest approaches in this domain is ERICA (Qin et al., 2021),
which uses contrastive learning to enhance entity relations in PLMs.
ERICA introduces two novel pre-training tasks to achieve this goal:
entity discrimination and relation discrimination.
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The Entity Discrimination (ED) task involves identifying which en-
tity can be inferred from a given head entity and relation. This task
enhances the understanding of each entity by considering its rela-
tions to other entities in the text. The task involves analyzing a triplet
(ei, r, ej) with elements present in the token sequence X = {x1, ..., xn}
and its aligned entity sequence {e1, e2, .., em}. The goal is to maxi-
mize the posterior probability P(ej|ei, r,X) through contrastive learn-
ing based on the work of (Hadsell, Chopra, and LeCun, 2006). The
learning function seeks to obtain a closer representation between a
positive pair, (ei, ej), compared to negative pairs. Formally, the ED
loss can be expressed as:

LED = −
∑

(ei,r,ej)∈G

log
exp(cos(ei, ej)/τ)

m∑
l=1, l̸=j

exp(cos(ei, el)/τ)
,

(2.6)

where cos(·, ·) denotes the cosine similarity between two entity rep-
resentations and τ (temperature) is a hyper-parameter. Figure 2.2a
shows an example for the triplet (Sinaloa, Country, Mexico).

The Relation Discrimination (RD) task aims to measure how closely
related two distinct relations are using document-level distant su-
pervision, which is different from the traditional sentence-level ap-
proaches. This approach improves relation representations by enhanc-
ing the capture of complex reasoning chains in real-world contexts.

In the RD approach, ERICA represents a relation as the concate-
nation of entity representations, rij = [ei, ej]. Similar to the ED ap-
proach, RD loss aims to bring closer positive relations (rij, rkl), where
rij = rkl, and separate negative relations, where rij ̸= rkl. RD is for-
mally described as:

LRD = −
∑

(rij,rkl)∈T+

log
exp(cos(rij, rkl)/τ)

Z
,

Z =

N∑
rC∈T/{rij}

exp(cos(rij, rC)/τ)

(2.7)

where N is a hyper-parameter, T is the set of entity pairs with no re-
lation in the dataset, and T+ the set of entity pairs with an annotated
relation. Figure 2.2b shows an example for the relation “founded by”
across entities at sentence and paragraph levels. Finally, ERICA is
trained with the combined loss L = LED +LRD +LMLM.

A drawback in the ERICA approach lies in the use of average pool-
ing from tokens as entity representation. This method is ineffective
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in representing entities, especially for tasks requiring entity bound-
aries such as joint entity and relation extraction. SPOT (Li et al., 2022)
addresses this limitation by enhancing the representation of entities
and relationships. It achieves this improvement by focusing on to-
ken spans and span pairs within the text and with fewer parameters
than conventional approaches. SPOT consists of three components: a
textual encoder, a span encoder, and a span pair encoder. It uses three
pre-training tasks to capture knowledge at three levels: token, entity,
and relation.

Similarly to ERICA, SPOT uses the standard MLM approach at the
token level and predicts entities based on the entity representation ei
generated by the span encoder at the entity level. However, due to the
substantial number and imbalanced distribution of entities, the entity-
level loss, denoted as LENT, is computed using an adaptive softmax
with log-likelihood during pre-training. This loss is defined as the
negative log probability of gold entities e∗ in the training documents
D.

At the relation level, the model predicts the relationships between
entity i and entity j based on the entity pair representation rij. Like
tokens and entities, the log-likelihood calculates the probability of
the relation between two entities. The loss for the relation, which is
denoted as LREL, is defined as the negative log probability of ground-
truth relations r∗ in the training documents D. Formally, we defined
these losses as:

LENT = −
∑
e∗∈D

logP(e∗|ei)

LREL = −
∑
r∗∈D

logP(r∗|ri)
(2.8)

where e∗ and r∗ are the gold entities and relations in the training
corpus D, and ei and ri are the representations of entities and rela-
tions obtained with the span encoder.

The pre-training tasks in SPOT involve predicting entities and re-
lations at two levels - entity and relation levels, respectively. These
predictions are based on the representations generated by the span
encoder and span pair encoder.

SPOT has proved to be more efficient in representing entities and
relationships without requiring fine-tuning while using significantly
fewer parameters than previous methods.



2.4 knowledge enhanced pre-trained language models 29

2.4.1.3 Textual Triplet Integration

Previous methods have focused on identifying and aligning entities
or relations from KB in textual resources. However, the effectiveness
of these methods depends on the ability to align these elements with
the corresponding text. We now explore methods that translate the
complete triplet element into text using text templates based on entity
descriptors.

COMET (Bosselut et al., 2019) proposed a more general method to
convert the relational triplets from KBs into textual sequences based
on specific text templates. The approach involves generating a syn-
thetic dataset by transforming triplets, (h, r, t), from a commonsense
KB into text and training a GPT-based model for commonsense learn-
ing using this dataset. The model learns to generate the tail entity
(object) phrase, t, of a knowledge tuple given the head entity (subject)
phrase, h, and relation, r. The objective is to maximize the conditional
likelihood of predicting the tail entity phrase tokens as follows:

L = −

|h|+|r|+|t|∑
t=|h|+|r|

logP(xt|x⩽t) (2.9)

where |h|, |r|, and |t| represent the number of tokens in each ele-
ment’s phrase, and x⩽t the contextualized representations before xt.

Similar to previous models that rely on aligning triplets to text
sources or creating synthetic text, KG-BERT (Yao, Mao, and Luo, 2019)
proposes a different approach to knowledge graph completion tasks
using entity and relation text descriptors from a triplet. KG-BERT con-
catenates the three elements of triplets, separated with special tokens,
and aims to predict the plausibility of the given triplet and the relation
label.

Suppose we have a triplet (h, r, t) with their corresponding entity
(and relation) descriptors, texth = (h1, ...,ha), textr = (r1, ..., rb), and
textt = (t1, ..., tc). In KG-BERT, we train the model by taking as input
text the token sequences:

1. “[CLS]h1...ha[SEP]r1...rb[SEP]t1...tc[SEP]”, for the triplet plausi-
bility learning task, and

2. “[CLS]h1...ha[SEP]t1...tc[SEP]”, for predicting the relation

In both cases, the model uses the final [CLS] token projection as
an aggregate sequence representation to compute the classification
scores, binary and multi-label, for the triplet plausibility and relation
classification, respectively.
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2.4.1.4 Fusion Embeddings Integration

Complementary, the E-BERT model (Poerner, Waltinger, and Schütze,
2020) investigates alternative methods of integrating entities into
BERT at the input layer. E-BERT focuses on transforming and
concatenating entity representations and proposes aligning entity
vectors obtained from Wikipedia2Vec (Yamada et al., 2020a) with
BERT’s wordpiece vector space. This enables efficient injection of
Wikipedia’s entity knowledge into BERT.

To achieve this, the authors transform vectors from the entity vec-
tor space EWikipedia[LEnt] to vectors that resemble BERT’s native word-
piece vector space EBERT[LWP] using a linear mapping matrix W ∈
RdBERT×dWikipedia . Once the matrix W is learned, it can project entities
and tokens into the BERT space, creating a function as:

EE-BERT : LEnt → RdBERT

EE-BERT(a) = WEWikipedia(a)

for a given entity a, where dBERT is the embedding dimension from
BERT and dWikipedia the embedding dimension from Wikipedia2Vec.

The authors integrated this information to the model by simply con-
catenating or replacing the aligned tokens with the default aligned
input BERT tokens. This approach enables the model to effectively
combine information from both sources with a light and efficient im-
plementation.

2.4.2 Explicit KEPLMs

We categorize the models with explicit incorporation of knowledge
into three groups: adding knowledge to input layer, adding a new
module to fusion knowledge, or rely on retrieval-based approaches.

2.4.2.1 Adding Knowledge to the Input Layer

Another research line proposes explicitly using external knowledge
to improve the performance of PLMs. This is achieved by integrating
relevant knowledge from a KB at the input layer. The overall model
architecture of these approaches is illustrated in Figure 2.3 consider-
ing the module (1).

Consider the sentence “Tim Cook is visiting Beijing now” and as-
sociate it with a KB. Once the entities are recognized and relevant
triplets are extracted from the KG, we may obtain phrases such as
“Tim Cook is the CEO of Apple.”, “Beijing is a city in China.” or “Bei-
jing is the capital of China.” If these phrases are taken without any
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Figure 2.3: Explicit incorporation of knowledge into PLMs via modifying
the model input or adding knowledge fusion modules. Source
(Yang et al., 2021).

restrictions along with the original input sentence, then the original
meaning of the enriched sentence may be altered.

A naive method to inject all these factual information into a model
may accumulate too much knowledge, causing sentences to stray
from their intended meaning. This issue is referred to as knowledge
noise (KN) (Liu et al., 2020).

To tackle this problem, K-BERT (Liu et al., 2020) uses a matrix to
limit interactions between textual knowledge and triplet information,
thereby preventing any changes to the meaning of the original sen-
tence. Additionally, K-BERT incorporates factual triplets by building
a sentence tree that captures the encoded structure of a KB more ef-
fectively.

K-BERT identifies an entity in the input sentence and extends the
relation and tail entity by querying a relevant triplet in a KB. This pro-
cess converts the original sentence into a sentence tree (as illustrated
in Figure 2.4), which is then fed into a PLM at the embeddings layer,
along with a visible matrix. The visible matrix limits the impact of
KN by controlling the interaction between entities identified in the
original input and tokens in the original sentence through the self-
attention module, acting as a masking layer.

The triplet information from the matrix is inserted through the in-
put embeddings in addition to the token and position embeddings.

K-BERT uses triplets and sequences to analyze knowledge graphs,
but it only looks at isolated triplet information from the graph and
ignores other relations. In contrast, CoLAKE (Sun et al., 2020a) pro-



32 knowledge integration in language models

Tim Cook

Apple

CEO

Beijing

capitalChina

City

is_aKnowledge 
layer

Tim Cook is currently visiting Beijing nowInput sentence:

CEO

Cook is currently visiting Beijing now

Apple Cityis_aChina capital

Tim
Sentence tree:

Embedding layer Seeing layer

Mask-Transformer Encoder

Embeddings Visible matrix

K-BERT

Knowledge Graph

Classification Sequence labeling …Tasks

Figure 2.4: Illustration of the sentence tree proposed by (Liu et al., 2020) ex-
tending the original input with relevant KB triplets.

poses a word-knowledge graph (WK graph) that combines language and
knowledge context for a more enriched representation.

CoLAKE first tokenizes the input sentence into a sequence of to-
kens and fully connects them as a word graph, which differs from
the single-branched sentence tree to construct the WK graph. It then
identifies and links entities in the sentence with a KB using an en-
tity linker. The entity nodes in the initial graph are replaced by the
linked entities from the KB, and the extended knowledge sub-graph
is appended to the word graph. This results in a fully connected word
graph with tokens aligned with the extracted knowledge sub-graphs
from large KBs.

This knowledge is given into the model by concatenating the input
sequence with the aligned node tokens from the KB and adapting the
position embeddings to indicate the relation between entities, similar
to the sentence tree. In addition, type embeddings are also considered
at the input layer for the three types: word, entity, and relation. For
the pre-training tasks, CoLAKE, similar to ERNIE 1.0, adapts the clas-
sic MLM task at the entity and relation level. This approach offers a
nuanced solution to balance information injection while preserving
the integrity of the sentence’s intended meaning.

2.4.2.2 Adding Knowledge Fusion Modules

There are many models that propose dedicated modules to merge
different modal spaces, with a focus on encoding text and knowledge
sources. Given the different vector spaces from the source, these mod-
ules aim to perform an inter-modal fusion. The architecture of many
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of these models follows the one in Figure 2.3 considering the “(2)
Add new fusion Module” component and the Knowledge Encoder
module.

fusion on top of the plm .

One research line introduces a dual encoder architecture for Text
and Knowledge called the T-K module (the PLM and Knowledge En-
coder, respectively, in our generalized diagram from Figure 2.3). The
first model to introduce this architecture was ERNIE (Zhang et al.,
2019), which incorporated it on top of the PLM. In this structure, a
T-Encoder is followed by a K-Encoder. The T-Encoder encodes the
text corpus as a typical PLM, while the K-Encoder integrates entity
embeddings from the knowledge space into the entity embeddings in
the text space.

The K-Encoder consists of stacked Aggregators designed for en-
coding both tokens and entities, using two multi-head self-attentions
(MH-ATTs) (Vaswani et al., 2017), and use as input the contextualized
representations obtained from the T-Encoder and the entity embed-
dings. Subsequently, an additional information fusion module as a top
aggregator is used to merge their heterogeneous features. The final
output embeddings of the K-Encoder are determined by the output
embeddings of both tokens and entities computed by the top aggre-
gator.

Formally, the K-Encoder takes as input the token contextualized
representations from a previous layer and KB embedding representa-
tion for entities aligned to the text, represented as {y

(i−1)
1 , . . . ,y(i−1)

n }

and {e
(i−1)
1 , . . . , e(i−1)

m }, respectively:

{y
(i)
1 , . . . ,y(i)

n }, {e(i)1 , . . . , e(i)m } = Aggregator(

{y
(i−1)
1 , . . . ,y(i−1)

n }, {e(i−1)
1 , . . . , e(i−1)

m })
(2.10)

The top integration of the token and entity sequence in the i-th
aggregator is achieved through the information fusion layer defined as
follows:

hj = σ(W̃
(i)
t w̃

(i)
j + W̃

(i)
e ẽ

(i)
k + b̃(i)),

w
(i)
j = σ(W

(i)
t hj + b

(i)
t ),

e
(i)
k = σ(W

(i)
e hj + b

(i)
e )

(2.11)

where hj is the inner hidden state integrating the information of
both the token and the entity intermediate representations (w̃(i)

j and
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ẽ(i) respectively). σ(·) is the non-linear activation function, usually
the GELU function (Hendrycks and Gimpel, 2016). For tokens that
lack aligned entities, ẽ(i)k and e

(i)
k are set to 0.

ERNIE is built on BERT and employs TransE as the KG embedding.
It is pre-trained using the dEA task introduced in Section 2.4.1.1.

It is worth noting that while TransE is a useful method for em-
bedding KGs, it has some limitations, such as not being able to fully
capture the structure and complex relations found in KGs, including
1-to-n, n-to-1, and n-to-n relations. To address these limitations, var-
ious approaches have been proposed after ERNIE.

Inspired by the ERNIE architecture, the BERT-MK model (He
et al., 2020) proposes some improvements. BERT-MK uses a dual-
encoder architecture (T-K module) similar to ERNIE. However, during
pre-training, it enhances TransE embeddings by learning KG embed-
dings from scratch and incorporating additional information about
neighboring entities in the knowledge encoder component.

To learn these KG embeddings, BERT-MK creates a subgraph by
sampling triplets from the graph at 1-hop and 2-hop distance. We con-
sider a x-hop node as an entity that is at a x-edges distance in a KG.
BERT-MK uses this subgraph to create Graph-Contextualized Knowl-
edge Embeddings (GCKE) based on a Transformer architecture, using
a translation-based score as the loss function.

Once the enriched entity representations are obtained using the
GCKE method, the embeddings are combined with the PLM using
the same fusion module proposed by ERNIE. BERT-MK is specifically
designed for the biomedical domain and was trained on the PubMed
corpus and the UMLS meta thesaurus.

One of the main issues with the BERT-MK model is the presence
of extra redundancy and noise in the subgraph creation process, pre-
sented before as the KN problem. Not all knowledge is helpful, and
irrelevant or ambiguous knowledge can be injected into the model
regardless of the textual context, leading to errors. To tackle this prob-
lem, the CokeBERT model (Su et al., 2021) has been proposed.

CokeBERT improves the K-Encoder of the original ERNIE by intro-
ducing a Dynamic Knowledge Context Encoder (DK-Encoder). This
encoder uses a semantic-driven graph neural network (S-GNN) based
on an attention mechanism to select relevant information based on
the textual context. It can reach up to 2-hop of neighbor entities and
compute an entity embedding based on the information aggregated
on the subgraph. Finally, it fuses this entity embedding with the PLM
representation with the typical information fusion module.

To filter out irrelevant subgraphs, the model considers the proxim-
ity of the meaning of the neighbor node to the text. In other words,
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the closer the meaning of the neighbor node is to the text, the more
its information is incorporated into the entity embedding.

fusion on the middle of the plm .

Other works involve retaining the output loss layers of a PLM while
fine-tuning on unlabeled corpora to train the complementary mod-
ules. This approach helps recycle the high-level abstractions learned
from the original model’s top layers, considering the interactions be-
tween Transformer layers, which results in better knowledge transfer.

One of the first approaches in this direction is the KnowBERT
model (Peters et al., 2019), which uses the Knowledge Attention and
Recontextualized component (KAR) to connect Transformer Encoder
blocks and a KB.

KnowBERT assimilates entity-related knowledge in sentences by
leveraging entity spans within the input text. Unlike ERNIE-based
models, KnowBERT dynamically detects entities from the input text
through an Entity Linker instead of requiring entity alignment for
pre-training.

The KAR component operates by projecting contextualized PLM
representations into entity embeddings spaced according to span men-
tions. It introduces a mention-span self-attention layer between entities
within the same sentence, enabling the computation of contextual-
ized entity embeddings. An integrated entity linker then calculates
the weighted average entity embeddings, enriching the span represen-
tations with knowledge from the KB. The enhanced entity representa-
tions are then projected back into the PLM vector space.

Formally, given the contextual representations, Hi, at a specific
layer i, and a set of mention-span representations for each entity
candidate, denoted as C based on the KB, the resulting knowledge-
enhanced representations are expressed as H ′

i = KAR(Hi,C).
These enhanced representations undergo recontextualization and

are projected back into the subsequent PLM layer, represented as:

Hi+1 = TransformerBlock(H ′
i) (2.12)

After this step, the PLM procedure goes on. More specifically, the
KAR component initiates the process by projecting the contextual rep-
resentations, Hi, into the entity dimension (E) through a linear pro-
jection:

Hproj
i =HiW

proj
1 + bproj

1

H
′proj
i =MLP(MultiHeadAttn(Hproj

i , S
′e, S

′e))

H ′
i =H ′proj

i Wproj
2 + bproj

2 + Hi

(2.13)
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In addition to the BERT pre-training tasks, Entity Linking loss is
added to the model. The KAR module from KnowBERT also includes
additional KBs inserted at different locations between layers.

Nevertheless, as mentioned above, these approaches encounter is-
sues when it comes to generalizing well and producing accurate rep-
resentations of unseen entities during the training phase. These issues
extend not only to the entity level but also to handle relations, higher
structures, and interactions between the nodes in the KB.

To address these problems, JAKET (Yu et al., 2022) proposes a dual
module for knowledge and language to assist one another. JAKET
works directly with entity text descriptors, which facilitates the adap-
tation to unseen knowledge graphs in the fine-tuning phase. This idea
is similar to that proposed by KG-BERT (presented in Section 2.4.2.1).

Mainly, JAKET divides the PLM into the first six layers and the
last six. The initial half processes the input text, and the hidden layer
representation is obtained. Similarly, the entity representations are
obtained from the knowledge module, which uses a graph neural
network (GNN). Subsequently, the outputs of text and entity repre-
sentations are combined. At each entity position in the text, the corre-
sponding entity embedding representation is added and then input
to the last six layers of the model for subsequent training. The knowl-
edge and text representation spaces reinforce each other cyclically to
learn improved representations.

Overall, the fusion modules approach has been found to enhance
performance for various KG and NLP tasks compared to traditional
PLMs. However, there are significant limitations associated with this
approach. The use of additional modules in the architecture signif-
icantly increases the size of the final model in terms of parameters,
which in turn increases the cost of pre-training new and existing mod-
ules (Roberts, Raffel, and Shazeer, 2020). Moreover, adopting new
pre-training tasks carries the risk of catastrophic forgetting (Kirkpatrick
et al., 2017), leading to the PLM losing previously acquired knowl-
edge during its first pre-training phase. This phenomenon has been
observed in different ranking (Lovón-Melgarejo et al., 2021) and gen-
erative applications (Vu et al., 2022).

While these limitations are still an open problem in the literature,
recent approaches propose empirical solutions. These techniques sug-
gest that the existing parameters of language models remain frozen
during knowledge training while only specific parameters from com-
plementary modules can be trained. K-adapters are one of the first
methods that enable this approach to learn different module param-
eters for different tasks in parallel independently. In their original
work, K-adapters fuse linguistic and factual knowledge via adapter
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modules, which can limit the number of parameters needed to train
by introducing trainable multi-layer projections in the middle of the
transformer layer. Recent studies have demonstrated that utilizing
adapter modules achieves superior performance and requires fewer
resources to enhance existing PLMs (Houlsby et al., 2019; Pfeiffer et
al., 2021; Hu et al., 2021; Pfeiffer et al., 2020).

2.4.2.3 Retrieval-based approaches

The presented model integrates external knowledge with textual rep-
resentations within its parameters. However, real-world knowledge is
dynamic, and these approaches have a limitation: they do not facilitate
updates to incorporated knowledge without retraining the model. In con-
trast, retrieval-based approaches focus on leveraging knowledge as
an external reference, primarily for Question Answering (QA) tasks.
These approaches require the model to understand both textual se-
mantic meanings and the latest real-world knowledge, emphasizing
the retrieval, selection, and encoding of the most pertinent informa-
tion from knowledge repositories.

One such model is the Retriever-Augmented Language Model, re-
ferred to as REALM, introduced by (Guu et al., 2020). REALM is a
“retrieve-then-predict” model that retrieves and attends to documents
from a large corpus during pre-training and subsequently predicts
the correct answer when confronted with an open-domain question.
During pre-training, the model learns a distribution p(y|x), where x

represents a sentence from a pre-training corpus with some tokens
masked, and the model predicts the values of these missing tokens,
y. In the fine-tuning stage, which is oriented towards Open-QA, x is
a question, and y is the answer.

REALM comprises two modules: the knowledge retriever and the
knowledge-augmented encoder. The knowledge retriever computes p(z|x),
where z denotes the relevant documents retrieved from a given
corpus. The knowledge-augmented encoder calculates p(y|z, x), predict-
ing the masked tokens based on input x and the highly relevant
retrieved documents z. In this paradigm, updates to the model are
only required if the knowledge corpus itself requires updating due
to changes in real-world knowledge.

Another research line has leveraged external KBs to enhance the
interpretability and performance of PLMs. An instance of this research
line is Entity as Experts (EaE) by Févry et al. (2020). EaE aims to refine
entity representations directly from textual input and model parame-
ters to partition the parameter space effectively based on entity iden-
tity. This enables the model to selectively access different mentions
of an entity in textual input while maintaining consistent parameters.
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For example, when dealing with the entity “Michael Jackson” EaE
proposes to use the same set of parameters for references such as
“The King of Pop” or “MJ”.

To achieve this, EaE incorporates an Entity Memory Layer within
the Transformer architecture that intricately maps entity mentions to
specific parameters. The FaE model, introduced by Verga et al. (2021),
takes a similar approach by storing entities and factual knowledge in
an external memory component that encodes triplets sourced from a
symbolic KB. The external memory in FaE, similar to EaE, forms a
key-value memory structure composed of learned entity embeddings
and plays a crucial role in retrieving entities based on their KB prop-
erties.

In conclusion, researchers have investigated various methods to
incorporate external knowledge sources to enhance the representa-
tion of PLMs with factual and updated knowledge, which is not ex-
plicitly captured by the classical pre-training tasks. These injection
methods are explored at different levels of the PLM architecture. Al-
though these enhanced models have shown significant improvements
in their related tasks compared to default PLMs, further exploration is
needed to improve the methodology of encoding structural elements
of these sources with a more cost-effective approach for pre-training.
Table 2.1 lists all the presented models, including technical details
omitted in the text, such as the backbone models and dataset used
and main evaluation tasks.

2.5 evaluation approaches

To determine the effectiveness of improving architecture or includ-
ing external knowledge in PLMs or KEPLMs, researchers use two
main evaluation approaches: intrinsic and extrinsic evaluations. From
an interpretable standpoint, intrinsic evaluations are more appropriate
when evaluating PLMs because they provide a more understandable
evaluation approach. Extrinsic evaluations, on the other hand, depend
on performance in related KG or NLP tasks. We will discuss these two
evaluation types in Section 3.2.3 and provide a detailed comparison
between them.

This section introduces intrinsic evaluation methods, which are or-
ganized into two groups: knowledge capacity and task diagnostic.
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Model Backbone
Model

Source Tasks Method

AMS(2019) BERT ConceptNet,
Wikipedia

QA, RC Implicit

COMET(2019) GPT ConceptNet,
OMCS

QA, RC Implicit

ERNIE 1.0(2019) BERT Ch. Wikipedia,
Baidu

SS, NER Implicit

KG-BERT(2019) BERT Freebase,
WordNet

LP, RC Implicit

ERNIE(2019) BERT Wikipedia,
Wikidata

ET, RC Explicit

KnowBERT(2019) BERT Wikipedia,
WordNet

ET, RC Explicit

SentiLARE(2020) RoBERTa SentiWordNet SC Implicit

SenseBERT(2020) BERT WordNet Su-
persense

WSD Implicit

LUKE(2020) RoBERTa Wikipedia ET, RC Implicit

E-BERT(2020) BERT Wikipedia FR, EL Implicit

K-BERT(2020) BERT Chinese
Wikipedia

SC, QA Explicit

CoLAKE(2020) RoBERTa Wikipedia ET, RC Explicit

BERT-MK(2020) BERT UMLS ET, RC Explicit

REALM(2020) T5 Wikipedia,
CC-news

IR Explicit

KEPLER(2021) RoBERTa Wikidata5M,
WordNet

ET, RC Implicit

ERICA(2021) BERT,
RoBERTa

Wikipedia,
Wikidata

ET, RC Implicit

CokeBERT(2021) BERT Wikipedia,
Wikidata

ET, RC Explicit

SPOT(2022) RoBERTa Wikipedia,
Wikidata

ET, RC Implicit

JAKET(2022) RoBERTa Wikipedia,
SLING

ET, RC Explicit

Table 2.1: List of the KEPLMs presented in this chapter, including the back-
bone model used to train them, the knowledge source, the central
evaluation task to which they were applied, and the integration
method. We considered the tasks: question-answering (QA), read-
ing comprehension (RC), semantic similarity (SS), named entity
recognition (NER), entity typing (ET), relation classification (RC),
link prediction (LP) stands for question-answering, RC for read-
ing comprehension, sentiment classification (SC), word-sense dis-
ambiguation (WSD), fact recalling (FR), entity linking (EL), infor-
mation retrieval (IR)
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2.5.1 Measuring Knowledge Capacity

In the knowledge capacity method, the underlying assumption is that
KEPLMs with more knowledge would perform better in down-
stream NLP tasks. Therefore, evaluations are conducted in terms of
fact-recalling and probing approaches across various domains.

2.5.1.1 Fact Recalling

PLMs are evaluated based on their ability to recall facts without prior
training (zero-shot setup). Various knowledge probes have emerged
to measure the knowledge capacity of PLMs and KEPLMs. These
probes use cloze-style prompts, where a (subject, relation, object)
triplet is taken, and a phrase is created with the object masked. The
model is then evaluated based on its ability to predict the masked
object. For example, the model is given the phrase "Dante was born
in [MASK]" and is expected to predict "Florence" as the masked
token.

the lama benchmark .

The first benchmark in this domain is Language Model Analy-
sis (LAMA) (Petroni et al., 2019), which evaluates the PLMs’ perfor-
mance. LAMA relies on completing statements derived from facts in
knowledge bases, drawing from varied sources such as Google-RE4,
T-Rex (Elsahar et al., 2018), ConceptNet (Speer, Chin, and Havasi,
2017), and SQuAD (Rajpurkar et al., 2016).

The Google-RE corpus comprises five types of relational triplets,
including “place of birth”, “date of birth”, and “place of death”, se-
lected by LAMA. These triplets are transformed into cloze-style sen-
tences, called “prompts”, using meticulously constructed templates.
For instance, the “place of birth” triplet is articulated as “[S] was born
in [O]”, where S signifies the head entity and O is the tail entity. T-Rex,
a Wikidata subset with 41 relations of varying cardinality types (1-1,
1-N, N-M), undergoes a similar manual transformation into cloze-style
prompts. ConceptNet contributes 16 relations, and fill-in-the-blank
sentences are manually constructed for the SQuAD dataset, compris-
ing question-answer pairs.

4 https://code.google.com/archive/p/relation-extraction-corpus/

https://code.google.com/archive/p/relation-extraction-corpus/
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lama benchmark variations .

The LAMA dataset was found to have some triplets that were too
“easy to guess” as the context provided hints on the searched token.
This means that the model could predict that a person speaks Italian
if the person has an Italian-sounding name, depending on the surface
form of the entity name. A subset of LAMA called LAMA UnHelp-
fulNames (LAMA-UHN) (Poerner, Waltinger, and Schütze, 2020) was
proposed to address this issue. LAMA-UHN removed the triplets with
overly helpful entity names.

Although LAMA-UHN uses the original Google-RE and T-REx KB
from LAMA, it presents a more challenging benchmark than LAMA.
To filter LAMA, LAMA-UHN used two heuristic methods to filter out
the “easy to guess” triplets:

1. String match filter: triplets where the correct answer (e.g., Apple)
is a case-insensitive substring of the subject (e.g., Apple Watch).

2. Person name filter: it whitespace-tokenizes the subject name(e.g.,
Jean Marais into {Jean, Marais}), and using BERT, determine if
a single token is available to give the correct answer (e.g., "Jean
is a common [MASK] name", "Marais is a common [MASK]
name", with [MASK]=french).

The accuracy of PLMs in answering questions based on KG triplets
is limited by the quality of the prompts used to convert the triplets
into understandable questions. The LAMA and LAMA-UHN bench-
marks provide a lower bound estimate of the knowledge captured
by PLMs due to their dependence on handcrafted templates for gen-
erating prompts (Jiang et al., 2020). For example, a model may have
difficulty answering, “Obama is a by [MASK] profession”, but can
provide accurate results when asked, “Obama worked as a [MASK]”.

To address this issue, researchers have proposed a new benchmark
called the LM Prompt and Query Archive (LPAQA) (Jiang et al.,
2020). LPAQA builds upon existing benchmarks, such as Google-RE
and T-REx from LAMA, by using a mining methodology to identify
phrases that encapsulate relations between entities. These phrases are
generated by leveraging intermediary words between entities within
a designated corpus. The paragraphing process generates multiple
prompts that maintain the original phrase’s semantic meaning. This
process involves translating the original triplet phrase into another
language and back.

The use of the LPAQA benchmark showed an improvement in the
accuracy of factual knowledge retrieval. This improvement outper-
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forms manually designed prompts by a large margin. Similarly, Au-
toPrompt (Shin et al., 2020) and OptiPrompt (Zhong, Friedman, and
Chen, 2021) are two recently proposed techniques aimed at improv-
ing the recall performance of PLMs by automating prompt creation.

applications .

An application of fact recalling is proposed in the work by Jain and
Anke (2022). The authors explored various prompts to extract hyper-
nymy knowledge from PLMs in a zero-shot setup. This was done to
reconstruct taxonomies from different depth levels. Based on the typi-
cal MLM task to predict the [MASK] token in the prompt, the authors
propose to use the LMScorer approach from Salazar et al. (2020). The
LMScorer approach scores a sentence based on its factuality, which is
defined as:

LMScorerM(X) = exp

 |X|∑
i=1

logPM(xi|X\i)

 (2.14)

where X is a given sentence, and M the PLM. The idea is to replace
each token wi in the sentence with [MASK] and then predict it using
the past and future tokens. By masking each token iteratively and us-
ing the LM’s prediction, we can compute a pseudo-likelihood score
for each token xi. This approach is efficient and provides competi-
tive results when compared to other computationally expensive and
heuristic techniques.

Considering a few-shot approach for factual recalling, the work
from He, Cho, and Glass (2021) proposes a setup that involves fine-
tuning a model using a small number of examples, typically 10 to
20. The authors used the T-REx dataset from LAMA and created a
new dataset, T-REx-2p, that contains 2-hop relations in addition to
the 1-hop triplets present in the original T-REx. The templates were
hand-crafted, similar to LAMA. Interestingly, the authors observed
that fine-tuning a model with just ten examples produced compet-
itive results when compared to more complex approaches like Op-
tiPrompt. This highlights the potential of few-shot probing setups as
a simple yet effective way to improve the performance of language
models in recalling factual knowledge. With the increasing availabil-
ity of large-scale pre-trained models, this approach could be partic-
ularly useful in scenarios where a significant amount of fine-tuning
data is unavailable.



2.5 evaluation approaches 43

2.5.1.2 Probing

Although fact-recalling is a useful evaluation metric for assessing the
knowledge stored in a PLM, it may not always be sufficient to un-
derstand which features are utilized to enhance the performance of a
particular task. This is because relying solely on a top MLM layer and
reducing the problem to an input phrase does not provide a complete
picture. Therefore, more comprehensive evaluations are necessary.

One approach to answering this question is through the use of
probes, which are supervised models trained to predict a specific prop-
erty, such as parts-of-speech, from a limited view of the representa-
tion (Hewitt and Liang, 2019). By training these probes, researchers
can gain insights into the information encoded in a model’s represen-
tations.

However, to assess the performance of a model on a probe can
be challenging, as it is unclear whether the model’s performance is
due to the encoded information or the complexity of the probe itself
(Maudslay et al., 2020). To overcome this difficulty, researchers have
proposed the use of diagnostic classifiers. These are classifiers that are
trained on a simplified version of the dataset to understand the task,
and then they are tested on a more complex version of the dataset.
This approach is also referred to as “poverty of the stimulus” (Lin,
Tan, and Frank, 2019).

There are several types of probes available for assessing different
language characteristics and tasks. A first study conducted by Lin,
Tan, and Frank (2019), named Open Sesame, examined the organi-
zation of sentence representations produced by BERT-based models.
They used diagnostic classifiers to investigate the presence of both hi-
erarchical and linear representations of words. Similarly, Hewitt and
Manning (2019) proposed structural probes to evaluate whether syntax
trees are encoded in a model’s word representation space, learning a
linear projection.

Moreover, we can find numerous probes that have been developed
for evaluating various linguistic aspects (Manning et al., 2020; Ten-
ney, Das, and Pavlick, 2019; Voita and Titov, 2020), including those
related to semantics. In the context of this dissertation, we are specif-
ically interested in probes that examine the semantic-level informa-
tion present in language models. In this regard, we now introduce
the main probes that exist in literature for reasoning-based and lexical
semantic tasks.
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probes on reasoning-based tasks .

Various probes have been introduced at the semantic level to assess
the reasoning capabilities of PLMs. One benchmark, oLMpics (Talmor
et al., 2020a), has been designed to assess the symbolic reasoning
skills of PLMs.

In this benchmark, the authors suggest that a model’s ability to per-
form a given task should not require extensive training. If a model
fails to perform well, it may be due to a difference between the lan-
guage it was trained on and the language used in the task. A good
model should be able to adapt effectively even with limited examples.
The oLMpics probes cover diverse aspects of reasoning, including
number comparison, frequency of events, negation, the conjunction
of facts, and multi-hop reasoning.

Figure 2.5 shows some samples from the benchmark. The probes
are structured into two setups based on multiChoice MLM and
question-answering. Following the approach of the LAMA (Petroni
et al., 2019) benchmark, the question is transformed into a cloze-style,
with the [MASK] token containing the answer and five options are
given to the model to choose. For example, an input like “[CLS]
Cast [MASK] drinks coffee [SEP]” is processed through the model.
The contextualized representation from [MASK] is fed through the
MC-MLM layer to predict the correct output from the token options:
always, sometimes, and never (with “never” being the gold answer for
this example). The MC-QA setup adds an MC-QA layer atop the
model after projecting the final representation of the [CLS] token.
The model is presented with an input concatenating the question
and answer candidate, such as “[CLS] question [SEP] answer[SEP].”

The oLMpics benchmark is designed to gauge the symbolic rea-
soning skills of PLMs without any prior assumptions about their
competence in a particular task. In a recent study (Richardson and
Sabharwal, 2020), the authors aimed to investigate whether special-
ized PLMs, trained on extensive collections for the QA task, can han-
dle definition and taxonomic reasoning. To this end, they proposed
a probe for the multi-hop question-answering task based on expert
knowledge. Their probe is formulated as a question with multiple an-
swer choices (5) sourced from WordNet and the GNU Collaborative
International Dictionary of English (GCIDE).

The authors created four individual datasets to evaluate these
probes to study specific semantic relations, including hypernymy,
hyponymy, synonymy, and definitions, along with an additional
probe oriented towards the word sense disambiguation task (Figure
2.6). The authors generated four distractor answers to sample the other
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Figure 2.5: Samples of the oLMpics benchmark. Source: Talmor et al.
(2020a).

answer options for a given probe, to simulate negative examples. To
make the distractors challenging for the model, they were sampled
based on edge distances from the golden nodes, taking advantage
of the tree-based structure of the sources. Some of the models used
an inoculation setup (Section 2.3), wherein models are trained on
new challenge tasks (separately for each probe) using only a small
number of examples to test model’s adaptation to these tasks. The
work by Richardson and Sabharwal (2020) has revealed that PLMs
struggle to achieve human-level reasoning.

In the same research line, recent research aims to address this issue
by determining whether PLMs, without fine-tuning on specific tasks,
respect the transitivity constraint of the IS-A relation, which is crucial
for logical consistency.

The IS-A relation establishes that for senses A, B, and C, if “A is
a B” and “B is a C”, then “A is a C”. This study aims to quantify
the extent to which BERT agrees with the transitive property of IS-A
relations, where the senses are drawn from the WordNet dataset.

What did these evaluations show? The oLMpics study initially as-
sessed the BERT and RoBERTa language models and found that their
struggle in solving reasoning tasks is closely linked to specific values
and language context, which limits their ability to generalize to arbi-
trary situations. The QA study evaluated the performance of BERT
in predicting the is-a relationship and found that it achieves an accu-
racy of 72.6%, indicating a reasonable understanding of this lexical
relationship. However, BERT’s predictions are not always logically
consistent. Specifically, when predicting A is a B and B is a C, it only
predicts A is a C 82.4% of the time, implying the need for further re-
search to improve the logical consistency of PLMs and BERT, thereby
approaching human-level reasoning.

probes on lexical semantic tasks .

The work from Vulić et al. (2020) introduced a probe to investigate
lexical semantic knowledge in multilingual models. They conducted
an empirical study with static type-level “BERT-based” word embed-
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Figure 2.6: Samples of the probes from Richardson and Sabharwal (2020) for
multi-hop question answering.

dings, which are similar to traditional static word embeddings. Their
analysis included five lexical tasks across six languages: lexical seman-
tic similarity, word analogy resolution, bilingual lexicon induction,
cross-lingual information retrieval, and lexical relation prediction.

Overall, the study emphasized the need for distinct configurations
to extract static representations for optimal performance across
various languages and tasks. The research also revealed that lexical
knowledge predominantly resides in lower Transformer layers.
Therefore, excluding higher layers during the extraction process
leads to superior performance.

Interestingly, while static word representations from monolingual
language models may compete with or surpass traditional FastText
embeddings (Bojanowski et al., 2017) in specific tasks, representations
from massive multilingual models like mBERT demonstrate substan-
tially lower performance in lexical tasks. This highlights the subtle
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challenges associated with leveraging massively multilingual models
for lexical semantics tasks.

2.5.1.3 Improving Linear Probes.

The existing probes have primarily been classified as linear probes, as
they commonly employ a simple (typically linear) classifier to predict
linguistic properties of interest, utilizing probe accuracy for its inter-
pretation (Manning et al., 2020). Recent advancements have proposed
refined probes to capture the knowledge embedded in these language
models effectively.

In the work by Chen et al. (2020a), it was observed that many ex-
isting probes implicitly assume that the embedding representations
from PLMs lie in specific metric spaces, typically the Euclidean space.
The authors explored alternative subspace representations, precisely
the hyperbolic space, which is a distinctive Riemannian space char-
acterized by constant negative curvature. This space proves valuable
for representing tree-like distributions more effectively (Nickel and
Kiela, 2017). The authors adopted a generalized Poincaré Ball, a spe-
cialized model of hyperbolic spaces, to formulate a Poincaré probe for
contextualized embeddings. They projected the embedding represen-
tations into this hyperbolic space to conduct probes for tasks related
to dependency trees and sentiment analysis.

The rationale behind this choice stems from the intrinsic nature
of the Poincaré ball, where the inner volume grows exponentially
with its radius. The authors argued that this exponential growth
provides a more accommodating space for embedding knowledge
than Euclidean-based projections. In contrast, the Euclidean space
grows polynomially, offering less capacity for embedding knowledge.
A more in-depth exploration of the hyperbolic space and these
probes is provided in Section 3.2.2.

Particularly, comparing KEPLMs introduces several challenges. In
a recent investigation by Hou, Fu, and Sachan (2022), linear classi-
fiers tend to exhibit high variance, especially in extensive knowledge
graphs. This high variance complicates the reliability of direct com-
parisons between two linear classifiers. Additionally, the same study
highlights the drawbacks of prompt-based evaluations, emphasizing
the labor-intensive and time-consuming nature of manually construct-
ing the mentioned prompt-based templates for assessment.

To address these challenges, Hou, Fu, and Sachan (2022) presents
an approach based on information theory to measure the difference in
factual knowledge encoded between a language model and an en-
hanced language model incorporating a knowledge graph. They sug-
gest evaluating the encoded factual knowledge in terms of Mutual
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Information (MI) between the representations of the model and the
knowledge graph. This proposed method introduces a more depend-
able and efficient way of comparing diverse KEPLMs.

The MI proposed in this study is a metric that quantifies the infor-
mation gained about a random variable, x, from a knowledge graph
by observing its representation in a PLM, denoted as MI(x;g). In or-
der to assess different encoded knowledge about an entity ’g’ between
its representation in a base PLM (x) and an enhanced PLM (h), we mea-
sure the difference between their respective MI values (MI(x;g) and
MI(h;g)). The authors suggest using a Graph Convolution Simulator
(GCS) to approximate MI values, which enables a more efficient and
reliable way to compare different KEPLMs and compute knowledge
changes between them. Under this approach, one can compare two
different models (x and h in this case) for the following scenarios:

1. MI(h;x) ≃ MI(x;x), indicates that the enhanced representation of x
is similar to the base PLM representation of x, meaning that the
enhanced model does not forget the original representation.

2. MI(h;g) ≃ MI(g;g), suggests that the enhanced representation of
the graph is fully captured, since its knowledge representation
is similar to the graph knowledge.

3. MI(h;g) ≃ MI(x;g), signals that the enhanced representation, con-
sidering the graph, is similar to the prior knowledge of the
model about the graph. This shows that the previous knowl-
edge from the base PLM hinders the integration of new knowl-
edge, which is known as catastrophic remembering (Kaushik et al.,
2021).

4. MI(h;x) ≃ MI(x;g), indicates that the enhanced representation
of x is similar to the prior knowledge of the base PLM about
the graph, suggesting that the old knowledge of the enhanced
model is forgotten, which is known as catastrophic forgetting
(Kirkpatrick et al., 2017).

It is important to note that this approach has a limitation since it
only relies on entities and does not consider relation information.

2.5.2 Performing Task Diagnostic

Another line of research is dedicated to developing interpretable ap-
proaches that shed light on how the encoding elements of PLMs con-
tribute to specific tasks. These approaches adopt a diagnostic method-
ology, where a set of axiomatic characteristics is defined for a given
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task, and then the quality of model representations is evaluated based
on these axioms.

An early example of this paradigm is the OpenSesame study by Lin,
Tan, and Frank (2019). The OpenSesame framework introduces diag-
nostic classifiers to comprehend the linguistic knowledge encoded in
BERT. The linguistic properties are evaluated by examining the em-
beddings of individual words, and the evaluation of linguistic knowl-
edge is divided into four axiomatic tasks. These tasks include identi-
fying the main auxiliary in a sentence, identifying the subject noun
in a sentence, diagnosing for subject-verb agreement, and identifying
anaphor-antecedent dependencies.

The findings from the OpenSesame study is that linguistic struc-
tures are encoded in self-attention layers in BERT. Additionally,
higher layers of the model capture more complex knowledge. This
approach provides a more comprehensive understanding of the
model’s representations, allowing for better interpretability and
transparency.

PLMs have demonstrated impressive results in Information Re-
trieval (IR) tasks (Lin, Nogueira, and Yates, 2021). In an attempt to
better understand how BERT comprehends the relevance between
queries and documents, a diagnostic exploration was conducted by
Câmara and Hauff (2020). They examined BERT’s performance on
retrieval heuristics using a set of nine diagnostic datasets. These
datasets were designed to fulfill specific retrieval axioms, which
represent the characteristics of good retrieval functions, and were
grouped into four categories. As an example of these axioms, we
show them regrouped at the top of Table 2.2.

This particular analysis uses the corpus and queries from the TREC
2019 Deep Learning track’s Document Ranking Task5. Every axiom is
represented by a query q and two or three documents d1,d2 where
q ̸= d1 ̸= d2. After constructing the diagnostic datasets, a DistilBERT
model (Sanh et al., 2019) is fine-tuned for ranking and later evaluated
for accuracy. The accuracy metric is used to indicate the fraction of
instances where BERT satisfies each diagnostic dataset.

The findings reveal that even though BERT performs better than
traditional models in ad-hoc retrieval, it falls short of meeting most
retrieval heuristics created by IR experts. This result highlights the
need for more customized heuristics to analyze and comprehend the
complexities of BERT’s performance in IR tasks (refer to Table 2.2).

Similarly, in a recent work, Amigó et al. (2022) developed a formal
framework for embeddings, composition, and similarity functions in
the context of Compositional Distributional Semantics. The frame-

5 https://microsoft.github.io/TREC-2019-Deep-Learning/.

https://microsoft.github.io/TREC-2019-Deep-Learning/
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Name Definition

Task: Information Retrieval

Term fre-
quency

Including 3 axioms: i) “The more occurrences of
a query term a document has, the higher its re-
trieval score”; ii) “The increase in retrieval score of
a document gets smaller as the absolute query term
frequency increases”; iii) “The more discriminating
query terms (i.e., those with high IDF value) a docu-
ment contains, the higher its retrieval score”.

Length nor-
malization

Considering that i) “The retrieval score of a docu-
ment decreases as terms not appearing in the query
are added”; and ii) “A document that is duplicated
does not have a lower retrieval score than the origi-
nal document”.

Semantic
term
matching

Arguing that i) “A document’s retrieval score in-
creases as it contains terms that are more semanti-
cally related to the query terms”; ii) “The document
terms that are a syntactic match to the query terms
contribute at least as much to the document’s re-
trieval score as the semantically related terms”; and
iii) “A document’s retrieval score increases as it con-
tains more terms that are semantically related to dif-
ferent query terms”.

Term prox-
imity

Defines that: “A document’s retrieval score increases
as the query terms appearing in it appear in closer
proximity”.

Task: Compositional Distributional Semantics

Embeddings
functions

Considering the properties of measurability and an-
gular isometry.

Composition
functions

Including neutral element, norm lower bound, norm
monotonicity, and sensitivity to structure.

Similarity
functions

With the properties of angular distance, orthogonal
embedding, and equidistant embedding.

Table 2.2: Examples of diagnostics defined for Information Retrieval and
Compositional Distributional Semantics tasks. These diagnostics
are defined as axioms and constraints following their original
work.
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work is based on Shannon’s Information Theory, which considers
co-occurrence distributions and text structure. The authors proposed
nine formal constraints based on Information Content theory to an-
alyze these three functions. Similar to the previous task, we showed
these constraints at the bottom of Table 2.2.

The study’s findings indicate that adding contextual embeddings
from internal layers of PLMs does not outperform static embeddings
in textual semantic composition. However, PLMs outperform the de-
fined benchmarks for standard composition and similarity functions.
Additionally, they found that the cosine distance is a robust similarity
estimate, and considering structures such as word order is more ef-
fective than representing texts as a bag of words, which is consistent
with previous research.

2.6 knowledge-enhanced large language

models

Researchers have found that scaling PLMs through model and
data size adjustments often leads to improved model capacity
for downstream tasks. Several studies have demonstrated this by
training PLMs with an increasing number of parameters, such as
the 175-billion-parameter GPT-3 and the 540-billion-parameter PaLM
(Chowdhery et al., 2023). These large PLMs exhibit unique behaviors
and demonstrate unexpected capabilities, known as emergent abilities
(Wei et al., 2022a). It is important to note that these larger models
differ from “smaller” ones like the 330-million-parameter BERT and
1.5-billion-parameter GPT-2.

For example, GPT-3 can solve few-shot tasks through in-context
learning, while GPT-2 struggles with it. As a result, the research com-
munity has coined the term “Large Language Models (LLM)” for
these larger PLMs, generating growing interest in the field (Zhao et
al., 2023). Notably, this work proposes three key differences to differ-
entiate between LLMs and conventional PLMs:

• LLMs manifest surprising emergent abilities not seen in smaller
PLMs, contributing to enhancing language model performance
on complex tasks.

• The primary means of interacting with LLMs is through the
prompting interface, such as the GPT-4 API.

• The development of LLMs blurs the line between research and
engineering, requiring extensive practical experience in large-
scale data processing and distributed parallel training.
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Figure 2.7: Framework for the PiVE model. Source: (Han et al., 2023).

LLMs have proven to perform better on complex tasks. However,
incorporating structured data into these architectures remains a chal-
lenge. Unlike PLMs, integrating knowledge into LLMs poses chal-
lenges both theoretically and technically and is a relatively new and
emerging field with limited existing literature.

One of the main challenges in integrating knowledge into LLMs is
the high cost of pre-training these models and the large amount of
data required. As highlighted in the survey presented in Section 2.4,
most of the implicit and explicit methods required pre-training the
model. Some of the surveyed work using LLMs are similar to those
presented in the retrieval-based methodologies, presented in Section
2.4.2.3. These approaches use the knowledge graph to guide the rea-
soning behind a complex query or to verify the factual accuracy of
the generated sentence by the LLM.

Among these works, we find the PiVE framework (Han et al., 2023).
In this work, the authors address the limitations of LLMs such as
ChatGPT, GPT-4, BARD2, and LLAMA in generating structured data.
Despite excelling in different generative and reasoning tasks, LLMs
struggle with tasks like text-to-graph (T2G) generation, especially
when dealing with semantic graphs. PiVE proposes incorporating
a verifier module, a smaller language model like T5, to refine LLM
prompts iteratively through corrective instructions, as illustrated in
Figure 2.7. This external verifier module enhances the quality of
generated semantic graphs, employing a process known as Iterative
Prompting during T2G generation. Results from PiVE demonstrate
a significant improvement in LLM output quality by an average of
26%.

AutoKG, proposed by Chen and Bertozzi (2023), was built on
the reasoning capabilities exhibited by LLMs when provided with
sufficient information. AutoKG simplifies automatically generating
knowledge graphs and their integration with LLMs. The proposed
approach involves using fundamental strength indicators of associa-
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tion instead of intricate relational patterns found in traditional KGs.
AutoKG designs prompts for different KG construction tasks, such
as entity typing, entity linking, and relation extraction. The prompts
are adapted for KG construction using LLMs.

Similarly, LARK (Choudhary and Reddy, 2023) leverages logical
queries to search for relevant subgraph contexts over KGs. They used
logically-decomposed LLM prompts, recognizing that LLMs are less
effective on complex prompts. This logical decomposition enhances
the reasoning capabilities of LLMs, particularly in dealing with intri-
cate queries involving chain reasoning.

In summary, these recent works highlight innovative approaches in
logical and graph-based tasks, showcasing the potential of leveraging
external modules and rethinking traditional methods to enhance the
capabilities of LLMs.

2.7 conclusion

In this chapter, we thoroughly explored the complex landscape of
integrating knowledge into PLMs. We started by discussing the vari-
ous literature resources available for this integration and the standard
knowledge components used in these processes. We then provided an
in-depth overview of KEPLMs and highlighted key models in the lit-
erature. We classified the main KEPLMs based on integration method-
ologies, enabling a fine-grained comparative analysis focusing on ar-
chitectural differences and loss functions.

Evaluating KEPLMs is a challenging task, and a simple fine-tuning
approach is inadequate for gaining explicit insights. Therefore, we
discussed primary evaluation techniques prevalent in the commu-
nity, including frameworks and benchmarks, and their respective
strengths and limitations. These evaluations include factual recall
datasets and semantic probing as integral components of this evalua-
tive process. Additionally, we introduced task diagnostic evaluations
based on axiomatic properties or constraints specific to individual
tasks to improve interpretability regarding the augmented elements
within the models.

Among contemporary research on LLMs and their emergent ca-
pabilities, we reviewed ongoing work focusing on KG integration.
Our analysis revealed a paradigm shift, indicating increased utiliza-
tion of KGs for verifying and correcting LLMs at the inference level.
This marks a departure from the conventional practice of jointly pre-
training both sources, as commonly observed with PLMs.

To summarize, our exploration has shed light on the multifaceted
landscape of knowledge integration in PLMs, providing a foundation
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for understanding the methodologies, models, and evaluation tech-
niques employed in this field.



3
H I E R A R C H Y- E N H A N C E D L A N G U A G E M O D E L S

3.1 introduction

In the previous chapter, we learned how different methodologies
leverage the content information provided by Knowledge Bases (KBs)
in the form of factual information or enriched entity and relation em-
bedding representation. However, it is essential to note that beyond
the content information provided by the KBs, the structural knowl-
edge organization inherent to these structures, represented through
the relationships, is often overlooked.

The relationships between different nodes in KBs can be classified
into two categories, i.e., hierarchical and non-hierarchical relations
(Krackhardt, 2014). In the realm of structural integration, more efforts
have been dedicated to developing methods to integrate hierarchi-
cal relations, which typically include hypernym and hyponym relation-
ships. The injection of these hierarchical relations can significantly im-
prove the performance of various Natural Language Processing (NLP)
tasks (Nickel and Kiela, 2017; Du et al., 2022). As a result, different ap-
proaches have been proposed to capture the hierarchical structure of
KBs including hierarchical relationships, commonly called taxonomies.
It is worth mentioning that in practice, both terms KB and taxonomies
are used interchangeably.

In this chapter, we will focus on the approaches that integrate the
hierarchical structure of the KBs into PLMs. We will begin by review-
ing some of the main work developed with traditional static word
embeddings (Section 3.2), which have made most of the progress in
this domain.

In these methods, the encoding of hierarchical relations has been
explored in different ways. A group of methods integrates explicit hi-
erarchical knowledge using different elements from a taxonomy, such
as their relations. However, the availability of taxonomic resources is
expensive due to the high level of expert knowledge and agreement
required to build them.

Another group of methods aims to integrate hierarchical represen-
tations by first learning to extract taxonomic relations from plain text
and then constructing taxonomies from these extracted resources.

In our work, we primarily focus on methods using patterns or fre-
quency co-occurrence representations of words, which align with the

55
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PLMs conception and, therefore, with this dissertation. However, we
point the reader to methods based on graph-based approaches such
as encoders or KB embeddings (Bansal et al., 2014), which focus on
the structure but without particular attention to the hierarchy.

Then, in Section 3.3, we review some recent work exploring this
injection approach for Pre-trained Language Models (PLMs). These
studies explore different methods to incorporate hierarchical informa-
tion into the PLMs, such as fine-tuning lexical relationships or mod-
eling the learning function to capture structural features. However,
it is important to note that research in this area is ongoing, and the
existing approaches have some limitations.

3.2 hierarchy-aware static word embed-
dings

Similar to the exploration presented in Chapter 2, the enhancement
of word representations using static word embeddings with external
knowledge constitutes a well-explored domain. The knowledge
injection methods are typically divided into two main categories:
joint specialization and retrofitting (Camacho-Collados and Pilehvar,
2018; Apidianaki, 2023; Chandrasekaran and Mago, 2021). Joint
specialization models involve modifying the optimization objective
of distributional-based models by integrating constraints directly
into the objective function. In contrast, retrofitting models update
word vectors in distributional models through a post-processing
training step, which incorporates data generated from the specified
constraints.

In the following section, we review some of the main approaches
from these works that leverage hierarchical representations from the
sources. Our criteria to filter out which methods fall into this cate-
gory relies on two questions: is the method using taxonomy as a resource
for learning? and does this method learn constraints related to lexical taxo-
nomic relations?.

We will briefly summarize different techniques to learn hierarchical
relationships, grouping them into two categories: learning lexical tax-
onomic knowledge and modeling hierarchical-aware vector spaces.
Additionally, we discuss the different evaluation methods for these
approaches, including assessments performed directly on the learned
representations and evaluations based on their performance in rele-
vant downstream tasks (refer to Section 3.2.3).
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3.2.1 Leveraging Lexical Taxonomic Knowledge

The methods generally used in this context are based on supervised
learning. These methods are designed to learn the lexical relation-
ships that are inherent in a taxonomy, such as the relationships be-
tween ancestors and siblings. The process of learning these relation-
ships involves extracting various common features and heuristics that
can accurately model them. We present some of these works under
two categories: learning edge-level and taxonomic-level representa-
tions.

3.2.1.1 Edge-level representations: Hypernymy

Hierarchical relationships play a critical role in many NLP appli-
cations. When these relationships are captured explicitly, it can
significantly enhance the performance of applications such as word
sense disambiguation and taxonomy reconstruction. To this end,
several studies have primarily focused on explicitly identifying
hypernym relationships to encode hierarchical representations
(Camacho-Collados and Pilehvar, 2018; Chandrasekaran and Mago,
2021).

Two primary methods have gained attention in this exploration:
pattern-based and distributional approaches.

Pattern-based methods are a popular way to extract hypernymy
pairs from raw corpora. These methods involve identifying preva-
lent and explicit “templates” within the textual data that encode hy-
pernym relationships. Examples of templates include “is an instance
of” and “is a” that encapsulate the hypernym-hyponym relationship
within word pairs. Among these, the Hearst patterns, introduced in
the work from Hearst (1992), stands out as widely applied patterns.
In this work, the authors identified seven distinct patterns crucial for
discerning these relations.

Later research has attempted to automate the process of identify-
ing patterns in text corpora (Snow, Jurafsky, and Ng, 2004; Shwartz,
Goldberg, and Dagan, 2016). These methods mainly propose differ-
ent neural network classifiers that learn lexicon-syntactic patterns
or hypernymy path features under a supervised approach. Despite
being a simple approach, these models are still widely used today
because they can efficiently capture structured knowledge, resulting
in improved performance in detecting hypernymy pairs, especially
in benchmark evaluations that concentrate on hypernymy pair de-
tection, when compared to other method (Roller, Kiela, and Nickel,
2018).
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However, pattern-based methods have their limitations. They are
often too specific and may not cover diverse linguistic circumstances.
This makes them prone to errors resulting from idiomatic expres-
sions, parsing discrepancies, and inherent ambiguities (Kozareva,
Riloff, and Hovy, 2008).

Distributional methods have been used to overcome these limitations.
These can be approached through either unsupervised or supervised
strategies, where words are represented as vectors based on their
distribution within extensive text corpora. Learning these represen-
tations involves specialized similarity measures designed to capture
diverse lexical relationships.

Most of these works relied on the Distribution Inclusion Hypothe-
sis (DIH) (Geffet and Dagan, 2005), which suggests that the contexts
for more specific terms are a subset of those in which more general
terms may appear. This principle implies that subordinate words can
be replaced with more general terms while preserving the validity of
the utterance.

Let us illustrate the DIH with an example. “Cat” entails “animal”,
which means that “animal” is a more general term than “cat”. Given
the phrase “A cat is sleeping.” we can replace “cat” and obtain “An
animal is sleeping.” keeping the phrase’s validity. On the other hand,
“dish” does not entail “cat”; therefore, replacing the phrase “a dish is
sleeping” does not make sense.

Various methods have been proposed to leverage the DIH, such as
capturing hypernym word pairs (Rei and Briscoe, 2014; Roller, Erk,
and Boleda, 2014) or finding hypernym paths (Shwartz, Goldberg,
and Dagan, 2016). Now, we introduce some of the main works, which
are classified into three groups: methods based on a projection of ex-
isting representations, methods that integrate hierarchy through loss
constraints, and methods leveraging hierarchical relations in a taxon-
omy.

projection-based approaches .

The potential of static word embeddings’ inherent semantic knowl-
edge has been explored to transform them into structural-based rep-
resentations. One approach involves obtaining a subspace representa-
tion from these encoded vectors to specialize them in capturing the
nuances of hypernym relationships.

One of the first works proposing this approach is done by Fu et al.
(2014), where the authors propose a method for constructing seman-
tic hierarchies based on word embeddings. The study observed the
offset behavior in word embeddings, as done by the classical anal-
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Figure 3.1: The figure shows that the vector offsets distributed clusters.
The left cluster represents animal hypernym–hyponym relations,
while the right represents people’s occupations. Source (Fu et al.,
2014).

ogy “v(king)-v(queen) ≃ v(man)-v(woman)” from Mikolov, Yih, and
Zweig (2013), where v() indicates the vector embedding representa-
tion of a given word. The authors suggested that this offset behavior
preserves not only typical semantic relationships but also encapsu-
lates certain hypernym and hyponym relationships.

However, the variability in the offset values when measuring the
distance between distinct hypernym pairs led to the insight that hy-
pernym and hyponym relations are more intricate than a simple off-
set can represent. Figure 3.1 shows the distribution observed from
these offsets. To address this, the authors proposed to learn a linear
projection of word embeddings into a semantic space to identify rele-
vant clusters for hypernyms and hyponyms.

Formally, they learn an approximative projection function A∗,
which minimizes the mean-squared error:

A∗ = argmin
1

N

∑
(x,y)

||Ax− y||2 (3.1)

with N as the number of hyponym-hypernym pairs with the form
(x,y), x is the hyponymy and y the hypernym, and A the projection
matrix.

In contrast to word embeddings, the TaxoEmbed algorithm pro-
posed by Espinosa-Anke et al. (2016) employs word sense embed-
dings to identify hypernyms. Inspired by the work of Fu et al. (2014),
they employed a function sensitive to a predefined knowledge do-
main, operating under the assumption that vectors clustered within
the same domain would likely exhibit similar semantic properties.
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Similarly, they proposed using a domain-sensitive function, learning
linear projections for each domain.

Similarly to Equation 3.1, this work proposes learning dedicated
projections Ad minimizing:

min
|d|∑
i=1

||Adxdi − yd
i ||

2 (3.2)

where |d| are the available domains, Ad the linear projection to
learn, and the pairs (xdi ,yd

i ) the term-hypernym sense pair corre-
sponding to the domain d.

hierarchy through loss constraints .

Previous approaches to learning entity embeddings focused on
hypernymy-hyponymy projections, to create a subspace that encodes
this information. Another line of work proposes to transform the
vector space by specializing it for a particular relationship between
words.

Based on the skip-gram architecture, the work from Hu et al. (2015)
incorporates explicit structural information from knowledge bases into
distributional-based representations.

This embedding model construction is used to refine entity repre-
sentations by taking into account other entities present in a context,
such as within a Wikipedia paragraph. This contextual information
is utilized to enhance the hierarchical structure of the entity embed-
dings. The methodology uses semantic distance to ensure that closely
located entities share common semantic features, while entities far-
ther apart in the knowledge base exhibit semantic distinctness. To fur-
ther reinforce the hierarchical structure, the entity representation is in-
corporated through distance metric learning and aggregation heuris-
tics that consider the path between entities in a taxonomy.

Another noteworthy model in this domain is the Lexical Entailment
Attract Repel (LEAR) model, introduced by Vulić and Mrkšić (2018).
It is a post-processing model that can incorporate external constraints
in the form of hypernym relations extracted from WordNet into any
word vectors. The LEAR model leverages the Attract-Repel frame-
work (Mrkšić et al., 2017) similar to the learning constraint from Hu
et al. (2015).

First, it strategically pulls desirable examples that satisfy the hyper-
nymy constraints closer together (ATTRACT) while simultaneously
pushing undesirable word pairs (REPEL) away from each other. Sec-
ond, LEAR also has the ability to rearrange vector norms in the
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Figure 3.2: Illustration of LEAR representations. LEAR controls the arrange-
ment of vectors in space, emphasizing symmetric similarity and
imposing an LE ordering based on vector norms. Norms are ad-
justed, so higher-level concepts have larger norms (e.g., animal >
dog > terrier). Source (Vulić and Mrkšić, 2018).

Euclidean space to reflect the hierarchical organization of concepts
based on the provided lexical entailment constraints (refer to Figure
3.2).

This dual functionality of LEAR enables it to capture both the hi-
erarchy of concepts, which is manifested through vector norms, as
well as their similarity, which is expressed through cosine distances.
Moreover, LEAR is explicitly designed for the lexical entailment task.
It uses an asymmetric distance function based on the norm of the
representations and the offset between them, providing a nuanced
perspective on hierarchical relationships within the semantic space.

leveraging hierarchical relations .

The use of taxonomies as an external resource in NLP has been
gaining attention in recent years. In this regard, Alsuhaibani, Mae-
hara, and Bollegala (2018) proposed a novel method for encoding
hierarchical word embeddings by leveraging both a plain text corpus
and a taxonomy. The authors extracted hierarchical hypernymy paths
for a given word to assimilate structural information from the tax-
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onomy. They learned a vector based on contextual information from
hyponym and hypernym words. The representation of a word was
crafted by considering the hierarchical information inferred from its
parent nodes along the hierarchy path. In this methodology, the au-
thors aggregated all parents in the hierarchy path by summing their
embeddings, incorporating a discounting term tied to the distance
between the parent and the target word. Formally, they defined an
objective function J, for all the vocabulary V, considering the hyper-
nym path P(w), and a discount term λ to assign a weight for each
hypernym word in the path:

J =
1

2

∑
w∈V

||w−
∑

p∈P(w)

λ(p)p||22 (3.3)

For example, if we consider the hierarchy path “bird → vertebrate
→ chordate → animal” and the word “bird”, the embedding for
“bird” is influenced more by the direct hypernym “vertebrate” than
the indirect hypernym “animal”.

Liu et al. (2021) proposed a new method to capture implicit infor-
mation in taxonomy resources that accounts for multiple meanings of
a word. Their approach uses word embeddings to represent the tax-
onomy’s hypernym, hyponym, and sibling relationships. To capture
more nuanced semantic relationships, the method uses an attention
mechanism at the term level and a random walk-based metric (refer
to Section 3.3.2 for further details about random-walk approaches).

In NLP, some tasks involve using hierarchical concepts explicitly.
This requires the use of hierarchical knowledge injection when de-
veloping approaches to these specific tasks. For instance, some exam-
ples of such tasks include Named Entity Typification using hierarchy
loss and word embeddings (Xu and Barbosa, 2018) or hierarchical
text classification with end-to-end reinforcement learning (Mao et al.,
2019). Although these tasks extend beyond the scope of this disser-
tation, we will briefly discuss them in Section 3.3.2 to gain a better
understanding of the structural features used.

3.2.1.2 Taxonomy-level representations: Taxonomy Reconstruction

Considerable research has been conducted on the recognition of
lexical semantic relationships, but relying solely on word pairs
may not consistently capture the various hierarchical characteristics
inherent in these sources (Alsuhaibani, Maehara, and Bollegala, 2018;
Camacho-Collados, 2017). To address this, an additional avenue for
learning structured representations involves the taxonomy recon-
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struction task. In this task, a model is expected to rearrange a list of
words extracted from texts into a taxonomy-shaped structure.

The potential benefits of using multiple edges to refine represen-
tations become particularly apparent when employing graph neural
networks (GNNs). These networks enable the encoding of subgraph
structures, which can subsequently be jointly trained using Hearst
patterns to capture hierarchical relationships such as parent and sib-
ling features (Bansal et al., 2014). Alternatively, they can be combined
with encoder-decoder architectures to leverage their strengths (Shang
et al., 2020).

Apart from GNNs, Gupta et al. (2016) employs heuristics to retrieve
hypernym paths in text corpora. This technique diverges from con-
ventional methods that focus solely on hypernym pairs. By seeking
better generalization paths that align more closely with correct taxon-
omy representations, this approach has shown promise in improving
the accuracy of taxonomies.

However, there is a lack of exploration regarding distributional tech-
niques to capture higher levels of hierarchy in the existing literature.
Typically, reconstructing a taxonomy involves two steps: extracting
hypernym pairs and organizing terms into a structured taxonomy.
To bypass this potentially bottlenecked process, Gupta et al. (2017)
adopted a probabilistic framework to extract longer hypernym subse-
quences. Using a minimum-cost flow-based optimization approach,
their framework focuses on inducing a tree-like taxonomy from a
noisy hypernym graph.

In order to address the issue of over-reliance on detecting hyper-
nym relationships alone, Mao et al. (2018) proposed a unique re-
inforcement learning approach that tackles both the hypernym re-
lationship identification and taxonomy reconstruction tasks simulta-
neously. The authors utilized various information sources to model
hypernym relationships, including dependency path-based contex-
tual embeddings derived from the dependency path of co-occurring
words and distributional term embeddings, as previously explored
by Shwartz, Goldberg, and Dagan (2016). Furthermore, they incor-
porated frequency, generality, and surface string features to identify
hypernym relations based on capitalization, common substrings, and
other criteria.

On a different note, Shen et al. (2018) introduced hierarchical char-
acteristics into their model by considering three types of features:
skip-patterns based on the patterns approach, term embeddings to
encompass the semantics of each term, and entity types retrieved for
a given word. These features were learned to predict hypernym rela-
tionships and extend existing taxonomies.
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Euclidean Space Order Embeddings

Poincaré Space Hyperbolic Cones

Figure 3.3: Distribution examples for different vector space representations.

3.2.2 Defining Hierarchical Vector Spaces

The preceding methodologies address, to some extent, the hierarchi-
cal structure within knowledge bases by modeling subordinate rela-
tionships, primarily focusing on hypernymy. However, these methods
typically attempt to capture intricate patterns based on distributional
approaches, leading to certain limitations. Firstly, Euclidean space is
used to map nearby objects, employing symmetric distances such as
Euclidean or cosine distance to represent a semantic hierarchy, which
is an inherently antisymmetric relation. This leads to systematic model
errors. Secondly, the representations are restricted by the dimension-
ality of the embedding space. Notably, the research by Nickel, Jiang,
and Tresp (2014) demonstrated that linear embeddings of graphs may
necessitate prohibitively large dimensionality to model certain types
of complex relations.

We now introduce different families of non-Euclidean vector spaces
used to integrate and model hierarchical structures. Figure 3.3 shows
how elements distribute differently according to the defined vector
space.
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3.2.2.1 Order Embeddings

To address the first limitation, the approach proposed by Vendrov et
al. (2015) introduces order embeddings, which circumvent the use of
a distance-preserving approach in favor of an order-preserving one.
They map a partial order over the embedding space. The authors pro-
posed a task called partial order completion to learn these order em-
beddings. This task involves predicting whether a given pair of words
is ordered or unordered. The training process involves positive, or-
dered pairs and negative sampling with unordered pairs. While this
training task is applicable to hypernym detection pairs, the authors
also applied it to caption-image retrieval tasks.

3.2.2.2 Hyperbolic Embeddings

Despite improvements in the inner nature of distributional-based ap-
proaches, the default representation space, typically Euclidean, re-
mains limited. Addressing the second limitation mentioned earlier,
Nickel and Kiela (2017) advocates for the use of hyperbolic spaces to en-
code the inner hierarchical structure of knowledge bases. They model
word embeddings based on hyperbolic space geometry, considering the
underlying tree-like structure they possess. Hyperbolic spaces exhibit
non-Euclidean geometry with a constant negative curvature, similar
to continuous versions of trees, making them ideal for representing
hierarchies.

In their work, Nickel and Kiela (2017) specifically used the Poincaré
ball model, a well-suited hyperbolic space model for gradient-based
optimization. The efficiency of this space is demonstrated through
the successful completion of link prediction and lexical entailment
tasks, which confirm that this embedding space corresponds well to
the underlying semantics of the data.

3.2.2.3 Convex Entailment Cones

However, the use of Poincaré embeddings, based on the hyperbolic
distance, which is symmetric, does not encode the asymmetric char-
acteristic of hypernym relations. To address this issue, Ganea, Bé-
cigneul, and Hofmann (2018a) built upon the partial order embedding
proposed by Vendrov et al. (2015) and uses geodesically convex en-
tailment cones to induce a partial ordering relation in the embedding
space. The authors’ proposed method of using entailment cones in the
Poincaré ball encoding space provides several advantages, including:

1. Encoding asymmetry,
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2. Representing the degree of hypernym relation using continuous
cone aperture functions, and

3. Capturing the transitivity between hypernym pairs using transi-
tivity of nested angular cones.

Aly et al. (2019) further demonstrated the effectiveness of Poincaré
embeddings in refining taxonomies by correcting wrong hypernym
predictions.

It’s important to note that even though hierarchical embeddings
can enhance performance on tasks that rely on hierarchy, like lexical
entailment, they may have a negative impact on word similarity tasks.
In fact, Dhingra et al. (2018) demonstrated that unsupervised encod-
ing of text objects beyond explicit hierarchical structures could lead
to a decrease in performance.

Although hyperbolic space representations offer several advan-
tages, their adoption has been limited due to a lack of available tools
that can generalize basic operations such as vector addition, matrix-
vector multiplication, vector translation, and vector inner product,
as well as closed-form expressions like distance and geodesics in
complex geometries. To address this issue, researchers have adapted
default frameworks for Euclidean spaces to work seamlessly in
hyperbolic spaces for neural networks, such as multinomial logistic
regression, feed-forward, simple and gated recurrent networks,
and the attention mechanism. Notable works in this area include
Ganea, Bécigneul, and Hofmann (2018b) and Gulcehre et al. (2018).
Some studies have proposed applications of these adaptations, such
as HyperText, which learns FastText embeddings with hyperbolic
geometry (Zhu et al., 2020).

The HypeHan model, introduced by Zhang and Gao (2021), is
based on an architecture that focuses on three levels of embeddings:
word, sentence, and document. It combines different strategies ex-
plored in previous work. HypeHan models the hierarchy at three
different levels using two layers of hyperbolic attention mechanisms.
The architecture begins with word representation, utilizing typical
static word embeddings, and applies hyperbolic attention through
these words to obtain sentence embeddings, which are then projected
once more into a hyperbolic space to learn document embedding rep-
resentations. In addition to this method, another approach has been
proposed by Sato et al. (2022) to deal with unseen words during train-
ing.

The adoption of hyperbolic geometry is not limited to distributional-
based approaches but extends to its applications in developing
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knowledge graph embeddings (Balazevic, Allen, and Hospedales,
2019) and graph convolutional networks (Shen et al., 2021).

3.2.2.4 Other Non-Euclidean Vector Spaces

Many studies have adopted hyperbolic representations that use var-
ious geometric tools like manifold space projections. This has made
them easily adaptable to existing frameworks. However, it is worth
noting that there are other approaches based on the spatial character-
istics of hypernymy and hierarchical structures.

An alternative avenue of exploration is through spherical text embed-
dings, as proposed by Meng et al. (2019). These embeddings capture
directional similarities within a spherical space with a positive con-
stant curvature, which differs from hyperbolic spaces.

The predominant methodologies employed to capture hierarchical
relationships are founded on defined connections between elements
in a taxonomy. However, an alternative strategy adopts the use of
Markov random walks to assimilate diverse interactions within the hi-
erarchical structure (Mao et al., 2019). This method has been proven
to be effective in capturing complex hierarchical relationships.

Lastly, rooted in partial order theory, the concept of Strict Partial
Order Networks (SPON) (Dash et al., 2020) is introduced to enhance
representations. In this framework, the authors propose a neural net-
work architecture that enforces strict partial order as a soft constraint,
encompassing symmetry and transitivity. By incorporating these prin-
ciples, the SPON model can effectively capture hierarchical relation-
ships’ nuances and improve the representations’ overall quality.

3.2.3 Evaluation Approaches

The evaluation of knowledge encapsulated by enhanced word embed-
dings follows a methodology similar to that outlined in Section 2.4.
In the literature, these evaluation methods can be broadly classified
into intrinsic and extrinsic evaluations (Schnabel et al., 2015).

Intrinsic evaluations directly examine semantic relationships be-
tween words. In the context of structure-based injection methodolo-
gies, these assessments primarily focus on taxonomic relationships,
such as hypernym or siblings. However, intrinsic evaluations have
certain limitations, as the observed performance in these tests does
not consistently correlate with the effectiveness of the embeddings in
downstream tasks (Faruqui et al., 2016).

On the other hand, extrinsic evaluations incorporate word embed-
dings as input features within a more extensive network, which is
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deployed for a specific downstream task. The evaluation involves
comparing the model’s performance on the given task. Despite their
task-specific nature, extrinsic evaluations may not provide comprehen-
sive insights into the inherent quality of knowledge representation
(Faruqui et al., 2016).

intrinsic evaluation.

Static word embeddings have been extensively investigated for en-
coding hypernym relationships. Such relationships are often referred
to as lexical entailment, and evaluating them has led to the creation of
numerous datasets, such as BLESS (Baroni and Lenci, 2011) and BiB-
LESS (Kiela et al., 2015). These datasets use a binary decision frame-
work to determine whether a given word pair exhibits a hypernym
relationship or not.

However, the focus of these evaluations is often limited to the hy-
pernym relationship itself, without fully capturing the broader hi-
erarchical structure they aim to encode. Many distributional-based
approaches run the risk of relying on single-word features and may
fall short of learning lexical inference relations, commonly referred to
as “prototypical hypernyms” (Levy et al., 2015). These models tend to
memorize frequently encountered hypernyms without fully grasping
the nuances of hierarchical features.

Therefore, there is a crucial need for more nuanced evaluations and
learning methods to capture higher granularity levels beyond binary
detection (Camacho-Collados, 2017).

Recognizing the limitations of the rigid binary evaluation approach,
Vulić et al. (2017) introduced a graded lexical entailment evaluation
dataset known as HyperLEX. Departing from the binary decision
framework, HyperLEX adopts a more human-centric approach to as-
sess lexical entailment. Instead of asking whether a word pair follows
a hypernym relationship or not, HyperLEX annotates human expert
judgments on the question “To what degree X is a type of Y”. This
graded approach aligns more closely with human cognition, incor-
porating two cognitive science phenomena: typicality, where certain
categories and instances exhibit stronger relationships due to their
frequent usage, and graded membership, acknowledging the lack of
a clear definition for the class into which an object fits within a given
category.

Complementary, the work by Gupta et al. (2016) and Gupta et al.
(2017) introduces a new approach to evaluate taxonomies by consid-
ering hypernym paths instead of just hypernym pairs. This method
evaluates individual edges and path-level evaluations, which assess
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hypernym paths. The criteria for this evaluation include assessing
the specificity or generality of hypernym predictions and evaluating
correct prefix paths rather than individual pairs.

extrinsic evaluation.

Extrinsic evaluations leverage hierarchical knowledge in enhanced
static word embedding models for downstream tasks like named en-
tity recognition, information retrieval, and taxonomy reconstruction.

The TexEval datasets, TexEval I (Bordea et al., 2015) and TexE-
val II (Bordea, Lefever, and Buitelaar, 2016), are particularly useful
for the taxonomy reconstruction task. These datasets provide diverse
domain-specific taxonomies for evaluation, grounded in WordNet
and spanning various languages. The goal of this task is to deduce
the appropriate taxonomy structure by discerning hypernym and
hyponym relationships among given terms. The proposed metrics
within these evaluation sets include accuracy at the edge level, struc-
tural evaluations involving criteria like the number of cycles in the
predicted taxonomy, and cluster-based metrics, which offer a higher-
level assessment of term distribution across different depth levels of
the taxonomy.

Instead of relying on binary decisions regarding whether two
nodes share a relationship, another evaluation type seeks to capture
various potential hypernyms by adopting a ranking approach. For
instance, Hypernym Discovery (Camacho-Collados et al., 2018)
adopts this approach. Using an information retrieval approach, this
task seeks to evaluate hypernym predictions for a given word within
a more nuanced framework.

3.3 hierarchy-aware pre-trained lan-
guage models

The infusion of hierarchy into PLMs has been a natural progression
in this research domain after static word embeddings. However, their
exploration is still relatively new and constantly evolving.

In this context, we review some recent models and categorize them
into two primary classes. Firstly, we discuss the methods based on
lexical relations to improve hierarchy at the word level. Secondly, we
delve into various approaches that harness structured signals within
the corpus or knowledge resources at distinct and more abstract lev-
els, which are customized for diverse applications.
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3.3.1 Leveraging Lexical Relations

The utilization of PLMs for encoding extensive text corpora has been
widely investigated as a means to learn and extract knowledge about
lexical semantic relationships. Similar to the preceding Section, ex-
ploring hierarchical signals in text involves acquiring taxonomic rela-
tionships. A simple yet effective method for learning these relation-
ships involves fine-tuning.

The LEXFIT framework (Vulić et al., 2021) adopts this approach,
aiming to enhance lexical knowledge from PLMs in a decontextual-
ized setting by employing a bi-encoder architecture. This means LEX-
FIT learns lexical relations between pairs of words without consid-
ering additional context, similar to traditional static word embeddings.
This strategy capitalizes on the inherent knowledge encoded in PLMs,
adapting them to specific lexical relationships. Specifically, LEXFIT
uses a Sentence BERT encoder architecture (Reimers and Gurevych,
2019) with various contrastive loss functions and demonstrates im-
proved performance when using larger batches during the training
phase of fine-tuned PLMs. The reader can refer to Appendix A for
further information about bi-encoder architectures.

Another endeavor, Constructing Taxonomies with Pre-trained mod-
els (CTP) by Chen, Lin, and Klein (2021), follows a comparable ap-
proach by employing a cross-encoder. CTP leverages the contextu-
alized embedding representations of PLMs to identify robust taxo-
nomic relations. Unlike LEXFIT, CTP uses a classification layer atop
PLMs to discern hypernymy between word pairs. In this study, words
extracted from WordNet are enriched with contextual information, re-
ferred to as glosses, to provide the model with additional information,
particularly in polysemous word cases. In the context of taxonomy
reconstruction, CTP successfully predicts taxonomies with small and
medium depths. However, it struggles when dealing with deeper tax-
onomies, tending to predict flat taxonomies, and facing challenges
defining abstract classes at higher levels.

Similarly, another approach to identifying hypernym relationships
and reconstructing taxonomies is explored by Jain and Anke (2022)
under a zero-shot setup. The authors leverage prompt inputs and
apply the LMSCorer approach (as discussed in Section 2.5.1.1). While
this approach proves to be cost-effective compared to fine-tuning, its
results are still limited in performance.

In a subsequent work, Takeoka, Akimoto, and Oyamada (2021) ad-
ditionally incorporates Hearst patterns to enhance the performance
of PLMs in predicting hypernym relationships. The authors focused
on extending existing low-resource taxonomies, framing it as a tax-
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onomy expansion task consisting of a Hearst pattern generator and a
PLM classifier.

PLMs are still widely used to extract and learn lexical relationships.
A recent study by Liu, Cohn, and Frermann (2023) examined various
hypernym extraction prompts using a BERT model, taking into con-
sideration different patterns and the Masked Language Model (MLM)
task under a zero-shot setup. The authors discovered that incorpo-
rating rare hypernyms and hyponyms in prompts enhances the perfor-
mance of PLMs. Furthermore, including an anchor element, a third
element in the context, improved hypernym detection performance
compared to using patterns with only two words.

3.3.2 Leveraging Structured Signals

We introduce some of the approaches relying on random-walk strate-
gies, hyperbolic vector spaces, and high-order hierarchical compo-
nents.

3.3.2.1 Random Walk Strategies

As discussed earlier, while conventional hypernym-based approaches
are helpful, they often fail to capture the intricate information inher-
ent in hierarchical relationships. Novel local heuristics have been de-
veloped to overcome this limitation and unlock the full potential of
existing taxonomies. One such approach is the utilization of random
walk methodologies, which has shown effectiveness in extracting com-
prehensive hierarchical information from graphs (Chen et al., 2020b).

Considering the elements of a KB, a random walk is a process where
an entity moves through a graph by taking random steps from one
node to another. During each step, the walker chooses a neighboring
node randomly, and the probability of transitioning to a particular
neighbor is either proportional to the edge weights or uniformly dis-
tributed across all neighbors. This method is a more generalized ap-
proach than the classical approach of hypernym pairs, where a node
is associated only with its direct ancestor.

One contribution in this domain is TaxoPrompt, introduced by Xu
et al. (2022). TaxoPrompt blends the principles of random walk with
a PLM to devise a taxonomy expansion framework. By employing a
prompt-based approach, the authors advocate using specialized tem-
plates for hypernym generation, facilitating the acquisition of lexical-
syntactic features within a taxonomic context. The overarching ob-
jective is to generate hypernyms that exhibit structural consistency,
informed by the acquired knowledge of an existing taxonomy. Taxo-
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Prompt leverages random walk techniques to sample relations such as
“parent-of”, “child-of”, “sibling-of”, “nephew-of”, and “posterity-of”
from a given node to achieve this. This diverse set of traversal options
for the KB enables the model to capture various forms of implicit hi-
erarchical knowledge.

Similarly, Liu et al. (2021) have explored the integration of random
walk techniques within a KB, focusing specifically on the relationships
between hypernym, hyponym, and siblings. Their research aims to
cultivate lexical taxonomical embeddings by adopting a curriculum
learning approach. The application of random walk in this context
proves to be a critical tool for navigating the intricate web of relation-
ships within the KB, contributing to a more nuanced understanding
of hierarchical structures.

3.3.2.2 Hyperbolic Vector Spaces

As described in Section 3.2.2, the utilization of hyperbolic space for
representing hierarchical structures has been identified as advanta-
geous due to its exceptional capacity and continuous tree-like prop-
erties. Consequently, some researchers in the field of PLMs have re-
cently explored the use of hyperbolic geometry to encode hierarchical
information more effectively. However, this exploration remains lim-
ited to date.

Many approaches rely on the following working mechanism. These
techniques use contextualized representations that are projected into
a hyperbolic space. The Poincaré ball model is usually preferred as it
is easy to optimize. Once the projections are made, various distance-
based metrics are utilized to capture semantic similarity distances be-
tween different elements. This process enables the characterization of
the hyperbolic nature of these elements.

One noteworthy exploration in this direction is presented by Song,
Feng, and Jing (2022a), which focuses on the task of Multi-Document
Summarization. By employing PLMs and hyperbolic spaces, the au-
thors leverage a semantic similarity approach to identify accurate sum-
mary candidates. By projecting these candidates into a hyperbolic
space, specifically the Poincaré ball, the latent hierarchical structure
inherent in the text information is better captured. This involves con-
textualized representation projection and learning using the Poincaré
distance within a contrastive learning setup.

Building upon the foundation of Song, Feng, and Jing (2022a),
HISum (Song, Feng, and Jing, 2023) extends the approach by
considering global and local interactions within the same hyper-
bolic space. While maintaining a global view akin to HyperMatch,
HISum incorporates hyperbolic Convolutional Neural Network
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(CNN) encoders for local interactions. These encoders derive n-gram
phrase representations, enabling the model to generate phrase-aware
summaries and document representations via the Poincaré distance.

Similarly, HyperMatch (Song, Feng, and Jing, 2022b) employs a hy-
perbolic projection approach for keyphrase extraction in documents.
This technique leverages the hierarchical structure of keyphrases,
with longer keyphrases inherently possessing more complex struc-
tures. Employing the Poincaré distance in hyperbolic space, the
relevance between a document and its keyphrase candidates is
determined after obtaining and projecting PLM representations for
both elements.

3.3.2.3 High-order hierarchical components

Many current works utilize elements from taxonomy, including en-
tities and relationships. However, other approaches consider high-
order hierarchical components, such as the hypernym path of a tax-
onomy, or the hierarchical structure of a corpus of documents, where
the nodes are represented by the documents and the edges by the
links between them.

hypernym path

An alternative avenue for injecting hierarchy into models focuses
particularly on the relation between an element and its hypernym
ancestors. A notable NLP application where this approach yields di-
rect benefits is Fine-grained Entity Type Classification (FET), a task
focused on labeling entity mentions in context with one or more spe-
cific types organized within a hierarchy (e.g., identifying “actor” in
the hypernym path “actor → artist → person). Integrating the hyper-
nym path into these models improves the performance on this type
of task and related applications, which also benefit from learning tax-
onomic distributions, such as relation extraction, question answering,
and entity linking (Xu and Barbosa, 2018).

The use of box embeddings (Onoe et al., 2021) has been explored
to represent entity-type embeddings within a high-dimensional space.
In this paradigm, each entity mentions and entity type is embedded
into the same box space, enabling the model to discern relationships
between them. The geometric properties of these boxes, including
nesting, overlap, or complete disjointness, facilitate the capture of di-
verse relationship characteristics, notably hierarchical nuances. In this
context, PLMs serve to transform entity mentions and contexts into
the box space.
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Similarly, the methodology employed by PICOT (Zuo et al., 2022)
employs a contrastive learning strategy, utilizing prompts fed into
a PLM model to capture the hierarchy of fine-grained types. The
prompts dynamically adapt to the granularity of the entity type, in-
corporating both coarse-grained and fine-grained distinctions. This
adaptive approach enhances the model’s ability to distinguish be-
tween multi-grained similar types.

Furthermore, in the work from Chen et al. (2022), sibling relation-
ships are considered to bolster hierarchical representations. This ob-
servation is consistent with hypernym encoding approaches that rec-
ognize the significance of sibling relationships in capturing hierarchi-
cal structures. By incorporating sibling relationships into the model,
it is possible to improve the hierarchical representations of the data
further.

document-level structure .

A complementary line of work exploits the document-level struc-
ture for improving entity representations. One of these works is ER-
ICA (Qin et al., 2021), presented in Section 2.4.1, which goes beyond
the within-sentence relations and considers interactions among multi-
ple entities at the document level. ERICA captures the interaction be-
tween entities across different paragraphs from different documents and
within paragraphs from the same document, using two pre-training
tasks called Entity Discrimination and Relation Discrimination

Another recent work by Raman, Shah, and Veloso (2022) proposes
an extensive approach that integrates various hierarchical structures
inherent in documents. The authors model document representation
by considering both semantic similarity and structural relationships
embedded within the underlying link structure that connects docu-
ments. This enables them to capture the complex interplay between
different document components, leading to a deeper understanding
of the document’s meaning and context.

Table 3.1 lists all the presented models, summarizing the leveraged
hierarchical feature and the primary approach to inject (or extract)
the hierarchy knowledge.

3.4 conclusion

The field of augmenting language models with external knowledge
has become a crucial area of focus in recent research. While current
approaches primarily focus on utilizing explicit information from
external sources, the implicit hierarchical knowledge they inher-
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ently possess has often been overlooked. Considering two distinct
types of relationships within the realm of KBs - hierarchical and
non-hierarchical - this chapter focused on the hierarchical injection
of knowledge and evaluated their integration into both static word
embeddings and more contemporary contextual-based PLMs.

Initially, we explored various strategies that employ static word em-
beddings and categorized them based on the type of hierarchical rep-
resentation they aim to learn. Notably, we examined approaches fo-
cused on learning word-pair relations, such as hypernymy, and those
delving into higher levels including hierarchical paths and subgraphs
from KBs. Among the strategies for learning hypernym relations, we
identified projection-based approaches that seek subspace representa-
tion, methods that employ loss functions translating hierarchical dis-
tance into semantic distance, and other approaches that extend beyond
hypernym constraints.

Later, we delved into static word embedding techniques that tailor
specific geometries to capture the inherent exponential expansion of
hierarchical relationships accurately. This involves introducing order
embeddings that define a geometric space aligning with hypernym char-
acteristics, such as directionality and transitivity. Additionally, we pre-
sented Poincaré word embeddings, which are situated in the Poincaré
ball space - a hyperbolic space - and can facilitate the encoding of
hierarchical knowledge. The section concluded by outlining intrinsic
and extrinsic evaluation methodologies that can be used to assess the
effectiveness of the encoded information in these approaches.

Finally, moving on to similar endeavors within PLMs, we intro-
duced the emerging field that explores encoding hierarchical knowl-
edge into these models. While this domain is still evolving, recent
work has primarily involved fine-tuning approaches that aim to im-
bue PLMs with lexical taxonomical relationships, aligning with hier-
archical constraints. We also highlighted complementary work that
expands the scope of hierarchy within PLMs, incorporating hyper-
bolic spaces and random walk strategies to capture a broader spec-
trum of hierarchical relations. Furthermore, we introduced models
that directly model the structure of abstract elements such as docu-
ments, reflecting a holistic approach to hierarchical knowledge inte-
gration.
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4
I M P R O V I N G I M P L I C I T K N O W L E D G E
I N T E G R AT I O N I N T O P L M S W I T H I N C R E M E N TA L
R E A S O N I N G

4.1 introduction

A practical and affordable method to enhance PLMs is implicitly inte-
grating information from the knowledge graph (KG) with text using
text templates or descriptors, as presented in Chapter 2. Particularly
in Pre-trained Language Models (PLMs), this approach is beneficial in
applications such as question-answering and reading comprehension
(Talmor et al., 2019) thanks to their adaptability to perform reasoning-
based tasks, such as fact recalling or reasoning inference (Petroni et
al., 2019; Kassner and Schütze, 2020). Consequently, multiple state-of-
the-art (SOTA) models aim to enhance PLMs’ reasoning capabilities
by integrating hypernym path structures from a KG (Clark, Tafjord,
and Richardson, 2021).

These reasoning-based tasks have varying difficulty levels, depend-
ing on the complexity of the required inference to find the answer.
For instance, in the reading comprehension task, one is given a ques-
tion and a text and then expected to find the answer to the ques-
tion within the text. The complexity of the reading comprehension
task can range from simple fact retrieval to performing inferences
across multiple paragraphs from the text source. Therefore, to cover
the maximum types of difficulties possible, SOTA models simultane-
ously learn different reasoning complexities by adopting a multi-task
setup (Richardson et al., 2020; Talmor et al., 2020b), presented in Sec-
tion 4.3.

Moreover, the incorporation of PLMs brings additional difficulties.
Recent research has shown that PLMs not only rely on information
learned from KG but also use information acquired during pre-
training (Kassner, Krojer, and Schütze, 2020; Talmor et al., 2020b)
when performing reasoning tasks. This behavior of PLMs makes it
challenging to distinguish what the model is genuinely learning and
determine which elements in the learning process are necessary to
perform these tasks. In response to this problem, different probes
have emerged to elucidate the capabilities and limitations of PLMS
in this domain (Richardson et al., 2020; Talmor et al., 2020a).

79
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In this chapter, we introduce our first contribution, which addresses
the two challenges previously mentioned. We focus on understanding
the interactions between different difficulty levels to better cope with
the challenges of the task. Also, we investigate the complexities of
incorporating PLM by exploring various strategies based on contex-
tual information. Our primary objective is to gain insights into the
behavior of models trained on a specific difficulty level, which we
call single-hop reasoning models. By doing so, we expect to develop
more predictable models.

Our method focuses on multi-hop reasoning (introduced in Section
4.3). We aim to mimic human-style reasoning, breaking down the task
into a sequence of explicit single-hop reasoning steps in an incremen-
tal learning approach. To equip PLMs with incremental reasoning
skills, we propose a set of inference strategies on relevant facts and
distractors (Section 4.3). These strategies allow us to build automat-
ically generated training datasets. Finally, we assess the transferabil-
ity of these incremental learning reasoning skills to related question-
answering tasks.

The remainder of this chapter is structured as follows. We describe
the context of the problem and main contributions in Section 4.2.
Then, we describe our experimental setup, including the datasets and
models for our experiments, in Section 4.4. Later, we study the im-
pact of applying these different incremental reasoning strategies on
the reasoning task and downstream tasks such as question-answering
and reading comprehension in Section 4.5. Finally, Section 4.6 lists
our conclusions.

4.2 overview and contributions

Multi-hop reasoning problems involve performing logical inference
that requires traversing multiple intermediate steps or connecting
pieces of information to arrive at a conclusion. State-of-the-art PLMs,
such as BERT (Devlin et al., 2019) or RoBERTa (Liu et al., 2019), have
proven successful in solving multi-hop reasoning problems, including
multi-hop question-answering (QA) tasks (Weber et al., 2019; Richard-
son and Sabharwal, 2020; Saxena, Tripathi, and Talukdar, 2020; Saha,
Yadav, and Bansal, 2021) and multi-hop reading comprehension (RC)
(Min et al., 2019; Ding et al., 2019).

Training multi-hop reasoning tasks specifically implies a two-step
process, illustrate in Figure 4.1:

1. Distinguish -within a context- the relevant facts from the distrac-
tors to be used for reasoning; both relevant facts and distractors
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Question:
Nails conduct electricity?
Text:
Metals conduct
electricity.
Insulators do not
conduct electricity. Nails
are made of iron. If
something is made of
iron, then it is metal.

Question:
Nails conduct electricity?
Text:
Metals conduct
electricity.
Insulators do not
conduct electricity. Nails
are made of iron. If
something is made of
iron, then it is metal.

Question:
Nails conduct electricity?
Text:
Nails are made of iron. If
something is made of
iron, then it is
metal.Metals conduct
electricity.
Answer: Yes

1. Identify relevant facts 2. Inference

Figure 4.1: The multi-hop reasoning process involves 2 steps: 1) Identify rel-
evant facts from distractors in a context. 2) Inference.

are generally expressed as statements in natural language using
linguistic patterns (Clark, Tafjord, and Richardson, 2021);

2. Reasoning over a sequence of relevant facts leading to chains of
reasoning (Das et al., 2019).

A common approach to teaching PLMs to solve a multi-hop reason-
ing task is to convert the structural reasoning task into subtasks that
model the sequence of reasoning tasks. For instance, Richardson and
Sabharwal (2020) and Clark, Tafjord, and Richardson (2021) rely on
a multitasking training strategy (Caruana, 1997) that uses training in-
stances mixing different depths of reasoning steps (hops). In the same
line, (Min et al., 2019) and (Ding et al., 2019) carry out several steps of
single-hop reading comprehension to simulate multi-hop reasoning.

However, while yielding impressive results, it is still unclear if
PLMs endowed with multi-hop reasoning skills really leverage the
learned skills at each single-hop depth level along the reasoning chain.
More specifically, our contribution is motivated by observing that
PLMs yield unpredictable results while performing multi-hop rea-
soning. For instance, previous studies show that the performance of
PLMs degrades substantially even with a slight increase in the num-
ber of hops in the underlying reasoning tasks (Richardson and Sab-
harwal, 2020). This result indicates that multi-hop models at lower
depths struggle to transfer information to deeper-hop models, giving
rise to the compositionality generalization (Chaabouni et al., 2020) issue
from simpler to complex tasks.

We advocate that a better understanding of the inherent relation-
ships between the different single-hop reasoning models allows the
design of more predictable models. Our contributions seek to answer
three main questions:
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• RQ1: grounded in previous findings in the literature (Richard-
son and Sabharwal, 2020) showing the compositionality gener-
alization issue, do single-hop reasoning models incrementally learn?

• RQ2: inspired by the human reasoning style to solve complex
problems based on simpler ones (Anderson, 1980), can PLMs be
guided toward incremental reasoning?

• RQ3: grounded on previous findings revealing that PLMs
trained on one specific reasoning task improve their perfor-
mance on different and unrelated reasoning tasks (Talmor
et al., 2020b), do QA tasks leverage incrementally trained reasoning
models?

4.3 methodology

In this section, we formally present the multi-hop reasoning task, and
introduce the proposed data probe generation methodology.

4.3.1 Multi-hop Reasoning

We focus on the multi-hop symbolic reasoning task over explicit
knowledge. Following previous work, our setting includes the
following:

1) a knowledge graph (KG) G = (E,R) as a graph containing a set
of entities (represented as nodes) (e ∈ E), and a set of inference
relationships, represented as edges (r ∈ R). Additionally, it con-
tains a set of real relation facts fij as positive triples (ei, r, ej)
denoted F+ among all the possible ones in E×R× E;

2) a hypothesis Hk
ij about the inferred relationship r∗ between two

target entities (ei, r∗, ej) in the KG that are separated by k hops
in the graph G;

3) a hypernym inference path of depth k on G, referred to as Ikij,
allowing to build a new relation fact f∗ij /∈ F+ by combining
k+ 1 relation facts along the reasoning chain
< (ei, r0, e1) (e1, r1, e2) . . . (ek, rk, ej) >, such as ∀0 ⩽ n ⩽ k,
(en, rn, en+1) ∈ F+, (ei, r0, e1), (ek, rk, ej) ∈ F+;

4) a context, composed of relevant facts F∗
ij ⊂ F+, defined by the

facts that form the hypernym inference chain Ikij and distractors
Dij, which are formed by triplets that do not form the hyper-
nym inference in Ikij.
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Figure 4.2: Sample from the RuleTakers dataset.

Given a hypothesis in context < Hk
ij, (F

∗
ij,Dij) >, the task consists in

inferring its truth value. The hypothesis, denoted by Hk
ij, is considered

to be true if it can be deducted following a hypernym inference Ikij from
the context (F∗

ij,Dij). Otherwise, the hypothesis is considered to be
false under the close-world assumption.

In this task, we use the term “k-hop” to refer to a hypothesis where
the number of elements in the hypernym inference path is equal to k.

To provide an example, let us consider the input from Figure 4.2
taken from the RuleTakers datasets. Here, the hypothesis is repre-
sented by the triplet (nails, conductivity, electricity) and is stated as
“Nails conduct electricity”. The task is to infer the factuality of this
hypothesis considering the given context. In this case, the prediction
is true because it can be deducted using the textual representations
of the triplets (nails, made of, iron), (iron, type-of, metal), (metal,
conduct, electricity), which are part of the given context. The textual
representations of these triplets in Figure 4.2 are “Nails are made of
iron”, “If something is made of iron, then is metal”, and “Metals con-
duct electricity”, respectively. Therefore, this example is considered
a 3-hop inference.

single-hop reasoning models As mentioned earlier, the ap-
proach to training models on the multi-hop question-answering task
relies on teaching the models to solve k-hop reasoning, where the
training set includes examples of different values of k-hop inferences.
In this work, we refer to a single-hop model as a model that has only
seen k-hop inference examples with a single value of k. In contrast,
a multi-hop model is a model that saw i-hop inference examples with
1 ⩽ i ⩽ k. SOTA models are typically trained on multi-hop datasets
(Saxena, Tripathi, and Talukdar, 2020; Saha, Yadav, and Bansal, 2021).
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Figure 4.3: Hypothesis and inference path generation from a knowledge
graph for 1-hop and 2-hop reasoning depths.

4.3.2 Probing Generation Algorithm

Given a knowledge graph G, we propose a generic dataset gener-
ation methodology to probe multi-hop reasoning PLMs in a single-
hop setup. We define two generation functions to construct the input
< Hk

ij, (F
∗
ij,Dij) >:

i) Hyp(G,k), to generate both the hypothesis Hk
ij and the related

inference path Ikij; and
ii) Distr(G, Ikij,H

k
ij), to generate a set of distractors Dij with re-

spect to the inference path Ikij.

hypothesis generation - Hyp(G , k) .

First, we apply the Depth First Search (DFS) algorithm to visit all
entities of the knowledge graph G, generating a set of paths of length
k+ 1, excluding the root, used as inference paths. Then, each infer-
ence path Ikij has the form of < (ei, r0, e1), . . . , (ek, rk, ej) >.

For the true hypothesis, we create Hk
ij with the form (ei, rk, ej)

using the first and last facts from the inference path (see Figure 4.3,
which illustrates examples of 1-hop and 2-hop hypothesis). Unlikely,
for the false hypothesis, we simply generate a hypothesis Hiz replac-
ing the last real fact of the inference path by (ek, rk, ez) /∈ F+.

distractor generation - Distr(G , Ikij , Hk
ij) .

The use of distractors has been given little or none attention in
the literature. Mainly, because many of the works consider that the
model must select the pertinent phrases from a context to construct
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the inference. These approaches do not consider the influence of these
distractors phrases in the context representation, and consequently, in
the models performance on training and evaluation.

To our study, we propose three types of distractors that represent
different levels of difficulty from a reasoning perspective, by creat-
ing additional information from different elements of the inference
reasoning chain. These distractors are referred to as object, relation-
ship, and inference distractors. We generate these distractors for each
hypothesis Hk

ij (as shown in Figure 4.4).

• Object distractor. An object distractor is generated by sampling a
fact with the form (., ., ej), where ej references the last entity in
the hypothesis (or the last entity/object in the inference path).

• Relationship distractor. A relationship distractor is a sampled
fact with the form (., rk, .). Similarly, rk references to the rela-
tionship used in the hypothesis.

• Inference distractors. Finally, we generate inference distractors
in such a way that they exploit evidence from the structure of
the inference path Ikij by linking two of its facts with a pivot
element.

Having in mind the goal of guiding a k-hop model to perform in-
cremental inference over single-hops, we propose distractor strategies
that either improve the entity representations or bridge between enti-
ties by transferring information along with intermediate hops necessary
to complete the reasoning. More precisely, based on a previous find-
ing (Kassner and Schütze, 2020) showing that fine-tuned PLMs are
good for recognizing false facts, we assume that distractors have a
hidden impact on the reasoning task.

While most common approaches attempt to improve PLMs entity
representations by enriching the context-based relevant facts, we be-
lieve distractors can significantly leverage PLMs entity representa-
tions and thus the reasoning performance. Thus, we investigate the
rationale behind this assumption by designing the following strate-
gies for generating inference distractors:

1. Individual (i-inf), that uses different distractor entities (x ̸= y)
of two facts from the inference path. These distractors include
the challenge of filtering irrelevant facts from the context, and
to lead with negation forms. The implementation is shown in
Algorithm 1, with the third parameter shared= False.

2. Shared (s-inf), which uses the same distractor entity (x = y) of
two facts from the inference path. This could be interpreted as a
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Figure 4.4: Sample from the SHINet 2-hop dataset.

harder type of distractor than (i-inf) where besides the negation
form and relevance criteria, the distractors adopt a new branch
of reasoning, which do not participate directly in the inference.
The implementation is shown in Algorithm 2, with the third
parameter shared= True.

3. Guided (g-inf), Additionally, we explicitly guide a k-hop model
to perform incremental inference using a guided distractors that
connects the two consecutive facts in the inference path. The im-
plementation is shown in Algorithm 3. The key underlying idea
is to drive the PLM to incrementally reason over the inference
path by transferring information between entities along interme-
diate hops of a multi-hop reasoning path.

Figure 4.4 illustrates the different distractors generated for a spe-
cific example.

Please note that other approaches, such as Chain-of-Thought, also
explore the idea of guiding the reasoning by prompting (Wei et al.,
2022b). These approaches aim to guide the reasoning of the PLM
by extending the answer by adding textual justifications. However,
unlike those approaches that provide a clean context input, we leave
this filtering task to the models, simulating a more challenging setup.
In real-life scenarios, understanding the reasoning behind a given text
may not be straightforward and could have multiple paths.
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Algorithm 1 Pseudocode for the distractors generation of individual
(i-inf) distractors. The P-INF method is defined in Algorithm 4

I-INF (Ikij,k)
D = P-INF(Ikij,k, False)
return D

Algorithm 2 Pseudocode for the distractors generation of shared (s-
inf) distractors. The P-INF method is defined in Algorithm 4

S-INF (Ikij,k)
D = P-INF(Ikij,k, True)
return D

Algorithm 3 Pseudocode for the distractors generation of guided (g-
inf) distractors. The P-INF method is defined in Algorithm 4

G-INF (Ikij,k)
D = P-INF(Ikij,k, True)
for y ∈ 1 . . . k+ 1 do

(ex, _, _)= Ikij[y]
(_, r, ex+2)= Ikij[y+1]
D=D∪{(ex, r, ex+2)}

end for
return D
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Algorithm 4 Generic algorithm to create distractors for each two con-
secutive facts from the inference path. D, L1, and L2 are lists used to
stock the generated distractors. AD stands for “available distractors”,
considering all the possible triples in the KG not used in the inference.
AD(e) represents a filtered AD where e is present.

P-INF (Ikij,k, shared)
AD = {E×R× E} \ F+

D = ∅
for y ∈ 1 . . . k+ 1 do

(ex, _, _)= Ikij[y]
(_, _, ex+2)= Ikij[y+1]
L1 = ∅,L2 = ∅
for (ex, ra,p) ∼ AD(ex) do

L1=L1∪{(ex, ry,bj)}

end for
for (q, rb, ex+2) ∼ AD(ex+2) do

L2=L2∪{(ey, rj, ex+2)}

end for
for (d1,d2) ∼ L1× L2 do

(ex, ra, x)=d1

(y, rb, ex+2)=d2

if x = y and shared then
D=D∪{d1,d2}

break
else if x ̸= y and not shared then

D=D∪{d1,d2}

break
end if

end for
end for
return D
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4.4 experimental setup

In this section, we introduce the generated dataset probes and de-
scribe a bias reduction algorithm that is applied to them. We also
provide details on our training strategy and implementation.

4.4.1 Dataset Probes Generation

We present here the dataset probes, namely Single-RuleTakers (S-RT)
and SHINet, we automatically constructed using the previously pre-
sented generation functions (see Section 4.3.2).

These datasets are based on three different publicly available
resources: the RuleTakers dataset (Clark, Tafjord, and Richard-
son, 2021), SHINRA (Sekine, Kobayashi, and Nakayama, 2018), a
knowledge graph manually built upon a structured taxonomy, and
ConceptNet (CN) (Speer, Chin, and Havasi, 2017), another KG
widely used in NLP tasks (Talmor et al., 2020b; Ma et al., 2021).
Please refer to the Figure 2.1 (Chapter 2) for samples on the SHINRA
and ConceptNet dataset.

the single ruletakers dataset (s-rt)

In the original RuleTakers dataset, each entry is composed of a
small theory, which represents the context (F∗

ij), and a True/False
question representing the hypothesis Hk

ij. These datasets are grouped
into five variations k = 0, and D ⩽ k with k = {1, 2, 3, 5} with ques-
tions requiring reasoning up to depths 0, 1, 2, 3, 5 respectively.

As explained before, the RuleTakers dataset is part of the ap-
proaches that train models into a multi-hop setup, where different
hops are mixed in the training set. Consequently, for our work
we filtered these datasets to construct our probe. To this end, we
construct single k-hop datasets with k ∈ {0, 1, 2, 3, 5} for train and test
splits, which we called S-RT dataset for easier reference. An example
of a true hypothesis in the RuleTakers dataset is presented in Figure
4.2.

shinet dataset

We can observe from the example of the RuleTakers dataset (Figure
4.2), that there is no annotation provided in the context. This means
that it is not straightforward to identify the relevant facts and/or the
distractors in the context. This form of the dataset makes it difficult to
measure their impact on the inference process. To overcome this limi-
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Figure 4.5: The SHINet dataset is created by aligning the SHINRA and Con-
ceptNet datasets to generate a hypothesis. Nodes e2 and e3 exist
in both datasets and link them.

tation, we created the SHINet dataset built upon the public SHINRA
dataset. The SHINRA dataset contains facts with the form (ei, is-a, ej),
limited to the “is-a” relation.

Considering that the inference task heavily relies on the range of
relationships and objects that the model has seen in the training phase
(Wang et al., 2021a), we noticed that using only the SHINRA dataset
is limited by the only relation present. Hence, we expanded the single
relationship from SHINRA with the one present in ConceptNet, with
each fact represented in the form (ej, r ′,pj).

We created SHINet dataset by sampling from SHINRA and Con-
ceptNet based on a manual alignment of the intermediate nodes of
SHINRA, done by a manual verification of finding ej in both datasets,
as represented in Figure 4.5. An example of a true hypothesis in the
SHINet dataset with related distractors s-inf, i-inf, and g-inf is pre-
sented in Figure 4.4. Table 4.1 summarizes our generated datasets.
We remark that we have train and test partitions for each SHINet
strategy-based dataset.

4.4.2 Bias Reduction Algorithm

A limitation of building automatic generated datasets is the uncon-
trolled insertion of biases. As remarked in the work of Sakaguchi
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Dataset train dev test

1-hop (s-inf) 35,000 1,200 2,074

2-hop (s-inf) 35,000 1,200 5,994

2-hop (i-inf) 35,000 1,200 -

2-hop (g-inf) 35,000 1,200 -

Table 4.1: Number of samples for train/dev/test splits for each generated
dataset.

et al. (2021) there exists dataset-specific biases which are not appar-
ent for individual instances, they get introduced in the dataset where
repetitive crafting strategies are used. Therefore, as recommended in
the literature (Elazar et al., 2021; Sakaguchi et al., 2021), to avoid bi-
ases in our generated datasets that lead to an overestimation of the
reasoning capabilities of PLMs, we applied on the test partitions the
AFLITE algorithm (Sakaguchi et al., 2021).

the aflite algorithm . The AFLITE algorithm is an Adversar-
ial Filtering (AF) algorithm initially proposed by Zellers et al. (2018)
and later improved by Sakaguchi et al. (2021). This algorithm utilizes
a dense representation of instances by employing their pre-computed
neural network embeddings.

Let us assume we have a dataset consisting of 50k instances. To use
the AFLITE algorithm, we perform the following steps:

1. We fine-tune RoBERTa (or any other PLM) on a small subset
of the data, which includes 5k instances for training and 1k
instances for validation.

2. After fine-tuning, RoBERTa pre-computes embeddings for the
remaining instances (44k instances) and discards the initial 6k
instances.

3. We proceed with using an ensemble of linear classifiers, specifi-
cally logistic regressions, which are trained on random subsets
of the data. The goal is to assess whether the representation
used in RoBERTa strongly indicates the correct answer option.
If the representation is strong, we discard the corresponding
instances and proceed with this process iteratively.

The algorithm requires pre-computed embeddings and labels as
input, along with the ensemble size (n), training size (m) for classifiers
in the ensemble, filtering cutoff size, and filtering threshold.
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Figure 4.6: The AFLite algorithm. It uses a set of linear classifiers trained on
different random partitions of the data. The algorithm filters out
instances with highest scores, iteratively. Source Sakaguchi et al.
(2021)

We train n linear classifiers during each filtering phase on differ-
ent random data partitions. We then collect their predictions on their
corresponding validation set. For each instance, we calculate its score
as the ratio of correct predictions to the total number of predictions.
We rank the instances based on their scores and remove the top-k
instances whose score is above the threshold. We repeat this process
until we remove fewer than k instances in a filtering phase or there
are fewer than m remaining instances. Figure 4.6 illustrates the itera-
tive process.

Our application used optimal parameters after grid-search with the
final values of n (classifiers) = 64, m(samples) = 1000, top-k = 200,
and threshold = 0.75. Comparing the original and filtered datasets,
we filtered approximately 45% of the total samples.

4.4.3 Model Training Strategy

We used PLMs trained on the single-hop training partitions of our
generated datasets. We remind the reader that this training proto-
col differs from the protocol used in previous approaches, where
mixed datasets {0 ⩽ i}-hop datasets are simultaneously used for train-
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ing multi-hop reasoning models based on a multitasking approach
(Richardson and Sabharwal, 2020).

More specifically, we exploited the following:

1. We used several PLMs based on BERT (Devlin et al., 2019), XL-
Net (Yang et al., 2019), and RoBERTA (Liu et al., 2019); even
using similar architectures, they showed significant differences
in performance results, especially on reasoning tasks (Talmor et
al., 2020a);

2. As a building block, we used the training protocol proposed
in previous work (Talmor et al., 2020b), removing the first fact
from Ikij in 40% of the samples. Using this training protocol, we
can provide insights into both the intrinsic strengths and limits
of our proposed PLM since we exploit a recent state-of-the-art
PLM that captures rich semantic information.

4.4.4 Implementation Details

shinet construction

Following previous work (Petroni et al., 2019), we transform each
triplet fact element into a statement in natural language using linguis-
tic patterns referred to as fact templates. For example, a triplet with the
form (ei, r, ej) is textually represented as ei is a ej, when r =“is-a”.

To generalize to all the relationships range available in our dataset,
we aligned our templates according to previous work, particularly,
the Hearst Patterns templates (Hearst, 1992; Roller, Kiela, and Nickel,
2018) and the ones proposed in Talmor et al. (2020b) as fact templates,
considering that they also work in a ConceptNet resource (refer to
Table 4.2). An example of the SHINet dataset is shown in Figure 4.4.

model architecture

We train a transformer-based model with a set of input sequences
of tokens with the following form: “[CLS] Context [SEP] Hypothesis
[SEP]” (Figure 4.7). Where Hypothesis is the textual representation
of the Hypothesis fact using the templates, and Context is the set
of textual representations for each fact in the context set. Similarly,
following previous approaches, we shuffled all the sentences in the
Context, to avoid the PLM learning a naive sequence order inference.

Finally, we used the output representation of the [CLS] token and
projected it into a binary classifier layer to obtain the probabilities
that the hypothesis is true or false. For all of the models, we used the
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Relation Text template

HasProperty “has the property”

UsedFor “is used for”

RelatedTo “is related to”

FormOf “is form of”

Synonym “is synonym of”

SimilarTo “is similar to”

HasContext “has contexto”

Table 4.2: ConceptNet relations and the text template used to create the
phrases.

PLM

[CLS] [SEP] [SEP]TokC0 TokCn TokH0 TokHm... ...

Context Hypothesis

C T0 Tn ST H0 Hm SH

Classification layer

{true,false}

Figure 4.7: The model architecture used for training the reasoning models.

transformers’ public implementation from HuggingFace (Wolf et al.,
2020).

Main hyperparameters were set following standard setup or origi-
nal authors’ recommendations. In all the experiments where SHINet
is used for training, we set a maximum word length to 256, batch size
to 4, number of steps per batch to 729, number of epochs to 4, and
Adam as optimizer with learning rate to 1e-5 and weight decay to
0.1. In the case of fine-tuning, each dataset uses its default hyperpa-
rameters. However, the parameters remain the same for each dataset
regardless of the fine-tuning order.

For the QA tasks evaluation, we opted for the same parameters as
when fine-tuning the SHINet datasets, except for the loss (categorical
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Test (k-hop) k=0 k=1 k=2 k=3 k=5

Train ↓ Models → RoBERTa

0-hop 99.99 43.51 26.52 22.94 12.78

1-hop 90.11 98.16 50.64 37.30 23.07

2-hop 66.92 64.62 88.54 91.65 96.16

3-hop 68.36 64.44 88.47 91.35 96.11

5-hop 63.32 63.11 87.09 89.92 95.06

⩽ 5-hop 100.0 98.40 98.40 98.40 99.8

Table 4.3: Accuracy performance (in %) for a RoBERTa model trained on
k-hop S-RT training set (rows) and tested on k-hop S-RT test set
(columns). For a better reading, scores worse than random (< 50%)
are in italic and good results (> 80%) are in bold.

cross entropy), and the number of steps per batch is set to 2,163. We
trained and evaluated the models with 10 different random seeds
and presented mean scores in our comparisons (see Appendix B for
computational costs). To provide statistical significance to our results,
we applied a test for Almost Stochastic Dominance (Dror, Shlomov,
and Reichart, 2019) between test score distributions, using α = 0.05.

4.5 results and discussion

To address RQ1 and RQ2, we perform our training and evaluations on
the k-hop S-RT with k ∈ {0, 1, 2, 3, 5} and the {D ⩽ 2}-hop, 1-hop, and
2-hop SHINet dataset. All the SHINet datasets are composed of the
object, relationship, and inference distractors. Regarding the inference
distractors, we evaluated with the three strategies: i-inf, s-inf, g-inf. In
the rest of this work, we consider that the default setting uses the
(s-inf) strategy unless it is explicitly mentioned otherwise.

To address RQ3, we used the MCQA (Richardson and Sabharwal,
2020), and RACE (Lai et al., 2017) datasets and tasks. MCQA is com-
posed of 193,000 entries. Each entry is composed of a question and
five possible answers, including reasoning tasks such as hypernymy,
hyponymy, synonymy detection, and word sense disambiguation.
RACE (Lai et al., 2017) consists of nearly 28,000 passages and 100,000

questions divided into Middle and High School sets and up to four
possible answers.
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Test (k-hop) k=1 k=2 k=1 k=2 k=1 k=2

Train ↓ Models → XLNet BERT RoBERTa

Mixed 98.89 89.06 99.23 94.63 99.71 93.44

1-hop 99.71 86.00 98.96 89.75 99.80 96.23

2-hop 96.31 99.82 77.75 87.25 98.77 99.99

Table 4.4: Accuracy performances (in %) for mixed, 1-hop and 2-hop models
using the SHINet dataset. The highest values are in bold.

4.5.1 Single-Hop PLMs and Incremental Reasoning

To answer RQ1, Do Single-Hop Reasoning Models Incrementally Learn?,
we compare the performance of training models on different setups:
single-hop and multi-hop. Following the previous work on the Rule-
Takers dataset, we used the RoBERTa model, and train separately sin-
gle i-hop reasoning models using the S-RT dataset (i ∈ {0, 1, 2, 3, 5}).
For k = 4, RuleTakers do not offer a training set, thus we did not add
it for the test since it does not fit our analysis purposes. We keep the
model, hyperparameters, and setting as proposed in Clark, Tafjord,
and Richardson (2021). Similarly, we train different PLMs using the
SHINet dataset on single 1-hop and 2-hop, and the Mixed models
trained on the {k ⩽ 2}-hop SHINet dataset. In this case, we extend the
PLMs including BERT, RoBERTa, and XLNET for further exploration
on the impact of our strategy, optimizing the training hyperparame-
ters for each model.

Table 4.3 and Table 4.4 report, respectively, the accuracy scores for
the different single i-hop models using the S-RT dataset, and the ac-
curacy scores of PLMs trained on 1-hop and 2-hop SHINet dataset,
as well as the Mixed model.

about incremental reasoning .

We take an empirical approach by assuming that incremental learn-
ing is observed when the models generalize from complex to less
complex tasks. Overall, we can observe that when trained with larger
hop depths, models struggle to solve even slightly less large reason-
ing tasks. Regarding specifically the S-RT dataset, it can be seen from
Table 4.3 (green area), that the performance of the model trained and
tested on the 2-hop (88.54) decreases to 66.92 and 64.62 respectively
when tested on the 0-hop and 1-hop data. Similar behavior is ob-
served for the model trained on 3-hop.
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Looking at Table 4.4, obtained using the SHINet dataset, we can
see that the results on the 2-hop test show a similar trend with the S-
RT dataset: overall, the 2-hop PLMs exhibit better results when tested
on 2-hop, but their performances decrease for a simpler task, 1-hop
test, for all the three models while we expect at least stable perfor-
mance. More precisely, we have observed a significant decrease in
performance by a considerable margin. Specifically, the performance
metrics have dropped by a significant amount. For instance, the per-
formance metrics for XLNet have dropped from 99.82 to 96.31, which
is a decrease of 3.51. Similarly, for BERT, the performance metrics
have dropped from 87.25 to 77.75, which is a decrease of 9.5. Lastly,
for RoBERTa, the performance metrics have dropped from 99.99 to
98.77, which is a decrease of 1.22. The same performance decrease
trend is observed compared to the upper bound achieved when test-
ing the 1-hop trained PLMs on the 1-hop test. This might reveal a
counter-intuitive and uncontrollable behavior: having in mind the in-
cremental human-style reasoning (Anderson, 1980), one could argue
that the ability to solve a k-hop problem implies the ability to solve
the {k-1}-hop one, but results indicate the contrary. These results are
consistent in both datasets suggesting that PLMs do not incrementally
learn by accumulating knowledge.

on the impact of implicit knowledge in plms .

In addition, looking at the compositionality generalization from
simple to complex tasks, we can see from Table 4.3 (S-RT) that the per-
formance of models trained on low-depth single-hops (rows k = 0, 1)
significantly decreases when the hop is deeper (columns k = 2, 3, 5) in
the test set (e.g., the 1-hop model performance decreases from 90.11
to 50.64 and 37.30 for columns k = 2, 3, respectively). However, for
depth rows k = 2, 3, 5, this trend is less clear. Similarly, Table 4.4, us-
ing the SHINet dataset, shows that 1-hop models manage to obtain
strong accuracy scores, over 86.00 in all datasets, indicating that they
can deal with their tasks and complex ones. This behavior can be ex-
plained by the mix of implicit knowledge (from pre-training) and ex-
plicit knowledge (from training), filling the logic gap between tasks
as shown by Talmor et al. (2020b). Moreover, we can observe that
RoBERTa-based and XLNet-based PLMs are more effective in both
1-hop and 2-hop configurations, in contrast to BERT-based models,
consistently with previous work (Talmor et al., 2020a).
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4.5.2 Incremental Reasoning Strategies

To answer RQ2. Can Reasoning Models be Guided Toward Incremental
Reasoning?, we compared our models to two different baselines: the
Mixed model used in RQ1, and the LoT model from Talmor et al.
(2020b). LoT is trained on a {k ⩽ 1} using ConceptNet, WordNet,
and Wikidata datasets to combine implicit knowledge acquired in
pre-training with explicit rules and facts showing good performance
on various types of reasoning tasks.

Additionally, we also trained the hybrid model by fine-tuning on
the SHINet 2-hop (g-inf) dataset followed by the LoT train dataset
(1-hop) to show the effect of jointly leveraging implicit knowledge,
explicit knowledge (LoT), and incremental reasoning (2-hop (g-inf)).

We report our results computing the mean accuracy scores of the
different distractors for each model in Table 4.5.

on the impact of distractors .

At a first glance, we can see that our proposed guided model 2-hop
(g-inf) surpasses all its counterparts for 2 out of 3 settings, namely
XLNet and RoBERTa. More precisely, by comparing the performance
scores of 2-hop (g-inf) to 2-hop (s-inf), we can fairly assess the positive
impact of our proposed inference distractors presented in the Algo-
rithm 3 to guide the training toward incremental learning across all
the models. For instance, we observed significant improvements in
the performance of 2-hop (g-inf) model with 2-hop (s-inf) models in
the k = 1 test for XLNet, BERT, and RoBERTa. The improvements
were 3.53, 6.41, and 1.17, respectively. Similarly, for the k = 2 test, we
observed improvements of 0.17, 7.98, and 0.01. We further compare
the accuracy scores of 2-hop (g-inf) in comparison to 2-hop (i-inf) to
show the impactful role of the (s-inf) inference distractor to improve
the reasoning inference. As it can be seen from Table 4.5, 2-hop (g-inf)
increases the performance on both tests by a difference greater than
21.0 in all models. The comparison between the 2-hop (g-inf) model to
a traditional multi-hop mixing strategy Mixed shows the advantage
of the incremental inference for most of the settings.

Finally comparing our proposed guided model 2-hop (g-inf) to the
fine-tuned multi-hop strategy hybrid, we can observe that our guided
model surpasses the hybrid model and LoT in 2 out of 3 models,
namely (XLNet and RoBERTa). It is worth noting that this perfor-
mance is achieved using fewer computational resources; the model
can address both tests 2-hop and the simpler 1-hop in an incremental
reasoning fashion.
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In Figure 4.8, we show some hand-picked difficult examples from
the 2-hop test set for the LoT model that are especially helped by the
guided model 2-hop (g-inf), using XLNet and RoBERTa. Specifically,
we observed a positive impact of the distractors to solve false hypoth-
esis examples using a negative phrase.

generalization of incremental reasoning to other

datasets .

Additionally, we compare our proposed models with those trained
on the S-RT dataset used in RQ1. We particularly examine if the pro-
posed models still exhibit the observed phenomenon highlighted in
the green area from Table 4.3. To achieve this, we have conducted
three runs and used the inoculation technique (see Section 2.3). The
results with mean values are presented in Table 4.6.

We did a preliminary analysis of the learning curves for each task
to determine the right amount of data to use. Figure 4.9 shows the
learning curves when applying the inoculation technique for the
MCQA and RC tasks. We selected 5,000 as the number of samples
with the best performance and smaller training size. Similar analysis
was done for the RACE and S-RT datasets with equal conclusion
w.r.t. the number of samples.

We can see from Table 4.6 that even when the inoculation is used,
the models relying on incremental reasoning (2-hop (g-inf) and hybrid)
overpass the baseline results (S-RT and 2-hop (s-inf)). Particularly, we
see that guiding the model training over hops leads to improvements
in lower hop levels (k = 0, 1) compared to traditional model training
with mixed hops. For instance, for the test k = 1, the guided model
2-hop (g-inf) improves by 0.56 and 0.36 the model trained with S-RT
on hops k = 2 and k = 3, respectively.

4.5.3 Impact of Reasoning in QA tasks

To answer RQ3. Do QA Tasks Leverage Incrementally Trained Reasoning
Models?, we used: 1) two QA tasks, namely Multiple Choice Question
Answering (MCQA), and Reading Comprehension (RC). We applied
the inoculation technique presented before to all the models; 2)
the Random model, denoted Rand, the RoBERTa model, denoted
RoB, and the LoT model as baselines. The RoBERTa model has been
chosen, given its performance superiority as shown in the previous
experiments (see Sections 4.5.1 and 4.5.2). To illustrate the tasks,
Figure 4.11 shows an input sample for the MCQA task, while Figure



100 implicit integration with incremental reasoning

Figure 4.8: Two examples from the 2-hop test set. Both examples are nega-
tive (false hypothesis), the first with a positive phrase and the
second one with a negative phrase. The guided model correctly
predicted both.

Test (k-hop) k=1 k=2 k=1 k=2 k=1 k=2

Models → XLNet BERT RoBERTa

Train ↓
LoT 98.37∗ 99.17 86.28∗ 95.33∗ 99.15∗ 98.96

Mixed 98.89 89.06 99.23 94.63 99.71 93.44

2-hop

(i-inf) 60.81 56.77 62.37 57.16 60.48 56.23

(s-inf) 96.31 99.82† 77.75 87.25 98.77 99.99†
(g-inf) 99.84∗† 99.99∗† 84.16∗ 95.23∗ 99.94∗† 100∗†

hybrid 99.18∗† 99.67∗† 86.32∗† 93.85∗ 99.31∗† 99.76†

Table 4.5: Accuracy performances (%) for 2-hop models by varying the infer-
ence distractor in the SHINet dataset. † and ∗ indicates statistical
significance according to the Almost Stochastic Dominance test
over LoT and 2-hop (s-inf), respectively.
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Figure 4.9: Learning curves for MCQA (upper) and RC (lower) tasks. For
MCQA we show the Hypernymy (left) and Synonymy (right)
dataset. For RC we show the Middle School (left) and High
School (right) datasets. For all curves, the X axis represents the
number of training samples (in thousands), and the Y axis, the ac-
curacy score. Average values are reported with 5 runs for MCQA
and 3 for RC.

Figure 4.10: Accuracy values using the hypernymy and hyponymy subsets
broken into number of hops k (rows) for the models (columns).
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Train ↓ / Test(k-hop) → k = 0 k = 1 k = 2

S-RT
2-hop 66.92 64.62 88.54

3-hop 68.36 64.44 88.47

LoT
2-hop 72.61 65.37 88.40

3-hop 72.46 64.81 88.56

2-hop 2-hop 67.15 64.88 88.42

(s-inf) 3-hop 67.06 64.58 88.25

2-hop 2-hop 68.06 65.18 88.05

(g-inf) 3-hop 67.89 64.8 88.11

hybrid
2-hop 71.75 65.49 88.44

3-hop 72.47 65.14 88.60

Table 4.6: Accuracy comparing different reasoning models on the S-RT
dataset. The best result for each test in underlined and bold for
2-hop and 3-hop models, respectively.

4.12 shows a sample for the RC task.

multiple choice question answering (mcqa).

For MCQA, we re-used a publicly available code1 as Richardson
and Sabharwal (2020) and then applied the inoculation technique
(Liu, Schwartz, and Smith, 2019). We plot the learning curves of each
probe for the average of five different runs with random subsets (see
Figure 4.9).

In Table 4.7, we report the results of our inoculated models. We can
see that our models 2-hop (g-inf) and hybrid achieve the best average
performance scores over all the baselines.

To deepen our analysis of the reasoning over increasing numbers
of hops, we experimented with our models with the hypernymy and
hyponymy subsets, up to 4 and 3 hops levels, respectively. By filter-
ing the numbers of hops, we report the performance variation of our
models in Figure 4.10. We can see that for the hypernymy (resp. hy-
ponymy), the hybrid (followed by 2-hop (g-inf)) model outperforms all
models in all depths but for k = 4, 5. Furthermore, we interestingly
observe a positive trend toward reducing the performance decrease

1 https://github.com/yakazimir/semantic_fragments

https://github.com/yakazimir/semantic_fragments
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Figure 4.11: MCQA examples.

Figure 4.12: RACE examples.
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Models Middle (%Imp) High (%Imp)

RoBERTa 77.18 (-) 59.22 (-)

LoT 77.04 (-0.2%) 68.68 (+16.0%)

1-hop (s-inf) 76.56 (-0.8%) 68.94 (+16.0%)

2-hop (s-inf) 77.32 (+0.2%) 69.76 (+17.8%)

2-hop (g-inf) 75.65 (-2.0%) 68.72 (+16.0%)

hybrid 76.37 (-1.0%) 68.56 (+15.8%)

Table 4.8: Accuracy (%) comparing different reasoning models on the RACE
dataset for middle school and high school. Improvement percent-
ages (%Imp) are given w.r.t. RoBERTa.

rate between hop levels when using our proposed guided training
approach. For instance, when comparing levels k = 2 and k = 4, we
observe that performance decrease is reduced from 0.14 to 0.01 for
2-hop (s-inf) and 2-hop (g-inf) respectively. Similarly between the hy-
ponymy levels k = 2 and k = 3 we can see a performance decrease
reduced from 0.18 to 0.16 for LoT and 2-hop (g-inf) models respectively.
This observation clearly indicates the positive impact of incremental
reasoning on performance.

reading comprehension (rc).

For RC, results under inoculation conditions are reported in Table
4.8. As can be seen, most of the models behave similarly for the Mid-
dle set, with 2-hop (s-inf) as the most performing model. On the con-
trary, we can observe a clear improvement for all models on the High
set when compared to RoBERTa. In this case, the most performing
model is 2-hop (s-inf) (69.76) closely followed by 2-hop (g-inf) (68.72)
and hybrid (68.56). Therefore, chains of reasoning seem to be a key
component of the solution, even if most of the studied multi-hop
models correctly capture the needed knowledge.

Finally, we compare the results from Table 4.7 and Table 4.8. We
observe that model scores are very close on the RC task, even when
using different distractors and the number of hops. The uniformity
between all models’ performances suggests that multi-hop reasoning
is not a key component in solving these questions.
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4.6 conclusion

The use of PLMs for language reasoning tasks is becoming more pop-
ular, but the current training methods have produced inconsistent
outcomes, which suggests certain limitations.

In this chapter, we have studied explicitly whether we can endow
PLMs used in multi-hop reasoning tasks with the ability to incre-
mentally acquire knowledge by following the inference path over the
sequence of hops. Our goal is to better control the training of PLMs
to create more understandable and predictable multi-hop reasoning
models. To achieve this goal, we implemented single-hop training and
evaluations using automatically constructed datasets, as presented in
Section 4.4. Our findings complement previous research in the lit-
erature by showing that PLMs trained on 1-hop reasoning tasks can
extrapolate the reasoning to 2-hop. However, 2-hop reasoning models
struggle to generalize over slightly simpler 1-hop tasks.

Keeping in mind the human-style reasoning from simpler to com-
plex tasks, we advocate incremental reasoning over the structure of
the inference path as a step forward. In Section 4.3, we provided a
training data generation strategy that relies critically on inference
distractors connecting intermediate relevant facts in the reasoning
path. By applying our approach, our models achieve higher or similar
performance trends than fine-tuning multi-hop models but consume
fewer resources. Furthermore, we show that the incrementally trained
multi-hop PLMs are transferable to other QA-based tasks (Section
4.5).

Although our experimental settings are limited to low depths of
inference (k = 1, 2), our findings demonstrate the feasibility and ben-
efits of incremental reasoning and open up new research opportuni-
ties.

In this chapter, we explored implicit integration strategies of KG
into PLMs for reasoning-based tasks. In the next chapter, we will
explore explicit integration methods.
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P R O B I N G P R E - T R A I N E D L A N G U A G E M O D E L S
W I T H H I E R A R C H Y P R O P E RT I E S

5.1 introduction

From the previous chapter, we studied the implicit injection of knowl-
edge from KG into PLMs for reasoning-based tasks. This implicit in-
jection relies on transforming elements from the KG into plain text
using text templates. We proposed and tested different strategies for
adding information beyond the main reasoning chain and evaluated
how this affects the PLMs performance.

Complementary, explicit injection methodologies are particularly
useful to represent structural features of the KG, making them a bet-
ter fit to represent their hierarchical structure. Learning knowledge
representations with an underlying hierarchical structure is an ac-
tive research topic (Rossi et al., 2021). Approaches include learning
embedding representations from symbolic knowledge sources (e.g.,
knowledge graphs (KGs)) such as TransE (Bordes et al., 2013) and
TransR (Ji et al., 2015) or constructing dedicated vector spaces based
on hyperbolic spaces (Nickel and Kiela, 2017) and order embeddings
(Vendrov et al., 2015)(Section 3.2.2). Particularly, for PLMs, learning
underlying hierarchical structure is achieved by injecting triplets em-
beddings to capture entity and relation features (Liu et al., 2020;
Zhang et al., 2019), as introduced in Chapter 3.

The learning of hierarchical structure in different models is
particularly beneficial to NLP downstream tasks such as Taxonomy
Reconstruction and Hypernymy Detection (Nickel and Kiela, 2017;
Camacho-Collados, 2017), which are commonly used as evaluations.
Consequently, recent work studied PLMs’ adaptation to Taxonomy
Reconstruction (Jain and Anke, 2022) and Hypernymy Detection
tasks via sequence classification (Chen, Lin, and Klein, 2021).
However, these evaluations rely on superficial hierarchical features
(Camacho-Collados, 2017).

In this chapter, we delve into the development of an extensive eval-
uation of hierarchical knowledge encoded by PLMs. We aim to focus
on the structural hierarchical features from taxonomies and analyze
whether these features help enhance the representations. To conduct
this evaluation, we propose to use the task diagnostic approach dis-
cussed in Chapter 2 and characterize the hierarchical structure using

107
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hierarchy properties (presented in Section 5.3). Our proposition aims
to create a task-agnostic setup suitable for PLMs that can measure var-
ious aspects of the hierarchy beyond the surface-level features, such
as hypernymy relationships.

The hierarchy properties used to characterize the hierarchical struc-
ture rely on structural edge-based observations from the taxonomies.
These properties are represented as the interaction between three el-
ements in the taxonomy, which we call ternaries. These ternaries are
later used as probes for language models to evaluate the notion of
hierarchy in PLMs through these properties. We then explore the in-
jection of these hierarchy properties to observe whether PLMs can
learn them independently and integrate hierarchy. Finally, we evalu-
ate the impact of learning these properties on improving the overall
notion of hierarchy by testing PLMs on different hierarchy-related
tasks such as taxonomy reconstruction and hypernymy discovery.

In the remaining part of this chapter, we have structured our dis-
cussion in the following way. First, we will overview the problem
and our main contributions in Section 5.2. After that, we will explain
our methodology, including the hierarchy properties and the design
of our probes in Section 5.3. In Section 5.4, we will define our ex-
perimental setup along with datasets, metrics, and baselines. We will
present and discuss our results in the subsequent section, i.e., Section
5.5. Finally, we show our conclusions in Section 5.6.

5.2 overview and contributions

The hierarchical representation of concepts is a fundamental aspect of
human cognition and essential in performing numerous Information
Retrieval (IR) (e.g., web search (Sieg et al., 2004)) and Natural Lan-
guage Processing (NLP) tasks (e.g., hypernym discovery (Camacho-
Collados et al., 2018)).

Therefore, works in this research direction have explored incor-
porating hierarchical knowledge extracted from knowledge graphs
and taxonomies to refine models (Hu et al., 2015; Liu et al., 2020;
Nickel and Kiela, 2017; Chen, Lin, and Klein, 2021). In particular,
prior studies on static word embeddings showed that designing ded-
icated space representations to encode the hierarchy benefits the per-
formance of various downstream tasks (Nickel and Kiela, 2017; Ven-
drov et al., 2015), giving rise to the importance of encoding concept
hierarchy in these representations.

Most previous studies have adopted task-dependent evaluations
to assess the extent to which models capture hierarchical linguis-
tic knowledge. These evaluations are based on the premise that the
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model’s performance on downstream tasks sheds light on whether
the model captures hierarchy. Specifically, such evaluations target
tasks that require applying hierarchical knowledge to some degree,
such as taxonomy reconstruction and hypernymy detection (Nickel
and Kiela, 2017; Camacho-Collados, 2017).

However, existing task-dependent evaluations have two main lim-
itations. First, they heavily rely on detecting a single relation type
(hypernymy) and overlook the implicit taxonomy structure by ignor-
ing other related relations, such as ancestors and siblings (Mao et
al., 2018). As a result, none of the state-of-the-art (SOTA) evaluation
methodologies are able to reveal this implicit yet essential hierarchical
information (Alsuhaibani, Maehara, and Bollegala, 2018).

Second, particularly in the context of PLMs, task-dependent eval-
uations might conflate the model’s understanding of a given target
task and the model’s understanding of hierarchy per se.

Hence, there is a need for more comprehensive evaluation methods
and datasets that consider complex hierarchical relations and are able
to reveal how well models capture those relations and apply them to
downstream tasks.

The present contribution addresses the two aforementioned lim-
itations. We propose a task-agnostic methodology to evaluate lan-
guage models’ understanding of hierarchical knowledge considering
implicit and more complex taxonomic relations beyond the direct hy-
pernymy (parent, ancestors, and siblings). In particular, our evalua-
tion focuses on PLMs, such as BERT (Devlin et al., 2019), considering
their ability to encode lexical knowledge, as well as their outstanding
performance on different tasks (Qiu et al., 2020).

To the best of our knowledge, no task-agnostic methodology exists
so far that enables us to reveal to what extent PLMs encode hierarchy
relations intrinsically. We rely on the task diagnostic methodology
(Chapter 2) to characterize the task into a set of properties, and we use
a probe-based methodology (Pimentel et al., 2020) to evaluate whether
SOTA models capture task-agnostic linguistic knowledge.

Our contributions seek to answer three main questions:

1. RQ1: To which extent do PLM representations encode hierarchy w.r.t.
hierarchy properties?

2. RQ2: Does injecting hierarchy properties into PLMs using a task-
agnostic methodology impact their representations?

3. RQ3:Can hierarchy-enhanced PLM representations be transferred to
downstream tasks?
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5.3 methodology

This section presents our task-agnostic methodology for probing hi-
erarchical knowledge of PLMs.

First, we define a set of intrinsic properties for a hierarchy (Section
5.3.1). Then, we describe how to design probes upon these properties
and how to fine-tune PLMs to identify these properties by learning
these probes (Section 5.3.2).

5.3.1 Intrinsic Hierarchy Properties

We characterize a hierarchical structure with a set of intrinsic proper-
ties that mirror the distribution of concepts within a given taxonomy.
We rely on evaluating the taxonomic similarity to study the hierar-
chical relationship between words. From a linguistic perspective, this
can be understood as evaluating the hierarchical relation based on
the paradigmatic knowledge encoded by PLMs (Lapesa, Evert, and
Walde, 2014; Kacmajor and Kelleher, 2020). To validate this similar-
ity between two concepts, we represent concepts as nodes and use
edge-based approaches, such as the shortest path between two nodes
(Zhong et al., 2002; Budanitsky and Hirst, 2006). Please note that this
differs from a syntagmatic approach, where only co-occurrence is con-
sidered.

Concretely, we define a set of relations and properties from edge-
based observations. Then, we evaluate these properties empirically
considering semantic distance methods, inspired by (Budanitsky and
Hirst, 2006). We consider distance as the complement metric for simi-
larity.

Notably, for a fixed node n, we define four basic relations –parent,
ancestor, sibling, and far relative– in a taxonomy in the following way.
A parent node p is a direct hypernym at a one-edge distance from n,
while an ancestor node is an indirect hypernym at a two-edge distance.
A sibling node shares a parent with a two-edge distance, and a far
relative shares the ancestor but not the parent.

We use these relations and the corresponding edge-based distances
to define hierarchy properties. Table 5.1 presents the six hierarchy
properties considered in this work based on the four defined rela-
tions for all possible combinations. In order to verify these proper-
ties, we formulate them as inequalities that examine the distance be-
tween two distinct relations for a fixed node, as shown in Table 5.2.
Our motivation for considering three nodes (ternary) in these evalu-
ations comes from recent research on pattern-based relation extrac-
tion (Hovy, Kozareva, and Riloff, 2009; Liu, Cohn, and Frermann,
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Table 5.1: The six hierarchy properties with their names and textual descrip-
tions.

Property Description

P-A “A node is closer to its parent than its ancestor.” The simi-
larity between a pair of concepts is proportional to their
path length under an edge-based approach (Resnik,
1995).

P-S “The distance between ‘siblings’ should be longer than be-
tween ‘father’ and ‘son’.”. Similarly, it is a straightfor-
ward application of edge-counting, also found in other
approaches such as scaling the taxonomy (Zhong et al.,
2002).

P-F “The parent is the closest element to a node.” It generalizes
P-S by comparing to further relations in a taxonomy. If
a model does not satisfy this property, it struggles to
differentiate the hypernym relation from others.

A-S “A node is closer to its ancestor than to its sibling.” We
did not find an expected behavior about this property
in the literature. We empirically choose the path-level
evaluation proposed by (Gupta et al., 2016), favoring
the correct edges in the hypernym path rather than
adding incorrect elements that could cause a cascade
of generalization errors.

A-F “The ancestor is the closest term for a node, except for the
father.” This property is a generalization of the ancestor
relationship evaluated in further relationships in a tax-
onomy.

S-F “The sibling is the closest element for a node, except for
the father and the ancestor.” Based on edge-counting ap-
proaches, we should find a sibling node closer to other
relations beyond the ancestor in a hierarchy.

2023), where the inclusion of a third “anchor” node has proven use-
ful in capturing various relation types, including hypernymy and co-
hyponymy.

To facilitate the reading, we adopt a naming convention for the
properties that highlights the two used relations, i.e. a Relation-
Relation format. The relation identifier, denoted by R, can take one
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Table 5.2: The hierarchy properties along with their distance-based defini-
tions, and the three participant (colored) nodes in the taxonomy.
Three groups are identified based on the left relation in the inequal-
ity: P-* (regrouping P-A, P-S, and P-F), A-* (regrouping A-S and
A-F), and S-* (with only S-F).

Property Definition

P-A dist(n,p) < dist(n,a)

P-S dist(n,p) < dist(n, s)

P-F dist(n,p) < dist(n, f)

A-S dist(n,a) < dist(n, s)

A-F dist(n,a) < dist(n, f)

S-F dist(n, s) < dist(n, f)

of four possible values: Parent, Ancestor, Sibling, and Far relative.
Furthermore, we congregate the initial properties into three groups,
P-*, A-*, and S-*, based on the left relation in the inequality. These
groups serve as an aggregated representation of the properties for
each type of relation.

5.3.2 Probing Hierarchical Representations

designing probes .
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For this purpose, we align the properties into a single form. Given
a taxonomy T = (V ,E), with V representing a set of nodes and E a set
of edges, we define a ternary as t = (xn, xl, xr) encoding a hierarchy
property Rl-Rr where xn represents a fixed node, xl the node of the
left Relation (Rl), and xr the node of the right Relation (Rr). Note
that each of the tuples (xn, xl) and (xn, xr) corresponds to one of
the defined relations (parent P, ancestor A, sibling S or far relative F)
and the taxonomic distances (edge-based) must satisfy the associated
property dist(xn, xl) < dist(xn, xr).

Each node within the ternary tuple is converted into textual repre-
sentations through predefined phrases (prompts) (Section 5.4). These
concept representations are used to compute a model representation
within a given language model. Consequently, for a given model,
we obtain a representation in the form (x̂n, x̂l, x̂r) for each ternary
(xn, xl, xr). Finally, we use a distance method to evaluate the inequal-
ity d(x̂n, x̂l) < d(x̂n, x̂r).

teaching hierarchy properties to a plm .

To teach the hierarchy properties to PLMs, we leverage the con-
cept representations derived from the probes, (x̂n, x̂l, x̂r), and train a
model to satisfy the inequality dist(x̂n, x̂l) < dist(x̂n, x̂r). We assume
that a model’s performance on these probes indicates how well its
representations align to a hierarchy-like distribution.

We employ the Sentence Transformer framework (Reimers and
Gurevych, 2019) with a triplet network architecture and a pooling
operation to the output of the PLM to generate the embedding of
our concepts. This approach achieved promising results on lexical
knowledge evaluations (Vulić et al., 2021).

In order to evaluate and teach our approaches, we use a pipeline
illustrated in Figure 5.1. To teach a PLM the hierarchy property
P− S, we take one triplet such as (tablespoon, spoon, wooden spoon).
We convert these entities into text and obtain the PLM represen-
tations noted by the T, S, and W pointed boxes in the “Teaching
a Property” module from Figure 5.1. We then train the inequality
dist(tablespoon, spoon) < dist(tablespoon, wooden spoon) using the
T, S, and W representations, where dist is the cosine distance.

Given the inner contrastive nature of our probes in a triplet form,
we adopt a contrastive loss, specifically the Triplet loss (Dong and
Shen, 2018). This loss fine-tunes the network to minimize the distance
between related inputs, (x̂n, x̂l), while maximizing the distance for
unrelated inputs, (x̂n, x̂r), by minimizing the following loss:
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Table 5.3: Number of samples (ternaries) generated per property.

# ternaries P-A P-S P-F A-S A-F S-F

train 6,397 16,792 20,710 - 20,710 31,032

dev 1,443 2,016 4,352 2,016 4,352 4,112

test 1,435 7,658 14,795 7,658 14,795 64,906

L(xn, xl, xr) = −max(∥x̂n − x̂l∥− ∥x̂n − x̂r∥+α, 0) (5.1)

5.4 experimental setup

5.4.1 Datasets and Metrics

We used the Bansal et al. (2014) dataset to sample our probes, consist-
ing of medium-sized taxonomies generated from WordNet subtrees
(Bansal et al., 2014). This dataset comprises subtrees of height 3 (i.e.,
the longest path from the root to the leaf is 4 nodes) containing be-
tween 10 and 50 terms. Specifically, we used the version extended
with WordNet definitions (Chen, Lin, and Klein, 2021).

We generated ternaries for each property, split into train/dev parti-
tions to fine-tune PLMs with the hierarchy properties. Table 5.3 shows
the number of ternaries generated per property for each split set. As
mentioned before, we do not consider the property A-S for training
due to its absence in the literature. For evaluation, we use the ac-
curacy metric defined as the number of correct predictions where
the ternary inequality was satisfied, divided by the total number of
ternaries in the test set.

5.4.2 Baselines and Models

As baselines, we use three groups of models:
Group 1. Comprises random and non-contextualized models as

a lower bound performance of the PLMs following previous work
(Vulić et al., 2021; Talmor et al., 2020a):

• a) Random: we generated symmetrical random distances for all
node pairs and report the average of ten random runs;

• b) FastText: to compare static word embeddings in a fair
setup, i.e. avoiding the out-of-vocabulary problem, we used the
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character-based version of FastText embeddings (Bojanowski
et al., 2017) trained on Wikipedia (FT-wiki)

Group 2. Comprises a total of five PLMs available in the Hugging-
Face library:

• a) BERT (bert-base-cased);

• b) BERT-L (bert-large-cased);

• c) RoB-L (roberta-large);

• d) S-RoB (all-distilroberta-v1); and

• e) S-MPNet (all-mpnet-base-v2).

We notice that the first three models are cross-encoders and the last
two models (S-RoB and S-MPNet) are bi-encoders. The bi-encoders
are trained using a dual-encoder network and oriented towards se-
mantic textual similarity tasks on multiple datasets. These characteris-
tics give some advantages in the final results of our probes compared
to classical PLMs. However, we evaluated these models to obtain in-
sights on the most robust ones.

Group 3. Comprises two SOTA knowledge enhanced PLMs:

• ERNIE (Sun et al., 2019), a BERT-based trained on multiple
tasks to capture lexical, syntactic and semantic aspects of in-
formation, and

• CTP (Chen, Lin, and Klein, 2021), a RoBERTa large model
trained to perform hypernym prediction.

5.4.3 Concept and Ternary Representations

Each concept in a ternary is represented textually by its name and def-
inition from a knowledge source to provide context information. We
consider two vector-based methods, namely cls and avg, and prompt-
based methods to generate the representation of a ternary to text with
a PLM.

For vector-based methods, we use the last layer output of the PLM
and represent each concept as a list of tokens with the form: ‘[CLS]
[concept name] is defined as [definition] [SEP]’. The cls method uses the
special token [CLS] and the avg method computes the average of all
subtokens. We compute the distance between these representations
based on cosinus (cos) and euclidean (L2) distances.

In contrast to vector-based methods, the prompt-based method con-
denses the ternary representation into a single textual representation.
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Table 5.4: Accuracy scores for representation methods on different models
for Property P-A, other properties follow similar trends. cos and L2
stand for cosine and euclidean distances respectively. cls and avg
refer to the type of representations used. LMScorer is not com-
puted for bi-encoder models since they are not adapted for this
task (Wang, Reimers, and Gurevych, 2021).

Model Distance
BERT BERT-L RoB-L S-RoB S-MPNet

Repr. Method

cls
cos 72.6 68.2 58.5 83.1 83.2

L2 72.4 68.7 58.5 79.1 83.1

avg
cos 75.8 78.8 73.2 85.2 85.6

L2 74.3 77.1 61.5 83.3 84.9

LMScorer - 50.2 52.6 54.6 - -

We use the LMScorer method (Jain and Anke, 2022) to score sentences
for factual accuracy.

LMScorer computes a pseudo-likelihood score for each token in a
sequence by iteratively masking it, considering past and future to-
kens. We recall its formulation (presented in Chapter 2):

LMScorerPLM(W) = exp

 |W|∑
i=1

logPPLM(wi|W\i)

 (5.2)

We experiment with different templates for converting these ternar-
ies and report the best-scoring template: “A is a B. C is a B. [definition
a][definition b] [definition c].”, where A, B, and C are nodes; different
from the one for vector-based methods. For static word embeddings,
we use only the avg method, as there is no [CLS] token.

5.5 results and discussion

In this section, we report the results to answer our research questions.
To simplify our analysis, we use the groups presented in Table 5.2
and report the average values. We only report the best configuration
to facilitate the reading in our figures and tables, but we ensure we
obtain the best configuration for each model.
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5.5.1 Evaluation of Hierarchy Properties in PLMs

defining the best representation method.

First, we carry out preliminary experiments to explore the best
performing settings in terms of model representation and distance
methods. Table 5.4 shows our results based only on the representa-
tive property P-A using various methods on all PLMs. Our findings
indicate that the vector-based representations (75.0-85.6) outperform
all the explored prompts. We also observe that the avg representa-
tion is always superior to cls. Moreover, the avg representation with
cos distance frequently obtains slightly better scores (76.0) than L2
(75.7). Under this evidence, we adopted the avg representation with
cos distance for our remaining evaluations (Appendix C shows re-
sults obtained with avg representation and L2 distance).

We now answer our first research question RQ1: To which extent do
PLM representations encode hierarchy w.r.t. hierarchy properties?

comparing model’s overall performance .

Our analysis focuses on the model’s overall performance in our
evaluation (named All, as the average score from all properties) and
provides insights into the property groups (P-*, S-*, and F-*) captured
by Group 1 and Group 2 models.

Considering the model’s overall performance (All), we first test the
quality of our probes from our baselines in Group 1. Table 5.5 shows
that FastText (FT-wiki) embeddings perform better (60.3) than the
Random approach (50.2). Aligned with previous work (Fu et al., 2014)
claiming that static embeddings encode hypernymy-like relations to
some degree, we argue that our probes help to capture these hierar-
chical relations.

Similarly, all Group 2 models obtained All scores higher than Ran-
dom. In particular, the S-RoB model obtained the highest score (70.3),
closely followed by S-MPNet (70.0). Moreover, only these models out-
performed the FT-wiki static embeddings.

analyzing kg-enhanced plm’s performance .

From Group 3 models, we can surprisingly see that ERNIE outper-
forms CPT, while the latter is a RoBERTa large model specifically
trained on hypernym classification task with a classification layer on
top of the PLM.
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By comparing these models against their vanilla version, we can
interestingly observe that while ERNIE showed constant improve-
ment in all properties, with +2 score points on All (56.2) w.r.t. BERT,
our probes suggest that CTP, trained on a task-dependent evaluation
(37.7), degrades its initial representations w.r.t. RoB-L (53.3).

Moreover, CTP is the only PLM-based model with lower perfor-
mance than Random. Overall, these results provide insights on the
conflation problem faced with task-dependent evaluation regarding
task understanding and hierarchy understanding of PLM’s.

analyzing challenging taxonomic relations .

Now, we analyze the results at groups level. Considering the seman-
tic similarity approach in pre-training, we expect that sibling relations
(S-*), akin to analogies, will exhibit better representations than other
hierarchical relations.

Across all models, we can observe that the siblings relation (S-*),
followed by the parent relation (P-*), obtained higher performances
than the ancestor relation (A-*). Our results capture the preference of
the semantic similarity of these models, particularly when compared
to other far relations, because of the high values in S-F (min: 73.8−
max: 80.6).

Similarly, most ancestor representations are further than parents
(73.2 − 85.6 in P-A). Based on property P-S (37.2 − 42.0), PLMs
such as BERT, BERT-L, and RoB-L tend to represent siblings closer
(73.8 − 76.1) than the parent (60.5 − 66.1). For the ancestor relation,
higher scores on property A-F (40.1− 65.9) than on A-S (22.3− 33.7)
imply that far relatives are easier than siblings. However, these scores
are generally lower than those obtained with other properties. Be-
sides, when comparing the P-F and A-F columns, we observe higher
scores with the parent, one-edge distance, than the ancestor, two edges
away (similarly, for the scores between P-S and A-S). These trends
indicate that ancestor representations are not as clearly defined as
parents.

Overall, our evaluation reveals that the analyzed PLMs struggle to
capture some hierarchical relationships such as sibling and ancestor.
Besides, the results confirm that the performance of PLM specifically
trained on a hierarchy-aware task (e.g., CTP) is not a salient signal of
PLM’s understanding of hierarchy.
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discussion about probing methodology.

Our probing methodology requires a textual definition of concepts
for evaluation. Hence, the resulting representations’ quality can be im-
pacted by the definition’s length (Bouraoui, Camacho-Collados, and
Schockaert, 2020) or absence. In the latter scenario, alternative ap-
proaches must be considered to obtain a suitable vector representa-
tion (Vulić et al., 2020). Additionally, the taxonomy’s granularity can
impact the representations’ quality. Our methodology has been tested
on low domain-specific levels (for example, a concept of “presenile
dementia”, with parent “dementia” and sibling “insanity”). However,
coarse-grained taxonomies, with more abstract concepts in propor-
tion, may not respect our target properties since relations between
abstract concepts tend to be different from relations between more
specific concepts, as suggested by Vulić et al. (2017).

5.5.2 Enhancing PLMs with hierarchy properties

In the following, we answer RQ2: Does injecting hierarchy properties
into PLMs using a task-agnostic methodology impact their representations?
Our underlying objective is to investigate the feasibility of our task-
agnostic evaluation of PLMs w.r.t. hierarchy through the set of de-
fined properties (see Section 5.3.1). To this end, we fine-tuned (see
Section 5.4.3) and evaluated the models on the probes following the
best evaluation setup for PLMs (discussed in Section 5.5). These fine-
tuned models are referenced as hierarchy-enhanced PLMs (denoted
PLMhp) belonging to Group 4 in Table 5.5, where we report the av-
erage accuracy after fine-tuning each model with 5 different random
seeds and optimal hyper-parameters. Similar to RQ1, we consider
the All for comparison, and we take as reference the corresponding
vanilla model for our analysis.

Our results showed improvement in all models for the All column
w.r.t. the original PLM. For instance, the models BERT-Lhp, S-RoBhp,
and S-MPNethp are improved by 12.5, 3.3, and 3.3 points, respec-
tively in comparison to their vanilla counterparts.

In particular, the property labeled as A-S was not included in the
training dataset. However, it is noteworthy that all models demon-
strated a consistent improvement in this particular property. Specifi-
cally, the performance score increased between +0.8 for S-RoBhp and
+10.5 for RoB-Lhp. For instance, the models BERT-Lhp, S-RoBhp,
and S-MPNethp showed an increase in performance from their re-
spective initial scores of 24.6, 33.7, and 29.6 to their respective final
scores of 31.6, 34.5, and 35.5.
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These findings align with our hypothesis that A-S complements
other property criteria without compromising initial performance.
In contrast, the trained property S-F seems to have a more modest
improvement, ranging from a slight degradation of −0.2 for the
S-MPNethp model to an increase of +3.2 for the BERT-Lhp model.
This suggests that, while our fine-tuning approach yields promis-
ing results, it still struggles to differentiate sibling and far relation
representations effectively.

qualitative analysis

We further deepen our understanding of the impact of considering
hierarchy on PLM’s representations by comparing between S-RoB
and S-RoBhp. We particularly analyze the failures, in terms of wrong
predictions of S-RoB using properties P-S and A-S. In Figure 5.2 (left)
shows that both ancestor and parent relations initially exhibit greater
distances, dist(n,p)= 52.1 and dist(n,a)= 75.5, for S-RoB, which sub-
sequently decrease to 51.2, 63.0, respectively, after fine-tuning, for S-
RoBhp. Figure 5.2 (right), we selected some examples to demonstrate
how the enhanced PLMs accurately reverse the trend of the distances
between representations with respect to the evaluated properties.

To sum up, our experiments confirmed the feasibility of injecting
hierarchy properties into PLMs, particularly for BERT-L, S-RoB, and
S-MPNet models, with overall performance higher than all the eval-
uated vanilla PLMs.

5.5.3 Analyzing the transfer of hierarchy knowledge of PLMs
to downstream tasks

Finally, we answer RQ3: Can hierarchy-enhanced PLMs representations
be transferred to downstream tasks? We investigate in a sequential mode
whether our hierarchy-enhanced PLMs using probes retain and lever-
age their knowledge when fine-tuned to perform a given downstream
task.

In the following, we introduce each downstream task and report
our results.

5.5.3.1 Downstream tasks

hypernym discovery.

This task evaluates an input term as a query and retrieves (or dis-
covers) its suitable hypernyms from a target corpus. We used the
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SemEval-2018 Task 9 benchmark (Camacho-Collados et al., 2018) con-
sisting of five subtasks covering general-purpose and domain-specific
tasks.

Specifically, we consider the English subtask 1A which includes
a textual corpus, a vocabulary including all valid hypernyms, and a
training and testing set of hyponyms and gold hypernyms. Due to the
size of the corpus and queries, we employed a re-ranking approach
involving two steps.

In order to demonstrate the objective of this task, let us consider an
example from the test set where the word query is “manga”. The an-
ticipated outcome is for the model to identify and retrieve the hyper-
nyms such as “serial”, “television series”, “tv program series”, “tele-
vision program”, and “tv show” from the given vocabulary.

Firstly, we considered two different models as first rankers to re-
trieve the top 1000 most relevant candidates: a semantic-retrieval ap-
proach with FT-wiki embeddings and cosine similarity, and BM25

with RM3 (Abdul-Jaleel et al., 2004). Then, we re-ranked these fil-
tered results using our hierarchy-enhanced and vanilla PLMs, which
were fine-tuned with a binary classification layer using the CTP archi-
tecture (for details, please refer to Section 3.3). We further explored
an Oracle first ranker which extends the first ranker with missing
golden candidates and acts as an upper bound of the performance
of PLMs. We report MAP and P@5 ranking measures as proposed in
Camacho-Collados et al. (2018).

taxonomy reconstruction.

This task aims to construct a hierarchical taxonomy from a given
set of words. We used the SemEval TexEval-II (Bordea, Lefever, and
Buitelaar, 2016) dataset to compare with previous work (Chen, Lin,
and Klein, 2021; Jain and Anke, 2022). We used the English-language
version of the taxonomies environment and science. The dataset con-
sists of an evaluation set with edge-based accuracy as the metric. We
followed the CTP approach by training the vanilla and our hierarchy-
enhanced PLMs on the Bansal et al. dataset, omitting overlapping
terms with the evaluation dataset. We report standard Precision, Re-
call, and F1.

reading comprehension.

We use the RACE (Lai et al., 2017) dataset, consisting of English
exams for middle and high school Chinese students with up to four
possible answers. The questions are split into Middle and High sets,
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where the High set is the most difficult. Reported values are given in
terms of accuracy.

5.5.3.2 Evaluation results

We examine the transferability of the learned hierarchical representa-
tions to downstream tasks. Tables 5.6, 5.7, and 5.8 show results for
each task. For Hypernym Discovery, our initial MAP scores were 2.2,
3.4, and 3.7 for FT-wiki, BM25, and BM25+RM3, respectively. Addi-
tionally, re-rankers BERT-Lhp and RoB-Lhp improved +5.4 and +5.1
w.r.t. vanilla versions for MAP and P@5 based on BM25+RM3 initial
ranking. However, we noticed a slight degradation in performance
for S-RoBhp and S-MPNethp (similarly for FT-wiki column). We also
observed that all models improved their results for the Oracle results,
with smaller margin (+0.1) for S-RoBhp and S-MPNethp. These re-
sults motivate us to explore better first rankers. Moreover, consider-
ing the fact that this particular task heavily relies on hypernym re-
lations (group P-*), we assume that the enhanced representations are
easily transferable to this task. For Taxonomy Reconstruction, we re-
port the average metrics from both taxonomies. Three models, BERT-
Lhp, S-RoBhp, and S-MPNethp, showed improvements in F1 scores
w.r.t their vanilla version (+0.4, +0.7, and +17.2, respectively), while
RoB-Lhp degraded its performance by −1.2. The improvements were
primarily driven by better precision (0.7− 32.0), with a smaller penal-
ization on the recall (0.8− 14.8). Considering higher precision as an
indication of better quality in the concept representations, we argue
that the enhanced representations from groups P-*, A-*, and S-* are
transferable for this task. For Reading Comprehension, learned rep-
resentations may not be fully transferable. Specifically, we observed
improvements for RoB-Lhp, but not for other models. This suggests
that hierarchy knowledge is either forgotten (Kirkpatrick et al., 2017)
or penalizing for this task. Thus, an appropriate setup is called since
a sequential fine-tuning might lead to the hierarchy representations
drift for this task.

Table 5.9 shows our results w.r.t. SOTA models. For the tasks of Tax-
onomy Reconstruction and Reading Comprehension1, S-MPNethp

and RoB-Lhp achieve competitive performances. However, the main
trend is that specialized models, such as RRM, TaxoRL, and CoLISA,
outperform fine-tuned enhanced models, which sheds light to the de-
sirable room for improvement that a suitable transfer learning of hi-
erarchy knowledge to downstream tasks would achieve. Overall, our
empirical findings suggest that the enhanced PLM representations

1 All score recalculated for RoBERTa as suggested in the fairseq GitHub repository.

https://github.com/facebookresearch/fairseq/issues/1565
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Table 5.6: Hypernym Discovery results for vanilla, enhanced PLMs. We re-
port MAP and P@5 using only the FT-Wiki results (default), and
including the gold results (w/gold). Best values are presented in
bold.

Hypernym Discovery

FT-wiki BM25+RM3 Oracle

Model MAP P@5 MAP P@5 MAP P@5

BERT-L 5.9 4.6 7.0 5.5 42.6 37.2

RoB-L 2.0 1.3 1.8 1.2 18.3 15.7

S-RoB 10.4 8.7 11.6 9.8 45.5 39.8

S-MPNet 9.9 7.8 10.6 8.6 46.1 39.6

BERT-Lhp 11.3 9.7 12.4 11.0 53.6 48.5

RoB-Lhp 5.0 4.1 5.5 4.5 32.2 27.0

S-RoBhp 9.2 7.8 10.5 9.1 45.6 39.9

S-MPNethp 9.4 7.7 10.5 8.8 47.9 42.0

Table 5.7: Taxonomy Reconstruction results for vanilla, enhanced PLMs. We
report the average of Precision (P), Recall (R), and F1 from all
taxonomies. w.r.t. vanilla counterparts are presented in () and best
values in bold.

Taxonomy Reconstruction

Model P R F1

BERT-L 15.5 48.0 22.9

RoB-L 17.3 46.7 24.8

S-RoB 17.2 33.6 22.6

S-MPNet 9.4 41.9 15.1

BERT-Lhp 16.2 45.0 23.3(+0.4)

RoB-Lhp 15.9 49.4 23.6

S-RoBhp 18.3 32.8 23.3

S-MPNethp 41.4 27.1 32.3
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Table 5.8: Reading Comprehension results for vanilla and enhanced. We re-
port the accuracy. Results are average of three runs and best values
in bold.

Reading Comprehension

Model Middle High All

BERT-L 75.0 66.3 68.8

RoB-L 86.3 80.0 81.9

S-RoB 57.9 51.4 53.3

S-MPNet 74.4 67.8 69.7

BERT-Lhp 74.3 63.4 66.6

RoB-Lhp 87.8 81.4 83.2

S-RoBhp 57.3 51.0 52.8

S-MPNethp 46.2 42.2 43.4

Table 5.9: Results for Hypernym Discovery, Taxonomy Reconstruction and
Reading Comprehension tasks. We present the best performing
enhanced model from our experiments and the SOTA models for
each task. Best values in bold.

Hypernym Discovery MAP P@5

BERT-Lhp 12.4 11.0

CRIM (Bernier-Colborne and Barrière, 2018) 19.8 19.0

RMM (Bai et al., 2021) 27.1 23.4

Taxonomy Reconstruction P R F1

S-MPNethp 41.4 27.1 32.3

TaxoRL (Mao et al., 2018) 35.1 35.1 35.1

CTP (Chen, Lin, and Klein, 2021) 26.3 25.9 26.1

LMScorer (Jain and Anke, 2022) 29.8 28.6 29.1

Reading Comprehension Middle High All

RoB-Lhp 87.8 81.4 83.2

RoBERTa (Liu et al., 2019) 86.5 81.8 82.8

DeBERTA (He, Gao, and Chen, 2021) 90.5 86.8 87.5

CoLISA(Dong et al., 2023) 90.8 86.9 87.9
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are moderately transferable in a sequential mode of probe then fine-
tune for hierarchy-aware tasks such as Hypernymy Discovery and
Taxonomy Reconstruction, but detrimental for Reading Comprehen-
sion.

5.6 conclusion

In this chapter, we aimed to evaluate whether the PLMs encode their
knowledge representation hierarchically. Our research found that cur-
rent evaluations of PLMs only consider superficial hierarchical fea-
tures, which can lead to neglecting higher levels of hierarchical knowl-
edge. To better understand the limitations of these models and pro-
vide insights into what information is helpful for PLMs to leverage
their representations, comprehensive methods are needed to evaluate
the hierarchy.

To address this gap, our work proposed a task-agnostic methodol-
ogy for probing the capability of PLMs to capture hierarchy. We relied
on the task diagnostic approach, which decomposes a given task into
properties or steps to better understand the underlying mechanism
leading to a model prediction.

We first identified hierarchy properties from taxonomies, capturing
how concepts are distributed. More specifically, our properties rely
on four taxonomic relationships: parent, ancestor, sibling, and far rel-
ative, and we rely on their taxonomic similarity to study the hierarchi-
cal relationship between words. Then, we constructed probes encod-
ing these properties and a setup to evaluate the hierarchy knowledge
in PLMs.

We further conducted experiments using probes to integrate
explicit hierarchy knowledge into PLMs. Overall, our experiments
showed that the evaluated PLMs, such as cross-encoder models like
BERT, struggle to capture hierarchical relations, such as siblings
and ancestor representations. However, we were able to improve the
representations of PLMs by injecting hierarchy properties into them,
which resulted in better performance on our evaluation.

Finally, we tested the transferability of the hierarchy knowledge ac-
quired by our hierarchy-aware PLMs on different NLP downstream
tasks, including hypernym discovery, taxonomic reconstruction, and
reading comprehension. Our finding reveals that a kind of catas-
trophic forgetting can occur, leading to performance results under
upper-bound performance of PLMs trained specifically on hierarchy-
aware tasks.
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C O N C L U S I O N

6.1 summary

In this dissertation, we investigated different approaches that
enhanced the knowledge representation of Pre-trained Language
Models (PLMs) using external knowledge resources, particularly
knowledge bases (KBs). Using KBs has proven beneficial to incor-
porating the structured and factual knowledge that PLMs typically
ignore. Different methodologies have mainly focused on injecting
textual information from knowledge as a factual and specialized
knowledge source. However, these methodologies do not explicitly
incorporate the structural aspects that KBs inherently possess.
Consequently, we explored methodologies and adapted evaluation
protocols to integrate this structural knowledge into PLMs.

In Chapter 2, we provided relevant background on knowledge
bases, their sources, and components typically used in approaches
that employ PLMs. We also reviewed different approaches that inject
external knowledge, which can either be implicit or explicit. The
main difference between these two approaches is how the structure
is used and translated to deal with PLMs. Moreover, we presented
common evaluation approaches used in the literature to determine
the quality and quantity of knowledge injected into the model. These
approaches typically depend on the PLM’s knowledge capacity. We
further introduced a less common evaluation approach called task
diagnostic, which aims to decompose the target task and identify
which parts are beneficial using the enhanced model. This adds more
transparency to the model’s performance.

As previously mentioned, the previous methods focused solely on
injecting factual information from KBs and did not consider the hi-
erarchical structure of KBs. In Chapter 3, we reviewed the main ap-
proaches that explicitly leverage the hierarchical structural informa-
tion from KB. We start by reviewing static-word embeddings, which
have been extensively explored in the literature. Then, we introduced
some of the recent approaches, which are still limited due to the on-
going development of this research field.

In Chapter 4, we focused on a specific NLP task, the reasoning
task, which is particularly improved with implicit injection method-
ologies. We found that the learning methodologies previously used
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for this task struggled to find a human-based generalization. To ad-
dress this issue, we proposed new learning methodologies that grad-
ually teach different complexities of the reasoning task inspired by
how humans learn incrementally. We evaluated the effectiveness of
our proposed methodology by testing it on similar multi-hop reason-
ing tasks and related tasks such as question-answering and reading
comprehension.

Finally, in Chapter 5, we extended our study of hierarchical repre-
sentation under explicit hierarchical signals. We found that the cur-
rent methods for evaluating hierarchy representation are limited and
inherited from classical methods for static word embeddings. There-
fore, we propose a task diagnostic approach in response to the need
for more comprehensive evaluations for hierarchy. This task diagnos-
tic characterized the hierarchy into hierarchy properties that capture
the notion of hierarchy based on specific patterns in the structure. We
also introduced an evaluation setup for PLMs using these properties.
Additionally, we taught these properties to the models and assessed
whether they improved performance on their representations and re-
lated NLP tasks.

6.2 contributions

Considering that the integration of knowledge into PLMs is a recent
but rapidly evolving domain, we have done a comprehensive review
of the most relevant knowledge integration methods from the SOTA.
In Chapter 2, we surveyed methods for knowledge integration for
PLMs based on the methodology approach used (implicit and ex-
plicit) and provided a brief introduction to the domain shift in the con-
text of LLMs. We also presented the main evaluation methodologies.
Similarly, in Chapter 3, we surveyed the main strategies for hierarchy
injection, covering methods oriented for static word embeddings and
the most recent methods for PLMs

Regarding our contributions, our research focused on the struc-
tural component of the injected knowledge, particularly exploring the
benefits and limitations of different methodologies and the relevance
of injecting this type of knowledge by evaluating downstream NLP
tasks.

Our first contribution delved into the reasoning task and proposed
different learning methodologies. Throughout the exploration of this
venue, we highlight the following contributions:

1. The creation of the SHINet dataset, a synthetic dataset for multi-
hop reasoning. It includes 1-hop and 2-hop levels for training



6.2 contributions 133

and evaluation. This dataset has been created by manually align-
ing the SHINRA and ConceptNet datasets. It has also been fil-
tered to provide a more challenging version of reasoning, con-
sidering the bias typically introduced when creating synthetic
datasets.

2. We proposed the training and evaluations of single-hop reason-
ing models, which are trained on a specific difficulty level. The
objective is to understand the strengths and limitations of the
reasoning abilities of PLMs by observing their contribution af-
ter learning different reasoning depths at varying difficulties.
To achieve this, we have developed single-hop datasets that can
be used to train and evaluate existing datasets in the literature
(Single RuleTakers and SHINet).

3. We provided an algorithm to sample different training strate-
gies based on the context information. Particularly, our algo-
rithm defines different types of distractors according to their
participation in the reasoning chain. Using this algorithm, we
analyzed their impact on the task and the most helpful tech-
nique to leverage the training of PLMs.

4. We have replicated various previous research models to en-
sure a fair comparison. Specifically, we have reproduced the
results of the Leap-of-Thought model (Talmor et al., 2020b) for
reasoning tasks under various setups proposed in the original
work. Additionally, we have replicated the work of Richardson
and Sabharwal (2020) for question-answering. In doing so,
we have updated the deprecated libraries with current ones,
achieved comparison results in reproductions, and reorganized
the datasets.

5. We provide code and trained models from our experience in a
public repository for the sake of reproducibility in our work.

Our second contribution involved evaluating and integrating ex-
plicit hierarchical signals within the context of PLMs. This has re-
sulted in the following contributions:

1. We proposed a comprehensive method for evaluating hierarchy
based on hierarchy properties. These properties reflect the hi-
erarchy distribution of concepts similar to taxonomies. Instead
of simply relying on a hypernym link between two entities, our
approach considers the relative placement of three entities, mim-
icking the substructure of a taxonomy.



134 conclusion

2. We generated an evaluation dataset based on alignments of
WordNet and Bansal et al. taxonomies to instantiate the hier-
archy properties. The dataset contains concepts and contextual-
ized definitions based on the sub-taxonomy.

3. An evaluation setup for these hierarchies is provided for PLMs.
Mainly, we explored different PLM representations based on
different tokens, layers, and aggregation methods to obtain the
best configuration that favors these hierarchical representations.

4. We provided a training setup to teach PLMs about hierarchy
properties. We relied on the Triplet Loss and triplet networks
to this end. During the exploration, we also tried experimented
with different architecture networks, such as cross-encoders and
bi-encoder architectures

5. We analyzed multiple SOTA models using these hierarchy prop-
erties. This helped us to spot the main limitations of PLMs
in dealing with hierarchical distributions, considering relations
such as parent, ancestor, sibling, and others. Additionally, we
trained these models by leveraging these properties, expanding
our analysis to these more comprehensive representations.

6. Similar to the previous contribution, we provide the code,
datasets, and models of all the resources developed in this
work to assist future research in this domain.

6.3 perspectives and future directions

The knowledge integration field is an extensive topic, and different as-
pects could not be explored within the limited time span of this thesis.
In the following, we will review some ideas related to the topics pre-
sented that could serve as a starting point for further work in this
domain. Our perspectives on future work can be grouped into two
categories: exploring novel and useful injection methods and adapt-
ing or improving architectural propositions.

Our perspectives for further work on different aspects of injection
methodologies are the following:

improved prompts as implicit integration for llms .

Using few-shot learning through prompting is a common approach
to adapting Large Language Models (LLMs) for specific tasks. Cur-
rently, KBs are used as a resource to verify the accuracy of the in-
formation generated by LLMs, with training modules being used to
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correct any inaccuracies. However, we believe that constructing richer
prompts that capture structural elements can lead to capturing differ-
ent hierarchical nuances of relationships. These richer prompts can
leverage current text-patterns approaches and use adapted learning
strategies.

better metrics for multi-hop reasoning .

The evaluation of multi-hop reasoning relies on simple metrics
such as accuracy, which determines whether the overall inference
is correct or not. This evaluation approach can reveal if a model
can correctly reason over a given inference problem at a higher
level. However, this evaluation approach has limitations, as it does
not consider the difficulty level (number of hops) of the reasoning
problem evaluated. Moreover, it does not provide information about
which parts of the reasoning chain the model could obtain. Although
multi-hop reasoning is not the core subject of this thesis, we consider
that better evaluation approaches could be helpful. Particularly, they
could provide valuable information about the reasoning process,
which could be helpful for interpretability approaches to elucidate
whether a model gives a good answer based on the correct choices.
Therefore, there is a need for better metrics that recall the inference
path.

encode hierarchy in relations .

Our second contribution explored the use of explicit hierarchical
signals, which mainly focused on different taxonomical relations,
such as parent, ancestor, and sibling relations. These relations aimed
to complement current evaluations that rely only on the parent
relationship. However, we encourage to explore other explicit hier-
archical signals that could provide essential knowledge to enhance
representations. One promising direction for further exploration is
the different natures of relationships in a knowledge base, which
can be mainly hierarchical and non-hierarchical (Krackhardt, 2014).
Previous work has explored some methods to characterize the degree
of hierarchy of these relationships. Moreover, the binary distinction
between these two types of relationships has shown promising
results in knowledge-based embeddings (Du et al., 2022). Therefore,
considering degrees of hierarchy when injecting information in
PLMs could provide an additional dimension in the latent represen-
tation space towards enhancing this aspect of language, leading to
capturing hierarchy characteristics such as granularity and direction.
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As incremental contributions related to architectural challenges, we
present the following:

adaptation to hyperbolic spaces .

The use of hyperbolic spaces showed an interesting approach in
works related to static word embeddings. These spaces are useful for
encoding the hierarchical distribution of KBs. However, there are lim-
ited studies exploring the use of these spaces in PLMs. One possible
future direction for research is to consider these spaces in the architec-
ture of the models. It would be interesting to evaluate the relevance of
the hierarchy properties proposed in our second contribution using
these spaces.

Another interesting approach to analyze is the learning projection
of contextualized representations for evaluation purposes. Learning
projections on final and intermediate representations in PLMs could
help improve the hierarchical modeling of these models and com-
ply with a hierarchical reference. However, implementing these meth-
ods would require redefining basic operations commonly available
in libraries. Developing tools adapted to the most commonly used
frameworks, such as AllenNLP or HuggingFace, is a crucial step in
advancing further research in this domain.

span representation for entity and relation

The way entities and relations are represented in PLMs has only
been explored to a limited extent. In KEPLMs, most methods use
simple approaches for span representations, such as considering the
first token of the mention (ERNIE) or using average pooling for the
participating entities (ERICA). However, these methods are limited
and may miss important information related to the entities and rela-
tions. Moreover, they do not consider that an entity or relation can be
expressed through different textual mentions. For example, an entity
could be expressed by a mention in a text or using higher-level repre-
sentations such as paragraphs or documents. Similarly, relationships
could be formed by the interaction between two entities in a phrase
or between sentences or documents. Previous research has examined
various ways to capture these mixed representations, but the struc-
tural distribution of these representations has not been given much
attention.
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developing dedicated taxonomic similarity modules .

In our second contribution, we observed that incorporating hierar-
chical representation into PLMs improved the performance of tasks
that rely on hierarchy-like structures. However, we also observed that
this method did not work well for other NLP tasks less related to
hierarchy. There could be two reasons for this outcome: either the in-
jection strategy is not optimal for these types of problems, or there is
an incompatibility in the representation space between semantic and
taxonomic similarity.

We suggest testing this incompatibility hypothesis as an interesting
approach to continue. It could be achieved by adding complementary
modules at the architecture level that can learn different types of sim-
ilarities. For instance, by training the Adapters module to integrate
taxonomical similarity into PLMs already trained on semantic sim-
ilarity, we can conduct experiments to gain more insight into this
matter.

hierarchical losses .

In language models, learning semantic relationships typically in-
volves contrastive learning. Similar to the LEAR approach, the idea
is to group similar words and calculate the distance between dissim-
ilar words based on our semantic relationship criteria. The triplet or
negative ranking loss emerged as derived losses from this approach.
However, these losses do not consider different aspects of the hierar-
chy, such as granularity and direction or interactions between mul-
tiple entities for hierarchical injection purposes. In computer vision,
recent losses were proposed to capture different nuances of the hier-
archy better. It may be worthwhile to evaluate the adaptation of these
losses in the text domain or propose more appropriate losses.
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A
B I - E N C O D E R M O D E L S

This appendix provides a detailed definition of bi-encoder models
and showcases the training details of the models in our second con-
tribution.

a.1 definition

The introduction of Sentence-BERT (Reimers and Gurevych, 2019)
has improved the embedding representations of the PLM network
through siamese and triplet networks, referred to as bi-encoders. The
refined version of BERT produces semantically meaningful sentence
embeddings, making it useful in new domains such as large-scale
semantic similarity comparison, clustering, and information retrieval
through semantic search.

The conventional BERT architecture uses a cross-encoder paradigm
for two-sentence input, but it is impractical for tasks involving nu-
merous sentence combinations. To overcome this limitation, typical
approaches rely on feeding individual sentences into BERT to ex-
tract fixed-size sentence embeddings. These embeddings are typically
achieved by averaging the BERT output layer or using the [CLS] to-
ken, which may not always provide good-quality representations.

The incorporation of siamese network architecture facilitates the
extraction of fixed-sized vectors for input sentences, overcoming
the challenge of efficiently handling varying sentence pairs. This
paradigm shift enhances the flexibility of BERT in accommodating di-
verse tasks and extends its applicability to scenarios where nuanced
sentence-level embeddings are essential.

a.2 bi-encoders vs cross-encoders

Cross-encoder and bi-encoder models represent contrasting ap-
proaches, each presenting distinctive advantages and drawbacks.
Figure A.1 shows both types of model architecture.

Cross-encoders consider the global context of both sentences
simultaneously and provide a comprehensive perspective on their
relationship. This approach is advantageous in tasks where the
interplay between sentences depends on their overall context. How-
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Figure A.1: Network architectures for cross-encoders and bi-encoder mod-
els. Source:

ever, cross-encoders require concurrent processing of both sentences,
which makes them computationally intensive and limits scalability.
Also, the sequential nature of cross-encoder processing hinders
efficient parallelization, affecting training and inference efficiency.
Additionally, cross-encoders do not produce sentence embeddings
that can be used independently.

In contrast, bi-encoders process each sentence independently, fa-
cilitating parallelization and making them highly scalable. This ap-
proach makes bi-encoders a good fit for applications dealing with
extensive datasets. Bi-encoders are also versatile in adapting to vari-
ous tasks independently. However, their emphasis on the local context
within individual sentences might limit their effectiveness in tasks re-
quiring a broader understanding of the global relationship between
sentences. Additionally, bi-encoders may not perform optimally in
explicit pairwise classification tasks compared to their cross-encoder
counterparts.

To sum up, the choice between cross-encoder and bi-encoder mod-
els depends on the specific requirements of the task. Cross-encoders
excel in tasks where a holistic understanding of the relationship
between sentences is crucial, while bi-encoders offer efficiency
and adaptability for a broader range of tasks, particularly those
emphasizing local context or requiring scalable solutions.
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Table A.1: Pre-trained Bi-encoder Models available on the HuggingFace
hub.

Model PLM Embedding
dimension

Max
length

all-mpnet-base-v2 MPNet 768 512

all-distilroberta-v1 RoBERTa 768 512

all-MiniLM-L12-v2 MiniLM
(distilled
BERT)

384 256

a.3 pre-trained bi-encoder models

The pre-trained models specifications are shown in Table A.1. Please
note that all these models are trained using the same dataset collec-
tion with over 1 billion of sentence pairs.

This dataset collection is composed of the following dataset: Reddit
comments (2015-2018), S2ORC Citation pairs (Abstracts), WikiAn-
swers Duplicate question pairs, PAQ (Question, Answer), S2ORC
Citation pairs (Titles), S2ORC (Title, Abstract), Stack Exchange (Title,
Body), MS MARCO triplets, GOOAQ: Open Question Answering
with Diverse Answer Types, Yahoo Answers (Title, Answer), Code
Search, COCO Image captions, SPECTER citation triplets, Yahoo
Answers (Question, Answer), Yahoo Answers (Title, Question),
SearchQA, Eli5, Flickr 30k, Stack Exchange Duplicate questions
(titles), AllNLI (SNLI and MultiNLI), Stack Exchange Duplicate ques-
tions (bodies), Stack Exchange Duplicate questions (titles+bodies),
Sentence Compression, Wikihow, Altlex, Quora Question Triplets,
Simple Wikipedia, Natural Questions (NQ), SQuAD2.0, TriviaQA.





B
C O M P U T I N G I N F R A S T R U C T U R E A N D B U D G E T

All experiments were performed in a server Dell R740 bi pro Intel
Xeon 2630 using Nvidia RTX6000 graphic card. A single training and
test took around 100 and 120 minutes under this infrastructure. In
summary, to compute the results of RQ1 and RQ2 we used approxi-
mately 120 GPU hours.

To compute the results of RQ3, including the inoculation technique,
we used approximately 1,730 GPU hours.
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C
R E S U LT S O F H I E R A R C H Y P R O P E RT I E S

Table C.1 shows the accuracy on each hierarchy property on the test
dataset with method avg token representation and using the L2 dis-
tance.
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